


<

UNIVERSITY OF CALIFORNIA
ANDREW
SMITH
HALLIDIL:



i f
. m;











JOHN WILEY & SONS
PUBLISH,

By the same Author,

THE ELEMENTARY PRINCIPLES OF MECHANICS. By Prof. A. J.

Du Bois. Designed as a text-book for technical schools. Three Volumes.

8vo, cloth.

Vol. I Kinematics, $3.50. Vol. II Statics, $4.00. Vol. Ill Kinetics, $3 50

THE STRESSES IN FRAMED STRUCTURES. The present edition of this

well-known work appears in a new form, greatly reduced in size and weight,

rewritten and reset and printed from new plates. It contains the latest practice

and much new matter, never heretofore published. Swing Bridges, the Braced

Arch, and the Suspension System receive an entirely new treatment. New
chapters are added upon Erection by John Sterling Deans, C.E., and High-Build-

ing Construction, by Wm W. Crehore, C.E. Illustrated with hundreds of cuts

and 35 full-page and 14 folding plates. By Prof. A. Jay Du Bois. Tenth

edition 1 vol., 4to, cloth, 10 00

HYDRAULICS AND HYDRAULIC MOTORS. With numerous practical

examples for the calculation and construction of Water Wheels, including

Breast, Undershot, Back-pitch, Overshot Wheels, etc., as well as a special

discussion of the various forms of Turbines, translated from the fourth

edition of Weisbach's Mechanics. By Prof. A. J. Du Bois. Profusely
illustrated. Second edition 8vo, cloth, 5 00

THEORY OF THE STEAM ENGINE. Translated from the fourth edition

of Weisbach's Mechanics, by Prof . A. J. DuBois. Containing notes giving

practical examples of Stationary, Marine, and Locomotive Engines,

showing American practise. By R. H. Buel. Numerous illustrations.

8vo, cloth, 5 00

THERMO-DYNAMICS, THE PRINCIPLES OF.- With Special Applica-

tions to Hot Air, Gas, and Steam Engines. By Robert Rontgen. With
additions from Profs. Verdet, Zeuner, and Pernolet. Translated, revised,

and enlarged by Prof. A. J. Du Bois, of Sheffield Scientific School. 670

pages 8vo, cloth, 5 00

THE CALCULATIONS OF STRENGTH AND DIMENSIONS OF IRON
AND STEEL CONSTRUCTIONS. With reference to the latest ex-

periments. By Prof. J. J. Weyrauch, Polytechnic Institute of Stuttgart.

Translated by A. J. Du Bois. With Plates 8vo, cloth, 1 50

*
#
* Mailed and Prepaid on the receipt of the Price.

CA.TA.UOGUES



THE PRINCIPLES
OF

THEKMODYETAMICS.
WITH

SPECIAL APPLICATIONS TO HOT-AIR, GAS
AND STEAM ENGINES.

BY

ROBERT RONTGEN.
TEACHEB : THE POLYTECHNIC SCHOOL AT KF.MS<:HKH>.

TRANSLATED, REVISED, AND ENLARGED
BY

A. JAY DU BOIS, PH.D.,
PaoFEssoa OF DTHAKIO EiraiirMBnro nr THK SHEFFIBLD Sctwrrmc SCHOOL OF YALE COLLKOS

IN TWO PARTS.

PART I. GENERAL PRINCIPLES HOT-AIR AND GAS ENGINES

PART II. HEAT, STEAM AND STEAK ENGINES*

WITH 103 WOOD-CUTS IN THE TEXT.

THIRD EDITION.

SECOND THOUSAND.

NEW YORK :

JOHN WILEY & SONS.

LONDON :

CHAPMAN & HALL, LTD.

1899.

~SSt

OF THE

UNIVERSITY



-

HALL1C

COPYRIGHT,

1880,

JOHN WILEY & SONS



PREFACE.

IN the presentation of the present work to the Engineering

Profession and to our technical Schools, a few words of intro-

duction seem necessary.

There are several excellent works upon the subject of Ther-

modynamics, in English, but none with which the writer is ac-

quainted, sufficiently wide in its scope and practical in its

applications, and at the same time adapted in its mode of

treatment to the needs of beginners. The subject is thus one of

the most difficult for the student to get hold of in the scheme

of our engineering schools, and the effort to teach it, so far as

the writer's experience goes, is seldom productive of satisfac-

tory results.

It is to meet this want that the present work is offered to the

public. The writer has used the work of EONTGEN in his classes

for saveral years, and with good success. The treatment is full

and practical and the presentation such as to offer but little

difficulty to an earnest reader. The notation employed is that

used by ZEUNEE, so that the book forms a good introduction to

the " Wdrme-theorie"

During these years the work of EONTGEN has grown upon the

writer's hands into its present proportions, and it becomes

proper here to point out at least those portions for which the

German author is not responsible. In general the work of

Eontgen is comprised by the large print only, while, all the rest

is from other sources.

Of these, apart from the writer's own additions, the most

noteworthy are the two lectures by PROF. VERDET, which have

been introduced as an introduction to the work. They form,
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iv PREFACE.

with the Notes and Additions, an admirable summary of the

whole field, and being in a popular form, will, it is hoped,

awaken an interest in one of the most important of the more

recent developments of physical science.

In Chapter XTTT. we have given a very excellent abstract of

MONS. PERNOLET'S work "L'Air Comprime" for which we are

indebted to Mr. BAILEY WILEIS, M. E. It will be found of great

interest, and the diagram given at the end of the chapter will

be found of great practical value.

In the Appendix to Chapter XXIII., we have given ZEUNER'S

theory of superheated, steam by far the best and latest work upon
this very important subject.

As to other additions, we have added here and there to the

text of our author, matter which seemed desirable, distinguish-

ing all such additions by fine print and brackets ; have appended
"
questions for examination

"
to many chapters, as well as added

many selected "
examples for practice," reduction tables, etc.,

all of which are calculated to aid the teacher and student.

The steam tables at the end of the work are taken from ZEU-

NER'S " Warme-theorie"

As regards the extent of the work, it will be found consider-

ably more than can be read completely by any class. This need

cause no trouble to the instructor. The principles are completely

laid down in the first six chapters of the first and second parts.

The rest, consisting merely of the applications of these princi-

ples, can be pursued at such length as may seem proper in any

case. We consider it a positive advantage to the student, who

is expected to make use of the principles he acquires, to have a

text book so full and comprehensive that it shall serve as a

book of reference as well, and point out the method to be pur-

sued in the investigation of any problems which may occur in

future practice.

For several reasons it has not been thought well to convert

the French measures into English. Those who wish to become

familiar with the literature of the subject, must be able to use
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the French system easily. No graduate of our Technical

Schools should be without a thorough knowledge of it For

the practical use of tlie formulae and results in daily work, the

reduction tables we have given will be found to answer every

requirement.

The method of the author requires only a knowledge of al-

gebra and no use is made of the calculus; This fact will per-

haps gain for the work readers who have long desired to obtain

some insight into the subject, but have been unable to read the

works hitherto published upon it.

The effort throughout has been to aid both teacher and stu-

dent in their work, and to impart such a knowledge of the sub-

ject as shall render it practically serviceable.

SHEFFIEL SCIENTIFIC SCHOOL OF YALE COLLEGE,

JUNE HTH, 1880.





PREFACE TO SECOND EDITION.

VERY considerable additions have been^made to the present
edition. The application of the Calculus to the subject has

been given with sufficient fullness, in the shape of additions to

Chapter VIL, page 2 f

>8, and Chapter XVIII, page 462. All

examples and formulae are given throughout the work in both

French and English units, and the Steam Tables of Zeuner are

given complete, both in their original French units, and also

reduced throughout to English units. Many new examples
have been added.

It is hoped that these changes will better adapt the work to

the needs of teachers and pupils, as well as render it more

valuable as a work of reference for the engineer.
The student will thus find two Courses presented, one with

and the other without the aid of the Calculus. The first six

chapters of Part I. and Part II. form by themselves a short

elementary and practical Course.

The writer has found it decidedly of advantage that students

should thus first become familiar with the main features of the

subject. Upon review, the remaining portions can then be

taken with profit, and the application of the Calculus will be

better understood.

It is believed that such a Course will open up the subject, so

that the student can pursue it readily in higher works, while

the numerous examples and complete Tables will make the

book a valuable aid in practice.
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LECTUEE I

I.

THERMODYNAMICS, or the MECHANICAL THEORY OF HEAT, is that science

which treats of the mechanical effects of heat, and of those mechanical pro-

cesses by which heat is generated. This science is yet in its infancy. It is

not more than 40 years ago
* that Sadi Carnot pointed out its first problems,

and scarcely 30 years have elapsed
* since Julius Robert Mayer indicated the

methods by which their solution might be attempted.

Nevertheless, this science has already reached a great development, and

has attained points of contact with almost all the other sciences. We shall

endeavor, in what follows, to obtain a comprehensive view of this rapid progress.
The new science rests upon a few fundamental principles of mechanics, and

to these let us first, for a moment, direct our attention.

The law, according to which the velocity of any material point acted upon

by a constant force changes, is well known (it is v= \/2 gh)-
We also know

that the square of the velocity attained in any given time is equal to twice the

product of the moving force and the distance passed over, divided by the mass

of the moving point (or V* = --

j
.

The velocity increases or is accelerated when the moving force acts in the

direction of the original velocity of the point, and it is retarded when the mov-

ing force acts in the opposite direction.

The product of the force into the distance passed over, we call the

"MECHANICAL EFFECT" or "WORK" of the force. We call this work posi-

tive or negative, according as the force causes motion or opposes motion of the

point, i.e., according as it acts in the direction of the initial velocity or the

reverse.

We call the half product of the mass and square of the velocity ( Mv*) the

"vis VIVA" or "LIVING FORCE," and by the aid of these two definitions we

may express the foregoing principle in the following manner :

When a body movies icith uniformly accelerated or retarded motion, the

* The two introductory lectures which follow were delivered by Prof. Verdet before the

Chemical Society of Paris, in the year 1862. The dates above should therefore now be 58 and 48 re-

spectively. As a popular and yet scientific exposition of the subject, these lectures are still unri-

valed, and to the beginner who desires to get clear general ideas of the scope and spirit of the

science they will, it is thought, prove both interesting and valuable, and render the proper com-

prehension of the technical discussion which follows much easier.

3



4 LECTURE I.

" work "
daring any given time, performed upon the body or performed by the

body, is equal to the change in the "living force
"

[i.e., Work = | M( F2
* v

{ *)].

This principle, whicli follows directly from the above definitions and prin-

ciples, enables us to measure forces by the resulting velocities, and may be

easily generalized.

Thus, by the aid of the Calculus, we may remove the limitation as to con-

stant force, which we have introduced for the sake of clearness. Then the

limitation as to direction may be removed by finding the component of the in-

clined force in the direction of the motion, and taking its work. Finally, we
may consider any system whatever of forces and bodies, and show that in all

cases the sum of the works performed in any given time is equal to the change in

the sum of the living forces in that time. This is the principle known as the

equality of work and living force, upon which rests the entire theory of

machines.

Mechanical effect, or work, is expressed numerically by means of a conven-

tional unit. Thus that amount of work may be taken as unity which is per-

formed in lifting one unit of weight, as one pound or one kilogram, against the

force of gravity, through the vertical distance of one unit of length, as one

foot or one meter. Work is thus measured in "
foot-pounds

"
or "meter-kilo-

grams." If, thus, we say that the work of any system is positive and equal to

100 ft. Ibs., we mean that by means of this system we can perform the same work
as would be performed by a weight of 100 Ibs. descending through a height of

one foot, or, regarding the force of gravity as constant, by the descent of one

pound through 100 feet. In like manner, 100 meter-kilograms signifies the work

performed by the descent of one kilogram through the distance of 100 meters.

Inversely, a negative work of 100 ft. Ibs. denotes an expenditure of work

by the system equal to that expended in raising a weight of one pound through
100 feet, or 100 Ibs. through one foot, the final velocity being zero.

It is not our purpose to indicate here how the entire theory of machines

follows from this equation of work ; but it is necessary to direct attention to

two general conditions which the motion of any machine must satisfy, and

which are expressed in this equation.

First, in every machine whose motion has become constant, or, in general,

in any system whose velocity is independent of the time, the sum of the living

forces is constant, and hence in any period which we consider, the sum of the

works zero. In other words, the work of the moving forces is constantly equal
to the work of the resistances, and has a contrary sign. If the velocities indeed

are not constant, but periodic in their variation, as, for example, is the case in a

machine with a reciprocating motion, then, although equality no longer exists

between the work of the moving forces and of the resistances for any arbitrary

interval of time, still it does exist for the duration of a full period, or for any
entire number of such periods.

If, further, the forces which act upon a system have at one time an effect

opposed to the action of the individual points of this system upon each other, if

therefore they act in the directions of the lines joining these points, and are

dependent only upon the distances apart of the points, and if at another time

they proceed from a center, and are subject to the same conditions ; then, the

sum of the living forces is the same both at the beginning and end of a time

such that the bodies of the system return to their first positions. The sum of
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the works of the forces during this time is zero. These conditions are satisfied

by every case which occurs in nature.

This law, which rests upon the surest ideas which we have concerning the

operation of the forces of nature, is nothing more than the principle of THE
IMPOSSIBILITY OF PERPETUAL MOTION.

According to this it is impossible by any combination of natural forces to

make a machine whose parts being once set in motion and then left to the

operation of gravity, or other similar forces, and their own mutual action, shall

later return to their original positions with greater velocities than they at first

possessed.

A perpetual motor means, then, a machine which, being put in motion and

left to itself will, in a certain time, regain its original velocity, and at the same

time impart to pome body, originally at rest, a certain velocity. It is clear that

both cases of impossibility are identical.*

It does not appear at sight easy, proceeding from these principles, to make

any new discoveries. The theory of simple machines is firmly founded, and

all analyses of deceptive discoveries of a perpetual motion are to-day completely
devoid of interest. Nevertheless, it is from a new application of these appar-

ently thoroughly explored principles that the entire mechanical heat theory has

arisen.

It will, for our purposes, be sufficient to give heed to these two rules :

First, always to recognize, together with the outward and visible motions of

any machine, those less perceptible interior motions of the atoms of bodies

which escape observation by our senses.

Second, whenever, following customary theories, we meet with a force

whose mode of action does not agree with the general laws of action of natural

forces, we must regard this force as a mathematical fiction, and seek to estab-

lish its true nature.

Without these two maxims every theory of machines must lead astray ;

every machine in motion must appear as a direct contradiction of the law of

equality of the work of the motive power and the work of the resistance, or as

a solution of the problem of perpetual motion. The only means of avoiding

such contradiction would be to propound views as to the nature and mode of

action of heat, whose scope would exceed that of the simple circle of pheno-

mena which first suggested them.

II.

Next, we assert that in no machine which has attained a state of uniform

motion can the work of the resistances be equal to the work of the moving
forces. Although this assertion appears, in view of the above, paradoxical, yet

it simply expresses what at bottom can be found in any text-book upon mechan-

ics. It is nothing more than the true interpretation of the preponderance of

the work of the moving forces compared with that which we call the " useful

work."

Let us consider an hydraulic machine which is designed to raise water, i.e.,

to produce an effect similar to that which it receives. This will simplify the

* See Note 1, at the end of these lectures.
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comparison of the two kinds of work. In a machine of this kind a certain

quantity of water enters in a given time, falls through a certain distance per-

forming work, and, if the machine is perfect, departs with the velocity which
it had before falling. The product of the weight of water and the height of

fall is evidently the work of tho moving force. In the same time, the machine
takes a certain quantity of water from some reservoir, it may be from the very
stream which furnishes the motive water itself, and raises it up to another and

higher reservoir. This negative work, against gravity, is the product of the

weight of water raised, into the difference of level between the two reservoirs,

and is what we call the "
useful work."

Now, every one knows that this useful work is only a fraction of the work
of the moving force. This fact is ordinarily accounted for by the considera-

tion of what we call the "
passive resistance," that is, by the assumption of

forces which oppose the motion of the machine, and thus perform a negative
work exactly equal to the excess of the work of the moving force above the

useful work. Let us see what value this explanation has.

There is one part of the passive resistance of somewhat indefinite amount.
To this belong every contribution of velocity to surrounding bodies, either to

the air or to the foundations, which theory, of course, assumes as firm. All

these constitute a useless development of living force at the expense of, and

equivalent to, a certain fraction of the work of the moving force. In by far

the greater number of cases, however, these constitute the least portion of the

work of the passive resistances. Much the greatest portion must nearly always
be attributed to the action of a certain special force which bears the name of
"

friction," and to this force we now wish to call special attention.

What, then, is friction ? It is purely a resisting force, incapable of causing
motion in the machine, or of increasing its velocity. It is a force which always
tends, when two surfaces in contact move with different velocities, to diminish
the velocity of the fastest.

It is not an elementary work, but the result of actions which occur between
the molecules of the rubbing surfaces. We know little or nothing of these

actions, more than that they must obey tae general laws which we have laid

down just now, while speaking of perpetual motion. We do not need, how-

ever, to know anything whatever about them, in order to demonstrate that

they can furnish no work, and hence can give no information as to the facts to

be accounted for. In machines, ordinarily, rubbing surfaces are ground down,
also the lubricating materials undergo a change. We might suppose that the

work corresponding to such molecular changes was the exact equivalent of that

portion of the excess of the work received over that performed, which we
ascribe to friction. But it is easy to conceive of a machine whose rubbing sur-

faces are so smooth and of such hard material as not to rub down perceptibly
in a long time

; it would not indeed be difficult, to practically realize such a

machine. If we consider, in such a case, the work of molecular forces, which
is the cause of the friction, during the period between two precisely identical

positions of the machine, it is at once evident that this work must be zero, be-

cause at the beginning and end of the period the relative positions of the mole-

cules is the same.

Where, then, does the ordinary explanation of the excess of the work received

over the useful work lead us ? Can we recognize in it anything else than a
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pure mathematical fiction, which may perhaps be useful as a temporary pres
entation of an unknown process, but which must be rejected by every one not

prepared to deny the most certain conclusions of science ? Must we not con-

clude, that in every case where we have friction without change of surface,
there must be some unobserved change, which is, in fact, equivalent to work,
and which seems to absorb the friction ?

To the eye of the pure mechanic no such change may be apparent, the

physicist, however, without doubt, will recall a well-known phenomenon,
familiar even to ordinary experience, and which has already more than once
been the subject of scientific investigation. I speak oT-the increase of tempera-
ture which always takes place when surfaces are rubbed, and which is more
considerable the greater the friction

; or, what amounts to the same thing, the

greater the unexplained loss of work.

Without pausing to recapitulate the laws of this phenomenon, let us direct

attention to its essential character. It is a heating which corresponds to no

cooling of any other part of the machine. It is not another distribution of heat

which already existed, but it is a generation, or, still better, an actual creation

of heat. What is more natural than to recognize in this the equivalent of the

excess of the work received over the useful work, which we are otherwise at a

loss how to account for ?

III.

In order to estimate the value of this supposition, let us consider a kind of

action entirely different from that which takes place in machines viz., the

phenomena of radiant heat. Let us recall the experiments of Delaroche, Be-

rard, Melloni, Knoblauch, Tyndall, and other physicists, upon what are called,

both in popular and in scientific parlance,
* heat rays."

These experiments are in complete accord with those by which the true

nature of light is revealed, and as the view held to-day as to the nature of

light is held by all, we are in like manner forced to conclude that heat rays are

nothing else than a certain vibratory motion of the ether of space. Thus, in

accordance with experiment, we say, that if a body is brought near to another

of lower temperature, certain vibrations are generated, which follow certain

laws. Upon these vibrations depend the phenomena of the imparting of heat,

and under certain circumstances they are capable of acting upon our eyes so as

to give rise to the phenomena of light also. We have no reason to suppose
that the two kinds of phenomena have different causes.

This fundamental identity of radiant heat and light was demonstrated twenty

years ago
*
by Melloni in his paper

"
Upon the Identity of Rays of all Kinds,"

read before the Academy at Naples, February 2, 1842. Still, Melloni recog-

nized that an important step remained to be made to complete the demonstra-

tion. The interference of heat rays had not yet been experimentally shown
;

no one had yet succeeded by two rays of heat in producing cold, as by two

rays of light, under proper conditions, darkness had been caused. Five years

later, Fizeau and Foucault detailed, in a paper before the Academy, experi-

ments by which the interference of heat was made as evident as that of light.

(Comptes rendus, Vol. XXV., and Poggend. Annalen, Bd. 72.)

* These lectures were delivered by Verdet in 1862.
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After this, not a single doubt remained to oppose to a theory which recog
nized in the heat rays a system of vibrations. We shall consider it as an

undoubted fact, that in a body which is brought to a higher temperature,
vibrations of its molecules are caused

;
in other words, the body contains a

certain amount of living force. While another body of higher temperature,
which serves as a source of heat, causes this development of living force, it

cools gradually itself.

Inversely, when the vibrations which constitute a system of heat rays meet

a body which possesses the property, as we say, of "absorbing heat," and

become diminished or disappear, the body becomes heated.

The cooling of a body by radiation, therefore, corresponds to the generation

in other bodies of a certain amount of living force
;
the heating of a cold body

by the absorption of radiant heat, on the other hand, corresponds to a diminu-

tion of living force in others. Heating and cooling, therefore, are phenomena
of the same kind, whatever may be their cause. They must, in all cases, be

considered as pure mechanical operations. Heating can only be the sum total

of those changes which take place during the disappearance of a certain amount

of living force
; i.e., either a performance of work or a development of living

force, or a combination of both. It is evident that heating corresponds to

mechanical work.

Heat acts to change the volume of bodies, the molecules are forced farther

apart against their forces of attraction, and thus a negative work is performed.
At the same time occurs that change of the properties of the body which we

call rise of temperature, and it is easy to see in it the effect of the change in

the sum of the living forces of the molecules.

It makes very little difference whether we accept or reject these last conclu-

sions
;

it is none the less certain that the heating of a body represents a certain

performance of work and the development of a certain amount of living force,

or still better, is such force. The work in question consists of molecular dis-

turbances which, indeed, escape observation, and are only visible, finally, in

the change of form and dimensions of the body ;
the living force is also as

difficult of direct observation, and consists neither of the motion of the body as

a whole, nor of directly visible motions of its parts, such, for example, as con-

stitute sound phenomena. It consists, in all probability, in vibrations of the

smallest particles of matter, and eludes our senses. Considered from a me-

chanical standpoint, these speculations have no importance, and cannot prevent
our recognizing in the heating of a body, mechanical work, just as plainly and

as certainly as in the raising of a weight or the motion of a projectile.

IV.

Let us return now, in the light of these new principles, to the consideration

of the machine which we have instanced, and those questions which then arose

will now find immediate solution. The heat which is developed at those points

where friction occurs is a mechanical phenomenon, a combination of mechanical

work and living force in a relation which we shall determine more precisely

hereafter. It is evident that this heat may be equivalent to the difference

which exists between the work of the motive forces and the useful work, the

explanation of which we have been seeking. I say may be, and you will, per-
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taps, be inclined to add, must be. The equation of work must necessarily be
satisfied at every instant, only we must not limit it to those living forces or

visible effects which are usually alone considered, but we must also include

those living forces, or that work, which we know in the shape of heat. If we
neglect this term of the equation of works, the fundamental theorem of applied
mechanics may indeed appear incorrect, but by its introduction all difficulties

disappear.

Having now arrived at this point, we can submit the correctness of our

conclusions to the test of experiment. We may seek, for instance, whether it

is really true that the heat generated by friction Jn a machine is exactly

equivalent to the unexplained difference between the useful work and that

received. Although, indeed, it may be impossible to measure this quantity of

heat in the condition of living force or work, as we measure, for instance, the

work of gravity upon a body of one pound weight which falls through one

foot, still we may measure it relatively by comparison with another quantity of

heat, which may be sharply defined and taken as unity.

The result of such a procedure will give us this quantity of heat expressed
in terms of these units, and then if we know the ratio of this unit of heat to the

unit of work, that is, the number of foot-pounds or meter-kilograms corre-

sponding to each heat unit, we can easily find the work equivalent to the heat,

which will be the difference between the useful work and the work originally

imparted. This constant ratio will therefore determine the mechanical value

of those heat effects which we assume as constituting one unit of heat.

This has been established by experimont. The physicist Joule, who has

perhaps contributed more than any one else to the science of Thermodynamics,
has investigated friction of various kinds in such a way as to determine the

amount of heat developed in comparison to the work expended. He used a

very simple mechanism, which, by means of a falling weight, set in motion a

small paddle-wheel, which turned while immersed in water or mercury, the

motion of the liquid being prevented by partitions. The friction of the liquid

particles upon each other, upon the partitions and upon the paddles, generated
a certain amount of heat, which could be estimated from the rise of tempera-

ture of the various parts of the apparatus. The work corresponding to this

heat was given by the fall of the weight used, due regard being had for the

friction of those parts of the machine out of the liquid. Thus was determined

the ratio of the mechanical work expended to the heat produced. Experiments
with water gave for every unit of heat, that is, for every kilogram of water

raised one degree Centigrade, the equivalent work of 424 meter-kilograms.

(If we take as the unit of heat, one pound of water raised one degree Centi-

grade, we have about 1,390 foot Ibs. If we take one pound of water raised one

degree FaJirenheit, we have about 772 foot Ibs. All three equivalents are in

use.)

Experiments with mercury gave 425 meter-kilograms, or very precisely the

same as water. Joule made still a third determination, with an iron ring in-

stead of a paddle-wheel, which ring he caused to rub upon an iron plate im

mersed in water, and found in this case 426 meter-kilograms.

You will doubtless be surprised at the close correspondence of these three

numbers. When I add that each is the mean of a large number of determina-

tions, it will be readily confessed, that in this work of Joule, classic even to-
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day, is found the experimental verification of our new principle. You will

admit that the mean of the determinations for water, which are regarded as

the most reliable, or 424, represents with tolerable exactness the quantity of

work which is the equivalent of that living force among the particles of a body,

to which we give the name of " one heat unit." Let us pause a moment to

consider the significance of this number. It expresses, that from a mechanical

standpoint, we produce two equivalent effects, whether we generate one unit

of heat, or whether we raise 434 kilograms through one meter. In other

words, in every application of the equation of works, in which we take account

of both the living force of heat, and, at the same time, of the work of the visi-

ble forces, we must, for every unit of heat, add 424 units to the negative work

or to the living forces. This relation is independent of the special method of the

production of heat by friction. It follows from principles, whose generality

has already been proved, that 424 can be in every case regarded as the MECHAN-

ICAL EQUIVALENT OF HEAT.

If it should possibly appear rather premature to consider this definite

numerical value as absolutely correct, still no objections can be urged, and no

doubt remain as to the entire correctness of the principle of the equivalence of

work and heat
; for, making allowance for errors unavoidable in all experi-

ments, the most diverse determinations all agree in giving us the same value.

V.

We find the first confirmation of Joule's experiments in the researches of

Favre upon the friction of steel on steel : but we shall, for a moment, pass-

over such confirmations, in order to direct attention to still another contradic-

tion which seems to exist between the usual theory of machines and general
mechanical laws, which is, in a certain sense, the opposite of the preceding,
and which only disappears when we apply those principles which we have

already deduced. It can be easily shown, that if we depart from these princi-

ples, every machine which is moved by heat can be regarded as a perpetual

motion, which continually generates living force in surrounding bodies, with-

out any change in its own, without, in fact, a positive work of the motive forces

equivalent to the living forces generated.
Let us take as an example that most important and well-known machine of

our civilization the steam-engine. Consider, then, with me a machine which

has arrived at the condition of its normal activity, and in order to fix our ideas,

let us take a condensing engine. What takes place during one revolution or

one double stroke of the piston ? A certain quantity of water of low tempera-
ture is forced by the feed-pump into the boiler, it is there heated and converted

into saturated steam of a temperature above 100 C. The water in this new
condition enters the cylinder, raises the piston, expands in volume, and finally

returns to the condenser, where it retakes its original condition, viz., water of

low temperature. We have thus, at the end of this cycle of changes, every-

thing in the same condition as at first. Not only are all parts of the machine
in the same relative position, but the moving agent also has returned to pre-

cisely its original condition. (The amount of water which is injected into the

condenser, in order to condense the steam, need cause no confusion ; this water

is simply a cooling agent, which might be replaced by any other without chang-
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ing the operation of the machine. Thus, for example, we may have for the

condeuser a spiral pipe immersed in cold water, and which, therefore, contains

only that amount of water which is used in one stroke of the piston.) In such
a case, it is at once evident that at the beginning and end of each period of the

machine, the conditions both of the fluid motor and of the mechanism are pre-

cisely the same, and we can at once conclude that the sum of the works during
that period within the machine must be zero. This separation of the motive
and cooling fluids is, in fact, actually accomplished in those engines worked by
ether or chloroform steam

;
it would be in like manner allowable, in principle

at least, in ordinary steam-engines. The motive work of the steam is com-

puted, like the work of friction, by an empirical expression for an imperfectly
known fact. In reality, the sum of the works of all the elementary forces, i.e.,

the work of the mutual actions exerted by the molecules of the liquid, of the

steam and of the parts of the machine, are equal to zero. And yet the machine
is continually imparting living: force to exterior bodies, raising weights, shaping
metals, in short, performing work. Perpetual motion seems accomplished.
The outer work of the machine does not seem to correspond either to an equiv-
alent work within the machine, nor yet to a disappearance of living force.

Such, at least, is the state of things so long as we recognize in the steam-

engine purely mechanical processes only ;
so long, at least, as we do not search

for other living forces than those possessed by the visible portions of the ma-
chine. The difficulty, however, vanishes as soon as we take into account the

living force of the heat. During the action of the machine, the steam gener-
ated takes away heat with it from the boiler, and gives up heat in the con-

denser, where it becomes water again. If these two quantities of heat were

equal, the difficulty already noticed would still hold in full force. If, however,

they are not equal ;
if the quantity of heat received by the condenser, or carried

away by the cooling water, is less than that furnished by the boiler, then the

difficulty is solved. The disappearance of a certain quantity of heat during
the cycle of changes, corresponds, in fact, according to our new principle, to

the disappearance of a certain amount of living force.

In the same time in which outer work is performed by the machine, or liv-

ing force is developed, an equivalent quantity of living force disappears within

the machine, and the general laws of mechanics hold good.
In order to confirm this conclusion experimental proof is necessary. We

must measure, on the one hand, the work of the machine, and on the other,

the loss of heat within the machine, and then, if our conclusions are correct,

there must be found between the two a certain constant relation.

The necessity for the existence of such a constant relation will be evident,

without repeating the considerations which in the case of friction led us to a

similar conclusion.

For every unit of heat which disappears in the machine, it must furnish

424 units of outer work, or it must generate an equal quantity of living force.

The experiment is difficult, much more so than the experiments of Joule

upon friction
;
but it has been performed, and without going into details, I

will endeavor to point out the various operations which compose it. In an en-

gine whose motion has become constant, the quantity of steam used for a cer-

tain number of strokes is measured ;
the physical condition of this steam as it

enters the cylinder from the boiler is exactly determined by measuring its tern-
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perature and pressure ;
we also so arrange that it shall enter the cylinder with-

out carrying with it, mechanically suspended, any appreciable amount of watery

particles, and without being heated above its point of saturation. All these

conditions being satisfied, we have, in connection with our knowledge of the

total heat required for vaporization (made known by the experiments of Reg-

nault), all the data which we need in order to calculate the amount of heat

used in a given time in order to convert the water in the condenser into steam.

On the other hand, we can find, without great difficulty, the quantity of

heat which in the same time is given up in the condenser. It is sufficient to

determine the quantity of water used for cooling, which is necessary to pre-

serve the temperature of the condenser constant in spite of the continual

admission of steam, and also the temperature of the condenser and that of

the reservoir from which the cooling water is taken.

Thus, in the first case, if the water to be converted into steam enters the

boiler with the temperature of 0, and if T is the temperature of the steam,
we have, according to Regnault's experiments, for the formation of each unit

in weight of steam,
606.5 + 0.305770

heat units. But the water comes from the condenser where the temperature
is t; the heat received, therefore, is less than that which is necessary to raise

each unit in weight of water from to T by tlie amount which is necessary
to raise it from to f, or by t heat units. This is, regarding the specific

heat of the water as constant, tolerably exact for those limits of temperature
which the condenser never exceeds.

In the second case, let t be the temperature of the condenser, and B the

temperature and p the weight of the injection water in a given time. The

heat given out by the concentration of the steam must be equal to that

absorbed by the injection water. This heat is, then, that which is necessary

to raise p units weight of water from O
c
to t, or it is equal to

p(t-B).
The calorimetric part of the experiment is completed by determining and

adding the losses of heat due to conduction, radiation, and disturbances of the

air. The most difficult part of the experiment is the mechanical. In deter-

mining the total work of the machine we cannot use the friction brake. If we

do, we shall only determine the useful work, to which we should then have to

add the work absorbed by the passive resistances, which latter are almost

impossible of exact determination. We must therefore adopt an entirely

different method. Thus, by means of the steam indicator, we can find the

mean pressure of the steam upon the piston, and then, knowing the length of

stroke, can determine accurately the total work performed.*

* Thus we may conceive, instead of the actual pressure of the steam upon the piston, a

sinking weight and pulley so arranged that the motion of the machine is unchanged. The

work of the falling weight is that which we call the motive work of the machine, and is exactly

that which we obtain by the measurement in the text. In reality there is a complete compen-

sation between the positive and negative work of the forces in the machine. The rising of the

piston is a constant action, and the mechanism requires for this action a force of definite inten-

sity. We can, therefore, without contradiction, continue to speak of the work of the steam in

the machine. We shall further see that, very probably, the steam raises the piston by imparting

& portion of the living force of its molecules. See Note 11, at the end of these lectures.



INTROD TJCTION. 13

The necessity of determining successive values of a pressure which varies

rapidly, prevents the use of the ordinary manornetric apparatus, by which the

elastic force of steam may be measured with almost absolute exactness. We
have to make use of the steam indicator. In spite of the inaccuracies of

this instrument, which was constructed to meet practical needs rather than,

those of scientific investigation, the results obtained answer unmistakably
the question at issue.*

This long and laborious work, the chief steps of which we have thus

detailed, has been successfully performed by Him, who knew how to make
use of a large factory for the solution of an abstract question of science.

His measurements were made, not upon a miniature model in a scientific

collection, nor in the laboratory ;
but upon engines of 100 and 200 horse-

power, and in the very halls of industry. These circumstances had two

especial advantages. On the one hand they met the objections of practical

men, who are disposed to regard with distrust what they call
" cabinet experi-

ments ;

" on the other hand, and this is still more important, by reason of

the large dimensions of apparatus and the long duration of the experiments,
those thousand accidental disturbances which ever attend new discoveries

could be eliminated.

* The indicator consists of a small cylinder C, Fig. 1, within which moves the piston 1C,

attached to the spring /. The space below the piston communicates with the cylinder of the

engine. As the pressure increases or diminishes, the piston rises or falls. A pencil G, which

partakes of the motion of the piston, describes a line upon a strip of paper wound around

the drum G. This

drum is made to re-

volve about its ver-

tical axis by means
of a cord and pulley.

The cord leads to

the cross-head or

some reciprocating

part connected with

the piston. By
means of a spring
within the drum, it

is made to revolve

back during the re-

turn stroke. The

pencil Stilus traces

a closed curve, the

length ofwhich rep-

resents the stroke,

and the varying

height of which rep-

resents the pressure
a t corresponding

positions of the pis-

ton. If the piston
were without fric-

tion, the area of this FIG. 1.

curve, measured
from the straight line described when the pressure on both sides of the piston is constant and

equal to the atmospheric pressure, will be proportional to the total disposable work. We see

that it is impossible to correct the influence of friction by any graduation.
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Rightly interpreted, the experiments of Him furnished results which you,
no doubt, can anticipate. They showed that the steam actually gave up less

heat in the condenser than it had received in the boiler, and that the heat

absorbed in the machine was proportional to the actual work of the steam.

The ratio of these two quantities furnished a new determination of the mechani-

cal equivalent of heat, which nearly approached the determinations of Joule

and Favre. Thus, although individual results vary within considerable limits,

the mean of Hirn's experiments gives 413, or just the same as that found by
Favre for the friction of steel on steel, and but very little different from the,

results of Joule. It must be confessed that Hirn drew entirely different con-

clusions from his experiments ;
but you will, I think, hardly be inclined to

coincide with his views. He compared the heat consumption of his engine,

not with the entire work of the steam, but only with that portion correspond-

ing to its expansion. You will also, I think, agree with me. that such a

division into two parts of the work is equivalent to the assumption that, in

the period preceding expansion, while the machine works with full steam

pressure, its work is nothing, and that appreciation which is the just due of

the skillful experimenter will not, I trust, blind you to the error of his con-

clusions.* (It is but just to add that in later works Hirn has acknowledged
his error and correctly interpreted his experiments.)

VI.

Ton will now, I trust, follow with confidence the generalizations which I

shall lay before you. We have now, in fact, arrived at the same results by
two entirely different ways. The study of two phenomena, of entirely differ-

ent character, has shown us, that as soon as all the heat ?s converted into work,
in both cases, we obtain the same numerical relation for the transformation.

I might now, without trespassing against the rules of experimental methods,

expect you to recognize in this a perfectly general relation. I might remind

you that the greatest scientific discoveries are, for the most part, the result of

no larger number of experiments, and a no better agreement of results. I

would like, however, to remove every lingering trace of doubt, and prove to

you that it is impossible for two different experiments to give as a value for

the mechanical equivalent two essentially different results, i, e., two values,

whose difference, if any, cannot be entirely ascribed to unavoidable errors of

observation.

In honor of Joule, to whom we owe its first exact determination, let us

denote the mechanical equivalent by J. Let this be the value as determined

by observations upon the steam engine, and let us suppose for a moment
that this value does not coincide with that determined in some other manner.

That is, suppose that we are able by the expenditure of a certain amount of

work, L, to generate a greater amount of heat than
-j.

Let this amount of

heat be L ..

* See Notes 2 and 3 at close of these lectures, also Note 33.
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and let us suppose tliat it is then applied in a steam engine for the production
of work. The work obtained will then be

L(l + K),

or, what is the same thing, we have stored up in the fly-wheel of the engine a

living force

'This living force we can now convert back into heat by the first process, and
*we thus obtain the heat

Again, using this quantity of heat in the steam engine, we obtain in the

fly-wheel a living force

L (I + h)\

and accordingly a velocity greater than before.

But the steam engine and the other apparatus, whatever it may be, by
which the work is transformed into heat, may be considered as forming one

system. It follows, therefore, from our supposition, that in any period during
which all the moving parts have returned to their initial positions, the living
force has increased from

L(l+h) to L(l + hy.

Perpetual motion is therefore accomplished. The supposition is therefore

impossible.

Inversely, let us consider a process by which heat is transformed into work,
and assume that it is possible by the use of a quantity of heat, Q, to generate
a greater amount of work than QJ. The consequence of this supposition will

be a contradiction similar to the preceding. For this process it may be re-

marked that the steam engine is a reversible apparatus. Ordinarily it. trans-

forms heat into work, but by the application of outer forces its action may be

reversed, and work may be transformed into heat. The motion of the piston,

caused by outer forces, will gradually vaporize the water in the condenser,

and the steam thus generated will be compressed in the cylinder until it is

changed into saturated steam of the temperature of the boiler, and finally,

this steam will be compressed into water of the boiler temperature.
The steam actually brings then more heat to the boiler than it starts with

in the condenser. There is an expenditure of work and a generation of heat.

In order to obtain perpetual motion nothing more is necessary, then, than to

unite in one system a steam engine, whose action is reversed, with an apparatus

which, according to the supposition, can produce from the quantity of heat Q
a greater work than QJ. I need hardly add that in a precisely similar way
we can prove that no process can give for the mechanical equivalent any other

value than the constant one, J. Our conclusions have thus brought us to a

perfectly general natural law. Let us endeavor to formulate these conclusions

into a series of principles which shall accurately express their essence and

make evident their application.

1. To "
generate heat " means to impart to the ponderable or imponderable

molecules of one or more bodies a certain amount of living force; if the bodies
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thereby change their volume, a certain work is performed which is equivalent

to a certain quantity of living force.

2. In every application of the equation of work it is necessary to take into

account not only the visible living forces, but also, by means of the mechanical

equivalent, the heat absorbed or set free.

3. In all cases in which we fail to find equilibrium between the sum of the

works of the forces and the change in the living forces, or when such equili-

brium can apparently only be effected by the introduction of an empirical

term, as, for example, by introducing the work of friction, or by the assump-
tion of a loss of living force, as in the impact of bodies, we must have, to-

gether with the mechanical, heat phenomena also, which restore the equili-

brium.

4. When the sum of the works of the forces exceeds the increase in the

sums of the living forces, we have a generation of heat of just so many heat

units as 434 is contained in such excess.*

5. If the sum of the work of the moving forces is less than the increase in

the sum of the living forces, we have a disappearance of heat of just so many
heat units as 434 is contained in such difference.

Is it necessary to insist upon the importance of these principles ? Who
does not recognize that their influence extends through the whole range of

science ? Who can fail to see that every process which is based finally upon
motion falls under the scope of these mechanical laws and includes in it an

application of the equation of living forces ? Who will not at once perceive

that every application in which these laws are not regarded, must be at once

rejected, as soon as it is known, or even suspected, that heat phenomena are

bound up with the mechanical ? I venture to assert that there is not a natural

science which can elude the necessity of this new test. Physiology and astron-

omy have need of it equally with physics and chemistry.

This revision of scientific results is, moreover, not merely a laborious work

of correction, which at most allows the hope of discovering in certain phenom-
ena the influence of certain disturbing causes whose effect may be more or less

difficult of calculation ;
or which renders more exact the determination of

some numerical coefficient; it constitutes one of the most fruitful studies

which true science can undertake, and is especially suited to bring to light

relations between apparently the most diverse phenomena. The single exam-

ple of friction teaches us what the new theory can accomplish in directions

which are generally supposed to have been thoroughly investigated already.

VII.

Let us now endeavor to test the value of these considerations, so far as is

possible within the narrow limits to which we must confine ourselves. We
shall see that, from the very first step, they will lead us, not merely to super-

ficial approximations, but to exact relations which may be verified by experi-

ment. The consequence of such comparisons must be a continual verification,

d posteriori, of the absolute generality of our new principles. Let us first

* See Note 4.
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consider, as is most natural, the changes which heat causes in the volume and
condition of bodies.

I scarcely need remind you that every body when it changes in tempera-
ture changes also in volume, and that when the temperature reaches a certain

point for each body, that sudden change takes place which we call liquefaction
or vaporization. The body passes from the solid condition to the liquid, or

from the liquid to the gaseous, or the reverse. No part of science has been

oftener investigated, and yet, in the absence of our new principles, no part
seems to have made less progress. The chapters which treat of this subject,
even in the most recent text-books, contain little more than a presentation of

the most exact experimental methods of determining the most reliable coeffi-

cients of expansion, the specific heat and latent heat of substances, and tables

in which these numerical values are given. All these phenomena are given as

if entirely independent of each other.

This want of connection between the various properties of the same body,
or between similar properties of different bodies, is certainly very unsatisfac-

tory. So long as no bond of union exists between isolated facts, even the best

observations can no more constitute a science than carefully cut stones, ar-

ranged in order of size and shape, can constitute a building.

It is, moreover, worth observing, that the actual progress of science has, at

certain periods, rather made this condition of things worse than better. The
condition in physics has gradually become what it might have been in astron-

omy, if the perfection of methods of observation had progressed more rapidly
than the progress in theory if, for example, the discovery of achromatism or

the improvement in circle graduation of recent times had followed imme-

diately the publication of Keppler's laws, instead of following, as they did,

long after the discovery of the universal law of gravitation. For about thirty

years science possessed, or thought that it possessed, in Mariotte's laws, the

laws of the expansion of gases,* and the laws of Dulong, Petit, and Neumann

relating to specific heat, laws analogous to those of Keppler. The marvelous

improvement in experimental methods since that time, recalled by the mere

mention of the names of Rudberg, Magnus, and Regnault, led, as a natural

and direct consequence, to a knowledge of the deviations of these laws from

the reality, and there were no theoretical views which could reconcile these

disagreements, and refer both laws and deviations back to the same causes.

The importance of these laws themselves soon seemed less than that of empiri-

cal formulae, which represented approximately and with more or less exact-

ness the general features of the phenomena. Thus it was that science seemed,

little by little, to destroy itself. The Mechanical Theory of Heat has changed
all this. It has not only put a new phase upon the phenomena themselves, but

it has fundamentally changed our conception of them ;
in many cases it has

even pointed out the reasons of variation. If we assume a certain amount of

heat imparted to a body, the volume changes, and so also does the totality of

its properties, which we express by saying that its
"
temperature is increased."

If, however, in the degree that a body is heated, we increase the outer press-

ure upon its surface, we can completely prevent its expansion, and we find

that in this case the amount of heat necessary to raise its temperature is less

* See Note 5.
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than before. If the rise of temperature is in both cases the same arbitrary
unit of some thermoinetric scale, then the two quantities of heat are, the one,

the specific heat by constant pressure, the other, the specific heat by constant

volume. Their difference is the latent heat of expansion. The expression
"latent heat" means simply the heat imparted to' the body which has no

effect upon the thermometer.

What, now, is the mechanical view of this process ? To heat a body to

draw heat from a certain source and cause it to enter another body means to

diminish the living force of the source by a certain amount, and to cause in the

body mechanical processes which are equivalent to this diminution. If the

volume is unchanged, we have simply an increase of the sum of the living
forces of the particles (rise of temperature), and it may be, a certain work due

to a change in the relative position of the molecules.* If the pressure is

constant, the volume increases, and there is a new work which we may divide

into two parts. First, the distances of the molecules are increased, while their

mutual actions tend to keep them in their old positions. We have, therefore,

a work performed in thus separating them, which we may call
"
disgregation

work," and regard as negative, since the molecular forces oppose the displace-

ments. Second, the body expands against the outer pressure of the atmos-

phere. This constitutes another work which is also negative, and which we

may call
" outer work." The excess of the specific heat by constant pressure

over the specific heat for constant volume, or the latent heat of expansion, is

therefore that amount of heat which is withdrawn from the source while these

works are performed. Expressed in heat units, it must be equal to the

quotient of the sum of both these works divided by the mechanical equivalent.

Consider now the double result of our conclusions. First, we have learned

what latent heat is. We have seen that it is that heat which disappears

when work is performed, and which reappears again when, by means of outer

forces, an equal work of opposite sign is performed.
In the second place, we can determine a numerical relation between two

physical constants which are apparently independent of each other, and also

the mechanical work corresponding to a given change.

Unfortunately this relation, in the form in which it occurs, is of no use.

Of the two terms which form the left side of the equation, only one, that which

gives the " outer work," can be accurately determined. This is evidently

equal to the product of the pressure and of the increase of volume, and is

accordingly quite considerable for gases and vapors, and very small for liquid

and solid bodies. The disgregation work, on the other hand, in the present

state of science, eludes every attempt at determination, and will, without

doubt, do so for a long time to come. We must have a complete knowledge
of the interior constitution of the body, in order to determine it, and it is

impossible to say how far the more or less plausible ideas held to-day repre-

sent the actual state of things. A great error is committed if, as sometimes

happens, it is sought to establish an equivalent relation between the heat

absorbed by a body and the outer work. The error may be diminished, but

not eliminated, by replacing the disgregation work of a body by the work of

outer forces, which cause a deformation equal to the expansion. It cannot but

be a cause of wonder, if determinations of the mechanical equivalent based

* See Note 6.
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upon such a method of determination, have given results which closely agree
with the true results.*

In view of these difficulties, it would seem as if the theory must soon cease

developing, and as if the discovery of exact relations whose numerical value

can be checked by experiment, must be delayed till such a time as the science

of physics shall have said its last word as to the nature of all things. We
can, however, avoid such difficulties by means of a method or artifice which
we owe to Sadi Carnot. Thus, we may, without knowing anything of the

interior structure of bodies, establish such relations between the mechanical
and thermal properties of bodies as shall be of value, by considering such a

sequence of changes as takes place during a process in which the initial and
final conditions are alike, and hence the disgregation work zero.

Let us consider any solid, liquid, or gaseous body, which has the tempera-
ture t, the pressure p, and the volume v. Let us call the state of the body, as

determined by these three conditions, the state T, and represent the volume v by
the abscissa OA, Fig. 2, the tension p by the ordinate AT. Now, suppose the

outer pressure to diminish, and while the

body expands let us impart heat to it, so

that its temperature changes according to

any given law. Let this continue till the

body comes to the state T , for which it

has the temperature t', the volume v' ,
and

the tension p'. Let OB = v', BT'= p', and

let the abscissa and ordinate of the curve

TNT' at any point be the volume and

pressure at any intermediate state. Call

the change of state from T to T , D.

During this change a certain amount of <

heat, Q, is imparted to the body, and
a certain outer work is performed, L.

Both quantities can be calculated, if, for the limits of temperature t and

t', the influence of the outer pressure upon the volume of the body and the

amount of heat which the body requires for a given change in volume and

temperature, are given by experiment. These quantities may be expressed

theoretically, in terms of the coefficient of elasticity and the two specific heats,

provided that we regard these two elements as functions of the temperature
and the volume. The work L is therefore given in the figure by the area

between the curve TMT and the axis OB and the two extreme ordinates AT

V

Fia. 2.

Let us now assume that, by a gradual increase of the outer pressure, the

body is brought back to its original state, and that during this change, which

we may call D', we continually subtract heat from the body as it is compressed,
so that its temperature for any given volume is less than during the change D,

except at the beginning and end of the entire experiment. The body thus

finally comes back to its original condition, but at all intermediate states of the

change D , the pressure corresponding to a given volume is less than during
the change D. The curve TNT ,

which gives this second relation between

pressure and volume, consists throughout, with the exception of the first and

* See Note 7.
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last points, of less ordinates than the curve TMT '

. The area between the"

curve TNT
,
the axis OA, and the extreme ordinates, gives the work L' per-

formed upon the body while compressing it, and evidently we must have

L <L.
We may also compute L' and Q' in the same way as L and Q.

These two operations, D and D', may be regarded as parts of one process in

which the initial and final conditions are identical. The relative position of

all the elements of the body are the same at the beginning and end. It follows

from the general laws of mechanics, that there must be a complete compensation
between the work of the molecular forces ;

that the inner work, corresponding
to the transformation D, must be exactly equal and opposite to that which

corresponds to the transformation D'. We have then nothing to do with it.

Still, L' is less than L. We see, therefore, that the body, in the cycle of

changes to which it is subjected, moves in a determined law from its initial

state to another, and then, according to another determinate law, returns to its

original state, and during this cycle it performs an outer work equal to L L',

which is represented by the area TMT'NT, that is, by the difference of the two-

areas which represent the works L and L' . No inner work is performed, no
sensible living force has disappeared, therefore a certain amount of heat must
have disappeared equivalent to the work done. It follows, therefore, first,

that the body during the change D has received more heat than during the

change D' it has given up. Further, the ratio of the work L L' to the heat

absorbed, Q Q', is equal to the mechanical equivalent. The formula

L-L'=J(Q-Q\
which we thus obtain, gives us a numerical relation between the mechanical

and thermal phenomena, the study of which is usually relegated to two different

departments of physics, since L and L' , Q and Q' ,
are determined by means of

the coefficients of elasticity, the two kinds of specific heat, the temperatures
and the volumes. WT

e may obtain as many special relations as we suppose

cycles of changes. In order to obtain a general equation which shall include

all these cases, it will be sufficient to consider the change as infinitely small.

Then the above formula will become a differential equation, whose integration

will give us the law of expansion of the body under all circumstances. Two
other differential equations, obtained by analogous reasoning, and containing
other elements, give the laws for melting and vaporization.*

VIII.

The character of these lectures forbids any use of the Calculus. Without

noticing any further, therefore, these differential equations or their conse-

quences, let us direct our attention to a certain class of bodies of which we can

give an almost complete account, simply by the consideration of the outer work

which they perform under the action of heat. It has for a long time been

noticed that the similarity of the mechanical and thermal peculiarities of

different gases seem to indicate that in these bodies the influence of the mutual

actions of the molecules is not noticeable.

The older text-books of physics held generally the hypothesis that heat was^

* See Notes 8 and 9.
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-something material, and ascribed the elastic force of gases to the repulsive

force of the absorbed heat upon the molecules. Laplace himself deduced from

uch views the law of Mariotte, as well as that of the diffusion of gases and

of their expansion (Mec. Celeste, liv. xii., chap. 2). At the present time, when
the views as to the nature of heat have undergone such great changes, the

demonstration of Laplace no longer holds good ;
but the point of departure

remains, however, the same. The simplest way of explaining how it can be

possible that mechanical action and heat produce almost the same effects upon
various gases, is to assume that at the distances which separate the molecules

of such bodies their mutual actions are imperceptible. The laws of the diffu-

.sion of gases seem indeed to impart to this conception the character of necessity.

If the molecular forces in gases had any appreciable intensity, those existing

between two molecules of the same kind, and between two molecules of

different kinds, would not be- the same. The properties of a mixture of two

gases must, then, be different from those of a simple gas. Every one knows,

for example, that from a physical standpoint no other differences exist between

oxygen and air except the density and the coefficient of refraction
;
while all

those properties which depend upon the mutual interaction of the molecules

are exactly the same. From this follow two consequences : First, if in gases

the molecular forces are almost zero, it is impossible to frame any conception

of the constitution and general properties of such bodies, without assuming

that their molecules possess a considerable velocity, which is greater the higher

the temperature, and that these molecules by their impact cause pressure.

Second, the change of volume of a gas is not accompanied by any disgregation

work at all comparable with the outer.

The development of the first of these consequences has given rise to views

upon the constitution of gases which have replaced those of Laplace. I make

here merely this passing reference, as I do not wish to lay down anything in

these lectures which rests at bottom upon hypothesis.* The second conse-

quence is susceptible of direct, confirmation by experiment. Thus, if we allow

a gas to expand without overcoming any outer resistance, that is, without per-

forming any outer work, and if the disgregation work is also zero, and the gas,

both at the beginning and end of the experiment, is at rest, there can be neither

absorption nor generation of heat.

This assertion may excite astonishment, since it appears at variance with

well known facts. All of us are familiar with the simple experiment of putting

.a thermometer under the receiver of an air-pump, in order to observe the

decrease of temperature which occurs at the very first stroke of the pump.

We also know that when air which has been greatly compressed in a reservoir

is allowed to issue in a jet into the room, it may cool to such a degree that the

vapor contained in it is frozen and deposited upon surrounding bodies in the

shape of frost.

In view of such facts it appears surprising when we assert that a gas may,

under certain conditions, expand without cooling. It is nevertheless really so.

In a metallic reservoir E, Fig. 3, communicating by a pipe and cock with the

equal reservoir E, Joule has compressed air under a pressure of 22 atmos-

pheres, while the reservoir E was exhausted. Both were then immersed in a

* See Note 10.
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FIG. 3.

vessel full of water and the cock D opened. The air in M rushed in to E, and*

its volume was thus doubled, while there was, of course, no resistance to its*

expansion, except the small amount of air which might remain in E after

exhaustion. Although the tension of the air decreased from 22 to 11 atmos-

pheres, there could be then no outer work performed, since at both the begin-

ning and end of the experiment all parts of the apparatus and of the gas were

at rest. In perfect accord with theory, it was found that there was no absorp-
tion of heat. The most sensitive thermometer immersed in the water which

surrounded both It and E showed not the least change when the cock D was-

opened.
It is not difficult to see why under the

receiver of the air-pump, or in efflux into-

the air, the expansion is accompanied by

absorption of heat. If we consider closely
the case of the air-pump, we see that a

part of the work required to work it is

furnished by the pressure of the air re-

moved. Outer work is thus performed at

every stroke, and heat correspondingly ab-

sorbed. We could not, therefore, have a.

better confirmation of our new principles.

In the efflux of air it rushes with great velocity from the reservoir, driving the

outside air before it and thus performs work. Hence the cooling with which

we are familiar.

If we alter Joule's experiment so as to perform outer work or generate living

force, we shall find that heat is absorbed. Thus, if we remove the reservoir

E, and fasten to D a hose, and thus allow the air to discharge into a large bell-

glass filled with water and inverted in the pneumatic bath, the water will be-

forced out against the pressure of the atmosphere, and a thermometer in R will

show a decrease of temperature due to the disappearance of heat corresponding-
to the outer work performed. We can easily see that such an experiment may
lead to a determination of the mechanical equivalent. In this way Joule found

441, a result very closely agreeing with his others, the deviation being com-

pletely attributable to the unavoidable errors of observation. Thus disappears
the apparent contradiction between what we may call the old and new physics.

In order, however, to leave not the slightest doubt or uncertainty upon so-

important a point, let me try to meet in advance an objection which has, with-

out doubt, already occurred to you. Let us look somewhat deeper into this

process. Conceive in the reservoir R that portion of the gas which, after the

experiment is completed, just fills this reservoir. Why does not this portion

cool during the expansion ? It is in every respect similar, and in similar cir-

cumstances, to the same portion of the gas in the second experiment, where its

expansion was accompanied by a decrease of temperature. In both cases this

portion expands against the pressure of the rest of the gas. To say that in the

one case it preserved its temperature, and in the other case loses it, would seem

to imply that it knew what was going on outside, and was gifted with intelli-

gence and choice of action.

We do not, in general, willingly receive anything against a theory which is:

regarded by the highest scientific authorities as correct. It seems a thankless.
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task to give audible expression to difficulties like the above
; yet, at the bot-

tom of one's heart they must still remain and cause a silent distrust of all

science. Let us, therefore, see if we can lay this doubt.

As a matter of fact, that portion of the air, in Joule's experiment, which re-

mains behind in the reservoir R, must, and does lose heat and cool, because

during the experiment it continually imparts living force to that portion of the

air which rushes with considerable velocity into the reservoir E. But this liv-

ing force immediately disappears. The velocity of the gas entering E is de-

stroyed by the friction of its own molecules upon each other, by their impact

upon the walls of the reservoir, and by friction in the communicating pipe. As
soon as the gas ceases to enter, therefore, all is at rest. But this living force

cannot be destroyed without a generation of heat exactly equal to that which

disappears in the reservoir R. In Joule's experiment, then, no change of tem-

perature was observed, because there is a perfect compensation ; the friction in

E replaces the heat disappearing in R. We have no need, then, to ascribe to the

gas any inconceivable properties ; we do not even need to suppose properties

any different from those long known. We can also easily prove our conclusions

by experiment, by having the reservoirs E and R in separate vessels, when R
will be found to absorb heat and E to give out a precisely equal amount.

This remarkable experiment of Joule, performed in 1845, more than any
other directed attention to the new theory. Regnault repeated it in every

shape, with all the precautions which his long experience in caloriinetric re-

searches rendered available. He notified the Academy in April, 1853, that he

had completely confirmed it, and from that moment he counted himself among
the advocates of the new views.

No further doubt can remain.' In gases the disgregation work which accom-

panies expansion or compression is zero, or at least is imperceptible to ordinary

calorimetric methods.* Heat when imparted to a gas causes only two effects,

a rise of temperature (" vibration work ") and outer work. If the rise of tem-

perature is one degree, while the gas expands under a constant pressure, then

the outer work is equal to the product of this pressure into the increase of

volume. If F is the original volume, and if a is the coefficient of expansion,

then for a rise of one degree the increase of volume will be a F
,
and the new
Y

volume will be F = F (1 + at) for a rise of t degrees, or F =
^ + ^ , where

t is the temperature for the volume F.

The change of volume, then, or F ,
is ~~ ,

and this multiplied by the

pressure p, gives us for the outer work

or^a-
If the weight of the expanding gas is equal to one unit, then the value of the

outer work is the mechanical equivalent of the excess of the specific heat by

constant pressure over the specific heat by constant volume. If J represents

the mechanical equivalent, we have

C } 7p
~ -

* See Note 11.
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or if F is the volume for the temperature zero and pressure p n ,
we have

(CP -C,)J=<xp*Vn .

This gives us, for all gases which follow Mariotte's law, a numerical relation be-

tween the coefficient of expansion, the two specific heats, the volume of the unit

of weight under the given circumstances, and the mechanical equivalent of

heat. We may make use of it in order to determine the mechanical equivalent

by means of the physical properties of various gases, and since for most gases
these properties are determined with a degree of precision which cannot at

present be exceeded, it would seem that in this way we should obtain a value

superior to all the others in accuracy. The formula applied to air gives us

the number 426, almost identical with the mean of Joule's experiments, if we
take for the volume of the unit of weight, for the coefficient of expansion, and

for specific heat for constant pressure, the values given by Regnault, and take

for the specific heat for constant volume the best value as given by experiments

upon the velocity of sound. The agreement of this calculation with the ex-

periments of Joule upon friction is, in fact, most remarkable.

IX.

Unfortunately this agreement does not exist when we apply the formula to

other gases. We obtain, however, 425 a very close value for hydrogen, oxy-

gen, and nitrogen, while for carbonic acid gas we obtain a value considerably

different. Indeed we obtain for this gas two very different values, according as

we take one or the other of the two determinations of Regnault for and 100.*

For other gases the deviation is still greater. .Whence come these deviations ?

A great part, without doubt, are due to the uncertainty as to the value of the

specific heat for constant volume. We must, however, add that the formula

is not equally reliable for all gases, since the disgregation work cannot be dis-

regarded in all.

The laws of Mariotte and Gay-Lussac hold accurately for no gas ; they are

only approximate expressions of the truth for those gases which are furthest

from their points of liquefaction. It is only for these gases that the agreement
of their mechanical and thermal properties allows us to assume that the influence

of the molecular forces is zero. On the other hand, gases like carbonic acid,

which we can easily liquefy, whose coefficient of expansion is five-tenths greater

than air, and which changes very rapidly with the pressure ; gases, finally,

which even under the pressure of the atmosphere do not follow the law of Ma-

riotte
;
for all such we have every reason to believe that a noticeable work of

the molecular forces accompanies changes of volume.

If we apply to such a gas a formula which assumes the absence of all dis-

gregation work, it simply shows that we do not understand the principles of

which we make use. If we say, as has been said, that there are as many me-

chanical equivalents as there are gases, we indirectly declare the possibility of

perpetual motion.

It would seem an immediate consequence of the above, that by repeating

the experiments of Joule with carbonic acid and similar gases, and determin-

ing the amount of heat which disappears when they expand without perform-

* See Note 12.
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ing outer work, we might obtain a measure of the disgregation work, and thus

correct the above formula and express the true relations between the different

properties of such gases. Without, however, entirely changing the experimen-
tal methods of Joule, there seems little hope of obtaining in this way any satis-

factory results. In the experiment which has been described, the expanding
gas is surrounded by water, and even under a pressure of 22 atmospheres
the mass of the gas cannot compare with that of the water. It is easy to com-

prehend that if, for example, the mass of the water is only twenty times that

of carbonic acid gas, and the specific heat of the water about five times as

great, the absorption of a quantity of heat which would change the temperature
of the gas one degree would alter that of the apparatus at most only youth of a

degree. The phenomena in question, therefore, would be completely masked

by the unavoidable errors of experiment. It is necessary to find some method
of doing away with the liquid as a heat-measuring substance, and observing the

change of temperature in a stream of gas, which, without performing outer

work, experiences a considerable change in elastic force. Under such circum-

stances the entire heat disappearing is equivalent to the disgregation work

accompanying the expansion. These conditions are actually complied with in

an experimental method conceived by Sir William Thompson.* Our space
does not allow us to describe it here. The application of this method to hydro-

gen, air, and carbonic acid has shown that the change of temperature for

hydrogen is almost zero, that it is noticeable for air, and very considerable for

carbonic acid, just as might have been expected from the experiments of Reg-
nault. Hydrogen seems, indeed, the furthest removed of any gas from its

point of liquefaction. Oxygen and nitrogen show a less perfect accord with

the properties of a perfect gas. Carbonic acid gas, finally, deviates decidedly.

It is, therefore, perfectly natural that in hydrogen the disgregation work

should be very small almost zero also small in nitrogen and in the air,

but still there and that it should have a considerable value in carbonic acid.

The results of experiment are not completely satisfactory, nor exact enough to

furnish a reliable value for correction of our formula. They suffice, however

to furnish an explanation of the variation which has been found in the mechani-

cal equivalent, as determined from various gases, and they show that it is al-

lowable to use the formula without correction for air and hydrogen. We may
consider it as tolerably certain that the exact value of Jlies between 424 and

426, the results obtained from the consideration of these two gases ;
or still

more, having reference to the uncertainty in the value of the specific heat by
constant volume, between 420 and 430. We shall, however, continue, in what

follows, to make use of the value 424.

I have devoted considerable space to this first application of the theory-
much more than I can give to others of which I intend to speak. I do not wish,

however, to lay any especial stress upon the study of the expansion and com-

pression of gases ;
but I thought it well to show thus early that the mechanical

theory of heat leads to results which agree with fact, and submits to calcula-

tion not only known phenomena, but also predicts new ones, and that this pre-

diction is capable of numerical verification.

I have sought to excite in you the same impression which, without doubt,

* Sec Note 13.
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those of you who are familiar with the study of optics have already experi-

enced, as, proceeding from the undulatory theory, they made their first applica-

tions of it to the phenomena of reflection and refraction. The simplicity with

which this theory harmonizes known facts, the fruitfulness of the views it pre-

sents, the accuracy of its predictions, afford the most convincing proof that it

closely expresses the truth, or, at least, opens a path which leads to the truth.

I shall consider my object obtained if this first lecture shall have produced
a somewhat similar conviction.
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WE have now passed in brief review the phenomena, by the consideration

of which science has attained to the recognition of the new principle of the

equivalence of heat and work.

Starting from the laws of mechanics, we were at first brought face to face

with an apparent contradiction between these laws and the usual theory of ma-
chines. To reconcile this contradiction, it was necessary to include the phe-
nomenon of heat among the mechanical effects which occurred in the entire ma-
chine during its motion. The heat generated by friction was thus found to be

equivalent to the difference between the work of the motive forces and of the

resistances ;
the heat absorbed during the motion of the machine was shown to

be the equivalent of the work done.

The correspondence of the numerical results in both cases gave us confi-

dence in the correctness of our views, and allowed us to frame a very precise

idea of the mechanical equivalent of heat. We have also recognized the con-

tradiction to which we are led if we assume that the value of this equivalent
can change ;

and we have still further convinced ourselves of the correctness

of our new principles by applying them in various ways. Our first application

was with reference to the change of volume or of condition of bodies by heat.

For solid and liquid bodies we have done little more than point out difficulties,

and briefly notice the method by which they may be met. We have treated

gases more thoroughly. Experiment has shown us that for air and other gases

far removed from their point of liquefaction, the disgregation work, or the

work of the molecular forces which accompanies a change of volume, is either

zero or very slight. This fact has permitted us to compare the amount of

heat which must be imparted to a gas in order to obtain a certain amount of

outer work, with that work itself. Thus we found a new determination of the

mechanical equivalent, and at the same time deduced a necessary relation be-

tween the different mechanical and thermal properties of the same gas.

I have sought, in this development, to keep observation and theory side by

side, and, in some degree, show you that every experiment was the realization

of an idea
;
and finally, to make it as evident as possible how firmly all parts

of our new theory are held together.
I shall now pursue an opposite method, and plunge at once into the midst

of facts, or, so to speak, into the midst of practical industry, and I shall seek to

deduce general physical laws from the study of special phenomena, such as are

presented by the study of those machines which derive their motive power
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from the action of heat. The investigation of "heat engines
" * will thus form

the subject proper of this lecture. The remaining portion of it will seek to-

give you a review of those applications of the new theory which lie outside

of the domain of physics, and especially of mechanics.

II.

There are two kinds of heat engines of special importance ;
the steam

engine and the hot-air or caloric engine. f Upon hot-air engines much at one

time was said and written. Great stress has been laid upon their improve-

ment, and almost unlimited expectations have been formed of their mechanical

efficiency.

A superficial knowledge of Joule's experiments upon gases soon spread,

and it was for a time firmly believed that soon all the heat furnished by the

fuel would he utilized. On the other hand, after Regnault's experiments upon
the .latent heat of vaporization, which seemed to show that only an inconsider-

able fraction of the power of the heat absorbed could be utilized, many physi-

cists formed an unfavorable impression of the steam engine. Thus a kind of

conflict arose I can hardly say between theory and experience, but between

one view which apparently harmonized with theory, and between the ever-ac-

cumulating results of experience. In practice, gas engines have never been

found of such economical value as to balance the difficulties which attend

their introduction. Let it be the first object of our remarks, therefore, to

point out the significance of this apparent conflict. For the sake of clearness,

\ve shall take a numerical example, and shall therefore choose a steam engiue

working under a steam pressure of 5 atmospheres, or with a steam tempera-
ture of 152, and shall first assume that there is no condenser. Th*1 steam

enters the cylinder in the saturated condition ar a temperature of 152 ;
the

formation of every kilogram of steam requires, according to Regnault's experi-

ments, a quantity of heat denoted by the number 653, diminished by the tem-

perature, t, of the feed water. As it enters the cylinder, the steam raises the

piston until the communication with the boiler is closed, when it expands a

certain amount, and finally discharges into the air under the pressure of the

atmosphere. If we assume that the steam remains saturated during the ex-

pansion, then the final temperature is 100, and every kilogram of steam which

leaves the cylinder takes with it 637 t heat units, which it gives up in con-

densing into water of the temperature t. Out of the 653 t heat units ab-

sorbed in the generation of the steam, only 16 disappear in the engine. These

16 units are transformed into work; all the rest is wasted in the atmosphere.
Thus if, for example, t is only 10, only ^jds, or less than -/jth, of the

lieat furnished to the boiler by the fuel is utilized. This fraction, which we

may call the "
efficiency," is increased somewhat by the application of the con-

denser, but it is always very small. If, for example, the condenser has a tem-

perature of 40, and the steam expands in the cylinder to such an extent that

* Under heat engines we include all those machines whose motive power is due to the dis-

appearance or transformation of heat.

t Hot-air engines are known abo as gas engines and caloric engines. We call any machine

a hot-air engine whose action depends upon the heating and expansion or the cooling and con-

traction of any of the so-called
'

permanent
"
gases.
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its pressure is reduced to that in the condenser, which never can be the case

in practice, the quantity of heat which one kilogram of steam brings to the

^condenser is only

619 - 40 = 579 heat units.

If, further, the condenser is fed with the boiler water itself, each kilogram of

.steam requires for its formation only

653 - 40 = 613 heat units.

Hence 34 heat units are utilized, and the efficiency becomes gVjths, or

about -i^th.

The condenser is therefore of considerable advantage, but the heat utilized

is still very small in comparison with the total heat imparted.
These are nearly the words of Regnault in his criticism of the steam engine,

which has been extensively repeated. According to this, the most important
motor of our civilization is but a very imperfect machine.

Now let us turn to experience. The treatise of Hirn, from which we have

already taken several important results, gives us the data for a reply. We
find there four satisfactory and consistent series of experiments upon the steam

engine, which are nearly identical with those we have already alluded to. The

temperature of the boiler, as a mean of the four experiments, was 146, that of

.the condenser, 34. Assuming perfect expansion, we have for the efficiency, in

precisely the same way as before, -^-ths, which is nearer to -f^-th than to -foih.

This should therefore be the limit which can never be exceeded, and which

probably experiments can never show. But notwithstanding this, the singular
fact remains that Hirn's engines gave much better results. The excess of the

heat taken by the steam from the boiler, over that given out in the condenser,
that is, the heat expended in producing work, was never less than yVth of the

total amount of heat
;

it was sometimes even th, and in the average |th.

Here, then, is a direct contradiction. Upon the one hand, a theory approved

by many physicists gives for the efficiency of an engine a value but little

liigher than -^th ; upon the other hand, experiments made upon machines in

actual use, which therefore must be very far from perfect, and which must be

fitted with special apparatus for determining the efficiency, give a result twice

as great. The accuracy of the experiments is proved by the very close value

of the mechanical equivalent which they have given. The error must there-

fore be sought in the theoretical conclusions.

Now we have assumed without any proof that the steam which after

expansion leaves the cylinder and is discharged either into the air or into the

condenser is saturated. This assumption enabled us to base our calculation

upon the total heat of vaporization as determined by Regnault. The facts

observed by Hirn contradict this entirely groundless assumption, and prove

that the phenomena of expansion follow much more complicated laws, and that

a much greater part of the heat is utilized. The steam therefore cannot remain

saturated during expansion. Still less can it become heated above the point of

saturation, and become at the end of expansion superheated, that is, possess a

less elastic force than that which corresponds to its temperature when just

saturated
; for a given amount of superheated steam would give up to the air

or to the condenser more heat than the same amount of saturated steam, and

the coefficient of efficiency would therefore be less than that already computed.
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There is only a third supposition possible, viz. : that the originally saturated

steam condenses during its expansion in the cylinder, and a part of it becomes

water. This supposition is, moreover, correct. We can point, in confirmation

of it, to an almost daily occurrence in practice. Every one knows that water

collects in the cylinder if it is not jacketed. Rankine has shown that the prin-

cipal cause of this is the condensation during expansion, and not, as some have

thought, the accidental introduction of water from the boiler. Him has given
us a direct experimental proof. A copper cylinder, 2 meters long and 0.15 in

diameter, was closed at both ends by thick glass plates. Two pipes, with cocks,

were connected, the one with the boiler and the other with the air. First the

air-cock was partly opened and the steam-cock fully opened. Steam thus

entered from the boiler, drove out the air from the cylinder, and filled it with

dry and perfectly saturated steam. The cylinder was then as transparent as if

filled only with air. The air-cock was now fully opened. The steam escaped

rapidly, expanded in doing so, and in a moment the cylinder, before so trans-

parent, became perfectly opaque, and the condensation was visible.

I need not point out that this condensation increases the amount of heat

which disappears in the machine, that is, which is turned into work. Every

kilogram of steam which reaches the cylinder from the boiler requires for its

production the amount of heat already given. But the heat which still remains

in the steam when it enters the condenser or the air, is diminished by the

latent heat of that amount of steam which during the expansion has been

liquefied.

It is not wholly saturated steam which leaves the cylinder, but a mixture of

steam and water, and the heat converted into work is no longer equal to the

difference of the total heat of vaporization for two different temperatures,
but is equal to this difference increased by a considerable fraction of the latent

heat. Condensation during expansion is thus a physical property of steam, to

which the steam engine owes a large part of its efficiency.*

III.

Now let us consider the hot-air engine, and see, if we can, how far those

.hopes are justified which accompanied its discovery. Without doubt, in such

an engine we may convert all the heat into work, when our object is sim-

ply to raise a loaded piston and then allow it to sink again. Practice, however,
demands a very different result

;
it demands a continual activity, a periodic

motion, which shall be incessantly repeated so long as heat is consumed. For

example, it is required that the piston of a hot-air engine, after it has been

raised to a certain height, shall sink again to its original position, and that

this action shall be repeated indefinitely. But the air under the piston opposes
the downward motion, and this resistance can only be overcome by the expen-
diture of a certain amount of work. While the air is thus compressed, it

becomes heated, and this heat must be withdrawn in order to bring about the

original condition.

If, therefore, during the first period, all the heat imparted can be con-

* See Note 14.
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verted into work, in the second, a portion of the work thus obtained is con-

sumed in order to generate heat
; only the remainder of the work is at our

disposal.

The question is, whether, when everything is taken into account, the hot-

air engine possesses any peculiar advantages. Let us, as an example, take

one of these engines whose theory is simplest, and which has been the most
tried in practice ;

the engine of Robert Stirling, which dates back to the year
1816.

In this engine the air is first heated under constant volume, then it expands
under constant temperature, it is then cooled to its original temperature while

keeping its new volume, finally, it is compressed without change of tempera-
ture to its original volume. The expansion takes place under a much higher

temperature, and hence under a much higher pressure, than the compression.
The work performed in the first case is greater than that absorbed in the

second, and the excess can be utilized.

Let us represent this entire cycle of changes by a geometrical construction.

Let OA, Fig. 4, be the volume of one unit in weight of gas for the initial tem-

perature t n and let the ordinate AT(} be the

corresponding pressure p . The air is first,
X

without change of volume, raised from the

temperature to to the temperature t\, which

requires

units of heat, if cv is the specific heat at con-

stant volume. During this rise of tempera-

ture, the pressure rises from pu iop } , repre-

sented in the figure by AT\. But as the

volume remains unchanged, no work is per-

formed. The pressure upon the piston sim-

ply rises from p to p lt while the piston

itself does not move. Now the load on the

piston is gradually diminished, the air ex-

uj
FIG. 4.

pands, without changing in temperature, from the volume v to the volume v\ t

represented by OB. The temperature remaining constant, the volume varies

inversely as the pressure, and the curve T Ti, which is approximately an

equilateral hyperbola, gives the law of change of volume with pressure ;
the

last ordinate, BTl , being the end pressure. Outer work is performed, which is

represented by the area AT^\B. But while the air is thus expanding, in

order to preserve the temperature unchanged, heat must be added to the air,

which heat is the equivalent of the outer work represented by the area

AT
t TiB, since the inner work in case of air is zero. In the third opera-

tion the temperature is brought back to t ,
without change of volume. The

pressure accordingly falls from BTt
to BT without any expenditure of work,

and therefore

heat units must be abtracted, if, as is very probable, the specific heat of air

for constant volume is independent of the density. In the fourth and last

3
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period the air is compressed, while its temperature, to, remains constant,

until it has its original volume, F,,. Here work is performed upon the air, and

heat must be abstracted in order to keep the temperature constant. The

hyperbola T T gives the relation between volume and pressure. The area

ABT Tu represents the work done in compression, which is equivalent to the

heat q' abstracted.

The air receives, therefore, in the first two operations,

c e (ti -tQ)+ q

lieat units, and outer work is performed by the gas, which is represented by
the area AT^T^. In the last two operations heat is abstracted from the gas

equal to

Ce(ti t ) + q

heat units, and a work has been performed upon it represented by the area

ABT TQ . A quantity of heat, q q' , has thus disappeared, and an equivalent
work been performed, represented by the area T T\T}

T . The heat utilized

is q q', while the total consumption of heat is cv (t {
t ) + q, and the heat

not utilized at all would seem to be c c (t t ) + <?'

A little consideration, however, will show that this last is not exactly the

case, and that the heat not utilized, and which is therefore wasted, is q'.*

The quantity of heat c r (t\ t n ) which the air loses in the third period,

while cooling from t
l

to t a , without changing in volume, can be utilized in

raising the temperature of another portion of gas, whose weight is unity, from

t Q to t\. This portion will then be ready to expand, performing work without

change of temperature, and when it in turn is cooled, the heat given up by it

<5an raise the first portion from t to ,, and so on. By such an arrangement
the heat cv (t t ) may pass from one to the other of two equal portions of air

which keep the machine in motion. Since we may conceive a perfect machine
in which this transfer can take place without loss, this amount of heat is no

part of the useful nor useless expenditure, it is at disposal in every cycle. It is

different with the heat q' which the air parts with while being compressed under

constant temperature. Since this must be absorbed by a cooling apparatus,
whose temperature is t0l it cannot again be used in order to raise the air above

this temperature, nor to keep the temperature during expansion at ^. It may,
without doubt, be used in another machine in which the highest temperature
does not exceed t , but, so far as the first is concerned, it is lost entirely. Hence
we have

g-g'
g

as the ratio of the heat utilized to the whole heat used.

The quantities q and q' are easy to determine, since their mechanical equiv-
alents are represented by the areas AT^T^B and AT T B. Thus if, as

always, t7"is the mechanical equivalent of heat,

Jq = &re&AT
l
T

] B,'

Jq' = area ATn TGB,

q q'_ area AT^ T }
B area AT T B

q

* See Note 15.
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The determination of the hyperbolic areas is best performed by integration.
have, from known formulae,

area AT
1
TlS=p 1v log. nat. ^,

area ATTQB=p Q 'o Q log. nat. ^ .

But p, and p are the pressures of the same mass of air, at the same volume,
for the temperatures ,

and t . We have, therefore, if a is the coefficient of

expansion,
p, _1 + at,

Po 1 + a tQ
'

or, finally,

g-g' _ PI -PO _ <*(ti-t )

q pi 1 + at l

This formula, of remarkable simplicity, gives at once the coefficient of

efficiency of an engine of the kind discussed, provided that we only know the

-end temperatures between which the engine works. It is also evident that

<this coefficient is greater than is ever attainable in practice. If, now, we
assume a gas engine, working between the same limits of temperature as Hirn's

engine, we have, putting t t
= 146, t = 34, a = ^h$d, for the greatest

efficiency possible, Hiths, or a little less than fths. This number is not so

much greater than th, which Him found for the steam engine, that one can

conclude any considerable advantage of the one over the other. It would not

foe surprising if the practical imperfections of a gas engine, working between
146 and 34, should reduce the useful work to th of the total. The great

importance ascribed at one time to gas engines does not appear, therefore, in

any degree justified.

IV.

We may, however, go still further, and prove that, considered from an

economical standpoint, all engines which work between the same temperatures

give the same result. If we discuss any engine in the same way as we have

already done for Stirling's, we shall see :

First, that in any given engine the ratio of the useful to the total expendi-
ture of heat is a maximum, when no heat is used to change the temperature of

the gases, or when, at least, this heat is a fixed amount, which never leaves

the system, but is used over and over for the same purpose.

Second, that in such case the maximum value of the ratio is

where t\ and are the highest and lowest temperatures* which occur in the

cycle of changes in the machine. We may give to this expression a noteworthy
: significance by dividing numerator and denominator by the coefficient of

expansion, a. It then becomes

* See Note 16.
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for which we may write

if we let

that is, if we count the temperature from --
,
or from 273 C. , instead of

!

zero. Now, what is this temperature, which, when measured from 273 as

the zero point, thus simplifies the expression for the economical coefficient?

It is that temperature to which the gas is raised if 273 is the zero of our

thermometer, and if the gas is cooled under constant volume to 273, its

pressure would be, supposing a to remain constant, zero. This, then, is the tem-

perature at which the molecules, while preserving their original distances

apart, which they possess under ordinary temperatures, become motionless, that

is, no longer impinge upon outer bodies, and therefore cease to exert that me-
chanical effect which we call pressure. In a word, this is the temperature for

which the sum of the living forces is zero. But the expressions living force

and heat are identical, and we can thus say that the temperature of 273 C.

is the absolute zero of temperature.
It has been attempted to determine this point in various ways, and at one

time it was supposed that it was infinitely removed from ordinary tempera-
tures. From this point of view we call the temperatures T^ and T

() "absolute

temperatures." By the aid of this definition we may frame the following

principle, which includes the theory of all hot-air engines :

" In every hot-air engine, in whatever manner it works, provided only no

portion of the heat goes to useless increase of temperature of the air, the ratio

of the useful expenditure of heat to the total is equal to the difference of the

absolute temperatures between which the engine works, divided by the greatest
of these temperatures.

" *

Does not the simplicity of this law produce the impression of a natural

rp _ ip
principle ? Does it not appear probable that the expression ~^= -indicates

* i

always the ratio of the useful to the total expenditure of heat in a heat engine,
whatever may be the changes in the machine, and whatever the bodies may be

which are made use of for the transformation of the heat into work ?

In fact, it is just as impossible that this ratio shall have two different values

for two machines working between the same limits of temperature, as that the

mechanical equivalent of heat should have two different values.

Let us consider, first, that in a heat engine the excess of the total heat

expenditure over the useful is that portion of the heat derived from the fuel,

which during the action of the machine is transferred to a colder body, and

thus forever lost to the machine. If the engine is reversible, and this must

necessarily be the case with all engines worked by'expansion or change of

condition, it will, when set in reverse action by an outer force, take heat from

a colder body and transfer it to a hotter, and in this then collects all the heat-

generated while work is applied.

* See Note 17.
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The ratio of the heat thus generated to the total quantity of heat in the

Tiotter body is exactly equal to the ratio of the useful consumption to the

total in the usual action of the machine.

Let us now assume that the ratio in question has, in two different machines,

two different values. It is not difficult to conceive these two machines so

united that the one in which this ratio has the greatest value shall set the

other in reverse action, and that the whole work developed in the first by the

action of the heat is completely consumed in working the second. The action

of these two machines, once started, would continue indefinitely without

expenditure of heat or of work, since all the heat consumed in the first machine

would reappear in the second.

Let H be the heat consumed in the one and reproduced in the other in the

:same time, R and R" the ratios of useful heat consumed to total in the first

.and second, and let, according to our supposition,

R > R".

While the first machine consumes the heat H for the preservation of its

motion, it transfers from a source of heat, whose temperature is
t , a quantity

TT

of heat, , H, to the condensing apparatus, whose temperature is t Q . In theH
same time the second machine reproduces the heat H, and transfers from the

TT

condensing apparatus to the source a quantity of heat, ^ H. The final

result of the combination is, that from a cold to a hotter body the amount of
TT TT

heat, =r, T
, is transferred without the expenditure of any correspondingH H

work. If this result is not a contradiction similar to the production of perpetual

motion, it is, at any rate, a direct contradiction of the general laws which we

have deduced concerning heat, and is sufficient to show that the hypothesis

which led to it is not allowable.

The tendency of heat to pass from one body to another lies, so to speak, in

the definition of the idea of "
unequal temperature." The temperature of the

body which gives out heat is the highest, and that of the body which receives

it is the lowest. So long as theory cannot define with sharpness the conditions

which we denote by the term "
temperature," we can assign no decisive reason

why there must be but one requence of temperatures, and we may be inclined

to admit that it is not impossible that bodies which do not interchange heat,

and thus appear to have equal temperatures, if put in certain mutual relations,

may conduct themselves as though of different temperatures.

All experience, however, gives a most decided negative to this supposition.

It shows that equality or inequality of temperature is an absolute fact, inde-

pendent of the experimental process by which it is made evident. If, for

example, temperatures are recognized as equal by conduction, they are also

equal by radiation. It is not possible to explain this law by even the most

recent advances of theory.* It is sufficient that all the facts justify us in

recognizing in this an absolute principle.

Fourier has based upon this principle his theory of radiant heat and of

* See Note 18.
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equilibrium of temperature, and although this theory may seem unsatisfactory
in view of the discovery of the diversity of heat rays and of elective absorption,.

as shown by most bodies, and may have therefore seemed unsatisfactory to

many, still all doubt must vanish in view of the wonderful discoveries to^

which, by a new application of the same principle, Kirchhoff has been con-

ducted.

We assume, however, nothing hypothetical, and we base ourselves upon.
the most certain facts of experience when we propound the following prin-

ciples :

First, it is impossible for heat to pass from a cold to a warmer body without

being, at the same time, accompanied by some phenomena which may be

regarded as the cause of such transfer. Especially in no machine in which
neither heat nor work is given out can any such transfer occur.

Second, it follows necessarily from this first law that the ratio of the useful

to the total expenditure of heat, in a machine whose action depends upon,

change of volume or of condition of aggregation, is independent of the consti-

tution of the body, and is determined solely by the extremes of temperature
between which the machine works, provided that heat is not consumed in?

bringing about change of temperature. The formula

which we have found directly for the hot-air engine, holds good therefore for

every engine. It shows us at once that if any engine is superior economically
to another, it is not because the bodies which serve to transfer beat and con-

vert it into work possess this or that property. The only advantage which

one body can present over another is in the wider limits of temperature ren-

dered available.

From this point of view the superiority of the hot-air engine over the steam

engine becomes evident. We cannot have the temperature of a steam boiler

much above 150 or 160, because the very rapid increase of pressure for higher

temperatures would require extraordinary thickness. Since, on the other

hand, it requires but little less than a rise of temperature of 273 to increase

the pressure of a gas one atmosphere, we see what enormous temperature^
limits we may have in a hot-air engine, without greater strength than that re-

quired for an ordinary high-pressure steam engine.
We should have, then, greater economical advantages, were we not opposed"

by practical difficulties
; as, for instance, the oxidation and the rapid deteriora-

tion of metal which always accompanies highly heated air. The use of super-
heated steam would seem to remove this objection, without greatly diminish-

ing the peculiar advantages -of th'e gas engine. Superheated steam is, in fact,

a gas ;
its pressure near the point of saturation increases undoubtedly with ris-

ing temperature more rapidly than that of air ; but all its thermal and mechan-

ical properties coincide more with those of air the higher its temperature is

raised.

Future progress would therefore seem in the direction of such an applica-

tion, in which the peculiar advantages of the hot-air engine are combined with

those of the steam engine.

Engines working with two kinds of steam, of which much has been heard,*
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are an attempt to increase the mechanical efficiency of the steam engine by
diminishing the lower limit of temperature. The water-steam which is con-

densed in the condenser is made to heat and vaporize a more volatile liquid,

like ether or chloroform. This new steam works a second engine. It thus,

becomes possible to lower the temperature of the condenser below that which
would exist for water-steam alone. The increase of motive power in such a.

construction is shown by the diminution of T(t in our formula
;
but it is evident

that this gain is not comparable with that which we may obtain in the steam

engine with superheated steam, by increase of the upper limit J1

,.

V.

There remains still a third kind of apparatus which we may include among
heat engines, although it is apparently totally different from the hot-air and

steam engine, viz., the electro-magnetic engine ;
and in spite ef the small

practical results thus far attained by it, these lectures would be incomplete-

without some discussion of its value and efficiency.

There is, moreover, from a purely scientific standpoint, hardly a subject-

more fruitful in interesting and novel views than the theory of the electro-

magnetic engine, and I shall therefore devote at least as much space to it as-

to the comparison between the steam and hot-air engine, even although its-

practical value at present is less.

If we neglect differences of detail, we may divide all electro-magnetic en-

gines into two classes
;
either oscillating or rotary. In the oscillating engine &

fixed wire coil or an electro-magnet, as soon as the current passes, attracts-

another wire coil, electro-magnet, magnetized steel rod, or a piece of soft iron.

As soon as this movable piece comes in contact with the fixed, by means of a.

circuit-breaker, the attraction is changed into repulsion, or it is neutralized by
the attraction of another piece. The motion is thus reversed, and this action

is repeated indefinitely. Such a motion can be utilized in a manner similar to

that of a piston.

In the rotary engine the fixed and moving pieces are situated in the radii

of two concentric circles or wheels. When the current passes, the movable

wheel strives to take its position of stable equilibrium, but in the moment at

which this is reached the circuit-breaker acts, the wheel is carried round by-

its momentum, and a continuous rotary motion is the result. This motion

can be utilized like any other motion of the same kind produced by any

mechanical force. In both cases the principle of construction and the origin

of the force is the same. The action of the currents or of the magnets strives,

to bring about a condition of stable equilibrium, and some physical change in.

the system at the moment that this condition is satisfied continues the motion.

What is the mechanical expression for this entire action ?

Let us first consider the case in which the machine, in spite of the passage

of the current, is held fast without motion. The electro-motive voltaic chain,

or battery, and the engine, form, then, a fixed system, in which two kinds of

processes are simultaneously going on. In the battery there is in a given time-

a certain amount of chemical action ;
at the same time, in all the conductors-

through which the current passes, heat is generated, and, so long as the ma-

chine is not in motion, this is all. In the battery we have chemical action ;
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atoms obey their affinities, pass from one condition to another in which their

affinities are satisfied, and so into equilibrium. From the definition of mechan-
ical work, it follows that, in such a series of changes, positive work is per-

formed. In the system of conductors which the stream passes through, there

is generated a certain amount of living force in the shape of heat. Necessarily
there must be an equivalence between the work of the chemical forces and the

heat simultaneously developed in the conductors and battery. A given amount
of chemical action of a given kind must correspond to the generation of a con-

stant amount of heat, whatever may be the constitution of the circuit and of

the battery.

These theoretical conclusions are confirmed by a remarkable experiment by
Joule and Favre. A large calorimeter, which was essentially simply an im-

mense mercury thermometer, with two cavities in its bulb for the reception of

bodies, was used by Favre, and the following determinations made : First, in

one of the cavities was placed a simple galvanic element of zinc and platinum
immersed in acid water, united by a very short copper wire. Thus was deter-

mined the amount of heat generated by one equivalent of zinc when decom-

posed, taking the equivalent at 66 grams. The mean of a number of good de-

terminations showed that this amount of heat was sufficient to raise 37,360

grams of water one degree. Then the thick, short copper wire was replaced by
a thin wire of considerable length, wound in a spiral. The decomposition of

a given quantity of zinc then was found to give a much less quantity of heat,

and the diminution was greater the longer and thinner the wire. The wire

itself was notably heated, and when it was included in the other cavity, so that

the total heat, both in the elements and circuit was determined, the sum was
found to be precisely the same as in the first experiment. The decomposition
of 66 grams of zinc, again, generated 37,360 heat units. Repeated in the most

diverse ways, with conductors and elements of the most diverse kind, the same
results were always obtained : so that in all cases in which the action of the

current performed no outer work, the heat in the entire circuit and the chemical

action were found to be perfectly equivalent.

If now the machine is in motion, living force is generated or work is per-

formed outside of the circle, as, for example, the raising of a weight to a cer-

tain height. If the heat generated in the circuit should still remain the same,
we should have at one time the work of the chemical forces in the battery

equivalent to a certain quantity of heat, and, at another time, equivalent to the

same heat increased by a certain mechanical work, which is plainly impossible.

Accordingly, if by the action of the current in any system of spirals or electro-

magnets, outer work is performed, there must be a diminution of the heat gen-
erated in the entire circuit by a given amount of chemical action, and this

diminution must be the exact equivalent of the outer work performed. Experi-
ment has confirmed this conclusion. In the second cavity of his calorimeter

Favre replaced the conducting wire of the previous experiment, by a very small

electro-magnetic engine, which, by means of a mechanism unnecessary here to

describe, raised a weight. Under these new conditions the decomposition of

66 grams of zinc generated less than 37,360 heat units, and the observed differ-

ence stood in a constant relation to the work of the engine.*

* See Note 19.
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Every unit of heat was thus found to correspond to an outer work of 443

units. The difference between this number and the mechanical equivalent of

heat, as determined by Joule, or as determined from the properties of gases,
does not exceed the limits which may properly be ascribed to errors of obser-

vation.

VI.

In an electro-magnetic engine there is, therefore, a. loss of heat as soon as

mechanical work is performed, and hence it is with perfect propriety that we
have classed such machines among heat engines. The mechanical power is

due to a partial transformation of the heat caused by chemical action in the

battery ; just as, in the steam engine, it is due to a partial transformation of

the heat caused by combustion of fuel under the boiler. In the one as in the

other case, such transformation depends upon certain physical laws, which

may be regarded as so many general consequences of the mechanical theory of

heat. The study of the steam engine has revealed to us the condensation of

steam when expanding ;
the study of the electro-magnetic engine makes evi-

dent to us the necessity of the phenomena of induction.

There is but one way in which we can comprehend how the motion of a

machine can diminish the amount of heat generated in a conducting wire by a

certain amount of chemical action. The generation of heat in a unit of time

is proportional to the square of the intensity of the current, while the intensity

itself is proportional to the amount of chemical action in the same time. It is

evident that the heat generated by the decomposition of one equivalent of

metal is directly proportional to the intensity of the current which causes this

chemical action, or inversely proportional to the time of decomposition. If,

thus, i is the intensity of current, and t the number of seconds required for the

decomposition of one equivalent of metal, then, since the chemical action and

intensity of current are proportional, the product i t is equal to a constant, k.

The heat generated by the decomposition of one equivalent of zinc is propor-

/fc
2

tional to i'
2

t, or can be represented by ik, or by -. It is therefore necessary

that the chemical action in a battery, the current from which works an electro-

magnetic engine, must be lessened, and hence the intensity of the current

diminished, by the motion of the engine. If a galvanometer is interposed in

the current, its deviation during motion of the engine must be less than when
the engine is at rest, and the difference will be greater, the greater the work of

the machine corresponding to a given chemical action. This is completely con-

firmed by experiment. There can be no doubt as to the fundamental fact that

the motion of an electro-magnetic engine diminishes the intensity of the cur-

rent. What can be the cause of this diminution? Is it an increase of the

resistance to the current ? Is it a process similar to that which separates and

puts in motion the two kinds of electricity in the battery ?

An increase of resistance is impossible, because experiment has proved that

the resistance of a conductor is the same, whether it is at rest or in motion. It is

therefore necessary that, in a machine whose parts are relatively in motion, a cur-

rent shall tend to give rise to an opposite current, or, using the customary expres-

sion, an electro-motive force shall be generated, opposed to that of the battery.
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But whatever takes place in a machine in consequence of its motion, must-

take place also in any system of conductors and currents when in any sort of

motion. If, therefore, a closed conductor is moved in the neighborhood of a

magnet or current, the motion must cause in the conductor a current opposed
to that which would have to pass through it, in order, by means of electro-

magnetic forces, to continue such motion.

In this sentence you have already recognized one of the fundamental laws

of induction, and it would not be difficult to prove, analogically at least, in

similar manner, all those discoveries which have rendered so famous the name
of Faraday. Induction currents, the existence of which seemed at first so mar-

velous to physicists, were observed by Ampere * ten years before Faraday, but

without his daring to believe them. It was sought in vain to deduce them
from the phenomena of static electricity. By means of the mechanical theory
of heat they receive their true interpretation. The generation of induction

currents are the means which nature employs in order to produce work in the

electro-magnetic engine. The laws governing induction currents are such that

the equation of living forces is fulfilled both for motion of the machine as well

as for rest.

If we consider on one hand the known expression for the mutual action of

two currents, and on the other the proportionality of the heat generated by the

current to the square of the intensity, as given by experiment, and unite these

two facts by the principle which we have deduced, we can determine generally
both the direction and intensity of the induced current generated by the relative

motion of a current and a closed conductor. We may in this way discover all

the laws deduced by Neumann, in 1845, in an entirely different manner, upon
which chiefly rests his scientific fame.

This remarkable relation between the mechanical theory of heat and the

phenomena of induction was first made known by Helmholtz, in 1847.

VII.

Among the number of laws deduced in this manner by theory, and con-

firmed by experiment, is that of the proportionality of the induced current to

the velocity of the motion producing it.f As the motion of an electro-magnet
is accelerated, the electro-motive force of induction increases, and hence the

current intensity of the battery diminishes. The absolute work which the

machine can perform in a given time is therefore diminished, but in the same
time the heat generated by the decomposition of a given quantity of zinc

diminishes also
;
the fraction of the work of the chemical forces which is

transformed into heat diminishes, and the portion equivalent to the work of

the machine approaches unity the more the velocity increases. We may,

therefore, by a suitable increase of the velocity, transform with any desired

completeness the entire work of the chemical action, or, what is the same

thing, the entire heat generated, into mechanical work.:]:

Thus the electro-magnetic engine, which has so far proved in practice the

most imperfect of all engines, is theoretically the most perfect and efficient.

It only can utilize all the heat. It does not, however, follow that it is only

* See Note 20, at the end of these lectures. t See Note 21. % See Note 22.
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necessary to conform to the requirements of theory, that is, to give the engine
the greatest possible velocity, in order to make it practically available. The
zinc and acids necessary for the battery are expensive, more so than that of the
carbon used with them, and in spite of the theoretical superiority of the electro-

magnetic engine, it is much more economical to consume this carbon as fuel in

a steam or hot-air engine. This must be the case until we can obtain with less

cost bodies which possess powerful chemical affinities, that is, substances which
strive energetically to remain in chemical union, or to return into union. The
solution of such a problem appears not much more probable than the discovery
of deposits of native zinc, or of springs of sulphuric acid.

VIII.

We have by no means exhausted all that may be learned from the electro-

magnetic engine. We may arrive at results not less important than the pre-

ceding by assuming the ordinary action of the engine to be reversed, so that

work is consumed instead of being produced.

If, for example, the current passes through the fixed spiral, and we unite

the ends of the moving spirals by a conducting wire, so that one or more circuits

are formed, the machine cannot be set in action without causing induction

currents in these circuits.

These induced currents oppose a resistance to the motion of the machine,
which increases the amount of that work necessary in order to work the machine
with constant velocity. In the same time, the wires traversed by the induction

current are heated, and the final result is the transformation of a certain

amount of work into heat. The determination of these two quantities furnishes

a new value for the mechanical equivalent, J.

It was with such experiments that Joule, in 1843, began his researches.

He deduced a value for J of 452, deviating considerably, therefore, from the

later and more accurate determinations. But, however considerable the differ-

ence may appear, we may safely assume that it can be entirely attributed to

the difficulties of the determination and the imperfection of the apparatus.*
If we substitute for the wire spirals, composed of wire of greater or less

length and fineness, in which the induction current is of small intensity, and

therefore generates but little heat, a metallic plate of 0.01 meter in thickness,

and of a diameter corresponding to the dimensions of the fixed electro-magnet,
we shall find that the current is greatly increased and that a great amount of

heat is generated. There must, therefore, be considerable expenditure of

work.

This new form of the experiment is interesting on two accounts. From a

theoretical point of view we notice that the principle of the equivalence of work
and heat gives in this case a direct relation between the beginning and end of a

series of effects, the intermediate portions of which are at present but little

understood, which are very different in conductors of considerable dimensions

from simple wires. In the second place, the heat generation is so considerable

that it is possible to make it evident by instruments of suitable delicacy, and

show it to a room full of persons.

* See Note 23.
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Some of you have, without doubt, recognized in these remarks the expert-
ment of Foucault, which attracted so much attention. In order to derive from
it all the information possible, it will be advantageous to give it two different

forms.

First we give, by some simple mechanism, the metallic plate a great veloc-

ity, without allowing the current to pass through the conducting wire of the

electro-magnet between whose poles the plate revolves. As soon as the desired

velocity is attained, we let the current pass, and the plate, by the influence of

the induced currents, is brought instantly to rest. The induced currents cease

as soon as the plate comes to rest, but the heat remains. We may say that the

final result of the experiment is that all the living forces which before belonged
to the entire mass have been transferred to the molecules and become visible

as heat. The sudden stoppage of the plate can be easily proved, and shows

plainly the existence and intensity of the induced currents, but by reason of

the magnitude of the number which expresses the mechanical equivalent, the

heat developed is but slight and can only be made evident by the most sensitive

instruments. In the second form of the experiment it is different. We let the

stream pass through the electro-magnet, and then seek to put the plate in mo-
tion. The effort necessary for this is a visible sign of the resistance to be over-

come. A few minutes of motion cause a rise of temperature of 50 to 60 de-

grees.

IX.

This experiment is the last which I shall borrow from physics. Before

leaving the domain of this science let me direct your attention to this table, in

which we have grouped those determinations of the mechanical equivalent
which are the most reliable.

TABLE OF THE MECHANICAL EQUIVALENT.

Manner of Determination.
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As to the value found by Icilius, it is sufficient to remark that his methods re-

quire the combination of a great number of accurate determinations which are

independent of each other. It is, therefore, small matter of wonder, if his re-
sult deviates much from the number 425, which seems to be the mean of the
other determinations.*

Let us now consider the application of the new theory in chemistry. In the
three kinds of machines which we have considered, we see that the motive
power is due to a consumption of heat. But from whence comes this heat, if

not from the action of chemical forces ? In the steam and hot-air engines we
have heat generated by the chemical action of combustion, and while this heat
calls into existence a series of physical processes, a part of it disappears and

reappears in the shape of mechanical work.

In the electro-magnetic engine the transformation is direct. The heating
effects of a certain amount of chemical action are diminished by the action of

the opposed "induced" currents, by an amount exactly equal to the mechani-
cal work performed. This difference, however, cannot conceal the funda-
mental identity of the three cases. In all three the motive force is either a
direct or indirect transformation of chemical affinities.

These mysterious forces, which seem to elude all exact determination,
thus come under the dominion of general mechanical laws, and are susceptible
of numerical determinations. We cannot determine their actual intensities,

that is, measure the accelerations which, in a given time, they impart to the

atoms upon which they act
;
but their work in the composition or decomposi-

tion of any combination can now be determined with the same exactness as

the work of falling water.

If, for example, one gram of hydrogen and eight grams of oxygen, of a cer-

tain temperature, are brought together under such circumstances as to cause

their union, and if we then bring the nine grams of steam or water back to the

original temperature, the amount of heat which must be imparted to outer

bodies, multiplied by the mechanical equivalent, is the exact work of the

chemical action, provided that the union is not accompanied by any outer

work, that no living force is imparted to other bodies, or imparted to the

bodies which take part in the chemical action. The case of an explosion
which is accompanied by mechanical action is therefore excluded. You will

readily recognize that this limitation is unavoidable, for, as we have seen in

the electro-magnetic engine, a constant amount of chemical action can gen-
erate a different amount of heat, according as we have a simultaneous develop-

ment of mechanical work or not.

I scarcely need to call your attention to the importance of this new point of

view in thermo-chemical investigations. It forms at once a bond of union be-

tween chemistry and general mechanics. Nor is this one of those superficial

and unfruitful remarks which are constantly uttered as to the universality of

mechanical laws or the dependence of every phenomenon upon motion. We
can give examples of chemical action which can only now be perfectly ex-

plained by mechanical considerations. Such examples are found in that part

of chemistry which we may call electro-chemistry, and which is property con-

sidered as equally belonging to chemistry and physics.

* See Note 24.
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You know that a current which passes through a compound conductor

always decomposes it. You know, further, that every chemical action which
occurs between two conducting bodies which form a closed circuit causes a
current. Hence it seems evident that there must be decomposition when we
put the poles of a battery in connection with two strips of platinum immersed
in a compound conducting liquid. This conclusion is, however, inexact. The
decomposition of water, for example, is impossible by means of a battery com-

posed of zinc and platinum or copper, with water acidulated with sulphuric
acid. Ordinarily, in order to increase the conductive power of a fluid, acid is

added to it, but even this fails here. There is no decomposition, and no appre-
ciable current flows through the apparatus.* These facts appeared for a long
time incomprehensible, but it is easy to show that it is mechanically impossible
under these circumstances to decompose the water. The negative work of the

chemical affinities is, by such decomposition, greater than the positive work of

the affinities in the battery.

We know that the decomposition of one equivalent of zinc in every dilute

acid corresponds to 37,360 heat units. On the other hand, the combustion of

one equivalent of hydrogen generates 34,460 heat units. It is clear that, in

the battery with acid water, the negative work of the chemical affinities must
be exactly equal and opposed to the positive work of the same affinities which
in an apparatus serve for the combustion of the hydrogen. If, therefore,

according to the laws of electro-chemistry, we assume that each equivalent of

zinc decomposed in the battery causes the decomposition of one equivalent of

water, or the formation of two equivalents of hydrogen, and if we take into

account, also, the heat generated in the conductor by the current, we shall find

in a system at rest a greater negative than positive work, and at the same

time, in addition, a generation of heat, that is, of living force. This is a

mechanical contradiction, the existence of which shows why decomposition
cannot occur. For this explanation we are indebted to Favre.f

Undoubtedly this phenomenon appears essentially different from ordinary
chemical processes. There is in the system a regular combination of substances

acting upon each other, and also conductors which take no part in the chemi-

cal actions, and yet whose presence is absolutely necessary. All this does

not seem to resemble very closely the reactions which go on in the test tube of

the chemist. If, however, we recall the fact, which is to-day settled, that the

action of acid hydrates upon metals is always a pure galvanic process, in which

the metal, its impurities, and the acid form a galvanic chain, we shall probably
be inclined to regard the difference as only accidental, and to see in this first

application of mechanical considerations to electro-chemical processes the type

of a series of applications which may in future extend over the whole domain

of chemistry.:}:

Just as electro-chemical phenomena find their explanation in the considera-

tion of the heat effects of combinations, so the theory of electric currents

allows in many cases of other determinations, in the place of calorimetric

measurements, which may be made much easier by means of the galvanometer
and the rheostat. From Ohm's laws, together with the laws of electric heat-

ing, we deduce that the total heat generated by the chemical action involved

* See Note 25. t See Note 26. $ See Note 27.
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in the decomposition of one equivalent of zinc is proportional to that number
which we call the electro-motive force. This at least is always the case when
there is no disturbing action by reason of a gas developed upon the surface of

a metal in the battery or in the circuit.

This relation, first clearly announced by Helmholtz in 1847, appears to have
been discovered by Joule in 1841. It gives to the determination of electro-

motive forces especial interest, and has led Regnault to interesting conclusions

as to the constitutions of metallic amalgams.*
We have long known that the electro-motive force of a galvanic battery is

considerably increased when we substitute amalgamated for pure zinc, but
thus far have been able to give for this peculiar result only still more peculiar

explanations. Regnault remarked that amalgamated zinc generated more
heat, in combining with oxygen and an acid, than pure zinc, and that, conse-

quently, when the mercury is separated from the zinc, heat is developed. The

opposite process the formation of the amalgam must therefore produce cold.

The electro-motive force, on the other hand, is diminished when we substitute

amalgamated for pure cadmium. The amalgamation of cadmium must there-

fore produce heat. Both these conclusions are perfectly confirmed by experi-
ment. These phenomena find their explanation in the almost perfect identity
in chemical properties of zinc and cadmium, and their great difference in latent

heat. The two metals possess probably almost the same affinities for quick-

silver, and their union with this substance must therefore involve almost equal

quantities of heat. When the amalgam is decomposed, we have then, as the

caloric result, only the difference between the heat developed by chemical

action, and that absorbed during decomposition. We thus see how the zinc

can produce cold and the cadmium heat, since the first metal requires for

liquefaction about twice as much heat as the second. These considerations

apply to all metallic amalgams, and are in accordance with experiment. (See
the remarks of Regnault in the Comptes rendus, 1860, vol. li., p. 778.)

X.

But not only machines owe their moving force to the work of chemical

affinities. The motive power of man and animals is due to the same cause.

Breathing and all the chemical reactions which take place between the outer

atmosphere and the body serve not only to preserve a constant temperature
and to remove waste materials. Breathing is also the source of the capability

which a living being possesses of moving exterior bodies, or, by means of some
outer point of resistance, of moving itself.

However complex these chemical reactions may be, individually, their final

result corresponds to the natural tendency of the affinities. This is a constant

formation of water and carbonic acid at the expense of the hydrogen and

carbon which exist, either in the body or in the food, in a combination in which

their affinities for oxygen are not completely satisfied. The work of the

chemical processes in breathing is thus essentially positive. If the animal is

at rest, this work is the equivalent of the amount of heat which is constantly

developed in order to replace the loss of heat due to radiation, contact with the

* See Note 28.
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air, and perspiration.* If the animal is in motion, a portion of the work of

the chemical affinities is equivalent to the outer work performed, and only the

remainder is converted into heat. Therefore, the same amount of chemical

action causes in an organism at rest a greater amount of heat than when the

organism is in motion.

These ideas, which were first expressed by Julius Robert Mayer, in 1845,

have, in fact, caused in general physiology an advance similar to that which

was due to the discoveries of Lavoisier and Sennebier upon respiration, at the

end of the last century. They have not remained purely theoretical
;
two

different series of experiments have given very remarkable confirmation. The
first is due to Him. It consisted in confining a man in a closed room, who for

some time remained at rest. He then performed, for some time, work in a

tread-mill, and in both cases the heat and chemical action of respiration were
observed. Each time the heat generated and the carbonic acid exhaled were
measured. The ratio of the first to the second was less during motion than

during rest. A given amount of chemical action, therefore, developed less-

heat while work was performed than during rest. The difference, for each

individual, was closely proportional to the work performed. The conditions of

the experiment are, however, too complex, and the changes in the body too-

difficult of measurement, in order to determine in this way, as Hirn endeavored

to do, the value of the mechanical equivalent of heat.

Beclard attacked the question in another way, and by means of an experi-

ment which any one who possesses a good thermometer can repeat, showed
that heat, in the organism, is transformed into work. By the simple applica-

cation of such an instrument to the muscles of the arm, he showed that the

heat generated by muscular contraction was always less when the muscles,

during contraction, performed outer work, such as the raising of a weight.

He showed, further, that the heat, on the other hand, is increased when the

muscles support a weight, which, falling under the action of gravity, performs
outer positive work.

The results of these two series of experiments are the most valuable by
which experimental physiology has in recent times been enriched. It is, more-

over, clear that they are in nowise contradicted by the daily experience that

every bodily exertion is accompanied by heat. The contraction of a muscle

increases undoubtedly the heat generated in an organism in a given time, but it

increases also the consumption by respiration, so that, even without direct proof,

we might conclude the necessity of nourishment as a consequence of work.

The investigations of Hirn and Beclard simply show that, in accordance

with the theory of Mayer, the consumption increases in a greater ratio than

the generation of heat. Every animal, every being endowed with voluntary

motion, can thus be regarded as a heat engine. Every motion is but a partial

transformation into work of heat, furnished by combustion of fuel in the shape
of food, etc., perfectly comparable to that transformation which occurs in the

electro-magnetic engine. If a living being can apparently increase at will the

sum of the living forces surrounding him at any moment, it is only under the

condition that the sum of the living forces of the heat generated by chemical

actions in his own organism shall be diminished by a precisely equivalent

* Sec Note 29.
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amount. We may, in fact, say that he possesses only the power of directing
the living forces which are being constantly generated within him by the

action of chemical affinities and in order to show the true nature of this

power I cannot do better than to borrow from Mayer the comparison of the

will in a sentient animal to the man at the helm of a steamship, which he

indeed guides, but without being in any sense the physical cause of the

motion. "The motion of the vessel," says Mayer, "obeys the will of the

pilot and the engine-driver the spiritual influence without which the ship

could not move, or would be destroyed on the first reef. The pilot guides, but

he does not move. For motion, the force in the coal is necessary, and with-

out this the ship must remain at rest dead no malter how strong the will

of the pilot."

XL
An essentially different field is opened to us by the vegetable kingdom. In

the higher plants, at least, the final result of the life processes is opposed to

the chemical affinities. Under conditions which continually tend to convert sub-

stances into carbonic acid and water, still the higher plants are constantly in-

creasing the quantity of these substances already existing. The work of the

affinities within them is therefore a negative one, and our, as yet, complete ignor-

ance as to the mechanism of plant life need not prevent our giving complete
assent to this conclusion, for it is, after all, only formulating that which goes on

in every forest and on every meadow. Apparently without sustenance, and

year after year, wood and grasses are produced, and removed by man. But this

continual triumph of the vegetable kingdom over chemical affinities can only

be sustained by an equivalent consumption of living force or of heat. Hence,

for all vegetation, the direct or indirect action of the sun is an absolute neces-

sity. Only infusorial plants and parasites are exceptions.* Neither the special

refrangibility of those rays which are considered as especially favorable to

vegetation,f nor the weakness of their thermometric action, distinguishes these

rays essentially from those which are called "heat rays." That which the

plant absorbs from the sun is heat that is, living force ;
a vibrating motion

of atoms distinguished only by period and amplitude of vibration from those

which act upon the thermometer. By the consumption of this living force the

amount of combustible material is increased. In the combustion of the pro-

ducts of vegetation we simply recover this living force, which opposed the-

chemical affinities and prevented combination. Thus, to a transformation of

the sun's heat we owe the fuel we burn and the vegetable food which sustains

the energies of man and beast. To a similar transformation we owe all the

mineral fuel which sustains our industries. When we remember, further,

that it is the sun which makes the wind to blow, which evaporates water, and

causes rain and sustains rivers, you will recognize that not only the motion of

the tides, but every motion upon this earth, has its origin directly or indirectly

in the sun.

* See Note 30.

t See Note 31. Verdet wrote the above lines under the erroneous impression that th&

more refrangible part of the spectrum was that which furnished the living force to the plant.

The Note 31 gives those experiments and views which are now generally accepted.
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XII.

This beautiful natural harmony turns our attention to the centre of our

system, and leads us to the consideration of the astronomical applications of

the new theory.

You are all familiar with the hypothesis of Buffon as to the origin of tbe

sun's heat. According to him, the unceasing fall of comets upon the surface

of the sun furnishes the materials of combustion. The more we have learned

about the motions of comets, and the more we have departed from the idea

that the sun is a furnace similar to our artificial sources of heat, the more has

Buffon's hypothesis been forgotten. The mechanical theory of heat has revived

it again and rejuvenated it. Mayer first called attention to tbe fact that a body

arriving at the sun would lose, at the moment of its impact, the enormous

quantity of living force due to the action of gravity, and that this loss of living
force must cause a development of heat. It is sufficient, therefore, to account

for all the heat which the sun gives out into space, if its mass is continually

growing by the addition of comets, aerolites, and other cosmical bodies.

William Thompson, who has developed and followed up this idea of Mayer
with equal sagacity and boldness, believes that these bodies, which by their

fall heat the sun, probably come from that immense cloud which surrounds it,

to which astronomers give the name of " zodiacal light." Assuming this, he

was able to calculate the mass which must yearly fall upon the sun, in order to

compensate the loss of heat which follows, from the researches of Pouillet

upon the thermometrical effects of the sun's rays. If tljis mass has the mean

density of the sun, it would form a layer of only twenty meters in thickness.

This thickness is considerably less, if we assume with Watterson that the mass

which the sun attracts streams in from all quarters of space. In either case

there is an inconsiderable increase of diameter, which would elude the closest

scrutiny for many years. Even according to Thompson's estimate, it would

require no less than four bundred years in order that the angle subtended at

the sun should be increased by one-tenth of a second.

But another consequence of the hypothesis allows of an easier test by

experiment. The sun turns upon its axis in about 25 days. Every foreign
substance which unites with it diminishes its velocity of rotation. Thompson
has calculated the thickness of the layers gradually deposited upon the sun's

surface, and found that the retardation would amount to one hour in 53 years.

Unfortunately, we cannot at present determine the time of rotation within an

hour. It is very difficult of determination, as it must be found by observation

of sun spots, which have also a proper motion of their own, as well as sharing
the motion of the sun. The influence of this proper motion can only be elim-

inated by long series of observations. This second confirmation therefore is at

present impossible, and would appear to be so for a long time to come. But it

is not, like the first, deferred to an infinite time.

The fundamental idea of the mechanical theory of heat has been combined

with the hypothesis of Laplace as to the origin of the solar system, and we
thus obtain another explanation of the heat of the sun and planets. Tbe
endeavor has even been made to deduce in this manner the age of the sun.

I do not require that you shall follow me in speculations of this kind, which

may perbaps appear as extremely hypothetical, or for which the test of expe-



INTRODUCTION. 51

Tience appears too distant
;
but I would point out how far the scope of the new

theory extends.* In this connection it has been said that science is on the

road to the discovery of new laws, as fundamental and as accurate as those

made known by Newton in his generation. You may perhaps be inclined to

see nothing chimerical in this view.

XIII.

I cannot, however, allow you to believe that these laws are yet discovered.

Now that I have indicated all that the new theory teaches us, I must also call

your attention to what it compels us to neglect. The principle of the equivalence
of heat and work is only one form of the equation of living forces. A special

advantage connected with the application of this equation is, that it allows us

to express relations between different conditions of the same system which are

independent of intermediate conditions. Its disadvantage is, that it shows us

nothing as to these intermediate conditions. This is, strictly, the true charac-

ter of the new theory. It teaches us the "
why

" and the " how much," but

it does not answer the "how." Thus we know indeed that steam, in expand-

ing, transforms a part of the heat which it contains into work or living force
;

we know that induced currents are necessary in order that both motive power
and heat may be furnished ;

but in both cases the process itself, the play of the

elementary forces, is unknown. It is much to have determined the true nature

of a problem, and to have confined within fixed limits the field opened out by

hypothesis. The application of the mechanical theory of heat to gases has

led directly to the discovery of a theory of their constitution, which at least

expresses very satisfactorily the known facts. We may justly hope that this

will not be the only example, and that the new theory, after showing the

necessary connection between phenomena, will also aid us to penetrate into

the inmost secrets of nature.

XIV.

The importance which we must now attribute to the new theory renders it

necessary as well as desirable that I should give a short history of it, in which

I shall endeavor to do justice to the principal discoverers. This is so much the

more necessary, inasmuch as I have thus far given only its ideas in logical

order, without reference to the historical sequence of the discoveries.

We can distinguish two periods in this science. In the first, which reaches

up to the year 1842, similar ideas of the mechanical heat theory were held by
different authors, but the facts thus explained were soon regarded from differ-

ent points of view, and attempts were made to refer them to general laws.

The real principle, however, was not discovered, and all these attempts re-

mained unfruitful and without essential influence upon the progress of science.

The work of this period bore, nevertheless, its fruits in due time, and, as often

happens with great discoveries, was revived again about the year 1842, when
rseveral geniuses expressed the new ideas with sharpness and clearness. Shortly

* See Note 32.
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after the beginning of that period of rapid progress which always attends the*

discovery of a true principle, a few years sufficed to erect the shapely struct-

ure, wbich I have endeavored hastily to show you over.

The first name among the list of those whom we can call the forerunners

of the mechanical theory of heat, is the famous one of Daniel Bernoulli. The

Hydrodynamics of this great geometer and physicist, which for more than a

century remained neglected and forgotten, contains the theory of the constitu-

tion of gases to which I have already referred. His contemporaries probably

saw in it only the effects of the old Cartesian hypothesis, and not until recent

times has it been recognized that here was the germ of a new science.

In the year 1780, somewhat more than forty years after the publication of the

Hydrodynamics, Lavoisier and Laplace, while speaking, in their treatise upon

heat,* of the two hypotheses which can be formed of this physical agent, ex-

pressed themselves as follows : "Other physicists believe that heat is only
the result of imperceptible vibrations of matter In any system
heat is the living force of the imperceptible vibrations of the molecules of a

body ;
it is the sum of the products of the masses of each molecule into the

square of the velocities We do not assume to decide between the

two hypotheses. Many phenomena seem to sustain the last
; as, for example,,

the heat generated by the friction of two bodies
;
but there are others which

seem better explained by the first. It may be that both hold good." But
after this plain and clear definition we find nowhere in the treatise any attempt
to compare the living forces of heat with ordinary living force, such as the

rotation or motion of the center of gravity of a body. They never compare
heat with anything else than itself, and it contributes accordingly little to the

value of their remarks whether heat is regarded as an indestructible matter

or as a quantity of living force.

Indeed they go further, and regard as proved a principle which is in direct

contradiction to that of the transformation of heat into work. "All changes of

heat," they say, "whether actual or only apparent, which any system of bodies

undergoes while changing its condition, are repeated in reverse order when
the system is brought back to its original condition." If they had added, pro-
vided such change of condition is not accompanied by outer work, the mechanical

theory of heat would have been founded. But without such proviso this asser-

tion of Lavoisier and Laplace is an error, which is daily confuted by the steam
or electro-magnetic engine.

It is impossible to say how the views of Lavoisier upon this question would
have changed had he lived longer. We conclude from his treatise upon
chemistry, that up to the year 1789 he had not completely given up the theory
that heat consists in a motion of molecules.

It is indeed true, that, probably in deference to the general opinion, he

spoke of gases as if they were composed of a union of certain bases with
caloric. But he continually made limitations of which we find no trace in the

writings of his scholars, and it was not without some hesitation that he placed

light and heat at the head of the list of simple bodies.

As to Laplace, his views underwent rapid change. In all which he wrote

during his connection with Lavoisier he appeared as the ardent advocate of

* Memoire sur la chaleur. Meinoires de TAcadgmie dee Sciences, 1780, p. 357.
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the materiality of heat. His weighty authority alone procured belief for the

theory, which rested upon not the slightest proof.

Toward the end of the last century, about the years 1798 and 1799. two

experiments were made which sufficed to show the untenability of the theory

espoused by the author of the ''Mecanique Celeste." These were the famous

experiments of Rumford and Davy upon heat generated by friction. Rumford,
at the foundry at Munich, measured as exactly as he was able the heat gener-
ated in boring a cannon, and in order to leave no doubt as to its origin, he

determined the specific heat of the bronze and of the borings. There appeared
no perceptible difference between the two, and thus the only reasonable expla-

nation which could be offered by the material theory of heat was negatived

decisively.

It had, in fact, been assumed that in the pulverized bodies the specific heat

was much less than in the same bodies solid, and it followed indeed from this

assumption that the pulverization of a body by the friction must be accom-

panied by heat. But it was forgotten that, in such case, friction itself must
create heat when there is no change in the rubbing surfaces. The experiment
of Rumford showed, moreover, the incorrectness of any such assumption.

The experiment of Davy, about a year later, showed, if possible, still more

conclusively the error of the old theory. Two pieces of ice, rubbed together,

melted very rapidly, and formed a liquid whose specific heat was more than

double that of the ice. Davy also used every precaution in order to show that

the generation of heat was not accompanied by any noticeable absorption in

any part of the apparatus.

Among the contemporaries of Rumford and Davy, Young appears to have

been the only one to fully realize the scope of these experiments. In his lec-

tures on natural philosophy, published in 1807, he placed them among his

immortal discoveries as to the nature of light, and he all but reached the true

principle of the mechanical heat theory. He was the first to cast doubt upon
the principle of Lavoisier and Laplace, to which I have alluded. "

Probably
not in a single case," he says, in his lecture upon the nature of heat, "is the

heat absorbed exactly equal to the heat given up in the reverse process." In

this simple doubt lies concealed the essential principle of the mechanical

theory of heat. Young, indeed, admitted the probability of the equivalence

of the absorbed and generated heat, but the simple expression of doubt upon
an axiom of this character in the year 1807 is noteworthy.*

Unfortunately, this was the period when the law of double refraction was

looked upon as an argument in favor of the emission theory ;
the same

period in which the elegant treatises of Fresnel remained forgotten. Even

when, in the year 1824, the original genius of Sadi Carnot, awakened by the

industrial revolution inaugurated by the steam engine, sought to unfold the

general laws of heat, he accepted without question the materiality, and there-

fore the indestructibility, of heat as his starting-point. f It may perhaps sur-

prise you when I add, that in spite of this fundamental error, the names of

Sadi Carnot and of his learned commentator, Clapeyron, occupy distinguished

* Lectures on Natural Philosophy, vol. i., p. 651, edition of 1867.

t Memoire sur la puissance motrice de la chaleur. Journal de 1'ficole polytechnique, vol.

:xiv., p. 170, 1834. Poggendorff's Annalen, vol. 59, p. 44fi.
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places in the history of the science. To Sadi Carnot we owe the methods of

discussion of which the mechanical theory of heat makes use. In his writ-

ings we find the first examples of the cycle process of that series of changes;

by which a body passes in a determinate manner from one condition to another,

and then in another determinate manner returns to its initial condition.

Clapeyron has cleared up the obscurity of Carnot's treatise, and showed

how to treat analytically and represent geometrically this new and fruitful

method of treatment. These two have to a certain extent created the logic

of the science. As true principles were discovered, they only needed to be sub-

jected to the forms of this logic, and it is easily conceivable that without the

work of Carnot and of Clapeyron the advance of the new theory would have

been much less rapid.

Finally, we close this first portion of our historical sketch by recalling-

that Seguin, in a work published in 1839,* of more political than physical

interest, has given views, as to the steam engine, closely related to those by

which, in our first lecture, we have sought to render plain to you the trans-

formation of heat into work.f

I come now to those labors by which, since the year 1842, the science has

been built up. These labors are more especially those of three men, who
without connection with one another, without even knowing each other, at the

same time and in almost the same manner arrived at the same results. The

priority in sequence of publication belongs undoubtedly to the German physi-

cian, Julius Robert Mayer, whose name we have already had frequent occasion

to mention, and it is interesting to note that it was through observation of

facts occurring in his medical practice that he was led to recognize a necessary

equivalence between heat and work. The changes in the color of arterial and

venous blood turned his attention to the theory of respiration.:}: He recognized

at once the breath as the origin of the motive power of animals. The com-

parison of animals to heat engines led him gradually to the discovery of th&

important principle with which his name is forever associated. This, at least,

is the account which he himself has given us in his writings of the develop-
ment of his ideas.

We find, moreover, in these writings, the first determination of the mechani-

cal equivalent of heat, deduced, in perfect accordance with principle, from the-

properties of gas, but incorrect in value because the true values of the coeffi-

cient of expansion and the specific heat of air were then very imperfectly
determined. Mayer's papers, "Die organische Bewegung in ihrem Zusam-

menhange mit dem Stoffwechsel," and "
Beitrage zur Dynamik des Himmels,""

which last appeared in 1848, contained also physiological and astronomical

applications which show that he clearly appreciated the scope of his dis-

covery.

About the time of the first publication of Mayer, a series of articles by
Colding, an engineer at Copenhagen, were presented to the Royal Academy of

Sciences at Copenhagen, which contained ideas upon the power of steam and
hot-air engines very similar to those of Mayer, as well as an experimental
determination of the mechanical equivalent of heat by friction, which does,

* tftudes sur 1'influence dee cherains de fer, p. 180. Paris, 1839.

t See Note 38. % See Note 34.
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not seem to have been very exact. This is sufficient ground for including his

name among those of the founders of the new theory. But it is readily con-

ceived that the contributions of this physicist, written in a language but little

known, and first printed several years after their receipt, had but little influence

upon the development of the science.

The third discoverer of whom I have to speak, Joule, is perhaps the one

who has contributed the most toward the proof of the new principles and their

final reception. His first work appeared in 1843, and is undoubtedly later than

the first works of Mayer and Colding. It contains experiments upon the heat

generated by induced currents, and appears to have excited at first but little

notice. His experiments in 1845 upon the heat effects of expansion and con-,

traction of gases, were the first to give him the fame of introducing new ideas

into science. His experiments upon friction gave the first reliable determina-

tion of the mechanical equivalent of heat. His views upon gases gave the

first, and, until now, only complete explanation of a phenomenon whose laws

could be laid down by theory without disclosing its mechanism.

Immediately after these three names we must place that of Helmholtz, who,

in 1847, in his article,
" The Conservation of Force," first united the new ideas

into a complete structure, and drew from them fruitful and important applica-

tions to induction phenomena, electro-chemistry, thermo-electric currents, etc.

The development proper of the mechanical theory of heat as a science, the

clear and methodical presentation of methods of investigation and discussion,

and, finally, their application to machines, is due to four savans, whose names

are the last that I shall mention
; Clausius, Macquorn Rankine, William

Thompson, and Gustav Zeuner. Their most important investigations extend

from 1849 to the present day.

Many other workers might be mentioned. I have already had occasion to

notice several in the course of these lectures
;
I will not seek to extend the list,

but shall content myself with the names of those investigators who have laid

the foundation stones of the edifice, upon whose completion so many have for

the last thirty years labored with such signal success.
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NOTE 1. (Paged.)

THE PROBLEM OP PERPETUAL MOTION.

IN accordance with usual custom, I have shown the impossibility of per-
petual motion to be a consequence of the fundamental principles of mechanics,
as well as of the manner in which the forces of nature act.

We may, however, also recognize in this an independent and apparently self-

existent principle, which, at bottom, expresses nothing else than the necessity
of a definite relation between cause and effect.

Considered thus, the principle of the impossibility of perpetual motion may
be used to prove that all natural forces must act in the line joining any two
mutually interacting material points, and that these mutual actions are func-
tions of the distances apart.

This is the method adopted by Helmholtz in his famous Treatise " Die

Erhaltung Kraft "
(Berlin, 1847) a method which may seem to many the best.

Helmholtz says :

" Let us consider, first, a material point of the mass m, which moves under
the influence of the forces of any number of bodies composing a fixed system
A, then we can determine for every moment the position and velocity of this

point. Let the time t be the primitive variable, and, dependent upon it, let the
ordinates of m, with reference to a co-ordinate system fixed with respect to the

system A, be x, y, and z, the tangential velocity be q, the three components of
the same

dx dy dz
U -

ID = W -

dt' dt' dt'

and finally the components of the acting forces

*=- r-.*. ,=.*.

Our principle requires that tynq*, and hence q
2

, shall be always the same
when m has the same position with respect to A, and therefore not only a
function of t, but also a function of the co-ordinates x, y, z, alone, that is,

Since q
1 ti2 + tf + w2

= 2udu + 2vdv + 2wdw.

If here, instead of u, we put ,
instead of du, ,

and also for v and w>
dt m

similar values, we have
2 ~JC 2 T7 2^

d (q*)
= dx + dy + de........ (2)m m m

Since equations (1) and (2) must be simultaneous for every dx, dy, dz, we
have

8 (q*) _ 2X
d_(tf) _ 2Y d (q*) = 2Z

dx m' 8y
~~
m '

dz m'

If, however, #
2 is a function of x, y, z, it follows that X, Y, Z, that is, the
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direction and intensity of the acting force must be also only functions of the

position of m with respect to A.
If we conceive instead of the system A, a single material point a, it follows

from the above that the direction and intensity of the force which a exerts

upon m is determined only by the relative position of m with respect to a.

Since now the position of m is determined by the distance between m and a,

in this case the direction and intensity of the force functions must be this dis-

tance a. If we conceive the co-ordinates referred to any system whose origin
is at a, we must have

md(qY = 2Xdx + 2Ydy + 2Zdz = ...... (3)

d (r
2
)
= 2xdx + fydy + 2zdz =

__ xdx + ydy

This value, in (8) gives

hence X= Z and Y=Z,
that is, the resultants must be directed towards the origin.

Hence in a system which is subject generally to the law of the conservation
of living force, the simple forces of the material points must be central forces.

NOTE 2. (Page 14.)

THE ORIGIN" OF THE MOTIVE POWER IN THE STEAM ENGINE UPON
THE HYPOTHESIS OF THE MATERIALITY OF HEAT.

Sadi Carnot, assuming the materiality of heat, has given an explanation of
the phenomena in the steam engine, which, although it does not agree with

reality, is not so evidently erroneous as the hypotheses which have been
framed in order, by the same hypothesis, to account for the heat generated by
friction.

According to him, the imponderable fluid whose presence in bodies gives
rise to those various effects which are called "

heat," has an inherent tendency
to pass from a hot body to a colder one, just as heavy bodies tend to fall from
a high place to a lower

;
or rather, there is a similar tendency due to the action

of the heat molecules on each other and the actions upon them of the ponder-
able molecules. Thus, the forces which act upon the heat molecules, furnish

positive work whenever there is a transfer of heat from a hot body to a cold

one, which cannot indeed be a priori determined, but which is, however, com-
parable to the work of gravity in a waterfall.

This is the true motive work in the engine. The heat from the boiler to
the condenser experiences a kind of fall (this is Carnot's expression), and the
work furnished by the engine is the equivalent of this mechanical process,
just as the work of a water-wheel is the equivalent of the fall of the stream.

These views have in them nothing at variance with common sense, or which
contradicts the general view of the phenomena ;

but it is evident that the as-

sumption of the materiality of heat involves that of its indestructibility, and
hence, in the case of the steam engine, gives rise to the following dilemma,
the solution of which must be demanded from experience either heat is some-
thing material, and then the steam must transfer as much heat to the con-
denser as it takes from the boiler or heat is a motion of some kind, and then
a part of the heat during the action of the engine must disappear, and thus
give rise to outer work.

We have seen what answer experience has given.
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NOTE 3. (Page 14.)

SOME EXPERIMENTS BY HIRN WHICH APPARENTLY CONTRADICT
THEORY.

The investigations of Him were undertaken in consequence of aprize offered

by the Physical Society of Berlin for a numerical determination of the true
value of the mechanical equivalent of heat. In the report of Clausius to the

society, he calls attention to the error of Hirn's views upon the steam engine,
and gives a correct explanation of the experiments.

Him did not agree with the views of Clausius, and, although when his
treatise was published, he gave the report of the learned physicist in full, he
sought to defend the correctness of his first calculations, and endeavored to

justify them by two different methods of experiment viz., by measuring the
heat used by a steam engine without expansion, and by investigating the heat
phenomena which accompany the efflux of a gas under high pressure into a
vacuum.

It may not, perhaps, be without profit to show what the value of these new
arguments amounts to.

In the following, we give the words in which Clausius refers to the incor-
rectness of Hirn's views :

"It can be easily shown how this error of Him arises.* He says, in justi-
fication of his assumption,

' when steam condenses under the same pressure at
which it was generated, it gives up during condensation as much heat as must
have been imparted in its generation.' This principle is indeed correct, but it

has no application to the steam engine." When, in an engine working without expansion, the steam has entirely
filled the cylinder back of the piston, and then the communication with the
condenser is opened, only at first does the steam flow under full pressure into
the condenser, and then the pressure gradually decreases as the steam still in

the cylinder expands. By this expansion the steam still in the cylinder is con-

siderably cooled, and, if not superheated or heated from without, will be partly
condensed, even while still in the cylinder. In order to comply with the con-
ditions implied in the above principle, the piston, during the efflux, should re-

turn with just such velocity as to keep the steam still in the cylinder always
at full pressure. But then the back pressure would have to be as great as the

driving pressure was, and no work could be obtained. If the author had
extended his experiments to engines without expansion, he would undoubt-

edly have found for these also that the amount of heat given up is less than
that received."

These last words, without doubt, led Him to make an experimental in-

vestigation of a steam engine without expansion, f
He does not appear, however, in this new investigation to have succeeded

in overcoming all its difficulties, as he himself says,
" the physicist may meet

in experimental science with insurmountable obstacles."

He says, indeed, that he has established that, in an engine without expan-
sion, the "heat expenditure is either zero or can be neglected, but together with
the experiments which give this strange result, he gives the data of another
from which even still stranger conclusions may be drawn.

In an engine in which expansion occurred only through the fifth part of the

stroke, not only was work performed, but also heat generated.
That the new methods of experiment which lead to such conclusions are

to be preferred to those used by Hirn in his first experiments, is more than
doubtful.

* Fortschritte der Physik, 1855. Bd. xi., p. 21.

t Recherches sur 1'equivalent inecanique de la chaleur, par Gustave Adolphe Him, Paris,

1858, p. 179.
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The clear and decisive criticism of Clausius holds in full force.

Him opposes to Clausius also the following experiment : Into a receiver of

black lead, surrounded by cold water, he allowed a jet of steam under high

pressure to enter, the temperature of which was measured by a thermometer

just before the steam reached the orifice.

He then collected the water condensed in a given time, and from the rise of

temperature of the calorimeter, applying the necessary corrections, found the

heat given up during condensation.

In this way a greater number was always found than that given by the ex-

pression

p [600.5 + 0.305* 4- 0.4805 (T - t)
-

r],

which gives the heat contained in the steam at the moment at which it arrives

at the orifice where p is the weight of the steam, Tits actual temperature, t

the temperature at which, under the actual pressure, it would be saturated,

and r the temperature of the condensed water, assuming, according to Reg-
nault's experiments, that 0.4805 is the specific heat of the steam.

Similar experiments, in which he used the condenser of a steam engine as a

calorimeter, gave the same result.

Him concluded that saturated or superheated steam which condenses in a

cooling vessel in which the pressure is less than the initial pressure of the

steam generates heat.

The fact is remarkable and interesting, but easily to be accounted for.

The steam which leaves the orifice of efflux has a very great velocity, the

liquid which results from the condensation is at rest. In the transformation

from the gaseous to the liquid condition, then, a large amount of living force

disappears, and there is, therefore, according to the new principles, a genera-
tion of heat.

It is, indeed, true that the outer work performed on the steam during its

condensation is less than that which it performed during its generation, and
this diminishes the heat generated during condensation, but there is no exact

compensation. If, therefore, the steam which enters the calorimetric appara-
tus is saturated steam of five atmospheres, we must impart to each unit of

weight of water of the temperature r, in order to generate it, 651 r heat units.

A part, q', of this heat goes to increase the living force of the molecules. A
second part, q", corresponds to the change of aggregation or disgregation work.
A third part, q'", is the equivalent of the outer work.

The last part, q'", can be taken equal to nearly 44 heat units, if we take for
the absolute density of saturated steam of one atmosphere the value

7,^-7,
theo-

retically determined by Clausius,* and if we neglect the very small difference
between the volume of water at T degrees and at zero.

On the other hand, the recent labors of Minary and Resalf enable us to de-
termine the weight of steam which will flow in five minutes from a boiler under
five atmospheres' pressure, through an orifice of 0.007 meter diameter, when
this orifice is at the end of a pipe of 0.15 meter diameter. This steam weight
is 10.6 kilograms.

Hence we can easily find, with the preceding value for the density, and
taking for the coefficient of contraction 0.44 (a value given by the experimenter)
that the velocity of efflux is about 600 meters per second, and hence that every
kilogram of steam which issued in Hirn's experiment carried with it a living
force of about 180,000 meter-kilograms, equivalent to about 400 heat units.
We see, therefore, that even without outer work there is more than compensa-
tion, and that the disappearance of the living force is more than sufficient to

explain the phenomena observed by Him. Even a considerable error in the
coefficient of contraction would not affect the conclusion.

It is worth remarking that the living force which the steam possesses when
it leaves the orifice, is itself a transformation of the heat which the boiler pos-

* The theoretical values of Clausius (Abhandlungen, Bd. i., p. 72) are confirmed by the ex-
periments of Fairbairn and Tate. (Proc. of the Royal Soc., 1860, in Phil. Mag., 4 ser. vol. xxi.,
p. 230, and Comptes Rendus, vol. Hi., p. 706.)

t Annales des mines, vol. xviii., p. 653.
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sessed, and that hence the steam, at the moment it leaves the orifice, can no
longer be in the same condition it had when in the boiler at a distance from
the orifice.

NOTE 4. (Page 16.)

UPON" A THEOREM BY CORIOLIS.

The following theorem, given by Coriolis in his classic work upon the cal-
culation of the delivery of engines,* is, in a certain sense, an illustration of the
general law which we have sought to enunciate :

"The sum of the living forces of a system of molecules, whatever may be the kind of motion,
may be divided into three parts :

"
1. The living force of all the molecules when concentrated at the center of gravity of the

system."
2. The sum of the living forces of these molecules, when we assume that they constitute, in

the same relative positions in which they occur, a body of invariable form to which is imparted
the mean motion about the center of gravity.

"3. The sum of the living forces of the molecules, by reason of the relative velocities which
they possess with reference to co-ordinate planes which partake of the mean motion of rotation.

1
'

In the equation of works we have usually to take account only of the two
first portions, that is, the living forces due to the rectilinear and rotary motion
of the body. The third portion is usually submitted to calculation only when
the vibrations are sensible or apparent, as in the case of sound vibrations.

The fundamental idea of the new theory is to seek this third part in the
heat.

It is, moreover, evident that the action of mechanical forces in most cases
will give rise to all three kinds of living forces, and that we have just as little

reason to neglect the changes of the living force of heat as of the outwardly
visible living forces. We may even add that the transformation of the out-

wardly visible living forces into the living force of heat takes place incessantly
in nature before our eyes, and that it is chiefly in this way that the vibrations
of a system about a stable position of equilibrium are extinguished.

NOTE 5. (Page 17.)

1HE LAW OF EXPANSION OF GASES.

The law of expansion of gases was held by all physicists, down to Magnus
and Regnault, as exact. It is generally known as the law of Gay-Lussac.

It is, in my opinion, more correct to call it the law of Charles. The essen-

tial part of this law, viz., the approximate agreement of the expansion of

different gases, and hence the proportionality of all these expansions to the

temperature, as determined by a thermometer, which is itself formed by a gas,
was proved by Charles in the simplest manner.

The reservoir of a kind of mercury barometer was filled with gas. The

apparatus was exposed successively to the action of two different temperatures
(the ordinary temperature of exterior objects and that of boiling water), and
the rise of the mercury in the barometer tube observed. Charles found that

this rise for air, oxygen, nitrogen, hydrogen, and carbonic acid gas was the

same, and no more was needed to establish the fact that the coefficient of

expansion of these different gases is nearly the same, even if, in this manner,
the exact value of the common coefficient "could not be determined.!

*
Coriolis, Traite de la mecanique des corps solides et du calcul de Teffet des machines, 3d

t The experiments of Charles are mentioned by Gay-Lussac himself in his article upon the

expansion of gases, Ann. de Chim., vol. xliii., p. 157.
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Gay-Lussac has added to this simply a determination of the coefficient of

expansion, which was inexact by about -^th.
We may even say that the advance of science was in some degree retarded,

in that he regarded as an absolute law that which was only an approximate
expression.

According to Charles, the compound gases do not expand as much as those

just named. It is not known exactly to what gases Charles thus refers, but it

is probable to the same as those experimented upon by Gay-Lussac, viz.,

sulphurous acid and hydrochloric acid gas, for which he gave the same coeffi-

cient as for air.

We know now that the coefficient of expansion for sulphurous acid is ^gth
greater than for air. In this important point, then, Charles was more accurate
than Gay-Lussac, and however imperfect his method of experimenting may be
considered, it is not op*en to the charge of not being able to distinguish dif-

ferences in the quantity to be measured of ^-th.

NOTE 6. (Page 18.)

THE DISGREGATION WORK IN CRYSTALS AND SOME LIQUIDS.

In liquids and non-crystalline solids it is possible that for a simple rise of

temperature only, when there is no change of volume, there is no disgregation
work.

It is, without doubt, essentially different for crystalline solids, at least for
those belonging to the tesseral system The unequal expansion in different

directions, caused in these bodies by the action of heat, does not allow the
assumption that, when the expansion is prevented by a sufficient increase of

pressure, there is no change in the arrangement of the molecules.
If, for example, a crystal of kalkspar is heated, and at the same time com-

pressed in such manner that its volume remains constant, the crystal tends to

elongate in the direction of its principal axis, and to contract in a direction

perpendicular to this. It is certain that even if there is no change of volume
there is a change of shape, and hence disgregation work. Even if, by a suit-
able distribution of pressure and tension upon the surface, not only change of
volume but also of shape is prevented, still there may be a change in the rela-
tive direction of the molecules, if not in the relative position of the center of
gravity.

This, at least, seems extremely probable from the change of optical proper-
ties in different directions, caused by the action of heat upon the crystal, and
which does not seem accounted for by simple inequality of expansions.

It is to be expected that, even in a liquid, every change of temperature
must be accompanied by a perceptible disgregation work, even when the volume
does not change, when the liquid is near the point of solidification, and when,
therefore, the lawless arrangement of molecules, characteristic of the liquid
condition, tends toward a regular arrangement, if not of the entire mass, at
least of its different parts.
We see, thus, how careful we must be before we assume that the disgrega-

tion work, under given conditions, is zero. The invariability of the mean
distances of the molecules is by no means a guaranty of this.

Thus, for example, water cooled below the temperature corresponding to
its maximum density, has, for the same pressure, the same volume at two
different temperatures four degrees apart. The outer work between these two
conditions is zero, but nothing justifies us in assuming the disgregation work
as zero also. We can scarcely comprehend the anomaly of maximum density
otherwise than by assuming that the relative direction of the molecules ap-
proaches law and definite arrangement the more the freezing-point is approached,and that, when for two different temperatures the volume is the same, but the
arrangement of molecules different, the transition from the one temperature to
the other is accompanied by perceptible disgregation work.
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NOTE 7. (Page 18.)

AN INCORRECT DETERMINATION OF THE MECHANICAL EQUIVALENT
OF HEAT.

To several physicists, among them Kupffer and Masson, the following con-
siderations have appeared permissible, and the values thus obtained for the
mechanical equivalent do not appear to deviate much from the true value.

Let P be a tension, which, when applied uniformly to the surface of the
unit of volume of a body, will cause an expansion, A? equal to that caused by
a rise of temperature of 1 degree.

The work of this force which must be applied in order to cause the exten-
sion required is PA.

On the other hand, we must impart to the body, in order to make it expand
through the same distance, a quantity of heat equal to the product of the

specific heat for constant pressure, cr , into the weight of the unit of volume,
that is, the density D.

If the work PA were the mechanical equivalent of this amount of heat,
we should have the relation

PA = Jc,D,

which, according to Kupffer, is confirmed by experiment.*
But little attention is required to comprehend in what respect this method

of treatment is defective. The heat, c
f.D, consists of three parts : 1, The

increase in the sum of the living forces ; 2, the mechanical equivalent of the

disgregation work ; 3, the equivalent of the outer work.
This third part would be zero if the expansion took place in a vacuum.

Under ordinary conditions it takes place under atmospheric pressure, and hence
this third part can be neglected as very small compared to the second.

It is essentially different with the first part. This we cannot neglect with-
out implicitly assuming that the specific heat for constant volume is insig-
nificant in comparison to that for constant pressure. We cannot, therefore,

regard the disgregation work as the mechanical equivalent of the entire quan-
tity cr.D. It is, moreover, very doubtful whether the expression PA is the

precise value of the disgregation work, for PA is the work of the forces which,
by their mechanical action, cause an expansion of A, under the assumption
that the temperature of the body remains constant. If, also, there is nowhere a

development of perceptible velocity, it is only under similar circumstances the

equivalent of the disgregation work. Nothing justifies us in putting this work

equal to that in the body, when, by the action of heat, it expands under change
of temperature. These two works are, indeed, of the same character, and

change in the same way, when we pass from one body to another, but it is at

least doubtful that they are identical.

All that we can say generally, is, that the resistance to tension is a certain

indication of the intensity of the molecular forces, and that a considerable

part of the heat which is imparted to a body is employed in overcoming these

forces. The specific heat and the resistance to tension, or the coefficient of

elasticity which measures it, change in the same way, for bodies of the same
kind, as metals.

The same rather superficial law may be extended also to the latent heat of

liquefaction, and thus it happens that Person has been led to find a numerical

* This is about the way in which Masson gives the view of Kupffer in his Treatise "Ueber
die Beziehung der phvsikalischen Eigenschaften der Korper" (Ann. de China, et de Phys.,
3 serie, vol. hii., p. 256). It is probable that this interpretation of the idea of the learned
Director of the Physical Observatory at St. Petersburg is correct, but we cannot answer for it, as
in the original text, instead of the sharp and clear expression

"
work," we find always the

words " mechanical effect," which have no definite signification in the usual vocabulary of
mathematics. (Bulletin de la classe des sciences physiques et mathematiques de 1'Academic de
St. Petersbourg, vol. x., and Pogg. Annalen, vol. Ixxxvi., p. 310.)

5
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Telation between the coefficient of elasticity and the liquefaction heat of various

jnetals, which may be regarded as approximately indicated by experiment. It

is, however, impossible to deduce any such relation in strict accordance with

theory.

It is probable that the formula of Kupffer has about the same value as that

of Person, and that it is the approximate expression of a relation which theory
is incapable of deducing.

We have indeed not proved that this formula is false, but simply that it

cannot be deduced from any d 'priori considerations. If we consider the gen-
eral fact in the special sense that the coefficient of elasticity and the specific

heat changed together, it is just as allowable, and about as valuable, to seek

this relation by experiment, as to find any other relations by comparison with
other cases.

Certainly, such a comparison can have no such legitimate value as Kupffer
attributes to it. In order to give the weight P as a function of the coefficient

of elasticity, Kupffer uses an old formula of Poisson, which everyone now rec-

ognizes as inexact, and indeed, most probably, not similarly inexact for all

bodies. Hence, a factor which Kupffer regards in his calculations as constant,
varies for different metals, and since this change is not yet known for the

metals Kupffer has considered, it is not possible to introduce the necessary
corrections and subject the empirical value of his formula to rigid test.

NOTE 8. (Page 20.)

BODIES WHICH CONTRACT WHEN HEATED.

It is almost unnecessary to remark, that in such exceptional cases as the

melting of ice and change of volume
of^

water below 4, in which there is a
diminution of volume under the action of heat, the discussion is reversed.
We consider a period difring which the body expands while cooling, and hence

performs outer work L while giving up heat Q. During another period, let

the body, by the application of outer work L'
,
and while receiving heat Q', be

brought back to its original condition. If L' is less than L, we obtain an
outer work LL', for which there must be an equivalent absorption of heat

;

4$ must be greater than Q, and we have

L-L = J(Q- Q).

The case of bodies which, within certain limits of temperature, contract
under the action of heat, is well suited to direct attention to the views given
in the preceding note. If we limit the comparison of the outer work with that
heat which, in the one and the same transformation, is imparted or abstracted
from the body in order to change it from one condition to another, we are led
to the peculiar conclusion that the generation of heat, as well as its disappear-
ance, can give rise to work.

Nothing is more suited to make apparent how necessary it is to take into
account the work of the molecular forces. If. by some local disturbance, by
contact with a piece of ice, or even by a particle of dust, we cause a mass of
water at zero to crystallize, the molecular forces thus called into play by this
accidental disturbance of equilibrium place the molecules in those positions
which constitute a solid body, and the positive work during this process of

change has for its equivalent both the heat generated and the outer work per-
formed by expansion. If, inversely, we melt the ice, the heat imparted must
be the equivalent of the excess of the disgregation work over the outer. In

ordinary cases, on the other hand, the heat imparted during melting and with-
drawn during solidification is the equivalent of the sum, and not of the differ-
ence of the disgregation work and outer work.

If a strip of vulcanized rubber is elongated by tension, we have a rise of
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temperature, while the temperature of a metal wire, under the same circum-
stances, is lowered. This is due to the fact that heat expands the metal, but
icontracts the rubber. This is a point which Joule has completely cleared up.*

NOTE 9. (Page 20.)

UPON CALORIMETRIC MEASUREMENTS IN WHICH NO ACCOUNT HAS
BEEN TAKEN OF THE OUTER WORK.

The necessity of taking account, in all phenomena depending upon the
action of heat, of the outer work, would seem to justify the fear that a large
part of our calorimetric measurements are liable to be affected by a fundamen-
tal error, as they were made at a time when the principle of the mechanical

theory of heat was scarcely suspected. A little consideration, however, will

serve to show that such fear is groundless. Strictly speaking, we must un-

doubtedly admit that specific heat and latent heat depend always upon the
outer pressure under which bodies expand or change their aggregate condition.

But, under ordinary circumstances, the outer work is so small for solids and

liquids, that such dependence gives rise to a correction so slight that it is im-

perceptible even to the most sensitive methods of measurement.
For gases, the influence of such correction is so great that account has

always been taken of it, and it has always been held as indispensable to give,
for example, the pressure of a gas under which the specific heat has been de-

termined. Only in the case of vapors have errors been committed.

Every investigation upon the latent heat of vaporization, in which an outer
work is not performed upon the steam when condensing equal to that per-
formed by it during its formation, is essentially erroneous, and can give no
reliable result.

Regnault has, therefore, very properly, in his experiments upon the latent

heat of vaporization of water, maintained in all parts of his apparatus a uni-

form pressure. The new theory by no means invalidates the value of the
results obtained by this distinguished physicist, but it rather adds to their

weight, and uses them to attain new results. It does, however, deprive numer-
ous investigations, in which this precaution is neglected, of all claim to relia-

bility.

NOTE 10. (Page 21.)

THEORY OF THE CONSTITUTION OF GASES.

If we suppose, in a confined space, a large number of molecules separated
"by such intervals that their mutual actions may be neglected, and assume that

these molecules are at rest, it is evident that *they can exert no influence on
each other, and that a portion of these molecules can undergo any change of

state, without affecting in the least the condition of the others. Upon bodies

which confine the system, there can be no such action as pressure. Individual

molecules may indeed be so near the bounding body as to act upon it
; but, by

* Joule, Phil. Ma^., vol. xvi., p. 227, 1857; Ann. de Chim. et de Phys., vol. lii., p. 226;

Thomson, Phil. Mag., 1857, vol. viii., p. 504. See also Tyndall, Heat as a Mode of Motion, 2d

Ed., p. 115 ;
also Villari, Pogg. Ann., vol. cxliv., p. 274 ; Schmulewitsch, Vierteljahresschrift

der naturforsch. Gesellschaft in Zurich, Jahrgang xi., Heft 3, and Pogg. Ann., vol. cxliv.,

p. 280.

This property was first discovered by Gough. with non- vulcanized rubber, in 1806. Nicholson's
.Journ.. vol. xiii., p. 305; Gehlen's Journ., vol. ix., p. 217.

Later Reusch observed similar phenomena with <-utta-peicha. Pogg. Ann., vol. cxliv.,

p. 315.

Govi ascribes the heat ins under tension to numberless gas bubbles.
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reason of the assumption of the mean distance of the molecules apart, the'

number will be very small in comparison to the number of molecules which
must act together in order to cause the pressure of a liquid upon a solid or

upon another liquid.

Certainly, nothing can resemble less a gas than this incoherent collection,

which can hardly be called even a system. We have, nevertheless, seen in the

text that it is not easy to do without the assumption that in gases the distances

apart of the molecules is incomparably greater than for any other bodies. If,

however, we ascribe motion to these molecules, the state of tumgs is changed,
and the known properties of a perfect gas are necessary consequences of such
an assumption.

In consequence of their motion, the molecules will impinge upon each other-

and upon the bounding surface. In a short time there will be a mean condi-

tion, the chief properties of which can be easily recognized. By reason of the
size of the inter-molecular spaces, almost all the molecules must move at any
moment, as if influenced by no deviating forces ; that is, in straight lines, and
with a uniform velocity common to all the molecules in the final condition, but
different for different molecules. Those which accidentally approach each
other at any moment act upon each other, and mutually influence each other's

paths and velocities. But these changes last but a short time, after which the
molecules recede and return to the general conditions of the system. Individ-
ual molecules may also impinge centrally or obliquely ; but, since both the
masses and velocities of individual molecules are by hypothesis equal, the di-

rection of the velocities may be altered by impact, but not their amounts. We
see, therefore, that, in order to find the action which the system exerts upon.
the confining boundaries, we can assume as the actual condition one in which
all the molecules move incessantly in straight lines in all conceivable directions
without striking.

If the boundaries are perfectly elastic, every impinging molecule will be
thrown back, the direction of its motion changed, but its velocity unchanged,
so that the total condition of the system remains invariable. Let us assume
this condition as fulfilled, and seek'what force must be exerted upon a bound-
ary of given surface; what pressure, for example, must be applied, in order
to keep it immovable. This force must be capable of reversing the normal
component of the velocity of every molecule impinging in a given time, or,
what amounts to the same thing, of imparting a normal velocity, in the opposite
direction, of double the intensity of the component.

This must evidently be proportional to the uniform velocity of the mole-
cules and their masses. It must also be proportional to the number of molecules
impinging in a given time, that is, to the number of molecules in a unit of
volume, and, further, proportional a second time to the velocity ;

for the time
which any molecule requires to traverse the space between two boundaries is

inversely proportional to the velocity, and hence the number of impacts which
any molecule makes in a given time is proportional to the velocitv.

The pressure, therefore, which must be exerted is proportional to the mass
and number of molecules in the unit of volume, and to the square of the ve-

locity.
The proportionality between pressure and number of molecules is nothing

more than the proportionality between pressure and density expressed by
Mariotte's law.

The proportionality to the mags and square of the velocity is also easily
interpreted.

If we accept the usual views as to the nature of heat, we can regard the veloc-
ity of the molecules as an indication of the temperature of the gas, which changes
in the same decree as the temperature itself. We have thus a theoretical de-
finition of equality of temperature. We say that two gases possess the same
temperatures if, when united under the same pressure, they do not affect each
other s condition. If we assume that, for two different gases under the same
conditions, there are in equal volumes an equal number of molecules, then the
temperatures are alike when the product of the mass of a molecule by the
square of the velocity is the same in both.
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The equality of the living force of the molecules includes, therefore, the

'equality of temperature.
In other words we may say, that the living force of the molecules is a func-

tion of the temperature, which is the same for all gases. The proportionality
of the pressure with the living force indicates, therefore, that in all gases the
relation between pressure and temperature is the same. From this identity,

together with Mariotte's law, we easily deduce the agreement in coefficient of

expansion. If, as is customary, we measure the temperature by the air-ther-

mometer, we know that, if the temperature indicated is t, and the coefficient of

expansion is a, the pressure for constant volume is proportional to the expres-
sion

-
-i- t or 273 + t. ^

The living force of the molecules is, therefore, proportional to the tem-
perature measured by a thermometer for which the zero point is at 273 C.
At this temperature of 273 the living force of the molecules is zero, or we
may say that at this temperature the gas contains no more heat the absolute
;zerb of temperature is then reached, and the gas ceases to be a gas, and becomes
that incoherent mass of atoms, independent and immovable, which we have just
spoken of.

If, finally, we assume, with all chemists, that, under the same pressure, all

simple gases contain in equal volumes the same number of molecules, the

changes of temperature are proportional to the changes in the living force of
each molecule. We see then, that in order to heat equal volumes of different

gases the same number of degrees, the same amount of heat is necessary. This
conclusion is direct when rise of temperature occurs without change of volume

;

it follows, also, when there is a change of volume, when we consider the for-

mulae on page 23.

Thus, the characteristic properties of perfect gases find a simple and natural

explanation. The idea of a "perfect gas" is itself sharply defined, and it is

easy to conceive of imperfect gases, which do not strictly follow Mariotte's law,
whose coefficient of expansion varies with the pressure, and which, for equal
volumes, do not possess the same heat capacity, such as air and oxygen. In
the system of individual molecules moving rapidly in all directions, which we
have considered, we have assumed that at any given moment the number of

molecules, whose motion is not rectilinear and uniform, is inconsiderable in

comparison with those whose motion satisfies these two conditions
; or, what

amounts to the same thing, that for each molecule the duration of the period
of disturbance is vanishingly small compared to the period in which the motion
is uniform. If, now, the ratio of these two periods, while indeed still very
small, is not vanishingly so, the preceding considerations do not hold strictly;
and our conclusions no longer represent with precision the properties of the

system, but are more or less approximate expressions of these properties. It

is also evident that the more we diminish the distances apart of the molecules,
that is, the more we condense the gas, the less reason we have to presume per-

fectly uniform motions, and the more, therefore, is the deviation from the con-

dition of a perfect gas. This perfect condition is, in fact, an ideal state toward
which gases approach as their state of rarefaction increases, but which they
can never exactly attain.*

* The theory given in this note is by no means new. It was indicated by Daniel Bernoulli in

his Hydrodynamics, in 1T38.
After being forgotten by the world it was revived again, about 1822, by Herapath. Only in

recent times has it received its present shape by Joule. KrOnig. and Clausing. Clausius has
treated it in the most general manner, and added to its completeness by takinsr into account, in

addition to the rectilinear motion of the molecules, tlieir inner motions, motions of rotation, and
the probable motions of imponderable rluid>. In a presentation designed to be elementary in

diameter, no account can be taken of such a treatment.
It may suffice to refer for further information to the original treatises of Joule, KrOnig, and

Clausins. Joule, Phil. Mag. 4 Ser., vol. xiv., p. 211 : Kronig, Pogg. Ann. vol. xcix., p. 315 ;

Clausius, Pogg. Ann. vol. c,, p. 353 ;
and Abhandlungen, vol. ii., p. 229.
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NOTE 11. (Page 23.)

HOW GASES AND VAPORS PERFORM OUTER WORK.

The theory given in Note 10 does not deduce the pressure of gases from?
the direct action of a repulsive force, but refers it to incessant impacts. It is-

thus possible to conceive how a change of volume can be accompanied by no-

inner work, although all gases seem to possess the tendency to expand and
to resist compression. When the volume of a gas changes, the number of mole-
cules in a given space changes also, and when a change of temperature occurs,
the velocity of the molecules changes. But so long as the mean interval

between the molecules does not exceed certain limits, their mutual actions are

imperceptible, as well after as before the change of volume, and hence require
no work. The mechanism of the relation which exists between outer work
and heat absorbed or generated, is not hard to conceive. When we compress
a gas, we apply a force to a movable piston which is greater than that neces-

sary to reverse all the normal components of all the molecules which in a given
time impinge upon the piston.

The velocity of all the molecules is thus directly or indirectly increased,
and the work of the outer pressure is equivalent to the increase in the sum of"

the living forces of the molecules, that is, to the heat generated.
The reverse is the case for expansion. The molecules impart to the piston,

upon which there is no sufficient force, according to the laws of impact, a

portion of their living force, and this impartation of living force is, from our
standpoint, an absorption of heat or a production of work.

Similar considerations apply to vapors and their work in the engines they
operate. There is thus an imparting of living force when the piston is raised,
and a reappearance of living force when it sinks. If work is performed by
the engine, it is sufficient that there is no equality in the two cases. The
living force which fails to reappear is the equivalent of the work done. Thus
disappears the apparent contradiction in the fact that a system may produce*
work, while the inner works are zero.

NOTE 12. (Page 24.)

THE VALUE OF THE MECHANICAL EQUIVALENT OF HEAT ASi

GIVEN BY CARBONIC ACID.

In determining the mechanical equivalent of heat from the properties of
carbonic acid, the specific heat at constant pressure was taken at 0.2163, as
given by Regnault in April, 1853. According as we take for the ratio of the
two specific heats, 1.2867 as given by Masson, or 1.3382, given by Dulong, we
obtain 402 or 355. But the number 0.2163 expresses only the mean specific
heat between and 210 C., and this mean specific heat is not the exact value
for a given temperature.

From the experiments of Regnault (given in Vol. 26 of the Memoires de
1'Academic des Sciences), carbonic acid has at the temperatures and 100 the
specific heat 0.1870 and 0.2645. If we insert these values in the formulae oa
page 23, we have for J"the values

410 and 357, or 465 and 406,
ri

according as we take for - the value given by Masson or by Dulong.
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NOTE 13. (Page 25.)

PRINCIPLE OF THE METHOD OF INVESTIGATION OF THOMSON ANI>

JOULE OF THE HEAT PHENOMENA IN GASES IN MOTION.

The method of investigation used by William Thomson and Joule consists

in allowing a stream of gas to pass through a porous diaphragm, from which
it issues with considerably reduced pressure. The friction absorbs nearly all

the velocity due to the expansion. A sensitive thermometer gives the tem-

perature of the gas before and after efflux.

It was so arranged for air, carbonic acid, and hydrogen, that simple expan-
sion, even when accompanied by no outer work, caused a slight change of

temperature, nearly proportional to the pressure, and which depended on the

initial temperature. Thus has been determined the relation between the inner
work and the outer, when a gas expands under pressure. If we assume the

expansion as very small, and if the temperature is nearly 15, the ratio of

these values for air is -

4-JT; for carbonic acid, ^ ;
for hydrogen, completely im-

perceptible.
The formula of page 23, which gives the mechanical equivalent of heat

from the work performed by slight expansion and the heat absorbed, is there-

fore applicable without error to hydrogen. For air there is a slight error,

which, however, is less than the error which may arise from the inaccuracy of
the value for the specific heat for constant volume. For carbonic acid, finally,,

the left side of the equation must be increased by
-

7-Vtli.*

It is certainly too early to seek in this manner to obtain a satisfactory agree-
ment in the values of the mechanical equivalent of heat for various gases.

The density, the coefficient of expansion, the specific heat for constant volume,
are very exactly known from Regnault's experiments, for air, hydrogen, and
carbonic acid. But there still remains considerable uncertainty in the values

attributed to the specific heats for constant volume. This evades direct deter-

mination, and must be deduced from observations upon the velocity of sound,
or from heat phenomena which are caused by changes of volume; and, in the

present state of such experiments, we can scarcely assume that, except in the

case of air, it has been determined with accuracy. It follows, moreover, from
the formula and the known values of Cp and Cr ,

that every error which is

made in the value of Cv,
in the case of air, causes a double error in the

resulting value of J, and, in the case of carbonic acid, a threefold error, f

* In a treatise especially intended to diminish the difference between the values of the

mechanical equivalent as given by the formula, Baumgartner has taken the ratio of the inner

to the outer work, according to Thomson and Joule, equal to -l - for hydrogen, -
1 9

for air, and

-

3
-l

2
- for carbonic acid.

These values are certainly given by Thomson and Joule, but they relate to the case in

which the pressure falls from 4.7 atmospheres to one atmosphere. It is a great error to apply
them as corrections to a formula deduced for such a slight change of pressure as that which

accompanies a change of volume of the amount of the coefficient of expansion. (Sitzungsbe-
richte der K. K. Akademie der Wissenschaften, Vienna, vol. xxxviii., p. 344.)

t If we assume the density of the air about To\^, its specific heat under constant pressure

to be known, its coefficient of expansion at about ^-L-,
and the ratio of the specific heats at about

_1_, we find in the value of J deduced from the formula an error of -

6
4- -, or about 8 units.

"

'For carbonic acid the difference m the value of C". given by the experiments of Dulong and

Masson, is so great that no dependence can be placed upon calculation. We see, therefore, that

it is not yet time to discuss this correction, and. all that we can say with safety is, that the coin-

cidence of the results for air and hydrogen renders it certain that the value of the equivalent
must lie between 420 and 430.
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NOTE 14. (Page 32.)

UPON THE CONDENSATION OF STEAM IN EXPANDING.

The condensation of saturated steam during expansion was shown on theo-

retical grounds by Rankine and Clausius independently in 1850. Theory gives
a necessary relation between the latent heat of vaporization of water, its spe-
cific heat, and the amount of heat which must be imparted to the unit of weight
of steam, when simultaneously heated and compressed, so that it shall remain
saturated. Since all the quantities which enter the equation, with the excep-
tion of the third, are given by Regnault's experiments, this may be found, and
in this way it has been found to be negative. We must, therefore, abstract

heat from steam which is compressed and heated, in order to keep it saturated
;

and, on the other hand, heat must be imparted to steam which expands and cools,
in order to keep it from condensing.

When the expansion occurs without addition of heat from without, all the
steam cannot therefore remain in the pure saturated state, and in order that a

part of it may remain saturated, another part must condense, and thus furnish
the necessary heat.

NOTE 15. (Page 34).

THE REGENERATOR IN HOT-AIR ENGINES.

It may appear as if the same reasons which cause the heat quantity q' to be
lost to the engine, also contradicted the possibility of the unlimited usefulness
of the quantity e p (t\ t ft ).

In fact, we can scarcely see any other way of reducing the temperature from
<! to t

{} ,
than by contact with a cold body, which receives heat as the gas cools,

but which, at the end, has the same temperature 1 as the gas. Under such
circumstances, indeed, the quantity of heat c,,(t 1 ) would be contained in a
body of the temperature ,

and could not therefore be used for heating a new
charge of gas, so that it would also be lost as well as the heat q'. This diffi-

culty has been met by Stirling in a very ingenious manner. The gas is cooled
in the engine from , to t , by passing through a porous conducting body, such
as a net-work of wires, to the different layers of which it imparts its heat. If
this body is at first at the temperature t , its different layers will be raised by
contact with the departing gas to some temperature higher than t n ,

but some-
what less than t lt except the last layer, which, if the body has sufficient thick-
ness, will have the temperature t . When, then, a second charge of gas of
the temperature t n enters, it will be gradually heated by contact with the suc-
cessive layers, and will enter the cylinder with a higher temperature than t ,

so that in order to raise this charge up to t
l
will require less heat than the first

charge.
After this charge has acted in the engine, and passes out, it finds all the

layers, with the exception of the last, at a higher temperature than t Q , and will
raise them all to a higher temperature than the first did. Thus, a third charge
will enter the cylinder hotter than the second, and upon issuing, will leave the
layers still hotter than the second did, and the temperature of the first layer
still nearer therefore the temperature t l of the issuing charge. The amount
of heat which must be imparted bv the fire in order to raise each successive
charge of air from t a to *,, will decrease.

Theoretically, the engine approaches constantly the condition in the text,
in which the heat c v (^ t H ) is constantly given up by the air to the regenera-
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tor, and then given back by tbe latter to tbe fresh charge, thus remaining
always in the engine.

In practice, a certain fraction of this heat must be lost and made good by
the fire at every stroke. Experiment shows that the heat of this fraction may
be less than jfoth.

The porous body which is thus used is called the "regenerator." It has
been constructed in various ways. A system of glass tubes has been used, also

metal wires, and wire net-work. Glass and similar substances are too bad
conductors, and answer the purpose very imperfectly. Metal wires and net-

work are better, but they are quickly oxidized by the action of the hot air.

This purely practical difficulty is one of the chief hindrances to the extended

Application of the hot-air engine.

NOTE 16. (Page 35.)

DETERMINATION OF THE EFFICIENCY OF THE EEICSSON'S ENGINE
AND THE ENGINE WITHOUT KEGENEEATOE.

Y1

Let us take as an example an Ericsson hot-air engine. In this the air is

first heated under constant pressure, then allowed to expand and cool, then still

further cooled under constant pressure, and finally by compression brought back
to its original condition. As in Stirling's engine, we can represent these succes-

sive operations graphically. Let v be the volume v a of the unit of weight of

.air, of the temperature t
;
and pressure p a . Thus T is the pressure. The

air is first heated under this constant pressure p , from the temperature t to

the temperature t lt which re-

quires the amount of heat

c,, (ti t ).
Let DJ be the

volume flj at the end of this

operation.
Now the air expands from

the volume t^ to Ov^ = 8 ,

while the temperature t re-

mains unchanged. The or-

dinates to the hyperbola
Tl T), give at every instant

of expansion the pressure of

the air. Let the final press-
ure be p.; . Next, the air is

cooled under this constant

pressure p 2 ,
until the tem-

perature is again t Q . It is

finally compressed, while the

temperature remains un-

changed, till the pressure is

again p (t . The hyperbola T T gives the pressure at any point during the

-compression. The area Tn T T^ TQ is evidently the geometrical representa-
tion of the outer work. We can easily find this by prolonging the lines 7\ T
to intersections R and 8 with the axis of T, and finding the difference of the

hyperbolic areas R 8 T, Z\ and R S T Tn . We thus find

Area T - (v,
-

<D Q)p log nat -
.

The heat utilized is therefore equal to the quotient of this expression when
divided by the mechanical equivalent of heat. As to the total heat imparted
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and the heat not utilized we have, when we denote by q the heat imparted

during the second operation, and by q' that abstracted during the fourth,

cr (ti t ) + q

We can, therefore, just as in Stirling's engine, by means of a regenerator, keep
the heat c,(^ t ) in the engine.

Finally, the amounts of heat q and q
1

are the heat equivalents of the work

represented by the hyperbolic areas ,
T

}
T

}
v 2 and T T 3 . These are

Po Vi log nat ,
and pQ V log nat .

The ratio of the useful work to the total is hence

or again 1 + at,

Pi
le

Let us consider, finally, a third kind of engine, which, indeed, is not prac-
tically realized, but which is theoretically the most perfect, since it does not

require a regenerator. The air first expands, while its temperature is kept
constantly Tt by the addition of heat. The hyperbolic arc T\ Tl gives the re-

lation between pressure and
volume during the expan-
sion.

Let the initial pressure be
and the final p 2 . We now

let the air still further ex-

pand, but without adding
or abstracting heat, so that
the temperature gradually
sinks to t ,

and the press-
ure varies as the ordinates to

the curve T
} T , which must

approach the axis of x more
rapidly than 7\ Z7

,. Let p.,
be the final pressure, and t

the corresponding tempera-
ture. In the third period
the air is compressed, while,
at the same time, heat is ab-
stracted in such a manner

that the temperature is kept constant, so that the hyperbolic arc T T gives
the relation between pressure and volume. This compression is carried up to
the point where the pressure is p n . Finally, the air is still further compressed,
but without imparting or abstracting heat, until the pressure is again p lt and
the temperature t^.
We see at once the analogy with the preceding cases. In the first operation

the heat imparted is

Fio. 6.

and in the third, that abstracted is

log nat ,

jPo log nat ^
J Ps
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Moreover, when a is the coefficient of expansion, we have, for the relation be-
tween pressure and temperature in the second and fourth periods,*

and

Hence, =!:, or I = >

.

P* Po P 2 Pt

We have, therefore, for the ratio of the heat utilized to the total expenditure
of heat

1 +

NOTE 17. (Page 36.)

HOT-AIE ENGINES IN WHICH THE TEMPEBATUBE FALLS TO THE
ABSOLUTE ZEKO OF TEMPEBATUBE.

It follows from the general formula that if it were possible, in a hot-air

engine which satisfies the above conditions, to reduce the temperature down
to the absolute zero, the efficiency would be unity. It is not difficult to see
the reason. In Stirling's engine, for example, if the third operation viz., that
in which the gas is compressed under withdrawal of heat takes place under
the temperature of absolute zero, the gas possesses at this temperature no

pressure. No work, therefore, is necessary to compress it, and the total work
performed in the second period will be disposable. In Ericsson's engine the gas,
in order to have, at a temperature indefinitely near the absolute zero, a notice-

able pressure, must have an indefinitely small volume. The work in the fourth

operation will be infinitely small, and we have at disposal the total work in the
second period. In the engine, finally, without regenerator, if the third opera-
tion, as in Stirling's engine, occurs at the temperature of absolute zero, it re-

quires also no expenditure of mechanical work.
It may not be without profit to consider for a moment how it can be possible

that, at the temperature of absolute zero, a gas can be compressed without

requiring work to compress it.

Let us consider a system of molecules which are in absolute rest, and so far

distant from each other that their mutual actions can be disregarded. If, now,
this system is compressed by means of a piston, the piston will impart a cer-

tain velocity to the molecules which it meets
; but, since by hypothesis the tem-

perature is kept at absolute zero, these velocities remain infinitely small. We
require upon the piston, therefore, only a force which imparts to a finite num-
ber of molecules in a finite time an infinitely small velocity, that is, an infinitely
small force.

* This is the law of " adiabatic
"
expansion or " Poisson's law." See Poisson, Traite" de Me-

canique, vol. v., chap. 4 ; Weisbach, vol. ii., art. 37 ; also, page 163, chap, v., of the present
volume.
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NOTE 18. (Page 37.)

THE NECESSARY TENDENCY OF HEAT TO PASS FEOM A WARMER TO
A COLDER BODY.

In a system composed only of a perfect and simple gas, the tendency of

heat to pass from a warmer to a colder body is a necessary consequence of the

laws of impact of elastic bodies. We have seen, in a preceding note (No. 10),

that in such bodies the temperature is proportional to the living fojce of the

individual molecules, when this temperature is reckoned from the absolute

zero, that is, from 273 C. It is at once evident, that when different perfect

gases unite, those molecules which possess the greatest living force will give
up by impact a part of their living force to those which have less

; or, in other

words, heat is always and of necessity imparted by the molecules of the warmer

gas to those of the colder.

When, therefore, we say that in such systems, when subjected to any cycle
of changes in which the final and initial conditions are the same, heat can in

DO case pass from a cold to a warmer body, we simply express a truth as clearly

proven as the impossibility of perpetual motion.
This hardly holds for other cases. But we may, however, presume that

the general laws of heat, equilibrium, and motion, are nothing more than pure
mechanical principles, and although we choose a gas as the subject of com-
parison, we may still thus form some idea as to what properly constitutes

equilibrium and difference of temperature for other bodies. If a solid or liquid
body is of equal temperature with a gas, the molecules must have such a state
of motion that, so long as the center of gravity of the body is not changed, the

gas molecules which come in contact with the body neither receive nor part
with living force. It follows, then, that if two solid bodies are in temperature
equilibrium with the same gas, their temperature will not alter, i. e. t the
motions of their molecules will not change, when they are brought into direct
contact with each other. That which holds for this case, holds good also
when the ether, upon which all radiation phenomena depend, is the medium of
communication.

NOTE 19. (Page 40.)

THE INFLUENCE OF FRICTION IN THE ELECTRO-THERMAL INVESTI-
GATIONS OF FAVRE.

It is not necessary, in these experiments, to take account of the influence of
friction, but we compare directly the observed diminution of heat with the
useful work of the engine. The friction of the engine undoubtedly develops
lieat, and this heat acts in the calorimeter just as well as that developed by
the passage of the current. But the development of heat by friction means in

reality the performance of work and generation of living force, and this double
production produces an equivalent diminution of the heat developed in the
circuit. Thus the friction increases, on the one hand, the heat in the calori-

meter, and on the other, diminishes it by a precisely equal amount. We need
not, therefore, consider it at all. The only correction is due to the friction of
the rollers, outside of the calorimeter, by aid of which a weight is raised.

Experiment has confirmed the strict compensation of the two opposite effects
of friction. Whether the engine is at rest, or whether in action, without
raising the weight, we have always in the calorimeter the same amount of
heat.
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NOTE 20. (Page 42.)

THE DISCOVERY OF INDUCTION PHENOMENA.

The experiment referred to is given in the Annales de Chimie et de Phy-
sique, 2 Serie, vol. xxiv p. 47. An annular plate of copper was hung by a silk

thread in the plane of a circular frame, upon which was wound a number of
turns of insulated copper wire. A powerful iron magnet was placed with one
pole in the circle and the other without.

As soon as the current passed, the circle was attracted or repelled by the

electro-magnet ;
but the duration of the action, as in all similar induction

phenomena, was very short. This fact, probably, prevented Ampere from
feeling confidence in his experiment, for he failed to draw from it the least

conclusion, and nothing further is said of it till Faraday published his dis-

covery. This is the more surprising as Ampere, at the time when, in associa-
tion with de la Rive, he undertook this experiment (1822, at Genf), sought, in so

many words at least,
"

to produce an electric current by the action of another
current." These are his words ten years later.

NOTE 21. (Page 42.)

DEDUCTION OF THE LAWS OF INDUCTION" FROM THEORY.

We consider a battery consisting of any number of equal or unequal ele-

ments. According to the laws of Faraday, the amounts of chemical action

which are developed in the same time in the different elements are mutually
equivalent.

If, therefore, L', L", L'", etc., are the works of the chemical forces in the
different elements during the time required in each for the decomposition of

one equivalent of metal, the total amount of heat developed in the battery and

conductors, assumed at rest, is

L' + L'' + L"' H-----

J
or,

On the other hand, Joule's experiments have shown that the amount of

heat developed in a unit of time in a conductor, is proportional to the resistance

and to the square of the intensity of the current. Let R be the total resistance

of the conducting wire and battery, Y the intensity of current, then the heat

developed in a unit of time in the battery and conductors is proportional to

Y*R or to F2A, if 2A denotes the sum of the electro-motive forces, and,

according to Ohm's law

Y- 2A
'IT'

If 6 is the time necessary to decompose one equivalent of metal in each

element, the amount of heat which we have just represented by ZS L will be

proportional to JO 2 A, or, simply, to 2 A, when we take as unit that intensity
of current which corresponds to the decomposition of one equivalent of metal
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in the unit of time. We shall therefore have, when we have properly chosen
the unit of electro-motive force, ,

Let us now assume that the circuit as a whole, or that portions of it, under
the influence of outer points of magnetic attraction, or of the mutual action of

the various elements, moves. Then the work of the chemical forces is equiv-
alent to the heat developed, and to the work of the electro-magnetic or electro-

dynamic forces. We denote by Udt that part of this work which is performed
in the indefinitely small time dt.

Let, further, 'i be the corresponding intensity of the current, expressed in

the assumed unit. Then idt is the fraction of one equivalent of metal de-

composed in each element in the time dt. Finally, let Qdt be the total amount
of heat developed. Then, according to what has* been said,

Combining Ohm's law with Joule's, we see that Qdt is always proportional
to the product of idt by the sum of the electro-motive forces. It is impossible
that this sum should remain 2A. It is necessary that by the action of motion
it shall become less. In other words, to the living forces whose sum is repre-
sented by 2A, we have an opposing force F, which must satisfy the condition

We shall now investigate separately the two cases which we have distin-

guished.
As soon as the circuit (battery included) moves as a whole, and without

changing its shape, under the influence of outer force centers, the elementary
work Udt is proportional to the energy C of these force centers, to the intensity
i of the stream, and to a function, <p t which depends upon the relative position
of the circuit and these force centers at any given moment, upon the kind of
motion, and upon the distance vdt passed through by any element. We have,
therefore,

F

The factor v is the velocity at a given moment. We see therefore that the
electro-motive force of induction is proportional to the velocity of displacement,
and to the expression C(p, which, when multiplied by vdt, gives the elementary
work of the outer forces upon a circuit traversed by a current whose intensity
is unity.

When the elements of the circuit change, by reason of their mutual action,
we can represent the elementary work of their mutual actions by pifwdt, where
iff is a similar function to (p. Therefore,

F=.
J

The electro-motive force in this case is proportional to the intensity of the
stream and to the velocity of the relative motion.

In the general case of change of form, and total or partial displacement by
the influence of outer forces, the electro-motive force of induction is the sum
of the two preceding expressions.
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NOTE 22. (Page 42.)

THE COMPLETE TRANSFORMATION OF HEAT INTO WORK, BY THE
ELECTRO-MAGNETIC ENGINE.

Let us consider an electro-magnetic engine. We assume first that only the
immovable pieces are traversed by the current, and that the movable pieces are

permanent, magnets.* We assume such an engine, which, under the influence
of outer resistance, has attained its condition of normal activity, so that in
successive periods the rotation is identical. This condition does not include,
strictly speaking, uniformity of motion

; but, in a well-constructed machine, in
which the intensity of the mutual action of the magnets and wire spirals varies
from one moment of the rotation to another but little, the rotation can be con-
sidered as essentially uniform. If we call Fthe velocity of this rotation, the
electro-motive force of induction is KV, where K\s a constant coefficient which
depends upon the strength of the moving magnets and the arrangement of the
machine. Hence, if we denote by A the sum of the electro-motive forces, byR the resistance, and by i the intensity, we have

A-KV
R

The heat corresponding to the decomposition of one equivalent of metal in each
element is, therefore,

A-KV.
In rest, it would be A. The heat transformed into work is then KV. The

KV
ratio

j-
of these two quantities increases with the velocity, and approaches

unity as the electro-motive force A KV and the intensity approaches zero.

If the movable and immovable parts are traversed by the same current, the
electro-motive force of induction is expressed by Ji Vi, so that

A-hVi A
l = TT-.'

P
'

* = B + hV'

The amount of heat developed per unit of time in the circuit is, therefore,

^-Fr ) R, or
>

*-4

During the time 0, which is required for the decomposition of one equivalent
of metal in each element, the heat developed is

R R
ivA =-==., or, A n _

, _.,

since we assume (see preceding note) that iQ is equal to unity. In a state of

rest, this quantity is A. The heat transformed into work is then

A hV
hV

which approaches A tlie greater V becomes.

* Prominent has often constructed machines of this kind. The theory of those in which the
Immovable pieces are magnets and the movable ones wire coils, does not differ essentially from
-the present presentation.



30 NOTES AND ADDITIONS

NOTE 23. (Page 43.)

DETERMINATION OF THE MECHANICAL EQUIVALENT OF HEAT BY
ELECTEO-MAGNETS. (

JOULE. )

Joule caused, by means of a weight, a movable electro-magnet to turn

between the poles of an immovable electro-magnet of great power. He deter-

mined first the weight which was necessary in order to give to the apparatus
a constant velocity under the influence of friction, the current of both electro-

magnets being open. Then the conducting wire of the fixed electro-magnet
was connected with the battery, and that of the movable closed with a short

thick wire, and the weight determined which had to be added to maintain the
same constant velocity, as also the heat developed in the movable current.

This last part of the experiment appears to have left much to be desired.

The movable electro-magnet was placed in a glass vessel filled with water, and
the rise of temperature of this compound system directly observed, in order to

find the heat generated. Two constant sources of error must tend to cause
this determination to give too small values. First, it is extremely doubtful
whether there is simultaneously a common temperature in the water and the
soft iron and the insulated copper wire which form the movable system. More-
over, the long cylindrical shape of the system favors the cooling by radiation
and contact with the air. This last is also increased by the rotary motion.
Whatever care is taken in applying corrections, it can hardly be avoided

estimating too low the heat developed by the given expenditure of work, and
hence obtaining too large a value for the mechanical equivalent. It is, there-

fore, not surprising, that the value deduced from these experiments is about

-^th greater than the probable value. In some special experiments, the differ-

ence is even still greater.

NOTE 24. (Page 45.)

THE NATURE OF ELECTRO - MAGNETIC AND ELECTRO - DYNAMIC
FORCES.

It may be objected that we have made use in our lectures of the principle
of the impossibility of perpetual motion as an absolute truth. It may be said
that we apparently forget that there are natural forces, such as electro-mag-
netic and electro-dynamic, which do not depend alone upon mass and distance ;

that there are forces with whose help therefore we can cause in certain cases

rotary motion, the velocity of which may be indefinitely accelerated. We had
the intention of noticing this objection in the second lecture, when speaking of
the electro-magnetic engine ; but it appeared better, on consideration, to reserve
it for a note.

Let us consider first the electro-magnetic forces. Experiment shows that
magnets act upon currents, and inversely. All the effects of these actions can
be referred to a system of forces which affect the different elements of the
current, which depend not only upon the distances, but also upon certain angles,
and which do not act in the straight lines connecting the current elements and
the magnetic centers.

For a closed circuit of invariable form, this system of forces can be replaced
by an equivalent, which is apparently entirely different from the preceding,and consists of forces which satisfy the ordinary conditions of action of natural
forces. In this case, the difficulty disappears at once of itself. This substitu-
tion is however no longer possible when the circuit is not closed, or when, in
other words, the closed conductors traversed by the current consist of several
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independent portions. The motion of each of these parts depends solely upon
forces which act upon its various elements, and it is clear that this motion, under
certain circumstances, is one of rotation, which, without the influence of friction,
resistance of the air, and similar resistances, would be infinitely accelerated.

Ampere has repeatedly declared that here is an actual exception to the

general laws of mechanics. There is no treatise or presentation of any com-
pleteness, upon electro-magnetism, in which this is not illustrated. There is

even no elementary presentation in which the fact of indefinitely accelerated
rotation is not in various ways experimentally shown. But error is committed,
and any presentation must be very imperfect, if anything real is seen in this

apparent exception. We will consider one of the simplest experiments of this

character, which is to be found in all regular courses in Physics. A small
rectilinear horizontal current turns about a vertical axis through one of its

ends, under the action of a vertical magnet, situated in the prolongation of the
axis.

It requires but little attention to recognize that, at the end of each revolu-

tion, the velocity is somewhat greater than at first, at least as long as, under
the influence of the resistances, the maximum is not attained. Perpetual
motion seems therefore attained, since, at the end and at the beginning of each

revolution, the position of the current and the magnet is the same. But does
this coincidence of position include the condition that nothing is changed in

the total system of mutually interacting bodies ? This system consists not only
of the current and the movable magnet, but also of the battery which sets the
electric current in motion, and the conductors which unite the battery with the
two ends of the movable current. We will not speak of the special phenomena
which occur at the point of contact of movable and immovable parts. The
battery is the seat of incessant transformation of chemical actions. Is it there-
fore strange that such transformation should cause a continuous increase of the

velocity of rotation of a movable wire ? The actual mechanism by which the

phenomena are caused is unknown, but nothing necessitates us to admit that
the action of the real elementary forces does not follow the general laws of
action of natural forces. The assumed elementary forces, to which we are

necessarily led when we limit our consideration to the magnet and movable
current, are functions of the angle, and perpendicular to the plane of the mag-
net and current. These forces are not in the least analogous to the elementary
forces which govern the motions of the stars or the fall of bodies. They are

pure mathematical symbols, which represent not the reality, but only the last

stages to which, thus far, analysis of the phenomena has led us. We can say
the same of the electro-dynamic forces, and of the famous formula by which

Ampere has represented what he calls the opposite action of two current ele-

ments. This formula is an experimental law, which, in its unlimited fruitful-

ness, indeed, exhausts every possible variation of the phenomena ; but which

possesses no reality outside of the circle of phenomena for which it forms the

general bond. If, for example, it were possible to place two current elements,

independently of any voltaic circuit, in the same physical condition as when
they form an actual part of such a circuit, it proves nothing, that, in accord-
ance with Ampere's laws, they must approach or recede from each other. All

that we can assert is that these laws represent the phenomena in all cases open
to experiment. We can see in them only the translation of the secret mechan-
ism by which the phenomena are produced, and nothing prevents the admis-
sion that the actual forces involved in such mechanism are simple functions
of the distances, and act in the line connecting any two mutually acting points.

This was, moreover, Ampere's own view of his discoveries. If he seldom
referred to it, even sometimes apparently rejected it for the opposite, it was

only not to offend the scientific views of his contemporaries, who without it had

difficulty enough to appreciate his experiments, and who would have rejected
his hypotheses without proof. But, in the remarks which he has added to the

presentation of his theory (read at the official session of the Academy, April 8,

1822), he has expressed himself in a manner which allows no doubt as to his

convictions.
"

I remarked," he says,
"

1. That the attractions and repulsions, whose

6
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existence between portions of the conducting wires I had recognized, could not

arise in the same way as that of ordinary electricity, by reason of unequal dis-

tribution of the two fluids which mutually attract each other, and every part of

which, of the same kind, is repelled, since all the hitherto known properties of

the conducting wires show that neither the one nor the other of the two fluids

occurs in larger quantities, in a body which serves as conductor of an electrical

current, than when the same bodies are in their natural condition.*
"

2. I remarked that it is difficult not to conclude, therefore, that these attrac-

tions and repulsions are caused by the extremely rapid motion of the two elec-

tric fluids which traverse the conductor, by reason of almost instantaneous de-

composition and composition in opposite directions ;
a motion assumed by all

physicists since Volta, and which the theory given by this renowned savant of

the admirable instruments constructed by him, substantiates.

"3. If we ascribe the attractions and repulsions of the conducting wires to

this cause, we cannot avoid, if we explain the ordinary electrical phenomena in

the customary manner, admitting, further, that the motions of the two electrici-

ties in the wires are propagated in every direction in the neutral fluid formed

by this union, with which, necessarily, all space must be filled
;
so that when

the motions thus arising in the surrounding medium, caused by two small

current portions, mutually coincide, there is a tendency to approach, which is,

in fact, the case when we observe attraction ; and that when the two motions are

opposed, the two current portions tend to repel each other, as experiment also

shows.
"4. If we consider these attractions and repulsions as actually caused by these

reasons, the law that a small portion of the electric current can be replaced by
two others, which stand to it in the same relation as two forces to their result-

ant, is a necessary consequence of this assumption ;
since velocities are com-

posed like forces, and since the motion which the small portion of a current,

represented in intensity and direction by the resultant, imparts to the fluid

which fills space, is necessarily equal to that which is caused in the same fluid

by the union of the two small current portions which, in similar manner, are

represented by the two components.
"At the time when I was occupied by these ideas, Fresnel communicated

to me his elegant researches upon light, from which he deduced the laws which
determine all the conditions of optical phenomena."

I was surprised at the agreement between his views and those to which
I had been led by the consideration of electro-dynamic attractions and repul-
sions.

" He showed, from the accordance of these phenomena, that the ethereal
fluid of space, which cannot be regarded as the result of the union of the two
electricities, must be nearly incompressible, and must permeate all bodies, as

gas flows through a net, and that the motions caused in this fluid must be prop-
agated by a kind of friction, which enables the moving layers to set in motion
others. Hence it was natural to suppose that the flowing electric current in a

conducting wire caused the surrounding neutral fluid to take part in its motion,
and in part rubbed on it, so that a reaction of this fluid on the current was
caused. This reaction can cause no tendency to a displacement of the wire, so

long as the difference of velocities on all sides of the wire is the same. There
will be, however, a tendency to move the wire as soon as a second current ex-

ists, and, indeed, either toward the side on which this difference of velocity,
and hence of reaction, is less that is, the side upon which another electric cur-
rent tends to move the fluid in the same direction or toward the opposite side,

upon which this difference is greater, because there another electric current
exists which tends to move the fluid in the opposite direction, according as the
two mutually acting currents flow in the same, or in opposite directions.

" These views certainly make clear the attraction between similarly flowing,

* We know now that free electricity exists upon the surface of conductors through which a
current flows The distribution of this electricity is, however, such that it has no influence upon
the

electro-dynamic phenomena. Moreover, by the composition of forces, which are only func-
tions of the distances, we could never obtain resultants which are functions of the angles.
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and the repulsion between oppositely flowing currents, in accordance with ex-

periment ;
but I have not forgotten the fact that, as it is not possible to calcu-

late all the effects of the motion of fluids, they are too general to serve as the
foundation for a law whose correctness can be confirmed by direct and exact

experiment. This is the reason why I have confined myself to representing it

simply as a fact based upon observation."
Thus far Ampere. It is interesting to see how the renowned author of the

" Theorie des phenomenes electrodynamiques
"

recognized back of the problem
solved by him, another still deeper and more difficult, the solution of which he
left to the future.*

NOTE 25. (Page 46.)

ELECTROLYTIC CONVECTION.

When a current is made to perform decomposition of water, the chemical

heat-equivalent of the decomposition must be abstracted from the heat-equiv-
alent of the electrolytic process in the galvanic battery. Since, now, for the

decomposition of one equivalent of metal in each element of the battery, one

equivalent of water is decomposed in the voltameter, a decomposition of water
can only occur when the electrolytic processes in the battery develop more heat
than can be generated by the reunion of the oxyhydrogen gas developed in the
voltameter. About If Daniell's cells are necessary to give continuous decom-

position of water, f
With a single Daniell cell, therefore, no decomposition of water is possible.
The conditions are essentially different when both electrodes and the liquid

of the voltameter are completely saturated with hydrogen or with oxygen.
There is then a transmission of electricity from one electrode to another,

either through a non-electrolytic conduction of the water, or through a process
which Helmholtz calls electrolytic convection. This peculiar process consists in

the fact that, under such conditions, an electrolytic decomposition of the water
and a separation of hydrogen and oxygen can take place If thus, for example,
the voltameter is completely saturated with hydrogen, the oxygen combines im-

mediately, upon its generation, with the condensed hydrogen upon the surface
of the platinum. Then the negative work of the water decomposition is com-

pensated by the positive work of the water formation on the one electrode. In

this case the water decomposition is connected with no essential consumption
of heat. The condition of such a process is, therefore, that on one electrode

more, and upon the other correspondingly less, hydrogen occurs. The entire

process is thus limited to a different distribution of the gas contained in the

liquid.
Thus Helmholtz found that a current, which was able to decompose in 24

hours 60 milligrams of silver, could pass for a day, without diminution of its

strength, through such a voltameter saturated with hydrogen, without causing
more than a just appreciable polarization.

Especially under very low pressure, for more rapid development of hydrogen,
the hydrogen separated in gaseous state.

With such a voltameter, the pair of platinum plates being laden with hydro-

gen gas, a development of hydrogen may be caused by one Daniell's cell.

This phenomenon was earlier noticed by Poggendorff. It finds its explana-
tion in Helmholtz's experiments, and does not stand, as we see, in contradiction

to the principle of equivalence.

* The complete solution of the problem has been essayed, in recent times, by Helmholtz in his

paper "UeberdieBewegungsgleichungender Electricitaet fur ruhende, leitende KOrper," Crell's

Journal, vol. Ixxi., p. 57, and by Carl Neumann, in his work " Theorie der elektrischen Krafte,"
1873.

t Thomson On the Mechanical Theory of Electrolysis, Phil. Mag., 1851. He gives the quan-
tity at 1.318 Daniell cell?.



34 NOTES AXD ADDITIONS

NOTE 26. (Page 46.)

UPON THE POLARIZATION OF THE ELECTRODES.

We may, by the aid of the same mechanical consideration, deduce the neces-

sity of another phenomenon, viz. ,
that of the polarization of the electrodes.

When the circuit is completely metallic and remains immovable, the heat

developed in a given time represents the total work of the chemical forces.

When the circuit also contains a compound liquid, the heat developed in the

cells by the same amount of chemical action must be less, since it represents

only the excess of the positive work in the voltaic cells over the negative work
in the decomposing apparatus. It is, therefore, necessary that this beat shall

be less than that which is obtained when the liquid is replaced by a metallic

conductor of the same resistance. This can, however, only be the case when
the liquid changes the current intensity in some other manner than by the intro-

duction of its resistance.

Since, now, we know that there are no means of diminishing the inten-

sity of a current other than increasing the resistance of the conductor, or dimin-

ishing the electro-motive force, we see that the introduction of such a liquid
must have, as an immediate and necessary consequence, a diminution of the
total electro-motive force

;
that is, the development of an electro-motive

counter-force.

Upon this rests directly the polarization of the electrodes. In consequence
of this polarization, the current of a single cell of the ordinary battery reduces,

by the introduction of a voltameter with acid water, to zero, and hence the

decomposition of water under these circumstances is impossible. When the

liquid, during its decomposition by the action of one of the chemical elements

originated by the decomposition, is again formed upon the corresponding elec-

trode, the work of the chemical forces is actually zero, and we know that then
no polarization can occur.

NOTE 27. (Page 46.)

THE DECOMPOSITION OF ZINC IN DILUTE ACIDS.

It has been long observed that when commercial zinc is dissolved in acid

water, the generation of hydrogen does not take place at all points of the
metal, but at certain special points, which appear thus to be different from the
others.

De la Rive has observed that these points are fewer with distilled zinc, and
that the development of hydrogen takes place more slowly than for ordinary
zinc. Finally, Almeida has found, after he had succeeded in producing per-
fectly pure zinc by galvanic process, that this metal resisted perfectly the
action of dilute sulphuric acid. In both cases the pure zinc assumed the prop-
erties of the ordinary metal when some other metal was added, so that the
acid came in contact with a surface not homogeneous in character.

NOTE 28. (Page 47.)

UPON THE APPLICATION OF THE MEASUREMENT OF ELECTRO-MOTIVE
FORCES TO THERMO-CHEMICAL INVESTIGATIONS.

In the first part of Note 22 we have said that the heat developed in a given
time by a current in its total circuit, is proportional to the product of the inten-

sity and the sum of the electro-motive forces. If we consider different cir-
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cuits, each of which consists only of a single pair and metallic conductors, the
amounts of heat developed in a unit of time in these different circuits are to
each other as the products of the intensity and electro-motive forces of each
pair. Since, however, the intensity is proportional to the number (whole or

fractional) of metal equivalents decomposed, it follows that the heat developed
by the decomposition of one equivalent of metal in the different elements, is

directly as the electro-motive force itself. We can, therefore, replace calori-
metric measurements by measurements of the electro-motive forces, provided
that we know in a few cases, by direct experiment, for a certain amount of
heat developed, the corresponding electro-motive force.

The practical advantage of this method is apparent, but its application
involves some difficulties. In all those cases in which the chemical action
which causes the current is accompanied by a development of gas, the electro-

motive force varies with the intensity of the current. But, by local heat phe-
nomena occurring at those points at which the gas is generated, the case may
happen that the total heat production is constant. We cannot therefore speak,
without specifying further, of any proportionality between the two quantities.
Many observations made with care and skill, because no account was taken of
these circumstances, have lost the greater part of their value.

NOTE 29. (Page 48.)

THE INFLUENCE OF THE FRICTION OF THE BLOOD UPON THE
ANIMAL HEAT.

These views hold good in spite of the interior motions in organisms, and in

spite of the resistances which these encounter. There is no reason for taking
account of that part of these resistances due to the action of the outer forces

as, for example, gravity so long as there is no displacement of the center of

gravity of a body. The interior circulation of fluids, the movements of the
muscles resulting, the elastic reactions of the vessels, cannot give rise to any
work of gravity.

"

As to the inner resistances, these are the frictions which must develop just
as much heat as the muscular force, which maintains the motion of the liquids
in spite of friction, consumes. We see then how useless is the investigation
of the influence of the friction of the blood in the vessels upon the heat of

animals, which some physiologists have made. In order to overcome this fric-

tion, the action of the heart is necessary. In order to maintain this action, a

portion of the heat furnished by the interior combustion in the organism is

necessary. This loss of heat is, however, completely replaced by the heat gen-
erated by the friction of the blood in the total circulatory system. There is

thus only another distribution of the heat, while its total amount remains

unchanged.
So long as the animal remains at rest, we are perfectly justified in compar-

ing this total heat quantity with the sum of the chemical actions arising from

respiration.*

NOTE 30. (Page 49.)

UPON VEGETATION WHICH IS CARRIED ON WITHOUT THE INFLUENCE
OF LIGHT.

When the influence of light is withdrawn from the higher plants, two cases

may occur : either they may act like inanimate bodies, absorbing oxygen from

* See Him, Remarques sur le rfile reel que joue le frottement des muscles dans le phenomena
-de la calorification des etres vivants a sang chaud on a sang froid. Cosmos, 1862, vol. xxi.,

p. 257.
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the air and allowing the water and carbonic acid in the soil to filter through?,

their organism, then bleaching, and if often increasing in their dimensions,,

still the proportion of combustible substances seeming rather to diminish than

to increase ;
or a part of their tissues is destroyed by more or less rapid oxida-

tion, and experiences far-reaching changes, which nevertheless do not require
the action of any outer forces ;

these can be regarded as oxidations brought
about by the natural activity of the affinities, as, for example, in the germina-
tion of seed.

The question now arises whether the same is true of the lower plants, whose
life is almost entirely independent of the influence of light, or if not, in what

way is this influence replaced, and how is it possible that they grow, and that

their vegetation is accompanied by a negative work of the affinities.

In its present state, experimental physiology gives no reliable answer to

these questions. In order to answer them, we must first have exact compara-
tive analyses of lower plants which have completed their development, and we
must investigate chemically the materials by the use of which they have de-

veloped. In most cases these materials are decomposing organic bodies, and it.

is possible that the simple elements composing every organism, such as carbon,

hydrogen, oxygen, nitrogen, occur in these in the same proportions as in the

plants themselves, but in a different grouping.
The vegetable life can, therefore, only be a series of equivalent transforma-

tions, which demand no expenditure of work furnished by outer forces.

If, on the other hand, experiment shows that in the tissues of the lower

plants, without any action of light, carbon and hydrogen exist in relatively

higher proportions than in the organic substances upon which they live, we
may, it seems to me, account for it somewhat as follows. Almost always dur-

ing the development of such plants, the organic bodies which serve as nourish-
ment are decomposed, and pass gradually into a condition in which they tend
to follow the natural activity of the affinities. There is thus evidently a posi-
tive work of the affinities, and hence a production of heat. Is it not possible
that a part of this heat is made use of by the plant itself, and causes phenom-
ena which correspond to a negative work of the affinities? In this way the
action of the sun's rays may be replaced. It seems as if an observation of
Pasteur gave a certain probability to this view. Pasteur has shown that the
formation of acid in alcohol is brought about by the oxygen, which the count-
less organisms living upon the surface of the liquid condense. When these

plants are not present, the oxygen of the air is not capable of oxidizing the
alcohol

;
when the oxygen is absent, these plants cannot live.

The oxidation does not appear to proceed, however, from any special activity
of the plants, but seems only to depend upon their presence and the property
which they possess in a considerable degree of condensing gases upon the
surface. It is not therefore reasoning in a circle, when we assume that the
oxidation of the alcohol is a necessary condition for the acid-forming vegeta-
tion. It would even be quite natural to suppose that the heat developed by
this oxidation, and which is so considerable that no thermometer is required to
detect it, is in part made use of for the production of such phenomena of vege-
table life, which are opposed to the tendency of the affinities.

In the life processes of the barm fungus there seems something similar.
The sugar is decomposed during the fermentation into alcohol and carbonic acid.

The alcohol possesses a considerably less heat of combustion than the quantity
of sugar which is necessary for its formation. There is, therefore, work or

living force performed in this decomposition. A part of this living force is-

applied in calling forth the chemical processes which are involved in the forma-
tion of the cells of the fungus. Another part is directly transformed into heat.
On the one side we have, during fermentation, a process which corresponds to
the natural tendency of the affinities

;
on the other, the satisfaction of the

chemical force of attraction is the source of the positive work, upon which the

fungus draws in order to form new cells, or perform negative work.
We see, therefore, that by fermentation, likewise, cells are formed, plant

organisms increase, and not inconsiderable quantities of heat are developed
without any outer force, such as light, as the cause.*

* See A. Mayer, Pogg. Ann., vol. cxlii, p. 293.
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NOTE 31. (Page 49.)

THE ABSORPTION SPECTEUM OF CHLOROPHYLL, AND THE INFLUENCE
OF COLORED LIGHT UPON THE GROWTH OF PLANTS.

As long as the action of the sun's rays upon plants was not recognized as
the cause of those processes which continually go on in the growth of vegetation,
it must have seemed very puzzling from whence the enormous amounts of liv-

ing force could originate, which are accumulated ready for work, in plants.
Now we know that these processes, which are opposed to the natural tendency
of the chemical affinities (with very few exceptions, noticed in Note 30) take

place only under the action of light, and, indeed, of light upon those parts of

plants which contain chlorophyll.
The green chlorophyll-containing plants take from the air the carbon which

they contain. The carbonic acid continually absorbed by the leaves is decom-

posed by the action of light in those cells containing chlorophyll, and the super-
fluous oxygen is given out.

The oxygen developed by the plant may serve as a measure of the decom-

position, if it is really, as is generally assumed, completely, or under various
circumstances in equal degree, separated by the respiratory organs of the

plant.
Since this decomposition of the carbonic acid takes place only in the cells

containing chlorophyll, and in these only under the action of light, it is sug-

gestive to investigate the optical character of this coloring matter.
If we deprive a plant of its chlorophyll by treatment with water, alcohol,

or ether, and examine the spectrum of the light which passes through a fresh

concentrated solution, it appears that different parts of the sun's light are more
or less completely absorbed.

green yellow orange red

FIG. 7.

The extreme red remains completely unchanged,* but immediately behind

* The influence of chlorophyll upon the ultra red portion of the spectrum has not, so far as

I know, been investigated. It is to be desired that it may soon be done.
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Fraunhofer's line B, Fig. 7, we have a black absorption strip which Hagenbach
denotes by /. This strip is pretty sharply defined, and extends beyond line 0.

About at its middle there is a light portion. A second absorption strip (// of

Hagenbach) occurs nearly in the middle between C and D
;
a third (III), a

little behind D ;
a fourth (IV), in the green, just before E. These strips are,

however, much less dark than the first in the red.

From the middle, between F and G, on, almost the rest of the entire spec-
trum is uniformly absorbed. The Figure shows the absorption spectrum of

chlorophyll, and indicates the position of Fraunhofer's lines.

We see from the Figure that the yellow red rays, certain parts of the yellow,
and, in less degree, the green and the indigo blue and violet portions of the

spectrum, are almost completely cut off by the chlorophyll.
The absorption spectrum of the solid chlorophyll, as found in the leaf, agrees

in number and arrangement of the strips with that of the solution,* and that
of the leaves of living plants does not deviate.

Slight differences in the absorption phenomena in actual leaf organs and in

solutions, are explained, as Melde suspected and Gerland has proved, by the
diminution of the light by the other contents of the cells and the tissues of the
leaves.

Only the absorbed rays can cause the processes of decomposition and assim-
ilation in plants, and those rays not absorbed are of comparatively indifferent

effect.

If we inquire now which of these rays has the greatest effect upon chemi-
cal processes, we must evidently seek them among those having the greatest
mechanical energy.

This energy has no connection with the subjective sensation of light inten-

sity, for our eyes may indeed decide whether a given red is lighter or darker
than the red from another source, but they cannot compare the light rays of
two different pure colors of the spectrum.

The best measure of the mechanical energy of a given color is, as Lommel
has remarked, the heat effect, when we assume that the entire energy of
a ray absorbed by a soot-covered thermopile is completely transformed into
heat.

If this is the case, then the heat curve of the solar spectrum is that which
expresses the energy of the various rays.

The heat effect of the violet and blue rays is very slight, and that of the red
and ultra red very large.

In the Figure the curved line is the heat curve of the solar spectrum.
If we compare it with the absorption spectrum of chlorophyll, we see that

the yellow rays especially must furnish the energy required for the assimila-
tion of the carbonic acid, for these are the most completely absorbed, and pos-
sess the greatest mechanical energy.

From the preceding we can tell beforehand what influence the different

parts of the spectrum that is, the color of the acting light will have upon the
activity of the chlorophyll.

If we bring green plants into such portions of the solar spectrum f as
are not absorbed by the chlorophyll, there can be no decomposition of car-
bonic acid. If we allow all that light to act, corresponding to absorption
strip /, there is a very active decomposition of carbonic acid and development
of oxygen.

The activity of assimilation must then be little less than one-half of that
for free exposure, if parts of the ultra red portion of the spectrum are also
absorbed by chlorophyll.

The amount of heat obtained by the absorption of strip /is about equal to

* Lommel (Pogg. Ann. vol. cxliii., p. 579) is indeed not entirely of this opinion, but Gerl&nd's
objections (Fogg. Ann. vol. cxliii., p. 605) to Lommel's views appear to me well taken. Also, we
find here, that J. Muller's doubt, whether the spectrum of green leaves agrees with that of chloro-
phyll rests only upon observations made under unfavorable conditions.

t In order to obtain sufficient intensity, a concave mirror must be used instead of the plane
mtrror of the heliostat, and care must be taken, by the use of rock-salt prisms and lenses, that as
little heat as possible may be absorbed by the apparatus.
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the total heat obtained by the absorption of the entire portion of the spectrum
from between F and O.

Smaller maxima of carbonic acid decomposition must occur when the plant
is brought into strips //, III, IV.

In that part of the spectrum from between F and G on, there will be
feeble decomposition.

If, by suitable means, we separated all the colors from between F and G
to the red end of the spectrum, and allow the others to act upon the plant,
the assimilation, assuming that the ultra red rays are of no effect, will be only
half as great as for free exposure.

These assumptions, deduced from a comparison of the absorption spectrum
o.f chlorophyll with the heat spectrum of the sun, are confirmed by experiment.

Draper has found the carbonic acid decomposition greatest in the yellow
red of the actual spectrum, and his result has been confirmed later by the

experiments of Sachs, Prillieux, A. Mayer, Pfeffer, and Baranetzky.
Most of these investigators have worked with colored glasses and solutions,

and not with the actual spectrum, and their results therefore cannot be at once
made use of.

If useful results are expected with colored glasses and solutions, we must
not only determine, as was done by Sachs, the absorption spectrum of the glass
or solution, but also, by special photometric measurements, what portions of
the parts of the spectrum absorbed by the chlorophyll are still effective in the

spectrum of the glass or solution.
When this is done, the results will undoubtedly be in agreement with theory.
Whether by the fluorescent properties of chlorophyll any change will be

caused, cannot be decided without further information; but it does not, in view
of the theoretical investigations of Lommel , appear probable.

NOTE 32. (Page 51.)

VIEWS OF MAYER UPON THE PHENOMENON OF THE TIDES.

It may not be superfluous to add a few words upon an interesting astronomi-
cal application of the theory, the first suggestion of which is due to Mayer.
We know that, by reason of the combined action of the sun and moon, two

waves originate at opposite points upon the sea and traverse the earth, caus-

ing the phenomenon of the tide. When the tidal wave meets the coast and
shores, it causes currents and counter-currents, which cannot exist without
friction and development of heat.
We have thus upon the surface of our planet a generation of heat. But

the total living force (energy) of the planet cannot be increased by the mutual
action of its different parts, and hence this apparent creation of heat can only
be a transformation of other living force (kinetic energy) into the living force
of heat (caloric energy).

The ebb and flow of the tides diminish, thereiore, incessantly the living
force (kinetic energy) of the earth. Probably, both the velocity of rotation and
the rectilinear rotation diminish together ;

that is, the length of the sidereal

day increases, and the major axis of the earth's orbit diminishes.

Similarly to the tides upon the surface of the ocean, Falb * has assumed a

corresponding tide upon the surface of the fluid interior of the earth, and de-
duces from this assumption the regular return of earthquakes and volcanic

eruptions.
If the solid earth crust and the fluid interior are without any intermediate

space between them, such a tide could not form, but the tendency to its forma-
tion would be indicated by an increase of pressure of the fluid contents against
the crust.

*
Falb, Grundziige zu eine Theorie der Erdbeben und Vulcanansbriiche. Graz, 1871.
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If, however, such tides actually occur in the earth's interior, they can cause
effects similar to those of the tides on the surface.

It is, indeed, true that the change in length of the day, and the diminution*

of the axis of the earth's orbit, are so small that they would be imperceptible
even in the course of centuries.* Still, from a theoretical standpoint, these

conclusions are none the less interesting.
Such tides have certainly occurred upon the fluid masses of the planets,

while they were still in a fluid condition.

It may be that such tides, caused by the action of the earth upon the moon,
have deprived it of its axial rotation, while it was still in the fluid condition,,

and this may be the reason why now it always presents to us the same side.

NOTE 33. (Page 54.)

UPON A REMARK OF SEGUIN CONCERNING THE STEAM ENGINE.

In order to prove that during the action of a steam engine heat is neces-

sarily used, Seguin remarks that if all the heat taken from the boiler were,

found in the condenser, this amount of heat would be sufficient to repeat the
same action indefinitely, provided that it were possible to concentrate the heat
contained in the condenser water, so that with it the fifteenth part of its mass
could be heated to 100, and then converted into saturated steam at this tem-

perature ;
which is in entire agreement with theory.

We could thus obtain, by means of a finite amount of heat, an indefinite

continuance of motion, which is neither probable nor in accordance with sound

logic.
This argument is not completely satisfactory, because the concentration of

heat assumed by Seguin implies an equivalent expenditure of work or heat.

According to this argument, a body must be brought to a temperature of 10(F

by heat taken from another body at 40.
We have seen in the preceding presentation under what conditions this is

possible.

POSTSCRIPT OF VERDET TO THE NOTES, JULY 16, 1862.

While in press, I received the "
L'exposition analytique et experimentale de

la theorie mecanique de la chaleur," by Him, forwarded by the author to the
Academy at the session of July 7, 1862. In this work Him recognizes the
error of his earlier conclusions, and gives the explanation of the peculiar re-
sults furnished by his experiments upon engines without expansion. Our
criticisms upon this savant (page 14) are, therefore, rendered inapplicable.

NOTE 34. (Page 54.)

THE DEPENDENCE OF THE COLOR OF VENOUS BLOOD UPON THE
TEMPERATURE.

For a fuller understanding, it may be well to add some information as to
the anatomical and physiological relations which exist in the higher animal
organisms.

* Mayer estimates that the lensth of the day would be increased by the action of the tides*
one-eixteenth of a second in 2,500 years.
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The blood-vessels are of three classes.

1. The arteries, which carry the blood from the heart to all parts of the

body.
2. The veins, which carry the blood back again to the heart.

3. The capillaries, which unite the extreme branches of the arteries and
the veins.

In these blood-vessels the blood circulates incessantly, so long as life exists.

The apparatus which causes the motion of the blood is the heart It is divided
into two parts, the right and left, by an impervious partition. Each half
consists of a ventricle and auricle. Each ventricle is connected by valves
with its auricle. The sides of the heart, especially the left, are formed of

powerful muscles. From the left ventricle, at each contraction (systole), a

portion of the bright blood in it is forced out into the aorta, and thence into

all the other arteries. Since the arteries are already filled with blood, they
are expanded by the entrance of the new blood. When the pressure from the
heart ceases, and they contract (diastole), valves at the entrance of the aorta

prevent the return of blood to the heart. The contraction of the elastic walls
of the arteries forces the blood forward, through their ramifications, into the

capillaries, and from these into the veins. The blood thus proceeding from the
heart is called arterial, and is charged with oxygen.

In the capillaries, which permeate all the tissues, this oxygen combines
with the carbon and hydrogen of the food. The heat generated by this and
other chemical processes is one source of the animal heat of living organisms.

By this combustion carbonic acid is formed, which is held in solution in the

blood, and gives it a dark color.

The dark colored blood, thus deprived of its oxygen and permeated with
carbonic acid, is called venous blood. The veins carry this blood, and with it

many products of digestion, which are likewise taken up by it in the capillaries,
to the heart. It enters there the right auricle, and has thus made the "

greater
circuit." When the contraction ceases and the heart expands, the blood enters
from the auricles the ventricles, and thus the venous blood passes from the

right auricle into the right ventricle. From this it is expelled by the next
contraction, and forced into the blood-vessels of the lungs. These branch out
in the lungs into extremely fine capillary tubes, which surround like a network
the countless ramifications of the air passages.

Through the very thin sides which separate the blood from the air passages,
there is an interchange of gases. The carbonic acid in the blood is given out,
and the oxygen of the air is absorbed.

The bloVd thus retakes its bright red color, and becomes again arterial.

From the capillary vessels of the lungs, this arterial blood passes by four
veins back to the heart, and enters the left auricle. From this, at the next
diastole, it passes into the left ventricle, and begins at the next systole its

course anew.
The passage of the blood from the right ventricle, through the capillary

system of the lungs back to the left auricle, we call the lesser circuit.

The human body is thus comparable to a steam engine. The nourishment
is the fuel, from the combustion of which arises the increased temperature and
power of both. In both cases the oxygen necessary for combustion is taken
from the air. To the boiler correspond the capillary vessels. As chimney for

the discharge of the carbonic acid formed by combustion, and at the same time
as grate through which the air enters, we have the lungs and wind-pipe.

As already noticed, the heat generated in the body by combustion of the

nourishment, serves a double purpose. A portion is transformed by the
muscles into work ; another serves to maintain the temperature of the body
constant, that is, to supply the losses by radiation, conduction, perspiration,
etc.

Many observations have shown that the temperature of the human body is

independent of the outer temperature, and in a healthy condition about 37 C.

When the outer temperature is low, the loss of heat must then be greater,
and more heat must be produced to cover this loss than when the outer

temperature is higher. For low outer temperature, therefore, more nourish-
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ment must be burned, and in regions where the outer temperature is higher,
less.

When more nourishment is burned, more oxygen must be inspired, and
more carbonic acid formed. Hence in cold climates the venous blood must
contain more carbonic acid than in the warm, and the arterial more oxygen.

The difference in color between venous and arterial blood depends upon
the greater amount of carbonic acid in the one, and of oxygen in the other.

There must, therefore, be a relation between the difference of color and the

amount of nourishment consumed, or between this difference of color and the

animal heat.

Hence the color of the venous blood must vary with the outer temperature.
In cold climates the venous blood is darker than in warmer. Hence it was

that Mayer found in Java the venous blood much redder than in Europe.
This observation furnished him the starting-point for his discovery of the

fundamental principle of the mechanical equivalent of heat.*

"THE ENTROPY OF THE WORLD TENDS TOWARD A MAXIMUM."!

In Chapter IV. of the second Lecture we have called attention to an impor-
tant law : the amount of heat which in a perfect heat engine is transformed
into work, and the amount which is simultaneously transferred from a hot

body (the furnace) to a colder body (the condenser), stand in a constant rela-

tion.

This principle is expressed by the formula

or, denoting 1 + atf,by T\, the absolute temperature,

q-q' = Ti-T

Here g is the total heat expenditure of the warmer body, of the boiler,
whose temperature is T^, and q is that part of this heat which is transferred
to the colder body, to the condenser, whose absolute temperature is T .

Subtracting both members of the above equation from 1, we have

which may be written

. - ? _ - 5L
g
-
TV

F
' TQ

~
T,

>

f-f =0 .......... (1).
-/O ^1

This principle admits of considerable extension, and holds good in some-
what changed form, not only for the processes accomplished in heat engines,
but for all processes by which heat is transformed into work, or, inversely,
work into heat.

Since the change of heat into work, and likewise the transfer of heat of

high temperature into heat of low temperature, is a transformation, this prin-

* See Mayer, Mechanik der Warme, 1867, p. 239.
t Sec Clausius, ueber den zweiten Hauptsatz der mechanischen Warmetheorie, Braunschweig,

1867.
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ciple is called by Clausius, the law of the equivalence of transformations, and
is regarded as the second general law of thermodynamics.

It holds good, as we see, only for cycle processes which are reversible, as in
that of the perfect heat engine.

If the cycle process is more complex, the equation above is more generally

(I).

There are, however, transformations of other forms of force into each other,
and all follow this law.

Thus, for example, heat changes the arrangement of the molecules, while

overcoming outer forces and the action of the molecular forces
; while, there-

fore, it performs work.
When the action of the heat is sufficiently powerful, solid bodies become

liquid, and liquids are changed into gases ;
therefore the state of aggregation is

changed. Clausius calls this action of the heat "
disgregation," and expresses

the phenomenon by the words,
" heat increases the disgregation of bodies."

An increase of disgregation corresponds, then, to a change of heat into

work, and a decrease to a transformation of work into heat. There must,
therefore, exist between the decrease of disgregation and such transformation
a causal relation.

That the consideration of this disgregation conducts us to the preceding
equation, may be seen from the following example:

Let us consider a quantity of gas which has the temperature t, volume ,

and pressure p. Since, under such conditions, the mean distances of the mole-
cules is determinate, the disgregation, which measures the distribution of the

gas particles, is determinate. We denote this by Z. If we now allow the gas
to expand, or compress it, under constant outer pressure, without change of

temperature, the work performed or expended isp(v l ), where, is the
new volume.

The corresponding amount of heat q, absorbed or set free, is

(2).

Let the disgregation in this new condition be Zj ,
then the change of disgre-

gation is

Z^ -Z.

Let us now consider an equal amount of the same gas which has for another

temperature t\ , the same volume 0, and hence another pressure^.
The pressures p &udp l , according to the laws of the expansion of gases,

are in the relation

p _ 1 + at

Pi
~

1 + ati
"

The disgregation of the new gas mass is evidently the same, viz., Z, since
the mean distance of the molecules is the same.

If this gas takes the new volume ,, the change of disgregation is neces-

sarily the same, viz., Z^ Z.

The work obtained or expended is however evidently different, viz.,

p } 0, u),

and the heat q lt which is absorbed or set free, if the temperature of the gas
does not change, is

-
,ON......... (3).
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From equations (2) and (3) we have

,

and =
p l

J p J

The left sides are evidently alike. If we take account also of the equation

P - 1 + a * - T

we have, when Tand Tl are the absolute temperatures,

an equation which corresponds perfectly with (1).

We see, therefore, that the amounts of heat necessary to cause the same

change of disgregation are inversely as the absolute temperatures at which
these amounts of heat are transformed.

The equivalent value of the heat corresponding to a determinate change of

disgregation is, therefore, obtained by dividing the heat necessary for this

change by the absolute temperature.
These two examples, viz., the theory of machines already alluded to, and

the law of disgregation change here laid down, may suffice" if not to prove
rigidly, at least to make intelligible the second law of thermo-dynamics.

We have now, in the course of our considerations, become acquainted with
three kinds of changes, viz., the change of heat into work, or, inversely, the

change of heat at a higher temperature into heat at a lower, and, finally, dis-

gregation changes.
Every transformation of one kind corresponds always to a certain amount

of another, and we can therefore say that, in every process, a change of one
sort answers always to a corresponding change of another.

Entirely analogous relations can be stated for every transformation of one
kind of force into another.

If we assume, temporarily, a unit for two equivalent transformations, we
can set them equal.

Since every equation of the form

01 = 02

can be put in the form

0, -v.2 = 0,

this principle can be expressed as follows :

In every process the algebraic sum of the transformations is zero.
It is necessary, however, to call attention to the limitation which in the ne

case is expressly made, and in the other is fulfilled, viz., that the process in

question must be reversible.

Keeping this limitation, we have the second law of thermo-dynamics in the
form as given by Clausius.

" In every process, however complicated, in which one or more bodies

undergo reversible changes, the algebraic sum of all the transformations must
be zero."

The second law is, therefore, well called the law of the equivalence of

transformations, while the first is that of the equivalence of work and heat.

We shall next seek to make it evident, by further examples, that it is really
necessary to introduce the limitation that the second law holds only for reversi-
ble transformations.
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In the example already noticed, in which we consider the change of dis-

gregation of a gas, it was always assumed that the pressure remained un-

changed, or, better, that the outer pressure differed from the tension of the gas
only by an infinitely small amount. Under this assumption it is possible to

again compress the gas by the same outer pressure, and bring it back to its

original condition.

The gas then passes through all the changes which it experienced during
expansion, but in reverse order.

The gas, however, may experience the same changes of volume and dis-

gregation in another manner.

If, thus, we connect the vessel containing the gas, whose volume is v, with
another whose volume is v

, v, which is exhausted of air, and suddenly
open the communication, the gas will enter the empty vessel until there is the
same pressure in both. The volume of the gas is now 0, ; the change of dis-

gregation is the same as in the previous case.

From the experiments of Joule we know that during such a change of
volume there is neither change of temperature nor work performed by the gas.

But the gas cannot be compressed back to its original condition without an

expenditure of work and production of heat. The process is not reversible.
If the gas is compressed, its disgregation therefore diminished, we must

have work transformed into heat
; but, as we have seen, the disgregation may

be increased without an equivalent transformation of work into heat or heat
into work.

If, now, we call the transformation of work into heat and increase of dis-

gregation positive, and the change of heat into work and decrease of disgrega-
tion negative transformations, we see that decrease of disgregation, that is, a

negative change, cannot occur without a simultaneous positive transformation;
but, on the other hand, increase of disgregation, or a positive change, can
sometimes occur without a negative transformation.

Let us consider now other modes of transformation. When heat is trans-

formed into work there is always a simultaneous increase of disgregation, or,

as in the cycle processes of engines, heat passes from a hot to a colder body.
If we call the transfer from the hot to the cold body positive, and the trans-

formation of heat into work negative, we can say, since there is no example in

which this negative transformation occurs without a corresponding positive
one, that the- negative transformation of heat into work is necessarily connected
with a simultaneous positive transformation.

The positive change of work into heat can, however, as many examples
show, occur without a corresponding simultaneous negative transformation.

Thus, for example, in friction, resistance of air, and, in short, most prejudicial
resistances, there is a change of work into heat, without simultaneous changes
of disgregation, transfer of heat from higher to lower temperature, etc., neces-

sarily occurring.
Here also, therefore, negative transformation of heat into work cannot

occur without a simultaneous positive transformation, but positive transforma-
tion of \vork into heat can.

The third mode of transformation considered viz., the transfer of heat
from one body to another, or the change of a quantity of heat Q at the tem-

perature T, into the quantity Q at the temperature T' also confirms this law.

As is known, there is a* natural tendency of heat to pass from a warmer
to a colder body, and this process occurs in radiation and conduction without

simultaneously giving rise to another.

On the other hand, a process opposed to this natural tendency of heat, the

transfer of heat from a colder to a warmer body, can only occur when there is

a simultaneous change of work into heat,* or an increase of disgregation. f
If we call, as already indicated, the transfer of heat from hot to cold body

* We may recall the example on page 15 of a steam engine compelled by an outer force to

reverse its ordinary action.

t As illustration, a hot gas of temperature A" must be compressed by the expansion of a
colder solid body which is heated from A to A', when both A and A' are less than A".
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positive, and from cold to hot negative, we may conclude from all the cases

discussed, that

Negative transformations can only occur when compensated by positive, but

positive may occur without negative. Uncompemated transformations can there-

fore only be positive.
This principle allows of an interesting natural application. We have seen

that there is a general tendency in nature to increase of disgregation, to trans-

form work into heat, and to level heat differences. This is indeed but the
result of the principle that uncompensated transformations can only be positive.

This tendency is denominated the "
dissipation of energy."

The case of a natural transformation which is perfectly reversible is a

limiting case which seldom or never occurs. It is, hence, the tendency of the

positive transformations to accumulate. The heat of a body which can no

longer be transferred to a colder body must remain heat, and can serve no

longer for production of work, can no longer be transformed into other forms
of action.

The amount of this untransformable heat must, hence, always increase, since
it is continually added to by the uncompensated positive transformations.

The consequence is that the world tends toward a final condition in which
all its forms of energy will be transformed into heat of uniform temperature,
which can no more be transformed.

When this condition is attained all nature will be, and must remain, dead.
Thomson has, with rare acuteness, drawn the boldest consequences from

these conclusions,* and expressed them as follows :

"
1. There is in nature a universal tendency to the dissipation of mechani-

cal energy."
2. A restoration of mechanical energy (negative change) without more than

an equivalent of dissipation, is impossible by inanimate material processes, and
will probably never be attained by organized matter, whether endowed with

vegetable life or with consciousness and will.
"

3. Within a finite past period the earth must have been uninhabitable, and
within some finite future period the earth must become again uninhabitable for

men, beasts, and plants as now constituted. It may be then that processes
may have existed or will exist, which are contrary to those natural laws which
at present rule the world."

The boldness and scope of the conclusions drawn bv Thomson from the sim-

ple equations which express the second law of thermo-dynamics, must challenge
admiration.

The merit of the first discovery of these equations, however, belongs to
Carnot and Clausius. Carnot discovered the second law in its essentials,

though the form in which he expressed it was incorrect, since he proceeded
from the false assumption of the indestructibility of heat.

Later, Clausius so modified Carnot's principle, that it no longer contra-
dicted the first law and the principle of the conservation of force, and ex-

pressed it in correct form.f He showed that it followed from the inherent

tendency of heat to equalize existing temperature differences.
From the second law, however, it follows that transformation of heat into

work can never occur without compensation by a transfer of heat from a
warmer to a colder body. But already, at that time, known phenomena taught
that heat could pass from a warmer to a colder body without compensation, and
that work could be transformed into heat without compensation, as in friction.

Later, Clausius gave in another form its most general expression to the
law which we have already expressed, by saying that uncompensated changes
can only be positive.}:

Clausius denoted the algebraic sum of all those changes which must take

* Thomson, Proceed, of the Royal Soc. of Edinburgh, April, 1852, and Phil. Mag., 4 Series,
vol. iv, p. 304,

" On a Universal Tendency in Nature to the Dissipation of Mechanical Energy.'
t Clausius, Pogg. Ann. Bd. 79,1850. Abhandlungen Bd. 1, p. 50.

" Ueber die bewegende
Kraft der Warme. l7

etc.

t Clausius,
" Ueber denzweiten Hauptsatz der mechanischen Warmetheorfe," Braunschweig,

1867, p. 17.
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place, in order to bring a body into the condition in which it is at present, by
the name "entropy."

Since now the sum of the positive changes can never be less than the sum
of the simultaneous negative change, but in general is greater, it follows that
the entropy of the world is continually increasing.

Clausius has formulated this in the words " Die Entropie der Welt strebt

einem maximum zu."
"THE ENTROPY OF THE WORLD TENDS TOWARD A MAXIMUM."
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PART FIRST.

CHAPTEK I.

'tJENEBA.TION OF HEAT BY MECHANICAL WOEK AND THE EEVEESE.

DETERMINATION OF THE MECHANICAL EQUIVALENT OF HEAT
BY EXPEEIMENT.

Heat Generated by Mechanical Action. A great number of

the phenomena of daily life prove to us that heat can be gen-
erated by mechanical work. If, for example, we strike a piece
of metal repeatedly with a hammer, the metal becomes heated.

The living force of the hammer, which is here destroyed at

every stroke, appears thus to be transformed into heat. If we
rub two pieces of dry wood together with sufficient rapidity,
and during a sufficiently long time, they may even be set on
fire. Here, again, we have heat generated by mechanical work.

Especially well known is the generation of heat by axle fric-

tion when the axle is not well lubricated. Here, again, the

work necessary for overcoming the friction generates heat.

These and many other facts have led to the question whether

mechanical work and heat are not equivalent, or, in other

words, whether by the expenditure of a certain amount of

work we can generate a certain fixed quantity of heat.

Approximate Determination of the Heat Generated by Fric-

tion. Count Eumford seems to have been the first to en-

deavor to answer this question by experiment, and, indeed,

seems to have been among the first to express the idea that

heat is nothing more than a motion of the molecules of a body.
In the foundry at Munich, of which he was the superintend-

ent, he caused a blunt drill, of about 10,000 pounds in weight,
set in motion by horses, to work upon the bottom of a cannon.

The cannon was inclosed in a wooden box containing 26.6

101
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pounds of water. At the end of 2 J hours the water was heated

from to 100
D

,
or was caused to boil.

Although he made use of two horses for the experiment, he

was of the opinion that the work could have been performed by
one. Hence the mechanical work of one horse for 2J hours

sufficed to heat 26.6 pounds of water through 100.

Since, now, one horse can raise in one hour 1,980,000 pounds
one foot high, or can perform a mechanical work of 1,980,000

foot Ibs., in 2 hours it would perform 1,980,000 x 2J = 4,950,-

000 foot Ibs. This work heats 26.6 Ibs. of water through 100,
or 2,660 Ibs. through l

c
. Therefore, to heat one pound of

water one degree requires

4,950,000 - _01 ,-L- ,1,721 foot Ibs.

Let us reduce this result to French measures, which are*

almost universally used now in science, and which we shall

always use hereafter unless the contrary is specially stated.

One pound equals 0.4536 kilogram, and one foot equals
0.3048 meter ; hence 1 foot Ib. = 0.4536 x 0.3048 = 0.13826 me-

ter-kilograms, and 1,721 foot Ibs. = 1,721 x 0.13826 = 237.945

meter-kilograms.
This result is evidently too large,* as we have taken no ac-

count of the heat lost by radiation and conduction. Thus it is

plain that by the same mechanical work we could have heated

a greater quantity of water, or that for the same amount of

water less work would have been necessary if all the heat gen-
erated had gone to raise the temperature.

Experiment of Davy.-A.iter Eumford we find Sir Humphry
Davy announcing clearly that heat is not a matter transmitted

from one body to another, as was held by most physicists ; but
that it consisted, most probably, in a rapid motion of the par-
ticles of a body.
He showed that two pieces of ice, when rubbed together, were

converted into water, although no heat was imparted to them

by exterior bodies. But we know that ice requires for melting:

*
[Note that this result corresponds to one pound of water heated one decree. One kilogram^

or 2.2 Ibs., will require 2.2 as much work, or considerably more than 424 meter-kilograms.]
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a large amount of heat ; for instance, to convert one pound of

ice at
J

into water at requires no less heat than to raise the

same quantity of water from to about 80. This considera-

ble amount of heat must therefore, in the above experiment^
have been generated by the friction of the pieces of ice, and
hence Davy concluded that heat must be a kind of motion.

In order to confirm still further the truth of this view, he
made the following experiment : He placed under the receiver

of an air-pump a clock-work, resting upon a piece of ice, in

the upper surface of which there was a cavity filled with water.

The clock-work caused a toothed wheel to rub against a sur-

face of metal coated with wax. After the exhaustion of the

air the clock-work was set in motion, and the wax was melted,
while the water in the ice cavity remained fluid. The melting
of the wax, therefore, was not due to heat obtained from the

water nor from the clock-work ; for, in the first case, the water

would have been at least partially frozen, and in the otherr

heat would have been imparted also to the ice, and a por-
tion of it melted.

Mayer, the Founder of the Theory. Although the savans

just mentioned were of the opinion that heat must be a kind

of motion, and that a definite expenditure of work must gener-
ate an equivalent amount of heat, to Dr. Mayer of Heilbronn

belongs the credit of not only stating clearly and definitely the

principle of the equivalence of work and heat, but also of

deducing a number of conclusions from it, so that he may be

regarded as the founder of the mechanical theory of heat.

He claims in his treatises that any natural force, as light

or heat, cannot be destroyed, either in whole or in part, any
more than matter itself. That what appears to us to be

destruction is nothing more than a transformation. He shows

that the heat received from the sun by a plant enables it to

extract its nourishment from the air and earth to give out

oxygen and absorb hydrogen and carbon and that this ab-

sorbed hydrogen and carbon can furnish again the same quan-

tity of heat received by the plant. That just as these elements

furnished heat by ordinary combustion, so they generated heat

in animal organisms, and enabled them to perform work, to-

carry loads, etc. He points out that the carbon, or, in other
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words, the food, which an animal consumes is proportional to

the work it performs that an increase of work raises the tem-

perature or necessitates an increase of nourishment.

Thus he computes the consumption of carbon by a man in

climbing a mountain 10,000 feet high, and puts it at 0.155 Ibs.

That is, the heat furnished by the combustion of 0.155 Ibs. of

carbon corresponds to the mechanical effect of raising the man

10,000 feet. Further, he determined by the agitation of water

in a vessel the work necessary to raise one kilogram of water

one degree, and obtained 365 meter-kilograms, which is thus

considerably less than the result obtained by Rumford.

Exact Determination of the Mechanical Equivalent of Heat by
Joule in Manchester. Although the equivalence between work
and heat was clearly expressed and proved by Mayer, still

there was wanting an exact determination of the amount of

work necessary in order to heat one pound or one kilogram of

water one degree. Neither the result of Eumford nor that of

Mayer can lay claim to great accuracy. Accordingly, the Eng-
lish physicist, Joule, undertook a large number of very careful

experiments, in order to determine this number as exactly as

possible. He adopted different methods. He caused an iron

paddle-wheel, set in motion by appropriate cords and weights,
to revolve in a vessel filled with water, and by means of a very
accurate thermometer observed the increase of temperature
of the water when the weights had fallen through a certain

distance. Then he took other liquids, as mercury, oil, etc.,

and found for these also the increase of temperature for a cer-

tain expenditure of work. He also caused two cast-iron plates,
immersed in water, to rub one against the other, and compared
here also the rise of temperature with the work expended.
In another series of experiments he forced water through cap-
illary tubes, and determined the rise of temperature and the
work expended. Finally, he determined the increase of tem-

perature when air is compressed in a receiver.

From all these experiments he found that by the expendi-
ture of a certain amount of work an equivalent amount of heat
was generated, entirely independent of the nature of the sub-
stances experimented upon.

After seven years spent in study of the subject, he under-
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took, in 1849, another large serie's of experiments, in which he
availed himself of all the precautions which his long expe-
rience had made familiar. He thus found fpr the work neces-

sary to raise one pound of water one degree Fahrenheit, the

following results :

772.692 foot Ibs. for friction with water mean of 40 experi-
ments.

774.083 foot Ibs. for friction with mercury mean of 50 ex-

periments.
774.987 foot Ibs. for friction with cast-iron mean of 20 ex-

periments.
When we consider the difficulties attending such experi-

ments, and the care and labor required for the exact determina-
tion of the work and temperature, the coincidence of these re-

sults is most remarkable. These experiments belong, in fact,

to the most memorable in the domain of physics, and entitle

Joule to a prominent place in the history of the mechanical

theory of heat.

Of all these results, Joule considered those given by water

as the most reliable. After making several necessary correc-

tions, he gave the equivalent as 772 foot Ibs. for 1 Fahr., or

772 x | 1389.6 foot Ibs. necessary to raise one pound of water

1 Centigrade.

Hence, the work necessary to raise one kilogram of water

one degree C. is 1389.6 x 0.3048 = 423.55 meter-kilograms.
We shall hereafter arrive by entirely different considera-

tions at almost exactly the same result, so that we may regard
it as settled that for the generation of one heat unit * a work

expenditure of 423.55, or, in round numbers, of 424 meter-kilo-

grams is necessary. We call this work the " MECHANICAL EQUIV-

ALENT OF HEAT."

Inversely, by the expenditure of one unit of work we cai

generate only fjth of a heat unit, and this number we may caE

the " thermal equivalent of ivork."

Since one horse-power (French) represents 75 meter-kilr,

grams in one second, we have W = 5.65 horse-power necessary
to raise one kilogram of water one degree in one second.

* The term "heat unit" is usually used to denote that quantity of heat required c raise

one ]K)r)d of water one degree Fahrenheit, and the term "Calorie" is employed to tl ;iiote that

quantity of heat required to raise one kilogram of water one degree Centigrade, ^s we use

throughout this work French units, the term "
heat, unit," unless otherwise stateu in the text,

must be understood as meaning the French heat unit, or calorie. In order tc distinguish these

two heat, units from that amount of heat required to raise one pound of w^ter one degree

Centigrade, we may call this latter amount a " therm" or " thermal unit."
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EXAMPLE.

Required to raise 2 kilograms of water in 20 minutes from to 100, what

expenditure of work per second is necessary ?

The 2 kilograms require 100 x 2 =r 200 heat units, or a work of 424 x 200 =
84,800 meter-kilograms. Since this work is to be performed in 20 minutes, or

1,200 seconds, the necessary work per second is VsVn
1 = 70.66 meter-kilograms

per second, or nearly one horse-power (French). (One French horse-power, or

75 meter-kilograms per second, is about 542.5 footlbs. per second, or somewhat
less than an English horse-power, which is 550 foot Ibs. per second.)

Him's Determination of the Mechanical Equivalent. Him, a civil

engineer at Colmar, has made a careful and difficult determina-

tion of the mechanical equivalent of heat. He adopted a differ-

ent method from Joule, and attempted to determine the heat

set free by the impact of inelastic bodies.

Two heavy blocks, one of wood the other of iron, were sus-

pended like pendulums. The wooden block had an iron plate

upon the side in contact with the other. The iron block was
now raised a certain height, and a hollow lead cylinder placed

upon the iron plate, which was struck by the descending iron

block, and thus compressed and heated.

From the weight of the iron block, and the height through
which it fell, Hirn calculated its living force, or mechanical

effect. Moreover, the height to which the wood block was
driven by the shock, as well as that to which the iron block

rebounded, gave the work remaining in the masses after impact.
Now, directly after the shock, the lead cylinder was filled with

water, and the increase of temperature of the water determined.

After skillfully determining the work expended in the compres-
sion of the lead cylinder, it was easy to calculate the work ex-

pended in the heating. The mean of various determinations

gave 425 meter-kilograms, or the same, almost, as given by Joule.

Performance of Mechanical Work by Heat. In the preceding
we have seen that heat is generated by work, or, generally, that

when heat appears work disappears, and that by a certain ex-

penditure of work we can always generate a certain amount of

heat. The question now arises, Can we generate mechanical
work by heat, or does an equivalent amount of heat always dis-

appear when work appears? We have, at once, in the expan-
sion of solid bodies, a most striking proof of the performance
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of work by heat. Upon the surface of bodies we have the air

pressure of about 10,334 kilograms per square meter (15 Ibs.

per sq. inch), and this pressure is overcome through a certain

distance during the expansion of the body. Since, however,
when we heat a body, its temperature also rises, it is difficult

to determine how much of the heat imparted goes to overcome

this pressure, and how much contributes to the rise of tempera-
ture. It is, therefore, difficult to determine from the expansion
of solid bodies the relation which exists between the heat im-

parted and the mechanical work obtained.

The gaseous bodies afford the easiest proof of the generation
of work by heat, or of the disappearance of heat when work is

obtained. If, for example, we allow compressed air to issue

from a receiver, there is a decrease of temperature, sometimes

so great that drops of water near the orifice may be frozen.

The work of the air is here the overcoming of the outside air

pressure as it expands.
Joule found, by similar experiments, a work performed of 820

foot Ibs. for every degree Fahr. through which the air was

cooled. This corresponds to f x 820 x 0.3048 = 448.88 meter-

kilograms for every degree C., or somewhat greater than already
found. The method of determination, however, is less exact,

and the discrepancy was to be expected.

During the expansion of ordinary atmospheric air, also, heat

disappears. If we assume air of atmospheric pressure under

the piston EF in the cylinder ABCD, Fig. 8, and

if there is a vacuum above it, the piston, if not

held fast, will rise, while the temperature of the

air will sink. The heat which thus disappears
is the equivalent of the work done in raising the

weight of the piston through the distance trav-

ersed.

Although, now, heat thus disappears when
work is done by the air, as when it rushes into

the atmosphere or raises a weight, we should not

expect to find any such disappearance when the

air expands in a vacuum, because in such case no

work is performed. This point, also, Joule has experimen-

tally investigated.*
* See, also, page 22 of Introduction.

B

D C
FIG. 8.
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He made use of two copper vessels connected by a pipe.

Both were placed in a vessel of water, the temperature of which

was determined directly before and after the experiment. Con-

nection being closed, the air was compressed to 22 atmospheres
in one vessel, and was exhausted from the other. The cock

was then turned, and the compressed air rushed into the empty
vessel until the pressure was the same in both. There was
found to be neither a rise nor fall of temperature while the

transfer took place, the temperature of the water in which the

vessels were immersed remaining the same both before and
after the experiment.
We may explain this as follows : As soon as a part of the

air has passed from one vessel into the other, the air continu-

ing to enter must, to be sure, perform work in compressing the

air already there. There must be, therefore, in the vessel from

which the air flows, a decrease of temperature, but in the other.,

where the air is being compressed, an increase of temperature

precisely equal, so that, on the whole, heat is neither lost nor

gained.
That this is actually the true explanation was proved by

inclosing the vessels in two separate cisterns, and observing
the temperature of each, both before and after the experiment.

It is therefore proved, at least for air, that when heat dis-

appears work is gained ; there is also no room for doubt that

for every unit of heat disappearing, the same mechanical work
is gained which we have already found to be necessary for the

generation of one unit of heat, even although Joule found for

each disappearing heat unit a somewhat greater work. One
heat unit is therefore equivalent to a mechanical work of 424

meter- kilograms.
But Him has proved the correctness of this principle for

steam also, by means of the steam engine. In fact, this machine
shows us at once how heat can be transformed into work, and
it was this especially which early led physicists to the conclu-

sion that there must be a certain equivalence between heat and
mechanical work.

Him determined first the temperature and tension of the

steam in the boiler and the steam consumption per stroke. He
was thus able to determine the number of heat units carried

per stroke to the cylinder. Then he observed the temperature
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and quantity of the condensing water used for each stroke, as

well as the temperature of this water after the condensation

of the steam. He was thus able to determine the loss of heat

experienced by the steam during its action in the cylinder, as

well as that due to the resistances in the steam pipe, in the

valve box, and in the exhaust pipe. Finally, he endeavored to

estimate the loss of heat due to conduction and radiation be-

tween the boiler and the condenser. He then determined the

mechanical work imparted to the fly-wheel, and also, as accu-

rately as possible, the work absorbed by the prejudicial resist-

ances, such as the friction of the piston, the slide valve, etc.

He was thus able to calculate the work for each unit of heat

disappearing in the cylinder. He found as a mean of many
determinations 413 meter-kilograms, a number which agrees

quite closely with Joule's results, especially when we con-

sider the very great difficulties which Him had to contend

with.

Still another apparatus affords us clear proof that heat can-

be transformed into mechanical work, viz., the Gifford injector

an apparatus which has for several years been used for

furnishing feed water to locomotives and stationary engines.
In this contrivance a pipe leads from the steam space in the

boiler to the water space. This pipe joins another at a suitable

place, which brings ijie feed water. The steam flows toward

the water space and forces the air with it. A partial vacuum
is thus caused in the feed-water pipe, and the water rises in it

until it meets the steam current. By this it is carried along
with great velocity and forced into the boiler.

Since, now, the water in the boiler is acted upon by the

steam pressure, it is not at once evident how it can be possible

that the steam flows round toward the water, instead of the

water being forced into the steam space. When we remember,

however, that the steam contains a large amount of latent heat,

which the water does not possess, or, in other words, that the

work inherent in the steam is greater than that in the water,

we can easily understand the possibility of the action.

When the steam comes in contact with the cold feed water,

a part of the latent heat goes to heat the water, but another

part is transformed into mechanical work, and this it is which

forces the water into the boiler.
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QUESTIONS FOR EXAMINATION.

Give instances of heat generated by mechanical action. What co::clitsion do such instances

point to ? Describe experiments which test this conclusion. What did Count Rumford con-

clude ? What chances for error were there in his experiment ? Describe Davy's experiment,

What precautions did he take against possible objections? Do you regard his experiment as

conclusive ? Why ? What was the part played by Mayer as regards the theory ? In what

respect was it different from that of Rumford and Davy ? What conclusions did he deduce from

his views ? Who first made an exact determination of the mechanical equivalent ? Describe

some of the methods he employed. How long did he devote himself to the subject
* What did

he consider on the whole the most exact result ? Define precisely what you understand by the

"mechanical equivalent of heat." Illustrate. What is a "
foot-pound ?" What is a " horse-

power ?
" What are the equivalent French units of measurement ? What is a meter-kilogram ?

What constitutes a French horse-power ? How does it differ from the English ? What system

is used in this work ? Define exactly what you understand by a "heat unit." What do you

understand by
"
calorie ?

" Do we use the term calorie in this book ? Why not ? What is the

mechanical equivalent in foot-pounds for Fahrenheit scale ? What for Centigrade scale ? What
is it in French measure ? Show how to reduce one to the other. Define exactly what you

understand by
" thermal equivalent of work." Illustrate.

What work is necessary to raise 2 kilograms of water from to 100 C. ? What horse-power

(French) is required to perform this work in 20 minutes ? What work is necessary to raise 2

pounds of water from to 100 C. ? From to 100 F. ? What horse-power is required in each

case to perform these works in 20 minutes ? How do you reduce Centigrade degrees to Fahren-

heit, and vice versa? Define "work." What other term is sometimes employed? What

methods did Him employ in order t<> determine the mechanical equivalent ? Did it confirm the

result obtained by Joule ? Is the mechanical equivalent constant ? Were it to vary, what impos-

sible result could you logically deduce ? (See Introduction.) Deduce this consequence. (Intr.)

Is perpetual motion possible ? Why not ? (Intr.) Are you fully satisfied of this impossibility?

(Intr., Notes.) Can any scheme for attaining it rightfully claim attention ? Why not ?

Give instances of mechanical work performed by heat. Describe Joule's experiments in this

direction. When air expands why does its temperature fall ? When it expands into a vacuum
does its temperature fall ? Why not ? Describe Joule's experiment here. Under what circum-

stances does the temperature remain constant in this experiment ? Under what does it vary ? Is

this in full accord with our principle ?

Who first proved this principle for steam ? How was it done ? What sources of error must
be guarded against ? Enumerate in order the principal steps of the experiment. Does this

experiment afford additional proof of the correctness of our principle ? What other apparatus
illustrates it ? Explain the secret of its action. Are you convinced that our principle is the

expression of a natural law ? What do you understand by a " natural law ?
" State concisely

the law of equivalence of heat and work. What do you understand by
"
equivalence ?" Are

things equivalent necessarily identical ? Is our numerical determination exact ? If not, would

that affect your belief in the truth of the law ? Why ? What did Davy and Rumford suspect
" heat " to consist of ? What do you understand by

" work ?
"

If their suspicions were correct,

how would "heat" differ from "work ?" Does the proof or truth of our principle rest upon
any such hypothesis ? Does it rest upon any hypothesis ? Are you firmly convinced of its gener-

ality and truth ?
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HEAT A KIND OF MOTION.

FROM what has been said, we may regard it as settled that

with a certain amount of mechanical work we can always gen-
erate a certain amount of heat, and inversely, that with a cer-

tain amount of heat a definite amount of mechanical work can

be produced ; that the amount of heat which can raise the tem-

perature of one kilogram of water one degree is equivalent to

a mechanical work of 424 meter-kilograms, and that, inversely,

by the expenditure of this work one kilogram of water can be
heated one degree.

If, now, such an equivalence exists between heat and mechan-
ical work, we are compelled to assume that heat is properly

nothing else than mechanical work in another form. And since

heat is possessed by bodies, since it can enter from without

into bodies, we must expect to find here something similar or

equivalent to mechanical work. We must therefore assume

that either the atoms of a body, or the molecules or groups of

atoms, or that some other substance between the atoms is set

into some sort of motion. Such a substance is the ether, which

is universally regarded as the medium for the transmission of

light.

One theory, applicable to gaseous bodies, was first pro-

pounded by Daniel Bernoulli. This was further developed by

Kronig and Clausius, and applied to solid and liquid bodies

also. It numbers at present the most adherents.

Another theory, which was at an earlier period the most

widely accepted, is due especially to Poisson and Cauchy, and

was developed principally by Eedtenbacher.

Redtenbacher's Theory. According to Kedtenbacher the body
atoms attract each other, while between the ether atoms there

is a mutual repulsion. The body atoms are incomparably
111
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larger than the ether atoms, and these last have inertia, but

are not affected by gravity.

In consequence of these properties each body atom is sur-

rounded with an envelope of ether atoms. In proximity to the

atom .this envelope has its greatest density, which diminishes

with the distance from the center. Thus the ether surrounds

each atom just as the atmosphere surrounds the earth, pro-
vided that the atoms are round. An atom with its envelope
Redtenbacher calls a "

dynamide." Between every two dyna-
mides there is a space incomparably greater than the dynamide.
The heat of a body consists now in a pulsating motion of the

ether envelopes. It is assumed that each ether atom vibrates

in the direction of the radius of the dynamide. The quicker
and stronger the pulsations of the envelope, so' much the hotter

is the body.
If the attraction of the body atoms is equal to the repulsion

of the ether envelopes, the body is either solid or liquid. If,

on the other hand, the repulsive force of the latter is greater
than the attractive force of the former, the body is gaseous.
In the solid state the body atoms are generally closer to-

gether than in the liquid ; their mutual attractions are greater,
the ether envelopes are denser, and their atoms vibrate through
shorter distances. Displacement of the particles is thus dif-

ficult. A complete union of the atoms, however, cannot occur,
for the nearer the atoms approach, the greater is the repulsion
of the ether envelopes, until finally there is again equilibrium
between attraction and repulsion.
As now the ether envelopes of a solid body pulsate faster

and stronger, or as the body becomes warmer, the body atoms
recede from each other, their attraction becomes less, until

finally ever so small a force can displace the particles. The

body is then liquid.

When the ether envelopes no longer pulsate, that is, when
there is no motion within the body, the body possesses no
heat it 13 then absolutely cold. We shall soon see to what

degree of the thermometer this
" absolute zero

"
of temperature

corresponds.

Other Views as to the Nature of Heat. The other view as to the
nature of heat starts also with the assumption that the atoms,
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or groups of atoms, the so-called molecules, are set into vibra-

tory motion. This view, as already indicated, was indorsed by
the famous English chemist Sir Humphry Davy. He says, in

his treatise upon heat and light, that heat, or that force which

prevents the direct contact of the body atoms, and gives rise to

the sensations of heat and cold, may be defined as a special,

and, in all probability, vibrating motion of the body atoms
which tends to separate them. This may^be called a repulsive
action. Since there is also an attractive force, we may con-

ceive the body atoms as acted upon by two, opposite forces,

that of attraction and that of repulsion. The first of these

forces is the combined action of cohesion, which strives to hold

the atoms in contact
;
of gravity, which tends to collect them

into masses, and of the pressure exerted by exterior bodies.

The second of these forces is due to a certain vibrating motion

which tends to keep them apart, and which may be generated,
or rather increased, by friction or impact. The action of cohe-

sion, in causing the body atoms to approach, is precisely similar

to the attraction of gravitation upon the large masses of the

universe, and the repulsive force, to the centrifugal force of the

planets. In his "Chemical Philosophy" also, Davy says that-

all the phenomena of heat can be explained by assuming that

in solid bodies the atoms are in a permanent condition of vibra-

tory motion, and that these vibrations become more rapid and

larger as the temperature increases. In liquid and gaseous
bodies we must assume that the atoms, besides their vibratory

motion, have also a motion around their axes, and that both

these motions are greatest in gaseous bodies.

According to Clausius, who has contributed much to the

development of the mechanical theory of heat, it is less the

atoms themselves than the groups of atoms, or the molecules,

which are in motion. The manner in which the atoms combine

to form a molecule, and the form of the same, determine the

properties of the body. Hence it may happen that the same

simple bodies or elements possess now these, now those prop-

erties, and thus we may have the so-called allotropic condi-

tion. It is evident that in chemically compound bodies also

there may be such a various grouping of atoms ; indeed, in such

case the variety of grouping can be even greater.

While now, in solid bodies, there is in all probability a vibrat-

8
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ing motion of the molecules, we are obliged to assume in liquids

a, rotating motion also, since in such bodies a molecule easily

separates from its neighbors.
The vaporization of liquids, according to this view, may be

explained as follows :

As heat is imparted to a liquid so that the velocity of vibra-

tion becomes greater and greater, and the force of cohesion

ever less and less, the molecules finally break loose and move,
like the particles of gaseous bodies, in straight lines. This

may be illustrated by an experiment. Suppose at the end of a

spiral spring a weight fastened, and one end is held in the hand
while the weight is swung round in a circle. The spring will

be extended and the weight will recede as the velocity increases.

Finally the centrifugal force becomes greater than the tenacity
of the spring, which then breaks, and the weight flies off in a

tangential direction.

As the attractive force of the molecules is not the same for

different liquids, some require more, some less heat to convert

them into vapor.
It is also evident that vaporization takes place more rapidly

at the surface of a body than in the interior, because the mole-

cules are not restrained by the pressure of those above. Thus,
if the centrifugal force of a molecule in the interior of a body is

not sufficient to overcome the action of those above it, it is

obliged to retain its earlier vibratory or rotating motion which
it possessed as a liquid molecule. In such case we say that

the liquid
" simmers." Further, it is evident that the air mole-

cules which impinge against the surface of the liquid must

partially impede the process of vaporization. We say partially,
because we assume that there are large spaces between the air

molecules through which the liquid molecules can move. Yet
it may often happen that an air molecule comes in contact with
a liquid molecule just as it is about to leave the surface. If

therefore the density of the air diminishes, or if it is entirely
removed, the vaporization goes on quicker for the same tem-

perature, more particles breaking loose. These results are, as
we know, confirmed by experience.
When vaporization takes place in the interior of a liquid, the

centrifugal force of the molecules must be so great as to over-

come the pressure upon them. This pressure consists not only
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of the weight of superincumbent liquid, but also of the press-
ure of the air upon the surface of the liquid. The centrifugal
force must therefore be greater the deeper the molecules lie

beneath the surface. If they still break loose, their centrifugal
force must be equal to the pressure of the air, increased by the

weight of superincumbent liquid and hence it may be that,

for instance, in deep vessels the same mass of water is made to

boil with more difficulty than in shallow.

Let us now notice briefly how combustion is regarded. We
may call attention, first, to the following observations :

If we allow a weight to fall from a certain height upon a

plate of lead or iron, its living force is entirely or partially

destroyed by the impact, according as the bodies are entirely
or partially inelastic. But if we now examine the plate, we
shall find that it has been heated, and heated more according
as more of the living force of the weight has disappeared. The
mechanical work inherent in the weight has thus been trans-

formed after impact into heat.

In combustion the process is similar, but instead of large
masses we have here to do with body particles which elude

observation even with the microscope. Thus when we heat,

for example, pure carbon, the particles are not only set into

much more rapid vibration, that is, their living force increased,

but, at the same time, they recede from each other. It is thus

more easy for the impinging oxygen atoms to penetrate between

the atoms of carbon, and by reason of greater adhesion to unite

with them. By this impact the rectilinear motion of the oxy-

gen atoms is transformed into the vibratory or rotating motion

of the carbon molecules, that is, generates heat. At the same

time every carbon atom unites with two oxygen atoms to make

a molecule of carbonic acid, which then takes a rectilinear

motion.

Heat Conduction and Radiation. In the foregoing we have

briefly reviewed the different views as to the nature of heat,

and have sought to explain some of the best known phenomena
in accordance with these views. Let us now inspect somewhat

more closely the phenomena of radiation and conduction, in

order to deduce that the heating of a body is not so much tie

motion of ether envelopes, but rather consists in a greater velocity of
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vibration of the body molecules. Although the facts are familiar

to us all, yet it may not be uninteresting to call attention to

them again.

We say that a body is heated by conduction when it receives

heat from another with which it is either in direct contact or

by the intervention of another.

In such case the molecules of the warmer body impart their

greater living force in part to those of the colder, until the

molecules of both possess the same living force, or are equally

warm.

A body is heated by radiation when it receives heat from

another without the intervention of a third. If, for example,
we stand near a hot stove, or expose ourselves to the sun's rays,

we receive heat even when the surrounding air is cold. Heat

rays must therefore proceed from the source of heat, just like

light rays from a source of light, which rays excite in us the

sensation of heat.

The researches of physicists have shown that these heat rays
follow the same laws as those of light ; that, for example, they
are in similar manner reflected and refracted, and show the

same phenomena of interference which have made us acquainted
with the nature of light.

We may at present assume with certainty that light rays are

propagated in a similar manner, and arise in a similar manner,
to sound waves in the air or water waves in the water.

Luminous bodies possess the power of putting into vibration

the ether which pervades all space and all bodies. These vibra-

tions reach our eyes, excite the retina, and thus cause sight.

Just as high tones are caused by quicker, and low tones by
slower vibrations of the sounding body and of the air, so differ-

ent colors are caused by quicker and slower vibrations of the

ether.

Since, now, radiant heat follows the same laws as light, we
must attribute its origin and transmission to tie vibrations of the

etfier atoms. Of this the folloAving experiment will convince us :

If we allow a ray of li^ht to enter a dark room through an

aperture, and to pass through a triangular prism held in front

of the aperture, the ray will be not only deviated or refracted,
but the ray originally white will be split up into various colors,
of which we may distinguish especially seven, the so-called
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prismatic colors, or colors of the rainbow. All the colors bear

the name of "
spectrum," and when obtained by the decomposi-

tion of the sun's rays, of the solar spectrum.
Without the prism, we obtain a light strip upon the screen,

of the form of the aperture, in the straight line drawn from the

aperture to the sun. With the prism, the light strip is very
much broader, is deviated toward the refracting angle of the

prism, and is vividly colored. The colors, beginning with those

least refracted, are red, orange, yellow, green, blue, indigo blue,
and violet.

If we examine the spectrum formed upon the screen with a

sensitive thermometer, or a thermo-electric pile, which shows
least differences of temperature, we shall find that the violet

rays have the least heating power, and the red the greatest.

Indeed, if we examine beyond the red rays, where no color can

be perceived, we find that the heat is still greater than in the

spectrum itself, and these invisible rays extend beyond the

spectrum a distance about equal to its own length. Thus the

so-called heat spectrum has about double the length of the

color spectrum.
Hence it appears that the heat rays are less refracted than

the light rays, since they are less deviated.

For the sake of completeness we may also add the following ;

If we extend our examination beyond the violet, we find here

rays which have the greatest influence upon chemical combina-

tions. In fact, these rays have the most powerful photographic

effect, and hence they constitute the chemical spectrum.

Physicists have computed that for red light the ether must

make not less than 481 billion vibrations in a second, while for

violet light 764 billions are necessary. The heat rays, then,

are caused by ether vibrations, on the whole less than 481 bil-

lion per second. On the other hand, the number of vibrations

of the chemical rays is more than 764 billion per second.

When, now, the vibrating ether meets a body, it sets in vi-

bration either the ether existing in the body, or the atoms of

the body, or both. If the ether in a body is so constituted that

it can transmit the vibrations which it receives from white light,

it is transparent and colorless. If it can only transmit those

vibrations which it receives from the violet rays, while the

others are lost, it appears violet in color, and so on. In an
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opaque body the ether is so constituted that it cannot trans-

mit the vibrations communicated to it by a source of light.

While, now, those ether vibrations generated by a source of

light, and which, we must assume, possess a greater velocity

but a less amplitude of vibration than heat rays, set into vi-

bration the etJier contained in bodies, it is those vibrations

which arise from a source of heat, and which have a less veloc-

ity but a greater amplitude of vibration, whicli, chiefly by im-

pact, set the atoms of a body into vibration, and thus heat it.

Since, however, the heat spectrum is about double the length
of the light spectrum, and since, therefore, there are heat rays
of different refrangibility and velocity of vibration, we might

expect that the molecules of one and the same body are differ-

ently excited by different heat rays, and the body differently

heated indeed, that certain heat rays may not excite the mole-

cules of certain bodies at all, but only the contained ether, and

thus that these bodies are not heated by such rays. Science

furnishes a number of confirmations of this conclusion.

If, for example, we let fall upon a plate of fluor-spar of about

2.6 millimeters in thickness, rays from various sources, such as

the electric lamp, glowing platinum, heated copper, the heat

transmitted is found to be in each case as the numbers

78 : 69 : 42.

Thus the rays from the lamp excite the ether in the fluor-

spar more than the atoms or molecules, while those from the

copper act inversely.
Still more striking is the transmission of different heat rays

by beryl, calkspar, rock-crystal, etc.

Different bodies also transmit different amounts of heat from

one and the same source. Thus, for example, clear rock-salt

transmits 92 per cant, of the rays from the electric lamp, fluor-

spar, on the other hand, only 78, colorless alum 9, and very
clear ice only 6 per cent.

Of all bodies rock-salt, and air especially, transmit equally
well rays from different sources.

Following Melloni, an Italian physicist to whom we are in-

debted for valuable researches upon radiant heat, we call those

bodies which transmit the heat rays, diathermanous, and those

which do not, athermanous.
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If a body cannot transmit through its mass the heat rays
which strike its surface, these rays are either reflected, accord-

ing to the same laws as light rays, or they are absorbed and

heat the body. The greater the amount of heat transmitted,

the less is that absorbed. Thus, for example, rock-salt becomes
heated but little when exposed to the sun's rays or other sources

of heat, because it is very diathormanous, while smoked glass,

which transmits but few rays, is heated much more.

Hence it follows that in absorption of heat, also, there is con-

siderable difference among bodies, and that the same body does

not receive equal amounts of heat from different sources. Thus

while, for example, soot absorbs almost completely the rays
from the electric light, white lead absorbs only 0.53, shel-lac

only 0.43, and a metal surface only 0.14.

On the other hand, the absorption power of white-lead for

rays from the electric light, from glowing platinum, or from

copper heated up to 400, is as

53 : 56 : 89.

The same holds for most other bodies. Soot alone seems to

absorb equal amounts of heat from all sources. Just as in

respect to light it is perfectly opaque, so is it in respect to the

heat rays.

If, now, we investigate the heat rays which a body heated by

absorption again emits, we shall find that these rays are en-

tirely independent of the nature or quality of those absorbed.

Very extensive experiments have shown that the heat rays

emitted by a body are always the same, whatever the source from
ivhich the body is heated, whether the electric lamp, gloiving platinum,

or even contact with a warmer body.

This seems to indicate plainly that the heat rays absorbed

by a body are completely altered in character. It seems also

indicated by the fact that the absorbed heat is propagated very

slowly in the interior of a body, while the radiant heat has a

velocity equal to that with which, heat travels through air and

space a velocity probably not less than that of light itself.

We can therefore hardly assume that the heating of a body

by absorption of heat rays consists in setting the body ether

into more rapid vibration ;
for in such case it would be hard to

see why the heat is not, as in diathermanous bodies, entirely or
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partially transmitted, and why the propagation in the body is

so slow. It is much more probable that the atoms or molecules

of athermanous bodies are excited by the impinging heat rays, and

put into quicker vibration, and that this is the cause of the heating.

This conclusion seems not without interest.

QUESTIONS FOR EXAMINATION.

What amotrnt of work is required to raise the temperature of one kilogram of water one

degree ? How many pounds make a kilogram ? What two theories are there ? Give Redten-

bacher's theory. Whatdoyu understand by "atom ?" What by "ether ?" What by "mole-

cule * " What by
"
dynamide ?

"
In. what does the heat of a body consist according to Redten-

bachcr ? Under what conditions is the body solid or liquid? When gaseous? What was-

Davy's view ? How did Clausius differ? Explain, according to this view, the solid, liquid,

and gaseous states. In what respects does experience confirm it ? How is combustion

explained ? When is a body heated by conduction ? What is the theoretical process ? When
is a body heated by radiation ? Explain the process. What are heat rays ? What facts prove
that heat and light rays are identical ? What is the solar spectrum ? What different rays do

we distinguish in it? What physical difference is there between the heat, light, and chemical

rays ? What physical similarity ? What facts go to prove that it is the motion of the molecules

of a body rather than its contained ether atoms which constitute its heat? When is a body
said to be transparent ? Opaque? Athermanotis ? Diathermanous ? Are the heat rays emitted

from a body always the same in kind ? What does this indicate ? What, then T seems most

probably to constitute the heat of a body ? Are good radiators of heat good absorbers ? Why ?

Explain now, in detail, your ideas of the heating of a body by a distant source, and the processes
of radiation and conduction. Do these or any other theoretical views affect in any degree the

validity of our general principle of the equivalence of heat and work ? Does our principle

depend upon any hypothesis as to the nature of heat? Upon what does it depeud ? Have
these views any value ?
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INNER AND OUTER WORK. LATENT AND SPECIFIC HEAT.

WHATEVER may be the motion in the interior of a body,
whether a motion of ether envelopes according to the views of

Kedtenbacher, or a motion of the molecules as assumed by
Clausius and most other physicists ;

whatever may be the char-

acter of the motion, this much at least is established that

heat is some sort of motion of the particles, atoms, or mole-

cules. If the mass of a particle is m, and its velocity v, then

%mv* is its living force. If we assume the entire weight of the

body to be G> then
'

is the entire inner living force of the body, or its entire "inher-

ent energy," if v is the mean velocity of an atom.

The imparting of heat to the body has, in general, three

effects.

1st The temperature of the body rises its "sensible heat" is in-

creased.

%d. The body expands-^-its volume is increased.

3d. In this expansion the exterior pressure- generally that of the

atmosphere is overcome,

Different Works performed by the Heat.- We see, then, that the

heat performs a threefold work*

1st. Since the rise of the temperature consists in an increase

of the living force of the particles, it must perform a work

equivalent to this increase.

%d. Since the molecules mutually attract each other, a cer-

tain work is necessary to alter their mutual positions ; or, what
is the same thing, to move their common center of gravity.

3d. Since the body is pressed upon on all sides by the air, a

121
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certain work is required to overcome this pressure through a

certain distance.

That work which goes to increase the velocity of the mole-

cules, and therefore to increase the sensible heat of the body,
we call the "vibration ivork" while that work which is neces-

sary to displace the particles we call the "
disgregation work."

Outer and Inner Work. Since, in the practical applications of

the mechanical theory of heat, that work necessary to overcome

the outer pressure is of especial importance, we shall follow

Zeuner, and call the work which increases the velocity of vibra-

tion, together with that which changes the aggregation of the

particles, that is, the "vibration work" and the "disgregation

work," the " inner ivork" while we shall call the other, which

overcomes the outer pressure, the "
outer work."

Starting, then, from the experimentally proved law that
" Heat and mechanical work are equivalent," we can lay down
the following most important fundamental principle of the me-

chanical theory of heat :

The amount of heat (expressed in heat units) imparted to a body
is directly proportional to the simultaneously produced inner and

outer ivork.

Specific Volume Specific Pressure. In our discussions we

shall, in general, take the kilogram (about 2.2 pounds) as the

unit of weight. The volume of any body of this weight we
call the specific volume, and shall denote it by v. V indicates

the volume of a body which weighs more or less than just one

kilogram. The pressure upon each square meter of surface

of any body we call the specific pressure, and shall denote it

by p. We therefore assume that the pressure upon each unit

of surface is the same. We also assume in what follows that

the pressure upon the interior of the surface of a body, at any in-

stant, is just equal to the outer pressure, or varies from it by an

infinitely small amount. That is, the "
body tension

"
is at any

moment just equal to the outer pressure. Whenever we de-

viate from this assumption we shall specially indicate it.

[We shall do well to distinguish between the "
body tension

" and the

outer pressure. If we conceive the body inclosed by a tight-fitting envelope,
or skin, the tension of this skin is the body tension. This may or may not be
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equal to the external pressure. Unless distinctly stated to the contrary, we
suppose that the body tension at any moment differs from the outer prest-ure

only by an indefinitely small amount, and hence that any change from one
state to another is continuous, and therefore reversible. The outer pressure is

thus a property of the body!
The case is quite different when we assume that equilibrium between the

outer pressure and body tension does not exist during the changes of condi-

tion, and therefore that equilibrium is only attained at the beginning and end
of the change, when the body has passed from one condition of equilibrium to

another. The deportment of a body during such a transition is evidently of a

very different character, and we are able to follow the transition only in a few

special cases, in which, by certain assumptions upon the law of change of the

outer pressure (which is considered quite independent of the body tension), we
are able to determine the final condition of the body after the occurrence of a

new state of equilibrium. The two cases may be represented by a rod, which
in the first case is stretched by a force at any instant greater only by an

infinitely small amount than the force with which at that instant the rod

resists extension, and in the second case, acted upon suddenly by a constant

force. In the first case the rod is gradually extended, and the work of ex-

tension can be easily shown to be
,
where G is the final force and I is the

A

extension. In the second case it can be shown that the rod is elongated twice

as far, and the work up to the moment of greatest elongation is 2GI. Further,

the end of the rod will vibrate up and down like a pendulum whose length is

I, and finally come to the same state of equilibrium as the first.

In every case, therefore, unless otherwise stated, we assume that during

change of state by accession or withdrawal of heat the outer pressure is equal

at any instant to the body tension. Thus in the case of a gas expanding, it

overcomes a pressure just equal to its own tension or pressure upon the piston

at any instant. When this is the case the change of state is always reversible,

i. e., by -compression the gas passes through all intermediate states in reverse

order back to original state.]

Fundamental Equations of the Mechanical Theory of Heat It,

now, we impart to the unit of weight of any body one heat unit

(that is, so much heat as will raise the temperature of one

kilogram of water from to 1 C.), we increase its total energy

by 424 meter-kilograms ;
that is, the increase of its inner and

outer work is equivalent to a work of 424 meter-kilograms.

If, however, we impart Q heat units, then the work performed

upon the body, or received by it, is 424 x Q. If we denote

this work by E, we have for the energy imparted to each unit

in weight by the reception of Q units of heat,

E
and inversely,

Q =
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The fraction ^Jj, or that portion of one heat unit, or that

amount of heat which is equivalent to one unit of work, we

designate in general by A.

We thus have

Q = A x E.

If, now, W is that portion of the whole energy which goes to

the increase of the vibration work, J that portion which goes
to disgregation work, and L that portion which corresponds to

the outer work, we have E=W+J+L, and hence

Q=A(W+J+L) . . ";' ..- g (I.)

Since we call both W and J together the inner work, let us

represent it by U,* or UW+J, and we then have

Q=A(U+L) . . . .- .'

:

. (II.)

Change ofSign of the Terms in Equation I. Now in Equation L,

any one or more of the terms in the parenthesis may be zero,

or may be negative. In such case, for the
,
same amount of

heat imparted, Q, the remaining terms must be greater. "We

may illustrate by a few examples.
It lias l)een already remarked, that, in order to convert ice at

into water at 0, not less than about 80 heat units are neces-

sary. When, therefore, we add heat to the ice, we do not

increase its vibration work, i. e., its sensible temperature at all,

but the heat imparted performs* disgregation work and outer

work. In Equation I., therefore, W is zero. This is the case

with almost all other bodies. The heat which thus disappears,

apparently, since it is not sensible to- the thermometer or to

our nerves while a body is melted, 'we "call the "latent heat."

The experiments of Eegnault and Person give the latent heat

of several bodies as follows :
i xy

Water 79.25 Tin 14.252 Zinc . , . . . 28.13

Phosphorus. 5.034 Lead 5.369 Mercury .2.83

Sulphur 9.368 Bismuth..12.640

In passing from the liquid to the gaseous state heat also

disappears, and the amount thus disappearing is in general

greater than in liquefaction.

*
[Kirehoff calls the quantity 7 the "

working function ;" Thomson,
" the mechanical energy

of a body in a given state ;" Clausius understands by
" inner work 1 '

only that portion denoted by
-7, which we call

"
disgregation work."]
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Thus, for example, according to Brix, the latent heat of steam

is 540; that is, to convert one kilogram of water at 100 into

steam at 100
,
540 heat units are necessary; that is, just as

much heat as is required in order to heat 540 kilograms of

water from to 1. Thus, referring to theory, a greater ex-

penditure of work is required to give the particles a rectilinear

motion, such as we assume for gas, than to impart those rotary
motions which are supposed to constitute a liquid.
For alcohol, sulphuric ether, and oil of turpentine, Brix found

the latent heat of evaporation, 210, 89.96, and 74.04, respec-

tively.

If we heat water from O
r

to 4, it does not expand, as is gen-

erally the case when bodies are heated, but contracts, and thus

the molecules approach each other. The outer work is thus

negative. In fact the outer pressure here assists the heat, so

to speak. Without this pressure we would have to impart
more heat in order to raise the same water up to 4. If, there-

fore, we increase the pressure, the heat necessary to be im-

parted is less.

We have still greater contraction when we convert ice at
?

into water at 0. Ermann observed that the volume of water

at O
c
is only T <jths of that of the ice at the same temperature.

Here, then, the outer work has a still greater negative value,

and therefore, under increased pressure, the latent heat of the

ice ought to be diminished, L e., its melting point lowered.

Mayer predicted this in his contributions to the mechanical

theory of heat, and the experiments of Mousson have com-

pletely confirmed it. This physicist showed by a very ingen-
ious experiment that under a pressure of about 13,000 atmos-

pheres the melting point of ice was lowered about 18, that

therefore, under this pressure, ice became liquid at 18,
instead of 0.

Cast iron and bismuth also contract when they pass from the

solid to the liquid condition. The most striking example of

contraction when heated is, according to Sir William Thom-

son, shown by vulcanized rubber. When a tube of this material

is fastened at one end, and a weight of ten or more pounds is

hung from the other, this weight is raised by heating the tube.

We see here, therefore, very plainly, that the outer work per-
formed is negative.
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Increased Pressure can also Raise the Melting Point. If a body

expands under the action of heat, this expansion will be less

when the pressure is increased, if the heat imparted is the

same in amount. And inversely, if the expansion is the same,

more heat must be imparted. If a body in melting, then, fol-

lows the general rule and expands, its melting point must rise

when it is subjected to a greater pressure. In this case the

outer work, L performed during expansion, is greater, and

accordingly the heat imparted, Q, must be also greater. These

theoretical conclusions are also confirmed by numerous experi-

ments. Thus Hopkins has found for the melting point of vari-

ous substances, under varying pressures, the following results :

MELTING POINT.
Pressure
in At-

mospheres.

1
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We can easily make here the outer work negative. We
have only to suppose that, while the air is being heated,

weights are gradually applied to EF, so that, in spite of the

rise of temperature, the piston sinks, and the air is com-

pressed. The work performed thus by the sinking piston cor-

responds to a certain amount of heat, and the whole amount

imparted, in order to raise the air to the same temperature,
is less than before by just this amount,

Change of the Fundamental Equations when Heat is Abstracted.

If we take heat from a body, inverse phenomena occur
; the

vibration work is in general diminished, and there is there-

fore a decrease of temperature ;
also the molecules approach

nearer, and the outer work is negative. Equation I. accord-

ingly takes the form

- Q = A(- W-J-L).
Just as in Equation I. different terms in the parenthesis can be

zero or negative, so here different terms can be zero or pos-
itive.

We have an example in the case of water. When this is

cooled from 4 to it does not contract,' but expands, the outer

work, L, is therefore positive. This positive outer work is still

greater when we abstract from the water at its latent heat of

liquefaction, and thus convert it into ice at 0. In this case

the vibration work, or sensible heat, remains the same, and

hence W 0. Since, now, W 0, and L is positive, J must

have a. so much greater negative value, that is, the molecules

are the more strongly attracted. We can explain this only by

assuming that the molecules are arranged in a definite and

regular manner, that is, that the ice has a crystalline consti-

tution.

As in the freezing of most other bodies there is a contraction,

the outer work is negative when the latent heat of liquefaction

is abstracted, and hence the decrease of the vibration work is

zero. For these bodies, for the same withdrawal of heat, the

attraction of the molecules increases relatively less rapidly than

for water.

Also, when steam loses its latent heat of vaporization and

becomes liquid, the decrease of its vibration work, or its sen-
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sible heat is zero. As we say, the steam is condensed, since

steam occupies a very much greater space than the liquid from

which it is generated, the outer work, L, must have a very

great negative value.

This work Papin sought to utilize. The cylinder ABCD,
Fig. 10, contained water, which was heated until all the air was

driven out. Then the air-tight piston
was inserted, and cold water applied
to the cylinder, thus condensing the

steam. The atmospheric pressure
then forced the piston HH down,
and thus raised the rod / by means of

the lever FG. When the piston ar-

rived at the bottom the water was

again heated, the expansive force of

the steam balanced the air pressure,
and the weight of 7, which was heavier

than the piston, then raised the lat-

ter to the top of the cylinder. The steam was then again con-

densed, and so on. .

As is well known, Newcomon first practically utilized this

idea in England, in his atmospheric engine, which Watt later

converted into the steam engine.
This process, by which a body, as the water in this case, is

changed from one condition to another, and from this back

again to the first, is called a "
cycle process"

We have, also, in hot-air engines a similar cycle process, but

instead of water it is air which is made to change its condition.

First, a certain volume of air is compressed, then heated, and
thus outer work is performed, then cooled back to its original

condition, and so on.

Specific Heat. If we impart equal amounts of heat to differ-

ent bodies, the increase of vibration work, that is, of their sen-

sible heat, is very different.

We may illustrate this by an experiment. If we mix one

kilogram of water at 10 with one at 30", the temperature of the

x 30 _ , _
For, since we require, in

. 1 x 10 4- 1
mixture is -20

the one case, to raise one kilogram of water to 10, 1 x 10 = 10
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heat units, and, in the other, 1 x 30 = 30 heat units, tliere are

required for both 10 + 30 = 40 heat units, or V = 20 for each

kilogram.

If, now, we mix one kilogram of water at 10 with one kilo-

gram of iron at 30, we shall find that the temperature of the

mixture is 12. Thus the iron has lost 30 - 12 = 18", and this

heat has been imparted to the water. But this heat does not

raise the kilogram of water 18, but only 2. What the iron

has lost is, apparently, not gained by the "water.

If, on the other hand, we mix one kilogram of water at 30

with one kilogram of iron at 10, we shall find the temperature
of the mixture to be 28.

The 2", or the 2 heat units lost by the water, thus raise the

temperature of the iron 18. One heat unit, therefore, will

raise one kilogram of iron 9.

We see, therefore, that the same amount of heat which

causes in water a certain rise of temperature, has an effect nine

times as great for iron.

If, again, we have one kilogram of water at about 80 (more

exactly 79.25), it will, as we know, render completely liquid

one kilogram of ice at
; and, on the other hand, with one

kilogram of iron at 80 we can melt only |,th of a kilogram of ice

atO\

Also, if we allow equal quantities of water and iron, at the

same temperature, to cool in the air, we shall find that the

temperature of the iron sinks nine times as fast as that of

the water. But since the air abstracts from both bodies, in

the same time, equal quantities of heat, the water must pos-

sess nine times as much heat, at the same temperature, as the

iron.

Experiments have shown that two bodies seldom occur for

which equal weights are raised by equal amounts of heat the

same number of degrees.
We call that amount of lieat, expressed in heat units, which

is necessary to raise one kilogram, or generally, one unit of

weight, of a body one degree, the "
specific lieat

"
of the body.

It is evidently the same whether French or English heat units

are used.

In the following table we have the specific heat of various

bodies, as determined under constant pressure, by the exact and

careful experiments of Eegnault :

9
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Antimony 0.0508
|

Mercury 0.0333

Bismuth 0.0308
j

Nickel 0.1110

Carbon 0.2414 Phosphorus ...;.... 0.1887

Cobalt 0.1070 Platinum 0.0324

Copper 0.0952
j

Silver 0.0570

Gold 0.0324 Sulphur 0.2026

Iron 0.1138
]

Tin 0.0562

Lead 0.0314 Zinc 0.0956

Manganese 0.1217
j

Volume C ipacity. The specific heat defined above is the

quantity of heat expressed in heat units necessary to raise one

kilogram, or one unit of iveight of a body, one degree. We may
therefore call it the heat capacity of one unit of weight, or gen-

erally, the "
iveight capacity"

But we may also easily determine the quantity of heat re-

quired to raise e^iial volumes of different bodies one degree.
One kilogram of water occupies a space of one cubic deci-

meter, since one cubic meter of water weighs 1,000 kilograms.

Now, the density of chemically pure iron is 7.8439 times as

great as that of water, hence one cubic decimeter of iron weighs
7.8439 kilograms.

Since, now, one kilogram of iron requires 0.1138 heat units

to raise its temperature one degree, 7.8439 kilograms, or one
cubic decimeter, requires 7.8439 x 0.1138 = 0.8926 heat units.

This quantity of heat we may call the " volume capacity
"
of the

iron. In general, we understand by volume capacity of a body
that amount of heat necessary to raise equal volumes one degree in

temperature.

We may obtain it, as shown by the example above, by multi-

plying the specific gravity of the body by its weight capacity, or its
"
specific heat."

[We owe the latest researches upon the specific heat of gases to Regnault ;

but these researches give only the specific heat for constant pressure, that for

constant volume has not been as yet directly determined. Let c
r, be the weight

capacity for constant pressure, and
GO,,

the volume capacity for constant press-

ure, which, as we have seen above, can be found from the weight capacity by
multiplying by the specific weight. Then we have

c,,. &>.

Air 0.23751 0.00030714

Nitrogen 0.24380 0.00030625

Oxjgen 0.21751 0.00031099

Hydrogen 3.40900 0.00030533
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The values of the weight capacity for constant pressure are, as we see, dif-

ferent for different gases. Hydrogen is most noticeable. Its specific heat is

inded greater than for any other body, solid or liquid. After hydrogen comes

water, whose specific heat
(c,.)

is 1. For others the specific heat for constant

volume is less, and indeed for most much less than 1.

Regnault also found the specific heat of gases, especially of air, constant fo?

different pressures and temperatures; a beautiful confirmation of a prediction
made by Clausius, as early as 1850, upon theoretical grounds alone.

As regards the volume capacities for constant pressure, we see that they
differ but little, so little that one is inclined to assert that the deviations are

due merely to errors of observation. If we calculate, however, the volume

capacity for the other gases given by Regnault, we find that approximate equal-

ity exists only for those gases which are furthest from their point of liquefac-

tion, and in which, therefore, the disgregation work is of little or no account.

We can, therefore, conclude that equality exists only for "
perfect" gases, and

this conclusion is supported by theory.
As to the specific heat of gases for constant volume, as already remarked, a

direct determination is not yet attained. We can, however, determine this

value indirectly, at least for air. If c,t is the weight capacity of air for cor-

stant pressure, and c,, for constant volume, we can in various ways determine

the ratio k . Such a determination we shall hereafter give when we coir.e to
CD

apply the principles of the mechanical theory of heat to the solution of different

problems. One of these methods, used by Gay-Lussac, Clement, and Desormes,

and later .by Masson (WiUlner, Experimental Physik, Bd. 2, p. 279), gave re-

spectively k 1.372, 1 .357, and 1.419. Another method, by Him (Theorie me-

cardqus de la chaleur, p. 69), and Weisbach (Cinlingeniear, Bd. 5, p. 46), gave
1.3845 and 1.4025. Further, a comparison of the results of the formula for the

velocity of sound, by Dulong, with observations upon the progression of sound

in air, gave k 1.421, and Dulong found similar values also for nitrogen, oxy-

gen, and hydrogen. A similar comparison, with the results of observation by
Moll and Van Bech upon the velocity of sound, gave for air k 1.410.

This last value is regarded at present as the most reliable, especially, as it is

justified by the results of other researches.

Taking for air, then, k = - = 1.41, and ep according to Regnault 0.23751,
Of

we have for the specific heat of air for constant volume c r, 0.16844.

Since the outer pressure may be supposed indefinitely varied, there may be,

strictly speaking, an indefinite number of values for the specific heat of a body,

one for each different law of variation of pressure. We have considered above

only two special cases, viz., for constant pressure and for constant volume.

We shall see later how to find the specific heat for any given law of variation

of pressure with volume. In Regnault's expeiiments the bodies were sub-

jected to the constant pressure of the atmosphere, and in accepting his results

we must not therefore neglect the fact that they strictly hold good only for

constant outer pressure.

For solid and most liquid bodies the expansion is very slight, and therefore

the heat converted into work insignificant in such case. For gases, however,

as we have seen, the difference is great.
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It is evident that the specific heat for constant pressure cp must always be

greater than that for constant volume c i: , because in the first case heat is ab-

sorbed by the outer work, and for the same rise of temperature more heat must

be imparted.
In general, we have for the heat imparted for a rise of temperature at,

for the unit of volume heated under constant volume, in which case dL the

outer work is zero,

dQK = codt + Adj.

For a perfect gas dj, or the increase of disgregation work, is zero, and then

GO is the specific heat of the unit of volume for constant volume (volume capac-

ity). If, however, 7is not zero, then the value which we have until now called

the volume capacity has a complex significance. Without doubt dJ is, under

the above conditions, positive, since we must admit that the smallest particles

act attractively upon each other, and dJ represents the work which even by
constant volume is applied to disgregation of the molecular groups. Rankine

calls the value of ca in the above equation the "
real specific heat," and hence

we should conclude that the "
apparent specific heat" deviates the more from

the real, and is so much greater than it, the more the gas departs from the

perfect condition.

The total heat, then, imparted in order to raise a body one degree in tem-

perature is the apparent specific heat ;
if from this be subtracted all the heat

expended in performing interior and exterior work, the remainder is the real

specific heat, because it alone measures the actual heat of the body.]

The Disgregation Work, in Solid and Liquid Bodies, is very
small in comparison with the Vibration Work. We have already

repeatedly defined the "unit of heat
"
as that quantity of heat

which must be imparted to one kilogram of water in order to

raise its temperature one degree. But now, if we impart to, say
one kilogram of water, so much heat that its temperature is

raised one degree, we have not only increased the vibration

work or sensible heat, but also the disgregation work as well.

The heat imparted must therefore be greater than it would
have been had we only increased the sensible heat of the water,

Of this fact no account was taken when the idea of the heat

unit was first formed and the specific heats of bodies deter-

mined, because at that time the principles of the mechanical

theory of heat were unknown. If, then, the disgregation work
were considerable and varied much for different bodies, these

determinations of specific heats would have little or no value.

Fortunately this is not the case. Thus Eegnault, whose ex-

periments are the most reliable, made his observations upon
bodies subjected only to the pressure of the atmosphere. The
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outer work and disgregation work thus performed were but

slight in comparison with the vibration work.

For example, let us suppose one kilogram of water at 4, that

is at its greatest density, contained in a cylindrical vessel of one

square decimeter in cross-section. The depth of the water is

then exactly one decimeter. If this water is raised one degree
in temperature it expands, according to the elaborate experi-
ments of Kopp, about 0.000006 of its volume at 4. The water

thus rises in the vessel about 0.000006- of a decimeter, and

through this distance the atmospheric pressure of about 103.34

kilograms per square decimeter is overcome. We have there-

fore the outer work equal to 103.34 x 0.000006 = 0.00062004 deci-

meter kilograms. But since the mechanical equivalent of the

heat imparted is 424 meter kilograms, the outer work is, as we

see, very small in comparison. The disgregation work, or the

work expended in separating the particles, is also very small.

Thus, according to the experiments of Grassi, the coefficient of

compression of water, that is, the amount it is compressed by
an increase of pressure of one atmosphere, is only 0.00005 of

its volume when the compression takes place between 4? and 5.

If, then, we increase the pressure upon the water, in our vessel

by one atmosphere, the water is compressed about 0.00005 of a

decimeter. This corresponds to a work therefore of 0.00005

x 103.34 = 0.005167 decimeter kilograms. We see thus that

the disgregation work is also very small. We may, therefore,

for slight rise o'f temperature, disregard the entire disgregation
work for solid and liquid bodies.

Since for high temperatures the coefficient of expansion in-

creases, that is, the increase of volume for a rise of 1 is greater,

the disgregation work must increase, and, for the same amount

of heat imparted, the vibration work or sensible he
;

at be pro-

portionally less. If the increase of this last is the same as

before
;
that is, if the body at the higher temperature is raised

also 1, then the total heat imparted is greater than before.

We see, therefore, the reason why the specific Jieat increases with

the temperature.

It is also a fact that liquid bodies expand more for the same

rise of temperature than solid. It is therefore very probable
that the same body has a greater coefficient of expansion when

in the liquid condition than when solid; and this renders it
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also probable that the specific heat of a body when liquid is greater

than tvJien solid. For many bodies this lias already been con-

firmed by careful experiments.

Specific Heat for Constant Volume and for Constant Pressure.

If we conceive a body so confined that it cannot expand when
it is heated, then all the heat imparted goes to increase the

vibration work, and thera is no disgregation work or outer

work at all. For the same amount of imparted heat', therefore,

the sensible heat will be greater than when the body is free to

expand. Inversely, a less amount of heat would be necessary
to cause a certain rise than when free to expand.
The amount of heat measured in heat units which must be

imparted in order to raise one kilogram weight of any body
1 in temperature when expansion cannot take place, is called

the "specific heatfor constant volume."

We call, on the other hand, that amount of heat which is

necessary to raise the same unit weight, one kilogram of any
body, 1 in temperature, when the body is allowed to expand
under the constant pressure of the atmosphere, the "specific

heat for constant pressure." It must evidently be greater than

the first, because heat is required to perform the disgregation
work and outer work which take place in the second case.

[Both these specific heats refer to the unit of weight, and are therefore
"
weight capacities," the one under constant volume and the other under con-

stant pressure. We might also have two " volume capacities" in the same
circumstances. No use is made of such quantities. "Specific heat" refers

always to the unit of weight, and indeed, unless distinctly stated, we always
understand a constant volume to be presumed.]

[The following tables give the mean specific heats for constant pressure of

the substances named, according to Regnault. These specific heats are average
values, taken at temperatures which usually come under observation in tech-

nical applications. The actual specific heats of all substances, in the solid or

liquid states, increase slowly as the body expands or as the temperature rises,

and when great accuracy is required tables of specific heats must be consulted,
which will give these quantities with greater deiiniteness at special tem-

peratures.

SOLIDS.

Antimony 0.0508

Copper 0.0951

Gold 0.0324

Wrought Iron 0.1138

Steel (soft) 0.1165

Steel (hard) 0.1175

Zinc 0.0956

Brass . . . 0.0939
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SOLIDS Continued.

Glass 0.1937

Cast Iron 0.1298

Lead 0.0314

Platinum 0.0324

Silver 0,0570

Tin.. . 0.0562

Ice 0.5040

Sulphur 0.2026

Charcoal 0.2410

Alumina 0.1970

Phosphorus 0.1887

LIQUIDS.

Water 1.0000

Lead (melted) . , . 0.0402

Sulphur
"

0.2340

Bismuth "
0.0308

Tin "
0.0637

Sulphuric Acid 0.3350

Mercury . . 7. 0.0333

Alcohol (absolute) 0.7000

Fusel Oil 0.5640

Benzine 0.4500

Ether.. . 0.5034

GASES.

Constant Pressure,

Air 0.23751 ..

Oxygen , 0.21751 . .

Hydrogen. 3.40900 . .

Nitrogen 0.24380

Constant Volume.

... 0.16847

. .. 0.15507

... 2.41226

. 0.17273

Superheated Steam 0.4805 0.346-

Carbonic Acid 0.217

Olefiant Gas 0.404

Carbonic Oxide 0.2479

Ammonia 0. 508

Ether 0.4797

Alcohol 0.4534

Acetic Acid 0.4125

Chlorofprm 0.1567

0.1535

0.173

0.1758

0.299

0.3411

0.3200

[There are three methods employed for determining the specific heat of a

body,
(1) Method of mixture.

(2) Method by fusion of ice.

(3) Method of cooling.

(1) Method of mixture. The body whose specific heat is to be determined, is

raised to a known temperature, and is then immersed in a mass of liquid of

which the weight, specific heat> and temperature are known. When both the

body and the liquid have attained the same temperature, this is carefully

ascertained.

Now the quantity of heat lost by the body is the same as the quantity of heat

absorbed by the liquid.

Let c, w, and t be the specific heat, weight, and temperature of the hot body,
and c', w'. and t' of the liquid. Let be the temperature the mixture assumes.

Then, by the definition of specific heat, c x w x (t 5) = heat units lost by



136 THERMODYNAMICS.

the hot body, and c' x w' x (0 t") heat units gained by the cold liquid. If

there is no heat lost by radiation or conduction, these must be equal, and

cw(t 0) = c'w'(Q t'),

or

w(t-0)

The same method of mixture may be made use of to determine the latent

heat of a body, or the heat required to reduce a unit weight of a solid body at

the melting point to a unit weight of liquid at the same temperature.
Let a solid body of weight w and at temperature ti have the known specific

heat Ci, and let the specific heat of the same substance in the liquid condition be

ca ,
and the temperature of the melting point be t 3 . Let the body be immersed

in a liquid whose weight is w', temperature t', and specific heat c', and when it

is all melted let the common temperature be 6. The solid body is then first

raised to the melting point, which requires CiWi ( 2 t\) heat units. It is then

melted, and since, when melted, the resulting liquid has the same temperature
of the melting point, all the heat required to melt it is latent. If x is the latent

heat of fusion, in heat units per unit of weight, the total latent heat is xwi.

To now raise the resulting liquid to 6, requires c-2Wi (9 a ) heat units.

Hence the total heat imparted is c t Wi (ty ti) + xw l + c*Wi (0 t-2).
The

heat lost by the liquid in which the body is immersed is c'w' (f 6). We have

then

CiWi (t-j.
t } ) 4- xwi + c-iWi (B tfa)

=
c'w'(t' 0),

or

If the temperature of the body before immersion is just at the melting point,
= t, and

(3)

If, in addition, the liquid in which the body is immersed is the same sub-

stance as the solid body, c2 = c' and

This last is the case when ice at C. is immersed in water at /' degrees C.

If a pound of ice at zero C. is immersed in a pound of water 79. 25 C. it is

found that the temperature of the mixture when all the ice is melted is just .

We have, then, c' = \, w = w,, t' = 79.25, t* = 0, = 0, and hence x = 79.25 =
latent heat of water.

^ From (1) we can by experiment, determine the specific heat of any solid

body. From (4) we can find the latent heat in the melting of any body, and
from (2) or (3) we can find the specific heat c-t of the solid when in a fluid con-

dition.

We can also find from (1) the -temperature of a mixture when we know the

specific heat of the substances used.
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(2) Method by fusion (BLACK'S CALORIMETER). The substance whose weight
is w, is heated to a known temperature t, placed in a block 'of ice and then

covered with ice. When it has cooled to C., the cavity in the ice is wiped
out with a dry cloth, the increase in weight of the cloth giving the weight of ice

melted. Let i = weight of ice melted. Then since it takes 79.25 heat units to

melt one unit weight of ice,

cw(t-Q) = i x 79.25,

r, since in this case fl = 0, cwt = 79.25^, or c ^V
wt

This method is open to the objection that some ice is melted by heat from

surrounding objects, etc.

Calorimeter of Laplace and Lavoisier. This consists of three vessels. The
two outer ones contain powdered ice, and in the third and interior one, the body
is placed. If any heat passes into the apparatus from exterior objects it will

liquefy some of the ice in the outer vessel, but will not affect the inner one. All

the melting which takes place in the middle vessel is therefore due to heat from

the body to be tested. The water thus produced is drawn off and weighed.
7Q 9* V

We have then, as before, c = '-^p .

wt

The method is open to the objection that some of the water adheres to the

ice and is nofdrawn off.

BUNSEN'S CALORIMETER. The weight of ice melted is determined by measur-

ing the contraction which takes place in its volume. A small vessel (A) is fitted

into a larger one. The space between is filled with water and the inner vessel

is cooled, by the rapid evaporation of ether, until the surrounding water is con-

verted into ice. The body is placed in A. As it cools it melts some of the

surrounding ice. A narrow tube, the area of whose section is known, is fitted

into the larger vessel, and partially filled with mercury. As the ice melts, the

mercury recedes in the tube, and thus the amount of contraction is determined.

As ice loses about 9 per cent, of its volume when liquefying, the weight of

ice melted can be deduced from the change in volume.

(3) The method by cooling. This consists in determining the time in cool-

Ing of equal weights of different bodies of equal surfaces these times have the

same ratio as the specific heats.

EXAMPLE 1. A piece of iron weighing 750 grs., at a temperature of 200 C.

is placed in ice at C. Taking latent heat at 79, and specific heat of iron at

0.114, how much ice will be melted ? Ans. 216ff grs.

EXAMPLE 2. A pound of iron at 100 C. is placed in a Laplace calorimeter,

and the water which flows out is found to weigh 0.144 Ib. Taking latent heat

at 79, what is the specific heat of iron f Ans. 0.11376.

EXAMPLE 3. In Sunsen's calorimeter the area of cross-section of the mer~

cury tube is 0.01 inch. It is found that 78 grains of iron introduced at the

temperature 100 C. cause the mercury to move 0.5 inch. If the weight of a

cubic inch of ice is 227.25 grains, and it contracts ^ of its volume in melting,

find the specific heat of iron. Ans. 0.115085.]
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QUESTIONS FOB EXAMINATION.

Whatever may be the views held as to the nature of heat, what have we thus far established f

Is this firmly established ? What are the proofs ? What do you understand by
"
living force ?

'*

What by
" inherent energy ?

"
If a body of mass m has a velocity v, what work can it perform

in coming to rest while overcoming resistance ? Is the setting of a body in motion " work ?
'*

If heat is a motion of bodies, is it not then identical with work ? If it is not such motion,

should we expect to find any equivalence ? Do we find any equivalence ? What is it ?

When a body is heated, what three effects are in general produced ? In what does the rise of

temperature consist ? What three works are performed when a body is heated ? What do you
understand by vibration work ? Disgregation work ? Outer work ? Inner work ? How do we
measure heat ? What is a " heat unit ?

" To what is the amount of heat imparted to a body

proporti onal ? How many heat units are equivalent to 2120 meter-kilograms ? How many meter-

kilograms are equivalent to 12 heat units ? What does A denote in our notation ? If E is work

expressed in meter-kilograms, and Q is amount of heat given in heat units, what is the general

equation between them ? What is the general relation between Q and the vibration work ( W),

disgregation work (7), and outer work (L) ? What does U denote in our notation ?

Define "specific volume "" specific pressure." What does v denote? What does F de-

note? What do you understand by "body tension?" What is the relation between body
tension and outer pressure which is assumed unless otherwise stated ?

In the equation Q = A (W+J+ L), what do the letters denote ? Give a familiar example
where W is zero. What other examples can you think of? Define "latent heat?" What is

the latent heat of steam ? Give a familiar example in which L is negative. Can increased press-

ure raise the melting point ? Under what circumstances is this true, and why ? Give a familiar

example where J is zero. %

When a gas is heated, what works are performed ? When a gas is not free to expand, doe&

it require more or less heat to raise a given weight of it a given number of degrees ? Why?
When a gas can expandtwhen heated, what works does the heat imparted perform ? When it

can not expand ? What is the outer work in the latter case ? Can the outer work ever be nega-
tive ? Give a familiar example.

When we abstract heat from a body what occurs in general ? Can L ever be positive in this

case? Give an example. Is JTever equal to zero ? Give examples.
Define exactly what you understand by "specific heat." Why is it called "specific?"

What is the specific heat of water ? If the specific heat of iron is iVth, what does that mean f

What do you understand by
" volume capacity

" for heat ? What by
"
weight capacity ?

" How
can you find the volume capacity from the weight capacity ? What is real specific heat ? Appar-
ent specific heat ?

What is the disgregation work in solids and liquids ? How does it compare with the vibra-

tion work ? Can you illustrate this ? What do you understand by coefficient of expansion ?

Why does the specific heat increase with the temperature ? Why should the specific heat of a

body when liquid be greater than when solid ? What do you understand by specific heat for

constant volume ? What for constant pressure? Which is the greatest? Why? When we

simply say
"
specific heat," without further limitation, what, do we mean ?

What do you mean by latent heat of water ? Would it be correct to say latent heat of ice ?

Why not ? If Co is the specific heat for constant volume, how many units of heat would be

necessary to raise k kilograms of a body t degrees ?

How many pounds of mercury at the temperature of 300 are required to raise 15 pounds of

water from 60 to 70 ?

If two liquids have the weights w and w', the temperatures t and f, and the specific heats c

and c? respectively, what is the temperature of the mixture ?

Reduce - 40 Fahr. to Centigrade degrees. Reduce - 273 C. to Fahrenheit degrees. How
do you reduce generally Fahrenheit to Centigrade degrees, and vice versa?

What outer work is performed when 2 pounds of air are heated from 60 to 70 Fahr. under
the pressure of the atmosphere ? What, when 3 kilograms are heated from to 1 C. ?

What is the specific heat of air under constant volume ? Under constant pressure ? Show
how to find from these the mechanical equivalent in French measures ? In English measures ?

See Examples for practice at end of volume.
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EXPANSION OF GASES. SPECIFIC HEAT OF GASES. DETERMINATION

OF MECHANICAL EQUIVALENT OF HEAT.

Expansion of Gases ivlien Heated. As we have just seen, the

disgregation work and the outer work are very small indeed

for solid and liquid bodies, and in comparison with the vibra-

tion work may be neglected. But for gaseous bodies it is dif-

ferent. Here there is no attraction between the molecules, or

if any, it is exceedingly small, so that there is no disgregation
work. All the heat imparted to a gas goes, therefore, to increase

the vibration work, that is, to raise the temperature and to

perform outer work. This last is, for gases, much greater than

for solid and liquid bodies, because they expand much more
for the same rise of temperature.
Let us now seek to ascertain the amount of this expansion,

as well as the other properties of gases.

Suppose that below the piston EF, Fig. 11, in the cylinder

ABCD, we have one cubic meter of air at and

ordinary tension, corresponding to 760mm> of the

barometer. This air weighs, then, according to

the experiments of Regnault, 1.29318 kilograms

(one cubic foot of air at 32 weighs 0.080744 Ibs.).

If, now, we heat the air, it expands for every de-

gree Centigrade^ 0.00367 of its volume at

zero. This coefficient has been determined by

Eegnault and Magnus from a series of very care-

ful experiments. It is therefore the coefficient

of expansion of air.

If, now, this air volume of one cubic meter

is heated to 2, 3, 4, etc., degrees, it expands
2 x ^, 3 x ^h, 4 x ^3, etc, or 2 x 0.00367,

3 x 0.00367, 4 x 0.00367, and the original cu-

bic meter becomes, at these several tempera- FIG. it

tures,

B
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1 + 2 x 0.00367 cubic meters,

1 + 3x0.00367 "

1 + 4x0.00367 "

etc. If heated to t, we have, therefore,

1 + 0.00367* cubic meters.

If instead of one cubic meter we had 2, 3, 4, or in general V
cubic meters to start with, we should have when heated to t,

0.003670 cubic meters. . . . (III.)

If heated to 100, the one cubic meter becomes

1 + 0.00367* = 1 + 0.00367 x 100 = 1.367 cubic meters,

and if heated 273, we have

1 + s- x 273 = 1 + 1 = 2 cubic meters.

If, therefore, air is heated from to 273 (or from 32 to

523 Fahrenheit), it expands to double its original volume.

This law, according to which air expands, is called the law

of Gay-Lussac.
It is evident that the density of the air under the piston EF,

or the weight of a unit of volume, diminishes as the volume

increases. Since, for example, when heated 273, our one cubic

meter becomes two, and yet still weighs 1.29318 kilograms, the

density at this temperature is only one-half of that at 0.
Since the densities of two bodies are inversely as their vol-

umes, provided that the weights are the same, we can find the

density D, of the air for any temperature t, from the propor-
tion,

0.003670:7,

where we assume the density at = 1, and the volume at this

temperature = V.

We obtain, therefore, the density for any temperature *,

D V 1
(TV }

F(l + 0.003670
~

1 + 0.00367*
*

[or for Fahrenheit degrees D =
x +Q^S (;

- 32)

* where * is

the temperature Fahrenheit.

One cubic foot of air at 32 F. weighs 0.080744 Ibs.]
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For example, for t = 10 and t = 100, we have D = =

= 0.9646, and D = , ^^ = 0.7316. One cubic meter of air
1 + U.oo7

at 10 weighs, therefore,

0.9646 x 1.29318,

and at 100, 0.7316 x 1.29318 kilograms.

[For t 10 Fah. and 100 Fah. we have the weight of one

cubic foot in Ibs. at 10 Fah.,

1.0469 x 0.080744,

and at 100 Fah., 0.878 x 0.080744.]

The weight of one cubic meter of air at ordinary tension

(760
mm

,
or 30 inches, of barometer) and t temperature, is, there-

fore, 1.29318 , .,=
1 + 0.00367*

kll g"
[For t Fahrenheit the weight of one cubic foot is

0.080744"
1 + 0.002038 (t

- 32)

and that of V cubic meters is

1.29318

n? Tr j 0.080744F ., ,

[For Fcubic feet we have G =
1^002038^32)

lbs" where

t is the temperature Fahrenheit.]

Thus, for example, 3 cubic meters of air, at ordinary press-

ure and 20 temperature, weigh
3 x 1.29318

1 + 0.00367 x 20

[and 3 cubic feet of air at ordinary pressure and 20 Fah. weigh

3 x 0.080744 Q

1- 0.002038 x 12
= '24831bs' ]

We see from the preceding that the expansion of air for the

same rise of temperature is much greater than for solid and

liquid bodies. Experiments have also shown that this expan-
sion is very nearly the same for all gases. Thus Eegnault
found for the coefficient of expansion of hydrogen 0.003661, and

for carbonic acid 0.003710.

It seems also proved by experiment that the coefficients of

expansion of such gases as are most easily liquefied by cold
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and* pressure, as, for example, carbonic acid, are greater than

for those which are most difficult of liquefaction. We accord-

ingly assume that between the molecules of such bodies there

is a certain, though small, amount of attraction, which even for

the so-called "permanent" gases is not entirely zero.

Experiments have also shown that the coefficient of expan-
sion increases as the pressure increases. In the case of air,

as represented in the figure above, the piston is pressed by
the atmosphere. If, however, the pressure is greater, the co-

efficient of expansion increases as shown in the following
table :

Pressure in
Millimeters of
Barometer.

Coefficient
of

Expansion.

Air.

Hydrogen

Carbonic acid.

(
760 0.0036706

(
2525

'

0.0036944

]
760 0.0036613

(2520 0.0036616

j
760 0.0037099

(2545 , 0.0038455

[We give below the coefficients of linear, surface, and cubic expansion, that is,

the amount by which a piece of unit length area or volume is increased for a rise

of temperature of one degree C., counting from zero, under pressure of the atmos-

phere. For one degree Fahrenheit take fths of tabular values.
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Mechanical Work Performed by the Air during Expansion. Let

,us now compute the mechanical work which one cubic meter

of air performs during expansion.
We assume that the piston EF has an area of one square

meter, and is therefore at a distance of one meter above the

.bottom of the vessel ABCD. If, then, the air is heated 273,
the piston will be raised one meter, and the air pressure will

be overcome through this distance. This pressure, at tem-

perature and 760mm height of barometer, is 10334 kilograms per

.square meter (or 14.7 Ibs. per square inch) ;
so that the work

performed by the expanding air is

10334 x 1 = 10334 meter-kilograms.

But one cubic meter of air at weighs 1.29318 kilograms,
and hence the work performed by one kilogram of air under the

same conditions would be

10334 _ - K5 meter-kilograms.

When, therefore, we heat one cubic meter of air, free to ex-

pand under atmospheric pressure, from to 273, we not only
increase the vibration work, but we also obtain an outer work
of not less than 10334 meter-kilograms. We see that the outer

work in the case of solids and liquids is not to be compared to

this.

Heating under Constant Volume. If we conceive the piston
EF to be fixed, so that it cannot be raised when the air is

heated, then evidently no outer work can be performed. All

the heat imparted, therefore, goes to increase the vibration

work or to raise the temperature. With the temperature the

expansive force of the air or the pressure upon the piston also

increases, and becomes, as shown by experiment, for each de-

gree ^d = 0.00367th greater ;
that is, the pressure increases

in the same degree as the volume increased in the first case.

. If we denote the pressure per square meter at by p, then

the pressure for a rise of t will be

P + t.i*rsP=pQ-+)=P (1+0.00367Q (VI)

For t = 273, the pressure is evidently 2p, or twice as great
as for 0.
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When, therefore, air is heated under constant volume, the

expansive force increases with the temperature. %

This law is also known as that of Gay-Lussac.

It may be explained according to our theoretical views as

follows :

"When heat is imparted to the air, the velocity of the atoms

is increased. But the greater this velocity, the greater the

number of impacts in the same time against the piston. The

greater the number of impacts in the same time, the greater

the pressure of the expansive force of the gas.

Absolute Zero of Temperature. Since, now, for each rise of

one degree, the expansive force, or what is the same thing, the

living force of the atoms is increased ^r^d of that at CT, and for

every fall of one degree is diminished ^d ;
for a fall of 273,

the living force of the atoms must be zero. We call therefore

the temperature - 273 C.

the "
absolute zero." *

It is from this point that we should properly reckon the ve-

locity of the atoms of a body, or its living force, or finally, its-

temperature.

*
[It has been objected to this reasoning that the coefficient of expansion ?-fsd,is not the same

for all gases, that it varies, especially near the point of liquefaction, and that it also depends

upon the temperature in some relation not yet fully known. Thus for each gas there is a dif-

ferent absolute zero, and nothing justifies the assumption of this special one. It has even been

termed ' % one of those false hypotheses which tend to retard the development of science.
1 '

It is true that the reasoning above seems open to these objections, but this is not really the

reasoning by which the absolute zero is properly determined. The true reasoning cannot be

presented in an elementary manner without the aid of the higher mathematics. It is. proved

generally by the principles of the mechanical theory of heat, that there is a point at which the

living force of the atoms would be zero, and that this point must be the samefor all bodies, whether

there is di segregation work or not. In some cases part of the expansive force has to perform more

disgregation work, in others less. In the text we b.nve simply endeavored to simplify the deter-

mination, and to illustrate its physical significance by taking a body in which the disgregation
work is nearly zero, and thus making our experiments upon a gas at a point for which this

assumption is known to be approximately correct. Whether this seems perfectly correct or not,

the fact remains that the absolute zero is a point which has a definite physical significance, and
which is capable of more or less accurate determination, for all bodies, whether perfect gases or

not. It has thus been found to be very closely - 273 C. for bodies in which the disgregation
work is not zero. But even if it had no physical significance, which it has, and if the above con-

clusion were founded upon the consideration of a body possessing purely hypothetical properties,
vrhich is not the case, still it would not follow that the determination of such a point would be

without value. The coefficient of elasticity is also a purely supposititious force, which will stretch

a purely hypothetical body by its own length, and yet it is of considerable use in determinations

of strength and flexure of bodies, and can scarcely be considered a 1* "
retarding the development

of science."

Let it be remembered, then, that there is an absolute zero, and that it is the same for ail

bodies, and is very closely
- 273 C., as determined by experiment.]
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Since in the last experiment no outer work is performed, but
all the heat imparted goes to increase the vibration work, we

ought to expect the amount of heat necessary to be imparted
for a certain rise of temperature to be less than in the first

case, where outer work is performed. This conclusion is con-

firmed by many and various observations.

[We give here tables of the most remarkable temperatures :

Greatest artificial cold r

Mercury freezes

Ice melts

Greatest density of water ,

Blood heat
\

Water boils

Red heat. .

MELTING POINT OF DIFFERENT SUBSTANCES.

- 140 C.

- 39.4

4

36.6

100

526
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ure, the amount of heat necessary to be imparted to one kilo-

gram, in order to cause a rise of temperature of one degree is

0.23751 heat units. This is the "
specific heat

"
of airfor constant

pressure. The exact determination of this number is due to

Hegnault.
If the heated air cannot expand, if, therefore, the volume re-

mains constant, only 0.1684 heat units are necessary in order

to raise one kilogram one degree. This is the "
specific heat

"

for constant volume.

The specific heat of the air, for constant pressure, is, therefore,

23751 = 1.410 times greater than that for constant volume.
\J. -

This number has been determined by a score of observations

made in different ways.
The excess of heat,

0.23751 - 0.16847 = 0.06904

heat units, is that which goes to the performance of outer

work.

We have already seen that when one kilogram of air is heated

from to 273, and is free to expand under the air pressure,
the outer work is 7991.15 meter-kilograms. If heated from

to 1, then the outer work is

^ = 29.272 meter-kilograms.

This number we denote generally in the mechanical heat-

theory by the letter R.* A work of 29.272 meter-kilograms

corresponds to an expenditure ^of
heat of 0.06904 heat units.

One unit of heat, then, corresponds to

29 272

OfiQfVt
~ 423-98 meter-kilograms.

This result agrees perfectly with that found by Joule as the

mean of a large number of experiments. We can now easily
deduce a general formula for the mechanical equivalent.

If we denote the specific heat of air for constant volume, that

is, the number 0.1684Y, by cv ,
and that for constant pressure, or

0.23751, by c^ then the difference c
p

cv denotes the amount

* [For Fahrenheit degrees and foot IDS. R = 53.354. The student will do well to make the

calculation.]
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of heat corresponding to the outer work of 29.272 meter-kilo-

grams, or to the work R. For one unit of heat, therefore, we

obtain the mechanical work (mechanical equivalent) .
,
fromA

ihe proportion

cp
- cv : I : : R :

1
.

Hence we have = - - .*

Since cp
= 1.41cv , we have, when we substitute for 1.41 the

letter &,

A cvk - c v

'

or, since it is customary to write cv without the index,

\=-7T
B
-^-

'

''

A c (k 1)

If we assume the older determination of the specific heat for

-constant pressure of Delaroche and Berard, of 0.267, we obtain

a smaller value for the mechanical equivalent. It is thus that

Mayer found (1842) the number 365, Holtzmann (1845) 374,

and Clausius (1850) 370.

[The value of R in French measures and Centigrade degrees is, as we have

^seen, for air 29.272 meter-kilograms. We give here the values of R for other

gases both in French measures and in English measures for both Centigrade and

Fahrenheit degrees.

Air
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We give below the values of cp and cv.

= . Ct

Air 0.16847

Nitrogen 0.17273

Oxygen 0.15507

Hydrogen 2.41226

1.4098

1.4114

1.4026

1.4132

0.23751.

0.24380.

0.21751.

3.40900.

Weigl
1 Cubic Meter 1 Cubic Foot
in Kilograms, in Pounds.

.. 1.29318.... 0.08073

. .1.25616. . . .0.07860

. .1.42980____0.08926

. .0.08957. . . .0.00559]

Increase of the Expansive Force by Compression. Mariotte's

Law. When we heat the air without allowing it to expand, its.

expansive force increases at the cost of the heat imparted, but

its density remains the same. Let us now increase the expan-
sive force in another way, viz., by compressing the air. Accord-

ing to our principles the action is evident ; for by compressing
the air we perform mechanical work, and this can always re-

place a certain amount of heat.

If, then, we assume below the piston EF, Fig. 12, one cubic

meter of air at temperature and atmospheric pressure, the

expansive force will increase as the piston is

forced down. If, for example, the air is com-

pressed into half its former volume, its tension is

twice as great ;
if compressed to one-fourth of its

former volume, its tension is four times as great ;

and so on. In such case we assume, indeed, that

the temperature is kept constant, viz., at 0. In the

same degree in which the tension increases, the

density evidently increases also.

This law, according to which, for constant tem-

peraturef the tension of a gas increases as its

volume decreases, is called Mariotte's law.

This law also is a necessary consequence of

our assumptions as to the constitution of gases.

Every atom in the cubic meter of air makes at a certain

number of impacts upon the piston, and thus causes a certain

pressure. If, at the same temperature, the gas only occupies
half its original volume, the atom makes in the same time

double as many impacts, because its velocity (temperature) is

the same, and it has only half as far to go. Its pressure upon
the piston is therefore twice as great, and since this is the
case with all the atoms, the tension of the entire mass must be
twice as great.

D C
FIG. 12.
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If we denote the volume of air by V\ and its tension by pl

(upon the square meter), then change the volume Vl into V*
and the pressure pl into p2 ,

we have, according to Mariotte's law,

Ti : F2 : :pz :pl} or Vl pl
= F2 j92.

If the volume V% with the tension p^ is changed to F3 with

the new tension pB, we have,

S : S : : PS : #2, or

Comparing with the above, we have

= V#i = Pips, etc. . . . . (VIII.)

We see, therefore, that the product of the volume and press-
ure is constant, provided that the temperature is kept the same.

As now the expansive force increases, the density also in-

creases, and inversely.

If the density for the volume V\ is D\ 9
and for V2

= D* we
iave

Fj : V, : : A : A, or V1D, = VJ)*

On the other hand, DI : D^ : :pi :p*

The density increases, therefore, inversely as the volume, and

directly as the tension.
'

EXAMPLE 1. What is the weight of ^th cubic meter of air at and 4 atmos-

pheres ?

One cubic meter at and atmospheric pressure weighs 1.29318 kilograms,

Jhence ^th of a cubic meter weighs 0.16165 kilograms. We have then

1:4:: 0.16165 : x.

Hence
x - 4 x 0.16165 = 0.6465 kilograms.

[In the same way, the weight of ith cubic foot of air at 32 F. and 4 atmos-

pheres is 0.040372 Ibs.]

EXAMPLE 2. What is the volume of one kilo, of air at and ^th atmosphere 9

One kilogram of air at and at atmospheric pressure has a volume of

= 0.7733 cubic meters. Its volume, therefore, at a tension of ith of an

atmosphere, is given by 0.7733 : x : : 1 : 1, or

x = 5 x 0.7733 = 3.8665 cubic meters.

[The volume of one Ib. of air at 32 F. and th atmosphere, is found in same

way to be 61.9241 cub. ft.]
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Mariotte's and Gay-Lussac's Laws Combined. If we denote*

the volume at and ordinary tension by FJ>, then for pressures
of 2, 3, 4 pi atmospheres, the volume will be, according to

Mariotte's law,

J5. V^ Fo Fo_

2
'

3
' 4 '

'

ft'

If the temperature of the air is 4, it is evident that for the

same tension pi its volume will be greater. Since for each

degree the air expands 0.00367 of its volume, the volume Fi

will become at 4 F (1 + 0.00367*!), and we have

v _ FQ (1+0.00367*0

Again, if the tension at were p2 , the volume would be

25.

at 0, and if the temperature were *2 instead of 0, the volume
would be

y = FQ (1 + 0.003674)

P2

We have, then,

F! : F2 : :
-

(1 + 0.00367*0 :
-

(1 + 0.00367*0,
Pi Pz

Fi_ 2̂ 1 + 0.00367*1

F2 ~^i
'

1 +0.00367*2*

The law expressed by this formula is known in physics as

the combined law of Mariotte and Gay-Lussac.
Since, further, the volumes are inversely as the densities,

A Pz 1 + 0.00367*1

A pl 1 + 0.00367*2*

[For temperature *i in Fahrenheit degrees we put 0.002038

(4
-

32) in place of 0.003674, etc.]

EXAMPLE 1. A quantity of air of Vi=l cubic meter, t = 10, and p l =V
atmosphere, is compressed to F3 = 0.8 cubic meter, and tz = 100. What is the

tension ?

We have from IX.,

1 p z 1 + 0.00367 x 10 1.0367

0= T '

TTa6Q887lTl66'
r =p * l^f'

1.25x1.367 1.70875=
T0367
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EXAMPLE 2. If a mass of air of Ft
= 30 cubic meters, p^ = 1 atmosphere,

and t^
= 10, in passing through the Wowing apparatus of a blast furnace is

heated to t 2
= 200 and compressed to 1.26 atmospheres, what will be its new

volume 9

We have from IX.,
1.26 1 + 0.00367 x 10

~ ~T 1 + 0.00367 x 200

30 x 1.7840

'

*
1.26 x 1.0367

[For Fi = 30 cubic ft., p, = 1 at., ^ = 10 F., i* = 200 F., and#2 = 1.26 at.,

we have F2 = 33.46 cub. ft.]

EXAMPLE 3. If the density of air for pi = 760mm height of barometer, and

t, = i8 1, what would be the density for p2 = 750mm- and tz = 20 f

We have from X.,

A_ 750 1 + 0.00367 x

1
~

760
'

1 + 0.00367 x 20
'

^ = ' = =-9195 '

and hence the weight of one cubic meter in the new condition would be only

1.29318 x 0.9195 = 1.189 kilograms.

[For ti 32 F. and U 20 F., we have Z>2 = 1.01158, and the weight of

one cubic foot is 0.08168 Ibs.]

Transformation of the last two Formulae. In the mechanical

theory of heat these last formulae are put into a simpler form.

First we denote the coefficient of expansion by a, and can thus

write

V = p 1 + at
i ^2 = P2 1 + a*i

V, ^'1 + aV D, Pl ! +
.;

If now we divide numerator and denominator of the right

side of these equations by <*, we have

a.= i. and 4#l'.-,
a a

Since now a ^^, and hence -
273, we have

V_ _PZ 273 + t, Dz^Pz 273 + ^
V2

~
p,

'

273 + ^ 3 D,
~
Pl

'

From the first of these equations we have

__ __
273 + t, 273 4- f2

'

In like manner we have for the volume F3, the tension p3, and

the temperature t2 ,

273
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We have, therefore, generally,

It thus appears that the above quotients have a constant

value for any
"
perfect

"
gas.*

The formulae hold good, evidently, when Fi and V9 are the

"
specific volumes," that is, the volumes of the unit of weight,

as the kilogram.
If therefore v is the specific volume for t and atmos-

pheric pressure p ,
and Vi that for the temperature ti and ten-

sion pi, we have

V,p _ Vifr ,

273~T7 ~273-M1

'

But now the volume v for the pressure p and temperature

to is known. For since 1.29318 kilograms, under these circum-

stances, is known to occupy the space of one cubic meter, one

Jdlogram will occupy

r^rr; cubic meters.
. 1.29318

[One pound at 32 Fah. occupies the space of

cubic feet]

This is therefore the specific volume v at 0.

If, now, we express pQ in kilograms per square meter, or put

p = 10334 kilograms, we have

-

1.29318 10334 10334

273 + tQ

~
273 +

~
1.29318 x 273 "353.03814

We have then

ViPi ^aJPa _ 9Q 979
273 + t,

~
273 + t,

~

[Taking the temperature Fahrenheit and the volume of one

pound and the pressure per square foot, we have

*
[Meaning by

"
perfect gas

" one between whose molecules there are no forces of attrac-

tion, or one so far removed from its point of liquefaction that the disgregation work may be dis-

regarded.]
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This number we have already found to be the outer work

performed under atmospheric pressure by one kilogram of air

when its temperature is raised from to 1. This, as already

remarked, we denote by R, and have thus

R = vpo VIPI v*p* , *
273 + * ~273 + ^"273 + 2

'

where v
,
vlt vz ,

are the specific volumes, or volumes of one kilo-

gram of the gas, and p , pl9 p% are the specific pressures, or

pressures upon the square meter.

If p is expressed in atmospheres, we have

* = = 0.002833 for air. :

'

.[For English measures the corresponding value of E =
0.025208.]

For other gases, which have different densities, R has differ-

ent values.

We have already remarked that the absolute zero of temper-
ature lies at 273 below the zero of the centigrade scale. At

this temperature the living force of the atoms is 0, and the

body possesses no heat.

From this point the heat of a body, or its inner work, should

be measured. If, then, a body has a temperature of accord-

ing to the thermometer, its actual temperature is 273, and so

for the temperatures tit t^ tB, etc., the absolute temperatures
are 273 + tlt 273 + >,

273 + tS9 etc. [For Fahrenheit scale the

corresponding absolute temperatures are 459.4 + 1} 459.4 +&>, etc.]

Thus we see that the denominators in the equations above

give the absolute temperatures. If, then, we denote these by
TI, T^ etc., we have

T,
'

That is, if we divide the specific volumes, multiplied by their cor-

responding pressures, by the corresponding absolute temperatures,

the quotients are constant and equal to R, orfor air to 29.272, [or

53.354 for English measures, and Fahrenheit degrees.]
* Taking the temperature Fahrenheit and the volume of one pound and pressure per square

foot, we have

R - floPo _ ViPi _ etc
491 + ((

_
qg) 491 + fa - 32)

where R = 53.354.
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From these equations we obtain

= v p }

= v1p1 V, etc. . . . (XII.)

In this form the combined laws of Mariotte and Gay-Lussae
can be easily remembered. We shall have occasion to make

frequent use of these formulae.*

EXAMPLE 1. What is the volume v l of one kilogram of air at the tempera-

ture ti = 100 and pressure p = 5000 kilograms per square meter f

We have 29.272(273 -f 100) = v t x 5000,

29.272 x 373 10918.456 -

hence .
=- -- =

5Q()Q
= 2.1837 cubic meters.

[For 1 Ib. at 100 Fah. and 1024 Ibs. per square foot, we have th = 29.1467

cubic feet.]

Therefore, 2, 3, 4 . . . kilograms of air would occupy the space of 2 x 2.1837,

3 x 2.1837, 4 x 2.1837 cubic meters, etc.

EXAMPLE 2. If one kilogram of air has a volume of 3 cubic meters and tem-

perature of 200, what is its pressure per square meter ?

We have 29.272 (273 + 200) = 3p lt orp l
= 4615.218 kilograms.

EXAMPLE 3. What is the temperature t
} of one kilogram of air whose ten-

sion ispi =3 atmospheres and volume v> =0.5 cubic meters ?

We have 0.002833 (273 + *,) = 0.5 x 3,

or 0.7734 + 0.002833*
,
=1.5

0.002833*! = 0.7266

tl = 256.4 degrees.

[For 1 Ib. of air, ^, = 3 atmospheres and 0, = 14 cubic feet, ti = 1206.7 Fah.]

QUESTIONS FOE EXAMINATION.

What is the disgregation work in a perfect gas ? What effects are produced by heat im-

parted ? How does the outer work compare with that for solid and liquid bodies ? What is the

coefficient of expansion for air ? If F cubic meters of air are heated t under atmospheric press-

ure, what is the new volume ? What is the law of expansion of air called ? State it concisely

in words. How does the density vary with the temperature for constant pressure ? How can you
find the weight of V cubic meters of air at t ? Does the coefficient of expansion vary for differ-

ent gases ? How ? For what gases is it least ? Does it vary with the pressure ? How ? What
is the cause of variation ? What is a "perfect gas ?" Would it vary for such a gas ? If we
heat one cnbic meter of air under atmospheric pressure from to 273 C.,what is the outer work

performed ? What would it be for one kilogram of air ? What is the disgregation work ?

The vibration work ? The inner work ?

When air is heated under constant volume, what effects does the heat produce ? How does

V V*
[If V is the volume of G kilograms of gae, then -^

is the volume of one kilogram, or v = . ,

and hence GRT= Vp.}



EXPANSION AND SPECIFIC HEAT OF GASES. 155

the pressure increase with the temperature ? If the pressure at is p, what is it at 1 ? At 2 ?

At t ? What is this law called ? State it in words. How can you explain it according to

theoretical views ?

What do you understand by "absolute zero ?" Has this point a definite physical signif-

icance ? Is it the same for all bodies ? If it had no physical significance, would it necessarily
follow that it is valueless in the theory ? Which is the greater, the specific heat for constant

pressure or for constant volume ? Why ? What is the ratio of the two for air ? What does R
denote in our notation ? Deduce a relation between the two specific heats R and A.

State concisely Mariotte's law. Under what assumption as to temperature does this law hold

good ? Is it a consequence of our theoretical views as to the constitution of gases ? How ?

If p, and #j are initial pressure and volume, what relation subsists between them and any other

p and v ? Is this law exact for all gases ? For any gas ? What do we call a gas for which it is

exact? What constitutes a "perfect" gas? Are there any ?uch ? What relation sub>ists

between volume and density ? Between pressure and density ? State again Gay-Lussac's laws.

State algebraically the combined laws of Mariotte and Gay-Lussac. Deduce a relation which
must exist, by virtue of these laws, between the volumes, pressures, and temperatures at two
different states, and the coefficient of expansion. Between the densities, pressures, and tem-

peratures. Deduce from these last the simplest expression of the combined laws. Does this

relation between volume, pressure, and temperature hold good for all perfect gases ? What does

R signify ? What is it for air ?

What is the volume of 8 kilograms of air when its pressure is 5000 kilograms per square
meter and temperature 100 C. ?

If one kilogram of air has a volume of 3 cubic meters and a temperature of 100, what press-

ure must it have ?

If 2 kilograms of air have a tension of 3 atmospheres and a volume of 1 cubic meter, what

must be the temperature ?

How many kilograms per square meter correspond to one atmosphere ?

If 8 cubic feet of air are heated from to 8 C., what is the new volume ? From to 8

Fahr. ? What is the density in each case ?

What is the weight of 3 cubic feet of air at atmospheric pressure and 25 C. temperature ?

At 25 Fahrenheit ?

If 2 cubic feet of water are heated under atmospheric pressure from to 100 C., what

expenditure of work is equivalent to the heat imparted ? From 40 to 212 Fahrenheit ?

What is the coefficient of expansion for air ? If one cubic foot of air is heated from C. to

273 C., what is the new volume ? If it is further heated from 273 to 274, what is the increase

of volume ? Is this increase 2"Hd of the volume at 273, or of the volume at ? If 10 cubic

feet of air are heated from 11 C. to 12 C., what is the increase of volume'? Is this increase irfsd.

of the 10 cubic feet, or ?isd of what the volume of the 10 cubic feet would be at ? Has

pressure any influence upon the coefficient of expansion ? What influence ? Does the coefficient

of expansion vary for different gases ? Define, then, exactly what is meant by coefficient of ex-

pansion ?

We insert here the following values of R, for air, which may be found useful in calculations:

p given in kilograms per sq. meter, v vol. of 1 kil. in cub. meters,



CHAPTEE V.

HEAT CURVES AND THE MECHANICAL WORK WHICH A GAS PERFORMS

DURING EXPANSION AND RECEIVES DURING COMPRESSION.

Isothermal Curve. Let OX and Y be two lines perpendicu-
lar to each other, the so-called " co-ordinate axes," X being the

axis of abscissas, and OF the axis of ordinates.

Suppose that we
have in a cylinder the

unit of weight of air

(one kilogram) of the

volume B = v, and

tension BF p, and

the temperature t. If

this air expands to

double its volume, or

to 00= ZOB = 2v,

and if we suppose that

during the expansion the

temperature t is con-

stant, that is, that heat

is imparted to the air

from without as its

temperature falls during expansion, then the tension becomes
CH= \BF = \p. If the volume becomes OD = 30B = 3v,

the tension becomes DI= %BF = |j9, etc. If we join the points

FHIK, the curve gives the law of variation of the tension with

the volume. We call the curve thus obtained the " isothermal

curve for permanent
*
gas." It represents graphically the law

of Mariotte.

FIG. 13.

*
[Late investigations have shown that all the so-called "

permanent" gases can be liquefied.
The term is therefore to be taken merely as applying to those gases which, under ordinary

circumstances, are so far from their point of liquefaction that the disgregation work in expan-
sion can be neglected.]

156
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Mechanical Work which the Air performs during Expansion and

receives during Compression. In order to find the mechanical

work which the air performs during its expansion, we must

suppose EE divided into an indefinitely large number of parts,

that is, we must suppose the volume v to increase little by lit-

tle, and find the corresponding tensions. The pressure during
the small increase of volume may be regarded as constant, and
we thus obtain the work during this increase by multiplying
the pressure by the change of volume. The sum of the pro-
ducts thus obtained gives the mechanical work during expan-
sion.

[Such a summation can easily be made by means of the cal-

culus.

Thus if the initial tension is p^ and volume v^ and if after

expansion we have p and v, we have

Pi : p : : v : v\ , whence p = *?M .

During the small expansion dv, the pressure p may be regarded
as constant, and the work performed is therefore

, pi Vi dv
pdv = &-

.

V

Integrating this between the limits v and vlt we have the

work
v*

L=pl v1 log nat -,

or in common logarithms

L = 2.3026 jo v log- . V . . (XIII.)

where v is the greater volume and vl the less.

Since pl : p : : v : vi} we have also

L = 2.3026 pv log , . . . . (XIV.)

where pi is the greater tension and p the less.]

The same formula hold good when the specific volume v and

tension p are by compression under constant temperature

changed into the less volume Vi and greater tension p^ They

* When using the formulae either for expansion or compression, remember that must
"i

always have the larger of the two volumes in the numerator, so also for^j. For compression,

then, we should have or . The formulae all apply to the unit of weight.
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evidently give the work per unit of area of the piston or sur-

face pressed upon, since p is the pressure per unit of area.

EXAMPLE 1. What work must be expended in order to convert 0.33 cubic

meters of air at ordinary tension (760
mm

-) into air of 814mm -

tension, the tempera-
ture being kept constant ?

If we denote the original volume by F, and tension by p, and the new greater
p l

tension byj9i, we have L 2.3026 Vp log ,
or substituting the values given,

L = 2.3026 x 0.33 x 10334 log ffc = 233.99 meter-kilograms.

[For 10 cubic feet of air, we have

L = 2.3026 x 10 x (14.7 x 144) log fU = 1452.98 ft. Ibs.]

EXAMPLE 2. What is the mechanical work which the unit of weight of air

performs when it expands to double its volume, the temperature being constant,

its volume Vi being TT^TLT = 0.7733 cubic meters, pi = 10334 kilograms per

square meter, and v = 2vi ?

We have L = 2.3026 p&i log
-

,
or

L = 2.3026 x 0.7733 + 10334 log 2 = 5538.6 meter-kilograms,

[For 1 Ib. of air the volume ,
=

080744
= 12.3848 cubic feet, p, - 14.7 Ibs.

per square inch, and

L = 2.3026 x 12.3848 x (14.7 x 144) x log 2 = 18169.8 ft. Ibs.]

EXAMPLE 3. The piston of a steam engine has an area of 0. 14 square meters.

We have beneath it a volume of steam 0.395 meter high and 3 atmospheres tension.

What mechanical work is performed when the piston moves 0.658 meter, the tem-

perature remaining constant ?

The original volume Fi is 0.14 x 0.395 cubic meters. The volume V after

expansion is 0.14 (0.395 + 0.658). Hence

L = 2.3026 x 0.14 x 0.395 x 3 x 10334 log = 1679 meter-kilograms.
O.o"5

The work of the steam during the full pressure is 0.14 x 10334 x 3 x 0.395

1714 meter-kilograms.
Hence the total work performed is 1679 + 1714 = 3393 meter-kilograms. If

this is performed in one second, we have a work of 3
f

a = 45.2 horse power
(French). [If the area is 13 sq. ft., the volume 1.3 ft. high, the tension 3 atmos.,

and the piston moves 2.16 ft., we have

L = 2 3020 x 13 x 3 x 14.7 x 144 log
58 ' 474 = 61010.7 ft. Ibs.,

or about 111 horse power.]
***

Amount of Heat imparted or abstracted during Expansion or

Compression, according to Mariotte's Law. We know from what
lias preceded that when a gas expands while performing work
its temperature must sink, because the outer work is performed
at the expense of the inner.

If, therefore, during the expansion the temperature remains

constant, heaft must be imparted from without.
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Since, now, the temperature or vibration work remains the

same, the outer work performed is the exact equivalent of the

heat imparted. If therefore we denote the heat imparted

during expansion, measured in heat units, by Q, we must have

424 = 2. 3026 vp log-.
#1

Since we denote the mechanical equivalent of heat, 424 (or 772

ft. Ibs.
), by ,

we have generally

|= 2.3026
t^

log J,"

or Q = 2.3026 Avp log
- (XV.)
t?i

where, in general, the greater volume is put in the numerator.

Just as during the expansion of a gas we must impart heat

in order to preserve the temperature constant, we must abstract

heat during compression. The work performed upon the gas

goes to increase its vibration work, or its sensible temperature.
The heat abstracted must therefore be equal to the work per-
formed upon the gas. We have thus, in this case also,

Q = 2.3026 Avp log
-

,

#i

or Q = 2.3026 Avp log
&

,

where v is always the greatest of the two volumes and pl of

the pressures.

Isodynamic Curve.* For solid and liquid bodies the case is

not so simple. "When such a body is compressed, that is, when
outer work is performed upon it, we cannot directly determine

how much of this outer work goes to increase the vibration

work, and how much to disgregation work. It may be that one

or the other of these parts is zero or negative, as we have

already seen.

We have therefore for solid and liquid bodies the isodynamic

curve, which gives the relation between pressure and volume

when the inner work (that is, both the vibration work and the

disgregation work) is constant.

Since in gases there is very little, if any, mutual action be-

tween the molecules, and therefore no work is required to bring
them nearer, the outer work performed upon the gas only

* [Sometimes called also
"
isenergic curve," or curve of equal energy. When there is no dis-

gregation work the isothermal curve corresponds to the isenergic or isodynamic.]
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increases the vibration work. Here then the isodynamic curve

becomes identical with the isothermal. All that has been

said with reference to the isothermal curvefor gases holds good

therefore for the isodynamic curve also.

If in the formula

O = 2.3026 Avp log
-

,

v\

or Q = 2.3026 AvlPl log | ,

^i

we put in place ofpv or p&i the values from Equation XII., viz.,

RT and RTl9 we have

Q = 2.3026 ART log
-

Q = 2.3026 ~
P J

where, as before, v is the greater volume and pi the greater

pressure.
From these formulae we can determine Q when the initial

and final volumes or pressures and the temperature are known.

Since pv = p&i ,
so also RT = RTlt or the temperature is con-

stant, as should be.

EXAMPLE.

We have one kilogram of air inclosed in a cylinder. The temperature is t

30. What work will it perform when it expands from the less volume v 1 to the

greater v = $v lt and how many units of heat must be imparted to keep the tem-

perature constant?

We have for the work

L = 2.3026 RT: log
^- = 2.3026 RT^ log f.
v

i

Or by substituting the numerical values

L = 2.3026 x 29.272 (273 + 30) x 0.125 = 2549 meter-kilograms.

Since now ^ = L or Q = AL, we have for QA
4^4 x 2549 = 6.012 heat units.

[For one Ib. at 86 Pah., we have T, = 459.4 + 86 = 545.4, and R = 53.354,

hence, L = 2.3026 x 53.354 x 545.4 log = 83753 ft. Ibs. = 108.5 heat units.]

Adiabatic Curve* If a gas expands, all the time performing
work, without any heat being imparted to itfrom without, the outer

work which it performs can only be at the expense of the vibra-

* [Sometimes called also lk

isentropic curve," or curve of equal
"
entropy;

"
entropy being

denned as that property of a body that remains constant when the body undergoes any change,
but without receiving or losing any heat.]
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tion work or temperature. The temperature then diminishes

as the expansive force diminishes. This last then diminishes

for two reasons ; by reason of the increase of the volume, and

by reason of the decrease of temperature.
We see at once that the work of the gas for the same expan-

sion must be less than when the temperature is kept constant

by imparting heat from without.

If vl is the specific volume and pl the tension of air, and v

and p that after expansion, we have now no^ longer, according to

Mariotte's law,

v : vl \\pl :p, or pv = piV

but we have the relation, first proved by Poisson,*

* The above relation was proved by Laplace and by Poisson upon the hypothesis
of the caloric theory of heat. It is easily deduced from the mechanical theory of

heat by the aid of the calculus. For those who wish to understand the method

of deduction we give it here. Others must accept it simply as an accurate ex-

pression of the law of relation of pressure and volume during adiabatic change.
We have for every perfect gas

pv- RT,
or pdv + vdp = RdT,

hence

If we denote inner work by U and outer by L, then

or dQ = A(dU+dL).

For adiabatic change, dQ 0, and hence

dU+dL = Q.......... (2.)

Now for a perfect gas there is no disgregation work, and dU represents vibra-

tion work or change of temperature only. Hence

dU= ~}dT.A.

Also, since the pressure for a very small change of volume may be considered

as constant,
dL pdv.

-

Substituting in (2) and referring to (1) we have
,

,

^= (pdv + vdp) 4- pdv =AJK

for the differential equation of the adiabatic curve.

But from Equation VII. we have -^
=^^ hence

j-
;: (pdv + vdp) + pdv = 0,

11
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or
Vi

where v is the greater volume and pl the greater pressure

The law is very similar, as we see, to Mariotte's, only the vol-

umes are raised to the power denoted by 1.41, or in general by

i. e., the ratio of the specific heat by constant pressure to
C,

the specific heat by constant volume. This law has therefore

"been very appropriately called by Eedtenbacher the expo-

nential law of Mariotte, and as such it may easily be remem-

bered.

If we make use of logarithms, we have

I ;

'jj miog^iog^. ;';T^
If we denote the ratio 1.41 by k, we have

7 1
V

1 Pl
K log = log *

.^ vl p

If we assume the initial volume v l
= 1, and the initial ten-

sion pi
= 1 atmosphere, we have for the tension p when the

air has expanded to double its volume, or v = 2t7b at the ex-

pense of its inherent heat, that is, without any heat being

imparted from without,

1.41 log 2 = log ,
'

P

or pdv + vdp + kpdv pdv = 0,

or kpdv + vdp = 0.

Dividing bj pv, we obtain

dp kdv _

Integrating this betewen the limits of the initial pressure and volume (p l and

v^), and the final pressure and volume (p and v), we have

log p log p^ = k log V] k log v,

log-=klog-\8
Pi

3
v

Hence py* p }Vi
k e^Ct

For air the ratio of the specific heats k = 1.41, hence we have
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1.41 x 0.3010 = log ,
or 0.42441 = log ,

p
'

as

vol-

or

or

If the air had expanded according to Mariotte's law, that is,

if .heat had been imparted from without in such a manner that

while expanding the temperature remained constant, we should

have had

p = 0.5 atmospheres.

It is now easy to calculate in similar manner the tension p,

which the air has, when, without receiving heat from without,

it expands to 3, 4, etc. times its original volume. If we should

thus actually compute these tensions, and lay them off

ordinates, with the

corresponding
limes as

the curve B CD E
thus obtained would

give the relation of

volume to pressure.
This curve is called

the adiabatic curve

ior permanent gases.

We see that it ap-

proaches the axis of

abscissasmuchmore

Tapidly than the
isothermal or isody-
namic curve, which

is represented by
the broken line. Let

us now determine

the decrease of temperature of the air during the expansion.

We have found by Equation XII., for the combined laws of

Mariotte and Gay-Lussac,

pv = RT,
pfa = JKTlt etc.,

where T and Tl are the absolute temperatures at the volumes

FIG. 14.
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v and v^ From Equation XVII. we have for adiabatic expan-
sion

PI_
v'"v \

*"
pi

)
= ^- or

v^ p v^ 1

p
If we multiply both sides by , and divide by v, we have

or generally =. ,,..... (XVIIB.)

7? T7 V7

The right side of this equation becomes ^~-=
- -

1

, and hence

273 + <.

273T7'

or generally, putting & for the ratio ,

cv

*->
T, 273 +

We can therefore find the final temperature ^, from the initial

7?

temperature ^ and the expansion ratio -
.

We see, then, from the formula, that the 0.41 powers of the spe-

cific volumes are inversely proportional to the corresponding absolute

temperatures.

EXAMPLE.

If the specific volume v
t of the air has the temperature t

l 30, what will ~be

its temperature t when it has expanded to v = 2vj, performing work and without

receiving heat from without t

or

1.3286 (273 + t) = 303 or 362.7078 + 1.3286* = 303. 1.3286* = - 59.7078.

Hence t = 44.9.

[For t
t =86 Fah.

,
we have

1.3286(459.4 + t)
= 54o.4 or t = - 48.9 Fah.]

(,y\

o.4l
rp

-} = *

,
the expansive force /> or

PI does not occur, the end temperature depends solely upon
the initial temperature and the expansion ratio. Whether
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^therefore the specific volume is small or great, and hence the

expansive force great or small, makes no difference in the final

temperature, if only the initial temperature remains the same.

Just as we have determined the final temperature from the

initial and end volumes, so we can also determine it from the

initial and final tensions.

Thus we have for the law of adiabatic expansion,

p
This can be written

or = l*~
) * VP,

If we multiply the numerators by p, and the denominators by
!, we have

vp

This gives us

VP p0.2907= A-T^; or vp __ /J>_\-

p&i

Hence

\ T
or generally

Hence, Ae0.2907 powers of the pressures are directly propor-

tional to the absolute temperatures.
EXAMPLE.

We have in a cylinder one unit in weight of air, at a tensionp x
= 1 atmos-

pheres, and a temperature of t = 30. What will be its temperature t when the

.air has expanded adiabatically until its tension^? is only one atmosphere ?

We have

o-2907 273 + t /\ 0.2907 273 + ti \o-2907_
Hy

~
273 + 30

Hence

0.8888 = 27

gQg

*
or 273 + * = 269.306 or t = - 3.(

or in round numbers t = 3.7.

The temperature therefore falls 33.7.

[If we have 1 Ib. of air at 86 Fan., we have

0.8888 =
459 *

or t = 25.35 Fah.]
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v / P \ 07093

From Equation XXa = (
-

J

we can now find at once the expansion ratio, or the ratio of the final volume to

the original.

v / 3 \-7093

We thus have = (

-g
J 5

hence - = 1.333 or
^
= $.

While, then, the tension falls in the ratio of 3 to 2, the volume increases in the'

ratio of 3 to 4.

Outer Work Performed by Air when expanding Adiabatically.

The question now arises, What ivork does the air perform when
it expands, performing work, without receiving heat from

without ?

Since the expansion occurs at the expense of the 'vibration

work, or of the temperature, the work performed must depend

upon the initial and final temperatures.
Now we know that under constant volume we must impart

0.16847 heat units, in order to raise the temperature of one

weight unit of air one degree. This heat we have called the

specific heat of air for constant volume. In like manner we
must abstract 0.16847 heat units from each kilogram for every

degree that we cool it, under constant volume. But 0.16847'

heat units correspond to a mechanical work of

0.16847 x 424 meter-kilograms,
or 0.16847 x 772 foot-pounds for standard Ib. and degree Fah.,

and this work must be performed when* the unit weight of air

is cooled one degree by expansion, while performing work, be-

cause the work performed is the equivalent of the heat which

disappears, since no heat is imparted or abstracted during ex-

pansion.
We denote the specific heat for constant volume, or, in the

case of air, the number 0.16847, by c, and the mechanical equiv-

alent of heat (424 meter-kilograms) we denote by j,
and hence

A
the work is

1 c
c x = .

meter-kilograms, or foot-pounds,

according to the value of
-^
which is 772 for standard pound

and 1 Fah.

If, therefore, the specific air volume has the temperature-
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tl9 and hence the absolute temperature 273 + tlt or (459.4 + ^)

Fah., the inherent vibration work in it, or the "
intrinsic

energy," as it is called, is

c 1
u^ . (273 + tj) meter-kilograms, where . 424,

A. A.

G 1
or Ul=

~4 (459.4 + *i) foot-pounds, where
-^
= 772.

If now this volume gradually expands, overcoming an oute_

pressure which at any moment is less than the air pressure by
an infinitely small amount, until its temperature is t, so that

is less than tlt then the inner work inherent in it will be

u = ^- (273 + t) kilograms.
A.

The inner work which disappears is thus

ul -u = ^- (273 + - ~
(273 + t)

</\ y i

= -
A ((273 + *0

-
(273 + $))

=
-7- ft

-
meter-kilograms,

and this is evidently exactly equal to the outer work performed,
since no heat has been imparted from without. If we denote

this outer work by L, we have

L = ^(t1 -t) )
. . . . (XXIIa.)

or also,
A

L = ~(T1 -T) . . ....'.'.,..,... . (XXIB.)A
71.431 (ti t) meter-kilograms.*

= 130.0588 ft
-

t) foot-lbs
,
where temperature is Fah.

Thus we see that the outer work is proportional to the difference

between the initial and final temperatures, as might have been at

once concluded.

The area BCDEFG (see last Figure) inclosed by the adia-

batic curve BCDE and the ordinates BG and EF, represents-

the work performed during expansion, or the decrease in the

inherent vibration work.

The final temperature t in the last formula can be found from

Equation XlXa,
'^\

u -41

= 273 4-
t,

"273 +t
'

*
[This is the work performed by one unit of weight. For G units of weight we have-

71.431 G (ft, #). If we use Fahrenheit degrees and English measures we have 130.06 (t t t).

If we use Centigrade degrees and English measures \ve have 234 173 (t l

-
t). The student will

do well to make the reductions.]
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or from Equation XXIa,
/\-* 7

_
\pj

=
273

273

If Q is the number of disappearing heat units, we have

L = r Q, and hence

or Q = c fa t) heat units.

If L or the outer work is equal to zero, that is, if the air per-

forms no outer work during expansion if there is no outer

pressure overcome we have

=
^- ft

~ or = !-*,

or t = tv

That is, thefinal temperature is equal to the initial temperature, and

the temperature of the air remains unchanged, as the experiment of

Joule, already noticed, clearly proves.

EXAMPLE.

What is the work performed by the air in the last example, when the tem-

perature sinks from + 30 to 3.7 ?

Here t
,

t = 33.7, hence

L = 71.431 x 33.7 = 2407.225 meter-kilograms.

The number of heat units disappearing is

# = 0.16847x33.7 = 5.6774.

We may also determine the work L directly from the initial

and final volumes, or from the initial and final tensions, as well

as from the initial and final temperatures.
Thus we have

L = !L
(273 + - ~

(273 + t).

If we divide by 273 + ,, we have

L _ c_ c_
273 +t

273 + ^"^
"

A' WS + fx"

/ \ 0.207

The factor on the right is, according to Equation XXIa= f
-

J
,

\p\/
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and since R (273 + )
= v lpl ,

or 273 + t, = ^-, we have
xi

_^c_ _c_ /\-
2907

?! ^ A \pj
or

27S 4- f
0>41

Again, since according to Equation XlXa, ^=^216 4- ti \v
we have also

Compression ofAir when Heat is neither Imparted nor Abstracted.

When air is compressed, the opposite phenomena take place.
The work expended in the compression is transformed into heat.

The vibration work is there-

fore increased. The tension

of the air is then increased,

for two reasons. First, the

density is increased by the

compression, and the atoms

strike oftener against the pis-

ton which causes the compres-
sion, and this alone causes an

increase of tension. Second,
the living force, or the veloc-

ity of the particles, is in-

creased by the heat due to

the transformation of the

work, and this also causes

an increase in the expansive
force. This last must in-

crease according to the same
law as before, during expan-

sion, it diminished.

That air is heated by com-

pression has long been known. We are all familiar with the
"
pneumatic syringe." This consists of a glass or metal cylin-

I, ^ 4
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der, in which moves an air-tight piston. Upon the under side

of the piston is a piece of tinder. If now the piston is pressed

quickly down, the air is compressed, heat is developed, and

the tinder ignited.

If we denote the specific volume of air inclosed in a cylinder

by Vi and the pressure by plt
and if v and p are the volume

and pressure after compression, we have from the law already

found, when heat is not imparted nor abstracted,

Let now, Fig. 15, OB vl
= 1 be the initial volume, and p^ 1

atmophere be the corresponding pressure. If we compress
the air to f of its original volume, we have

or 31> = 41 41

;

hence p = ($)
W1 = 1.5 atmos. = DE.

For -o = i = OF, we have

a)"" =
^,

hence ^>
= 2'-

41

,

or p = 2.657 atmospheres FG.
If v = J = OH, we have

(i)

Mt =
> hence

p = 4M1 = 7.06 atmospheres = HI.

The curve joining the points CEGI thus found gives the law

of the increase of pressure as the volume diminishes. We see,

how rapidly this curve rises for great diminution of volume.

The area BCEGHI, inclosed by the curve and the ordinates

BC and HI, gives the mechanical work expended in compress-

ing the body, and which is therefore completely transformed
into heat.

EXAMPLE 1. In a cylinder we have one kilogram of air of and atmos-

pheric pressure. What amount must it be compressed adiabatically in order

to raise the pressure to 2 atmospheres ; how much is the air heated
; what work

is necessary for compressing it; and how many heat units appear?
We have from Equation XXa,

_ /i.y 7093

~w '

hence v = 0.611880!.

Since v, is the specific volume, or volume of unit of weight, at 0, wmch

volume is = 0.773 cubic meters, we have for the volume of v

v -. 0.'}7:; . C.'llHS -- 0.-J7"! cubic meters.
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The final temperature t is given by Equation XXIa,
/

\JPi

' ~
273+0*

Hence 2 - 2a07 x 273 = 273 + * = 334.01,

or t = 334.01 - 273 = 61.01.

The air therefore becomes heated to 61.01. The mechanical work necessary

for the compression is, from Equation XXII.,

L = ^(t } -{) = 71.431 5 (0
-

61.01) = - 4358 meter-kilograms.
.A

The negative sign denotes that this work is received by or performed upon.

the gas, instead of performed by it.

The quantity of heat generated is

Q = AL = = - 10.28 heat units.

If we compress only or $ of a kilogram to 2 atmospheres, only ^ or ^ as

much work would be necessary, and we should generate only or \ as many heat

units. But the rise of temperature would be just the same, as, evidently, this

depends only upon the expansion ratio.

If we have one pound of air at 32 Fah. and atmospheric pressure, we have

as before, v = 0. 6118801. Since 9i = nofAA we nave = 7.578 cubic feet.

The final temperature is given by 459.4 + t = 601.218, hence t 141.818. The
work is L = 130.0588 x (32

-
141.818) = - 14282.797 ft. Ibs. The heat is

14282.797 = 18.5 heat units.

EXAMPLE 2. If a caloric engine compresses adiabatically at each stroke of a

kilogram of air at 10 and 1 atmosphere to 4 atmospheres, what mechanical work

is necessary, and how much is the air heated ?

We have from Equation XXIa,
0.2907 273 + t /4\- 2907 873 + t

r
/ p ^

0.2907 _
(pj

~
8784-.ii \1/ 273 + 10'

hence t = - 273 + 283 x 4 2907 = - 273 + 423.62 = 150.62.

The mechanical work is

L = i
-|

(ti
-

f)
= 7

-i^ (10 - 150.62)

= 17.86 x - 140.62 = - 2511.47 meter-kilograms.

If this work is performed in one second, we have

_ 33 48 horse-power.
75

If the air thus compressed is confined and heated 273, its pressure would "be

doubled, or 8 atmospheres. The temperature after heating is then 273-4^150.62

= 423.62.

What mechanical work can the air now perform, when it expands adiabati-

cally. until its tension becomes again one atmosphere and temperature at 10 ?

We have = -(*i-0 = i* 71-431 (423.62
-

10)
A.

= 17.86 x 413.62 ^ 7387.25 meter-kilograms,
or if the work is performed in one second,

= 98.5 horse-power.
75
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The compression of the air consumes thus about % of the work which the

heated air can perform. If we assume that the resistances consume about 40 per

cent., we have the total loss of work, 40 + 33^ = 73^ per cent. Only about 26f

per cent, remain as useful work. In most cases the efficiency would probably be

lower.

[As we often have occasion to make use of the formulae for adiabatic expansion
or compression, the following table will be found useful in abridging calculations.

The table gives for different values of the ratio the corresponding ratios of
Pi

the temperatures, volumes, etc. It is made out for compression, or p 2 greater

than jp,. It applies equally well to expansion if we simply suppose all the sub-

scripts at head of columns interchanged. Before giving the table, we group
below, for convenience of reference, the adiabatic formulas already deduced.

k-l

For air,

k = 1.41, A -1 = 0.41, j^. =2.44, ^-=0.7093,K 1 K

- = 0.2907,

Work done,

or

AJK VlPl L T
l
J A.

In these formulae, for air

c= 0.16847, ^ =

and
4

2 = 424,
-^
= 71.431, R - 29.272 in French measures and Centigrade

degrees.

2 = 1390,
C- = 234.1733, R =96.0376 in English measures and Centi-

grade degrees.

A = 772
' 2 = 130 '0588

' R = 53 -354 in English measures and Fahren-

heit degrees.

T= t + 273 Centigrade = t + 459.4 Fahrenheit.

1 atmosphere = 10334 kil. per sq. meter = 14.7 Ibs. per sq. inch.

* All formulae for work are for one unit of weight. The formulae as given apply to expan-
sion. For compression exchange subscripts.
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o as rf^ to ccoi-to ocsrf^to

to to to to to

) -1 <J -3 <? -Q
i O !-* tO ! 01 .

' H^ CO <J *-* GO

OGO-QOSHi.t-i.tO?OtO

I
* O O

to ?o or
<* os !-
rf^- O Or

<JCOOfcOOtG5O-3 OQOi-^OlOOlCeM

totoco
'C7lGph^

cocococococo

The subscript 1 denotes initial and 2 final state. Thus >i is initial and p*
final pressure, etc.

The Table holds good as it is for compression. For expansion exchange

subscripts.
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We can illustrate the use of this table by the examples already given.

EXAMPLE 1. In a cylinder we have one kilogram of air of and atmospheric

pressure. What amount must it be compressed adiabatically in order to raise

the pressure to two atmospheres ? how much is the air heated ?

Here = 2. Opposite 2 in the table we find at once 0.6117, hence
PI v\

Vi = 0.6117 v\, the same as already found by calculation.

We have also at once from the table, corresponding to = 2, -=j = 1.2226;
PI 1\

hence T2 = 1.2226 TI, or U + 273 = 1.2226 x 273; hence *9 = 333.77 - 273 =
60.77.

For 32 Fah. we have t, + 459.4 = 1.2226 x 491.4 or t, = 141.3 Fah.

EXAMPLE 2. If a caloric engine compresses adiabatically at each stroke i of

a kilogram of air at 10 and 1 atmosphere, to 4 atmospheres, how much is the

air heated ?

Here ? = 4, and we have at once from the table

Pi

^ = 1.4948, or t, + 273 = 1.4948 x 283.. or t, = 150.
1 1

If ^ is 60 Fah., we have t* + 459.4 = 1.4948 x 509.4, or t, = 302 Fah.

The new volume is = 0.3741, or a = 0.3741 ,.

EXAMPLE 3. If J- kilogram of air at 4 atmospheres tension and 150 expands
adiabatically, performing work, till its tension is 1 atmosphere, what is its new

temperature ?

For expansion we simply have to invert the subscripts at the head of the col-

umns. The student will do well to make a special note of this. Considering,

then, all the suoscripts reversed, we have from table for ^- = 4, = 0.6690;
PI -LI

hence T9 = 0.66902\ = 0.6690 x 423, or fe + 273 = 282.98, or U =9.98, or

about 10
,
as should be.

In similar manner we can easily find pressure and temperatures when volume
ratio is given, or pressure and volume when temperature ratio is given. The
student will do well to propose other examples and solve them both by table and
calculation. (See examples at end of Part I.) The use of the last two columns

for
j

will be explained hereafter. They have no reference to temperature at

all]

Transference of Air from one Adiabatic Curve to Another.

We have now to deduce a very important thermodynamic
principle, of which we shall have occasion to make frequent
use.

Suppose the specific volume v
lt with the tension pl9 and the
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absolute temperature T19 to be compressed, without any heat

being added to it from without or abstracted from it. The

compression thus takes place according to the adiabatic curve,

or, as we say, this

curve represents the

law of the change of

condition of the air.

If the volume Ovi =
Vi is compressed to

Ov2
= v.2 , let p2 and

T2 be the corre-

sponding tension
and absolute tem-

perature. If the
volume is Ov3

= va,

let ps and T3 be the

corresponding ten-

sion and absolute

temperature.
Now suppose that

the air with the vol-

ume Vi, the pressure

jpi,
and the absolute

temperature Tlf or,

as we may say briefly, "in the condition" Vi^Ti, has heat

imparted to it in such a manner that, while it expands to the

volume 10,, and the tension sinks to ql9 the temperature TI re-

mains constant.

Then let the volume Wi be compressed adiabatically, so that

the curve BE represents the relation between the volume and

tension at any instant.

During the passage of the air from the condition v-^T^ to

the condition w^Ti (while therefore the tension changes ac-

cording to the isothermal or isodynamic curve TiTJ, let the

quantity of heat imparted be Qi.

Suppose, again, the air in the condition v^p.2 T^ to expand,
heat is imparted to it in such a manner that the tempera-
ture TS is preserved constant, until it arrives at the condition

2 in the adiabatic curve BB, and let the heat imparted

Fia. 16.
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Then we shaL prove this relation :

ft : ft : : T, : T
or,

the heat imparted in the first case is to that imparted in the second?

as the corresponding temperatures T and T^ at which the addition.

of heat commenced.

If, again, the air passes from the condition v3p3T3 to the con-

dition w3q3T3, and if ft is the heat imparted, then we shall

have

C Ci T1 T1

2 . y3 . . J. 2 JL s

We have then generally,

Let us now seek to prove this relation.

The law of the adiabatic curve AA is from Equation XXIa

or it is also
0.2907

.......
In like manner the law of the adiabatic curve SB is given by

and

The amount of heat Q^ which is necessary to change the gas
from the condition vlplTl to the condition w^T^ along the

isothermal, is from Equation XVI.

ft = 2.3026 ART, log -.

T VI ^
In like manner

ft = 2.3026^?^ log ^-.
q-2

and

log L.
$3

We have therefore

Q, : Q> : Q, = T.log : T,log : T
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From Equations (a) and (c) we have

L = SL or *- = *-

PI
"

q\ qi

"
&

'

In like manner from (b) and (d),

PL -.PL
q*

"
&

'

We have then generally

Hence in the above proportion the logarithms of the quotients

PL PL are equal, and we obtain
'

which was to be proved.

If therefore we wish to change the condition of air, as determined

by a certain point on an adiabatic curve, into another condition which

lies on another adiabatic curve, by the addition of heat, under con-

stant temperature, the quantity of heat which must be imparted is

proportional to the temperature.

We can also prove, as we shall hereafter, that this principle
holds good when the curves T\Ti t T^T?, T3T3 are not iso-

thermals, but simply curves of the same kind, that is, which

follow the same law of change of pressure and volume, what-

ever that law may be.

From the proportion

we obtain

Q\ _ Q-2 _. Qs j.

TfT -ffT -TjT > etc
JL\ 2 -Ls

Equations for the Expansion of Air under constant Pressure.

Let us now consider the case in which the specific air-volume

expands under constant pressure, while it is heated. The heat

imparted serves here, 1, to increase the vibration work, and

2, to perform outer work.

In the beginning, let us have the volume v : at the tempera-
12
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ture ti and pressure p\. After expansion, let the volume be v,

and the temperature t. Then the increase of vibration work is

Let now Ovi = Vi = the initial volume, Fig. 17, and Ov =
V = the final volume, then the outer work performed (Z,) will

be represented by the rectangle ViABv, or by the difference of

the products
*

since the pressure is constant, and hence p p^.

We have, therefore,

L1 =p(v-v1)=p1 (v-v1)
. . (XXVI.)

or since
- ID / rn nn\ 7? // / ^

Jju /3i 0\
'==- -ft ( JL J. i/ -ti (C t'l/j

L
l
= R(t- y.t.... (XXVII.)

By means of these two equations, we can calculate the in-

crease of the inner work and the outer work performed.
As in general the ratio be-

Y tween the initial and final tem-

peratures is given, we can easi-

ly determine the temperature t

j^ j at the end of expansion. Thus,
as we have already shown,:

'

: '

Ti V
FIG. 17.

273 + * 273+^'
II

or

vp
"~

273 + t
9

and since, in the present case, p = p^ we have

_v_ 273 + t

vl

~
273 + tj_

'

For Fahrenheit degrees put 459.4 in place of 273.

EXAMPLE.

Suppose in a cylinder one unit of weight of air at a temperature t 30.
What temperature will it possess when, being heated, it expands under constant

* Any curve or line, like AB, which represents the states of a body when the pressure
remains constant, is sometimes called an "

isopiestic line
" or curve, that is, a line or curve of equal

pressure. Such a line is also sometimes called an "isobar." In like manner, a line which
represents the states of a body, when the volume is constant, is sometimes called an "

isometric

line," or line of equal volume.

t If there are G kilogram?, we have L = OR (t
-

tj.
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pressure until it is ds of its original volume ? What outer work will it perform ?

and what is the increase of its inner work?

Since v = fvi ,
we have

* **
303 = 273 + t,

-
.

vl 273 + 30

t
- 404 - 273, or t = 131.

For ti = 86 Fah. we have

x 545.4 = 459.4 + t, or t = 267.8 Fak.

The increase of inner work io

U (131
-

30) = 71.431 x 101 = 7214.53 meter-kil. for each kilogram,

or 130.0588 x 181.8 = 23644 ft. Ibs. for each pound,

and the outer work performed is

L - R(\%\. - 30) = 29.272 x 101 - 2956.47 meter-kilograms for each kilogram,

or 53.354 x 181.8 = 9699 ft. Ibs. for each pound.

The amount of heat consumed in each work may be easily found. We know
that the specific volume, when heated under constant pressure, requires 0.23751

heat units, or 1.41 times as much as when the air is heated under constant vol-

ume. Since we denote the specific heat for constant volume by c, that for con-

stant pressure is 1.41c for air, or, in general, kc.

If, therefore, we heat one kilogram of air t ti degrees under constant press-

ure, we have

Q = kc(t-t l )

heat units necessary to be imparted.
In the present case, then,

Q = 0.23751 (131 30) 23.9885 heat units for each kilogram,

or 0.23751 (267.8 86) = 43.18 heat units for each pound.

The preceding enables us to find an expression for the mechan-

ical equivalent of heat in a more general method than before.

The quantity of heat ,
in the last expression, is equivalent

to the work AL, hence
TCP

AL=kc(t-t1) or L =
^(t-t,}.

But we must have this work L equal to the vibration work

plus the outer work, or

L = U + A, or

If we divide through by t 19 we have

A
~~~~

c(k- 1)
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Inserting numerical values as determined for air,* we have-

QUESTIONS FOR EXAMINATION.

What do you understand by an isothermal curve or line ? What is the law of this curve ?

What kind of a curve then is it ? What do you mean by
"
permanent" gas ? Are there any

such ? What is the graphical representation of Mariotte's law ? Find the expression for the-

mechanical work of gas expanding according to this law. Find the expression for the amount

of heat imparted.

What do you understand by an isodynamic curve or line ? When is this curve the same as

the isothermal, and for what kind of bodies ? What is an isenergic curve ? What does " isen-

ergic
" mean ? What do you understand by energy ?

What is an adiabatic curve *
Isentropic curve ? What does "isentropic" mean ? Define-

"entropy." What does "adiabatic' 1 mean ? What is the law of the adiabatic curve ? Deduce

it. Why has it been called the exponential law of Mariotte ? In what respect is the term

appropriate ? Which curve, the adiabatic or the isothermal, approaches the axis of X most

rapidly * Why ? Deduce from the general law a relation between volume and temperature.

Between pressure and temperature.

Show how to determine the outer work performed by air expanding adiabatically. To what

is the outer work solely proportional in this case ? Why might this have been at once con-

cluded 5
1 Deduce the expression for the heat units converted into work. Discuss in similar

manner the case of air when compressed adiabatically.

When a gas, as air, is made to pass according to any given law, from one adiabatic curve to-^

another, what is the relation between the heat imparted and the temperature ? Prove this-

relation.

What is an isopiestic line ? What does "
isopiestic

" mean ? When air expands under con-

stant pressure what effects does the heat imparted produce ? What is the expression for the

increase of vibration work ? What is the expression for the outer work performed ? What is-

the relation between volume and temperature ?

If one kilogram of air has a temperature of 30 C., what will be its temperature when it is

heated and made to expand under constant pressure until it is twice its original volume ? What
outer work will it perform ? What is its increase of inner work ? What amount of heat is im-

parted! Provethat^-^.
What work is performed by 10 pounds of air at 2 cubic feet volume and 5 atmospheres press-

ure, when it expands to 7 cubic feet, overcoming an outer pressure equal at any moment to the

tension, the temperature being kept constant ?

What is this constant temperature ? What is the final pressure ? How much heat must
have been imparted in order to keep the temperature constant ?

If one kilogram of air is heated, under the pressure of the atmosphere, from to 1 C., how
much work does it perform during expansion ?

If one pound of air is heated, in same manner, from 32 to 33 Fahr., what work is performed?
If heated from to 1 C., what work is performed ?

What is the weight of one cubic foot of air at atmospheric pressure and 32 F. ? What i

weight of one cubic meter of air at same pressure and C. ?

If two pounds of air at a temperature of 40 Fahr. expand adiabatically, performing work,
till the volume is doubled, what is the final temperature ?

What is the original volume ? What is final pressure, if the initial pressure is one atmos-
phere ? What is the work performed ?

* Page 148.



CHAPTEE VI.

THE SIMPLE EEVEBSIBLE CYCLE PBOCESS.* ILLUSTRATION OF THE
PEOCESS BY ANALOGOUS PBINCIPLES OF MECHANICS.

SUPPOSE in the cylinder (7(7, Fig. 18, one unit in weight of air

of the volume vl9 tension^ and absolute temperature T^
Let this volume ex-

pand, performing work

(the outer pressure be-

ing always equal to the

tension, or differing only

by an infinitely small

amount), until it has the

volume 0?'2
= V*, and the

tension p%. Let us also

assume that the temper-
ature TI remains the

same, so that heat must be

imparted from without.

The expansion therefore

takes place along the iso-

thermal line TiT* and
the heat imparted is ft.

The area v^T^ rep-
resents the work per-
formed by the air during

expansion.
Now let the air still expand from the volume Ov.2 v* to

<0v3
= v3, still performing work, but without receiving or part-

* [A cycle is termed "closed "
if the body after any series of changes returns to its original

condition, otherwise it is called "open." A closed cycle is termed "simple" if its bounding
"Curves are of only two types. If of more than two types, it is called compound. A closed cycle

process is
"
reversible

" when the changes of state are continuous. In such a cycle all the change*
may take place in reverse order.]

181

LJ
FIG. 18.
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ing with heat, that is, let it expand adiabatically. The ex-

pansion then follows the adiabatic curve T^T^ and the area.

TiTtf)^ represents the outer work performed. Since this

work must be at the expense of the vibration work or tempera-

ture, this latter must decrease, and 2\ falls to T2.

The work thus far performed is therefore given by the area.

TI TI TzV^v-LTl9 and the amount of heat imparted is Qi heat

units.

Let now the air, whose volume is Ov3
= v-A and temperature

T2, be compressed, the temperature jT2 being kept the same, until

its volume is Ov4
= v4. During this process a certain amount

of heat Q, must be abstracted in order that the temperature

may remain the same. The compression follows then the

isothermal line T^T^ and the mechanical work necessary for

compression is represented by the area T2v3v4T2.

The volume Ov = v4 may be so chosen that when the air is

finally compressed adiabatically to the volume vlt the air shall

be again in its initial condition. In this case, the work per-
formed upon the air is given by the area v^T^T^v^ the tem-

perature rises from Tz to Tlt and the expansive force rises from

/>4
to p1 again.
A process of this kind is called by Clausius a "

simple reversi-

Ue cycle process."
*

As remarked, the work done by the air is given by the area

TiTiT&tViTto and that performed upon the air, or used in

the compression, is given by the area T2vsv1T1T2T2 . The
difference of these two areas, or the area T1T1T2T2,

which is

shaded in the Fig., and is inclosed by the two isothermal and
adiabatic curves, is the excess of the work performed by the air over

that performed upon it.

Since, however, heat and mechanical work are equivalent ;

since the generation of work requires heat, and the generation
of heat requires work

; the heat Q^ imparted during the change
from T^ to Tlt as shown by the arrow, must be greater than
the heat abstracted, Q2, which is also indicated by an arrow.

In other words, the difference of the heat, units d Q2,
trans-

formed into work, is represented by the area 2\ T Tz T2.

Since the heat Q1 Q2 is equivalent to the work

3- <ft -ft)

* See preceding note.
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we have, if we denote the area T^T^T^T^ by F,

-^ (ft
-

ft) = F . . . . (XXVIH.)

or

ft
- Q2

= AF.

We have thus far assumed that the initial condition of the

air is given by the quantities VipiTlt and that this condition

passes gradually into the condition Ti9 p v.2 ,
or T2, ps, v3, or

y

what is the same thing, that the end of the ordinate pl traverses

the outline of the area T^TzTz in the direction T^T^T.T^.
We may have its motion, however, in the opposite direction,

TiTiTtTiT*
In such case we have evidently the work of compression

greater than that performed by the air during the expansion ?

and the difference of the two is still given by the area

T&Fjff*
Since, then, work is performed upon the air, an equivalent

amount of heat is generated in it, or, in other words, the heat

Q1 abstracted during the change T^T^ must be greater than the

heat Q2 imparted during the change T^T*. We have therefore

obtained heat instead of work.

Since, then, mechanical work has disappeared, and heat been

obtained, we must have the same equation as before, but with

opposite sign. Thus
' " '

.or

In fact, the arrows in the Fig. must now have an opposite

direction; the lower should point toward the curve T*T^ the

other away from T^T^.

The reason for the change of sign is also seen in that, in the

present case, where heat is generated, the end of the ordinate

pl goes around the area F in a direction opposite to that in which

it went when heat disappeared and work was given out. Since

the above process can be performed in either way, we call it a

"simple REVERSIBLE cycle process"

Intermediate Body in the Cycle Process. It is evident that for
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the performance of a cycle, we must have, in addition to the

body which goes through the cycle of changes, and which we

may call the "
working body

"
or the "

intermediate body," also

two other bodies, one of which gives out and the other of which

absorbs heat. In the hot-air engine the fire is the source of

heat, the air in the engine is the intermediate body, and the out-

side air is the body which absorbs heat, or the refrigerator. In

the steam engine the water is the intermediate body, the hot

gases of combustion the source, and the cold condensing water

or the outside air the refrigerator.

If the absorption and rejection of heat by the intermediate

l)ody takes place as represented by the cycle diagram, it is evi-

dent that the source of heat, which we denote by K, must pos-
sess so much heat as to replace each time the loss of heat of

the intermediate body, and that this latter body must be able

to at once receive each new accession.

In like manner the refrigerator, which we denote by Klt must
"be able at every moment to absorb the heat excess from the in-

iermediate body.
In practice these conditions are seldom perfectly fulfilled,

and hence we generally find the calculated work varies more or

less from that obtained by direct observation.

Now that we have introduced the bodies K and K^ let us con-

sider once more our cycle process.
While the end of the ordinate pl describes the circumference

of the shaded area in the direction T Tx To, etc. The inter-

mediate body, or in this case the air, receives the heat QL

while passing from T^ to T. The sourceK then, which imparts
this heat Qlt sinks in temperature. While the intermediate body
passes from T2 to T?t it gives up the quantity of heat ft to the

refrigerator K^ and hence the temperature of K^ rises. But now
the heat Q1 is greater than ft and the excess corresponds to the

work performed by the intermediate body. The body K, there-

fore, imparts more heat than the body K receives. The disap-

pearing heat is transformed into work.

In a steam engine then, where the steam is the intermediate

body, the heat which the steam possesses before performing the work
must be greater than that which it possesses after, and which it im-

parts to the condensing water or to the air, and the difference, trans-

formed into work, acts upon the piston. The same holds good for
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the hot-air engine. The heat which the hot air gives up to the

outer air is less than the heat imparted to it, by an amount

equivalent to the work performed.

Carnot, to whom the cycle process is due, laid down the fol-

lowing principle :

" When heat passes from one body K, through
an intermediate body, to a third IT,, work is performed, but the

heat received by K is equal to that lost by K." This last clause

contradicts, as we see, the fundamental principle of thermo-

dynamics, and is incorrect.

If the end of the ordinate p^ passes round the shaded area in

the direction T Tz I\, etc., then along the path T* T2, the heat

Qz is absorbed, and the temperature of KI sinks. Along the

path TI TI the heat Qi is rejected, and this heat Ql is greater
than Q, by the amount of heat equivalent to the work performed

upon the intermediate body. This heat Qi Q? is now given

up to the body K, which thus receives more heat than the first

gave out.

Transformation of Equation XXVIII. We can now give to

the Equation,

3- (QI
-
a)

= F,

or

Qt-Q^AF. . . .... (1).

another form.

Since the curves TI T% and 2\ Tz are adiabatic curves, and

TI J\ and T2 T2 are isothermal curves, we may, according to

Eq. XXV., express the ratio of the quantities of heat Qt and

2, in terms of the absolute temperatures.
We have, according to that Equation,

therefore

o - ft*!. ..
V2 -

> Vl -

-l -1

If we substitute the value of Q2 in (1) we have

O Q^-AF or ftgJ-ft^-
Vl

~ ~7~ - ^^> -
l
- -
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F = ^(T1 -T2)..... (XXX.)

If we substitute the value of Q1 in (1) we have

or

Since -j
= 424 meter-kilograms, we have also

rr _ 2 / /TT __* '

rp
\-f-l

For Fahrenheit degrees put 772 in place of 424

We have, therefore, the following important principle : The-

work performed by the intermediate body in a simple reversible

cycle process, or, when the process is reversed, the work performed

upon this body is directly proportional to the amount of heat absorbed

or rejected, and also to the difference between the highest and lowest

temperatures.

The correctness of this principle is also seen at once from our

Figure. The greater T^ or the less Tz, or the higher the end of

the ordinate p1 and the lower that of pB,
so much the greater is

the vertical depth of the shaded area. Also, the more the gas

expands under constant temperature along the isothermal TI TI

the more heat, the'refore, is imparted to it in order to main-

tain its temperature constant the further apart are the ordi-

nates p1 and pB, and so much the greater is the length of the

shaded area.

The heat ft absorbed, or the heat Q2 rejected by the gas in

passing over the isothermals T^ TI or T2 T 2, may be calculated

from Equation XV., when the initial and end volumes, vl and v,

and the initial and end pressures, p^ and p, are known. But
from Equation XVI. we can determine Q1 and Q2,

when we
know the initial and end volumes, as well as the temperatures
Tj and Tz.

* For Centigrade degrees, T- 273 + t. For Fahrenheit, T= 459 4 + L
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EXAMPLE.

A hot-air engine is so constructed, that each unit of air in it makes, for each

double stroke of the engine, a complete, simple, reversible cycle process. The-

initial temperature Tl is, for the greatest compression, 273 + 300 = 573, the

lowest temperature T2 is 273 + = 273. What work will the air perform.
when it expands from the initial volume Vi to \ v } under constant temperature*.
and then expands adiabatically ?

The heat imparted is, from Equation XVI. ,

Q, = 2.3026 ART, log ^
2.3026 x 29.273 x 573 x 0.125=-

-T^-J
- = 11.39 heat units for each kilogram.424

The mechanical work is therefore, from Equation XXX.,

= 8.43 x 300 = 2529 meter-kilograms for each kilogram.

If we have 7*, = 459.4 4- 572 = 1031.4 Pah., and T2 = 459.4 + 32 = 491.4, we

2.3026 x 53.354 x 1031.4 x 0.125
have Q = -

-=^
- - = 20.51 heat units for each pound,

and F = 2
(1031.4

-
491.4) = 8290 ft. Ibs. for each pound.

If we substitute in the formula
n.

F =

the value of Qi from XVI., we have

F=2.3Q26R(Tl
- T,} log-. . (XXXII.)

?i

The mechanical work, therefore, increases with the expansion

ratio and the difference of the absolute temperatures Tt

and T2 .

Since T^ - T2
= (273 + ^ - [273 + y ),

we have also

F = 2.30267? ft -^ log |
. . (XXXIH.)

where ^ and 2 are the temperatures in centigrade or Fahrenheit

degrees. We shall have occasion to refer to these equations
in our discussion of the engines of Ericsson and Lehmann.

Illustration of these Principles by Analogous Mechanical Princi-

ples. In illustration of the formula
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or

we may, as has been done by Zeuner, make use of the follow-

ing mechanical considerations.

Let AAi, BB^ and CCi be three planes one above another.

The distance between AAl and CC1 is hlt and between L^ and

Suppose a weight G placed upon BB^ then the uniform

sinking of this weight through the height 7^ will perform the

work

If, for example, G is the weight of a quantity of water which

arrives every second, the fall of-
ps
-

C, this water may put in motion a

vertical water-wheel, and, for

uniform motion of the wheel,

give a mechanical effect every
second expressed by

T If we denote this product by
F we have

FIG. 19. *z
~

b or

If the same mass were to sink, performing work, from the

plane COlt we should obtain the work Gh-,. If we denote this

by F^ we have

Fi = Gh or G=^...... (2).
m.

If we raise the weight G from the plane BB to the plane

, the work performed is

This would also be the work obtained if we should allow G
to sink uniformly from the upper plane to the lower, and then

raise it with the same uniform velocity from the lowest plane
to the plane
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If now, we substitute in the last equation the value of G from

(2) and (3), we have

,-,
or

>==&-4
'h

These equations have precisely the same form as those al-

ready given, viz. :

424ft^
y l-M -I*)*

and

424ft
-*

TT (*!
"~

-*8/'
^2

There, the products 424ft and 424ft represent the mechani-

cal works corresponding to the quantities of heat ft and ft,

just as now, F1 and F2 represent the mechanical works obtained

by the sinking of the weight G from the heights hi and h2. If

we allow the weight G to fall freely through the distances ht

and h2, the products Gh, = F1 and Gh% F2 will represent the

work potential in the weight in the form of living force. But

if the products 424ft and 424ft, or what is the same thing, -^
j9L

and -^ represent mechanical work, we may consider the quo-
-o.

tients

424ft _ft_ ft

AT, AT,

as weights, the so-called " heat weights" of Prof. Zeuner.* Since

further; the difference TI T2 is equivalent in significance with

A! ^, we may call the difference TI Tz the "
temperature

* [The
" heat weight" of Prof. Zeuner is identical with the "thermodynamicfunction" of

Rankine, or "entropy," as defined by Clausius. The term ''entropy
1 ' has been used by Tait,

Thomson, Maxwell, and others, with an entirely different signification. The term "thenno-

dynamic function"1

is perhaps good enough as a name for a certain function of the heat and

temperature, which occurs so often as to render a special name for it desirable. The term "heat

weight," not only answers this end, but also giyes an analogical significance to the term, which.

s of real service in using it. We therefore use it exclusively. Those who prefer to call it
" ther-

mic weight
" can do so.]
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We may therefore express the principle of the simple revers-

ible cycle process, as follows : The work performed by the inter-

mediate body in the simple reversible cycle process, is directly propor-

tioned to the Jieat weights f-r^f
an(^

~^Pr)
^mParte(̂ w 9^n out,

as well as to the temperature fall (Tt T2).

QUESTIONS FOE EXAMINATION.

What is a cycle process ? When is such a process said to be " closed ?
" What is a simple

ycle process ? What is a compound ? When is a cycle process reversible ? What is a simple
reversible cycle process ? By how much does the heat imparted exceed that abstracted ? Draw
the Figure, and show what represents the work performed. What is the intermediate body ?

Give examples. In a steam engine is the heat of the steam before performing work greater than

that after ? What becomes of the difference ? State Carnot's principle. What is incorrect in

this statement, and why ? Deduce an expression for the work in a simple reversible cycle pro-

cess in terms of the heat absorbed or rejected, and the highest and lowest, temperatures.
Illustrate these principles by analogous principles of mechanics. What is the heat weight ?

Why is it so called ? What is the temperature fall ? How do you express the work in the simple
reversible cycle process in terms of the heat weight and temperature fall ? What do you under-

stand by thermodynamic function ? What other term has been given to this quantity ? Why ia

it not appropriate ?



CHAPTEE VH.

GENERAL LAW OF THE RELATION BETWEEN PRESSURE AND VOLUME
OF A GAS GRAPHICAL REPRESENTATION OF THE INNER WORK.

Review of the preceding Principles. We have thus far con-
sidered the following cases of the i

change of pressure and volume of

a gas, especially of air.

1. The volume is constant, and
hence the expansive force in-

creases with the temperature.
If Ov is the specific volume at

and p the pressure, then the

pressure at 273 is 2jp, etc. The
line vA, which gives the relation

between pressure and volume, is parallel to the axis of ordi-

nates Y*
If we denote the inner work at the temperature 7i by Ult we

have

"V

FIG. 20.

x

where c is the specific heat for constant volume.

If U is the inner work for the temperature T, we have

/'
"'

'.;
v=jT->

hence the change of inner work is

[Such a line may be called an "
isometric line,'

1
'
1 or line of equal volume.]

191
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Or, since T= 273 + t and ^ =s 273 + ^

If is the heat imparted during this change,

*=U-ffl =(t-V.

>r

Q = c(t-ti).

According to the combined law of Mariotte and Gay-Lussac,
we have

pv = RT, and p1

hence

pv_ _7\

or, since v\ = v,

and hence

T 273 + t~^"
2. J'Ae expansiveforce is constant, or the expansion takes place

under constant pressure.
If Ov1 Fig. 21 is the specific

volume for the temperature ti

and pressure pi, and Ov the

volume for the same pressure

A B p and the temperature f, then

-i

: L
1||

i.

I | iiii^::

the change of inner work is

V 11 and the line AE parallel to the
PIG. 21. .

r
.

axis of abscissas gives the re-

lation between volume and pressure.*

*
[Such a line may be called an "

isopiestic line," or line of equal pressure.]
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The outer work performed, which is represented by the

rectangle v^ABv, has the value

or Lt
= E (t

-
t,).

Since here both outer and inner work is performed, we have
the equation

L=U+Llt

or -t1)= + B (t-Q."

A v

The heat imparted is

where Jcc is the specific heat by constant pressure.

Further, we have

p1vl
= ET,

pv=ET, hence,

or since pi = p,

v_

Vi

T 273 + t

3. The air expands under constant temperature, according to

Mariotte's law :

pv = plVl
= ppz =psV3) etc.

In this case the end of the ordi-

nate p, which gives the pressure
for the volume v and temperature

t, describes the isothermal, or, in

the case of a gas, the isodynamic
curve* AB, and the area of the

space v^ABv, gives the outer work

performed.
This we have found to be

L = 2.3026 1
v

^v,'
or

13

*
[ Sometimes called the "isenergic curve.''''}
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The quantity of heat imparted is

Q = 2.3026

or

i
v

log~

^ 2.3026 Avp log -.

We have also found

Q = 2.3026

and

log
-

, etc.,

L = 2.3026 72T7

log ^ ,
etc.

While, therefore, in (1) and (2) the heat Q imparted may be

found directly from the initial and final temperatures, or, as

we say, is a function of ^ and t, here it is determined by three

quantities, viz., the temperature T and the initial and end vol-

umes, or by T and the initial and end pressures.

4. The air expands, performing work, at the expense of its own

heat, according to the law

ptf-
41 =p1v1

lAi =
, etc.,

or

P
The end of the ordinate pit Fig.

23, which gives the initial pressure
for the specific volume vt and the

temperature ^, describes during ex-

pansion the abiabatic curve* AB,
which approaches the axis of ab-

scissas OX more quickly than the

isothermal.

Further we have found

273 +

or
v, v

PIG. 23. u)
-

273 + t

273 + ^
273 + t

* [Sometimes called the "isentropic curve,'" or curve of equal entropy.
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The inner work which disappears is

where ^ is the initial and t the final temperature. Since this

is equal to the outer work performed, we have also

and this work (or the disappearing inner work), is represented

by the area tyABv.
For Q we have

Finally, we have also found

v 0.2907-1

,) J'

,
/%\- 4l

i
I - (

-
]

c 1
Since we have found -^^5 -j ^ , we have also

.A./! K 1

1 l~i /l\
i

"H
=i^\^\}-(i}

General Law as to the Relation between Volume and Pressure. In

view of what has preceded, it will now be easy to include all

these special cases under one general law.

In case (4) when the air expanded from the volume vl to v,

there was no heat imparted, the pressure diminished rapidly

as the volume increased, and the relation between pressure and

volume was given by the equation

p1 vl

k =pz vz
k .... .. . (1).

or, in the case of air,

In the following Fig. let the curve ac represent the law of

change of pressure and volume for this case.

In case (3) as the volume increased the decrease of pressure
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was less than in case (4). The law of change was given by the??

equation

p1 vl p^^ etc.

This equation is at once obtained if we insert k 1 in the-

first equation above. Let the curve ab, the isothermal curvep

represent in this case the law of relation between the pressure
and volume.

Compression

Seat

Gejientted

Work

absorbed

with Volume

Heat

absorbed

FIG- 24.

In case (2) the pressure was constant as the volume in-

creased, and we had

P=Pi=P*,
and this obtained from (1) by making 7c 0. The line ad or al

gives the law for this case.

In the first case, the volume remained constant while the

pressure changed, and we had

This is obtained from Eq. (1) by putting for the exponent of

p and making k = 1. The line af gives the law for this case.

We see, therefore, that the laws connecting pressure and

volume are given by the exponents of the factors v and p9
and

for different exponents we may thus have a number of laws and
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curves, all of which are based upon the same general law.

If, then, is any number, whole or fractional, positive or nega-
TYl

iive, we have, p v^= plv^=p2 ^ . . . (XXXIV.)

or / pm vn = PJ Vi
n =p2

m V2
n

is the general law between pressure and volume.

Thus, if we have m = 1 and n 1, we have the law of the

isothermal curve ab. If m = 1 and n = 1.41, we have the adia-

batic curve ac. If m 1 and n > 1.41, we have a curve which

-approaches the axis of abscissas more rapidly than the adia-

batic. Such a curve is al If m = 1 and n < 1 but greater
than 0, the corresponding curve will lie between ab and ad.

If n has a negative value, if, for example, m = \ and n = 2,

the corresponding curve lies between ad and of. Such a curve

is represented by ae.

All these curves are convex to the axis of abscissas, but we

may have curves which are concave also, as ao or ax.

We assume, in perfect accordance with the preceding, that

curves to the right of the line Baf, parallel to the axis of ordi-

nates, apply to expansion. In such case, work is performed
and heat is absorbed, as indicated on the Figure. This heat

may be at the expense of the heat in the gas itself, or it may be

imparted from without. For all curves between ac and a/*, on

the right, heat is imparted during the expansion. On the other

hand, for all below ac heat is abstracted. The curves left of

Baf apply to compression. In such cases work is performed
in compressing the gas, or work is absorbed by the inter-

mediate body, and heat is generated. In the Figure ah is an

isothermal and ag an adiabatic line. The sign + indicates

work performed by the body, the sign minus indicates' work

.absorbed, or performed upon the body.
The above considerations find a very interesting application

in the discussion of gas engines.
The question arises, what is the general expression which

.gives the general law for the temperature when the relation

between pressure and volume for expansion or compression
are known? and how can we determine the work done during

expansion by the intermediate body, or absorbed by it during

^compression ?
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We can put p1 v1
m = ^^ -Pi ?'i v^

VVV m
1

and

hence pi&iD^* =pvv~~\

Since, however, p^ RT^ and^ =fiT,we have

-i --i

that is,
n n m

a + *i /v\ m
~

_ /v\ m
/YYYVY

. (A.A.A.V./
a + \i/ VV

or

"~r^ ^

EXAMPLE.

The specific volume of air v
t
= 1 has the temperature <, =30, and ex-

pands performing work up to the volume v=.2v l . What will be the final tem-

perature when the law of expansion isj?, v,
- 2 =pv-i ?

We have

a + t
t

273 + 30 ,

and

hence

= i and 273 + t = 303 x 8 = 2424, or
273 + t

^ = 2424 - 273 = 2151.

[For the same ratio of expansion and ti = 86 Fah., we have t = 3903.8 Fah.]

If, on the other hand, the law of expansion had been

we should have had

or
a + t

- W 273 + *

~

hence 2t = - 546 + 303 = - 243, or

t=. - 121.5.

[For the same ratio of expansion and ^ = 86 Fah., we have t = 186.7 Fah.]

The curve which gives for this case the relation between volume and pressure

approaches the axis of abscissas more rapidly than the adiabatic, because the

exponent 2 is greater than 1.41, and as already explained, we must therefore

abstract from the intermediate body a certain amount of heat. (See the line al

in the Fig.)



GENERAL EXPRESSION FOR THE OUTER WORK.

If in the formula already found in the case of the adiabatic

curve,

we put k =
, we havem

"Y- (XXXVI.)

and this is the general expression for the outer work, when
the relation between the volume and tension is given by the;

general formula.

~ =
pu> ,

or pi
m
Vi

n =p
m
v
n

.

(n
m

rj~i^ \ m
t andj^ = JRTlt we have also

v / J-\

n m L Jt iJ nm
m

n m
Also, since

B = -

E(t,-t).

L = JO*- c
-7- ft

- Q . , (XXXYII.)
w m J

The change of inner work is as always,

If Q is the amount of heat equivalent to these two works,

we have

or

Q = A(U-Ul)+AL, . (XXXVIII.)

and by inserting the values above,
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This may be written

= <?(*-*,) |~1
--

(A:
-

1)117
L ^ w v 7

J

(t-t^ ..... (XXXIX.)

This formula shows that the heat, Q, imparted or abstracted,

is directly proportional to the difference of the temperatures.

But the amount of heat Q can be calculated from the specific

heat and the temperature difference ^ t. This specific heat

is, however, unknown in the present case. It is evident that it

must be different from that for constant pressure or for con-

stant volume. Let us denote it by s. Then

Q = 8(t-tj. . ..' ? . -.. (XL.)

If, now, we put these two values of Q equal, we can easily

find s. Thus we have

mk n , ,-.

or

mk n /VT T x
s =- c. ..... (XLI.)m n

If, for example, the law of change of pressure with volume

s

we have m = 1 and n 2, and hence the specific heat for

this law of expansion is

s = r^-o c
>

or for air -o^ x 0.16847 = 0.1915,
A i A O

that is, this is the quantity of heat in heat units which must
be imparted to 1 unit of weight of air when expanding accord-

ing to the assumed law, in order to raise its temperature 1.

The curve abc. Fig. 25, represents the law in the present case,
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and the shaded area acde represents the outer work performed

l)y the gas during expansion, when the specific volume increases

from Vi to l-Vj. We see that the

curve departs rapidly from the axis

of X as the volume increases. It is,

evident, also, that the outer press-
ure gradually increases from p{

to

p, as we always assume the outer

pressure at any moment as less than

the inner pressure at that moment

by an infinitely small amount.

FIG. 25.

Graphical ^Representation of the

Inner Work. We can now repre-
sent the increase or diminution of

the inner work in a manner similar to that which has been

employed for the outer.

Let the specific volume have the pressure p^ and the vol-

ume ty, and let the inner work be U^ Then let the air ex-

pand while heat is imparted to it, so that the inner work U\

remains constant. The expansion takes place along the iso-

thermal line age. When, then, the air has expanded to the

condition pv, the inner work

is still therefore CTj.

If we assume, again, heat im-

parted so that the volume ri

and pressure p l become v% and

p2,
the change taking place ac-

cording to any law or curve, as

acb, then the outer work per-
formed is Viabv<i. The inner

work at T2 p^> is then no longer

Ui. Suppose it is Uz. Let us

denote the heat required for

this change by ft, then we

have

where Zrt is the outer work performed.
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Let us now assume that the air expands at the expense of its

heat, until its volume is v and pressure p. The expansion fol-

lows then the adiabatic curve bfe, and the area bfevv2 gives the

outer work, or what is the same thing, the disappearing inner

work. Since now the point e of the adiabatic curve falls upon
the isothermal, the air has at this point the same temperature
as at any point of age. The inner work is therefore U. While,

then, the air passes from the condition vzpz to the condition vp,

the inner work changes from Uz to Ulf or the inner work which

disappears is U2 U^. Just the same inner work has been im-

parted on the way from v^p^ to vzpz. Hence the increase of the

inner work U% U^ is given by the area bfevv2.

While then the area v^abv^ shaded vertically in the Figure,

gives the outer work which the air performs in passing from

Vipi to v2p the area v2bgev, shaded horizontally in the Figure,

gives the increase of inner work.

If, therefore, the specific air volume in the condition vlpl

expands under the addition of heat, performing work along
the curve acb

t
until the volume is v2 and the pressure p$, we

may find the increase of inner work as follows :

Construct through a, the isothermal age, and the adiabatic

life through b, and from their intersection e, let fall the vertical

ve. The area vjbfev gives the increase of inner work. The area

i^abev gives the sum of the inner and outer works, which is

equivalent to the heat

imparted.
The increase of in-

ner work may also be

found as follows : Pass

through b the isother-

mal bgh, and through

any point g on it, the

adiabatic gi, and pro-
duce it till it meets the

^ isothermal through a

FlQ\7
in i. Let fall the ver-

tical Id. Then it is

at once evident that the area gikl gives the inner work im-

parted.
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QUESTIONS FOE EXAMINATION.

What is an isometric line ? Illustrate for air. What is the expression for the change of

inner work ? For the heat imparted? What is the outer work? What is the relation betweet

pressure and temperature ?

What is an isopiestic line ? Illustrate for air. What is the change of inner work ? What is

the outer work ? What is the heat imparted ? What is the relation between volume and tem-

perature ?

Give Mariotte's law. Illustrate. What is an isothermal line ? An isodynamic ? An isen-

ergic ? What is the outer work for air ? For any gas ? The heat imparted ? What is the

change of inner work ?

Give the adiabatic law for air. For any gas. What is an isentropic curve ? Why may \ve

call the adiabatic law the exponential law of Mariotte ? What is the inner work which disap-

pears ? Why ? What is the outer work ? What relation does this bear to the inner work ?

Why ? Give other expressions for the outer work.

State the general law between volume and pressure. Are all others special cases of this

law ? What changes give the adiabatic ? The isothermal ? The isopiestic ? The isometric ?

Illustrate by a diagram. What is the general law for the relation between volume and tem-

perature for any perfect gas ? Deduce. Between pressure and temperature ? Deduce.

What is the general expression for the outer work ? Deduce it. Give it again in terms of

temperature. What is the general expression for the heat imparted ?

Deduce a general expression for the specific heat, whatever may be the law of variation of

volume with pressure.

Give and explain graphical representations of the inner work.

If 10 cubic meters of air are heated under atmospheric pressure from to 100 C., what is

the new volume ? What is the new density ? What is the weight of each cubic meter of the

new volume ? What is the work of expansion ?

If heated under constant volume, what is the new pressure ?

If, while the air is heated and expands, the temperature is kept constant, and the tension

at any instant is equal to the outer pressure, what will be the pressure when the volume is 12

cubic meters ? What will be the work performed ? What the heat imparted ?

If no heat is imparted, what will be the pressure when the volume is 20 cubic meters ?

What will be the work performed ? What amount of heat will disappear ?



NOTATION OF MOST FREQUENT USE,

COMPILED FOR

CONVENIENCE OF REFERENCE.

A = 7^4 of a heat unit thermal equivalent of one unit of work.

-j
= 424 meter-kilograms = mechanical equivalent of one unit of heat.

-A

CL co-efficient of expansion = -^ for air and perfect gases.

c specific heat, generally for constant volume unless otherwise specified.

cv = specific heat for constant volume.

cp specific heat for constant pressure.

t> = density.

JF = outer work performed by or absorbed in cycle process.

= weight of a given volume of gas.

J = disgregation work in a heated body.

k = ratio of specific heat at constant pressure to that at constant volume.
Cv

For air = 1.41.

L = outer work performed by expanding body.

m, n, = co-efficients of pressure and volume in general law, for variation of these

quantities in gases, viz., pmvn ^p l

mv
l
n

.

$ = specific pressure, i. e., pressure upon unit of surface.

Q = amount of heat measured in heat units.

jR = outer work performed by expansion of one unit of weight of gas, when
heated under pressure of atmosphere (760"'

<m> = 10334 kil. per sq. meter)

from to 1C.
s = specific heat in general, whatever be the law of variation of pressure with

mk n
volume = c .m n

T = absolute temperature, reckoned from 273 C., or 459.4 Fah.

1 = temperature by centigrade thermometer.

U = inner work = vibration work plus disgregation work.

V = volume of any given body.
v = specific volume, i. e., volume of unit of weight.W == vibration work when any body is heated.
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RECAPITULATION OF PRINCIPAL FORMULA

FOR

CONVENIENCE OF REFERENCE.

Fundamental Equations :

Q = A (W + J + L). . . . . I. (page 124.)

Q = A (U + L) II. (page 124.)

Expansion of gases constant pressure :

New volume = V(l + 0.003670,

or V(l + at} III. (page 140.)

D =
TTrt

IV. (page 140.)

Weight of air :

1.29318
e =

TTo700367?
F V. (page 141.)

Constant volume :

New pressure = p (1 + at) VI. (page 143.)

a - 2*3 = 0.00367 for perfect gases.

-j
= -. T. VII. (page 147.)

^4. C \K 1 )

R for air = 29.272, kilogrs. A = 1.41.

Mariotte's law : v
}p }

= vzp2 = v 3p z ,
etc. . VIII. (page 149.)

Mariotte and Gay Lussac's combined :

=.s.l. . . . IX. (page 150.)

^ = Pl
.

^ _^i'
. . . .x. (page 150.)

VvP = v**_ = v*p*
^
etc ^ XI (page 162>)

-1 1 * 2 -*
:^

3T, = 273 + <,, !T2 = 273 + ^ 2 ,
etc.

jp t v, = ^TI} ^ 3v ? = ^T^, ^ 3v 3 =r .RTa, etc. . XII. (page 153.)
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Isothermal curve :

THERMODTNAMIC8.

L = 2.3026^ log

= 2.3026^,1;, log

Isodynamic curve :

Adiabatic curve :

Q = 2.3026 Apv log .

Q = 2.3026ART log
v

\

= 2.3026 ^LRZ1

! log
l

k -~^= 1.41 for air.

pv

(:

273 + ^
273 + t

k - 1 - 0.41 for air :

-=0.7093 for air:

= 0.2907 for air :

XIII. (page 157.)

. XIV. (page 157.)

. . XV. (page 159.)

. XVI. (page 160.)

. XVII. (page 162.)

XVIII. (page 164.)

. XIX. (page 164.)

. XX. (page 165.)

. XXI. (page 165.)

, XXII. (page 167.)

XXIII. (page 168.)
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DETERMINATION OF THE DIFFERENTIAL EQUA-
TIONS.

THE application of the Calculus to our subject can be briefly illustrated herev

We have from page 124,

and by differentiating,

dQ = A(dU+ dL) ........ (1)

Since L stands for the outer work, we have dL=p dv, where p is the specific

pressure at any moment and dv is the change of volume.

The inner work t7"nmst be a function of p and v, and hence

, TT dU , dU ,dU = -T- dv + -;- dp........ (2)dv dp

Let usi put X = ^- and Z= ^- , then
dp dv

'. ... (3)

Now if dU is a complete differential, we have, by the rules of the Differen-

tial Calculus, the condition

_
dv

~
dp'

* ' ' * * ' ' '

We have, then, from (1)

dQ= A[Xdp + (Z + p)dv]. ...... (5)

We can simplify this expression by putting

Z + p= Y, . . . ... . . . (6)

and hence dQ = A(Xdp + Ydv). ...... . . . (7)

In this expression X and Y are functions of p and v.

If we differentiate equation (6) with reference to p, we have

dZ dY dY dZ
- + 1 = or -- = l...... (8)

Now, since the expression for dU is a complete differential, we must have
from (4),

dX_ _dZ_
- dv

~
dp

'

and hence, from (8),

. f-f -- ........ *
208



DETERMINATION OF DIFFERENTIAL EQUATIONS. 209*

This is the first principal differential equation, and shows the connection.

between the two unknown functions X and Y of equation (7). It also shows-

that the expression in the parenthesis in equation (7) is not a complete differen-

tial, for if it were, the difference of the two differential coefficients would be

zero instead of unity. We can therefore conclude that equation (7) is not

mtegrabJe unless another relation is given between the quantities.

Let, now, 8 be a new function of p and v, whose form, like that of X and

Y, is also at present undetermined. Multiplying and dividing the right side of

equation (7) by 8, we have
"

(9)

Now we can so choose S as to make the expression in the parenthesis a com-

plete differential, in other words, ^ is the integrating factor.
o

The connection of X, Y, and S is easily determined. Thus, if\the expres-

sion in the parenthesis of (9) is a complete differential, we have

I /x\ __*/Z
dv\S J

~~

dp \S
or, performing the differentiation,

S**-X =S- Y
dv dv dp dp

'

or \~dY_ _ dX~\ _
\_dp

~~
dv J

But from equation (A), the expression in the parenthesis on the left is equal
to unity, hence

AS W :
"

dp dv

This is the second principal differential equation. The first equation (A),

shows the relation between the functions X &nd Y, in equation (7). The second

equation (B), shows the relation between X, Y, and the integrating divisor S of

equation (7).

Now since this divisor S is a function of p and v, we have

dS= d
/-dp + ^'dv. (10,
dp dv

Eliminating from equation (7), first F and then X, by means of equation.

(B), and substituting dS for its value as given by (10), we have

dQ = A[Xdp + Ydv]

14
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These three equations are all identical, and in the solution of various

problems, one ot the other may be used according as one or the other leads most

directly to the desired result. The three functions X, Y, and S, are functions

of p and v, the relations between them being given in general by equations (A)

and (B). These quantities must be known before we can make use of (C) in any

special cases.

If it were known by what relation the inner work Z7and the quantities^ and

V are connected, then JTand Y would be at once known, because we have

dU

and
dU

and the substitution of these values in equation (B) would give the value of S.

THE PROPERTIES OF THE FUNCTION S.

Since in general flf = P(p\v) is not known, we must seek a method of deter-

mining this function. Since, if U were known we could determine S, it follows

that if we can find S we can determine U.

Let A and Ai, Fig. 1, be two adiabatic curves lying indefinitely near each

other, and let the state of a body
be given by the pressure j9 and the

volume v.

For the curve ab let, the varia-

tion of p with v be given by the law

S+dS

Fig. 1.

S = f(piv) = constant,

and for the curve be by

S + dS=f(piv) = constant.

If the body passes through a

cycle abcda, then the shaded surface

represents the work. The area of

this surface, which we denote by d*F, is easily determined, since it may be

regarded as an indefinitely small parallelogram whose area is equal to the

rectangle ab'c'd'
,
hence

d*F = area = ab' x ad'.

But ab' is the expansion of the body dv, during the change from a to b, and

ad is the increase of p l when for a constant volume, the value 8 passes to

8 + as.

We have, since 8 is a function ofp and v,

as., as.
dS = =- dp + -=- dv,

dp
' dv
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and when dt> 0, that is, for constant volume,

a$
d?=dS'

dp

Substituting this for ad', we have

dSdv
(11)

We can now determine the heat dQ to be added to the body in the change
from a to 6, in order that the condition of the body shall, as assumed, answer

to S constant. We have only in equation (C), viz.,

to make dS =0, and we have, accordingly,
' ''

dp

Now, if the S in equations (11) and (12) is assumed identical, we have at once,

d*F = area = ^dQ. . . . "V- tfrf . . (13)

This equation can be at once integrated, since S and dS are constant. The

integration gives

where Q is the amount of heat which is to be added to the body from a to b for

a constant value of S.

Conceive now the cycle process performed. Then from c to d a quantity of

heat is to be abstracted, which must be greater than Q by an amount equal
to the work dF. Representing this by Q + dQ, we have

dQ = A dF,

and substituting in the equation (14),

dQ_dS
Q
~

S '

or integrating
log Q = log 8 + constant,

Q
or log ^ = constant,

Q
or 3= constant....... . (15)o
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The result expressed by (15) may be stated as follows :

If, in Fig. 16, page 175, we consider a body in various initial states, such

that each state is on the adiabatic A, each of these states answers to a certain

value of the function S, as 81, /&, <&, etc. If, now, we impart heat to the body
in such a manner that during the expansion the value of S for each of the initial

positions is constant, and carry the expansion in each case to a second common

adiabatic, then the quantities of heat in each case are given by

In any cycle process, then, consisting of two adiabatics and two curves given

by 8 = f(piv) = const., and Si =f(piv) = const., like Fig. 1, if the heat Q is,

added from a to b, and Qi subtracted from c to d, we have

AF=Q>-
and since

. . . (17>

Referring to page ISO, we see 'hat this is precisely the same, provided we put
for 81 and 8, the absolute temperatures 1\ and T. Our factor S, therefore,

stands for the absolute temperature T. The form of the function S is then

known. It is the combined law of Mariotte and Gay Lussac, p. 153,

pv = -B (a 4 t).

Our fundamental formula, therefore, become

Yd _dX _
dp dv CD'

dt dt
JL j -A -= .

dp dv (II.)

A[Xdp

-~-

(dp)

jtt
(d~v)

Ydv]



APPLICATION OF THE PRINCIPAL EQUATIONS TO GASES.

If the unit of weight of a gas of volume v, pressure p, and temperature t, is

raised under constant pressure till the increase of temperature is dt, the heat

required is

dQp = cp dt.

For constant volume, the heat required is

dQv c,dt.

But from (III.), if the pressure is constant, dp = 0, and by the third equa-

tion,

dv

while for volume constant dv = 0, and from the second of equations (III.).

dp
We have, therefore, for gases,

AY AX
cv = -*- and cv -

_

dt

dv dp

hence we determine at once the functionsX and Fin our general equations,
for permanent gases,

cv dt

(18)

A dv
Y= c a

But for permanent gases pv = R (a + t), hence

dt _ v >

dp-R
(19)

M = p_
dv R }

;and by substitution in (18),

1 (30)

T=
A3t\
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We have then determined for gases, the values of the functions X, Y, and &.

dY cp dX cv
Since -= /n and -j = . n ,

dp AR dv AR

our first principal equation (I.) reduces to

cp
- cv = AR. . .... . .-

;
. (21)

That is, the difference of the specific heats for equal weights, is a constant

quantity for every gas.

If we put R as determined by experiment, for air 29.272, and cp = 0.23751,

cv = 0.16844, we find

^ = ^ c
= 423.8 meter-kilog.

The experimental value of Joule was 423.55.

Our second principal equation (II. ), reduces to

a + * = Cp ~R
' i - Cv

-Js
' 4 = Cp

AR
Cv

'

1J'

But from (21), we have cp cv = AR, hence pv R (a + t), and our second

principal equation expresses the combined law of Mariotte and Gay Lussac.

Finally equations III. take the form

dQ = -=- [v dp + kp dv]

,, AR (a + ,

dQ = cdt + dv
v

P

where c is the specific heat for constant volume and cp = kc v ,
or k = ^

ISOTHERMAL AND ISODYNAMIC CURVES FOR PERMANENT GASES.

By isothermal curve we designate that curve according to which the volume

v and pressure p change when the temperature is constant.

The equation of this curve is

pv = RT = constant.

It is therefore an hyperbola whose asymptotes coincide with the co-ordinate

If the initial condition is given by^ and <DI, then the constant piVi is known,

and the curve can be described. Since, however, the constant is also R(a + t),

the curve may be determined by the temperature alone, and described without

knowing the initial values pi and v\.
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FORM OF THE FUNCTION U FOR PERMANENT GASES.

We can easily determine the relation of U to p and v for permanent gases,

or gases so far removed from the point of liquefaction that the disgregation work

is neglected.

We have the general equation

or when, during the addition of the heat dQ, the gas overcomes a resistance

equal to its own tension,

pdv).

For permanent gases this equation takes the form given by the second of

equations (22),

,. AR(a + t) ,

dQ = c dt H----- dv.

Now, since po = R(a + f),

dQ = edt + Apdv......... (23)

Hence, by comparison with the general equation, we have

(24)

Integrating between the initial and final temperatures t\ and t, we have for

the change of inner work,

(25)

or denoting initial and final pressure and volume by p\v\, p and
,
and remem-

bering that pv = R (a + t), we have

(26)

Thus for permanent gases the form of the function U = F(pv) is completely

determined, and we see from (25) that the change of inner work is determined

simply by the difference of temperature, provided that the outer pressure is

always equal to the tension of the gas.

If the gas, during the change of state, has performed the outer work L, and

the quantity of heat Q has been added, then we have

Q = c(t-t l ) + AL; . tf^f$fw5i4 (27)

or if the gas overcomes a resistance equal to its own pressure,

A
(v

pdv.
Vi
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ISODYNAMIC CURVE.

By isodynamic curve we designate that curve according to which the pressure

and volume change when the inner work 7 is constant, and hence dU = 0.

From (24) we see that when dU=Q, dt is also zero. Hence no change of

temperature occurs. For permanent gases, then, the isodynamic and isothermal

ourves are identical.

As to the heat Q which must be added, when the initial and final tempera-
tures are equal, or ti t, we have from (27),

Q = AL.

Now L is the work performed by the gas, and AL the corresponding heat

which disappears. For isothermal change, then, of a permanent gas, the entire

heat added goes to outer work. Also, the same holds true when the gas passes

from one condition of equilibrium to another, no matter according to what law

the change of state takes place, provided only the initial and final temperatures
are the same.

For the special case that during the change the resistance is equal to the ten-

sion, we have

Q = A\ *pdv.

If during the entire change the temperature is constant, we have p -1

and hence

Hence, since pitu =p^ 2 = R(a + t},

log
^ = APM log = Ap*vt log

-2

, . (28)
Vi Vj. V\

or instead of we may put .

Vi Pa

The outer work L = -^ ,
or

= R(a + t) log
- = p,i log

- =PM log
-

. . (29)

These last two expressions for the work L for isothermal change have long
been known, and can be deduced directly from Mariotte's law. From the stand-

point of thermodynamics we see also, however, that the heat is proportional to

the work. We see also from (28) and (29) that the amount of heat and work are

independent of the kind of gas, for the same initial and final states.
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APPABENT AND TRUE SPECIFIC HEAT.

According to (24) and (25) the inner work appears as a function of the tem-

perature only, so that the inner work is the same when the temperature is the

same, whatever the kind of gas.

Now we assume that the heat added has, in general, a three-fold action. A
part goes to vibration work, and is indicated by temperature. A part goes to

disgregation work, and is indicated by change of volume. A part goes to outer

work.

For a perfect gas, we assume that the disgregation work is zero. In the

equation

dQ = A(dW + dJ+dL),

we have, then, dJ = 0.

In reality there is no such gas, but dJ is smaller as the gas approaches the

perfect condition. For the so-called "permanent" gases, such as air, it is

indefinitely small.

If, now, the unit of volume of an actual gas is heated under constant volume,
dL = 0. If we assume that the increase of temperature is a measure of the

increase of vibration work, we have

dQv = GO dt + A dJ.

For a perfect gas, dJ is zero, and GO would be the specific heat for constant

volume of the unit of volume (volume capacity). If, however, dJ is not zero,

it is undoubtedly always positive, since the particles act attractively. Rankine

calls the value of GO in the above equation the " real specific heat." The total

heat necessary to raise the unit of volume or weight one degree under constant

volume or pressure, as determined by experiment, we may call the "
apparent

specific heat." If from this be subtracted all the heat required for disgregation
and outer work, the remainder is the real specific heat.

We conclude, then, that the identity of the isothermal and isodynamic
curves holds good accurately only for perfect gases. For actual gases they
deviate more the more the gases depart from the perfect condition. For the

so-called permanent gases the deviation is of no significance.

THE ADIABATIC CURVE FOR PERMANENT GASES.

The adiabatic curve gives the law of variation of pressure and volume when,

no heat is imparted or abstracted during the change of state.



CHAPTEE

COMPARISON OF THE HOT-AIR ENGINE AND STEAM ENGINE. VARIOUS

KINDS OF HOT-AIR ENGINES.

Efficiency of the Steam Engine. It has been proved that one

unit of heat is equivalent to a mechanical work of 424 meter-

kilograms. Now one kilogram of good anthracite furnishes,

about 7,500 heat units, that is, it will heat 7,500 kilograms of

water one degree, or will raise 750 kilograms of water 10. If

therefore, all the heat furnished by the combustion of one kilo-

gram of coal could be transformed into mechanical work, we
should have 7,500 x 424 = 3,180,000 meter-kilograms. This

work would be obtained in one second if the combustion occu-

pied one second, in one hour if the combustion occupied one
-

hour. In the latter case, the delivery would be -
QgAA = 888
obUU

QQO

meter-kilograms per second, or -=~- = about 12 horse-power.

Experiments upon the steam engine have shown that, even in

the best, about 2 kilograms of coal are necessary for one horse-

power, and therefore only ^ of the work in the fuel is ob-

tained. Most engines use from 1 _- to 2 times as much coal, so

that their efficiency is only ^j
* ^ = ^ or ^ x i = A

.

At first sight it would seem that the reason of this is to be

sought in defective boiler construction, setting, etc. But in all

these respects but little room for improvement now remains.

Hence Bedtenbacher concluded that better results could only
be obtained by an entire change in the method of conversion

of heat into work. What sort of change is necessary, he has.

not informed us. In the present condition of science it would

218



WORK OF ONE KILOGRAM OF WATER.

be hard to find any one competent to give us such information.

Meanwhile Zeuner has shown that our best steam engines, a

well as hot-air engines, utilize the fuel exceedingly well, and
that we demand an impossibility when we require these ma-
chines to utilize all or even the greatest part of the heat con-

tained in the fuel. It would be as reasonable to expect a water

wheel to utilize the entire fall, from the source to the sea, of

the river which moves it.

Still, the views held as to the imperfect utilization of the

fuel by the steam engine, and perhaps also the danger of

explosions, which unfortunately still remains, led to the con-

struction of the hot-air engine.
We know that water requires to convert it into steam about

540 heat units. This enormous amount of heat is required

simply to convert the liquid water into a gas. Since the air is

already a gas, no heat is needed for such a transformation, and
hence it would seem to be much cheaper than steam. This

however is not the case, as will be seen hereafter.

Work which One Kilogram of Water Performs in Evaporation.
Let ABCD be a cylinder whose cross-section is exactly one

square meter, Fig. 28. In the bottom is one cubic
A ^

decimeter, or one kilogram, of water at 0. Upon
the surface of the water rests the air-tight piston
KK. Since the cross-section of the. cylinder is

one square meter, the depth of the water is one

millimeter
;
for T oVo of a cubic meter = 1 cubic

decimeter.

Suppose the pistonKKloaded with 10,334 kilo-

grams, and that there is a vacuum above it. The

pressure of 10,334 kilograms corresponds then to

that of the atmosphere at and 760'""'- of ba-

rometer.

If now we heat the water up to 100, any fur-

ther addition of heat generates steam of 10,334

kilograms pressure. It is known to be a physical

fact, to which we shall return when we come to KliL.mniK

speak of steam and the steam engine, that steam

generation will not commence until the tempera-
ture of 100 is attained. If it is desired to make FIG. 28.
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it occur earlier, the pressure on the piston must be diminished.

The more heat we impart, the more steam is generated and the

piston is raised ever higher, while the temperature remains at

100. When all the water is converted into steam, the piston

will be about 1734 millimeters or 1.734 meters above the bot-

tom, since the one cubic decimeter of water will give about 1734

cubic decimeters of steam. The pressure 10,334 kilograms has

thus been raised 1.734 meters, which corresponds to a me-

chanical work of 17,919 meter-kilograms.

Since we must impart about 540 heat units to change the

water at 100 into steam at 100, and also 100 heat units to

raise the water from to 100, we have imparted altogether
about 640 heat units in obtaining the above work.

If the piston is loaded with 2 x 10334 kilograms, steam gen-
eration commences at 121, and the water must be heated to

this temperature before the piston is raised. If all the water

is converted into steam, the height to which KK is raised is

914 millimeters = 0.914 meters, and the one cubic decimeter

of water furnishes 914 cubic decimeters of steam of 2 atmos-

pheres pressure. Since the steam occupies a space of 914

cubic decimeters while before it occupied 1734, we see that its

density is nearly double as great as before.

But now the quantity of heat imparted in this case, in order

to completely vaporize the water is only about 640 heat units.

The work performed however is 2 x 10334 x 0.914 = 18890

meter-kilograms, or greater than before.

If we load the piston with 3 x 10334 kilograms, vaporization
takes place at about 135. The steam occupies the space of

620 cubic decimeters, and the piston is raised through 620

millimeters. The work performed is 3 x 10334 x 0.621 = 19252

meter-kilograms, while the heat imparted is still only about

about 640 heat units, and so on.

We see that the work of the steam is greater the more the

piston is loaded, that is, the more the water is heated, or the

greater the expansive force.

In all cases, however, the heat required for the outer work
is much less than that required for the vaporization. In the

1st case the latter is 540 x 424 = 228960 meter-kilograms ;
in

the 2d, (640
-

121) 424 = 220056, and in the 3d, (640
-

135)
424 = 214120 meter-kilograms.
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This circumstance, that most of the heat serves only to va-

porize the water to separate the molecules has, as we have

remarked, led to the idea of using some naturally gaseous

body, and of these there are none more suitable than the air.

Historical Note upon Hot-Air Engines. The first to apply the

idea of using hot air appears to have been John Stirling, of

Glasgow. In the year 1827 he devised an air engine, the con-

struction and efficiency of which are not now known. Six years
later John Ericsson constructed a similar engine in London,
which he called a "caloric engine" The invention made little

progress in England, although such men as Faraday and Ure
were interested in it, and Ericsson removed to America, where

his activity in many directions has been so marked. Here he

worked at the perfecting of his caloric engine, and in 1848 he

succeeded in introducing his first engine on an improved sys-

tem, in the Delamater iron foundry in New York. It was only
5 horse power, but in the following year one of 60 horse power
was set up, and in 1851 a caloric engine was exhibited at the

London exposition. The engine thus became more widely

known, but was regarded in Europe more as an interesting toy,

incapable of competing in practice with the steam engine.
This view was by no means contradicted by the experiments

made in America, in the following years. The invention of

Ericsson was followed up with great zeal, and a company was
formed with John B. Kitching at its head, to which also the

Secretary of the Navy, Kennedy, belonged, to build a large
vessel with caloric engines called the " Ericsson." This vessel

made its first voyage on the 15th of February, 1853.

The vessel was 2200 tons, and had four caloric engines,
which set in motion two paddle-wheels. The cylinder was 14

feet in diameter and 6 feet stroke, and the air was heated to

195 C. In order to prevent loss of heat and reduce the ex-

penditure of fuel, there were four remarkable contrivances near

the cylinder, called "regenerators." Each of these consisted

of a network of wires, whose combined length was nearly fifty

miles. Before the air escaped it passed through these re-

generators, and gave up its heat to the wires, which then were

ready to impart heat to the fresh charge of air. The engine,

according to Ericsson's calculation, was 600 horse power, and
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since it consumed in twenty-four hours eight tons of coal, each

horse power per hour required the extraordinarily small quan-

tity of 1.11 pounds, or about \ kilogram. According to the re-

port of Prof. Win. A. Norton,* however, the power of the engine

on the trial trip was only 300 horse power, which gives 2.2

pounds of coal per horse power per hour, an amount which,

in comparison with the best marine engines, which require

about 3.11 pounds, shows still a noticeable economy.

Although as regards economy of fuel, therefore, the engine
was preferable to an ordinary steam engine, it had the dis-

advantage of much greater weight and space. Prof. Norton

came therefore to the conclusion, that, in its present condition,

the engine was not suited for marine use or for locomotives,

"but that where weight was of less account, and economy of fuel

was desired, it possessed many good qualities.

Ericsson himself noticed during the test many defects, which

upon his return to New York he sought to remedy. Instead

of four cylinders he used two of somewhat legs diameter, but

longer stroke. But the test with this new apparatus gave
more unfavorable results than the first, and so in the begin-

ning of 1854, the engines were taken out and replaced by ordi-

nary marine steam engines.
Ericsson now busied himself with the construction of smaller

machines, for the purposes of the lesser industries. In 1860

lie succeeded in producing an engine which found general ac-

ceptance not only in America, but also in France, Germany,
and Sweden. In Germany the Director of the workshops of

the Hamburg Magdeburg Steamship Company, Andrea, spe-

cially interested himself in the introduction of the new inven-

tion. But it also has not realized the hopes which were placed
in it. After a few years it was removed from many establish-

ments, and replaced by the steam engine. We shall have oc-

casion later on to describe the Ericsson engine in detail.

Comparison of the Work performed ly Hot Air and Steam.

Xiet us see now whether hot air is in fact a cheaper motor than

steam.

We suppose again under the piston KK, Fig. 29, whose cross-

section is one square meter, one kilogram of air at and

* American Journal of Sciences and Arts, 2d Series, vol. xv., May, 1853.



WORK DURING EXPANSION OF AIR. 223

atmospheric pressure. This occupies a space of 0.7733 cubic

meters, and hence the piston KK is at a distance 0.7733

meters from the bottom. Let there be a vacuum ^ H
above the piston, and let it be loaded with 10,334

kilograms.
The air cannot expand because its pressure is

in equilibrium with the piston pressure.
If now we heat the inclosed air gradually, up to

273 \ it expands, as we know, to double its volume,
and the piston is raised 0.7733 meters. The work

performed is hence 10334 x 0.7733 = 7991 meter-

kilograms, and the heat imparted is 0.2375 x 273

= 64.84 heat units.

When we converted 1 kilogram of water into

steam of one atmosphere, we imparted 640 heat

units, and obtained a work of 17,919 meter-kilo-

grams. For a work of only 7,791 kilograms, we
should need to evaporate only TV9

9
T = 0.45 kilo- **

grams of water, for which we should impart only
640 x 0.45 = 288 heat units. We obtain, therefore, D
in fact, by means of air, as much work by the ex- Fis- 29 -

penditure of 64.94 heat units as by the expenditure of 288 heat

units with water
;
or inversely, if we wish to obtain the same

288
work with water as with air, we must use -

A ,
= 4.44 times as

64.84
much fuel.

But now, by the use of steam we can cause a good vacuum
above the piston. Thus, in a condensing engine, the back press-
ure upon the piston is only ^ to \ of an atmosphere. In our

illustration with steam then, already discussed, after the pis-

ton has moved through 1.734 meters, we can gradually remove
the pressure from it down to \ x 10334 or ^ x 10334 kilograms,

during which the steam expands, performing work at the ex-

pense of its inner work, and thus a considerable amount of

mechanical work can be obtained without further expenditure
of heat. In the hot-air engine, on the other hand, we cannot

make the back pressure less than one atmosphere. On this

account the difference in fuel consumption will be less than as

above computed.
To this we may add that with steam the engine can be much
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smaller than with air. For with steam, as we have seen, for a

work of 7,991 kilograms we need to vaporize only 0.45 kilograms
of water. The piston then will be raised only 1.734 x 0.45 =
0.7803 meters, and the entire space required is 0.7813 cubic

meters. With air, on the contrary, we require 2 x 0.7733 =
1.5466 cubic meters, or almost twice as much space. (It is-

worth remarking that with the steam engine we must keep on
hand 20 or 30 times as much steam as is used per stroke, so

that the entire apparatus, boiler and all, may occupy more space
than the hot-air engine.)

If we compress the air under the piston to 3 atmospheres, it

occupies only ^d. of its volume for one atmosphere. We must

then load the piston with 3 x 10334 kilograms. Its height will

7733
then be 0.2578 meters. Upon heating to 273

J
it rises.

o

7733
to double this height, and the work done is 3 x 10334 x -'

o

=.-. 10334 x 0.7733 = 7991 meter-kilograms, while, as before, 64.8

heat-units are required. By gradually diminishing the press-
ure upon the piston down to 10,334 kilograms, we can now
obtain work by the expansion of the air. The work thus

obtained is, however, in part lost when the air is again com-

pressed to three atmosDheres, and thus brought back to its

original condition.

Let us compare with this the example already given, where
1 kilogram of water was converted into steam of 3 atmospheres.
If here we wish a work of only 7,991 meter-kilograms, we have

7791
to vaporize only VQQ

= 0.405 kilograms of water, and there-

fore expend 640 x 0.405 = 259.2 heat-units, or still rr =4
Dtt.O

times as much as for the air. But now, by expansion down to

J-th to ^th of an atmosphere, we can obtain considerable work,
almost none of which is lost, because the water mass of 0.405

kilograms which we have to force back into the boiler, occupies
a very small space, so that the work required to force it in is

very small. For such reasons, then, scarcely double as much
fuel may be required as for air.

From the above it follows, that hot air is, in general, a cheaper
motor than steam, but the difference is less the greater the
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tension of the steam and the greater the expansion. To this

we must add that the engine proper for the same power is less

in size for the steam than air, and that the steam requires to be

heated to a much less temperature than the air. This allows

the steam piston and stuffing boxes to be better lubricated, and

materially reduces the friction. On the other hand, the hot-air

engine is free from danger of explosion, and requires little or

no water.

Let us now examine the construction and theory of these en-

gines a little more closely.

I. OPEN HOT-AIR ENGINE WITH OPEN FIREPLACE, IN WHICH
THE HOT AIR IS EXPELLED AT EACH STROKE. CALORIC EN-
GINE OF ERICSSON SYSTEM OF 1860.

In Fig. 30 we have an ideal section of such an engine. The

cylinder is abed. In the right half of it are two pistons pq and

rs, of which one is the

working piston and the

other the feed piston.

In the back part of

the cylinder is an iron

fire-box efgh; ik is the

grate, I the ash-pit. The
hot gases pass from the

fire space through the

pipe mn into the an-

nular space vw which

surrounds the cylinder
abed. In this way as

much heat as possible
is imparted to the cylinder. The hot air escapes from vw by
the chimney oo into the outer air.

The working pistonpq has valves, two of which are shown at

t and u. These valves open toward the left. The motion of this

piston is transferred, by means of two rods and lever work, to a

fly-wheel, one half of which is heavier than the other. From this,

by means of mechanism, motion is imparted to the feed piston

rs, so that it has a greater velocity than the working piston.
15

FIG. 30.
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To the left of the feed piston is fastened a cylinder, 22, of

thin cast-steel plate, which has a somewhat greater diameter

than the fire-box. The fire-box is surrounded by another cyl-

inder of cast-steel, xy, which receives the heat radiated from

the cylinder and fire-box.

Finally we have at A, a pipe with a valve d, through which

the hot air escapes after acting in the engine. As A commu-

nicates with the chimney oo, the hot air and products of com-

bustion are discharged together into the outer air, or may be

discharged into a closed space.

Method of Action. Let us now consider the method of action

of the engine. First, the fly-wheel is turned by a simple appa-

ratus, so that the centre of gravity of the heavy half lies a little

to one side of the highest point. The centre of gravity then

sinks of itself, and the fly-wheel turns 180. This motion is

imparted by means of link work, to the pistons pq and rs. But

since the feed piston rs moves more rapidly than the working

piston, pq, a partial vacuum is caused between. In conse-

quence of this, the valves t and u in the working piston open,
and air enters between the pistons. The valve a, in the feed

piston, which possesses a very different form from that shown in

the Figure, and is applied at a different place closes. The hot

air remaining in the cylinder departs through d, which remains

open during the entire motion of the feed piston from right to

left.

When the feed piston has reached its extreme position on

the left, the working piston has not completed its stroke, but

still moves toward the left, while the feed piston now moves

toward the right. The air between is thus compressed, and

the valve a opens, and admits a portion of the air into the hot-

space left of the feed piston.

This air, which enters cold, is now rapidly heated, especially

by the hot plates xx and zz, and thus has a greater expansive
force. This pressure is distributed according to the law of

distribution of pressure in a fluid, over the entire volume of

air, that is, it acts not only upon the feed piston, but also upon
the working piston, which it forces toward the right.

But when this motion towards the right begins, the feed pis-

ton is already traveling in the same direction, and since it
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jnoves faster than the working piston, more cold air is being

continually forced through a into the hot space. The tension

of the inclosed air thus increases, and reaches its maximum
when the feed piston has passed through half its stroke, and

has its greatest velocity.

From this point it diminishes gradually down to about 1.16

atmospheres, when the feed piston is at the end of its stroke.

At this moment the exhaust valve d opens, and the hot air

escapes rapidly, while the feed piston ^returns towards the

left. While then the tension of the hot air is sinking to one

atmosphere, the working piston returns a certain amount, about

yVth of its entire stroke, so that we can assume during this

period the pressure equal upon both sides of the working pis-

ton.

It should be especially remarked, that the valve a, during
forward motion of the feed piston, remains constantly open,

that, therefore, the increased tension of the hot air is trans-

ferred to the cold air between the pistons, and that hence, only
the working piston is impelled by the increased tension. For

this reason it is called the "
ivorking piston." The rear piston,

by means of its greater velocity, forces the cold air into the

hot space, and is hence called the "feed piston." By this ar-

rangement the working piston is shielded from the radiant

heat of the hot portion of the cylinder, and can be lubricated

and kept in good condition. In fact, in this lies a great part
of the ingenuity of the whole invention. During the back-

ward motion of the feed piston, the valve a is closed.

In order that the cold air, when it arrives in the hot space
behind the feed piston may be heated quickly, it must enter

more readily than the valve a would

allow, and the following arrangement {

is adopted. Upon the circumference S

of the feed piston rs, rectangular /

notches are cut, from | to 1 inch \

"broad, by | deep. In the Figure 31 1

only two can be seen at oo. Behind
/

7>

the piston is a steel ring, it, which

fits the cylinder snug, but whose inner

circumference is about | inch from the feed piston. Thus in

the position shown in the Figure, communication is open
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FIG 32.

between the space right and left of the feed piston, and cold

air can pass through. The ring is held in place on the left by
several pins, upon the circumference of the back extension of

the piston. When the piston moves toward the left there is-

a partial vacuum between the pistons, and one atmosphere

pressure on the left, hence the steel ring is pressed close up
to the piston face, and the holes oo are covered by it and

closed.

In order to make the action of the machine still clearer, we
have given in Figures 32, 33, 34,

35 and 36, the principal positions
of the pistons.
In Fig. 32 the working piston

has arrived at the end of its for-

ward stroke, and the feed piston
is already started on the back

stroke. The tension of the air in

the engine is one atmosphere, both between the pistons and
back of the feed piston.

In Fig. 33 the feed piston is at

the end of its back stroke, while

the working piston has moved

only a part of its way toward the

left. Between the two is cold air

of one atmosphere tension.

In Fig. 34 the feed piston has

commenced its forward stroke while the working piston has
arrived at the left end of its stroke. The air between is com-

pressed, the valve in the feed pis-

ton is open, and in the working

piston shut, and cold air is passing
into the hot space behind. This

air when heated communicates its

higher pressure, according to the

laws of fluid pressure, through the

entire volume of air, and thus acts

upon the working piston.

In Fig. 35 the feed piston is at the middle of its forward

stroke, where it has its greatest velocity, and where the greater

part of the air has been forced through and heated. Here

FIG.

FIG. 34.
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ihen must be the maximum tension. Both pistons now travel

nearly together, and but little more air enters the heated space,

so that now the pressure diminishes as the volume increases,

and the air works expansively.

Finally, in Fig. 36 the feed pis-

ton has reached the end of its for-

ward stroke. At this moment the

exhaust valve opens, and the ten-

sion of the air falls to one atmos-

phere. The working piston has Fle - 35-

still a portion of its stroke to go,

while the feed piston moves back.

When the working piston arrives

at the end of its stroke we have

the position of Fig. 32.

FIG. 36. Variation of Pressure. Let us

now determine the air tension at the various positions indi-

cated in Figs. 32, 33, 34, 35 and 36.

In Figs. 32, 33, the air right and left of the feed piston has

the pressure of the atmosphere, which we denote by p. Let the

volume of air in the space r2 be A cubic meters, and let its

absolute temperature be TI. Behind the feed piston let there

be confined B cubic meters at T2 .

If now the specific volume (volume of one kilogram) of the

A cubic meters be va,
and that of B be vb , then we have from

Equation XII.,

and

pva
=

pvb
=

or
73/77

va = -1

or vh
=

P

(1).

(2).

If we denote the weight of the A cubic meters by GM and
-that of B by Gbt we have
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If we insert in (3) and (4) the values of v^ and vb given by (1)

and (2) we have

Therefore, from (5) we can find the weight of cold air in-

closed, and from (6) that of the warm air. The entire weight
of air is then

r< n n - P (
A B

' G + G
'-K(I\

+
T:

and this is the weight of air contained in the engine for all the

other positions during the forward feed stroke.

In the space rs, Fig. 34, let there be C cubic meters of air of

the temperature 71, and in m D cubic meters with the tem-

perature Tz ,
and let the pressure be p\. We find as in (5) for

the weight of (7,

and for the weight of D,

Dpi
ET:

Both weights must together be equal to G, hence

and putting (7) and (8) equal and reducing

p _ AT2 + BT,
p CT, + DT,

From this we can determine the ratio of the pressures for

the position in Fig. 33 to that in Fig. 34.

In like manner, in Fig. 35 let us have in r4,
E cubic meters at

77

! , and in n, H cubic meters at T2 ,
and the tension in both

spaces pz. Then we have for the weight in E as before
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and for the weight of H, J^l ,
and hence

1 -L

From (10) and (7)

+ BT,

4 +
) ao).

(ID.

This gives then the maximum tension of the air.

If in Fig. 36 the volume in r5 is / cubic meters and that in o,

K cubic meters, and if the tension in both spaces is ps, we shall

have in similar manner,

p^ __ AT, + BT,
(

p
"
IT2 + KT^

Let now the cross-section of the cylinder be ^square meters,

and the distance between the pistons in Fig. 33, be r2,
in Fig.

34, r3,
in Fig. 35, n, in Fig. 36, r5 ;

then

A - Fr2, C = Fr3,
E = Fr4 ,

and I = Fr5.

If also, instead of the annular space behind the feed piston
in Fig. 33, we suppose a cylindrical space of equal volume, whose

length is 6, we have

B = Fb and b = ~.
r

If in Fig. 34 the distance of the feed piston from the fire-box

is m, in Fig. 35, n, in Fig. 36, o, we can put

B = Fb; D = Fm +Fb= (b + m) F; H= (b +n)F
K= (b + o)F.

Substituting these values in (7), (9), (11), and (12), we obtain

the following formulae :

IT,

p
~~

r,T, + (b+m
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PL- r
*-
T* + fty'

p
-'

rtTt + (b + n)'J\

p, _ r,T, + IT,

p
-'

n71 + (6 + o)r,

According to Boetius we have for a one horse-power caloric

engine,

= stroke of feed piston = 0.418 meters.

1 = stroke of working piston
= 0.22 meters.

r2 = 0.275 meters, m = 0.054

r3
= 0.180 " = 0.209'

r4 = 0.063 " r5
= 0.025

.F 0.165 square meters.

Further, B = Fb = 0.2 of the entire space Fo.

Hence

Fb = 0.2 x 0.165 x 0.418 = 0.013794 cubic meters,

and
b = 0.0836 meters.

If we assume that the cold air between the pistons preserves
in all positions the constant absolute temperature TI 273 + 10

283, and the hot air behind the feed piston has the temper-
ature always of T2

= 273 + 300 = 573, we have from (a), (6),

(c), etc., the following results :

r _ 0.165 x 10334 /0.275 0.0836\

29.272 \283 573 /'
or

G = 0.06524 kilograms.

The weight of cold air drawn in at each stroke is

Ap Fpr2 0.165 x 10334 x 0.275 A A , .,= = -- =
29.272 x 283

- 0.0565 kilograms.

Since the machine made 45 revolutions in one minute, the

weight of air used per second is ^ x 0.0565 0.0424 kilograms.ou

Also from (b) we obtain

Pi 0.275 x 573 + 0.0836 x 283 _ 181.064 _
.,

p 0.180 x 573 + (0.0836 + 0.054) 283
~

141.911
~
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Trom (c)

181.064 181.064 ,~
p
~

0.063 x 573 + (0.0836 + 0.209) 283
~

118.735

From (d)

& 181.064 1 181.064

p 0.025 x 573 + (0.0836 + 0.418) 283
~~

156.108
= 1.160.

Let us now find the delivery of the engine under the assump-
tion, which is in fart very nearly correct, that the tension varies

as the ordinates to a straight line.

In Fig. 34, the working piston has its extreme position on the

left. The air behind it has a tension of 1.276 atmospheres, or

is 0.276 atmospheres in excess of the outer-air pressure.
In Fig. 35, the maximum tension is 1.525, or 0.525 atmos-

pheres in excess of the outer air.

The mean effective pressure upon the working piston, while

passing from the position in Fig. 34 to that in Fig. 35, is, if the

,,
-,. VAT -276 + 0.525

pressure varies as the ordinates to a straight line,
-

A

= 0.4005 atmospheres. Since the distance passed through by
the working piston is 0.038 meters, we have for the work per-
iormed

0.4005 x 10334 x 0.165 x 0.038 = 25.983 meter-kilograms.

Since the effective pressure in Fig. 36, is 1.16 1 = 0.160

atmospheres, we have for the mean pressure, while the work-

ing piston moves from the position in Fig. 35 to that in Fig.

Ofi 0.525+0.160 no , , m, ,. ,

36, - = 0.343 atmospheres. The distance passed
A

through is 0.172 meters, and hence the work done is

0.343 x 10334 x 0.165 x 0.172 = 100.594 meter-kilograms.

The total work is therefore

25.983 + 100.594 = 126.577 meter-kilograms.

From this we must subtract the work done in compressinrr
the air, which compression commences at the position of F.g.

33 and lasts to Fig. 34. The final pressure is 0.276 effective,
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and hence the mean pressure is
'

,
and the work done is

x 10334 x 0.165 x 0.041 = 9.668 meter-kilograms.
2

Hence the effective work done per revolution is

126.577 - 9.668 = 116.909 meter-kilograms.

and the work per second, since there are 45 revolutions per

minute, is

~ x 116.909 = j x 116.909 = 87.682 meter-kilograms.
oO 4

According to experiment, about 60 per cent, of the theoretical

work is expended in overcoming friction, etc., so that only 40

per cent, remains effective. The effective delivery therefore is

87.682 x 0.40 = 35.07 meter-kilograms per second.

"We see then that an Ericsson engine which is rated at one

horse power, gives in reality a mechanical effect of not quite
one-half of one horse power.

In place of the preceding lengthy calculations, we may make

use of Equation XXXIII., by using the expansion ratio =

1.28, and multiplying the result by the weight of air acting per
second. In that equation, ^ and t% are the highest and lowest

temperatures, and we have

L = 2.3026EG (t,
-

>) log 1.28.

L = 67.4017 (t,
-

tj log 1.28.

Since log 1.28 = 0.1072, we have

L = 7.2255 ft
-

tz) G.

Ii the temperature t2 of the outside air is 10, and the highest

temperature is ^ = 300, we have t,
-

t2
= 290. Since now the

air drawn in per second is G 0.0424 kilograms, we have

L = 7.2255 x 290 x 0.0424 = 88.84 meter-kilograms;

a value very closely agreeing with the above.
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II. OPEN HOT-AIR ENGINES WITH INCLOSED FIREPLACE. THE
HOT AIR, AS BEFORE, IS EXPELLED INTO THE AIR.

In the machine already described, air is necessary for com-

bustion of the fuel as well as for the action of the engine. The
air of combustion serves only to heat the air in the cylinder,
without coming into direct contact withjt. The fire is "ex-

terior" A large part of the heat of combustion is thus lost.

As the hot air is expelled into the air after performing its work,
the engine is "open." It is then an "open" engine with "ex-

terior
"

fire.

To avoid loss of heat, the air of combustion and the gases of

combustion may be used directly in the working cylinder, in-

stead of only giving up a portion of their heat to the working
air. We have then "interior" fire, and as the gases are expelled
after working, the engine is still "open."
In the "open" engine then, with interior fire, the air is first

compressed to a certain degree. It then passes into an in-

closed fireplace where its tension is of course still further

increased, and then, together with the products of combustion,
it passes into the working cylinder and acts directly upon the

working piston. Such an engine must evidently be an "
open'*

one, in order to allow the products of combustion to escape.
When the air comes in contact with the fuel, a part of its

oxygen unites with the elements of the fuel to form carbonic

acid gas, carbonic oxide gas and water. These products of

combustion together with the heated air remaining uncom-

bined, pass into the working cylinder. It is evident that the

heat of the fuel is thus much better utilized. The gases of

combustion have little or no injurious effect upon the piston
or cylinder walls, and as the air enters the fire-box at a greater

pressure than that of the atmosphere, the combustion is very

rapid. It is difficult however to prevent particles of coal, soot,

and ashes from being carried into the working cylinder and

injuring the working parts.

A description of a large engine of this kind will be found in

Dingier's Polytechnisches Journal, Band CLXXXV., Heft 6. It

was designed by the engineer Mazeline, and runs a paper-mill.
The principal parts are represented in Fig. 37. D is the work-
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ing cylinder, with the piston D l and piston rod P. This cyl-

inder is surrounded by another of somewhat greater diame-

ter, and the cold air com-

ing from the feed cylin-
der F passes through the

annular space between,
and is thus warmed while

keeping the working cyl-

inder I) tolerably cool.

The feed cylinder has the

piston Fl
and two pair of

valves a, a, and &, 6, of

which the first allow air

to be drawn in at every

stroke, and the others ad-

mit the compressed air to

the jacket of the working

cylinder. After the air

is here warmed and has

thus abstracted heat from

the working cylinder, it

passes through the pipe

A^AI indicated by dotted

lines, into an inclosed fire-

place AA, which is sim-

ply indicated in Fig. 37.

This consists of an iron

cylinder inclosing another

of fire-brick, in which is the grate and fire space. Above the

grate is a funnel closed above, air tight, by an iron cover. In

this is a cock which when turned by special mechanism, allows

the fuel to be uniformly spread over the grate. There is also

an arrangement for stirring and shaking the grate.
After the air is heated by the fire, and its tension thus greatly

increased, it passes, together with the products of combustion,

through the space between the fire-brick and the iron cylinder,

through pipe A lt to the working cylinder D, where it is ad-

mitted, as shown in Fig. 37, above and below the piston by the

slide SS, precisely as in the case of a steam engine. In the

actual engine, valves are used.

FIG. 37.
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The piston rod P is attached to the connecting rod Q which

works the crank of the main shaft. This latter works the con-

necting rod and piston of the feed or air pump F. H, H, . . .

are supporting pillars of the frame, which carry the cylinders
and the guides for the cross-heads of the connecting rods.

Upon the main shaft we have also the fly-wheel V.

The working cylinder has a diameter of 1.40 meters and a

stroke of 1.50 meters. The diameter of the feed cylinder is 1

meter, and the stroke the same as that of the working pis-

ton, or 1.50 meters. The cross-section of the latter is there-

fore

n x 1.40 x 1.40
., KQQ .

r- - 1.5386 sq. m.

and its volume

1.5386 x 1.50 = 2.309 cub. m.

while the cross-section of the feed cylinder is

7T X 1.00 X 1.00 n _QK .

T - = 0.7854 sq. m.

and its volume

0.7854 x 1.50 = 1.178 cub. m.

The volume of the latter is therefore only little more than

half of the former.

The pistons and piston rods are kept lubricated by a special

arrangement with soap-water, as oil or other fatty matter would

be decomposed by the high temperature of the air in the work-

ing cylinder.

In order to set the engine in action, a special reservoir of

compressed air is required, from which air is admitted to the

feed cylinder. In the engine described, a turbine, which is also

used in the same mill, is made use of for starting.

The action of the engine is now as follows :

The air drawn into the feed cylinder by the first stroke is by
the next stroke at first compressed. This compression is of

course adiabatic, since no heat is imparted or abstracted dur-

ing the compression. After compression to a certain point,

and after the air has thus been heated by the compression to a
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certain temperature, the proper valve opens and allows the

compressed air to pass round the working cylinder to the fire-

place. From this point the pressure in the feed pump is con-

stant, and the valve remains open until all the compressed air

has been forced into the fireplace. As soon as the first air

particles enter the fireplace they occupy a larger space, and

hence the working piston begins its stroke. Neglecting the

resistances in the conducting pipes, this is moved by the same

pressure as that in the feed cylinder itself. The working pis-

ton then begins its stroke when the compression in the feed

cylinder attains its maximum, or what is the same thing, when
the valve is forced open. The pressure in the working cylinder
also remains constant until the feed piston has completed its

stroke. From this point on, the working piston is driven by
the expansion of the heated air, whose pressure at the end of

the stroke must be about one atmosphere. This expansion is

also adiabatic. As soon as the working piston has completed
its stroke, the second stroke of the feed pump compresses the

previously sucked-in air before it, then the other pressure valve

opens, the air enters the fireplace, and so on.

In this engine, which has been examined by Tresca, of the

Conservatoire des Arts et Metiers, the maximum pressure of the

air in the feed cylinder was 1.94 atmospheres, and the com-

pression lasted up to about one half (0.515) of the entire stroke.

The maximum pressure in the working cylinder, on the other

hand, was only 1.68 atmospheres, which is to be attributed to

the fact that the pipes conducting the air from the feed pump
to the furnace were too narrow. At 0.611 of the stroke expan-
sion began, and the pressure fell gradually to the end of the

stroke, where it was only 1 atmosphere.
We see from the preceding, that the maximum pressure in

this engine exceeds that in Ericsson's only by a small amount,

although according to the views of the constructor, it should
be 5 to 7 atmospheres. This pressure was most probably not

attained, because the resistances of the driven machines, re-

duced to the circumference of the crank circle, were not great

enough. Certainly the engine could have produced a greater
effect than it did during the experiments.



CLOSED HOT-AIR ENGINE WITH EXTERIOR FIRE. 239

III. CLOSED HOT-AIR ENGINE WITH EXTERIOR FIRE.

The hot-air engine may be also "
closed," in which case the

same air acts over and over. Thus the air, after acting upon
the working piston, instead of being discharged into the atmos-

phere, is cooled down to its original temperature, and then used

over. Such an engine must necessarily have " exterior
"

fire.

It is analogous to a steam engine with surface condenser, in

which the condensed steam enters the boiler again, and is used

over. To this class belong the engines of Laubereau and of

Lehmann, which will be discussed hereafter. We may also con-

sider the Belou engine as of this class. It is at least converted

into such, when we conduct the still warm air which departs at

each stroke from the working cylinder through a pipe sur-

rounded by water, where it cools down to its original tempera-
ture before it enters the feed cylinder again.

Open hot-air engines are analogous to non-condensing steam

engines. The air is discharged and a fresh supply taken in.



CHAPTEK IX.

THEORY OF THOSE OPEN AND CLOSED HOT-AIR ENGINES, IN WHICH,

DURING EACH PERIOD, THE AIR GOES THROUGH A SIMPLE RE-

VERSIBLE CYCLE PROCESS.

WE shall now give the general theory for all hot-air engines,

whether open or closed, provided only, that in each period the

air goes through a complete reversible cycle process.

There are closed engines, such as those of Laubereau and

Lehmann, in which only a part of the air is compressed or

rarefied, while another part is in another condition. To such

engines the formulae which we are about to deduce are not

applicable. For all others in which the entire volume of air is

either compressed or rarefied, our discussion holds good.
Let the area of the piston in the feed cylinder be /, and H

the length of stroke. Then the volume of air drawn in per
stroke is/JZ

If t is the temperature of this volume, measured by the Cen-

tigrade thermometer, and T the absolute temperature, then

the weight is

(1).

where p is the tension.

Let this weight of air be forced at every stroke into the hot

space, and then with an increased volume, due to the heating,
enter the working cylinder and drive the piston there with

constant pressure through a certain distance, and then act

expansively for the rest of the way. If the engine is open it

is then discharged with tolerably high temperature into the

air. If the engine is closed heat is abstracted, until its tem-

perature is the same as its original temperature, at the begin-

ning of the cycle process.

Let the air in the feed cylinder be compressed until its ten-

240
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sion is plt and its temperature therefore rises from T to

We have then, from Equations XXIa and XXB,
k-l
k- /M * _ PL\- -

or

/ \ 0.2907_ m ( PI_ m I

l
~ l

If T, p and p^ are known, T can be found.

Now the work L, which must be performed in raising 1 kilo-

gram of air by compression from the temperature T to Tit is-

by Equation XXIB,

therefore the work necessary to raise G kilograms from T to

Ti is

(3).

As soon as the air in the feed pump has reached the tension

PI, the valves open, and the compressed air is gradually forced

into the heating apparatus. Here it receives the temperature

TZ, at which, under tolerably constant pressure p1} it moves
this working piston until the entire amount of compressed air

has been heated, and has passed into the working cylinder.

Then, as already described, the air acts expansively during the

rest of the way, until its pressure p^ has sunk to p.

The work L2, performed by the feed pump in forcing the

compressed air into the heating apparatus, is, if HI is that por-
tion of its stroke during which the air is forced out :

The weight of air is then also given by

hence we have

16
Z, = ST.G ....... (4).
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Now, while the feed piston is compressing the air and forcing

it out, the atmosphere helps it, and its work is

L3 =fHp.

But since G = p/yf , we have

L3
= RTG . ....... (5).

Hence we have for the work performed by the feed piston

per stroke

TI -T) . . (6).

Since c, A and R are constant, we see that the work is greater,

the greater T^ or the more the air is compressed, the greater

G, and the less T.

Now let us determine the work which the hot air performs
in the working cylinder.

The working piston, acted upon by the constant pressure plf

passes through the distance H^
If F is the area of the working piston, we have the work

done

But we also have

r

hence

Lt = RT*G ....... (7).

During the expansion, the pressure p sinks to p, and the

temperature Tz to T3 . Since pi, p and Tz may be considered as

known, Ts is given by the equation

or

Accordingly the work during expansion is

(9).
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The overcoming of the atmospheric pressure p through the

distance His

Li = FHp.
But since

we have

L^RT^G . ..... (10).

The effective work of the hot air in the working cylinder is

therefore

L4 + L5
- L6

= G (4 + -) (2i
- Z. (11).

VO. /

This is greater, the greater G and T2 and the less TB . If we
subtract (6) from (11), we have for the effective delivery per
.stroke

T,- T.-T. + T). . (12).

This very simple formula shows that the delivery L of a hot-air

engine, whether open or dosed, in which the air makes a reversible

cycle process, depends upon the temperatures in the engine and upon
the weight of air G. This weight of air is, from (1)

and hence for the same pressure p and temperature T^ is

greater, the greater fH, or the contents of the feed pump. It

increases also with the tension p of the air drawn in. If the

atmospheric pressure were 3, 4, or 5 times greater than it really

is, then for the same cylinder volume the delivery of the

machine would be 3, 4, or 5 times greater, and inversely, for

/the same delivery the volume of the feed pump, and hence of

the working cylinder, can ,be 3, 4, and 5 times smaller. In the

closed engine we may generate such an artificial pressure. We
have only to compress the air in the feed pump to the required

degree before starting, and by the completion of the cycle pro-

cess bring it back to this condition. In -the open engine this is

not possible. For this reason it would seem that the hot-air

engine of the future must be of this kind, viz., closed.
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We shall now illustrate the foregoing considerations and cal-

culations graphically.
Let Oa, Fig. 38,

I.,be the volume of

air drawn in per
stroke by the feed

pump, of pressure

p and temperature
T. Let this vol-

ume be compress-
ed adiabatically
from b to c, the

pressure rising to

Pi and the tem-

perature to T^
When the press-
ure Pi is reached,,

the valve opens
and the air is

forced out under

constant pressure

Pi. The work per-
formed during this

operation is evi-

dently given by
the area abcdO.

But the outer air

has performed the

workafeO. Hence

the shaded area

3C bcde gives the work

of the feed pump
in compressing the air and forcing it out into the heating

apparatus.
In the heating apparatus the temperature rises to T* and the

volume is increased. The increased volume is given by fy in

Fig. 38, II. As soon as this volume is reached, the air expands

adiabatically from
cj
to h and its volume is now Oi. During

expansion the pressure p{ sinks to p, and the absolute temper-
ature TZ to Tz. The entire work performed by the working

Fro. 38.
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jdston is given by the area fghiO. But this piston has had
to overcome the pressure of the atmosphere p, which requires
the work IhiO. Hence the shaded area fglil gives the effect-

ive work of the working piston. If from this we subtract the

work of the feed piston, we obtain the effective work of the

machine, or that work, part of which goes to useful effect and

part to overcome the prejudicial resistances. This work is then

given by the shaded area T^T^T^T (III. ) v inclosed by two adia-

Kitics and two straight lines. In Chapter VI. the cycle pro-
cess consisted of two adiabatics and two isothermals. But

there, during expansirn the air sank to its original temperature,-
while here it sinks only to a higher temperature Ts.

Let us now deduce formulae for the dimensions of the hot-

air engine.

If we substitute in (12) p^ in place of G, we have

=^ (4- + B\T, - Zi - 21 + T),
JEH 3 \ A /

or

Since, according to Equation VII.,

C 1 , C
, 1

^ l-^l Q AQQ(\
, we have -r + 1 = ~r r = A , n

= 3.4390,AE
-
k-I ' AE k-l 0.41

and hence

L = 3.439 -
(T,

- T,
-

T, + T).
-L*

If the engine makes n strokes per minute, the delivery per
second is

L. =3.439 .^(Tt-Tt -T1 +

*The delivery in horse powers, is then
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where p is the atmospheric pressure in kilograms per square
meter. Ifp is given in atmospheres

1 v 7K ' T ^ \ 3 *! ~ ./*
J X fi) ./ 3

or

J^= 7.8972^^(7
7

2-7T

3-77
1 + T7

) horse powers. (XLIII.)

If we consider N as given, we have for the volume FH of the

working cylinder

FH= 70079^/77^77 T + T\ cubic meters - (XLIV.)
t .ou t Apn (

J. % J.Q 1+1 )

Hence we see that the contents of the working cylinder are

not only less as the pressure p increases, but also the greater
the number of revolutions.

Let us now determine the relation between the area of the

working and feed pistons.

The weight G of air drawn into the feed cylinder at every
stroke, of T temperature and p atmospheres' pressure, is

'

ET '

This same weight of air fills, after expansion, the entire work-

ing cylinder. Hence we have

If the two weights are equal, we have

j^ or f =
F^ . . . (XLV.)

We have also

O^-^^l and G =

hence
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Since/is the same in both cases,

or

or

x T= . . (XLYI.

Since T2 is the highest, and T the lowest temperature of the

air during the process, and T3 and ?\ are the intermediate tem-

peratures, we have the important principle, when a given quan-

tity of air goes through a cycle of the kind in question, the product

of the extreme temperatures is equal to the product of the interme-

diate temperatures.

In deducing this principle, we have assumed that the air is

compressed in the feed cylinder, and forced into the heating

apparatus under the constant pressure pi, and that the heated

air drives the working piston with the same pressure p^ through
the distance H. In short, that the air is heated under con-

stant pressure. By the aid of the higher mathematics the cor-

rectness of this principle may be proved, for any case whatever,
where the heating takes place according to the general law,

if only the rise and fall

of temperature are pro-

portional to the heat im-

parted or abstracted.

Let us seek to show the

correctness of this by a

practical example, in

such a way that it will

be evident that the same

proof will hold good for

every other special case.

Let Ov = v, Fig. 39,

be the specific air vol-
., ,

, PIG. 39.

ume, its tension p and

temperature T. Suppose heat is imparted, and the air expands
while performing work along the curve TcT2,

to the condition

Let the heat thus imparted be Q.
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AT

Let us assume that the exponent has the value 2. We

further assume the volume v2
= %v.

We can easily compute the tension p^, since v^pi are known.

Suppose v = l,p = l. Then by the law,

2

- n
-2 f'B\

'

25
., naf> K1x1 = 1*

(jjj
or & -

jg
= 1.5625.

If the absolute temperature T is 273 + 100 = 373, we can

easily find T2. Thus by Equation XXXV.,

or

T, = 373 ( ^ )
= 373 x 1.9531 = 728.5.

If more heat had been added, until, for example, the volume

vl
= |0 or 20, the tension p% and temperature T2 would have

been greater.

The specific heat is

mk n
s c,m n

or putting for m, n, 7c, and c their special values,

s = 1

^
1
_~

(
~

2) 0.16847 = 0.1916.

Let us pass through the point T2,
determined by v2 $v and

p.2 1.5625p, an adiabatic curve, which we shall call the adia-

batic curve of the point T2. We may construct this curve from

the formula

2

* =
P^VZ = pflt, etc.,

by substituting various values for v& vto etc., and finding the

corresponding pressures. In Fig. 39, this curve is TzTs TTi.

Now let us suppose the air of volume v% and pressure p2 and

absolute temperature T9, to expand adiabatically until its

pressure falls to p%, which we may suppose, for example, to be

= p. We can then easily find the volume vz and temperature
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Ts, which the air possesses after expansion. (We might have

supposed % given, and then found pB and T3.)

We find ps from the equation

or

1.5625 (f)
1 -41 =1 x V41 or log 1.5625 + 141 log f-

= 1.41 log

hence

t Vs = 1.7155.

As soon as we know v, we can find T3 from the formula

1.7155/

During expansion, therefore, the absolute temperature sinks

from 728.5 to 469.8.

Let now the air of volume vs and pressure ps and absolute

temperature Ts be compressed to the volume of vlt pressure plt

and temperature Tlt such that the point Ji lies on the adia-

batic through T, and let this compression take place according
to the same law as the expansion. It is evident that a certain

quantity of heat must be abstracted, in precisely the same
manner as before heat was imparted. That there is abstraction

of heat and expenditure of work, is seen from the curve TzaT^

approaching the axis from above from right to left.

Let us determine now the pressure p^, the volume vit and the

temperature TI of the air when it reaches the adiabatic

We have for the curve

2 ...... (1).

and for ToTi

pv
k = p1vl

k ....... (2).

From (2) we have

and putting this value in (1)
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If in our special case, p3 p = 1 and v = 1 and vs
= 1.7155

<41 = (1.7155;
2 = 2.743 or v, = 1.3725.

Since now we know vs and Vi we can find 71. Thus

^3\"
3

_ /1.7155X~ "

Vl.3725/

- 8

or

T7

!
= 240.2.

Thus the absolute temperatures are

373, 728.5, 469.8, 240.2.

Hence

T,_ 728.5 T3 _ 469.8

T""37T" 7T~- ^5'

or

This is the same result which we have already obtained for

heat addition and subtraction according to a straight line or

according to the law

The heat Q imparted on the path TcTz is

0.1916 (728.5
-

373),

or generally

a(T% T) heat units.

The heat abstracted on the path T^aTl9 is

Ql
= 0.1916 (469.8

-
240.2),

or generally

s(Ts - 71) heat units.

Since now from the proportion

T,: T:: 71 : 71,

we have

7i
- T : 71 - 71 : : T : 71 ,
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we at once obtain

s(T2 -T) :s(T3
- 7y :: T : T19

that is

Which is the same principle proved in Chapter V., with iso-

thermal lines and adiabatics. We should obtain the same re-

7?

suit if we take equal to 3, 4, 5, ~or generally equal to
ifL

any number, positive or negative, whole or fractional.

It is now easy to determine the points T or Ji in which the

isothermal lines TdT and T^gT^ intersect the adiabatic line

To determine the point Twe have

pv = qw........ (1).

and

pMf = qw
k........ (2).

From (1) we find q ^
and inserting this in (2)w

1.41

pv

Thus in the case of our special example,

/KN 1.41

w-41 = 1.5625 (
~

)
or w = 6.384,

\4/

v, of course, being 1. We have also

when p = \.

In like manner for w-^ we have

= and =

If, then, in any closed or open hot-air engine, in which the

air makes a reversible cycle, the air compressed in the feed

cylinder is not heated under constant pressure ;
whatever may

be the law of heating whether under constant volume, as in

Sterling's engine, or according to any law, as^iVf
2 = pv~

2
,
as
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shown by the curve TcT2 in the Figure the product of the two

extreme temperatures is always equal to the product of the mean, if

heat is abstracted according to the same law as it is imparted.

The formulae which we have developed thus far, therefore,

apply to all kinds of open and closed hot-air engines, provided
that in the latter the expansion is such that by the subsequent

compression and cooling, the air returns to its original condi-

tion ;
and provided that in the former the air escapes into the

atmosphere under the assumed conditions.

Transformation of our Formulce. Since in the formula al-

ready deduced

1 c
we may put , _ ..- in place of -j= , the equation can be written

L _FHp( ck \
** ~w~ I rn: T\ (^2 ^3^1 + ^;

Now ck(T2 JJ) is the amount of heat added, and ck(TB T)
that abstracted in case of an open engine, that which is given

up to the air. Also ck is the specific heat for constant pressure,
or for the law

pv
Q = piv? = etc.

But, as we have seen, our formulae also apply when the change
of volume and pressure is given generally by

= etc.

If s is the specific heat generally, we have then

whereas we know

mk n8= - c.m n
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If this engine makes n strokes per minute, we have the horse-

power per second

where p is the pressure in kilograms per square meter.

If jo is given in atmospheres, we have

_ 10334K FHps --

-60^76 ck-lT (^- J >>

or

N= 2.296 . (T2 - T,- T, + T) horse-power. (LI.)
C(JC -Lj -L 3

Inversely, the volume FH of the working cylinder is

c(Jc-l)TsN

or snce

c(k- 1)
= 0.06904

. 3
cublc meters ' '

Maximum Delivery of the Hot-Air Engine. If it were possi-
ble in practice to raise at will the temperature of the air in a

hot-air engine as high as we please, we might construct such

engines with smaller dimensions and relatively higher delivery,

and then probably, since they are not liable to explosion, they

might replace the steam engine. But since the temperature is

practically limited, this is not the case.

We may consider the extreme temperature to which the air

may be raised, as about 300 C., although this has been occa-

sionally exceeded by as much as 30 without injury.

If we assume, then, 300 as the maximum temperature, and

further assume that the temperature of the air on entrance, or

in case of a closed engine, at the beginning of a cycle, is 0,
then in our formulae we have T2

= 273 + 300 = 573 and T =
273 + 273. Now for the maximum delivery, or the least

volume of cylinder for given delivery, the intermediate tern-
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peratures Tx and T3 must have definite values. Thus, it is

clear that the compression in the feed-pump cannot be carried

so far as to raise the temperature to 300 C., because then no

heat could be imparted by the heating apparatus, and there-

fore no mechanical work could be obtained. Thus, if we had

TI = T2,
we would also have, according to L., T = T3, and the

expression

would be zero. For the same reason we cannot have T^ = T,

for then from L., jT2 = Ts, and the above sum is zero. The

-value of TI must then lie somewhere between T and T2. Now
the expression T2 T$ T^+ T will be a maximum, when

TI + TB is a minimum. Also, the product of TI and T3 is con-

stant and equal to 573 x 273, or T2 x T. We can easily find

then, by calculus, that TI + T3 is a minimum when TI = T3.

If now TI = T3, we have from L.,

T2T = T? = T3
2
,
hence T3

= T, = V~T^T~ = V573 x 273
= 395.51. The intermediate temperatures Centigrade must
then be, ^ = ts

= 395.51 - 273 = 122.51. If we insert these

values in LIL, we have for the volume of cylinder FH when
the delivery is a maximum,

pns

Inversely

(LIII.)

If the heat is added or abstracted under constant pressure,
then s = 0.2375 and

iience

FH= 0.9107 (LV.)
pn

_ FHpn-
09107

If, as in Sterling's engine, heat is imparted or abstracted
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Tinder constant volume, s = 0. 1685. In this case, the volume
at the end of expansion is equal to that at the beginning of the

cycle process. The air

of volume Fand press-
ure p, as in Fig. 40,

is first compressed

adiabatically to Fi and

Pi. Then the volume

Fi is heated from T\ to

T2,
and its pressure

rises from p^ to p2.

The volume Fi now ex-

pands adiabatically to

its original volume V,

the temperature fall-

ing from T2 to T3, and

pressure fromp2 topl9 or for the maximum delivery T2 falls to

Ji. Finally heat is abstracted from v till 7i or T3 falls to T,

and pi to p.

If the heating and cooling takes place according to the law

FIG. 40.

we have

-2 =pv -2

s = 0.1916.

If in a Sterling engine the original volume is/fli we have

= sr and in Ln- we in place of T3.

Hence

0.03007 x 273 x N
ft RRfi

^
^ ^^^^ ~ . rt

= U.oob
pn x 0.1685 x 54.98 pn

Inversely

We see that the delivery in all cases is greater, and hence

the final volume of the air at the end of the cycle is less, the

greater the initial pressure p and the number of strokes n per
minute.
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Heat Imparted and Abstracted Consumption of Fuel. If in

formula L6, viz.,

we put AE in place of c (k 1), we have

or snce

L = [s(T2
-

7i) -s(Ts -T)] meter-kilograms.

Here Gs(T2 7i) is the heat added to the air per stroke,

and Gs(Ta T) is the heat abstracted, or, if the engine is open,
the heat given up to the outside air. If we denote the first by
Q and the second by ft we have

Q = s(T*-T,}G . . . . . (LIX.)

Q, = s(Tz -T}G .' . . . . (LX.)

If there are n strokes per minute, or 60ft per hour, the heat

imparted per hour is

Qh = 60ns (Tt
-

T,) G heat units . . (LXI.)

and that abstracted is

Qlh
= 60ns(Ts

- T')G. . . . (LXIL)

For the maximum delivery, T2
- T, = 573 - 395.51 = 177.49

and T,-T= 395.51 - 273 = 122.51, hence

Qh = 10649AnsG = 9509 nspFH heat units.

Qlh
=

where p is given in atmospheres.
We have therefore per horse-poiver per hour

Qh ,

-vv =

~A^
~ ue&t units.

,

-TV- -

-^
- heat units.
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If one kilogram of coal furnishes 7,500 heat units, the corn-

sumption of fuel per hour for every horse-power is

^kilograms,

if all the heat is utilized. If, however, half is lost by radiation,

the consumption per horse-power per hour is

rjj kilograms > . . . (LXIII.)3750

EXAMPLE I. What is the delivery of a hot-air engine in which ^#=2.309
cubic meters, n = 46, p l

=1.94 atmospheres, and the working pressure p 2 = 1.68

atmospheres, when T= 273 + 10 = 283 ?

According to XXIa and XXI6,

/1.94\ - 2907

!
= 283

( )
= 343.

J

From experiments upon this engine, the escaping air was found to have a

temperature t 3
= 250, or an absolute temperature T.3 - 273 + 250 = 523.

Hence the temperature T& in the working cylinder is

T.2 = 523(1.68)-
2907 = 608.25.

Substitute in XLIIL, and we have

O QAQ v 4fiN= 7.8972 ,1* (608.25
- 523 - 343 + 283)

o/*o

= 40.5 horse-power.

The horse-power, as actually found by Tresca by means of the indicator, was

about 40.

If we assume that 30 per cent, of this theoretical delivery is consumed by fric-

tion, we should have 0.70 x 40.5 = 28.35 effective horse-power. The work of a

steam engine of the same dimensions with 3 or 4 atmospheres' pressure would be

much greater. But if we take in the boiler and all, the space occupied is in favor

of the hot-air engine.

The weight of air Cr used per stroke is

FHp 2.309 x 10334 23861

M? =
29.272 x 523

=
15309

= 1 ' 6B8 kll Srams-

The heat imparted per stroke is therefore by LIX.

Q = 0.23751 (608.25
-

343) 1.558 = 98.149 heat units,

and the heat imparted per horse-power per hour is

17
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Hence the expenditure of coal per hour per horse-power, if all the heat were

given up to the air, would be ^ggft = 0.892 kilograms. According to Tresca's

experiments, the consumption was 1.44 kilograms, and therefore about of the

heat was lost.

The best steam engines use as low as 1, and at most 2 kilograms of coal per
hour per effective horse-power. The consumption for the hot-air engine is thus

somewhat greater than for the best steam engines.

EXAMPLE 2. Required to construct a hot-air engine, so that the cylinder

volume, for a given delivery, shall be a minimum. What should be the volume

if the theoretical delivery, for 48 strokes per minute, is to be 100 horse-power ?

According to LV., we have

FE = 0.9107 r^-fc = ^~ = 1.9 cubic meters.
1 x 48 48

A steam engine working without expansion or condensation, under 3 atmos-

pheres, with 48 strokes per minute, would require only one cylinder of 0.368

cubic meters contents.

If the cylinder of our hot-air engine is not to be greater, we must have a

closed engine, and make the initial pressure of the air somewhat more than 5

atmospheres. The compression in the feed cylinder would then raise the press-

ure to about 16 atmospheres. These are pressures which certainly can hardly
be recommended in practice. A cylinder whose volume is twice or three times

0.368 cubic meters, can hardly be called excessively large, however. The cylin-

der of the early condensation engines of Watt had for an effective pressure of

1^ atmospheres, and a theoretical delivery of 120 horse-power, a volume of 1

cubic meter. To this was added the immense boiler, which is wanting in the

hot-air engine.

If the air in our machine is compressed before admission to 2 atmospheres,
the working cylinder for the same delivery will need to be only half the size, or

about 0.95 cubic meters, that is, about 3 x 0.368 cubic meters, and the pressures
in the engine will not be excessive.

From all this, it appears that even such hot-air engines as have a theoretical

delivery of 100 horse-power, and therefore an effective power of 50 to 60 horse-

power, are not without a probable future, only they must be closed engines, whose

initial pressure is 2 or 3 atmospheres, and they must be constructed for the maxi-

mum delivery. Especially to be recommended are smaller engines (8 to 20 horse-

power), because they make in the same time more revolutions per minute,
and occupy a relatively less space than the larger. It is worth noticing that

Zeuner, in his "Warme Theorie," has found for the cylinder volume results

double of those here given. The reason is, that he considers only single-acting

engines. If in his formulae we substitute 2u in place of u, which denotes the

number of revolutions per minute, the results coincide.

Let us now compute for our engine above, of 100 horse-power, the volume of

the feed cylinder, as well the consumption of fuel, and the amount of cooling

water, assuming that the machine is closed.

We have already found

fH= FH^ = 1.9 ^Jl = 1.9 x 0.6902 = 1.311
-t ? o7o

cubic meters = the volume of the feed-pump.
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The amount of heat added per hour is

Qh= 95WnspFff,

r inserting numerical values

Qh = 9509 x 48 x 0.2375 x 1.9 = 205851 heat units.

Hence the consumption of coal per hour for each horse-power is

Oh 205851

375W
^
87601T100

= ' 549 <X*-

Since the effective delivery is perhaps at most 60 horse-power, each effective

horse-power per hour would require

0.549 x 100

^ = 0.915 kilograms,

'.or a less quantity than the best steam engines.

The heat abstracted per hour is found from the proportion

^- = 9509 : 6563, or since Qh = 205851
Vift

20581 : Q, = 9509 : 6563, or

Q lh = 142037 heat units.

If the cooling water is heated from to 80, we must have per second

142036

36QQ x 8Q
= 0.493 kilograms,

1 08
or in English weights, about 1.08 Ibs., or

^--
cubic feet. That heat is here not

taken into account which is abstracted from the air by partial evaporation of

the water.

The Regenerator. Let us now consider an apparatus applied

by Ericsson in his first caloric engine, which he calls the "
re-

generator."
In the engine already discussed, we saw that the air escaped

with a temperature of 260. It escaped with almost the same

temperature from Ericsson's first engine. It was evidently
desirable to utilize, at least partially, this heat, and thus econ-

omize fuel. He therefore caused the escaping air to pass

through a network of wires, which thus became heated. The

cold air drawn in by the feed-pump then passed through the

apparatus, and was thus heated.

Now from formula 22, page 167, we have seen that the de-

livery depends especially upon the weight of air G. This

weight depends, however, whether the air is compressed or

not, upon the temperature. The greater the temperature, the
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less, for equal volume, the weight. Therefore, under similar cir-

cumstances, the working cylinder receives a less weight of air

and performs less work. For the same delivery the volume of

the working cylinder must be increased. For this reason the

use of the regenerator gave, in Ericsson's first engine, a less

delivery than without, and this may be the reason of its omis-

sion in his later engine.

If, however, the value of a hot-air engine is estimated, as is

proper, by the ratio of fuel consumption to the dimensions and

delivery, the use of the regenerator is advantageous when the

engine does not give the maximum delivery. If, for example, the

expansion is not carried so far that the temperature sinks to

Ts
= 122.51 C., but only say to Ts

= 160 C., the heat 160 -

122.51 = 37.49 can be added by the regenerator. The deliv-

ery will be less than the maximum, but in the same degree less

fuel will be needed. If this 37.49 is lost, not only will the

delivery be less than the maximum, but also more fuel will be

necessary. It follows, then, that in a hot-air engine which gives-

the maximum delivery, whether open or closed, the regenerator is of
no effect ; but in one which is not so arranged as to give the

maximum delivery, it may be advantageous.

Absolute Maximum Delivery. The absolute maximum deliv-

ery of a hot-air engine can only be attained, when the cycle

process is of the character described in Chapter VL, in which
case the heat imparted for a certain work is least. Therefore

the addition and abstraction of heat must be so regulated
that the air expands in the working cylinder, at first, according
to the isothermal, and then according to the adiabatic curve,

and that the compression in the feed-pump should also be simi-

lar. The law of addition and abstraction of heat is therefore

pv =

If we wish a formula for the delivery of such a machine, we
must put TI = TZ and Ts

= T in the equation

L=^[_s(T,-T,}-s(T,-T}-\ on page 256,

since the temperature or inner work is constant during the re-

ception and abstraction of heat. If, however, 7\ = Tz and TB
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T, we cannot find the delivery from the equation. We know,
however, that under the given circumstances we can deter-

mine the heat imparted and abstracted from the initial and
final volumes, or from the initial and final temperatures. For
the heat imparted we have, page 160,

Q = 2.3026^1ST7

! log ,
if v1 is the initial volume at the

greater pressure p ,
and v2 the final volume after isothermal ex-

pansion.
For the heat abstracted

& = 2.3026 4^2 log-,v

where vs is the greater, and v4 the less volume.

We can now find the work L according to Equation XXX.,

page 186. We have

for one kilogram of air. For G kilograms we have

Putting for Q its value we obtain

VnT O QAOC Z?/"' f rn rn\ 1 *
Li = z.oUztxa (JT \1\ 2y log .

This is, then, the absolute maximum delivery of a hot-air en-

gine. If we denote it by La , we have

La = 2.3026.72 (T,
- T2) log |-

2
.

If we express the weight G in terms of the cylinder volume,

we have, page 240,

-

RT,
'

where p5 is the final pressure and T2 the final temperature after

^expansion in the working cylinder. We have therefore

La --= 2.3026^3
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But we have =
, and according to the law of the adia-

0i ft

batic curve

hence

If we substitute this value of p% in the expression for
, we>

have

Hence

T7 T v\ / T \ 8 -439

La = 2.3026^5^
* 2

log (4) meter-kilograms.
^ 2 ftiV* i/

If the strokes per minute are r&, the delivery per second is

^ Y7 TV fT \3-439

~ x 2.3026^5^3
1 -

log (
-~

j meter-kilograms,

and the horse-power is

n T T n* /7l\ 3-439

^ = 60V^ x 2-3026^^^^ log () .

DU X/O jf 2 ^3\^1/

If the pressure is given in atmospheres, w have

10334 x 2.3026

60x75 ~^^3 ? etc., or

rp >p
~ /

yr\ 3.439

-^= S.ZSSnFHpz -4^= ? loe
( -7^ ) horse-power.x r/ /M\V/ A

If we take as outer limits, TI = 573 and T2
= 273, we have

*= 581.15^ log

If this value is real, we must have

that is, the pressure for the least volume v1 must be at least
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greater than 12.804 times the initial pressure ps. If, then, w&
take pi 20 and p$ = 1 atmosphere, we have

N= 1.127FHn,

and hence for the cylinder volume

FH= 0.888 .

n

For an engine in which heat was added under constant press-
ure the greatest pressure is given by

T \p

For the maximum delivery T^ = 395.51 and T7^ 273, hence

0.2907

Pi = /!/ _Q
= 3.581 atmospheres.A i o

The cylinder volume in this case is

^#=0.9107,
pn

where N is the horse-power and p = 1.

While, then, the volume for the same delivery is only a little

greater, the greatest pressure is much less than in the first

case.

Since it is difficult to construct engines for 20 atmospheres'

pressure, we cannot use the system which gives the absolute

maximum of work, that is, gives the greatest effect with the

least expenditure of fuel. If we run the pressure up to 14 or

15 atmospheres, the cylinder volume will be much greater than

for the other systems.

Formulce for Hot-Air Engines Shortest Form. The formula

for the absolute maximum delivery

which we have found for the simple cycle process, can be de-

duced in this form for every hot-air engine.
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Since in the equation

L = ~[s(Ti-Tl)-s(Ts-T)} page 244,

s(Tz Tj) is the heat imparted, and s(Ts -T) that abstracted,

of which the first is denoted by Q and the second by Qlt we

have

But now we have proved that for all hot-air engines

T2 : 71 = TI : T

when the heat addition or abstraction takes place according to

the law

pmv
n _ pmv n _ efc.

Hence ;

T2
-

T, : Ts
- T= T2 : T3 or = ^ : T.

Therefore

s (Tz - TJ :s(TB - T) = T2 : TB
= T, : T,

or

Q : Q, = T, : T3
= T, : T.

Accordingly

or

Inserting the first value of Qi in the above equation for L,
we have

Hence we can calculate the delivery of a hot-air engine from
the heat imparted QG, the initial temperature T7

,
and the tem-

perature which the air receives by compression according to

the adiabatic curve.
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We see that for G =
1, that is, for one kilogram of air, this

equation is identical with that found for the simple cycle pro-

cess, Chapter YI.

If we insert the second value of Qi, we have

Therefore we can find the delivery from the heat imparted

QG, the temperature T2 which the air receives in the heating

apparatus, and that which it has after expansion in the working

cylinder.

Since the specific heat does not occur in these formulae, we
see that the delivery of a hot-air engine is independent of the

specific heat. If, for example, in the two systems already

noticed, Ericsson's and Sterling's, the temperatures
r

l\ and
r

l
,

or 7
7

2 and T3,
as well as the amount of heat QG, are the same,

the engines will all give the same delivery. The weight of air

in the Sterling engine must indeed be greater than in the other,

because the specific heat s is less. Neither has, then, any ad-

vantage over the other, apart from the dimensions of the engine.
The delivery of both, as well as of all systems in which there is

a cycle of the kind in question, is proportional to the heat im-

parted and to the temperatures occurring in the engine only.

We can also find the delivery L from the heat Q1G abstracted.

If we insert in the equation for L, the second value for Q, we
have .

T i-*% n\ i f T
A
~~ " ~^ l

~

If we insert the second value of G, we have

There only remains to deduce formulae for hot-air engines
in which the compression and expansion do not take place

according to the adiabatic curve, but according to some other,

for which the general law is
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where possesses a different volume from that for the other
m

curves of heat addition and subtraction. The deduction of

such formulae is unnecessary, since they are applicable to no

existing systems, and it is improbable that in future any engines

will be constructed to which they are applicable.

As already remarked, our discussion and formulae do not

apply to the more recent engines of Laubereau or Lehmann, in

which the air does not go through a simple cycle process, and

which, according to the author's view (particularly the latter),

are especially suited for minor industrial uses. We shall there-

fore seek at the close of this chapter to briefly describe a hot-

air engine, the principle of which seems, from a practical stand-

point, worthy of notice. We allude to the high-pressure engine
of Richard linger, described in the Civil-Ingenieur and Polytechn.

Journal. In the next chapter we will treat in detail of the

engines of Laubereau and Lehmann.

Construction of lingers Engine. In the hot-air engines con-

sidered in this chapter, the cold air is first compressed adia-

batically in the feed-cylinder, and its tension increases, there-

fore, according to the exponential law of Mariotte. If, how-

ever, we compress the air in the feed-pump while we abstract

the heat developed, the expansive force increases according to

the simple law of Mariotte, and the compressed air posesses at

the same pressure p^ a much less volume than when the com-

pression took place adiabatically. Since, also, the temperature
of this air is less, it will expand much more when heated to the

same degree, and hence perform more work ; or inversely, for

the same performance it expands less, and hence the volume of

the working cylinder is less. Also, the same weight of air is

heated to a less degree for the same amount of heat imparted,
and hence the highest temperature in the engine is less than

when the air is compressed, according to the exponential law
of Mariotte.

This principle has been applied by Eichard linger, in his

high-pressure caloric engine. The compressed air in the feed-

pump is cooled by injecting cold water in spray, which is thus

converted into steam. This water is forced into the feed-cylin-
der by a small pump, worked by the engine itself. In this
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way, according to the Journal, the air is brought to about 30

C., for a pressure of 6 atmospheres (5 atmospheres effective).

The steam formed increases somewhat the expansive force of

the air, and probably diminishes the piston friction.

The furnace is a cylindrical space, inclosed by iron plates,

spherical above and below. It consists of three annular con-

centric spaces. In the central space the coal is consumed.

This is connected by openings with the inner space, which is

closed above, but open below. This latter communicates with

the outer space.

Into the fireplace proper, as well as into the inner space, a

part of the compressed air is forced by the feed-pump by nar-

row pipes, thus securing perfect combustion. The hot pro-
ducts of combustion then mix with the larger part of the cold

air furnished by the compression-pump, which fills the outer

annular space, where it is heated by the central fire space. la

this way the air receives a temperature of 250 to 300.

The hot air is then led by special pipes to the valve chests,

and enters first on one, then on the other side of the piston.

Before the compressed air reaches the furnace it enters a

receiver, probably in order better to regulate the air necessary
for combustion. (Dingier s Polytechn. Journal, Bd. clxxxvi.,

Heft 1.)



CHAPTEK X.

THE HOT-AIE ENGINES OF LAUBEREAU AND LEHMANN.

IN the preceding chapters we have given the theory of those

open and closed hot-air engines in which a definite volume of

air makes in the engine a cycle process. If the engine is sin-

gle-acting, as, for example, Ericsson's, such a cycle is com-

pleted during one revolution ;
in double-acting engines we have

also a cycle during the same period, but, other things being
the same, we have a double weight of air, so that for the same
dimensions we have a double performance. The two engines
which we now consider, are in reality closed engines, but the

air in them does not compete a cycle in the ivay heretofore as-

sumed. Thus, while heretofore the entire inclosed air volume
was either compressed or rarefied, now only a part is thus

treated, while the other part is in another condition. For this

reason the formulae thus far developed do not apply to these

engines. We cannot, therefore, determine their performance
from the heat added or abstracted and the temperature fall,

according to the fundamental principles of the mechanical

theory of heat, but we must rather adopt the method which
we have followed in the calculation of the Ericsson engine.

Description of the Laubereau Engine. This engine consists of

.a hollow iron cylinder, abed (see Figs. 41 and 42, following),
surrounded by a somewhat wider cylinder, efgh. The space
between is filled with cold water, in order to cool the air in

the cylinder. In the lower part of the cylinder is a bell, of

cast-iron, whose sides are corrugated, in order to afford a

greater surface to the hot air. The sides of this bell, as well

as of the cylinder, are shaded black in the Figs. 41 and 42. In,

268
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Fig. 42 the bell is heated by gas, brought on through the pipe o

and burner I. To secure the air necessary for active combus-

tion, I is surrounded by a tube, mn, through which a current

of air passes. In

Fig. 41 the fur-

nace A is supplied
with coal by the

cast-iron door p9

the products of

combustion pass
out through m, and

thus the bell ik

is heated. These

products collect

at
</,

and pass off

through the chim-

ney ss.

The interior of

the cylinder abed

is partly filled by
the distributionpis-

tori V, the exterior

of which is of cast-

steel, and which

consists of two

parts. The inte-

rior of both parts, and the space between, is filled with some

poor conductor of heat. The piston stock has a rod
,
which

passes air tight through a stuffing-box in the cover of the cyl-

inder abed. The continuation of the distribution piston below

forms a thin plate cylinder, as in Ericsson's engine, which, when

the piston is in its lowest position, incloses the bell ik, and

easily absorbs its radiant heat.

The object of the distribution piston is as follows. Sup-

pose a certain amount of air in the cylinder abed, then by far

the greatest portion will be above the piston, since there is the

greatest free space. But since the upper part of the cylinder

abed is surrounded by cold water, the air there must have the

temperature of this water. If, now, the piston V rises, the

air must pass from the upper to the lower space, and come in

FIG. 41.
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contact with the hot plates of the piston, and the hot bell ik,

so that it is immediately heated, and has a great tension. If

the piston again de-

scends, the heated air

passes into the upper
cold space and im-

parts its heat to the

cold water. The tem-

perature thus sinks to

its original value. It

follows that the water

surrounding the up-

per part of the cylin-

der must be constant-

ly renewed. This is

done by a small pump,
P, merely indicated

in the Figures.
Now that we have

seenhow the air in the

engine is alternately

heated and cooled,

and thus has a greater

and less expansive

force, let us explain
air is converted into

FIG. 42.

how the increased force of the heated

mechanical work.

From the lower part of the inner space of abed, in the neigh-
borhood of h, a pipe, dotted in Fig. 42, leads to the lower part
of the working cylinder B. This cylinder is open above. In

the bottom is a cock, /il5 by which air can be admitted to the

cylinder and to the engine. The cylinder is fitted with an air-

tight piston, K9
and rod, &j, which works vertically up and down

through fixed guides above. By the forked-shaped connect-

ing-rod gly the crank Wi and shaft ww are set in motion.

The shaft passes through boxes yi5 borne by the frame CO.

Upon the shaft is the fly-wheel SS, and the disc r, which by
means of the belt i\ and the pulley r2 work the pump P. The
shaft ww is divided in the middle, and furnished with two small

cranks ZT, connected by a triangular cam
f/2 , Fig. 41. This cam
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moves in the rectangular frame uu, which is connected below

-with the rod t of the distribution piston. Above it is connected

to two rods, tz and rf3,
which work vertically in the guides /i/i-

Tlio cam g% thus answers to the eccentric in the steam engine.

When, now, the engine is put in motion, the gas is either

kindled or burning coal introduced through the door p. After

a few minutes, when the bell ik is sufficiently heated, the engine
is turned by means of the fly-wheel SS, beyond its dead point,

so that the distribution piston V is moved upwards. The cold

air is thus forced rapidly into the lower warm space, where it

is heated up to about 300 C. The tension, before 1 atmos-

phere, thus becomes about 1J or more, according to the con-

struction of the machine. By reason of this increased tension

the piston k in the working cylinder is raised. When the dis-

tribution piston has reached the upper end of its stroke, the

working piston has still some distance to go. The first, there-

fore, descends while the working piston completes its stroke.

The tension of the air in the engine sinks immediately below 1

atmosphere, and the working piston is forced down by the

outer air pressure.
At the moment when the latter commences to ascend, the

-distribution piston has already risen part way, a part of the

cold air is again heated, the entire air mass has thus a greater

tension, and the working piston is again raised, and so on.

While the motion of the working piston is tolerably uniform,

that of the distribution piston is more irregular. At the upper
and lower points of its stroke, it must linger, while the stroke

up and down is quickly accomplished. Indeed, it may even be

that the distribution piston makes its entire stroke while the

working piston is reversing its motion. The motion of the dis-

tribution piston is dependent upon the construction and shape
of the triangular cam g.2 and frame uu. (Such an arrangement
is represented in Fig. 777, Art. 475, of Du Bois' translation of

Weisbach's Mechanics of Engineering, vol. 2.)

According to reports, these engines of Laubereau should not

make less than 500 revolutions per minute, and just so often

the air must be heated and cooled. From a practical stand-

point this appears hardly possible. If the data are correct,

we see how very rapidly air can receive and give up heat, when
made to move over warm or cold plates.
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Theory of Laubereau's Engine. Let us first investigate the

tension relations in the engine. We may proceed here in a

manner similar to that adopted for the Ericsson engine. We
use the following notation.

First, it is assumed that the cylinder efgh, as well as the dis-

tribution piston V, are closed above and below by plane sur-

faces. Let

F sq. meters be the cross-section of the distribution piston, or

the area of the cylinder abed.

H meters, the length of stroke of the distribution piston.

HI meters, that distance which the distribution piston passes
over while the working piston moves through h^.

h meters, the stroke of the working piston.

\ meters, the distance passed over while the distribution pis-

ton passes through H^.

G the weight of air in the engine, which is always constant

T the absolute temperature of the cold air.

t its temperature Centigrade.

Ji the highest absolute temperature of the air.

p the pressure of the cold air in the cylinder abed, when the

distribution piston is below.

PI the highest, and

Pz the lowest pressure during a revolution. Finally
b meters, the height of the prejudicial space or clearance, con-

sidered not as annular but as a cylinder.

If the distribution piston is below, the air volume above it is

FH
of the temperature T and pressure p.

This weighs, according to known principles,

kilograms.

Below the piston we have the air volume

Fb
of the pressure p and temperature TI , whose weight is

Fbp
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The entire weight of air Enclosed is then

G _ , _ _~

RT
~

RT, ~\T +
Tj E

The distribution piston has passed through the distance

H HI when the tension in the entire engine has risen to p^
Above the piston there is now the air weight

RT
and below

Ftp,
RT,

'

so that for this position the air weight is

r _FHlPl

RT

_r
L

HT T,

From (1) and (2) we have

p, HT, + IT
p H& + (H - H, + b) T

If we put H If, H, or HI = 0, that is, if we assume the

working piston to be first raised when the distribution piston
is at the upper end of its stroke, we have

p, _ HT, + bT
p
"
(H+tyT*

This is evidently the greatest value which p, can have.

Since we can also write

i + IT

we see that p, depends essentially upon the initial pressure p-
If we have b = 0, we have

18
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Therefore the pressure i\ is directly as the temperature TI

and the initial pressure p, and inversely as the temperature T.

After the distribution piston has risen the distance H^ the

working piston moves through the distance hi under the con-

stant pressure PI. The air weight is now

G -- ^- ^g- . . . . (6).

From (6) and (2) we have

fh, = F"^~-> and

F J-f

hi
-

~y~ -fp\T\
T) (7),

If again we put Hv
=

0, we shall have hi = 0, that is, the

working piston goes through no distance under constant press-

ure, but is raised by expansion of the air.

If further we takef=F and take T^ = 2 x 273 and T= 273,

that is, if we warm the air from to 273, we have, as is evident,

X, = H,.

Let us determine now the height A, which the working piston
has to move, in order that the pressure may sink to the origi-

nal pressure p.

When the working piston has passed through h, the air vol-

ume in the engine is

FH+ Fl +fh.

This volume, at the pressure p and temperature T\, weighs

'RTi
=

\T~i
+

~Ti)^R
+ '

Equating this to (1), we obtain

FH+ Fb+fh _FH Fb^= RT
and after reduction

k = **-(Tt -T) (8).
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From (7) and (8) we have now

h1 :h::Hi
:H.

While now the working piston is at its highest point, the

distribution piston passes through H Hiy and the pressure
of the air sinks from p to p* The inclosed air weight is now

Fbp, F(H-~

RT, RT. RT, RT

Equating this to (1), we have

= (HT, + bT)p_
p
~
(2H-HJ ^-(H-H,- b)T

'

If here we put H N
{
^ ff, or H^ 0, we have

p ~ZHTl -(H-b)T

EXAMPLE.

Let F 1 sq. meter, /= sq. meter, H 0.2 m., and H{
= 0.1 meter. Also,

b 0.02 meter, the temperature t of the cold air 0, or T= 273, and of the hot

air /j
= 273, or TI =2 x 273. What are the pressure relations in the engine,

and how great are h
l
and h ?

From (3),

p _ 0.2 x 2 x 273 + 0.02 x 273

~jT

~
0.1 x 2 x 273 + (0.2

- 0.1 + 0.02)273

_ 0.4 + 0.02 _ 0.42 _~
0.2 + 0.12

~
0.32

~

If H\ were 0, we have from (4)

P 0.3 x 2 x 273 -+- 0.02 x 273 0.42

p 0.2 x 273 + 0.02 x 273
~

0.22
_~

This is evidently the highest pressure which can be attained for the tempera-
ture 273, when only air is inclosed in the engine.

If the prejudicial space is zero, we have

p i
2 atmospheres.

The minimum pressure p.z is from (9)

P* 0.2 x 2 x 273 + 0.02 x 273 _ 0.42 _~ "
p

~
(0.4

- 0.1)2 x 273 - (0.2
- 0.1 - 0.02)273

~
0.52
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If again here 1^ = 0, that is, if the distribution piston completes its stroke

while the working piston lingers at the upper end of its stroke, we have from (10)

P* - 0.2 x 2 x 273 + 0.02 x 273 _ 0.42 _
p~

~~
2 x 0.2 x 2 x 273 - (0.2

-
0.02) 273

~
0.62

~

From this example we see very plainly that in the construction of the engine
care should be taken to make the motion of the distribution piston such that it

shall pass through its entire stroke while the working piston lingers at the dead

points, and that it shall linger on its own dead points until the working piston

has completed its entire stroke. Finally, the prejudicial space or clearance

must be as small as possible.

We see, further, that only that portion of the inclosed air performs outer

work by which the air volume is increased by heating. The entire air volume

contained in the distribution cylinder takes no part in the performance of work.

Since it is heated, however, and hence its inner work increased, that heat, neces-

sary for the increase of inner work, is lost. The engine works, therefore, less

advantageously than those hot-air engines considered in preceding chapters.

It remains to determine from our formula the entire stroke h, of the working

piston, and that part of it which the piston describes under constant pressure.,

We can then calculate the performance of the engine.
From (7),

*i = T ^ (2 x 273 - 273) = 0.2 meters.
2 *

The entire stroke h is from (8),

1 02
h = - -1-

(2 x 273 - 273) = 0.4 metres.
f &16

We have, therefore, as already proved,

Delivery of the Engine. In order to calculate the delivery of

the engine, we proceed, on account of the small differencss of

tension, in the following manner :

The delivery Llt under constant pressure, if p is the outer

air pressure, is

If we assume the mean pressure during expansion at
^

^,,
A

which varies but little from the actual, we have for the deliv-

ery during expansion

Hence the entire delivery during the rise of the piston is

hl)PlP. . (1).



HOT-AIR ENGINE OF LA UBEREA U. 277

When the working piston falls, it describes, under the con-

stant pressure p p2,
the distance 7^. The work of the outer

air pressure is hence,

A =fhi(p-p2)>

From here on, the pressure diminishes gradually down to

zero.

We have, therefore, for the delivery during the descent

h hl9

Hence the delivery during the descent of the piston, due to

the pressure of the atmosphere, is

, A (P -Pd +/(* - W^T25 =/(A + fti)^^ (2)-

The entire delivery of the engine per revolution is hence

L = f(h + *0 ^- +f(h + h
t ) P^SS-

If the engine makes per minute n revolutions, and w is the

efficiency, the delivery per second is

L8
= 10334 TiWfy + *i)

^LL meter-kilograms,

and the delivery in horse-power is

10334

. (LXVIII.)

If we take the preceding example and assume that the engine
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makes 45 revolutions per minute, and has an efficiency of 0.5,

we have

N= 2.296 x 45 x 0.5 x 0.5(0.4 + 0.2)

= 4 horse-powers.

Tresca has observed in engines of this kind, for cylinder
diameter of 0.5 meter, and hence cylinder cross-section of 0.196

square meter, stroke of 0.4 meter, and effective pressure dur-

ing rise of piston of 0.25 atmosphere, a delivery of 0.8 horse-

power. For a cross-section of working cylinder of 0.5 square

meter, as in our example, the delivery for this slight pressure

would be s^7>7r x 0.8 = 2.04 horse-power. If we consider that
U.lVJb

the pressure in our example is 0.313, and that the effective

pressure of the atmosphere is also greater, we can conclude

that our formula is reliable if the number of revolutions is not

far from 45.

The delivery is considerably greater when p1 and p% have the

above calculated maximum values, or when the engine is sa

constructed that the working piston lingers at its upper or

lower positions while the distribution piston describes a com-

plete stroke.

Dimensions for a given Delivery. If we put in the last for-

mula in place of h and ^ the values from (7) and (8), we have

N = 2.296EW) ^ (T,
- T) (H + H,}

Pi
^
P*

. (LXIX.)

whence it appears that the delivery increases not only with

the area F and the height H of the distribution cylinder, but
also with the temperature 7J.

From this formula we have at once the area F for an engine
of given power. Thus,

1
' (LXX '

}

Here n, w, Tl9 T7

, and H, H^ are considered as given. The
values oipl and^2 are then found from (3) and (9).
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For the maximum delivery, where H^ = 0, we have

2^V
"

2.396
'

(
LXXL )

EXAMPLE. *

What mustF and / be, when the actual deliveryN of the engine is two horse-

power, and w = 0.30, n = 60, 2\ .= 2 x 273, T= 273,_JT= 0.05, and b = 0.01 ?

If we require from the engine the maximum of work^we have from the equation.

=
.jj-\_ &) y by inserting the numerical values.

0.05 x 2 x 273 + 0.01 x 273 _
(0.05 + 0.01) x 273

and from Equation 10

bH
p ^ 2HT, - (H-b)T

0.05 x 2 x 273 + 0.01 x 273~
2 x 0.05 x 2 x 273 - (0.05

-
0.01) x 273

Hence

2x273x2

O.o8&

2 x 296 x 60 x 0.3 x 0.05 x 273 x 1.145

4=
2

. , 1.69 square meters.*

The entire volume of the air inclosed in the distribution cylinder must there-

fore be

1.69 x 0.05 = 0.0845 cubic meters.

From (8) we have for the volume of the working cylinder

fh = 0.0845
2 x 2

Jf

~ 278 = 0.0845 cubic meters.
6 to

If we take h = 0.05 meters, we have / = -^ = 0.169 sq. meters.

The Hot-Air Engine of Lehmann. In the engine of Laubereau

we meet with two evils, the direct action of the hot air upon
the working piston, and the alternate heating and cooling of a

pari of the inclosed air which does not contribute to the action

of the machine. The first objection is common also to the en-

gines of linger and Belou, while Ericsson has avoided it in his

* If we take for the stroke 0.5m. instead of 0.05m., we should have for .F, 0.169 square meters.

Hence the radius of the distribution piston would be only 0.233 meter.
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engine in a very ingenious manner. In fact this invention is

specially distinguished in that the working piston always re-

mains cool (the temperature at most 40 to 50), so that it can

be well lubricated, and also in that the motion of the piston is

transmitted in a very simple and ingenious manner to the fly-

wheel and this to the feed piston.

The objections to Laube-

reau's engine have been met by
Lehmann, who, with the same
idea at bottom, has joined the

special advantages of Erics-

son's invention. In Lehmann's

hot-air engine, also, an inclosed

quantity of air is alternately
heated and cooled, but it does

not act directly upon the work-

ing piston. This latter is pro-
tected by the feed piston from

the heat of radiation and con-

duction, while still the expan-
sive force of the hot air is ap-

plied in the same cylinder in

which it is heated and cooled.

For this reason, a part of the

air is not heated and cooled

unnecessarily at every revolu-

tion.

Fig. 43 represents a section

of Lehmann's engine, a de-

scription of which, together
with a number of experi-
mental results, have been

given by Eckerth in the Viertel-

jahrsschrift des deutschen Inge-

nieur-und Architekten-Vereins, 1

Jahrgang, 2 Heft.

ABCD, Fig. 43, is a horizon-

tal cylinder of cast-iron, open
in front and closed behind. 8 is the fire space, with the ash

pit T. The hot air plays around the outside of the cylinder at

FIG. 43.
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the left end, and then mounts through the pipe It, which is fur-

nished with a throttle valve for regulating the draft, into the

air. About fds of the cylinder is surrounded by a wider cyl-

inder, LMNP, and the annular space between is kept filled

with cold water, which enters below and escapes through the

pipe Q after it has cooled the air.

In the cylinder ABCD two pistons move. One, UU, is the

working piston, which is made to fit air-tight by a leather

washer. This washer is so constructed that it allows air to

enter when the outer air pressure is greater than the inner, but

hugs only the tighter and prevents exit when the inner air

pressure is greater than the outer. The outer piston, called

the compressor, consists chiefly of an air-tight riveted plate

cylinder EFGH, stiffened inside by the piston KK, and closed

in front by the wooden piston EF. The diameter of this cyl-

inder is but little less than that of ABCD, so there is only a

narrow space between.

The compressor is connected with a rod VW, which passes

air-tight through the working piston. This latter transmits its

motion to the fly-wheel in a manner similar to Ericsson's en-

gine, and the motion of the compressor is similarly effected.

In order to preserve its motion in a right line, guides are

fitted to the cylinder ABCD, and to diminish the friction we
have a roller at 0.

The cranks and connecting-rods by which the motion of the

working piston is communicated to the compressor are so ar-

ranged that the crank for the latter is 65 in advance of that

for the working piston.
In the vicinity of X there is a regulator, which opens a valve

when the normal action is exceeded.

The mutual motions of the working piston and compressor
are represented in Fig. 44
The circles above are the crank circles. We have divided

each into 12 equal parts. When the crank of the working pis-

ton has gone from 1 to 2, the working piston has gone through
the distance 2a, and simultaneously the feed piston has gone

through the distance 26. When the crank of the working pis-

ton reaches 3, the working piston has passed through 3a, and

the feed piston through 36, and so on.

We see now from the diagram that when the working piston
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reaches its extreme position on the right (see Fig. 43), the

compressor has gone almost the half of its stroke toward

the left. This posi-
tion we have indi-

cated in the diagram

by /. The space

right and left of the

compressor is then

equal, but in the

one we have cold

air and in the other

hot air, while the

air layer in the nar-

row annular space
between compres-
sor and cylinder
forms a poor con-

ductor, b y which
the propagation of

heat from the hot

to the cold space is

prevented. This air

answers, then, the

purpose of the ring
valve in Ericsson's

engine.
When the two

pistons have the

position in /, the

compressor goes to-

ward the left some-

what more rapidly
than the working

piston. The hot

air is thus driven

out of the hot space
behind the c om -

pressor into the

cold space in front,,

and its tension is.
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diminished. Since, however, the working piston also moves

toward the left, the inclosed air is compressed. But the

increase of the tension by the compression is at first less than

the decrease by cooling. If, therefore, the entire air volume

had at first the pressure of the atmosphere, its pressure will

be now somewhat less. In Ericsson's engine the same is true.

As soon as the feed piston begins to move backward, the air

between the two pistons is rarefied, and .cold air enters through
the valve in the working piston. Eckerth, however, ascribes,

this decrease of tension to losses of air. From 3 on (see dia-

gram), the working piston and compressor move with almost

equal velocity toward the left, and since at 3 there is but little

hot air behind the compressor, the entire inclosed air volume

soon takes the pressure of the atmosphere, as the closed curve

LII.IILIV. above the crank circle in the diagram represents.
This is obtained by laying off from the line aft the pressures

corresponding to the positions LII.IILIV. From 4 on, where

the working piston moves toward the left much more rapidly
than the compressor, and the latter is almost at the end of its

stroke, the pressure rises above the atmosphere.
At II. the compressor has its extreme left position, and all

the hot air has passed into the cold space, and since the work-

ing piston also has nearly completed its stroke toward the

left, the pressure is considerably higher than the atmosphere.
The maximum pressure, however, is not yet attained. From II.

to IIL it must increase rapidly, for now the compressor re-

turns and forces cold air into the hot space, while the work-

ing piston still is going toward the left as before. About at IIL,

then, we have the maximum pressure.

Between IIL and IV. it remains tolerably constant, because

both pistons are moving together toward the right with nearly

equal velocity, and because the increase by the heating of the

cold air is balanced by the increase of volume.

From IV. on, the working piston goes more rapidly to the

right than the compressor, and the pressure sinks gradually
until it is again 1 atmosphere.
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Calcidation of the Pressures in Lehmann's Engine. Let

F = the cross-section of the larger cylinder.

F! = that of the compressor.

Z, the length of compressor.

a, the distance between pistons in the position /.

Oi, the distance from end of compressor to that of cylinder.

T, the absolute temperature in the cold space.

T^ that in the annular space between compressor and cylinder.

TK that in the hot space.

For the inclosed air weight G we have, when^> is the press-
ure for the position /,

r _Fap.
RT RT BT'

If we put (F FJ I - Fa, we have
ilf

Again for the position //. (see diagram), let b be the distance

between pistons, 6X that between cylinder end and compressor
end, p1 the pressure for this position, then

a

From (1) and (2) we obtain

fft = T +
'nTl

+
7J

^? 6 tt &!

r +
71

+ F2

If for position ZZZ we have c, Cj, and p2 instead of b, bi and plt

we obtain

d Oj

Pt = y ^ y2

50 C Ct Cj+ -T^T
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For position IV., taking p%, d, and c^ in the same signification

as pz, c, and (\ for ///., we have

a_
a a

ps_T nTi T2

p
~

d^
a dC

T
"

nTi 7J

The engine described by Eckerth was-of 1 horse-power, and

had the following dimensions :

Diameter of working piston 0.349 meters.

Stroke " "
0.175 "

Diameter of compressor 0.342 "

Stroke " " 0.244 "

Length
" " 1.527

Area of working piston F = 0.0957 sq. meters.

Further, if we take the dimensions of the drawings given by
Eckerfch in his description of Lehmann's engine as approxi-

mately correct,

a = 6.5" (Vienna) a, = 6.375" b = 7.5" ^ = 0.25"

c = 3.5" d = 2.8" d = 0.25" d, = 8.25".

In the experiments the cold water entered with a tempera-
ture of 30 to 60, and left at 40 to 70. The cold air had then

70 + 40
a somewhat higher temperature than = = 55 on the av-

erage. If we take it at 60, T= 273 + 60 = 333. If we assume

the mean temperature of the air in the annular space at 100,
and that in the hot space at 300, we have T = 373, and T3

=
573.

According to Eckerth, n is about 3. We have taken for n

2.5.

Hence we have

6.5 6.5 6.375

PL 333
+

2.5 x 373
+

573 0.03762 _ -

p
=

7.5 6.5 0.25
: ~

0.02993
~

333
+

275 x 373
+

573
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Also for position ///.

6.5 6.375
^

p, 333 2.5x373 573 _ 0.03762 _ 1 1ft

y r

~3.5 6.5
_2.8_

0.02237
~

333
+

2.5 x 373 573

For /F.

6.5 6.5
.
6.375

P* - 333
"

2.5 x 373 573 0.03762 _ -
ftn

y = :

"025~ 6.5 8.25
' '

0.02212
~

333
^

2.5 x 373
+

573

Experiments with the' indicator gave as the maximum press-

ure an excess of 10 pounds, or an effective pressure of 10 + 14.1 =
241. Hence

. = = 1.709, .".
p 14.1

a value which agrees very closely with our calculation. The

pressure relations are here, therefore, more favorable than in

Ericsson's engine, and considerably more so than in Laube-

Teau's engine, as might have been expected from a considera-

iion of the construction.

Delivery of the Engine. According to the diagram, the pressure
of the air, while the working piston passes from /. to 4, is

tolerably constant, and somewhat less than that of the atmos-

phere. From 4 to ///., it increases about as the volume di-

minishes, and the increase follows the isothermal curve there-

fore. From ///. to IV. again, the pressure remains tolerably

constant, and then from IV. to 1 decreases almost exactly

according to the ordinates of a straight line, that is, the de-

crease of pressure is proportional to the distance traversed by
the working piston.

We have denoted the area of the piston by F. Let the

distance passed over from ///. to IV. be w, then the work o

the air during this motion of the piston is

Li =
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5t?Q ~J~ "D

From IV. to 1 the pressure is
% kilograms. If the dis-

tance is wlt the work is

.

The work of the heated air is therefore

Further, let the pressure from /. to 4 be po on the average,
and the distance w2 , then, since p < p, that is, is less than the

atmospheric pressure, the work of this latter is

So that the entire delivery is

A + L2 + L3
= F (wps + Wi

3 + w* (p
-

The work of compression from 4 to ///. is

A = 2.3026 Vzp, log
SL

if "^2 is the least volume and p^ the greatest pressure.
The first occurs when the working piston reaches the back

end of its stroke. Instead of V^ we can put Fx, and have then,

A = 2.3026J^2 log *-,

so that the effective delivery per stroke is

A + L, + L3-Li
= L= F

log
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If there are n strokes per minute, the delivery per second in

rvrsA-nowp.rs ishorse-powers is

where ps, p, etc., are expressed in kilograms. If we express the

pressures in atmospheres, we have

N=

or

N =

-
2.3026308 log

2̂ .... (LXXH.)

EXAMPLE.

For the engine already discussed, F = 0.0957 sq. meters, and n, on an aver-

age, was 97. If the distances w tw 19 etc., traversed by the working piston, are

taken from the diagram, we have w = 0.06 in
, w\ = 0.115, and w.2 = about 0.06 "

What is N, when we take^ 3 = 1.71, and^ ()
= 0.97 atmospheres ?

Since the least volume v2 0.02125 cubic meters, x = 0.222m -, hence

^=2.296 x 0.0957 x 97
[o.06

x 1.71 + 0.115
1>71

2

+ 1
+ 0.06 x 0.03 - 2.3026

x 0.222 x 1682 log 1.682] ,

N= 21.314 [0.1026 + 0.1558 + 0.0018 - 0.1941]

= 21.314 x 0.0661 = 1.4088 horse-power.

A mean of several experiments with the friction brake gave
73 8

the actual delivery 73.8 meter-kilograms, or _^ 0.984 horse-
75

power, so that the efficiency is about ^^ = 0.69. Accord-
J..4:UOO

ing to Eckerth, who reckoned the theoretical delivery from

diagrams, the efficiency was about 0.66. Both seem somewhat
too great. For a \ horse-power caloric engine of Ericsson, the

efficiency, according to experiments by the author (Dingler's

Polytechn. Journal, Bd. clxxix.) was 0.40, a result with which

Tresca's experiments closely agreed. It does not seem likely
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that the efficiency of the present construction is greater by 26

to 29 per cent.

The above formulae for the calculation of the power of a

Lehmann engine may, according to the determinations and
views of the author, be replaced, as long as the proportions
are unchanged, by the following simple formula :

L8 0.163
n

(ti
t2 ) G meter-kilograms,

where Ls is the delivery per second, n the number of revolu-

tions per minute, ^ the highest and t% the lowest temperatures
of the inclosed air, and G the weight of air. This last can be

easily calculated from (1). We have thus G = 0.02784 kilo-

grams. This formula rests upon similar reasoning to that on

page 234
Eckerth states that the machine required 13.5 cubic feet, or

a weight of 426.4 kilograms of cooling water. This was fur-

nished by a small pump worked by the engine, and forced into

the cold space, from whence, after being heated, it flowed back
to the reservoir. In 2 hours this water showed an increase of

61 - 35 = 26, or 13 per hour. The heat absorbed by the

water was hence

426.4 x 13 = 5543.2 heat units per hour.

The hourly delivery was

73.8 x 60 x 60 = 265680 meter-kilograms,

,. 265680 anaa\. -i
corresponding to TO = 626.6 heat units.

Hence the heat units per hour imparted to the air are

5543.2 + 626.6 = 6170.

The ratio of the heat transformed into work to that absorbed

by the cooling water is therefore

626.6 u
554372"

-

The engine required per hour 4.585 kilograms of coal, whose

19
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heating value was estimated at 3,500 heat units. The coal fur-

nished therefore

4.585 x 3500 heat units.

Since only 626.6 units were utilized, the ratio of the heat

transformed into mechanical work to that furnished by the coal,

or the thermal effect, is

626.6

4.585 x~3500
:

The efficiency of the furnace was

6170

4.585 x 3500
= 0.38.

The difference in temperature of the cooling water at en-

trance and exit was, while the engine was working at about 1

horse-power, about constant and 9 Centigrade.
The heat units per hour imparted to the water was, as above,

5543.2, hence per minute 92.39. The amount of water used per
minute is then

QO QQ

-=P = 10.266 kilograms = 10.266 cubic decimeters,
y

The diameter of the pump, as also its stroke, was about 2

inches.

The following table, taken also from the Vierteljahresschrift,

gives a comparison between the hot-air engines of Ericsson,

Laubereau, and Lehmann :

System.

Ericsson....0.414 m.

Diameter of Useful Delivery
Working
Piston.

Laubereau..0.342 m.

Lehmann..0.339m.

pei-
Second.

1.77 H. P.

0.8

Consumption of

Efficiency. Fuel per Horse-
power per Hour.

Cooling Water per
Horse-power per

Hour.

0.46 4.13 kil. of coal

o f heating
value 7,000-
7,500.

0.40 4.5-5 kil. coke 20-30 cubic feet

of heating for a rise of

power 7,000- t e m perature
7,500. of 17

J

.

0.66 (?) 4.6 kil. hard 61 cub. ft. for

coal of heat- rise of tem-

ing power perature of

about 8, 500. 2G .



HOT-AIR ENGINE OF LEHMANN. 291

According to the views of the author, the engines described

.-are especially suited for the lesser industries. They are, for

reasons cited, more durable than Laubereau's, and the annoy-

ing pounding of Ericsson's is entirely avoided. Moreover, the

consumption of fuel, as shown in the table, is only the. half of

that for the other two systems. In this respect it is as econo-

mical as the best steam engines.
Caloric engines are also perfectly free from danger, and their

.attendance and management is much simpler than for the steam

engine.



CHAPTEE XL

GAS ENGINES, ESPECIALLY THOSE OF OTTO AND LANGEN,

ALMOST at the same time as the introduction of the Ericsson

engine in Europe, the gas engine was invented by Lenoir in

Paris. Let us consider the circumstances which gave rise to

the idea.

It is known that when the electric spark is led through a mix-

ture of air and hydrogen, there is a combustion of the latter as

it unites with a part of the oxygen of the air to form steam. By
this combustion the air, as well as the products of combustion,

are heated, and, if the sides of the containing vessel are mov-

able, there will be expansion and increase of volume
;

if not,

there will be a considerable increase of pressure. The same is

the case when gas is kindled. Such facts, which were un-

doubtedly known to Lenoir, may have suggested to him the

gas engine.
This machine is of simple construction, and in exterior ap-

pearance very similar to a steam engine with horizontal cylinder.
The principal part is thus a hollow cylinder closed at both ends,
in which moves an air-tight piston. This is connected by means
of piston and connecting-rods with the crank of a fly-wheel, from

which by a belt the power can be taken off.

Let the piston be at the right end of its stroke. By turning
the fly-wheel it moves from right to left. While it moves in

this direction, a mixture of illuminating gas or of hydrogen
and air enters through a slide valve, worked of course by the

engine. When a certain quantity of this mixture has entered,
the slide shuts in the mixture in the cylinder, and at this

moment a spark from an induction coil kindles the gas and
causes an increase of pressure. This drives the piston to the

other end of its stroke. Arrived at the left end, a second slide

292
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allows the products of combustion, together with the accom-

panying air, to escape, while the fly-wheel, by reason of its liv-

ing force, goes on and moves the piston in the opposite direc-

tion, from left to right. While it moves in this direction the

mixture again enters, and is kindled as before, and thus the

piston is driven toward the right.

The action is therefore very similar to that of a non-condens-

ing expansion steam engine. But while- the greatest work is

performed by the entering steam, the work of the entering gas
mixture is here zero. During this interval the friction of the

engine and the resistances must be overcome by the living force

of the fly-wheel.

As the explosion of the gas is instantaneous, the increase of

pressure is also immediate. But since the piston can only

gradually yield, there is at the moment of firing a shock which

is not only hurtful to the moving parts, but which cannot con-

tribute to the motion of the piston or the performance of work.

Hence an amount of heat corresponding to this impact is ab-

stracted from the gas and transferred to the cylinder and pis-

ton. These parts would soon become very hot if heat were not

abstracted. The cylinder is therefore surrounded with a jacket

filled with cold water. In this way the temperature of the

cylinder sides is kept down to 80 or 90. It is, however, evident

that the performance can by no means be as great as the con-

sumption of gas would warrant.

This objection to the Lenoir engine, viz., that a large part of

the power is lost by.impact, and vet, in spite of cooling, the

piston and stuffing boxes, etc., are considerably heated, has been

met by Otto and Langen, of Cologne, in a very ingenious way,
and thus a machine produced whose power for the same gas

consumption is much greater. We shall discuss it more at

length later on.

In order to diminish the heat, Hugon introduced with the

gas a quantity of water, which absorbed in vaporizing consid-

erable heat. The expansive force is thus indeed somewhat

diminished, but the moving parts suffer less, and the machine

requires less repair and is more durable.

In Germany the Lenoir gas engine has dropped out of sight,

although in the beginning various establishments sought its

improvement, and not indeed without practical results. In
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France, however, especially in Paris, it has been applied in?

the building of houses to the raising of building materials, and

in England also it has been used for stone sawing, polishing,,

pumping, printing, etc.

Gas engines are, as is evident from the foregoing, properly

nothing more than hot-air engines with inner fire. But while

in the latter the air is heated by coal or coke, in the former

it is heated by the combustion of illuminating or hydrogen gas,,

kindled either by an electric spark as in Lenoir's engine, or by
a gas jet as in Langen's and Hugon's. The calculation of the

delivery of these engines is therefore similar to that for hot-

air engines. Before we pass on to it we shall give a few gen-
eral considerations which find their application in all gas en-

gines, and which we borrow in large part from the work of

Prof. Grashof "jReautiate der Mechanischen Warmetheorie,"

upon which we shall base our future calculations.

The degree of heating of the air in a gas engine depends
evidently upon the ratio of illuminating gas and atmospheric^
air in the mixture, as also upon the composition of the gas.
The illuminating gas is a mixture of several others, more espe-

cially the following : 1, bicarbureted hydrogen or olefiant gas ;

2, carbureted hydrogen or fire-damp ; 3, hydrogen ; 4, carbonic

oxide ;
and 5, nitrogen. While the two first are combinations of

carbon with hydrogen, the carbonic oxide consists of carbon
and oxygen. During complete combustion, the carbon forms
with the oxygen in the air carbonic acid, while the hydrogen
and oxygen unite to form steam. These products are there-

fore, after the combustion, mixed with the heated air.

One cubic meter of illuminating gas (especially from hard

coal) consists on the average of

0.42 cubic meters of carbureted hydrogen gas (CH4),

0.08 "
bicarbureted " "

(C2H4),,

0.40 "
hydrogen,

0.07 carbonic oxide, and
0.03

nitrogen.

The weight of this cubic meter at 0.76 meters of barometer
and 15 C. is

So = 0.535 kilograms,
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while that of 1 cubic meter of air under the same circum-

stances is

s 1.225 kilograms.

The density of the gas is therefore

, S 0.535 _
-TRocr

~~

s 1.225

1 kilogram of gas gives, by complete combustion,

K! = 10430 heat units,

and 1 cubic meter of gas therefore gives

K = SKl
= 0.535 x 10430 = 5580 heat units.

The weight of air required for the complete combustion of

1 kilogram of gas is

Li 14.5 kilograms,

and 1 cubic meter of gas requires for complete combustion an

air volume,

L = A3, = 145 x 535 = 6 3 cubic meterg
s 1.225

If we mix 1 cubic meter of gas with a cubic meters of air,.

the weight of 1 cubic meter of the mixture is evidently

1.225a + 0.535 , .,

s - -
::

-
kilograms.

For example, for a 10

12.25 + 0.535
=1.162 kilograms.

The density of the mixture is then

d = * = 1.225a + 0.535 _ 1.225 (a + 0.4367) _ a + 0.4367

so 1.225 (a + 1)

:

1.225 (a + 1) a + 1
,

For the preceding example

^10J a
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After complete combustion of the gas, the density of the re-

sulting mixture of carbonic acid, steam, nitrogen, and air at

15 C. is

_
~a + 0.83'

Since here the numerator is greater and the denominator less

than in the preceding expression for d, the density has in-

creased.

For example, for a = 10 we have

10-0.48 10.48-
=1083

= -9677'

while before combustion it was 0.9488.

In general, then, the increase of density is

D__ (a + 0.48) (a + 1) a2 + 1.48a + 0.48

d
~

(a + 0.83) (a + 0.4367)
~

a2 + 1.2667a + 0.3625'

For a = 8, 10, 12, 14, we have

, 1.020, 1.017, 1.014.

The specific heat of the mixture is

for constant volume

_ 0.1684a + 0.286

a + 0.48

for constant pressure

_ 0.2375a + 0.343

a +0.48

Let us seek now how many heat units are imparted to each

kilogram of the mixture of a + 1 cubic meters when the gas is

kindled.

From experiments we can conclude that during combustion

about to of the heat is conducted away by the cooling

water, and therefore only | to f of the gas is used for the heat-

ing of the air.

If we assume generally that the nth portion of 1 cubic meter
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of gas furnishes the heat required for the increase of expansion,
this last is

aK heat units.

This is distributed over (a -f 1) cubic meters weighing (a + 1) s

kilograms. Hence each kilogram contains

aK .

heat units.
(a + 1) s

If now, originally, the absolute temperature of the gas mix-

ture is TO, and immediately after firing T1} we have

c (a + 1) s
'

If we denote further, the original pressure at T by p (kilo-

grams per square meter), and that after the firing by plt we
should have, if there were no increase of density,

PL ?1
Po To'

Since, however, the mixture is increased in density, in the

ratio of D to d, we have

or putting D1 for r-

d po" T '

^S=i' r
; ;

'

1 HP

EXAMPLE.

According to the experiments of Tresca, there were mixed in a Lenoir gag

engine, on the average, 13 parts of air with 1 part of illuminating gas. What
is 1, the specific heat c,, for constant volume

; 2, the increase of temperature
T

l
T ; and 3, what is the expansive force of the mixture after firing ?
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We have in our formulae a = 13, hsnce

0.1684 x 13 + 0.286

13 + 0.48

If we take a = f,

3

1.225 x 13 + 0.535

If we take T = 273 + 15 = 288, we have

T, = 1231 + 288 = 1519.

For a 13

18 + 1.48 x 13 + 0.48n ---
1
~ -

d
"

18s + 1.2667 x 13 + 0.3625

Hence the pressure after firing is

1 1519
x OQQ = 5.19 atmospheres,*

16

if po is 1 atmosphere.

Delivery and Gas Consumption of the Lenoir Engine. The gas
behind the piston of this engine drives it forward after firing,

by reason of its increased tension, and thus performs work. If

the cylinder were not surrounded by cold water, and the gas
could therefore expand adiabatically, and if we had to do only
with atmospheric air, we should have

Since, however, heat is abstracted during expansion, and since,

also, the value of k (1.41), or the number by which the specific

heat of air at constant volume must be multiplied in order to

obtain that at constant pressure, is also different, because we
have to do with a mixture of air, carbonic acid, steam, etc., the

law of change of p and v cannot be represented by this ex-

pression. It can, however, be given by the general expression

pmvn p^vf (page 197).

For this case the specific heat, under the assumption that

we have to do with air, is

mlc n

where therefore Jc 1.41 and cw = 0.1684.
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Now we have found in the present case, for cv the value

0.1684a + 0.286
,, 1Q ,,. . A IQQC\ * *

~^n~Aft
--- ^or a 13 this gives c = 0.1836) and for the

OL T~ U.TCO

0.2375a + 0.343
specific heat tor constant pressure or cp we have- ~ ^ ,

hence

, _ cp _ 0.2375a + 0.343 _ ., QftA

~^~0.1684a + 0.286
~

The specific heat for the law

p
mvn =

is therefore, in our case,

m -- n

m n m n

We can now find the delivery during expansion by the for

mula

m
r> 17 Pi (

V̂
\

m
1

=^^P^-(V) J

if F! is the volume of the mixture before, and V that after the

expansion, or at the end of the stroke of the piston.

If, now, the cross-section of the cylinder or the area of the

piston is F sq. meters, the entire stroke of the piston s, and

the distance passed over during entrance of the gas e^s, where

therefore e
{
is a proper fraction, we have

V F*
*

The value of ^ we call the "
degree ofjiU"

If we insert it in the above formula we have

I

J
or

n

- t>-\
cj

n m_
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The work of the back pressure of the air is

Fp$ (s
- d) = Fpos (1

-
eO.

Hence the effective delivery per stroke is

If there are u revolutions per minute, we have for the de-

livery per second

n

Ls =
6
Fa

\mpl
6

n~^
~
PQ (1

~
^"1

meter-kils - (LXXm.)

If we denote the efficiency by y, we have for the actual or

useful delivery per second

n

u r-
g

m
Lu = y - Fs mpi

1 -
Po (1 e^

\ meter-kilograms.
00 |_ n in

If we put
n

7 y \ ^ ^1 ^1 /I \ I /T "WT17" \
1 =

~^\ mpi jp (l ej . . . (JUAAlv.j

we have

Lu = uFsl meter kilograms.

If the horse-power corresponding is N, we have

N= u
(LXXV.)

The consumption of gas per revolution is found from the

proportion
'

a + 1 : 1 = %Fe\s : x or x - '^r .

a -f 1

The consumption per second is then

30(a4-l)'
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Hence the gas consumption for each horse-power per sec-

ond is

30 (a + I)N'

and per horse-power per hour

(a

Substituting the value of N

G = cubic meters . . (LXXVI.)

According to Grashof, the above formulae give results agree-

ing well with experiment, when we put m = 1 and n = 2. Hence
the law of pressure variation is given by the simple equation

The curve representing this law approaches the axis of ab-

scissas more rapidly than the adiabatic (page 194). If we insert

these values of m and n in Equation LXXIV., we have

or putting p 10334,

I = 344.4^ (1
-

eO e,
- l . (LXXYII.)

If we determine, according to this formula, the value of I for

different values of e1? and then find the corresponding values of

G, it will appear that only for a certain value of e will the

economy, or the ratio of the delivery to the consumption of gas,

be a maximum.
Thus for a 13, we have, as already found,

= 5.19.
Po
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The efficiency y is on the average 0.57. If we take it at 0.55,

we have, putting for e\ the values

j
= 0.40 0.45 0.50 0.55 0.60,

forZ

1 = 122.4 139.1 151.1 158.1 160.2,

and for G

= 2.12 2.08 2.13 2.24 2.41.

Hence we see that the economy is greatest for e\ about 0.50.

Under the above assumptions, then, the cylinder must be half

filled with the mixture before it is fired.

EXAMPLE 1. What is the delivery of a gas engine, the diameter of cylinder

being 2 decimeters, and stroke 4 decimeters, when e
l
= 0.50, and the number u

of revolutions per minute is 60, the efficiency being taken at 0.25 ?

The cross-section of the cylinder, or the area F of the piston, is

F= 3.1416 x (O.I)
2 = 0.0314 sq. meters.

Since in the present case

I = 151.1,

we have forN
60 x 0.0314 x 0.4 x 151.1

=~ = 1.52 horse-power.

The gas consumption per hour would therefore be

1.52 x 2.13 = 3.2376 cubic meters.

EXAMPLE 2. What must be the volume of the cylinder of a two-horse-power
engine, which makes 70 revolutions per minute, when e

L , or the coefficient of fill,

and y, or the efficiency, are both 0.55 ?

From the formula N= U
n^ , we have
75

--
. In the present case, I = 158.1, hence

Fs = = = -0136 cubic meters<

Quantity of Cooling Water. It remains now to calculate the
amount of heat which must be abstracted from the cylinder
for every cubic meter of gas used.
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We assume that directly upon firing, so much heat is at once

abstracted as is contained by 1 a cubic meters of gas. This

heat is

(1 a) k heat units.

If we put a |, we have

\ x 5580 = 1860 heat units.

Heat is now abstracted from the gas fixture during expan-

sion, since the law of pressure variation is given by

In order to find this heat, we must first determine the tem-

perature at the end of expansion or at the end of the stroke.

This, as well as the final pressure, can be easily found.

Denote the last by p, then, according to our law,

If, for example, e^
= 0.50, then

p = 5.19 (0.50)
2 = 5.19 x j = 1.297 atmospheres.

The temperature T corresponding to this pressure is found

from
n m

V,

V

Since T^ = 1519 (page 298), we have

^=1519 x 0.50 = 759.5 or

t = 759.5 - 273 = 486.5.

If we take e^
= 0.45, we have

p = 5.19 (0.45)
2 - 5.19 x 0.2025 = 1.051 atmospheres,

and the absolute temperature T at the end of stroke is

r=1519 x 0.45 = 683.6 or

t = 683.6 - 273 = 410.6.



304 THERMODYNAMICS.

We see, therefore, that even at the end of expansion, and in

spite of the withdrawal of heat by the cooling water, the tem-

perature of the gas mixture is still considerable, and hence that

in course of time the engine may suffer injury.

The heat abstracted during expansion is found as follows :

From a previous formula, the heat abstracted for 1 kilogram
of air is

m n

In our present case, where k = 1.386, ra = 1, n = 2, and

c = 0.1836, we have

.q =
1.386 - 2

x 0.1836
( Ji

- T) = 0.1127 (2^- I7

).1 _

For e! = 0.50, we found T = 759.5, hence

Q = 0.1127 (1519
-

760) = 85.5 heat units.

.The gas mixture of a + 1 cubic meter weighs

1.225 + 0.535 kilograms,

or since we have taken a = 13, 16.46 kilograms. Hence the

heat abstracted during expansion from each cubic meter of

mixture is

85.5 x 16.46 = 1407 heat units.

After the exhaust valve is opened, the pressure falls rapidly
fromp to that of the atmosphere p ,

and that portion of the heat

disappears which went to increase the rectilinear motion of the

gas molecules. The mixture then flows out under the constant

pressure PQ.

If, disregarding this loss of heat, we allow the gas at the

absolute temperature T.2 = 273 + 150 = 423 to issue under
constant pressure p , we must abstract

(1.225a + 0.535) c, (T- T,) heat units.

Since Cj = 0.2545, and T in our example is 759.5 or 760, we
have

16.46 x 0.2545 x 337 = 1414 heat units.
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Hence the entire heat abstracted is

1860 + 1407 + 1414 = 4681 heat units.

Since a one-horse-power gas engine, with coefficient of fill of

0.50, requires per hour 2.13 cubic meters gas, the heat ab-

stracted is

4681 x 2.13 = 9970 heat units.

If the cooling water is heated 50, say from 10 to 60, we

have for the weight of water W which must circulate per hour

around the cylinder,

50W = 9970 or JF= 199.5 kilograms.

This weight is, however, too great, as we disregard, as above

remarked, that heat which disappears suddenly when the ex-

haust valve opens.

Hugon's Engine. In this the heating of the gas mixture is less,

by reason of the cold water injected into the cylinder, than in

the Lenoir engine, and the piston packing suffers less. Ac-

cording to Grashof, we have here for I (page 300),

I = S44.4?/ [7.21 (^
-

e?*)
- 1 + ej . . (LXXYIII.)

where y can be taken at 0.55.

If a 13, and the weight of water injected per cubic meter

of gas used is 2 kilograms, we have, according to the same

author, 4.33, and in the expression which gives the law of
PQ

variation of pressure, we have n = 1.6.

For e = 0.4 0.45 0.5 0.55

I =117.4 129.8 137.6 141.2

and G = 2.19 2.23 2.34 2.50 cubic meters.

The gas jets for firing require about 0.25 cubic meters of gas

per hour additional.

From the values of I we can find the delivery by the same

formula as before,

, T uFsl ,

JY= =- horse-power.
20



306 THERMODYNAMICS.

Description of the Atmospheric Gas Engine. This engine is,

beyond doubt, one of the finest inventions of the century, and

was justly awarded the gold medal by the jury at the Exposi-

tion in Paris, 1867. In fact, the inventor has overcome in a

very ingenious manner the disadvantages connected with the

engines of Lenoir and Hugon, and the essential principles of

the machine are based upon the results of scientific investiga-

tion. The construction also, in the opinion of the author, leaves

little to be desired.

The manner in which the inventor has happily overcome the

defects of the older gas engines is best told in his own words

(Dingier 's Polyt. Journal, Bd. clxxxvi.).

"By the combustion of explosive mixtures in a confined

space, the products of combustion are heated by the heat dis-

engaged, and in consequence have a tendency to expand, which,

when prevented, gives rise to a pressure upon the inclosing
walls corresponding to the temperature. This pressure ex-

ists so long as the combustion products lose no heat.
" If they are cooled, they contract under the pressure of the

atmosphere, which directly or indirectly surrounds them.
" If it is wished to utilize the pressure as a motive force,

the question arises, what time elapses between the heat-

ing and cooling, between the expansion and contraction of the

gases.
" This time is known to be very short, and we lose a portion

of the heat generated by combustion, by conduction and radia-

tion through the cylinder sides, when we endeavor to utilize

the expansion of the heated gases, if we do not allow them to

expand quickly after the combustion. This loss of heat corre-

sponds, of course, to the loss of a portion of motive power.
"

If, we conceive an engine as ordinarily constructed, that is,

with piston connected by connecting-rod and crank with a fly-

wheel, we shall have opposed to the explosion in the cylinder,
back of the piston, not only the useful work, but also the mass
of the entire system. Such an engine must work with enor-

mous velocity, and the action must be an impulsive one, and
since the moving masses can never take an acceleration corre-

sponding to the intensity of the explosion, the heat not utilized

must heat considerably the inclosing walls of the cylinder.
"Guided by such considerations, we have adopted in the
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FIG. 45.
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Fio. 46.

construction of our en-

gine the principle that

a direct utilization of

the explosive force
must be discarded.

" On the contrary, we
utilize the heat set free

by the explosion,by op-

posing to the expansion
of the products of com-

bustion but very slight

resistance, and by em-

ploying, as the motive

power, the contractile

action. Thus the gases,

as soon as they have

lost their heat, and

hence their tension, are

compressed by the

pressure of the atmos-

phere to that volume

which, after cooling,

corresponds to their

temperature and chem-

ical constitution.

"With these pre-

liminary remarks we
can now explain more
in detail the construc-

tion and action of the

engine.
" We shall make use

for this purpose of

Figs. 45 to 54. Fig. 45

is a vertical section, and

Fig. 46 gives a vertical

projection and other

details of construction.

"A is a cast-iron cyl-

inder, with two air
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tight screw covers B and BI. This cylinder is surrounded up
to about id of its height with a double wall, the space between,
as well as between B and B^ being filled with cold water, which
serves to cool the cylinder walls. This water is brought from

a reservoir, not shown in our Figure, through the pipe r, and
the warm water carried off through r+. This simple circulation

of the water is sufficient, in order to keep the cylinder jacket

always at a low temperature, without any renewal of the cooling
water being necessary.

11K is a metal piston, which can move air tight up and down
in the cylinder. At every firing of the gas mixture this is shot

up the cylinder. Thus the mixture expands suddenly and cools

very quickly, so that its tension falls far below that of the at-

mosphere, and the piston is driven down by the outer air press-
ure. This last motion is that which is transferred to the en-

gine and utilized. The transference is effected as follows :

" The piston K is fastened to a toothed rod Klt which ends
above in a cross-head T (Figs. 45 and 46), moving up and down

vertically in guides F, F, only partly shown. Thus the vertical

motion of the piston is insured.
" The cylinder plate carries two pair of standards, of which

only one pair LI L are visible in our Figure. These support the

shaft W, which carries on the left the fly-wheel R, and on the

right the belt pulley P. At the middle

of the shaft the disc 8 is keyed, a cross-

section of which is given in Fig. 47.

Upon the prolonged bars of this disc are

two loose discs Si Si, between which a

crown-wheel is fastened by means of four

bolts which may be seen in Fig. 45. The
teeth of the piston-rod KI engage with

the teeth of this crown-wheel. When the

piston and rod move upward, the crown-

wheel and both discs Si and Si turn from left to right, and re-

volve loosely upon the boss of the middle disc S. When the

piston and rod descend, the crown-wheel is made by a special

arrangement to grip tightly the circumference of the disc S, and
thus to impart motion to the shaft. The construction of this

special arrangement is different according to the power of the

engine.
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"In engines of small size (| horse-power) the inner surface of

the crown-wheel carries a number of eccentric surfaces a&, cib,

etc. (Fig. 48). Between these and the circumference of the disc

there are the same number of rollers, c, c, etc. If the crown

turns in the direction of the arrow, as it does when the piston

descends, those surfaces which lie nearest the center ra, press
down the rollers upon the disc and compel it to take part in

the motion. If the crown revolves in the reverse direction,

there is no such pressure, and the small rollers c, c, roll upon
the circumference of the disc.

"In larger engines the construction is similar. Here the

rollers, however, do not lie directly upon the circumference of

the disc, but upon the upper surface of four

wedge-shaped bodies, a, 6, c, d (Fig. 45).

Here, also, the portions of the eccentric sur^

faces nearest the center, during motion from

right to left, press the rollers against the

wedges, and these upon the circumference

of the disc, so that motion is transferred.

"If the wedges are not to slide upon the

FIG"^ periphery of the disc S, the angle which the

eccentric surfaces of the crown-wheel make
with the circumference of the disc must be less than the angle
of friction of the metals.

"
Upon the shaft, W there is, besides the toothed wheel ZQy .

also another one, Zv This engages with the wheel Z (Fig. 45),

which is keyed to a second shaft w, parallel with W. Upon ur

is the ratchet wheel Si, while the two eccentrics E and EI form
one piece and revolve loosely upon the shaft. The catch S%

couples or disconnects the eccentrics with the shaft w, accord-

ing as it engages with the ratchet wheel Si or is shoved back

by the bolt hi.

" As the piston descends, the projection N upon the piston-
rod strikes down the lever hi, raises the left side of the catch

$2, which then engages with a tooth of the ratchet wheel JSi, and
then the catch and both eccentrics E and EI partake of the

motion of the shaft w. If now the number of strokes of the

piston is equal to the revolutions of the shaft or fly-wheel,

which, as we shall see, is by no means necessary, hi is raised

during a revolution and the catch S% released.
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FIG. 49.

" As soon as the catch is released, which must always occur

when the piston is not far from the bottom of the cylinder, both

eccentrics come to rest, and the slide Ci,

which is moved by the eccentric Ey has its

central position. In this position the port

yi (Fig. 49) corresponds with y in the cylin-

der jacket and
z/2 in the cover (72. This is

pressed by springs /,/, upon the slide, sa

that air cannot get between the surfaces.
" While the slide Ci remains thus a short

time in its central position, the piston com-

pletes the lower portion of its stroke and

presses the products of combustion out

through the ports and valve v into the air.

At the same time the lever hi is depressed, the catch S% en-

gages the ratchet wheel Si, and both eccentrics partake of the

motion of the shaft. One of these, E, which

moves the slide, moves downward, as is seen

from Fig. 45, and the slide moves down. The

other, EI, moves up. As this moves the lever

h, which in our figure is behind /^, and the

right end of which is below the tappet N, the

lever and piston are raised. During this mo-
tion of the piston the descending slide has
closed the canal y, and made another connec-

tion, which is represented in Fig. 50. Here
the canal x in the cylinder side, which lies

near y (Fig. 46), communicates with the chan-

nel a of the slide Ci, and thus by ra and n with the outer air

and a gas receiver. Thus as the piston is raised a mixture of

gas and air enters the cylinder.
"
As, however, the slide ct moves down, the canal q has been

in communication with m and n, and is therefore also filled

with a mixture of gas and air. When the piston has its lowest

position, this canal communicates^ as we see in Fig. 50, with the

opening a in the cylinder, in which a lamp ?2 is burning, and
thus the mixture kindled in q. Now the slide moves rapidly

upward and takes the position shown in Fig. 51. The kindled

gas in q is still burning, and so soon as q thus communicates

with the canal x, the gas mixture under the piston in the cylin-

FIG. 50.
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FIG. 51.

der is also kindled. By the expansive force developed by the

explosion the piston is shot up with great velocity, and the ec-

centric E raises the slide somewhat more, and

then returns it to its central position. The

lever h and detent 8-2 then release the eccentric,

and this as well as the slide remain in their

positions until the above operation is repeated.
" Let us now point out how the action can be

regulated, or the number of strokes made inde-

pendent of the number of revolutions of the

crank.
" In the gas conductor is a cock by which the

relative proportion of gas and air can be so

regulated that the piston is shot up by the ex-

plosion only a certain distance. We can thus alter the per-

formance of the engine at pleasure. Since, however, the use-

ful effect of the engine is greatest for a certain

height of throw, it is desirable so to regulate the

force exerted that the throw of the piston may be

always the same, and hence independent of the de-

livery of the engine in a given time.
" The inventors accomplish this by making the

number of piston strokes independent of the num-
ber of revolutions of the axis, regarded as constant.

For this purpose they have a cock D (Fig. 45) in

the end of the exhaust pipe, that is the pipe through
which the products of combustion escape, which

allows these products to escape more or less rapidly. By this

arrangement we can cause the piston to descend more or less

rapidly. Since the piston is pressed down by the difference of

pressure of the atmosphere and inclosed gas mixture, it moves
with the velocity of the periphery of the crown-wheel so long as

the pressure in the cylinder is less than one atmosphere. As
soon as this pressure is reached, the piston sinks by virtue of

its own weight. If now D isbut little opened, it sinks more

slowly, if much opened, more rapidly, while the velocity of the

periphery of the crown-wheel and disc is nearly constant. If D
is fully opened, the engine works with its maximum power.
If the cock is closed so much that the escape of the products
of combustion is retarded, hi remains longer in its raised posi-

52.
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tion, and the valve works more slowly. The position of the

cock D depends therefore upon the delivery desired. Hence,
tinder irregular resistance, the revo-

lutions of the fly-wheel can be regu-
lated by this cock.

"In Figs. 52 to 54, we have repre-
sented the slide and slide surfaces on

the cylinder and cover.
" If we wish an automatic regulation,

it is only necessary to fit the cock D
with a governor run by the shaft in the

usual manner."

From this description it will not be

disputed that the construction of the atmospheric gas engine
is very complete, and that it deserves to be placed among the

most ingenious inventions of the century, a

century which includes also the engine of

Ericsson.

The inventors add to their description in

the Journal already cited the following :

" The atmospheric gas engine differs essen-

tially from earlier gas engines in the follow-

ing points :

"
1. Regard is had to the physical principles

noticed in the introductory remarks.
"

2. The action of the piston is intermittent.

"3. A special construction transfers the downward motion of

the piston to the fly-wheel shaft.
" 4 The construction of the valve motion and the slide is es-

sentially different from other gas engines.
"

5. By changing the number of strokes of piston for a con-

stant number of revolutions of the shaft, the performance can

be regulated."
That which distinguishes in other respects this gas engine

from ordinary hot-air engines is, that it is very easily set in

action, and requires very little attendance. It is equally safe

with all hot-air engines.
It has the disadvantage, as compared with hot-air engines,

that it can only be set up in places where illuminating gas can

be obtained or manufactured without great cost.

Fict. 54.
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Theory of the Atmospheric Gas Engine. Let T be the abso-

lute temperature of a gas mixture, consisting of a cubic meters

of air and 1 cubic meter of gas, and TI the absolute tempera-
ture after firing, then the increase of temperature is, according
to page 297, where it is assumed that of the heat which every
cubic meter of gas furnishes by its combustion, 1 a heat

units are directly withdrawn,

T _ T 1 ak

~c 1.225a + 0.535'

0.1684a + 0.286
where c =

ft
, Qa + 0.48

According to experiment, the ratio of air to gas is 8 to 1. If,

then, we take a = 8, we have

0.1684x8 + 0.286 A , ftA~~
If we put now a = f, we have, since k = 5580,

T _ T__ | x 5580 _ 3720

"0.19 10.335
"
1.964'

or

Ti-TQ = 1894.

For TQ
= 273 + 15 = 288, we have

TI = 1894 + 288 = 2182.

The increase of density Z>j is, from page 296,

7)
a2 + 1.48a + 0.48

"
a2 + 1.2667a+.0.3625

=

Hence the tension after the firing is

1 7\
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Inserting numerical values

1 2182 1
Pl = 17024 288"

=
LOM X 7'58 = 1A atmosPheres (nearly),

The law of variation during rise of piston may be repre-
sented by the equation

(In the Lenoir engine we had n 2.)

The work which a gas volume performs by its expansion.
when the law of variation of pressure with volume is

is, from preceding principles,

L = ^-

Since we have assumed m = 1, in the present case

-
(yj ]

.

where Vi is the least and V the greatest volume, or Yi the

volume before and T^that after expansion.
If we denote now the cross-section of the cylinder by F

square meters, the height to which piston is shot up measured

from bottom of cylinder by s meters, the height which the gas
mixture occupies before it is fired by e^ meters, where ej is a

proper fraction, then

__
V

~

Fs
"

and we have again as before,
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Inserting n I, ^ and p^ in the parenthesis, and denoting the

atmospheric pressure by p ,
we have

This delivery goes in several directions.

A portion of it imparts living force to the piston, and shoots

it up to a certain height. Another goes to overcome the resist-

ance of the air, and a third the piston friction.

The overcoming of the resistance of the air requires the work

Fsp (1
-

Cl).

If we denote the piston friction by R, we have the work for

overcoming it

or if, with Grashof, we put R ~ pFp ,

If further, P is the weight of the piston and rod, the work

required to raise it to the height s e^s = s (1 e^ is

If here we put P = (pFp ,
we have

q>Fp& (1
-

ej).

These three works together must equal that of the gas during
its expansion. Hence

ei -f p (1 ex) + y (1 ei)],

or

(l_ ei-i) = (! + /> + <p)(l-ei).-
77 .1
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Putting for the sake of brevity = m,
Po

n 1 mel

Since now /o, <p, e, and m may be regarded as known, we can

determine n from this equation.

According to experiments by Meidinger, in an engine of the

kind in question of J horse-power, F = 0.01767 sq. meters,
* = 0.99 meters (full rise of piston), el

= 0.114 meters, P = 21.8

kilograms, and R = 1 kilograms.
Hence

91P= ^=21.8, or ^ = ei7^fl0334
= al19-

|
Further

1, or p = = 0.038.

Substituting these values in our last equation,

(1 + 0.038 + 0.119) (1
-

0.114) = I-ef- 1

7.4 x 0.114 ?i-l

1.215 =
^

or 1.21571 - 2.215 = -
n 1

e^-^ 1.215^1 = 2.215.

This equation gives n = 1.60 very nearly, thus

(0.114)
060 +1.115 x 1.60 = 2.2157,

or only^ too great.
-,

'

'

Hence the equation

gives the law of variation of pressure with volume when the

piston rises.

As soon as this law is known we are able to calculate the
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pressure and temperature at the end of the piston rise.

denote this pressure by p, we have

If we

Since p = 7.4 and = 0.114, we have

p = 7.4 (0.114)
1 -60 = 7.4 x 0.03098 = 0.2293 atmosphere.

That is, tliefinal pressure isfar below the atmospheric.

For the sake of clearness we have represented graphically in

Fig. 55 the law of change of the gas during the piston rise. Oe

is the distance of the piston from the bottom of the cylinder at

the moment the gas is fired. Of is about three, Og six times

this distance, and Oh is

the entire rise. At / the

pressure is about 1.35 at-

mospheres. This is repre-
sented by the line/ft. At g

the pressure is gc
= 0.45.

Joining the points abed we
obtain a curve which gives
the change of pressure with

volume. We see that at a

distance of hardly 0.33 me-

ters above the cylinder bot-

tom the pressure has al-

ready sunk to one atmosphere. The line em = hn represents
the pressure of the atmosphere increased by the weight of the

piston. From e to k, the area abim denotes the excess of work
of the gas above that required for overcoming the air pressure,
the piston friction, and for raising the piston. This excess im-

parts to the piston its living force, by virtue of which it con-

tinues to rise from k to A, or from i to n, overcoming the resist-

ance of the air and piston friction. During this the inclosed

gas furnishes indeed a work represented by icdhk. If therefore

we add this work to the living force of the piston, we have the

work which goes to overcome the air resistance, the piston

friction, and to raise the piston.
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If now T is the absolute temperature at the highest position

of the piston, we have

m 1.60 - 1

~~= (0.114)
-60 - 0.2717.

Since Tt
= 2182,

T = 2182 x 0.2717 = 593,

or

t = 593 - 273 = 320,

a temperature still pretty high.
The useful work which the engine furnishes is now per-

formed during the descent of the piston, by its weight and by
the air pressure. This work is not entirely applied to moving
the engine however. A part serves to compress the inclosed air

again to the pressure of the atmosphere, and then to drive it

out of the exhaust valve. Since this compression takes place
with the velocity of the periphery of the crown-wheel, and hence

relatively rather slowly, a part of the heat set free has time to

radiate from the cylinder walls, and another part is absorbed

by the cold water which surrounds the cylinder up to about ^d
of its height. In consequence of this the temperature sinks

during the compression, and the departing products of combus-

tion have, according to Meidinger, only about 200 tempera-

ture, or an absolute temperature of 200 + 273 = 473. Another

part of the work goes to overcome the piston friction.

"We can now easily calculate at what height of piston above

the cylinder bottom the exhaust valve is opened, or at what

height the products of combustion are compressed back to one

of atmosphere.
From known principles the weight G of a volume of air V,

pressure p and absolute temperature J7

, is

~
RT*

In our engine, where the air is not pure, but a mixture of air,
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carbonic acid, etc., E has evidently a different value. If we put
for it RI, the weight G in the moment after firing is .

_*

Assuming that there is no loss of air, this weight must remain

the same at every position of the piston, and therefore when
the mixture is compressed to the atmospheric pressure PQ. If,

then, the absolute temperature is T2 and the gas volume is Fe#,

e^s being the distance of the piston from the cylinder bottom,
we have

_
R.T,

'

From these two equations we obtain

- or .

p.-e.T,
*~

pQ ,

Since now, p^ e^ T2, and T^ are known, we can calculate

Inserting numerical values, we have

As s 0.99m>
,
the distance e^s is

0.183 x 0.99 = 0.181 meters, or 18.1 centimeters.

Let the law of change during the descent of the piston be

p and v being specific pressure and volume at the highest

position, and p v at the height e^s of piston.
Then

Po
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For the rise of the piston we had

pv
n =plvl

n
,

or

P .

If we divide the two equations for and one by the other,
Po Pi

we have

From this we can calculate n^.

Inserting numerical values

(0.183)
ni = 7.4 x 0.114

1 '60
,

or

n, log 0.183 = log 7.4 + 160 log 0.114.

Hence

Therefore the law of relation between pressure and volume

during the descent of the piston is

Now we can calculate the mechanical work necessary for

compressing the products of combustion from p to pQ. This is

21
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Further, the air pressure and descending weight have to

overcome the piston friction. This is

pFspQ (1
-

63).

Hence the work required by both resistances is

The work furnished by the air pressure and descending

weight is, however,

Fspo [1
-

62 4- 9 (1
~

cj)]
= Fspo (1 + <p) (1

-
e,).

If we subtract the preceding, we have the theoretical effect-

ive delivery per revolution,

Fsp,
[(1

+ V) (1
-

el)
- P (1

-
e,)

If there are u revolutions per minute, the delivery per sec-

ond is

7- U [~ Co"' 6o~1

60 ^ L^ + ^~ P)^-~ ed ~ cy\%T nieter-kilograms.

Or, since pQ
= 10334,

r n
Jt, = i72.23Jfe* (1 + <

?? -p)(l-e2)-%^ . (LXXX.)

In horse-power

N= 2.W6FSU [Q. + P- p) (l-e,)- ^==^1 (LXXXI.)
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EXAMPLE.

What is the theoretical delivery of the atmospheric gas engine experimented

upon by Professor Meidinger, for which F 0.01767 square meters, s = 0.99m-,

4
t
= 0.114, P = 21.8 kilograms, = 7 kilograms, u = 34, and Tt = 273 + 200

First, according to the preceding calculations, 1 + cp p = 1

4- 0.119 - 0.038 = 1.081. Further, 1-^ = 1- 0.183 = 0.817.

Hence (1 + <p
-

p) (1
-

%) = 1.081 x 0.817 = 0.8832.

Then ef* = 0.2297 and ef* -% = 0.2297 - 0.183 = 0.0467.

Therefore = = 0.349. Hence

9 _ p) (i
_ ^ + ~~ =,- 0.8832 - 0.349 = 0.5342.

For Fsu we have

0.01767 x 0.99 x 34 = 0.5947, therefore

Fsu l + -l - e - =
-5947 x -5342 =

-3177-

If this result is finally multiplied by 172.23, we have for the

theoretical delivery in meter-kilograms 54.75.

Experiment gave 40 meter-kilograms, and therefore the effi-

ciency is

According to Grashof, the efficiency of the engine in question,
when oiled carefully and at short intervals, is given by the

equation

y = 0.838 -0.054*-,

.

in which z is the number of revolutions of the fly-wheel or gear
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shaft. In Meidinger's experiment z was 75, hence

2/^0.838-0.54^
= 0.72,

or agreeing almost exactly with our calculated result.

For ordinary practical working condition Grashof gives

y = 0.79-0.07-.
u

Hence the actual effect of an atmospheric gas engine is

N= 2.296^^ (1 + <?
-

p) (1
-

ej
- horse-

power . . . (LXXXI.)

From a circular of the inventors we take the following :

A convenient and advantageous motor for the minor indus-

tries is offered by the Otto Langen gas engine.

This engine can be set up in crowded areas, as its action is-

entirely without danger and it requires little space.

The consumption of illuminating gas per hour for every horse-

power (actual) depends upon the size of the engine, and is on
the average only about 1 cubic meter, or considerably less

when the engine is not worked up to its limit.

The expense for gas is the only cost of working ; wages for

service do not increase with size.

The water for cooling requires no renewal. Its temperature
does not exceed 50.*

* According to Meidinger'e experiments, the cooling water for the engine of I horse-power
was 70 liters. The circulation was maintained independently, and during 10 hours of constant

action it left the jacket with a temperature of 83 C. and returned with 67 C.



CHAPTEK XII.

TORMULE FOR THE VELOCITY WITH WHICH AIR FLOWS OUT OF

VESSELS.

IN Fig. 56 let the space between the two pistons HI and G, in

the vessel ABCD, and the pipe EF, be filled with water or some
other liquid. Let the piston HI be pressed toward the right
with p kilograms per H __.Bsquare meter, and G
toward the left with pi

kilograms, and let p1 <
p. If the area of the

large piston is F, and

that of the smaller/,
the total pressure upon FlG - 56 -

one is Fp, and upon the other fp^ Let the distance passed
over by the larger piston in one second be s, and that passed
over by the other be s^ Then the work of the force Fp is Fps,
and that of the resistance^ is fpiSi- If water fills the space
between both pistons, then for every position Fs =/i, or

While now the water particles pass from the larger to the

smaller vessel, they must take a greater velocity ;
the less ve-

locity s passes into the greater s^ If one cubic unit of water

weighs y kilograms, we have Fsy fs^y. The work Fps of the

force Fp has not only, therefore, to overcome the work fp\8i of

the resistance fplt but also has to give to the weight Fsy =
fsiy a greater living force. When, then, uniform velocity is

attained in the vessel and pipe, we have

_ 2 J>.

Fps =fp,sl
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That is, the difference of the work of the force and of the re-

sistance is equal to the increase of living force of the water,,

neglecting the loss of velocity due to friction, etc. Such an

excess of work must always exist when we have a change of

velocity.

If s is very small, with reference to slt we may neglect s
2 and

have then

s
2

Fps -fp& = Fsy,

or, putting w in place of s^

..... (1).

If, now, the space between the pistons were filled with an ex-

pansive fluid, as air, instead of liquid, the case would be some-

what different. Such a gas would expand when the pressure
on one end was less than that on the other. This would be

especially the case for those particles in the vicinity of E, as

shown by the dotted lines. If we assume, as before, that the

volume Ps passes per second into the pipe EF, then, if its

weight is one kilogram, its specific volume is v. This volume

increases in passing out to Vi, so that v1 =fsi. The works Fps
are then equal to pv and p^v^ and we have

where 1 is the weight of one kilogram.
If we assume that the air in the pipe has the same temper-

ature as in the vessel, then, by Mariotte's law,

pv = p&i,

v?
and the left side of our equation would be zero, hence =- or w>

would be zero. We have to seek the cause of the change of

velocity in the nature of the gas itself.. If we examine more

closely we shall recognize a force which causes this change.

Thus, in order that the temperature may be constant in the

pipe and vessel, heat must be imparted from without, and just
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so much heat as is equivalent to the work of expansion, or to

the increase of living force of the molecules. This heat is

Q = 2.3026.4ETlog^-,
Pi

and the equivalent outer work is

L =Q= 2.3026J??7
loff^-.A &

We have, then, this expression in the place ofpv p^ in

Equation (2). Thus

w \/ 46052jRIb log -.

^i

Putting in the place of R and g their values (g
~ 9.81 meters)

for the velocity iv in meters per second and Centigrade degrees,.

w = 36.365|/ T log
-

. . (LXXXII.)
Pi

For feet and Fahrenheit degrees,

Pi

We can make use of this formula in every case when the ex-

pansion is very small
; when, therefore, p is but little more than

Pi. For, in such case, the heat required is but little, and we

may assume that it is supplied by the outer air. According to

Weisbach this is always the case when^) p\ is less than -fap.

If, however, no heat is imparted during the expansion from
v to vl9 this must be supplied by the heat of the air itself, or, in

other words, it must lose heat equivalent to the work done in

expanding. This heat is

Q=(T-Tl)c

where T is the absolute temperature of the air in the pipe.
The equivalent work is
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Now in the present case, by the combined law of Mariotte

and Gay-Lussac,

pv_
T

and since T < T, we must have p&i < pv. By the expansion,

therefore, the specific volume increases less rapidly than the

pressure diminishes. The expression pv piV\ in Equation (2)

has then a positive value, or work must be performed by the

piston HI, in order that the air may flow out with the velocity

w. Hence the entire work necessary to impart the living force

-~- to one kilogram of air, is

A number of other cases may be conceived. Thus we may
suppose heat abstracted during the expansion, according to the

law pv
~ 2 = piVi

~ *
etc. Such cases have no practical in-

terest.

If in the above equation we put ET in place of pv, and R J\

for pM, we have

^=RT-RT, + ^(T- T,} =

r, c(k-l)
Since, however,^ = *

-^
-,

W* fck c c

If we assume T as known, we can easily find Ji. Thus, since

the expansion is adiabatic, we have

pv
k
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Also, Ti

T \p

We have therefore for w in meters per second for Centigrade

degrees,

w

/ P / v 0.2907-1

= 44.449i/ T 1 - (
&

} \. (LXXXIH.)
\p/

and for feet per second and Fahrenheit degrees,

w =

These formulae apply to the case where air flows out of a

vessel into the atmosphere. In this case p^ = 1.
* Instead of

assuming the piston HI, by moving toward the right, to pre-
serve a constant pressure, we may suppose fresh air constantly
forced in.

Experiment shows that the above velocity is never attained

completely. The particles are hindered by friction and mutual

impact. These disturbances cause a loss of velocity which

reappears as heat. Since, however, the velocity of efflux for

moderate pressure is very great, the heat thus generated by loss

of velocity is imparted almost entirely to the particles rather

than to the walls of the vessel, and the temperature J\ at the

plane of the orifice, or where the pressure is constant, is some-

what greater than given by

Experiment has also shown that the greatest velocity is not in

the plane of the orifice, but some distance from it, within the

pipe. The stream possesses, then, at this point, a somewhat

smaller cross-section than the orifice. The phenomenon is

almost exactly the same as for the efflux of water or similar

liquids.
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The number by which the area of the orifice must be multi-

plied in order to give the area of cross-section of the stream

where the velocity is greatest, is called the coefficient of con-

traction. It depends not only upon the excess of pressure

p pi in the vessel, but also upon the form of the orifice, as

well as upon its position.

According to Weisbach, for an effective pressure p p1 of 50

to 850mm ,
for circular orifice in thin plate, of from 10 to 24inm -

diameter, the coefficient of contraction is OL 0.566 to 0.811,

increasing with p p{
. If, for example, the area of orifice is 1

square centimeter, the cross-section of the stream at the place
of greatest velocity is

0.566 to 0.811 square centimeters.

But in this cross-section the velocity is not w, as just found,
but is somewhat less. We have therefore to multiply w by a

proper fraction, in order to obtain the actual velocity, and this

fraction we call the "
coefficient of velocity." If we denote it by

q>, and the effective velocity by ive, we have

we
= cpw.

If, now, the cross-section of the orifice is F, that of the

greatest velocity will be aF, and since the particles pass with

the velocity we
=

cpw, the discharge per second is

V= we '\F

And putting for w its calculated value,

/ p .

x 0.2907-,

F- 44.449 q>aFM T\l- h&J
I.

The product of the coefficients of contraction and velocity

(aq>) by which we multiply the area F of the orifice and the

theoretical velocity, in order to find the actual discharge, is

called the "
coefficient of discharge,' and is denoted by //. Ac-

cordingly
/ p

~
v 0.2907-,

V =
44.449yw^|/

T I 1 - f M . (LXX^IV.)

For English measures and Fahrenheit degrees, put 108.6 in

place of 44.449.
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If the mouthpiece through which the air flows is fitted to the

shape of the stream, we have a = 1, because the orifice has then

the same cross-section as that where the velocity is greatest.

For such orifices, shaped somewhat as shown in Fig. 56, Weis-

bach gives for an effective pressure p p^ of 180 to 850mm-
,
for

area of orifice of about 10mm -

<p = JA = 0.981.

(One atmosphere is 760mm -)

For circular orifices in a thin plate, from 10 to 24mm> diameter

and an effective pressureppi of from 50 to 850 mn
% and tak-

ing q>
= 0.98,

M = 0.556 to 0.795.

For short cylindrical pipes of the same diameter as the ori-

fice, for the same limits of pressure,

p^t^ 0.737 to 0.839.

EXAMPLE 1. With what velocity we will air flow out of a receiver into the air,

when the pressure p is 1.033 atmospheres, the absolute temperature T 273 + 10 =
283, and the coefficient of velocity (p 0.90 ?

Since the pressure is but little in excess of the atmosphere, we may make use

of the formula LXXXII., page 327. We have then

36.365 4/283 log 1.033

= 0.9 x 36.365 1/283 x 0.0141

= 0.9 x 36.365 1/3.9903

wt = 65.132 meters per second.

If the temperature Fahrenheit is T = 459.4 + 50 = 509.4, we have

we = 0.9 x 88.9 4/509.4 log 1.033 = 214 feet per second.

EXAMPLE 2. In a receiver we have air under the constant pressure p = 1.2

atmospheres. The absolute temperature is T= 273 + 10 = 283. With what

velocity will the air issue when the discharge takes place through an orifice of

the shape of the contracted stream ?

Here p = 1.2 and _p,
= 1, hence
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Hence

w = 44.449 4/283 (1
- 0.9485)

- 44.449 1/14.5745,

or

w = 169.443 meters.

Since q> 0.981, the actual velocity is

WK = <pw = 0.981 x 169.443 = 16(5.224 meters.

If, now, in the equation

W ~ - Ck
(T T }~
(

we put we in place of w, the absolute temperature T {
in the plane of the orifice

will be

= 283-13.98 = 269.02.

Hence the temperature, Centigrade, is t
l
= 269.02 273 = 4.02.

We see, therefore, that even for a slight excess of pressure of only 0.2 atmos-

pheres, there is a considerable reduction of temperature.

Without loss of velocity, the temperature Tt would have been

T, = 283 - '

x 0.00993 = 283 - 14.53 = 268.47,
<* x y.oi

or 268.47 273 = 4.53 C. By the resistance, therefore, the air is heated 4.53

4.02 = 0.51.

EXAMPLE 3. If the same receiver is required to furnish 100 cubic meters of

air per minute, what must be the cross-section Fot the orifice of discharge ?

TT

We have V=weaF, or F
, orwta

100
ince a = l, . V- - = 1.666, w = 166.224,

= 0.01003 square meters = 1.003 square dec.
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Finally, we remark that when air flows from a receiver into

the atmosphere, the contracted stream expands again in a man-

ner similar to that in which it contracted. It thus gradually
loses its velocity and the particles come to rest. It is evident

itf
that the entire living force ^- ,

inherent in one kilogram, is thus
ty

transformed into heat, and that, therefore, as soon as rest ob-

tains, the temperature of the air is again the original temper-
ature T which it had in the receiver before expanding.



CHAPTEK XHI.

AIE COMPEESSOES AND COMPEESSED AIE ENGINES.

[The following pages comprise an abstract of a work entitled " L'Air Comprime," by M. A.

Pernolet, Paris, 1876. The abstract formed portion of a Graduation Thesis written by Mr. Bailey

Willis, M.E., while a student in the School of Mines, Columbia College, and is, with his permis-
sion, given here with insignificant changes, precisely as prepared by him. Mr. Willis has in

several places found occasion to differ from M. Pernolet, and such differences will be found
noted in the Text. Mr. Willis has also converted all the formulae and calculations into English

measures.]

Work of Compression. Suppose we have a given weight G of air, whose vol-

ume is F,, pressure^),, and absolute temperature Tlt By means of a piston let

this air be compressed adiabatically to the volume Vt , pressure j9 2 , and tempera-
ture T2 . During compression, the pressure^ of outside air acts upon the piston
to help compression. After compression, the volume V2 is forced under the

pressure p 2 into a reservoir. Then the work of compression is

y tT6f

But

and

hence

G
A (Cv + CT

~
Cv)^ ~ T^>

or

= 100.7040(^2 - T>) meter-kil.

-= 183.360 (T*-T) foot-lbs.

334
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where -r = 772, and degrees are measured by Fahrenheit scale. For convenience

of use we may write these equations in the following form :

Lc = 100.7046^ (- -
l) meter-kil. 1

\ ./i /

or
\-

. (LXXXVI.)

If = 183.366^ (^- - l) foot-lbs.
\J.i / j

m ~.

We can find from the table, page 173,
-~ for any given ratio of

-^-
,
and then

find the work, without first finding T2 .

We may also write the expression for the work of compression in the form

or

l [( )

* -
l]

meter-kil.

k-l

Le r= 183.36021

, [( )

*

-l] foot-lbs.

-

(LXXXVII.)

Again, if the volume FI of air to be compressed is given, instead of the weight

G, then since

piV = ^(cp -cv)Tlt

we have

a =

and hence

. . (LXXXVIII.)

= 8.452?! F, (-
X

Any of these formulae may be used in finding the work of compression, as may
be most convenient, and the table on page 173 will greatly facilitate computa-
tions.

Volume of the Compressing Cylinder. Let the volume of the compressing

cylinder be F, and the volume of air compressed per second be Ft. If the

engine makes n revolutions per second, it will make 2n strokes per second, and

y
the volume of air compressed at each stroke is -

.

2n
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The volume of the cylinder must be equal to this, or

But

V Vl
v == ~z

p 1 Vi = ORTi, hence

(LXXXIX.)

Final Temperature. In the formulae for the work of compression already de-

duced, the final temperature T* of the air, as it passes out of the compressing

cylinder, occurs. In the following table the final temperatures for different

values of are given, the initial temperature being assumed equal to 68

Fahr., or T, = 459.4 + 68 = 527.4.

Initial Temperature. T! i= 459.4 + 68 = 527.4, or *, = 68 Fahr.

Pi

Pi
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cylinder to a pressure p 2

'
intermediate between p l

and p,, then cooling it

under the constant pressure pz
'

to the temperature Tlt an! then further com-

pressing it to the pressure p 2 in a second cylinder.

The work of compression in the first cylinder is then

k-l
*

p

and in the second cylinder

The total work of compression is therefore

* ~ *

-*. . . . (XC.)
p

k-l k-l

fp\ k fP\ k

Now Lc is a minimum when f
**

)
+ (

"
)

is a minimum.

In any given case, p ,
and p 2 will be known, and hence the above expression

is of the form

x
,

b
4- .

a x

Differentiating and placing the first differential coefficient equal to zero, we

find

x Vab,

and this value substituted in the second differential coefficient gives a positive

result.

Hence the work of compression will be a minimum when

Pz =
or

- = (XCL]
Pi Pz

Therefore

k-l

or (XCIL)
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It follows also, from

that
m i mn
* 8 -* 2 n- mi _ m it

-m- = -m- OT * 2 * 8

that is, the final temperatures in the two cylinders are equal.

Since

.... (XCIII.)
p p

and since for a single cylinder and the same ratio ,

we have

T

Comparing the work of compression in two cylinders with that in one, we
have

. (XCV.)

i2- +1

M
or

Lc

Now ^ is always greater than 1, therefore (
~-

J
+ 1 is always greater than

2, and Lc ,
the work of compression in one cylinder for the same limits of j9, and

j9 2 ,
is always greater than the work of compression in two cylinders.

In the following table, the ratios -- and the final temperatures in degrees

Fahrenheit, for one and two cylinders, are given ; it being assumed that Z\
= 459.4 + 68 = 537.4, or t l

= 68 Fahrenheit.

We find ZY from XCIII.

0.145

Tt may be found by aid of the table, page 173.
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TABLE,

SHOWING FINAL TEMPERATURE FOR ONE AND TWO CYLINDERS AND RATIO

= 459.4 + *.

Lc'

If*

p*

Pi'
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It is then admitted into the cylinder of the compressed air engine and does*

work, its condition at the end of the stroke beingp 4 ', T+', and V4 '. The exhaust

then opens and the air escapes into the atmosphere, its state changing to^ 4 , T4 ,

and F4 .

The air may perform work in the cylinder in three different ways.

1. It may act at full pressure during a portion of the stroke, and be then cut

off at such a point that the pressure in the cylinder falls by expansion to the

pressure of the atmosphere. In such case, p 4 ', T4 ,
and F4

"

become equal to p 4 ,

T4 , V,.

2. The air may act at full pressure during the whole stroke. In this case j9 4 ',

2Y, and F4
'

are equal to j9 3 ,
T3 , and F3 ', and the work corresponding to the

change of temperature T3 T4 is lost.

3. The air may act at full pressure during a portion of the stroke, and be then

cut off at such a point that the pressure within the cylinder is reduced indeed by
expansion, but not to the pressure of the atmosphere. In this case^ 3 is greater
than p 4 ,

and p 4
'

is greater than p 4 .

We may call these three cases respectively :

1, Complete expansion ; 2, Full pressure ; and 3, Incomplete expansion.

1. COMPLETE EXPANSION.

We have to deal in this case with the initial conditions />,, F3 ,
and 71

,, and
1

,

the finaJ conditions p 4 , F4 , and T of Cr units of weight of air, the amount
used per second.

Final Temperature. The expansion takes place between the limits p 3 and,

p 4 according to the adiabatic law. Hence

or

T,

T v
The ratio ^ may be found in our table, page 173, for the given value of =&.

Disposable Work. The work of the air in the cylinder is made up of two

parts, the work p , F:J
at full pressure plus the work of expansion. The dispos-

able work is this amount less the work of the back pressure p4 F4 .

Hence
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This reduces, as we have already seen, to

Volume of the Cylinder. -We have found for the volume of the compressing

cylinder

In an entirely analogous manner we have for the volume of the cylinder of

the air engine

[..
'

\ ,;, ;.
F'=^ ..... (XCIX

where n is the number of revolutions per second.

Weight of Air per Second. Let ^denote the number of horse-power per
second required, and

77 denote the efficiency of the engine. Then since

we have for English measures

hence

_ 5504^ N
~r,cp (T.

-

. . . . (C.) -T^
-

m~
11

*
J

* 4

Efficiency of the Compressor and of the Engine. Let be the ratio between

the work of the compressor Lc and the work of the air engine Ld . We have then

L. T*<r'-

A
or

= l_ \P'H/ _[
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In this expression the ratio of the terms in brackets is usually nearly equal to 1...

T
It is therefore to the ratio -~ that we must look for any increase in the effi-

J-z

ciency of the combination of the compressor and the air engine.

TZ is usually the temperature of the atmosphere at the air engine, and we see,

therefore, that to increase the efficiency we must decrease T.2 . This agrees with

what has been said in discussing the compressor.

A rough approximation to the efficiency in any given case may be arrived at

by placing

The values thus obtained will always be greater than the true values, and the

latter will approach the nearer to it, as the loss by friction in the pipes is less.

For the sake of future comparison merely, we give in the following table the

efficiency for complete expansion calculated from the formula

T3 being taken equal to 527.4 Fahr.

^
Pi

.
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Moreover, it must be remembered that for long distances the term

has a very considerable influence, and reduces the value of very materially.

Construction. We may easily deduce formulae for the cut-off which will pro-
duce complete expansion.

Y.
The volume of air at the pressure p 3 used per stroke is

-^ . When this ex-

pands to the pressure p 4 ,
the volume must be that of the cylinder F, for which

we have already deduced a value.

We have by the adiabatic law

T,-

v
From our table, page 171, we can find the value of 2w -=-, for any given value

of
,
in the column for .

Let now S be the stroke, and s the distance traversed by the piston during
admission of air. Then

i

Let oo be the angular velocity of the crank, and ^ the duration of admission.

Then

hence

Qf

S = jr (1 COS OOt^,

~j

1 - cos oot 1
= 2 ^ = 2

(
I?*

)

or
i

Got
}
= arc. cos fl

- 2 (*} *~|
..... (GIL)

L \P9/ J

If the time of entire stroke is t, we have

cot = it = 3.14, and hence

t
ji= vti = rt

1
t GOt Tt
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In the last column of the table, page 173, we have given the volumes of -^,

calculated for the corresponding values of
,
in the first column.

Air Engines with Two Cylinders and Intermediate Reservoir. We have

already given the formula for the final temperature T4) for complete expansion

(page 340), viz. :

Assuming T* 527.4, which corresponds to 60 Fahr., the values of T, given
in the following table, may easily be calculated by the aid of table on page 173.

TABLE

FOR FINAL TEMPERATURE T.

T3 = 459.4 + 68 = 527.4.

Pa

P*'
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The work in the second cylinder is

Hence the total disposable work is

As already shown (page 337), the last two terms are a minimum when

P\ VJ9^* and 2V is then = 2V'.

Hence we have

_ Sps\
* "I

\ 7}> /

k -1

Since

we have

where T4 denotes the final temperature for one cylinder. Comparing the work
in one cylinder with that in two, we have

O

an expression entirely similar to XCVL, but in this case the denominator is less

than 2, and Ld is therefore less than It*.

In the following table we give for comparison the final temperatures t and t4
f

In Fahrenheit degrees, and the ratio =4-
,
for different values of ,

TA being
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taken 527.4, or t3 = 68 Fahr. The values for one cylinder are taken from
the table, page 344, and for two can be calculated from CVL*

T = 459.4 + 68 = 527.4.

a
p*
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Disposable Work. The available or disposable work for one second is equal
to the pressure^ 3 less the back pressure p 4 ,

into the volume F
:< ; V3 represent-

ing the volume of the weight Gr of air used per second at the pressure p 3 . Hence

Ld =
But

Pi

therefore

(CVII.)

in English measures.

This equation gives a simple value for the disposable work in terms of tha

initial temperature and' of the pressure ratio .

P*
But for the purpose of further discussion, it is desirable to obtain an expression

of the form cp (TA TT), as is the case for complete expansion.^1

This may be readily done by placing

== to-*)

where Tx is an unknown quantity, and, (T3 Tx} denotes the degree of expan-
sion which would give, with complete expansion, the same disposable work as

that obtained at full pressure.

Solving the above equation we obtain

= 0.71+0.29 . . . (CVIII.)

From this formula the values in the following table have been calculated :

Jh

p*
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It is important to distinguish that Tx and T^, the temperature of exhaust for

full pressure, have no direct relation to each other.

Thus

p

k-l

while = 0.71 + 0.29^.

Tt is a theoretical temperature, which has no actual existence in the action of

the air at full pressure. It simply means, that if an engine worked with com-

plete expansion between T% and Tx , this engine would do the same work as the

full-pressure engine does between T3 and T4 .*

Final Temperature. The final temperature T^ is found from

k-\

~T~3
=

\~P~J

for the expansion, on opening the exhaust takes place rapidly, and according to

the adiabatic law.

This relation is the same as that already given for complete expansion, and

the values of T4t in table on page 344, apply also for full pressure for the same

ratios of .

P

Comparison of Efficiencies for Full Pressure and Complete Expansion. We
have already found an expression for the efficiency of an air engine working with

complete expansion, and its compressor, and have given the values of
,
calcu-

lated from the approximate formula

in the table, page 342.

If we denote by
'

the efficiency of an air engine acting at full pressure, with

its compressor, we have

* [Mr. Willis calls attention to this point, because Mons. Pernolet distinctly states that TV is

Tt , and then deduces the quantities given in his table viii., p. 62 of ' Vair comprime," under

this assumption. The results, therefore, of the last three columns of that table are incorrect.]
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Hence

= 0.29

It being assumed that, as before,

. (CIX.)

1
= T3 ,

Pl = P, and T3 = 527.4.
Pi P<

Pa

Pt'
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This last expression is perfectly similar to Equation C., page 341, for com-

plete expansion.

y
Volume of the Cylinder. The volume of the cylinder is ^ , n denoting the

an

number of revolutions per second. From the formula

we obtain

550 N
=275

N
2n 2 nrj (p s j9 4) nrj (p 3

Or we may place

3. INCOMPLETE EXPANSION.

When the air is cut off at such a point that the pressure at the end of the

stroke is still greater than that of the atmosphere, we have to deal with three

sets of conditions, viz.,

1. The initial conditions, p^, F3 ,
and 2\.

2. The conditions at the end of stroke, jt?4 ', F4 ', T*'.

3. The conditions at exhaust, p 4 ,
T4 , F4 .

Disposable Work. The disposable work is the work at full pressure, p 3 V3 ,

plus the work of expansion cv (Tt T^, less the work of the back pressureA
^4 F/. Hence

Ld =p,V3 + c (T3
- T4 ') -p4 Vt'.

This expression is not convenient for use, hence we seek a theoretical quantity,
Tn which, inserted in the expression for disposable work for complete expansion,
will give the same value for Ld as would be obtained by the expression above.

This is precisely similar to what we have done for full pressure. We obtain T*
from the expression

Substituting for F3 and TV their values, -. (cp
- cv)

^* and -. (cp -cv)^-lfA Pi A
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and divided through by -j ,
we obtain

(cp
-

c,) T, + ce (T, -T,')- (cp
- cv) T,' = cp (T3

- T,

whence

,

'T4
f

cp Cp p4
' k k p

This expression is the same as CVIIL, found on page 347, for full pressure.

T
Therefore the values given in the table on page 347, for~ hold good here also

L 3

T*

We have then

and

Ld = ~cpT3 (\-^?^J (CXIII.)

T ' T
The values of ~- and -=f-t are easily found from, the tables on pages 346 and

L 3 J 4

347, when the ratio ^- and ^-, are given.

Weight of Air per Second anc( Volume of Cylinder. From the formula

Ld = ~cp (T3
- Tx) = - we obtain

in English measures.

This expression agrees exactly with that given on page 841 for complete ex-

pansion.

For the volume of the cylinder we have

>.
2n pS
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If in this expression we substitute for G the values just deduced, we get

since for It we can substitute
Cp

.

Cv
. This reduces to

or

AT" 1

(CXV.)
/-** / -t

* *
"

'

T\'(
l -F

Graphic Representation of the Theory of CompressedAir Engines. The gen-
eral expression for the available work of an air engine, which includes all three

cases of complete expansion, full pressure, and incomplete expansion, is then the

Eq. CXIII., found on page 351, viz.,

fY f fJJ FJ1
t

or in English measures

Ld = 183.35GT3 (1 -
^rr ar-J

.... (CXVI.)
\ 4 3 /

We have shown that

-^ = 0.71 + 0.29,,

and

Substituting these values we obtain

Ld = 183.356^3 (~1
-

fo.tt + 0.29^") (
P
-^\

k

"I,

L \ ^ 4 / V* 3 / J
whence

l^ffT,
= 1 ~

('
71 + O'29

^) (?)
~- <CXVII ->

*
[This expression, Mr. Willis observes, corresponds to that given by Mons. Pemolet, p. 64

of " Vair comprime, but the latter is defective in that it contains no factor representing the effi-

ciency of the air engine.]
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we have

= y'
= * and =

' and

= 1 - (0.71 + 0.29z) ..... (CXVIII.)

which is the equation of a surface whose co-ordinates are x, y, and z.

If in this equation we suppose z known, and therefore = a constant r= (7,

we have

which is the equation of a straight line.

Hence if we give to z various values from 1 up to any desirable limit, we shall

get a corresponding number of equations of straight lines, in which

y ~ 183.856T

Ld

83~

depends upon the disposable work and

P*

Since z
, ,

and x = .
,
we have

(CXIX.)

Now j9 4 is the pressure of the exterior air = 1 atmosphere. Hence the initial

pressure

p A = -
atmospheres.

Let us assume that we have given the number of disposable foot-lbs. of

work required per second, the weight G of air to be used per second, and the

initial temperature TV From these data we can calculate y.

If now we have a diagram upon which are drawn the lines whose equations

are of the form

V7e can read off from it the values of x and z that will give the desired value of

y. In other words, we can find at once the initial pressure
- in atmospheres, and

23
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the degree of expansion z =
,
that will give the required power with the given

P\

weight of air per second.

Such a diagram has been constructed (see diagram at end of thi chapter), in

which the values of z or *2_ range from 1 up to 10.

P*

Construction of the Diagram. Let the plane of the paper upon which the

diagram is drawn be a horizontal plane, whose vertical ordinate, referred to the

same origin as the surface, is z = 1. The equation of the surface, when z is con-

stant, that is, when . is given, is the equation of a straight line,
P\

y = 1 - (0.71 + 0.29z) C.

If now, in this equation, we fix the value of x, and calculate the correspond-

ing value of y, we can construct a point of this line. By finding two such points

we can draw the line.

The most convenient values for x are x = and x = 1. These give us

,

and

rr?
f

Now for any given values of z or~
-,
we can find -~ from the table on page

T
178, under the head of -~

,
and thus can easily calculate y.

The second result is given by the intersection of the horizontal line 0.28 with

the line z =2. The value of x is 0.61. Hence

p = - = _** - 3.27 atmospheres.x 0.61

That is, if the cut-off is such that the pressure is reduced by expansion to |, the

engine will give 50 H. P. with one pound of air at an initial pressure of 3.27

atmospheres.
The third intersection gives us z = 3 and x = 0.95, hence

0? = = 3.15 atmospheres.
x

There are, of course, many other degrees of expansion, with their correspond-

ing initial pressures, intermediate between those just found, that will give the
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required result, but which do not appear on the diagram because the diagonal

lines corresponding to the ratio are not drawn.
P

In order that the initial pressure may
be found for any degree of expansion,

the curves zBC and x^B'C' are intro-

duced.

These are obtained as follows :

If we intersect the surface whose equa-
tion is

^

by any plane parallel to the plane YOZ,
x is for that intersection a constant, and

the equation of the curve of intersec-

tion is

y = l- (0.71 + 0.29a)
-

.* zm
FIG. 57.

The values of y can then be laid off upon the vertical lines JT Y and JT, Y' in

the diagram, and the straight lines EE' drawn through each two points which

have a common value for Z.

For each of these lines zz' there is a certain given value for z or
t , hence

P4
each line corresponds to a given degree of expansion, which is denoted by the

figures 1, 2, 3, etc., written at the intersections of the lines with x^y'.

To illustrate the use of this portion of the diagram, let us assume a case.

Given an engine of 50 H. P. which is to use 1 pound of air per second. Re-

quired the amount of expansion and initial pressure which will give this re-

sult.

We have Ld = 550 x 50 = 27500 ft.-lbs., and we may assume T3
- 527.4

Fahr. We have then

27500

183.356T3

~~
183.35 x 1 x 527.4

= 0.28.

Find 0.28 on the line JT F, and following it horizontally across the diagram,

we can determine three methods of arriving at the desired result.

The horizontal line first intersects the diagonal line for z = 1, or the line of

.full pressure, at a point whose abscissa is x = 0.032. Hence

= 31.25 atmospheres.

That is, if the engine works at full pressure and uses 1 pound of air per

cond, the air must have a pressure p^ = 31.25 atmospheres to give 50 H. P.
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If now we make x = a 0, and x a' = 1, we shall get the equations of two-

intersections of the surface, viz.,

and

for x = 0, y = 1 - --

for x = 1, y = 1 -

If we revolve the intersecting plane about its line of intersection with the-

drawing paper, the curve of intersection with the surface takes the positions zBG"

In this position we can construct them, remembering that since the plane of

the drawing paper is assumed to have a vertical ordinate z = 1, we must lay off

z 1 instead of z in the direction x x t from x
l} and x t .

If now we have any value for 2, whose diagonal line is not given in the dia-

gram, we seek the points on the curves EEC and x^B'C' which correspond to

this desired 2, and project these points upon the lines x^y and x\y'. Connecting
these two projections, we have the desired diagonal line, and may then proceed to-

find the initial pressure that will give any desired power with this amount of

expansion.
It may be required to find the initial pressure which will give some desired

power at complete expansion.
In this case p p^ and therefore

p*

hence

Having found, therefore, from given data, the value of y, for instance, in the

example assumed, y = 0.28, we follow the corresponding horizontal line across ta

its intersection with the curve x
l B'C', for in the equation of this curve x = l.

The value of z for the point of intersection is read off on the bottom line of the

diagram, and we havep 3
= z atmospheres, or, in the assumed example, p^ = 3.12

atmospheres.
The case may arise in which we have given the desired power, the weight of

air per second, and the initial pressure, required the amount of expansion.

We have #3 = , hence z =

If therefore we can draw upon the diagram curves of constant initial pressure,
from which for a given y we can readily find x, z is easy to calculate.

Such curves are drawn upon the diagram. To construct them, we take the
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aquation x = . For instance, assume p 3
= 10 atmospheres, and give to z

various values from 1 up to 10.

For each value of z we have a value of x, which we can fix on the diagonal

-corresponding to that z. Through the points thus obtained we draw the curve.

If now we desire to know the degree of expansion that will give 50 H. P. from 1

pound of air per second at an initial pressure of 10 atmospheres, we have as

before y = 0.28. Following this horizontal line to its intersection with the curve

<of constant initial pressure p$ = 10 atmospheres, we get x = 0.113, hence

z = ^7 = p 3x = 1.13.

There are one or two points connected with the diagram to which it is well to

vcall attention.

A small variation in the value of x makes considerable difference in the degree
of expansion. That portion of the diagram upon which x is read off, is therefore

drawn on a scale twice that assumed for z. For the same reason the scale upon
which y is measured is very much greater than either of the others. The scale

for measurement on the curve EEC is the same as that for x^B>'C', and is found
at the top of the diagram.

Variations of Work with Different Degrees of Expansion. Referring to the

diagram, we see that the curves of constant initial pressure have a horizontal

tangent at their intersections with the line of complete expansion x^', where

x = 1, and that their curvature is slight for some distance from this point. Since

y, the representative of the disposable work, is measured vertically, we see that

the loss of work is not very great when the expansion is not complete within

certain limits. Assume, for instance, that we have an engine working with com-

plete expansion and initial pressure = 10 atmospheres. We find y = 0.487.

Assume, now, that with the same initial pressure we cut off at such a point that

z = -^5- = 5. Then x = -^- = 0.5. Seeking on the diagram for the curve of

P* P3
constant initial pressure p 3

= 10, the value of y for the abscissa x = 0.5, we find

y = 0.463.

The loss of work is then 0.487 - 0.413 = 0.05 per cent. The point of cut-off

is readily found from the equation

,\k

Referring to table on page 173, we find for^ = 5,
^- = 0.319.

That is, cutting off at about | the stroke, we lose but 0.05 per cent, of the

work.

Influence of the Vapor of Water Contained in the Air. The preceding dis-

cussion has been based on the assumption that the air acted upon, or acting, was

-dry, and followed the laws of perfect gases.
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In practice water is always injected into the compressing cylinder, to keep-
down the final temperature, and the working medium is therefore a mixture of

water with air saturated with vapor of water. M. Pernolet has discussed at

length the influence of water and its vapor upon the work of compression, the

disposable work of the compressed air, the final temperature in the compressor
and the air engine, etc. He concludes from his discussion,

1. That the influence of the vapor of water upon the work of compression, as

well as upon the disposable work of the compressed air is relatively slight, and
can be neglected in all approximate calculations for which the formula deduced

for dry air are sufficiently correct.

2. - Vapor of water in the compressor and in the air engine reduces materially
the final temperature of compression, and raises the final temperature of expan-
sion.

The assumption that compression and expansion take place according to the

adiabatic law is also not strictly true, because the walls of the cylinder are always
either receiving heat from or imparting heat to the air.

An analysis of this question by M. Mallard shows that the quantity of heat

thus transmitted is small, and may be neglected.

Thus, for all practical purposes, the formulae deduced for dry air acting adia.-

batically are sufficiently accurate.
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1. IF the specific heat of mercury under constant pressure is 0.033, how many
pounds at the temperature of 240 will be necessary to raise 12 pounds of water
from 50' to 58 ? Ans. 16 Ibs.

2. Let w be the weight of one body, t its temperature, and c its specific heat.

Let w' be the weight of a second body, t' its temperature, and c' its specific
heat.

What is the temperature x of the mixture ? Ans. x =
,

.

we + we

3. Reduce 40 Fahrenheit to Centigrade. Ans. 40'.

Reduce 273
3

C. to Fahrenheit. Ans. 459.4.

4. How do you reduce generally Fahrenheit to Centigrade degrees ?

Ans. % C. = F. - 32.

5. What outer work is performed when 1 kilogram of air is heated under the-

pressure of the atmosphere from to 1 C ? Ans. 29.272 meter-kil.

6. What outer work is performed when 1 pound of air is heated under the

pressure of the atmosphere from to 1 F. ? Ans. 53.299 foot-lbs.

7. If the specific heat for air under constant volume is 0.16847, and under
constant pressure 0.23751, what is the mechanical equivalent of heat in French
measures ? Ans. 424 meter-kil.

8. If 10 cubic feet of air are heated from to 10 C., what is the new vol-

ume ? Ans. 10.367 cubic feet.

9. What is the density ? Ans. 0.9646.

10. If two kilograms of water are heated under atmospheric pressure from
to 100 C., what expenditure of work is equivalent to the heat imparted ?

Ans. 84800 meter-kil.

11. What is the weight of 3 cubic meters of air at atmospheric pressure and
20 C. temperature ? Ans. 3.615 kilograms.

12. What is the volume of 2 kilograms of air at the temperature of 100 C.,

and pressure of 2 atmospheres ? Ans. 1.0565 cubic meters.

13. What is the pressure of 4 kilograms of air, when the volume is 2 cubic

meters and temperature 200 C. ? Ans. 27691.3 kil.

14. What is the temperature of 8 kilograms of air, when the pressure is 6

atmospheres and volume 2 cubic meters ? Ans. 256.55 .

15. What work is performed by 10 kilograms of air at 2 cubic meters volume,
and 5 atmospheres pressure, when it expands to 6 cubic meters, overcoming an

359
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outer pressure equal at any moment to the tension, the temperature being kept
constant ? Ans. 113531 meter-kil.

What is the constant temperature during expansion ? Ans. 80 C.

What is the final pressure ? Ans. 1.66 atmos.

How much heat must have been imparted during expansion in order to keep
the temperature constant ? + Ans. 267.76 heat units.

16. If 2 kilograms of air, having the volume of 3 cubic meters, expands as

above, performing work, from the pressure of 4 atmospheres down to one atmos-

phere, and the temperature, during expansion, remains constant, what is the
work done ? Ans. 171895 meter-kil.

What is the constant temperature during expansion ? Ans. 1845 C.

What is the final volume ? Ans. 12 cubic meters.

How,much heat must have been imparted during expansion ?

Ans. 405.4 heat units.

17. If a blowing engine changes per second 10 cubic feet of air, at a pressure
of 28 inches, into a blast at a pressure of 30 inches, what is the work per second ?

Ans. 1366.4 foot-lbs., or 189 meter-kil. per sec., or about 2.5 horse-power.
What is the volume after compression of the 10 cubic feet ?

Ans. 9.33 cubic feet.

If the temperature is 60 F., what is the weight of 10 cubic feet ?

Ans. 0.71404 Ibs.

How much heat must have been abstracted during compression?
Ans. 1.77 heat units per second.

18. If one kilogram of air is heated under the pressure of the atmosphere
from to 1 C., how much work does it perform during expansion?

Ans. 29.272 meter-kil.

19. If one pound of air is heated under the pressure of the atmosphere from
32 to 83 Fahrenheit, how much work does it perform during expansion?

Ans. 53.268 foot-lbs.

20. What is the weight of one cubic foot of air at atmospheric pressure and
32 F. temperature ? Ans. 0.08073 Ibs.

21. What is the weight of one cubic meter of air under the same pressure and
C. temperature ? Ans. 1.29318 Ml.

22. If under the piston of a steam engine, whose diameter is 16 inches, there
is a quantity of steam 15 inches high and at a tension of 3 atmospheres, and if

this steam in expanding moves the piston 25 inches, what is the work done, if

we assume Mariotte's law to be true for the expansion of steam? and what is the
mean force upon the piston when we neglect friction and the opposing pressure?

Ans. 10866 foot-lbs. 5217 pounds.

23. If a given weight of air, say 2 kilograms, at a temperature of 30 C. ex-

pands adiabatically, performing work, till its volume is doubled, what is the final

temperature ? Ans. 44.9.
What is the original volume? Ans. 1.72 cubic meters.

What is its final pressure if the initial pressure is 1 atmosphere?
Ans. 0.38 atmosphere.

What work does it perform? Ans. 10714.65 meter-kilograms.

24. What is the C. equivalent of 15 F. ? Ans. - 9.444.

25. Zinc boils at 1204 F., mercury at 608 F. Change these readings to C.

Ans. 650 C. and 320 C,
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26. Change the following readings : Polished steel is of a deep blue color at
580 F.

; polished steel is of a pale straw color at 460
'

F. ; sea-water freezes at
28 F. Ans. 304.5 C. ; 237.75 C. ;

- 2.2 C.

27. At C. a cast-iron beam is 12 feet long. What is its length at 1000 C.,

supposing the law of similar increments to hold for that temperature?
Ans. 12.13524 feet.

28. At 25 C. a bar of wrought iron was 16 feet long. What is its length at
96 C. ? Am. 16.01400 feet.

29. By how much would the length of a submarine copper cable at shorten,
if the temperature became 20 C. ? Ans. 0.0003434 of the length at .

30. A wheel of wrought iron has an inside diameter of 5 feet when at the

temperature of 970 C. What is its diameter at ? Ans. 4.9 feet.

31. A cylindric plug of copper just fits into a hole 4 inches in diameter in a

piece of cast iron. After heating the mass to the temperature of 1240, by how
much is the diameter

jf
the hole too small for the plug ? Ans. 0.0293 inches.

32. Two rods, one of copper the other of iron, measure 9.8 decimeters each in

length at 0. What is their difference in length at 57 ?

Ans. 0.0027 decimeters.

33. The wooden pattern of a cast-iron beam must be longer than the casting
at

=

. For a beam 12 meters long at 0, whajt is the length of pattern ? Cast
iron melts at 1530 C. Ans. 12.207 meters.

34. What amount of work is involved in lifting 70 Ibs. 6 feet high ?

Ans. 420 foot-pounds.

35. What work is involved in lifting 9000 cubic feet of water 46 feet ? (A
cubic foot of water weighs 62.4 Ibs.) Ans. 25833600 foot-pounds.

How many units of heat (English) does this correspond to ? Ans. 33463.

36. What work is involved in a piston moving 6 feet under an effective pressure
of 17 Ibs. per sq. inch, its area being 1670 sq. inches ? . Ans. 170340.

37. The piston of a steam engine is 21 inches in diameter, stroke 6 feet, mean
pressure 16 Ibs. per sq. inch ;

the engine makes 40 revolutions per minute.
What is the horse-power (English) ? Ans. 80.6144.

38. What time will be taken by a steam engine of 64 H. P. to lift 5360 tons

of water 20 feet ? Ans. 114 minutes.

39. How many heat units (English) per hour are involved in the idea of 62

H. P. ? Ans. 88912.82.

40. A cubic mile of water is to be lifted from a depth of 2 feet in 800 hours.

How many H. P. of a steam engine is necessary ? A cubic foot of water weighs
62.4 Ibs. Ans. 11597.6 H. P.

41. The resistance of friction, etc., to a train is a force equivalent to the

weight of 600 Ibs. How many H. P. of the locomotive will draw the train at the

rate of 35 miles an hour ? Ans. 56 H. P.

42. How many cubic feet of water will an engine of 10 H. P. raise from a

depth of 150 feet in 24 hours ? Ans. 50770 cubic feet.

43. What work is performed on a train weighing 500 tons in 3 miles of a level

road, the resistance to traction being
-

2-)-oth of the load ? If this work were done
in 6 minutes, what would be the H. P. of the engine ?

Ans. 65736000 foot-pounds. 332 H. P.
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44. Suppose the resistance to the progress of a vessel weighing 1260 tons to be
18 Ibs. a ton when the speed is 6 knots, and that the resistance varies as the

Xire
of the speed ;

what work will be done by a vessel in 5 nautical miles, and
t will be the H. P. of the engine when the speed is 12 knots ? There are 6080

feet in a nautical mile, and a knot is a velocity of one nautical mile per hour.
Ans. About 2757894000

;
3342.88 H. P.

45. What amount of work will be spent in the friction of a weight of 6 tons

dragged along a level table for a length of 7 feet, when the coefficient of friction

is 0.235 ? What will be the H. P. of an engine which would do this work in one
second ? Ans. 22108.8. 40.19 H. P.

46. In a cylinder we have 2 kilograms of air at a tension of 1^ atmospheres
and a temperature of 30 C. What is the volume of this air ?

Ans. 1.14436 cubic meters.

If this air expands adiabatically till the tension is 1 atmosphere, what will be
the final temperature ? Ans. 3.77.

What will be the final volume ? Ans. 1.5258 cub. meters.

What work does it perform ? Ans. 4824 meter-kil.

How many units of heat disappear ? Ans. 11.38 heat units.

47. If 3 cubic meters of air at 150 and a pressure of 4 atmospheres expands
adiabatically to double its former volume, what is the final temperature ?

Ans. 45.35.

What is the weight of this air ? Ans. 10 kil.

What is the work performed ? Ans. 74856 meter-kil.

48. If 10 kilograms of air occupy a space of 2 cubic meters, under a pressure
of 6 atmospheres, what must be the temperature ? Ans. 150.64.

If it expands adiabatically till the final temperature is 48, what is the final

volume ? Ans. 3.94 cub. meters.

What is the final pressure ? Ans. 2.3 atmos.

What is the work done ? Ans. 73316.8 meter-kil.

49. Two kilograms of air at 10 is heated under constant atmospheric press-
ure till the temperature is 80. What is the initial volume ?

Ans. 1.603 cub. meters.

What is the final volume ? Ans. 2 cub. meters.

What is the work done ? Ans. 4098 meter-kil.

What is the heat imparted ? Ans. 33.25 heat units.

Of this heat how much disappears as outer work? Ans. 9.66 heat units.

50. Four kilograms of air at 20 C. and under atmospheric pressure is heated
and expands isopiestically. After expanding till its volume is doubled, what is

its temperature ? What was its initial volume ? and final volume ?

Ans. 313. 3.32 and 6.64 cub. meters.

What is the work done ? Ans. 8576 meter-kil.

How many units of heat are imparted ? Ans. 278.4 heat units.

How many disappear as outer work ? Ans. 81 heat units.

51. If the air had not been allowed to expand, and still the same amount of
heat had been imparted, what would have been the temperature ? what the press-
ure ? Ans. 431.34 ; 2.4 atmospheres.

52. If one kilogram of air has the temperature 30 and the pressure of 1.5

atmospheres, and is cooled, the volume remaining constant, till the pressure is

one atmosphere, what is the final temperature ? Ans. 71.

What is the amount of heat abstracted ? Ans. 17.015 heat units.
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53. If one kilogram of air has the temperature 30, and is heated under con-

stant pressure till the final volume is $ of the initial, what is the final tempera-
ture ? Ans. 131.

What is the amount of heat imparted ? Ans. 23.9885 heat units.

What is the outer work ? Ans. 2956.5 meter-kil.

54. Suppose one kilogram of air of the temperature 30 expands, according to
the law p^v^ =p^v2

2
. until its final volume is $ of its initial. What is the

final temperature ? Ans. 45.75.

What is the outer work ? Ans. 2217.35 meter-kil.

What is the specific heat in this case ? Ans. 0.09940.

Must heat be added or subtracted during this expansion ?

Ans. Subtracted.

How much ? Ans. 7.530 heat units.

55. One kilogram of air of one atmosphere pressure, 30 temperature, expands
adiabatically, without overcoming any outer pressure till its volume is doubled.

What is the final pressure ? Ans. 0.5 atmosphere.

56. Suppose 10 units of heat are added during expansion. What is the final

temperature ? Ans. 79.35.

What is the final pressure ? Ans. 0.581 atmos.

57. At midday a person observed that his Fahrenheit thermometer marked
77 degrees, and at sunset that his Centigrade thermometer marked 10 degrees.
How much has each thermometer fallen in the interval V

A j F. has fallen 27.
s '

I
C. has fallen 15.

58. What temperature is denoted by the same number in the Centigrade and
Fahrenheit scales ? Ans. 40.

59. What is the temperature when the sum of the readings of the same ther-

mometer graduated according to Fahrenheit and Centigrade scales is 130 ?

Ans. 95 F.

60. What is the temperature when the difference of the readings of the same
thermometer graduated according to Fahrenheit and Centigrade scales is 60 ?

Ans. 95 F. or - 175 F.

61. A thermometer is graduated both on Fahrenheit and Centigrade scales,
and the reading on the former exceeds that on the latter by 24. What is the

reading of each ? Ans. 14 F. or 10 C.

62. On the summit of a mountain water boils at 152 F. If a thermometer
be graduated there without taking into account the atmospheric pressure, what
would be the real temperature when this thermometer registers 92 F. ?

Ans. F. = 72.

63. A thermometer is constructed which registers 10 at freezing point and
110 at boiling point. What will be the temperature by Fahrenheit scale, when
the reading on this thermometer is 60? Ans. F. = 137.

64. If a line of railway be laid with iron rails 5 yards long at C.
,
what

should be the distance between two consecutive rails, to allow for the expansion
due to an increase of temperature of 55 C. ? (Coefficient of linear expansion for

one degree Centigrade = 0.00001235.) Ans. 0.122 inch.

65. If a line of railway be laid with steel rails 25 feet long at 60 Fah., what
should be the distance between two consecutive rails, to allow for the expansion
due to a range of temperature from 20 F. to 100 F. ? (Coeflftcient of linear

expansion for one degree Centigrade, counting from zero C. = 0.00001079).
Ans. 0.215 inch.
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66. A mass of mercury occupies 8.144 cubic inches at 100 C. What will be
the increase in volume when its temperature is raised to 150 C. ? (Coefficient

of linear expansion of mercury 0.00006 for one degree Cent.) What will be

its volume at C. ? Ans. 0.072 cub. inch. 8 cubic inches.

67. A straight vertical tube, closed at its lower end, contains a small quan-

tity of mercury which is supported at the height of 28 inches from the bottom
of the tube by the confined air. The temperature of the air is 7 C. If the

temperature is increased to 27 C., what position will the mercury occupy ?

Ans. 30 inches from bottom of tube.

68. If the temperature in the last example is 100.6 F
,
and is raised to

140.6 F., what is the position of the mercury ?

Ans. 30 inches from bottom of tube.

69. A quantity of gas occupies 150 cubic inches at a temperature of 2 C.

when the barometer stands at 29.7 inches. What space will it occupy if the

temperature rise to 16 C
1

. and the barometer to 30.6 inches ?

Ans. 153 cubic inches.

70. If the temperature in the preceding example is 90.6 F., and rises to

118.6 F., what space does the gas occupy ? Ans. 158 cubic inches.

71. If the compressed air in a flooded coal pit occupies 2500 cubic feet at a

temperature of 50 F., and under a pressure of 70 inches of mercury, how
much space would it fill at a temperature of 60 F. and under a pressure of 29.5

inches of mercury ? . Ans. 6048^5*6 cub. feet.

7"?-. Two condensers contain equal quantities of air. One of them, at tem-

perature 52 C., is 20 in. long, 15 in. broad, and 13 in. high, and the other at

57 C., is 2 feet long. 15 in. broad, and 11 in. high. Show that the air pressure
is the same in both.

73. When the roof of a cylindrical diving bell is 27 feet below the surface of

the water the temperature of the air within it is 2 C.
,
and the level of the water

in the bell is 5 feet from the roof. If now the temperature of the air in the

bell is raised to 7 C., and the bell is moved until the level of the water is 1 ft.

lower than at first, has the bell been raised or lowered, and how much ? (Press-
'ure of the atmosphere is supposed to be equal to a column of water 34 feet high.)

Ans. Raised 11 feet.

74. A certain volume of gas is at a temperature of 3 C. and under a

pressure
of 800 mm. If the pressure is diminished to 540 mm., what tempera-

ture must the gas have in order that its volume may be doubled ?

Ans. ^ = 91.5 C.

75. A straight vertical tube whose section is one square inch, is closed at its

lower end, and contains a quantity of air which supports an air-tight piston
whose weight is one pound. The position of the piston is observed when the

temperature of the air is 31 C., and the weight of the piston is then increased

by 1 pound. Find what increase of temperature will be required to bring back
the piston to its former position, the atmospheric pressure being 15 Ibs. per sq.
inch. Ans. New temp. = 50, increase = 19.

76. A volume of air at C. and at a given pressure weighs 8 oz. ; what
weight of air would occupy the same volume at 30 C., the pressure being 4
times as great ? Ans. 28-f

4
r oz.

77. If the air in a fire balloon, the volume of which is 100 cub. ft., is at a

temperature of 127 C., when the temperature of the surrounding air is 27 C.,
what weight, including that of the balloon itself, will just prevent it from

ascending ? The weight of a cubic ft. of air at C. and atmospheric pressure
being 1.2 oz. Ans. 27.3 oz.

78. If 1 cub. ft. of air at and under a pressure of 760 mm. weighs 1.2 oz. f

what will a cub. ft. at 27 and under a pressure of 600 mm. weigh ?

Ans. 0.862oz., nearly.
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79. A body whose volume is 10 cub. ft. weighs 251 Ibs. 5 oz. when weighed
in air at a temperature of 3 C. and under a pressure of 800mm. What
would be its weight in vacuo ? (One cubic foot of air at and pressure of
760 mm. weighs 1.2 oz.) Ans. 252 Ibs. 1.66 oz., nearly.

80. A certain volume of air at C. and at a given pressure, weighs 10 oz.

What weight of air would occupy the same volume at 20 C., the pressure being
doubled ? Ans. 18$Si oz.

81. A room contains 4480 cubic feet of air (cp = 0.2375), weighing 1.25 oz.

per cubic foot. How many units of heat will be required to raise the tempera-
ture of the air 20? If the initial temperature of the air is 16, how many
pounds of water at 74 will be required to raise the temperature of the air by the

required amount ? Ans. 1662.5 heat units, 43f Ibs.

82. If the heat obtained from the combustion of 1 Ib. of coal raise the tem-

perature of 1000 Ibs. of iron from to 50 C., find the number of units of heat

given out; the sp. heat of iron being 0.12 (a heat unit being taken as 1 Ib. of

water 1 C.). Ans. 6000.

83. A bar of iron weighing 25 Ibs., whose temperature is 16 C. ,
is plunged

into 15 Ibs. of water at 10 C., when the common temperature becomes 11 C.
Find the specific heat of iron. Ans. 0.12.

84. A piece of tin weighing 125 oz. is immersed in boiling water, until it is

of the same temperature ;
it is then taken out and dropped into a vessel contain-

ing 63 oz. of water at freezing, and the temperature of the water rises to 10 C.

Find the specific heat of tin. Ans. 0.056.

85 A pound of platinum is placed in a furnace, and having acquired the

temperature of the furnace, is plunged into a vessel containing 10 Ibs. of water
at 10 C. The temperature of the water rises to 14.3 C. What is the tempera-
ture of the furnace ? (The specific heat of platinum is 0.032).

Ans. 1358.05 C.

86. If some water at 20 C. be mixed with a fluid at 150 C. weighing half as

much as the water, and the temperature of mixture be 19 C., find the specific
heat of the fluid. Ans. 0.5.

87. A mass of 10 Ibs. of iron at the temperature 175 C., is immersed in 1 Ib.

of ice and water at C., the masses of the ice and water being in the ratio 1:9;
and the temperature of the whole mass becomes 20 C. Find the specific heat
of iron, the latent heat of ice being 79. Ans. 0.018.

88 Two chains, A and B, are contained in a jar which is maintained at a.

temperature 114 C. A consists of 9 links of iron and 11 links of copper, and
B consists of 9 links of copper and 11 links of iron, and each link weighs one
ounce. The chain A is taken out of the jar and placed in a vessel containing
198 oz. of water at 13 C., and causes the temperature to rise by 1 C. Had both
chains been placed in the vessel, the temperature would have risen by 2 C.

What are the specific heats of iron and copper ? Ans. Iron 0.11, copper 0.09.

89. Weights w, w' of two substances, whose specific heats are c, c', and tem-

peratures t, t' are mixed. If no heat is lost, what is the temperature of the mix-
ture ? wet + w'c't'

Ans. r-r- .

we + we
00. One kilogram of mercury, specific heat ff ,

at 130 C. is mixed with
4 kilog. of water at 10 C. What is the temperature of the mixture, if no heat
is lost ? Ans. 11.

91. A mass of iron weighing 7 Ibs. at the temperature 109 C., is placed upon
a mass of ice at temperature C. Tf the specific heat of iron is 0.113, and the

latent heat of water 79, calculate the weight of water produced. Ans. IT^U Ibs.

J)2. Two Ibs. of melting silver, at a temperature of 1000 C., are placed in a

Laplace calorimeter and 1.4 Ibs. of water drawn off. What is the specific heat

of silver, the latent heat of water being 79 ? Ans. 0.0553.
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TABLES FOB THE CONYEBSION . OF ENGLISH AND METRIC UNITS.

Meter = 3.2807 feet.

Foot = 3048 meter.

1 Liter (vol. of 1 kilog. water) = 0.2202 gal.

Gallon (vol. of 10 Ibs. water) = 4.541 liters.

Kilogram = 2.2040 Ibs. av.

Kilog. per sq. meter = 0.2040 Ibs. per sq. ft.

Kilog. per sq. mml = 1422.28 Ibs. per sq. inch.

Lb. per sq. in. = 703.0958 kilog. per. sq. meter.

1 Gram = 15.4323 gr.

1 Grain = 0.0648 gram.
1 Meter-kilogram = 7.2331 foot-lbs.

1 Foot-pound =0.1383 meter-kilog.
1 Atmosphere = 14.7 Ibs. per sq. in. = 10334 kilog.

per sq. meter =29.922 inches, or 760 mm. of

mercury =33.9 ft., or 10i meters of water.

1 Pound av. =0.4536 kilos;.

Deg.Cent. = f (F.-32).

Deg. Fahr.= | C.+32.
1 Calorie (kilog. water raised 1 C.) =424 meter-

kilog. = 3.9683 Eng. heat units.

1 Eng. heat unit (Ib. water raised 1 F.) = 722 ft.-

Ibs. = 0.252 calorie.

TABLE I.

FOR CONVERTING METERS INTO INCHES.

Meters.
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TABLE in.

FOR CONVERTING FRENCH MEASURES INTO ENGLISH.

Meter,
sq. m.,

cubic m.
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TABLE VI.

FOB CONTESTING AVOIRDUPOIS POUNDS INTO KILOGRAMS, OR ENGLISH (CENTIGRADE)
HEAT UNITS INTO CALORIES.

Pounds.
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TABLE IX.

FOB CONVERTING KILOGRAMS PER SQ. CENTIMETER INTO POUNDS PER SQ. INCH.

Kgr^
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TABLE XII.

FOE CONVERTING CALORIES INTO ENGLISH (FAHRENHEIT) HEAT UNITS.

Calor-
ies.



THERMODYNAMICS

PART SECOND.

STEAM AND THE STEAM ENGINE





CHAPTER XIY.

THE ACTION OF HEAT IN EVAPORATION. GENERAL PROPERTIES OF

STEAM. PRESSURE OF SATURATED STEAM.

The different Effects ofHeat in Evaporation. Of all the investi-

gations thus far made upon the deportment of bodies, none are

of greater importance than those which relate to the properties
of steam. An exact knowledge of these properties lies at the

foundation of the construction of the steam engine.

Although much in the way of investigation was done from the

time of Watt, who gave us the steam engine almost in its pres-
ent state of perfection, down to the time of Eegnault, one of

the most skillful experimenters of the present day, still, much
had to remain unknown, because during that time the princi-

ples of the mechanical theory of heat were either unknown or

but little regarded.
It will not be difficult to call attention to that which must

during that time have remained hidden, the key to the explana-
tion of which is, however, given by a number of phenomena of

great scientific and technical interest. Let us return to the

experiment which we have already described in Chapter VIII.

of Part First.

Again, letABCD, Fig. 58, be a hollow cylinder of 1 sq. meter

cross-section. Upon the bottom CD is 1 cubic decimeter=0.001

cubic meter = 1 liter of water, whose weight is therefore 1 kilo-

gram at 0. In contact with the surface of the water is the

^piston KK, which we assume perfectly tight and without weight.
Above the piston is a vacuum.

We assume the piston loaded with 10334 kilograms. This is

the same as the pressure of the atmosphere per square meter

ior and 760 millimeters (30 inches) barometric height.

Now let us impart heat to the water until the temperature
373
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A

rises to 100. Up to this point no steam is formed. This only

happens when the addition of heat is carried still farther. The

piston will then be gradually raised, as steam is formed, and

the weight 10334 kilograms will be lifted through a certain dis-

tance. When all the water is converted into steam,
the piston will stand at a height of about 1.650

meters above the bottom.

In this apparently simple process we can recog-

nize, from the standpoint of the mechanical theory
of heat, several different effects.

First, the water is heated, therefore the vibration

ivork of the molecules is increased. When the

water attains the temperature of 100, further rise

of temperature does not occur. The velocity of the

molecules is now so great, however, that, according
to our theoretical views, any further addition of

heat not only separates the molecules beyond the

influence of their cohesion, which constituted the

liquid, but also gives them a rectilinear motion

such as the molecules of a gas possess. The mole-

|K cules then impinge upon the piston and raise it,,

until all the water is converted into steam. For

this transformation of the water into steam, this

overcoming of the forces which bind the molecules of the liquid
mass together, or "

disgregation work," there is, as we know,
a certain amount of heat necessary.

Further, the weight of 10334 kilograms is raised about 1.65

meters. This requires a mechanical work of 10334 x 1.65 =
17051 meter-kilograms, and this work must evidently be also

furnished by the heat. Since a work of 424 meter-kilograms is

equivalent to one heat unit, the work of 17051 meter-kilograms
17051

requires ^r = 40.2 heat units. At the end of the experiment,

the heat actually existing in the steam as heat, or energy of

vibration, must then be less than the total amount imparted,

by just this amount, which is required for the performance of

outer work. It is this circumstance to which we wish here to

call special attention. From it flow a number of other facts as-

to the deportment of steam, which without it either cannot

be recognized or else are wrongly explained. Thus, for ex-

FIG 58.
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ample, the steam used per stroke by the steam engine possesses
at the end of the stroke no longer the heat which it had in the

boiler, and the heat which thus disappears is the equivalent
of the work done. This has been verified, as we have seen, by
Hirn's experiment. If the water had expanded greatly, while

heated from to 100 which, as we know, is not the case

then the outer work of 10334 x 1.65 meter-kilograms would
have been partly performed by this expansion.

If we compare the outer work of 17051 meter-kilograms, which
we may call the outer work of steam, with that necessary for

overcoming the molecular forces, we shall find considerable

difference. Thus in the present case, 496.3 heat units are

necessary for this purpose alone. This heat represents a

mechanical work of 496.3 x 424 = 210431 meter-kilograms, and
this is required to overcome the molecular forces of only one

kilogram of water. Indeed, in comparison, the force of gravity
is but slight. If, for example, a mass of water of one cubic

meter = 1000 kilograms is required to perform this work, it

must sink through a distance of lnnn
= 210.431 meters.

The question arises, How can the heat be determined which

is necessary for the different effects in this transformation of

water into steam ? It is not possible to determine with exact-

ness the heat imparted during the heating and vaporization

of the water, by direct determination of the heat furnished by
the fuel. The opposite method, of determining the heat units

set free when the steam condenses, is far more exact. If we

use for the condensation a large quantity of cold water, the

condensation is rapid, and all the heat is given up to the water,

while the amount lost by radiation and conduction is very

slight. If we use 2545 kilograms of water at 0, which is raised

in temperature ,
while the temperature of the condensed

steam is also diminished J, we shall have, evidently, the fol-

lowing equation for the heat contained by the steam :

<

a?-f=ix 2545,

where x is the number of units of heat possessed by the steam.

Hence
x 636.5 heat units.
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It is evident that in this experiment, the steam being con-

densed by cold water, that heat reappears which disappeared
in the raising of the weight. This heat is therefore contained

in the total heat of the water.

If we assume that for the heating of the water from zero to

100 100 heat units are necessary (as we shall see hereafter

this number is somewhat too small), then, for the disgregation

work and the outer work, 636.5 100 = 536.5 heat units are

required. Accordingly the total heat in our experiment is

divided among the various processes as follows :

1. Heating of the water from to 100 (vibra-

tion work) 100 heat units.

2. Overcoming the molecular forces (disgrega-

tion work) 496.3 " "

3. Eaising 10334 kil. 1.65 meters (outer work) . 40.2 " "

Total 636.5 " "

In calling attention thus to the circumstances which, in

ignorance of the principles of the mechanical theory of heat,

must have escaped those physicists who have investigated the

phenomena of vaporization, the question arises whether their

determinations are therefore worthless, or have their experi

ments been so conducted that we can make use of them ? The

question is to be answered decidedly in the affirmative, es-

pecially as regards the comprehensive and careful experi-

ments of Eegnault, made with large and accurate apparatus,
described on page 381, and surpassing in accuracy all other

experiments of the same character by other physicists.

The experiments of Regnault upon steam, as also upon other

vapors, depend not only upon the exact determination of the

heat necessary to raise 1 kilogram of water, under a given

pressure, from to any other temperature, or to convert,

under the same circumstances, 1 kilogram of water at into

steam, but also upon the careful determination of the pressure
of the steam generated from water at any temperature. It is

not the place to describe in detail the apparatus used in these

remarkable experiments, nor to notice here the very ingenious
methods of investigation. This belongs to experimental phys-
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ics. We shall only cite some of his experiments, in order to

show that they answer well the purposes of our investiga-
tions.

Before doing this, we shall call attention to the principal

properties of steam and the different kinds of steam.

General Properties of Steam. Saturated and Superheated Steam.

Let /., //., 777, Fig. 59, be prismatic or cylindrical vessels

of 1 square meter cross-section, each holding 1 kilogram of

water, the air-tight piston KK being in contact with the sur-

face of the water. Let the piston in /. be loaded with 10334,
that in/7, with 2 x 10334, and in 777. with 3 x 10334 kilograms,
the space above being a vacuum.

In order that the piston in 7 shall begin to rise, or vapori-
zation begin, experi-
ments show that the

water must be heated

up to 100. In II. the

water must be heated

up to 120.6. In ///.,

up to 134.

If all the water is

K

-H
-CO--

K
FIG. 59.

converted into steam

in all three cylinders,
the piston in 7 will be

raised, as shown by
experiment, to 1.65 m.,

in 77. to 0.86, and in 777. to 0.59 meters. In 7, therefore, the 1

kilogram = 0.001 cubic meters of water has become 1.65 cubic

meters, in 77. the same water volume becomes 0.86, and in 777.

0.59 cubic meters of steam. In 7, then, from 1 cubic meter of

water, we should obtain 1650 cubic meters of steam of 100
;
in

77, 860 cubic meters at 120.6
;
and in 777, 590 cubic meters at

134. The number which denotes how many cubic meters of

steam are generated from 1 cubic meter of water, or generally,

the ratio of the volume of the steam to that of the water from

which it is generated, is called the "
specific steam volume."

In 7. it is 1650
;
in 77, 860 ;

in 777, 590.

Since in 77. the same weight of steam (1 kilogr.) is contained

in about half the space that it occupies in 7, the density (weight
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of unit of volume) is about twice as great. In III. we have irt

about d of the volume the same weight as in /., hence the

density is about 3 times as great as in L
"We can recognize, then, the following principles :

1. The greater the pressure the higher the temperature at which

vaporization begins.

2. Since the steam holds tlie outer pressure in equilibrium, the

higJier the temperature the greater thepressure of the steam generated.

3. From a certain volume of water there is generated for anif

given temperature a definite and invariable steam volume.

(The ratio of this volume to the water volume, or the specific

steam volume, must be less the greater the temperature.)
4. The density is greaterfor high temperatures than for lower.

5. The greater pressure of the steam at high temperatures de-

pends less upon tlie difference of temperature than upon the greater

density.

We have here assumed that the steam is formed directly from

the water, and that steam and water are in contact up to the

moment when the last drop of water is evaporated. Such steam,

which for reasons we shall soon learn we call "saturated" must

be distinguished from other kinds of steam which we shall have

occasion to speak of.

If, when all the water is just converted into steam, and the

pistons are at their highest positions, we fix the pistons im-

movably and force steam into the spaces already filled with

steam, condensation will occur and an amount of steam will be

condensed equal in weight to the amount of fresh steam forced

in. The same will be the case if the pistons are forced down,

provided the temperature remains constant. We say, there-

fore, that the spaces are filled with " saturated steam" that is,

steam just at the point of condensation. As long as steam is

in contact with the water from which it is being generated, it

must at any moment be at its point of condensation, and there-

fore "saturated." Saturated steam differs, then, essentially
from a permanent gas, in that it cannot be compressed like gas.

under constant temperature. If thus compressed, a portion is

condensed while the pressure remains the same.

If, for example, Os, in Fig. 60, is the steam volume of 1.65

cubic meters which is generated in /. from 1 kilogram of water,

and sB =pis the pressure (10,334 kil. per sq. meter), and if by
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B

FIG. 60.

forcing down the piston the steam is compressed gradually,,

then, under the condition that the temperature is kept constant, the

pressurep remains the same. If all the steam is converted into

water, we Mave finally one kilogram of water at 100, which oc-

cupies the space Osl of 0.001

cubic meter. The straight

line BA,*parallel to OX, rep-

resents the change of condition

of the steam when compressed
under constant temperature.

If, inversely, we evaporate
the 1 kilogram of water of

100 under the constant

pressure p, the point A
passes from A to B. It

is evident that in compressing the steam we must abstract,

in order to keep the temperature constant, as much heat as

must be imparted during its generation.
If now we consider the steam in I. still further heated, then

if the pressure remains constant it expands while its temper-
ature increases. Suppose that from the moment of expansion
it is no longer in contact with water. The steam is now no

longer saturated, no longer just at the point of condensation,

and since, with the same pressure, it has a higher temperature,
we call it "superheated"

Superheated steam^ then, is steam which for the same pressure
has a greater temperature and a greater specific volume than satu-

rated steam.

The more the steam is superheated, the more it approaches
the condition of a permanent gas, but only at a very consider-

able distance from the point of saturation are its properties

essentially the same.

If the pistons in /., //., and III. are held fast, and then more

heat added, both the temperature and pressure increase. The

steam is superheated. If, for example, in /. the pressure is

about twice as great, the temperature is considerably greater

than 120.6, which is that of saturated steam of the same press-

ure. We also understand, therefore, by superheated steam,

*
[" Isopiestic line."] t [Also sometimes called " steam gas.

1 '

]
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FIG. 01

steam ivhichfor the same specific volume has a higher pressure and

a higher temperature than saturated steam.

Suppose we have below the piston KK, Fig. 61, highly super-

heated steam. We now force the piston gradually down. The

deportment of the steam is at first that of a per-

manent gas. If, therefore, we keep the temper-

ature constant, the pressure increases inversely

with the volume, and the change of condition fol-

lows Mariotte's law. If heat is not abstracted, the

pressure increases in a greater ratio according to

the exponential law of Poissoii, or "
adiabatically,"

only we have now no longer the exponent 1.41,

which was for air, but another value for the expo-

nent. The more we force down the piston, under

constant temperature, the more we approach a

point where Mariotte's law no longer holds good.

This point lies near the point of saturation or of

condensation. When this point is reached, further

compression simply causes condensation, the press-

ure remains constant and Mariotte's law entirely

ceases to apply.
That which has been said concerning steam applies to all

"
vapors," that is, to all gaseous bodies generated from liquids,

and which by ordinary compression or cooling can be recon-

verted into liquids. Such are the steam from spirits of wine,

ether, carbonic acid, mercury, etc. Only the numerical rela-

tions between temperature, pressure, specific volume, etc., are

different.

We pass now to a subject which is also of special interest

in the mechanical theory of heat, that is, to the exact deter-

mination of the relation between the pressure of steam and its

temperature.

Empirical Formula?for the Pressure and Temperature of Sat-

urated Steam. Yery many experiments have been made in

order to determine the pressure of saturated steam at differ-

ent temperatures. None of them possess greater reliability

and exactness, and none are more comprehensive than those

made by Eegnault. The method of his investigations depends

upon the principle which holds good for every liquid, that tJie
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temperature at which water boils remains constant so long as the

pressure upon the liquid is constant, and that, therefore, the press-
ure of the steam is in equilibrium with this pressure. Experi-
menters before Regnault measured the steam pressure direct-

ly. Now it is very difficult to maintain, even for only a few-

minutes, the temperature of the water, and hence the expan-
sive force of the steam, constant, in a vessel closed, and ex-

posed to fire, because the heat of the fire varies. Yet this is

necessary while noting the temperature and pressure. In order

to avoid the inaccuracies arising from such method of observa-

tion, Regnault compressed the air which surrounded his vessel.

In order that the steam, when generated, should not act to in-

crease the outer pressure, it was condensed in a special vessel

just as soon as it was generated. We give a sketch of Reg-
nault's apparatus, Fig. 62. C is a small copper boiler, into

which four thermometers enter ; two enter the water and two

il

FIG. 02.

the steam only, in order to determine if the water and steam

have always the same temperature. The steam space of C is

connected by a pipe, TT, with a large globe, A, of about 24

liters capacity, which is contained in a vessel, W9
filled with

water.
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From this globe leads a pipe with cock, R, to an air-pump,,

so that the air can be compressed at will in the globe and

"boiler. The pressure of the air in both globe and boiler is

shown by the manometer, nn, mm, which communicates with

the globe by the pipe Ix. The pipe TT is surrounded by a

jacket rr, through which cold water continually circulates.

The steam generated in C must, therefore, since the air is kept

cool, be at once condensed, and cannot therefore contribute to

increase the expansive force of the air. When, now, the air in

A and in C has been compressed, and the pressure exactly

noted on the manometer, the water in C is heated until the

thermometer shows a constant temperature. This we may be

sure is the temperature under which, for the given pressure,

the water boils. And the expansive force of the steam at this

temperature is exactly equal to the pressure as indicated by
the manometer.

Eegnault used in his experiments a large and a small appara-
tus. The first served especially for the determination of press-
ures for temperatures between 170 and 230, the other between

to 170.

The experiments of Kegnault have thus far furnished no

exact law as to the relation of pressure and temperature of

saturated steam. We have only empirical formulae which give

this relation with more or less accuracy. Of all these for-

mulae, none agree with the results of experiment better than

that of Begnault himself, as also the formula of Magnus and

IRontgen.

Eegnault gives three formulae, the first for temperatures from
- 32 to C., the other for from to 100 C., and the third for

temperatures above 100 up to 230 C.

The first formula has the form

(-32toO) p = a + ba*

where a = -
0.08038, log b = 1.6024724, log a = 0.0333980,

x = t + 32

where t is the temperature. This, as well as all the other

formulae of Begnault, gives the pressure p in millimeters of

barometric height, 760 millimeters to one atmosphere.
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The second formula of Regnault lias the form

(0 to 100) logp = a + ba* - cfi

where a = 47393707, log b = 2.131990711, log a = 0.006864937,

log c = 0.611740767, log /3 = 1.996725536, and t is again the

temperature.
The third formula is

(100 to 230) log. p = a-ba*- eft*

where a = 6.2640318, log 6 = 0.1397743, log a = 1.994049292,

log c = 0.6924351, log ft
= 1.99834862, x = t + 20.

Before giving other formulae, let us see how, from the pre-

ceding, the pressure of steam may be found from the tem-

perature.

EXAMPLE.

What is the pressure of saturated steam whose temperature is 20 C. ?

We must use here the second formula.

First, log at = 0.006864937 x 20 = 0.13729874 and log b + log a* =
131090711 + 0.13729874 = 269289 = the number 0.0185903. We have for

Jog ft', 1996725536 x 20=1.93451072, and log c + log /?< = 0.611740767 +

L93451072 = 0.54625149 = the number 3.5177. Then, a-c/5 t = 4.73937 - 3.5177

= 1.22167. Finally, log p = 0.0185903 + 1.22167 = 1.24026. Hence p = 17.388

millimeters. More exact calculation would have given 17.371. Table I. at the

end of this work gives the pressure, according to Regnault's calculations, from
- 32 to 230.

The formula of Magnus is

7.4475 t

p = 4525 x Ww -m+t

in which t is the temperature andp the pressure in millimeters.

It gives, for temperatures below 100, excellent results as com-

pared with experiment. Above 100 the agreement is not so

good. By a change of coefficients, however, great exactness

may be attained here also. The formula is, moreover, very
convenient for calculation, as an example will show.
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EXAMPLE.

What is the pressure of saturated steam at 130 ?

7.4475 X Ijffl
958.175

Here t= 130, hence p = 4.525 x l0 234 -69 + 130 =4.525 x 10 364 -69 = 4.525 x

1026548. Now the log of 1026M8 is 2.6548, and the corresponding number is 451.65.

Hence p = 4.525 x 451.65 = 2042.716 millimeters = 2 4

^16 = 2.688 atmos-

pheres. According to Regnault's formula we should have 2.671 atmospheres.

The formula also has the advantage that we may find in-

versely the temperature from the pressure.
Thus we have

i
, A KOK 7.4475 x t

log p = log 4.525 + mMTj9
or

234.69 logp + t logp = 234.69 log 4.525 + t log 4.525 + 7.4475*,

hence

234.69 (log p - log 4.525) 234.69 log p - 153.867

log 4525 - logp + 7.4475 8.10312 - logp
*

EXAMPLE.

If the pressure of steam is 10mm. what is its temperature?

Here^>= 10, hence log^? = 1, and we have

_ 234.69 - 158.867 _ 80.823 _
7.103

=
7.103

=

The formula of Bontgen, for temperatures from 32 to 100,
is

log p = log 760 - (a + bx + cx> + dtf) x,

where a = 0.015432, b = 0.0000542, c = 0.0000000704,

d = 0.0000000000066, x = 100 - t.

Here t is the temperature, and p is given in millimeters.

Ifp is given in atmospheres, we have more simply

log p = (a + bx + cy? + dx*) x,

the coefficients being the same.

Above 100 the formula is

log p = log 760 (a + bx + car
2

) x.
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Where a = 0.015432, b = 0.00004265, c = 0.0000000704,

and x = 100 - t.

Here again, for the pressure in atmospheres, we have

log p (a + bx + co?
2

)
x.

EXAMPLE.

What is the tension of saturated steam when the temperature is 105.08?

Here t = 105.08, hence 100 t = 5.08. Therefore, in the equation logp =
log 760 (a + bx -+- ex*) x, the first and third term in the parenthesis will be

positive, and the second negative.

We have

a = 0.015432

ex 2 = 0.0000000704 x 25.806 = 0.00000182

0.01543382

bx = 0.00004265 x - 5.08 = - 0.00021666

a + bx + ex- = 0.01521716

-
(a + bx + cx*)x = 0.0773024

log 760 = 2.8808136

log jo = 2.9581160

p = 908.06 millimeters.

Kegnault found by experiment 904.87 millimeters.

The following table gives the pressures for other liquids, ac-

cording to Regnault.

Temperature
C.
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QUESTIONS FOE EXAMINATION.

What pressure in kilograms per square meter is equal to one atmosphere ? What is a liter ?

H w many millimeters of the barometer correspond to one atmosphere ? When water is heated

in a vessel under constant pressure, describe the different effects of the heat imparted. In each

kilogram of water, how many heat units go to perform the outer wrork ? How many to perform

disgregation work? How many to perform vibration work? What then is the total heat im-

parted in heat units ? Define what you mean by heat unit.

What is the relation between pressure and temperature at which vaporization begins ? Illus-

trate. What is
"
specific

" steam volume ? Illustrate. How does this volume vary with the

temperature ? How does the density of steam vary with the temperature ? Upon what does

the increased pressure of steam at high temperatures mainly depend ?

What do you understand by saturated steam ? Illustrate. How does it differ from perma-
nent gas ? What do you mean by superheated steam ? Why is it called super-heated. ? What is

its specific volume as compared with saturated ? For the same specific volume how do the press-

Tire and temperature compare with saturated ? If saturated steam is compressed under constant

temperature, what happens ? If superheated steam is compressed, what happens ? What is a
*'
vapor ?

"

Upon what principle do the experiments of Regnault depend ? What was the object of them ?

Why cannot the steam pressure be measured directly? How did Regnault avoid these inaccura-

cies ? Describe his apparatus and its method of working. Have his experiments given any
xact law between pressure and temperature of saturated steam ? If saturated steam has a cer-

tain temperature, has it a definite pressure ? Below what limit of temperature does the formula
of Magnus give good results ? What limits are included by Regnault's formulae ? Are these

formulae within their limits reliable ? How were they deduced ? Between what limits does

ROntgen's formula hold good ? Do any of these formulas hold good for superheated steam ?

Why not f What is given by Table I. ?

NOTE. Rankine gives for the relation between pressure and temperature of

saturated steam

where T= absolute temperature = t + 461.2 Fah.,

p = pressure in pounds per square foot,

and the values of the constants are as follows :

A log 5 logC -j^r

Water 8.2591 3.43642 5.59873 0.003441 0-00001184

Alcohol 7 . 9707 3 . 31233 5 . 75323 . 001812 . 000003282

Ether 7.5732 3.31492 5.21706 0.006264 0.00003924

Bisulph. of Carbon. 7.3438 3.30728 5.21839 0.006136 0.00003765

Mercury 7.9691 3.72284

For inches of mercury at 32, subtract from A, 1.8496.

For pounds per sq. inch, subtract from A, 2.1584.

For the Centigrade scale, subtract from log B, 0.25527.

For the Centigrade scale, subtract from log C, 0.51059.
75

For the Centigrade scale, multiply -by 1.8.
2c7

B'*
For the Centigrade scale, multiply by 3 . 24.



CHAPTEK XV.

BEAT OF THE LIQUID. TOTAL HEAT. INNEE AND OUTER HEAT OF

VAPORIZATION. HEAT OF THE STEAM.

Specific Heat and Heat of the Liquid. Regnault has also inves-

tigated, with the same careful accuracy, whether the amount of

heat required by water for a certain given rise of temperature
is the same at high temperatures as at low. In other words,
whether the specific heat of water is constant for all tempera-
tures if, for example, the heating of one kilogram of water

irom to 10, 20, etc., requires ten or twenty times as much
heat as from to 1. Eegarded from the standpoint of the

mechanical theory of heat, this involves the following ques-
tions :

1. Is the work required for a certain rise of temperature of

the water greater or less for high temperatures than for low ?

2. Is the disgregation work and outer work greater or less ?

This last would be the case, if the water at high tempera-
tures expanded more or less than at low. Numerous experi-
ments have, however, shown that the expansion of water is

almost the same, relatively, under the ordinary pressure of the

atmosphere, for all temperatures. Since, as we have seen al-

ready in Part I., the disgregation work is extremely small in

comparison with the vibration work, we can also neglect its

influence, and have only to consider that heat which is requi-
site for the rise of temperature.
The apparatus used by Regnault consisted in part of that

which he made use of for the determination of steam pressure,

viz., of a boiler, in which the pressure and temperature of the

steam and water were carefully determined. By means of a

pipe, closed by a cock, the water-space of the boiler was con-

nected with a calorimeter. The water passing from the boiler

387
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to this calorimeter could be exactly determined, and, by ther-

mometers, the temperature of the cooling water was deter-

mined at every instant. By a suitable apparatus the hot water

was made to mix quickly with the cold water of the calorim-

eter, so that as little heat as possible was lost by radiation

and conduction.

After the air pressing upon the water in the boiler had been

compressed to a given point, and the water brought to the boil-

ing point, the cock was opened for a short time, so that a cer-

tain quantity of water passed into the calorimeter, under al-

most constant pressure.

If, now, the water while heated up to boiling had expanded
much, it would have overcome the air pressure through a cer-

tain distance, performed a certain amount of mechanical work,,

and a certain quantity of heat would have disappeared. On
entrance into the calorimeter, the water would then have con-

tracted under the same pressure, work would have been re-

ceived by it, and heat would have reappeared. "We should,,

therefore, have recovered the heat necessary for the expansion
of the water. Further, the water rushes into the calorimeter

with a certain velocity. For the generation of this velocity a
certain amount of heat must be expended. But neither can

this be lost, because the water comes gradually to rest in the

calorimeter, so that its living force is transformed into heat

again. Therefore the heat appearing in the calorimeter is pre-

cisely that which the water received in the boiler.

From his experiments Begnault found by calculation that the

specific heat of water between the temperatures ^ and t, for ex-

ample, between 50 and 40, or between 90 and 30, is given by
the equation

0^-1 = 1 +a(t1 + t) + b(t? + ttl + f) . . (1).

in which ^ is the higher and t the lower temperature. For
from to ti we have, therefore,

Ci,
= 1 + at, + U? (2).

In order to determine the coefficients a and b, Kegnault
found first the mean specific heat of water between and 100,
or that heat which in the mean is required by 1 kilogram of



HEAT OF THE LIQUID. 389

water between and 100" to raise its temperature 1. He
found for this 1.005 heat units, so that we have from (2)

Cioo = 1.005 = l+ax!00 + 6x 1002
. . (3).

For the specific heat between and 200, he found Gm =
1.016. Hence we have

C20()
- 1.016 = 1 + a x 200 + b x 2002

. . (4).

From (3) and (4) a and b can be readily found. We have

a = 0.00002 and 6 = 0.0000003;

hence equation (1) becomes

C
tl
. t
= 1 + 0.00002 (t + + 0.0000003 (? + tt, + tf). (5).

For Fahrenheit degrees this becomes

6^=1+0.0000111 [ft- 32) + (<-32)] + 0.0000000926 [(^-

EXAMPLE.

What is the mean specific heat of water between 15 and 25, and how much
heat is necessary to raise 1 kilogram of water from 15 to 25 ?

Here t
{ =25, and t = 15, and t + t

}
= 40. Hence

#95 - is = 1 + 0.00002 x 40 + 0.0000003 x (15
2 + 15 x 25 + 252

)

= 1 + 0.0008 + 0.0000003 x 1225

= 1.0011675 heat units.

Therefore the heat necessary to raise 1 kilogram of water from 15 to 25 is

1.0011675 (25 - 15) = 1.0011675 x 10 = 10.011675 heat units. If the specific heat

of water were constant for all temperatures, the heat required would have been

simply 10 heat units.

If in (5) we put in place of
,
we have the specific heat of

water between and t. If we denote this mean specific heat

by Cm ,
we have

Cm = 1 + 0.00002* + 0.0000003*2
. . . (I.)

For Fahrenheit degrees

Cm = 1 + 0.0000111 (t
-

32) + 0.0000000926 (t
-

32)
2
.

Thus the mean specific heat between and 150 is

Cn = 1 + 0.00002 x 150 + 0.0000003 x 1502 = 1.00975.

The amount of heat necessary to raise 1 kilogram of water

from to t is evidently

Cmt = (1 + 0.00002f + 0.0000003*2
) t

= t + 0.00002? + 0.0000003^.
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This heat is very appropriately called the " heat of the

liquid," and denoted by g, so that

q = t + 0.00002*2 + 0.0000003*8
. . . (II.)

or for Fahrenheit degrees for 1 pound,

q = (t,

-
32) + 0.0000111 (t

-
32)

2 + 0.0000000926 (t
-

32)
3

.

This very important equation gives, therefore, the quantity
of heat in heat units necessary to raise 1 kilogram of water

from to t*.

The values in column 5 of Table II. are calculated from this

formula.

Eegnault has found the heat of the liquid, for other liquids-

also, and given empirical formulae, as follows :

For Ether #=0.5290l + 0.0002959*2
.

Alcohol g=0.54754 + 0.001122^ + 0.000002^.

Acetone q=0.50643^ + 0.000397 2
.

Chloroform #=0.23235 + 0.0000507*2
.

Chloride of carbon. . .g=0.19798 + 0.0000906 2
.

Bisulphide of carbon..?=0.23523 + 0.000082Z2
.

To reduce these formulae to English units, divide the second1

term on right by 1.8, and divide the third by 3.24 The first,

remains unchanged. Put t 32 in place of t.

We have thus far spoken of the mean specific heat of water,

that is, of the mean amount of heat required to raise 1 kilogram
of water one degree, between the limits t and ti or to t.

But this is not the heat necessary to raise the temperature of

water 1 above a given point, or, more properly, a very little

above that point. Since in this case ^ is but little greater than

t, we find the actual specific heat at t by making t
= t in (5).

If we denote this
" actual specific heat

"
by G simply, we^

have
(7 = 1 + 0.00002 (20 + 0.0000003 (3

2
),

or

(7=1 + 0.00004* + 0.0000009*3
. . . (III.)

For Fahrenheit degrees

,C = l + 0.0000222 (t
-

32) + 0.0000002778 (t
-

32/.

EXAMPLE 1. What is the actual specific heat of water at 100 and at 130 ?

For 100 we have'

C= J + 00004 x 100 + 0.0000009 x 10000
= 1 -t- 0.004 + 0.009 = 1.018.

If, then, we denote the heat necessary to raise 1 kilogram of water at a very-



TOTAL HEAT AND HEAT OF VAPORIZATION. 391

little higher, by x, the heat necessary to raise 1 kilogram at 10(T, the same small

amount is l.OlSa;.

The specific heat at 130" is

(7=1 + 0.00004 x 130 + 0.0000009 x 16900

= 1 + 0.00520 + 0.01521

= 1.02041.

EXAMPLE 2. How many heat units are necessary to raise 100 kilograms of

water from to 100 ?

From (II.) we have

q = 100 + 0.00002 x 10000 +0.0000003 x 1000000

= 100 + 0.2 + 0.3 = 100.5 heat units,

hence 100 kilograms will require, in order to raise the temperature from to

100, 100.5 x 100 = 10050 heat units.

The heat necessary to raise one kilogram of water from t to

ti degrees, is given by

ql
^ q== tl -t + 0.00002 (t?

- 2
) + 0.0000003 (t?

-
f).

Thus, to raise one kilogram of water from 10 to 100", we

require

qi
-

q = 100 - 10 + 0.00002 (100
2 - 102

) +0.0000003 (100
3 - 103

>

= 90 + 0.198 + 2997 = 90.4977 heat units.

Total Heat and Heat of Vaporization. The "
total heat," that

is, the amount of heat necessary in order to raise 1 kilogram of

water gradually from to saturated steam of a given tempera-
ture and pressure, has also been determined with great care

by Kegnault. A part of the apparatus used in these experi-

ments consisted, as before, of the boiler and globe already
described. The steam generated was conducted into a calo-

rimeter, which was also connected with the globe. Since, there-

fore, the water was evaporated under the same pressure at

which it was condensed, the heat obtained in the calorimeter

was equal to that imparted to the steam in the boiler.

The observations showed that the heat imparted to 1 kilo-

gram of water, in order to convert it, at various pressures, into



392 THERMODYNAMICS.

saturated steam, increased slowly with the temperature, and

was given by the following empirical formulae :

W = 606.5 + 0.305* (IV.)

For Fahrenheit degrees and English units,

W= 1091.7 + 0.305 (t
-

32).

where W is the total heat and t the temperature of the water

or steam.

Thus in order to convert 1 kilogram of water into steam at

10, 20, or 100, we require

W= 606.5 + 0.305 x 10 = 609.55 heat units.

W= 606.5 + 0.305 x 20 = 613.60 "

W= 606.5 + 0.305 x 100 = 637

For the total heat of other liquids, Begnault found for

Ether W= 94.00 + 0.45000* - 0.00055556*2
.

Acetone W= 140.50 4- 0.36644* - 0.000516*2
.

Chloroform W = 67.00 + 0.1375*.

Chloride of carbon. ...W= 52.00 + 0.14625* - 0.000172*2
.

Bisulphide of carbon. . W= 90.00 + 0.14601* - 0.0004123*2
.

To reduce these formulae to English units, multiply the first

term on right by 1.8, and divide the third by 1.8. The second

remains unchanged. Put * 32 for *.

If we subtract the "heat of the liquid" from the total heat,

we have not only the heat necessary for the transformation of

the water into steam, but also that required for the outer work.

This heat, therefore, we call the "
toted heat of vaporization" and

denote it by r.

Accordingly we have
r= W-q (V.)

or putting for W and q their values,

r = 606.50 - 0.695* - 0.00002*2- 0.0000003*3
. (VI.)

For Fahrenheit degrees

r = 1091.7 - 0.695 (*
-

32)
- 0.0000111 (*

-
32)

2

- 0.0000000926 (*
-

32)
8
.

From this formula we see that the "
total heat of vaporiza-

tion
"

diminishes as the temperature increases ; is less, for

example, at 200 than for 100.

The following formulae give the total heat of vaporization for

other liquids for Centigrade degrees.
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For Ether r= 94.00 - 0.07901* - 0.0008514*2
.

Acetone r =140.5 - 0.13999* - 0.00091 25*1

Chloroform r= 67.00 - 0.09485* - 0.0000507*2
.

Chloride of carbon. . . .r = 52.00 - 0.05173* - 0.0002526*2
.

Bisulphide of carbon, .r = 90.00 - 0.08922* - 0.0004938*2
.

To reduce these formulae to English units, multiply the first

term on right by 1.8, and divide the third by 1.8. The second

term remains unchanged. Put * 32 for .%

Instead of the above complicated formulae for the vaporiza-
tion heat of water, Clausius gives

r = 607 - 0.708* (VII.)
or for Fahrenheit degrees r = 1092.6 - 0.708 (*

-
32).

According to this, the total heat of vaporization for 100,
150, and 200, is

r = 607 - 0.708 x 100 = 607 - 70.8 = 536.2 heat units.

r = 607 - 0.708 x 150 == 607 - 96.2 = 500.8 "

r = 607 - 0.708 x 200 - 607 - 141.6 = 465.4 "

These vary somewhat from the values found from the more
exact formula.

The facts cited seem to indicate that liquids are converted

into steam sooner, the higher the temperature at which evapo-
ration takes place, or, what is the same thing, the greater the

pressure under which the steam is generated. The reason is

evident, for the more heat the liquid contains, the further apart
are the molecules, and the less is the mutual attraction between

them. The "heat of the liquid" is evidently the so-called
" sensible heat." The "total heat of vaporization" is the so-

called "latent heat."

Thus far reach the extended and famous experiments of Reg-
nault, to whom our science is greatly indebted.

We pass now to that which the mechanical theory of heat

deduces from thnse experiments.

Inner and Outer jleat of Vaporisation. Heat of the Steam.

Of the total heat imparted when 1 kilogram of water at is

converted into saturated steam at any given temperature, a

portion goes to increase the temperature of the water. This

we have called the "heat of the liquid," or the sensibk heat.

This is the heat which takes effect as vibration work of the
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particles, and exists in the water as heat. Another portion goes
to change the water into steam. This we call the "

total heat

of vaporization" or the latent heat.* Of this last portion a

part is required for the change of state of the liquid, that is,

for the disgregation work, and another part is required for the

outer work. The first part we call the "inner vaporization

heat," or the inner latent heat, and the second part is the "outer

vaporization heat," or the outer latent heat. The total heat im-

parted, then, during the whole process of the conversion of one

kilogram of water into steam, consists of three parts the

sensible heat of the liquid at the boiling point, the inner latent

heat, and the outer latent heat. The two last, taken together,

comprise the total latent heat, and the two first, the "
heat of the

steam" since it is the heat which remains after subtracting from

the total heat imparted the heat required for the performance
of the outer work. The rest remains in the steam, part as

heat or actual energy of motion, in the shape of vibration

work or sensible heat, and part as energy of position, or poten-
tial energy, in the shape of disgregation work, or change of

state, or "
latent heat."

Since the pressures are known under which water is vapor-
ized at different temperatures, and since, as we shall see, we
can calculate the steam volume produced from one kilogram of

steam at different temperatures, we can easily find for every

*
[" Latent heat " has become part of the vocabulary of our subject, and oannot now well be

gotten rid of, but the term is objectionable unless properly understood. "
It should be remem-

bered that heat is a kind of actual or kinetic energy, consisting in the invisible motions of the par-

ticles of a body, and hence that heat is not potential energy ;
for its ability to perform work

depends only upon the heat motions of the particles, and not on their relative positions.'
1 ''

Heat,

therefore, which is expended in performing outer work, ceases entirely to exist in the body as

heat at all. The term "
latent heat

"
has come down to us from a time when heat was supposed

to be a substance, and consequently indestructible, and although we now know that heat, as such,
can be put out of existence by transformation into other forms of energy which do not affect

the thermometer, still the term remains, and continues to lead many to believe that the heat

which has been absorbed or disappeared in doing work still lurks concealed somewhere in the

working substance as heat. This is less often the case when external work only is considered,
for the equivalent of the disappearing heat is then seen in visible external work

;
but when the

internal work done in separating the molecules and changing their arrangement, is under con-

sideration, the beginner is apt to think that this kind of work "don't count," and that the heat

which has been expended in accomplishing it still exists in the body as heat, instead of recogniz-

ing that in this case also it has disappeared by being transformed into another kind of energy
that of position which also does not affect the thermometer.

No error can arise from the use of the term " latent heat," however, if understood as denned

by Maxwell :
" Latent heat is the quantity of heat which must be communicated to a body in a

given state in order to convert it into another state without changing its temperature." (See

article by J. F. Klein, Journal of Franklin Inst., April, 1879.)]
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temperature the outer latent heat, or " outer heat of vaporiza-
tion."

Then by subtracting this outer latent heat from the total

latent heat we obtain the inner latent heat which goes to trans-

form the water into steam, or to perform disgregation work.

This inner latent heat we denote by the Greek letter p, while

the total latent heat is, as before, denoted by r.

As we have seen in Chapter XIV., page~375, at the tempera-
ture of 100 the inner latent heat is 496.3, the outer latent heat,

page 876, is 40.2, and the sensible heat is 100 heat units when
one kilogram of water at is converted into saturated steam
at 100.

Zeuner has found that the inner latent heat is given by the

formula

p = a U ct
z
,

where the coefficients a, &, c have special values for each dif-

ferent liquid, and t is the temperature for which the inner latent

heat is required. For water we have

a = 575.40, b = 0.791, c = 0, hence

P = 575.40 -0.791*. . . . (VIII.)

For Fahrenheit degrees p = 1035.72 - 0.791 (t
-

32).

EXAMPLE.

What is the inner latent heat for saturated steam at 130 and at 150 ?

For 130
C we have

p = 575.40 - 0.791 x 130 = 472.57.

For 150,

p = 575.40 - 0.791 x 150 = 456.75.

Zeuner has found, also,

For

Ether p= 86.54 - 0.10648* - 0.0007160*3.^
Acetone p = 131.63 - 0.20184* - 0.0006280*2

.

Chloroform p = 62.44 - 0.11282* - 0.0000140A
Chloride of carbon . . . . p = 48.57 - 0.06844* - 0.0002080*2

.

Bisulphide of carbon, .p = 82.79 - 0.11446* - 0.0004020*2
.
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We can now easily deduce a general expression for the outer

latent heat.

Let, again, ABCD, Fig. 63, be a hollow cylinder. Upon the

bottom lies one kilogram of water at 0, and the piston KK
rests upon the surface. Upon the piston we have the press-

ure p. As soon as the water is heated to t, let steam for-

mation commence. Let u be the height to

" i^ which the piston is forced when all the water

is just evaporated. Then the work performed

by the steam is

pu meter-kilograms.

Since a mechanical work of 1 meter-kilogram

corresponds to A j J heat units, this work

represents

Apu heat units.

This is, therefore, the general expression for

the outer latent heat. Since, now, the total

latent heat (r) consists of the inner (p) and the

outer (Apu), we have

r = p + Apu . . . . . (IX.)
iv i .j'y? ^y*iv

D C From Table II., therefore, we can easily find

r for different pressures and temperatures. We
have only to add the values of p and Apu. Thus, for example,
for a pressure of 1.5 atmospheres, therefore for a temperature
of 111.7, r = 487.01 + 41.16 = 528.17 heat units.

Under the assumption that Apu can be calculated for every

pressure and temperature, and that r is given by observation,

we have

p = r Apu,

and from this the values of p in the table are calculated.

Following Zeuner, we have called that work which heat

causes in a body when it raises its temperature, and changes
the aggregation of the molecules,

" inner work ;

" and that work

necessary to overcome the outer pressure,
" outer work." In

the formation of steam we can call that heat which raises the

temperature of the water to the boiling point, and converts it
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then into steam, the heat of the steam or " steam heat" This

we denote by J. The "steam heat" consists, therefore, of the

sensible heat (q) and the inner latent heat (p), and hence

= q + P

Thus we can find J from Table II., for different pressures.

Thus, for 2 atmospheres, the steam heat-e/ is 121.42 + 480.00

= 601.42 heat units.

We can also obtain the steam heat by subtracting the outer

latent heat (Apu) from the total heat imparted ( W). Hence we
have also

J= W- Apu . . .;' , ...;;> (XL)

This expression evidently follows, from the preceding, when
we substitute r Apu for p. Thus,

J= q + r Apu,

and since q + r = W
J= W- Apu.

We give below a scheme of the manner in which the heat

imparted is divided up, together with the notation employed.
The student should make himself thoroughly familiar with the

exact significance of each letter, and their mutual relations.

TOTAL HEAT.

W
^_______________________^___ i

Heat of liquid Inner latent Outer latent

(sensible heat). heat. heat.

q p Apu

Steam heat. Total latent

J heat.
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QUESTIONS FOB EXAMINATION.

Define specific heat. Is the specific heat of water constant ? What two separate questions
are involved in the preceding ? Does the coefficient of expansion of water vary at different tem-

peratures ? Why can we neglect the disgrejration work ? If, then, the disgregation work and
variations of outer work can be disregarded, to what must any variation in specific heat of

water be ascribed ? Describe Regnault's apparatus for investigating this question. Why must
the heat appearing in the calorimeter be precisely that received by the water in the boiler ?

What is Regnault's experimental formula for the specific heat of water between t
}
and ( ?

What does it reduce to between and Z,
? How did he determine the value of. the coefficients ?

What is meant by the " mean specific heat ?
" What is the " heat of the liquid ?

" What letter

in our notation denotes it ? What formula gives it ? Is the " heat of the liquid
"
always greater

numerically than the temperature ? What is "actual specific heat?" Huw does it differ from
"mean ?"

What do you understand by
"
total heat? " Describe Regnault's apparatus for determining

it. What is the empirical formula for the total heat ? What letter in our notation denotes it ?

If you subtract the heat of the liquid from the total heat, what remains ? Define total heat of

vaporization. What letter denotes it in our notation ? What is the formula of Clausius for total

heat of vaporization ? Does it give exact results ? What do you understand by sensible heat?

What by latent heat ? What is inner latent heat ? Outer latent heat ? If the total latent heat

and the outer latent heat are given, how can you find the inner latent heat ? What effect does
this heat perform ? What letter in our notation denotes it ? What is Zeuner's formula for it ?

What does the expression Apu denote ? Give the exact significance of each letter. What does

r denote ? p ? What is the relation between r, p, and Apu ? What do you understand by steam
heat ? What letter denotes it ? What is the relation between ./, g, and p ? Construct scheme
which shows the manner in which the total heat TFis divided up. What is the relation between

7", W, and Apu ? Give the exact significance of each letter.

NOTE. Rankine gives the following empirical formulas for specific heat of

water for Fahrenheit scale and point of maximum density of water, 39.1.

For mean specific heat between ti and t,

C
tl
- t = l + 0.000000103 [(^-39. 1)

2 + (^-39.1) (t
- 39. !) + (<- 39. 1)

2

].

For mean specific heat between point of maximum density and t,

Cm = l + 0.000000103 (t
- 39. 1)

2
.

For heat of liquid for one pound between point of maximum density and t,

q = (t
- 39.1) + 0.000000103 (t

- 39. 1)
3

.

For actual specific heat

C=l + 0.000000309 (t
- 39. 1)

2
.

To reduce these formulse to Centigrade scale, put

. 000001 for . 000000309

0.00000033 for 0.000000103

^-4 for t -39.1.



CHAPTEE

CALCULATION OF SPECIFIC STEAM VOLUME. EMPIRICAL FORMULA FOR

THE INNER AND OUTER LATENT HEAT, AS ALSO FOR THE DENSITY

OF STEAM.

Calculation of Specific Steam Volume. The question now arises,

How can we calculate, from the temperature and pressure of the

steam, the outer latent heat (Apu), or, what amounts to the

same thing, how can we find the specific steam volume ? As
soon as we know this we can easily determine the outer and

inner latent heat. At first the specific volume was found by the

combined law of Mariotte and Gay-Lussac.
It was assumed, therefore, that saturated steam behaved pre-

cisely like a permanent gas,* and hence that its specific volume

could be easily found from its temperature and tension. Thus

Up is the expansive force of a permanent gas, Tthe absolute

temperature, and v the specific volume, we have, as seen already
in Part I,

pv = RT,

where E = 29.272 for air. We have, therefore,

ET
v =

P

Gay-Lussac concluded from his experiments that the volume
of steam, at the same temperature and tension, was always 1.6064

times as great as that of air. Hence for steam we should have

v = 1.6064 x 29.272 - =47.023 -.
P P

* Since now all the so-called
"
permanent gases

" have been liquefied, the term is only to be

taken as meaning those gases removed so far from their point of liquefaction that the disgre-

gation work is very slight, or null, and which, under ordinary pressure and temperature, remain

approximately perfect gases.

399
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From the preceding we can find upon these assumptions the

pressure p for any given value of T (= 273 + t), or for p given,

can find the temperature. (This, at least, can be found easily

from the formula of Magnus.)

EXAMPT .T
1
..

What is the specific volume of steam, according to the above (incorrect)'

formula, for the temperature of 100 and 144 ?

For 100 we have, from Table, p = 10334 kilograms, and T= 273 + 100 =
070

373. Hence v = 47.023
' = 1.6928 cubic meters. The volume for 144 is

Iv/OO^c

47.023 t
Qoo4 (since for 144 the pressure is 4 atmospheres), or 0.4749 cubic

meters.

The specific weight, or the weight of 1 cubic meter, must evidently, according

to Gay-Lussac, be always
j-gQg^-

= 0.622 of that of air at the same temperature

and pressure.

Later investigations, especially the calculations of the me-
chanical theory of heat, have shown that the experiments of

Gay-Lussac are not exact, and that the conclusions drawn
from them are incorrect. The determination of steam volume
based upon these experiments and assumptions cannot, there-

fore, lay claim to much accuracy. The exact determination is,

however, essential to any reliable theory of the steam engine,
and for this reason all such theories having such incorrect basis

are inexact. To Clausius belongs the credit of being the first

to show how steam volumes may be found, by the aid of the

mechanical theory of heat, with far greater accuracy than ac-

cording to the earlier methods. Before we give his method,
we would call attention to the following customary terms and
notations of the mechanical heat theory.

Customary Terms and Notationfor Steam. We call the volume

occupied by 1 kilogram of water at the "specific water volume"
and denote it by a. The volume of 1 kilogram of water at

is, then, a cubic meters. Let us again assume this specific water-

volume inclosed in a cylinder with a movable piston. When
heat is imparted we have a gradual evaporation of the water*

Suppose that at any moment, of the 1 kilogram of water, x kilo-
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grams are steam (x being then less than 1), then 1 x kilo-

grams are still water. Since now 1 kilogram of water occupies
the space <?, if we disregard the slight increase of bulk of the

water when heated, 1 x kilograms will occupy the space

(1 x) <5 cubic meters. When the entire kilogram of water i&

just converted into steam, let its volume, that is, the specific

steam volume, be s. The volume of x kilograms will then be
sx cubic meters. Therefore the entire volume of the 1 x

kilograms of water, and of the x kilograms of steam will be

(1 x) ff + xs cubic meters.

This volume, whose weight is still one kilogram, and which
consists partly of steam and partly of liquid, we denote by v,

so that we have
v = (1 x) a + xs,

or

y = a xff + xs = ff + (s ff)
x.

That is, the specific volume of the mixture of steam and
water is equal to the specific water volume (ff) plus the pro-
duct of the steam weight (x) into the difference of the specific
steam and water volumes. Clausius denotes this difference

(s ff) by u, so that

v ff + ux.

The value of ff is readily determined by experiment for dif-

ferent liquids. Thus it has been found

For

Water tf=0.001 cubic met. -0.0160 cub. ft.

Ether (C 4H 10O) (7=0.0013 " " -0.0210 " "

Alcohol (C,H6O) <r=0.0013 " " =0.0210 " "

Acetone (C3H6O) cr= 0.0012 " " =O.OJ 92 " "

Chloroform (CHC13)
tf=0.0006 " " =0.0096 " "

Chloride of carbon (CC14). . <r=0.0006 " " =0.0096 " "

Bisulphide of carbon (CS2)..(T= 0.0008
" " =0.0128 " "

Hence we see is so small with regard to ux that it may be

disregarded, and we have simply

v = ux.

26
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EXAMPLE.

What is the volume of a quantity of steam and water at 100, whose weight is

1 kilogram, which consists of 0.3 kilograms steam, and 0.7 kilograms water ?

According to Table II., for 100 u = 1 . 649 cubic meters, hence ux = 1 . 649 x

0.3 = 0.4947 cubic meters, and 6 + ux = 0.001 + 0.4947 =0.496 cubic meters.

For one pound we have for 212 Fah. u = 26.4216 cubic feet, hence ux =
26.4216 x 0.3=7. 926 cubic feet, and d + ux= 0.0160 + 7.926 = 7.942 cubic feet.

EXAMPLE 2. One kilogram of steam and water has a temperature of 130.3,

of which 0.5 cubic meter is steam. How much does it weigh ?

Since at the temperature 130.3 u = 0.647 cubic meter, and 6 is very small

compared to s, we have
499

0.5 = 0.001 + 0.647z. Hence x = ^- =0.77 kilograms.

The water is therefore 1 0.771 =0.229 kilograms.

For one pound at a temperature of 266.63 Fah. of which 0.5 cubic feet is

steam, we have u = 10.3722 and 0.5 = 0.0160 + 10.3722z. Hence x = 0.046

pound.

Steam Volume, calculated according to the Principles of Thermo-

dynamics. Let us now see how the specific steam volume may
be calculated.

Let OA, Fig. 64, be the specific water volume (ff). We con-

ceive it again inclosed in a

cylinder of 1 square meter,

cross-section, and the piston
loaded with p kilograms. In

such case, then, ff is the dis-

tance of the surface of the

water, or of the piston, from

bottom of the cylinder. After

the water is heated to t, let

the steam generated just have

the pressure p. Therefore f
is the boiling point corre-

^ sponding to the pressure p.

By further addition of heat
Fra' ^ steam is formed, and the pis-

ton will be lifted. When all the water is converted into steam,
let the specific steam volume be G s. In other words, the

piston now stands at the height OG from the bottom. The
distance passed through by the piston is then OG OA =
s - ff = u. During this the pressure p is constant.

Let us now suppose the specific steam volume s to expand
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;adiabatically until the temperature has sunk by the very small

quantity r, and the pressure p has become^. For this small

decrease of temperature we may assume that the saturated

steam acts as a permanent gas, and hence the line CD, which

is an adiabatic, for this very short distance, is a straight line.

Now let the steam at pressure pi be compressed, and heat at

the same time abstracted, so that the pressure pl remains con-

stant until the specific volume of water and steam is OH, the

volume of the mixture, or the position of H, being so chosen

that when the remaining steam is compressed adiabatically

along BE, it shall all be condensed, and come back to its origi-

nal temperature and its original volume.

We have in this way completed a simple cycle process, and

the outer work performed is given by the shaded area BCDE,
or by the product

(p -pl}BC = (p-pi)u.

The heat imparted from A to G, or B to C, is greater than

that abstracted from D to E, and the difference must equal the

outer work.

If we denote the heat imparted by Q, the work performed is

(page 186, Part I.)

where T = 273 + t is the absolute temperature of the steam

from B to C, T - r = 273 + t - r that from D to E. We have

therefore

Denoting, for the sake of brevity, p pl by TT,

Q

Now Q is evidently that heat which must be imparted to 1

tkilogram of water at the temperature t, in order to convert it,
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under constant pressure, into steam of T, or it is the total latent

heat of vaporization, r. Hence
T T 424'/* T

. . (XII.)AT '

7t T '

7i

This formula is the most important hitherto deduced from

the application of the mechanical theory of heat to steam. From
it and the preceding equations, those which follow can be easily
derived. For English measures we have 772 in place of 424.

The fact that the differences of pressure for the temperatures
t + 1, t, and t 1 are nearly the same, furnishes the means of

determining the ratio - in an elementary manner with all neces-

sary exactness. Thus, for example, if we wish to determine u

for a temperature of 80, and take the difference of pressure

(TT) for 80 and 79, this difference will be relatively too small.

If we take the difference of pressures for 80 and 81, it will be

relatively too large. If we take the mean of both differences,,

it will be very closely the increase or decrease of pressure for

a very small change of temperature. If we denote, therefore,

the pressure at 81 by p, and at 79 by plt we have for r about,,

say, y^ of a degree.

r:* =*:*^,
!

;
\

r 1 2
or generally =

7t p-p! ppi
Here p and pl denote the pressure in kilograms per square

meter, or in pounds per square foot. Table I. gives them in

centimeters or inches of barometer. To reduce those in the

table to kilograms per square meter we have to multiply the

tabular values in millimeters by ^-J-jH, and to reduce to pounds
per square inch, we multiply the tabular value in inches by
14.6954 x 144

29.9215

, , T 2 x 760 0.147We have then - = TKSS-T-? r = -
n 10334 (p PI) p PI

where p and pl are given in millimeters of mercury column ;

T _ 2 x 29.9215 _ 0.02828

TT

~
144 x 14.6954 ( p

-
p,)

~
p- p,

'

where p and pl are given in inches of the mercury column.
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The formula for u becomes then for French units

424 x 0.147r 62.328 r
U -

T(p-*) --^^,'T'
\

772 x 0.02828 21.832 r^
;and for English units u m f

r =
-fft'

T(p-Pi) P-Pi T
The specific steam volume s we can at once obtain from u

by adding the specific water volume G = 0.001. Thus

62.328 r , .

s - m + 0.001 cubic meters.
p -

Pi T

EXAMPLE.

What is the value of u for and for 80 ?

According to Rontgen's formula

62.328 606.5
U =

4.91-4.25
> -W * 2 9 ' 78 CUblC meterS '

By the aid of the calculus, and using Regnault's values for the pressures, we
should obtain u = 210.66. The difference is then very small.

Again, for 81, we have from the table, p = 369.258, and for 79, p v

340.464 millimeters. Since for 80' r = 550.618,

62.328 550.618
x n , ^ = 2.376 cubic meters.

369 . 258 - 340 . 464 273 + 80

For one pound at 176 Fah. we have for 177 and 175, p = 14.2824 and p, =
13.6524, and r = 991.112 ;

hence

21.832 991.112
U =

-OB"
^
-63574-

= 54 ' 77 CublC feet "

Column 8 of Table II. gives the accurate values of u from 0. 1 to 14 atmospheres.

More recent investigations of Tate and Fairbairn have shown
that the specific steam volumes calculated according to thermo-

dynamic principles agree quite closely with the results of

observation, and far better than those found by the combined

law of Mariotte and Gay-Lussac.
If the pressures of the other liquids had been determined

from degree to degree, we could find with the same exactness

the value of u for their vapors also. As this is not the case, we
<can only find approximate values of u, but values, nevertheless,

quite close to the actual.
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EXAMPLE 1. What is the steam volume of 1 kilogram of ether when evapo-
rated at 40 ?

The pressure of such vapor at 50 has been found to be 1264.83 millimeters,

and at 30, 634.80 millimeters. The difference 630.03 corresponds to 20
C

. The
difference for 2, that is, for t + 1 and t 1 degrees, or p jt>,, is 63.003 milli-

meters. Since, from the empirical formulae already given, f for ether at 40 i&

89.48, and since T= 273 + 40 = 313, we have

Zeuner finds by calculus, 0.285.

EXAMPLE 2. What is the steam volume of alcohol at 50 ?

For 60 the pressure has been found 350.21 millimeters, and for 40, 133.69..

Difference for 20, 216.52, for 2, 21.652. For 50% r is 233.79, and T= 323,.

hence

62.328 233.79

Calculation of the Outer and Inner Latent Heat. Since we can

now find u for every temperature and pressure, it is easy to

determine the outer work. Thus if p is the constant pressure,,
this outer work is simply pu meter-kilograms.

EXAMPLE.

What outer work will be performed by the steam generated from 1 kilogram;
of water at 150, the constant pressure being equal to its own tension ?

For 150 the pressure, from Table I., is 3581.23 millimeters, or --
t^Q^^~

= 48673.14 kilograms per square meter. We find from Equation XIII.,

u = 0.384 cubic meters, hence pu = 48673.14 x 0.384 = 18690.43 meter-kilo-

grams. For
-|, i, i of a kilogram converted into steam we should obtain only

or i, etc., of 18690.43 meter-kilograms.

The heat required for this work, which we call the outer
latent heat, is

= heat units.
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Therefore the outer latent heat in the vaporization of 1 kilo-

gram of water at 150 is

18690.43 , nQ ,

-r^-.
- 44.08 heat units.

424

In this way the outer latent heat has been calculated for Table

II., column 7, for from 0.1 to 14 atmospheres. We see that it

increases with the temperature or expansive" force of the steam.

Since, now, we know the total latent heat r from Regnault's

experiments and empirical formulae, and the outer latent heat

can be calculated as above, we can find the inner latent heat p

from the equation

p = r Apu.

It has been found thus, and is given in column 6 of Table II.

It is evident that it must decrease as the temperature increases,

since the outer latent heat increases.

Finally, the steam heat J can be found from the equation

J= W -
Apu.

Since for water u differs from s only by about 0.001 cubic

meters, and s is very great with reference to 0.001, we can put
u in place of s. In such case, u cubic meters require the inner

latent heat p, and 1 cubic meter requires

heat units.
u

The expression gives us, therefore, the heat units neces-

sary for the inner latent heat of 1 cubic meter of steam under

various pressures. Since we shall have frequent occasion to

make use of it, it is given in Table II., column 9.

Empirical Formulae for the Calculation of the Inner and Outer

Latent Heat and of the Specific Steam Volume. For the mechani-

cal engineer, to whom the easy and accurate determination of

u and s is of great importance, empirical formulae are very de-

sirable, so that even without tables he can find these quantities
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for different pressures with sufficient exactness. The calcula-

tion of u, already given, is too involved for practical men. Zeu-

ner was the first to meet this want. As we have already

remarked, he has given for the inner latent heat /j, the simple
formula

p = 575.40 - 0.79U

Now we have from IX.

Apu = r p,

Apu = r p, = W p q.

For W we have, according to Eegnault, 606.5 + 0.305tf, and
for q, t + 0.00002P + 0.0000003*3

,
hence

Apu = 606.5 + 0.305* - (575.40 -
0.791*)

-
(t + 0.00002*2

+- 0.0000003*3
),

or, after reduction, Apu = 31.1 + 0.096* -0.00002*2- O.OOOOOOSf3
,

or for English units and Fahrenheit degrees ^1^=55.98 + 0.096

(t- 32) -0.0000111 (-32)
2 - 0.0000000926 (*-32)

3
.

This expression enables us to determine the outer latent

heat (Apu) from the temperature alone.

If we divide the last question by Ap, we have

31.1 + 0.096* - 0.00002*2 - 0000003*

Ap
or for English units

65.98 + 0.096(1
-
32)-Q.0000111(^

-
32)

2

-0.0000000926(^-32)3

Apu,
Since A is known, we only need to know the variation of p

with the temperature in order to find u. For this we can either

make use of Table I. or II., or lacking these, of some one of the

expansion formulae already given.

EXAMPLE.

What is the difference between the specific steam and water volume, or what
is the value of u, for 130 and for 200" ?

According to Table I., the pressure at 130 is 2030.28mm., hence the pressure

in kilograms per square meter, p, is - + 2030.28 = 27602 kil. Now t 130,

f
2 =: 16900, f = 2197000.
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Hence

_ 424 (31.1 + 0.096 x 130 - 0.00002 x 169DO - 0.0000003 x 219700)
.

27602

424 (31.1 + 12.48 - 0.338 - 0.6591)

27602

_ 424 (43.58 - 0.9971) _ 424 x 42.583 _W ~ ~
27602 27602^

~ U.654S,,

For 200 the pressure is 11688.96mm. = 158937 kil. t
-

200, f = 40000,

= 8000000, and

_ 424 (31.1 + 0.096 x 200 - 0.00002 x 40000 - 0.0000003 x 8000000) .

158937

_ 424 (31.1 + 19.2 - 0.8 - 24) _ 424(50.3-3.2),
158937 158937

'

19970

158937

In the lack of tables, we may use for the calculation of p, for

temperatures less than 100, the formula of Magnus. Above

100, that of Kontgen.
We have also the following empirical formulae given by Zeu-

ner for the other liquids already named :

Ether Apu = 7.46 + 0.02747* - 0.0001354*1

Acetone Aim = 8.87 + 0.06185* - 0.0002845*2
.

Chloroform Apu = 4.56 + 0.01797* - 0.0000367*2
.

Chloride of carbon Apu = 3.43 + 0.01671* - 0.0000546*1

Bichloride of carbon Apu = 7.21 + 0.02524* - 0.0000918*2
.

EXAMPLE.

What volume of steam is generated from 1 kilogram of ether when evaporated
at 40 ?

The pressure at 40 is 907.04mm., or x 907.04 = 12297.5 kilograms.

t = 40, t
z = 1600, hence

A x 12297.5 x u = 7.46 + 0.02747 x 40 - 0.0001354 x 1600,



410 THERMODYNAMICS.

x 12397.5 x = 8.3423 , or =

or

u = 0.287 cubic meters.

On page 392 we found for u 283 cubic meters, or but little different from-

the empirical formulae.

Density of Saturated Steam. The preceding is sufficient to

show that the view of Gay-Lussac, that the density of saturated

steam is always 0.6225 of that of air, is not correct.

Since the specific steam volume, that is, the volume of 1 kilo-

gram of steam s = u + <r, the weight y of one cubic meter of

steam, which we call the "
specific weight" will be

y =- =-
f\f\f\t kilograms per cub. met.,

s u + 6 u + 0.001

or for English units y -QQIQ P
oun(^s Per cubic foot.

Thus, for example, for 150, the weight of one cubic meter of

steam is

Y =
0.384 I 0.001

= om = 2 '597 kiL

For one cubic foot at 302 Fahrenheit we have

' -
6.149 + 0.016

=
srar

= al62 pounda

The value of y is given in column 11 of Table II. for from

0.1 to 14 atmospheres. For air we have always

pv = RT= 29.272 T,

or for English units pv = RT = 53.354 T,

therefore the specific volume is

29.272 T
v - -

,

P
and the specific weight

1_ p~
v~ 29.272 T

For example, for 150 the pressure of steam is 4.71 atmos-

pheres, hence the pressure p in kilograms per square meter is

471 x 10334 = 48673 kilograms. Since now T= 273 + 150
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= 423, for this temperature and pressure, the weight of one
cubic meter of air would be

48673 _ 48673 _ QQn ...
71 ~

29.272 x 423
~

12382
~

On the other hand, the weight y of one cubic meter of satu-

rated steam, under the same conditions, is really 2.597 kilo-

grams, as already computed. Accordingly, the density $ of the

steam, that is, the ratio of its weight to that of an equal amount
of air under the same conditions, is

* 2 '597
= =

If we calculate in this way the specific weights of steam and

air for different temperatures and pressures, we find for the

density,

For
0.1 0.5 1 25 10 atmospheres

d = 0.621 0.633 0.640 0.648 0.662 0.676,

from which we see that the density increases tolerably rapidly
with increasing temperature. Hence

m
T

cannot be a constant quantity as with gases is the case. Satu-

rated steam follows some other law than this.*

[* The relation pv =RT therefore holds good only for those gases so far removed from their

point of saturation that they may be considered as perfect. Zeuner has recently shown that for

steam, whether saturated or superheated,

fr-i

pv =BT- Cp
k

in which B = Cf'

(
~ ^

, and cp
= 0.4805, and * = 1.333, hence B = 50.933, and C- 192.50, p being

AK,

in kilograms, or if p is in atmospheres, then for both saturated and superheated steam

pv = BT- C\fp , where B = 0.0049*87, and C = 0.187815. See Appendix to Chap. XXIII.]
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QUESTIONS FOB EXAMINATION.

Define specific steam volume. How was this first calculated ? Upon what assumption was
this calculation founded ? Give the relation between pressure, volume, and temperature for a

gas. What does R stand for ? What did Gay-Lussac conclude from his experiments ? Was
this conclusion correct ? Is the old method of calculation of specific volume correct ? Why
not ? How does saturated steam differ from a perfect gas ?

Define what is meant by specific water volume ? What letter denotes it in our notation f

What is specific steam volume ? What letter denotes it? What does u denote in our notation?

What relation exists between v, <r, and u, if x is the weight of steam in one kilogram of steam and
water ? What does v denote ? o- ? w ?

Deduce the expression u = =, . . What is the exact significance of each of the letters ?A JL TT

Is this formula important ? Why ? Show how to find in an elementary manner the approxi-

mate value of the ratio - in any given case. Explain now the use of Tables I. and II.

If u is given, how can you find the outer work ? The outer latent heat ? How can you find

the inner latent heat ? How can we find the total latent heat ? What is the steam heat ? What

does - denote ? What is Zeuner's formula for the inner latent heat ? How can you find from

it the outer latei?
1
, heat and the specific steam volume ?

What is specific weight ? What letter in our notation denotes it ? What is meant by density
of steam ? How does this vary for different temperatures and pressures ?



CHAPTEE XVII.

CURVE OF CONSTANT STEAM WEIGHT. EMPIRICAL FORMULA. DE-

PORTMENT OF STEAM WHEN IT EXPANDS PERFORMING WORK.

Curve of Constant Steam Weight. If we lay off the volumes

of, say, 1 kilogram of steam for successive pressures, as abscis-

sas, and the corresponding

pressures as ordinates, we
obtain a curve (Fig. 65)

which represents the law

according to which the

volume changes with the

pressure. We may call

this the "curve of constant

steam weight." For a press
ure of 1 atmosphere the

volume of 1 kilogram of

steam is, from Table II.,

1.649 + 0.001 = 1.650 cub.

m. Taking only 2 decimal

places, we have s = 1.65.

Hence OA = 1.65 units to
FlG - 65 '

any given scale, and the perpendicular AB is laid off according
to another given scale. The volume of 1 kilogram of steam at 2

atmospheres is about 0.86 cubic meters. Therefore, 06r = 0.86,

and CD = 2, and so on.

We see that the volumes decrease nearly inversely as the

pressures, that is, that the volumes are 2, 3, 4 times less when
the pressures are 2, 3, 4 times greater. If this were accurately
the case, the relation between the pressures and the specific

volumes would be

ps = pjs^ p^^, etc.

413
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As, however, is seen from the Figure, this is not exactly the

case. Zeuner has found by calculation that the law for the

curve of constant steam weight is given very closely by the

formula

^1.0646 ^^1.0646^^1.0646, , % ^ (Xy^

where the exponent of s, sl , etc., is only 0.0646 greater than in

the preceding formula which gives the law of Mariotte for per-

manent gases.

Evidently these products, since they are all equal to each

other, must equal a constant value, and this value is, according
to Zeuner, 1.704, so that

1.704 =X^=#*ilt0848
-

'""
(XV1-)

or for English units 32.653 =ps
1 -om = pi81

lMM where p is taken

in atmospheres.
EXAMPLE.

What is, according to this formula, the specific volume of saturated steam at

a pressure of two atmospheres ?

Since here,, = 3,
we have . L = ^5^4, or log . =

1.9314579
, or * = . 8622 cubic meters per kil.

For English units we have log s = 8
^

'

or s=13.765 cub. ft. per pound.

From this formula we obtain s as well as u with great exactness. It is also

more convenient for calculation than Equation XIV. We may also obtain from

it the specific weight y of the steam. Thus y = and * = , hence

1.0646

or

or

1 '

r= piM4i> x ^705868, orfinaUy

y = 0.6061 x po-ww kilograms per cubic meter.

For English units we have y = 0.037839 x p09398
pounds per cubic foot.

By means of this formula Zeuner has found the specific

weight of steam for different pressures, and compared with the

values obtained by previous calculations. The coincidence is

so great that only occasionally is there a deviation of one unit
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in the third decimal place. Hence the last formula is of great

practical use.

We have assumed above that the volumes and pressures for

one kilogram of steam are taken as abscissas and ordinates.

Instead of this, we might have taken the volumes of one-half,

one-third, etc., kilogram of steam, together with the correspond-

ing pressures, and thus obtained a curve. This new curve

would have the same law as the above, and will only differ in

Laving, with reference to the same axes, a different beginning
.and end. It is represented in the Figure by the dotted line

A

[Curve of Saturation. Critical Temperature. Lei a series of isothermals be

drawn, as A^B^T^ A 2 B.ZS2 T2 , etc., as in the following Figure, of which the

portions A^B^, A ?B 2 repre-

sent the changes of pressure
and volume of the fluid at con-

stant temperature in the liquid

state
;
B

tSlt B 2S*, etc., the

process of evaporation, and

JSiTi, SZTZ , etc., the expan-
sion of the superheated vapor
.at constant temperature. A
curve drawn through the points

jS,, S2 , etc., will represent the

changes which may be under-

.gone by the fluid while it re-

\

'̂
fl -

FIG.

mains entirely in the state of

saturated vapor. It is, there-

fore, called the curve of satura-

tion. The volume of all fluids in the state of saturated vapor decreases as the

pressure and temperature increase, and thus the curve of saturation slopes down-

ward from left to right, as shown in the Figure.

On the other hand, the volume of every liquid at the boiling point increases

with pressure and temperature. Therefore a curve drawn through the series of

points B lt B 2 , etc., will slope in the opposite direction to the curve of saturation,

and the two will approach each other as the pressure increases, and at length

meet. The physical interpretation of this is that at a certain temperature the

liquid and gaseous states become continuous, there being no marked separation,

such as that observed in the ordinary processes of evaporation and condensation,

between them. This is called the critical temperature of the fluid. Above this

temperature the fluid retains the properties of a gas under any pressure however

It is supposed that the so-called permanent gases resist condensation into the

liquid form so greatly because the lowest temperatures which we are able to pro-

duce ordinarily are still above their critical temperatures.
For certain substances the critical temperature has been accurately deter-
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mined. For instance, that of carbonic acid is at 87.7 Fahr., or 31.17 C., and

the corresponding pressure of saturation is about 74 atmospheres.

There are a few substances, however, which can readily be brought to the

critical temperature. Water reaches it at about 720.6 Fahr., or 382. 55
3

C. The

corresponding pressure of saturation has not been determined. But both tem-

perature and pressure are far higher than those met with in the practical applica-

tions of steam.]

Deportment of Steam when it Expands Performing Work. A
knowledge of the deportment of saturated steam, when it

expands while performing work, is of especial importance in

practice, as, by means of it, we are in a position to estimate more

exactly the action of steam in the steam engine. It was formerly
assumed that steam in expanding not only remained saturated,

but also that the steam weight did not change ; that, therefore,

the expansion took place along the curve of constant steam

weight. Pambour especially, to whom we owe the first com-

plete and systematic theory of the steam engine, assumed this

principle in his development, and after him all writers down to

recent times accepted it as correct. Although now the saturated

steam, under the given conditions, remains saturated, as is indi-

cated by the older observations of Pambour, and the more
recent observations of Hirn, still the steam weight is not constant,

in other words, expansion does not take place according to the

curve of constant steam weight. This fact can only be made

apparent by the aid of the mechanical theory of heat, as was
done in 1851, almost simultaneously, by
Clausius and Bankine. It is easy to show
that the expansion of steam in a steam

engine does not follow the curve of con-

stant steam weight.
Let OA, Fig. 67, be the steam volume

behind the piston, its temperature t

= 144, and pressure p = 4 atmospheres
= 41336 kilograms per square meter.

Let the volume OA of 1 kilogram be

0.447 cubic matsrs. If this steam ex-

pands to the volume OD = 0.507 cubic

meters, the temperature sinks to 140.44
and the pressure to CD = 3.5 atmospheres = 36169 kilograms
per square meter. If now the steam during this expansion

O A
FIG. 67.

D
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remains saturated, and the steam weight constant, the curve

BC is a portion of the curve of constant steam weight, and the

shaded area ABCD denotes the mechanical work performed

during expansion. The contents of this area are, considering
it as a trapezoid,

AB + CD
- x AD,

or

41336 + 36169
05Q7 _

4

meter-kilograms. This work represents

2325
-JHT- = 5-49 heat units.
424

Now the steam heat at 4 atmospheres of 1 kilogram of

steam is

J= 145.31 + 461.50 = 606.81 heat units,

and at 3.5 atmospheres

J= 140.44 + 465.26 = 605.70 heat units.

The difference, 1.11 heat units, is not sufficient to perform
the work of 2325 meter-kilograms. For this purpose 4.38 heat

units more are necessary.
Since now, according to our assumption, no heat is imparted

from without, we must conclude that the steam condenses, and
that the condensation supplies the lack of heat of 4.38 heat

units.

Since steam condenses during the expansion, the work done
cannot be so great as when the steam weight is constant, and
hence the curve of expansion must approach the axis OX more

rapidly than BC, which is a portion of the curve of constant

steam weight. If, then, the end pressure is the same, the end
volume cannot be OD, but must be less than OD. If OF is

this volume, and FE= CD the final pressure, the work during
27
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expansion is given by ABEF. The volume OF and the press-

ure EF must correspond to the volume and pressure of the

remaining saturated steam. The point E must therefore lie

in a curve of constant steam weight, where the weight is less

than 1 kilogram. Since the expansion takes place without

heat being added from without, the curve BE must be part of

an adiabatic.

Our example shows plainly that during expansion steam is

condensed, or else that heat must be imparted, but it does not

give the exact value of this heat, since the work during expan-
sion is not given by ABCD but by the less area ABEF. If,

therefore, we wish to find this heat we must adopt another

method. This has been done by Clausius, in his
"
Abhandlung

ilber Mechanische Warmetheorie," 1864, and we shall now pro-
ceed to point it out.

Suppose in a prismatic vessel a mixture of steam and water of

the temperature t and pressure

AB, Fig. 68. Of this mixture

let M kilograms be liquid and

m kilograms steam. Upon the

steam presses a piston whose

pressure is AB.
We impart heat to the water

while assuming the pressure re-

mains constant. In this case all

the heat goes to form steam, and

is therefore latent. Suppose
that thus m^ kilograms of water

are vaporized, so that we now
liave in all m + m^ kilograms of steam. If now r denotes the

latent heat when 1 kilogram of water at the temperature t, and

under the constant pressure AB, is evaporated, the heat im-

parted is

heat units ...... (1).

FIG. 68.

Now let the entire steam volume m + m^ expand adiabati-

cally. The expansion is then at the expense of the heat of the

mixture, and the temperature sinks. If we suppose the expan-
sion CGr to be very small, the decrease of temperature is slight.

Denote it by T, so that at G the temperature of the mixture is
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t r. It is clear that CG is a portion of an adiabatic. We
may suppose now, in opposition to our calculations, that from

C to 6r, % kilograms of steam are formed.

Now we compress the steam, assuming that it is always

saturated, from the volume OH, temperature t T, and press-
ure HG, so that pressure and temperature remain constant.

We must then abstract heat during compression. This com-

pression is carried to a point F, so chosen that when from

there on the steam is compressed adiabatically the mixture

will retake its original condition, and we shall have again M
kilograms of water, and m of steam at the temperature t. Then

the temperature from F to B has been increased by r, and the

-work which the steam performed by expansion from C to G has

been received again from F to B. We have thus here a simple

cycle process. Inner work has been neither gained nor lost.

Let now r2 be the heat which must be abstracted from 1 kilo-

gram of steam at the temperature t T, in order to obtain 1

kilogram of water at the temperature t T, then if from G to

F, m% kilograms are condensed, the heat abstracted is

77^r2 heat units ...... (2).

The excess of the heat imparted over that abstracted is

heat units ..... (3).

By this excess a certain mechanical work is obtained, repre-

sented by the area BCGF, which, since CG and BF are very

small, we may regard as a parallelogram. The area is then

BC x (AB - FE).

If we denote the difference AB FE by n, we -have

BC X 7T.

If now the volume of 1 kilogram of steam at t is u, that of

mi kilograms is m^u. Hence BC m^u, and

BC x 7t

The heat corresponding to this work is

(4).
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This heat must be equal to (3), hence

m^t nw2
= AniiUTt ..... (5).

Now the steam weight generated on the path BCG- is

mi + HI,

and that condensed on the path GFB is

assuming that during the compression BF, n^ kilograms are de-

posited. Since at the end of the process we have the original

quantity of water and steam,

m1 + wJ
= m2 + W2 ...... (6).

Hence

Substituting this value in (5),

rw-i + r^r2 = Am^un . . . (8).

We can eliminate n^ and 712 from this equation as follows :

We have assumed during the expansion GG steam to be

formed, therefore heat amounting to

%r2 heat units

taken from the existing water and steam in order to form the

% kilograms. If the specific heat of the water is c, then the

heat abstracted from the water M m1 is

(M mi) CT heat units.

But heat is also taken from the existing steam mass m + Wi
If we suppose that 1 kilogram of saturated steam at t must

give up h heat units in order to remain saturated at t 1 de-

grees,* then the m + m^ kilograms of steam lose

(m + mj) hr heat units.

* [We see therefore that h plays the part of a specific heat. We may consider it as the-
"
specific heat of saturated steam for constant steam quantity."]
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(We shall see hereafter that h is negative, so that during ex-

pansion the steam does not lose heat, but gains it, as should

be the case.)

We have then

%r8
= (M- rn^cr + (m + m^ hr . . . (9).

From F to B the steam is compressed adiabatically. If, now,

on the way CG heat is abstracted from the existing mass, or

the way BF it is given back. Since, by supposition, n^ kilo-

grams are condensed, the heat set free is

71^2 heat units.

This is divided among M kilograms of water, and m of steam.

The first accordingly receives

Mcr heat units,

and the second

mhr heat units.

Hence
= MOT + mhr ..... (10).

Substituting (9) and (10) in (8)

mir2 (M m^) cr (m + m^ hr + Mcr + mhr =
. *

or reducing
rt r2 + cr hr = Ann .... (11).

Now the total heat of 1 kilogram of steam of the temperature
t is 606.5 + 0.305 heat units. Or if the specific heat of the

water from which the steam is generated is c, and the latent

heat r
l9

606.5 + 0.305* = ct + rl . . . . (12).

For 1 kilogram of steam of the temperature t r we have, in

like manner,
606.5 + 0.305 (t-r) = r. + c(t-r) . . (13).

Subtracting, we have

0.305r = n - ra + cr.
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Substituting in (11)

0.305r - hr = AUTT (14).

From Equation (XII.), page 390, we have

r -= = AUTT (15).

and from this and (14) we have

h = 0.305- ^.
. ,. . (XYII.)

or A = 0305
~27fr*'

T
or for English units h 0.305 -

^59 A . f

Since
* - is always greater than 0.305, h is negative..
I AiO + t

We see, therefore, that ivften saturated steam expands performing

work, so that the temperature sinks, we have not to abstract but to add

heat in order to keep it saturated. And if saturated steam is com-

pressed, heat must not be added but abstracted in order to keep it

saturated. Otherwise the steam is superheated, and has a higher

pressure than saturated steam of the same volume. The heat

imparted in the first case, and abstracted in the second, is for

1 kilogram, for a rise or fall of 1 degree,

As r = W- q,oxr = 606.5 - 0.695* - 0.00002*2- 0.0000003*8
,

* n QOK 606-5 - -695 *
~ 0.00002*2 - 0.0000003*3

A =0805-
-273 r

or for English units h = 0.305 -

1091.7 - 0.695 (t
-

32) - 0.0000111 (t
-

32)
2 - 0.0000000 (t

-
32)

3

459.4 + t

Since, according to Clausius, we have with good exactness

r = 607-0.708*,

or for English units r = 1092.6 = 0.708 (t
-

32).



SPECIFIC HEAT OF STEAM FOR CONSTANT WEIGHT. 42$

AK 607 - 0.708*
we may also write h 0.305 --

^73 r~

or finally, h = 1.013 - .... (XVIII.)

1440.5112
or for English units h = 1.013

EXAMPLE.

How many heat units must be imparted to 1 kilogram of saturated steam at

100, when it expands performing work, and the temperature sinks 1 ?

From Table II. we have, since r = p + Apu, for 100, 496.30 + 40.20 = 536.5-

heat units, hence

h = 0.305 - JJ
36
^AA = 0.305 - 5|^ = .305 - 1.438 = - 1.133 heat units.

/*7o + 1UU O ia

965 7
For one pound at 212 Fah. we have&=0.305--' = 1.133 Eng. heat units.

The problem which we have discussed can be solved in a

simpler manner.

Suppose the cycle process completed. The work performed
is given by the shaded area BCGF. Suppose now that the ex-

pansion on the path CG had extended until the temperature
had sunk 1 instead of T. Then the work L would be

where r is the latent heat from B to C. We know that this

work can only be gained when the heat imparted along EG is

greater than that abstracted along GF, because the work which

is performed by expansion CG, by reason of inner heat of the

steam, is equal to that which is expended in the compression
FB.
The work performed expressed in heat units is therefore

Hence the volume C of the saturated steam of t degrees
T

contains
>^

heat units more than the volume OF, of the satu-

rated steam of t 1 degrees. Now, 1 kilogram of saturated
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steam of t has only 0.305 heat units more than 1 kilogram of

t 1 degrees. Since ^ > 0.305, we have to impart during ex-

pansion jp
0.305 heat units, or to abstract during compres-

sion BE, the same amount, in order to keep the steam saturated.

This is, therefore, the heat added or abstracted, which we have

denoted by A, so that

h = ^ - 0.305.

Or, if we consider the heat imparted during expansion as

negative,

h = 0.305-
|T.

Our formula shows that h is variable with the temperature.
We see, especially from our equation, page 409, that h is greater,

800 3
that is, is nearer zero, the greater t, since the quotient _Q

'

A( o ~rt

diminishes with increasing temperature.

Heat Imparted or Abstracted for Great Differences of Tempera-
ture. In the following tabulation we have given the heat neces-

sary in order to keep one kilogram or one pound of steam of

10, 20, 30, to 120 degrees Centigrade, saturated and uncondensed

during its expansion and cooling of one degree. The same heat

is requisite to keep the same quantities of steam saturated at

the same temperatures, when the temperature is raised 1 de-

gree, but the heat must be then abstracted.

Temperature 10 20 30 40 50 60

Value of h - 1.917 - 1.814 - 1.718 - 1.628 - 1.544 - 1.465 - 1.391

Temperature 70 80 90 100 110 120

Value of h -1.321 -1.255 -1.192 -1.133 -1.077 -1.024.

If, now, it is required to determine, for example, what heat

must be imparted, in order that 1 kilogram of saturated steam

at 100 may expand gradually to 1 kilogram of saturated steam

at O
c

,
we must determine the mean of h between and 100 ,
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and multiply by the number of terms by which the mean was
determined. We may find the mean best by Simpson's rule.

If we have a number of quantities occurring at equal inter-

vals, and denote them by P , PI, P2 . . . P7i _ i , so that n is the

number of intervals, the mean is

P = (iP 4- Px + P2 -f P 3 + P-i + iPn) * n.

If the number of intervals n is even, viz., 2, 4, 6, 8, etc., the

rule gives for the mean

P = (P + 4P, -f 2P2 + 4P3 + . . . 4P7i _! + Pn )-r- 3w.

If we wish, then, to find the mean of h between and 100,

according to the first formula, we must put for P 1.917, for

P, 1.814, for P2 1.718, finally, for Pn 1.133. Then |P = 0.958,

and }PM
= 0.567, hence

P = (0.958 + 1.814 4- 1.718 + 1.628 + 1.544 + 1.465 + 1.391 +
1.321 + 1.255 + 1.192 + 0.567) -r- 10 = 14853 -r- 10 = 1.485; or

since h is generally negative, h = 1.485.

If, then, 1 kilogram of saturated steam expands, performing

work, from 100 to 0, and still remains saturated and uncon-

densed, we must impart on the average, for each degree of

cooling, 1.485 heat units. The entire heat imparted is then

Q = 1.485 x 100 = 148.5 heat units.

For one pound from 212 to 32 Fah. we have

Q = 1.485 x 180 = 267.3 English heat units.

In the same way we may find for 1 kilogram of steam whose

temperature sinks during expansion from 80 to 0,

Q = 1.558 x 80 = 124.64 heat units.

For one pound from 176 to 32 Fah. we have

Q = 1.558 x 144 = 224.352 English heat units.

Zeuner has given a table, which gives the amount of heat

which must be imparted when 1 kilogram of saturated steam

of 1, 2, 3, etc., atmospheres cools by expansion to and remains

all steam. In Table III. we have given these values of Q, as

V
well as the corresponding values of -=.
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EXAMPLE.

How many units of heat must be imparted to 1 kilogram of saturated steam

of 5 atmospheres, when it expands in the cylinder of an engine, performing work,
down to 1 atmosphere, and yet still remains saturated and uncondensed ?

From Table III., for a pressure of 5 atmospheres. . Q =200.46

And for 1 atmosphere ^ = 148.47

The heat imparted from 5 to 1 atmos. is then 51.99 heat units.

For one pound under the same circumstances we have 93.576 English heat units.

This amount of heat is too great to be supplied by the hot cylinder sides, as

has been assumed by the followers of Pambour. If therefore no heat is imparted
from without, so much steam must be condensed as will furnish the necessary
heat. This amount of steam can indeed be relatively very small, since the latent

heat of steam is great with respect to the heat required.

Deportment of other Vapors during Expansion. The formula

for h was

fc =
0.305--^.

In this 0.305 is the amount of heat which one kilogram of

steam of t + 1 degrees possesses more than 1 kilogram of t de-

grees, because 1 kilogram of t + 1 degrees has

606.5 + 0.305 (t + 1) heat units,

and one of t degrees has

606.5 + 0.305* heat units,

and the difference is 0.305 heat units.

The total heat of 1 kilogram of ether steam of t + 1 degrees
is, as we have given it,

94 f 0.45 (*+!)- 0.00055556 (t + I)
2
,

or

94.449444 + 0.4489^ - 0.000556^.
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For t it is 94 + 0.45* - 0.000556*2
.

The difference is 0.449444 - O.OOIU

Hence the expression for h for ether steam is

h = 0.449444 - 0.001l - 4-

Since, however (page 392), r = 94 - 0.079- 0.00085 2

, we have

A = 0.449444 - 0.0011*- t

=(273 + 00.449444-0.0011* (273 +0- 94 + 0.079* + 0.00085*2,

or hT = 28.6982 + 0. 225* - 0.00026*2
.

For English units

hT = 51.7783 + 0.2254 (-32) - 0.0001443 (-32)
2
.

If we find the formula for water steam in a similar manner,
we have

hT = - 523.23 + t + 0.00002 2 + 0.0000003Z3
,

or for English units

hT= - 941.843 + (-32) + 0.0000111(-32)
2
4- 0.0000000926(*- 32)

3
.

We see from this formula, that even for very high tempera-
tures h is still negative, as we have already concluded from the

form of other formulae. We see from the formula for ether

steam that h is positive even when the temperature is very great.

This kind of steam therefore, must have heat extracted from it

during expansion, if no part of it is condensed. This peculiar

deportment of ether steam was first pointed out by Hirn. All

other vapors which we have named, in fact, all for which

Regnault has determined the sensible heat and latent heat of

vaporization, comport themselves like water steam, and for

them h is therefore negative.
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QUESTIONS FOB EXAMINATION.

What is the curve of constant steam weight ? When saturated steam expands, performing'
work, does it remain saturated ? Is the steam weight constant t If not, can you prove that it

is not ? If saturated steam is compressed, and heat at the same time abstracted so that the tem-

perature is kept constant, what takes place ? If no heat is abstracted ? If it expands perform-

ing work, and heat is not added ? How many heat units must be imparted to 1 kilogram of

saturated steam at 100 to keep it saturated and uncondensed, when it expands performing work,
till the temperature is 90 ? Suppose uo heat is added, how much steam will be condensed ?
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CHAPTEE XYHI.

HEAT CURVES OF STEAM AND LIQUID MIXTURES. CONSTRUCTION OF

THE SAME. TECHNICAL APPLICATIONS.

A. ISOTHERMAL CURVE.

Form of the Curve. The isothermal curve has been defined as

that which gives the change of condition of a body when the

temperature is kept constant. For gases this was a curved line

which made apparent the law

of Mariotte. Now we know
that if for saturated steam the

pressure is constant, the tem-

perature is constant also. If,

then, AB = p (Fig. 69) is the

pressure of the steam in a mix-

ture of steam and water, this

pressure remains constant so

long as the temperature is the

same. Heat added to the wa-

ter simply vaporizes some of

it, the volume increases, and

the isothermal for the mixture

is a straight line parallel to OX* Since for a higher or lower

temperature the pressure p is greater or less, the line BG will

be at a greater or less distance from OX.

Outer and Inner Work during Expansion. Let OA = v be the

FIG. 69.

* [Here therefore the isothermal and isopiestic lines coincide.]

429
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initial specific volume of the mixture (volume of 1 kilogram),

then, as already proved, page 401,

v = xu + ff,

where u can be taken from Table II. for given pressure and

temperature. If now we heat the mixture till the volume is vl9

we have

Vj x\u -4- ff.

Since the ordinate AB = p describes the rectangle ABCDt

the outer work performed is

L=p(vl v)=pu (x1 x) ;

hence

Vi V
Xi X = - c

u

In practice v^ v is generally given, u can be taken from

Table II., and thus the weight of water vaporized (x^ x) can

be found.

Now what is the entire amount of heat imparted ? All this

heat, as we know, goes to vaporize the water. Of this the

outer latent heat is

AL = Ap (vi v) Apu (xi
-

x),

while the inner latent heat is

p(x1 -x) .-'">
;

V p. ". (XX.)

The total amount of heat is then

-
. ^ '.'

;

(XXI.)

or

Q = (Apu + p) (xi
-

x)

= (Apu + p)
^LZJi .... (XXII.)

The value of Apu + p, as also u, can be found from Table U.
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EXAMPLE 1. The cylinder of a non-condensing engine, working with full

pressure, has a cross-section of 0.174 square meter (or 1.873 sq. feet), and a

stroke of 1.048 meters (or 3.44 feet). The steam pressure p is 3 atmospheres,

and the number of revolutions per minute is 24. What is the theoretical work

per second, and how much heat is required ?

The steam quantity per stroke is 0.174 x 1.048 = 0.182 cubic meter. Hence

Vi = 0.182 cubic meters or 6.443 cubic feet,

and the work per stroke is

L=p(v l
-

0) = 10334 x 2 x 0.182 = 4702 m. kil., or 34085.7 foot Ibs.

The work per second is

.

2 * 24
x 4702 = 3761 meter-kilograms, or 27268.58 ft. Ibs.

or

= 50 horse power, or 49 . 57 horse power English.
75

For the heat required per stroke,

Since Apu + p for 3| atmospheres is, from Table II., = 465.26 + 43.27

508.53, and u = 0.507, we have

Q = 508.53 ^4?! = 182 - 56 heat units-

In English units, Q = 915 . 354 = 725 . 87 heat units.

Hence the heat per second is

182.56 x f$ = 146.05 heat units.

If all this heat had been converted into outer work, we should have had

424 x 146.05 = 61925 meter-kilograms, while in reality we have only 3761, or

hardly the 16th part. Now, perhaps, only half the heat of the fuel acts to

vaporize the water, so that we utilize only the 32d part of the heat of the fuel.

Finally, even this is but the total work of the engine, and from it we must sub-

tract the prejudicial resistances, in order to find the useful work. Since these

resistances take about 50 per cent, from the total work, we have only -^jth of the

heat of the fuel actually utilized.

EXAMPLE 2. A condensing engine sends 0.182 cubic meter (or 6.443 cubic
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feet) of steam, at a pressure of ^th of an atmosphere, into the condenser, where-

the pressure is constant. What work is necessary, and how much heat is taken

from the steam ? The work required is

10344 x & x 0.182 = 188.08 meter-kilograms,

or 2116.14 x -fa x 6.443 = 1363.429 foot-pounds.

From Table II., Apu + p for ^-atmosphere is 538.85 + 35.46 = 574.31, and

t*=14.55. Hence

O = 574.31 ?^|f = 7.179 heat units,
14.55

or Q = 1033.76 = 38.57 heat units English.
/ooo.Uoo

B. ISODYNAMIC CURVE.

The isodynamic curve gives the law of change of p and v,

when the inner work is constant.

Equation and Construction of the Curve. Suppose, as before,

one kilogram of mixture to consist of x kilograms of steam and

1 x of water. The sensible heat of the mixture is q, and

hence the steam heat is

and the inner work is

If now we have, after adding heat, x
l kilograms of steam and

1 a?! of water, and the sensible heat qlt and the inner latent

heat P!, we have for the " steam heat
"
in the new state

qi +
and the inner work

For the isodynamic curve then

-j-
(q + xp) = j (q, +

or

q + xp q 1 + xlp1 .... (XXni.)
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This is the equation of the isodynamic curve. In order to

construct the curve we must know the abscissa and ordinate

for different points. If we assume p and x known for the ini-

tial condition, then from p we know t, u, q, and p. The corre-

sponding volume is given by

v = xu + G or v xu.

If now, joj is given for a second position, we know at once q
and pi, and since we know q + xp for the initial condition, we
have

and then from

can find Vi = for the second condition.

Thus let p ^> atmospheres and x = 0.80 kilograms, then

from Table II.,

q = 153.74, p = 454.99, and

u= 0.363.

Hence

v = xu + a = 0.8 x 0.363 + 0.001

= 0.291 cubic meter.

Lay off now OA = v = 0.29, Fig.

70, and AB = 5. Then B is a

point of the isodynamic curve.

We can now calculate v l
for pi

4 atmospheres. For this, q\

= 145.31, A =* 461.5, and^ = 0.447,

hence

153.74 + 0.8 x 454.99 - 145.31

461.5

= 0.807 kilogram.
FIG. 70.

Therefore 0.007 kilogram of water are vaporized. For vl we have

=
a:,?/!

= 0.807 x 0.447 + 0.001 - 0.362 cubic meter.

28
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Lay off OC = 0.362 and CD = 4, and D is a second point on

the curve. In the same way we can determine the volumes for

pressures of 3 atmospheres, 2, and 1 atmosphere, as shown in

Fig. 70.

The curve joining all the points thus found is the isodynamic
curve for a mixture of steam and water.

We see here also, that as in the curve of constant steam

weight, the volumes increase as the pressures decrease.

The curve can be represented then by an equation of the

form

pv
n

p^v" = pjv?, etc.

Zeuner found that when x is originally 1 kilogram, and
then the steam compressed according to the isodynamic curve,

n = 1.0456. For the curve of constant steam weight, n = 1.0646.

The curve of constant steam weight approaches the axis ofX
more rapidly therefore than the isodynamic curve, and lies

therefore between the latter and the isothermal.

From the preceding we see, that during expansion of steam

along the isodynamic curve, water is vaporized, and during com-

pression, is condensed. Thus, as we have seen, for a pressure
of 4 atmospheres, x\ 0.807 kilogram, while for 5 atmospheres,
x was 0.8, and for 3 atmospheres, 0.815, etc.

Outer Work. Heat Required. In order to determine the work

performed during expansion, we determine the area of ACDB,
then of CDFE, etc., considering them as trapezoids. Thus for

example, for the outer work during expansion from p = 5 to

Pi= 4 atmospheres, we have

L = P+
^
PI

(v,- v)
= 10334 x 4.5 (0.362-0.291) = 3302 met.-kil.

Since further, the inner work is constant, all the heat im-

parted goes to outer work. This heat is then

Q = AL =^ x 3302 = 7.79 heat units.

This curve is of little value in practice, hence we will not

discuss it further.
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C. ADIABATIC CURVE.

This curve gives the law of variation of p and v, when no
heat is either imparted or abstracted during the change of con-
dition.

Equation and Construction of the Curve. To construct this
-curve we must find from a given pressure or temperature the

corresponding volume. In this connection we refer to what
has been said in the Appendix
to this chapter, and advise

that it be read before the fol-

lowing :

Let OA, Fig. 71, be the

volume of 1 kilogram of water

at 0. If this water is not

partly vaporized when heat is

imparted to it, it must be
loaded with a certain weight
or subjected to a certain,

pressure. Call this pressure
AB. Suppose now the tem-

perature of this water is

raised gradually to 1, 2, 3, etc., degrees. To prevent vapori-
zation the pressure AB must be correspondingly increased.

When the temperature of the water is 100, the pressure is

.10334 kilograms. The imparting of heat and increase of press-
ure is thus conducted in the same manner AS for permanent

gases in the Appendix. We have then here a certain " heat

weight." If c is the mean specific heat of water between and
/ degrees, the heat weight imparted for this rise of tempera-

ture is approximately, taking c as constant,

c , , 273 + t c\ T
T log nat -Q7Q- = T 108 liat

97Q-

OA

273

If we denote this by -j, we have

= clog nat~ - 2.3026 c log
~ (XXI

The exact value of r
t for French units and temperature Ce\

itigrade, is r = 2.4318892 log^ - 0.0002057 t + 0.00000045 t.
&lij

For English units and temperature Fahrenheit,

r = 2.4141Q04581og ^ - 0.0001 054(r
- 32)

+ 0.0000001389 (t
~ 39)

2
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The value of r is given in Table III., for different pressures,

Let us assume that the water is heated under these condi-

tions up to 100, and that the pressure is AC=p. Now let heat

be still further imparted, while the pressure remains unchanged..

Vaporization then takes place under constant pressure and

temperature. Suppose we thus allow a certain weight of water,

x, to be vaporized. The volume is increased, and Ac is carried

to DE. Through this point D let an adiabatic curve be con-

structed. The heat weight necessary for vaporization, which
/Vy

must be imparted to the x kilograms of water is -77^- Hence the
a. J.

total heat weight imparted both to water and steam is

r XT c , T xr

In other words, this equation gives the heat weight neces-

sary to raise 1 kilogram of water from and the corresponding

pressure, into water of t degrees and the corresponding press-

ure, and then to convert x kilograms of this water into steam.

As soon as x is known, we can find the corresponding volume,

V = XU + 0,

and can then lay off OE and ED.

Suppose again, we raise the water from to t, for which
the pressure is p^. The heat weight is then, under the assump-
tion that between and t^ the mean specific heat of water is

the same,

273 + ti

Now let a certain weight x\ of this water be vaporized under
constant pressure plt so that AF passes to GH, and the point
G is in the adiabatic curve. The heat weight imparted to the

. XiT-i
steam is -^ .

We have, therefore, for the entire heat weight imparted,
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Since G is a point in the adiabatic curve, this heat weight
must be equal to the first.

Hence

L xr
Ii 4.

w
A + AT "A

or

xr _
-T T

i -t
-

The values of r, r
lf and -^ , -^ ,

are given in Table III, so
* -L\

that Xi can be easily found when x is known. We have

If Xi is found, the volume v l is given by

+ (T

where ^ is given by p^ and ^. If therefore only the point D is

given, we can construct the point G on the adiabatic through D.

In similar manner, if we raise the kilogram of water from

to 2 ,
for which the pressure is AI p%, the heat weight added

to the water is

If then we evaporate x% kilograms under constant pressure,

so that AI passes to K, the heat weight is -^~ , and we have

for the total heat weight

T2
,

If K is on the adiabatic,

xr
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so that we can find x^ as also the corresponding volume v2
= oL.

We can thus construct the point K. Generally, we see that by
the principles given in the Appendix, we can easily find differ-

ent points on an adiabatic. For

the sake of illustration, let us.

take a special example.
Let us assume that we have

to start with x= 0.80 kilograms
of steam, and hence 1 x = 0.20

of water. The pressure p is 1

atmosphere. Then we have for

OE

OE = v = xu + ff.

Since for p = 1, u = 1.65,

v = 0.80 x 1.65 -f 0.001,

or, disregarding ff,

v = 0.8 x 1.65 = 1.320 cub. m.

PIG> 72'

Lay off then, Fig. 72, OE =
1.32 and ED = 1 atmos., and D is a point in the adiabatic. We*

may construct a second point for p = %ED = 2 atmos.

For this we have

In Table III., we have the values of r, r, and -~ for different

pressures.

For p = 1

r = 0.31, ^ = 1.44,

hence

and

XT
^ = 0.31 + 0.8 x 1.44 = 1.46,

t~Tf**r|-.
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For ^ = 2 atmos. ^ = 0.37, -^-
= 1.33, hence

JL i

1.46 = 0.37 + x, x 1.33,

and

x __ 1.46-0.37
=i()82

1.33

By the rise of temperature, 0.02 kilograms of water are thus

vaporized. Now vl
= x-^Ui, and since for pi 2 atmospheres,

u^ 0.86, we have

vl
= 0.82 x 0.86 = 0.71 cubic meters.

Make, then, OH 0.71, and EG 2, and we have the point
G of the curve.

Let pz = 3 atmospheres. Then

or

1A f* ^*2
.4:0 = ?% + #2 j~- .

According to Table III., for p% = 3 atmospheres,

r2 = 0.40, ^-
- 1.26

hence

1.46 = 0.40 4- x2 x 1.26,

and

1.46 - 0.40 n Q . , .,

/P2 .^ 0.84 kilograms.

Hence, since uz
= 0.59,

v2
= A^ = 0.84 x 0.59 = 0.50 cubic meters.
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Lay off then, OL = 0.5, and LK 3, and K is a third point on

the curve.

For ps 4 atmospheres, we find in similar manner, v3
= 0.38

cubic meters. In our Fig. 72, OB = 0.38, and BC = 4, and thus

we have a fourth point C. The curve joining these points is

the adiabatic.

We see from the preceding, that when a mixture of steam

and water is compressed adiabatically, water is vaporized, and

at the end there is more steam and less water than at first. If

there were at first saturated steam only, without water, by
compression the steam would be superheated, and the adiabatic

curve for this superheated steam would be different. If the

saturated steam expands performing work, we have inversely,

condensation of steam, as has already been proved elsewhere.

The deportment of saturated steam by adiabatic expansion or

compression is thus the reverse of that for the isodynamic
curve.

Since a knowledge of the law of the adiabatic curve is of the

greatest importance for a reliable and thoroughly scientific

theory of the steam engine, we shall proceed to show by an ex-

ample, how condensation takes place during expansion, and
shall then investigate what takes place when we have at first

only water of a certain temperature, and then dimmish the

pressure according to the adiabatic curve.

Suppose in a cylinder, 1 kilogram of pure* saturated steam,
without admixture of water, of 4 atmospheres pressure, and
therefore at a temperature of 144. Then here x = 1, and
from Table in.,

r= 0.427, =1.211,

and from Table II., u 0.447, hence

v = xu = 1 x 0.447 = 0.447.

If now, Fig. 73, OS = 0.447 and BC = 4, we have the point
C as the first point of the curve. We have now

r + x~ = 0.427 4- 1.211 - 1.638.

* "Pare 1 '

i. , dry no water particles being mechanically suspended in the steam When
this is the case the steam is said to be " wet"



ADIABATIC EXPANSION SATURATED STEAM. 441

Now let the steam expand adiabatically, until the pressure
is fr = DE = 2 atmospheres. For this case

TJ = 0.368,
- = 1.326, hence

1.638 = 0.368 + x, x 1.326, or

x = 0.958 kilograms.

Hence 1 - 0.958 = 0.042 kilo-

grams of steam have con-

densed. The volume Vi = xtf^

= 0.958 x 0.859 = 0.823. If

then, OD = 0.823 and DE
= 2, E is a second point in

the curve.

Let the steam still expand,
till its pressure is 1 atmos-

phere = FG.

C

PIG. 73.

Then r2 = 0.314,^ = 1.438, ,
= 1.649, and

1.638 = 0.314 + xa x 1.438 or a% = 0.920 kilogram.

Hence by expansion from 4 atmospheres to 1, 1 0.920 = 0.08

kilogram of steam have been condensed.

The specific volume is

v = x = 0.92 x 1.649 = 1.518 cubic meters.

If we make OF = 1.518 and FG = 1, we have a third point
in the curve.

We see then, very plainly, that during expansion the steam

condenses. If, inversely, we had to start with only 0.920 (#2)

kilogram of steam, and 1 0.920 = 0.080 of water, under a

pressure of 1 atmosphere, and compressed the mixture adia-

batically to 4 atmospheres, we would have at the end of the

process, 1 kilogram of steam, saturated, and the 0.08 kilogram
of water, will be completely vaporized.
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The expansion ratio in the first case is

v 1.518 _ o
-

The expansion ratio is therefore less than according to the

old views as to the properties of steam.

Let us now suppose we have only water to start with, of a

given temperature, the pressure being therefore such that

there is no vaporization. Now let the pressure diminish gradu-

ally, and no heat be imparted or abstracted, and let us see

what are the changes.

Suppose the temperature of the water is 144, and hence the

pressure p = 4 atmospheres. We have then

r = 0.427, =1.211, and x = 0,

hence

r + x = 0.427.

If now the pressure sinks gradually to 2 atmospheres, we have

^ = 0.368,
-^
= 1.326 and r1 + xl^-=

0.368 + xl x 1.326,

hence

0.368 + x1
x 1.326 = 0.427, and ^ = 0.044 kilogram.

This weight of steam has been formed. If in this, as well as in

the previous case, we had used more decimal places and cal-

culated more accurately, we would have found that the same

quantity of steam was formed, as in the case of pure saturated

steam only was condensed.

We have further

= 0.044 x 0.859 = 0.039 cubic meter.

If the pressure still falls to 1 atmosphere, we have

r2 = 0.314, = 1.438,
^2

0.427 = 0.314 + 1,438^, or x* == 0.0786 kilogram.
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This steam has been formed, and there is left 1 0.0786-

= 0.9214 kilogram of water. Here also we should have just

the same steam weight produced, as in the first case was con-

densed.

We see then, that when there is more steam than water,

there is partial condensation during expansion. But when
there is only water in the beginning, steam is formed during

expansion. Hence it follows, that there is a certain propor-
tion of steam and water for which, during expansion there is

neither condensation nor vaporization, or at least, for which

during the first period of the expansion, there is just as much
steam generated as during the second is condensed. This

mixture can be determined. Since at the beginning and end

of the expansion, we have the same amount of steam or water,

or

T
(XXVI.)

If we assume the initial pressure at 4 atmospheres and the

end pressure at 1 atmosphere, we have for x almost exactly 0.5

kilogram. "We must, therefore, have to start with as much
water as steam, by weight, if by expansion between 4 and 1

atmospheres there is to be at the end the same steam and

water quantity as at the beginning. For from 10 to 5, and 5 to

1, and 1 to J- atmospheres, we have respectively

x - 0.56, x = 0.50, x - 0.46 kilogram.

The mixture ratio does not vary, therefore, much from 1 to 1.

If we suppose for the extreme pressures 4 and 1 atmospheres,
and the mixture ratio 1 to 1, that is, as much steam as water,

by weight, the adiabatic curve and also that for constant steam

weight constructed, both curves must then cross at the begin-

ning and end of expansion, Fig. 74. Since, further, the steam

formed during the first half of expansion is small, both curves

vary but little from each other. The adiabatic curve, how-
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ever, approaches the axis somewhat more rapidly than the

curve of constant steam weight. In Fig. 74, the dotted line

is the adiabatic curve for the mixture ratio

of 1 to 1 and for the limiting pressures
of 4 and 1 atmospheres. We see from the

preceding how complicated is the phenome-
non of expansion or compression adiabat-

ically of saturated steam. We thus arrive

at the following general results.

(a.) For EXPANSION, adiabatic :

1. If we start with pure saturated steam,

without admixture of water, steam condenses

during expansion.

2. If there is more steam than water, there is

also condensation.

3. If there is more water than steam to start

with, steam is generated during expansion.

(b.) For COMPRESSION, adiabatic :

1. If we start with pure saturated steam, without admixture of

water, it will be superheated by compression.

2. // the initial steam weight is greater than that of the water,

steam is generated by tJie compression.
3. If there is more water than steam, steam is condensed during

compression.

Calculation of the Outer Work. Since during the expansion or

compression according to the adiabatic curve, heat is neither

imparted nor abstracted, the outer work performed during ex-

pansion must be at the expense of inner work. If now Uis the

inner work contained by a mixture of steam and water before

expansion, and U^ that after, the outer work is

L= U- UL

Hence the heat disappearing is

The inner heat, which is equivalent to the inner work, is
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easily calculated. If we have x kilograms of steam and 1 x
of water, the

x kilograms of steam contain ____ x (q + p) heat units.

1 - x " " water "
.... (1

-
x)q

The mixture contains ........ x (q + p) + (1 x)q
"

or, reducing,

q + xp heat units.

For x kilograms of steam and 1 x of water, we have

<h + #iPi heat units.

Hence the heat disappearing during expansion is

. . (XXVII.)

where x and x\ are the steam weights at beginning and end of

expansion.

EXAMPLE 1. What work is performed by 1 kilogram of saturated steam at 4

atmospheres, when it expands adiabatically to 1 atmosphere ?

We have in this case x 1, and can find, as on page 439, x\ = 0.920. Further,

from Table II., we have

^ = 145.31, and p = 461. 5

for 4 atmospheres, and for 1 atmosphere,

^ = 100.5, and p,=496.3.

Inserting these values, we have

Q = AL = 145.31 - 100.5 + 461.5 - 496.3 x 0.920 = 49.7 heat units, and hence

L = 424 x 49.7 = 21072.8 meter-kilograms.

For 1 pound we have q = 261.558, p = 830.6928, q, = 180.9, p l
= 893.34,

xi = . 920. Q = 89 . 47 heat units, L = 69070 . 84 foot-pounds.

EXAMPLE 2. What would the work be, if to start with, we had only water

and no steam ?

In this case we have x = 0, and find, as on page 442, Xi = 0.079, while q, qif

p, p l} are as before. Hence

^=145.31 100. 5 + 0. 461. 5-496. 3x0.079=44.81-39.2=5.61 heat units.

L = 424 x 5.61 = 2378.6 meter-kilograms.

For 1 pound we have x\ 0.079.

AL- 261. 558- 180.9-893.34 x 0.079 = 10.084.

L - 772 x 10.084 = 7784.85 ft -Ibs.
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The work is, therefore, very much less than before, which is

easily comprehended from the fact that during expansion steam

isformed, which consumes a large part of the heat of the liquid,

so that the temperature and pressure decrease more rapidly

than before.

Approximate Formula for the Adiabatic Curve. For the iso-

thermal curve for steam and water mixture, we can easily find

the volume for any pressure and steam weight. For the iso-

dynamic curve, also, we have given an expression which gives

with sufficient exactness the relation between pressure and vol-

ume. Since the adiabatic curve is of especial practical impor-

tance, it is desirable to find for it, also, such an expression,

which shall furnish us with a simpler and less tedious method
of calculation.

Eankine found that the law of the adiabatic curve was given

toy an equation of the form

where m = 1.11. But it is not stated by Eankine whether this

value of m was found for every mixture of steam and water, or

only for a certain definite proportion. From the calculations

given by Eankine, the first appears very improbable, and

Orashof has pointed out that this value is too small for pure
-saturated steam without admixture of water. He shows that

in this case, m should be 1.140. The preceding calculations

enable us to determine at once if this value is correct, and at

the same time show that the value of m given by Eankine
answers only to a certain definite mixture, and not to all others.

From the equation

pv
m =plvS

n
. . . \ , (XXVIH.)

we have

P___(Vi\
m

pr\v}>

(XXIX.)
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Let us take the example on page 439.

Here p = 4, ^ = 1, v = 0.447, and vl
= 1.520.

Accordingly,

log 4 Jog 4 _ 0.602 _~
,

1.520
~

log 3.39
~

0.530
~

'

a value which agrees perfectly with that of Grashof if we
take only 2 decimal places.

If, however, we suppose only water at the beginning of ex-

pansion, and find m for the case of the example on page 442.

Here p = 4, # = 1, v = 0.001, and vl
= 0.1312, hence

Iog4_ log 4 _ 0.602 _~
, 0.1312

~
log 131.2 2.118

"

g 0.001

It follows, then, that the value of m is entirely dependent

upon the original proportion of steam and water. Zeuner has,

therefore, calculated m for different mixtures, as follows :

Initial PreSSUre Initial Specific TOnnl Prpceiiw in AtmnenhorAC
p Steam Quantity

Fmal ssn m Atmospheres.

in Atmospheres. x. 0.5

4 x = 0.90 m = 1.124 1.127 1.130

1.119

1.105

X
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We see also from the Table, that Rankine's value for m be-

longs to a mixture of about 80 parts steam and 20 parts water.

The dependence of m upon the initial and final pressures is

also shown by the following tabulation given by Zeuner, in

which the steam is assumed to be at first pure, without admix-

ture of water. The table also gives the expansion ratio e.

Initial Pressure

P
in Atmospheres.

Final Pressure p t ,iu Atmospheres.

0.5 124
x - 0.854 0.884 0.918 0.956

e = 11.577 0.236 3.375 1.834

m= 1.132 1.136 1.140 1.143

x = 0.888

e = 6.282

m- 1.132

x- 0.924

e = 3.409

m= 1.130

x = 0.961

e = 1.848

m= 1.129

0.921

3.390

1.135

0.960

1.842

1.134

0.958

1.837

1.140

We see from this that for the same initial pressure p, the

value of m is greater, the greater the final pressure ;?,. We see

also that the deviations are slight, and that hence we can take

for m the mean value m = 1.134.

The expression which gives the adiabatic curve of saturated

steam, originally without admixture of tvater, is therefore

18t

Hence

or the expansion ratio e is

(XXX.)
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Now from the table on page 447, we see that for the same

initial pressure, m is less the greater the water weight in the

mixture. If we take the mean of those cases where the initial

steam quantity is 0.90, we have m = 1.125.

The mean for x ~ 0.80 is m = 1.115 and for x = 0.70, 1.103-

Hence we have,

for x = l m = 1.135

* = 0.90 ro = 1.125

x = 0.80 m = 1.115

x = 0.70 m = 1.103.

Zeuner has found that these values are given very closely by
the empirical formula,

m = 1.035 + O.lOOtf . . . (XXXI.)

Grashof has assumed in his investigation of the steam en-

gine, m 1.125, a value which corresponds therefore to a

mixture containing ten per cent, of water. We shall refer to

this when speaking of the steam engine. We would only
remark here, that the steam passing from the boiler to the

cylinder has always a certain amount of water suspended in it

mechanically ;
that the amount of this water depends upon

the velocity and the fierceness of ebullition ;
that also in long

passages, some steam is condensed and carried into the cylin-

der. In locomotives the water weight is not unfrequently 25

to 30 per cent.

The indicator diagram of the steam engine confirms rather than

contradicts the correctness of the mechanical theory of heat. If we

compare the indicator diagram of the steam engine with the

isothermal curve for gases, which is given by Mariotte's law,

we find that this curve deviates but little from the curve of the

diagram. It has thus been asserted that the steam in the cyl-

inder of a steam engine follows, during expansion, Mariotte's

law, pv p&i, and that hence the conclusions of the mechanical

theory of heat must be incorrect. Properly regarded, the con-

trary is the case. The value of m in the equation
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approaches unity more nearly, the greater the quantity of

water and the greater the expansion. As the steam always
carries with it a considerable percentage of water, m cannot

differ much from 1, and hence the indicator curve does not

Tary much from that which gives the law of Mariotte. If, for

example, we refer to the figure on page 438, we find that between
4 and 1 atmospheres and for 20 per cent, of water, the volumes
are nearly inversely as the pressures. Thus while these last

are 4, 2, 1, the former are 0.38, 0.71, 1.32.

Work of Steam Expanding Adiabatically. We have seen in

Part I., that the work of one kilogram of air, when expanding
adiabatically, is

~
Jc-lL \p

where Jc = 1.41, and the equation of the curve is

pv
k = plvl

k
.

Since our equation for saturated steam has the same form,
we have a similar expression

(XXXIL)p

If we compute according to this formula the work during
expansion of steam for different initial pressures and expansion
ratios, and compare the results with those given by the for-

mula on page 431, we find a very satisfactory agreement. We
will show this by an example, which will serve at the same
time to illustrate the use of the last formula.

EXAMPLE.

What is the work done by 1 kilogram of saturated steam, while expanding
adiabatically from 4 atmospheres to 1 atmosphere?

Here p = 4, p = 1 and v = xu + 6 = 0.448. Hence^ = 0.25, and for
P

n ~
, we have - = 0.122. Substituting these values we have
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4x0 447
L = 10334 x

o-jgg [1
-

(0.25)-i22J. Now log (0.25)
122 = 0.122 log 0.25

= T .9266, and (0.25)-
1W - 0.845. Hence 1 -

(0.25)
- 182 = 0.155. Further,

4. * 447
10334 x

*
,

' ~ = 136408. Therefore
U.loO

~~^-

L = 136408 x 0.155 = 21143 meter-kilograms.

The corresponding heat is

Q = AL = ?^? = 49.86 heat units.

On page 445, we found 49.7 heat units, a very close correspondence.

Zeuner has investigated, by several other examples, how far

the results of the present formula agree with those given by
the previous. The following tabulation gives the comparison.
The product A LI indicates the result of our present formula,
and AL that of the other, while e is the expansion ratio.

in Atmospheres.
Final Pressure^ in Atmospheres.

e = 11.51 6.247 3.392 1.842

AL, = 94.90 74.02 51.35 26.73

AL = 94.93 73.75 51.01 27.57

<? = 6.25 3.392 1.842

AL^ = 70.95 49.22 25.63

AL=71.U 49.17 25.53

e = 3.392 1.842

AL, = 47.19 24.57

AL = 47.40 24.59

e= 1.842

AL,= 23.58

AL = 23.70

We see that the values of ALt and AL coincide as near as

can be desired. "We may therefore make use of the approxi-
mate formula XXXII., in calculating the work of expansion in

the steam engine. This we shall do, but we may give it a more
convenient form.
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m-l
/ fh \ m / V \

m ~ 1

Thus instead of f -*2-

J
we can put (

j
,
and there-

fore

As already remarked, Grashof, in his discussion of the steam

engine, has taken m = 1.125.
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THE principle that in every reversible cycle process, the pro-
duct of the

A

highest and

lowest abso- .

lute tempera- ^ xA 2

tures is equal \T *^*lt J..

to the product
of the inter-

mediate abso-

lute tempera-

tures, the cor-

rectness of

which we have

shown by v
an

example on

page 252, of

Part L, can

be proved gen-

erally in an elementary manner.

Let AA and A^A l9 Fig. 75, be adiabatic curves; TcT2 and

T-aT3 lines which follow the general law

n_ rt_

pv m

Let T and T^ on AA be the absolute temperatures of 1

kilogram of air, and T% T3 the final absolute temperatures
when this weight of air passes along TcT* or T^aT* Let the

curves TdT Bid T^gT^ be isotliermals.

453
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Let us first consider the curves TcT2, TZT3 T, and TdT.

For the isothermal curve TdT, we have

pv qw. . .
- ..... (!).

For T2T3T, we have

P&f = qrf........ (2)..

For TcT2, we have
OL

pv p^m....... (3).

Let us seek first to determine from T, T^ and v* the volume

Ow = w.

From (2), we have

vz
k ~ l

qw x wk ~ l
.

Since, however, for perfect gases p>zv2
= ET2, and qw =

x v-f"
1 = ET x u?- 1

,

or

Let us now find v in terms of the same quantities.

From (3),

-5-1 i-1
X Vm = UiVi X n, .

Since here pv = R T, and p2v^ =

RT x 1^"* =

Hence

Now we have seen in Part L, page 189, the expressions

2r; ;3s

are very appropriately called " heat weights." But Ql was the
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heat imparted upon the path TvTi9 and $> that abstracted upon
the isothermal T^ (see Figure in Chap. VI., Part L). All the

heat imparted went to produce outer work. T^ was the abso-

lute temperature at which heat was imparted, and T$ that at

which it was abstracted. Let us apply this to our present

Figure.

Thus, the expression -~L is the heat weight which must beA JL

imparted to the unit of weight of air, when it passes from the

condition p9 v, T, along the isothermal TdT9
to the condition

q, w, T. Denote this heat weight by P, then

Now, according to Equation XYI. of Part I., page 160, the

heat Q imparted is

7/1

Q = 2.3026^8T log-,

or using natural logarithms,

Substitute this in (6), and we have

P = E log nat ....... (7).

Here, then, is a new expression for the heat weight. It is

given by the initial and final volumes, during expansion along
the isothermal, and by E. The value of R varies for different

bodies.

Now we have also found, page 147 of Part I.,

hence

c k 1 , ,w
,

<8>-
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If we put now for w and v their values from (4) and (5), we

have

or
n-m*

or finally,

From Equation XLI., page 200, Part I.,
= c is them n

specific heat * for the law of change

Therefore we have

P^-JlognatJ. ..... (9).

This is, therefore, the heat weight for the path TcT2 .

We can thus find the heat weight for any transference of a

body from one condition to another, if we know the initial and
final temperatures as well as the specific heat for such transfer.

If the initial temperature is t, and the final ^, then T = 273 + t

and Ta
= 273 + 4, so that

p s , , 273 +
=

If we change the condition T^ p%, v% along the same curve
T2cTmto the condition T, p, v, by abstracting heat, the heat

weight abstracted is

' *
i ,71-
log nat -
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If TbNis another curve, which has the same initial point T,

and whose end lies in the adiabatic A^A^ then, if the change of

condition follows this curve, for which the specific heat is, say

$!, and the final temperature T4 , we have

Since N is on the adiabatic curve A^A^ the heat weight
added along TcT2 is the same as that along TbN, and

*
i 4.T* *i i * ^4

-j log nat = =
-^ log nat -= .

jCL ./. ./I J.

Therefore, when a body passes from the same initial condition

into differentfinal conditions, the heat weight imparted is always the

same, if thesefinal states are in the same adiabatic.

On page 177, Part L, we have seen that the heat Q and Qlt

which must be imparted to a body, when passing by different

isothermals from one adiabatic to another, are as the abso-

lute temperatures T and T^ Hence

Q _ ft Q ft

T ~
IT ^AT

=
AT[

'

That is, the heat weights are equal. If, now, T^a T% is a curve
n n

whose law is pv = p^v.f
1 = etc., that is, if it is a curve of the

same kind with TcT2, we have again

For since the curve T&T* is of the same kind as TcT* we
have the same specific heat s.

Since now

ft Q .- s
lo

"ZIV""3T~Z
lo

we have

. . . (10).
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From this equation we have - = ~
,

-Li *

or

and this is the principle already deduced in Part I. for a spe-
cial case.

If in the cycle process, TcT^ T2TS,
T3aTlt TiT, we consider

o

the heat weight imparted on the way TcT2 ,
that is, -r- log nat

-^ , as positive, and that abstracted on the way T^aT^ viz.,

s T
-j log nat -=-

, as negative, we can say that
J\. _/ 1

In every reversible cycle process the algebraic sum of the heat

weights is zero.

We have thus far spoken only of such reversible cycle pro-
cess as are inclosed by four curves. We may have a process

composed of three, or more than four lines. One of more than
four lines is called compound. In Fig. 75, TcT2T3TdT is a

cycle process of only
three lines. In such a

process, also, the heat

weight imparted is equal
to that abstracted. For
the heat weight on the

way TdT is equal to that

on the way TcT*
Since we shall have

frequent occasion to

speak of "heat weight,"
let us by some examples

X endeavor to get a clear

idea of it.

<-v

FIG. 76.

Suppose in a cylinder
the unit of weight of air of the volume v, and absolute temper-
ature T, and pressure p, Fig. 76, and let us heat this air under
constant volume v, until the pressure is pl and temperature T^
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The heat weight imparted is

c T
r log nat ~- ,

where c is the specific heat for constant volume.

Now let the air expand under constant pressure pl9 until the

volume is vl9 and temperature T%. The heat weight added is

ck T
-T log nat

~7fi
>

^ JL \

where ck is the specific heat for constant pressure.
The sum of the heat weights, during the change of condition

from p9
v 9
T to vi9 pl9 T^ is then

c T ck T
-jr log

nat - + -r log nat -^ .

"We should have to add the same heat weight when the air

is brought in any other way from the initial condition p9 v, T
to pi, vlt Ttf For if we

suppose an adiabatic

through Tl9 as AA, the

heat weight from T to c

is the same as from T to

Tl9 and from Tz to c the

same as from Tz to T\.

Hence the sum along Tc

and cTz is equal to that

along TT^ and Z7

, T*

FIG

Again, let Os, Fig. 77,

be the specific water vol-

ume (volume of 1 kilo-

gram of water) at . Let sA be the pressure of the steam
at 0. Let now the water be heated until the temperature
has risen to

,
and at the same time let the pressure be so

increased that at every instant it is equal to the steam press-
ure which would exist without this outer pressure. Then, if the

mean specific heat of the water between and is denoted by
c, we have for the heat weight imparted

P r log nat
t +273
+ 273
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If now we suppose the pressure constant and heat the water,

then, as we know, steam is formed at constant temperature /.

If after a certain time a certain volume of steam, SD, is formed,

the line EG represents the law of change. This line is the

isothermal line therefore of saturated steam, because it gives
the relation between volume and pressure for constant tempera-
ture. If, then, the amount of heat imparted from B to C is Q,

we have for the heat weight -pL where T is the constant abso-

lute temperature. This heat Q, is the latent heat. When the

water is evaporated at 100 it is 537 heat units per kilogram.

If, then, SD BC represents the volume of only one half of a

537
kilogram of steam, Q would be -^ = 268.5 heat units, and the

A

Jieat weight imparted is

268.5
= 424 x 268.5

AT 100 + 273
'

Hence to form from water at 0, in the manner described,
a certain volume of saturated steam of t, requires the heat

weight

If we suppose the vaporization had taken place according to

the law represented by AcC, the heat weight imparted is still

the same. For if we pass through B an adiabatic A VA^ we
have for the heat weight from A to c the same value as from A
to B, and from c to C the same value as from B to C. If fur-

ther, Ad is parallel to OX, then Ad is the isothermal for

vaporization at 0. The heat weight imparted from A to d
must be equal to that from A to B, or A to c.

If Ad = SDi represents a volume whose weight is #2 kilo-

grams, and if the latent heat of vaporization is rlt then the heat

weight imparted from A to d is

A x 273
'



APPENDIX TO CHAPTER XVIIL 461

We have then
T

or

T
nat

273 273

Since c is known and TI can be found for every temperature,
we can find from this equation x2 for every value of T,

QUESTIONS FOB EXAMINATION.

What is an isothermal curve ? What is the form of this curve for saturated steam ? Defino

what is meant by saturated steam ? What effect has (he addition of heat to a mixture of water

and steam, when the pressure is constant ? If saturated steam is compressed while the tempera-
ture is kept constant, what happens? What is the expression for the outer work during iso-

thermal expansion ? What for the heat added ? What does u denote in our notation ? What is

specific volume of steam ?

What is an isodynamic curve ? Make out its equation for steam. Show how to construct it.

When water and steam expand isodynamically what takes place ? What is the outer work

during expansion ? What is the heat imparted ?

What is an adiabatic curve ? Make out its equation for steam. Show how to construct it.

In adiabatic expansion of saturated steam, if there is no water at the beginning, what takes-

place ? If there is more steam than water, what takes place ? Does this mean more by volume or

by weight ? If there is more water than steam, what takes place ? In adiabatic compression, if

there is no water at the beginning, what takes place ? If the initial steam weight is greater than

that of the water, what takes place ? If there is more water than steam, what takes place ?

What is the expression for the outer work ? What for the heat ? What is the form of the

equation for the adiabatic curve for saturated steam ? What is the value of the exponent for

dry steam alone ? What for 0.90 per cent, steam ? For 0.80 per cent. ? 0.70 per cent. ? What
is the general equation which gives the value of the exponent for any percentage of steam ?

What does the indicator diagram seem to show as regards the adiabatic curve of saturated

steam ? What is the expression for the work of saturated steam expanding adiabatically ?

What for the heat ? What two formulae have we then for this work ? Do these agree in their

results ?

Can you prove generally that in every reversible cycle process the product of the highest
and lowest absolute temperatures is equal to the product of the intermediate absolute tempera-
tures ? What do you understand by heat weight ? What is the specific heat for any law of

relation of pressure and volume ? What is the general expression for the heat weight ? If a

body passes from the same initial condition into different final conditions upon the same adia-

batic, what is the relation between the heat weights imparted ? In every reversible cycle process,
what is the algebrnic sum of the heat weights ? What is a cycle process ? When is it reversible?

When simple ? When compound ? When complete ? When incomplete ?



APPLICATION OF THE CALCULUS TO SATUKATED
STEAM.

THE relation between the pressure and temperature of saturated steam is

given by the empirical formula of Regnault,

log^ = a + bar + cff, . . .... (1)

where r t t .

In this equation a, b, c, a, and ft are constants, the values of which have

been determined by Regnault for various steams. The logarithm is the common

logarithm, the pressure j9 is in millimeters, / is the temperature Centigrade, and

to is a constant given by Regnault. We have already given the values of these

quantities for water in the text, page 383.

In the application of the Calculus we shall find it necessary to know not

only the relation of the pressure to the temperature, but also the relation of

-j
to the temperature.

This we can easily determine from equation (1). Thus, if we multiply both

sides by the natural log of 10, or 2 . 30'2585093, which we denote by k, we have

nat logp = Jca + kbaT - + kcff,

Differentiate, remembering that r = t t
,
where t is a constant, and we have

Jj-
kb nat log a x ar + kc nat log ft x (?,

or replacing nat. by common logarithms,

-JL
= (*& log a) a7 + (We log ft) ft

r

Since the constants b, c, a, and ft are known for different steams, we can

calculate the coefficients of a7 and (f. Denote them by m and n, so that

m = Wb log a, and n = k*c log ft,

and we have

= maT + nft
r

. . (2)
pat

9

We give in the following Tables I. and II., the values of a, log (ba
T
) and log

(cff) for equation (1), and of log (ma
r
) and log (nft

r
) in equation (2) in terms of

462
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the temperature, for various steams, as given by Regnault's values for the con-

stants. This makes it necessary to give also the signs to be prefixed to each of

the terms on the right side of equations (1) and (2).

By the aid of these Tables we can calculate for various steams the values of

J- and then multiplying by the corresponding values of p, we obtain -.

We thus find the values given in the Tables, pages 479 to 488.

TABLE I.

PEESSUEE IN MILLIMETEES, TEMPEEATUEE CENTIGEADE.

log p = a + baT + cfl
r

.

Saturated steam of
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As the values of f- and -~- lie at the basis of further calculation, we will
pdt at

illustrate how to find them by a few examples.

Suppose we wish to find the value of ^, and and p for saturated steam

of acetone at the temperature 100 Centigrade.

From Table I., we have

log (bcf) = + 0.5312766 - 0.0026148* = 0.2697966,

log (c/n = - 0.9645222 - 0.0215592* = - 3.1204422 or 4T.8795578.

Hence lar = 1.8612155 and c/3
r = . 0007578.

Since a = 5.3085419, we have, taking the proper signs from the Table,

log^? = 5.3085419 - 1.8612155 - 0.0007578 = 3.4465686,

or # = 2796.2 millim.

If we wish the pressure p in inches for 212 Fah. ,
we have

logp = 3.9037120 - 1.8612155 - 0.0007578 = 2.0417387,

or p = 110.08 inches.

For the value of ^ in French units, we have from Table II. ,

pdt

log (ma
T
)
= - 1.3268535 - 0.0026148* = - 1.5883335 = 2.4116665,

log (n/T) = - 1.9064582 - 0.0215592* = - 4.0623782 = 5.9376218.

Hence mar = . 025802, n(? = Q. 00008662,

and
-J^-

= . 025802 + . 00008662 = . 025888.

Multiply this by 2796.2 and we have
-jt

= 72.391.

In this way the values of ~. and ~ in the Tables, pages 479 to 488, are found1

and tabulated once for all, for future use.

If we denote the specific heat of any liquid by c, the amount of heat dq re-

quired to raise the unit of weight by the amount dt is

dq = c dt, hence c = -
(3)

dt

Now the heat of the liquid q has already been given, page 390, on the basis

of Kegnault's experiments. We have then only to differentiate and find
-jj,
cut

to find the actual specific heat. The values of W and r have also been given

already, page 392.

By the aid of our fundamental equations, page 212, we can now easily deter-

mine the outer latent heat, Apu.
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Thus if we have a unit weight of mixture, of which x kilog. are steam and

1 x liquid, we have for the volume

V = XU -\- d (4)

If we impart under constant pressure, and therefore constant temperature, the

heat dQ, an amount of liquid dx is converted into steam, and hence (page 000)>

dQ = r dx.

If we differentiate (4) under the assumption that the temperature t, and hence

M, is constant, we have

, dv
dv = /LI dx, or dx = ,

du'

hence

dQ = dv (5)

But we have from our fundamental equations (page 212),

dQ = A [Xdp + Ydv],

$PJ

Since the temperature and pressure are constant, dp = 0, dt = 0, and

dv.

2

These equations are identical with (5), hence we have

V "'/

'

.

AY = L
u I :

(6>

and

r_ _A(a + f) _ AT
u
~

dt dt
' ' ' - (')

dp dp

The first equation gives the value of the function Y for steam and liquid

mixtures. The second equation gives us

-
u
~

~dt

If we put for r its value p + Apu, we have

Now r and p are the total latent heat and the inner latent heat for a unit of

weight, and, disregarding the very small volume of the liquid as compared with

30
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the steam, u is the volume of the unit of weight. Therefore - and - express the
u u

total latent heat and inner latent heat per unit of volume.

Since we have already seen how
-^

can be calculated, we can calculate and

from (8) and (9) by making use of the values of~ already found. We thus

obtain the values of in Tables, pages 479 to 488.

Having now the values of and knowing r (page 392), we have

r

and we thus obtain the values of u as given in column 10 of the steam Tables at

the end of this work.

If we divide equation (8) by Ap we have

<"

~-As we have already found and tabulated the values of ~- we have only to

multiply by Tto obtain the values of
T-^-in tables, pages 479 to 488.

We have also tabulated the reciprocals of these values

and given them in Tables, pages 479 to 488.

Evidently we have only to multiply these values by r (page 392), to obtain

the value of Apu as given in column 7 of the Steam Tables at the end of this

work.

We may also find Apu = r p, directly in terms of the temperature from
the experimental values of r and p already given

*
(pages 392 and 395). Thus,

Water .................4jw=81.1 + 0.096* - 0.00002*2 - 0.0000003*3
.

Ether ............ ......Apu = 7.46 + 0.02747* - 0.0001354*3
.

Acetone ................Apu = 8.87 + 0.06185* - 0.0002S45*2
.

Chloroform .............Apu = 4.56 + 0.01797* - 0.0000367*2
.

Chloride of Carbon ......Apu = 3.43 + 0.01671* - 0.0000546*2
.

Bisulphide of Carbon. . . .Apu = 7.21 + 0.02524* - 0.0000918*8
.

where * is the temperature in degrees Centigrade.
To reduce to English units and Fahrenheit degrees, multiply the first term

* The values of p given on page 395, are determined from the values of p given in column 9

of the Steam Tables at the end of this work. These values are found by subtracting the values

of Apu in column (7) from the values of r in column (6).
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on the right by 1.8, divide the third by 1.8, and the fourth (ih the case of

water) by 3.24. The second term remains unchanged. Put (t 32) in place

of t.

These formulae give results agreeing almost exactly with the tabular values,

a result most satisfying when we recall the multitude of experiments and the

extensive calculations by which the tabular values were obtained.

From our fundamental equations (page 212), we have

dQ = A(Xdp + Ydv),

dU=Xdp + Zdv,

where the functions T and Z are connected by the relation Z + p Y.

We have just found by equation (6) for steam and liquid mixtures A Y=
,

hence

AZ= -Ap,

*>r putting for r its value p + Apu,

AZ =
, (10)u

which gives us the value of the function Z for steam and liquid mixtures. Re-

ferring to the values of r and p, we see that both Y and Z are functions only of

the pressure or temperature, and are independent of the volume.

We found the same result for permanent gases (page 213). There we found

These give -= =^- = Tc
t

Zi Cv

and the value of k for the permanent gases was constant. If we should make
the same assumption for steam and liquid mixtures we should have

Y u At
-==- = : ;

-
r = k = constant.*

and hence

Tdp

Now we see from our Tables, pages 479 to 488, that this is not true for any
steam. The assumption therefore must be rejected that saturated steam behaves

like a gas.

The density of steam or the weight of a cubic unit is found by

Y u+ 6

We thus find the values of y in column 11 of Table II. at the end of this work.
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FUNDAMENTAL EQUATIONS FOB STEAM AND LIQUID MIXTURES.

In a unit of weight of mixture of steam and water, consisting of x kilog. of

steam and (1 x) water, the inner work is

U =
-j-

(q + xp),

or differentiating,

AdU=dq + d(xp) ..... (12)

The corresponding heat imparted is

dQ = dq + d(xp) + Ap dv ... (13)

and
v = xu + (5 ........ (14)

We can put equation (13) in various forms by the aid of (14) according as we put

for V its value in terms of x or for x its value in terms of 0, and according as we-

express q and p in terms of t or of p.

FIRST TRANSFORMATION. From (14) we have

0- 6

Substituting in (13)

dQ = dq + d\
^(v-6) + Apdv.

Differentiating, regarding q and as functions of p, we have

_ u

Putting p = r Apu

dQ = ~ [q + v - P- 6\ dp + - dv ..... (15)
dp [_* u u J

- u

Comparing this with the general equation, page 212,

dQ = A(Xdp+ Ydv),
we have

AX

or

A* ,7 /~\ ,7 /o.\

, (16)
up up \u j up \u /

and

AY=- . . (17)

_ d f p p \

rfjp \ u u )

dp dp\u)
V
dp \u
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This last result we have already found, page 465. We may put for -?
dp

-j- ,
where the value of the specific heat c

-j-
is easily found from the equation

dt

for q, page 390, and
-=|-

we have already found and tabulated. From equation

SECOND TRANSFORMATION. From (14) we have

dv = d (xu),

and hence

Ap dv = Ap d (xu),

or

Ap dv = A d (pux) Axu dp.

Substitute this in (13) and

dQ = dq + d (xp) + Ad (pux) Axu dp.

Put r = p + Apu, and from (7) Axu dp -= dt,

and we have

dQ = dq + d(xr)-~dt, (18)

which may also be written

dQ = dq + Td . . (19)

THIRD TRANSFORMATION. If we put in (18), c dt for dq we have

dQ = c dt + rdx + xdr dt,

or adding and subtracting xc dt,

If we denote the term

dr_r^
dt
~

T

by h, where h is evidently a function of t only, we have

dQ = (1 x) c dt + r dx + xh dt . . . (20)

The term (1 x) c dt gives that portion of the heat which goes to raise the

temperature of the liquid. The heat to generate the steam isrdx. The last

term xh dt represents then the heat imparted to the steam beyond what is neces-

sary to heat the water and generate the steam. For one unit of weight this

amount is h dt.
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The quantity

is then analogous to specific heat, and gives the amount of heat which must be-

imparted to the unit weight of steam in order that when the temperature i&

raised dt, it shall still be in the saturated condition.

In applying these equations it must be remembered that they only hold good
when the change of state is reversible, or when the steam tension and outer

pressure are always equal. If during the change the outer pressure is different

from the steam tension, we must have recourse to equations (12) and (13).

It remains only to show the form which the two fundamental equations I.

and II., given on page 212, take for steam and liquid mixtures, and to show

that they are confirmed by the preceding.

The first fundamental equation I., page 212, is

dY _ dX _
dp dv

~

Equations (16) and (17) give F and X. Differentiating we have

*L = 1 A (L\ and = ~
dp A dp \u J dv A dp

Put T = p 4- Apu and subtract, and the difference is unity as the first funda-

mental equation requires.

The second fundamental equation II., page 212, is

.Since for mixtures of steam and liquid the temperature is a function of the

pressure only, and is independent of the volume,

dv

and hence

Put for F its value from eq. (17), and we have

r- = AT d
-.

u dt

The second fundamental equation takes then the same form as we have already
deduced in equation (8).

ISOTHERMAL AND ISODYNAMIC CURVES AND CURVE OF CONSTANT

STEAM WEIGHT.

Since when the pressure is constant the temperature of saturated steam is also-

constant, the isothermal becomes a straight line. Also the functions of the

temperature, u, q, p, and r are constant.
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The outer work performed during expansion from Vi to V, is

cv

L =
\
p dv = p (v

-
-o,),

Jv l

or since v xu 4- 6, and Vi = XiU + 6,

L=pu(x-x l ).......... (21)

The change of inner work from equation (12) is, since dq = and p is con-

stant,

) ........ (22)

The heat which must be imparted during expansion is

Xi) = r(x-x l ). . . (23)

If we suppose the expansion to continue until all the liquid is converted into

steam, we have simply to put x = 1 in the preceding formulae. If heat is im-

parted after this point is reached, so as to keep the temperature constant, the

steam is superheated and the curve is different.

For the isodynamic curve we have dU= 0, and therefore equation (12) be-

comes

dq + d (xp) = 0,

or

q qi + xp Xipi = ....... (24)

Combining this with D = xu + 6 and v t = XiUi + 6, we can find for any given

pressure p the corresponding volume v. Thus if the initial conditions x\ and t\

are given, we know at once pi and ?/ 1? and can find VL Then for any other

pressure, p if we can find t, u, q, and p, and from (24) can find x, and then v.

Solving a number of cases in this manner, Zeuner has determined that for

all the steams given in our Tables, if a mixture of steam and liquid expands ac-

cording to the isodynamic curve, there is an increase of steam, and if compressed,
steam is condensed.

If we start with pure saturated steam, or Xi 1, the curve is given by

where for water steam n = 1 . 0456.

If we determine for one unit of weight of steam the specific volume s, by
adding to the value of u from our Tables the value of d, and lay off those

values of s as abscissas, with the corresponding values of p as ordinates, we ob-

tain the curve of constant steam weight. For water steam Zeuner has thus de-

termined

ptf.
0640 =plVl

1-0646
^

If in equation (12) we put then x = Xi = const., we have

A dU= dq + Xi dp', ........ (25)

and since q and p are functions of t,

. dU dq dpA - = + x '
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For compression, or increase of temperature, we have an increase of inner

work, because for all the steams in our Tables, -7- is positive even when x v 1.

Integrating, we have for the increase of inner work

A (U- Z7.) = q
-

qi + x l (p
-

p,).

As to the heat which must be imparted or abstracted in order that the steam

weight shall be constant, we have from equation (20) by making dx = 0,

dQ = (l-x 1)cdt + x.hdt . ... . . (26)

The first term on the right, since c dt = dq, gives the heat of the liquid. The

second term gives the heat required by the steam, during the rise of tempera-

ture dt. One unit weight of steam requires then h dt heat units in order to re-

main saturated. The quantity h may then be defined as the specific heat of sat-

urated steam for constant steam weight. Its value from equation (21) is

dr r

and it is therefore a function of the temperature. Since W= q + r and c dt=dq,
we have

dW W-qh = -dt---^.......-/ (37)

Putting for W and q their values for water steam, page 392, we have

606 . 5 - . 695# - . 00002 /
2 -

. 0000003^
^ = 0.305--

273 + *
-' ' ' ' (28)

and from this we have the noteworthy result that for water steam the value of

h is negative. Thus for t = 0, 100, and 200, we have h = - 1 .9166, -1.1333

and . 6766. That is, during the compression heat must be abstracted in order

to keep the steam weight constant, and during expansion heat must be added.

If then during expansion, no heat is added, a portion of the steam will be

condensed.

Equations (25) and (26) give the change of inner work and the heat which

must be added, for constant steam weight compression. As to the outer work

we have

dQ = AdU+ AdL,
or from (25) and (26)

A dL = x, [h dt - dq - dp] ..... (29)

ft hdt

for water steam. This integral is easily determined from equation (28). We
give in the same Table the values of other quantities which will hereafter occur,

and which in connection with Table II., at the end of this work, will enable us

to solve many examples for saturated water steam. For other steams similar

tables can easily be prepared if ever needed.

To illustrate the use of the preceding formulae, suppose a unit of weight of

pure saturated water steam at 5 atmospheres, to expand performing work, and to

remain during expansion all steam, until the pressure is 1 atmosphere.
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Here we have x = Xi = 1, and from (26)

('a

f'l / f*2 \

^=-L -(-]/*)
TABLE III.

AUXILIARY TABLE FOR SATURATED WATER STEAM.

French units and Centigrade degrees.

1
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Taking the corresponding values from Table III., page 473, column 3, for 5
and 1 atmospheres, we have

Q = 200.457 148.470 = 51.987 French heat units

for one kilogram of steam, or

Q = 360.8226 - 267.2460 = 93.5766 English heat units

for one pound of steam.

We see that this amount of heat is quite considerable, and even if we assume

that the hot sides of the cylinder impart during expansion a certain amount of

heat to the steam, still it is certain that they cannot yield enough to keep all th&

steam saturated, and hence heat from without must be imparted.

The change of inner work is, from equation (25),

A (U3 Z7i) 2 qi + pi Pi.

From Table II., page 666, we have for 5 atmospheres, 01=153.741 pi =454. 994,.

and for 1 atmosphere, <?2
= 100.5 pa = 496.3, hence

A (E72 U\) = 11.935 French heat units for one kilogram.

The negative sign shows a decrease of inner work.

Finally the outer work is

AL = Q - A (Z7a
-

Ui) = 63.922 French heat units,

or,

L = 424 x 63.922 = 27102.9 meter-kilograms

per kilogram of steam. Only a part therefore of the entire heat goes to outer 1

work.

From equation (27) we have in general

(30)

Inserting for W the experimental values as determined by Regnault, page
392, we have for steam of

Water hT = - 523.23 + t + 0.00002*2 + 0.0000003*3
.

Ether hT = + 28 . 85 + . 2257* - . 0002596*2
.

Acetone hT = - 40 . 473 + . 2247* - . 000119*2
.

Chloroform hT = - 29 . 462 + . 2323* - . 0000507*2
.

Chloride of Carbon hT = - 12. 087 + 0. 1041* - 0. 00008U2
.

Bisulphide of Carbon hT = - 50 . 139 + . 0101 * - .

For all these steams, within the limits of temperature of Regnault's experiments,

except ether, the value of h is negative. That is, heat must be abstracted dur-

ing compression and added during expansion, to prevent partial condensation,

and keep the steam saturated. The only exception is ether steam. This steam

alone is condensed by compression and superheated by expansion, if no heat is

imparted or abstracted during the change of state. All these facts are confirmed!
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by direct experiment. Alcohol and benzine steams act in this respect like water'

steam also, but are not included above, because hT is not thus far known as a

function of t. For alcohol steam the value of W is not known, and for benzine

the value of q is still undetermined by experiment, yet we can decide as to this

point.

Thus we see that it is the value of the first term on the right in all our equa-
tions which determines the sign of hT. This term is the value of AT7

for t = 0.

If then we determine this we can settle the question.
If we put t in equation (30) we have

Regnault gives for W in general

W=a + fit + 5t\

where a, fi, y are constants determined by experiment.

Hence -=7- fi + 2 dt, or for t = 0, W = a, and -jr- = fi. Thus when
ut

(I[Q

(hl\ = fia
- a.

Now for benzine steam Regnault gives

W= 109.00 + 0.24429(5 - 0.0001 31 3* '.

Accordingly a = 109, fi = 0.24429, and as a = 27tf, we have

(hT)Q
= - 42.309.

This steam therefore acts like water steam.

For alcohol steam we do not know W, but we know q. From the value of h?

_ dr r

we have

h dt = c dt + Td (
r-

,
,

and putting dq = c dt,

hdt

=(!+f
It is evident that if h is negative, the right side of this equation must decrease

as the temperature increases. Our Tables for alcohol show that such is actually
the case. Thus for 0, 40, 80 , we have, taking the value of r given by the

Tables and using the value of q for alcohol, page 390, for the right side of the

equation 3.1413, 3.1172, 2.0447.

Thus ether steam is the only exception thus far, to the general rule, that to

keep the steam saturated and uncondensed heat must be added during expansion
and abstracted during compression.
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THE ADIABATIC CURVE FOE MIXTURES OF STEAM AND LIQUID.

Since for adiabatie change there is no transfer of heat, we have from equation

(19), putting dQ = 0,

Integrating and putting -J-
= r, we have

Jo 1

xr
+ T = constant.

The value of r is easily determined from the value of q as given page 390.

We have thus for French units and Centigrade degrees

r = 2.4316833 log^ - 0.00 ?057/ 4- 0.60000045^,
X- /O

and for English units and Fahrenheit degrees

T = 2.414100453 log
- - 0.0001054 (t

- 32) + 0.0000001389 (t
- 32)

2
.

4Ot7. T:

We have found and tabulated the values of r for the temperatures correspond-

ing to different pressures in column (4) of Table III., page 473, preceding. We
f

have alsc given r and for the same pressures.

If we denote the initial temperature by t lt and the final by t, we have for

adiabatic change
xr XiTi

-j,
+ * =

-jr
+ r,. . . . . . . . (31;

This is the equation given on page 437, and its use is there explained.

If we put for dq, c dt, we have also, considering c as constant, the approxi-

mate formula given on page 435,

where c is the mean specific heat. As there is no difficulty in finding the exact

value of T, we have no use for this equation here.

With the aid of Table III., page 473, we can find x from equation (31), when

the initial and final pressures are given. If x is found greater than x\ it shows

that steam has been formed. If x is found to be less than Xi, steam has been

condensed. If x is greater than 1, it shows that the steam is superheated, and

the formula ceases entirely to apply, because it is based expressly upon the con-

dition that the steam remains saturated.

The method of using equation (31) has been fully illustrated on page 437,

et seq.
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The empirical formula for the adiabatic curve of water steam,

pv
m = p l v l

m
,

where ra has the value

m = 1.035 + O.lOOz

has been already deduced, page 449.

DEPORTMENT OF STEAM AND LIQUID MIXTURES WHEN THE CHANGE

OF CONDITION IS A REVERSIBLE PROCESS.

The process of change is reversible when at any moment the outer pressure is

equal to the steam tension. This assumption is made in all our foregoing inves-

tigations of the isothermal, isodynamic and adiabatic curves, as well as the curve

of constant steam weight. We can now apply them to problems of technical im-

portance.

PROBLEM. Transfer of heat under constant volume.

Suppose a unit of weight of mixture, Xi by weight steam and 1 x liquid,

at the temperature t\ and corresponding pressure p\.

We have then,

UiX=
u

Xl '

Since the volume is constant, we have dL = 0, and hence

dQ = A dU= dq + d (xp),

or, as on page 472,

:
:

'

'

.

e =*- . +
*..( -si)

<32>

For the " heat weight
"
(page 189), we have from eq. (19),

or

As long as x x l is less than unity, we have to do with saturated steam,

and the formulae hold good.

Equation (15), which holds good for any change of the mixture, is

dp
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Insertingp as a function of t and c = -=-, we have

+ -dv. . (34)

If now the volume is constant, dv = 0, and v = Vi, hence

This value, gives the specific heat of the mixture for constant volume.

The value of c =
-Jj

is easily determined from the equations, page 376. For

steam of water we have given the values of -T I
j
in column 10, of the Table

III., page 473.

Thus for water, c = ^f = 1 + 0.00004* + . 0000009*2
,
and for 5 atmospheres'

at

pressure, t- 152.32 C. Hence c = 1.0269. From our Table HI., page 473,
j / \

-
) =29.160, and since (5 = 0.001,

- = 0.9977 + 29.160,.
at

If we have pure saturated steam and no water, v\ = Ui + d = 0.3636, and

-^-ii-sw,

-which of course holds good for heat abstraction, since if heat were added the

steam would be superheated. For mixtures of steam and liquid, the specific

heat for constant volume is always greater than that of the liquid, and there-

fore for water, greater than unity. This is due to the change of aggregation.

It is worth noting that for water steam the value of c 6 -y, t
Jin equation

<35) may be put with slight error equal to unity.

The application of the preceding to an example will be found on page 449.

Also to the problem of determining the time in which the pressure of steam will

rise a certain amount in a boiler, on page 451.



APPLICATION OF CALCULUS TO SATURATED STEAM. 479

SATURATED STEAM OF WATER.

French Units.

For corresponding values of T&udp, see Table II. (a), at end of work.

0>
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SATURATED STEAM OF WATER (Continued).

English Units.

For corresponding values of Tandp, see Table II. (a\ at end of work.

TemperatureFahrenheit

t.
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SATURATED STEAM OF ETHER (C 4Hi O).

French Units.

For corresponding values of T and p, see Tables at end of work.

2-
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SATURATED STEAM OF ALCOHOL (C 2H 60).

French Units.

For corresponding values of T and p, see Tables at end of work.

62

E
Eg
3
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SATURATED STEAM FOR ACETONE (C 3H 60).

French Units.

For corresponding values of T and p, see Tables at end of work.

TemperatureCentigrade

t.
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SATURATED STEAM OF CHLOROFORM (CHC13).

French Units.

For corresponding values of T and p, see Tables at end of work.

s-
|.

|f
ll
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SATURATED STEAM OF CHLORIDE OF CARBON (CCU).

French Units.

For corresponding values of T and p, see Tables at end of work.

03^.
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SATURATED STEAM OF BISULPHIDE OF CARBON (CS2).

French Units.

For corresponding values of T and p, see Tables at end of work.

g*i
a v

If
SJ?

ll
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SATURATED STEAM OF MERCURY. French Units.

TemperatureCentigrade

t.
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SATURATED STEAM OF CARBONIC ACID.

French Units.

P 9)

If



CHAPTEE XIX.

OTHER CHANGES OF CONDITION OF STEAM AND LIQUID MIXTURES,
OF PRACTICAL IMPORTANCE.

I. The Deportment of Steam and Liquid Mixtures, when Heat is

Imparted or Abstracted under Constant Volume. Suppose 1 kilo-

gram of steam and liquid inclosed in a vessel, of which x kilo-

grams are steam and 1 x liquid. The temperature of the

mixture is t and the pressure p. The specific volume v of the

mixture is then

V = XU + ff.

Let now heat be imparted or abstracted. The temperature
is then ti9 the pressure plt and the specific steam quantity is x^

the final specific volume we have

If now, the volume is kept constant or v vlt

xu + ff = x\u\ + ff,

hence the weight of steam at the end of the operation is

= x ..... (XXXIV.)

EXAMPLE.

Suppose we have in a vessel a mixture of Gr kilograms of water and steam of

which 0.86r are steam, and 0.26r water. The pressure is 1.5 atmospheres. What
will be the specific steam weight x

{
when the steam has lost so much heat that

the pressure is only -^fth of an atmosphere ?
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For H atmospheres u- 1.126 (Table II.)

"
-fa u = 14.551,

hence

a-,
= jfi:. x 0.8 = 0.0774 x 0.8 = 0.06192 kilograms.

Hence the entire steam quantity at the end is 0.06196? kilograms, and the

water quantity is (1
-

0.0619)G = 0.9381 kilograms. There is then 0.8

0.0619 = 0.78810 kilograms of steam condensed. For English units the result

is the same.

What is the amount of heat Q which must be imparted or

abstracted from the. mixture per kilogram ?

Since, in this case, there is no outer work, all changes affect

only the inner work. If then q is the heat of the liquid, p the

inner vaporization heat at the beginning, and qi and pi at the

end,

Q = y
- & + PX - P&

or

Q =q- q1 + px- p^-x

= q qi 4- xu

EXAMPLE.

(e.
_ \ (xxxv.)

\ v

What is the amount of heat abstracted in the preceding example ?

For 1 atmospheres

q = 112.41 = 433.

For TV atmosphere g, = 46 .28 = 37,
Ui

Hence Q = 112.41 - 46.28 + 0.8 x 1.126 (433
- 37) = 66.13 + 0.9 x 396

= 422 heat units per kilogram.

For English units we have q = 202.33 - = 48.6 ; q l = 83.3 = 4.16 ;

u - 18.03
;
and hence Q = 760 heat units per pound.

The preceding finds application in the condenser of a steam

engine. Let AS, Fig. 78, be the steam cylinder, C the piston, EF
the condenser communicating with ABby the pipe and cock D.
In steam engines, usually, communication of the cylinder with

the condenser is opened before the end of the stroke. Thus,
for example, when the piston is at (7, and still going up, com-
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munication may be opened. Immediately the hot steam of

high pressure in the cylinder mixes with the colder steam of

lower pressure in the condenser, so that al-

most at once there is a medium pressure in

both vessels. We shall see presently how to

calculate this medium pressure. Since now
the condenser is kept always cool either by
water applied on the outside (surface conden-

sation), or by water injected (jet condensation),

this mean pressure quickly sinks, owing to

the abstraction of heat, and we may assume

that this fall of pressure takes place while the

piston hovers at the end of its stroke. Heat is

thus abstracted under constant volume. The
steam in the entire space (cylinder and con-

denser) has now only the pressure correspond-

ing to the temperature of the condenser, and
the cylinder sides are kept hot. This was, as we know, the

reason which led Watt to employ separate condensation, and
it constitutes, indeed, the chief value of his discovery, regarded
from an economical stand-point.
The question arises, how many kilograms of cooling water

are necessary for each kilogram of mixture in our last example,
if this water is heated, from say, t 15 to ^ = 35 ? We have
from Equation II., page 390, for the heat of the liquid at 15,

q'
= 15.005, and for that at 35, q" = 35.037. If & kilograms of

water are required for abstracting the 422G heat units, we have

G, (35.037 -15.005) -422 G,

and hence the ratio of the weight of cooling water to that of

the steam is

FIG. 78.

422 422

G
'

35.037-15.005 20.032
= 21.

Let us now investigate what amount of heat should be

imparted to a mixture of steam and liquid in order that the

pressure and temperature may rise to a certain point.
Let the initial steam weight be again xG kilograms, the
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water weight (1 x) G kilograms. At the end of the heat ad-

dition let there be XL G kilograms of steam, and (1 x^ G of

liquid. In the beginning let the heat of the liquid be q and the

inner latent heat p ; at the end, q and plm Then we have for

the amount of heat imparted, for each kilogram

Q = qi q + ux (
J
heat units,

or for G kilograms

Q=\ qi q + ux
( } \G heat units.

L \^i /j

By the aid of this formula we can solve a question of great

practical interest, viz. :

In what time will the pressure of steam in a boiler rise by a cer-

tain amount (say, to double or treble), whenfrom a given instant no

'more steam is drawn off?

Let us assume that there are Qm heat units imparted every
minute to the boiler, and that at the moment of closing the

Talve, there are xG kilograms of steam, and after Z minutes

there are x^G kilograms ; the initial pressure being p, and that

after Z minutes p^ Since in Z minutes ZQm heat units are im-

parted, we have

ZQm Qi, or Z f .

Vm

If in place of Q1 we insert the value above, we have

This expression may be simplified. From page 490,

qiq) G
Vm Vm

(XXXVI.)

Now, (<fr q) G is the excess of the sensible heat over that

at the beginning, and (p^ px) G is the excess of the inner
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latent heat. Since, however, /^ and p differ by less than q1 and

q, and the steain weights x and x are very small compared to

the entire weight G of water and steam, especially when we
remember that the boiler is about fds full of water, we cam

neglect (P^XI px) G in comparison with (^ q) G, and then

Z=--(ql -q) . . . (XXXVH.)

If c is the mean specific heat of water, and ^ and t the initial

and final temperatures, we have very nearly

Z=--(ti -t)c. . . (XXXVIII.)
Vm

This very simple expression shows, that the time in which
the pressure or temperature of the steam in the boiler rises by
a certain amount is proportional to the weight of the water, or

capacity of the boiler, as well as to the difference of tempera-
ture, and inversely proportional to the heat (Qm) imparted.

This is in fact evident, for it is clear that the time within

which the temperature rises a certain amount must be greater
the greater the weight of the entire mixture, and that for this-

rise of temperature less time will be required the more heat is-

imparted in a unit of time.

The heat imparted to a given mass of water in a unit of time

depends, however, also upon the extent of heating surface,
as well as upon the intensity of the heating. The first consists,
in every boiler, of two parts, the direct and indirect heating
surface. The direct heating surface is that directly in contact

with the fire, the indirect is that in contact with the heated

gases. Boilers which are required to generate steam quickly,
and yet not hold much water, such as locomotive boilers, etc.,

possess a relatively great direct heating surface. The same

weight of water thus receives in the same time a much greater
amount of heat than in boilers where the direct heating surface

is small in comparison to the indirect, and which are therefore

larger and contain more water, as in stationary engines. In a
locomotive boiler, therefore, the steam pressure rises much
quicker than in that of a stationary engine.
We may illustrate the preceding by an example.
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EXAMPLE.

The heating surface of a cylindrical steam boiler is 18 square meters (or

193.75 sq. feet; according to Zeuner, it is about 15 H. P.). The contents are 11

cubic meters (or 388.48 cubic feet), of which 0.6 are water and the rest steam.

When the engine is in ordinary action, the boiler generates every hour 25 kilo-

grams (or 55.115 Bounds) of steam for every square meter of heating surface, of

5 atmospheres' pressure. In how many minutes will the pressure rise to 10 atmos-

pheres ? First we have for the steam weight generated per minute,

^ = 7.5 kilograms.

193.75 x 55.115
or -

;:
- = 16.534 pounds.oU

If this steam is generated from water at 15 (or 59 Fahrenheit), we can easily

calculate the heat units necessary for its generation.

Since in the present case (when the machine is in motion) the heat has to

perform outer work as well as inner, we have for the total heat which must be

imparted in order to raise 1 kilogram of water at t degrees into 1 kilogram of

steam at ti degrees,

W=qi q + r. qi q + p + Apu.

In our case t, = 152.2, q, = 153.74, q = 15.005, p = 454.99, and Apu = 44.19.

Hence W= 153.74 - 15.005 + 454.99 + 44.19 = 637.92 heat units.

or W= 276.73 - 21 + 818.99 + 79.54 = 1148.28 heat units English.

For 7.5 kilograms, therefore, we must have

7.5 x 637.92 = 4784.5 heat units.

or 16.534 x 1148.26 = 18980.74 heat units English.

This is then the heat imparted per minute to the water. It represents Qm in

Equation XXXVI. Since, further, the contents of the water space is 0.6 x 11

= 6.6 (or 233 cubic feet), the water weight is = 6600 kilograms (or 14562.5

pounds). The steam weight can be disregarded, and we have thus G = 6600

kilograms. If now we take c 1.022, we have

Z=-- (180.31
- 152.22) x 1.022,

4/84.5

or Z -.= <' (356 - 56 - 305'") x

where 180.31 is the temperature of the water at 10, and 152.22 that at 5 atmos-

pheres. We have, therefore,

^ = 39.71 minutes.

If we assume that a locomotive boiler furnishes in the same time 3.3 times as

much steam, which is in general not far from correct, the time in raising the

pressure from 5 to 10 atmospheres is only

39.71-- = r2 minutes.
0.0
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Fairbairn found the time required to raise the water of a

locomotive boiler from t to tlt to be given by the empirical for-

mula

^=0.405 ft-0,

where Z is the number of minutes. If we take ^ 180.31 and

t = 152.22, we have

Z = 0.405 x 28.09 = 11.38 minutes,

which agrees well with our result.

We should bear in mind, that the steam pressure increases

in a much more rapid ratio than the temperature, and hence

in a boiler with high pressure less time is necessary for a cer-

tain increase than in a boiler with low pressure. Thus, for in-

stance, let us suppose the normal pressure in the preceding

example to be 9 instead of 5 atmospheres, and then see how

many minutes (Z) are necessary for a rise of 5 atmospheres,
from 9 to 14. We have now for ^ 195.53, and t = 178.02 ; hence

(
195 -53 ~ 178.02) x 1.022 = 247 minutes,

or much less time than in the first case. In order to conclude,

therefore, whether the empirical formula of Fairbairn, applied
to locomotives, gives results in accord with our formula, we
must know for what mean pressures it is made out.

It is also easy to see from our tables that an increase of

pressure of double, treble, etc., takes place in a shorter time

for low pressures than for high.
The preceding calculations show that the time in which the

pressure in the boiler of a stationary engine increases to double

or treble when the steam pipe is closed, and the steam genera-
tion is as when in use, is tolerably great, even when heat is im-

parted as during ordinary action of the engine. If, when the

engine is not in action, the fire is left to itself and only fed

enough to keep it going, the time will be much greater. In

stationary engines, then, there is less danger of explosion from

this cause. In locomotives and such boilers, which have a
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large and direct heating surface, and the fire is kept up full,

the danger is greater.

Mixture of Steam Quantities when in Different Conditions. In

the preceding we have considered the change
of condition of a mixture of steam and liquid,

under constant volume. Let us now consider

two vessels containing a mixture of the same

kind, but having in each a different temperature,

pressure, etc.

Let A have the volume V, and B the volume

TI. Both vessels are connected by the cock a.

In the first we have xG kilograms of steam of

the temperature t and pressure p ;
in the sec-

ond, Xi G^ kilograms of steam of the temperature

^ and pressure p. The water in A is then

(1 x) ft and in B (1 x^) ft kilograms. As
soon as the cock a is opened the steam in the

vessels mixes, and it is required to find the

final condition after, mixture, when heat is neither added nor

taken away.
We have

V = (xu + ff)G and Fi = (XM + &) ft.

After opening the cock, the total volume is

F2
= F + Pi = (XM + <r)(G + ft),

FIG. 79.

where #2 is the specific steam quantity after mixture.

Hence

(xu + a) G + (xiUi + ff) GI = (xju% + a) (G + ft),

or, after reducing

(0 + ft) x^ = Gxu + G,XM . . (XXXIX.)

In general, ft may be expressed in terms of ft so that

I
= n G. We have then

(1 + n) x^ = xu + . . . . (XL.)
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We have in this equation two unknown quantities, x.2 and u*.

We must establish another equation between them.

Let the heat of the liquid in A be q, and in B, qit and the

inner latent heats p and u
:
. Then the amount of heat, measured

in heat units, in the first vessel is

(q + xp) G,

and in the second

After mingling, let the heat of the liquid be q2,
and the inner

latent heat be p2. Then 1 kilogram of the mixture contains

<?2 + ^VJ2 heat units.

Since, now, we had in A, G, and in B, GI kilograms of water

and steam, we have still the same total amount, and hence the

heat contained by the total mixture is

(G + GI) (q% + x*>P^) heat units.

Since heat is neither added nor abstracted, we must have

(G + GI) fe 4- #2P2)
=

(q + xp) G + (qi + XiPi) GI.

or, putting GI =nG,

(1 + n) (q% + X2p2)
= q + xp + (qi + #ipi) n.

Hence

Since all the quantities on the right are known, we can put
the expression on the right, for the sake of brevity, equal to p^
and thus have

Further, from Equation XL.,

xu +
.

',,
, T
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or, denoting the expression on the right by it-^

Xs=-\ (XLI.)

hence

c/9 H n\ it . . . . (XLII.)^

From Table II. we can find, by trial, the values of #2 and

in order that
<?2

+ p\= p* As soon as q% and are

known we can find at once the pressure p2 and temperature t2 of

the specific steam weight a%, that is, we can find the condition

of the mixture after the cock is opened. An example will

make the use of the formula clear.

EXAMPLE.

In the cylinder A we have G kilograms of pure saturated steam at 1.5 atmos-

pheres, and in B, #, = 24.3806s

kilograms of water and steam of -^ atmosphere,
of which 0.0095 kilograms are steam. What is the condition of the mixture after

the cock is opened ?

For the pressure 1.5 atmospheres, we have from Table II., 112.41,

p = 487.01, and u = 1.126.

For the pressure 0.1 atmosphere we have

q, = 46.28, p, = 538.85, and u, = 14.55.

Also n = 24.38, and x
l
=0.0095. Hence

- n - 1 ' 126 + 24 - 38 x 0.0095 x 14.55 _ 1.126 + 3.376 _ Qm
1 4- 24.38 25.38

Also

112.41 4- 487.01 + (41.28 + 0.0095 x 538.85) x 24.38
Qz + **P Z

=
1 4- 24.38""

= 72.99 = n.

Accordingly,

?2 + ^ x 0.177 =-. 72.99.
ttf

Now from Table II., after a few trials, we hit upon q z = 60.59, for which

= 70, and these substituted give

60.59 + 70 x 0.177 = 60.59 + 12.39 = 72.98,
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;a value almost exactly equal to 72.99. The heat of the liquid (q s ) after the

mingling, is then 60.59 heat units. Hence, from the table, the temperature t z

is 60.4, and the pressurep2 is 0.2 atmosphere. Since for this pressure * 2 =7.542,
we have from XLL, for the steam weight in each kilogram

X*= % =
7:542

= '0234 kil Srams '

Before the mingling, we had in A, kilograms of steam and no water, and

inj5, a; ,0, =0.0095 x 24.386? = 0.2316a kilograms steam and (1-0.0095)
.24.380 = 24.1480 kilograms of water.

In both vessels, then, the total steam quantity was

(1 + 0.2316)0 = 1.23160 kilograms.

After mingling, the steam weight is

# 2 + x za l
=

2 0(1 + 24.38) = & x 25.38 x 0.0234 = 0.5960 kilograms.

Hence

(1.2316
-

0.596)0 = 0.63560 kilograms

of steam have been condensed.

We can also find the ratio of the volumes of the two vessels. If the volume
of A is F and of B is F, ,

we have

F : F, = G(xu + 6) : 0, (x,u }
+ 6) . . . (XLIII.)

= xu + 6 : 24.38 (!%, + 6)

- 1.127 : 3.388

= 1 to 3 very nearly.

The preceding, together with what has been said on page 448
and the following, forms the basis of the theory of the con-

denser. We have already referred to the action of this appa-
ratus. We noticed that the cylinder was put in communication
with the condenser, when the piston is near the end of its

.stroke. We have, then, a sudden mixing of the hot and high
pressure cylinder steam with the colder and lower pressure
condenser steam. The above calculation includes this case.

It shows how, from the pressure of the cylinder steam and the

condenser steam, we can find the mean pressure of the steam
in both vessels. This pressure then falls rapidly down to that

of the condenser, by reason of the cooling produced by the jet
or by the surrounding water. The calculations in the first

part of this chapter, then, enable us to calculate the heat thus

.abstracted, under constant volume.
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If the condenser is fitted with a gauge, we should see, at the

moment of communication with the cylinder, a sudden rise of

pressure, lasting but for an instant, and then a quick return to

the condenser pressure.
It will now be easy to give a complete theory of the con-

denser. There are two kinds in use. The first presents a-

very great surface which is continually in contact with water,

so that it is kept cool. The steam is condensed without coming
into direct contact with the water. This is called the surface

condenser. The other consists of a vessel, not only sur-

rounded by cold water, but into which cold water is injected.

The steam is thus condensed by direct contact and mixture

with the water. It is called the jet condenser. In the first, we
have only to cause a circulation of water by means of a pump,
and by means of another pump to restore the condensed steam

to the boiler, and if there is no loss by leakage of steam, we
have a complete cycle process. In the jet condenser, we have

not only to remove the condensed steam but also the water in-

jected. Since this is in weight sometimes more than 20 times

that of the steam, the pump must be much greater than for

the surface condenser. The injection water also contains air,

which must also be removed by the pump. For this reason it

was called by Watt the "
air pump."

QUESTIONS FOB EXAMINATION.

If heal is imparted to or abstracted from a mixture of steam and water, the volume of which-

remains constant, what is the new weight of steam ? What is the heat imparted or abstracted ?

What amount of heat should be imparted to a mixture of steam and water in order that the

pressure and temperature may rise to a certain point ? In what time will the pressure of steam

in a boiler rise by a certain amount, when no more steam is drawn off ? If in two vessels com-

municating by a cock, we have mixtures of steam and water of given pressure, show how to find

the condition of the mixture after the cock is opened.



CHAPTER XX.

THEOKY OF THE CONDENSER.

A. THEORY OF THE SURFACE CONDENSER.

WHEN the piston K has reached the upper end of its stroke,

the slide 8 has opened the port o, and the steam escapes into

the condenser CD ;
at this moment,

therefore, the cylinder steam mixes

with the low steam in the condenser.

The pressure in both spaces may thus

rise to double the ordinary pressure
in CD. We can calculate it as in the

preceding chapter. But now, while

the piston lingers at the end of its

stroke, the pressure falls by reason of

the cooling effect of the condenser.

Heat is abstracted under constant vol-

ume, and we can find the final condi-

tion, as well as the heat abstracted,

from Equation XXXV. Then the pis-
ton K descends, and drives the steam
in the cylinder, now at the condenser

pressure, under that pressure, into the

condenser. Here, then, we have mechanical work under con-

stant press-are. This work is transformed into heat, and this

heat is also absorbed by the condenser.

We see, therefore, that in every stroke there are three stages :

1st. Mixture of cylinder with condenser steam, and the at-

tainment of a mean pressure.
2d. Lowering of this pressure by cooling under constant

Tolume.

501
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3d. Abstraction of heat under constant temperature, while

the low cylinder steam is forced into the condenser.

If, therefore, we suppose in the cylinder AB, before opening
of the port, G kilograms of steam and water, we have, in each

kilogram of the mixture, x kilograms of steam and 1 x kilo-

grams of water. The steam quantity in AB is then xG kilo-

grams, and the water quantity (1 x) G kilograms.
If we had only pure saturated steam, we should have x = 1,.

and the steam quantity in the cylinder would be G kilograms.

Suppose we have in the condenser CD, before the mingling,

G\ kilograms of steam and water, and in every kilogram of the

mixture x1 kilograms of steam and 1 ^ of water. The steam

weight in the condenser is then x^Gi, and the water weight

As soon, now, as we know the pressure of the steam in the

cylinder and in the condenser, we can find, according to the pre-

ceding chapter, the condition of the steam in both spaces after

the port is opened. We have

Gxu 4-

*** =
I?

and

If, as before, we denote the fraction on the right in the first

equation by 7tl9 and in the second by n, we have

=
i, or #2 =

and

and thus, by a few trials with the table, can find q2 and the

pressure p% and the temperature f2 of the mixture directly the

port is opened. This pressure p% is, of course, greater than pt

and less than p.
Heat now is abstracted from the mixture, until the pressure

sinks from p% to p^. In order to find this heat we have Equa-
tion XXXY.
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In order to impart to 1 kilogram of steam and water, of which

x kilograms are steam, whose temperature is t and pressure p,

a pressure^ and temperature f1? we must add a quantity of

heat (or subtract) equal to

Q = q
~

ft + PX -
or

If we have in the beginning G- 4- G\ kilograms, at the press-
ure p% and temperature >> the steam weight per kilogram being

x% and, by abstracting heat, reduce the pressure to pi, and the

temperature to tly then we have

or

ft = (ft + sift) (0 + 0,)
-

q, + x^ (G +

If, as on the preceding page, we put

(0a + o^p2) (G + 1)
= (q + xp) G + (^ +

and

+ (TI
= fe^ +

we have, after reducing

The difference ---- denotes the excess of inner latent
u u^

heat of 1 cubic meter of steam in the cylinder AE before the

port is opened, above that possessed by 1 cubic meter of steam

in the condenser. The product xu ( ) G is, therefore,\u uj
the excess of the inner latent heat possessed by the entire steam

volume in the cylinder, before the port is opened, over that in
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the condenser. In like manner, (q qj G is the excess of sen-

sible heat of the mixture in AB over that in the condenser. In
other words, the entire expression on the right gives the ex-

cess of heat in the mixture in AB before the port is opened
over that in CD. The heat quantity, therefore, which must be

abstracted, after the mingling, from the entire contents of both

vessels, in order that the pressure p2 may sink to the condenser

pressure pit is equal to that which would have to be withdrawn
from the contents of AB before the mingling, in order to re-

duce the pressure from p to p^ This is, in fact, evident, for if

we first abstracted this heat from the mixture in AB and then

opened communication with the condenser, the final condition

would remain unchanged. The course which we have followed,

however, corresponds perfectly to the actual changes which
take place, and explains why we have, at each stroke of the

piston, sudden variations in the condenser gauge.
We come now to the third part of the process, the abstrac-

tion of heat under constant temperature, while the now low

pressure steam in the cylinder is driven out under constant

pressure into the condenser.

The volume of the cylinder AB is

G (xu + 0) cubic meters,

or if a is very small in comparison to xu,

Gxu.

The inner latent heat in every cubic meter of steam after the

mingling is
; in Gxu cubic meters we have then

This heat must be abstracted. If we suppose the piston K
to have an area of 1 square meter, the distance through which

it must go is Gxu meters. In forcing the steam then under

constant pressure pl into the condenser, the work performed is

^ and this corresponds to the heat
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Hence in this third period we must abstract

Q2
= Gxu + GxuApi = Gxu

(^
+ Ap^\ heat units.

The total heat abstracted is then

= ft + ft = s-ft + a

. (XLIV.)

This formula can be simplified. If we suppose at first only

pure saturated steam without water, x=l, also Ap1 is very
small and may be neglected, and then we have

Q = (q
- & + P) &

Since q + p is the " steam heat
"

J, we have also

Q=(J- qi)G.

For low temperatures we can assume that q^ is equal to the

temperature. If, then, instead of q1 we insert the temperature
of the condensed steam, or generally the mean temperature of

the condenser, tl9 we have

Q = (J-ti)G heat units.

If we assume that we require for condensing the steam, n

times as much cold water as steam, and if the temperature of

this water is raised from t to / degrees, where / is always less

than tit then the heat absorbed by the water is, provided that

we again put the temperature in place of the heat of the liquid,

We have, therefore,

or

n =^A (XLV.)
ti CQ

As the steam heat J for those temperatures which occur in
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the steam engine varies but little (it varies hardly 23 heat

units between 100 and 200), we may take a mean value for it.

Taking then, J = 600, we have the practical formula

n = 1
. ... (XLYI.)

h ~ ?o

. , , .
, , 1080 - ft

-
32)or for Fahrenheit degrees, n = -

,

-
'-.

LI IQ

EXAMPLE.

How much more water than steam must be used in a surface condenser, when.

the water enters with a temperature t = 15 and departs with ^
'

35, the

mean temperature of the condenser being t 46.2, which corresponds to a

pressure of 7^- atmosphere ?

We have

600 - 46.2 553.8
n = ^-== xn

- 27.7 times as much.
oO 10 ,*U

If the steam used per stroke is 0.15 kilograms, the water quantity is

0.15 x 27.7 = 4.155 kilograms

per stroke, or since 1 kilogram of water occupies a space of ^ cubic meters,

4.155 x TI)Vo = 0.00416 cubic meters.

B. THEOEY OF THE JET CONDENSER.

Let A be the steam cylinder with the piston KK. The
mixture of steam and water in it weighs G kilograms. In

every kilogram of this mixture there are x kilograms of

steam and 1 x of water. The temperature is t, and the

pressure is p.

B is the condenser. In this we have GI kilograms, of the

pressure p1 and temperature ti9 and each kilogram contains xl

kilograms of steam.

Finally, C is a vessel filled with cold water at the tempera-
ture fa It holds just as much water as is necessary to con-

dense the steam used per stroke, viz., GO kilograms. Upon the

surface of the water is a piston which is pressed by the atmos-

phere PQ.

Both A and C communicate with the condenser by cocks a
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and b. Let both these be simultaneously open. The contents

of A and C suddenly mingle, and the cold water injected
reduces the pressure in both A
and B to the mean pressure of

the condenser pl
. The pistoniV I; yP KK, as well as that in (7, now

Q descends. WhenKK reaches the

end of its stroke, so has the pis-
ton in (7, and ""all the water has-

entered the condenser, and all

the steam has been condensed.

The total heat in A is

(q + xp) G,

and in

and in (7,

FIG. 81.

Hence the heat in all three vessels is

(q G G1

After the mixture, all the steam and water is in the con-

denser, and we have there a mixture of steam and water weigh-

ing
G + GI + GO kilograms.

In each kilogram of this mixture there is much more water,

and hence much less steam, than before a was opened there

was in A and B. Let the steam weight in each kilogram be

Xi', then x^ is less than xit and we have in the G + G\ + G9

kilograms

x^ (G 4- GI + GO) kilograms of steam,

the pressure of which is pi and temperature ^. Since the heat

of the liquid is qit and the inner latent heat p1? the heat in the

condenser is

(q\ (G
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or, denoting G + GI + G by M,

(q\ + #iPi) -3f neat units.

This is not all the heat in the condenser.

While the piston KK moves down, it overcomes the constant

pressure pi through a certain distance, and therefore performs
mechanical work in compressing the steam. This work gen-
erates heat. Since the cylinder volume is

(xu + ff) G cubic meters,

the work performed is

(xu + a) Gpi, ;

or, neglecting ff,

The heat equivalent to this work is

Ap^xu G.

Mechanical work is also performed by the descent of the

piston in C. If we denote, as always, the volume of 1 kilogram
of water by tf, then since the atmospheric pressure is p ,

the

work performed is

Go^po,

and the heat equivalent is

A Goffp heat units.

The increase of heat due to these two causes is therefore

If we add this heat to that which existed before the mingling,
in the three vessels, we have the heat in the condenser. Hence,

(q + xp)G + (
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Now, as a matter of fact, the heat due to the work performed
is very small, so that we can still have

(q + xp) G + (ft + OiPi) Oi + qQ Go = (q1 + xfpl) M.

Since now (qi + xl'p1)M= ql (G + Gl + GQ) -\- XiP\M, we have,

after reduction,

(q q! + xp) G +

Here Xi' is unknown, but it can be easily proved that

Before the mingling, the volume v of 1 kilogram of mixture

in the condenser was

V = XiUi + (T,

and since there were Gl kilograms, the volume ( Jty in the con-

denser was

After the mingling, the volume of 1 kilogram is

V = x^Ui + (T.

Since the pressure and temperature are the same, u is the

same. But after the mingling, there are M kilograms of steam

and water in the condenser, and hence the volume is

Pi = M (x^ + ff).

Hence,

The product GI&I is the steam weight in the condenser at the

beginning, and MxJ that at the end. As, then, this steam weight
is constant, all the steam in the cylinder must be condensed.

Since now

XiGi = x^M, we have also

and hence the equation above becomes
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"We have, therefore, the water required for condensation

Ot = (q + *p-ti&
2i #o

If we make here x 1, and put for q + p the steam heat J9

and for ql and q the temperatures ^ and
, we have

or if GO = nO

n = ^-j .... (XLYIII.)

This equation differs from XLV. in that ^ in the denomina-

tor is the temperature of the condenser water, while in XLV.
ti is the temperature of the heated condensing water, which is

always less than that of the water of condensation. Since here

also J
'

600 about, we have

n = 6

^

~
**

(XLIX.)

or for Fahrenheit degress,

1080 - ft -
32)

EXAMPLE.

A high pressure steam engine using steam of 5 atmospheres has a condenser

in which the average pressure is 0.1 atmosphere. The cooling water has a tem-

perature of 18. How much more water than steam must be used ?

For -rV atmosphere, t
l
= 46, hence

600 - 46 554
n =

-jg Ye ~oo~ % times as much.

If then the steam used per stroke is C.12 kilograms, we have per stroke

2 40
SO x 0.12 = 2.40 kilograms of water necessary, or ^^- = 0.0024 cubic meters.

We have already noticed the fact that the air contained in
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the injection water is set free. This air increases the press-
ure in the condenser, on the average about 0.05 atmosphere.
The amount of injection water is not thereby increased, but the

air pump must have greater dimensions in order that it may
remove both air and water from the condenser.



CHAPTEK XXI.

THE FLOW OF STEAM AND HOT WATER THROUGH ORIFICES.

A. FLOW OF STEAM THROUGH ORIFICES.

As in Chapter X., Part I., let ABCD be a large vessel with a

narrow discharge pipe EF. In the first is a piston HJ, of F sq.

meters cross-section, and in the pipe a smaller one G, of / sq_
meters. Upon HJ we
have the pressure of p
kilograms per square
meter. The pressure

upon G is P! kilograms

per square meter, and

p1 < p. Suppose the

space between the pis-

tons filled with some

liquid, as water. Let the piston HJ move through the distance

s per second, and G through s^ Then the work of the first pis-

ton is Fsp, and of the second/s^.
The force Fp has to perform two works. First, it must over-

come the constant resistance fp^ with uniform velocity, and

second, it has to impart to every water particle which enters

the pipe an increased velocity, so that the velocity s becomes

! Since the volume fs1 issues through E per second, the

weight of this volume is, if 1 cubic meter weighs y kilograms,

fsiy. To increase the velocity of this from s to sly requires the

work

The force Fp, which drives the piston HJt
has then to per-

512
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2 2

form not only the work fsip1} but also the work

Hence

s
2 <*

Fsp=fslPl+^
or

;, ....
. . . (L.)

Since, also, Fs =fsl9 we have

This is a well-known formula of hydraulics of frequent ap-
plication. If we assume the vessel ABCD very great, with

reference to the pipe EF, or the diameter very great in com-

parison to that of the orifice E, the distance s is very small in

comparison to Si, and we have

or putting w* in place of s*
9

w*
P~Pi = 2g

r ...... (Mt)

We omit, of course, here the fact that the pressure of the

water particles above the orifice, due to their own weight,
assists the force Fp.
Now let us suppose that instead of water between the piston

HJ and Gf, we have saturated steam. Let the pressure of this

steam in ABCD be p. The piston HJ is pressed, as before,

from left toward the right by the force p. If here also the

pressure pl upon the piston G, in the pipe EF, is less than p,

the efflux of the steam is essentially different from that of

water, and is completely similar to that of a gas. The steam

expands when it is subjected, on one side, to a less pressure
than on the other. For this reason, one kilogram of steam in

the pipe EF occupies a greater space than a kilogram in ABCD,
that is, the specific volume v in EF is different from that in

33
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ASCD. The distance between the molecules when they pass
the orifice E is greater, and they have then been moved apart.

This motion can be caused by heat received from without, or

by the heat of the steam itself. In the latter case, a part of the

molecular motion of the steam is converted into outer motion.

In the case of permanent gases, the pressure p^ and the spe-
cific volume Vi in the pipe can be different from that in the

vessel, while still the temperature is unchanged (Chap. X.,

Part I.) "With steam this cannot be, so long at least as it is in

the saturated condition. For this condition, so long as the

temperature remains constant, the pressure is unchanged.
Let us conceive that the expansion of the steam while pass-

ing through E extends to some distance, as shown by the

dotted lines. As the steam molecules reach the first arc, their

expansion, or the increase of their mutual distances, is still

small. As they approach the innermost arc, it is greater, until

in the pipe EF the volume is v^. Since, then, the mutual dis-

tance of the molecules increases gradually, the pressure exerted

by any molecule at any instant upon the next one which lies

nearer the orifice E is greater than the counter-pressure of

this last molecule only by an infinitely small amount. If, then,

the expansion follows any given law, we can calculate the work

necessary for this expansion.

If, for example, we suppose the expansion to follow the law

of constant steam weight, heat must be imparted. We have

seen (page 419) that the heat required by 1 kilogram of satu-

rated steam, expanding according to this curve, varies with the

temperature ; for high temperatures it is less and for low tem-

peratures greater. If the steam pressure, for example, in

ABCD is 5 atmospheres, or p = 5 x 10334 kilograms, and the

pressure on G per square meter is 1 x 10334 kilograms, we
have from Table III. for the heat imparted per kilogram during

expansion,

200.46 - 148.47 = 51.99 heat units.

(Compare the example, page 426.) The temperature falls from

152.2", corresponding to 5 atmospheres, to 100.

If we denote generally the heat which must be imparted,
when the expansion of the steam at efflux follows the curve of
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constant steam weight, by P, then the work corresponding is

p
T-. It is this work, which in the efflux of steam (just as for

j\.

gas) is to be added to the work Fsp (Equation L.), and which
in combination with this work generates the velocity w and

overcomes the constant pressure pL in the pipe EF with this

velocity. If we assume that 1 kilogram of steam issues per

second, and denote the volume of this -kilogram when in the

vessel ABCD, by v, and when in the pipe EF, by vi9 we have

in Equation L., Fs = v and/Sj = vi9 and have then for the work

necessary to impart the velocity w to each kilogram

;since in Equation L.,/^7 can be put = 1.

The specific volume v or Vi is given by

v (xu 4- ff)

V1 (XU! + ff),

because the steam weight x is constant. For x = 1

V = U + 6

Vl = Ul + ff.

It is easy to see how, from the pressures p andpi9 by the aid

of the above equations, the velocity w can be found. In prac-

tice, the case here considered occurs but seldom if at all, and

we shall not, therefore, pursue it further.

Velocity of Efflux when Heat is neither Added nor Abstracted.

The efflux of steam from the safety-valve of a boiler, or from

the cylinder of an engine, takes place without the addition of

heat from without. Let us find then the velocity w under the

assumption that heat is neither added nor abstracted by outer

bodies. The expansion then follows the law of the adiabatic

curve, and by the gradual change of pressure from p to plt the

work of the molecules is (Equation XXVII.)

q q^ + xp X-^PI
Jj\ ^^ A

A.
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Hence we have

Multiplying both sides by A, and putting v xu + <r, and.

+ ff,

q + xp + Apux (q + x^ + Ap^u^) + Aff(pp1)

Here we can disregard the last member on the left. Also

remembering that x (p + Apu) = xr, and ^ (px + Ap^)
we have

A- = q- qi + xr- xj\ . . . (LV.)

Since p)p1 and x are known, q, qlt r and rt are also known, and.

can be found from Equation XXV.,

whence

-
*1 + T)

-
TI

.

5F

The values of r and -^ are given in Table III. If then xi it

thus determined, we have

Since 2gr
= 2 x 9.81 meters, and - = 424,

w = 91.2 Vq q\ + xr x^, . . (LVI.)

or for English units, w= 222.8 Vq q\ + xr x^r^= ft. per second.

Let us illustrate the above by an example.
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EXAMPLE.

Steam issues from the safety-valve of a steam boiler, in which the pressure is

5 atmospheres, into the air. What is the velocity of efflux w, when we assume
the efflux to take place without friction, and that only pure saturated steam,
^without admixture of water, approaches the orifice ? How much steam is con-

densed during efflux ?

We have evidently to answer the last question first. From Table III.,

'

^= 1.174,
~ = 1.438, r = 0.447, r

l
= 0.314,

'hence x l = (0.447
- 0.314 + 1.174) -f- 1.438 = 0.908 kilogram.

For English units, xi (0.516 0.383 + 1.174) -f- 1.438 = 0.908 Ib.

Hence during efflux, 1 0.908 = 0.092 kilograms of steam are condensed.

Further,

q = 153.74, q l - 100.5, r = 499.19, r, = 536.5,

hence q-q l + xr - x lr l
= 153.74 - 100.5 + 499.19 - 0.908 x 536.5 = 65.29,

or for English units, 276.73 - 180.9 + 898.5 - 0.908 x 965.7 = 117.48;

..and . w = 91.2 ^65. 29 = 91.2 x 8.08 = 736.9 meters per second,

*or w = 222.9 4/117.48 = 2417.03 ft. per second.

Transformation of the Preceding Equations. The preceding
formulae can only be used when we have our tables at hand.

Let us see if we can find w without them.

First, we can put for q and q1 the temperatures t and tft . Thus

if we assume the specific heat of water as constant, and take it

,at 1.0224, which corresponds to about 145, we have

q
-

qi
= 1.0224 (t

- y = 1.0224 (T - TJ.

Also, m fTf

T = c log nat - = 1.022 log nat ,

rri rri

r^ =c log nat -~ = 1.022 log nat --
,

a a

hence

T - r, = 1 022 log nat ^ = 2.353 log
~

.

-M -M

Further, according to Clausius (page 393),

r = 607 - 0.70&, rt
= 607 - 0.70%.
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Hence

frt 0*01 T ar(607
-

0.708*1 607 - 0.708^
xl
=

^2.353 log-jf
+ -7p- yf

--

Equation LVI. becomes

ti? = 91.2 A/1.022 (t-ti) + a; (608
-

0.708$)
-

x, (607
-

0.708*0'

(LVII.)

For English units, put 1092.6 - 0.708 (t
-

32) in place of

607 - 0.708 and 222.8 for 91.2. The result will give w in feet

per second.

Let us calculate from these last two formulas aj, and w for the last example.
We have ti = 100, and Ti = 273 + 100 = 373 ; hence

607 - 0.7C8*! 607 - 70.8

-TT "ITS
- = 1 '438 -

Further,

T 97^ -i- 1 *fi 9
2.858 log jr

= 2.353 log 373
~ = 3 '353 x -0569 = - 1339 -

Hence

x (607 -0.7080 _ 607 - 0.708 x 152.2 _
T 273 + 152.2

" **
We have then

x l = (0.1339 + 1.174) -i- 1.438 = 0.909 kilograms.

By means of the tables we found before x l
= 0.908.

We have now

w - 91.2 4/1.022 x 52.2 + 499.24 - 0.909 (607 - 70.8)

= 91.2 4/53.35 + 499.24-487.41

= 91.2 ^65.18 = 91.2 x 8.07 = 735.98 meters.

This value agrees closely with that found before.

If the pressures p and pl9 or the corresponding temperatures,
differ but little, we can put

2.353 log =1,
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We should have then

xr

or

If we insert this in LVI., and remember that T
'

T^ = ttl%

and that we have without great error c (t t^ = t 1} we have;

. . . (LVIII.)
JL

or finally,

/^TTATvT f\ rrnoA
t
-

. . (LIX.)

For English units, put 222.8 in place of 91.2, 1092.6 - 0.708

(t
-

32) in place of 607 - 0.708* and 459 4 in place of 273. The
result will give w in feet per second.

EXAMPLE.

With what velocity does the steam issue from the boiler of a low-pressure

engine, the pressure being only 1 . 2 atmospheres, when x = 1 ?

In this case t = 105.2 and ti = 100, hence

= 91V607 ~ - *

T'
a

>< 5-2 = 246.24 meters per sec.
a to + 1UO.-4

In English units we have

i2 - x9 -3

Another Expressionfor the Velocity of Efflux. WQ have made
use above, page 515, of the expression

T q- ql + xp - Xjpi

~A~
for the work of 1 kilogram of steam in expanding from the

pressure p to p^. On page 440, we have seen that this work is

given by the expression '"

where the value of ra depends not only upon p and p^ but alsa

upon the proportion of water in the mixture. If we have only
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pure saturated steam without water, m has the mean value

1.135.

We have then

The law of the adiabatic curve, that is, the law of expansion
of the steam during efflux, is

pv
m =

hence

_i

fP\m -t m m M
v\ f

*
j
v and pfli =p p v

i_ i_

m ..m

Inserting this value of p&i and reducing,

m -1

or

^ = pvrl _spL
\ i

20 ra-lL \pJ J

w = 443y ^Y| i - (
-
)

- (Lxn.)

Por w in feet per second, put 8.022 in place of 4.43.

We can now find by this formula the velocity w for the example on page 517.

m-l

First, = i- = 0.2. Put m = 1.135, then (^) = (0.2)Mi.
2> 5 \p

'

By the aid of logarithms we find this equal to 0.8257. Hence

m-l

1 = i _ 0.8257 = 0.1743.

Further, for 5 atmospheres = xu + 6 0.364. Since p = 5 x 10334,

x 5x10334x0.364
'

0.135

This result agrees closely with that already found.
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For practical use, Eq. LXII. can be si__plified. Thus, mak-
fW\

ing ra = 1.135, and taking the sq. root of -
^ 10334, we have

tn JL

,_
/ ~L

= 1305.83 y pv[l-(P\
''

1. (LXIII. )

Por w in feet per second put 1070 in place of 1305.83.

Here p is expressed in atmospheres.
If the steam contains 10 per cent, of water, m = 1.125, and

w =1351 4/pv
[l
-
(^ "^"J.

(LXIV.)

For w in feet per second put 1107 in place of 1351.

Table V. gives for different pressure ratios (
J
the values

m 1 i.

of 1 P-M and of(} ,
which last serves to determine

\p/ \p J
the steam volume and weight which issues per second.

Steam Volume and Weight per Second. We have thus far

assumed, for the sake of simplicity, that one kilogram per sec-

ond passes through E, and have found iv under this assump-
tion. The velocity evidently will not change when 2, 3, 4, or

G kilograms issue per second. Apart from the pressures p and

plt this quantity depends only upon the area of the orifice. If

this area is F, the volume issuing per second is

Vl
= Fw,

provided that there is no contraction of the stream, as is the

case with water and other liquids. If G is the weight of steam,

or since
i

v

-
f

\
vG cubic meters.
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Hence

and

Q = Fw(^\ .-kilograms. . . (LXV.)

In order to show the use of Table Y., we take an example.

EXAMPLE.

= 4, and p }
= 1 atmosphere. The steam at 4 atmospheres is pure

saturated, without water. What is u and G ?

We have = 0.25. We find in the column for 2 the number 0.25. In the
P P

m l

/,\ ~HT
same horizontal line we find for the column giving 1 f

j
,
the number

0.1521. Hence

w = 1305.83 1/4 x v x 0.1521 .

Since v = xu + (5, and u, for 4 atmospheres, is from Table II., 0.447, we have
v = 0.447 + 0.001 = 0.448. Hence

w = 1305.83 V4 x 0.448 x 0.1521 = 681.9 meters per second.

For English units, v = 7.1668 + 0.016 = 7.1828. Hence

w - 1070 t/4 x 7.1828 x 0.1521 = 2236.3 feet per second.

j_

Again, for 0.25, we find in the column foif
j

*"

(m being 1.135) 0.2948.

Hence G = 681.9 x 0.2948 x rJL* = 448.3^ kilograms,

or G = 2236.3 x 0.2948 x =- ^ 91.7&F pounds.
7 .

Calculation of the Size of Safety- Valve. In general, we make
the area F of the valve so great that it will discharge 10 to 20
times as much steam in a given time as the boiler can generate.
This latter quantity depends, however, upon the heating sur-

face, hence the valve and heating area must stand in a certain

relation. According to Prussian regulations (Weisbach, Vol. II.,

Art. 434), the valve area should be -^^ of the heating area.

This gives indeed, for high pressure boilers, a greater safety
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than for low pressure, since for the latter the steam issues with

less velocity.

We shall now show by an example how the diameter of the

valve (d) may be found under the assumption that the steam

issues with the velocity given by our formula, and that the loss

of velocity due to friction, etc., is little or nothing.

EXAMPLE.

What diameter (d) should the safety-valve of a steam boiler have, which

generates per hour 250 kilograms (or 551.15 Ibs.) of steam of 4 atmospheres, for

20-fold security?

We have already found, in the last example, the weight of steam issuing per

second through the area F under a pressure of 4 atmospheres. It was

G = 448.3F kilograms,

or G = 91 . 783F pounds.

If the diameter of the valve is d, we have

G = 448.3~ =448.3 x 0.785<P kilograms,

or G = 91.783 x 0.785<f pounds.

The boiler generates 250 kilograms of steam per hour, or ^fo = 0.0695 kilo-

grams (or 0.1531 pounds) per second. Since we wish 20-fold security, we have

for G, 20 x 0.0695 = 1.39 kilograms (or 3.062 pounds). Hence

1.39 = 448.3 x 0.785d2
,

or d = 0.067 meters = 6.7 centimeters.

or 3.062 = 91.783 x 0.785d2
, or d = 0.206 feet = 2.5 inches.

B. EFFLUX OF HOT WATER.

In the chapter upon the adiabatic curve of steam and liquid

mixtures, we have seen that steam is generated when a mixture

of water and steam containing a preponderance of the first ex-

pands adiabatically. When, then, hot water flows from the

vessel ASCD, the particles expand in approaching the orifice

F, and steam is formed. If, then, we have simply hot water

and no steam, the Equation XXY., page 437,

XT

becomes, since x 0,
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Since r is always greater than r^ so long as the temperature

of the water is greater than that in the pipe EF, ~- is posi-
J-\

tive, and since a^ is the steam quantity at the orifice E, we see

from the equation, that by the efflux of hot water steam is

generated, and that, therefore, both steam and water issue,

The weight of this steam in every kilogram of the mixture is

If we put this value of xt in Equation LV., page 516, we have

^f^q-K-ir-rJTt.
. . (LXVL)

or

w = 91.2 Vq - qi
-

(r
-

rj T^ . (LXVII.)

If instead of 1 kilogram, G kilograms issue per second, and
if F is the area of the orifice, we have for the steam weight

per second

D XiG kilograms,

and the water weight

W=
(1 a^) G kilograms.

The volume of 1 kilogram of the mixture at the orifice is

+ 0,

hence of G kilograms it is

(x{a^ + ff)
G cubic meters.

We have therefore

(aWt + or) G Fw,
and

G= . . . . (LXYHL)+ a *
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EXAMPLE.

Hot water flows from the test cock of a boiler under the pressure of 5 atmo-

spheres. What is the specific steam weight at the orifice ? With what velocity
w does the mixture issue ? What is the discharge G per second ? How much
steam and water are contained in the mixture ?

For 5 atmospheres T 0.447, for 1 atmosphere r
l =0.314, and ^~ = 1.438.

Hence z x
= (0.447

-
0.314) -f- 1.438 = 0.092 kilograms. ~We have, then, as much

steam as in the efflux of saturated steam alone is condensed (page 517).

Since, further, q 153.74, q l
= 100.5, we have

w = 91.2 V153.74 - 100.5 - (0.447
-

0.314)373

= 91.2 x 1.9 = 173.28 meters.

or w = 222.8 4/276 734 - 180.9 - (0.517 - 0.383) 671.4 = 560.78 feet.

Forl atmosphere HI =1.650, hence XiUi +6=0.092 x 1 650 + 0.001=0.154, and

G = 5= H25F kilograms.

For English units MI = 26.4216, XiUi + 6 = 0.092 x 26.4216 + 0.016 = 2.44.

The steam weight issuing per second is

RTCA 70
a = ^^Pp= 229.QF pounds.

D = X!& = 0.092 x U25F = 1Q3.5F kilograms.

The water weight is therefore (1125 103.5)F = 1Q21.5F. If then F is given,
we can find G, D and W. If, for example, F is 1 square centimeter = T oio7T
= 0.0001 square meter, we have G = 0.1125 kilogram. D = 0.01035 and W
= 0.10215 kilogram per second. The volume of water is, since 1 kilogram
= 0.001 cubic meter, 0.1125 x 0.001 = 0.0001125 cubic meter.

We see from this calculation, how to find for any time the

quantity of hot water and steam which flows through a given
orifice under a certain pressure. Zeuner was the first to en-

deavor to determine how far the theoretical result agrees with

the fact. "I allowed," he says in his Warme Theorie, "water
to flow from a locomotive boiler under 6 atmospheres pressure,
and endeavored to collect and measure the issuing water. In

spite of variations in the method of experiment, the measure-

ment did not succeed. The steam carried off with it the

greatest part of the water." There remains only in further

experiments of this kind, to measure therefore the efflux in

the boiler itself.
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The following table gives for different pressures the corre-

sponding velocity of efflux, the specific steam quantity at the

orifice, and the discharge in kilograms per second, according
to Zeuner.

Pressure
in

atmosp.
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where 7, the weight of one cubic meter of water, is 1000 kilo-

grams. Since ff is the volume of 1 kilogram, ya is the volume
of 1000, or of 1 cubic meter. Hence

and w* = a (p pi) 2<7 or

w = 4.43 Vff (p - B) .
(LXIX.)

3?or English units put 8.022 in place of 4.43.

If, for example, water flows under the constant pressure of 4

atmospheres from a vessel into the air, the velocity of efflux w
is, neglecting all resistances,

w = 4.43V10334 x T oVo (4-1) = 4.43V10334 x 3 = 24.66 meters,

or w = 8.022 A/2116.21 x 0.016 (4
-

1) = 80.85 feet.

The water volume per second is then Fw, and the water

^weight
= 1000*^=24660^ kilograms . (LXX.)

Hence we have

Pressure. Velocity. Efflux.

p. w. O.

4 24.66 24660^
8 37.67 37673.P

12 47.23 47226^

While, therefore, for the same pressure the velocity of the

issuing water is much less than for a mixture of steam and

water, the discharge is much greater. The explanation is as

follows : The steam weight, in spite of its great velocity, is

very small, but even this small weight occupies a relatively

large space, and fills, in part, the orifice so that the water quan-

tity is small.

It is much to be desired that these theoretical investigations

may be tested by thorough and exact experiments.

Cases in which the Hot Water Issues with the same Velocity as
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the Cold. The complete equation for the velocity of the issuing
steam was, from Equation LIV., page 516,

q + xp + Apux (ft + otipi + Ap^u^) + AG (p p^ = A -
,

or

202

? + xr - ft
- ojn + Aa (p -p,) = A -

.

If, now, instead of steam we have only hot water, x = 0, and
we have

Now, from page 516,

and since here also x = 0,

XI =
(T-*I)^,

or x,r, = (r
- rj T

Instead of q
-

qi we can put c (t
-

tj = c (T - TJ and have

-pl)
=A. (1.)

If the pressures p and pit or the temperatures T and T^ are
but little different from each other, we have

2.3026 log =

From page 517

or



FLOW OF STEAM THROUGH ORIFICES. 529

In equation (1) the two first members then are equal, and
we have

or

g=>(p_^=JEfi.
. . (LXXL;

This is the same equation which we have found, page 513r

for the efflux of water under ordinary circumstances. We have,

however, called attention there to the fact that the pressure
due to the head of water over the orifice should be taken into

account in finding the velocity of efflux. The same is the case

for hot water. Since y is the weight of one cubic meter and p
the pressure in kilograms per square meter, we have, when p is

expressed in atmospheres, for the height of a column of water

which would exert this pressure,

If the head of water is h meters above the center of the

orifice, we have instead of *- . + h. Hence the theoretical

^

y r

velocity of the cold water is

w = 4.43 A/h + ^
. . . (LXXII.)

For English units put 8.022 in place of 4.43.

And this will be the velocity also of the hot water when p and

p^ are nearly equal.

The efflux of hot and cold water must then be the same, if

steam formation during efflux is prevented. This can only be

the case when we abstract from the water as much heat as the

steam requires for its formation. If the heat of the liquid in

the vessel is q, and outside qlt we must abstract for each kilo-

gram of water at the orifice the heat q q^ When this is the

case, the formula for efflux of cold water will apply also to hot

34
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water, because the diminution of volume of the water in pass-

ing from the higher to the lower temperature, which in the

efflux of gas and steam is so great, is for water so small as to

have no influence upon the flow. The velocity w, and the dis-

charge in kilograms per second or minute, must then be the

same, in this case, both for cold and hot water.



CHAPTEK XXII.

(CONSTRUCTIONS WHICH DEPEND UPON SIMILAB PEINCIPLES. THE
INJECTOR.

THE principle of the ordinary suction pump consists in a

-pipe with one end in the water and the other connected with

a pump, by means of

which a partial vacuum

is created in the pipe,

so that the pressure of

the air upon the out-

side water forces water

up the pipe. For the

production of the va-

cuum different meth-

ods have been recently

adopted. One of the

simplest and most in-

genious is that of Pro-

fessor James Thompson.
It consists in causing a

stream of water, of con-

siderable velocity, to

carry away, in part, the
FIG 83

:air with it. We give a

sketch of the apparatus, Fig. 83. From the tank E a vertical

pipe descends and ends in a conical mouth-piece at A, inclosed

'by the spherical vessel B. From this we have the diverging

pipe F and the suction pipe D. While now the water flows

through A with great velocity, it drives out the air in F as well

,as in B. Air is thus sucked out of the pipe CD, a partial va-

531
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cuum is created, and the water rises in CD. This water enters

B with a certain velocity, and is there carried out along with

the stream in F.

While here, we make use of the velocity of a stream of water

for the formation of a vacuum, we might make use of a current

of air or steam. The latter is applied thus in the blast-pipe

of the locomotive and in Giffard's injector. In the case of the

blast-pipe, the steam passes from the cylinder at about 1.25 at-

mospheres pressure, through a nozzle in the lower part of the

stack. The velocity is by reason of this pressure great, and

the steam drives out with it the gases of combustion, and im-

parts to them a greater upward velocity, so that a partial vacu-

um is created in the smoke-box and the outer air enters rapidly

through the grate, thus causing more rapid combustion. The

operation of the blast-pipe consists then in sucking in the outer

air by means of a current of steam. Giffard's injector uses

steam for the purpose of sucking up water, as in Thompson'^
water-jet pump. It is remarkable that here we can force the

water thus sucked up, into the boiler from which we obtain the

steam. This apparatus is much used instead of ordinary force

pumps for furnishing feed-water to boilers.

Description of the Injector. Our sketch, Fig. 84, shows a section

of the apparatus. The pipe A connects with the steam spaco
of the boiler, and when the cock H is opened the steam passes
through a number of holes in the pipe BC into this pipe,
which ends in a conical mouthpiece C. This mouthpiece empties
into a chamber D, which communicates by the pipe FF with
the feed-water tank QQ. The feed water and the in large part
condensed steam, pass through E and enter a second conical

mouthpiece G. It then passes through the pipe K, valve V
and pipe Jj, which communicates with the water-space in the
boiler. The flow of steam is regulated by a conical spindle N,
which can be raised or lowered by the crank M. The flow of

feed water can also be regulated by means not shown. By the

pipe 8 the surplus water which collects in the chamber R is

removed.

The action of the apparatus is easily understood. H is

opened and the spindle C raised; steam flows with great ve-

locity into the chamber D, carries out the air with it, and thus
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Causes in the chamber and suction pipe F a partial vacuum.
The feed water rises through FF into the chamber D. The
spindle is then raised further, and more steam enters, a great
part of which is

condensed by con-

tact with the cold

feed water. The
steam still coming
Irom the boiler

drives, by reason

of its living force,

the feed water and

^condensed steam

through E, into

the mouthpiece G,

and it then passes

by .5", V, andL into

the boiler. If the

ratio of the enter-

ing steam and feed

water is just right,

the stream of wa-

ter where it passes
from E to G, and

which can be ob-

served by a small

window at R,
should be perfect-

ly transparent, so that neither steam nor water departs by 8.

FIG. 84.

Theory of the Apparatus. Dimensions. As has been remarked

in Part L, this apparatus testifies to the correctness of the

mechanical theory of heat. For if the valve V is open, one

ivould say that the boiler water ought to escape just as much
as the steam, since the pressure upon the water is the same as

the steam tension. If, however, we consider that the work in-

herent in the steam in other words, the total heat of the steam

is much greater than that of the boiler water, we can under-

stand how the excess of inner work can not only suck up water

and force it into the boiler, but also heat this water to the tern-
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perature of the boiler. That which in Thompson's pump is*

performed by the outer living force of the water, is here per-
formed by the inner living force of the steam, by that which we*

call the vibration work of the molecules.

Let the velocity with which the steam passes the orifice at O
be w ; the steam pressure in the boiler be p kilograms per

square meter ;
t be the temperature and q the heat of the liquid.

Every kilogram of steam which passes, contains x kilograms of

pure saturated steam and 1 x of water. If G kilograms pass.

C per second, we have in this time xG kilograms of steam and

(1 x)G of water. We assume further, the pressure in the

condensing chamber D\ = p^.

According to page 516, the heat which imparts to the steam

the velocity w is

u
q + xp + Apxu - ($ 4- x^ + 4$&&d + Aff(p-p1) =4-- ,

where x is the specific steam weight in the boiler, and xl that;

in the condensing chamber. If we assume that here the steam

is completely condensed, x^ = 0, and we have

ifi

q + xp + Apxu q1 + Aff (p p^ A. (LXXIV.)

Here, q^ is the heat of the liquid in the condensing chamber,,

hence q + xp + Apxu qlt is the heat which the steam has-

given up. We have then, in this condensed steam, q^ heat-

units per kilogram. If the flow is G kilograms per second, we
have

IV*
GA = G [q + xp + Apxu -

<?i + Aff (p pi)~\. (LXXV.)

From page 520, Equation LXL, we have also

In the following investigations and calculations, we shall

make use of one or the other of these formulae.
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Let us first apply the former.

The entering steam generates at first in the condensation

chamber a vacuum. Cold water is then forced up by the outer

pressure of the air into this chamber. If now water flows from

a reservoir, upon whose surface there is a pressure p per

square meter, into another in which the pressure is p^ and if

'h is the head, we have for the living force in the issuing

water, 6r ,

where u is the velocity and a
;
hence

If h is negative, or the water is raised, which can only be

when pi < p , we have

j-G^ttpo-pJe-KGo- (LXXYI.)

or

u = V2 -<r-K- 4.43 V -ff -h.

For English units put 8.022 in place of 4.43.

The heat equivalent to the above work is

A G = A [(p -pl)<?- h] Go heat units . (LXXVTL)

If the heat of the liquid for the cold water is q ,
the heat in

it is qoGo heat units. At the beginning of the entire process

we have the heat

G (q + rx - qj + GAff (p &) + A [(p -pi)ff h~\ G + # G>

(LXXVIII.)

This heat performs the following works : 1. It has to heat

the cold feed water. 2. It has to impart to it a certain velocity,
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so that the water mass GQ and condensed steam mass G- may
pass with equal velocity through E. 3. The combined mass

GO + G- must overcome on entering the chamber R the outer

air pressure, since R communicates with the atmosphere by S.

Let now the velocity of the mass G + GQ be ult the mechani-

cal work inherent in it is

and this represents the heat

A
^- (G

+ ) . . . , (LXXIX.)
*7

Since, further, the G kilograms of feed water must have the

same heat of liquid as the condensed steam, it must contain

qiGr heat units.

Finally, the work required for overcoming the air pressure
in R, p ,

is

(p-pi)ff(G +#o).

This corresponds to the heat

A(po- Pi) a(G + G
) heat units . (LXXX.)

These three last quantities of heat must equal that given by
Equation LXXYIII. Hence we have

G (q + rx - ft) + GAa (p -p^ + G A [(p -p^ a - h] + q^
=

A^(G
+ GQ) + q,G + A<?(p

-
pl)(G + G,).

Or, reducing and canceling equal quantities on both sides,

G (q + rx #1) + GAG (p
- p )

- G Ah + q G =

A^(G + G,)+q,GQ. . . . (LXXXI.)
;

-J( *9

This equation contains two unknown quantities, the heat qv

and the velocity u. If the apparatus feeds the same boiler

H?
from which the steam is taken, the living force ~ (G + G )

of
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the water must be so great as to be able to force the mass

{G + G )
into the boiler.

If we assume that the condensation chamber D lies at the

level of the boiler water, we have, since the pressure in the

boiler is p and that in R i

<,

The right side represents the work necessary for overcom-

ing the pressure p p , neglecting all resistances. Hence

Ik = V2g<? (p -Po) = 4.43 Vff (p -Po) (LXXXH.)

where p and pQ are given in kilograms per square meter. If we

express p andp in. atmospheres, then, since, 0= 0.001 (or 0.016),

!
= 443 V10.334 (p -p )

= 14.24 Vp -p*
For English units put 46.70 in place of 14.24

By reason of resistances, we may put % = 1467 Vp Po, and,

since p is always 1,

u, = 14.67 V^p^l meters. . (LXXXIII.)

For English units put 48 in place of 14.67.

If in LXXXI. we put ^ (G + G )
= (ppQ) (G + G<>), we

*g
have

G (q + rx - ft) + GAff (p
-

po)
- GoAh + qQGo

G*) + q1G9. .
,

..... (XO.)

This equation leads to interesting considerations. We may
consider it as composed of two equations, viz. :

. . . . (XOL)
and

GAff (p -po)
- GoAh = Aff (p -po) (G + Go),

or

= GoAff (p
-

po) + GoAh = Go [e (p
-

PO) +K\. A (XCII.)
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The first of these equations would indicate that the heat?

given up by G kilograms of steam and water of the temper-
ature t, when cooled under constant pressure p into water

at h is sufficient to heat G kilograms from # to ^ degrees,,

or to impart G (ql q ) heat units. But if this is so, then,

as is seen from the second equation, there is no heat or

mechanical work remaining, in order to raise the mass G and

force it into the boiler. If, therefore, the ratio -^ and the
Cr

values of q, q ,
and x are known, we should find q1 from the

first equation, too large, and the excess is that heat, or work,

necessary for raising G and forcing it into the boiler. Thus it

follows, unmistakably, that in our apparatus, during the entire

process, a part of the molecular work of the steam is trans-

formed into outer work.

As has been remarked, we can only give a satisfactory ac-

count of this apparatus when we assume this principle as

correct. That, however, a very small amount of heat suffices

for the raising of the water, can be easily shown by a practical

example. This, also, follows from the fact that one heat unit

corresponds to a mechanical work of 424 meter-kilograms.
From an experiment by the French engineer Villiers, the

height h to which the injector raised the water was 4 meters,

the pressure p in the boiler was 4^ atmospheres corresponding
to a temperature ^ of 146.19, and heat of liquid q 147.55

heat units, and total latent heat of r 503.54 heat units. The
steam contained about 7 per cent, of water. Hence x was
1 - 0.07 = 0.93, and rx = 503.54 x 0.93 = 468.29. The tem-

perature A) of the feed water was 23.5, hence q = 23.51. Fi-

nally, the temperature of the issuing water (mixture of steam

and water) was ^ 60.5, and hence q\
= 60.64. If we sub-

stitute these values in the first of the above equations, we have

for the ratio ~ of the feed water to the steam used,

GQ _ 147.55 + 468.29 - 60.64 _-,,.
G

'

60.64-23.51

If, then, no mechanical work had been necessary for raisingy

the water and forcing it into the boiler, we should have for the
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given data of the apparatus, 1495 times as much cold feed

water as steam. But now, for this raising and forcing, work i&

required, and hence this ratio should be less. And inversely,,

if this ratio were correct, the heat of the liquid ql should bet

less. The second equation tells us by how much, viz., by

A [h + (3 (p p )~\
heat units.

Since now h = 4, a = 0.001, p = 10334 * 4J, p = 10334, we
have

^ [4 + 10334 (4.25
-

I}] == 0.089 heat units per kilogram.

Of this, -fkx x 4 = 0.01 per kilogram are used for raising the

water and 0.079 for forcing it into the boiler. We see that this

heat is so insignificant that it can only be observed by specially
constructed thermometers. This is explained, as already re-

marked, by the fact that 1 heat unit represents the considerable

work of 424 meter-kilograms, and hence a very small loss of

molecular work can cause a considerable amount of outer

work. For these reasons we may use,' in all practical cases,

the first equation for determining
-

,
when t, ti and t are known,

or for determining ti from t, t and-^-.

From the equation

G (q +. TX - qi)
= GQ (ql

-
qQ)

we have

G (q + TX) -f Goq = G q! + Gqi, hence

_ G (g + rx) +

Instead of q + r%, we can put the total heat (w) in 1 kilo-

gram of steam of the temperature t. Since, further, q and qt

cannot be large (q is, for example, on an average 15, and q at

most 60), we can put the temperatures in place of the liquid

heats. We have then

GW +
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where W = 606.5 + 0.305* (or for English units 1091.7 + 0.305

(-32). We have also

Hence we have the temperature of the mixture of steam and

liquid. This formula could have been found directly, if we had

assumed the views as to the action of the apparatus referred

to as correct.

Before proceeding to further calculations of the dimensions

of the apparatus, let us consider here a question of practical

interest, viz., which is the most economical, an ordinary feed-

pump or the injector ?

We have assumed above that the injector requires G kilo-

grams of steam per second of the temperature t. The genera-
tion of this steam out of water at t, if in each kilogram there

are x kilograms of steam, requires Grx heat units. Now the

injector forces every second G + 6r kilograms of water at ^ de-

grees into the boiler, in which it is heated up to t. This re-

quires the heat (G -f G) (q qj heat units. The total heat

required per second is then

Q=Grx+ (G + G)(q- qi) . . . . . . (XCV.)

Now we have from the general equation, page 537,

#o (?i
~

0o) + G A [a (p -po) + A] = G (q + rx - trf,

or

G*A [ff(p
-

p.) 4- h]
- ^ 7 = Grx + G (q

-
qj

- G qlf

and, adding 6^7 to both sides,

^o (q
-

qo) 4- G*A [(> (p
-

p,} + K\ = Grx + (G + G
) (q

-
^).

From this equation and Eq. XCV., we have

Q=G(q- q ) + G,A [ff (p -p,) + h]. . (XCVI.)

The first member on the right gives the heat which G kilo-

grams of water require in order to become heated from t to t,

that is, to the boiler temperature. The second member is the
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heat required to raise G kilograms of water to the height h
and then to force it into the boiler. Hence the heat required to

run the injector depends only on these quantities, and is independent

of the steam quantity G used by the apparatus. This is evident

when we consider that the quantity of heat required by the in-

jector is always returned to the boiler. If it uses more steam,
or steam of higher tension, it can furnish more water, but in all

cases the heat required for the generation f)f this greater ten-

sion is returned to the boiler. Of course, in this, we disregard
all losses of heat due to radiation, conduction, and loss of

steam. If we remember still, that the second member on the

right is almost vanishingly small with respect to the first, we
have

(xcvni.)

*

Hence the heat required by the injector is greater the more
water it furnishes to the boiler, or the more water or steam the

engine uses per second ; the greater the temperature of the

boiler, and the less that of the feed water. Precisely the same
is true of the ordinary feed pump.
Suppose that the pump has first to raise the cold water to

the height h. The work required is

This water is now to be forced in-

to the boiler, where the pressure is

p. This requires the work

Gopff G p ff = Goff (p po).

If, therefore, the pump makes one

revolution per second, it furnishes

per second 6r kilograms of water at

the temperature >
and the work

required is

or in heat units

+ FIG. 85.

or the same as in equation XCVI. was found for the injector.
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In the boiler, the G kilograms are heated from to t degrees,
"which requires

GO (q #o) heat units.

The total heat for the working of an ordinary pump is therefore

precisely the same as for the injector.

Theoretically, then, the one apparatus has no advantage over

the other. If we consider, however, that the frictional resist-

ances in the pump are much greater, the injector is the best.

This is not the case, however, when the apparatus is used

simply for the raising of water only, as we shall soon point
out.

As to the height of suction h, this, as has been shown by ex-

periment, is much less when the injector first begins to work

than when in full action. The reason may be as follows :

'When the apparatus is set in action, we have in the condensing
chamber DD air of atmospheric tension. The steam rushing

through C carries with it especially those particles near the

orifice, and causes a partial vacuum. But in consequence of

this there is a quick vaporization of the particles of water in

the steam, or of those remaining in the condensing chamber,
"which diminishes the vacuum. When once the apparatus is

in full activity, the steam is at once condensed by the cold feed

^water. We have indeed still steam mixing with the rarefied

air, but steam whose pressure depends only upon the tempera-
ture of the resulting mixture of steam and water.

According to the experiments of Villiers, at St. Etienne, we
lave the following results for the height of suction and steam

pressure in boiler at beginning of action :

For

p = 2. 2.5 3. 3.5 4. 45 atmos.

h = 1.4 2. 2.47 2.8 3. 3.1 meters.

When the apparatus was in full action

h = 3.14 4. 4.49 4.74 4.99 4.99 meters.

We see that both in beginning as in normal action, beyond
a certain steam pressure, there is no further increase in height
of suction.
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The results obtained by Beuther from a steam jet pump
coincide well with the preceding. According to these for

p = 2. 2.5 3. atmos.

& = 1.32 1.88 2.35 meters,

and when in full action

h = 3.45 3.69 4.4 meters.

The first results for beginning of action, are given closely by
the empirical formula

h = - 1.124 + lA6x - Q.ltf . . . (XCIX.)

where x is given in atmospheres.
For 3 atmospheres we have

h = - 1.124 + 1.46 x 3 - 0.1 x 9 = 2.356 meters.

These values should not be exceeded for good feeding, other-

wise the water drawn up enters the condensing chamber with

small velocity, and less may be furnished than is required for

feed. In general, we allow the water to enter with about 10 to

20th part of the velocity which it possesses at E. If we denote

then the velocity in the suction pipe by u, we have

Hence, the cross-section F2 of the suction pipe should be

10 or 20 times as great as that of E. If this is FI, we have

F2
= IOF

}
to 20^. If we denote the diameter by d% and that

of E by di, then

or

'?) -10 to 20.

If, therefore, we know the velocity u with which the water
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enters the condensing chamber, we can find the pressure pt

as soon as we know the height of suction A. Thus we have,

Equation LXXVIL,

where pi and p are given in kilograms per sq. meter. If

and PQ are given in atmospheres, and & = 0.001, we have

10334 - 1000A - 51^2

Pl
~

10334

or

pl
= 1 - 0.0977* - 0.005w2..... (CI.)

In English units, pl
= 1 - 0.0295A - 0.00046w2

.

If, for example, h = 1.3 meters, and u 3 meters,

p, = 1 - 0.097 x 1.3 - 0.005 x 9 = I - 0.1711 = 0.83 atmos.

is the pressure in the condensing chamber.

As soon as pi is known, we have the velocity of efflux w of

steam.

443y _^_ LI
_^

For English units put 8.022 in place of 4.43.

If we have dry saturated steam, m = 1.135, and

w
/ ^=r~

- 1305.83y pv [l
-
(^

n

]

. . (CHI.)

For English units put 1070 in place of 1305.83.

If the steam contains 10 per cent, water, m = 1.125, and

= 1351 f/j* [l
-
(J)

V
]

. . (CIV.)

For English units put 1107 in place of 1351.
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On account of resistances, we may put

(CV.)

For English units put 1085 in place of 1324.5.

m-l

where 1 ( )
is given in Table V.

\pj

Since now we can either calculate, or find by experiment, the

steam weight used per second by a projected or existing steam

engine of given horse power, we can determine by Equation
XCIY. the steam weight required by the injector, if we fix

upon the temperature of the mixture of cold water and steam

furnished by the boiler, and know the temperature of the in-

jection water. If we denote the steam quantity in kilograms

required by the injector by G, and if the specific steam volume

in the boiler is v, we have for the area FI of the orifice C9

from Equation LXV.,

w \p w \p

The diameter c?t of this orifice is then

1
- = 1.129

EXAMPLE.

The steam pressure p in the boiler is 5 atmospheres, the height of suction

h = 1.75 meters (or 5.74 feet). The condensing chamber is on a level with the

boiler-water level. The engine uses 7.5 kilograms (or 16.5 Ibs.) of steam per

minute (page 453). What should be the area of the mouthpiece C in a Giffard

injector ? what of the suction pipe F and the pipe E, when the feed water has

a temperature of 15 (59 Fah.), and the mixture of water and condensed steam

40 (104 Fah.) ?

The velocity Ui of the water in E is, Equation LXXXIII.,

u, = 14.67 Vp-l = 14.67 4/1 = 29.34 meters per sec.

^ = 48 4/1 96 feet per sec.

7 K

Since the engine requires per minute 7.5, or per second^ 0.125 kilograms,

35
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(0.275 Ibs.) this is the feed. Since the mixture of steam and water has a tem-

perature of 40, we have from Equation XCIV.,

0o_ _ 0.125 _ TT-40 0.275 _ W- 104

Q.
'-

a
~

40 - 15
' a

-
104 - 59'

Now W 606.5 + 0.305/, and t for 5 atmospheres is 152.22 (or 305.996 Fah.),
ience W= 650.33 (or 1175.2) and

0.125 650.93-40
~G~ ~~25~~

or O_^5 =
1175.2- 104 =24

Cr 45

Hence the steam weight used per second by the injector is

& = Q;
1^ = 0.00512 kilograms.

24.44

& =
?i^?

= 0.01126 pounds.

We have then, flowing through E, 0.125 4- 0.00512 = 0.130 kilograms (or

0.286 Ibs.) of water at 40 (or 140 Fah.). Since 1 kilogram occupies the space
of 0.001 cubic meter (or 1 Ib. 0.016 cub. ft.), 0.130 occupies 0.000130 (or 0.00457

cub. ft.). If the area of E is F, then

Fu, = 0.000130,

or Fu! = 0.00457.

Since u, =29.34 (or 96),

F = 0.00000443 sq. meter.

.F= 0.000047 sq.ft.

If d is the diameter,

P
-4-

= 0.785d2 = 0.00000443, or d = 2.4 millimeters, or 0.09 inch.

If we take the diameter of the suction pipe 5 times as large,

dt = 12 millimeters.

If di is 5d, the water flows ^ as fast in the suction pipe as in E, or has a

velocity of -^- = 1.174 meters (or 3.84 ft.). Hence the pressure p lt in the

condensing chamber, is from Equation CL,

Pi = l- 0.097 x 1.75 - 0.005 (1.174)
2
,

or_pj = 1 - 0.0296 x 5.74 - 0.00046 (3.84)',

or taking into account resistances in the suction pipe,

p l
= 1 - 0.097 x 1.75 - 0.01 (1.174)

2 = 0.82 atmos.,

= 1 - 0.0296 x 5.74 - 0.00092 (3.84)
a = 0.82 atmos.
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Now we can find the velocity w with which the steam passes C. If it con-
tains 10 per cent, water, we have from CV.,

w = 1324.5

For English units we put 1085 in place of 1324.5.

Since v xu + 6 = 0.90 x 0.363 + 0.001 = 0.328 (or 5.288), and ^- =
P

m l

~! = 0.164, we have from Table V., 1 - f\ m = 0.1728, and hence

= 1324.5 4/5 x 0.328 x 0.1728 = 705.96 meters,

-or w = 1085 4/5 x 5.288 x 0.1728 = 2314.3 feet.

The cross-section F\ of C is now

0.00512 x 0.328Fl= --
705-9(5

--
"*" - 1831 = 0.0000131 sq. meters,

0.01126 x 5.288
- or Fl =- --

"*" - 1831 = 0.0001413 sq. ft.

d, = 1.129 Vf\= 1.129 x 0.00362 = 4.09 millimeters.

d l =1.129 VFt = 0.012 ft. = 0.14 inches.

Remark. Although, as has been remarked, the injector is a

. good feed apparatus for boilers, and is to be preferred to ordi-

nary pumps, this is by no means the case when the apparatus
is simply used for raising water. The steam passing C has a

much greater velocity than the water in E. The condensed

steam particles experience then a sudden change of velocity.

There is thus impact, by which a large part of the living force

of the steam is lost and does not contribute to useful effect.

By this impact there is indeed heat, but as in the present case

we have to do only with outer work, this is of no account.

The application of steam in such a case is no more advan-

tageous than would be its application in the case of an impact
or reaction wheel.



CHAPTEE

SUPEBHEATED STEAM.

WHAT we understand by superheated steam has been already-

specified in Chapter XIV. As to saturated steam, we know that

it obeys different laws from those which govern permanent

gases. The question arises, whether the same holds true for

superheated steam ? This is in part true, at least in the vicin-

ity of the point of saturation, that is, where it passes into satu-

rated steam, superheated steam differs in its deportment from

the permanent gases. Only when it is far removed from this

point are its properties the same as air or other of the so-called

permanent gases. In the case of air, for example, we have

learned that it expands ^-j 0.00366 of its volume for each

degree rise of temperature. Saturated steam, on the other

hand, when heated apart from water, under constant pressure
from 100 to 110, expands 5 times as much as air, and for fur-

ther heating from 110 to 115.6, 126.5 and 186.1, it expands re-

spectively, 4, 3, and 2 times as much. It follows that only at a,

considerable distance from the point of saturation is the deport-
ment of superheated steam that of a gas. When it has arrived

at this state, we have the same uniformity in expansion which

we have for gases, and the formulae for gases apply.
This deportment of saturated steam, and of superheated

steam near the point of saturation, can only be explained on

the supposition that the molecules are more strongly attracted

than those of permanent gases, but that this attraction de-

creases the more the steam is superheated, or the farther it is

from the point of saturation. If, then, superheated steam ex-

pands under constant temperature, the heat imparted is not

equal to the outer work, as is the case with air, but rather

more heat is necessary in order to force the molecules apart or

548
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'to decrease their mutual attraction. If this heat is not added,
the temperature cannot remain constant, but the heat required
for this inner work must be furnished by the steam itself.

Illustration by Diagram of Saturated and Superheated Steam.

Let OA, Fig. 86, be the volume ( s ) of one kilogram of satu-

rated steam at 100, andAB
the corresponding pressure
of 1 atmosphere. Then B
is a point in a curve of con-

stant steam weight. IfAA
is this curve, we have for

the volume

OA s = u + & cub. m.

If C is the volume of the

steam for a less temperature
and CD the pressure, D is

also a point in the curve,

and

C = sl
= Ui + G, etc.

MHF K
FIG. 86.

X

If, therefore, from any point E oi the curve AA we let fall

EF, we have the pressure for any temperature. This last can

be found directly from Table II., or calculated from the formula

of Magnus (page 383). In like manner OF gives to the scale of

abscissas the volume corresponding to this pressure and tem-

perature. If, now, we suppose a point G, between the curve

AA and the axis, this corresponds to a mixture of steam and

liquid. The perpendicular GH gives the pressure, but OH is

not the specific steam volume (volume of one kilogram), but the

specific volume of the mixture, which we denote by

V = XU

Since we can determine GH in the same way as EF, and

since for each pressure the value of u is known, and since OH
gives v, x is given by

v ff

X =
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If we wish to find the specific steam volume for the pressure^

GH, it is only necessary to draw a parallel to X through G till

it intersects AA, and a perpendicular from this point cuts off

upon X the required volume. All points, therefore, between

DiDi and the axes are points which relate to a mixture of steam

and water. For each of these points there is a curve of con-

stant steam weight.
If we take a point I on the other side of DiDi, this relates to

superheated steam. The perpendicular IK gives the pressure
and OK the corresponding steam volume. Since IK is greater

than LK, the pressure for the same volume of saturated steam,

the temperature must be higher. If we draw IM, M is that

point for which saturated steam of the same pressure possesses
the less volume ON. The further I is from the curve DJ)^ the

more is the steam superheated, and the more perfectly the for-

mulae for perfect gases apply.

The Law of Him. We suppose in a space v, 1 kilogram of

saturated steam confined. Let it flow into a vacuum, or con-

ceive the vessel enlarged. Then the steam will occupy a

greater volume, and be no longer saturated. By this operation
no outer work is performed. In the case of gases, as we kiiowy

the temperature would be constant, since there is no disgrega-
tion work. Their inner work is then unchanged. Now Hirn

asserts (Zeuner, Mech. "Warmetheorie, page 435), thatfor steams'

also, from the point of saturation, up to that where they have the de-

portment of gases, the INNEE WOEK must be constant, when they ex-

pand in a vacuum, or adiabatically without performing outer work..

There is indeed no reason, from the standpoint of the mechan-

ical theory of heat, for calling in question the truth of this

principle. Now, we know that the so-called isodynamic curve

is that which gives the change of condition when the inner

work is constant. This curve then must give the deportment
of steam, when it expands in a vacuum, from its point of satu-

ration up to that where it coincides with a gas in its properties.
Hirn concludes further that the law of this curve is given bj

pv = PM - pM, etc.,

that is, by the same equation which, in the case of gases, gives.
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the isothermal curve. If, starting with this principle, we cal-

culate the specific volume of superheated steam for various

temperatures and pressures, we find certainly a very satisfac-

tory agreement with experimental results. That the principle
cannot be perfectly valid will appear from the following : We
have already seen (page 434) that, as shown by Zeuner, the law
for the isodynamic curve of saturated steam is given very ex-

actly by

pv
n =p1vi

n =
etc.,

where n = 1.0456. Although this value of n is indeed not far

from 1, it follows that saturated steam, when it expands but a

very little, or is but little superheated, cannot suddenly pass
into a condition where the equation

pv = p0! = ptfz

holds good. Near the point of condensation, therefore, the

isodynamic curve of steam must follow a somewhat different

law from Hirn's. It thus seems justified when we assume that

in the adiabatic expansion of saturated steam in an empty
space, the law of change of condition is given by

pv
n =p1v1

n

where the value of n changes from n 1.0456 to n = 1, which

corresponds to a perfect gas.

Calculation of the Specific Volume of Superheated Steam by
Hirn's Law. Let BF be the curve given by

or the isodynamic curve of superheated steam according to

Him. We have then

P 'Pi-Pz = v*
i
:vl :v.

Through B pass the curve GG of constant steam weight.

Suppose one unit weight of steam at say 5 atmospheres
tension (p) to expand in a vacuum, so that the pressure p%
at the end is only 1 atmosphere. Then, according to Him,,
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the entire inner work for the pressure p2 is equal to that at p.

Denote this inner work by U. The line Ui Z72, parallel to OX,
intersects GG at Z72. This

line, then, gives the law

according to which satu-

rated steam of 1 kilogram
and volume v expands
under constant pressure to

vz,
and thus passes into

the superheated condi-

tion. If the specific heat

is Cp, and if we assume that

Cp is constant during the

expansion (which, accord-

ing to Begnault's experi-

ments, is nearly true), and

if the absolute temperature
at #2 is T2, and at Ul9 Tlt

we have for the heat im-

Fie.87. parted

The change in inner work caused by this heat, measured in

heat units, is

.and the outer work performed is

or in heat units
P* (v9

-

v2
-

Now, according to Hirn's law, the inner work C/i in the state

p&z is equal to that in the state pv, or equal to that at B. As
oon as we know p, then U^ or q + p is known. We also know
then the inner work in the state j94v4, U* or g2 + P*
We have thus

Hence
A (Ui

-
Us) = q + p - (</2

-f p2).

p - -
v,).
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But now p2v2 pv, or V2
= .

v2

Hence

- T2)
= g + p - fe + pj

= g + P - fe + PJ) + -

But v = u + 6 and i;4
= % + ff.

Hence

^(T
7

!
- Z7

,)
= ^ + p - g2

- p2 + Ap(u + cr)
-

(7
+ p + ^4pw (^2 + P-2 + Apu

Now g + p + Apu is the total heat W of 1 kilogram of steam in

the state pv, and
<?2 + p2 + ^p4^4 is the total Jieat W2 in the con-

dition 4v4. We have then

-pt). . (CYI.)

Instead of T T^ we can put ^ tz. Further

W= 606.5 + 0.305*, and W2
= 606.5 + 0.305 2,

hence

W- W2
= 0.305 (t-h).

We have therefore

~ y = 0.305 (t
- t2) + Aff(p -pt).

If, then, the specific heat cp is known, we have for the super-

heating of the steam alone Z72Ul9

- 0-305 (^-^)

and for the temperature of the superheated steam in the state

0.806 (f-f



554 THERMODYNAMICS.

Our formula then gives us the temperature ^ of superheated
steam, when saturated steam of any pressure p and temperature
t expands in a vacuum, down to the pressure p%. We can find

from

pv

the volume v2 of the superheated steam of the pressure p%.

If we subtract the volume v4 of saturated steam of the same

pressure p =p%, we can find by how much the volume v of this

steam must be heated under constant pressure, apart from

water, in order that it may have the volume vz. An example
will make this clearer.

EXAMPLE.

We have 1 kilogram of dry saturated steam ofp = 3 atmospheres* What
temperature will it have when it expands in vacuo down to 1 atmosphere ? How
many degrees must saturated steam of 1 atmosphere be heated under constant

pressure, in order that for the same temperature it may have the same volume ?

For^? = 3 we have t = 133.91 ; for^ 2 = 1, t* = 100. According to Reg-
nault, cp 0.4805, hence

_ 0.805(188.01-100) + ^ x 0.001 x 2

0.4805 ~~'

0.305 (273.038 - 212) + y|? x 0.061 x 2-
n

' 2

U -

For Fahrenheit degrees, t 1 212=

fj = 100 + 21.63 121.63 Centigrade.

*i = 212 + 70.815 = 282.815 Fah.

The temperature then falls from 133.91 to 121.63, or 12.28.

Since no outer work is performed in the expansion, this loss of

vibration work must be ascribed entirely to the disgregation
work.

The specific volume v for p 3 is

v = u + ff = 0.587,

hence we can find v% from pv = p^v^ or

pv 3 x 0.587
n _,,-. , .

v% =-
L =-=- = 1.761 cubic meters.& 1

The volume is then three times as great. The specific vol-

ume of saturated steam of the pressure p2 =p = 1, is 1.650.
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If, tlien, saturated steam at 1 atmosphere is heated under con-

stant pressure, until its temperature is 121.63, that is until it

1
i

is raised 21.63, its volume is
' = 1.067 times increased.

l.DOU

If we disregard in our formula the member Aff (p p^) t we
have the very simple equation

(ox.)

If, for example, we know from experiment what volume v2
one kilogram of saturated steam of, say, 1 atmosphere tension

assumes, when heated from t2
= 100 to ^, we can find the

temperature t which 1 kilogram of saturated steam must pos-
sess when, in expanding in vacuo and cooling to tlt it has the

same volume. Thus

__ (f.
-

t,) c, + 0.305

0305

Thus Him found that saturated steam of 1 atmosphere, when
heated under this pressure to 148.5, occupies a space of 1.87

(= v2) cubic meters. How great must be the temperature t of

that saturated steam which, after expanding in vacuo down to

1 atmosphere, shall have the same temperature and volume ?

w , (148.5
- 100) 0.4805 + 30.5 1r_, ,We have * = -- =176.4.

This temperature corresponds to a pressure of 9.20 atmos-

pheres. The specific volume of this steam is 0.203 cubic me-

ters. Since at the end of expansion the pressure must be 1

atmosphere, we have from pv = pftz

9.20 x 0.203 = 1 x vz, or v2
= 1.87 cubic meters,

or exactly as found by Him.

By means of our formulae we can also find what volume 1

kilogram of saturated steam, of given pressure, has when it is

superheated to any degree under constant pressure. Suppose
we have 1 kilogram of saturated steam at 3 atmospheres, whose
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temperature is 133.9, and that we heat it 30. What volume

will it then have ?

We have

(163.9
- 133.9)0.4805 + 133.9 x 0.305 _ 1Q1*= -0305-

This temperature of 181.2 corresponds to a pressure of about

10.25 atmospheres, and a specific volume of 0.184 cubic meters.

We have then for the volume v2 required (pv = p%v^,

10.25 x 0.184 = 3v2,
or v^ = 0.629.

If then 1 kilogram of saturated steam at 3 atmospheres is

heated 30, it expands from 0.586 to 0.629, or 0.043 cubic

meter. It follows that saturated steam of a high pressure ex-

pands less for a given superheating than that of lower press-

ure. We see, also, that we cannot use our formula for great

degree of superheating and high pressures, because t soon be-

comes so great as to exceed the limits of our Table II.

Let us turn once more to our figure. Suppose 1 kilogram
of saturated steam in the condition v2ps,

and assume that it is

heated under constant volume v2. If the temperature is ts and

becomes by heating 15 we can find the specific heat for constant

volume. Thus the heat imparted is

Since no outer work is performed, this heat increases the

inner work. The inner work of 1 kilogram of saturated steam

in the condition v2pz is qs + p3 J3,
and in the condition p2v2,

4z + Pz = J*
Hence

Now the inner heat Jz is the inner heat at B, according to

Hirn's law, which we denote by J. Hence

or

e. = = ..... (CXIL)
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We have found above for the specific volume v2 of 1 kilogram
heated under 1-atmosphere 21.63, v2

= 1.76. Saturated steam,

which by expanding in vacuo has this temperature, must have

a pressure of 3 atmospheres, or a temperature of 133.91. For

this temperature we have the inner work J
'

604.47. This in-

ner work is possessed by the 1 kilogram of steam after expan-

sion, when its pressure is p2 1- We find from Table II.

what temperature saturated steam possesses whose specific vol-

ume is 1.761. We find by interpolation about 98.9. For this

temperature t3 we have JB qs + ps
= 596.67. Hence

604.47 -596.67 AQ/iQ

121.63-9879-

More exact calculation gives 0.347.

Just as for gases, then, the specific heat for constant volume

is less than for constant pressure. The ratio Jc is

c 0.4805 ..

Him has found for various degrees of superheating, the spe-

cific volume of steam expanding under constant pressure, the

following experimental results :

100
D v2

= 1.65 (saturated). 162 vz
= 1.93

118.5 1.74 200 2.08

141 1.85 205 2.14

148.5 1.87 246 2.29

With these data Zeuner has computed by Equation CVIH. a

table, in order to see how far calculation agrees with experi-

ment, and thus to test the validity of Hirn's law.
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SPECIFIC VOLUME AND TEMPEBATUBE OF SUPEBHEATED OTEAM

ACCOBDING TO ZEUNEB.

Atmos. v .z 1.65 t = 100

p=2 1.72 113.1

3 1.76 121.6

4 1.79 128.1

5 1.82 133.4

6 1.84 137.8

7 1.86 141.8

8 1.87 145.3

9 1.89 148.5

10 1.90 151.4

11 1.91 154.1

12 1.92 156.7

13 1.93 159.1

14 1.94 161.3

If we compare the numbers in this table with the experi-

mental results of Him, we find a good agreement



APPENDIX TO CHAPTEK XXIII

THEORY OF SUPERHEATED STEAM.

ZEUNER has deduced a formula for superheated steam* which holds good
equally well for saturated steam also, which enables us to find easily the volume
from the pressure and temperature, or inversely, and which agrees very closely
with experimental results. We give here an abstract "Of his article.

The formula to which the discussion conducts, is

pv = BT-Cp-T~,

where B and C and k are constants, whose values are

c, = 0.4805, k = 1.333, C = 192.50,

Hence pv = 50.933 T 192.5 |/p~where the temperature is Centigrade and p is

given in kilograms per square meter, and v in cubic meters. We see that this

equation differs from that for permanent gases

^ *=**
only in term Cp

"
, or C y^

Ifp is given in atmospheres, v in cubic meters and temperature Centigrade,

we have pv = 0.0049287 T- 0.187815 fa
If p is in atmospheres, v in cubic feet and temperature Fahrenheit, we have

#0 = 0.043862 T-&QQ&fa
If pis in pounds per square inch and v in cubic feet and temperature Fah-

renheit, we have pv = 0.644592 T- 22.581875 fa

If we use this formula for saturated steam, since for a given pressure there is

tout one corresponding temperature, we have only to insert the given p and cor-

responding t, and we can calculate v, the specific volume. The specific volumes

thus calculated agree perfectly with those calculated from the mechanical theory

of heat, within ordinary limits of pressure, from 1 to 14 atmospheres, as we shall

.see in the following discussion.

To use the formula for superheated steam for a given pressure, we can find v

for any desired temperature greater than the corresponding temperature for sat-

urated steam. Volumes thus calculated agree very closely with those given by
Hirn's experiments, as will be seen hereafter.

The formula is thus perfectly reliable, and enables us to solve many practical

problems which otherwise are incapable at present of solution. The importance

* Zeitschrift des Vereins deutscher Ingenietire, Bd. XI., p. 1, 1866.

559
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of such a formula cannot be overestimated, and we therefore devote a few

pages to a presentation of Zeuner's method of deduction. We shall have occa-

sion to use the Calculus, but that need not deter any reader from satisfying

himself, at least as to the reliability of the formula, and familiarizing himself

with its use.

It has been often observed that the use of superheated steam instead of sat-

urated in the steam engine possesses special advantages. Observations and ex-

periments, among which those of Hirn hold a high place, point decisively to this

conclusion, and indicate that engines working with superheated steam are more
economical in fuel, and must come more and more into favor.

For more than a decade experiments to determine the advantages of super-
heated steam have been made, especially in America

; and when we consider the

extremely favorable results of Wethered with mixtures of saturated and super-
heated steam, it seems remarkable that the use of superheated steam has not had
a more extended application.

Apart from certain practical difficulties in the application of highly super-
heated steam, we may find an explanation of this in the fact, that although all

experiments thus far have proved the advantages of the use of superheated steam,

yet the degree of advantage is uncertain. The results, in this respect, are very

contradictory, and some are very properly received not without incredulity.
In such a state no amount of experiments can avail, because the question can

only be decided by a thorough knowledge of the physical properties of steam in

general. A theory of superheated steam is also of great scientific importance.
We know at present only the deportment of such steam at its two limiting states,

viz., at its point of condensation when it passes into the saturated condition, and
in the highly superheated state in which its properties coincide with those of a

permanent gas.

The formulae of the mechanical heat theory for these two conditions are en-

tirely different both in construction and method of deduction, and thus far it has
not been possible to deduce from the equations for saturated steam, or for steam
and liquid mixtures, those for permanent gases or reversely, or to represent the

deportment of steam in transition from one to the other of the limiting condi-

tions.

Theoretical investigations upon the deportment of superheated steam have,
thus far, been made by Hirn only. In what follows we shall present the results

of our own investigations, together with applications to the most important
technical problems. We shall confine our discussion to steam of water, but
there will be no difficulty in extending the method to other steams.

Preliminary Investigation. -We denote by v the specific volume, i. e., the
volume of the unit of weight (one kilogram) of steam, by p the specific pressure
(pressure in kilograms per square meter), and by t the temperature Centigrade.
If pressure and volume are given, we can easily determine whether in any given
case we have to do with pure saturated, or superheated steam, or with a mixture
of steam and liquid. For saturated steam, whose volume we shall denote by v 19

pressure and volume stand in a known determinate relation, and from the prin-

ciples of the mechanical heat theory we can calculate the volume v correspond-
ing to the pressure p. If we lay off for pure saturated steam (without admixture
of water) the volumes as abscissas and the corresponding pressures as ordinates, we-
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obtain a curve DD of constant steam weight, which I call " the limiting curve,""

the course of which we shall investigate hereafter. For every point of this curve,

or for every pressure there is a cor-

responding determinate absolute tem-

perature T] ,
known by experiment.

If now in any given case we lay

off the volume of the unit of weight
as abscissa, and the pressure as ordi-

nate, and the point thus found falls

on the limiting curve, we know that

we have to do with pure saturated

steam. If, however, the point a falls

in the space between the limiting

curve and the co-ordinate axes, we
have for the same pressure, the same

temperature Tlt but a less volume.

We have, therefore, a mixture of

steam and water. The steam is of the same character as before. If x is the-

specific steam quantity, i. e., the weight of steam in the unit weight of mixture,

then 1 x is the weight of the water, and if <5 is the specific volume of the water

the volume v' of the mixture is

v' = xv
i + (1 x) 6,

and from this we can easily calculate the mixture ratio x for the given volume v'.

If, again, the point falls in the space outside of the limiting curve, as T, we-

have to do with superheated steam. In this case the temperature T > T
l ,
and

is not given by the pressure p alone, but depends also upon the volume v. This

relation

T=F(p,v)

FIG.

is that which thus far is unknown for superheated steam, and it is this which we
shall first deduce. We shall call this relation the equation of condition, or

"condition equation." Thus far it has only been assumed that the condition

equation takes the form

(1)

which holds good for permanent gases, in which R is a constant depending upon
the kind of gas, when the point T, in Fig. 88, lies very far from the limiting

curve, that is, when the steam is highly superheated.
In the deduction of the condition equation for superheated steam, we make

use of the following principle of the mechanical heat theory. (See page 457.)

If the pressure p 2 and the volume v.2 are given for the unit weight, and the body

expands or is compressed adiabatically, the end of the ordinate describes a curve

A QAt, Fig. 89, called the adiabatic curve. If the body is in the condition a lf

given by the pressure^ and the volume v,, the point a
l

lies upon a second

adiabatic curve A^A ,
. If the body passes from the condition a 2 to the condi-

36
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tion a, , and if heat dQ is the heat imparted or abstracted during an infinitely

small change of condition, then / -^ is constant, no matter how the pressure

p changes with the volume v during the transfer, that is, no matter what the

curve a 2a 1 may be, wherever the point a.2 may be on the first adiabatic, or the

point !
on the second. This quantity we have called the " heat weight," and for

the sake of simplicity we denote it by P. Let us now determine the heat weight

for a mixture of water and steam.

In the unit of weight of mixture let there be x kilograms of steam at the

pressure p and tension t. Let c be the specific heat pf water, which, according

to Regnault, is

c = l + 0.00004* + 0.0000009* 8
(2)

and let r be the total latent heat, which, according to Regnault, is

r As ^ ^ r = 606.5 + 0.305* - f*cdt . (3)J o

then we have, according to Clausius,

a

FIG. 89.

If we divide both sides by AT, and

A t put, for the sake of simplicity,

-& cdt

we hav,e, using the index 2 for the condition a z and 1 for a lt

fdQ 1=-=

= r . . (4)

(5)

If we assume that the transfer takes place along the limiting curve DD, as

shown in Fig. 88, we have for this curve

and

AP =
Tl

(6)

and this can be easily calculated for given initial and final temperatures.

For the sake of simplicity we put g) = T + ^
and then

AP =. <
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Using Equations (2), (3) and (4), we have calculated q> as given by (7) for a
number of values of the pressure, and placed the results in column 3 of the

following Table I.

We pass now through the two points
T.2 and T

l
of the limiting curve

DD, Fig. 90, the two adiabatics A a

and AI. The course of both curves

is unknown, since they extend into

the space corresponding to super-
heated steam. If now we heat the

saturated steam at the temperature
T2 , under constant pressure p 2 = p,
until we reach the second adiabatic at

the point T, we have for the heat

weight, when the specific heat cp is

taken as constant, FlG ^

p I Z!E_

Since the heat weight from F2 to TI is the same, we have

T
(9)

This formula holds good, to be sure, only under the express assumption that

cp,
the specific heat of steam for constant pressure, is constant. That this as-

sumption is allowable is shown by the experiments of Regnault. He finds by
four experiments

Cp
-

0.46881, 0.48111, 0.48080, 0.47963,

and considers only the first of these values not entirely reliable. We have then

for the mean

Cj>
= 0.4805,

and this value of cp for steam we shall assume in all further discussions. We
shall see further on that this hypothesis of the constancy of the value of the spe-

cific heat for constant pressure, and the assumption of the correctness of Reg-
nault's experimental values, are justified.

By the aid of Equation (9) we can find easily the temperature T of super-

heated steam, when the temperatures T2 and Tl are given, or by taking different

values for T2 can calculate for a number of points of the adiabatic through Tlt

the temperature T of the superheated steam. Such a proceeding would lead to

little, and the actual course of the curve A l would be in no way known. We
must rather transform Equation (9). If we add and subtract cp log T1

on the

left side, we have

T . T,
TfT

= <Pl <P* CP lOg 7fr (10)
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T
From this we can find the ratio ^=- for two points upon the same adiabaticr

A
,

. If this curve answered to a permanent gas, we should have between press-

ure and temperature of both points the relation

where k is constant and denotes the ratio of the specific heat of the gas for con-

stant pressure to that for constant volume.

I make now the hypothesis that for superheated steam, or at least for water-

steam, Equation (11) also holds good, and that here also k is constant, but the

previous signification of k no longer holds for superheated steam. The following
mathematical discussion must fix the more general significance of the value of k.

Substituting Equation (11) in (10), we have, since in the entire discussion, as

shown in Fig. 90, the pressure^ is identical with^? 2 >

k- 1 k-l

<?, + cp log ?= = <p 2 + cp log 2=- ,

J-\ J-z

and hence it follows, in case of the correctness of our hypothesis, generally the

value

k-\

i P^~
<p + cp log -5=-

for saturated steam must be a constant. If we denote this constant by <p , we-

have instead of (7)

T
<p = cp log -ji + (p . . (12)

,-T-

That this formula, with a proper choice of the constants k and <p n . actually

gives the values of <p with great exactness, may be shown by the following calcu-

lations.

We take k = $ = 1.3333, hence ^-
1
- = i = 0.25, and <p = 1.0933. Then

in common logarithms

<p = 0.2766 Iog 10
- 1.0933 (13)

where p is in atmospheres, and the temperature to be taken from Regnault's
Tables.

The agreement of the values of <p, as given by this formula and by (7), is



THEORY OF SUPERHEATED STEAM. 565

:shown in the following table. The agreement might be made still greater by

taking k a little different from f, but for the sake of simplicity in numerical cal-

we retain this round number.

TABLE I.

1

Pressure
in

Atmos.
P-
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The union of (14) and (15) gives then

.m
k-1 Tdp _

(16)

We can use this formula as proof of the correctness of our hypothesis.

Thus we have for steam at the temperature 0", 100, 200,

h = - 1.9166,
- 1.1333,

- 0.6766.

We have from Regnault's formula, which gives the relation between pressure-

and temperature,

^ = 19.520, 13.344, 9.851.
pat

Inserting these values in (16), and assuming cp as constant, and according to

Regnault 0.4805, we find for k, for the above temperatures,

k = 1.3434, 1.3362, 1.3234.

If, on the other hand, we take, as we have done, k = f = 1.3333, we have

from Equation (16),

cr = 0.49397, 0.48514, 0.46255,

and the mean of these is 0.4805, or, strangely enough, exactly Regnault's mean
value.

From the preceding, then, we conclude that the quantities cp and &, even if

future exact investigations may show that one or the other, or both, are variable,

vary very slowly, and may at present be assumed as constant, with the values as

given above. The results of the following investigations will further justify
these assumptions.

Deduction of the Equation of Condition for Superheated Steam. The "con-
dition equation

" must give the relation between p, v, and t, or T 273 + t. If

we consider the absolute temperature as a function of the pressure and volume,,
we have

since we can replace dTby dt,
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The fundamental equations of the mechanical heat theory, as given by Zeu-
ner, are

ATAl _ dt

(I)

If we divide the last equation by T, we have

dO dt . (dv- = -

. . . . (III.)

But according to the notation of Equations (5) and (8),
- is identical with dtp,

and for this latter we have found according to (14)

dt k - 1 dp-

Comparing these two expressions, we have for the first new relation for super-

heated steam

dt\ _ Akp
'

k - 1
(18)

Inserting this in Equation I., we have, since cp and k are constant,

d_
dv

and hence by integration

fdt_\ _ _^v_
\dp) -Jb-1Cv l-r- (19)

wherein we assume indeed that the constant of integration, which in general is a

function of p, is zero. This assumption will be justified by the correspondence of

calculated results with those of observation hereafter.



568 THERMODYNAMICS.

If we make use of (18) and (19) in Equation II., we have, after easy transfor-

mation,

= 1 + Cr, } (20)
ce k Apv

If we determine cv from this and insert in (19), we have

'dt\ Av k-l T

-while Equation (18) gives

The substitution of these two in Equation (17) gives then

~dp . . . . (23)

and this is the differential equation of the equation of condition for superheated
steam.

This can be integrated easily. We have then

t-i

pv-=BT- Cp * ........ (24)

where .5 and (7 are constants, and

Now, for superheated steam, we have from the preceding cp
= 0.4805 and

.k = 1.333. Hence B = 50.933. The other constant can be easily determined, as

we shall soon see.

Equation (24) is the condition equation for superheated steam. By means of

it, when any two of the quantities p, v, and T are given, the third can be found.
jfc-i

It differs from the equation for permanent gases only in the term Cp *
,
which

"becomes, for superheated steam,

Test of the New Equation. If the equation for superheated steam is correct,

it must hold for the limiting condition also, that is, when the steam is in the sat-

urated condition. It should therefore give the specific,volume of saturated steam

when we substitute for a given pressure p the corresponding temperature t.

This leads us at once to the value of the constant C.

Thus the mechanical theory of heat gives for saturated steam of one atmos-

phere tension (p = 10334), and t = 100, or T 373, the volume v of one kilo-

gram, v 1.6506 cubic meters. Using these values in Equation $4), we find

<7=192.50.



THEORY OF SUPERHEATED STEAM. 569

If now the equation is correct, it should give the specific volume of saturated

steam for all other pressures. How far this is so is shown by Table II.

The second column gives the specific volumes for various pressures, according
to the mechanical theory of heat. The third column is calculated from Equa-
tion (24). It is to be remarked that the values given for B and C hold good
when the pressure^? is given in kilograms per sq. meter. If we wish^? in atmos-

pheres, we have

pv = BT C ty

B = 0.0049287, and C = 0.187815
. . (26)

If p is in atmospheres, v in cubic feet and temperature Fahrenheit, we have
B - 0.043862 and C = 3.00859.

C1
4

The table contains also, in the last column, the values of -^ y~p, for French

and English units, of which use will be made in what follows.

We see that the agreement is very satisfactory, and that we can use the

above equation for pure saturated steam. Only for pressures of less than one

atmosphere is the deviation on any account. For such pressures, however, the

TABLE II.

Pressure
in

atmos.
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in view more especially the needs of practice, and as in the steam engine higher
steam pressures are coming into favor.

From Equation (24) or (26) we now can easily calculate the volume of super-

heated steam for any given pressure and temperature. If we take t 100, 110, 120,

etc., andp 1 in Equation (26), we have, for example, for superheated steam of

one atmosphere tension the following values for the specific volume :

v = 1.6506 cubic meters. t = 160 v = 1.9463 cubic meters.

110

120

130

140

150

1.6999

1.7492

1.7984

1.8477

1.8970

170

180

190

200

210

1.9956

2.0449

2.0942

2.1435

2.1927

Hirn has observed the specific volume for different pressures and temper-
atures. The following table shows how excellently the results of our formula

agree with his experimental results.

Pressure
in
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For constant volume, v
}
= v, and

P\ Pa = -*~
.

P^\ P\t

The first formula gives the coefficient of expansion for change of volume, the

second for change of pressure. If we pass to the differentials, we have for

change of volume

<* = -3T--. ........ (27)

v d^- (

and for change of pressure

-w <28>

For a perfect gas both formulas give the same value, a = 0.003665, but not

so for actual gas or steam.

If in Equation (24) we put for T, a + t, where a = 273, and differentiate, re-

garding first v and then p as constant, we have

dt pv
e2=5F

dt pv C k - 1 HP"= - + --

These values substituted in Equations (27) and (28), and replacing jw by its equiv-
alent in Equation (24), give us for superheated steam the coefficient of expan-
sion a for change of volume

<*= r-j- (29)

c -r
a--^P

and for change of pressure

= ^-FTI- (30>
c ~ir

a =; v

These two values are therefore different, and since Tc > 1, the second is always

somewhat less than the first. This agrees perfectly with Regnault's observations.

Also a is always greater than - = 0.003665, which is also confirmed by experi-

ment. Further, a is greater the greater the pressure p, which is also confirmed

by experiment. Regnault has observed even for hydrogen, which approaches

nearest to a perfect gas, for different pressures, somewhat different values for the

coefficient of expansion.
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From Equations (29) and (30) the following values are computed for different

values of p, for superheated steam. As p is given in atmospheres, the values of
- -

the constants as given in Equation (26) are used, also

Coefficient of Expansion.

Change of Volume. Change of Pressure.

^ = 0.1 a = 0.003975
'

0.003892

0.5 0.004150 0.004017

1 0.004257 0.004090

5 0.004629 0.004343

10 0.004872 0.004501

The formulas above confirm all the facts with reference to the coefficients of

expansion of gases and steams thus far made known by experiment. We may
consider this, therefore, as a further proof of the reliability of our new formula.

We can deduce, however, a new result from (29) and (30), viz., that the coefficient

of expansion a depends only upon the pressure, and not upon the degree of super-

heating or the volume. There are no observations which contradict this princi-

ple. If we do not accept it in its full generality, we must at least admit that it

is exact enough for superheated steam in the neighborhood of the point of con-

densation.

We may now finally determine more closely the specific heat of superheated
steam for constant volume. For perfect gases the value of k is identical with the

ratio . This is not so for steam. Here we have Equation (20)

ev k Apv

Making use of Equations (24) and (25) we have, after reduction,

f =1+ -

*~*
,_, ... (3D

Cg

1 M T

By means of this formula we can find for any given condition of superheated

steam , and then, since cp is constant, the value of cv . We see at once from

the formula, that with increasing superheating the value of approaches k. For

c 4
small pressure and very great superheating, we should have for steam = ^-,

and hence cv 0.3604, and this latter value I regard as the specific heat of steam

for constant volume, when by high superheating and low pressure the steam has

passed into the condition of a permanent gas. The equation also shows that the

ratio increases and cv diminishes the more the steam approaches the saturated
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condition. Thus, for example, Equation (31) gives for saturated steam of 0.1,

0.5, 1 and 5 atmospheres, the following values :

p = 0.1 0.5 1 5

^ = 1.358 1.3664 1.3713 1.3849
Cv

cv = 0.3538 0.3516 0.3504 0.3470

It appears striking that the value of the specific heat cv for constant volume
increases the more the steam departs from the saturated condition. According
to the usual conceptions of gases and steam, we should rather expect the con-

trary. Further investigations must confirm our result and explain it.

The Fundamental Equations of the Mechanical Theory of Heat applied to

Superheated Steam. If the unit of weight of superheated steam is given with

certain pressure, volume, and temperature, the imparting of the heat dQ will

cause a change in these quantities. The Equations III. give the relations gen-

erally which subsist between these quantities. For superheated steam we have,
when we make use of Equations (18) to (23), from these general equations

dQ =
fa _ i

( vdp + Jcpdv

1 T
(32)

These equations do not differ from those of permanent gases in form, but cv is

here variable and to be determined by Equation (20), while for gases it is con-

stant and =
~Y~

.

/C

If the change of state is reversible, i. e., if during the change of volume the

steam tension p is in equilibrium with the outer pressure, the work of the expan-
sion dv is pdv, and the corresponding heat is Apdv. This portion of the heat dQ
goes then to perform outer work, and the rest goes to perform vibration work

(rise of temperature), and disgregation work, both of which constitute the inner

work. If we denote the change of inner work by dU, we have

AdU=dQ- Apdv,

or replacing dQ by the first of Equations (32),

(33)
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Integrating this from a given initial condition, we have

The difference U U
l gives the increase of inner work, and A(U U

} )is

this difference measured in units of heat. If we assume the initial condition to

be water at
D

, and let J stand for A (U U
} ), we have

J=J + ^ ........ (34) -

where Jn is a constant to be determined, and J shows how much more heat is

contained in superheated or saturated steam of the pressure p and volume v, than

in water at 0. We have called Jthe "steam heat."

The formula must hold good both for superheated and saturated steam. For

the latter we know already how to determine J, and thus can find not only the

value of J
, but can test whether Equation (34) holds good for saturated steam

of any pressure.

The heat of the liquid, or the heat necessary to raise one kilogram of water,

under the pressure p, from to t is

where c is from Equation (2)

q = t + 0.00002* 2 + 0.0000003^ 3
.

If now the water under pressure p is completely changed into saturated steam,

the inner latent heat p must be added.

For steam we have given

p = 575.40 - 0791/.

Now for saturated steam

J=q + p (35).

Thus, for example, for saturated steam of one atmosphere,p = 10334, t = 100,

J= 596.80. Inserting this value in Equation (34) and taking v = 1.6506, from

Table II. we find

J =476.11.

For English units we have Jo = 857.

Using now the values of v in Table II., we can calculate from Equation (34)

the values in the last column of the following Table III., and compare with those

obtained by Equation (35).
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TABLE III.

Pressure
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For very low tension and very high superheating, in which case the steam

passes almost completely into the condition of a permanent gas, the second mem-
ber in the parenthesis may be neglected, and we have

J=J + cvT,

and this equation is the same as we actually have for permanent gases. If we

put as above J= AU, where U is the inner work, then

AdU=cvdT,

from which we see that the increase of inner work is directly proportional to the

rise of temperature, a principle laid down by Clausius in his Theory of Gases.
.

Finally, we can determine for superheated steam that which for saturated

steam we have called the "total heat" and denoted by W, for which Regnault

gives the empirical formula

TF=606.5 + 0.305*.

This is the heat which is necessary in order to convert the unit of weight of

water, under the constant pressure corresponding to the steam temperature t,

completely into saturated steam.

If we suppose superheated steam of the volume v generated under the same

circumstances, the work done during its formation is p (v 6), and the equiva-
lent heat is Ap(v tf), if 6 is the volume of the unit of weight of water. We
can neglect 6 with respect to v, and have therefore for the total heat

W = J + Apv,

or from Equation (34),

AT,w= J

Referring to Equations (24) and (25)

>
*~ 1

(39).

where Jn = 476.11.

Since this equation must hold good also for saturated steam, we should have,
in case this behaved like a permanent gas, C = 0, and then

and the comparison with Regnault's formula would give for the specific heat of
steam for constant pressure cp = 0.305, which has been obtained by Rarikine in a
different manner. Equation (39) shows clearly the reason of the deviation from
the correct value cp = 0.4805.
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Values of W calculated from Equation (39) for saturated steam, agree very

satisfactorily with those found by Regnault's formula. Thus we have for

p = 0.5 1 5 atmos.

by Equation (39), W= 631.15 637.02 653.05

Regnault, W= 631.42 637.00 652.93

Our Equation (39) has the advantage that it holds generally good for super-
heated steam also.

Recapitulation of Formulce Deduced for Superheated Steam. [Before pass-

ing on to applications, we shall group together here, for convenience of reference

and for the benefit of those who wish results presented in compact shape, the for-

mulas deduced in the preceding for superheated steam.

We have for both saturated and superheated steam the equation

k-l

pv BT Cp k

where
I

' ' ' W-
B = ^ v

";~
x'

, cp = 0.4805, k = 1.333

and hence B 50.933, C= 192.50, when p is in kilograms per sq. meter, v in

cubic meters and temperature Centigrade.
Ifp is in pounds per square inch and v in cubic feet, we have for temperature

Fahrenheit B = 0.644592, C = 22.581875.

If p is in atmospheres, we have

pv = BT-CJp )

41)5 = 0.0049287, (7=0.187815 f
'

For^? in atmospheres, in cubic feet, and temperature Fahrenheit, we have

5 = 0.043862, (7=3.00859.

We have for the ratio of cp to c,

(43).

B T
Here we can take p either in atmospheres or kilograms per sq. meter or pounds

per square inch according to the values taken of C and B, as given above. For

saturated steam we must insert, for any given pressure, the corresponding tem-

perature. For superheated steam we can insert any desired temperature greater

than this. The formulas are quite correct within practical limits (1 to 14 atmos-

pheres). For the " steam heat
" we have

A
TC T

(43).

where Jo = 476.11 (or 857), and p is to be taken in kilograms per sq. meter or

pounds per square inch, k and cp are the same as always, viz., k f = 1.333,

cf - 0.4805.

37
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For the " total heat,"
k 1

-p k

\ . . . . . (44).

where p is in kilograms per sq. meter, or pounds per square inch, and J ,
cp,

-and k as above.

The "heat of liquid
"

is found, as always when the temperature is known, by

q = t + 0.00002*
2 + 0.0000003*3

. . . .' . . (45).

or for English units, q = (t
-

32) + 0.0000111 (t
-

32)
2 + 0.0000000926 (t

-
32)

3

or by our steam tables.

The inner latent heat is found by

P = J-q - ..... (46).

The outer latent heat by

Apv=W-J......... (47).

By the aid of these formulae we may solve problems concerning superheated

steam of great practical importance, and which heretofore have been impossible

of solution.]

APPLICATIONS.

IP we regard our equation for the deportment of superheated steam as cor-

rect (and from what precedes, the great probability of its correctness, at least for

those pressures usual in practice, seems without doubt), we shall be able to solve

many questions otherwise impossible of solution. Especially easy of solution are

those problems of practical importance, and a theory of engines working with

superheated steam presents no longer any difficulty. We shall investigate here

a few of the most important cases, many of which, by reason of known experi-

ments in relation to them, will serve as further confirmation of the practical cor-

rectness of our formulae.

Adiabatic Curve. If the unit of weight of superheated steam expands per-

forming work, without heat being added or abstracted, the adiabatic curve gives
the law of variation of the pressure with the volume. This curve gives also the

law of the curve of expansion of the indicator diagram of a steam engine working
with superheated steam. If the initial condition is given by p lt v lt T} (Fig. 91),

and the final condition by^> 2 ,
v 2 ,

and T2 ,
we can find by Equation (32) the rela-

tion between these quantities. If in these equations we make dQ = 0, we hav

by integration
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These are the same equations as for permanent gases, only there, for air k =
1.41, while in the present case, for superheated steam, k = 1.333.

The work L during expansion, that is, the work of each unit of weight of

steam, is

l
J v,

L = t pdv,
/ V

J

or, replacing^? by the relation ^w* =p 1v l
k

,

(49).

wherep is in kilograms per square meter.

The application of this formula to the steam engine, supposes, indeed, that

the steam remains superheated during

expansion. By great expansion it

may happen that at a certain moment
the steam becomes saturated, and

from there on condenses, so that the

expansion curve is different. At the

moment of the change, the adiabatic

curve cuts the limiting curve DD at

the point T (Fig. 91). The pressure

p and volume v for this point can

be determined. The curve DD is

given by Equation XVI., Chapter

XVII., viz. :

pv* = D,

where n = 1.0646, and D = 1.704, and p is in atmospheres. For p in atmos-

pheres and n in cubic feet, D 32.653.

Since now the point T p V is in both curves, we have

Hence
p vn

k =p 1v }

k and p v
n D.

k-n
(50).

where p is in atmospheres.

This equation gives us the expansion ratio -,
for which the superheated

steam just reaches by expansion the point of saturation. If the actual expansion

ratio is less than this, the work is given by the simple Equation (49). If it

is greater, for instance,
~

t
we can find the work up to Tn , by putting v in

place of v 2 in Equation (49). From T to T3 we must insert in Equation (49)

p vQ in place otp l
v lt and ^_ in place of% and k = 1.135 in place of * =
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1.333, as has been shown for saturated steam originally without admixture of

water (Chapter XVIII.
, page 429, and Equation XXXIII.).

EXAMPLE.

An engine works with superheated steam of p }
=5 atmos. and temperature

t
l

180. What is the expansion ratio when the steam at the end of expansion

is just in the saturated condition ?

The specific volume of this steam is by Equation (41)

v, = 0.39037.

Equation (50) gives then for the required degree of expansion

^ = 1.322.

Isodynamic Curve. The isodynamic curve gives the law of variation of

pressure with volume where the inner work, that is for steam, the steam heat, i&

constant. If the initial pressure and volume are^ and v,, we have from Equa-
tion (34)

A. A.J=Jo + k_i Pi v *
= Jo +

k _ !
Pv>

whence

piVi =pv ......... (51).

We see then, that for superheated steam, the isodynamic curve is an equi-

lateral hyperbola, precisely as is the case for permanent gases.

From Equation (36), we obtain in similar manner

c *^

from which we can find the temperature T for any pressure p. During expan-
sion and fall of pressure there is then an increase of temperature, while for per-
manent gases the temperature remains constant. For superheated steam the

change of temperature is

C / k-i k-i\
-* =

;gLPi
k -P k

J
(52).

This last formula solves an interesting problem. If a vessel filled with steam

communicates with a vacuum, the steam expands, and after it has come to rest

will be superheated, provided it was originally dry and saturated. The Equa-
tions (51) and (52) give the final condition p, v, t, for the steam heat is evidently
here constant. There is. therefore, a fall of temperature during expansion into

a vacuum, while for a perfect gas there is no change of temperature.
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EXAMPLE.

Let a vessel contain one unit of weight of pure saturated steam at a pressure

p }
5 atmospheres. Then the volume is, by formula or tables, v, = 0.3630,

and temperature t
l 152.22. Let the steam in this vessel expand into another

in which is a vacuum, whose volume is 4 times as large. Then the final volume

is v 2 = 5v l} and hence by Equation (51), p 2 = 1 atmosphere. From Equation

(52), we have for the fall of temperature (using Table II.),

t l t t = 18.876

Hence the final temperature t z
= 133.34. As this is greater than 100 which

is the temperature of saturated steam of 1 atmosphere, the steam is superheated.

Isothermal Curve. If the steam expands under constant temperature, the law

of change of volume with pressure is given by the isothermal curve. For per-

fect gases this curve is identical with the isodynamic, i. e., it is an equilateral

-hyperbola. This is not so for steam. Here we have T constant in our equation

* l

pv = BT- Cp k

;and hence the relation betweenp and v is given by it.

For the initial condition

and by subtraction

/
*-i A--K

pv=p l v 1 + C{p }
k -p k ) ...... (53).

This is the equation of the isothermal curve for superheated steam, while that

of the isodynamic is given by Equation (51). If both curves start from the same

point, the isodynamic approaches the axis of abscissas most rapidly.

The heat Q, which must be imparted to the unit of weight of steam in order

to keep the temperature constant during the transit from p l to p, is found by the

second of Equations (32), when we put dT = 0, and integrate. Thus,

(54).

The change of steam heat (inner work measured in heat units) is from Equa-
tion (36)

If i is the work of the expanding steam,

Q=JJi + AL,
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while for gases Q AL, and hence we say that in this latter case all the heat

imparted is transformed into outer work. We see that this is not so for super-
heated steam. Here only a portion of the heat Q is transformed into outer workr

the rest is required for inner work. This portion is

C / *-i *-i
~~r <D~r

and the outer work is

' ~ 1 "' ft-

_^_ _

Both quantities may be calculated from the initial and end pressures.
The preceding results agree perfectly with the usual conceptions as to the de-

portment of steam, but until now it has not been possible to determine that por-
tion of the heat imparted which goes to perform inner work.

EXAMPLE.

If saturated steam of 5 atmospheres expands under constant temperature-
down to 1 atmosphere, the heat imparted is found from Equation (54) by sub-

stituting for ~1 = |, cp = 0.4805, and T = 273 + 152.22. We thus have

Q - 82.204 heat units.

From Equation (55), we have

J-J, =6.803,

and, finally, from the difference of Q and J~ J~,, the outer work measured in

heat units

AL = 75.401,

or the outer work itself

L = 31970 meter-kilograms.

Generation of Steam under Constant Pressure. If one unit of weight of

saturated or superheated steam is generated under constant pressure p from
water at 0, we have from Equation (39)

and the work done is

k -1

pv = BT - cp ~F7
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If the weight G of steam is generated, we have for the heat necessary

(56).

and the work is

L = G(BT- Cp'i ).

If the temperature of the steam for the same pressure p is Tlt and if the
work (or the volume of steam generated) is the same as before, then if G

l
is the

weight of steam generated

. . . (57).

If, therefore, in any given case the pressure^? and temperature Tt are given,
and we wish to replace this steam by another of temperature T, we can find by
Equation (57) the necessary steam weight Gr, and then, by Equation (56), th&
heat requisite Q.

EXAMPLE.

Suppose we have G^ kilograms of saturated steam of p = 5 atmospheres, and

/! 152.22, and we wish the same volume of superheated steam at the same

pressure and the temperature t = 200. We have from Equation (57) for the-

weight of steam required (using Tables I. and II.),

G = 0.8852 & j.

The heat required to generate the saturated steam is, from Equation (56),

Q, = 653.05 G }

For the superheated steam of same volume and pressure, it is

Q= 676.00 a,

or, using the relation between 6f and 6^ ,

Q = 0.9163 Q, .

The generation of the superheated steam, other things being the same, re-

quires less heat than the generation of the same volume of saturated steam, and

here lies the advantage of engines working with superheated steam. The example

just given serves as a direct comparison between engines of the same size and

speed working with saturated and superheated steam of 5 atmospheres and 200,

provided there is no expansion.
There would be no difficulty in extending the comparison to expansion en-

gines also. We shall only remark here, that for such engines the advantage of
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superheating is somewhat diminished, because the adiabatic curve of superheated

steam approaches the axis of abscissas somewhat more rapidly than that for

saturated steam. None the less, superheating is in all circumstances theoretic-

ally of advantage.

Heating under Constant Volume. If the unit of weight of steam is heated

under constant volume, only the steam heat changes, because outer work is not

performed. We have, therefore,

when the initial condition is given by 4?,, v
} ,
Tlt or by Equations (34) and (36),

# = T +(PP\)VI (58).
k I

or

// \ /- f? / * - i * i \
. . . (59).

The first equation gives us the relation between the final pressure p and the

heat imparted. The second gives us the final temperature T.

The preceding problems might be easily multiplied. We can easily solve for

superheated steam all the examples already solved in this book for saturated

steam and gases. 4

Of especial interest are the phenomena of efflux of superheated steam through

orifices and the deportment of mixtures of steams. For lack of space we only

call attention to one more problem, which is of importance because we have in

respect to it experiments which afford a new confirmation of the correctness of

our views regarding the deportment of saturated steam.

Let there be in a cylinder A superheated or pure saturated steam of pressure

p } , temperature T } ,
and volume v lf Let it be forced under constant pressure

p , through a pipe to a second cylinder B, where it drives back a piston under

the less but constant pressure p^. What is the temperature T.2 ,
and specific vol-

ume v2 when equilibrium is attained ?

If we follow the unit of weight of steam from A to B, we have at the begin-

ning the steam heat J^, and at the end J2 . In A the work isp }
v 19 and in B,

p<iV z . The first work causes an increase of the steam heat Ap^v^. The second

a diminution by Ap 2vz . We have, therefore, if heat is neither imparted nor ab-

stracted,

J + Ap l
v

l Ap 2vs
= J2 .

From Equation (34), we have

A
J,
- J +

K

Hence, after reduction,

(60).

from which we can find the specific volume v%.
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If we use this formula in Equation (24), we have

k-l k-1
BT - Cpo~T = BTi - Cp l

~lT

and hence, for the fall of temperature,

n f k-i k-i\
-k--ps ~\ (61).

and from this we can find the temperature t a .

EXAMPLE.

If Pi = 13 atmospheres, andp 2 = 1 atmosphere, the fall of temperature is, by
Equation (61) and Table II.,

t
l ta

= 72.357 - 38.251 = 34.25.

If the steam in A is saturated, then by Table I., t
l 192.08, and hence

.**.= 157.83.

If the steam in A is superheated, and has the temperature t
}
= 200, 205% or

210 -, we have for the corresponding temperatures, since for the same pressures

p ,
and p z the fall is the same,

tz = 165.75, 170.75, 175.75.

Him has found by experiment, for the first case, t.z
= 155.58, and for the

other three

t 2 = 166, 171.5, 177.

The agreement with calculation is entirely satisfactory. For less initial

pressures p , ,
the differences are greater. Thus, when in all cases the final press-

ure wasp a
= 1 atmosphere, we have for

Calculation. Him.

p, = 5 atmos. *, = 152.22 t2 = 133.34 137.72

5 246 227.12 238.5

3 133.91 121.87 128.4

The deviations may be ascribed, for the most part, to the uncertainties and

difficulties of the experiments.
The preceding case occurs when steam escapes from a boiler into the atmos-

phere. The temperature tz is then that of the steam after it has expanded
come to rest, and its pressure sunk to one atmosphere. Of course the experi-

ment cannot be so tested, because the cold air cools the steam jet. In order to

avoid this, Him let the steam escape into a wooden box surrounded by a second

box. This second box was inclosed in a third. The steam passed, after filling

the first, through a large orifice into the second, from this into the third, and
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finally into the air. The apertures were so large that the pressure in the inner

box, in which the temperature ^ was observed, hardly differed from the exterior

atmospheric pressure. It is very desirable that these fine and ingenious experi-

ments of Hirn should be repeated and extended.

Since for permanent gases C = in Equation (61), the fall of temperature in-

such case is zero. This can be proved from the formulae in Chapter V., page

154. When, therefore, a permanent gas flows adiabatically and under constant

pressure from one vessel into another in which the pressure is also constant,

there is no change of temperature. This, of course, holds good only for a perfect

gas. Actual gases shows deviations similar to steam, as shown by the experi-

ments of Joule and Regnault.

[The problem of the mixture of superheated steam with saturated steam Is

one of considerable importance. It is often the case that only a portion of the

steam passes through the superheater and then mixes with the wet steam which

comes directly from the boiler on its way to the cylinder. This takes place under

constant pressure, and heat is neither imparted nor abstracted.

Suppose we mix together

GI kilograms of superheated steam in the condition^?, v lt and T\ ,
and

G 2 kilograms of wet saturated steam of the pressure^?, specific volume v 2 ,

temperature Tz , and specific steam weight x,

Required the condition v and T of the mixture, assuming that this mixture is-

either superheated or dry saturated, i. e., contains no water. (If we assume that

the mixture is wet, we can solve the problem in a precisely similar manner, but

the case does not occur in practice.)

We have for the total heat in the G 1 kilograms of superheated steam, before

mixture, from Equation (39),

r~ / /^ A- - 1 \ i

w
}
= G,

^r
+

Cf ,

(TI ^|j jj,

and for the to'tal heat in the G 2 kilograms of wet steam, before mixture,

W2 = G 2

[~V
+ C|Yr,-.?jV^ -(l-x)

The total heat in the mixture G = G^ + G 2 is, if it is dry,

Since heat is neither imparted nor abstracted, the total heat after equilibrium
must be the same, hence

W = Wl + Wa ,

or, after reduction,

GT=G 1 T1 + G2 T2 -G 2 (l-x)- ..... (1).
cp
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From Equation (24) we also obtain, after reduction,

Gv- Giv t
+ G zv 2

- BG 2 (l-x} ..... (2).
P"P

From these two equations we can find the absolute temperature Tand specific

volume v of the mixture.

For the change of volume after mixture, we have

Ov - G l
v

l
- & 2v 2 = - B& 2 (1

-
a) , (3).
pcp

For a given pressure then, the change of volume is directly proportional to

the originally existing weight of water, G 2 (I x\ and it is negative, i. e., there

is a diminution of volume by mixing.
In most practical cases it is required to find for given values of G, p, T and

Tlt how much saturated steam # 2 should be mixed, in order that the resulting

mixture may be either superheated or dry saturated.

We find from (1) directly, by substituting 6S = Cr 6r 3

(4).

T
}
-T2 -(l- x)

If the G 2 kilograms were also superheated, we should have

W2

and hence

/ c =1\~\
2 \JQ + Cp (T2

- (

-p k A
,

1_ \ / 1

GT O\Ti + G T



CHAPTEK XXIV.

A. THE MORE IMPOBTANT PRINCIPLES WHICH SHOULD GOVERN THE
CONSTRUCTION OF THE STEAM ENGINE.

ONE of the most important points in the construction of a

steam engine is that it shall give a certain delivery with the

least amount of fuel. This depends not only upon the propor-
tions of the engine itself, but also upon those of the boiler.

"We require from the boiler, first, that it shall absorb as much
as possible of the heat of the fuel and transmit it to the water.

Por this it is necessary not only to give the boiler an appro-

priate shape, but also to construct it of suitable material.

Then the furnace must be so arranged that the fuel is com-

pletely consumed, and that but little heat shall be lost by radi-

ation or conduction. Sometimes one of these conditions is in

opposition to another.

As to the form of the boiler, that is to be preferred which

gives for given capacity the greatest heating surface. But on

the other hand, this form should give the necessary strength.
The first Watt boilers, the so-called "

wagon
"

boilers, had a

tolerably large heating surface, and answered well for the low

pressures then in use. At present, when higher pressures are

used, they would not be sufficiently strong. Hence cylindrical
boilers are now used, either with interior or exterior fire-place.

The boiler should also have such capacity as to furnish the

;steam required by the engine, and to keep the engine in uni-

form action. For this reason the steam used per stroke should

foe but a small part of the boiler capacity. In general, the

steam space should be at the very least 12 times the capacity
of the cylinder. In order that the heating surface may be

large, the water should occupy a certain extent of the boiler.

588
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In general, the water space is TV of the entire capacity. In
order to prevent radiation, the boiler may be covered, where

exposed, by poor conductors. Boilers are sometimes con-

structed now of steel plate as well as iron, because the former
is not only stronger but has a greater conducting power.
As to the furnace, care must be taken to secure complete

combustion of fuel, that the heat may be absorbed by the

boiler sides, and that but little heat is lost. For complete
combustion a certain amount of air is essential. But if more
air than necessary is used, the excess absorbs a portion of the

heat, of which indeed a part is given up to the boiler, but
another part escapes at the chimney. A good draught is also

necessary. This will be greater the higher the chimney and
the greater the difference of temperature of the air in the

chimney and the cold air outside. The height of chimney has
a limit, both by reason of cost, and because the increased fric-

tion diminishes the draught. The temperature in the chimney
should not be too great, because then a great part of the heat

passes off unutilized. It has been sought to utilize this waste

heat in the chimney by making it heat the feed water, when

ordinary feed pumps are used. Engines working with super-
heated steam, of which there are but few, use this heat to

superheat the steam.

In stationary engines the grate surface is a certain propor-
tion of the heating surface, about TV or TV only. In locomo-

tives this ratio is still less, even as low as ^V or less, but

here there is a strong artificial draught. It is thus pos-
sible with a boiler of relatively small capacity and weight

(weight of boiler with water) to generate in a short time a con-

siderable amount of steam, a property which is of importance
in locomotives especially.

The ratio of the heat absorbed by the boiler in a given time,

as one hour, and which can be determined evidently by the

amount of water vaporized in that time, to that furnished by
the fuel, is called the efficiency of the boiler. The heat units

furnished by the complete combustion of different fuels have

been determined by experiment. We may call this the heat-

ing value of the fuel.

The more water is evaporated in a given time by a given

weight of fuel the greater the efficiency.
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EXAMPLE 1. In a hot-air engine the heat furnished per hour co the air is

6170 heat units, while in the same time 4.585 kilograms of coal are consumed,

whose heating value is 3500 heat units. What is the furnace efficiency ?

We have

6170

4.585 x 3500
=0'38 -

Therefore 62 per cent, of the heat is lost.

EXAMPLE 2. The boiler of an expansion engine which uses steam of 5 atmos-

pheres, vaporizes per hour, for every horse power, 30 kilograms of water, and re-

quires for this 5 kilograms of hard coal, whose heating power is 7500 heat units.

What is the boiler efficiency ?

If we assume 640 heat units to 1 kilogram of steam at all pressures, we have

30 x 640 = 19200 heat units imparted to the water per hour per horse power.

The 5 kilograms of coal give 7500 x 5 = 37500 heat uni^s. Hence the efficiency is

19200 - -,12
37500

- - 13 '

As to the engine itself, the first requirement is that for a

given power it shall use as little steam as possible. This is

accomplished principally by using the steam expansively and

having as much expansion as possible. Since the counter-

pressure upon the piston has considerable influence, this

should be as small as may be. Where, then, water is plentiful,

condensing engines are of value. In order that the useful

effect for a given steam consumption may be a maximum, the

prejudicial resistances, friction, work of the pumps, etc., should

be a minimum. These conditions require the construction to

be simple. If we use high steam (7 or 8 atmospheres) and a

high expansion (1 to 6 or 1 to 8) the use of the condenser offers

less advantage, as the influence of the back pressure is rela-

tively less, and two pumps must be worked by the engine.
While seeking to reduce the cost of working to a minimum,

we should also make the cost of construction small. This, as

well as the cost of erection, depends upon the dimensions,
which we must therefore make as small as possible. This may
be effected by the use of high steam, and also by rapid action.

As both these increase, the cylinder volume becomes less. For
a rapid engine, the fly-wheel also is lighter and the friction of

the shaft is less. Most industrial purposes also require a

high velocity, so that high piston speed causes simpler gear-

ing.
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Total Delivery Useful Effect Efficiency. By total delivery
-we mean the work of the effective steam pressure, or pressure
of boiler steam minus the back pressure of the air or conden-

ser. From this total effect we have to subtract the losses due

to difference between boiler and cylinder pressure, friction of

piston, valves, etc. The difference is the calculated or theo-

retical useful effect. This then is the work actually imparted
to the engine. If we measure the work done, by the dyna-
mometer, we have the actual or observed useful effect. The
more reliable the coefficients used in determining the losses,

the better the agreement between the calculated and the ob-

served useful effect. The division of the useful effect by the

total gives the efficiency. A machine is more nearly perfect
the nearer this ratio is to unity. The same method of calcula-

tion is used when we make use of the principles of the me-

chanical theory of heat, as when we proceed according to the

old method of Pambour, only we have to take into account

.a new loss, which Zeuner calls the loss by reason of the incom-

pleteness of the cycle process. We shall return to this later

on.

In any steam engine, the greater the efficiency of the furnace

and the engine itself, the better is the machine. If in addition,

cost of erection and repairs is small, all conditions are satisfied

which can be demanded of the construction. To demand that

the furnace shall absorb all, or the greatest part of the heat

contained in the fuel, is as unreasonable as to demand that a

water-wheel shall receive the entire flow of a river from the

source to the sea.

If we divide the useful effect of a steam engine, expressed in

units of heat, by the number of heat units given by the com-

bustion of the fuel, we obtain the
" thermal effect

"
of the entire

apparatus.

EXAMPLE 1. The total delivery of a steam engine is 1000 meter-kilograms per

second, and the useful effect 537. What is the efficiency ?

Wehave ..
" = 0.537.

.

"'

EXAMPLE 2. What is thermal effect of the hot-air engine, page 548, when

the hourly delivery is 265680 ?
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Since in 1 hour 4.585 x 3500 heat units are set free in the furnace, and 26568

265680
meter-kilograms corresponds to = 626.6 heat units, we have

AOfi A
= 0.039, or about 4 per cent.

4.585 x 3500

The thermal effect is that which properly informs us as to the economy of

steam or hot-air engines.

B. THE CYCLE PROCESS OF THE PERFECT STEAM ENGINE, AND

THE "DISPOSABLE "WORK."

In the first part, we have seen that the delivery of every
caloric engine is given by

Of1

where -7= is the heat weight imparted and T Tthe temper-

ature fall, or the difference of the highest and lowest tempera-
tures of the air when compressed adiabatically. We called it

there the " useful delivery," because it was that obtained by
subtracting from the total delivery, or work of the air on the

piston, that required for the compression of the air by the feed

piston. We shall now call it the "
disposable work," since it is

that which the air in passing through its cycle puts at our dis-

position, from which we are to get as much useful effect as we
can.

We have also seen what the cycle process is when the abso-

lute maximum of work is required. The addition and abstrac-

tion of heat must be so regulated that all the heat imparted
must be transformed into work. In other words, heat addition

and abstraction must take place according to the isothermal

curve, and the two others must be adiabatic. Such a cycle

process we can call
"
perfect," and an engine which goes

through such a cycle is called "perfect" or ideal. It is impos-
sible, with the same expenditure heat and temperature fall, to

obtain a greater delivery than such an engine gives. But it

has the disadvantage that, other things being the same, it re-
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B

quires a much greater cylinder volume than hot-air engines in

which heat addition and abstraction take place according to

some other law than the isothermal. For this reason it is not

to be recommended in practice.
The case is different in this respect when we use steam in-

stead of air or a permanent gas. Here also such an engine is

perfect when the cycle process is perfect. But here such a

process is the easiest executed, because the isothermal lines

are parallel to the axis of X.

We shall first speak of the perfect cycle process of the steam

engine. We shall see, as we proceed, why in our present en-

gines the cycle is incomplete. The work of such a perfect
steam engine we call, with Zeuner, the disposable work.

Let EF, Fig. 92, be the steam cylinder with the piston KK~
Left of the piston is a certain weight of water of G kilograms..
The pressure upon the

piston is p, and the back

pressure is p^ In a con-

densing engine p1 is about

0.15, and in a non-condens-

ing 1.1 atmosphere. Now
let heat be imparted till

the water is raised to its

boiling point t for the

pressure p. If heat is still

further imparted, steam is

generated of the pressure

p and temperature t, and

the piston is driven toward

the right. When the dis-

tance HV = AB is passed
let the greatest part of the water be vaporized. Let the specific

steam weight be now x. Then we have now in the cylinder

Gx kilograms of steam, and G (1 x) of water. The heat im-

parted to the water at
D

,
to generate the steam, is Grx heat

units, where r is the total latent heat of vaporization. Let

now the mixture expand adiabatically along BC, until the vol-

ume is v lt and the temperature and pressure ^ and p^ As we

know, steam condenses during the expansion, and the specific

steam quantity at the end is less than at the beginning. Sup-
38

F
FIG. 92.
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pose this quantity is xlt then we have (page 177) Equation

XXV.,
XT

^ + T : : _ +

where rj is the latent heat of vaporization at the temperature

#i. The piston is now at the end of its stroke. Now let the

volume vl9 of the temperature tly be compressed under the con-

stant pressure p till the volume is v2, that is, the piston passes

through CD. Then let the remaining volume be compressed

adiabatically, D being so chosen that during compression from

Fto H, the remaining steam is converted into water, and we
have the original condition again. If the process is thus per-
formed as indicated, we have not only a complete cycle process,
but also a perfect cycle process, that is, one in which the work
obtained is a maximum. Whatever other complete cycle

process the steam may be made to perform, the work obtained

for the same amount of heat imparted will be less. If the spe-
cific steam quantity at D is x2 (of course, less than at (7), we

have, since at A, xz 0,

.

M
At C the steam weight was Gx^, and at D it is Gx^ so that

from Cio D the heat abstracted is

ft = Gri (xl
-

afe).

The entire process thus is similar to that on page 244 of

Part I. where air expanded and was compressed under con-

stant pressure. Just as there the work actually obtained, after

subtracting that of the back pressure p, is given by the area

TiTzT^Tz, so here the area ABCD is the effective work, or that

obtained after subtracting that of the back pressure p^ If we
denote the work by L, we have

L = i- (Q - ft) (see page 199, Part I.)

If for Q and ft we put the values above,

L = Grx GJ\ (xl xz).
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Since

(*/>

\

yr
+ T T

I)
2"i, and r^ =

(r r,) T,

"we have

L = ^(T-Tl). , . . (CXIII.)

or

T- T,)^ . ,. '-'-.-' (CXIV.)

This is the same equation which we found in Part I. for the

-delivery of the hot-air engine. The quotient ^ is the heat
A. J.

weight and T T^ the temperature fall. Just as in hydraulics
we determine the total delivery, or, as we now call it, the dis-

posable work, of a water-wheel from the weight of water enter-

ing the wheel in a certain time and the fall, so here the dis-

posable work of a steam engine is given by the product of the

heat weight imparted in a certain time and the temperature fall.

Since in every complete cycle process the heat weight ab-

stracted is equal to that imparted, we have also

T,) . . . . (CXV.). . .

Both formulae give for a certain Q or Ql the absolute maxi-

mum delivery of a machine. For the same heat Q or Q1 the

-delivery is greater the greater the temperature fall. In hot-air

engines we could not, on account of practical reasons, have T
^over 573, and 2\ cannot be much below 273. If in the steam

engine T were 573, or t = 30CP, we should have an enormous

steam pressure, since for 230 the pressure is about 28 atmos-

pheres. At present we seldom exceed 10 atmospheres, which

corresponds to t = 180.3, or T = 453.3. Whether it is prac-

ticable to employ higher pressures can only be determined by

practice. Further, we cannot well go below ^ = 46.2, or

T
}

= 319.2, as this temperature corresponds to TVth of an

atmosphere. For a lower temperature the amount of condensa-

tion water is too great. For engines without condensation,

*i = 100, and T^ = 373. If then we regard t = 180.3 as the
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maximum temperature, we have for the maximum delivery of a,

perfect steam engine, for condensation,

(180.3
-

46.2) = 125.380 . . (CXYI.)

or for English units and Fahrenheit degrees 318.78$.

and non-condensing,

L = (180.3
-

100) = 75.08Q . . (CXVII.)4oo.o

or for English units and Fahrenheit degrees 190.88(2-

EXAMPLE.

What is the delivery of a perfect steam engine, which uses per hour 100 kilo-

grams (or 220 Ibs.) of steam of 10 atmospheres ?

If we assume the steam to be dry, Q = Gr where Q and 6? are quantities per
hour. Now T = p + Apu is for 10 atmospheres 478.8 (or 861.8). Hence Q
478.8 x 100 = 47880 heat units per hour, or 13.3 per second (or 49.61).

For a condensing engine, then,

L = 125.38 x 13.3 1667.55 meter-kilograms,

or L = 318.78 x 49.61 = 15814.7 foot-lbs.

Hence N = 1667 - 55 = 22.23 horse power,
75

or N= 15814 ' 7 = 28.75 horse power English.
550

For non-condensing,

L ~ 75.08 x 13.3 = 998.56 meter-kilograms,

or L = 190.88 x 49.61 = 9469.56 foot-lbs.

Hence N= 998 ' 56 = 13.32 horse power,
75

or N= 9469 ' 56 = 17.21 horse power English.

Since now, from formulae CXIY. and CXV., the delivery of
an engine depends only upon the heat Q and temperature fall,

it is evident that the kind of liquid used makes no difference,

whether water, alcohol, ether, or air.

Let us now consider the cycle process of our actual steam

engines and find their delivery. We shall then see why their

cycle process is not perfect. If we then compare the delivery
with that of a perfect engine, we shall have the loss of effect

due to the imperfection of the process, to which we have

already referred.
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<7. CYCLE PKOCESS or THE ACTUAL STEAM ENGINE AND DETER-
MINATION OF THE LOSS OF EFFECT DUE TO THE IMPERFECTION
OF THE PROCESS.

In actual engines we have to do with a complete but not a per-

fect cycle process.
Let A be the steam cylinder and K the boiler. The steam

has the press-
ure p and tem-

jperature t.

Prom the boil-

er it passes
through t h e acl

steam pipe to

the valve box

on the right of

the cylinder A.

Let the piston
have its highest

position, and
hence the up-

per part be a

little open.
Provided that

there is no fric-

tion in steam

pipe, steam of

the boiler pressure enters above the piston and forces it down.

Let the line Oo represent the pressure p. When the piston
has passed through the distance 0V, and when, therefore,

there have entered V cubic units of steam from the boiler, let

expansion commence, and the steam expand according to the

adiabatic line xx^ At the end of expansion let the steam have

the pressure p^ and the temperature ^ of the condenser C.

Above the piston we have then steam of the pressure p l
and

volume V
:
. By this time the valve has opened the lower port,

and steam of the boiler pressure p is below the piston, which

now rises. "While rising, it forces the steam volume P\ under

the pressure pi gradually into the condenser. Thus the back

Fi. 93.
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pressure is p\. The line x^a represents this pressure, while o^fc

is the stroke.

If the engine has a surface condenser, the volume Fi is con-

densed, and is then forced by the feed pump D into K. Here
it is again heated from ^ to t, then converted into steam, and
then admitted to the cylinder. If we have a jet condenser, the.

pump D must remove from the condenser not only the con-

densed steam, but also the injection water. But it only has to

force into the boiler as much water as before. If there is no

condenser, the back pressure p is that of the atmosphere, and
it is just the same as if we had a condensing engine in which
the condensed steam has a temperature of 100. Although in.

this case the same weight of water must be forced into the

boiler as before, this water, if there is no feed heater, has a

lower temperature, and more heat is required to heat it than
in the condensing engine.

Since we thus know the character of the cycle process, we
can calculate the delivery. First, it is evident that the area

boxx^ gives the delivery per stroke, the work of overcoming the

back pressure being deducted from the total. If, then, we de-

duct the work required for forcing the feed into the boiler, we
have the work corresponding to the cycle process of the actual

steam engine.
We assume again G as the weight of steam and water per

stroke, of which xG kilograms are steam and (1 x) G water..

The steam volume used per stroke is V, or

V= (xu + (?) G cubic meters.

The work during full pressure is

L
l =pF= p(xu + 0) G meter-kilograms.

If the specific steam weight at the end of expansion is xly we
have for the volume Vl

7, = (xlUl + a] G,.

Since the steam expands adiabatically, we have for the work
during expansion (Equation XXVII.)

/nr

LZ = (q
-

qi + xp -



STEAM ENGINE CYCLE PROCESS. 599

Hence the delivery per stroke is

L^ + L2
= [p (xu + ff) +

-j (g
-

?i + a?p
- o^)] #

From this we must subtract the work in overcoming the back

pressure p^ This is

L3
= pl (x^ + ff) G.

Therefore the delivery, neglecting the work required for the

feed, is

A (1^ + L2 L3)
= [Ap (xu +ff) + (q qi + xp- x^) - Ap^

\Ui + ff)~\
G heat units.

x>

-r
,
or

AL = [q q-i
+ xr x^ + Aff (ppi)]G heat units.

(CXVIII.)

If the last member in this equation is neglected on account

of its smallness, we shall have Equation LV., page 516, which

we have already found for the efflux of steam. Hence

or

That is, the total delivery of the actual steam engine per
stroke is equal to the living force of the steam G used per
stroke when it flows with the velocity w from the boiler. This

might at first sight seem to make it advantageous to allow the

steam to act by impulse or reaction. When we consider, how-

ever, that a reaction wheel only gives its maximum delivery

when it revolves with the same velocity as the liquid departs,

such a wheel would have to have an enormous velocity, as the

velocity of steam is very great when issuing even under low
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pressures. Such a velocity would consume much of the effect,

even if the construction had any practical value. (Zeuner,

"Warmetheorie, page 477.)

If we determine x^ from the known relation

xr x\r
fJl * /77 1 >

and insert it in the preceding equation, we have, after reduc-

tion,

'. (CXIX.)

This expression is not yet the outer work of the steam en-

gine. It is rather the entire work obtained up to the point
where the G kilograms of steam at the temperature t have be-

come water at the temperature ^. To complete the cycle pro-
cess we have still to force this water into the boiler.

Here we have to distinguish between engines condensing and

non-condensing. In the first case, we may have either a sur-

face or a jet condenser. In the other, the steam escapes into

the air.

(a.) Condensing Engine Surface Condenser. In this case

the pump D has to raise per stroke the G kilograms and force

them into the boiler. If the pressure of the air is p^ we have

for the work of removing from the condenser

and for forcing into the boiler

When we add both works, we have for the work of the pump

LI = Gff (p pi) meter-kilograms, or in heat units

AL = Aff (p pi) G.



STEAM ENGINE SURFACE CONDENSEE. 601

Subtracting this from CXIX., we have for the work obtained

by the cycle process of a steam engine with surface condenser,

AL = (T-T1)+q-q^r-r,)TG heat units. (CXX.)

(b.) Condensing Engine Jet Condenser. We suppose that the

air pump not only removes the water from the condenser, but

also forces it into the boiler. We also neglect the fact that it

removes air also. If G is the injection water per stroke, the

pump has to remove per stroke G + 6r , but only has to force

G into the boiler. The work of removing is

( + G)(po-pi)<? = G ff(p -p1) + Go-(p -
pl).

The water G then runs off, and G is forced into the boiler.

The work required is

Gff(p-p ).

The total work of the pump is then

A = G<? (Po-pi) + Ga (P -Pi)-

We have then for the work of the cycle process of a condens-

ing engine with jet condenser

AL= (T- TJ + q-q.-^-r,} r G - G,a (p,
-

Pl) A.

(CXXI.)

The last member is so small that it may be neglected.
i

(c.) Non-condensing Engine, with Ordinary Force Pump. Let

the height to which the water is sucked be h. The work is

Gh. The work of forcing into the boiler is

But in the present case^ =Pi> hence

L,= Gh+ Gff(p-pl).
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Subtracting this work from CXIX., we have

AL = G
[^ (T-TJ

+ q- q,- (r-rj T,-
Ah^. (CXXII.)

Here Ah may be neglected, and we have again Equation CXXc

(d.) The Boiler is Fed by a Giffard Injector. In this case

there is no outer work required for the injector. We can,

therefore use Equation CXIX. directly, of which we may ne-

glect the last equation. Hence Equation CXX. gives, in all

cases, the total delivery measured in heat units of the cycle

process of the steam engine.

The question now arises, what is the amount of heat ex-

pended? If we know this, and insert it in Equation CXIY.
instead of $, we shall have the delivery of an engine with per-
fect cycle process. The comparison of this with Equation
CXX. will give the loss of effect by reason of the imperfection
of the process. This heat can be easily determined.

We assume first that the engine is condensing. The G kilo-

grams of steam used per stroke are removed in liquid state

from the condenser and forced into the boiler. The tempera-
ture of this water we have indicated by ,

and the heat of the

liquid is q^ Hence the G kilograms of water contain Gqi heat

units. In the boiler the temperature is raised to t, and the

heat of the liquid is q. The heat imparted is then G (q qj.

Of this water xG kilograms are now vaporized, which requires
the heat Grx.

The total heat then is

G (rx + q
-

q,) = G [q
-

g 1 + (p + Apu)x].

Let us assume again that the engine is non-condensing, and
that the feed is furnished by the injector. If the feed water

has a temperature of tQ the heat of the liquid is q^ and if we
assume the water heated to t by the steam of the injector,

this steam must itself lose heat, so that it becomes water at C-
When now this condensed steam with the feed water enters the

boiler, the former must receive as much heat as it lost in con-

densing in order to be converted into steam of t. We neglect
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ihus, indeed, that heat which, transformed into work, is neces-

sary to raise the feed water and force it into the boiler. On
account of its slight comparative amount, this is allowable. If
therefore the quantity of water raised is G, and if it is heated
to #!, the heat lost by the steam in thus heating it is

& (0i
~

<Zo),

and this, as remarked, must be again imparted to the condensed
steam in the boiler in order to convert it into steam at t. The
feed water is now heated in the boiler from t to t, and this re-

quires the heat G (q qj. The total heat imparted to the feed

water in order to bring it up to the temperature of the boiler

water is then

Gql
- Gq + Gq - Gql

= G(q- q,).

Finally this water is to be converted into steam at t. For
this we require, assuming that of the total weight of feed water,

Gx are steam, Grx heat units. Hence the total heat imparted
to the feed water is

G (rx 4- q fa)
= G [q ^o + (p + Apu} x] heat units.

If, finally, the boiler is fed by an ordinary force pump, and

the temperature of the feed water is t
,
we have again

G (rx + q )
= G

[_q q + (p + Apu) x] heat units,

in order to form steam of t. We see, then, that with the in-

jector we have to impart as much heat to the feed water, in

order to generate the steam required, as when the ordinary
force pump is used. In this respect also, then, the injector

possesses no advantage. The single advantage of the injector

is that the frictional resistances are less.

From the above it follows that the heat required for the de-

livery of the cycle process of the steam engine is given by

Ql
= G (rx + q

-
gc)
= G [q

-
q + (p + Apu) x],

in which for condensing engines we put ql for qQ.
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The heat, then, is less the greater qQ ,
that is, the hotter the

feed water. We see, then, the desirableness of a feed water

heater.

If now this heat is used in a perfect engine, we have for the

delivery

T _ . T}~
~~AT~

This delivery is therefore that which, from the standpoint
of the mechanical heat theory, is disposable when the heat

(T (o q.) + rx) is used. It is more convenient to put the for-

mula in the following form,

cr-ro + fr-
1-^. . (cxxm.)

Now in our actual steam engines we have the work from

Equation CXX.,

If we subtract this from the preceding, we have for the loss

of work by reason of the imperfection of the cycle process,

Ll = If to
~

*> T ~ (q
~

9o) Tl + (r
~

Tl) TTl1 (CXXIV'>

For condensing engines we put qi in place of q . If we divide

this by the disposable work, we have the ratio of the loss of

effect to the work which is at our disposition in the heat used.

This ratio is

- fe - fr) r - (g
-

g") ri + (
r - r

i) TT,

EXAMPLE.

A non-condensing steam engine works with dry steam of 5 atmospheres. "What

is w when the feed water has a temperature t n = 15 ?
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From our Tables we have for

5 atmospheres and for 1 atmosphere

t = 152.2 *, =100
q = 153.7 q 1

= 100.5

r - 0.45 TI = 0.31

r = 499.2

hence

_ (100.5
-

15) 425.2 - (153.7
- 15)373 + (0.45 - 0.31) 425.2 x 373

(153.7 - 15 + 499.2) 52.2

6005.33

Therefore 18 per cent, of the work at disposal is lost by reason of the imper-
fection of the cycle process.

Zeuner, to whom this elegant and interesting discussion is

due, has investigated by various examples the influences of

heating the feed water, and of water contained in the steam,

upon the loss of effect. The following tabulation in which the

steam is assumed to be dry, shows the influence of heating the

feed water. The engines are, of course, non-condensing.

NON-CONDENSING ENGINES.

(Back Pressure, 1 Atmosphere.)

Boiler Pressure Loss of Effect w
in for

Atmospheres <,
= 15 and ,=100

1J 0.15 0.01

3 0.16 0.03

4 0.17 0.04

5 0.17 0.05

6 0.18 0.05

8 0.19 0.06

10 0.19 0.07

If, then, the feed water is heated up to 100, the loss of

effect by reason ,of the imperfection of the cycle process is

small, especially for low steam pressures. For condensing en-

gines, in which the back pressure is about TV of an atmosphere,
in which, therefore, the feed-water temperature is ^ = 46.2,
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the loss for 1J atmospheres is 0.05, and for 10 atmospheres
0.10. Here, then, the loss of effect increases with the pressure.

In the following tabulation we see that the loss of effect in-

creases with the, quantity of ivater in the steam. The engine is

assumed non-condensing and working with steam of 5 atmos-

pheres.

Specific steam Loss of effect for feed water temperatures,

quantity. ^ = 15 80 100

x = 1 w = 0.17 0.08 0.05

# = 0.90 0.19 0.09 0.05

# = 0.80 0.21 0.10 0.06

We see from both tabulations how advantageous it is to use

hot feed water. This is confirmed by experiment. The waste

gases in the chimney may be used for heating the feed. But

even then, the loss of effect for high pressures, especially when

the steam contains 10 or 20 per cent, of water, is considerable,

so that it becomes a question whether the cycle process of our

present steam engines can be so altered as to correspond to

that of a perfect steam engine. For this purpose, we should

evidently not condense all the steam in the condenser, but

rather so much should remain, that by adiabatic compression
this remaining steam may be converted into water, with the

already condensed steam, at the boiler temperature (t).
Never-

theless, the preceding discussion shows that on the whole the

imperfection of the process is small. The other losses, as that

due to imperfect expansion, prejudicial space, etc., are in part

greater, at least the loss due to imperfect cycle is but a small

part of the total losses. Accordingly, it is by no means correct

as Eedtenbacher asserts, that the cycle process of our steam

engines is exceedingly imperfect, and that therefore some other

method of utilizing the steam should be invented.
" So long

as the fundamental principles of the mechanical theory of heat,"

says Zeuner,
" are regarded as correct, so long we can regard

the cycle process of our steam engines as quite perfect, and if

there are no losses of work greater than that due to the essen-

tial imperfection of the process, we need not search for im-

provement in the steam engine ; at any rate, in those engines
which use saturated steam."
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COMPLETE CALCULATION OF THE STEAM ENGINE.

Indicated Delivery. We have in the preceding calculated the

total delivery, or that obtained by the cycle process of the or-

dinary steam engine, when we disregard the work required for

the feed. We have now to determine more exactly the work of

the steam in the cylinder, not only with reference to the back

pressure, but also to other prejudicial actions. We have first

to calculate the work which the steam actually performs on the

piston. Since this work is accurately given by the indicator

diagram, we call it the indicated delivery or horse power of the

steam or engine. In these calculations we shall proceed, of

course, from the principles of the mechanical heat theory.
Then we shall show how the prejudicial resistances, such as

piston and valve friction, that of fly-wheel and pumps, etc., are

to be determined. Finally, we shall show how to determine

the dimensions, the consumption of fuel, etc., for an engine of

given horse power.
Let us first examine more closely the action of the steam in

the cylinder. We assume an engine with ordinary slide valve,

moved by an eccentric.

Action of the Steam in the Cylinder. In Figs. 94, 95, 96, 97, and

"98, AB is the cylinder, CD the piston, EF the slide valve box,

/ a portion of the steam pipe, GH the slide valve, ab and cd

the steam passages, a and c the entrance ports, and e the ex-

haust port, through which the steam passes either into the air

or into the condenser. In Fig. 94, the piston is at the left end

of its stroke ;
the port a is already a little open, and steam enters

from the boiler and presses upon the left side of the piston.

This steam we shall call the "driving steam." This opening of

607
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the entrance port for the admission of steam, before the piston

gets to the end of its stroke, is necessary for smooth mo-
tion of the engine.
While now the driving
steam forces the pis-

ton to the right, the

valve moves also in

the same direction,

and the port a is

opened more and

more, and fresh steam

continually enters.

Finally the port a is

fully opened, and the

valve has then reached

its extreme position
towards the right. It

then begins to move
towards the left, and thus closes a more and more, so that the

steam enters with increasing resistance. In Fig. 95, the port a,

is completely closed, and hence no more steam can enter behind

the piston. Since the piston has not yet arrived at the end of its

FIG. 94.

FIG. 95.

stroke, however, the driving steam must now act expansively.
Meanwhile the valve still goes towards the left, and in Fig.
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FIG. 96.

96, we have the position of valve and piston when the first is

about to open the port a for the discharge of the driving steam,
while the
second is not

yet at the end

of its stroke XT
EaSiS^sS^^vvT,-- -^--^- *M it

towards the

right. Up to

this moment
we have ex-

pansion o f

the driving

steam, but of

course not
after. This is

then the

point of re-

lease, while Fig. 95 is the position where expansion begins.
From this point on, the valve opens the port a for the release

of the steam. The driving steam flows through a, &, and e to

the condenser, or out into the air. Fig. 97 shows the position
of piston and valve when the port a is tolerably open for dis-

charge, while the piston has not yet arrived at the right end of

its stroke.

In this position the port c is closed. While now the piston
still moves to-

ward the right
and the valve

toward the left,

the port c is

opened to ad-

mit steam, and

the steam en-

ters as before

it did in Fig.

94, only on the

right side of the

Fl( , 9r piston instead

of the left. The

driving steam is now on the right of the piston. Thus far we
39
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have confined our attention to the left side of the piston and

have considered the action of the driving steam. Let us now
see how the back pressure steam acts. This steam we have in-

dicated by points in our Figures, while the driving steam is

indicated by horizontal lines. Let us refer again to Fig. 94.

We see here that the port c is tolerably wide open, wider than

a, and hence that the release of the back pressure steam to the

condenser takes place before the admission of the driving steam.

From this point, as the valve moves to the right, c is opened more.

It is fully opened when the slide is at its extreme right posi-

tion. Fig. 96 shows the valve returned a good ways toward the

left, but still in communication with the condenser. The steam

in the cylinder, on right of piston, has then the pressure of the

atmosphere, or of the condenser. In Fig. 97 the port c is closed,

and as the piston still goes toward the right, the steam is com-

pressed, becomes hotter, denser, and has a higher pressure.
For this compression a certain work is necessary, which must

be deducted from the total delivery. But this work is not lost,

since now less fresh steam is required for filling the space back

of the piston. Experience shows that this compression, or
"
cushioning," is also necessary for quiet and smooth working.

Fig. 98 shows the end of compression, or the position of the

valve when c just begins to open for the admission of fresh

steam on the right.

T

PIG. 98.

The action of the

steam just described

is caused by two

things, the "
angk of

advance" and the

"lap" of the slide

valve.

At first, things were

so arranged that both

ports were closed

when the engine was

on its dead points ;
in

other words, when the

piston was at either

end of its stroke.

The slide was then in its central position. Such a relation
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FIG. 99.

between the motion of the slide and piston can be easily
attained by so placing the eccentric disc that the line joining
its center with the center of the shaft makes an angle of 90
with the line joining the dead points. If thus B and (7,

Fig. 99, are the

dead points for

.a horizontal cy-

linder, the ec-

centric disc 8
must be so

placed on the

shaft Z>, that

DE makes an angle of 90 with EC. In this case both ports
^vould be fully opened when the piston is in the middle of its

stroke, if the connecting rod were infinitely long. Even for

moderate length of this rod, the same is nearly true. Since

now, in our present arrangement, we wish both ports to be

open when the piston is at either end of its stroke, the valve

must be beyond its central position. This is attained by fixing
the disc on the shaft so thatDE makes more than 90 with EC.
This increase of the angle of 90 is the "angle of advance."

The angle of advance, then, is the angle made by the eccen-

tricity with the perpendicular to the valve face when the pis-

ton is at a dead point.

If now the steam is required to act in the cylinder with a

certain expansion and compression, we must have the following

FIG. 100.

arrangement. We make the slide so long that in its central

position it laps over the ports by a certain amount on each

side. The amount which it exceeds the port on the outside is

-called the "outside lap" and on the inside, the " inside lap?
it is more advantageous, as has- been pointed out, for the re-
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lease of the steam to take place somewhat earlier than the-

admission, the outer lap is always greater than the inner.

Thus ab and cd, Fig. 100, are the outer laps, and ef and gJi the

inner, or they are the distances by which the valve, when in

its central position, extends beyond the ports.

For this central position of the valve the center d of the ec-

centric disc must be in the perpendicular cd to be. If, now,
when the piston is at the left end of its stroke, the port for the.

lu

FIG. 101.

admission of steam on the left is to be opened a little, the point
d must be somewhere to the right, say at/. If the conecting
rod and eccentric rods are very long, the travel of the valve

toward the right is approximately /</.

The angle dcf is the angle of advance. If we wish to know
how far the piston is from the left end of its stroke, when the

valve has its central position, we have only to lay off the angle
bch = dcf, and let fall hi. Then bi is the distance, if be = ce is-

the angle of the crank, or the half stroke of the piston.
Let the angle of advance dcf = a, and the eccentricity cd,

that is the distance of the eccentric disc from the center of the

shaft be p, then

gf = p sin a.
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If, now, the outer lap ab = cd = a lt and the " kad" or the

opening of the port, when the piston is at the end of its stroke,
is #!, we have

gf = ! + &j = p sin a.

In general, for horizontal engines, c^ = 0.25p, or J of the ec-

centricity, and &J = T
*
p, hence

(0.25 + 0.1) p = p sin *,
or

sin a = 0.35, or a = 20 30'.

If further, the inner lap ef
= gh is a2 ,

the opening of the port,
when the piston is at the end of its stroke, for the release of

the steam, or the inside lead, is b2, we have

2 + #2 = P sin a = 0.35 .

If we make the inside lap a2
= 0.05,* ,

that is ^th of the out-

side lap, we have

0.05p + 62
= 0.35p, or 62

=
0.30/Q.

Hence the port is opened for discharge three times as much
as for entrance, when the piston is on dead point.

We can now easily find the angle a\ or -

2 through which the

center of the eccentric disc must turn, in order to open the

port for entrance or discharge. For the first,

!

p sin a
i
=

<?!, or sin a^
-

,

or inserting value of alt viz., 0.25p,

sin ^ = 0.25, or ^ = 14 29'.

-r, ,, 2 . n
Further, p sin <^2

= a2, or sin a-
2
= =- = 0.5, or

<x2
= 2 52'.

The eccentric has to turn but a little, therefore, from its cen

tral position, in order to open the port for discharge.
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If the piston is at the left end of its stroke, the end of the*

crank is at &, or at one dead point. If now b passes through

the arc bk, we can easily find the travel of the piston. Since

the connecting rod is very long' compared to the eccentricity ,

this travel is bl, and since cb is half the stroke, or J- s,

o o Q

bl = be - d = ^ o cos cp
= n (1 cos <p),

& A A

O

For CD = 90
D

,
cos 9 = and the travel is w. For <p 180,,

A

cos cp
= 1, and -(! ( 1))

= s. Generally the travel of
2

the piston x for any angle of the crank is

x = 4~ (1
- cos cp).

A

When the crank is turned through the arc q> from its dead

point, the eccentricity makes the angle a + cp with de, and the

travel iv of the valve is

w p sin (a + <p).

This travel is positive when the motion of the slide is in the

same direction as that of the piston, otherwise it is negative.

1. Travel of the Piston up to the End of Admission or to the

Beginning of Expansion. Let this travel Si be a portion ^ of s
f

so that

"We wish to find e^ The entrance of steam ends when the end

a of the valve returns to b again, on the back stroke. Before

the port begins to open, the valve must pass through the dis-

tance ab = Oi, or the eccentricity through the angle den = <\\.

If we let fall from u a perpendicular to be and prolong it to o y

oc is the position of the eccentricity when the valve again closes

the port. The eccentric revolves then, from beginning of

admission to cut-off,, through npo 180 2^. The crank, of

course, goes through the same angle. But when the eccen-

tricity is at 7i, the crank makes an angle with be of a a^. If
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we denote the rest of the arc through which the crank must go-

by ?/, we have

oc
<*! 4; y = 180 2fl'!, or

y = 180 (a + a\\

If we insert this in the equation of the travel of the piston,

o

Cif= sr (1 -H cos (a -h <*i)), hence

_ 1 + cos
( + tfj~~

Since a = 20 30', ^ = 14 29', we have ^ = 0.910. The ad-

mission of steam, therefore, ceases when the piston has passed

through 0.91 of its stroke. Expansion then begins.

2. Travel of the Piston up to the Beginning of Compression, or

the End of Release. The compression begins when, on the re-

turn of the valve, the corner g meets A. The valve is then dis-

tant gh from its centre position, and the eccentricity makes the

angle a% with cq. From d then it makes the angle 180 a^.

The crank has passed through the same angle from h or from

b through
180 - a2

- a = 180 - (a + ,).

But cos [180 (a + a
zy]
= cos (ex + a

2),

and denoting the travel up to beginning of compression by

-^[l + cos (a + 2)], or
A

1 -f cos (a + ora)** -2~
-

If we put for a and ^
2 the numerical values,

e*
= 0.959.

This position of the piston is shown in Fig. 97.
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3. Travel of the Piston up to the End of Expansion or to the

Point of Release. The expansion ends when the valve has

moved so far towards the left that / coincides with e. The

valve has then moved towards the left ef from its central posi-

tion. Since ef corresponds to the angle 2, the eccentricity

makes this angle to the left of q. Beckoned from d, the angle

is 180 + tf
2. The crank has made the same angle, reckoned

from h, or from b it makes

180 4->8
-' = 180 - (a

- a
z).

If the travel in the present case s2 = e&, we have

S rl / M
s2 e^s = ^ [1 + cos (a oyj,

and
1 + cos (a o'o)*- -^ -.

Inserting the numerical values,

e2
= 0.977.

Since expansion begins at 0.910, the duration of expansion is

0.977 - 0.910 - 0.067 of the entire stroke.

The position of valve and piston in this case is shown in

Tig. 96.

4. Travel of the Piston up to the End of Compression of the Back

Pressure Steam, or up to the Admission of Driving Steam. The

compression ends when the point d of the valve coincides with

c. The valve has then moved cd from its central position to-

wards the left. The eccentricity makes the angle <*\ with g.,
or

180 + #! with c, hence the crank makes from b the angle

180 + j
- a = 180 - (a

-
i).

The travel of the piston up to the end of compression is then

cos ( <*i], or

1 + COS (a a--
"2
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Inserting the numerical values, e = 0.997.

The piston has then only a very small distance to go to its

dead point. This position is shown in Fig. 98.

Since for the .beginning of compression eB
= 0.959, and for the

end e4 0.997, the entire compression is

0.997 - 0.959 = 0.038 of the stroke, or about

half as great as the expansion. We see also that the compres-
sion begins later and ends later than the expansion. It is in-

dispensable for smooth motion of the engine.

The fraction Cj of the entire stroke s, which is filled with

boiler steam, is the "
coefficient of fill." For the usual propor-

tions as given, it is 0.91. This value may be regarded as a

maximum. If the engine has a special expansion valve, e is

less, but the other quantities e.2, eB, and e4 are as above.

Steam Volume per Strofo Degree of Expansion and Compres-

sion. If the area of the piston is F square meters, the volume

of the entire stroke is Fs cubic meters, and this would be the

volume of steam used per stroke if the steam entered during

the entire stroke ; since, however, the steam enters during e^s,

we have for the volume of steam used

Fe^s cubic meters.

Moreover the piston, when at the end of its stroke, does not

reach the cylinder cover, but there is a space between, filled

with steam. Also the steam passages must each time be filled.

In full pressure engines both these steam quantities contribute

almost nothing to the work. This space is hence called the

"prejudicial space." In expansion engines these steam quan-

tities take part in the expansion, and hence for the same degree

of expansion the pressure in the cylinder sinks less than when

there is no prejudicial space, while, during the full pressure

period, the steam in this space performs no work. Thus the

prejudicial space increases indeed the delivery of expansion

engines, but not in the ratio of the increased consumption of

steam, and hencs an engine with a prejudicial space has a less

efficiency than without.

Let the prejudicial space be a fraction e of the cylinder vol-

ume. Then its volume is Fes cubic meters.
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If now steam enters during the entire stroke, the steam used

is

Fes + Fs = Fs (1 + e) cubic meters.

In reality, however, we have

Fes + Fe$ = Fs (e + d).

The steam volume at the end of expansion is

Fes + Fe^s Fs (e + fy).

Hence the "
degree of expansion

"
is

At the moment when communication is closed with the con-

denser or air, the inclosed steam volume of the condenser or air

pressure is

Fs + Fes - Fe^s = (1 + e - es) Fs.

At this moment compression begins. At the end of compres-
sion, the inclosed steam volume is

Fs + Fes - Fe4s = (l+e-e,) Fs.

Hence the "degree of compression" is

_ 1 + e - e,
2
~~

In the ordinary slide valve, we have e about 0.05, that is, the

prejudicial space is yfg- of the entire cylinder volume. In this

case the steam passages are about half the length of the cylin-

der. In expansion engines with two slides, we have e 0.07 to

0.075. If the passages are very short, as in the Corliss engine,
where the prejudicial space is only that between piston and

cylinder cover, e = 0.02.
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EXAMPLE.

What is the degree of expansion when the steam is cut off at half stroke ?

If we take e = 0.070,

0.070 + 0.5 _ 0.570 _~
0.070 + 0.977

~
1.047

~ ^'

Work of the Driving Steam. This work in every engine con-

sists of two parts ; the one is the action of the full pressure
steam, the other is that of the expanding steam. Ifp1 is the

pressure of the full steam, we have for its work

If we assume that during expansion, the steam follows the

law

we have for the work during expansion

where v is the specific steam volume at the beginning of ex-

pansion. If the engine uses per stroke G kilograms of steam,
and if the volume of this weight before expansion is V and
after Pi, we have for the expansion work

Pl v

The value of HI varies, as we have seen, and depends upon
the amount of water in the steam. On an average we can put

n^ 1.125, when the steam is taken directly from the boiler.

If, however, the steam is heated, or even superheated, before

it enters the cylinder, ^ may be greater. According to Gras-

hof, we can take ^ = 1.333, when the steam is still dry after ex-

pansion, when, therefore, no steam condenses during expan-
sion.
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As to the value of pl} it is to be taken somewhat less in find-

ing the expansion work, when the cut-off is worked by an

ordinary eccentric, because in such case the cut-off is gradual.

"We have, therefore,

Pi =

where #j is a proper fraction, which we can take about 0.95.

In Corliss engines, where the ports are suddenly closed, n 1,

and^ has its full value. In engines with large piston velocity,

ft must be taken much less than 0.95.

The steam volume V before expansion is

F = Fes + Fe,s = Fs (e + eO,

and the volume Fi after expansion is

F! = Fes + Fe2s = Fs(e + ca).

If we insert these values in the above expression for L%, and

put pi /3plt we have

T filPiF8 (e + e,) F
(e

+ eA >

' l

"1

^=T~
'

\e~TV

or putting the degree of expansion
-

19

If we put

we have

The expansion ends before the piston arrives at the end of

its stroke. Then the exhaust opens, and the pressure sinks

rapidly to that of the condenser or of the atmosphere. If in

this case the mean pressure is p%t
we have, while the piston,

passes through s
,

L3 = F(s - s^fr = Fs (I
- ejp*
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Hence the total work of the driving steam is

A + Zj + LB
= Fsifr + ^pi Fs + Fs (1

- e2)p2

+ Fs (1
-

e,)p^

o/" the Back Pressure. We must subtract from the work

just found that of the back pressure. Let the mean pressure

during the travel s3 be ps, then

Zr4 = Fs3p3

Now compression begins. Let the law be

The value of Wg, like that of %, can only be determined by
exact experiments. In the average Wg 1.15 (Grashofs Ke-
sultate der mechanischen Warmetheorie). The pressure at the

beginning of compression is somewhat greater than pB. In

general we can take it /?3^>3, where 8
= 1.05. If now we denote

the volume at the beginning of compression by v% and at the

end by v3,
we have for the work of resistance during com-

pression
..

But v2
= Fs (1 + e 63) and v3

= Fs (1 + e e4), hence

_ Afl, ifr (1 + e - 63) f/1 + e - es \
n*~ l

- "I

-i
"
Lvrrr^

e -63)

If we put here

Since the quantity in parenthesis, the degree of compression,
is fo.
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When compression is ended, the piston has not reached the

end of its stroke, but has still to go s s4. While it goes this

distance, steam enters from the boiler, and the pressure is on

the average greater than the mean pressure of the driving

steam, especially in high piston speed. Let it be p, then

Z6
==F (s

- 54) p4
= Fs (I

- e4) P+

The total work of the back pressure is then

LI + L5 + L6 Fse^ps + Fs^ps + Fs (1 e^)p4

= Fs [ps fa + A
8) ^ p,(l- e4)].

If we subtract this from the work of the driving steam, we
have the indicated work per stroke, that is, without reference

to friction, working of pumps, etc. Let this be Li9 then

In = Fs [p1 fa + AJ) + (1
- e2) p2-ps fa + A 8) -p (I

- c4)].

Since the value of p for ordinary stationary engines, es-

pecially when not moving rapidly, is but little different from^?1}

L
t =F8[p1 (el +* l +c4 -l) + (l-e2)^o- fa f A

8)^,].

As to the mean pressure p2 from s2 to s, or through s s2, this

depends upon the pressure at the end of expansion. But this

depends upon the coefficient of fill ^ of the cylinder. The

greater this, so much the greater is p2,
other things being the

same. Further, p% depends upon the manner in which the port
is opened for discharge. If opened quickly, p^ is less

;
if

slowly, p2 is greater. Grashof gives

where ps is the mean back pressure. Under ordinary circum-

stances A = 0.80.

If we insert this value ofp2, we have

If we divide this by Fs, we have for the mean effective press-
ure

jrs
= Pi = Pi fa + Aj + e4

-
1) + (1

-
63) (Ae^ + ps

-

fa + a 8)-
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If for brevity we put

ei + Aj + e4
- 1 + Aej (1

-
%) =/1 and

63 + A 3
-

(1
-

A) (1
-

62) =3/3, we have

Hence the indicated work per stroke is

L, = Fspt
= Fs (p,/,

Ifpt is given in atmospheres, then

L
t
= 10334 Fspi = 10334F*

Values o/p, pi andp3. The pressure p1 in the cylinder can be

very different from the pressure p in the boiler. This depends
upon how wide the valve in the steam pipe is open, as also the

throttle valve
; also upon the cross-section and length of the

steam passages in comparison with the piston speed, which we
shall denote by c; upon the curves and bends of the steam

pipe ; upon its length and radiation. If the steam pipe is com-

pletely opened, and the passages have the required cross-sec-

tion, the mean pressure in the cylinder during admission varies

but little from the boiler pressure. In other cases the differ-

ence may be considerable. An exact calculation of this differ-

ence of pressure, from the diameter of the partially opened
steam pipe, the cross-section and length of the passages, etc., is

indeed hardly practicable. It is evident that in calculating the

delivery we must have regard to the cylinder pressure, and

when we wish an exact determination of the delivery, we must
find this pressure by the indicator. A long and narrow steam

pipe, with bends and angles, and not protected from radiation,

can make the pressure in the valve-box less than the boiler

pressure. "We must give to this pipe either the same or a some-

what less cross-section than the steam passages.
The cross-section of these last depends not only upon that of

the cylinder, but also upon the mean piston speed c. Through
these passages the same amount of steam must pass in a certain
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time as the cylinder uses. Since the velocity of the steam is

considerable, we can make the cross-section of the passages
less than that of the cylinder. But steam, when it flows through

relatively narrow passages, experiences a great loss of velocity,

which may be quite considerable when the valve nearly closes

the parts. For a mean piston speed of 1 meter, experience

gives for the cross-section of the canals ^th of that of the pis-

ton. In this case the steam pressure in the cylinder remains

constant during the entire admission. If then the cross-section

of the steam passages is/, and that of the cylinder is F, we have

We can further assume that the resistance, for the same

cross-section, increases with the velocity; that for 2, 3, c

meters velocity, it is 2, 3,
- - c times as great. In order, then,

to have only the same resistance as for 1 meter, we must make
the passages 2, 3, c times as wide. Hence

/ ^
^"30"

From this formula we have the following tabulation

CROSS-SECTION OF STEAM PASSAGES.

Piston speed \

in I = 1 1.2 1.5 2 3 4 5

meters )

/ 1 1 1 1 A JL *

F 30 25 20 15 10 7.5 6

Engines with high piston speed, as locomotives, require-
therefore wide steam passages. Thus for c = 2.3 meters,.. 9r

If the steam passages are calculated for a certain piston

speed, and we let the engine work more rapidly, the pressure
in the cylinder is less than in the valve box, and especially in
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engines working with little expansion, the indicator will show

a noticeable fall of pressure near the middle of the stroke, be-

cause here the velocity of the piston is greatest.

In the calculation of projected engines, we must consider the

pressure p in the cylinder as given, and consider
'

the boiler

pressure as always somewhat greater. In engines which are

required to give great delivery, the boiler pressure must be

taken still greater. It is different with the mean pressure pB .

of the back pressure steam. This is noif given in advance.

If, however, the steam passages are proportioned as above,,

we have for stationary engines

a, when non-condensing, ps 1.15 atmospheres ;

&, when condensing, ps
= 0.2 atmospheres.

Locomotives which have a blast pipe, may have p9 1.1&

to 1.27 atmospheres.

Shorter Formfor the Expressions fx and f3. The quantities e,

63, 63, and e4 are constant so long as the angles of advance and

the laps remain the same. Also /33, n% and A are to be regarded

as constant. We can, therefore, give to the expressions in

which these quantities occur, a simpler form.

Thus we have found

_1 4- e 63

Since now e = 0.05, e9 = 0.959, and e*
= 0.997,

1 + 0.05 - 0.959 0.91
1*2 ~~

1 + 0.05 - 0.997 0.53

Also /?3
= 1.05, and n^ = 1-15, hence

AS = ^ (i + e _ ^ ^"J^
1 = 0.0538.

Since A can be taken 0.8,

- 0.959 + 0.0538 - (1
-

0.8) (1
-

0.977) = 1.0082.

40
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^ 0.997- (1-0.977)

= 1.01846! + A!
- 0.003.

Shortest Form of the Formulafor the Indicated Delivery. The
formula already found for the effective pressure pt becomes

now

A =pt
= #(1.01846, + A!

-
0.003) -ps x 1.0082,

Lt
= Fspi = Fs [> (1.01846! + AI

-
0.003)

-
1.0082^],

or

where p and pz are the pressures in kilograms. If pi and ps are

given in atmospheres,

L
t
= 10334^5 [ Pl (1.01846, + A, 0.003)

-
1.0082^].

So soon then as we know for any engine (which must have

the assumed angle of advance, etc.), the coefficient of fill et and

?!, we can find L* Also,/! = 1.0184e! -f /^
- 0.003.

Grashof, in his "Resultaten der mechanischen Warmetheorie,"
has found f

t ,
A l9 fi for different values of el} as given by the

table below. The table also contains A f
i
Wl

>
which gives the

pressure Ajpi f
i
Wl a^ the end of expansion.

e \
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From these values the values of pt in the following tables

are calculated for different values of el and pv The first table

applies to non-condensing engines, the other to condensing.
In the first, the mean back pressure ps is 1.1

;
in the other, 0.2

.atmospheres. Cases in which A/W' < PS are excluded.

Pi FOR NON-CONDENSING ENGINES

0.1
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From these two tables we can take the mean effective press-
ure for different coefficients of fill, and then can find the indi-

cated work per stroke from the formula,

Lt = 1033 Fspt
.

If u is the number of revolutions per minute, and hence 2w
the number of strokes, the indicated work per second is

10334 x

60 60

or

-TjTjj-

=
10334/>j Fs meter-kilograms.

In horse powers

uLt 10334

30 x 75
~"

30 x 75 upt Fs.

Since the engine makes in 1 minute 2% strokes, and each
stroke is s meters long, the distance passed over by the piston,

per minute is Zits meters, and in one second

us

60 ~30

This is therefore the mean velocity c of the piston.

We have then c in place of HTT > and

10334N{
= -

EXAMPLE 1. The diameter of the cylinder of a non-condensing engine is 0.47"

meters, the stroke s 1.044 meters, the number of revolutions per minute is 34,

and the pressure in the cylinder^?, = 4 atmospheres. What is the delivery per
second when the proportions of the slide valve are as has been assumed in our

discussion ?

First, F=~ = 0.7854^ = 0.7854 x (0.47)
2 = 0.1734.
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Now from our tables, for a pressure of 4 atmospheres and e
}
= 0.91, ft =

$.833. Hence

;and

if = 10334 x 2.833 x 0.1734 x 1.044 = 5301 m. kil.

Nt = 4.593 x 24 x 2.833 x 0.173 x 1.044 = 56.4 horse power.

EXAMPLE 2. What would be the delivery, if e
l
= 0.4 ?

In this case

Pi = 1.870, and

Nt = 4.593 x 24 x 1.87 x 0.173 x 1.044 = 37^.23 horse power.

S7 2S
The delivery is then ^ ,

or 0.66 of the first, while only about 0.4 as much

:steam is used, and hence not half as much fuel.

Work of the Engine when Disconnected. From the indicated

work of the engine, just calculated, we must subtract that re-

quired to work the pumps, eccentrics, and overcome the va-

rious frictional resistances. We obtain this work if we deter-

mine that of the disconnected engine, and then increase this

latter by a certain amount, as given by experiment ; because

the work required by the friction of a working engine is greater

"by a certain amount than that of an engine running without

overcoming useful resistance.

The greatest part of the work in question is required to run

the fly-wheel. Let us estimate it first.

Theory of the Crank. The fly-wheel serves not only to con-

vert reciprocating motion into circular or rotary, and to carry

FIG. 102.
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the motion past the dead points U and 0, but also to make the

motion uniform.

If BA, Fig. 102, is the connecting rod, CA the crank, the rod

exerts either compression or tension upon the crank. If the

rod has the position, and rotation takes place as shown by the

arrows, it acts to cause compression. If the crank is at A ly or

AS, the rod causes tension. Let AR Q be the pressure.
This pressure only acts in part to cause rotation. That part,,

namely, which is perpendicular to the direction of the crank,

or which acts in the direction AX. By the other component of

Q, the crank is forced against the bearings and the friction in-

creased. If now we decompose AR Q into the directions

AX and A C, AD is the force causing rotation, and AE is that

causing compression. If the angle DRA = RAG y, we have

AD = Q sin y (1).

and
AE = Q cos y.

The resistance opposes the force Q sin y. Let it be AP = Py

and constant at all

points of the crank

circle. We assume

that the work of rota-

tion is equal to that of

the resistance. There

are then four points
in which the driving
force Q sin y is equal
to the resistance P.

These points can be

easily found. For this purpose we assume, for the sake of

simplicity, that the connecting rod is very long compared to

the crank. The results thus obtained deviate, as we shall see

later, but little from those obtained under the assumption of a
finite rod. If, therefore, the rod is assumed very long, it Jfi

always parallel to UO, and we have

Q sin y = Q sin ACU - P .... (2).

and

sin Y = sin ACU = (3).
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Let us assume the engine to work with full pressure. The
force Q = AR remains then constant during the whole dis-

tance UO = 2r. The work of this force is, for an entire

revolution, 4r$.

The work of the resistance P in the same time is 2^rP, and

since both works are equal,

2 - *P (4).

or
2P = Q = 0.6366$ .... (5).n

The resistance cannot be greater for uniform motion. If we
insert this value in (1) we have

sinr '= sin ACU = 0.6366,
or the angle

Y = ACU =39 32'.

When, then, the crank makes the angle 39 32' with UO, the

moving or tangential force is equal to the resistance P. For

every other position of the crank the tangential moving force

varies with the angle. If we make A^GO, AZCO, AsC 7 equal to

ACU, we have at the points A l9 Az, A3,
the moving force Q sin

Y equal to the resistance P. Between A and Al9 and between

A2 and AB the moving force is greater, while between AI and

A2,
and As and A, it is less than the resistance. But since the

work of the force must bd equal to that of the resistance, the

excess, in the first portions, must equal the deficiencies in the

other two. In order to accomplish this, it is necessary to at-

tach a heavy weight to the axle. Such a weight is the fly wheel.

The object of the fly wheel, then, is to receive the excess of

work on AAi and A2AS) and give it up along AiA2, and ABA.

Calculation of the Weight of Fly Wheel We can now easily

find the weight 8 of the fly wheel. Suppose, first, a weight

Si upon the crank pin, which has the same living force

as the fly wheel, or, more simply, of the fly wheel rim. If the

mean velocity of the weight is v and that of rim V9 we must

have, when the one mass is replaced by the other,

or
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If the mean radius of the rim is JR, and of the crank r =
-^- t

a

we have
/-y\2 /r\ 2

v:V::r:E9
or

f^J
=

(-=?}.
. .

(7).

Hence from (6)

We have now to determine the weight Si.

Since from A to AI there is an excess of force, there is an

increase of velocity. If the velocity at A is v1 and at AI, v2,20?7o

the living force at A is ~- Si, and at Al9 ~Si.
*y *y

Hence from A to AI the living force stored is

/qx

This work is given up from AI to A2, absorbed again from

to As,
and so on. If now the mean velocity is v, then

Vl
or ^ + t'2 -2i;. . . . 10-.

We denote the ratio of the difference between the greatest

and least velocities (v2 Vi), to the mean velocity, by the term

"coefficient of irregularity" and represent it by d Thus

= ^ _

This coefficient must be taken less, according as more uni-

formity is required. Thus the coefficient should be much less

for an engine required to run a cotton mill, for instance, than

for working pumps, etc.

From (10) and (11)

Inserting this in (9) we have for the increase of living force

from A to Ait

^-8, . (12).
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We can now obtain another expression for this work. The
force Q performs from A to A1 the work

2#r cos y = 2Qr cos 39 32' = 1.5424#r.

The resistance P = 0.6366Q is overcome through AA^ or

through an arc of 180 - 2 (39 39')
= 100 56'. The length of

.,. . 100 56' - _1Kthis arc is nv l.Yolor.

Hence the work of the resistance is

1.7615r x 0.6366$ = 1.1214#r.

The excess of the work of the force is then

(1.5424
-

1.1214) Qr = 0.4210 Qr.

This excess must be equal to that of the living force.

Hence

Sl
= 0.4210 Qr, or ^Sl

= 0.4210 g.

,Since Stf = SF* = S v= S y we have

vz = 0.4210 g, or

S = 0.4210(g> - - (13).

For a finite connecting rod iPS\ is somewhat greater. If, for

example, the connecting rod is 6 times as long as the crank, or

~=
.j. , we find by similar calculation
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For ^ =

For =

If the engine works expansively, then for the same delivery
and otherwise similar circumstances, the above expressions
must be multiplied by the expression

0.77 + 0.23 - - 0.017 f-V . . (14).
* W

where e^ is the coefficient of fill of the cylinder. Thus for e^ =
0.5, or for cut-off at the length of cylinder,

0.77 + 0.23 x 2 - 0.017 x 4 = 1.162.

We shall now express Qr in terms of the indicated work L^
The force Q represents the mean effective pressure upon the

piston, hence

Q = FPi

where pt is given in kilograms per sq. meter. Hence

Qr = rFPi = \sFPl = \L,

Substituting this in the above expressions, and inserting the
value of g 9.81 meters, we have for

=2.525 (^ Lt

M



WEIGHT OF FLY WHEEL. 635

The weight 8 is that which when applied at the distance R
from the center C of the shaft, will cause the required degree
of uniformity of motion.

Now every fly wheel consists of a rim and 4 or 8 arms. If

we let 8 refer to the rim alone, then by reason of the inertia of

the arms the degree of irregularity will be less than that as-

sumed in the calculation. We may, therefore, take about 0.9 of

the above values for 8 and consider this as the weight of the

rim. We have then

(1.) for I = t

(2.) for =

(3.) for =

These formulae apply to full pressure engines. For engines

working expansively, we must multiply by the coefficient given

by (14).

If the arms are y^ths of the weight of the rim, and if we de-

note the weight of the fly wheel shaft by Sw , and the total

weight of shaft and wheel by 8, we have

EXAMPLE.

What weight must the fly wheel have for the engine of page 586, of 56.4

horse power, or Li -.- 5301 meter-kilograms ? The coefficient of irregularity 8 is

taken -^y, and - = =-,- and -5 = i
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The circumference of the crank circle is %7tr = its. Since there are u revo-

. iius 3.1416 x 1.044 x 24
lutions per minute, the mean velocity v is = --^ - = 1.32

meters. Hence

Sr = 2.273 (i) = 8862 kilograms.
(l.OSf* X 32

If with the same delivery the coefficient of fill is et
=

0.5, we
must multiply this weight by 0.77 + 0.23 x 2 - 0.017 x 4 =
1.62, and hence

Sr
= 10298 kilograms.

The weight of the entire fly wheel, in the first case, is 1.3 x

8862 = 11521, and in the second 1.3 x 10298 = 13387 kilograms.
Since the friction of the fly wheel journals consumes a con-

siderable amount of the work, we should have the weight as

small as possible, and make the radius as great as possible.

Dimensions of the Rim and Arms. If we know the weight of

the rim, we can easily find its dimensions. We denote the

<eross-section by F and the weight of 1 cubic meter of cast iron

^7 Y- (Since the specific weight of cast iron is 7.4, 1 cubic me-

ter weighs 1000 x 7.4 = 7400 kilograms.) The volume of the

Tim is then

%-nRFi cubic meters,
and its weight

We have then

or putting y, 7400 kilograms,

8r
= 464725*i,

and hence

-,-, Sr

464725
'

In general, we make the radial depth of rim 1 to 2 times

the thickness. If the first is d and the second b, we have

F, = bd
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If we denote the number of arms by n, and the cross-section

l>y F2, the weight is

and we have

To smaller wheels we may give 4 arms, to larger 6 or even 8.

If n is given, we have

F= Sr
2

22200rcJS

EXAMPLE.

What must be the cross-sections F^ and Fz for the fly wheel of the full

pressure engine, already mentioned, for which the weight of fly wheel rim has
been found 8862 kilograms, and the mean radius R = 2.61 meters ?

We have F^ =
46472 -^f = ' 729 Square meters - If we take b = *d

>

have

F, = 0.0729 =W ,
or d = V0.1094 = 0.331 meters, or 33.3

centimeters, and b = f x 33.3 = 22.2 centimeters.

For the arms, if we have 8 of them,

* =
22800 x 2.61

= -015 ^ meters '

Diameter of the Journals Weight of the Shaft. We can now
find the weight of the shaft. The journals, according to Morin,
should have the diameter

- centimeter

where NI is the indicated horse power and u the number of

revolutions per minute. The diameter of the shaft can be 1 or

2 centimeters greater.

For our full pressure engine, Nt 56.4 horse power, u = 24;

Jience

= 20 4 = 26 '62 centimeters.
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If we make the diameter of the shaft 28.62 centimeters, and

assume it is 3 meters long, the weight is approximately

7400 x 3.14 (0.143)- x 3 = 1421 kilograms.

Hence the weight of fly wheel and shaft is

8 = 1421 + 11521 = 12942 kilograms.

Mean Effective Pressure Necessary for Overcoming the Resist-

ance of Friction. Since we now know the diameter dl of the

shaft and journals, and the weight of fly wheel and shaft, we

can find the work required to overcome the journal friction.

The circumference of the journal is ndi. If we put coefficient

of friction = cb we have for the work per stroke (per half revo-

lution)

Ifps is the mean effective pressure per square meter of the

piston, required for this, work, the work of the steam per
stroke is

10334^ = 10334^- Sps ,

"where d is the diameter of the piston. We have thus pS9

4 x ^n
Ps~ 10334^5

:

10334dV

If we take the coefficient of friction ct
= 0.1, we have

p.= 0.00002^-.
ars

For the mean effective pressure pt , required to overcome the

iriction of the piston, piston-rod, cross-head, crank-pin, eccen-

tric, slide valve, and feed pump, Grashof gives

-0227



MEAN EFFECTIVE PRESSURE FOR FRICTION. 639

We have accordingly for the mean effective pressure of the

engine when disconnected,

For condensing engines, we have also the air and cold water

pumps.

Mean Effective Pressure required for working the Cold Water

and Air Pumps. If we assume that the engine requires per
hour D kilograms of steam, and n times as much cold water for

condensing this steam, the cold water pump must furnish per
hour nD kilograms of cold water. If the height is h meters,

the work required to furnish this water is per hour nDh meter-

kilograms.
We may allow that at each stroke ^th of the water falls

back, that therefore not nD, but (1 + 0.1) nD l.lnD kilo-

grams must be raised the distance h. Hence the work per

Lour is

LlnDL

If we allow ^d of this for resistance of friction, we have for

the actual work required per hour,

and per minute, about
l.5nDh

60

If now pq is the mean effective pressure upon the piston re-

quired to perform this work, we have for the work of the steam

per minute (u revolutions),

10334 x ZuFspq .

This work must equal the preceding, hence

10334 x

or

= 0.00015^ very nearly.
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Let us now determine the work required by the air pump.
This has to remove the water weight

(n + l)D

kilograms from the condenser. This requires the space
0.001 (n 4- 1) D cubic meters. In removing the water from the

condenser, the pressure overcome is that of the atmosphere less

the condenser pressure. Upon the return stroke, the con-

denser pressure is overcome. In each double stroke the aver-

age pressure is then that of the atmosphere. The work is

then

10334 x 0.001 (n + 1) D meter-kilograms per hour,

or

10334

60
x 0.001 (n + l)D per minute.

Ifpe is the mean effective pressure which performs this work,
we have

In = ^p x 0.001 (n

or

Since the pump must also move the air from the condenser,
and the frictional resistance must be overcome, we should, ac-

cording to Grashof, at least double this pressure, and thus
have

- 0099 (
n + V D

-

If we neglect 1 in comparison to n,

nD
pe
= 0.0022

IZOFsu
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We have, then, for the mean effective pressure in the cylin-
der, required for working the cold water and air pumps,

Pe =p'm = 0.00015 - + 0.0022

As a rule, n = 20, and

~ ^ = (0.003^ + 0.

Hence the mean effective pressure pm of the engine, when
disconnected, if condensing, is

fc , 0.0000,

or

nnnrvw ,

-0227
Pm = 0.00002 +.--

+ (0.0037, + 0.045)^

Useful Delivery. The work, therefore, of the engine when

disconnected, per stroke is Lm = Fspm ,
where pm is to be found

as above for condensing or non-condensing engines. If we sub-

tract this work from the indicated delivery, we have the useful

work per stroke. For this, then,

Lu = Li Lm.

Now it is evident that the work Lm absorbed by the different

frictional resistances and by the working of the pumps, is

greater when the engine is at work than when disconnected.

According to Pambour, we must increase the work of the re-

sistances by a part of the useful work, and then subtract from

L^ Thus he takes this part at 0.12 to 0.14 w ,
and hence

Lu = Li- (Lm + 0.13iu),
41
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or

Lu + 0.13ZM - L
t

- Lm ,

or

j-
Lt Lm
LIB-

'

Hence, if pu is the mean effective pressure required for the

useful work,

or

If we have w revolutions per minute, the horse power of use-

ful work is

_ uLu Fcpu
u ~

30 x 75
"

75

where pu is in kilograms per square meter.

For the indicated efficiency (m t) of the engine, we have

L N_l _p2L

Steam Weight per Hour. According to Volkers, the steam

weight per hour D is given by

D = IWFsu [(e + e1)y1

Here, y1 denotes the weight in kilograms of 1 cubic meter of

steam at the pressure pl atmospheres, which, for saturated

steam is given by Table II.

For non-condensing engines, ;/2
= 1-32

;
and for condensing,

0.264

The second term includes the loss of steam and heat, as also

the moisture of the steam, for engine in average good con-

dition.

Finding thus Z>, we can find pm from the formula already

given for that quantity.
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Dimensions of the Condenser and Pumps. We have seen, page
J510, that the ratio n of the weight of cooling water and con-

densed steam is given by

600 -

where ^ is the temperature of the condenser water, and t that

of the injected cold water.

If we take as a mean temperature t^
= 46, corresponding to

.a pressure of TVth atmosphere, and t 18, we have

600 - 46 554

46 - 18
= ' ~W :

If Q is less than 18, n may be less than 20.

The volume of the condenser is taken

n Fs . Fs:to,

that is, -Jd or Jth of the cylinder volume.

Let now V\ be the volume described by the piston of the

cold water pump per stroke, then

is the space described per minute. If the pump is double act-

ing, this is the water quantity furnished per minute. If it is

single acting, the quantity is uV\ cubic meters.

In the first case, the water per hour is 2 x 60wFi, and in the

second 60^ V\ cubic meters.

Now the steam weight per hour is D, and the water weight

required for condensation is nD. The entire weight (n + 1) D

takes the space ln/J cubic meters.

"We have then for Fj

(a.) For a double acting suction pump,
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If about 10 per cent, of water falls back, we must increase

by TVth. Then

_ -n (* + l)l> - (*

120000^
"

109091^
'

for which we may put

F'
=
lolsk

cubic meters'

(&.) For single acting pump,

we have double this, or

Quantity of Fud (E) per Hour. When we know the steam:

weight D per hour, we can easily find the amount of fuel re-

quired for the generation of this steam, when the heating value

of the fuel and the efficiency of the boiler and grate are known.

We know that 1 kilogram of steam requires for its generation.

W= 606.5 + 0.305J heat units.

D kilograms then require WD.
If 1 kilogram of fuel furnishes by complete combustion K

heat units, we have for WD
WD i-i * * i

jr- kilograms 01 luel necessary,.

when all the heat goes to generate steam.

But only a part of the fuel is completely consumed, even if

the greatest part. Then, the hot gases of combustion carry
off a large amount of heat, and only a part of K is effective

to heat the boiler plates. This part, the ratio of which to

the total heating power R of the fuel we call the efficiency of

the grate, we denote by Wlf Further, not all the heat which

enters the boiler plates goes to heat the water. A part is lost

by reason of radiation and imperfect conduction. The heat

which the water actually receives, compared to that received
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by the boiler, is the efficiency of the boiler. We denote it by
w
It is evident, then, that for vaporizing D kilograms of water

we must have

B =
yy kilograms of fuel.

Cost of a Horse Power per Hour. Let us now determine the

cost of a horse power per hour. Let the price of the boiler be
P and of the engine Pt. Also the price of all the masonry,

chimney, boiler, and engine house, etc., be P2 - Let the inter-

est on the price of boiler and engine be x per cent. The inter-

est yearly is then

Let the interest upon the capital P2 be y per cent. Then we
have yearly for this

y

Let the engine work z hours per year, and each hour con-

sume B kilograms of fuel at a price of P3 per kilogram. Then
the yearly expenditure for fuel is

If the price for attendance is A for each hour for each horse

power, and for lubrication per year is A^ and yearly repairs A 2,

we have the yearly expenditure

zA + NuAi + A*

The total expenditure per year is then

zA + NUA, + A2 + zBPs + j^P, + (P + PO,

and the expenditure per hour for each horse power is

_ *A *- NUA, + A, + zBP3
+ & Pa + m (P + PI)
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The expenditure per hour for each horse power is then, im

general, less,

1. The greater the number of working hours per year. This

is evident, as for many interruptions a large amount of fuel is

wasted.

2. The greater Nu,
or the larger the engine. It is also evi-

dent that two or more engines which give the same work as

one are more costly in construction and maintenance than the

single one. When, indeed, the size passes a certain limit, the

difficulties of construction may be so great that two or more

may be cheaper than one.

3. The higher the temperature of the feed water. The heat-

ing of the feed water, the importance of which we have shown
on page 602, is a general practice. For this purpose the

chimney gases are used, or the heat of the escaping cylinder
steam.

4. The greater the mean effective pressure pt
and the less the

mean back pressure pm. The boiler pressure should, there-

fore, be high (6 to 8 atmospheres). The higher this pressure,
the less is the advantage of condensation.

5. The greater the velocity of the engine. But this has evi-

dently a limit. Eadinger has shown that for a certain degree
of fill and a certain pressure, the usually received mean veloc-

ity can be exceeded without danger of irregular action. The
motive force at the beginning of each stroke must be so great,

as to be able to overcome the friction of the piston and the

inertia of the moving masses, such as piston, piston and con-

necting rods. This governs the extent of compression (the ad-

vantage of which has been referred to) as also the amount of

lead.

Hraba*k (see Grashofs Resultate der mechanischen Warme-

theorie) gives for the following useful deliveries the correspond-

ing mean velocities :

NH = l 10 20 45 80 150

30c = 30 35 40 45 50 55

Under the assumption that x = 10, z = 3600, D = IB and

Ps 30 cents about, the coefficient of fill e^ has been calcu-

lated for different sizes and pressures, when the quantity

zBPt + (P + P1)
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is a minimum. This quantity is the principal yearly cost.
The following table gives the degree of fill e^ :

Engine without Condensation. Condensing Engines.

-2V 7 20 60 180 7 20 60 180

#i = 2 0.33 0.30 0.25 0.23

#i = 3 0.41 0.40 0.39 0.38 0.30 0.25 0.30 0.20

Pi = 4 0.33 0.32 0.31 0.30 0.25 0.22 0.20 0.15

^ = 6 0.30 0.25 0.23 0.20 0.24 0.20 0.18 O.ia

We see, therefore,

a. That the coefficient of fill, for the same delivery Nu and
the same steam pressure p^ is less for condensing engines than
for non-condensing. That, however, the coefficient for both

systems is
v more nearly the same as the pressure increases.

b. Both condensing and non-condensing engines have a less,

coefficient of fill, the greater the useful delivery Nu and the

greater the pressure p.
For a non-condensing engine, for example, of 7 horse power,

it would be, under the assumed conditions, not advantageous,
for a pressure of 4 atmospheres, to have the degree of fill of

the cylinder e1 greater or less than 0.33.

Calculation of a Projected Steam Engine. Let us now conclude

by showing how to proceed in order to find the dimensions of

the more important parts of a steam engine of any required
useful horse power. We cannot find these dimensions directly

from the preceding formulae, but we will show how by their aid

we can find approximate values, and then, from these values

can find the more exact proportions. Let us take an example
which will illustrate the general method of procedure.

EXAMPLE.

Required to build a steam engine, working expansively, whose effective de-

livery shall be 60 horse power.
We assume that water is abundant, and hence the engine may be a condensing

engine. We also assume that the work required of the engine is of such char-

acter that a coefficient of irregularity of 8 -fa will be sufficient. What dimen-

sions must we give the engine ? what amount of water and fuel is required per

hour ? etc.
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If, instead of the effective delivery, the indicated delivery had been given, our

formulae would enable us to find with ease the dimensions of the various parts,

and then we could estimate the resistances owing to the motion of these parts.

The work corresponding to these resistances, deducted from the indicated de-

livery, would then give at once the effective delivery. We see at once that the

indicated delivery must be much greater than the actual. We have called the

quotient of the actual by the indicated delivery

the indicated efficiency.

This efficiency mt we must seek to determine by experiment
and calculation. It is, of course, more for large engines and
less for smaller ones. Also for the same delivery it is some-
what less for expansion engines than for full pressure, and for

condensing engines least of all.

According to Grashof, we have

1. For non-condensing engines without expansion, when

a. Nu is from 5 to 25 horse power,

' Nu + 50
'

b. Nu from 25 to 80 horse power,

- ^ + 75m* NU + 1W

2. For non-condensing engines with expansion.

a. Nu from 10 to 40 horse power,

' Nu + 50
'

b. Nu from 40 to 100 horse power,

.
Nu + 72
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3. For condensing and expansion engines.

a. Nu from 15 to 46 horse power,

Nu + 50
*

(b.) Nu from 46 to 180 horse power,

=
Nu + 86m*

~ Nu + 130
'

From these formulae the following table is calculated, which
contains values rather too small than too large :

Nu
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Then from page 628

, 10334

From the table, page 627, we have for p, for e^
= 0.20, and

PI
= 4: atmospheres,

Pi
= 1.881.

Hence

75N{ 75 x 78

"103340!
""

10334 x 1.881

and since c = 1.567 meters, we have for the cross-section .Fof

the cylinder, not including that of the rod,

F = - = 0.192 sq. meters.

Since the velocity of the piston (c) is 1.567 meters, we must

give to the steam passages, according to page 624, a cross-sec-

tion of about TVth of the cylinder cross-section. We may make
them 4 to 5 times as long as broad.

If we make the diameter of the piston rod TVth of that of the

piston, we have for d

4- -J* (Ad)
1 = ^=0.192;

hence

d = 0.498 = diameter of the cylinder,

and

0.0498 meters - 4.98 cm. = diameter of piston rod.

The stroke s of the piston is best given by

S

-j
= 2.8 - d,a

hence

0~ - 2.8 - 0.498 = 2.302,

or

s = 1.146 meters.
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We can now find the weight 8r of the fly wheel rim. Sup-
pose we make the connecting rod 5 times as long as the crank,

T
then =- =

-J-,
and from page 635,

(\
2 TT \ -Lit

3B7. ^e-

If we make R four times r, in which case the mean diameter
R of the fly wheel rim will be 4 x 1.146 = 4.584 meters, we
have, since Lt

= 75 x 78 = 5850 meter-kilograms, and d =
-fa.

Q O 07Q 585 X 32 , .,8r = 2.273 x ^ x -
2 kilograms.

For v we have

nc 3.1416 x 1.567
v -~- = - - = 2.462 meters.

i. -i

Hence

r = 4390 kilograms.

Since our engine works expansively, and the coefficient of fill

is 0.20 =
,
the above weight must be multiplied by a coefficient

given by the equation, page 634,

0-77 + 0.23 x 5 - 0.017 x 25 = 1.495.

Hence the weight of the fly-wheel rim is

Sr
= 4390 x 1.495 = 6563 kilograms.

If we make the arms T
3
Fths of the weight of the rim, they will

weigh T
3
0-
x 6563 1968.9, or in round numbers,

weight of fly wheel 1970 kilograms.

The dimensions of the rim and arms can be easily found from

the formulae of page 636.

We can now determine the diameter of the fly wheel journal.
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If we denote it by c?i, we have, according to Morin,

8 /N-= 02 A /
'

centimeters,
I/ u

where u is the number of revolutions per minute.

For u, we have from page 196,

hence

30c 30 x 1.567 ... A0V -TI46-
=4L 2

'

8/~78~ 3/~= 20
1/ -|^-

= 20y 1.902 = 24.8 centimeters.

If we make the diameter of the shaft 26.8 centimeters, and

make it 3 meters long, since the weight of 1 cubic meter of cast

iron is 7400 kilograms, the weight of the shaft is

3.1416 x (0.268)
2

Q -^ 10 ~n i
.,

^-
- x 3 x 7400 = 1250 kilograms.

The total weight of fly wheel and shaft is then

S=SW + 1.3 Sr
= 1250 + 6563 + 1970 = 9783 kil.

The mean effective pressure ps required for overcoming the

friction of the fly wheel shaft is, from page 638,

= 0.00002.

In the present case

nnnnno - x= )02

For the mean pressure (effective) pt required to overcome the

friction of the piston, piston rod, etc., and to work the feed

pump, we have (page 638)

0.0227 0.0227
Pt= -3T-

=
0498
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Hence the mean effective pressure pm of the engine running
loose, is, ivhen non-condensing,

i

pm = 0.170 + 0.046 = 0.216.

For a condensing engine we must add a term which includes

the working of the cold water and air pumps (page 639 . Since,

however, the steam weight D used by the engine per hour oc-

curs in this term, we must first find D.

From page 642, we have for D

D - 120Fsu [(e + ej 7/1
- eyj + 450d\Xj>T,

where y\ *s the weight of 1 cubic meter of steam at the pressure
of 4 atmospheres, which from Table II. is 2.23 kilograms, i/2

~

0.264, e = 0.07 (page 618), e,
= 0.20, s = 1.146 and u = 41.02.

Hence

D = 120 x 0.192 x 1.146 x 41.02 [(0.07 + 0.20) 2.23 - 0.07 x

0.264] + 450 x 0.498 VL881 = 632.47 + 307.35 = 939.82 kilgrs.

Hence (page 641),

Pm =
(0.003/,

If we take h = 2 meters, we have

p'm - (0.006 4- 0.045) 8
- 0.051 x 0.868 - 0.044.

Hence

pm = 0.216 + 0.044 = 0.260.

From page 642 we have the effective pressure which gives

the useful work

Hence Nu (page 642) is

10334 x 0.192 x 1.567 x 1.435 =^ horse power-
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The result coincides then so exactly with the required power
of 60 horse power that another and closer computation is not

necessary. This is principally not only because we have taken

y = 1, but also have made ^ =
J. If, for example, we had

taken 4r = i> *ne % wheel would have been much lighter, andR
lience the work required for its motion less. We should then

iave found for Nu a greater value than 60 horse power. In

such case the area of the piston would have to be reduced

somewhat in order to obtain the desired result.

Let us determine now the dimensions of the condenser and

pumps.

From page 643, the volume of the condenser is C =
{-

to -~-
4: O

Let us take then C =
$-= ,

then
o.o

0.192 x 1.146 n _Q , .

C -
rrr

- 0.063 cubic meters.
3.5

Let the cold water pump be single acting. The volume V
l

of the same is, from page 644,

r nD
1
~=

54000w

or taking n 20,

20 x 939.82

54000 x 41.02
"

If we make the stroke of the pump one half that of the cyl-

inder, we have for the cross-section Fl9

F! I
= 0.0085,

Fi x 0.573 = 0.0085,

or

F! = 0.0148.
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Hence we have the diameter d%

^=0.0148,
or

d% = 0.138 meters = 13.8 centimeters.

If we denote the volume described by the piston of the air

pump per stroke by VZi we can, in general, -take

-p
= 4 to 4.5.

Taking the first value,

F2
= 0.0085 x 4 = 0.0340 cubic meters.

As soon as we fix upon the stroke, we can find the diameter.

The volume described by the piston of the feed pump per

stroke, can also be easily calculated. The feed water per hour

is D = 939.82 kilograms = 0.9398 cubic meters. If TVth of the

water falls back, we have per hour the water volume 0.9398 4-

0.09398 = 1.0337, and per minute, 0.0172 cubic meters. In

order to feed the boiler rapidly, the pump must furnish in this

time, 3 to 6 times this volume. If we say 4 times, we have the

quantity per minute 0.0688 cubic meters. If the pump is

single acting, it makes, in 41.02 revolutions of the engine, 41.02

strokes, or feeds the boiler 41.02 times per minute. Hence the

volume which the piston of the feed pump must describe per
stroke is, since for each time it feeds the boiler it rises and

falls

= 0.00334 cubic meters.
41.02

If now (page 646)

D = 7B, or B = ^D9

we have for the weight of fuel per hour

B = ? = 134.26 kilograms.
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It is thus assumed that the heating value of the fuel is toler-

ably great, and therefore that good hard coal is used.

We can now recapitulate the dimensions of our engine as.

calculated, or given.

1. Diameter of cylinder (d) 0.498 meters.

2. Length of stroke () 1.146

3. Cross-section of steam passages 0.0101 sq. m.

4. Mean velocity of piston (c) 1.567 meters.

5. Coefficient of fill (e,) 0.20

6. Revolutions per minute (u) 41.02

7. Diameter of the piston rod 4.98 centim.

8. Ratio of length of crank to connecting
, r I

r d ^ 6

9. Length of crank (r)
= | 0.573 meters.

A

10. Weight of fly wheel rim 6563 kilogrs.

11. Weight of fly wheel arms 1970

12. Weight of fly wheel shaft 1250

13. Diameter of journals 24.8 centim.

14. Diameter of shaft 26.8

15. Steam consumption per hour 939.82 kilogrs.
16. Condensing water per hour 20 x 939.82 .... 1879.64 "

17. Consumption of coal per hour. .134.26 kil.= 18.7964 cub. m.
18. Volume of condenser (G) 0.063

19. Volume described by piston of cold

water pump per stroke 0.0085 "

20. Volume described by the piston of the

air pump per stroke 0.0340 "

21. Volume described by the piston of the

feed pump per stroke 0.00334 "
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1. "What is the pressure of saturated steam whose temperature is 20 Fah. ?
What is the temperature for a pressure of 10 atmospheres ? What is the pressure
for 140 C.?

2. What is the mean specific heat of water between 10' and 25 C. ? Between
25 and 70^ Fah. ? How much heat is required to raise 10 Ibs. of water from 60

'

to 80' Fah. r
1 How much to raise 2 kilograms from 30 to 70' C. ? What is the

specific heat of water at 212
J

Fah. ? At 140 C. ?

3. How much heat is required to convert 2 Ibs. of water at 30 Fah. into
saturated steam at 300

J

Fah. ? How much to convert 1 kilogram of water at 10
J

C. into saturated steam of 120 C. ?

4. How much heat is required to vaporize 1 Ib. of water at 300" Fah. into
steam of the same temperature ? What is the pressure ? What is the outer
work?

5. What is the volume of a quantity of steam and water at 212 Fah. whose
weight is 1 Ib.. and which consists of 0.2 Ib. of steam and 0.8 Ib. of water ?

6. One pound of steam and water has a temperature of 250 Fah., of which
cubic feet are steam. How much does the steam weigh ? How much does the
water weigh ?

7. What is the specific volume of steam at 80 C. ? At 240 Fah. ?

8. What is the outer work performed in converting 2 Ibs. of water, at 250
Fah. into steam, under a constant pressure equal to the steam tension ? What
is the steam tension ? What is the steam volume ?

9. What is the density of steam at 4 atmospheres' pressure ? What is its tem-

perature ? If the volume is 3 cubic feet, what volume and weight of water were

necessary to form it ?

10. How many heat units must be imparted to 1 Ib. of saturated steam, in

order to keep it all saturated while it expands, performing work, till the tempera-
ture sinks 1 Fah. ? If the initial temperature is 222 Fah., what is the initial

volume ? What is the final volume ? The initial pressure ? The final pressure ?

The outer work done ?

11. How many heat units must be imparted, as before, to 1 Ib. of saturated

steam when it expands, performing work, from 5 atmospheres down to 1 atmos-

phere ? What are the initial and final volumes ? Initial and final temperatures ?

Work done during expansion '?

12. A full-pressure non-condensing engine has a stroke of 3 feet, cross-sec-

tion of piston, 1.5 sq. feet. The steam pressure is 5 atmospheres, and it makes
25 revolutions per minute. What is the theoretical work per second, and how-

much heat is required ?

42 657
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13. If a condensing engine forces 3 cubic feet of steam at a pressure of f^th

of an atmosphere into the condenser, what work is necessary, and how much heat

is taken from the steam ?

14. What work is performed by the adiabatic expansion of 1 Ib. of saturated

steam from 4 atmospheres to 1 atmosphere ? How much steam is condensed ?

15. What would the work be if, to start with, we had only water and no steam?
How much steam would be formed ?

16. If 1 Ib. of a mixture of 0.8 Ib. steam and 0.2 Ib. water, expands adiabati-

cally from 8 atmospheres down to 1 atmosphere, what is the work performed ?

What is the initial volume ? Final volume ? Heat disappearing ? How much
steam is condensed ?

17. If a mixture of 10 Ibs. is composed of 0.8 steam and 0.2 water, and has a

pressure of 1.5 atmospheres, what will be the amount of steam and water when
the mixture is cooled, under constant volume, until the pressure is ^th of an at-

mosphere ? What amount of heat must be abstracted ?

18. A boiler has 170 sq. feet of heating surface, and contains 300 cubic feet,

of which 0.6 are water and the rest steam. In ordinary use, the boiler generates
per hour 5 Ibs. of steam for every sq. foot of heating surface, of 5 atmospheres'
tension. In how many minutes will the pressure rise to 10 atmospheres, the tem-

perature of the feed water being 60 Fah. ?

19. If a vessel containing G Ibs. of pure saturated steam, at 1.5 atmospheres,
communicates with another containing 25G Ibs. of a mixture of water and
steam, at ^th atmosphere, of which 0.02 of a pound are steam, what is the con-
dition of the mixture after the cock is opened ?

20. Given 10,000 Ibs. of feed water at 190 Fah. evaporated at 70 Ibs. steam

gauge pressure, and the steam containing 2.75 per cent, of moisture. Find the
heat units required for evaporation. Also suppose 1200 Ibs. of coal were con-

j a. j L^ a* * -L. T- -i -n/v, . Actual Evaporation
sumed, find the efficiency of the boiler. Efficiency = =-- i ^---. ;

Theoretical Evaporation
also, find the equivalent evaporation at and from 212 Fah.

21. Suppose a calorimeter used for determining the moisture of steam, which
not only condenses but retains the steam and spray admitted.

Further, let

W= Wi + G' Wz = the sum of the original weight of condens-

ing water, and the product of the specific heat of the testing vessel by its weight.
w = weight of mixture of steam and spray.
x = weight of steam in the mixture.
w x = weight of spray in the mixture.
r = total latent heat of steam.

p8 steam gauge pressure (
= excess above atmosphere).D = qs q = (t8 t nearly) = difference between the heat of liquid at

temperature of the steam and at final temperature of water in condensing vessel.

d = q q } =(t t } nearly) difference between heat of liquid at final

temperature of the water, and at initial temperature of condensing water. Prove
that if no external work is done while the steam is condensing, the percentage of

moisture is

By experiment, we find Wl
= 5.796 Ibs., TF = 3.858 Ibs., C' = 0.11, w =

0.25 Ibs., p8 = 36f Ibs., *, = 65.5 Fah., t = 108.3 Fah., what is the per-

centage of moisture in the steam ?

22. In a surface condenser the water enters with a temperature of 60 Fah.,
and departs at 80 Fah. The mean temperature of the condenser is 115 Fah.
How much more condensing water than steam, by weight, must be used ?



EXAMPLES FOR PRACTICE. 659

23. An engine using steam of 5 atmospheres has a jet condenser in which the

average pressure is 0.1 atmosphere. The cooling water has a temperature of

60 Fah. How much more water than steam must be used ?

24. A boiler contains steam at a pressure of 5 atmospheres. When the safety
valve is opened, what is the velocity of efflux, disregarding friction, and sup-

posing the steam to be dry ? How much steam is condensed during efflux ?

25. What diameter should the safety valve of a steam boiler have, which

generates per hour 500 Ibs. of steam at 5 atmospheres, for 20-fold security ?

26. Hot water is allowed to flow from the test cock of a boiler under the press-
ure of 5 atmospheres. What is the specific steam weight at the orifice ? With
what velocity does the mixture issue ? What is the discharge per second ? How
much steam and water are contained in the mixture ?

27. The steam pressure in a boiler is 5 atmospheres, the height of suction 8

feet. The condensing chamber is at the water level. The engine uses 20 Ibs.

of steam per minute. What should be the area of the mouthpiece of a Giffard

injector ? What of the suction pipe and the feed pipe when the feed water has

a temperature of 60 Fah., and the mixture of water and steam 120 Fah.?

28. If one pound of dry saturated steam at 3 atmospheres expands in vacuo

down to 1 atmosphere, what is the temperature ? How many degrees must satu-

rated steam of one atmosphere be heated under constant pressure, in order that

for the same temperature it may have the same volume ?

29. An engine works with superheated steam of 5 atmospheres and tempera-
ture 360 Fah. What is the expansion ratio when the steam at the end of expan-
sion is just in the saturated condition ?

30. A vessel contains one pound of pure saturated steam at 5 atmospheres.

Let the steam in this vessel expand into another in which is a vacuum, whose

volume is 4 times as large. What is the final pressure and temperature ? And
is the steam superheated ?

31. If saturated steam of 5 atmospheres expands under constant temperature

down to 1 atmosphere, what is the heat imparted ? The outer work done ?

32. Suppose we have 10 Ibs. of saturated steam of 5 atmospheres. What is

the heat required to generate it ? How much heat is required to generate the

same volume of superheated steam of the same pressure ?

33. In a hot-air engine the heat furnished per hour to the air is 6200 heat

units, while in the same time 10 Ibs. of coal are consumed, whose heating value is

700 heat units. What is the efficiency of the furnace ?

34. The boiler of an expansion engine, which furnishes steam of 5 atmospheres,

vaporizes per hour, for every horse power, 60 Ibs. of water, and requires for this

10 Ibs. of coal, whose heating power is 700 heat units. What is the boiler

efficiency ?

35. What would be the delivery of a perfect steam engine using per hour 200

Ibs. of steam of 10 atmospheres ?
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TABLE I.

EXPANSIVE FORCE OP STEAM FOR TEMPERATURES FROM 32 UP TO + 230

OR 25.6 UP TO + 446 FAH. ACCORDING TO REGNAULT.

TEMPERATURE

CENTIGRADE.
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TEMPERATURE

CENTIGRADE.
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TEMPERATURE

CENTIGRADE.
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TEMPERATURE

CENTIGRADE.



THERMOD YNAMICS. 665

84
IS



666 THERMODYNAMICS.

TABLE II.

PRINCIPAL TABLE FOR SATURATED STEAM OP WATER.

French Units.

1

Atmosphere?.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

French Units.

7

Outer latent
heat

page 407.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

French Units.

Atmospheres.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OP WATER.

French Units.

Outer latent
heat

Ap u,

page 407.
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TABLE II. continued.

PRINCIPAL TABLE FOE SATURATED STEAM OF WATER.

French Units.

1

Atmospheres.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

French Units.

7

Outer latent
heat

Apu,
page 407.
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TABLE II. continued.

PRINCIPAL TABLE FOE SATURATED STEAM OP WATER.

English Units.

1

Atmospheres.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATE*.

English Units.

7

Outer latent
heat

Apu
(page 407).



674 THEEMODYNAMICS.

TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

English Units.

1

Atmospheres.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

English Units.

7

Outer latent
heat

Apu
(page 407)
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

English Units.

1

Atmospheres.
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TABLE II. continued.

PRINCIPAL TABLE FOR SATURATED STEAM OF WATER.

English Units.

7

Outer latent
heat.

Apu
(page 407)
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TABLE Ila.

SATURATED STEAM OF WATER.

French Units.

1

Tempera-
ture
C.
t
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TABLE Ila.

SATURATED STEAM OF WATER.

French Units.

7

Outer latent
heat

Ap u
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TABLE Ila. continued.

SATURATED STEAM OF WATER.

English Units.

Temperature

Fahrenheit

-

t
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TABLE lla. continued.

SATURATED STEAM OF WATER.

English Units.

Outer
latent
h*-at

Apu,
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TABLE III.

AUXILIARY TABLES FOE SATURATED STEAM OF WATER (ZEUNER).

French Measures.

Pressure

P
in atmos-

pheres.
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TABLE V.
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TABLE VI.

SATUEATED STEAM OP ETHER (C 4H 10O)

French Units.

1
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TABLE VI.

SATURATED STEAM OF ETHER (C4H 100).

French Units

693

7
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TABLE VII.

SATURATED STEAM OF ALCOHOL (C 2H60). French Units.

1
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TABLE VII.

SATURATED STEAM OF ALCOHOL (C 2H 60). French Units.

J.
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TABLE VIII.

SATURATED STEAM OP ACETONE (C 3H 6O).

French Units.

1
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TABLE VIII.

SATURATED STEAM OF ACETONE (C 3H 6O).

French Units.

7



698 THERMODYNAMICS.

TABLE IX.

SATURATED STEAM OF CHLOROFORM (CHC1 3 ). French Units.

1
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TABLE IX.

SATURATED STEAM OF CHLOROFORM (CHCls). French Units.

7
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TABLE X.

SATURATED STEAM OF CHLORIDE OF CARBON (CC1 4 ). French Units.

1
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TABLE X.

SATURATED STEAM OF CHLORIDE OF CARBON (C01 4 ). French Units.

7
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TABLE XI.

SATURATED STEAM OF BISULPHIDE OF CARBON (CS a ). French Units.

1
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TABLE XI.

SATURATED STEAM OF BISULPHIDE OF CARBON (CS 2). French Units.

1





INDEX.

ABSOLUTE isero, 144.

Adiabatic compression of air, 169.

curve, approximate formula for, 446.
for air, 160.

for steam, 435.

for superheated steam, 578.

efflux of steam, 512.

expansion of air, 167.

of steam, 444.

transfer of air, 174.

Air, compressed, 334.
efflux of, 325.

engines, compressed, 334.

complete expansion,
340.

. full pressure, 346.

incomplete expan-
sion, 350.

friction of, in pipes, 338.

Atmospheres into pounds and kilograms, 369.

Atmospheric gas engine, 306.

Back pressure, work of, 621.

Bechard, experiments of, 48.

Bernoulli, Daniel, 52.

Body tension, 122.

Boiler, locomotive, 494.

steam, generation of steam in, 492.

Boiling point, 145.

Buffon, hypothesis of, 50.

Caloric, 105.

Capacity, volume, 130.

Carnot, 53.

Charles, law of, 63.

Chlorophyll, absorption spectrum of, 87.

Clapeyron, 54.

Clausms, views as to nature of heat, 113.

Coefficient of irregularity, 632.

Colding, 54.

Compressed air engines, 334.

complete expansion,
340.

full pressure, 346.

incomplete expansion,
350.

Compression of gases, 148.

of steam, adiabauc, 444.

Compressors, air, 334.

Condensation of steam in expanding, 72.

Condenser, 490.

dimensions of, 643.

jet, 506.

surface, 501.

theory of, 501.

Conduction and radiation of heat, 115.

Connecting rod, influence of length of, 634.

Constant steam weight, curve of; 413.

45

Constant volume, addition of heat under, 489.
Contraction of bodies when heated, 66.

Convection, electrolytic, 83.

Coriolis, theorem of, 63.

Crank, theory of, 629.

Critical temperature, 415.

Cost of working of steam engine, 646.

Cycle process, 19.

of steam engine, imperfection
of, 597.

of the steam engine, 592.

simple, reversible, 181.

Cylinder, action of steam in, 607.

Davy, experiments of, 53, 102.

views as to nature of heat, 113.

Delivery indicated, 626.

useful, 641.

Density of saturated steam, 410.

Disgregation work, 18-25, 132.

in crystalsand liquids, 64.

Dynamide, 112.

Effect, mechanical, 3.

Efficiency, coefficient of, 35.

of steam engines, 218.

Efflux, adiabatic, of steam, 515.

of air from vessels, 325.

of hot water, 523.

of steam, 512.

velocity of, 549.

Electrolytic convection, 83.

Electro-magnetic engine, 39.

forces, nature of, 80.

Engine, electro-magnetic, 39.

Ericsson's, 73.

hot-air, 32.

Engines, hot-air, 75.

steam, 588.

Engine, work of, when disconnected, 629.

English measures into French, 367.

Entropy, 92, 189.

Ericsson's engine, 73.

hot-air engine, 225.

Ether, 111.

Evaporation, action of heat in, 313.
work of water in, 219.

Examples for practice, 358.

Expansion, coefficient of, 142.

degree of, 61,7.

of air under constant pressure, 177.

of gases, 139.

of steam, 416.

adiabatic, 444.

Favre, experiments of, 10.

Fill, coefficient of, 646.
Fizeau and Foucault, experiments of, 7.

Fly-wheel, rim and arm:*, 636.

705
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Fly-wheel, weight of, 631.

Foot-pounds into meter-kilograms, 368.

Formulae, recapitulation of, 205.

French measures into English, 367.

Friction, 6.

of air in pipes, 339.

of -blood, influence upon animal

heat, 85.

pressure for overcoming, 638.

Fuel used per hour, 644.

Gas engine, atmospheric, 306.

of Otto and Sanger, 292.

Gases, compression of, 148.

constitution of, 67.

expansion of, 139.

law of expansion of, 63.

specific heat of, 148.

Gay-Lussac's law, 14U.

Gravity, specific, 130.

Heat, action of, in evaporation, 373.
actual specific, of water, 390.
addition under constant volume, 448.
a kind of motion, 111.

calculation of mechanical equivalent of
,

145.

conduction and radiation. 115.
different works performed by, 121.
fundamental equations of mechanical

theory of, 123.

generated by mechanical action, 102.

identity with light, 7.

inner and outer, of vaporization, 393.

latent, 18.

law of tr.-insmission of, 76.

mean specific, of water, 389.
mechanical equivalent of, 10, 44, 65, 70,

80, 104, 106.

of friction, 101.

of liquids, 387.
of vaporization, 391.
outer and inner latent, of steam, 406.

rays, interference of, 7.

specific, 128, 134.

of gases, 148.
of water, 388.

eteam, 397.

total, 391.

transformation into work, 79.

unit, 105.

views as to the nature of, 112.

weight, 189, 455.

Heating surface, 493.

Him, experiments of, 61, 106.
Hirn's experiments, 12.

law for superheated steam, 550.
Horse power, cost of, 645.
Hot air and steam, comparison of work of, 222.

engines, comparison of, 218.

engine, 32, 75.

Ericsson's, 225.
formulae for. 263.

historical, 221.

maximum delivery, 253, 260.
of Laubereau and Lehmann,268.
of Lehraaun, 279.
of Sterling, 255.
of Unger, 266.

open, with open fireplace, 225.
interior fire, 235.

regenerator, 72.

theory of, 240.

Hngon's engine, 305.

Inches into centimeters, 366.
Indicated delivery, 626.

Indicator steam, 13.

Induction phenomena, 77.

Injector, description of, 532.

theory of, 533.

Inner and outer heat of vaporization. 393.

work, 121, 122.

work, graphical representation of, 201.

ntermediate body in cycle process, 183.

regularity, coefficient of, 632.

senergic curve for air, 159.

Isentropic
" "

160.

Isodynamic
" "

159.

steam, 432.

superheated steam, 580.
isometric curve, 178.

isopiestic
"

178.

Isothermal " for air, 156.

for steam, 429.

for superheated eteam, 581.

Jet condenser, 506.

Joule and Favre, experiments of, 40.

experiments of, 9. 71, 104.

Journals, diameter of, 637.

Kilograms into pounds, 367.

per square centimeter into pounds
per square inch, 369.

Latent heat, 18.

outer and inner of steam, 406.

Laubereau and Lehmann, hot-air engine, 268.

Laubereau's engine, delivery of, 276.

dimensions of, 278.

theory of, 272.

Lavoisier and Laplace. 52.

Lehmann's engine, delivery of, 286.

hot-air engine, 279.

Length of connecting rod, influence of, 641.

Lenoir engine, delivery of, 298.

Light, identity with heat; 7.

Liquid, heat of. 387.

Locomotive boiler, 494.

Magnus, formulae of, 383.

Mariotte and Gay-Lussac's laws combined, 150,
153.

Mariotte's law, 148.

Mayer, views of, 89, 103.

Mazeline, hot-air engine of, 235.

Mechanical effect, 3.

equivalent of heat, 10, 44, 65, 70, 80,

104, 106.

calculation of,
150.

theory of heat, fundamental equa-
tions, 123.

Melting point, 145.

Meter-kilograms, into foot-lbs.. 368.

Meters into inches, 366.

Mixture of steam, 496.

Motion, perpetual, 5, 59.

Notation, customary for steam, 400.

of frequent use, 204.

Otto and Langen, gas engine. 292.

Outer and inner work, 121, 122.

work, 18.

Passages, steam, cross-section of, 624.

Perpetual motion, 5, 59.

Piston, mean velocity of, 628.

Pounds into kilograms, 368.

per square inch into kilograms per
square centimeter, 369.

Pressure, back, work of. 621.

change of, with volume for air, 196.

specific, 122.

Process, cycle, 19

Pumps, dimensions of, 643.

Radiation and conduction of heat. 115.

Redtenbacher, theory of, 111.

Reduction tables, 366.

Regenerator, 259.

in hot-air engines, 72.

Regnault, experiments of, 381.

formula; of, 382.

Rontgen's
"

384.

Rumiord, experiments of, 53, 101.

Saturated steam, 378.

density of, 410.

formulae for, 410.

Saturation, curve of, 415-

Specific gravity, 130.
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Specific heat, 128, 134.

actual, of water, 390.

mean of "
389.

of gases, 148.

of water, 388.

pressure, 122.

steam volume, 399.

calculated, 402.

volume, 122.

of superheated steam, 551.

45team, adiabatic compression of, 444.

curve for, 435.

expansion of, 444.

and hot air, comparison of work of, 222.

condensation of, in expanding, 72.

efflux of, 512.

engine, 588.
and hot-air engine, comparison

of, 218.

calculation of, 647.

complete calculation of, 607.

cost of working, 646.

cycle process of, 592.

efficiency of, 218.

imperfection of cycle process
of, 597.

motive power of, 60.

perfect, 592.

expansion of, 416.

gas, 379.

general properties of, 377.

Seat, 397.

indicator, 13.

isodynamic curve for, 459.

isothermal curve for, 456.

mixtures of, 496.

passages, cros>-section of, 624.

saturated, 378.

.superheated, 379, 548.

adiabatic curve for, 578.

isodynamic curve for, 580.

isothermal curve for, 581.

-volume, calculated, 402.

per stroke, 617.

specific, 399.

weight, curve of constant, 413.

per hour, 642.

work of the driving, 619.

Sterling's engine, 255.

Superheated steam, 379, 548.
adiabatic curve for. 578.

isonynainic curve for, 580.
isothermal curve for, 581.

specific volume. 551.

Zeuner's theory of, 559.

Surface condenser, 501 .

heating, 493.

Tables, reduction, 376.

Temperature, absolute zero of, 144.

critical, 415.

Tension, body, 122.

Thermodynamic function, 189.

Thermodynamics, definition of, 3.

Thomson and Jortle, experiments of, 71.

Wm., 50.

Total heat, 391.

Unger's hot-air eneine, 266.

Useful delivery, 641.

Vaporization, heut of, 391.

inner and outer heat of, 393.

Vegetation, dependence upon light, 85.

Velocity of efflux of steam, 519.

of piston, mean, 628.

Vis viva, 3.

Volume capacity. 130.

change of, with pressure, 196.

specific, 122.

of superheated steam, 551.

st<-am, 399.

calculated, 402.

steam, per stroke, 617.

Water, hot, efflux of, 523.

Work, 3.

disgregation, 18, 25, 132.

in crystals and liquids, 64,

inner and outer, 121.

outer, 18.

and inner, 122.

performed by heat, 106.

useful, 6.

Working of steam engine, cost of, 646.

Young, 53.

Zero, absolute, 142.

Zeuner, theory of superheated steam, 559

Zinc, decomposition of, 184.
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tions, mainly intended for young engineers, and for examin-
ation questions. By Robert Grimshaw. Fifth edition, enlarged
and improved. 1887 - 18mo, cloth, 100
" Not only young Engineers, but all who desire rudimental and practical

instruction in the science of Steam Engineering will find profit in reading
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by Robt. Grimshaw." Mechanical News.

STBAM ENGINE! CATECHISM. Part II.

Containing answers to further practical inquiries received
since the issue of the first volume. Second edition, enlarged.

18mo, cloth, 1 00
"

It deserves a place in every young engineer's book-case." Engineering,
London.

STATIONARY STEAM ENGINES.
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of the Development of Steam Engines the principles of Con-
struction and Economy, with description of Moderate Speed
and High Speed Engines, By Prof. R. H. Thurston.

12mo, cloth, 1 50
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This work is by a practical engineer of twenty-four years' experience in
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A MANUAL OP STEAM BOILERS, THEIR DE-
SIGNS, CONSTRUCTION, AND OPERATION.
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ston. (183 engravings in text.) 8vo, cloth, $6 06
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thoroughly as this, and it has the further obvious advantage of being a new
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Mechanical News.

STEAM BOILER EXPLOSIONS IN THEORY AND
IN PRACTICE.

By B. H. Thurston, M.A., Doc. Eng., Director of Sibley Col-

lege, Cornell University. Containing Causes of Preventives

Emergencies Low Water Consequences Management
Safety Incrustation Experimental Investigations, etc., etc.,
etc. With many illustrations , 12mo, cloth, 1 60*

"
It is a work that might well be in the hands of every one having to

do with steam boilers, either in design or use." Engineering News.

STEAM HEATING FOR BUILDINGS ;

Or, Hints to Steam Fitters. Being a description of Steam
Heating Apparatus for Warming and Ventilating Private
Houses and Large Buildings, with Remarks on Steam, Water,
and Air in their Relations to Heating. To which are added
useful miscellaneous tables. By Wm. J. Baldwin. Eighth
edition. With many illustrative plates 12mo, cloth, 2 50
"Mr. Baldwin has supplied a want long felt for a practical work on Heat-

ing and Heating Apparatus." -Sanitary Engineer.

REPORT OP A SERIES OP TRIALS OP WARM
BLAST APPARATUS FOR TRANSFERRING
A PART OP THE HEAT OP ESCAPING FLUE
GASES TO THE FURNACE.

A complete record of a carefully conducted series of trials,
with many tables, illustrations, etc. By J. C. Hoadley.

1 vol., 8vo, cloth, 1 50
LOCOMOTIVE-ENGINE RUNNING AND MAN-

AGEMENT.
A practical Treatise on the Locomotive Engines, showing
their performance in running different kinds of trains with

economy and dispatch. Also, directions regarding the care,

management, and repairs of Locomotives and all their con-
nections. By August Sinclair, M.E. Illustrated by numerous
engravings 12mo, cloth, 2 OC

"Altogether it is a very comprehensive and thoroughly practical book."
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American Merchant.
" The more it is studied and used the more thoroughly it will be appre-

ciated." National Car Builder.
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ARCHITECTURE.
Baldwin's Steam Heating for Buildings i2mo, 2 50

Berg's Buildings and Structures of American Railroads 4to, 5 oo

Birkmire'-s Planning and Construction of American Theatres 8vo, 3 oo

Architectural Iron and Steel 8vo, 3 50

Compound Riveted Girders as Applied in Buildings , . .8vo, 2 oo

Planning and Construction of High Office Buildings 8vo, 3 50
Skeleton Construction in Buildings 8vo, 3 oo

Briggs's Modern American School Buildings :8vo, 4 oo

Carpenter's Heating and Ventilating of Buildings. 8vo, 4 oo

Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo, 3 50
Fireproofing of Steel Buildings 8vo, 2 50

French and Ives's Stereotomy 8vo, 2 50
Gerhard's Guide to Sanitary House-inspection i6mo, i oo

Theatre Fires and Panics i2mo, i 50
Holly's Carpenters' and Joiners' Handbook i8mo, 75
Johnson's Statics by Algebraic and Graphic Methods 8vo, 2 oo

1



Kidder's Architect's and Builder's Pocket-book. Rewritten Edition. i6mo,mor., 5 oo

Merrill's Stones for Building and Decoration 8vo, 5 oo

Non-metallic Minerals: Their Occurrence and Uses... 8vo, 4 oo

Monckton's Stair-building 4to, 4 oo

Patton's Practical Treatise on Foundations 8vo, 5 oo

Peabody's Naval Architecture . . . ,8vo, 7 50

Richey's Handbook for Superintendents of Construction. (In press.)

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, i 50
Snow's Principal Species of Wood 8vo, 3 50

Sondericker's Graphic Statics with Applications to Trusses, Beams, and Arches.
8vo, 2 oo

Towne's Locks and Builders' Hardware i8mo, morocco, 3 oo

Wait's Engineering and Architectural Jurisprudence 8vo, 6 oo
Sheep, 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture 8vo, 5 oo
Sheep, 5 50

Law of Contracts 8vo, 3 oo

Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.. .8vo, 4 oo

Woodbury's Fire Protection of Mills 8vo, 2 50
Worcester and Atkinson's Small Hospitals, Establishment and Maintenance.

Suggestions for Hospital Architecture, with Plans for a Small Hospital.
i2mo t i 25

The World's Columbian Exposition of 1893 Large 4to, i oo

ARMY AND NAVY.
Bernadou's Smokeless Powder, Nitro-cellulose,and the Theory of the Cellulose

Molecule i2mo, 2 50
* Bruff's Text-book Ordnance and Gunnery 8vo, 6 oo

Chase's Screw Propellers and Marine Propulsion 8vo , 3 oo

Craig's Azimuth 4to s 3 50
Crehore and Squire's Polarizing Photo-chronograph . 8vo, 3 oo

Cronkhite's Gunnery for Non-commissioned Officers 24mo. morocco, 2 oo
* Davis's Elements of Law 8vo, 2 50
* Treatise on the Military Law of United States 8vo, 7 oo

Sheep. 7 50
De Brack's Cavalry Outpost Duties. (Carr. ) 24010 morocco, 2 oo

Dietz's Soldier's First Aid Handbook i6mo, morocco, i 25
* Dredge's Modern French Artillery 4to, half morocco, 15 oo

Durand's Resistance and Propulsion of Ships 8vo, 5 oo
* Dyer's Handbook of Light Artillery I2mo, 3 oo

Eissler's Modern High Explosives 8vo, 4 oo
* Fiebeger's Text-book on Field Fortification Small 8vo, 2 oo

Hamilton's The-Gunner's Catechism i8mo, i oo
* Hoff's Elementary Naval Tactics 8vo, i 50

Ingalls's Handbook of Problems in Direct Fire 8vo, 4 oo
* Ballistic Tables 8vo, i 50
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. . 8vo. each, 6 oo
* Mahan's Permanent Fortifications. (Mercur.) 8vo, half morocco, 7 So

Manual for Courts-martial i6mo, morocco, i 50
* Mercur's Attack of Fortified Places I2mo, 2 oo
* Elements of the Art of War 8vo, 4 oo

Metcalf's Cost of Manufactures And the Administration of Workshops, Public
and Private 8vo, 5 oo

* Ordnance and Gunnery. 2 vols xamo, 5 oo

Murray's Infantry Drill Regulations z8mo, paper, 10

Nixon's Adjutants' Manual 24mo, i oo

Peabody's Naval Architecture 8vo, 7 50
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* Phelps's Practical Marine Surveying 8vo 2 50
Powell's Army Officer's Examiner i2mo, 4 oo

Sharpe's Art of Subsisting Armies in War i8mo, morocco, i 50
* Walke's Lectures on Explosives 8vo, 4 oo
* Wheeler's Siege Operations and Military Mining 8vo. 2 oo

Winthrop's Abridgment of Military Law i2mo, 2 50

Woodhull's Notes on Military Hygiene i6mo, i 50

Young's Simple Elements of Navigation i6mo morocco, i oo

Second Edition, Enlarged and Revised i6mo, morocco, 2 oo

ASSAYING.

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.
1 2mo, morocco, i 50

Furman's Manual of Practical Assaying
^

8vo, 3 oo

Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. . . .8vo, 3 oo

Miller's Manual of Assaying 12010, i oo

O'Driscoll's Notes on the Treatment of Gold Ores 8vo. 2 oo

Ricketts and Miller's Notes on Assaying 8vo, 3 oo

Ulke's Modern Electrolytic Copper Refining 8vo. 3 oo

Wilson's Cyanide Processes I2mo, i 50

Chlorination Process izmo, i 50

ASTRONOMY.
Comstock's Field Astronomy for Engineers 8vo, 2 50

Craig's Azimuth 4to, 3 50
Doolittle's Treatise on Practical Astronomy 8vo, 4 oo

Gore's Elements of Geodesy 8vo. 2 50

Hayford's Text-book of Geodetic Astronomy 8vo, 3 oo

Merriman's Elements of Precise Surveying and Geodesy 8vo, 2 50
* Michie and Harlow's Practical Astronomy 8vo, 3 oo
* White's Elements of Theoretical and Descriptive Astronomy. ........ xamo, 2 oo

BOTANY.

Davenport's Statistical Methods, with Special Reference to Biological Variation.

i6mo, morocco, i 25
Thom< and Bennett's Structural and Physiological Botany. i6mo, 2 25

Westermaier's Compendium of General Botany. (Schneider.) .8vo, 2 oo

CHEMISTRY.

Mriance's Laboratory Calculations and Specific Gravity Tables lamo, i 25
Allen's Tables for Iron Analysis 8vo, 3 oo

Arnold's Compendium of Chemistry. (MandeL) Small 8vo, 3 50

Austen's Notes for Chemical Students lamo, i 50
* Austen and Langworthy. The Occurrence of Aluminium in Vegetable

Products, Animal Products, and Natural Waters 8vo, 2 oo

Bernadou's Smokeless Powder. Hitro-cellulose, and Theory of the Cellulose

Molecule lamo, 2 50
Bolton's Quantitative Analysis 8ro, i 50
* Browning's Introduction to the Rarer Elements 8vo, i 50

Brush and Penfield's Manual of Determinative Mineralogy 8vo. 4 oo

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.) 8vo. 3 oo

Cohn's Indicators and Test-papers iamo, 2 oo

Tests and Reagents 8vo. 3 oo

Craft's Short Course in Qualitative Chemical Analysis. (Schaeffer.) izmo, i 50

Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von
Ende) tamo, 2 50

Drechsel's Chemical Reactions. (Merrill.) 12010, i 25

Duheci's Thermodynamics and Chemistry. (Burgess.) 8vo, 4 oo

Eissler's Modern High Explosives 8vo, 4 oo

Effront's Enzymes and their Applications. (Prescott.) 8vo, 3 oo
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Erdmann's Introduction to Chemical Preparations. (Dunlap.) i2mo, i 25

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe
i2mo, morocco, i 50

Fowler's Sewage Works Analyses izmo, 2 oo

Fresenius's Manual of Qualitative Chemical Analysis. (Wells.) 8vo, 5 oo

Manual of Qualitative Chemical Analysis. Parti. Descriptive. (Wells.) 8vo, 3 oo

System of Instruction in Quantitative Chemical Analysis. (Cohn.)
2 vols 8vo, 12 50

Fuertes's Water and Public Health i2mo, i 50

Furman's Manual of Practical Assaying 8vo, 3 oo

Getman's Exercises in Physical Chemistry I2mo,
Gill's Gas and Fuel Analysis for Engineers i2tno, i 25
Grotenfelt's Principles of Modern Dairy Practice. (Wo11.) i2mo, 2 oo

Hammarsten's Text-book of Physiological Chemistry. (Mandel.) 8vo, 4 oo

Helm's Principles of Mathematical Chemistry. (Morgan.) i2mo, i 50
Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Hinds's Inorganic Chemistry .8vo, 3 oo
* Laboratory Manual for Students I2mo, 75
Holleman's Text-book of Inorganic Chemistry. (Cooper.) 8vo, 2 50

Text-book of Organic Chemistry. (Walker and Mott.). 8vo, 2 50
* Laboratory Manual of Organic Chemistry. (Walker.) i2mo, i oo

Hopkins's Oil-chemists' Handbook 8vo, 3 oo

Jackson's Directions for Laboratory Work in Physiological Chemistry. .8vo, i 25

Keep's Cast Iron 8vo, 2 50
Ladd's Manual of Quantitative Chemical Analysis I2mo, i oo

Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 oo

Lassar-Cohn's Practical Urinary Analysis. (Lorenz.) i2mo, i oo

Application of Some General Reactions to Investigations in Organic

Chemistry. (Tingle.) i2mo, i oo

Leach's The Inspection and Analysis of Food with Special Reference to State

Control. 8vo, 7 50
Lob's Electrolysis and Electrosynthesis of Organic Compounds. ( Lorenz. ) 1 2mo, i oo

Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. . . .8vo, 3 oo

Lunge's Techno-chemical Analysis. (Cohn.) i2mo, i oo

Mandel's Handbook for Bio-chemical Laboratory i2mo, i 50

. Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . . 12010, 60

Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)
3d Edition, Rewritten 8vo, 4 oo

Examination of Water. (Chemical and Bacteriological.) i2mo, i 25
Matthews's The Textile Fibres 8vo, 3 50

Meyer's Determination of Radicles in Carbon Compounds. (Tingle.), .i2mo, i oo

Miller's Manual of Assaying Z2mo, i oo

Milter's Elementary Text-book of Chemistry i2mo, i 50

Morgan's Outline of Theory of Solution and its Results i2mo, i oo

Elements of Physical Chemistry i2mo, 2 oo

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, i 50
Mulliken's General Method for the Identification of Pure Organic Compounds.

Vol. I Large 8vo, 5 oo

O'Brine's Laboratory Guide in Chemical Analysis 8vo, 2 oo

O'Driscoll's Notes on the Treatment of Gold Ores 8vo, 2 oo

Ostwald's Conversations on Chemistry. Part One. (Ramsey.) i2mo, i 50
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo. paper, 50

Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) 8vo, 5 oo

Pinner's Introduction to Organic Chemistry. (Austen.) 12100^ i 50

Poole's Calorific Power of Fuels 8vo, 3 oo

Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-
ence to Sanitary Water Analysis xamo, i 25
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* Reisig's Guide to Piece-dyeing 8vo, 25 oo

Richards and Woodman's Air.Water, and Food from a Sanitary Standpoint.Svo, 2 oo

Richards's Cost of Living as Modified by Sanitary Science izmo i oo

Cost of Food a Study in Dietaries I2mo, i oo
* Richards and Williams's The Dietary Computer 8vo, 150
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.

Non-metallic Elements.) 8vo, morocco, 75

Ricketts and Miller's Notes on Assaying 8vo, 3 oo

Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 3 So

Disinfection and the Preservation of Food 8vo, 4 oo

Riggs's Elementary Manual for the Chemical Laboratory 8vo, i 25
Rostoski's Serum Diagnosis. (Bolduan.) ^ i2mo, i oo

Ruddiman's Incompatibilities in Prescriptions ....->. 8vo, 2 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Salkowski's Physiological and Pathological Chemistry. (Orndorff.). . . .8vo, 2 50

Schimpfs Text-book of Volumetric Analysis xamo, 2 50

Essentials of Volumetric Analysis izrno, i 25

Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 oo

Handbook for Sugar Manufacturers and their Chemists. . i6mo morocco, 2 oo

Stockbridge's Rocks and Soils
'

8vo, 2 50
* Tillman's Elementary Lessons in Heat 8vo, i 50
* Descriptive General Chemistry 8vo, 3 oo

Treadwell's Qualitative Analysis. (HalL) .. 8vo t 3 oo

Quantitative Analysis. (HalL) 8vo, 4 oo

Turneaure and Russell's Public Water-supplies 8vo, 5 oo

Van Deventer's Physical Chemistry for Beginners. (Boltwood.) i amo, i 50
* Walke's Lectures on Explosives 8vo, 4 oo

Washington's Manual of the Chemical Analysis of Rocks 8vo, 2 oo

Wassermann's Immune Sera: Hsemclysins, Cytotoxins, and Precipitins. (Bol-
duan.) i2mo, i oo

Wells's Laboratory Guide in Qualitative Chemical Analysis 8vo, i 50
Short Course in Inorganic Qualitative Chemical Analysis for Engineering

Students i2mo, i 50

Whipple's Microscopy of Drinking-water 8vo, 3 50
Wiechmann's Sugar Analysis Small 8vo. 2 50
Wilson's Cyanide Processes i2mo, i 50

Chlorination Process i2mo, i 50

Wuliing's Elementary Course in Inorganic Pharmaceutical and Medical Chem-
istry nmo, 2 oo

CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING

RAILWAY ENGINEERING.
Baker's Engineers' Surveying Instruments I2mo, 3 oo

Bixby's Graphical Computing Table Paper 19$X 24! inches. 23
** Burr's Ancient and Modern Engineering and the Isthmian CanaL (Postage*

27 cents additional.) 8vo, net, 3 50
Comstock's Field Astronomy for Engineers , 8vo, 2 50
Davis's Elevation and Stadia Tables 8vo, i oo

Elliott's Engineering for Land Drainage 121x10, i 50
Practical Farm Drainage xamo, i oo

FolwelTs Sewerage. (Designing and Maintenance.) 8vo, 3 oo

Freitag's Architectural Engineering. 2d Edition Rewritten 8vo , 3 50

French and Ives*s Stereotomy 8vo, 2 50
Goodhue's Municipal Improvements 1 2mo, i 75

Goodrich*s Economic Disposal of Towns' Refuse 8vo, 3 50

Gore's Elements of Geodesy 8vo, 2 50

Hayford's Text-book of Geodetic Astronomy 8vo, 3 oo

Bering's Ready Reference Tables (Conversion Factors) x6mo, morocco, 2 50
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Howe's Retaining Walls for Earth 12010, 125
Johnson's (J. B.) Theory and Practice 01 Surveying Small 8vo, 4 oo

Johnson's (L. J.) Statics by Algebraic and Graphic Methods 8vo, 2 oo

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) izmo. 2 oo
Mahan's Treatise on Civil Engineering. (1873=) (Wood.) 8iro. s oo
* Descriptive Geometry 8vo. i 50
Merriman'g Elements of Precise Surveying and Geodesy 8vo, 2 50

Elementsof Sanitary Engineering 8vo, 2 oo
Merriman and Brooks's Handbook for Surveyors i6mo, morocco, 2 oo

Nugent's Plane Surveying 8vo 3 50

Ogden's Sewer Design lamo, 2 oo
Patton's Treatise on Civil Engineering 8vo half leather, 7 50
Reed's Topographical Drawing and Sketching 4to, 5 oo

Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 3 50
Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, I 50
Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 2 50
Sondericker's Graphic Statics, with Applications to Trusses, Beams, and

Arches ..Svo, 2 oo
Taylor and Thompson's Treatise on Concrete*Plam and Reinforced. (In press.)
* Trautwine's Civil Engineer's Pocket-book i6mo, morocco, 5 oo

Wait's Engineering and Architectural Jurisprudence Svo, 6 oo
Sheep, 6 30

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture, Svo, 5 oo
Sheep, 5 50

Law of Contracts Svo, 3 oo

Warren's Stereotomy Problems in Stone-cutting Svo, 2 50
Webb's Problems in the Use and Adjustment of Engineering Instruments.

i6mo, morocco, i 25
* Wheeler's Elementary Course of Civil Engineering Svo, 4 oo

Wilson's Topographic Surveying Svo, 3 50

BRIDGES AND ROOFS.
Boiler's Practical Treatise on the Construction of Iron Highway Bridges. .Svo, 2 oo
* Thames River Bridge 4to, paper, 5 oo

Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and
Suspension Bridges Svo, 3 50

Du Bois's Mechanics of Engineering. VoL II Small 4to, 10 oo

Poster's Treatise on Wooden Trestle Bridges 4to, 5 oo

Fowler's Coffer-dam Process for Piers : Svo, 2 50

Ordinary Foundations Svo, 3 50

Greene's Roof Trusses Svo, i 25

Bridge Trusses 8vo, 2 50

Arches in Wood, Iron, and Stone Svo, 2 50

Howe's Treatise on Arches Svo, 4 oo

Design of Simple Roof-trusses in Wood and Steel Svo, 2 oo

Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures Small 4to, 10 oo

Merriman and Jacoby's Text-book on Roofs and Bridges:

Parti. Stresses in Simple Trusses Svo, 2 50

Part n. Graphic Statics Svo, 2 50

Part III, Bridge Design. 4th Edition, Rewritten Svo, 2 50

Part IV. Higher Structures Svo, 2 50

Morison's Memphis Bridge 4to, 10 oo

Waddell's De Pontibus, a Pocket-book for Bridge Engineers. . . i6mo, morocco, 3 oo

Specifications for Steel Bridges i2mo, i 25

Wood's Treatise on the Theory of the Construction of Bridges and Roofs. Svo, 2 oo

Wright's Designing of Draw-spans:
Part I. Plate-girder Draws Svo. 2 50

Part II. Riveted-truss and Pin-connected Long-span Draws Svo, 2 50

Two parts in one volume 8vo, 3 50
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HYDRAULICS.
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an

Orifice. (Trautwine.) 8vo, 2 oo

Bovey's Treatise on Hydraulics 8vo, 5 oo

Church's Mechanics of Engineering 8vo, 6 oo

Diagrams of Mean Velocity of Water in Open Channels paper, i 50

Coffin's Graphical Solution of Hydraulic Problems i6mo, morocco, 2 50

Flather's Dynamometers, and the Measurement of Power I2mo, 3 oo

FolwelTs Water-supply Engineering 8vo, 4 oo

FrizelTs Water-power 8vo, 5 oo

Fuertes's Water and Public Health I2mo, i 50

Water-filtration Works -. izmo, 2 50

Ganguillet and Kutter's General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Hering and Trautwine.) 8vo, 4 oo

Hazen's Filtration of Public Water-supply 8vo, 3 oo

Hazlehurst's Towers and Tanks for Water-works 8vo, 2 50

Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal

Conduits 8vo, 2 oo

Mason's Water-supply. (Considered Principally from a Sanitary Stand-

point) 3d Edition, Rewritten 8vo, 4 oo

Merriman's Treatise on Hydraulics, gth Edition, Rewritten 8vo, 5 oo
* Michie's Elements of Analytical Mechanics 8vo, 4 oo

Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply Large 8vo, 5 oo
* Thomas and Watt's Improvement of Riyers. (Post., 44 c. additional), 4to, 6 oo

Turneaure and Russell's Public Water-supplies. 8vo, 5 oo

Wegmann's Desien and Construction of Dams 4*0, 5 oo

Water-supply of the City of New York from 1658 to 1893 . -4to, 10 oo

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.) 8vo, 5 oo

Wilson's Manual of Irrigation Engineering Small 8vo. 4 oo

Wolff's Windmill as a Prime Mover 8vo, 3 oo

Wood's Turbines 8vo, 2 50
Elements of Analytical Mechanics. 8vo, 3 oo

MATERIALS OF ENGINEERING.
Baker's Treatise on Masonry Construction 8vo, 5 oo

Roads and Pavements 8vo, 5 oo

Black's United States Public Works Oblong 4to, 5 oo

Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edi-

tion, Rewritten 8vo, 7 50

Byrne's Highway Construction 8vo, 5 oo

Inspection of the Materials and Workmanship Employed in Construction.
i6mo, 3 oo

Church's Mechanics of Engineering 8vo, 6 oo

Du Bois's Mechanics of Engineering. VoL I Small 4to, 7 50

Johnson's Materials of Construction Large 8vo, 6 oo

Fowler's Ordinary Foundations 8vo, 3 50

Keep's Cast Iron '. 8vo, 2 50
Lanza's Applied Mechanics 8vo, 7 50
Martens's Handbook on Testing Materials. (Henning.) 2 vols 8vo, 7 50
Merrill's Stones for Building and Decoration 8vo, 5 oo

Merriman's Text-book on the Mechanics of Materials 8vo, 4 oo

Strength of Materials i2mo, i oo
Metcalf's Steel. A Manual for Steel-users i2mo, 2 oo
Patton's Practical Treatise on Foundations 8vo, 5 oo

Richey's Handbook for Building Superintendents of Construction. (In press.)

Rockwell's Roads and Pavements in France I2mo, i 25
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Sabin's Industrial and Artistic Technology of Paints and Varnish Svo, 3 oo

Smith's Materials of Machines i2mo, i oo

Snow's Principal Species of Wood 8vo, 3 50

Spalding's Hydraulic Cement i2mo, 2 oo

Text-book on Roads and Pavements i2mo, 2 oo

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced. (In

press. )

Thurston's Materials of Engineering. 3 Parts 8vo, 8 oo

Part I. Non-metallic Materials of Engineering and Metallurgy Svo, 2 oo

Part II. Iron and Steel . . Svo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents Svo, 2 50
Thurston's Text-book of the Materials of Construction Svo, 5 oo

Tillson's Street Pavements and Paving Materials Svo, 4 oo

Waddell's De Pontibus. (A Pocket-book for Bridge Engineers.) . . i6mo, mor., 3 oo
Specifications for Steel Bridges i2mo, i 25

Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on
the Preservation of Timber Svo, 2 oo

Wood's (De V.) Elements of Analytical Mechanics Svo, 3 oo
Wood's (M. P.) Rustless Coatings : Corrosion and Electrolysis of Iron and

Steet ,. Svo, 4 oo

RAILWAY ENGINEERING.
Andrews's Handbook for Street Railway Engineers 3x5 inches, morocco, i 25
Berg's Buildings and Structures of American Railroads 4to, 5 oo

Brooks's Handbook of Street Railroad Location i6mo, morocco, i 50
Butts's Civil Engineer's Field-book i6mo, morocco, 2 50
Crandall's Transition Curve i6mo,- inorocco, i 50

Railway and Other Earthwork Tables Svo, i 50
Dawson's "Engineering" and Electric Traction Pocket-book. i6mo, morocco, 5 oo

Dredge's History of the Pennsylvania Railroad: (1879) Paper, 5 oo
* Drinker's Tunneling, Explosive Compounds, and Rock Drills, 4to,.half mor., 25 oo

Fisher's Table of Cubic Yards Cardboard, 25
Godwin's Railroad Engineers' Field-book and Explorers' Guide .... i6mo, mor., 2 50
Howard's Transition Curve Field-book i6mo, morocco, i 50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-

bankments Svo, i oo

Molitor and Beard's Manual for Resident Engineers i6mo, i oo

Nagle's Field Manual for Railroad Engineers i6mo, morocco, 3 -oo

Philbrick's Field Manual for Engineers i6mo, morocco, 3 oo

Searles's Field Engineering i6mo, morocco, 3 -oo

Railroad Spiral i6mo, morocco, i 50

Taylor's Prismoidal Formulae and Earthwork Svo, i 50
* Trautwine's Method ot Calculating the Cubic Contents of Excavations and

Embankments by the Aid of Diagrams Svo, 2 oo

The Field Practice of Laying Out Circular Curves for Railroads.

1 2mo,. morocco, 2 50
Cross-section Sheet Paper, 25

Webb's Railroad Construction. 2d Edition, Rewritten i6mo, morocco, 5 oo

Wellington's Economic Theory'of the Location of Railways Small Svo, 5 oo

DRAWING.
Barr's Kinematics of Machinery Svo, 2 50
* Bartlett's Mechanical Drawing Svo, 3 oo
* "

Abridged Ed Svo, i 50

Coolidge's Manual ot Drawing Svo, paper, i oo

Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-
neers Oblong 4to. 2 50

Durley's Kinematics of Machines Svo, 4 oo

Emch's Introduction to Projective Geometry and its Applications, Svo, 2 50



Hill's Text-book on Shades and Shadows, and Perspective 8vo, 2 oo

Jamison's Elements of Mechanical Drawing 8vo, 2 50

Jones's Machine Design:
Part I. Kinematics of Machinery 8vo, i 50

Part II. Form, Strength, and Proportions of Parts 8vo, 3 oo

MacCord's Elements of Descriptive Geometry 8vo, 3 oo

Kinematics; or, Practical Mechanism 8vo, 5 oo

Mechanical Drawing 4to, 4too

Velocity Diagrams 8vo, i 50

Mahan's Descriptive Geometry and Stone-cutting 8vo, i 50

Industrial Drawing. (Thompson.) 8vo, 3 50

Meyer's Descriptive Geometry. (In press.)

Reed's Topographical Drawing and Sketching ?. 4to, 5 oo

Reid's Course in Mechanical Drawing. . 8vo, 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design . . 8vo, 3 oo

Robinson's Principles of Mechanism 8vo, 3 oo

Schwamb and Merrill's Elements of Mechanism. . 8vo, 3 oo

Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 50
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing . . i2mo, oo

Drafting Instruments and Operations i2mo, 25
Manual of Elementary Projection Drawing i2mo, 50
Manual of Elementary Problems in the Linear Perspective of Form and

Shadow i2mo, oo

Plane Problems in Elementary Geometry i2mo, 25

Primary Geometry i2mo, 75

Elements of Descriptive Geometry, Shadows, and Perspective 8vo, 3 50
General Problems of Shades and Shadows 8vo, 3 oo

Elements of Machine Construction and Drawing. 8vo, 7 50

Problems, Theorems, and Examples in Descriptive Geometry 8vo, 2 50
Weisbach's Kinematics and the Power of Transmission. (Hermann and

Klein.) 8vo, 5 oo

Whelpley's Practical Instruction in the Art of Letter Engraving i2ruo, 2 oo

Wilson's (H. M.) Topographic Surveying 8vo, 3 50
Wilson's (V. f.) Free-hand Perspective 8vo, 2 50
Wilson's (V. T.) Free-hand Lettering 8vo, i oo

Woolf's Elementary Course in Descriptive Geometry Large 8vo, 3 oo

ELECTRICITY AND PHYSICS.

Anthony and Brackett's Text-book of Physics. (Magie.) Small 8vo, 3 oo

Anthony's Lecture-notes on the Theory of Electrical Measurements. . . . i2mo, i oo

Benjamin's History of Electricity 8vo, 3 oo
Voltaic Cell 8vo, 3 oo

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). .8vo, 3 oo

Crehore and Squier's Polarizing Photo-chronograph 8vo, 3 oo

Dawson's "Engineering" and Electric Traction Pocket-book. . i6mo, morocco, -5 oo

Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von
Ende.) '. i2mo, 2 50

Duhem's Thermodynamics and Chemistry. (Burgess.) 8vo, 4 oo

Flather's Dynamometers, and the Measurement of Power i2mo, 3 oo

Gilbert's De Magnete. (Mottelay.) 8vo, 2 50
Hanchett's Alternating Currents Explained I2mo, i oo

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Holman's Precision of Measurements 8vo, 2 oo

Telescopic Mirror-scale Method, Adjustments, and Tests Large 8vo, 75
Kinzbrunner's Testing of Continuous-Current Machines 8vo, 2 oo

Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 oo

Le Chatelier's High-temperature Measurements. (Boudouard Burgess. )i2mo, 3 oo

Lob's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) i2mo, i oo
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Lyons's Treatise on Electromagnetic Phenomena. Vote. I. and II. 8vo, each, 6 oo

Michie. Elements of Wave Motion Relating to Sound and Light 8vo, 4 oo

Niaudet's Elementary Treatise on Electric Batteries. (Fishoack. ) lamo, 2 50
* Rosenberg's Electrical Engineering. (HaldaneGee Kinzbrunner.) 8vo, i 50

Ryan. Ncrris, and Hoxie's Electrical Machinery. VoL L 8vo, 2 50

Thurston's Stationary Steam-engines 8vo, 2 50
* Tillman's Elementary Lessons in Heat. 8vo, i 50

Tory and Pitcher's Manual of Laboratory Physics Small 8vo, 2 oo

Ulke'.s Modern. Electrolytic Copper Refining 8vo, 3 oo

LAW.
Davis's Elements of Law 8vo, 2 50

Treatise on the Military Law ol United States 8vo, 7 oo
Sheep, 7 5<>

Manual for Courts-martial i6mo, morocco, i 50

Wait's Engineering and Architectural Jurisprudence 8vo, 6 oo
Sheep. 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture 8vo, 5 oo
Sheep, 5 5o

Law of Contracts 8vo, 3 oo

Winthrop's Abridgment of Military Law xarno, 2 50

MANUFACTURES.

Bernadou's Smokeless Powder Nitro-cellulose and Theory of the Cellulose

Molecule izmo, 2 50

Holland's Iron Founder. I2mo, 2 50
" The Iron Founder," Supplement. i2mo, 2 50

Encyclopedia of Founding and Dictionary of Foundry Terms Used in the

Practice of Moulding lamo, 3 oo

Eissler's Modern High Explosives 8vo, 4 oo

Effrent's Enzymes and their Applications. (Prescott. ) 8vo 3 oo

Fitzgerald's Boston Machinist i8mo, i oo

Ford's Boiler Making for Boiler Makers i8mo, i oo

Hopkins's Oil-chemists' Handbook. . , 8vo, 3 oc

Keep's Cast Iron 8vo, 2 50
Leach's The Inspection and Analysis of Food with Special Reference to State

Control. (In preparation.)

Matthews's The Textile Fibres 8vo, 3 50
Metcalf's Steel. A Manual for Steel-users i2mo, 2 oo

Metcalfe's Cost of Manufactures And the Administration of Workshops,
Public and Private 8vo, 5 oo

Meyer's Modern Locomotive Construction 4to, 10 oo

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, i 50
* Reisig's Guide to Piece-dyeing 8vo, 25 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Smith's Press-working of Metals 8vo, 3 oo

Spalding's Hydraulic Cement i2mo, 2 oo

Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 oc

Handbook for Sugar Manufacturers and their Chemists.. . i6mo morocco, 2 oo

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced. (In
press.)

Thurston's Manual of Steam-boilers, their Designs, Construction and Opera-
tion 8vo, 5 oo

* Walke's Lectures on Explosives 8vo, 4 oo

West's American Foundry Practice i2mo, 2 50

Moulder's Text-book X2mo, 2 50
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Wolff's Windmill as a Prime Mover 8vo, 3 oo

Woodbury's Fire Protection of Mills 8vo, 2 50

Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. . .8vo, 4 oo

MATHEMATICS.
Baker's Elliptic Functions 8vo, 1 50
* Bass's Elements of Differential Calculus i2mo, 4 oo

Briggs's Elements of Plane Analytic Geometry I2mo,

Compton's Manual of Logarithmic Computations xamo,

Davis's Introduction to the Logic of Algebra 8vo,
* Dickson's College Algebra Large i2mo,
* Introduction to the Theory of Algebraic Equations .-4 Large i2mo,
Emch's Introduction to Projective Geometry and its Applications 8vo,

Halsted's Elements of Geometry .8vo,

Elementary Synthetic Geometry 8vo,

Rational Geometry i2mo,
* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size, .paper, 15

100 copies for 5 oo
* Mounted on heavy cardboard, 8 X 10 inches, 25

10 copies for 2 oo

Johnson's (W. W.) Elementary Treatise on Differential Calculus. . .Small 8vo, 3 oo

Johnson's (W. W.) Elementary Treatise on the Integral Calculus. .Small 8vo, i 50

Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates i2mo, i oo

Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations.
Small 8vo, 3 50

Johnson's (W. W.) Theory of Errors and the Method of Least Squares. . i2mo, i 50
* Johnson's (W. W.) Theoretical Mechanics 12910, 3 oo

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) i2mo, 2 oo
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 oo

Trigonometry and Tables published separately.... Each, 2 oo
* Ludlow's Logarithmic and Trigonometric Tables 8vo, i oo

Maurer's Technical Mechanics 8vo, 4 oo

Merriman and Woodward's Higher Mathematics 8vo, 5 oo

Merriman's Method of Least Squares 8vo, 2 oo

Rice and Johnson's Elementary Treatise on the Differential Calculus . Sm., 8vo, 3 oo

Differential and Integral Calculus. 2 vols. in one Small 8vo, 2 50

Wood's Elements of Co-ordinate Geometry 8vo, 2 oo

Trigonometry: Analytical, Plane, and Spherical I2mo, i oo

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice i2mo, i 50

Baldwin's Steam Heating for Buildings i2mo, 2 50
Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 oo
* " " "

Abridged Ed 8vo, i 50

Benjamin's Wrinkles and Recipes Z2mo, 2 oo

Carpenter's Experimental Engineering 8vo, 6 oo

Heating and Ventilating Buildings 8vo, 4 oo

Gary's Smoke Suppression in Plants using Bituminous CoaL (In prep-
aration.)

Clerk's Gas and Oil Engine Small 8vo, 4 oo

Coolidge's Manual of Drawing 8vo, paper, i oo

Coolidge and Freeman's Elements of General Drafting for Mechanical En-

gineers Oblong 4to, 2 30
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Cromwell's Treatise on Toothed Gearing 12010 i 50

Treatise on Belts and Pulleys I2mo, i 50

Durley's Kinematics of Machines Svo, 4- oo

Fiather's Dynamometers and the Measurement of Power 12mo, 3 oo

Rope Driving i2mo, 2 oo

Gill's Gas and Fuel Analysis for Engineers i2mo, i 25

Hall's Car Lubrication i2mo, i oo

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50

Button's The Gas Engine 8vo, 5 oo

Jamison's Mechanical Drawing 8vo, 2 50

Jones's Machine Design:
Part I. Kinematics of Machinery 8vo, i 50
Part H. Form, Strength, and Proportions of Parts 8vo, 3 oo

Kent's Mechanical Engineer's Pocket-booh i6mo, morocco , 5 oo

Kerr's Power and Power Transmission 8vo, 2 oo

Leonard's Machine Shops, Tools, and Methods. (In press.)

MacCord's Kinematics; or, Practical Mechanism ; 8vo, 5 oo

Mechanical Drawing .4to, 4 oo

Velocity Diagrams 8vo, i 50
Mahan's Industrial Drawing. (Thompson.) 8vo, 3 50
Poole's Calorific Power of Fuels 8vo, 3 oo

Reid's Course in Mechanical Drawing 8vo. 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design . . Svo, 3 oo

Richards's Compressed Air i2mo, i 50
Robinson's Principles of Mechanism 8vo, 3 oo

Schwamb and Merrill's Elements of Mechanfsm 8vo, 3 oo

Smith's Press-working of Metals 8vo f 3 oo

Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work 8vo, 3 oo

Animal as a Machine and Prime Motor, and the Laws of Energetics . izmo, i oo

Warren's Elements of Machine Construction and Drawing 8(ro, 7 50
Weisbach's Kinematics and the Power of Transmission. Herrmann

Klein.) 8vo, 5 oo

Machinery of Transmission and Governors. (Herrmann Klein.). .8vo. 500
Hydraulics and Hydraulic Motors. (Du Bois.) Svo, 5 oo

Wolff's Windmill as a Prime Mover. 8vo, 3 oo

Wood's Turbines , 8vo, 2 so

MATERIALS OF ENGINEERING.

Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition

Reset 8vo, 7 50
Church's Mechanics of Engineering '. 8vo, 6 oo

Johnson's Materials of Construction Large 8vo, 6 oo

Keep's Cast Iron 8vo, 2 50
Lanza's Applied Mechanics 8vo, 7 50
Martens's Handbook on Testing Materials. (Henning.) 8vo, 7 50
Merriman's Text-book on the Mechanics of Materials 8vo, 4 oo

Strength of Materials I2mo, i oo

Metcalf's SteeL A Manual for Steel-users i2mo 2 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Smith's Materials of Machines I2mo, i oo

Thurston's Materials of Engineering 3 vols. , Svo, 8 oo

Part n. Iron and Steel Svo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents Svo 2 50

Text-book of the Materials of Construction Svo, 5 oo
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Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on

the Preservation of Timber 8vo, 2 oo

Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 oo

Wood's (M, P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.

8vo, 4 oo

STEAM-ENGINES AND BOILERS.

Carnot's Reflections on the Motive Power of He?t. (Thurrton.) 120:0, i 50
Dawson's "Engineering" and Electric Traction Pocket-book. .r6mo, mcr., 5 oo

Ford's Boiler Making for Boiler Makers i8mo, i oo

Goss's Locomotive Spaiks T.^ 8vo, 2 oo

Hemenway's Indicator Practice and Steam-engine Economy i2mo, 2 oo

Button's Mechanical Engtneerins of Power Plants 8vo, 5 oo

Heat and Heat-engines 8vo, 5 co

Kent's Steam-boiler Economy 8vo, 4 oo

Kneass's Practice and Theory of the Injector 8vo, i 50
MacCord's Slide-valves 8vo, 2 oo

Meyer's Modern Locomotive Construction 4to, 10 oo

Peabody's Manual of the Steam-engine Indicator I2mo, i 50
Tables of the Properties of Saturated Steam and Other Vapors 8vo, i oo

Thermodynamics of the Steam-engine and Other Heat-engines 8vo, 5 oo

Valve-gears for Steam-engines , . .8vo, 2 50

Peabody and Miller's Steam-boilers 8vo. 4 oo

Pray's Twenty Years with the Indicator Large 8vo, 2 50

Pupln's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.
(Osterberg.) i2mo, i 25

Reagan's Locomotives : Simple* Compound, and Electric xamo, 2 50

Rontgen's Principles of Thermodynamics. (Du Bois.) 8vo, 5 oo

Sinclair's Locomotive Engine Running and Management i2mo, 2 oo

Smart's Handbook of Engineering Laboratory Practice i2mo, 2 50
Snow's Steam-boiler Practice 8vo, 3 oo

Spangler's Valve-gears 8vo, 2 50
Notes on Thermodynamics i2mo, i oo

Spangler, Greene, and Marshall's Elements of Steam-engineering Svo, 3 oo

Thurston's Handy Tables Svo, i 50
Manual of the Steam-engine 2 vols. Svo, 10 oo

Part I. History, Structuce, and Theory %
. . Svo, 6 oo

Part H. Design, Construction, and Operation. Svo, 6 oo

Handbook of Engine and Boiler Trials, and the Use of the Indicator and
the Prony Brake Svo, 5 oo

Stationary Steam-engines Svo, 2 50
Steam-boiler Explosions in Theory and in Practice i2mo, i 50

Manual of Steam-boilere , Their Designs, Construction, and Operation . Svo, 5 oo

Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) Svo, 5 oo

Whitham's Steam-engine Design Svo, 5 oo

Wilson's Treatise on Steam-boilers. (Flather.) i6mo, 2 50
Wood's Thermodynamics Heat Motors, and Refrigerating Machines Svo, 4 oo

MECHANICS AND MACHINERY.

Barr's Kinematics of Machinery Svo, 2
, 50

Bovey's Strength of Materials and Theory of Structures Svo, 7 50

Chase's The Art of Pattern-making i2mo, 2 50
Church's Mechanics of Engineering Svo, 6 oo
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Church's Notes and Examples in Mechanics 8vo,

Compton's First Lessons in Metal-working i2mo,

Compton and De Groodt's The Speed Lathe I2mo,
Cromwell's Treatise on Toothed Gearing i2mo,

Treatise on Belts and Pulleys i2mo,
Dana's Text-book of Elementary Mechanics for the Use of Colleges and

Schools i2mo,

Dingey's Machinery Pattern Making i2mo,

Dredge's Record of the Transportation Exhibits Building of the World's

Columbian Exposition of 1893 4to half morocco,

Du Bois's Elementary Principles of Mechanics:

VoL I. Kinematics 8vo,
Vol. H. Statics 8vo,
Vol. III. Kinetics 8vo,
Mechanics of Engineering. Vol. I Small 4to,

VoL H. .Small 4to,

Durley's Kinematics of Machines 8vo,

Fitzgerald's Boston Machinist i6mo.
Flather's Dynamometers, and the Measurement of Power i2mo,

Rope Driving lanio,

Goss's Locomotive Sparks 8vo,
Hall's Car Lubrication i2mo,
Holly's Art of Saw Filing i8mo,
* Johnson's (W. W.) Theoretical Mechanics i2mo,
Johnson's (L. J.) Statics by Graphic and Algebraic Methods 8vo,

Jones's Machine Design:
Part I. Kinematics of Machinery 8vo,
Part H. Form, Strength, and Proportions of Parts 8vo,

Kerr*s Power and Power Transmission 8vo,

Lanza's Applied Mechanics 8vo,
Leonard s Machine Shops, Tools, and Methods. (In press.)

MacCord's Kinematics; or, Practical Mechanism 8vo,

Velocity Diagrams 8vo,

Maurer's Technical Mechanics. 8vo,

Merriman's Text-book on the Mechanics of Materials 8vo.

Elements of Mechanics i2mo,
* Michie's Elements of Analytical Mechanics 8vo

Reagan's Locomotives: Simple, Compound, and Electric i2mo,- 2

Reid's Course in Mechanical Drawing 8vo,

Text-book of Mechanical Drawing and Elementary Machine Design. .8vo,

Richards's Compressed Air I2mo,
Robinson's Principles of Mechanism. 8vo,

Ryan, Norris, and Hoxie's Electrical Machinery. Vol. 1 8vo,

Schwamb and Merrill's Elements of Mechanism 8vo,

Sinclair's Locomotive-engine Running and Management i2mo,
Smith's Press-working of Metals 8vo,

Materials of Machines lamo, i

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3

Thurston's Treatise on Friction and Lost Work in Machinery and Mill
Work 8vo,

Animal as a Machine and Prime Motor, and the Laws of Energetics. i2mu,
Warren's Elements of Machine Construction and Drawing 8vo ,

Weisbach's Kinematics and the Power of Transmission. (Herrmann
Klein.) 8vo.

Machinery of Transmission and Governors. (Herrmann Klein.). 8vo,

Wood's Elements of Analytical Mechanics 8vo,

Principles of Elementary Mechanics 1amo
Turbines 8vo,

The World's Columbian Exposition of 1893 4to,
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METALLURGY.
Egleston's Metallurgy of Silver, Gold, and Mercury:

Vol. I. Silver 8vo, 7 So

VoL II. Gold and Mercury 8vo, 7 50
** Iles's Lead-smelting. (Postage 9 cents additional.) I2mo. 2 50

Keep's Cast Iron 8vo, 2 50

Kunhardt's Practice of Ore Dressing in Europe 8vo, i 50

Le Chatelier's High-temperature Measurements. (Boudouard Burgess.) . i3mo, 3 oo

Metcalf's SteeL A Manual for Steel-users i2mo, 2 oo

Smith's Materials of Machines i2mo, i oo

Thurston's Materials of Engineering. In Three Parts 8vo, 8 oo

Part II. Iron and Steel 8vo, 3 50

Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents ~~.~ 8vo, 2 50

Hike's Modern Electrolytic Copper Refining 8vo, 3 oo

MINERALOGY.
Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 oo

Map of Southwest Virginia Pocket-book form, 2 oo

Brush's Manual of Determinative Mineralogy. (Penfield.) 8vo, 4 oo

Chester's Catalogue of Minerals 8vo, paper, i oo
Cloth, i 25

Dictionary of the Names of Minerals 8vo, 3 50

Dana's System of Mineralogy Large 8vo, half leather, 12 50

First Appendix to Dana's New "System of Mineralogy."... .Large 8vo, oo

Text-book of Mineralogy 8vo, oo

Minerals and How to Study Them. i2mo, 50

Catalogue of American Localities of Minerals Large 8vo, oo

Manual of Mineralogy and Petrography I2mo, oo

Douglas's Untechnical Addresses on Technical Subjects I2mo, oo

Eakle's Mineral Tables 8vo, 25

Egleston's Catalogue of Minerals and Synonyms 8vo, 50

Hussak's The Determination of Rock-forming Minerals. (Smith.) Small 8vo, oo

Merrill's Non-metallic Minerals: Their Occurrence and Uses. 8vo , 4 oo
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper, o 50
Rosenbusch's Microscopical Physiography of the Rock-making Minerals.

(Iddings.) 8vo, 5 oo
* Tillman's Text-book of Important Minerals and Docks 8vo, 2 oo

Williams's Manual of Lithology 8vo, 3 oo

MINING.
Beard's Ventilation of Mines i2mo, 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 oo

Map of Southwest Virginia Pocket-book form, 2 oo

Douglas's Untechnical Addresses on Technical Subjects i2mo, i oo
* Drinker's Tunneling, Explosive Compounds, and Rock Drills.

4to, half morocco, 25 oo

Eissler's Modern High Explosives 8vo, 4 oo

Fowler's Sewage Works Analyses I2mo, oo

Goodyear 's Coal-mines of the Western Coast of the United States I2mo, 50

Ihlseng's Manual of Mining 8vo, oo
** Iles's Lead-smelting. (Postage gc. additional.) Z2mo, 50

Kunhardt's Practice of Ore Dressing in Europe 8vo, 50

O'Driscoll's Notes on the Treatment of Gold Ores 8vo t oo
* Walke's Lectures on Explosives 8vo, oo

Wilson's Cyanide Processes i2mo, 50

Chlorination Process xamo, 50
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Wilson's Hydraulic and Placer Mining I2mo, 2 oo

Treatise on Practical and Theoretical Mine Ventilation i2mo, i 25

SANITARY SCIENCE.

FolwelTs Sewerage. (Designing, Construction, and Maintenance.) 8vo, 3 oo

Water-supply Engineering 8vo, 4 oo

Fuertes's Water and Public Health i2mo, i 50
Water-filtration Works i2mo, 2 50

Gerhard's Guide to Sanitary House-inspection i6mo, i oo

Goodrich's Economical Disposal of Town's Refuse Demy 8vo, 3 50
Hazen's Filtration of Public Water-supplies .8vo, 3 oo
Leach's The Inspection and Analysis of Food with Special Reference to State

Control. 8vo, 7 50
Mason's Water-supply. (Considered Principally from a Sanitary Stand-

point.) 3d Edition, Rewritten 8vo, 4 oo
Examination of Water. (Chemical and Bacteriological.) i2mo, i 25

Merriman's Elements of Sanitary Engineering v 8vo, 2 oo

Ogden's Sewer Design i2mo, 2 oo
Prescott and Winslow's Elements of Water Bacteriology, with Special Reference

to Sanitary Water Analysis i2mo, i 25
* Price's Handbook on Sanitation I2mo, i 50
Richards's Cost of Food. A Study in Dietaries I2mo, i oo

Cost of Living as Modified by Sanitary Science i2mo, i oo
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-

point 8vo, 2 oo
* Richards and Williams's The Dietary Computer 8vo, i 50
RideaPs Sewage and Bacterial Purification of Sewage 8vo, 3 50
Turneaure and Russell's Public Water-supplies 8vo, 5 oo
Von Behring's Suppression of Tuberculosis. (Bolduan.). ..<'.. i2mo, i oo

Whipple's Microscopy of Drinking-water 8vo, 3 50
WoodhulTs Notes and Military Hygiene i6mo, i 50

MISCELLANEOUS.
De Fursac's Manual of Psychiatry. (Rosanoff.) i2mo, 2 50
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists Large 8vo, i 50
Ferrel's Popular Treatise on the Winds 8vo, 4 oo

Haines's American Railway Management i2mo, 2 50
Mott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart, i 25

Fallacy of the Present Theory of Sound i6mo, i oo

Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. Small 8vo, 3 oo

Rostoski's Serum Diagnosis. (Bolduan.) i2mo, i oo

Rotherham's Emphasized New Testament Large 8vo, 2 oo

Steel's Treatise on the Diseases of the Dog 8vo, 3 50

Totten's Important Question in Metrology 8vo, 2 50

The World's Columbian Exposition of 1893 4to, i oo

Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i oo

Worcester and Atkinson. Small Hospitals, Establishment and Maintenance,
and Suggestions for Hospital Architecture, with Plans for a Small
Hospital i2mo, i 25

HEBREW AND CHALDEE TEXT-BOOKS.

Green's Grammar of the Hebrew Language 8vo, 3 oo

Elementary Hebrew Grammar I2mo r I 25

Hebrew Chrestomathy 8vo, 2 oo

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.

(Tregelles.) Small 4to, half morocco, 5 oo

Letteris's Hebrew Bible 8vo, 2 25
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