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PUBLISHERS' NOTE TO THE SECOND EDITION.

THE First Edition of the present work having become exhausted,

occasion has been taken, in issuing a Second Edition, to incorporate

extensive additions and corrections made by the Author previous-

to his departure for the Far East.

The formulae given in the text have been thoroughly revised

and corrected, although the absence of the Author has prevented

the inclusion of the full results of the latest investigations at

home and abroad. It is hoped, nevertheless, that any shortcomings

in this respect will be remedied, on the Author's return, in a later

edition should it be called for.

July 1910.
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PREFACE TO FIRST EDITION.
I

IN view of the fact that we now appear to be on the verge of a

practical solution to this classic problem of flight, I beg to submit

to the engineering profession an epitome of the knowledge at

present available on the subject. In the mathematical considera-

tion I have adopted the principle, well established in engineering

practice, of omitting those factors which appear to be unimportant.

The formulae are therefore "engineering formulae" in the strict sense

of the word, i.e. they are not the result of a deep mathematical

analysis which it is, in the majority of cases, almost impossible to

apply.

I sincerely hope that the rules, in conjunction with practical

experiments, will prove useful, both before and after the new and

more fortunate Icarus has flown from London to Manchester.

My thanks are cordially given to the individuals and firms who

have supplied blocks for use in this book, viz.: Sir H. Maxim, The

Times (Encyclo. Brit.), Valentine and Thompson (Travels in Space),

Electrical Power Storage Co., Adams Manufacturing Co., De Dion

Bouton Co., Ltd., Baird & Tatlock, Model Engineer, and Cambridge

University Press.

H. CHATLEY.

May 1907.
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CHAPTEE I.

THE PROBLEM OF FLIGHT.

FOR ages men have been trying to achieve, by mechanical means,
the feat (which is so easily accomplished by bird, bat, and insect)

of flying. It is only within the last hundred years (unless of

course we refer to Daedalus, who has omitted to leave working

drawings and a recipe for mixing a good wax) that we have been

able to hope that the problem would soon be solved. The chief

causes which have led to this result are as follows :

(1) A more thorough knowledge of applied mechanics, which has

enabled us to cut down weights and sizes and yet to secure adequate

strength.

(2) A reduction in the weight of prime movers and an improved

quality of material, so that a small weight in machinery produces
a very considerable power.

(3) A careful study of the flight of birds, wind pressure, and air

propulsion.

All the difficulties are not yet solved, however, so that although
we have now dirigible balloons and partially successful aeroplanes,

there are problems still needing attention.

At the outset it must be understood that there are two classes of

air-vessels :

(A) Lighter than air.

(B) Heavier than air.

These are different in every respect, and for many years each

type has had its staunch adherents, who were convinced that theirs

and no other would be the final type in aerial navigation. As a.

1



2 PROBLEM OF FLIGHT.

matter of fact it is exceedingly probable that both forms will survive,

as each possesses peculiar advantages.

There is yet another section of expert opinion which considers no

motive force necessary with the aeroplane or air-plane ; but, however

this may be with favourable air currents, it certainly is true that a

reserve of motive force is advantageous and in many cases an absolute

necessity.

The balloon, which represents class A, dirigible or not, can rise to

greater heights than there seems any prospect of the heavier machine

doing. It is, moreover, easily controlled by exhausting gas or throwing

away ballast. Its disadvantage is that, on account of the huge surface

which is necessitated by the volume of the gas-bag, and also on account

of its small inertia, the whole balloon is at the mercy of every air

current. The only means we have of resisting the wind is by forming

the balloon into a cigar or cylindrical form in a more or less rigid

frame to which is attached machinery, a propeller and rudder. By
the rudder we turn the balloon into the teeth of the wind, and by the

propeller we give it a momentum in the opposite direction to that of

the wind, equal or more in amount to that imparted by the wind.

The rigidity required in the frame, the great stress in some parts of

the balloon sac, and the weight of the machinery, all tend to reduce

the efficiency of the apparatus; and, although M. Santos Dumont

and others have achieved much success with the dirigible balloon, it

is at present very doubtful whether any balloon can be manipulated

in a high wind. This problem is considered in detail later.

As regards the heavier than air machines, these derive their upward
acceleration from the reaction of the " momentum "

of displaced air.

Air is forced downwards by moving surfaces, and the back pressure

on these surfaces is the lifting force. This is, of course, the principle

upon which birds and other flying animals operate ; but, as we shall

see later, the imitation of bird movements involves very complex

mechanism, and it may even be doubted whether a more satisfactory

result may not be obtained by applying the surfaces and the motive

power in a different way.

Up to the present there are three types of surface propulsion :

(1) Aviplane or Orthoptere, which imitates the bird.

(2) Aeroplane, which is a surface driven direct against the air.

(3) Helix or Helicoptere, which displaces a cylindrical mass of air.

The problem is greatly complicated by the curious motions of air

when moved, and also by the question of balancing the whole
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apparatus. On the earth balancing is comparatively unimportant,

as, within rather wide limits, we can obtain very large supporting
reactions from the earth mass

;
but in the air no such reactions can

occur. Neither have we the advantage which occurs in ships, where

the increase of immersed volume when the ship dips tends to right

her. In the airship everything depends on the vessel itself.

Then, last, but by no means least, there is always the wind.

From these ideas we can proceed to enunciate the principles of

aerial locomotion.



CHAPTER II.

ESSENTIAL PRINCIPLES.

IN any appliance for aerial locomotion the following principles will

hdld:-

(a) The total upward thrust must at least equal the weight of

the supported body.

(/3) If thrust is derived from flotation, the weight of the sup-

ported body must not exceed the weight of the air it displaces.

(y) If derived from the motion of air, the vertical component of

the momentum of the air as transferred to the body must at least

equal the weight of the body.

(<$) To drive against the wind (i.e. to advance over the earth), the

horizontal component of the momentum of the air as transferred to

the body must at least equal the momentum produced by the hori-

zontal action of the wind on the body. Since the mass of the body
is constant, the horizontal velocity of the aeronef must at least equal

the maximum horizontal velocity of the wind when allowance has

been made for the form and area of the surface exposed to the wind.

(e) Momentum may be derived from the air by

(a) Vertically acting helices.

(5) Oblique planes,

(c) Horizontal planes which open out during the upstroke.

() Flotation may be derived from (a) expansion of air.

,, ., (6) gas lighter than air.

(rj) Minimum resistance in any aeronef must be in the front and

at top provided there is adequate air supply for momentum.

Maximum resistance at the bottom and behind.

(0) Sum of moments on aeronef must equal zero.

(1) Appliance must be self-righting.

These conditions I shall constantly refer to.

4



ESSENTIAL PRINCIPLES. 5

M. Octave Chanute's criteria of aeronautic solutions are also

useful :

(1) Resistance and support of air.

(2) The motor, its efficiency.

(3) Instrument for propulsion.

(4) Form of supporting surface.

(5) Area of supporting surface.

(6) Materials for framing.

(7) Balancing.

(8) Dirigibility.

(9) Starting under all conditions.

(10) Alighting under all conditions.

In all machines having any measure of success, the power has

been applied through the medium of a screw propeller or helix. It

is therefore desirable to commence by considering this appliance in

detail, both as a direct means of sustentation and also as a propeller

for aeroplanes. The aviplane or flapping type, although as yet un-

promising, next calls for attention, and finally the dirigible balloon,

where again the propeller is called into use.



CHAPTEE III.

THE HELIX AS A LIFTING AND DRIVING
APPLIANCE.

THE use of a helix for adapting the momentum of displaced fluid so

that a thrust is produced is now an old discovery.

The principle upon which it depends is identical with that of the

ordinary screw used for fixing.

If a cord be wound on a drum so that it makes a constant angle
with the axis of the drum, then the curve made by it is a "

helix/'

FIG. 1. The helix.

The constant angle of the tangent to this curve as compared with a

plane cutting the drum at right angles with the axis is termed the
"
pitch angle," the "

pitch
"
being the distance between any two parts of

the helix which occupy the same relative position in the drum (fig. 1).

If, instead of a drum, we have a small central shaft and a

winding surface connecting the original helix with another of the
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same pitch, described on the shaft, the device is termed a " screw."

If this screw be supposed to rotate in the direction shown in fig. 1,

it is easy to see that the air (or any fluid in which it may be

immersed) will be pushed backwards by the advance of the hinder

parts of the twisted surface
;
or if the screw rotates in a solid, the

screw itself will move forwards.

The following applications are made of this principle :

(1) In Solids. The screw or bolt for fixing or moving pieces.

(2) In Liquids. The screw propeller for driving ships.

(3) In Gases. The ventilating fan and the airship propeller.

In each case we have a relative motion between the surrounding

mass and the helix equal to the length of the pitch per revolution,

so that the velocity of displacement

v=pr,

where v is feet per second, p pitch (in feet), and r the revolutions

per second.

It is usual to make the pitch equal to or rather less than the

diameter of the helix.

The pitch angle is found by the following ratio :_pitch_ = pitch = P_ = tan-i
;

circumference of drum TT x diameter ird

so that if the pitch equals the diameter

tan = = '3184. 0.-. = 1740'.
7T

It should here be mentioned that the helix need not necessarily

be a complete one. Several fan-shaped sectors are frequently used,

the only condition being that they shall be parts of the helix to

which they correspond. As, however, the projected area of the

propeller is an important factor in the displacement, the aggregate

area of these sectors in an air propeller should approach very nearly

the full projected area of a complete helix, i.e. equal to the circle

section of the drum Cd2\ provided they are not sufficiently near

together to interfere with each other's action.

If we call the projected area A, then the quantity displaced per

second
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and the total momentum of the displaced air is fzv, where p is the
9

weight of unit volume, i.e. the density, and g is 32*2, the gravitational

acceleration.

Summarising, we find that the thrust (the reaction of, and equal

to, the momentum) is

T=.VA.

v is the nett velocity (i.e. v V) where V is the forward velocity of

the airship, and v velocity of propelled air in reverse direction.

The mean value of is given later in formula No. (3). Compara-
u

tively few experiments have been made on this subject, but there

seems to be little doubt that the thrust reaches nearly to this value.

It is quite appreciable in ventilating fans of the Blackmail type, and

is there provided for by a special bearing.-

In ships' propellers there is an appreciable, but uncertain,

amount of slip over and above that due to the relative velocity

of the fluid and the vessel, i.e. a failure of some of the

fluid to be propelled through the helix, so that the effective

velocity is less than (pr N). In air propellers this slip has not,

to my knowledge, been measured, but it is unlikely that it

would be very great at high speeds, seeing that air possesses so

little inertia.

The thrust is transmitted to the framework by means of a "
thrust-

block," which is a bearing in which there are a number of square

projecting ribs on the power shaft which fit and run in similar

grooves in the block. The faces of the ribs and grooves need to be

lined with special metal to obtain even and slow wear, and these
"
liners

"
should be renewable.

The framework is connected with this thrust-block in such a

manner that the push from it is transmitted with fair uniformity
to the vessel, which, in virtue of this force, overcomes the resistance

of the air and gains acceleration.

If w is minimum weight of lifting machinery per horse-power, and

c is the weight of other machinery and parts in the aeronef, then total

weight
W = wtt+ c (1)

By condition () the total thrust derived from helices > W.
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The excess (T W) applied to the weight W, or rather the mass

, produces an upward acceleration a such that, neglecting top air

resistance

W
!?.a=(T-W)..... (2)
u

According to Molesworth, the thrust T derived from a helix of

projected area A and a theoretical air velocity v (
= pitch x revs, per

second) is as follows, when the vessel is just balanced :

T = kv2A ..... (3)

where & = '002288 (varies with p). (Some recent experiments give a

rather smaller value.)

Also, according to W. G. Walker, the horse-power required :

where ^='0000115, Q = quantity, cubic feet per second, and D =
diameter of helix in feet.

Also, since Q = vA ..... (5)

(For the present we assume the motion is in still air and the vessel

has little upward velocity, so that v = v.}

T3

and T3

Since v =pr, and taking p D (i.e. angle of helix = tan"1

-),
9 YT

7,

and T = kr\/ - or -, ^^/HD7 = '1014r^/HD7
. . (6)

c, c,*

Or since, from (1) H =

. (7)
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This formula enables us to estimate the importance of the speed,
diameter and power of the helices.

It follows that the thrust

(1) Increases with the number of revolutions
;

(2) Increases with the cube root of the horse-power ;

(3) Increases with rather more than the square of the helix

diameter
;

(4) Increases with a decrease in the cube root of the weight to

power ratio
;

from which it would appear that the helix must be driven as fast as

possible and with the maximum power. Also the helix must be as

large as practicable, and the weight per horse-power has to be

decreased to the maximum extent.

The last point is the rock upon which so many have broken, and

it will be useful to find what must be its maximum value.

Obviously this will occur when T = W, i.e. when the machine is just

supported :

W-1014
w

Let -1014 =m
;

then
W

" w=

To take a practical example : let the revolutions per second be 20

(this approaches the top limit of present obtainable speed); let

D = 4 feet, W = 2240 Ibs., c = 1000 Ibs.
;
then we have

_m32Q 347
(2240-1000)
22403

Iog10w = 1-0059 Iog10w3= 3-0177
'

Iog10r =1-3010 Iog10
?^ = 3-9030

log10D =0-6021 log10
D7 = 4-2147

loglo (W-
c)
= 3-0934 3-0934

8-2288

to w = 3
'3502 low3 = 10-0506

Iog10w = 2-1782

Antilog 2-1782 = -01508 = w.
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From this we conclude that, with the particulars given, every pound

of machinery in the prime movers must generate = 66 H.P., which
lo

is at present impossible. Actually in this case, allowing for efficiency

and upward acceleration, at least 100 H.P. per Ib. would be required.

This would imply that it is not yet possible to lift an aeronef

by helices
;
but this has actually been done by Santos Dumont, Kress,

Breguet, and others, with lifts varying from 5 to 80 Ibs. per H.P. It

will be noticed that w varies as D 7
,
so that we may be able to get the

desired result by increasing D. Let us try. D = 10 ft. :

logm
3 = 3-0177

logr
3 = 3-9030

logD
7 = 7-0000

log(W-c) = 3-0934

11-0141

logW3 =10-0506

log w 0-9635

Antilog 0-9635 = 9-194

This value for w has actually been passed, so that with D = 10 feet

it would appear to be possible to use helices. H.P. in this case is

124 merely for supporting. We can now reason as to the ratio

P wer = w, when:-
weight of generator

w Increases with cube of number of revolutions in unit time.

Increases with seventh power of diameter of helix.

Increases with nett weight of machinery.

Decreases as the cube of the weight of the car increases.

Actual values are :

Saimler ' ' ' lbs-PerILP
-) Santos Dumont.

Mors . 10 , /
Maxim (engine alone) . . . 1 '6

,

Moy . 26
, (including boiler).

Antoinette petrol engine (fig. 2.) . 2'2 . Santos Dumont.

Wright Bros, engine . . .
40

Balloon machinery (electrical) .120

I am indebted to Mr Harris Booth for the following further

relation from this analysis :

Projected area of helix _ _4_
3
/"IT

disc area TTT* D5
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In all these formulae, if the vessel has an upward velocity, the

value V
Q must be substituted for v where v = v vu ,

vu being the

upward velocity.

The quantity^ =ratio of
absolute velocity of fluid

&nd ^
v propeller velocity

is termed the "slip" (usually expressed as a percentage
v~ VH

).
IQQv /

vu here corresponds to V, p. 8.

In all calculations where the vessel has a speed of its own, this

FIG. 2. "Antoinette" 100 H.P. petrol motor (as supplied to M. Santos Dumont).

substitution must be made, the formulae given later for the acceler-

ation being true only when the vessel is altering its speed. So soon

as it settles down to a constant speed, the air passes it at a velocity

vu it^ where vn is the upward or forward velocity and v the actual

velocity of the wind, + if against the direction of motion, and

if in the direction of motion.

It is probable that at low speeds the phenomenon of
"
negative

"

slip, previously referred to as occurring in the case of water- vessels,

will appear in the propeller of the airship, the forward velocity of

the ship exceeding that of the propeller. This will cause some

retardation on account of the reduction of pressure at the stern. The

cause of this is the eddying of the air about the propeller ; but, in

airships, its value will probably not be great.

In this calculation of the thrust the variable quantities are the

revolutions, diameter, and power. It is assumed that the area is

varied in different cases so as to agree with the expression given in

the formula. Unless this is the case, energy is wasted in churning
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the air and overcoming friction. Mr W. Froude, in a paper on " The

Elementary Eelation between Pitch, Slip, and Propulsive Efficiency,"

has developed a simple but powerful means of computing the

efficiency of marine propellers ;
but it depends very largely on the

frictional resistance, and so cannot well be applied to air propellers.

The method is briefly to consider each small part of a blade to act as

a plane moving through
the fluid in a direction

compounded of its trans-

verse or rotational velo-

city and the forward

velocity of the vessel.

The resistance experi-

enced on account of dis-

placement of the fluid is

resolved into axial and

transverse components,

the first corresponding to

the thrust, and the second,

when multiplied by the

radius of action, to the

resisting torque. A paper

by Mr Parsons to the

Aeronautical Society (1908) is of importance in this connection.

As to the method of arranging the helices, we have to consider

condition (77) as to the positions of the maximum and minimum

resistances.

It may be established as a general principle that the air should

enter the helix with only axial velocity and leave it similarly, i.e.

there should be no component in the direction of horizontal motion.

It would, of course, be possible to so arrange inlet and outlet that

the air imparted horizontal momentum to the machine in the

direction of motion
; but, as this would have to be done at the

expense of vertical momentum, it is certainly undesirable, as the

latter is by far the more difficult to get.

It is not, moreover, desirable to have the helices themselves in-

clined to the direction of the horizontal motion, as the thrust acting

along the axis of the helix will not then be vertical, and, unless we

can so combine it with a horizontal thrust as to produce a vertical

resultant, there will be an awkward turning moment to balance.

FIG. 3. Helix shaft showing air entering and leaving
with only transverse velocity.
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The ideal arrangement would probably be that shown in
fig. 3.

Air then enters and leaves with only an axial velocity, which is

employed to obtain the vertical thrust. The necessarily great diameter

of the helix will probably preclude the use of this arrangement.

By reversing the entrance passages we should get an advantage

in respect of the air pressure (fig. 4) thus :

Direction
or Motion.

Form,

FIG. 4. Helix shaft turned from the direction of motion, showing top
vacuum and bottom pressure effect (helix stationary).

This is, however, a transitory effect, depending entirely on the

horizontal motion. It would check the supply of air to the helix

and retard the horizontal

jHeZfcc Jg* motion. It might be useful

to be able to alter the

direction of inlet and outlet

during flight, so that this

action could help the lifting

engines; but probably the

loss of supply would be

more important than the

increase of the bottom

pressure.

Another important point

Resultant

Lift

Weight

FIG. 5. Balancing of two helices.

in connection with the use of helices and their position is the

question of balancing.

The centroid of the aeronef must coincide with the centroid

of the helix thrusts, or else there will be a turning moment.



HELIX AS LIFTING AND DRIVING APPLIANCE. 15

The car must be so suspended and the helices or their engines
must be so governed that this condition is automatically fulfilled

(fig. 5).

If from any cause ^ exceeds
2 , then we have a turning moment

(9)

which will, as the deviation increases, become

d cos Q(t^ 1
2)

where is the angle of deviation.

FrictiowR

Friction.

FIG. 6. Diagram of pendulum level governor. The deflection of pendulum
operates throttle valves.

If the angle 6 is transmitted by suitable mechanism to the

governor of the prime mover which originates the thrust ^ so that

it decreases until = t
2 ,
then balance will be restored.

A heavy ball at the end of a lever moving over a sector under

the influence of gravity would suffice for this and could be double-

acting, increasing the thrust t
2
and decreasing tv

The weight of this ball (fig. 6) would be determined by the

following rule :
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Weight of ball =W.
Angle of deviation = 0.

Turning moment =W . L sin

Resisting moment of joint = R?\

at valves = Fd.

Note. Unless Z= S, the valve angles will not be the same as

pendulum angle.

In connection with the governor I can foresee some difficulties

will arise from the acceleration of the vessel. When stationary or

travelling at constant speed the pendulum will hang vertical, but

when changing speed with an acceleration a the pendulum will be

inclined away from the direction of acceleration to the angle tan" 1

with the perpendicular, thus tending to alter the supply to the

generators.

At the same time this will be an occasion when it is most required,

as the wind will strike the front helix and produce a turning effect

on the car. The only suggestion I can make is that another smaller

pendulum should be placed alongside the large one, and when speed
is being changed, the first pendulum shall be moved back by a lever

through a corresponding angle.

Another difficulty will arise from lack of sensitiveness in the

prime movers, due to their momentum. This will cause a decreasing

oscillation, with intervals in which the helices will
" hunt

"
or race. 1

Efficiency of Screw Propellers. Froude's experiments and

analysis of screw motions give the following result for the maximum

efficiency of a propeller :

where a is the pitch angle=

=
slip angle (less than 10)

V-^
. a

X
= friction angle tan" 1

/*.

0! determined by skin friction experiments. In water the effici-

ency is found to be about 70 per cent., with a slip of 20 per cent.

1 See further chapter on Fittings, where balancing is discussed.
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The frictional losses at the thrust-blocks can be obtained from

the following considerations :

If
/UL

is the coefficient of friction between the surfaces when there

is fair lubrication, then the total force of friction if there is a pull or

thrust T = juiT. This is exerted through a distance -ird per revolution

if d is the mean diameter of the thrust-block (internal), so that the

work lost per second (n revolutions), ..... (1)

If we call the value ^- v ,
then the H.P. loss if T is expressed

550

inlbs., H = vTdn . ... (2)

The helix is also much employed for horizontal propulsion,
1 to

which it is certainly very well adapted. Its use for propelling ships

is, of course, thoroughly established, and the conditions in the case

of an airship are very similar.

AREA AND FRICTION.

If P is the thrust derived from the helix, and F the resistance

caused by skin friction and eddies, then

P-F = ma .... ',-. (3)

where m is the mass of the vessel and a the acceleration.

g
When driving against the wind, if I is the coefficient of the-

surface exposed and v the velocity of the wind, the vessel is impeded

by a force cpA where p= 002288*;2
(c less than 1, see later),

ckv*A=ma ..... (4)

If there is motion of the vessel itself, use absolute velocity.

The forward acceleration of the aeronef will under these con-

ditions = a a
,
and in designing the helix and engines for propulsion

the value of a a must equal the maximum velocity which will be

required to be generated in one second, and the actual force of

propulsion must never be less than ma if the machine is not to

drift with the wind. As is the case in marine practice, the ship will

need to be formed with a minimum frontal resistance and will be

turned towards the wind. It would be almost impossible to design

a vessel capable of resisting a broadside wind pressure.

1 The screw may be in front (" tractor ") : the action is the same. There is,

a better air supply, but more friction against the vessel.



18 PROBLEM OF FLIGHT.

The value of the frictional resistance is obtainable by experiment,
and according to Molesworth

= -0002DV ..... (5)

for a cigar shape, where D is maximum diameter and v the velocity
in feet per second. (Sum of wind and machine's velocities.)

l

According to the same authority the speed in feet per second

derived from a horse-power H
8

/2000000H
=y- -^2-

It is presumable, however, that this formula is not universally

correct, as it does not take into account generally the size of the

helix, which certainly affects the question. It is based on a diameter

for the helix = -84- D and a pitch equal to the diameter.

The revolutions per second are given as

1'Sxv/p ..... (7)
and the value of H as

0000005DV .... (8)

Taking for the thrust of the helix, as before, P = fo;
2
A, and the

formulae given for the skin resistance and the wind pressure (v is

sum of wind and car velocities : v is nett propeller velocity (pr VQ))

bkv^A rD2
V(? ckvQ

2A = m(a 0$)

when r= 0002; b = ratio of propeller area to car sectional area.

Simplifying, we get,

qv*
=m(a-a ) . . (9)

o

from which it would appear, taking ^- as fairly constant, that the

forward velocity varied with the square of the theoretical velocity

caused by the helix, and also with the area of the helix, so that the

pitch and diameter should be as great as possible.

By so forming the prow that c and r have minimum values, we

eventually get, as the maximum efficiency,

bJcv
2A = ma ..... (10)

It cannot be hoped, however, that this condition will ever be

reached, seeing that the helix will, of itself, offer a considerable

surface upon which the wind will act when possessing a fair velocity ;

and we have also to consider that v
,
the value of this velocity, is not

the absolute velocity of the wind as compared with the earth, but

1 Like V on p. 12 for vertical motion.
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the relative velocity compared to the aeronef, which is the sum of

the absolute velocity and the velocity of the aeronef.

As before, the centroid of the machine must coincide with the

centroid of the horizontal thrusts, in addition to which we must

so form the prow that the centre of pressure of the wind in front is

also in the same horizontal plane as the centroid of the car (fig. 7).

In the event of a disturbance of this balance (such as must

inevitably occur in practice), the machine must be self-righting. This

is, however, allowed for already in the consideration of the vertical

helices, and the appliance described there will also serve this

purpose. (See also later references to balancing.)

One further point to be considered is the alteration of angular
momentum which will occur whenever the direction of the axes of

rotation is altered, and consequent gyration of the vessel.

Axis of^Jhrust
*C/7"

Cervtroui,

FIG. 7. Coincidence of axis of thrust, centroid and centre of pressure.

This can be minimised considerably by making the helices in

pairs with reverse rotations Any residual effect must be controlled

by the steersman, but in practice it will doubtless lead to practical

difficulties, which should not, however, be insuperable.

This will to some extent serve to maintain equilibrium, as the

alteration of the direction of the axis will cause a rotation to appear
in the plane at right angles, which will be resisted by the action of

the passing air on the sides.

Fans acting as Propellers by Jet Action (vertical helices).

Centrifugal air-pumps or fans (fig. 8) might possibly be useful to pro-

duce momentum.

The arrangement is very similar to that of the centrifugal pump,
but a large whirlpool chamber would not be so necessary.

Assuming that the air leaves the pump with a velocity v (
= that

of vane tips) and the quantity is Q, then the total momentum per

second would be (radial vanes)

fi3. -v
'

. . (i)
9
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If vr is the through velocity and A the minimum area in the

passages, then the quantity Q = ?v A, so that the momentum (i.e. the

force exerted) would be

v . . . . . . (2)

If the radii inside and outside the wheel are in the ratios r
z

: i\,

then the velocity of the inner rim is ^ . v, so that the angle of the

vanes inside is (by triangle of velocities)

= tan~ 1^2 (3)
rv

There will be loss by compression of air and friction.

FIG. 8. Diagrammatic section of vertical air-wheel.

Form of Propeller. There are several forms of propellers, but

the most well known are the

(1)
"
Elliptic

"
(4 blades).

(2)
"
Bat's-wing

"
(3 blades).

(3)
" Fan "

(2 blades).

In marine practice the elliptic blade is most used, the diameter

of the boss being *14 that of the whole propeller. It would be less

for an air propeller.
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The blade is one of simple helical surface, the projected width

being '23 D. The arcs which form the sides of the blades as they

appear when projected in the direction of the axis have a radius

33 D and are joined with a small circular arc at the tip. The axial

dimension of the blade is usually J the pitch. The pitch and the pitch

angles at any particular distance from the centre can be easily found

by drawing a right-angled triangle, whose perpendicular is J pitch
and whose base is J.TT x diameter of the point considered. The hypo-
tenuse makes the pitch angle with the base of this triangle (fig. 9).

The total angle of twist from the boss to the tip is, of course,

equal to the difference of the pitch angle of a helix on the boss, and

of the helix (same pitch) on a drum of the diameter of the propeller.

(Propellers of increasing pitch towards the tip have been found

to be efficient.)

The "
bat's-wing

"
in its axial projection appears as a segment of

a circle with the tip truncated. The bounding arc has a radius of

*3 D and the square tip is 6 wide.

The " fan
"
type was used by Maxim in his machine, and consists

of two blades tapering towards the centre. It is advantageous in

the respect that it can be closely approximated to by two frame rods

passing into the axis and inclined to <?ne another at the required

angle to join the two pitch angles at the centre and tip. If the

distance between them is not great, the surface is almost a helical

one, and can be made, as in Maxim's machine, of silk, the ribs being
of steel tube.

That a helix can actually exert an ascensional force is, apart
from mechanical principles, shown by (1) the thrust in the bearings
of ventilating fans (Blackman type), and (2) the various toys which

utilise this principle to make a small screw "
sky," as the "

spiralger,"

which consists of four small flat blades or feathers attached to a spindle

which can be revolved by a string or by pulling a threaded block

over a fixed, similarly threaded shaft. In 1768 the engineer Paucton

suggested its use, and many French aeronauts (notably M. Nadas),

supported the idea. In M. Jules Verne's Albatross it is well known
to readers of fiction. M. de Landelle perfected the spiralger.

It is needless to remind engineers of the precisely similar effect in

the marine screw propeller. The only difference is that the thrust is

horizontal.

Mr Edison, the well-known inventor, made a series of experi-

ments on vertically acting screws. His results were not such as he



-
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expected, chiefly, I think, because the prime mover at that time

available was of large weight as compared with the power, and so

there was but little momentum given to the air, while considerable

friction at the bearings had to be overcome by the machine.

It has to be remembered, however, that there will be some waste

due to the propeller itself. By friction with the blades the air

acquires rotational energy, which is not only useless, but, on account of

the tangential acceleration, removes from the helix some of the aii

whose longitudinal velocity would produce back momentum. This

loss is also experienced in ships. Furthermore, it is only the

relative velocity of the projected air and the surrounding air which

is useful.

The thickness of the propeller blades can be ascertained by the

well-known rule connecting the total bending moment with the

moment of resistance at the section considered. The bending moment
will be the product of the nett thrust on the blade by the distance of

the centre of pressure from the axis, or

=/5 (1)

where d is the distance mentioned, / is the working stress (compres-

sion and tension) per square inch, I is the moment of inertia of the

section, and y the distance from the centre of gravity of the section

to the extreme edge (half of the depth in symmetrical sections). Thus

if we have fan blades, the section of which may reasonably be con-

sidered rectangular,

In an elliptic section the value of I is
j

a&3
,
where a and b are

the semi-axes, so that (about axis 2&)

'

'.., . , .... Td=/^ ..... (3)

A more usual section than the elliptic is one which approximates
to a circular segment, the flat being the propelling side. In this and

any other unsymmetric section the moment of inertia is best found

graphically, taking a number of strips parallel to the neutral axis

and multiplying the area of each by the square of its distance from

the axis :

. ., :-.., ....: . (4)



24 PROBLEM OF FLIGHT.

To find the actual form of the blades, it is best to project at

right angles from the plan and elevation in a number of strips or

sectors.

The actual form of a complete helix developed on to one plane

can be found by describing two concentric circles whose radii equal

those of the corresponding root and tip helices.

FIG. 10. Complete helix of one revolution formed by one sheet of metal.

The actual length of each helix is found by the expression

L= Vpitch
2+ (circumference)

2
,

and if these lengths be stepped round the circumference, the result-

ing figure (an overlapping ring) will be a development of the screw

surface and may be formed into the desired shape by separating the

overlapping ends by the pitch-length so that the two bounding radii

are parallel (fig. 10).
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The considerations to be considered in the choice of a particular
form of propeller are :

(1) Amount of eddying produced.

(2) Projected (i.e. effective) area.

(3) Space occupied.

(4) Strength to transmit thrust.

The propeller shaft will be designed by the rule

D (inchest - k . ^/ ~. (k = 3 to 4. )

where H is H.P. and N revolutions per minute. The investigations

of Professor Greenhill show that the thrust is not of great import-
ance in connection with a shaft. It would, however, be desirable to

have a hollow section in preference to a solid one.

The liners to the thrust-block must be very smooth and well

lubricated. In small vessels probably ball bearings could be success-

fully used.

Before leaving the subject of helices, it should be noticed that

it has been held by several men who have studied the subject that

the efficiency of an elastic (non-rigid) helix is vastly greater than

that of the rigid helix. Professor Pettigrew goes so far as to describe

this pliancy as the essential condition in flight, and affirms that

wherever rigid helices or planes have been successful, there has been

great loss of power. He suggests the use of an elastic two-bladed

propeller of decreasing pitch.

Many considerations point to the correctness of this view,

but it must also be remembered that the difficulties of construct-

ing a symmetrically elastic helix or plane on a large scale are

somewhat considerable; and, while deference should be accorded

to the views of the naturalists who have devoted so much time and

labour to the problem, engineering considerations would render a

satisfactory rigid aeroplane or helix much more acceptable than a

complex elastic one.

Furthermore, it is noteworthy that, while natural machines are

of very high efficiency, they are not always the most convenient or

expeditious. At present the wheel for land locomotion seems

vastly more expeditious than the pedal lever (in spite of the

"decapod"), and it may be that the mind can originate some

contrivance as superior to the wing as the wheel is to the leg.



CHAPTEE TV.

THE AEROPLANE.

THE aeroplane as now known was invented by Henson (fig. 11) in 1842.

It has long been known that an inclined surface drawn or pushed

against the wind is subject to an upward thrust by the reaction of

the displaced air. If this surface can be rigidly fixed to a framework

capable of bearing machinery for propelling the surface (by a helix)

forward through the air, and its surface and velocity are sufficient to

displace air to the extent capable of producing a vertical component

FIG. 11. Henson's aerostat.

reaction exceeding the weight of the whole apparatus, another means

of aerial locomotion is discovered.

The problem involves the following practical difficulties :

(1) The production of a horizontal thrust capable of raising the

apparatus used by means of the plane.

(2) The balancing of such a plane so that the nett turning

moment on it is zero, particularly at low speeds.

(3) The arranging of the plane if possible so that its resistance to

wind is less than the maximum horizontal thrust.

If we consider a simple plane pushed through the air, we notice

the motions in the air shown in fig. 12 (bottom diagram).
26
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FIG. 12. Resistance of air.
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At very low speeds in any fluid there is a simple distortion of the

stream lines (i.e. the lines which map out the direction of the flow

at any point) which is amenable to the mathematical theory of

Hydrodynamics (see Professor Lamb's Hydrodynamics, p. 94), and

the physical truth of these stream-forms has been demonstrated by
numerous experiments made by Professor Hele-Shaw. At usual

speeds, however, there is a space at the rear of the moving surface

in which the flow is discontinuous, and whirls or " eddies
"

of fluid

occupy the gap. As the speed increases this space also increases,

and the total resistance is also increased, so that there is reason to

suppose that at very high velocity the resistance varies almost as the

cube of the velocity.

As a perfect fluid cannot have tangential stress, the pressure

caused by its loss of momentum will be exerted at right angles to the

surface of the plane. Actually there is a slight tangential force.

This problem is very fully attacked by Weisbach in his Lehrbuch

der Ing. u. Masch. Mechanism, vol. ii. pt. i., in dealing with windmills.

Taking c as the velocity of the plane relatively to the wind, Q as the

quantity displaced per second, p as the density of the air and 9 as the

angle of the plane, the normal force exerted against the plane

N = -.sin0.Q/>, . (1)
t/

since quantity Q = velocity x area, and area= sin x vertical area,

which we may call A, the actual area being A

N = - sin O.c.A.p
ft

where -A- = A sin 0,

then N = -.sin2 O.A . P . . . . (2)
u

The eddying motion of the wind behind the plane relieves the

pressure there to the extent

2<7

so that total normal force
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Experimental proof is required of this particular value, but it is

almost certain that N exceeds
(

sin2 $Anp ). Coulomb's results
\g

agree very fairly with (3), but for small angles experimenters disagree

greatly. The latest results are almost unanimous in making the

variation of thrust as sin and not sin2
0. All these following

expressions are divided by sin 6.

We thus get the value of the total thrust on the plane produced

by the propulsion, and the vertical component of this is the lifting

force.

The ratio of the horizontal component to the normal force is

sin : 1, so that the value of the resisting force

. . (4)

g of course equals about 32 -2, and p the density of air is found

by the well-known rule

i_

p = cpy
. . (5)

In this y = l'41 for air and/? is pressure in Ibs. per sq. in. (normal
value= 14'7 Ibs.). c is a constant.

At atmospheric pressure (i.e. near surface of earth) the weight of

air is as follows :

Weight p

(Ibs. per cubic ft. ).
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From this it will be apparent that the greater the velocity the

greater is the lifting force
; but, unless the aeroplane is to drift with

the wind, the minimum value for the helix thrust

A
OP]

. (9)

If reference is made to the chapter on helices, a relation is

established between the thrust T and the horse-power applied to

the helix and the

or, in terms of weight,
3 /W r

T =-ioi4v^V- D7-

By equating these two expressions we can find the connestions

between weight and the reaction of the air on the plane.
TkTaking formula (8)

we have

Cubing both sides and dividing

* ** 6.W .
Ji_G -
w

The value of the driving thrust and the weights as compared with
the area and angle of the aeroplane is in this way established, but a

more satisfactory method is to balance the lifting force against the

weight as follows :

Lift = N.cose
3c2

= -_- sin . cos . A p .

[Note. Since the angle is usually small, for the value sin 0, sin 2
is

used.]

Hence, for soaring, W = N.cos#, and from this c or c+ v the
relative velocity can be computed

c= . /
9 or approximately A /v Ssind.cose.Xio

J V -OOS

\V



FIG. 12A. The Farman machine.

FIG. 12B. The Voisin type of aeroplane in flight.
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Following the reasoning of Weisbach in his study of wind wheels,

and calling the velocity of the aeroplane v and the velocity of the

wind c,

in2
,

More attention has been given to this part of the subject than

any other during recent years. It may be regarded as established

that the formulae above given are practically 'correct. Lord Eayleigh

showed, in 1900, that the friction on the surfaces was not absolutely

negligible. He gives the following rule :

or in the form of the preceding formulae,

fji
here stands for the total friction at unit speed.

Professor Zahm has recently shown that the frictional resistance

as per square foot is

/= 0-00000778 /-
93 cr85

where I is length in feet and c is velocity as before.

Lord Rayleigh shows that the work done is a minimum when

Another very useful quantity in this connection is the lift to

drift ratio, or, as it is sometimes called,
u the efficiency."

Since lift =N cos and drift =N sin + y
u /y2 , we have

lift Ncos0 1

drift N

Mr Turnbull (Aeronautical Journal, 1908) shows that for ordinary

surfaces (plane, slightly concave, or concavo-convex) this ratio has

a maximum value of between 4 and 6, for an angle of incidence of

about 6.
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Hence the use of the rule by many designers

Thrust= Wei ht

4.

The following formulae and tables summarise our knowledge of

the state of the atmosphere so far as it affects aerostation.

Fro. 12c. Delagrange aeroplane.

Wind Pressures and Velocities. (Note. Maximum observed

pressure in Great Britain = 55 Ibs. per sq. foot, Dr Nicol, Glasgow

Observatory. See, however, p. 37 re Forth Bridge.)

Lbs. per sq. foot.
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Direction of wind in England in day>s per 1000

(Kamtz).

N. . .

'

. .82
N.E. . . . . .111
E 99

S.E. ..... 81< min.

S Ill

S.W 225<-max.
W 171

N.W. 120

1000 days.

Variation with Height. The wind pressure increases in bhe

higher zones of the atmosphere. According to Stevenson, the

following expression, other conditions being 'the same, indicates the

ratio of increase :

H+ 72
"

A+ 27

P = pressure at height H
p= h.

Also Kempe gives

v = 1347*4. / _, where v is velocity at different zones.V h

Relative Resistance of Submerged Bodies at velocity of 1 foot per
second (Beaufoy) :

Mid-Section Circular.

Bow. Stern.

Square . . . Conical . . -958 Cone angle 77.

Square . . . Square . . . 1*0067

Semispheric . . Conical . . '2706 Cone angle 77.

Square . . . Semicircular . . '8883

Conical . . Conical. . . '2836 Front cone 56, stern 71.

Semicircular. . Square . . . '2332

Conical . . Conical . . . '2848 Front 63, stern 71.

Semicircular . Semicircular . . "1349

With a square mid-section these coefficients are increased in a

ratio between 1%5 and 2'0.
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Pressure on Surfaces. If the wind moves parallel to the plane of

section, the following ratios are found to obtain :

square, 1/00
; hexagonal, '75 ; octagonal, '65

; circular, "5.

(Used for chimney design.)

Pressure on Oblique Surfaces. Lord Kayleigh's formula for the

pressure on an oblique surface when N is the pressure which would

result from the speed if plane were rectangular to the direction of

motion, and N is the actual normal force on the plane :

'

being the angle of deviation of the plane from the direction of

motion. Froude increases this in ratio 1/86.

This value may be used for calculating the turning effect of the

rudder, the total value being

N A x A.

Other values are given in this chapter for P .

Professor H. Adams on Wind Pressures gives the following

collection of rules :

= pressure, Ibs. per sq. ft.

= velocity in ft. per sec.

N = lbs. per sq. ft.

A = area sq. ft.

A = distance from c.p. to axis of rotation.

(1) k = '001154 . . Professor C. A. Carus Wilson

(2) -001378 . ~~; . J. A. F. Aspinall, M.I.C.E.

(3) -00233 . . . Smeaton and Eouse.

(4) -002502 . . . Hawksley.

(5) -002737 . .

'

. D. Kinnear Clark.

(6) -0017 . .'"' . DuBuat.

(7) '00167 . ... Professor Langley. (Important.)

(1) and (2) are rational
; (3) to (5) empirical.

Professor Carus Wilson gives N = -
. v2 where p is weight per

cubic foot (about 0'0807 lb.).
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This is only half the result obtained by the momentum method

and comparison with empirical results.

The momentum method, which I have previously employed,

gives N = '0054 V2
(
= V miles per hour) = '002517 v2

,
whicK is near

the mean value of JSTos. (3), (4), and (5).

Impulse of the Wind.

TABLE OF EESULTS OF DIFFERENT AUTHORITIES (from Weisbach)

(vertical surfaces).

Mariotte : Woltmann :
1

Hutton : Weisbach :

The number of experiments made on this subject is enormous, and

I have elsewhere tabulated over thirty values for this constant. It is

certainly more than Professor Carus Wilson's value, and it is almost

equally certainly less than twice this value. M. Eiffel's recent

experiments have shown that it varies with the velocity, but for

aeronautical purposes I have come to the conclusion that a value

between '0015 and -002 may be safely used.

Experiments on large areas generally show great local variations,

and apparently there is a decrease of the average pressure with a

large area, due to lack of uniformity in the structure of the wind.

Professor Henry Adams gives the following value for the greatest

pressure produced on a stationary surface, centre of gravity of which

is h feet above the ground and the width w feet :

log j9
= 1125+ 0-32 log h- 012 logw.

If surface is inclined to wind, the natural pressure is p sin

and effective pressure in direction of wind p sin2
0.

This formula indicates :

(1) Initial constant value for maximum wind pressure.

(2) Increase as about cube root of height.

(3) Decrease as about the eighth root of the width.

For a width of 5 feet a height of 150 feet (e.g.) the pressure is

then 54*6 Ibs. per sq. foot.

1 This result is based on resistance only, and not impulse.
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Professor Adams also gives the following constants for different

forms of surface exposed to the wind, reference being made in each

case to the maximum cross-section :

Plane .
,

> . I'OO

Cylinder . . . .
~

Sphere ô

(These results do not agree with the ratios employed in chimney
construction which have already been given.)

Professor Adams gives resistance of small planes with variable

inclinations as proportionate to sin2 0, and of large ones as sin 0.

He quotes Dr Hutton's experiments as giving resistance (
=N sin 0)

where a is area of surface, p pressure in Ibs. per sq. inch.

Also from E. F. Etchell, on surfaces with from 10 to 60,
normal pressure =p sin2 (1*2 + 18).

Mr Hunter on Wind Pressures. Much valuable information

on the subject of the effect of air in motion on obstructing surfaces

has been collected by Mr Adam Hunter, M.I.C.E.

Since the Forth Bridge was finished in 1890, records of maximum
wind pressures have been taken. The highest recorded pressure

equals about 65 Ibs. per sq. foot.

It is clearly established that the average pressure on large areas

is less than that recorded on small ones, and according to Captain

Bixby, M.Am.Soc.C.E.,
"
the value of the wind pressure in gusts on

large bridge surfaces may be taken at 60 per cent., and the average

steady wind on a bridge at 36 per cent, of the maximum of small

plate-pressure anemometer records of neighbourhood." Also that
" wind velocities may be taken at 70 to 90 per cent, of ordinary cup

rotary anemometer records converted into wind pressure by formula

p=/0043 V2 when V is velocity in miles per hour.

The Bids ton Observatory, near Liverpool, records, during twenty

years (1868 to 1888), indicate that the following velocities are

attained :

83 miles per hour once in sixteen years,

83 to 64 miles about once a year,

64 to 54 miles about twice a year,

less than 54 miles at shorter intervals
;
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which are computed to represent pressures of

33 to 29 Ibs. per sq. ft. twice in sixteen years (sic),

29 18 once a year,

18 15 twice a year,

15 Ibs. at shorter intervals.

By the rule N= '0043 V2 = '00201 v2 where v = velocity in feet per

second.

Experiments made at the National Physical Laboratory (Proceed-

ings I.C.E., vol. clvi.) give N= '0027 V2 = "00137 v\

The diversity in these constants is most extraordinary.

TABLE OF VELOCITIES OBTAINED FROM EXPERIMENTS BY STEVENSON

(quoted by Mr A. Hunter, A.M.I.C.E., A.M.Am.Soc.C.E., in

paper read before J.I. Eng., December 1906).

Feet above Ground.
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He further thinks that the building should resist a turning moment

producible by steady pressure of 50 Ibs. per sq. foot.

Hutton, Robins', and Smeaton's Results. The researches of Messrs

Hutton and Robins led to the following important conclusions as to

the resistance offered to a plane :

(1) Resistance varies as the area of the surface, but increases

in a slightly greater ratio with large surfaces. In other words,

Noc A1+
.

(2) Round and sharp ends offer less resistance than flat (compare

Beaufoy's results).

(3) Two solids with same fronts are not equally resisted unless

the hinder parts are similar.

(4) The resistance varies with the actual relative velocity and

not the apparent velocity.

(All these conclusions have been arrived at by other experi-

menters, and appear elsewhere.)

Hutton and Smeaton's empirical formula for the resistance of

an inclined plane is

Roc V2
(sin 0)1-842008^ as on p> 35,

and, since R =N sin 0, as a final formula we have

and as for small angles cos approaches unity, this gives for such

angles P=AY 2 sin 6, nearly or more accurately AV sin 0'8
.

(A here should include
,
the mass per unit volume, to make

ij

the expression have a value in Ibs. pressure )

Duchemin's rule has recently been found very satisfactory, and is

P = kv*A x 5\ (Very important rule.)

The values for the ratio between pressures on normal and inclined

surfaces may be tabulated as follows :

(1) P0 =P90/c . sin 0. (K
= about 2.)

(2) P, =P90
sin 01-8*

cos* -i
(Hutton)

(Eayieigh)
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<Duchemin )

(6) P<,=P90 sin 2
(l-20+ 18) . . . (Etchell)

WP^IV^uptoSOO
)

_ (Eiffel)

P
(,=P90 from 30 to 90)

TABLE OF DENSITIES AT DIFFERENT HEIGHTS.

(Cosmos, April 1893,
" La pratique des ascensions aerostatiques.")

Height in Metres. Reciprocal of Density.

12,900 5

18,400 10

29,500 40

42,300 200

49,700 500

The following authorities have also contributed to our knowledge:

Coriolis, Coulomb, Smeaton, Burg, Borda, Eouse, Poncelet, Euler,

Vince, Crelle, Thibault, Hagen, Joessel, Eenard, Canovetti, Langley,
and Dines.

Balancing. Having settled the question of area and thrus.t by
the preceding rules, we must next consider the balancing, which is

a very difficult problem to solve.

Presuming that the air will strike the plane fairly uniformly, we

might conclude that the centre of pressure is the centre of gravity of

the plane; but, as a matter of fact, the eddying of the air will

probably cause the position of this point to vary considerably, and

this is the chief cause of the difficulty. Also at small angles the c.p.

is considerably forward of the e.g., as much as '3 of the width when
is small, but below a certain critical angle (about 20) the displace-

ment decreases.

It is not very convenient to have the propelling mechanism

immediately behind the centroid of the plane, but if this is not done,

there will be a couple tending to upset the whole apparatus, and also

we have to consider the effect of the force acting vertically. If the
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direction of this passes through the general centroid, equilibrium will

be obtained, but not otherwise.

In other words, the point at which all the forces (or rather their

resultants) meet is the position for the centroid. This condition is

Note. C.P. will be in front of the geometrical centre.

FIG. 13. Aeroplane with suspended load, showing state of unstable equilibrium.

conveniently satisfied if we have two planes and the motor between

them. (Note. Distance from c.p. to e.g.
--= (0 '3 '3 sin 0) length.)

1

If the planes are of equal areas and parallel (fig. 14), the forces

Betix

^^
"

FIG. 14. Balance of aeroplane system (two planes set at same angle).

Dn them, being respectively proportional to the areas, are also equal,

and the e.g. and the thrust must be equidistant from both, i e.,

dl==d2 ',..' .. - . . (11)

1 Joessel's very important rule.
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If the areas or angles are different (fig. 15), then the thrusts

UjifuerPlane

FIG. 15. Balancing of aeroplanes, planes unequally inclined.

N! and N
2 acting about the centroid must be equal in their turning

effects, i.e.,

and N1= orN2
=-i- . . . . (12)

The areas will need to be proportioned accordingly.

If there are a number of planes, then the condition of equilibrium

is that

Z(N^) = . . . (13)

where N is the normal force and x the distance of its line of direction

from the centroid.

The thrust must almost pass through the centroid, or, if there are

n
lt

n
z thrusts, and their distances from the centroid are lv 1

2 ,
/
3 , etc.,

then Knl) = Q ..... (14)

It will not be safe to say that

as the values of both N and n will be subject to variation. It will

be preferable to have more than one thrust n, so that by a balance

weight (such as is described in the chapter on helices) the supply

to each can be controlled. In this way, if the aeroplane deviates

from the normal position, the thrusts will be altered and produce a

righting moment. It will be impossible to make this occur immedi-

ately, so that vibration is unavoidable; but this should be damped out

by the resistance of the planes. Gyrostatic balancing is also possible.

With regard to the arranging of the planes so that they present a

minimum resistance to the wind, it must be realised that this very

arrangement involves loss of lifting effect. To drive against the

wind we must rely on getting a momentum from the driving helices

sufficient to overcome the relative wind pressure.
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Sir Hiram Maxim's aeroplane (Fig. 15A) is a good example of

the arrangement, consisting as it does of so many planes. There is a

drawing of this in the South Kensington Mechanical Museum

(branch of the Victoria and Albert), where may also be seen one of

the large propellers and the engine (fig. 16), which has been cut as

fine as possible. The balance is, however, deficient.

The design of the framework of the aeroplane involves several

important considerations. It is obvious that the planes are subject

to a considerable tension, and that, if there is to be no bending in

FIG. 16. Engine of Maxim's aeroplane.

them, the frame pieces must be strong and numerous. Thus if a small

plane of area A is stayed at the outer edge by two rods (one on each

side), and N is the thrust, there is a turning moment about the

N 6
centre point = .

- which has to be balanced by a tension
T.^

in the

rod, so that

(15)

Similarly on the other side there is the balance
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There will be a horizontal tension in the joint at end of strut

= T
1 cosa+ T

2 cosi8 .... (16)

and a vertical push
= T

X
sin a+ T

2 sin/3 .... (17)

This will be opposed to the up-thrust N cos 0, so that the force in

rod OR equals

OSjS) . . . (18)

In a similar way all other rods and struts will need to be

designed, using the maximum working stresses that can be allowed.

Weight for weight steel is as strong as aluminium, so that using

good steel rod, breaking at, say, 30 tons in the inch, and using a

x
& r*

s^r*2*^
FIG. 17. Diagram showing stresses in stays of aeroplane.

factor of safety of 5, we can allow 6 tons per square inch. The

dimensions must, of course, be cut down to the greatest possible

extent. Most machines consist of one longitudinal lattice-framed

box girder, the planes being supported on transverse similar girders.

The steering surfaces are carried on extensions of these frames. A
slight concavity is desirable in the planes, as the eddying behind the

plane is thereby increased (as in fig. 18), and there is a greater

diversion of the stream-lines. The head resistance cannot be so well

diminished, but the lift is greater.
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It is, moreover, very likely that such an arrangement causes

greater stability in the position of the centre of pressure, which

would decrease the vibration of the car.

The relation between the horizontal and vertical velocities being

determined by the angle of the plane, so that

vertical displacement jtan -.
(T
_

fl) (19)
horizontal displacement

by altering the plane we can alter the relative velocities, decreasing

the lift and gaining horizontal velocity, or vice versd. This is not

exactly true for small angles. (See Lord Eayleigh's paper referred to

in Bibliography.)

FIG. 18. Resistance of air to curved aeroplane ("aerocurve").

In all aeroplanes it is desirable that the surfaces should be so

controllable that they can make a very small angle with the horizontal.

The advantages of this are twofold :

(1) At certain heights and relative velocity to the air it will be

possible to support the plane on the air as a soaring bird does, and

at the same time reduce the propelling thrust.

(2) In the event of any accident to the propelling mechanism, a

nearly horizontal plane will support the vessel and will whirl down

slowly to the ground.
This effect can be seen well if one drops a stiff card from a high

place. -Last year I made several experiments in this way from a

height of about 200 feet. Pieces of stout cartridge paper were

allowed to descend. They went down in easy curves without any

overturning, and alighted on the earth at distances varying from

200 yards to half a mile. The same thing is seen in the descent of

an unweighted kite. (See Appendix, re plunging.) It is necessary,

however, that the e.g. should lie in front of the centre of area of the

plane or planes, if there is to be no final overturning.

It is probable that the safety of heliconefs could be considerably
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enhanced by the use of such planes, whether permanently or only

temporarily in action.

The stability appears to be at a maximum when there is a slight

curvature (compare Du Bois Eaymond), as then there is the maximum
frictional resistance to the air. This curvature is very noticeable in

the wings of birds. (See previous page.) Mr Phillips has made

many experiments with "
aerocurves," and gets an increase of lift

amounting to 50% or more with cissoidal curves, the cusp being in

front and the versive of the curve about *1 of the chord. Farman

and others put the cissoid the other way on.

Seeing that the efficacy of the aeroplane depends on the velocity

with which it moves against the air, it follows that in its simple

form it cannot exert any initial ascensional force, and it has been the

practice in most experiments to give it an initial velocity by making
it descend a slope. The only alternative to this is to fit it with a

motor which can give it a forward velocity by friction against a

surface : in other words, a locomotive or automobile. The helices will

usually be able to propel it along the ground. If this is permanently

fitted to the car, its weight would be a great difficulty ;
and if it

were not, only one flight would be possible. We may therefore sum-

marise the question of starting an aeroplane by saying that there

are three means available :

(1) Gravitational acceleration.

(2) Locomotive attachment.

(3) Some lifting device, such as a heliconef, balloon, aviplane or

a natural height.

Under the last we have to consider that any aerial arrangement
which will lift the aeroplane might just as well be used throughout.
As regards height there is the objection that sufficient horizontal

velocity might not be attainable during the fall
; although, of course,

on account of the area of the planes, the descent would be slow.

Then again there would be danger of whirling against the side of the

precipice or framing from which the descent is made.

Altogether the first method seems the most feasible, although it

is certainly unsatisfactory, as considerable space and little friction are

required. Sir Hiram Maxim's machine, it will be remembered, was

started on guide rails, wheels being fitted to the aeroplane. There is,

however, yet another objection to this. If, at the moment of the

desired horizontal velocity being reached, there is any adverse air

current, the plane will again descend and probably leave the rails.
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The acceleration down a plane inclined to the angle and with

a coefficient of friction
/x,
= tan is

sin (0-0)
COS0

The acceleration will not, however, reach this full value, as there

will be air resistance to the planes ;
so that the total force acting at

any moment will be

mg --~ -^2A sin2 x^ (2)
cos $

where A is the area of the plane and
\Js

its angle, (v and k are as

before.)

This result is somewhat complicated from the fact that if the

actual acceleration is a
,
then v = a t, and a is indeterminate from the

equation.

We can, however, disregard the back thrust at the commence-

ment of the run and can also find the value of v, at which the gravi-

tational acceleration is neutralised by equating the two terms and

solving for v.

Maxim found the lifting moment occurred when the linear

velocity was between 30 and 36 miles per hour, but this, of course,

depends on the areas of the planes and weight of the contrivance.

If we have a mechanism which will rotate the planes so that just

as the critical velocity attained is known by the equation

,
sin0-)

}
cos <

then we do away with the thrust opposing the force of gravity and

introduce the lift at the most opportune moment.

Some such controllable rotations will also be an essential feature

of a good aeroplane, so that this arrangement should in most cases be

possible.

If, as there probably will be, wheels are fitted to the plane, then

//,
will be the observed coefficient of friction, including the rolling

friction at the flanges and the sliding friction at the journals.

In the event of an automobile attachment, the effective H.P. of

this arrangement must be such that the machine can be propelled

along the ground at a velocity v such that the vertical component of

the momental thrust is equal to the whole weight, and, as before,
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the plane would need to be turned so as to produce a minimum
of resistance.

In the case of a drop there will, of course, be a maximum value

for the downward velocity gt or J'2g/i, although the vertical

thrust against the planes will never permit this value to be

attained.

An approximate value for a
,
the retarded gravitational accelera-

tion, in the case of directly downward fall, is found by the following

reasoning :

(W T) = force = m(g a) = ma . . . (4)

since T m
,and a =g--- ;

. (5)
7/6

but v2 = a t,

. . . . (6)

In further considering the resistance which is opposed to the

passage of a plane through the air, it must be remembered that the

displaced fluid is not wholly forced aside, but tends also to be

compressed forwards, a wave of such condensation being propagated
at the rate of about 1100 feet per second. Behind the moving body
the air rushes in with a maximum velocity of about 1300 feet per

second, and as the space is not instantaneously filled with air at

normal pressure, the total resistance to the body is further increased.

If the velocity forward is less than 1100 feet per second, the air

may be considered as of normal density in front of the surface
;
and

behind the body there will be a partial vacuum of greater or less

rarity, according as the velocity is near to the velocity of the air

rushing into a space of low pressure.

From this it appears that the resistance to a plane, although

ordinarily varying as the square of the velocity, will yet further

increase
;
and so it is found that with a velocity of about 1700 feet per

second the back pressure is upwards of three times that which the

ordinary rules give. In view of the high speeds which will probably
be obtainable when the problem of aviation has been solved, this

indicates a very important although apparently paradoxical result,

4
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viz. at very high speeds less thrust and lifting power are necessary

than at low ones, and so the area of the bearing surfaces can be

diminished considerably, the effect being most marked with small

angles of inclination.

It must be understood that this applies only to thin-edged planes.

Mr Curtis gives an algebraic proof of this somewhat startling

result, which was first clearly demonstrated by Professor Langley.

If T is the power exerted, R the resistance, and V the velocity,

and we take R =W tan a, where W is the weight of the plane and

a its angle (a small one), and differentiate the equation

T =VW tan a (1)

as follows :

da n .

. (2)

then it is obvious that
-~^ (the rate of increase of the power with

regard to the velocity) is controlled by -^. Experiment, however,

shows that V increases as a decreases, so that
-^j

is negative, and

therefore the second term of the right-hand side of the equation is

dT
also negative, and the greater V is, the less is

-^.

I have dealt with Langley's work in the Appendix, but I would

here point out that it is the soaring flight V which increases as a

increases, not necessarily the velocity of translation.

Although this result is very interesting, we have to consider that

planes alone would probably be insufficient for the practical needs of

conveyance, and although M. Drzwiski and others have indicated a

very small angle (about 2), low speeds and massive bodies would

probably necessitate a larger angle and a consequently larger

horizontal component force. There can be no doubt, from ordinary

experiences with kites, that a plane worked steadily against air

currents (whether or not produced by its own motion) will do good

work, even if large angles of elevation are used, although, of course,

the resistance is greater. (Farman's and the Voison machines

generally use rather large angles.)
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The reason for this lies in the fact that the smaller the angle the

less the quantity of air displaced, and therefore the less is the

momentum derived from it.

While it is undeniable that at small angles we have a most

satisfactory proportion between the lift and the horizontal resistance,

the former increasing and the latter decreasing, yet only the total of

the two can have an appreciable value at low velocities, if the area

presented transverse to the direction of motion is adequate.

I have given full particulars of the relation between weight and

plane area, but it will be as well to notice the two following

formulae which have been obtained :

Hannel's Formula :

x = y. log 500.

x= kilogrammes of weight, y width of plane in metres.

Hartings* Rule : Area of plane (one side of machine),

A= 5 to lOxWl

A= area in square centimetres and W =. weight in grammes.
As De Lucy's exhaustive figures indicate, however, there is no

absolute rule. Seeing that speed of wing is quite as important as

area, this result might of course be anticipated.

M. Chanute computes the H.P. at about 5*87 H.P. per ton, and

finds that a pigeon exerts 10 H.P. per ton.

Professor Langley's extensive experiments have thrown much

light on the subject, and are discussed in the Appendix.
Professor W. H. Dines' extensive experiments give much informa-

tion and generally corroborate the results given above save that the

pressures are by him found to be slightly less.

Reference has been made to the necessity for constant balance.

Professor Bryan and Captain Ferber have studied this question

analytically, and have come to the conclusion that

(1) There is, for every aeroplane, a certain critical velocity below

which oscillation may occur to a dangerous extent.

(2) Above this velocity (which depends on the weight and

dimensions of the aeroplane) stability is ensured if (a) the longi-

tudinal moment of inertia about a transverse axis through the centre

of gravity is such that the radius of gyration (metres) does not

exceed __
weight in kilos

37 X lateral spread in metres,
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(b) the centre of gravity of the whole machine falls ahead of the

general centre of area of the planes, the exact position being found

by experimental glides.

(3) Lateral stability is ensured by the use of a keel or a dihedral

arrangement of the main planes, the total effective lateral area being
at least 10 times the head resistance due to causes other than the

lifting thrust, and the said keel being behind and well above the

centre of gravity.



CHAPTER V.

ORNITHOPTERES.

IT has been shown by various students, including Wenham, Marey,
Borelli, Mouillard, Ader, and others, that the mere downward dis-

placement does not, as a rule, produce sufficient momentum to cause

ascent; but that slow flight by turning the wings towards the

direction of motion (an aeroplane effect) gives a vertical thrust which

provides support. The famous experiments of Lilienthal and

Pilcher have shown that this is an extremely important factor, and

Watgs l^&

Vertical Planes with. Rowing action/

FIG. 19. Beetle in flight.

that when once sufficient momentum has been obtained to give the

start forward, propulsion or the adaptation to the wind currents will

provide nearly all the ascensional force needed.

Professor Langley's aerodrome demonstrates the possibilities of this

effect to a remarkable degree. A description of the various experi-
ments with it will be found in Travels in Space, 'by Valentine and

Thompson, but I do not find that the general conclusions at all

militate against the hypotheses which I give below.

The attention of would-be aeronauts has long been directed to

the flight of birds and insects, and it will perhaps be useful to

roughly examine the mechanics of a beetle's flight.

49
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It must be assumed that the upward thrust of the air is

produced by the downward action of the wings. The weight of a

large beetle (I purposely choose the heaviest and direct flying type)

is about -J^Q Ib.

Taking the effective area of each wing (i.e. the difference of the

projected areas in up- and down-strokes) as A = f square inch, and V
the downward velocity as n x I where n is the number of strokes per

second and I the mean length of the strokes (1 inch), we have T the

thrust = &V2A. To balance in the air T must at least equal the

weight (cub.
k= -002288, say, j^A

JL JL 1 1 2 3_
120 400 '12* 12'' '288

2 _400x 12x12x288
3x120

?i = 215 beats per second.

This corresponds to an audible note a little below the middle C,

and everyone is familiar with the musical notes produced by the

flight of insects.

This reasoning is made on an assumed vertical flight, but in the

case of ordinary flight there is forward as well as upward motion,

so that we have an aeroplane action as well as a simple downward

one,

Let us now take the case of the bee, in which the weight is

about -g^Q Ib., stroke about J inch, and area 2-J-^-.

J_ JL 1 L 2 _L
500 400*24*24'

^

''288

2 _ 400. 24 .24.288

500

71 = 34:2.

This corresponds to a note just above the middle C (256). In

ascending, this speed will, of course, be exceeded. Naturalists are

familiar with the gradual raising of the pitch of the note until it

ceases to be audible. This point of inaudibility corresponds to a

frequency of upwards of 12,000 per second, or 720,000 beats per

minute. It should, however, be noticed that the sound is not always

produced by the wings.
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This will indicate to what an extent natural flying appliances
have evolved.

Observation of birds (particularly gulls) indicates, however, that

such high velocities are not essential. I have frequently seen gulls

supporting themselves with not more than three beats per second,

delivered with a firm quick down-stroke and slow up-stroke. Taking
the weight at 2 Ibs.,

A is about 1J sq. ft.

. V2_2 200 400 -.,"* ::"~ :

V = ll-52 ft. per sec.

Taking three strokes per second, this indicates that the sum of

the mean wing velocity and that of the air current (if any) must

equal 12 feet. This is the actual distance moved through, if there

is no air current, so that the stroke would be about 2 feet per wing

(actually the velocity is not uniform, but greatest a little after the

commencement of the down-stroke). If the instantaneous wing
velocities are such that their mean value exceeds 12 feet, the stroke

need not be quite so long (figs. 20-23).

In Mr Shipley and Professor MacBride's Text-Book of Zoology

(Cambridge Press), the following description is given of a bird's

flight:
" A bird, when it is in the air, like any other heavy body, is

continually falling ;
the blow of the wing has therefore not only to

effect a forward impulse, but also an upward one sufficient to com-

pensate for the distance the bird has fallen between two strokes.

These impulses are, of course, derived from the elastic reaction of

the air compressed by the down-stroke of the wing. When the

wing is expanded it is slightly convex above and concave beneath.

This arises from the fact that the quill feathers are attached to the

upper edge of the webbed limb and project gently downwards and

backwards, so that there is a space left which is bounded by the

quills and in front by the bones and web of the limb. Now if this

space had a symmetrical shape, the air would be compressed in such

a way that the resultant impulse would be directly upward ;
but it

is not symmetrical, for its roof has a very steep slope in front and a

very gentle one- behind, and the air is compressed in such a way that

an oblique reaction results, a reaction which we can resolve by the
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FIG. 20. Ventral (under) view of left wing of duck, disarticulated and
without covert feathers.

7

FIG. 21. Dorsal (back) vie\v of right wing of duck (covert feathers removed).

FIG. 22 Ventral view of left wing of duck.

8

FIG. 23. Dorsal view of right wing of duck.



ORNITHOPTERES. 53

parallelogram of forces into an upward and an onward one. So

much for the flight of a bird in still air. The air is, however, very

rarely still, and the currents which exist are never quite horizontal,

but generally inclined slightly upwards, since the lowest layer is

checked by friction against the ground, and the birds which are good

flyers can, by inclining their wings at the proper angle, obtain quite

sufficient support from the play of the current against the wing with-

out exerting themselves to any great extent. This is called soaring,

and can be beautifully seen in the flight of the seagull. In this

manoeuvre the birds are assisted by the tail."

I am inclined to think that too much importance is here attached

to the elasticity of the air. The reaction against the wing is rather

more a question of momentum than elasticity. Although it is true

that a sudden impulse produces a compression and consequent back

Wings Vibrate Transversely

FIG. 24. Butterfly in flight.

pressure (in accordance with Boyle's law), this pressure can only

have a large value when the air is confined. The only resistance to

displacement is the pressure of the surrounding atmosphere, except

in the direction of the wing, and the air will rather tend to escape

than to be compressed. This is, however, a problem which can be

attacked only by experiment, as the curious air currents produced

will not be determinable by any simple mathematical treatment.

With the concave plane, however, it is certain that compression

will somewhat add to the forward thrust.

The flying apparatus of the class of insects including the butterfly

and moth gives another example of the aviplane.

The weight W = about 2 oVo Ib.

Wing area = about 2 sq. inches each.

Length of stroke = about 1 inch.

_1 J_ A_ L 2
2

2000
~
400 '12' 12

' U
'144'
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This corresponds to a frequency of 47 per second, which is more

than is usually observed.

The wing area varies, according to M. de Lucy, between the

following limits :

49 sq. feet per Ib. (gnat).

0'44 (Australian crane).

Enough has been said to show the relation between the strokes,

area, and reach of the wing, but we have to consider also the fact

that the wings are so tilted that there is a minimum resistance in

the direction of the resultant momentum (i.e. compounded of the

vertical and forward thrust).

We thus find that the flight of a bird or insect consists of two

component actions on the down-stroke and two on the up-stroke.

(1) Downward thrust, from which is obtained the ascensional force.

(2) Forward thrust, which is combined with (1), so obtaining the

aeroplane effect.

(1) and (2) together constitute the down-stroke which provides

the lift.

(3) Rotation of wing from an inclined plane into a nearly

horizontal plane.

(4) Upward movement of limb.

(3) and (4) together form the up-stroke, which, by drawing against

the air current of the down-stroke, gives forward propulsion.

In the case of a bird's flight on the up-stroke, the feathers are

thought to be partially separated, so that, if there is any part of the

wing traversed by the air, the resistance will be as small ,as possible.

On the question of balancing, the bird well illustrates the principle

I have repeatedly referred to of the coincidence of the centroid

with the axis of the thrusts. A flying bird extends its neck forwards

and spreads the tail so that the whole body is balanced about a point-

midway between the wings. The wings are readily adjustable,

so that the turning effect of the air-thrust in one balances that

from the other, and horizontal equilibrium is also maintained by

moving the tail feathers.

There are thus two couples acting on the bird, and the algebraic

sum of them should be zero.

In plan we have the forces shown in fig. 25, the arrows indicating

the position of the resultant thrust on each wing and the centroid.

In elevation we have the same two forces passing diagonally



ORNITHOPTERES. 55

through the plane of the centroid, and also a zero moment of weight
about the centroid. By altering the wing area and plane the bird

can momentarily effect a deviation from the line of motion, and by

modifying the frequency can ascend or descend.

All the flying actions proceed in all probability from the reflex

action of the lower nerve centres, so that, unless the bird requires

FIG. 25. Under and side views of flapping bird, showing the coincidence
of the resultant thrust with the centroid.

to alter its direction or velocity, no mental effort is needed until it

begins to become exhausted.

Professor J. Bell Pettigrew, M.D., F.B.S., made a series of very
elaborate researches into the flight of birds, the results of which

were summarised in two papers read by him in 1867 before the Eoyal
Institution and the Linnean Society. They were published in the

Proceedings of these societies, and in his book Animal Locomotion.

The points he established were chiefly the following :
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(1) The wings act downwards and forwards in the lifting stroke

and upwards and backwards in the propelling stroke.

(2) The wing tip, wing roots, and the centre of gravity of the body
each describes a sine curve during flight, the curve of the tip being
half a period different in phase from that of the body, and the root

curve about a quarter of a period.

Hence there is a helical motion in the wing both in regard to the

locus of the points in their forward motion and also laterally, so

P-s&C.G.

C.P.

CG.

FIG. 26. Under and side views of a soaring bird, showing coincidence

of resultant of thrusts with centre of gravity.

that the wing may be said to screw and unscrew during flight, thus

getting a maximum grip of the air.

The following diagram (fig. 27) of a period indicates well the

wing changes :

at Highest
dy isLowest]

first
Half of
Down,

StroTve,

FIG. 27. Wing cycle (according to Professor Pettigrew). (Modified.)



OKNITHOPTERES. 57

(3) The effect of wing largely depends on the resilience of the

surfaces and their ribs.

These conclusions have been, to some extent, substantiated by
Professor E. J. Marey, whose results appear in the Revue de Cours

Scientifique de la France et de I'fitranger, 1869, and are given below.

One of the most important points considered to be established by
Professor Pettigrew is the value of elasticity and the helical action

of the wings of birds, and bis following remarks on the subject are

very noteworthy :

" That the wing twists upon itself structurally, not only in the

insect, but also in the bat and bird, anyone may readily satisfy

himself by a careful examination: and that it twists upon itself

during its action I have had the most convincing and repeated proofs.

The twisting in question is most marked in the posterior or thin

margin of the wing, the anterior or thick margin performing more the

part of an axis. As a result of this arrangement the anterior or

thick margin cuts into the air quietly, and as it were by stealth, the

posterior one producing on all occasions a violent commotion,

especially perceptible if a flame be exposed behind the vibrating

wing. Indeed it is a matter for surprise that the spiral conformation

of the pinion and its spiral mode of action should have eluded

observation so long ;
and I shall be pardoned from dilating upon

the subject when I state my conviction that it forms the fundamental

and distinguishing feature in flight, and must be taken into account

by all who seek to solve this most involved and interesting problem

by artificial means."

The above quotation from Animal Locomotion synthesises the

professor's conclusions, and I insert it here as indicating the rigid

uniplanar aeroplane to be not necessarily the last word on the

subject. I have described above the motion of a bird's wing as

studied by the same expert. I think it is almost entirely agreed

among aviators that some measure of elasticity and helical motion

in aeroplanes will vastly enhance their practicability, so that his

results are important.

In connection with aviplanes it is important to notice a result

obtained by Sir G. Cayley many years ago, viz. :

" In very acute angles with the current, it appears that the

centre of resistance does not coincide with the centre of its surface

but is considerably in front of it. As the obliquity of the current

decreases these centres approach and coincide, when the current
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becomes perpendicular to the plane : hence any heel of the machine

backwards or forwards removes the centre of support behind or

before the point of suspension." I referred to this in the last chapter,
and gave a value for the displacement.

This is a consideration which will vitally affect the stability of

any system of aviplanes, as the reaction will tend to produce a

turning moment upon the vessel with a consequent backward heel.

This heel will continue until, on account of it, the centre of pressure
has returned to a position where stability is obtained.

If there are two planes, only slightly inclined, with the supported

weight between them, the displacement of the centre of pressure
could be allowed for by a jockey-weight travelling forwards so as to

shift the centroid to a position corresponding with the resultant up-
thrust. This is done in M. Jose Weiss' new artificial bird. 1

The actual motion which occurs in an aeroplane is best studied

by observing the motion of a kite. The kite string, when pulling the

kite against an air current (already existing or produced relatively

by drawing the kite against the air), acts in much the same manner
as the thrust of a screw behind an aeroplane would do, and the

motion of the kite may roughly be considered as compounded of a

sliding motion up the inclined plane (of air) on which the surface is

acting, and the downward acceleration due to the weight of the

supported body.

A similar motion will be assumed by the aviplane, but it is

affirmed by Professor Pettigrew that there is only an appreciable

buoyancy when the plane attacks the air at a variety of angles and

possesses considerable elasticity throughout. Whether .this is an

absolute essential to flight (many experimenters do not seem to think

it is), practical experience only can tell. It is, however, certain that

a more or less unchanging plane can buoy up a considerable weight,
but there is little doubt that an elastic and curved surface is more
efficacious than a rigid and plane one.

If a non-rigid plane is used the front edge must be the strongest,
and the extent of the plane laterally should be considerable. It

must possess considerable elasticity in all directions, and preferably
be slightly twisted on itself, so that the sections of the surface are

helices.

The back edge can be rendered very pliable by having the

1 In those I have seen, made by this inventor, tractors, not propellers, are

used, but the general arrangement is shown in the illustration (fig. 31 A).
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material of decreasing thickness or making the stays upon which it

is framed of decreasing section towards the edge.

A vast amount of useful and interesting information on the

subject of flight is contained in Professor Marey's work on Animal
Mechanism. He contests Professor Pettigrew's conclusion as to the

analogy of the wing to the screw propeller, and while admitting that

the wing does rotate during its motion, contends that the angular

displacement does not warrant its comparison with a screw propeller.

Furthermore there is a reverse rotation during the return stroke,

which would invalidate the action of a screw propeller. Nevertheless,

Down,
Stroke

(CLockwise,

^I , MaacJElevojbLorL

-&9&Pl*B&L- _
(Not TLecesscurify

K-

Direction, of
Wing

FIG. 28. Wing cycle, according to Professor Marey. (Modified.)

the results he obtains as to the paths of the wings of birds and

insects appear to agree fairly well with those of Pettigrew (fig. 28).

Marey's experiments were all made with recording apparatus, arid are

therefore more reliable.

A careful comparison of the two sets of results does not show

much appreciable difference, and I think we may fairly say that these

two experimenters, although they approached the subject from

diverse points of view, hare together firmly established a knowledge
of the motions of wings.

The chief difference between the two lies in the large importance
attributed to elasticity of wing and ligament by Pettigrew, which is not

referred to at any length by Marey, although he allows that it is largely

responsible for the change of angle (torsion) in the plane of wing.
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In regard to Professor Marey's experiments, it cannot be denied

that they are far more scientific in method than those of Pettigrew.
As far as possible every cause of error was eliminated, and actual

records of the various motions were taken by him with pneumatic
and electric apparatus. Professor Pettigrew, on the other hand,
seems to rely almost entirely on observation, which, on account of

the great velocity of the wing, is very difficult.

The apparatus used by Marey was of such a character as to

measure each motion independently of others, and the only flaw that

appears anywhere is in that he seems to overlook the irregularity
of angular transmission through the Cardan or Hooke's joint. This

would not, however, be of any great importance for the small angles

measured, and I think it can be fairly said that he and Pettigrew
have exhausted the subject from an experimental point of view.

The whole principle of flight appears to lie in the fact that a

curved surface tends to glide in the direction of curvature, or, in the

limit, an inclined surface slides in the direction of inclination.

Hartings (in Archives Nforlandaises, vol. xiv. p. 1869) taking

a area of surface (sq. centimetres)

p weight of body (grammes),

finds that for each wing approximately

I/^
=2 '

25>

or 5*0 for the two wings, and we thus fix a relation between weight
and wing area. Mullenhoff and Weiss have arrived at similar

rules.

To conclude these researches into natural flight, we may collect

the chief points :

Borelli
"
Wing acts on air like a wedge."

Strauss-Durkheim "
Wing acts as an inclined plane."

Liais
" Effective in lifting on both up- and down-stroke."

Count d'Esterns "
Support possible without motion of wing."

De Lucy "Definite relation between weight and area."

Hartings" Square root of area varies as cube root of weight."
Other quotations of similar character could be given, but these

represent what may be considered the axiomatic truths indispensable
to any understanding of the subject of natural flight, which must

always be a far less simple matter to comprehend than at first sight
it would appear.
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Penaud, Marey, and Pettigrew
" An effective artificial wing can

be formed acting on the same principles as a bird's wing."
A man does not possess either the physical or the mental energy

necessary to produce these motions by any mechanical appliance, and

any means of aerial locomotion on the aviplane principle will need

to be driven by some prime mover, but can soar on an air current

(Lilienthal).

A simple fan-wheel (fig. 29), the blades of which rotated in a

Resultant Weight.
Thrust.

FIG. 29. Elevation of vertical fan, the blades of which exert a

downward force in the air.

vertical plane in the upward motion and turned horizontal in the

downward motion, would serve to produce an upward thrust. The

resistance to the air would be as before. The tipping could easily be

arranged by guides and T = &V 2
A, although it is probable, if the fans

were close together, the value of k would be less than
, by reason

c/

of the back momentum from the following fan.

This momentum would have its resultant practically at the

centroid of each fan, and would act along a semicircle concentric

with the wheel, the base of the semicircle being vertical. The

resultant upward thrust could approximately bear to the total.

5
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thrust the proportion -, so that, if there are n fans each of area A
7T

and half act in the air at once, the total upward thrust would be

. nA
T=

the normal thrust against the fans being

(1)

..... (2)

V, the velocity, would be the mean velocity of each fan, i.e. the

velocity of its e.g. The angular velocity of the wheel would be

y
o> = if r is the radius from the centre of gravity of the fans to the

axis
;
so that the torque on the shaft is

Pr= kV*rnA ..... (3)

and the work, excluding the frictional resistance at the bearings, is

W=&V%Aor krWnA . . . . (4)

which, divided by 550 ft. Ibs. per second, gives the H.P. the wheel

must develop after all internal losses. It would be necessary, of

course, to find what value k reaches with different degrees of close-

ness of the vanes.

The conditions assumed are ideal, and it is doubtful if such great

values would be obtained for T. Moy's aerial steamers were designed

on this principle, but were underpowered.
The horizontal thrust of this appliance is zero, and, if we

combine it with horizontally acting helices, and shield the wheels

from the horizontal action of the wind, a possibly practical contriv-

ance could be made.

It would probably be necessary to have at least four of these wheels

arranged in a rectangle, and with level governors controlling their

speeds in two directions, thus :

o
C

FIG. 30. Plan of fans for airship, showing condition of equilibrium.



ORNITHOPTERES. 63

In this way each wheel in a pair would balance the other and

produce the desired condition of zero-moment.

The centroid for equal wheels would be equidistant from the

four centres, and to ensure the vertical balance, the axis of the

drawing helix, or the direction centroid of the helices, if more than

one, would have to pass through this general centroid.

An aviplane (i.e.
a plane which moves like a bird's wing, pteron

or a'ila, would be a more suitable word), resembling even more closely

a natural wing than the one just described, has been a favourite

with many inventors. It consists of a rectangular or triangular

membrane, plane or slightly convex above, stretched on a frame

which is hinged at the inner edge. By means of rods an oscillatory

motion is given, the. tips describing an arc about the hinge. By

constructing this plane to the correct angle, it has been hoped that

FIG. 31. End view of mechanical bird or "aviplane." At E there are controllable

guide cams which depress and rotate the wing ribs.

flight would be possible. I am not aware that an appliance of this

kind (except Major Moore's "
Flying Fox/' which only hops) has been

in use of recent years, with modern sources of power, but even if

arranged in the most efficient manner, there must be a difficulty in

balancing it.

Fig. 31 shows the manner in which I suggest the motions can be

arranged.

A and B are two reciprocating engines which alternately

depress and raise the wings C and D, of which the vertical projec-

tions are seen.

The guides are so arranged that the plane descends forwards and

then at the end of the stroke commences to slowly rotate so that

near the end of the upstroke it is horizontal. Better results would

be gained by using elastic ribs to the plane (see previous description

of bird flight).

(Cf. models made by Penaud, illustrated in the Encyclopaedia

Britannica, 9th edition, article
"
Flight.")
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Owing to the shifting of the centre of pressure, longitudinal

balancing will be very difficult, and lateral balancing almost

impossible.

The thrust can be computed as before. The only suggestion

I can make as to balancing is that a number of small helices should

be employed which shall mutually govern each other by a level, as

before, their difference of thrusts acting against the difference of

thrusts that may occur on the aviplane. I am inclined to think,

however, that the whole arrangement is needlessly complicated,
1 and

that a solution of the problem is more probably to be found in the

simple use of aeroplanes or helices or both.

1

I.e., having in view the fact that the motive force does not, as is the case with

animals, have to be applied in a very limited space.

FIG. 3lA. Weiss aviplane.



CHAPTER VI.

DIRIGIBLE BALLOONS.

THE difficulty of manipulating and balancing flying machines heavier

than air early led to research into the subject of flotation by means

of light gases enclosed in an envelope, to which was attached a

car for the aeronaut. The Jesuit Francis Lana in 1670 proved the

possibility of aeronautics by considering the relative pressures of

gases, but there way no piactical result until the Montgolfier

brothers made their fire balloon in which a quantity of heated air,

in virtue of its expansion, was employed to lift a small car.

The fire balloon is now extinct, as the advance of chemical science

has enabled us to obtain, fairly easily, gases which far exceed

expanded air in their buoyancy.
The principle upon which this buoyancy depends is known as

that of Archimedes, and is stated as principle (ff) in Chapter II.

By this we have the following equation when the balloon is just

about to move :

W+V^
= u>+VP . (1)

where W = weight of balloon, envelope, car, and aeronauts.

V = volume of balloon.

p = density of air.

n = density of gas as compared with air.

w = weight of air displaced by car and aeronauts and

envelope of balloon.

If we call the weight of the gas in the balloon M, then we can

write this equation in the following manner :

w+wM . .

'

,. . . (2)

65
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from which we find that

M=^ (3)n1
~T W w n

and V =-- . ---
. . . . (4)

p n1

thus obtaining the volume of gas required. If the volume of the

gas-bag, car, aeronauts, etc. = v, then w = vp\ so that (4) may be

written

The following practical rules are used in this connection :

(a) One cubic foot of air near level of sea weighs ^ Ib.

(b) One cubic foot of hydrogen weighs ^ of the weight of one

cubic foot of air at the same pressure (i.e.
n = 14).

(c) 1000 cubic feet of coal gas will lift 40 Ibs.

The ascensional force of a gas n times lighter than air is, of

course,

where p is the density (weight in Ibs. per cubic foot).

If then this force (total= V/
c/l

j
practically) is applied to

the weight of the balloon (W w), the upward acceleration follows

from the mechanical law P = ma, i.e.,

1\ /W w\
sM r

or a= . . (6)W w

We next have to consider the differences due to height and

temperature. It is here necessary to remind ourselves of Boyle's

law:

>oc -
, where p is pressure and v is volume.
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Also Gay-Lussac's law :

psc 0, where p is pressure and is temperature (" absolute ").

When air expands without losing its heat

pvy = constant,

i^

or p = cpy

where y is the ratio

specific heat at constant pressure
. , ,

-- = 1414 for air.

specific heat at constant volume

i

This condition (p
=

cpy) is termed the state of Convective Equi-

librium, and observation has shown that it is fairly maintained in the

atmosphere. It is also found that the temperature decreases in

the same ratio as the height. From a consideration of the equation
i

p = cpy, it is calculated that the thermometer falls (see Greenhill's

Hydrostatics)
1 C. in 336 feet.

1 F. in 186 feet.

It will then appear that if the balloon is completely inflated on

the ground and is prevented from rising by N Ibs. of ballast, neglecting
the weight w,

The removal of the ballast will cause the balloon to rise up a

part of the air when the density is only p ,
the ratio of p to p being

Po-W N_ m~~
~VA

If pQ p corresponds to 9 C., then the heigh t = $. 336 feet.

To rise to an additional height h, where there is further diminution

of density a, ballast b must be thrown out.

.-. . . . (8)

As mentioned in Chapter I., in order to obtain a minimum re-

sistance to the air, the balloon is made cigar-shaped, i.e. the figure

of revolution made by a segment turning about its chord, and
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Molesworth gives the following proportions in terms of the middle

diameter :
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The helices should have an aggregate effective diameter approach-

ing that of the balloon.

The weight of balloon material (varnished silk) is about ^ Ib.

per square foot, and the silk cordage is used. 1

If the balloon is not to lag behind the car (this will cause an

alteration in the position of the centroid), a stiff frame will be

required, which can be made partly of steel rods and stay ropes.

The aggregate area of these rods must be sufficient to resist a vertical

stress equal to the weight of the car, and have a shearing resistance

equal to the total air resistance at the maximum relative velocity.

The gas used is either (A) fairly pure hydrogen, or (B) coal gas.

The ascensional forces from each have been given. Hydrogen
may be generated by passing steam over red-hot iron and drying the

effluent. Sodium acting in water also produces about 610 times its

own volume of hydrogen ; but, being very expensive, would only be

used in an emergency.
-

Electrolysis of water will produce hydrogen at the positive pole,

but the quantity is small, being '010384 milligramme per coulomb

(coulombs = amperes X seconds).

The quantities producible from the former two processes can be

found by the following chemical formulae:

Steam on Iron :

3 Fe + 4H2
= Fe3 4+4H 2

.

As the atomic weights are: Fe = 56, H = l, and = 16, then 168

parts by weight of iron produce 8 parts by weight of hydrogen, when

acting on 72 parts by weight of steam.

If the iron is placed in a fire-clay or wrought-iron tube heated in

a furnace and steam passed through it, hydrogen will issue at the

far side.

Sulphuric Acid on Iron :

The gas must be dried and scrubbed before use in tanks.

Sodium in Water :

so that, since Na has an atomic weight of 23, each 23 parts by

weight of metallic sodium liberate 1 part by weight of hydrogen.
Great care is required with this process, as the liberated hydrogen

1 Modern dirigibles such as the Zeppelin and Lebaudy airships have longi-
tudinal or transverse braced steel frames in the envelope to give rigidity and
maintain the form.
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is in a chemically
"
free

"
state when dissociated, and will fire with

atmospheric oxygen if the latter is not excluded.

Ballast or
"
delestage

"
is also needed for a balloon, and may

consist of sand in bags or pig iron. Some discretion is certainly

necessary in liberating it, both with regard to the alteration produced
in the weight, and also with regard to the results likely to happen on

the ground. Sand, if slowly thrown away when there is an air current,

will be dissipated in the air, and will not

produce any injurious result on the earth.

Special sand distributors can now be

purchased.

The steering of balloons may be

effected by the differential action of

helices or by rudder planes.

Eudder planes may be trapezoid or

triangular, and suspended on one of the

rods connecting the car to the balloon

frame. The mechanics of steering are

referred to in the next chapter.

For the purposes of balancing and

descent balloons have been constructed

in sections separated by gas-tight

partitions, each communicating with

the other by a tube with valves.

These valves are controlled by cords

from the car, so that each section may
be wholly or partially exhausted to the

air, or the gas in one may be admitted

to another at a lower pressure.

This arrangement also serves as a

safety appliance in the event of the balloon bursting, as it could

rarely happen that all the sections would fail, and the unexploded
ones could give a partial buoyancy and prevent disaster.

The machinery and the accommodation for aeronauts is usually
in the base of the car, although, if possible, the motor should be
on the driving shaft, which, if there is a quasi-rigid frame, has to

pass through the centroid, and will then be at a higher level.

It is desirable that the car should be covered so as to present a

minimum resistance to the wind somewhat in the manner described

in the next chapter.

FIG. 33. E.P.S. Accumulator

(traction type).



DIRIGIBLE BALLOONS. 71

Small aeroplanes revolvable about horizontal axes are also used

for controlling the ascent in the French and English military

dirigibles.

I am inclined to think the use of the open car with numerous

irregular surfaces (including the bodies of the aeronauts) has to some

extent been the cause of the poor success of the dirigible balloon.

Etforts have been concentrated to forming the balloon of a minimum

resistance, but the car has in many cases been neglected, and certainly

when it is not running level its impedance will be great Even simple
rods and stays cause considerable air resistance. The prime mover for

the helices is either a heat engine (steam or oil) or an electric motor.

I give below some particulars of the weight and fittings for

electric motors, but it is quite well realised now that this is the

heavier source of energy ;
but its advantages in other respects are

very numerous (such as sensitiveness, safety, starting, torque, etc.).

The secondary cells, which accumulate chemical energy in such a

form that it can be reconverted into current, are generally of the

Electric Power Storage Company's type, with an E.M.F. of two volts.

Accumulators (fig. 33). The E.P.S. secondary cell is principally

used for generating current for electric motors (continuous type).

The relative values of the different cells supplied by the Company
can be estimated from the following table :

K. High discharge type. L. Medium type.

WS. Higher discharge (short periods).

P. Large power cell. C. Lighting.

T. Propulsion.

The class T would appear to be the most generally suitable, and

the following particulars will be useful :

No. of

Plates.
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cells are run at about 2 volts, we get for the 23 plate
" T "

cells 100

watts per cell available for about 2J hours (cells must not be worked

right out), so that 8 cells would be required per H.P. working
2 1 hours. This would also be subject to the voltage at which the

motor was designed to be driven, so that, if the cells were arranged

in series to drive a 50-volt machine, at least 25 cells would be

necessary with a total power per second of 2500 watts (at 50 amperes),

or a little over 3 H.P.
, lasting 2J hours. For a longer time the

number of cells must be increased proportionately, and a glance at

the last column shows the result of this on the weight to be carried.

The motor would need to be axle-hung (i.e. direct coupled to the

driving shaft) and with multipolar armature. Starting rheostat,

switches, and friction clutch would complete the set.

The efficiency of a well-designed motor is about 90 per cent., so

that we have the following train of energy loss :

Charging machine, which supplies energy to

Secondary cells, to amount of, say, 100 per cent.

Connections .... (loss practically nil).

Motor loss about 10 per cent.

Shaft journals . . . . 2 or 3 per cent, further loss.

Helix . unknown loss due to slip.

V

V = propeller velocity (pr).

v= vessel's velocity.

x variable extra slip.

It will thus be seen that the weight of electrical machinery (which

even at the lowest limit comes to upwards of 1 cwt. per H.P.) involves

considerable increase in the ascensional force required. (Weight of

motor per H.P. on a 100 H.P. machine is about 44 Ibs.)

For this reason, until some lighter and more convenient means of

generating electrical energy can be discovered, petrol engines will be

most suitable for propulsion.

(The crux of the problem of reducing the weight of accumulators

lies chiefly in the substitution of some lighter metal than lead for

the plates.)

In connection with the power necessary for propulsion, the

figures of Captain Renard will doubtless be useful.
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Taking R = resistance, U = power, U' work on screw shaft, D =
diameter of propelled body (assumed circular in section), and v the

velocity, in metric units, the following relations are given :

R = 0-01685 D2V2
. (1)

U = 0-01685 D 2V 3 .... (2)

U' = 0-0326 D2V3 .... (3)

(I.e. efficiency of machinery, 50 per cent.)

An analogous formula for the resistance in English engineers'

units is Pole's

R = 0-000195 dV . (1)

Where d is diameter in feet of propelled body, v is velocity in

feet per second. (Compare Molesworth's rule, Chapter III.)

Captain Renard estimates the power needed for a balloon 33 feet

in diameter, to travel 22 miles per hour, at 45 H.P.

The trials which were made with Renard and Kreb's balloon

seem to indicate the accuracy of their calculations, and recent ex-

periments in France (1906) with the large balloon " La Patrie
"
have

further demonstrated the feasibility of propelling balloons against

moderate winds.

Sir H. Maxim, in his extensive experiments, found that the friction

against the surfaces of propelled bodies was almost imperceptible, and

this result accords with Professor Unwin's figures given elsewhere.

Professor Thurston confirms these conclusions from his own

experiments, so that we need only consider as important the head

resistance as given by Molesworth or Renard. On this point, however,

see next chapter.



CHAPTEE VII.

FORM AND FITTINGS OF AERIAL VESSELS.

THE form of the ship, once the minimum of accommodation has been

determined, depends to a very great extent on the resistance.

Experiments and marine practice show that the resistance to the

motion of ships arises from three causes :

(1) The skin friction.

(2) The formation of eddies.

(3) The formation of waves.

The last cause disappears in the airship, depending as it does

on the existence of a surface of separation between two fluids of

different densities. Any energy which would in a ship be ex-

pended in this direction will in the case of an airship appear as eddy
resistance.

The resistance to the motion of a ship in water is well illustrated

by an experiment in which a cylinder or parallelepiped is drawn

through water (see fig. 12).

The fluid in the immediate proximity of the moving body is most

affected, and, disregarding the waves formed (on the surface only), we

have:

(a) Skin friction due to the rubbing on the surface.

(b) Eddying near the angles, due to the deviation of the stream

lines, the centrifugal acceleration of the water being expended in the

formation of small whirls.

In a vessel of curved form the middle illustration (fig. 12) shows

the result.

The eddying here arises principally from bluntness of the prow,

and, according to marine experience, rarely exceeds 8 per cent, of the

skin resistance.

The skin friction depends on the areas of cross-section, and, as

75
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already mentioned, =fAv
n where n is approximately 2 and v is the

relative velocity of vessel and fluid.

Such experiments as have been made indicate that a similar law

obtains in the case of air
; but, of course, the coefficient/ will be less

(depending chiefly on the viscosity of the fluid). Its value has

already been given for the cigar shape (fig. 33A), and does not vary
much for any gently curved form.

The minimum eddy resistance is said to be obtained when the areas

are such that the bounding envelopes have sine-curve sections. I am
informed by a naval expert that this is well borne out in practice.

Resistance of Ships. Froude's name is coupled with this

subject, his experiments being classic.

D A
FIG. 34. Form for prow of airship.

The following rules have been established by him connecting the

resistance of a ship with that of a similarly formed model :

T v , - , , , T / dimension of ship \ 3

Resistance of ship = resistance of model -,-.
--

:
~

} ;

Vdimension of model/

or, if the ship is n times the linear dimensions of the model,

K= rw8
. . . (1)

The velocity of ship must be considered as = velocity of model

/ dimension of ship \
.

Vdimension of model/
'

or N =vjn . .... (2)

The standard formulae connecting the power (H), skin resistance

(S), velocity (V), cross-section (A), and displacement (D) are :

For cross-section and skin resistance combined

.... (3)

For sectional area alone .... (4)
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For skin resistance alone

H = eVS . . . (5)
For displacement alone

where
, /3, y, S, e, and f are empirically determined constants.

From Froude's researches it would appear, however, that H does

not vary absolutely as V3
,but more nearly

as HaV3+ C where C is a constant.

Also the resistance R in the case of

water does not appear to vary absolutely

as V2
,
but rather as Vn

,
where n is a

little less than 2 . (1-85 to 1-9). (Experi-

ments with air give a very similar

result. See page 46, Chapter IV.)

From trials made with the ships Iris

and Greyhound, the ratio

LH 'P
; T ,

= about 2-5.
effective H.P.

It would then appear that the best

form for the body of the vessel which is

to have a maximum of upward and for-

ward velocity is one with a cuspoidal or

sinuous form in front and above, the

section lines in all planes directed up-

wards or forwards being sine curves.

The stern of the vessel will need to

be eased away to admit air to the

helices, if these are in the same

D
hori- FIG. 35. Diagram showing method

: i i
. ,, of drawing sine curve for profile

zontal axis as the vessel, much m the of vessel,

same way as the stern of a ship.

To design prow or ridge of vessel set off the length of the prow
OL, and the sernidiameter OD. Describe a semicircle on OD, and

divide into any number of equal parts. Divide OL into the same

number. Erect perpendiculars through the semicircle divisions from

OD and on OL from its divisions. The intersections give the curve.

If this form is approximated to, any alterations in the general form

will make little difference in the resistance, provided the surface is

smooth.

I am not aware that vessels have been constructed in this manner,

but it would certainly appear to be the most suitable.
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If helices are used (contrary to the dreams of Jules Verne and

W. Griffiths, there should be no long masts, as they would be subject

to great bending and shearing stresses), they should be at or below

the level of the ridge (I cannot call it a " keel "). To prevent the

helices being impeded by the current, shields will be required with

funnels above and below, the body being eased round these shields.

See Chapter III. It should be mentioned that experiments with screw-

shafts on ships show that a large clearance round the screw is desirable.

Fig. 36 will show the arrangement suggested for the heliconef.

444 4 *fr 4* +

FIG. 36. Plan and elevation of suggested hull of airship, with minimum resistance.

(N.B. Any multiple of 2, more than 4, can be used as number of shafts ;

the longer the vessel the less is the relative resistance.)

For the aeroplane an arrangement somewhat as in fig 37 will

comply with the requirements, although a more stable arrangement
is shown in

fig. 38.

Two helices arranged in a lateral pair are fixed at A and two in

a vertical pair at B. By one of the level governors described, the

speeds of these are modified so that the sum of moments is zero.

At this point some general considerations of balancing appliances

will be useful.

Note on Multiple Surfaces. I have endeavoured to show how the

equilibrium of the aeroplane depends on the coincidence of the thrust
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with the centroid, but it is necessary to note two further details, in

regard to the pairing of surfaces and manipulation.

(1) If the car is not rigidly attached to the planes, but simply

swung thereto, it will tend to hang under the point of support, but

will be retarded or accelerated by the rate of change of velocity of

the whole device. Such an arrangement would for some positions

FIG. 37. Duplex aeroplane showing equipoise about the centroid.

be stable, but the moment the centre of pressure ceased to coincide

with the axis of suspension, a turning moment would be introduced

on the plane with consequent irregularity of motion and the plane

could only with difficulty be controlled.

(2) When a turning moment is exerted on an aeroplane, owing to

the varying velocities of different points on the planes, increasing

with their remoteness from the axis of rotation, there will appear

A
-A-

Betix,

FIG. 38. Arrangement of triple aeroplane.

complex aerial reactions, so that the plane will tend to sweep through

curves in a vertical plane with a reverse rotation to that which would

be caused by the turning moment, and this action would only cease

when the air currents were non-effective. 1
Then, of course, the

rotation would occur in the proper direction, and the plane would fall,

but not vertically. With a balanced system, on the other hand, a

vertical fall would occur when speed was sufficiently reduced. Ex-

periment would doubtless show that considerable facilities for vertical

steering are obtainable by shifting the centroid, as in No. 4 below.

1 See Appendix, re Plunging.
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There appear to be the following types of balancing apparatus

available, each of which possesses advantages and disadvantages :

(1) The pendulum (described under helix).

(2) The fin for transverse balance.

(3) The plane for longitudinal balance.

(4) The jockey-weight.

(5) The gyrostat.

I would here mention that it would seem to be quite impossible
to regulate the level by hand control. Mind, hand, and mechanism

would not be rapid enough, nor would it be possible to always gauge
the righting force required.

(1) The pendulum I have already described and mentioned its

disadvantages, which are (a) angle due to acceleration, and (ft) non-

sensitiveness of prime movers, (a) would not be of any consequence
in transverse balancing.

(2) The fin is a vertical plane hung to a rod above or below the

car, which is maintained in position by the wind pressure. When
the car sways so that an angle is made between the central plane of

section and the fin, the angular displacement is transferred to the

throttles of the governors, probably by a small relay engine.

(3) The plane for longitudinal balance is a counterpoised

horizontal plane which transfers its rotative angular motion

in the same way to the vertical sources of propulsion. The rotation

of a similar plane about a horizontal axis would serve for transverse

balancing.

(4) The jockey-weight. This is a weight which, by means of a

small relay engine, moves so as to produce a righting moment.

(There could be two, one at either end, which by a leading screw with

right- and left-handed threads of long pitch would move both at

once, one in and the other out.)

(5) The gyrostat (fig. 39) has already been used to balance the

torpedo. It consists of a mass of considerable inertia rotating in

gimbals. It is found to exert a considerable force, opposing any

tendency to deviate the axis of revolution, and a torque then appears

tending to twist the framework in a plane at right angles both to

the axis of rotation and the deviating force (" precession "). The

transmission of this torque by levers to the controlling mechanism

would serve to right the car.

1 Or by allowing the horizontal frame to precess, a constraint will be exercised

on the vessel. This can be increased by assisting the precession mechanically.
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In all these cases the governor may (1) act directly on the supply,

valves, or shafts of the prime movers, or (2) rotate or displace some

plane or rudder to produce an opposing torque by the wind pressure.

In the latter case some work must be done by the governor, which

would possibly reduce its effectiveness. The plane (No. 3) is, of

course, analogous to the controlling tail feathers of a bird.

In connection with the gyrostat it may be useful to note the

FIG. 39. Gyrostat. The fly-wheel (shown in section) is kept revolving by small

motor. "When its axis is deflected a torque appears in frame at right angles to axis.

following formula connecting a, the angular velocity of precession

resulting from the endeavour to turn the axis of the gyrostat whose

revolving mass has a moment of inertia I and an angular velocity Q.

The total angular momentum is IQ, and since torque = angular

momentum x angular velocity

T = IQa . - (1)

It is to be noticed that helices themselves have some gyrostatic

action, and it is possible that the means of balancing might be to

some extent directly derived from their rotation.
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We must next consider the question of steering. This may be

accomplished by

(A) Rudder planes.

(B) Unequal helix thrusts.

The rudder plane is the means more usually employed, although in

twin-screw steamships the use of one propeller for rapid turning is

familiar.

The action of a rudder plane may be analysed for our purpose in

the following manner :

Stem,

The air is deviated by the rudder plane through an angle 0.

Taking the air as approaching parallel to the axis of the vessel,

and calling its momentum P, the momentum resultant normal to the

rudder is P . sin .
= F.

The volume of air approaching P, if the area is A, is VA . sin ',

where V is the relative velocity. The momentum is therefore . V . A
y

sin 0, so that the normal momentum (
= force) is about

F = .V.Asin2
(2)

9

(Note, however, that for small angles the value of F will exceed

this. See Chapter IV.)

This force may be considered as acting at the centre of pressure

of the plane, so that, if r is the distance from the centre of pressure

to the centroid of the vessel, then the force F produces a motion of

translation as well as rotation, unless the c.p. of the rudder happens to

k2

coincide with the centre of oscillation (i.e.,
r= is the radius of

c

gyration). This certainly is the most desirable position for the rudder.

In this case there will only be rotation such that the angular acceleration
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where I equals the moment of inertia (mass-moment of the second

degree '.

This would be best obtained by experiment, as the calculation

would be extremely complex, whereas by suspending the car I can

easily be found.

When altering the helix thrusts by modifying the number of

revolutions per unit time, if Tj is the, thrust of one helix and T
2
the

thrust of another, the lateral distance between each and the centroid

being d
l
and d^ then the nett turning moment is T^ T

2
d

2>
and

21 18 2i

18

Fm. 41. Section of change-speed gear box. (De Dion Bouton Co.)

the angular acceleration will follow from the rule (3), modified as

follows :

The engines by which the helices are driven (for, whether simple

helices or aeroplanes are used, the energy must be transmitted

through a helix) will doubtless, under present circumstances, be of

the petrol type with electric ignition. The weight of the engine in

Ibs. per H.P. has now been reduced to 2*2 in some makes (see table

of the values of
" w" page 11), and the following fittings will be

required in addition to the complete engine set (including petrol tank,

carburettor, engine, crank, shafts, and fiy-wheels) :

(1) Friction clutches with operation levers.

(The level governor could control these levers to some extent, but

considerable discretion would be necessary.)

(2) Change-speed gearing (fig. 41) with a wide range : a type which
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did not involve stopping the helices would be necessary (i.e., it must
be on engine side of clutch).

32

12 II

FIG. 42. Section of plate clutch. (De Dion Bouton Co.)

(3) Valve controlling gear, including throttles, carburettor, feed-

pipe, and levers to the exhaust and admission tappets.
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Starting Gear. Reversal of motion can be obtained by the

use of change speed gearing, which is altered for the backward

motion, so that its torque is reversed and transmitted by the clutch

(fig. 42).

Reversible wings to the helices can also be used for this purpose,

but the rigidity would probably be impaired.

Magneto-ignition would be used in preference to secondary cells.

List of principal makers : De Dion Bouton, Puteaux
;

J. Julien,

Panhard et Levassor, Antoinette Co,, Dalifol, Aster, Renault, Daimler,

Mors, Dufaux Freres, Esnault-Pelterie.

Any indirect coupling would have to be accomplished by chain or

wheel gearing, as at the speeds attained belt gearing would be of poor

efficiency on account of the centrifugal force.

Compound engines with three or more cylinders would be neces-

sary (fig. 43), so as to do away with any balancing of the momenta

of the moving parts, and I am inclined to think that for vertical

helices triple-cylinder engines with the pistons trunked and connected

to one crank pin would be most convenient, and certainly would

occupy less useful space.

The thrust-block of the vertical helix shafts should be near the

ridge of the car, so that the tension in the shafts may be kept in a

short length between the helix and the thrust-block.

Safety appliances would consist of automatic parachutes attached

above the helices, and possibly aeroplane

attachments. In the case of the simple

aeroplane vessel accidental stoppage of

the driving helix would be. extremely

dangerous; but if the aeroplane could

be rotated until horizontal, the down-

ward velocity would be considerably

diminished; and, possibly, in the in-

terval, if the stoppage was not due to

any serious cause, the helix could be

restarted. When experience has enabled

us to find the exact worth of the helix,

possibly spare ones with independent

engines would be available; but at

present there seems little prospect of

so much extra weight and resistances being portable. Small balloons

might also be carried eventually.

FIG. 44. Aneroid barometer.
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Of the various instruments required for navigating purposes the

following is a partial list :

(1) Barometer (aneroid) for air pressure (fig. 44).

(2) Thermometer for temperature.

(3) Anemometer to measure velocity of air currents (fig. 45).

(4) Wind vane to show direction of resultant velocity.

(5) Nautical sextant.

(6) Mariners' compass (preferably divided on the degree system).

FIG. 45. Anemometer.

(7) Speed counter for engines.

(8) Accelerometer to find change of speed.

Among other arrangements which I would suggest as useful are

the following, especially when larger vessels can be constructed :

(1) Air-tight interior, into which the air is pumped when great

heights are reached, to restore the pressure to which our lungs are

accustomed.

(2) The use of aluminium sheets for covering the vessel, with

steel frames (mild steel, such as is generally used for constructional

work). There is no advantage in using aluminium frames, as the

sections have to be larger than steel. Aluminium bronze is the only
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alloy which approaches steel in strength, and its weight is practically

the same. On the other hand, for the covering sheet aluminium is

admirable, being only about J the weight of steel. Corrugated
aluminium for helices and aeroplanes has been found to be very
effective.

With regard to the use of artillery on airships, the recoil will be

a most important consideration. Unless the axis of the gun passes

through the centroid of the vessel, there will be a rotation
;
and even

if it does so pass, unless the gun is fired in the direction of motion,

the motion of translation will not be at all likely to improve the

stability of the vessel.

On the other hand, explosives could be dropped quite easily from

the car, and by attaining certain heights and velocities a fair

degree of accuracy in directing missiles would be possible. There

would certainly be an economy of ammunition and a maximum of

effect.

The enormous advantage of the airship for surveying and

meteorological purposes need not be referred to.

In the use of shields for helices the discharge through the tubes

will be subject to the same low degree of friction as external surfaces.

If we call the normal velocity of efflux v, then we have the

following coefficients reducing

v to ye

ye =kv.

The discharge from an orifice is at a maximum when the external

pressure is '5 to '6 the pressure within the reservoir.

V&LCU

Corvtracteb ->:^.

Cone, ^~Z- Plain,

t? Hole.

FIG. 46. Discharge through orifices.

According to Professor Unwin, the resistance to the flow of air

in pipes is '000005 SV2 where S is the skin area (feet) and V the

velocity in feet per second.
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Statical Stability of Balloons. Although I have already
indicated the general conditions of equilibrium for the various

vessels, there must also be considered the problem of disturbance.

If equilibrium is maintained during and after disturbance, then it is

said to be stable.

The crux of the problem is well stated by Lord Kelvin and

Professor Tait in their Treatise on Natural Philosophy, 292, vol. i. :

"
If there is just as much work resisted as performed by the

FIG. 47. Lateral stability of aerostat.

applied and internal forces in any possible displacement, the equili-

brium is neutral, and not unless. If in every possible infinitely

small displacement from a position of equilibrium they do less work

among them than they resist, the equilibrium is thoroughly stable,

and not unless. If in any, or in every, infinitely small displacement

they do more work than they resist, the equilibrium is unstable."

Presupposing the design is such that with no additional force

there is equilibrium, then air vessels will be subject to the following

disturbing forces :

(1) Lateral or unequal wind pressure.

(2) Unbalanced forces, arising from displacement of masses
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(aeronauts !) in vessel, or by the accidental or designed alteration of

surfaces or supporting forces.

Taking first the case of the balloon, as being simpler, and con-

sidering lateral disturbance, such as would arise from lateral wind

pressure or the moving of an aeronaut to the edge of the car, where

there is a lateral force F, the whole mass will rotate (if rigid) about

the centroid, and heeling, will proceed until

FL.cos0 = W.Lsin0 . (1)

L is distance to centroid, W = weight of car.

Considering an additional force <5F, we have an additional angle

of heel SO,

L . (F+ <$F)[cos (0+ dO)] =W . L . [sin (0+ dO)].

F+ cSF may be considered = F, so that substituting for the constants

FL and WL respectively K and X,

ic. [(cos (0+ d0)] = X[sin (0+ d0)].

Expanding we have,

/c(cos . cos dO sin . sin dO) = X(sin . cos dO+ sin dO . cos 0) ;

and since in the limit cos $0 = 1 and sin 30 = 0, during the change of

the turning arm of the wind increases at the rate sin (i.e.

decreases), and the turning arm of the weight increases at the rate

cos 0.

Hence, as F increases, so its arm decreases, while W remains

constant and its arm is increasing, so that in any infinitely short

period of time the work done by W is more than that .done by F,

and hence there is stable equilibrium.

It would thus follow that the balloon is in all essential respects

laterally stable, the centre of buoyancy being above the centre of

gravity (the centre of buoyancy is the centre of gravity of the dis-

placed air).

Regarding the longitudinal stability (fig. 48) the same reasoning

applies when there is no motion against the wind
;
but when there

is a helix, we have a continuous turning couple which has to be

balanced.

If the axis of the helix does not pass through the centroid of the

air resistance (i.e. the centre of pressure), there will be a permanent
inclination backwards when travelling. If we give the car a

prejudice forwards so that the centre of gravity is no longer eqiu-
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distant from the ends of the balloon, a reverse couple will be pro-

duced which, if sufficient, will induce a horizontal position, but this

position (not equilibrium) will be unstable.

If P passes through the centroid (metacentre), then L=2d

FIG. 48. Longitudinal stability of aerostat.

(when the balloon is symmetrical), and the forward position of e.g. will

be indicated

)
= 9 - (2)

Of course, when not accelerating, if there is a rigid frame the car will

BaJLLooTL

C.G^W
FIG. 49. Longitudinal stability of balloon.

deflect by the angle 0, so that the helix in the line of the balloon is

the preferable arrangement.
The stability of the air-vessel of any momentum type is a far more

serious matter.

Considering the helicoptere first, let us take the lateral conditions.

We have the following forces, to consider:

(1) The helix thrusts.
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(2) The weight (
= helix thrusts).

(3) The disturbing (lateral) force.

Noticing that a central helix gives us a force with no moment

about the centre of gravity, we see there is nothing to resist heeling,

except a slight increase in the surface presented to the air on the far

side from the wind.

From this it will at once appear that the form is essentially

unstable.

The same reasoning applies universally to flying machines

SectucrnsJ

FIG. 50. Stability of single-shaft
heliconef without lateral force.

FIG. 51. Instability -of single-shaft
heliconef when lateral force is

applied.

heavier than air. Since the thrust is derived from the momentum of

the air, it must have no moment about the e.g. This is the Gordian

knot that has troubled so many inventors.

The only solution is the use of some means of splitting up and

varying the thrust so that it may adjust its resultant to always

comply with these conditions. Taking the case of the heliconef

again (note incidentally that the vertical thrust is reduced and a

horizontal component introduced by the inclination : this horizontal

force has, however, no turning effect, but will tend to push the vessel

laterally), let us have a pair of helices such as I have already
referred to.
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The axes are equidistant from the centre of gravity, and, as before,

there is no righting moment. If, however, when heeling commences,
we have a quick adjustment which increases the speed of the far

helix, then the thrust will produce a righting moment. The result

will be a pendulum swing, which we must damp out by increasing the

air resistance laterally as much as possible. Longitudinal planes on

edge would do this. It is also to be noticed that if the form of the

sides is such that when a uniform gust of wind strikes the vessel its

Thrust Thrust

FIG. 52. Section of aeronef. Two helix

shafts arranged symmetrically about
the centroid wind-pressure resultants

passing through the same point.

FIG. 53. Section of aeronef, showing
disturbance of equilibrium through
the shifting of centre of pressure.

Righting moment to be produced
by increase of the right-hand helix

thrust.

normal momentum component shall have a resultant passing nearly

through the e.g., the turning will be at a minimum. This, however,

it is not possible to be always sure of, but it should be aimed at

as far as practicable.

Taking now the aeroplane and, similarly, the aviplane, the thrust

must (if it is not to produce a spin) go through the e.g., but here we
are far less certain of the position of the centre of pressure (or even

the direction of the force at any moment). I have already mentioned

my opinion that it is most desirable to have the car practically at

the centre of the planes. Only in this way is it possible to assure

oneself of the even approximate permanence of balance.

7
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The equilibrium in this case is neutral (i.e. transitory). To

ensure its duration we must, directly an inclination commences, so

alter the planes that a greater turning effect is produced on the side

which is sinking.

Thus, taking a front elevation, if we have planes on either side

balance will normally occur as shown in fig.
54.

TtveseGtqvs stvauiLd ~be dosed,
ArLterLorMcurffijru A' wtih, a, flexible, sheet

Centre ofnressure
Axis (~

'

ofPlcwe, >

\TkriLSt

PosteriorMargin,

FIG. 54. Lateral balance of aeroplane.

Let us suppose, by reason of a local current, the wind pressure

on the right plane exceeds that on the left, or that the centre of pres-

sure on the right shifts outward from the centre of area. The whole

appliance will then tip downwards to the left, and the left plane

must therefore rotate to an angle less inclined to the horizontal, so

that its upward component may be greater.
1 In this way, with

immediate readjustment, it would be possible to maintain a level

position. This is actually done by birds and other flying animals

by alteration of angle or areas. In the aviplane the balance is

similar. The paddle wheel or vertical fan I have suggested could

have its speed modified like that of the helices, and the guide rails

which control the motion of the wings in the second bird type might
be controlled by a link motion and so a greater or more rapid

deflection could be effected automatically.

Dynamical Stability. The methods suggested above only

include the idea of a gradually increasing wind pressure balanced by
a correspondingly increasing righting moment. In practice, however,

we must also consider the effect of gusts, arid by mechanical principles

we have the following rule connecting the deflection caused by such

a gust with that which would appear under a steady pressure.
"
Any method of applying force which, during the deflection, is

1 The Wright Bros, patent, I since find, includes a device to achieve this result.
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calculated to do the same work, will cause the same deflection
'

(Perry, Applied Mechanics).

If now the righting effect, however produced, varies with the

angle of heel, then we may write, as the condition of equilibrium
under steady pressure,

F =M =
0(0) . . (1)

where F is the wind moment and the function which applied to

(the angle of deflection) gives us the righting moment (M).

The work done is, under steady wind moment,

F0= 0(0).d0 . . . . (2)

If now the wind, instead of being applied slowly and steadily,

suddenly reaches the value F, then the vessel will heel over until

the work done by F in moving through the angle O
l

is equal to the

work done by the gradually increasing righting moment through
that same angle, or. in symbolic expression

W . . . (3)

Since 0(0) will in most cases have a maximum value for some

particular angle (less than 90), when
1
reaches a certain high value

any increase in F will cause the work done by F to be greater than

that which can be performed by the righting torque for the same

angle, and the vessel will capsize.

This will be best understood by a diagram. Let the base line

(fig. 55) indicate the angle of heel from to TT (180) and the vertical

ordinates the righting moment.

We will assume that the righting moment (M) is a sine function

(it will not necessarily be so in the case of an airship), so that it

has a maximum value at -. Assuming that the torque F of the
_j

wind does not alter as the vessel heels (this is the most severe

condition possible), if steadily applied the vessel will not overturn

until F reaches nearly the value Mmax . This would give -~ as the

"
angle of vanishing stability." In the case of ships the righting

moment is usually only a function of the type 0(0)
=W^ sin JcO,

so that the maximum value is obtained at the angle j- (Jc always
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exceeds 2). A ship will not right herself past this angle. (If k= 4-,

then T = 45

FIG. 55. Curve of "static stability" showing equality of wind moment
steadily applied and the righting moment.

So much for the steady wind.

If now the wind is suddenly applied of the value F, the work it

does, instead of being an integral including the growth of F through

the angle 0, will simply be the product of F and a new angle Ov so

that the integral for the righting moment's work reaches the same

value. This is shown on the curve, where F, although it has only a

value = M0, on account of its sudden full value does the same work

p so that the area of the rectangle = area of the part of theas

parabola up to Ol (fig. 56).

In this way we can find Or
Now consider the ultimate dynamical heel permissible.

peating the diagram, let us suppose that F is such a value of the

wind's moment that the area of the parabola is not equal to that of

Re-

the rectangle until the value $2 is reached (notice that F corre-
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spends to a statical moment on the right side of the angle of vanishing

stability) : then any increase in F will cause its work to exceed that

available from the righting moment and the vessel must overturn.

If the value of (p(0) is known (as it must be from the arrange-

FIG. 56. Curve of
"

static stability
"
showing new value of righting moment

when wind moment is suddenly applied. (The shaded areas are equal. )

ment of the governing device, or in the case of notation by the

position of the centres of buoyancy and gravity), then it will be

noticed that the ultimate heel which can occur dynamically is of

such an angle 92 that the final righting moment <t>(02 )
= F .

In all practical cases it will be more convenient to do the

problem by graphic methods. Integration is performed by taking

the area of the curve indicating the function to be integrated up to

the ordinate considered. Thus, for the curve already drawn, we

shall have an integral as shown by the ascending curve.

As an example of the manner in which <p(6) can be determined,

we will suppose that T, the thrust of a helix, whose prime mover is

controlled by a ball governor, varies as the H.P., and that the H.P.

varies with the admission area of the throttle valve. (This of course

would have to be more accurately determined by experiment.) Also

let us assume that the governor is such that the said admission

increases as the sine of n times the angle ;
then the righting moment

Moc sin n9, or = /t sin n0.
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For convenience in integration we use /c= -, so that-
f

= -sin%0.
n (4)

and the angle of vanishing stability for a static moment = .

Oscillations. In marine practice the heeling of a vessel is

considerably prolonged, and in some cases accelerated by the periodic

i

FIG. 57. Curves of "
static stability

" and its integral
"
dynamic stability."

motion of the vessel. This is termed "
rolling." First a heel takes

place from the lateral force. The righting moment brings the ship

back, but causes it to pass the position of equilibrium by its kinetic

energy. There is again this process from the other side, and it con-

tinues in alternate directions until the energy has been absorbed by
the water. I think it is safe to prophesy that this will be an even

more important factor in air-vessels, and it will probably be useful to

consider the mechanical rules concerning periodic motion.

It is shown in mechanics that the periodic time for an oscillation

is as follows :
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Time = 2^- /displacement
\J acceleration

or for angular motion (substituting torques for forces and angular

displacements for linear),

toT =
'0

where is angular displacement and 6 is angular acceleration.

In applying this to an airship, is the actual angle of heel (in

the plane of which the motion is being considered) and is known
from the formula

T

0=1 (3)

where T is the righting torque and I is the second mass moment

(" Moment of Inertia ") of
'

the vessel about the centroid [I
=

(m?-
2
)

or MA8
)].

Hence

We shall rely for the removal of this oscillation on the damping
effect of the air acting on the various surfaces. The displacement
will thus, after the first gust has caused it, gradually diminish. The

,C\ V

frequency (~-\ will also not be so great, but will only have a value

to be found from the equation :

where a is a constant depending on the fluid which damps the

vibrations. (In air a= about 07.) T is original periodic time.

The maximum value of the displacement will now be for each

oscillation :

= 0e-
at

. .

*

. . . (6)

where 6Q is the maximum displacement, 9 is the initial displacement,
e the Naperian base, a the aforesaid constant, and t the time since

damping commenced.

In the event of the gusts of wind occurring at such intervals

that their periodic time is the same as that of the swing of the vessel,

most dangerous oscillations will be produced, and it will probably
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capsize. When violent swinging indicates this, the vessel must be

turned so as to present a section to the gusts having a different

periodic time.

A similarly disastrous result will occur if heavy masses are moved

about the vessel with the same periodic motions.

In connection with the subject of oscillation, and also the stability

of the vessel, it will be most important to obtain the values of the

moment of inertia about a longitudinal and tranverse axis through
the centroid before any important ascent is undertaken.

The theory of dynamic stability has been studied in some detail

by Professor Bryan (Proc. Eoy. Soc., vol. Ixxiii.), and Captain Ferber

(Revue d' Artillerie, August, October, and November 1905), and some
of their practical conclusions have been referred to in the chapter on

aeroplanes. The method employed is rather beyond the scope of this

book, but it may be interesting to note that it consists of (1) formu-

lating the equations of motions in terms of the velocities
; (2) adding

small increments to the velocities, simplifying and solving the sim-

ultaneous equations by a determinant so as to obtain a general

equation of stability; and (3) if the coefficients of this equation

satisfy certain conditions as to sign and combination, the device is

stable, and not otherwise.

The particular results of the method are to place limits (inferior

and superior) in the velocities, dimensions, weight, and moments of

inertia.
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APPENDIX A.

PERIODICITY OF WING FLIGHT. (After Marey.)

Name.

Insect. Common fly

Drone fly

Bee

Wasp ......
Humming-bird moth (Macroglossa)
Dragon fly .

Butterfly (Pieris rapce) .

Bird. Sparrow .

Wild duck

Pigeon......
Moor buzzard .

Screech owl.....
Buzzard

Cycles per Second.
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APPENDIX B.

TABLE OF AREA OF WING-TO-WEIGHT RATES.

(Square feet per Ib. From M. de Lucy's results.)

Gnat .... 48-77

Dragon fly (small) . . 29'59

Lady bird . . . 2 2 '06

Dragon fly (common) . 21 '6

Daddylonglegs . . 14*82

Ree 5-22

Meat fly . . . . 5-605
Drone .... 5'053

Cockchafer . . . 5 '16

Stag beetle (female) . . 4 '65

Stag beetle (male)
Rhinoceros beetle

Swallow .

Sparrow .

Turtle dove

Pigeon
Stork

Vulture .

Australian crane

3-75

3-11

4-87

2-72

2-13

1-27

0-97

0-82

0-41
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APPENDIX C.

ON THE CONSTRUCTION OF A FLEXIBLE WlNG OR SCREW.

PROFESSOR PETTIGREW describes the methods he adopted of forming
artificial wings with canes, and overlapping layers of fabric, in Animal

Locomotion, but it may be doubted whether such construction would be

satisfactory for large machines either from the point of view of strength or

of durability.
Steel tube, such as is now used for the frames of bicycles and auto-

mobiles, could well be used for the framing, arranged telescopically,

diminishing from a maximum section at the root of the blade to a minimum

Ribs

^osterior Margin,

MembraneAttacTarten^

FIG. 58. Artificial wing.

at the tip. Welded into V-junctions springing from this could be similar

shorter lengths of telescopic tubing forming ribs (like the phalanges of a

bat), the membrane fabric being stretched between these. This fabric

could be of oiled silk, possibly with a light and flexible wire foundation

(asbestos fabric would be desirable). To attach it to the ribs and anterior

margin I would suggest sheathing of the same material to be fixed over the

ribs in two pieces, so that the free edges come on either side of the rib, and

the sheets of fabric be fixed between these with rivets or clips. The edge
into which these clips are attached should be strengthened with a hem or

extra thickness, as likewise should be the posterior edge of the blade. The

elasticity of the ribs, both transversely and in the plane of the blade, would

permit helical strain when air was being displaced. A Hooke's joint at the

root of the wing Avould allow for universal motion, the actual direction being
determined by the points of application and motion of the motive chains or

rods. Pettigrew suggests the use of flexible bands at the root.
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APPENDIX D.

THE MAXIM FLYING MACHINE.

Extent of aeroplanes
Total area

Angle of planes

Weight
Power
Thrust
Width

Speed with no weight

Lifting speed (observed)

Specification,

126ft.

4000 sq. ft.

72 from vertical.

8000 Ibs.

363 H.P.
2000 Ibs.

200 ft.

30 miles per hour
36

Two 20 ft. propellers. Weight of engines 600 Ibs. (figs. 16, 59).

PROFESSOR S. P. LANGLEY'S AERODROME (fig. 60).

Power ....
Weight of engine .

Weight of aerodrome

Length across planes

Velocity
Four rectangular aeroplanes.
Two propellers.

1-5 H.P.
7 Ibs.

12 Ibs.

1 4 ft.

20 miles per hour.
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APPENDIX E.

THE MATHEMATICAL THEORY OF THE BALLOON.

THE following analysis from Dr Glaisher's article on "Aeronautics
"
in the

Encyclopcedia Britannica will possibly interest academic students, but it

has little practical value, including, as it does, many exceedingly small and
uncertain quantities, and not allowing for convective equilibrium.

LetM = mass of balloon, gas, car, and appurtenances.
V = capacity of expanded envelope.
V
Q
= volume of gas at atmospheric pressure introduced at starting.

v = volume (less than V
Q ) occupied by same gas at height x

P =
density of gas in balloon on earth.

p = density at height x.

(T = density of air at earth.

a- = density at height x.

u initial upward velocity of balloon (usually zero).

UQ
= vertical velocity at height x.

CASE I. Balloon partly filled and ascendingfrom Earth.

Equation of motion :

Mgj =
<rvg

- W - AwV**

disced)
<<0 (- resistance)

(a + x)*

where a is radius of earth (g
= g for practical purposes).

Under isothermal conditions, by Boyle and Marriotte's law a-v is

constant
(
= cr v

). Let <T
Q
V
Q
M = C, = a

?

^L =
fit

- =
n,

~ ni.
iVL jVJ. K n

Equation to motion is now

du? a2

Integrating this as a linear differential equation of the first order

(multiplying by e~
nx = X) we have the following :

Y dx

(a + x)

=^'2

{

-
a
-
a+x a+x

-_ me-- +
1̂.2

[_-mX
,-

- J.- + e Et( -na- nx]
- m<?Ki( - 2na - 2

a -rx J

+
^l

8naE^ _ 3na _ 3ngQ _ ____
|
1 + C.
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Let x = 0, so that u = U
Q ,
and we have

- + a
{ e"Ei(

-
na)

-

whence by subtraction

[_

m /-, wiX

!lT- _
a a + x

+ a e"
aE* - wa - wa? - me2naE'

+ ...... - na
Ei(

-
na) + m*Zna

Ei(
-
2na)

- ...

and therefore

[,-m(l-X)

I
6___L

a a + x

c
na
Ei(

- na - nx)
- c

na
Ei(

-
na)

- m<?naEi - (2na
-
2nx) + me

2na
Ei(

-
2na)

+^ 8n
Et(

- 3?za - 3nx) - ^*Ei(
-

3?za) +..

The value Ez . x which is substituted is the exponential integral

fXpX

~.dx.
J x

00

Values for this have been tabulated, and appear in Phil. Trans., 1870,

pp. 367-388.
It must be remembered that temperature is not considered, and that

this equation is only true before the balloon is full.

Generally g is constant and A, = 0, so that

from which we get the well-known fact that the balloon rises till full.

CASE II. Balloon started full (from ground or after passing through the

Case I).

Equation of motion :

M - *
(Po

-
P)

=9~- VT - M + (P
-
p)

- **<~,

or <M-t>oft,(l-~)U^-ax

(Neglect v p (l
- e~nx) the escaping gas, as compared with M.)
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Then J M
U
- + Xe~"

or -!*

(Multiply by e~
wx and integrate.)

9 mX =

{mX
r.-mX-nxrj^. )

- -_+a/_5*fl +C
a + ic 7 a + j? j

[

nx-mX (

--
-n\

"a
Ez( -na- nx)

a + x

i(
- 2na - 2nx + . . . + a

- 3na -

a n
Ei(

- na - nx)
- mcna

^i(
- 2na -

2nx)

(C determined by putting x = Q, when U = U
Q.)

U
Q

is not except when balloon starts from earth quite full.

The mathematical treatment when convective equilibrium has to be
considered is not possible with such exhaustive detail. I have given in the

chapter on balloons the simple method which is fairly accurate.

APPENDIX F.

LANGLEY'S EXPERIMENTS IN AEROPLANES.

IN 'regard to the great variation found in the experimental and analytical
determination of pressures on planes, it should be noted that Professor

Langley's researches are perhaps the most thorough and scientific of any
that have been made on this subject. They are described in full, together
with particulars of the apparatus employed, in the Smithsonian Contribu-

tion to Knowledge, No. 801, entitled "Experiments in Aerodynamics."
The following are the chief points established by these researches :

8
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(1) The value of K in P = /cy
2

is equal to '00166 in feet, Ibs., seconds,

units.

(2) The ratio of the pressure on an inclined surface to that on a

vertical surface is not expressed by sin2 6, but approximates to Duchemin's

rule

p _ p 2 sin
n rr^2

'

(3) A plane moving with a high velocity does not fall in accordance

with the parallelogram of velocities, but, if the speed is sufficiently great,
the fall may be protracted indefinitely.

(4) The work done in soaring (i.e. just supporting a plane) is much

greater than that put out at high speeds, so that the greater the speed the

less the power required, the surplus being performed by the weight of the

plane. These results are all so apparently paradoxical that, but for the

research having been exceedingly thorough, inquirers might have some
hesitation in accepting them, but it is fairly well agreed that the results are

correct. I find, however, that Mr Frost reported to the Aeronautical

Society of Great Britain having carried out similar experiments, and

although he corroborates in the main Professor Langley's conclusions, yet
he had great difficulty with the inertia of the air and wind, and this

possibly may render the figures subject to slight revision. He has made an

aviplane with artificial feathers. Messrs Wenham and Browning confirmed

Duchemin's formula many years ago.
With regard to the fourth point, which is one that has been enlarged

upon considerably in regard to future developments, it must be remembered
that it is first necessary to attain such a speed as will give support to the

plane. This is known from the following formula :

W= 2sm *
cos

l+sin2
<9

/ W(l + sin2
0)

*& V A / n :
7\ 7i 1

'

\/ 2 sm . cos V.K . A
Also the advantages of power economy will only make themselves apparent
when the kinetic energy needed by the bod}

7 has been imparted to it.

Furthermore, the resistances of bodies other than planes are not subject
to such great diminution, so that the car and mechanism will always present
a continually increasing resistance.

Professor Langley's own experiments in aviation, although successful in

the case of the model aerodrome, have been unfortunate with the larger
machines

;
and although this result is in a large degree attributable to lack

of funds, he would not appear to have said the last word as to the root

principles.

Personally, I am firmly convinced that the success or otherwise of an

aeroplane does not so much depend on the angle or arrangement -of the

plane as upon the efficiency of the balancing arid propelling appliances.
Xo aeroplane can make a successful flight which does not answer to every

pulsation in the air or irregularity in the ascensional and propulsive efforts.

This, and this alone, is the crux of the problem.
In view, however, of the importance of these experiments, I have based

upon them another value for the angle at which planes should be used.
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The pressure formula in full is as follows :

-r, 2 sin"
n = ^ : ZTT, *v2

per square toot.
1 + sin 2

The vertical component of this is

2 si" 0- cose
-lift per square foot,

1 + Sill
2

and the horizontal component

2 sin . sin

l+sin 2
resistance to propulsion.

In order to get the most efficient plane, the lift should have a maximum
value at the same time as the resistance has a minimum, i.e. when

2 sin . cos - 2 sin . sin 6 .---
. .- is a maximum.

1 + sin2

A simple solution to this (for which I am indebted to my colleague,
Mr T. Worrall, M.Sc-j is as follows :

= 2 sin 0. cos 6-2 sin 2
_ sin 2(9-2 sin2

, l+sin2 1 + sin2

^ =
|~(2

cos 20-4 sin 6 cos 0)(1 + sin2 6)du L

- 2 sin . cos 0(sin 20-2 sin2 0)1 + F(0).

The numerator for a maximum value must equal zero, so we have

(2 cos 20 - 2 sin
20)(l

+
1 ~ cos 2e\ _ sin 20(sin 20 - 1 + cos 20) = 0,

or cos (20
- sin 20)(3

- cos 20)
- sin 20(sin 20 + cos 20 - 1)

=

3 cos 20-3 sin 20 - cos2 20 + cos 20 sin 20 - sin 20 cos 20

-sin2 20 + sin 20 =
3 cos 20-2 sin 20=1

9(1
- x2

)
= 1 + x + 4z2 where x = sin 20

_2_ KK_8^ 12-4

13
d1

13
~

13'
01 "

13

= 6461, or --954

.-. 20 = 40 50', or 252 34' or 287 26'.

The first value is the only practicable one, so that 20 25' is the angle.
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APPENDIX G.

NOTE ON THE LONGITUDINAL STABILITY OP AEROPLANES.

ASSUMING that Duchemin's formula for the reaction on an inclined plane
and Joessel's formula for the displacement of the centre of pressure are

established (they have been to all intents and purposes), we are in a position
to discuss the phenomenon of "plunging" which occurs when kites or

aeroplanes descend. The importance of the problem is obvious.

When the aeroplane is proceeding at or above soaring speed (say v), the

centre of pressure will be at a distance d in front of the centre of gravity
of each plane depending on the angle of inclination. So long as soaring is

maintained the plane will be stable, but as soon as descent commences the

centre of pressure will go back. If the plane is only slightly inclined to

the horizontal, the new position of the centre of pressure will coincide with

the centre of gravity of each plane, and as this was not the position of the

resultant force before, a turning moment will be introduced. If a is the

downward acceleration (less than g), t the time of descent, and the plane is

only slightly inclined (to an angle 6 with the horizontal), the turning
moment will be

Pa = Kept* . AL [0-3
- 0-3 sin 0].

The greatest value this can have is therefore 0'3(K#
2
^
2
AL), and provision

must be made by jockey weights, gyroscope, or displaced planes to supply
an equal and opposite turning moment. (A is area and L length of

aeroplane.)

APPENDIX H.

ON THE SAFETY OF AEROPLANES.

IN connection with the practical utility of flying machines, the question
of safety is a very important one, and it may serve some useful purpose
to consider the particular risks run by aeroplanes with a view to deter-

mining in what manner the danger may be reduced to a minimum.
We may classify these under the following headings :

(1) Risks in connection with stability.

(2) Risks in connection with aerial disturbance.

(3) Risks in connection with alighting.

(4) Risks in connection with structural strength.

In addition to these there is the chance of collision with hills, trees, etc.,,

during flight, but this will, as in the case of marine navigation, be a matter

depending on the experience of the aviator with the machine he is operating.
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Stability.

With regard to the question of stability, it is fairly well recognised now
that an aeroplane can be constructed so as to be automatically stable under

the ordinary conditions of flight. Mathematical criteria have been provided by
Professor Bryan (Proc. Roy. Soc., 1903), Captain Ferber (Revue d'Artillerie,

November 1905), and F. W. Lanchester (Aerodonetics). It is necessary
that stability should be assured both in regard to oscillations about a trans-

verse axis through the centre of gravity (longitudinal stability), oscillations

about a longitudinal axis (lateral stability), and deviations about a vertical

axis (directional stability). Only Captain Ferber and Mr Lanchester have

considered all these kinds of stability, and the latter also finds another form

("rotational stability") must be dealt with.

Captain Ferber's rules are as follow :

(1) For Lateral and Directional Stability.

There must be a keel or fin above and behind the centre of gravity of

the machine, whose area is ten times that of a surface of normal resistance

equivalent to the head resistance of the machine, situated behind the centre

of gravity (presumably from the e.g. to the centre of pressure) at a distance

5 A

C is the moment of inertia (kg. metre2
)
about the longitudinal axis.

A is the moment of inertia about the transverse axis.

t]
is the height of the centre of the surface above the longitudinal axis

through the e.g. (metres).
S is the area of the main surfaces (sq. metres).
s is the equivalent area above referred to (sq. metres).

(2) For Longitudinal Stability.

The weight must bear a certain relation to the lateral spread of the

wings ("envergure") and the radius of gyration about the transverse axis.

P>37B1
2
E,

where P is the weight in kilogrammes,

Bj is the radius of gyration (metres) about the transverse axis,

E is the spread of the wings (tip to tip, metres).

There is also a condition as to the position of the centre of gravity
with regard to the supporting surfaces. This point must be ahead of the

centre of area of those surfaces, and Captain Ferber says (Consequence

XVIII.): "When the condition (as above) of stability is satisfied, one can

make a first trial under good conditions by arranging the projection of the

centre of gravity to fall in successive positions along the length of the

wing" (i.e.
the best position should be found by trial, shifting the e.g.

along the longitudinal axis).

Mr Lanchester's mathematical criteria are more precise, but probably
have not such a wide application as Captain Ferber's. His principal rule

is that for longitudinal stability.
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<J> __"

In this formula I is the length (feet) from the centre of pressure on the

main surfaces to the centre of pressure on a tail or balancer. Hn is the

potential of the machine in feet = Yn
2
/2</, where Vn is the normal speed

(Ferber's "vitesse de regime"), y is the gliding angle (tan y = resistance -7-

weight), I is the moment of inertia (ft.-lbs.
2
) about the transverse axis

through the centre of gravity.
K = W (poundals) -f- Y2

,
where W is the weight (poundals) and Y

is the velocity in feet per sec. (equals Yn normally), ?, C, />,
e are constants

whose product (for a tail plane whose breadth to length dimensions are in

a 10 to 1 ratio) is about -f^, a is the area in square feet of the tail plane,
and J3 is the angle in radians made by the aerofoils (supporting surfaces)
with the flight-path.

Mr Lanchester considers that a value < = 2 is sufficient to ensure perfect

longitudinal stability, so that to produce a simpler formula we might write

ZYn4 tan y _ 9 *

1 +

where R is the radius of gyration (feet).

The rules given by Lanchester for the other varieties of stability involve

too much explanation to be given here, and his book should be referred to.

He adopts fins or keels, like Captain Ferber.

From a practical point of view it is probable that if a new machine is

designed with a rough approximation to the above rules, and is modified

after long trial guides, it will be automatically stable under ordinary con-

ditions of flight, and it must next be considered whether it will be auto-

matically stable under all conditions i.e, in the presence of maximum
aerial disturbance,

Stability in Turbulent Air.

It is a well-known fact that the wind is very irregular both in direction

and velocity. Owing probably to interfering currents, obstacles, and cyclonic

motion, a gale would seem to consist of a mass of drifting eddies or vortices.

From the late Professor Langley's Internal Work of the Wind it can be

shown that the velocity of the wind varies about 50 per cent, above and

below its mean value, with a periodicity from 2 seconds or so to 30 or 40

seconds. The direction of the wind may almost instantaneously change 10

or 20 in azimuth and 5 or 6 in altitude. (See Moedebeck's Pocket-Book

of Aeronautics, p. 391.) Simultaneous observations of periodicity, velocity,

and change of direction would enable a rough idea to be obtained as to size

of the vortices, but apparently no such observations have been made. The
Forth Bridge and other anemometer readings show that the maximum unit

pressure on large surfaces is considerably less (about two-thirds) than that

* There would seem to be some imperfection in this formula, having regard to its lack

of reference to the position of the centre of gravity.
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on small surfaces, although in a steady current of uniform structure the unit

pressure is greater on large surfaces. (See author, The Force of the

Wind, and letters in Engineering, 1908.)

According to Lanchester (Aerodonetics, p. 74), it is desirable that the

gust velocity (i.e.
the maximum velocity relative to the air in which the

machine is travelling) shall not exceed 0'33Vn,
where Vn is the normal

velocity of the machine or Vn = 3 x the gust velocity. Assuming the

maximum gust velocity is 30 miles an hour (it is actually more than this on

occasions), we find that Yn should be about 100 miles per hour to be immune
from gusts. It is obvious that unless Vn does considerably exceed the gust

velocity, the periodic variation in lift and resistance * will cause oscillations

which, if they synchronise with the natural oscillations of the machine, may
be excessively dangerous.

If we suppose that the wind consists of a general drift whose velocity is

roughly the average velocity of the wind combined with an eddying motion

consisting of rotations about approximately horizontal axes, then the actual

velocity of the wind will vary from V + v to V -
v, where V is the average

velocity of the wind and v is the orbital velocity of the rotating air
;
v then

will be the relative motion of the air in the eddy to general mass, and the

aeroplane will be subject to an increase or decrease of relative velocity when

traversing the top and bottom of the eddies equal to v. This will involve

an alteration of potential equal to (v
2 2Vnv/2g). Again, when crossing

the diameter of the eddy it will be subject to a torque due to the descent

and ascent of the revolving air. It will be at present impossible to give
definite values to the effects so produced since the size of the eddies is

unknown, and this will affect the area acted upon by the horizontal stream

in the eddy or the torque due to the vertical streams. Such a manner of

considering the matter is defective in the following respects : (1) The average

velocity observed is not the true average, since this is computed from
anemometer

(i.e. pressure) readings, and is really the root of the mean

square ; (2) the orbital velocity in the vortices is not constant, but increases

in inverse ratio to the radius of the part of the eddy considered
;
and (3)

eddies cannot be cut in the manner implied, but will be deformed or

displaced with a more or less indeterminate reaction. However this may be,

there can be no doubt that the smaller the ratio v2 2VBv/Vn is, the less is

the effect on the machine, and this ratio can only be reduced by increasing
Vw the normal speed of the aeroplane. It must not be supposed that the

actual effect is represented by this ratio, since there has been no account

taken of the masses of air in the eddy and sweep of the aeroplane respect-

ively, but it will be roughly proportionate to this ratio, i.e. to

We thus arrive at the conclusion that for an aeroplane to be safe in a

turbulent wind the normal velocity must be as high as possible. The author

does not absolutely agree with Lanchester's values, since these are based

on the assumption that the mass in the eddies is at least equal to that

handled by the aeroplane. This assumption is, of course, on the right side,

1 On Lanchester's basis of least resistance, the total resistance is almost independent
of the velocity, so that only the lift will vary.
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but it may be unnecessarily so. Mr Herring, in L'Aero-Mecanique (No. 1,

1908), refers to the device employed by him on the Chauute gliders by
which the surfaces accommodate themselves to the intensity of the relative

wind and balance is maintained. This would certainly appear to be useful,

and further experiment is necessary to demonstrate the applicability of

the method.
The Wright Bros, are understood to have acquired sufficient experience

to enable them to warp the main surfaces and operate the governors so that

balance may be maintained in an unsteady current
;
but as far as the author's

information goes, they have not made flights in winds where the gust velocity
was comparable with the natural velocity of the machine.

The question of turbulence is also of importance in regard to soaring,
and here again the question may be raised whether the eddies are suffi-

ciently large to provide enough mass. In Aerodonetics, sec. 160, p. 303,
Lanchester says "on the basis that the whole energy of the peripteral area

is available" and proceeds to deduce an equation for the energy derivable

from turbulence. The author submits that although such a method may be

available for bird flight it is extremely doubtful whether the extent of the

turbulence is sufficient to ensure enough energy being captured by a large
machine. Captain Ferber (Revue d'Artillerie, November 1905, p. 104)
takes a very pessimistic view of wind fluctuation as a means of producing

"soaring" flight. He says :

"
C'est 1'explication la meilleure du vol a voile

;

mais elle place un peu Toiseau planeur dans la situation du joueur qui livre

son capital aux fluctuations du tapis vert, si la bonne ondulation ne se pre-

sente pas a temps il risque de perdre une precieuse partie de son altitude."

This is probably going just too much in the opposite direction as far as bird

flight is concerned, since the periodicity of the pulsations is fairly regular and

"soaring" is only explicable on such a basis, but Captain Ferber's remarks

may apply to the case of a large flying machine having a far greater ratio of

its dimensions to those of the aerial vortices.

Alighting.

We now come to a very serious difficulty one which has even induced

many students of the subject to prefer helicopter types of machine. A
machine necessarily possesses a certain normal velocity necessary for susten-

tation, and consequently when descending, unless there is a general wind of

precisely opposite amount (relative to the earth), it will have a considerable

velocity relative to the earth, and the chances of a bad collision are great.

We may rule out of court the difficulty of very uneven ground, since this

will have to be avoided by the aviator as rocks are by the sailor, and assume

that the surface is moderately plane. In the first place, we will also assume

that it is not only plane but horizontal, and that the air has no appreciable

velocity relative to the earth. The machine descends at the gliding angle

T /ResistanceX m , .
i -i j ui

7 = tan - L -- This may also be expressed roughly as
\ Weight /

where S is the plan area of the main supporting surfaces and s is the

equivalent area of the head resistances (including those of the main surfaces).
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This rule is one of Captain Ferber's, and differs from the preceding one (due
to Chanute) in that the head resistance is considered perpendicular to the
axis of the machine, which would not be horizontal during horizontal flight
in the Ferber standard type. Certainly the Chanute rule is simpler to

employ. However this may be, it is well known from practical experience
that y, the gliding angle, cannot be reduced much below 8 or 10, and it is

in many cases more than this. Ferber machine No. 5 had a gliding angle
of 13. The gliding angles of the Wright and Voisin machines are between
7 and 8, so that we may write tan y = -J

to J. Using the latter as the more

unpropitious form, we have the relative velocity of the machine perpen-

dicular to the surface of the earth is
,
and the momentum to be destroyed

WV
is . In the absence of experimental information as to the time of

iyz

impact, it will be better to consider the kinetic energy loss. The mass W/32
has a unit mass kinetic energy Y2

/36 x 2, so that the kinetic energy concerned
in the vertical impact -is WV2 WV2

32x36x2 204
- m s" m eet pOT

second). This must eventually be lost, but at the moment of impact will

be converted to strain energy. If the machine is provided with alighting

springs capable of storing this energy, then the force of impact is reduced to

a minimum, and should not have any appreciable effect on the machine.
This means that the stiffness (half the safe load) on the springs multiplied
into the length (vertical) available for compression must equal the above
kinetic energy

Rules will be found in all text-books on applied mechanics for the design of

springs of any type to satisfy these requirements. If the spring is stressed

up to the elastic limit the quantity FL is the resilience. If there are n
vertical springs, all of which come into action during vertical impact,

1 then

the resilience of each must be equal to FL/ra= WV2
/2304?z. In Perry's

Applied Mechanics, p. 631, it is shown that this is equal in the case of a

spiral spring to

where / is the shearing stress (lbs. per sq. inch), d is the diameter of the

wire (inches), I is the total length of wire in the spring (inches), and N is

the modulus of rigidity (tons per sq. inch). The greatest force acting on
the aeroplane framing is 2F, and the compression of the spring is (as above

mentioned) L.

(Note that in using the resilience formula the energy must be converted

to inch-lbs. by multiplying by 12.)
The magnitude of F can, of course, be decreased by increasing L, or be

distributed by increasing n, so that the pressure on the machine frame can

be easily reduced to a reasonable amount.
The above case of alighting on a fairly smooth and horizontal surface is

1 This implies maximum lateral stability.
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almost the most favourable one that can occur in practice, the only superior
one being the case where the machine alights on a surface which is inclined

in the same direction as the gliding gradient and to about the same amount.
In the first case, the machine will continue to travel along the ground with

a velocity parallel to the surface of an amount Vcoty, which will be

gradually extinguished by the frictional retardation, or may be more rapidly

destroyed by canting the steering surfaces.

If the ground be inclined in the reverse direction to the gliding gradient

(say to an angle 0} or the wind be rising towards the machine (relative to

the earth) at an angle 0, the ground being horizontal, then the velocity
normal to the surface of the ground is V tan (y H- 0), and a greater kinetic

energy has to be absorbed by the springs.
If the ground be irregular, then, in addition to the above effects, there

will be rapid extinction of the forward velocity, involving very considerable

strain energy in the frame of the machine if no provision is made for this

purpose. Probably it will be well to employ springs with a greater resilience

than is above specified, and incline their axes slightly forward so that the

shock on the frame is diminished.

The whole question of alighting springs depends on the same principle
as that of buffer design in connection with rolling stock.

An important point in connection with alighting is the possibility of

momentarily diminishing y at the time of impact. If the lift can be sud-

denly increased without a corresponding increase in the resistance, then the

angle y may be very small. We must, however, carefully distinguish
between this effect and that of a mere torque which rotates the machine
so that its axis is (say) parallel with the ground, since in the latter case the

centre of gravity will continue to travel in the same direction until the

effect of the new attitudes of the supporting surfaces has modified the lift

and resistance. The skin friction on supporting surfaces will not vary much
with their position, so that this source of resistance may be regarded as

negligible. The aerodynamic head resistance of a steering surface will vary
as sin2

/3,
where /3 is the attacking angle, while the lift varies as sin 6 cos

/3.

The rate of change of the latter function is much greater than that of the

former for small values of
/?,

so that if the steering surface is sufficiently

large (in ratio to the main supporting surfaces) the lift will be momentarily
increased by deviating them through a small clockwise angle to a greater
extent than the resistance, and the angle y will, as required, be decreased,
and consequently the energy to be absorbed at impact will likewise decrease.

This probably is the secret of successful landing, and will necessarily depend
on the ability of the aviator to judge the velocity, gliding angle, and effect

of the steering surfaces.

Structural Risks.

With regard to this question, the author does not propose to deal with
the matter, since it involves the whole question of the design of aeroplanes.
A paper submitted by him to the Institution of Civil Engineers (Ireland)
in 1909 considers the question of structural design. It is sufficient

here to say that the framing must be constructed in accordance with the

principles of strength of materials so as to be capable of sustaining the dead

load, aerodynamic load, motor and propeller thrusts and vibrations, and the
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force of impact due to a clumsy landing. At present it would seem doubtful

whether the frames can be sufficiently strongly designed to resist the force

of extraordinary impacts, although heavy high-speed machines can be con-

structed much more strongly than small ones if proper designs are followed,

because the supporting force per unit area of surface is much larger.

APPENDIX I.

THE CENTRE OF PRESSURE ON AEROPLANES.

DURING recent years a body of knowledge concerning the behaviour of

streams of fluid flowing past an obstacle has gradually been built up, and

although the theoretical aspect of the subject is extremely deficient, yet
there are certain features which have an intimate relation to the design of

aeroplanes. Among these there is none more important than the position
of the point at which the pressure upon the plane may be regarded as wholly
acting, i.e. the centre of pressure. It is well known that this point rarely
coincides with the centre of area, so that any plane which is suspended or

fixed about an axis passing through the latter point is subject to a turning
moment whose value depends on

(1) The resultant pressure on the whole surface.

(2) The distance between the centre of pressure and the centre

of area.

These two quantities the author calls P and A. The value of the

turning moment is obviously the product of the two, i.e. PA.

Among many designers the rules of Colonel Duchemin for P and Captain
Joessel for A are the most widely accepted, and are as follows :

-

1 + sin2

A = (0-3 -0-3 sin 0)1,

where K
is^

the pressure on a plane of unit area at unit velocity moving
normal to its plane, is the inclination between the plane and its direction

of motion, A is the area, V is the velocity, and I the length of the plane in

the direction of motion.

Although it is now known that neither of these rules is exactly true in

all cases, we may, as a preliminary, combine them as follows. Calling A,

V, and / constant, we may write :

p_ sin 6

1 + sin2

and A = 3l-siri6>

Then PA =
aft .

1 +

It will be found that this function of increases rapidly with 0, reaching



120 PROBLEM OF FLIGHT.

a maximum at about 30, and then decreasing at first rapidly and then

slowly, becoming zero at 90 (see Tables, p. 122). In this way we are

able to estimate the turning moment on the plane for any angle. We also

know that it varies with the area and the square of the velocity.

Having thus obtained a general notion as to the turning effect, we may
examine some of the other rules which have been given for P and A.

The existence of A was, the author believes, first pointed out by Sir

George Cayley in Nicholson's Journal in November 1809. Subsequent

practical determinations have been made by Hagen,
1

Joessel,
2 Kummer, 3

Langley,
4
Phillips,

5
Tumbull, and Lanchester. 7 The experimental work on

stream-lines by Dr Hele-Shaw 8 has great value in this connection, and

Kirchhoff's 9 and Lord Rayleigh's
10 theoretical work needs mention.

The more important of the values for A are as follows :

Joessel . . A =
-305Z(1 -sin 0)

Hagen . . A* =
(J-A)^

/i

Lord Rayleigh A
4 4 + TT sin

Kummer found that in planes where b<l (6
= breadth across direction

of motion), under a certain critical angle A is less than Joessel's value, and

above this angle A is greater. The angle is about 30. For planes where

Kb the reverse condition holds good.

Langley confirms Joessel's results for square planes, and Rummer's
results for oblong ones.

Turnbull finds that Joessel's law is not true under an angle of 18 (26
for an oblong plane 6 = 2/), but that there is a reversal, A becoming smaller

with 0, so that at A = instead of 0'305Z. From to 18, A varies

with 6. He also gets interesting results for aero-curves.

Phillips has invented a special form of aero-curve, and finds the value

of A 0*33 I when the chord of the curve is horizontal.

Professor Lamb (see Dr Hele-Shaw's paper to the Inst. Nav. Arch.,

1898) finds A = -cos 0, and also deduces that the central stream-line is a

hyperbola, which, when = 45, meets the plane at right angles. Dr Hele-

Shaw has invented a very simple geometrical method of finding the point,

and his experiments confirm Professor Lamb's purely theoretical result.

Mr Lanchester deduces that a ballasted aeroplane can be made stable

on account of A, and Dr Hele-Shaw, in a recent lecture to the Eoyal Society
of Arts, shows this to be the case in some instances, but that this conclusion

is generally true is not admitted.

Mr Spratt has also made experiments on aero-curves 11 which agree
with Mr Turnbull's.

1
"Hydromechanics." Encydop. Brit, (ninth edition).

2 Genie Maritime. Mem., 1870. 3 Berlin AJcad. Abhandlungen, 1875-6.
4
Experiments in Aerodynamics.

5
Engineering, 1885.

6
Physical Review, 1907. 7

Aerodynamics.
8 Trans. Inst. Nav. Arch., 1898. 9

Vorlesungen iiber Mathematische PhysiJc.
10 Phil. Mag., Dec. 1876. n Pocket-Book of Aeronautics, by H. W. L. Moedebeck.
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Taking a general review of the experimental results, the author finds the

following conclusions may be arrived at :

(1) On square planes JoessePs law is true from 18 to 90, but from

to 18 there is an inversion, the value of A varying directly as 0.

(Turnbull.)

(2) On rectangular planes the same law holds good, but the con-

stants are smaller. (Turnbull, Kummer, and Langley.) On a 2 : 1

pterygoid plane A is 20 per cent, smaller than on a square plane.

(Turnbull.) On planes having the breadth in a greater ratio to the

length there is a further decrease in A, having a minimum about 30

per cent, below Joessel's value.

(3) On aero-curves (convex side upward) there is a negative value

for A from to about 13, and a value of A about 50 per cent, of

that on a similar plane for higher angles. (Spratfc and Turnbull.)
This applies only to circular curves. With a quasi-cissoid curve

the value of A is always positive (i.e.
from to 90), and is about

0-3 x length when 6 is 0. (Phillips.)

(4) On aero-curves with reflex curvature, the c.p. has a front ed^e

position from to 10, thereafter decreasing in the ratio (l-sin#).
We can almost write

A= 0-5(1- sin 0)1

for this curve.

It will be understood that the concave downward side is forward.

(Turnbull.)

Mr Turnbull has some interesting results also on aero-curves with the

concave side upward, which do not, however, call for notice here.

In considering the effect of an eccentric or counterpoised plane it is

necessary to notice that the turning moment produced by an eccentric

weight varies with the cosine of the angle of inclination, so that the net

turning moment about the central axis of the plane is

PA -W cos 0,

where P is the total normal pressure,
A the displacement of the c.p. from the c. area,

W the eccentric weight,
the angle of inclination with the horizontal.

It is usual to suspend the plane eccentrically, i.e. the axis of suspension

contains the centre of pressure corresponding to the angle at which the plane

is generally running. Under these circumstances the turning moment will

be much reduced, but at there is a maximum plunging moment.

[TABLES.
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TABLES TO APPENDIX I.

i.

Table of displacements of c.p. on a square plane expressed as fractions of its

length. Values of AC = (0'3
- 0'3 sin 0). (Joessel's Law.)
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