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PREFACE

THE present essay is primarily an attempt to follow up a line of research
-& initiated by Laplace and Maclaurin, and extended in various directions
by Roche, Lord Kelvin, Jacobi, Poincaré and Sir G. Darwin. Within two
years of the close of his life, Darwin remarked that the way to further
progress in cosmogony was blocked by our ignorance of the figures of
equilibrium of rotating gaseous masses. He wrote as follows (Darwin and
Modern Science, p. 563, and T%des, 3rd edition, p. 401):

“ As we have seen, the study of the forms of equilibrium of rotating liquids
is almost complete, and a good beginning has been made in the investigation
of the equilibrium of gaseous stars, but much more remains to be discovered.

“As a beginning we should like to know how a moderate degree of com-
pressibility would alter the results for liquid, and...to understand more as to
the manner in which rotation affects the equilibrium and stability of rotating
gas. The field for the mathematician is a wide one, and in proportion as the
very arduous exploration of that field is attained, so will our knowledge of
the processes of cosmical evolution increase....

“Human life is too short to permit us to watch the leisurely procedure
of cosmical evolution, but the celestial museum contains so many exhibits
that it may become possible, by the aid of theory, to piece together bit by
bit the processes through which stars pass in the course of their evolution.”

Guided possibly by considerations such as these, the Adjudicators of the
Adams Prize announced as the subject for the 1917 Essay :

The course of evolution of the configurations possible for a rotating and
gravitating fluid mass, including the discussion of the stabilities of the various
Sorms. |
At this time I had for some years been engaged in an attack on this
problem. The announcement offered an excuse not only for putting together
my own results in essay form but also for welding them on to the earlier
results obtained in the classical papers of Darwin, Poincaré and other workers
at this problem. After the adjudication of the prize, the essay was enlarged
by the addition of some further results which had been obtained in the
interval, and the present volume is the result.
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It is hoped that the book will be read in the spirit of the remarks of
Darwin just quoted. The main object of the essay is to build a framework
of absolute mathematical truth; the backbone of the structure is the
theoretical investigation into the behaviour of rotating masses. Of this my
own contribution forms only a small part ; the book contains also an account
of general dynamical theory, and of the researches of Darwin, Poincaré and
others, in so far as they relate to the main problem in hand. This part
of the book has been made as concise as possible, and I have ventured to hope
that it will prove of value to those who are embarking on a study of the
general problem of cosmic evolution.

I have tried not only to build a skeleton but also to clothe it.  When a
firm theoretical framework had been constructed, it seemed permissible and
proper to try to fit the facts of observational astronomy into their places. If
ever a complete mathematical theory is achieved, it will probably be an easy
task to trace out the order of evolution of stellar objects, but at present our
theoretical knowledge is so incomplete that a large element of speculation
must necessarily enter into every attempt to connect up theory and observa-
tion. T have tried throughout to keep speculation within reasonable limits,
and have applied as many checks and tests as I could to the various con-
jectural hypotheses brought forward. Many astronomers necessarily will
disagree with a number of these conjectures; it is in this way that science
advances. To any critic who ‘may think the conjectures ought not to have
been brought forward at all, I would reply in the words of Herschel :

“If we indulge a fanciful imagination and build worlds of our own,...
these will vanish like the Cartesian vortices, that soon gave way when better
theories were offered. On the other hand, if we add observation to observa-
tion, without attempting to draw not only certain conclusions but also con-
jectural views from them, we offend against the very end for which only
observations ought to be made. I will endeavour to keep a proper medium ;
but if T should deviate from that I could not wish to fall into the latter
error.”

The more speculative chapters fall naturally together at the end of the
book. Many readers may find these the most interesting, and I have tried
to arrange the book so that they will prove intelligible to those readers who
prefer to take mathematical investigations as read. In the present state of
our knowledge any attempt to dictate final conclusions on the main problems
of cosmogony could be nothing but pure dogmatism; I should not have
ventured even to suggest a conclusion except that the various theoretical
results obtained seemed to point with considerable unanimity in one parti-
cular direction. Consequently a definite scheme of cosmogony has been
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suggested ; not in the belief that it will prove to be true, but in the hope
that it may in some degree help others ultimately to find the truth. This
scheme will be found to contain nothing fundamentally new ; it consists only
of a patchwork of parts of existing theories. This is perhaps hardly sur-
prising; so many cosmogonical conjectures have been made that it is
unlikely that any really novel hypothesis remains to be put forward. In any
case a theoretical investigation such as that of the present book is necessarily
destructive rather than constructive; primarily it serves to test and eliminate
existing theories rather than to indicate new possibilities.

It is a pleasure to thank many friends who have helped me in various
ways. First I must thank the great number of astronomers who have
allowed me to draw on their stores of astronomical knowledge. I have to
express my obligation and cordial thanks to Professor Hale, Professor Ritchey
and Mr F. G. Pease of Mount Wilson Observatory for permission to repro-
duce the very fine photographs which enrich my book. Finally it is a
pleasure to express to the officials and staff of the Cambridge University
Press my appreciation of their unfailing courtesy and the care they have
bestowed on the printing of the work.

J. H. JEANS.

Dec. 18, 1918.
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CHAPTER 1

INTRODUCTORY CHAPTER

SURVEY OF THE PROBLEM

The Solar System

1. In 1543 Copernicus published his treatise “De Revolutionibus Orbium
Coelestium ” in which the apparent motion of the planets was explained by
the simple hypothesis that they all described orbits about the Sun at rest.
Two thirds of a century later, in the early days of 1610, Galileo first observed
the satellites of Jupiter revolvmg around their primary, and so obtained what
amounted almost to direct visual proof of the truth of the Copernican system
of astronomy. But in verifying Copernicus’ solution of one problem, Galileo
had opened up another. For it now became clear that there were at least two
systems of almost exactly similar formation in the universe, and a philosophic
mind could not but conclude that they had probably originated from similar
causes, and would be impelled to conjecture as to what those causes might be.

In this way the problem of scientific cosmogony had its origin. To the
" ‘modern astronomer the problem is much richer, wider and more definite, in
proportion as the mass of observational. material within his knowledge is
greater than that with which Galileo was acquainted. In the solar system
alone, we know that in addition to the eight great planets, there are upwards
of 900 minor planets* or asteroids, and all these 908 or more bodies shew the
same regularity in their motion. Their orbits are all nearly circular, they are
all approximately in one plane, and they are all described in the same direc-
tion. If we assume it to be-d priori an even chance that a planet should
move either from east to west or from west to east, then the chance against
908 planets all moving in the same direction would be 2*7—1 to 1. But if
we regard the problem from the point of view of statistical mechanics, and
calculate the odds against these orbits being all of small inclination and of
small eccentricity, then we arrive at odds in comparison with which the
previously calculated odds of 2%7 — 1 to 1 are so small as to look approxi-
mately like an even chance.

* At the end of 1916, numbers had been assigned to 826; and orbits computed for 896. Of
the 520 earliest discovered planets, 13 are regarded as lost, having been seen at no opposition
since their discovery.

J. C. 1
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A similar uniformity is found in the satellites of the planets. The modern
astronomer knows that the system of Saturn as well as that of Jupiter is a
small-scale replica of that of the Sun, while the systems of the smaller planets
differ only in having fewer satellites. With a few exceptions, it is found that
throughout the whole complex system formed by the sun, its satellites, the
planets, and the satellites of the planets, the motion is uniformly in the same
direction and in nearly circular and nearly coplanar orbits.

The exceptions occur on the outermost edges of the solar system, and on
the ‘outermost edges of the systems of Jupiter and Saturn. They are as
_follows:

Neptune has only one satellite, and this has retrograde motion.

Uranus has four satellites, whose orbits are highly inclined to the
plane of the ecliptic.

Saturn has nine satellites*, of which the outermost (Phoebe) revolving
at a mean distance of 209 diameters of Saturn, has retrograde
motion and high eccentricity of orbit.

Jupiter has nine satellites of which the two outermost move with
retrograde motion.

Some of the asteroids also have considerable inclinations and eccentricities.
Thus Pallas has an inclination of 34° 43’, and Zerline (531) one of 34° 33/,
these being nearly five times the greatest inclination observed among the
planets (7° O, the inclination of Mercury). Juno has an eccentricity of
0-257 and Pallas one of 0239, while a few smaller asteroids are supposed,
although with less certainty, to have eccentricities of about .

Binary Stars

2. We do not know whether uniformity of this kind extends to other
systems in space, or whether it is a peculiarity of our own system. When it
was first realised that the so-called fixed stars were essentially suns more or
less similar to our own, it was natural to conjecture that they also might be
the centres of planetary systems similat to that of our sun, but the further
growth of knowledge has shewn the need for caution in such conjectures.

Of the nineteen stars whose parallaxes are less than 0-20”"—i.e. the nine-
teen stars which happen at the present moment to be within 96 x 10* miles of
our sun—no fewer than eight, or 42 per cent. of the whole, are quite certainly
binary starst. Although there is no special reason for thinking that these
nineteen stars are not likely to be a fair sample of the whole, it is obviously
desirable to try to get evidence from other regions of space. Of fifteen stars

* Excluding the tenth (Themis) discovered photographically by W. H. Pickering in 1904,
but not seen since. ;
+ Eddington, Stellar Movements, p. 41.
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examined by Hertzsprung* in the Ursa Major cluster, nine, or 60 per cent. of
the whole, are certainly binary, while Frostt finds that in the Taurus cluster
the corresponding proportion is 50 per cent. Frost also finds that 40 per cent.
of stars of B type are binary, while Campbell} finds that out of 1600 stars
considered by him, the spectroscopic binaries alone number 25-per cent.,
a ratio which must of course be increased by the addition of visual and
eclipsing binaries. [Thus there is* every reason to suppose that throughout
our universe fully one-third of the stars, and probably more, are binaries.]

To an observer who was so far removed from our system that the light
from Jupiter was visible while that from the other planets was not, our system
would appear to be a binary system. From observations, either spectroscopic
or visual, our imaginary observer might be able to determine the ratio of the
masses, and would find it to be ‘00095. But when in the same way, we
determine the ratio of the masses in the binary systems visible to us, this
ratio is found never to be very far from unity. Boss§ has found that in ten
visual binaries in which the ratio of the masses is well determined, this ratio
is never one of greater inequality than 0-33 to 1, the average being 0-69 to 1,
while Campbell| finds for nineteen spectroscopic binaries an average mass-
ratio 0'79, the greatest inequality of mass being one of ratio 0-39 to one.

~ Thus it appears that the binary system formed by our sun and Jupiter is
of a very different character from the binary systems observed in other parts
of the sky, and the same is true of all the planetary systems inside our solar
system. In these latter systems the closest approach to equality of masses of
primary and satellite is found in our earth-moon system, in which the ratio is
0:0123 to 1. Next, after a very long interval, come Saturn and Titan having
a mass-ratio of the order of 00002 to 1, and Jupiter and its third satellite
having a ratio of the order of 0-0001 to 1.

Thus, although it may be open to question whether or not our moon
stands in a class by itself inside the solar system, there appears to be no
question at all that the planetary arrangements inside our system stand in a
different class from the binary arrangements outside.

Not only binary but also triple and multiple systems are observed. It
is stated by Russell¥ that of the double and multiple stars contained in
Burnham’s General Catalogue of Double Stars, combined with Lewis’ catalogue
of the Struve stars, about 800 appear to have common proper motion. And
of these 74 are triple or multiple, this number being 925 per cent. of the
whole. The proportion in Jonckheere’s more recent Catalogue and Measures
of Double Stars** which contains 3950 stars is 97 per cent. of the whole.

* Astrophys. Journ. 30, p. 139, 1 Astrophys. Journ. 29, p. 237.

% Stellar Motions, p. 245. § Prel. Gen. Catalogue, p. 23.

|| Stellar Motions, p. 259, or ‘‘ Second Catalogue of Binary Stars,” Lick Obs. Bull, 181.
€l Astrophys. Journ. 31 (1910), p. 199. ** R.4.8. Memoirs, Vol. 71 (1917).

1—2
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After allowing statistically for the effects of projection on the celestial
sphere, Russell* finds that triple systems consist normally of a close double
with a third star revolving at a considerable distance about their centre
of gravity, the ratio of the actual separations being about 10 to 1. The
bearing of this on questions of cosmogony will be considered later; for the
present it is sufficient to notice that the multiple systems observed in the sky
shew no resemblance to our own solar system.

Thus we have found a very definite uniformity of arrangement inside our
system, and a very definite uniformity of arrangement outside, but the two
arrangements are different, and the question of whether there are other
systems arranged like our own has to remain an open one. It may perhaps
be mentioned that some astronomers believe that there are irregularities in
the motion of binary systems which are too definite to be ascribed merely to
errors of observation. These may ultimately be found to point,to the exist-
ence of planetary bodies revolving at a great distance round the central binary
system, but the evidence is certainly too vague at present for definite con-
clusions to be drawn.

Our search outside our own system has, however, disclosed the existence

of a second uniformity of structure, namely that of binary stars having masses
not far from equal.

Spiral and other Nebulae

3. * These two uniformities, namely the planetary formation and the
double-star formation, although perhaps the most striking, are by no means
the only uniformities which have been discovered by astronomy. Principal
among the remaining ones is the spiral nebula formation which appears to be
very distinetive and uniform. The characteristic spiral nebula consists in-
variably of a nucleus with two arms emerging from opposite points; the
convolutions of the two arms are similar, the curve of each being approxi-
mately an equiangular spiralt. This formation is very freely scattered in
space : Keeler and Perrine estimated the number of nebulae easily discoverable
with the Crossley reflector to be of the order of half a million, while Keeler
found more than half of the nebulae recorded on his plates to be spiralsi.
Although the spiral nebulae are only special instances of the more general
nebular formations found in the sky, they are nevertheless the most frequent
and the most distinctive of these formations known; for cosmogony they are
the most interesting because the definiteness of their formation must contain
a valuable clue to their origin and condition. Besides spiral nebulae there

are other types of nebulae, which are commonly described in the following
terms.

* dAstrophys. Journ. 31 (1910), p. 200. t+ v. Pahlen, 4st. Nach. No. 4503.
+ Campbell, Stellar Motions, p. 36.
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(1) TIrregular nebulae, such as the great nebula in Orion (N.G.C. 1976).

(2) Planetary nebulae, a class of nebulae of apparently spheroidal or
ellipsoidal shape, many shewing detailed features and formations in addition.
They are few in number, less than 150 having been discovered out of 15000
nebulae so far investigated*. As a rule they shew bright-line spectra, sug-
gesting that they are masses of hot gas, shining by their own light. Some
typical examples of Planetary nebulae will be found illustrated on Plate L

(3) Ring nebulae, such as the well-known nebula in Lyra (N.G.C. 6720).
Many astronomers believe that these are not true rings but ellipsoidal shells
seen in projection; the reason for this view is mainly that these formations
are never seen edgewise or nearly edgewise (see Plate I).

(4) Elliptical, elongated, lenticular and spindle nebulae. These are
terms commonly employed to describe the observed shape of nebular masses.
A number of nebulae originally classified as spindle-shaped are probably
merely spirals seen edgewise, as has been suggested by Sliphert and others.
Descriptions, with excellent photographs of these and other types of nebulae
will be found in a recent paper by F. G. Pease} (see also Plate III).

4. Beyond the information obtainable from their appearance and spectra,
we have but little knowledge as to the nature, motions or constitutions of
these various nebular systems§. Many of the spirals have velocities in space
which are enormously greater than any other class of velocities of which we
have any experience, a circumstance which gives some support to the view
that they may be regarded as “island universes,” each comparable in scale to
the universe of stars of which our sun is a member.

Thus for the Andromeda nebula there is consistent evidence of a velocity of
approach of about 300 kms a second, Slipher|| determining this velocity as 300
kms a second, Wright T as 304 kms a second and Pease** as 329 kms a second.
Many spirals have still greater velocities; thus Pease attributes a velocity
of recession of about 1180 kms a second to the nebula in Virgo (N.G.C. 4594) 1+
while Slipher finds a velocity of recession of 1120 kms a second for the nebula
in Cetus (N.G.C. 1068) . The general average velocity is between 300 and
400 kms a second—say twenty times the general average velocity of a star in
our universe. Regarding these nebulae as “island universes,” it ought of
course to be possible to determine the motion of our own galactic system in

* W. W. Campbell, Science (1917), p. 521. 1 Lick Obs. Bull. No. 62.
+ Astrophys. Journ. 46 (1917), p. 24. See also W. W. Campbell, Science, 45 (1917),
pp. 513—548.
§ A short summary will be found in the R.4.S. Monthly Notices, 77 (1917), p. 375.
|| Lowell Obs. Bull. No. 58 (1918). T Popular Ast. 23 (1915), 36.
** Journal Royal Ast. Soc. Canada, Sept. 1915.
+t Astrophys. Journ. 46 (1917), p. 41.
4% Lowell Obs. Bull. 80 (1918).
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space relatively to their centroid. Truman* and Young and Harpert find
respectively velocities of 670 kms a second and 598 kms a second.

Not only are large velocities in space revealed by the spectroscope, but
also large velocities of rotation. The first discovery of rotation in a nebula
was Slipher’s} discovery in 1914 of the rotation of the nebula in Virgo
(N.G.C. 45948) ; Pease|| has determined the velocity of rotation to be about
330 kms a second at a distance of 2’ from the centre, the velocity increasing
proportionally to the distance from the centre. Velocities of the same order
have been found in other nebulae. By a comparison of photographs taken at
ditferent dates Van Maanenf has found a rotation in the nebula M. 101%*
in Ursa Major which corresponds to a period of 85,000 years at 5 from the
centre; this nebula does not appear to rotate as a rigid body, the angular
velocity being greater near the centre. Van Maanen finds that in this nebula
the motion is along the arms and away from the centre, and similar results
have been obtained by Kostinskyt+ for the spiral nebula in Canes Venatici
(M. 51%}). Slipher§§ suspects similar motion in the nebula N.G.C. 1068\

5. Very large velocities such as we have been considering are a distinctive
property of the spiral nebulae. The large irregular nebulae, such as the
Orion and Trifid nebulae are found to be almost at rest relatively to the stars
of our system as a whole. The planetary nebulae have radial velocities
ranging up to 65 kms a second. The average radial velocity of thirteen
measured by Keelerf1¥ is 27-7 kms a’second. If these velocities are corrected
for the solar motion ***, their average numerical value is 268 kms a second, but
their average algebraic value is only 09 kms a second. Thus thesé thirteen
planetary nebulae, regarded as a whole, are almost at rest relative to our
system, while their individual velocities, although slightly larger than those

of ordinary stars, are small compared with the observed velocities of the
spiral nebulae.

It must, however, be added that Campbell +++ has found quite exceptionally
large radial velocities for two planetary nebulae, namely a velocity of approach
of 141 kms a second for N.G.C. 4732,, and a velocity of recession of 202 kms
a second for N.G.C. 6644. These velocities are not greater than a few ex-
ceptionally high velocities observed for ordinary stars (e.g. 325 kms a sec, for

* Pop. Astronomy, 24, p. 111, + Journal Royal Ast. Soc. Canada, 10, p. 134,
% Lowell Obs. Bulletin, No. 62. b § See Plate III.
II 4st. Soc. Pacific, 28, p. 191, 9 Astrophys. Journ. 44, p. 210.

** See Plate II. +t+ M. N. Royal Ast. Soc. 77, p. 233.

11 See Plate 1I. §§ Lowell Obs. Bull. 80 (1918).

Il Two fine photographs of this nebula will be found in the paper by Pease already referred to.
Astrophys. Journ. 46 (1917), p. 24, Plate IV.
911 Publications of Lick Observatory, 3, 201.
*#* Perrine, Astrophys. Journ. 46 (1917), p. 176.
ttt Nat. Acad. Sci. Washington, 1 (1915), No. 9.
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Lalande 1966 and 242 kms a sec. for Cordoba Z. 5. 243), but regarding the
problem as a whole, it is clear that they approach nearer to the velocities of
the spiral nebulae than to those of ordinary stars.

* With the possible exception of special nebulae such as these last two, it is
clear that we may, with good reason, suppose that the irregular and planetary
nebulae form a part of our system, and are moving with it, while the spiral
nebulae must be supposed to be systems independent of, and outside of, our
own system.

Further evidence of this essential difference between the spiral and plane-
tary nebulae is afforded by a study of their positious in the sky. The spiral
nebulae are found to be concentrated towards the poles of the milky way,
while the planetary nebulae are sparse near the poles of the milky way and
shew a very pronounced tendency to collect in the galactic plane. Now there
is every reason to believe that our system is of the shape of a coin or watch,
our sun being near the middle, and the remote edges being represented by
the milky way. Thus the most obvious, although perhaps not the only,
explanation of the observed differences of concentration of the spiral and
planetary nebulae is this: The planetary nebulae appear to favour the milky
way because, being inside our system and intermingled with the other stars
of the system, we see most of them in the directions in which we look into
the deepest layer of stars, namely directions in the galactic plane. The
spirals on the other hand appear to shun the milky way because the absorbing
matter of our system blots out or partially obscures such of them as lie in
directions near the galactic plane. In confirmation of this view R. F. Sanford *
has recently shewn that spirals near the milky way are on the average less
bright than those in other parts of the sky. F. G. Brownt has also shewn
that the spiral nebulae of larger angular size are in general the brighter, but
this is not true of spiral nebulae near the milky way where the visible
nebulae are large but faint. All evidence is consistent with the view that
the spiral nebulae are uniformly scattered in the sky but are quite outside
our system, so that of those which lie in the direction of the galactic plane,
the brighter ones are partially, and the fainter ones wholly, obscured by
obstructing matter in our own system.

Campbell and Mooret have recently found that quite a large proportion
of planetary ncbulae give spectroscopic evidence of internal motion. Of 33
examined, 16 gave definite evidence of internal motion, 12 gave no indi-
cations and the remaining 5 were doubtful. In a previous investigation§
internal motions had been found in the two nebulae N.G.C. 7009 and N.G.C.
6543. The motions are believed to consist in most cases of rotations about

* Lick Obs. Bull. No. 297.
t Monthly Notices R.4.S. 72 (1912), pp. 195 and 718.
+ Nat. Acad. Sci. 2 (1916), p. 566. § Lick Obs. Bull. 9 (1916), No. 278.
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axes through the centre, these axes being in general perpendicular to the
longest dimensions of the nebulae. In some cases the motion is more com-
plicated than a pure rotation; thus in N.G.C. 6543 the outer portions seem
to have velocities much smaller than those of the central parts.

The parallax of the planetary nebula N.G.C. 7662 (Plate I) has been found
at Mount Wilson to be 07:028, from which its diameter may be calculated to
be 19 times that of the orbit of Neptune. That of the ring nebula in Lyra,
N.G.C. 6720 (Plate I) has been found to be 0”:004, but with a probable error
comparable to the whole; the corresponding greatest and least diameters
are 330 and 250 times those of the orbit of Neptune*.

Star-clusters

X76. Further uniformities of formation are to be found in star-clusters.
The uniformities are not so definite as those we have just been considering,
but are quite definite enough to suggest common origins. There are a great
variety of star-clusters, shading often imperceptibly into one another, but they
may be classified into three broad types: globular clusters, open clusters
and moving clusterst.

The globular clusters are dense aggregates of stars shewing very great
condensation towards the centre. They are approximately globular in form,
although Pease and Shapley} have recently found that out of six supposed
globular clusters which it was possible to study in detail, five shewed a
pronounced departure from the spherical form, being apparently of a flattened
or spheroidal form. A similar absence of complete symmetry in some clusters
had been previously noticed by Bailey§. Bailey has also made counts of the
stars in some of these globular star-clusters, and it has been shewn by
Plummer| and von ZeipelY that the law of distribution is approximately
uniform. The procedure has been criticised by Shapley** on the grounds
that only a few of the brightest stars are included in such counts, but however
this may be, there is no question that there is a uniformity of some kind.
The number of known globular clusters is at most about 100: Bailey+t gives
the number of. “ definitely globular” clusters as 76, while Melotte estimates

the number as 82. Practically all of these had been discovered by the time
of the Herschels.

* Van Maanen, Ast. Soc, Pac. 171 (Oct. 1917).

t Shapley, Contributions from the Mount Wilson Solar Observatory, No. 115 (1916), where an
excellent summary is given; also P.J. Melotte, *“A Catalogue of Star-clusters,” Mem. R.4.8. 70
(1915), p. 175.

% Nat. Acad. of Sciences, 3 (1917), p. 96, and Astrophys. Journ. 45 (1917), p. 225. '

§ Harvard Coll. Observatory Annals, 76, No. 4. Il Monthly Notices R.A.S. 76, p. 107.

% K. Svenka. Vetensk. Acad. Handl, Bd. 51, No. 5.

** Observatory, 39 (1916), p. 452. :
4+t Harvard Coll. Observatory Annals, 76, p. 43.



5,6] Survey of the Problem 9

The distribution of globular clusters in the sky is somewhat surprising, it
being found* that they are practically confined to one hemisphere of the
sky. Not only this but there is a very marked condensation about one
point in the sky, 42 out of the 82 considered by Melotte lying within 30° of
a point in the galactic plane of latitude 325°. e

Slipher has recently measured the radial velocities of ten star clusters, -
and finds velocities ranging from — 410 to 4+ 225 kms. a second, the mean of
the values, taken without regard to sign being 150 kms. a second. It is
clear that we have here to deal with velocities of the same order of magnitude
as the velocities of the spiral nebulae.

Finally Shapleyt has attempted to estimate the distances of various
globular star-clusters, by assuming the absolute magnitudes of the cepheid
variables contained in them to be equal to those of similar cepheid variables
at known distances. He finds that probably, with one or two exceptions,
no globular cluster is nearer than about 80,000 light-years, corresponding to
a parallax of 000012”}. Thus the globular clusters, like the spiral nebulae,
appear to be independent of, and outside, our own system of stars,

The formation of moving star clusters also exhibits a certain, although
not very great, degree of uniformity§. A number of stars is said to form a
moving cluster when their velocities are sensibly the same, both in magnitude
and direction, and also when there is definite evidence of some further real
connection between the members of the cluster. The latter condition is
important because, by a procedure which is familiar to every student of the
Kinetic Theory of Gases, any collection of chaotically moving stars can be
resolved into parallel showers. * Observational astronomy reveals the existence
of clusters of stars moving with equal velocities and also having physical
characteristics in common which suggest that they have some bond of common
origin. The cluster formed by the Pleiades provides perhaps the most super-
ficially obvious instance of a star cluster of this kind. Here we have a
group of stars, all of similar spectral type, all of approximately equal bright-
ness, concentrated in one region of space and moving with a common velocity||.
A more thoroughly investigated cluster is the Taurus cluster which consists
of the Hyades and other neighbouring stars¥. A noteworthy cluster of
special interest is the Ursa Major cluster, which contains among other stars,
the stars B, v, 8, ¢ and ¢ Ursae Majoris of the “Plough.”** There is a very

* Cf. Melotte, Mem. R.4.S. 70, p. 176, and A. R. Hinks, Monthly Notices R.4.S. 71, p. 693.

t Proc. Nat. Acad. Sci. 3 (1917), p. 479.

+ By a similar method Hertzsprung had previously estimated the distance of the lesser Magel-
lanic cioud to be of the same order (parallax -0001). Cf. Ast. Nach. 4692.

§ On this subject in general, see Chap. IV of Eddington’s Stellar Movements.

{| ' W. W. Campbell, Stellar Motions, p. 181. -

9 Boss, dstrophys. Journ. 26 (1908), p. 31.

** Ludendorff, 4st. Nach. 180 (1909), 265, and W. W. Campbell, Stellar Motions, p. 175.

.
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definitely marked cluster in Perseus, and less noteworthy clusters in Scorpius-
Centaurus and Cygnus. There seems to be a tendency for clusters to assume
a flattened shape, the flattening in the case of the Ursa Major cluster being
almost complete*, so that the stars lie almost in a plane.

7. * We have now mentioned five different types of structure found in
the sky, each of which shews a more or less pronounced uniformity. The
aim of a scientific cosmogony must be to trace these and other uniformities
to their sources. When we find a formation repeated many times with only
slight variations, we may feel fairly confident that its origin is in every case
the same. The problem of cosmogony is to discover these origins and to
prove that they would lead to the observed formations.

The various uniformities of structure are by no means of equal importance.
A purely objective view would perhaps regard the finding of the origins of
planetary systems as the least important problem of cosmogony, but, for
reasons which can readily be understood, cosmogony has always been more
concerned with this special problem than with any of the others. Indeed
until quite recent years not enough was known of the universe outside our
solar system for the problems of cosmogony to have assumed a definite shape
except in reference to our own system. We now proceed to give a short
account of some of the various theories of planetary origin which have been
propounded.

THEORIES OF COSMOGONY
I. Tae NEBULAR HyPOoTHESIS OF KANT AND LAPLACE

8. Of all theories of cosmogony, the most enduring, and infinitely the
most famous, has been the Nebular Hypothesis, commonly associated with the
names of Kant and Laplace. Kant’s theory was first given in his dllgemeine
Naturgeschichte und Theorie des Himmels in 1755; Laplace published the
outlines of his theory in 1796 in his Kazposition du Systeme du Monde,
developing his ideas further in later editions. Laplace seems to have been
quite unacquainted with the earlier speculations of Kant; indeed he speci-
fically states that Buffon was, so far as he knew, the only philosopher who,
since the true nature of the solar system had been known, had speculated as
to the origin of the planets and their satellites. Thus we have two theories,
of distinct and independent origins, trying to explain the same phenomena.
Kant’s theories, however, attempted to explain the whole stellar universe,
while Laplace limited himself to the solar system.

* See a description by H. H. Turner, The Observatory 34 (1911), p. 246.

.
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9. Koant's Theory. Kant supposed the universe to have developed
initially out of a cold nebula at rest. He supposed this nebula to fall in under
its own gravitation, and to become hot in so doing owing to the consequent
compression. He assumed, of course erroneously, that rotation would be set
up in this process. He imagined that the matter would condense into rings,
and on superposing the supposed rotation, he arrived at a system of rotating
rings similar to the rings of Saturn, to which he appealed as evidence of the
truth of his theories. In the second stage of the cosmogonic process, Kant
supposes these rings to become unstable and form by agglomeration into
planets. The persistence of the rotatory motion results in this system of
planets revolving round the sun. The planets continue to contract under
their own gravitation, so that the preceding cycle of processes is repeated on
a smaller scale, and finally we find the planets also surrounded by rotating
satellites*.

10. Laplace’s Theory. We turn now to the theory put forward by
Laplace. The great French mathematician was not likely to fall into the
error of believing that rotation could be generated out of nothing, and so the
nebula is assumed to be rotating at the outset. Laplace supposes it to be
hot, without attempting in any way to account for the heat, and supposes it
to be lens-shaped or flat, without attempting to justify this special choice of
shape. The mass is supposed to cool by radiation at the surface, while at the
same time falling in upon itself as a result of the action of gravitation, the
net result being a heating of the central portion and a general shrinkage of
the whole. Since the angular momentum must remain constant throughout
the shrinkage, the actual velocity of rotation must increase, and Laplace
believed that as this increase of angular velocity took place, the outer ring of
matter ceased to be continuous with the main mass. A succession of repe-
titions of this phenomenon leaves a series of concentric annuli of matter,
rotating about a central axis, as 1mag1ned by Kant, and from this stage on the
hypotheses of the two philosophers are in agreement.

11. It appears that both Kant and Laplace try to develop a theory in
which a system such as the rings of Saturn represents a half-way stage
between the primitive nebula and the present state of our universe. Neither
theory attempts to explain why the supposed ring system should become un-
stable and agglomerate into planets, and neither theory explains why Saturn’s
rings have not become unstable.

Perhaps an unbiassed judge, devoid of preconceived ideas, might expect
a ring of rotating matter to become unstable. But, as Sir G. Darwint has

* Fuller accounts of Kant’s theory will be found in Poincaré’s Legons sur les Hypotheses
Cosmogoniques, Ch. 1 and Darwin’s Tides, Ch. 21. An account is also given in Miss Clerke’s
Modern Cosmogonies (1905). "

t The Tides, p. 410.
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pointed out, if such a ring agglomerated into a planet, the resulting planet
ought to coincide with the centre of gravity of the ring and not with a point
on its perimeter. The stability of Saturn’s rings was of course explained by
Maxwell in his celebrated Adams Prize Essay of 1857*.

The theory of Laplace, like that of Kant, contained little but pure specu-
lation. It is however obvious that these theories admit of mathematical
verification or disproof. With the exception of an investigation by Rochet,
in which the primitive nebula is represented by a heavy nucleus surrounded
by an atmosphere of infinitesimal density, almost all attempts to treat the
question mathematically have represented the matter of the supposed nebula
by a homogeneous incompressible fluid. This differs by so much fromn the
tenuous gas postulated by Laplace, that we cannot with any certainty regard
his theory as being either vindicated or condemned by such researches, what-
ever their result. It may, however, be remarked that the results obtained
from such researches have led to a continual modification of the theory until
in its present form it contains little in the way of detail that would be recog-
nised as his own by Laplace, and perhaps nothing that would be recognised
by Kant. But two outstanding features of the theory have survived, namely

(i) the supposition that our solar system originated out of a nebulous
mass of gas,

(i1) the supposition that the change from the primitive stage to the
present stage has been produced mainly by the agency of in-
creasing rotation.

Of these two suppositions, the former receives almost universal acceptance,
at any rate as a provisional hypothesis, while the latter can probably claim
more adherents than any other theory of planetary origin. In order to avoid
the very ambiguous term “Nebular Hypothesis,” which in view of the
innumerable modifications the hypothesis has undergone might mean almost
anything, it will be convenient to refer to these two essential parts of the
hypothesis as the “Theory of Nebulous Origin” and the “Rotational Theory.”
These two theories contain about all of the original “ Nebular Hypothesis”
which can survive serious criticism; we shall now consider these theories
in turn in the light of modern astronomical knowledge.

The Theory of Nebulous Origin

12. The general belief in the theory of nebulous origin is based mainly
upon direct observation of the sky; a reasoned defence of it might rest mainly
upon a consideration of the classification of stars according to spectral type ;
those stars which are believed to be in the earliest stages of development are

* On the Stability of the Motion of Saturn’s Rings (Cambridge, 1859).

t ¢ Essai sur la Constitution et I'origine du systéme solaire,” Acad. de Montpellier, Section
des Sciences, viur (1873), p. 235.
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observed to be surrounded in general by masses or wisps of nebulous matter,
the stars in the Orion nebula and the Pleiades being obvious instances.
Whether or not these processes of reasoning are sound, there is no question
that the theory of nebulous origin is widely and almost universally held, there
being some room for differences of opinion as to whether the primifive nebula
ought to be thought of as a mass of gas, or a dust cloud or possibly even a
swarm of meteoric stones. For instance Lord Kelvin suggested as the ulti-
mate origin of astronomical bodies, a collection of meteoric stones which were
vaporised by repeated collisions and so gave place in time to a gaseous nebula
of the Laplacean type. Sir Norman Lockyer suggested that many of the
observed nebulae are still in the meteoric state, a view which recent spectro-

scopic evidence has made untenable as a general explanation of nebular
structure.

13. A theory of the order of stellar development recently put forward
by H. N. Russell * strikes at the root one of the principal reasons for believing
in the nebulous origin of stars. Before the appearance of Russell’s theory,
the accepted order of stellar evolution, namely through the sequence of spec-

tral types

_ ~ Nebula, B, A, F, G, K, M,
was almost undisputed. In this classification, the B-type stars are the
hottest and stars of M type (red stars) are the coolest. The approximate

temperatures of the different types, as determined by Wilsing and Scheiner},
are as follows :

Type BO— B35, 1'=9030° Type G, I =4450°
B8 — A4, 8880° K 3970°
A5-48, 5780° M 2960°

According to the older view of stellar evolution, the B type was supposed
to indicate the stage in which the star was hottest and of lowest density, and
so least removed from its original nebular existence§; as the star radiated
heat it got cooler, and so passed throuih the various types in succession; a

spectrum of M type was supposed to characterise the oldest stars which were
close to extinction.

Russell shewed that the M stars fall into two very clearly differentiated
classes which he called “giant” and “dwarf” stars, these names referring to

* For an excellent statement by Prof. Russell himself see Nature, 93, p. 227 (1914); see also
The Observatory, 37, p. 165.

+ This is the Draper Classification adopted by Harvard Observatory. A brief but excellent
account of spectral classifications is given in Eddington’s Stellar Movements, pp. 7—10.

I Ast. Nach. 183 (1909), p. 87. Here and elsewhere each complete spectral class is divided
into ten subdivisions ; thus between a B star and an 4 star are supposed to be nine other stages
designated as B1, B2,...B9. A spectrum of exact B type is called B0, and so on.

§ To avoid confusion I have omitted the O or Wolf-Rayet Type from discussion altogether.
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a great difference in absolute brightness, although not necessarily in mass.
Any doubt that may have been felt as to the accuracy of this fundamental
fact has probably been removed by the investigations of W. S. Adams*, who
has found a purely spectroscopic method of determining the absolute brightness
of a star. Examining 58 red stars, Adams finds that 48 are of absolute
magnitudes between —1'0 and 34, while the remaining ten have absolute
magnitudes between 98 and 107, the division between Russell’s giant and
dwarf stars thus being a clear gap of 6'4 magnitudes. More recently Adams
and Joy+ have spectroscopically determined the absolute magnitudes of 500
stars of types F, G, K and M, and their results. confirm Russell’s facts com-
pletely. Of the 500 stars examined, 42 were of type M; of these 29 proved
to be of absolute magnitudes brighter than 29, one was of absolute magnitude
3'6, and the remaining 12 were all of absolute magnitudes fainter than 9-5.
Again there is a clear gap of about 6 magnitudes between “giants” and
“dwarfs.” A similar, although less pronounced distinction, is found to persist
bhrough types K and (7, but it has almost, if not quite, disappeared for type F.
It is thus proved beyond doubt that there exist red stars of extraordinary
brightness, for which no place could be found in the older scheme of stellar
evolution; for it is, as Russell remarks, very improbable that these stars,
some of them 100 times as bright as the sun, are on the verge of extinction
through old age.

Russell accordingly suggests that a star of B type is not at the beginning
of its career, but is half-way through. The star is supposed to have originated
as a giant star of M type. to have passed through the series of types M, K,
G, F, A to the stage B, and then to proceed again through the series 4, F, G, K
until it becomes a dwarf star of type M. Only the most massive stars ever
attain to the degree of incandescence represented by a B-type of spectrum ;
all others turn backwards before this stage is reached, a hypothesis which
gives at once a simple and perfectly acceptable explanation of the known fact
that B-type stars are of exceptional mass, while at the same time accounting
for the gradual disappearance of the gap between giant and dwarf stars in
types K, G and F.

It will be understood that this brief statement does not give an account of
all the details of Russell’s theory, neither have we mentioned the many criti-
cisms which have been brought against it}. For our present purpose, it is
enough to notice that the indisputable facts on which Russell’s theory is
based cut away to 4 large extent the original grounds for the belief that stars
originate out of nebulae. It is not proved that they do not, but there is no
longer any direct evidence that they do; to retain the theory of nebulous
origin, we have now to imagine the nebulous matter to be or become non-

* Proc. Nat. Acad. Washington, March, 1916.

+ Astrophys. Journ. 46 (1917), p. 313. -
1 See for instance W. W. Campbell, Science, 45 (1917), p. 547.
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luminous and remain so until the mass bursts into incandescence as a giant
M star. But, as we shall see later, Russell’s theory does not destroy, but
actually strengthens, the belief that a star starts with a very low density, and
this virtually brings us back by a different path to the theory of nebulous
origin. =l

The Rotational Theory

14. The main outline of what we are now calling the rotational theory has
been sufficiently explained already. This theory originated in an effort to
explain the origin of the solar system. In its application to this particular
problem it has been subjected to many criticisms, one of which in particular
has seemed to many to be unanswerable.

In 1861 Babinet* suggested that a criterion as “to"the tenability of the
general rotational theory was provided by a calculation of ‘the present total
angular momentum of the solar system. He argued that if the planets had
been thrown off by rotation the moment of momentum of the original rotating
mass must have been exactly equal to the total moment of momentum of the
present system. The mass of the original body must also have been equal
to the total mass of the present system, so that on assuming a reasonable
size for this original body, the dynamical conditions of the mass can to some
extent be reconstructed, and in particular we can calculate the amount of
rotation with which it must’ have been endowed. Babinet pointed out that
the aggregate moment of momentum in the solar system is far too small for
the original mass to have been broken up by rotation alone.

A simple calculation will shew that the greater part of the present moment
of momentum of the solar system resides in the orbital motion of Jupiter.
Taking the moment of momentum of the sun’s present axial rotation as
unity, the moment of momentum of the orbital momentum of Jupiter is found
to be about 37, that of Saturn about 14, that of Neptune about 48, that of
Uranus about 83, and the aggregate arising from all the other planets,
asteroids, satellites, ete., is less than 01. Thus the total is roughly 60 times
the present moment of momentum of the sun’s rotationt.

Now imagine the whole mass of the solar system concentrated in the sun,
which can be done with only an inappreciable increase (about "0013) of its
mass, and imagine the whole moment of momentum of the present solar
system concentrated in this one mass. The moment of momentum being

* Comptes Rendus, 52 (1861), p. 481. See also Moulton, Astrophys. Journ. (1900), p. 103.

+ These are the figures given by T. J. J. See (dst. Nach. 4053). See makes special assump-
tions as to the interior constitution of the sun, but any other reasonable assumption would lead
to similar figures. Fouché (C. R. 99, p. 903 (24 Nov. 1884)) calculates the total momentum to
be 282 times that of the sun, but he assumes the sun to be homogeneous. Lord Kelvin has
given a well-known estimate (Popular Lectures, 1. p. 420) according to which the ratio in question
is only 18, but he assumes the sun to be homogeneous, and also neglects the contributions from
Saturn, Uranus, Neptune, etec., this latter procedure being clearly erroneous.
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increased 60-fold, and the mass remaining substantially the same, it follows
that the angular velocity will be about 60 times what it is now, and instead
of having a period of rotation of 25 days, the new sun will have a period of
about 10 hours—roughly the same as that of Jupiter. = The mean density of
the sun (1-36) is roughly equal to that of Jupiter (1:30) so that the primitive
sun reconstituted in this way will be very similar to the present Jupiter, only
of greater mass. The mass of a body, as we shall see later, has almost no
influence on its tendency to break-up rotationally; this depends almost
entirely on its angular velocity and mean density. Now Jupiter shews an
ellipticity of only about %, and is to all appearances very far from breaking
up under the influence of its rotation, so that we cannot suppose our primitive
sun to have broken up by rotation.

In this we have supposed the primitive sun to be of about the same size
as our own sun; it must certainly have been larger, and this makes the result
still more certainly true. The rotational theory asserts that shrinkage is the
primary cause of the inset of instability which results in the throwing off of
a satellite ; if the primitive sun, when shrunk to the size of our present sun,
does not throw off a satellite, it certainly cannot have thrown off a satellite as
the result of rotation before the shrinkage took place, when its dimensions
may have been a thousand or a hundred thousand times what they now are.

The discussion of whether or not this criticism of the rotational theory is
valid will naturally be deferred until our mathematical investigations have
provided evidence on which to base a judgment.

II. TuE TipaL-AcTiON THEORY

15. Suggestions have at various times been made that tidal forces may
play the preponderating part in effecting the birth of satellites, for it is obvious
that, when subjected to tidal forces of sufficient intensity a mass of fluid may
reach a breaking point at which it divides into two or more detached masses.
The most complete form of tidal-action theory is found in the “ Planetesimal
Theory” of Chamberlin and Moulton*.

A non-rotating mass will in general assume a spherical shape under the
action of its own gravitational forces, but will depart from this form when a
second body approaches near enough for its tidal influence to be perceptible.
At the approach of a second body, the spherical shape will at first give place
to a spheroid of small ellipticity, owing to tides being raised directly under
and directly away from the tide-raising body. With the closer approach of
this body the tides continually rise in height, and Chamberlin and Moulton
suppose that ultimately two jets of matter rush out from the two antipodal

* A summary of a comprehensive kind will be found in Chamberlin’s Origin of the Earth
(Univ. of Chicago Press, 1916).
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points at which the tides are highest. But the tide-raising body does not
stand still; it is always somewhat ahead of the diameter through the two
highest tides, and so exerts not only a tide-generating force, but also a couple
which tends to set up rotation in the primary body. The two jets of nebulous
matter are therefore being ejected from a slowly rotating hody, and instead
of forming straight lines, form spiral curves.

The authors of the planetesimal theory claim that these conceptions
explain the origin of the spiral nebula formation, which they regard as a half-
way stage in the process of planetary formation, just as Kant and Laplace
regarded the rings of Saturn. The authors further believe that the ejection
of matter will take place by “ pulsations ”—hence the nuclei observed in the
arms of the typical spiral nebula—and that the condensations of these nuclei
ultimately form planets by agglomeration. If all this can be shewn to happen
according to the authors’ programine, then clearly the planetary structure and
the spiral nebula structure are explained at one sweep. But whether all this
happens or not can only be decided by exhaustive mathematical investigation.

Perhaps the most obvious criticism that can be brought against this
and all other tidal theories is that they require the close approach of large
astronomical bodies, and that. such close approaches are very rare events.
Calculations which will be given later seem to shew that this consideration
must lead to the abandonment of all tidal theories, including the planetesimal,
as explanations of normal cosmogonic processes. It must not of course be
asserted that no system has ever been broken up by tidal forces—this would
be contrary to all statistical laws—but it will be found that only a small
proportion of the stars in the universe are likely to have been broken up in
this way.

III. OtHER THEORIES

16. In addition to the theories just mentioned, there are a great number
of others in the field which claim to explain the origin of the solar system.
Many of these start from a nebulous mass or swarm of meteorites in chaos,
and regard the spiral nebula formation as an intermediate stage towards the
development of a solar system. Thus in addition to Moulton and Chamberlin,
See* and Arrheniust both contemplate the possibility of spiral nebulae
forming out of the collision or near approach of two stars, the condensations
in the arms of the spiral being supposed ultimately to form planets circling
around a central nucleus. Sutherland] has suggested that Bode’s well-
known law of planetary distances is readily explained in terms of a spiral
origin ; for Bode’s law, usually expressed in the form

r=04+015x 2" (=123, ..),.

* Researches of the Evolution of Stellar Systems, Vol. 1.
t Worlds in the Making. (London, 1908.) T Astrophys. Journ. 34, p, 251.

T80 2
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may be equally expressed in the form
r =1, 4 16 (=g il %))

which may be taken to represent the distances of nuclei along the arms of
an equiangular spiral.

In a somewhat different class come hypotheses, such as those of Faye*
and Ligondést, which try to prove that our system originated out of a
swarm of meteorites in which order has been produced out of disorder by
collisions, in opposition to the laws of statistical mechanies}.

Our task in the present essay is not to discuss these and other theories in
detail ; it is rather to obtain mathematical evidence bearing on the general
problem of evolution, incidentally perhaps examining to what extent the
speculative theories which have just been described are tenable. Many of
these theories, however, have already been condemned by the recent advances
in observational astronomy. For in many cases the theories were not based
on abstract knowledge of the properties of matter or on dynamical laws;
they rather exhibited a tendency to be based on the latest observational
knowledge with which their authors were acquainted. Up to the discovery
of the spiral nebulae, most theories of cosmogony tried to prove that Saturn’s
rings (the most sensational astronomical objects then known) formed an
intermediate stage in the evolution of planetary systems: since the discovery
of spiral nebulae, the tendency has been to try to prove that the spiral
nebulae form the link in question. The more scientific method of procedure
is to limit the investigation to the abstract problem of the behaviour of
masses of astronomical matter under varying dynamical forces; when the
solution of this problem has been carried to the limit of our mathematical
resources, we shall be in a position to survey the different types of formation
that may be expected to be evolved, and possibly not much speculation will
be required to identify them with observed forms. Thus the immediate
object of the present essay will be to collect and arrange the results of the
various researches which have resulted in progress towards the solution of
this abstract problem, adding to them and amplifying them wherever we can.

The dynamical forces which can act on astronomical matter are its own
gravitation, which must always be taken into account; the ‘gravitational
forces from other bodies, which we may for brevity describe as tidal forces;
the forces arising from rotation; the forces arising from collisions, impacts,
bombardments, etc. Our problem is to find out as much as we can about
the behaviour of matter under such forces, paying attention especially to
effects of a secular or evolutionary nature.

* Sur U'Origine du Monde. (Paris, Gauthier-Villars, 1884.)
+ Formation Mécanique du Systeme du Monde. (Paris, Gauthier-Villars, 1897.)
% Cf. Poiucaré, Lecons sur les Hypothéses Cosmogoniques, Chapters IV and V.
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GENERAL DYNAMICAL PRINCIPLES

17. In general the configuration of a dynamical system can be expressed
in terms of Lagrangian coordinates

e s e R (1),

while its motion at any instant can be specified in terms of the corresponding
velocities

T R A (2).

The potential energy W will be a function of the coordinates of posit.ion
only, say
= (OO A0 T s st s 3),

while the kinetic energy 7 will be a function both of the coordinates of
position and of the velocities, say

LT e el R RN ST Y (4),
and this function will be quadratic in the velocities 6y, 6,, ... 6,.
The equations of motion will be the Lagrangian equations
d@ny_or__ow
dt \p4,/ 006, 00,

where F,, F,, ... F, are the “ generalised forces ” applied from outside.

A P e o T (5),

In a number of cosmogonical problems, we shall be concerned with the
motion of astronomical masses, and the equations determining this motion
will be equations (5) or some appropriate special form of these equations.
But in a much greater number of cosmogonical problems we shall be con-
cerned with astronomical masses which are either in a state of equilibrium
or whose motion is so slow that their kinetic energy is negligible. For such
configurations, putting 7'= 0, equations (5) reduce to

W oW _ W

0, =% 3,=% %,

These may be regarded either as equations of equilibrium or as equations
determining the configuration of a very slowly changing mass. Regarded
as equations in 6,, 6,, 6,, ..., the equations will have a number of solutions of
which a typical one may be taken to be

R, T e ().

2—2

B e i S (6).
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In this solution the quantities 6, ®,, ... will be functions of the constants
which enter into the function W as given by equation (3). But in problems
of cosmogony in which changes of a secular or evolutionary nature occur,
these constants must themselves be supposed to vary; they are better spoken
of as parameters than as constants. When equations such as (5) are satisfied,
an astronomical mass has assumed a position of equilibrium for the moment,
but with the course of time the physical conditions will change, and the con-
figuration of equilibrium will give place to another. Analytically this process
is represented by slow changes in the parameters which occur in the speci-
fication of W by equation (3).

STATICAL SYSTEMS

Linear Series

18. Let us consider in detail the changes produced in ®,, ©,, ..., the
coordinates of a configuration of equilibrium, as one of the variable parameters,
say u, is allowed slowly to vary.

A slight change in the value of u, say from u to u + du, will alter the
values of 0,, ©,, ... by quantities which will in general be small quantities
of the same order of magnitude as du. Thus on making this small change
in p, a configuration of equilibrium such as that given by equations (7)
gives place to an adjacent configuration of equilibrium. On continually
varying u we pass through a whole series of continuous configurations of
equilibrium, and these form what Poincaré has called a “linear series*.”

We may in imagination construct a generalised space having
91) 92) 288 91“ 12

as coordinates. Any one plane u = cons. will be suitable for the representation
of all the configurations which are possible for one value of w, and therefore
for all which are possible for one definite physical state of the system. The
particular points in this plane determined by equations such as (7) will
represent the configurations of equilibrium in this physical state.

The function W must, from its meaning, be a single valued function of
0y, 0,, ... and u, so that the surfaces W = cons. in the (n + 1)-dimensional
space are necessarily non-intersecting surfaces. The condition that a con-
figuration shall be one of equilibrium, as expressed by equations (6), is exactly
identical with the condition that the tangent to the surface W = cons. shall
be perpendicular to the axis of u. Thus if for convenience we think of the
axis of 4 as being vertical, the configurations of equilibrium are represented
by points at which the tangents to the surfaces W = cons. are horizontal ;

* Poincaré, Acta Math. 7 (1885), p. 259, or Figures d’Equilibre d'une Masse fluide. (Paris,
1902.) See algo Lamb, Hydrodynamics, p. 680.
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let us for brevity call these “level points.” On joining up a succession of
level points, such as P,, P,, P;in fig. 1, we obtain a “linear series.”-

’

Points of Bifurcation S

19. The regular succession of such points as we pass along a linear
series may be broken in various ways. One obvious way is by a change in
the direction of curvature of the W-surfaces, resulting in the formation of a
kink, such as is shewn occurring at

as QR, @S and QT as soon as we
pass above the point ¢ at which

the kink first forms. It is readily /
seen that at @ two of the series /

the point @ in fig. 1. On any surface R S T
on which this formation has just A T
occurred, there will be three ad-
Jjacent level points such as Ry, S,, T} S3 T,
in the figure. The original linear 8o
series P() will accordingly become S, Ty
replaced by three linear series such
N
FQ\
N
QR and QT must run continuously
into one another, and so in effect ;\
form a single new series, while the Tig. 1
series QS may be regarded as a
continuation of PQ. We may accordingly suppose that there are two linear
series PQS and REQT crossing one another at the point . A point such as
@ is called by Poincaré a “ point of bifurcation.”

Another and more usual way in which the succession of level points can be
broken—or rather deviated—is shewn in fig. 2. In this case, as x increases,

Uy

Fig. 2.
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two linear series such as P, P, and U,U,() coalesce in the point ¢ and then
disappear: It will be convenient to refer to a point such as ¢ in this figure
as a “turning point.”

Still a third possibility is shewn in fig. 3; this however is only a variant
of fig. 1, and again leads to two linear series crossing one another in a point
of bifurcation . Other minor variations may occur, but the principal possi-
bilities are those shewn in figures 1, 2 and 3.

Stability and Instability

20. Every point on a linear series is a configuration of equilibrium ; the
equilibrium may be stable or unstable. Confining our attention to any one
of the planes u = cons. the condition that a particular configuration of equi-
librium in this plane shall be stable is that the value of W at the point in
question shall be a minimum. Hence, for stability, the concavities of the
different vertical sections of the W-surface through this point must all be
turned in the same direction, and this direction must be that of W-decreasing.

Suppose for instance that in fig. 1 W increases as we pass upwards, and
suppose that the concavities for all sections of the W-surface through P, are
turned in the same direction as that shewn in the diagram. Then the con-
figuration represented by the point P, will be one of stable equilibrium.

On passing along a series such as P@S in fig. 1 or 3, it is clear that one
of the sections must change the direction of its concavity as we pass through
the point @ at which a kink is first formed on the W-surfaces. .Thus con-
figurations which were initially stable give place to unstable configurations
on passing through @. It appears that a principal series such as PQS loses
its stability on passing through a point of bifurcation.

In fig. 1, it is clear that if P,, P,, P, represent stable configurations, then
the configurations represented by R,, R,, R; and T}, T}, 1 will also be stable.
Thus stability, which leaves the principal series PQS at ), may be thought
of as passing to the branch series RQT. Thus there is an exchange of
stabilities at the point of bifurcation .

In fig. 3, on the other hand, it appears that if the configurations repre-
sented by P,, P,, P; are stable then those represented by R, R., R, and
T., T., T; will be unstable, in addition to those represented by S, S;, S;. In
this case there is a disappearance of stability at the point of bifurcation Q.

In fig. 2, it is clear that if P;, P,, ... are stable, then U,, U,, ... must be
unstable ; while conversely if U,, U,, ... are stable, then P, P, ... must be
unstable. Thus in moving along a linear series there is a loss of stability on
passing through a point such as @ at which u is a maximum. But in a
physical problem, x4 will continually change in the same direction, and the
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physical phenomenon which will shew itself as u passes through'its value at
@ will be a complete disappearance of two sets of equilibrium configurations.

The results obtained may be shewn diagrammatically in the following
figures, in which thick lines represent series of stable configurations, and
thin lines series of unstable configurations, the series P being assumed to
be stable in every case.

R gt iy
|
IS
[}
3
'
R
Sadl it o= \\\\
\\\\ ,” \\\
\\ I, \
\ o \
\ / \
\| 1] \
. Ui IR P I

(i) (iii)
Fig. 4.

21. Suppose that u changes very slowly in any physical problem, and
for definiteness let the direction of change of u be that represented by an
upward movement in our diagrams. From what has already been said, it is
clear that we have the following rule for tracing out the sequence of stable
states which will be followed by the system as u varies.

Start from a configuration in the diagram which is known to be stable,
and follow a path along linear series of equilibrium so as always to move
upwards, and so as always to cross over from one series to another at a
point of bifurcation. So long as we do this we are following a sequence of
configurations which is always stable. When it becomes impossible to do
this any longer, a value of u has been reached beyond which no stable con-
figurations exist, and when the physical conditions change so that u attains
to a still higher value, the statical problem gives place to a dynamical one;
1t is no longer a question of tracing out a sequence of gradual secular changes,
but of following up a comparatively rapid motion of a cataclysmic nature.

“At each point of bifurcation there is necessarily a certain amount of
indefiniteness in the path which will actually be followed. For instance in
fig. 4 (i), the system on arriving at @ may proceed either along Q7 or
along QR, both being equally consistent with the maintenance of stability,
and so far as can be seen equally likely. In actual fact there may even be
more indefiniteness than this; our figures are two-dimensional diagrammatic
representations of (n + 1)-dimensional spaces, and the line RQT in our figures
may very possibly represent a surface in the (n + 1)-dimensional space.

These apparent complications cause no difficulty in actual problems.
They arise from the obvious circumstance that a general discussion of stability,
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although competent to determine when stability ceases, cannot in general
determine what will happen after stability has ceased. In the same way a
general discussion will readily shew that a stick standing vertically on its
point is in unstable equilibrium, but it cannot determine in which precise
direction the stick will fall.

22. In his classical paper* in which the theory of linear series and
points of bifurcation was first developed, Poincaré used analytical methods
to obtain results identical with those just found.

Consider a configuration in which the variable parameter has the value p.
The potential energy W will be of the form

W=F(, 6, ... O, )

and the configurations of equilibrium are given by the equations

56, f(01, 055 %o 20 ) =0 SETCRC A N SN Ao (8).

Asin § 17, let ©,, ©,, ... be a configuration of equilibrium corresponding

to this given value u of the parameter, so that at the point 8,, @,, ... ©,, u,
oW BW BW

00, =20,

At any adjacent point ®, 4 80,, ®2 +80,, ... u + 8p, the value of W may .
be expressed in the form

W
+(86) (362) s ae +.

oW 3 W, '
+%(8,u) o +(8,u) (80)80 B Al (10).
The condition that this new configuration shall be one of equilibrium is,

from equations (8),

W oW oW oW o

86, —~ e S o

0583 + 3 spag,* 0 g oh, + O 305

and similar equations. Writing W, for 8 W /06,06, and so on, the solution of

these equations is

W+1(<53(9)%ae2

+8y,

86, S

e = e 12
(W Won, W | 7T A (12),
| WE"; }Vﬁ; ”fzp.
where A is given by
Wll} ]2’ 2 ]rln
Wi, Wagy oo Wi | srreeeemeenmennnneens (13),

and so is the Hessian of W with respect to the variables 6,, 6., ... 6,.

* l.c. ante.
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The values of the ratios

Su O S

‘8—6—1 g -8—0—2, 8_0;
determine the direction of the linear series through the configuration
0,, ©,, ... ®, in our diagram. At points such as @ in figs. 4 (i) and 4 (iil)
one or more of these ratios must become indeterminate, so that we must
have (say) &u/86,=0/0. At a point such as @ in fig. 4 (ii) we must have
(say) 8u/86, = 0. Thus the three points  in figure 4 are all determined by
the single condition

23. We must now try to connect this up with the analytical condition
for a change of stability occurring at the configuration ®,, ©,, ... ®, and
the value u of the parameter. Keeping u constant, the change of potential
energy corresponding to changes 86,, 80,, ... in the values of ©,, 0®,..., will,
as in equation (10) be given by

SW=14(86,)° Wi+ (86,)(80:) Woah oo wenvrvannn (15)

in which no terms of degree beyond the second need be written down when
86,, 80, ... are supposed small.

Let the coordinates 86,, 86, ... in this quadratic expression for 8 W be
changed by a linear transformation to new coordinates ¢b1, P ..., such that
SW becomes a sum of squares, say

SW =14 (b2 + bopt + ... +bp2) ...... 2 - (16)

and let the modulus of transformation be A.

Since the discriminant remains invariant through all linear transfor-
mations, we have

61,170 41 0, v |4 W, Wa W o ]
; O ) b‘Z) 0) jere. ) b x ‘ WIZ) W221 Wzn {
or B Rl T ().

The condition that the configuration (17) shall be stable is that 8 W shall
be positive for all values of 86, 86,, ... 80,, or again that expression (16)
shall be positive for all values of ¢,, ¢, ... p,. This condition is that
by, b,, ... b, shall all be positive.

The coefficients b,, b,, ... b, are called by Poincaré “ coefficients of stability.”
A change from stability to instability occurs when any one of these coefficients
vanishes, and the values of u for which this occurs are, from equation (17),
given by
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Combining this with the result obtained in the last section, it appears
that a change of stability occurs at every point of bifurcation, and at every
point on a linear series at which p passes through a maximum or a minimum
value, agreeing with the result obtained by other means in §§ 19 and 20.
The criterion of stability in the branch series at a point of bifurcation is
most readily seen by the method already adopted in § 21; with the con-
ventions there used, it appears that the branch series will be stable if it
turns upwards from the point of bifurcation, and unstable if it turns down-
wards.

. ROTATING SYSTEMS

24. This completes the discussion of the stability of statical systems.
The stability of motion of a dynamical system is a very much more com-
plicated question, but assumes a specially simple form when the motion
consists mainly of a rigid body rotation. We proceed to discuss the stability
of such a system.

Let the system be referred to axes rotating in space with any velocity o
about the axes of z in the direction from Oz to Oy. Let =z, y, z be the
coordinates of any point referred to these axes, and let &, g, £ denote their
rates of increase. The components of velocity in space are then given by

U =& — Yo, V=1 hxm, | WSS L e (19)
so that the kinetic energy I is given by
T=3Em(uw+v*+w?)
=33m (& + J° + 2°) + wZm (27 — y&) + *Zm (2 + 47) ...... (20).
The total moment of momentum M about the z-axis is given by

M = Zm (av — yu)

=2Zm (Y — y2) + 0Zm (#® + y*) ........ N (21).
Put [
Tpe=dZm (B F & 5 on-ioenenie i S (22),
U, = 200 (Bh 8@ 5ot osnt Hos b0 1 Rnauned (28),
£ S (g ek LA i TN (24),

so that Ty is the kinetic energy relative to the rotating axes, U is the
moment of momentum relative to the moving axes, and I is the moment of
inertia. Then equations (20) and (21) become

T=Te+oU+}se' ] ........... R L (25),

M = U Sl ot L T e (26).
Eliminating U we obtain

L= Lo 4 oM —Forl ..ol e aeenmos o s (27).
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The position of the system may be supposed defined by 4, a coordinate
fixing the position of the axes, such that ¥ =, and n—1 Lagrangian
coordinates 0, 0, ... 6,_, fixing the configuration of the system relative to
the axes, so that the system has n degrees of freedom in all. = ——

The equations of motion are (cf. equations (5)),

d (o1 oT
d—t( ~)- S = G (28),

d 0T\ oT oW,
d7<6_&,)_37& AR (5=1,2, ... n—1) .....(29),

in which G is the generalised force corresponding to the coordinate 4, and
so is the couple about the axis of z which acts upon the system.

From the value of T given by equation (25), we clearly have 97 /oy =0
and 07 /0w = M, so that equation (28) reduces to

expressmg simply that the rate of increase of the ‘moment of momentum M
is equal to the couple G.

If a mass is rotating freely in space, G' =0, so that M remains constant.

If a mass is constrained to rotate at a constant angular velocity while M
changes, a couple @ will be necessary to maintain the rotation, and the
amount of this couple will be determined by equation (30).

Mass rotating with Constant Angular Velocity
25. Let us first consider the problem’ when w is kept constant. To
transform equations (29) we notice that
oz db,
) 00, dt
0 Oz
so that 20, = a0,

We accordingly have
O i ms ( @E_y%) gm(x@_y?ﬁ)

26, 26, ° 0, a0, 7 48,
so that
d 00\ o (. 0y ax)+2m d(a_y\_ i(@g_
%(a‘(;)‘“m( 30, Y20, Tt \08,) ~ ¥ dt\e6,) |-
, 2T oo . Oy, d(_ag)_ d (o
Ao Gg =3m (i — gy )*2’”[ dt \o8,) ~ ¥ di 30)]
d U\ U .. (.0 .0
o ﬁ(ée_‘s)"aefz“m( 26, ¥ ao)

4 oz 0y 0y ox\ 4
=22””[2<a9 a‘e"a‘e’ae)o}
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4 or o0y oy ox
Put .8','3 =23m (a—é; a—'g'; = 5@; a—e;)

so that B,,= — B,; and B,.,=0. Then
d U\ oU Q
a (ao) = = Rl b B T A (31).

Using the value of 7' given by equation (24) and keepmg o constant,
we have

d(bT) oT d(aTR) Ty m[gl_(aU) BUJ ol

dt \pg,/ ~ 00, dt\gg,’ 90, t \og,/ ~ 0, ik 00,
so that the equation of motion (29) becomes, using (31),
d aTR aTR A 5] a
R e ) ey ~) Lae2e
t(aég) s+ © BubitBubt..) == g5 (W= doD) + F,....(32)

Thus the equations of motion relative to rot;ating axes differ from the
simpler equations appropriate to the case of w =0 in two respects; first by
the presence of what we may call “gyroscopic” terms such as B3;,wf;, and

second, that W —}e*l replaces the potential energy W of the simpler
equations.

26. The conditions for equilibrium relative to the moving axes are
6,=0,=...=0

and so are determined by the equations

8% (W=t D)=F, ete. ...ccovuniviinnniiininns (33),

reducing when there are no externally applied forces, to

a 2 -
G0, (W30 D) =0 oo (34).

The difference between these equations and the simpler ones for a system
at rest is merely that W has become replaced by W — }e?I. The configurations
of relative equilibrium may accordingly be found just as though the system
were at rest under a potential W — }e?], and these configurations will fall
into linear series as before.

27. To discuss the small oscillations of such a system, let us return to
the equations of motion (30), and suppose we are considering the oscillations
of a configuration which is one of equilibrium under no applied forces, say

0, = 0,, ete.

Let the coordinates be replaced by 6, — ©,, ete. so that the new values
of 6,, 8,, ... all vanish in the configuration of equilibrium. The values of
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W — }?I and of T, for any small displacement may now be expressed in the
forms

.

2T = ay 0.2 + 20, 6,6, +...
2(W—%w21)=b11912"‘2(‘)1291024'--- i

the condition that equations (32) shall be, satisfied in the configuration of
equilibrium requiring the omission of terms of first degree in 6, 6,,.... By
a linear transformation, 7, and W —4w*/ may be simultaneously reduced
further to a sum of squares, so that we may assume the still simpler forms

B e L (35),
2(W —3021)=0b,02+D,02 + ... ....0.cccenvvnnnnn. (36).
The equations of motion (32) now reduce to
{a1é1+b191+w(,8,292+,8més+...)=Fl .................. (87),
4505 + by Oy + @ (B by + Buba+ ...)=Fy,ete. ... (38).

Had the system been at rest, these equations would have reduced to
.0, +b,6,=F,, etc.

and all the properties of “ principal coordinates ” would have been immediately
deducible. But a glance at equations (37) and (38) will shew that these
properties no longer persist when the system is in rotation. A disturbance
in which 8, exists alone at first will soon set up oscillations in which 8, 8, ...
have finite values, and the coordinates 6,, 6, ... no longer correspond to
independent vibrations.

Since equations (37) and (38) are linear with constant coefficients, it is
clear that there will be a system of separate free vibrations. These may be
found by putting Fy=F,=... =0, and assuming 6,, ,,... each proportional
to the same time-factor ¢X. The equations reduce to

{(a,x? + b)) 6, + oAB6; + oNB0s+ ... = 0.

oAMBq 0 + WALy Oy + ... + (@A + b,) O+ ... =0, ete. ...... (39).
Eliminating the ’s, we find as an equation for A,
N+ b, oNB, oA B,
oABa , A +by, wABy, ... |=0.
oMBy , ©ABn , aA\P+bs, ...

Since B,s= — By it appears that this equation is unchanged when the
sign of A is changed. Thus the equation is an equation in A% just as when
the system is at rest. But the roots in A* are no longer all real as they are
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for a system at rest; they will occur in pairs of the form A*=p + 7o, and
these will lead to roots for A of the form

A=1gqtp,
so that the complete time factor for an oscillation is found to be of the form
Ae? cos (pt — €) + Be 2 cos (pt — ).

If ¢ is different from zero for any vibration, the amplitude of this vibration
will continually increase owing to the presence of the factors e*?, and the
system will be unstable. Thus the condition for stability is that g shall be
zero for every vibration, and this in turn requires that all the roots in A?
shall be real and negative—a condition which is the same in form as that for
the stability of a non-rotating system.

A transition from stability to instability occurs whenever one of the
roots in A? vanishes. Putting A =0 in equations (39) we find that these
equations reduce to

b,0,=0, b,0,=0, etc.

and the condition for a change from stability to instability is seen to be that
one of the coefficients b,, b,, ... shall vanish. These coefficients are seen to
be precisely the Poincaré “ coefficients of stability ” calculated for a system of
potential energy W — 3w?l.

28. Multiply equations (32) by 6,, 6, ... and add corresponding sides.
We obtain

gll_t(TR'l' W -} l)=F0,+ F,0,+... PTG (40).

The same result is readily obtained from the equations of energy and
angular momentum. The equation of energy is

%(T+W)=ﬂé,+ﬂég+...+wa .................. (41)
or, using equations (27) and (80),
& (Lot oM+ W—jal)=Fidy+ P+ ..+ e
which is identical with equation (40).
When F,=F,=... =0, so that no forces act except the couple G necessary
to maintain the rotation constant, the equation has the integral
Tp+ W —Jew?l =constant........cocoeeevennnnn.. (42).

For equilibrium, W — }w*I must, as we have seen, be stationary. Con-
sider first what kind of equilibrium obtains when W — }0°I is an absolute
minimum. When any small displacement of the system occurs, W — oI is
necessarily increased, so that the constant value of T + W — 4] is greater
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than its value when at rest in the equilibrium configuration by a small
constant amount ¢. Thus throughout the subsequent motion 7% can never
iricrease beyond the value ¢, so that the motion is absolutely stable. This
argument cannot however be reversed to shew that the system is necessarily
unstable if W — }w?/ is not an absolute minimum. —

Let us examine what happens when the relative motion of the system is
affected by dissipative forces, such as viscosity. The right hand of equation
(40) will be negative except when the system is relatively at rest, so that
Tr+ W — 4wl will decrease indefinitely. If W — }o*I was an absolute mini-
mum in the position of equilibrium, this condition can only be satisfied by
Ty being reduced to zero, and the system coming to rest in its position
of equilibrium. But if W — 1»?[ was not an absolute minimum in the con-
figuration of equilibrium, there will be a possible motion in which W — Je*I
continually decreases while T, remains small at first, but may increase
beyond limit when W — }w?/ is sufficiently decreased. The system is now in
a restricted sense unstable.

Instability of the kind just discussed is called “secular instability.” The
conception of “secular instability ” was first introduced by Thomson and
Tait*. It has reference only to rotating systems or systems in a state of
steady motion; for systems at rest secular stability become identical with
ordinary stability. It is clear that a system which is ordinarily stable may
or may not be secularly stable, but a system which is ordinarily unstable
1s necessarily secularly unstable.

Mass rotating freely in space

29. As Schwarzschildt has shewn, the conditions of secular stability
assume a somewhat different form for a mass rotating freely in space. Here
the rate of rotation is not constant but varies with the moment of inertia of
the mass; if we refer the motion to axes rotating with a uniform velocity
the rotation of the freely rotating mass may lag behind that of the axes and
the relative coordinates-#, y, z may increase without limit although the
configuration remains stable. It is therefore important to express the con-
ditions of stability in a form which does not involve the constancy of w.

When the mass is rotating freely in space, G = 0 so that (equation (30))
M is constant. The elimination of  fromn equations (25) and (26) leads to

M‘Z

T=T,+ 57

. Uz

where d= TR—2——I.

* Nat. Phil. 2nd Ed. 1. p. 391. °
+ See Schwarzschild; *Die Poincaré’sche Theorie des Gleichgewichts.” Neue Annalen. d.
Sternwarte Miinchen, 3 (1897), p. 275, or Inaugural Dissertation. Miinchen (1896).
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Using the values of Tz, U and I given by equations (22) to (24),
21T, =[Zm, (@2 + y.2)] [Ems (42 + g5 + 5,7)]
= [Eml (T h — yl'il)] [Emz (-502.’92 = yza'vz)]

= 3Zmymy [(2ds + Yot + (@adhy + $190)°
o (5'71y'2 o 417291)2 3 (xzy.l - -7719'2)2 + 2° ("L'zz St yzz) — 2 (2 + %2)]-
This expression, being a sum of squares, is always positive. Thus, since [ is

necessarily positive and independent of &, g, Z, it appears that T is always
positive and is quadratic in 4, 7, 2.

The equation of energy, T+ W = cons. now assumes the form

MZ

o = OIS ottt (43).

Te+ W+

This is of the same form as equation (42), T replacing T’y and W + M?/21

replacing W — Jw?l. By the argument already used in § 28, it now appears
that configurations for which

is an absolute minimum (M being kept constant) will be thoroughly stable,
while configurations for which this expression is not an absolute minimum
will be secularly unstable, and may or may not be ordinarily unstable,

30. As we pass along a linear series of configurations of equilibrium of
a rotating system, starting from a part of the series which is known to be
stable, the configurations will become secularly unstable as soon as

W—}w (@ =constant).........ccceeursn.-....(45)
or W+ 3M2/T (M = constant)..............ocvee... (46)

ceases to be an absolute minimum, the former expression referring to a
problem in which the mass is compelled by external forces to rotate at a
constant rate o, while the latter refers to a problem in which the mass is
rotating freely in space. -

It is now clear that the theory of linear series and stability developed in
§§ 18—20 will be exactly applicable to the problem of the secular stability of
a rotating mass, W being replaced in the argument of those sections by the
appropriate one of expressions (45) or (46). Secular stability is lost at a
“ turning point” or “point of bifurcation.” At a turning point stability is
lost entirely ; at a point of bifurcation it may be lost or may be transferred
to the branch series through the point according as the branch series turns
downwards or upwards in the appropriate diagram.
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Various forms for the Equations of Equilibrium

31. The preceding theory has reduced the problem of determining a
sequence of stable configurations to the simpler problem of mapping out all
configurations of equilibrium. For this latter problem the conditions of equi-
librium may be expressed in whatever formn is found to be most convenient.

We have already seen that possible forms are
S(W=130) =0 (@ =constant).................. 1),
S(W +3M?/I)=0 (M=constant).................. (48).

Another form is contained in the ordinary hydrostatic equations of equi-
librium

in which V is the gravitational potential and p, p denote the pressure and
density respectively.

For a mass of uniform density p, equations (49) have the common
integral
%: V + j0*(2* + y*) + cons.

and so the equations reduce to the single condition that

V + lo?(2*+9*) =cons. ........... A e ve.--(50)
over the boundary of the fluid.

32. In the classical treatment of the rotational problem by Poincaré*
and Darwint, the equations of equilibrium are introduced in the form (48);
while Liapounoff} treats the same problem by means of equation (50).
The method of treatment of the present book finds it convenient to use
equation (50) for the incompressible mass, and equation (49) for the com-
pressible mass, this latter case not being discussed at all by Poincaré, Darwin
and Liapounoff.

Thus, so far as the treatment of the problems in the present essay is
concerned, it was unnecessary to introduce equations of the type (48) for the
discussion of figures of equilibrium, but the theory of secular stability could

* Acta Math. l.c. ante, also *“Sur la Stabilité de I’Equilibre des Figures Pyriformes affectées
par une Masse Fluide en Rotation,” Phil. Trans. 198 A (1901), p. 333.

1 ¢“On the Pear-shaped Figure of Equilibrium of a Rotating Mass of Liquid,” Phil. Trans.
198 A (1901), p. 301, and subsequent papers. These will be found in Vol. 11 of Sir George
Darwin’s Collected Works.

+ ¢“Sur un Probléme de Tchebychef,” Mémoires de I’ Academie de St Pétersbourg, xvii. 3 (1905),
and other papers published by the Academy.
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CHAPTER 111

ELLIPSOIDAL CONFIGURATIONS OF EQUILIBRIUM

33. The best-known configurations of equilibrium of a rotating homo-
geneous mass, namely Maclaurin’s spheroids and Jacobi’s ellipsoids, are both
of the ellipsoidal form, and this form will prove to be of primary importance
in all the cosmogonical problems we shall attempt to solve. We accordingly
devote a chapter to the subject of ellipsoidal configurations.

Looked at merely from the point of view of convenience in the develop-
ment of the subject, the ellipsoidal form has the advantage that the potential
of an ellipsoidal mass is known and is comparatively simple, and that the
ellipsoidal configurations provide admirably clear examples of Poincaré’s
theory of linear series and stability. These reasons alone might justify our
studying ellipsoidal configurations in some detail, but there are weightier
reasons, as we shall soon see.

Throughout this chapter and the three succeeding chapters the matter
under discussion will be supposed homogeneous and incompressible ; the more
complicated problems presented by non-homogeneous and compressible masses
will be attacked in Chapter VII.

We shall deal in turn with three distinct problems—the first, that of a
mass of liquid rotating freely under its own gravitational forces; the second,
that of a mass devoid of rotation but acted on tidally by another mass; the
third that of two masses rotating round one another and acting tidally on
one another. The first problem is of course of interest in connection with
the rotational theory of pb\ngtaruvolutlon 1; the second is of interest in
connection with the tidal theory ; while the third is of of Interest astkmg~up
the two former —problems, and also in connection w1th some double-star
problems.—Tmr—every~ene of these problems, we “shall find ultlmately that
the only stable configurations are of the ellipsoidal form, or are ellipsoids
slightly distorted by tidal inequalities.

34. Notation. When one ellipsoid only is concerned, we shall take a, b, ¢
to be its semi-axes, so that the equation of its boundary will be
2 2 2 >
S TR S e (51).
As in many ellipsoidal problems, it will be convenient to think of the
surface (51) as being the surface A =0 in the family of confocal ellipsoids
22 y'z 22

a2+x+m+c2+h=1 ..................... (52).
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We shall write for brevity
@?+r=4, B*+r=B, c+r=C
[(®+A) (B*+N) (2 + )»)]ii = (ABC’)J‘ =A }
We shall take abc=rs. The matter of which the ellipsoid is formed
will be supposed to be homogeneous and of density p, so that the mass M

will be given by
M = gmrpabe = 4rpry.

The potential V, of this mass at any external point «, ¥, 2, is, by a well-
known formula,

i it 0 0 dx
V.,=—7rpabcfA <Z+B+E'_1)K ............... (54)
in which the lower limit of integration A is the root of equation (52), and
so is the parameter of the confocal ellipsoid on which the point #, ¥, z lies.

The potential V; of the mass at an internal point «, y, 2, is

i Pt ek dx /
Vz——'n'pabcfo (Z+§+a— 1>A ............... (55)

and so is a quadratic function of , y, z.

35. To simplify the printing of integrals of the type just written down,
we shall introduce an abbreviated notation. - Let us write

“dn
P st
and put further
| [, awipgen=Tamwre (56)
Lo AmB”UPA— AT"BMCP ceecciirecaciicitiiiinen
so that, for instance, equation (55) assumes the form
Vi=—mpabe @ 4+ yT g+ 22T =J) weveeeereenenns (57).
It is easily verified that j
2
JA+JB+JO=R‘O ........................... (58)

‘or this can be seen from the circumstance that V2V; must be equal to — 4arp.
We may also note the formulae

2

JA"B"’ v]A”C +(2n+ 1) JA”’H = m—c
all of which are easily verified by algebraic transformations.

With these preliminaries, we proceed to the three problems already
specified.
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I. FREELY ROTATING ELLIPSOIDS

36. The necessary and sufficient condition that the standard ellipsoid
(31) shall be a figure of equilibrium for a homogeneous mass of density p
freely rotating with angular velocity o is that

| e A (62)

shall be constant over the boundary, V; being glven by equation (57). Con-
sider the function

2 2 2
Vi + jo? (2® + 2) + Ompabe <% + %2 + % -~ 1) ............ (63)

where g is a constant, as yet undetermined. Operating with V% we find
that this function will be a spherical harmonic, if

4 4 1
—4mp + 20 + 20mpabe (E et 6—2) =0
and this can be satisfied by assigning to € the value
w2
; <1 i 21rp)
) S e |
abo 5+ 55+ )
Giving this value to 6, expression (63) becomes harmonic. The necessary
and sufficient condition that the standard ellipsoid (51) shall be a figure
of equilibrium is that this function shall have a constant value over the
boundary. The function being harmonic, this is equivalent to the condition

that the function shall have a constant value throughout the interior of the
ellipsoid. We must accordingly have

— wpabe (J 2%+ Jpy + Jo22 — J) + %w* (*+ )

0=

+ Ompabe < 4 ‘;)/2 += 1> = Ccons.

where 6 is given by equation (64). Equating coefficients of 2? y* and 22, this
equation is seen to be equivalent to the three separate equations

gori ol

BN . b id & (65),
® 0

B s T e s e eero(66),
6

Jo St vir ol bals s (67).

By addition of corresponding sides we again obtain equation (64) which
gives the value of §. Thus the three equations (65)—(67) contain within
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themselves the necessary and sufficient condition that the standard ellipsoid
(51) shall be a figure of equilibrium under a rotation w.

37. On subtracting corresponding sides of equations (65) and (66) we
obtain

0
(a’-b’)JAB=(a'~'—b“)aTb2,

and the elimination of  between this and equation (67) leads to
(C&2 = bn) [aﬁb” JAB 2 C’JC] 37T o e A e A (68)
It accordingly appears that. equations (65) to (67) can be satisfied in two
ways; first by taking

and second by taking

Maclaurin’s Spheroids

38. Let us examine the former alternative first. When a = b, the series.
of ellipsoids become a series of spheroids which include the sphere a =b=c
for which «?=0.

Equation (65) now becomes identical with (66). The elimination of ¢
between this equation and equation (67) gives

w’a?
2 £ =5 ¥ ey
IR 2mpabe
w? a?—c [ ANdA
Lo == 0 B TR SRR e R M 71).
. 27 pabc a* Jo AAC {75

Since ® must be positive, it appears that a® must be greater than ¢*;
the spheroids are all oblate. On evaluating the integral in equation (71),
‘the value of w? is found to be given by

2 9 __9p2
;’7;): 3—;—6 (1 —e2)ai sinte —3 (:—2— 1) ........ A (T2)

where e is the eccentricity, defined by e =(a? — ¢?)/a’

Thus the eccentricity of the spheroid depends only on the ratio of @* to p,
as it is apparent from a consideration of physical dimensions that it must.
The following table of corresponding values of »?/p and e is given by Lamb*,
being compiled from values calculated by Thomson and Tait+:

* Hydrodynamics (4th Ed.), p. 673. I have inserted into this table, Darwin’s values for
e="81267, the point of bifurcation.
t Nat. Phil, § 772.
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2

& afrg ¢l 2%—; Ang. Momentum/M ¥ /%,
0 1-0000 1:0000 0 0

1 1-0016 9967 *0027 0255 ~———
‘2 10068 *9865 *0107 ‘0514
3 1-:0159 9691 ‘0243 *0787
4 1-:0295 9435 *0436 1085
5 1-0491 *9068 0690 -1417
6 10772 ‘8618 -1007 *1804
i 1-1188 7990 *1387 *2283
"8 11856 7114 ‘1816 2934

‘81267 1-1972 6977 ‘18712 -30375
‘9 1-3189 5749 -2203 *4000
91 1-341 *5560 ‘2225 *4156
‘92 1-367 *5355 2241 *4330
93 1-396 5131 2247 *4525
‘94 | 1431 *4883 *2239 *4748
*95 1-474 *4603 *2213 *5008
96 1-529 *4280 *2160 *5319
" 97 1-602 *3895 *2063 *5692
‘98 1713 *3409 -1890 *6249
‘99 1-921 *2710 *15651 7121
1-00 I\ ® 0 0 ©
Jacobv's Ellvpsoids

39. Let us now examine the second alternative, represented by equation
(70) in § 37. For these configurations @ is no longer equal to b, so that the
integrals do not admit of integration in finite terms. They have been dis-
cussed by C. O. Meyer*, and also reduced to elliptic integrals and treated
numerically by Darwin+-.

It is found that the ‘ellipsoids form one single continuous series; they
are generally known as Jacobian ellipsoids, their existence having been first
demonstrated by Jacobi in 1834}. The maximum value of w?2wp is found
to occur for the particular ellipsoid for which a=1b; this value is 18712,
and the ellipsoid for which it occurs is one in which a =b=17161¢. This
configuration is also of course a Maclaurin spheroid, and so forms a point
of bifurcation on this latter series. It is the configuration printed in heavy
type in the table above.

As we pass along the Jacobian series, the ratio a/b may be supposed to
vary continuously from 0 to oo, and the point of bifurcation occurs when
a=b. The two halves of the series are however exactly similar, either one
changing into the other on interchanging @ and b, so that we may legiti-
mately confine our attention to one half, say that for which ¢ >6. ‘We now

* Crelle’s Journ. 34 (1842).
+ Proc. Roy. Soc. 41 (1887), p. 319 or Coll. Works, 111. p. 118.
+ Pogg. Ann. 33 (1834), p. 229.
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regard the series of Jacobian ellipsoids as starting at the value «=0b (the
point of bifurcation), and the ratio a/b continually increases from 1 to o« as
we pass along the series. The following numerical values are given by
Darwin*,

'

b c WS ) Angular
170 7‘—0 ,_0 Q;l; Momentum
— l .
1-1972 11972 6977 *18712 *30375
1-216 1°179 *697 1870 304
1279 1-123 696 186 306
1-3831 1-0454 6916 1812 3134
16007 9235 6765 1659 *3407
1-88583 *81498 65066 14200 3898
1:899 8111 16494 *1409 3920
2:346 ) 6072 1072 *4809
| 31294 5881 5434 ‘0661 6387
50406 4516 4393 ‘0259 1-0087
®© 0 0 0 © y
|

40. We have found that there are two linear series of ellipsoidal con-
figurations—the Maclaurin spheroids and the Jacobian ellipsoids. The
stability of these figures can now be investigated by the methods already
explained. ‘

Stability when angular velocity is increased, as in
Plateaw’s experiments

41. In 1842 Platean devised an experiment in which he attempted to
observe directly the sequence of configurations in a rotating mass of fluid
with a view to testing whether they were at all similar to those assumed by
Laplace as the basis of his nebular hypothesis. Plateau mixed water and
alcohol until they were of just the right density to float freely in olive oil.
A globule of this mixture was then set in rotation in the oil by spinning a
wire through its centre, the globule being kept in position on the wire by
a disc round which it clustered. As the speed of rotation increased the
globule was observed to flatten itself more and more until finally a dimple
formed at the centre, and the globule detached itself from the disc in the
form of a perfect ring. The conditions of this experiment were very different
from those contemplated in the nebular hypothesis, for the globule was not
held together by its own gravitational attractions, but by surface tensions
and was not made to shrink while moving freely in space, but had its
angular velocity mechanically increased by the medium of the wire and disc.

* Coll. Works, 111. p, 130.
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42. As a problem suggested by Plateau’s experiments, let us examine
what would be the sequence of configurations if a mass of gravitating matter
had its angular velocity continually increased by some mechanical means
such as the spinning at an ever increasing rate of a pole through its centre.

The configurations of equilibrium are those already discussed ; so long as
the mass is constrained to remain .ellipsoidal, they consist of Maclaurin
spheroids and Jacobian ellipsoids. To examine the stability of these figures
we draw a diagram in which the angular
velocity is the vertical coordinate (see s
fig. 5). ' § ’

We find at once that the Maclaurin :
spheroids remain stable until the ro- " 5
tation is given by w?/2mp =18712. At
this stage a point of bifurcation occurs, o
the branch series being the Jacobian Y4
ellipsoids: The Maclaurin spheroids
accordingly lose their stability, and /
since the Jacobian ellipsoids turn down-
wards from the point of bifurcation, !
these also are unstable. Thus there
are no stable configurations of equili- ‘
brium for a rotation greater than that given by w?*/2mp = 18712." When the
rotation exceeds this amount, the problem ceases to be a statical one and
becomes a dynamical one ; here we shall not attempt to follow it.

~
sp1odaydg
urinelde W
~”

Fig. 5.

43. Suppose, as an alternative problem, that the mass had been con-
strained to remain a figure of revolution. The Jacobian series of figures
would then have no existence, and the point defined by ?/2mp ="18712 on
the Maclaurin series would have no physical significance except as being the
point at which the newly imposed constraint first came into play. The Mac-
laurin spheroids now remain stable up to the point defined by w?/27p = 225.
This is the maximum value which w can have for a spheroidal configuration,
and when o exceeds this value there are no possible configurations of equi-
librium at all subject to the constraints which we have supposed to be
imposed. Again the problem becomes a dynamical one, and again we shall
not attempt to trace out this part of the motion.

Stability when the angular momentum s tncreased

44. The problems just considered are of interest as illustrating the theory
of points of bifurcation, but fail entirely to represent the conditions postulated
in the rotational theory of planetary evolution. To represent these conditions
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the mass must be supposed to rotate freely in space so that its angular mo
mentum remains constant. As it shrinks, its density will continually increase
and this may or may not result in an increase of angular velocity. To study
the problem by the most direct method, we should have to look for series o
configurations of constant angular momentum and varying density. It is how
ever a convenience to suppose that the density remains constant while the
angular momentum increases, and it is easily seen that this leads to exactl,
the same mathematical problem. We accordingly proceed to study the sta
bility of the Maclaurin and Jacobian series, supposing p to remain constan
while the angular momentum is made continually to increase.

In this problem the angular momentum is given in the last columns o
the tables on pp. 39 and 40, and in a diagram in which the angular mo

1 "
Tl
1o
of —~
Sl
Olc
)
af 2.
| [£=
Fig. 6.

mentum is taken for ordinate, the series will be found to be as in fig. 6. Clearl;
the Maclaurin spheroids will be stable up to the point at which they meet th:
Jacobian ellipsoids. At this point of bifurcation they lose their stability, anc
since the series of Jacobian ellipsoids turns upward at this point, it follow
that stability passes to them.

If the mass is constrained to remain ellipsoidal there is no further poin
of bifurcation on the Jacobian series, and, as the angular momentum con
tinually increases along this series, it follows that all configurations on it ar
stable. But it will be found later (Ch. V) that when the constraint to remais
ellipsoidal is removed, the Jacobian series loses its stability at a certain stag
by meeting a series of non-ellipsoidal (pear-shaped) configurations. This ha
been anticipated in our diagram.
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45. It will be understood that the foregoing discussion of stability has
been concerned only with secular stability, this being the only kind of stability
which is of intérest in problems of cosmogony. The conditions of ordinary
stability are quite different; for instance it has been shewn by G. H. Bryan*
that Maclaurin’s spheroid remains ordinarily stable until its eccentricity is
given by e =-9529.

II. TIDALLY DISTORTED ELLIPSOIDS

46. We now pass to a problem in which the distinction between secular
and ordinary stability disappears.

A distant heavy mass will raise tides in a spherical mass of fluid, so that
the fluid assumes the shape of a prolate spheroid. As the heavy mass
approaches, the eccentricity of this spheroid will increase, and the question
arises whether the spheroidal form remains stable no matter how great its
eccentricity. The bearing of this problem on the planetesimal theory and
other tidal-distortion theories is obvious.

47. Suppose that a mass M of fluid which we shall call the primary, is
acted on by tidal forces originating from a second mass M’, which we shall
call the becondary Let us at first suppose that the mass M’ of the secondary
is collected in a point, this being of course a legitimate approximation if the
secondary is at a great distance from the primary.

Let the centre of gravity of the primary be taken for origin, and let the
secondary be at a distance<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>