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PREFACE

THE present essay is primarily an attempt to follow up a line of research

initiated by Laplace and Maclaurin, and extended in various directions

by Roche, Lord Kelvin, Jacobi, Poincare and Sir G. Darwin. Within two

years of the close of his life, Darwin remarked that the way to further

progress in cosmogony was blocked by our ignorance of the figures of

equilibrium of rotating gaseous masses. He wrote as follows (Darwin and

Modern Science, p. 563, and Tides, 3rd edition, p. 401) :

" As we have seen, the study of the forms of equilibrium of rotating liquids

is almost complete, and a good beginning has been made in the investigation

of the equilibrium of gaseous stars, but much more remains to be discovered.
" As a beginning we should like to know how a moderate degree of com-

pressibility would alter the results for liquid, and.., to understand more as to

the manner in which rotation affects the equilibrium and stability of rotating

gas. The field for the mathematician is a wide one, and in proportion as the

very arduous exploration of that field is attained, so will our knowledge of

the processes of cosmical evolution increase
" Human life is too short to permit us to watch the leisurely procedure

of cosmical evolution, but the celestial museum contains so many exhibits

that it may become possible, by the aid of theory, to piece together bit by
bit the processes through which stars pass in the course of their evolution."

Guided possibly by considerations such as these, the Adjudicators of the

Adams Prize announced as the subject for the 1917 Essay :

The course of evolution of the configurations possible for a rotating and

gravitating fluid mass, including the discussion of the stabilities of the various

forms.

At this time I had for some years been engaged in an attack on this

problem. The announcement offered an excuse not only for putting together

my own results in essay form but also for welding them on to the earlier

results obtained in the classical papers of Darwin, Poincare and other workers

at this problem. After the adjudication of the prize, the essay was enlarged

by the addition of some further results which had been obtained in the

interval, and the present volume is the result.
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It is hoped that the book will be read in the spirit of the remarks of

Darwin just quoted. The main object of the essay is to build a framework

of absolute mathematical truth
;
the backbone of the structure is the

theoretical investigation into the behaviour of rotating masses. Of this my
own contribution forms only a small part ;

the book contains also an account

of general dynamical theory, and of the researches of Darwin, Poincare and

others, in so far as they relate to the main problem in hand. This part

of the book has been made as concise as possible, and I have ventured to hope

that it will prove of value to those who are embarking on a study of the

general problem of cosmic evolution.

I have tried not only to build a skeleton but also to clothe it. When a

firm theoretical framework had been constructed, it seemed permissible and

proper to try to fit the facts of observational astronomy into their places. If

ever a complete mathematical theory is achieved, it will probably be an easy

task to trace out the order of evolution of stellar objects, but at present our

theoretical knowledge is so incomplete that a large element of speculation

must necessarily enter into every attempt to connect up theory and observa-

tion. I have tried throughout to keep speculation within reasonable limits,

and have applied as many checks and tests as I could to the various con-

jectural hypotheses brought forward. Many astronomers necessarily will

disagree with a number of these conjectures; it is in this way that science

advances. To any critic who may think the conjectures ought not to have

been brought forward at all, I would reply in the words of Herschel :

"If we indulge a fanciful imagination and build worlds of our own,...

these will vanish like the Cartesian vortices, that soon gave way when better

theories were offered. On the other hand, if we add observation to observa-

tion, without attempting to draw not only certain conclusions but also con-

jectural views from them, we offend against the very end for which only

observations ought to be made. I will endeavour to keep a proper medium
;

but if I should deviate from that I could not wish to fall into the latter

error."

The more speculative chapters fall naturally together at the end of the

book. Many readers may find these the most interesting, and I have tried

to arrange the book so that they will prove intelligible to those readers who

prefer to take mathematical investigations as read. In the present state of

our knowledge any attempt to dictate final conclusions on the main problems
of cosmogony could be nothing but pure dogmatism; I should not have

ventured even to suggest a conclusion except that the various theoretical

results obtained seemed to point with considerable unanimity in one parti-

cular direction. Consequently a definite scheme of cosmogony has been
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suggested ;
not in the belief that it will prove to be true, but in the hope

that it may in some degree help others ultimately to find the truth. This

scheme will be found to contain nothing fundamentally new
;

it consists only

of a patchwork of parts of existing theories. This is perhaps Jiardly sur-

prising; so many cosmogonical conjectures have been made that it is

unlikely that any really novel hypothesis remains to be put forward. In any
case a theoretical investigation such as that of the present book is necessarily

destructive rather than constructive
; primarily it serves to test and eliminate

existing theories rather than to indicate new possibilities.

It is a pleasure to thank many friends who have helped me in various

ways. First I must thank the great number of astronomers who have

allowed me to draw on their stores of astronomical knowledge. I have to

express my obligation and cordial thanks to Professor Hale, Professor Ritchey

and Mr F. G. Pease of Mount Wilson Observatory for permission to repro-

duce the very fine photographs which enrich my book. Finally it is a

pleasure to express to the officials and staff of the Cambridge University

Press my appreciation of their unfailing courtesy and the care they have

bestowed on the printing of the work.

J. H. JEANS.

Dec. 18, 1918.
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CHAPTER I

INTRODUCTORY CHAPTER

SURVEY OF THE PROBLEM

The Solar System

1. In 1543 Copernicus published his treatise "De Revolutionibus Orbium

Coelestium" in which the apparent motion of the planets was explained by
the simple hypothesis that they all described orbits about the Sun at rest.

Two thirds of a century later, in the early days of 1610, Galileo first observed

the satellites of Jupiter revolving around their primary, and so obtained what

amounted almost to direct visual proof of the truth of the Copernican system
of astronomy. But in verifying Copernicus' solution of one problem, Galileo

had opened up another. For it now became clear that there were at least two

systems of almost exactly similar formation in the universe, and a philosophic

mind could not but conclude that they had probably originated from similar

causes, and would be impelled to conjecture as to what those causes might be.

In this way the problem of scientific cosmogony had its origin. To the

modern astronomer the problem is much richer, wider and more definite, in

proportion as the mass of observational . material within his knowledge is

greater than that with which Qalileo was acquainted. In the solar system

alone, we know that in addition to the eight great planets, there are upwards
of 900 minor planets

* or asteroids, and all these 908 or more bodies shew the

same regularity in their motion. Their orbits are all nearly circular, they are

all approximately in one plane, and they are all described in the same direc-

tion. If we assume it to be -a priori an even chance that a planet should

move either from east to west or from west to east, then the chance against

908 planets all moving in the same direction would be 2907 1 to 1. But if

we regard the problem from the point of view of statistical mechanics, and

calculate the odds against these orbits being all of small inclination and of

small eccentricity, then we arrive at odds in comparison with which the

previously calculated odds of 2907 - 1 to 1 are so small as to look approxi-

mately like an even chance.

* At the end of 1916, numbers had been assigned to 826, and orbits computed for 896. Of

the 520 earliest discovered planets, 13 are regarded as lost, having been seen at no opposition

since their discovery.

J. C. 1
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A similar uniformity is found in the satellites of the planets. The modern

astronomer knows that the system of Saturn as well as that of Jupiter is a

small-scale replica of that of the Sun, while the systems of the smaller planets

differ only in having fewer satellites. With a few exceptions, it is found that

throughout the whole complex system formed by the sun, its satellites, the

planets, and the satellites of the planets, the motion is uniformly in the same

direction and in nearly circular and nearly coplanar orbits.

The exceptions occur on the outermost edges of the solar system, and on

the outermost edges of the systems of Jupiter and Saturn. They are as

follows :

Neptune has only one satellite, and this has retrograde motion.

Uranus has four satellites, whose orbits are highly inclined to the

plane of the ecliptic.

Saturn has nine satellites*, of which the outermost (Phoebe) revolving

at a mean distance of 209 diameters of Saturn, has retrograde

motion and high eccentricity of orbit.

Jupiter has nine satellites of which the two outermost move with

retrograde motion.

S^me of the asteroids also have considerable inclinations and eccentricities.

Thus Pallas has an inclination of 34 43', and Zerline (531) one of 34 33',

these being nearly five times the greatest inclination observed among the

planets (7 0', the inclination of Mercury). Juno has an eccentricity of

0*257 and Pallas one of 0'239, while a few smaller asteroids are supposed,

although with less certainty, to have eccentricities of about J.

Binary Stars

2. We do not know whether uniformity of this kind extends to other

systems in space, or whether it is a peculiarity of our own system. When it

was first realised that the so-called fixed stars were essentially suns more or

less similar to our own, it was natural to conjecture that they also might be

the centres of planetary systems similar to that of our sun, but the further

growth of knowledge has shewn the need for caution in such conjectures.

Of the nineteen stars whose parallaxes are less than O20" i.e. the nine-

teen stars which happen at the present moment to be within 96 x 10 12 miles of

our sun no fewer than eight, or 42 per cent, of the whole, are quite certainly

binary stars f. Although there is no special reason for thinking that these

nineteen stars are not likely to be a fair sample of the whole, it is obviously
desirable to try to get evidence from other regions of space. Of fifteen stars

*
Excluding the tenth (Themis) discovered photographically by W. H. Pickering in 1904,

but not seen since.

t Eddington, Stellar Movements, p. 41.
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examined by Hertzsprung* in the Ursa Major cluster, nine, or 60 percent, of

the whole, are certainly binary, while Frost f finds that in the Taurus cluster

the corresponding proportion is 50 per cent. Frost also finds that 40 per cent,

of stars of B type are binary, while Campbell J finds that out of 1600 stars

considered by him, the spectroscopic binaries alone number 25 -per cent.,

a ratio which must of course be increased by the addition of visual and

eclipsing binaries. [Thus there is' every reason to suppose that throughout
our universe fully one-third of the stars, and probably more, are binariesH

To an observer who was so far removed from our system that the light

from Jupiter was visible while that from the other planets was not, our system
would appear to be a binary system. From observations, either spectroscopic

or visual, our imaginary observer might be able to determine the ratio of the

masses, and would find it to be '00095. But when in the same way, we
determine the ratio of the masses in the binary systems visible to us, this

ratio is found never to be very far from unity. Boss has found that in ten

visual binaries in which the ratio of the masses is well determined, this ratio

is never one of greater inequality than 0'33 to 1, the average being 0*69 to 1,

while Campbell 1 1

finds for nineteen spectroscopic binaries an average mass-

ratio 079, the greatest inequality of mass being one of ratio 0'39 to one.

Thus it appears that the binary system formed by our sun and Jupiter is

of a very different character from the binary systems observed in other parts
of the sky, and the same is true of all the planetary systems inside our solar

system. In these latter systems the closest approach to equality of masses of

primary and satellite is found in our earth-moon system, in which the ratio is

0*0123 to 1. Next, after a very long interval, come Saturn and Titan having
a mass-ratio of the order of 0'0002 to 1, and Jupiter and its third satellite

having a ratio of the order of O'OOOl to 1.

Thus, although it may be open to question whether or not our moon
stands in a class by itself inside the solar system, there appears to be no

question at all that the planetary arrangements inside our system stand in a

different class from the binary arrangements outside.

Not only binary but also triple and multiple systems are observed. It

is stated by Russell 11 that of the double and multiple stars contained in

Burnham's General Catalogue of Double Stars, combined with Lewis' catalogue
of the Struve stars, about 800 appear to have common proper motion. And
of these 74 are triple or multiple, this number being 9'25 per cent, of the

whole. The proportion in Jonckheere's more recent Catalogue and Measures

of Double Stars** which contains 3950 stars is 9'7 per cent, of the whole.

*
Astrophys. Journ. 30, p. 139. t Astrophys. Journ. 29, p. 237.

Stellar Motions, p. 245. Prel. Gen. Catalogue, p. 23.

II
Stellar Motions, p. 259, or " Second Catalogue of Binary Stars," Lick Obs. Bull. 181.

U Astrophys. Journ. 31 (1910), p. 199.
** R.A.S. Memoirs, Vol. 71 (1917).

12
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After allowing statistically for the effects of projection on the celestial

sphere, Russell* finds that triple systems consist normally of a close double

with a third star revolving at a considerable distance about their centre

of gravity, the ratio of the actual separations being about 10 to 1. The

bearing of this on questions of cosmogony will be considered later
;
for the

present it is sufficient to notice that the multiple systems observed in the sky

shew no resemblance to our own solar system.

Thus we have found a very definite uniformity of arrangement inside our

system, and a very definite uniformity of arrangement outside, but the two

arrangements are different, and the question of whether there are other

systems arranged like our own has to remain an open one. It may perhaps
be mentioned that some astronomers believe that there are irregularities in

the motion of binary systems which are too definite to be ascribed merely to

errors of observation. These may ultimately be found to point to the exist-

ence of planetary bodies revolving at a great distance round the central binary

system, but the evidence is certainly too vague at present for definite con-

clusions to be drawn.

Our search outside our own system has, however, disclosed the existence

of a second uniformity of structure, namely that of binary stars having masses

not far from equal.

Spiral and other Nebulae

3. These two uniformities, namely the planetary formation and the

double-star formation, although perhaps the most striking, are by no means
the only uniformities which have been discovered by astronomy. Principal

among the remaining ones is the spiral nebula formation which appears to be

very distinctive and uniform. The characteristic spiral nebula consists in-

variably of a nucleus with two arms emerging from opposite points; the

convolutions of the two arms are similar, the curve of each being approxi-

mately an equiangular spiral f. This formation is very freely scattered in

space : Keeler and Perrine estimated the number of nebulae easily discoverable

with the Crossley reflector to be of the order of half a million, while Keeler

found more than half of the nebulae recorded on his plates to be spirals +.

Although the spiral nebulae are only special instances of the more general
nebular formations found in the sky, they are nevertheless the most frequent
and the most distinctive of these formations known

;
for cosmogony they are

the most interesting because the definiteness of their formation must contain

a valuable clue to their origin and condition. Besides spiral nebulae there

are other types of nebulae, which are commonly described in the following
terms.

"

Astrophys. Journ. 31 (1910), p. 200. f v. Pahlen, Ast. Nach. No. 4503.

Campbell, Stellar Motions, p. 36.
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(1) Irregular nebulae, such as the great nebula in Orion (N.G.C. 1976).

(2) Planetary nebulae, a class of nebulae of apparently spheroidal or

ellipsoidal shape, many shewing detailed features and formations in addition.

They are few in number, less than 150 having been discovered out of 15000

nebulae so far investigated*. As a rule they shew bright-line spectra, sug-

gesting that they are masses of hot gas, shining by their own light. Some

typical examples of Planetary nebulae will be found illustrated on Plate I.

(3) Ring nebulae, such as the well-known nebula in Lyra (N.G.C. 6720).

Many astronomers believe that these are not true rings but ellipsoidal shells

seen in projection; the reason for this view is mainly that these formations

are never seen edgewise or nearly edgewise (see Plate I).

(4) Elliptical, elongated, lenticular and spindle nebulae. These are

terms commonly employed to describe the observed shape of nebular masses.

A number of nebulae originally classified as spindle-shaped are probably

merely spirals seen edgewise, as has been suggested by Slipherf and others.

Descriptions, with excellent photographs of these and other types of nebulae

will be found in a recent paper by F. G. Pease J (see also Plate III).

4. Beyond the information obtainable from their appearance and spectra,

we have but little knowledge as to the nature, motions or constitutions of

these various nebular systems . Many of the spirals have velocities in space

which are enormously greater than any Bother class of velocities of which we

have any experience, a circumstance which gives some support to the view

that they may be regarded as "island universes," each comparable in scale to

the universe of stars of which our sun is a member.

Thus for the Andromeda nebula there is consistent evidence of a velocity of

approach of about 300 kms a second, Slipher|| determining this velocity as 300

kms a second, Wright 1 as 304 kms a second and Pease** as 329 kms a second.

Many spirals have still greater velocities; thus Pease attributes a velocity

of recession of about 1180 kms a second to the nebula in Virgo (N.G.C. 4594) f-f-

while Slipher finds a velocity of recession of 1120 kms a second for the nebula

in Cetus (N.G.C. 1068)++. The general average velocity is between 300 and

400 kms a second say twenty times the general average velocity of a star in

our universe. Regarding these nebulae as "island universes," it ought of

course to be possible to determine the motion of our own galactic system in

:: W. W. Campbell, Science (1917), p. 521. f Lick Obs. Bull. No. 62.

J Astrophys. Journ. 46 (1917), p. 24. See also W. W. Campbell, Science, 45 (1917),

pp. 513548.
A short summary will be found in the E.A.S. Monthly Notices,'!! (1917), p. 375.

||
Lowell Obs. Bull. No. 58 (1913). IT Popular Ast. 23 (1915), 36.

** Journal Roijal Ast. Soc. Canada, Sept. 1915.

ft Astrophys. Journ. 46 (1917), p. 41.

JI Lowell Obs. Bull. 80 (1918).
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space relatively to their centroid. Truman* and Young and Harperf find

respectively velocities of 670 kms a second and 598 kms a second.

Not only are large velocities in space revealed by the spectroscope, but

also large velocities of rotation. The first discovery of rotation in a nebula

was Slipher'sj discovery in 1914 of the rotation of the nebula in Virgo

(N.G.C. 4594); Pease
||
has determined the velocity of rotation to be about

330 kms a second at a distance of 2' from the centre, the velocity increasing

proportionally to the distance from the centre. Velocities of the same order

have been found in other nebulae. By a comparison of photographs taken at

different dates Van Maanen^l has tfound a rotation in the nebula M. 101**

in Ursa Major which corresponds to a period of 85,000 years at 5' from the

centre; this nebula does not appear to rotate as a rigid body, the angular

velocity being greater near the centre. Van Maanen finds that in this nebula

the motion is along the arms and away from the centre, and similar results

have been obtained by Kostinsky (( for the spiral nebula in Canes Venatici

(M. 51 J+). Slipher suspects similar motion in the nebula N.G.C. 1068||||.

Very large velocities such as we have been considering are a distinctive

property of the spiral nebulae. The large irregular nebulae, such as the

Orion and Trifid nebulae are found to be almost at rest relatively to the stars

of our system as a whole. The planetary nebulae have radial velocities

ranging up to 65 kms a second. The average radial velocity of thirteen

measured by KeelerHH is 27 '7 kms a 'second. If these velocities are corrected

for the solar motion***, their average numerical value is 26'8 kms a second, but

their average algebraic value is only 0*9 kms a second. Thus these thirteen

planetary nebulae, regarded as a whole, are almost at rest relative to our

system, while their individual velocities, although slightly larger than those

of ordinary stars, are small compared with the observed velocities of the

spiral nebulae.

It must, however, be added that Campbell fff has found quite exceptionally

large radial velocities for two planetary nebulae, namely a velocity of approach
of 141 kms a second for N.G.C. 47322 ,

and a velocity of recession of 202 kms
a second for N.G.C. 6644. These velocities are not greater than a few ex-

ceptionally high velocities observed for ordinary stars (e.g. 325 kms a sec. for

*
Pop. Astronomy, 24, p. 111. + Journal Royal Ast. Soc. Canada, 10, p. 134.

+ Lowe.ll 06*. Bulletin, No. 62. See Plate III.

II Ast. Soc. Pacific, 28, p. 191. t Astrophys. Journ. 44, p. 210.
* See Plate II. ft M. N. Royal Ast. Soc. 77, p. 233.

*: See Plate II. Lowell Obs. Bull. 80 (1918).

(Ill Two fine photographs of this nebula will be found in the paper by Pease already referred to.

Agtrophys. Journ. 46 (1917), p. 24, Plate IV.

1F1T Publications of Lick Observatory, 3, 201.
***

Perrine, Astrophys. Journ. 46 (1917), p. 176.

ftt Nat. Acad. Sci. Washington, 1 (1915), No. 9.
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Lalande 1966 and 242 kms a sec. for Cordoba Z. 5. 243), but regarding the

problem as a whole, it is clear that they approach nearer to the velocities of

the spiral nebulae than to those of ordinary stars.

J With the possible exception of special nebulae such as these, last two, it is

clear that we may, with good reason, suppose that the irregular and planetary

nebulae form a part of our system, and are moving with it, while the spiral

nebulae must be supposed to be systems independent of, and outside of, our

own system.

Further evidence of this essential difference between the spiral and plane-

tary nebulae is afforded by a study of their positions in the sky. The spiral

nebulae are found to be concentrated towards the poles of the milky wa^,
while the planetary nebulae are sparse near the poles of the milky way and

shew a very pronounced tendency to collect in the galactic plane. Now there

is every reason to believe that our system is of the shape of a coin or watch,

our sun being near the middle, and the remote edges being represented by
the milky way. Thus the most obvious, although perhaps not the only,

explanation of the observed differences of concentration of the spiral and

planetary nebulae is this: The planetary nebulae appear to favour the milky

way because, being inside our system and intermingled with the other stars

of the system, we see most of them in the directions in which we look into

the deepest layer of stars, namely directions in the galactic plane. The

spirals on the other hand appear to shun the milky way because the absorbing
matter of our system blots out or partially obscures such of them as lie in

directions near the galactic plane. In confirmation of this view R. F. Sanford*

has recently shewn that spirals near the milky way are on the average less

bright than those in other parts of the sky. F. G. Brownf has also shewn

that the spiral nebulae of larger angular size are in general the brighter, but

this is not true of spiral nebulae near the milky way where the visible

nebulae are large but faint. All evidence is consistent with the view that

the spiral nebulae are uniformly scattered in the sky but are quite outside

our system, so that of those which lie in the direction of the galactic plane,

the brighter ones are partially, and the fainter ones wholly, obscured by

obstructing matter in our own system.

Campbell and Moore % have recently found that quite a large proportion

of planetary nebulae give spectroscopic evidence of internal motion. Of 33

examined, 16 gave definite evidence of internal motion, 12 gave no indi-

cations and the remaining 5 were doubtful. In a previous investigation!

internal motions had been found in the two nebulae N.G.C. 7009 and N.G.C.

6543. The motions are believed to consist in most cases of rotations about

* Lick Obs. Bull. No. 297.

t Monthly Notices R.A.S. 72 (1912), pp. 195 and 718.

J Nat. Acad. Sci. 2 (1916), p. 566. Lick Obs. Bull. 9 (1916), No. 278.
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axes through the centre, these axes .being in general perpendicular to the

longest dimensions of the nebulae. In some cases the motion is more com-

plicated than a pure rotation ; thus in N.G.C. 6543 the outer portions seem

to have velocities much smaller than those of the central parts.

The parallax of the planetary nebula N.G.C. 7662 (Plate I) has been found

at Mount Wilson to be 0"'023, from which its diameter may be calculated to

be 19 times that of the orbit of Neptune. That of the ring nebula in Lyra,

N.G.C. 6720 (Plate I) has been found to be 0"'004, but with a probable error

comparable to the whole; the corresponding greatest and least diameters

are 330 and 250 times those of the orbit of Neptune*.

Star-clusters

Yl5. "Further uniformities of formation are to be found in star-clusters.

The uniformities are not so definite as those we have just been considering,

but are quite definite enough to suggest common origins. There are a great

variety of star-clusters, shading often imperceptibly into one another, but they

may be classified into three broad types : globular clusters, open clusters

and moving clusters f.

The globular clusters are dense aggregates of stars shewing very great

condensation towards the centre. They are approximately globular in form,

although Pease and ShapleyJ: have recently found that out of six supposed

globular clusters which it was possible to study in detail, five shewed a

pronounced departure from the spherical form, being apparently of a flattened

or spheroidal form. A similar absence of complete symmetry in some clusters

had been previously noticed by Bailey. Bailey has also made counts of the

stars in some of these globular star-clusters, and it has been shewn by
Plummerll and von Zeipel'F that the law of distribution is approximately
uniform. The procedure has been criticised by Shapley** on the grounds
that only a few of the brightest stars are included in such counts, but however

this may be, there is no question that there is a uniformity of some kind.

The number of known globular clusters is at most about 100: Baileyt| gives
the number of.

"
definitely globular" clusters as 76, while Melotte estimates

the number as 82. Practically all of these had been discovered by the time

of the Herschels.

* Van Maanen, Ast. Soc. Pac. 171 (Oct. 1917).

t Shapley, Contributions from the Mount Wilson Solar Observatory, No. 115 (1916), where an
excellent summary is given ; also P. J. Melotte, "A Catalogue of Star-clusters," Mem. It. A. 8 70

(1915), p. 175.
* Xat. Acad. of Sciences, 3 (1917), p. 96, and Astrophys. Journ. 45 (1917), p. 225.

Harvard Coll. Observatory Annals, 76, No. 4.
\\ Monthly Notices R.A.8. 76, p. 107.

U K. Svenka. Vetensk. Acad. Handl. Bd. 51, No. 5.

**
Observatory, 39 (1916), p. 452.

-ft Harvard Coll. Observatory Annals, 76, p. 43.
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The distribution of globular clusters in the sky is somewhat surprising, it

being found* that they are practically confined to one hemisphere of the

sky. Not only this but there is a very marked condensation about one

point in the sky, 42 out of the 82 considered by Melotte lying within 30 of

a point in the galactic plane of latitude 325.

Slipher has recently measured the radial velocities of ten star clusters,

and finds velocities ranging from 410 to -f 225 kms. a second, the mean of

the values, taken without regard to sign being 150 kms. a second. It is

clear that we have here to deal with velocities of the same order of magnitude
as the velocities of the spiral nebulae.

Finally Shapleyf has attempted to estimate the distances of various

globular star-clusters, by assuming the absolute magnitudes of the cepheid
variables contained in them to be equal to those of similar cepheid variables

at known distances. He finds that probably, with one or two exceptions,

no globular cluster is nearer than about 30,000 light-years, corresponding to

a parallax of 0'00012
/X

J. Thus the globular clusters, like the spiral nebulae,

appear to be independent of, and outside, our own system of stars.

The formation of moving star clusters also exhibits a certain, although
not very great, degree of uniformity . A number of stars is said to form a

moving cluster when their velocities are sensibly the same, both in magnitude
and direction, and also when there is definite evidence of some further real

connection between the members of the cluster. The latter condition is

important because, by a procedure which is familiar to every student of the

Kinetic Theory of Gases, any collection of chaotically moving stars can be

resolved into parallel showers.
'

Observational astronomy reveals the existence

of clusters of stars moving with equal velocities and also having physical

characteristics in common which suggest that they have some bond of common

origin. The cluster formed by the Pleiades provides perhaps the most super-

ficially obvious instance of a star cluster of this kind. Here we have a

group of stars, all of similar spectral type, all of approximately equal bright-

ness, concentrated in one region of space and moving with a common velocity ||.

A more thoroughly investigated cluster is the Taurus cluster which consists

of the Hyades and other neighbouring stars IF. A noteworthy cluster of

special interest is the Ursa Major cluster, which contains among other stars,

the stars ft, 7, 8, e and f Ursae Majoris of the "
Plough."** There is a very

*
Cf. Melotte, Mem. E.A.S. 70, p. 176, and A. K. Hinks, Monthly Notices E.A.S. 71, p. 693.

t Proc. Nat. Acad. ScL 3 (1917), p. 479.
* By a similar method Hertzsprung had previously estimated the distance of the lesser Magel-

lauic cloud to be of the same order (parallax -0001). Cf. Ast. Nach. 4692.

Jj
On this subject in general, see Chap. IV of Eddington's Stellar Movements.

||
W. W. Campbell, Stellar Motions, p. 181.

IT Boss, Astrophya. Journ. 26 (1908), p. 31.

**
Ludendorff, Ast. Nnch. 180 (1909), 265, and W. W. Campbell, Stellar Motions, p. 175.
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definitely marked cluster in Perseus, and less noteworthy clusters in Scorpius-

Centaurus and Cygnus. There seems to be a tendency for clusters to assume

a flattened shape, the flattening in the case of the Ursa Major cluster being

almost complete*, so that the stars lie almost in a plane.

7.
' We have now mentioned five different types of structure found in

the sky, each of which shews a more or less pronounced uniformity. The

aim of a scientific cosmogony must be to trace these and other uniformities

to their sources. When we find a formation repeated many times with only

slight variations, we may feel fairly confident that its origin is in every case

the same. The problem of cosmogony is to discover these origins and to

prove that they would lead to the observed formations.

The various uniformities of structure are by no means of equal importance.

A purely objective view would perhaps regard the finding of the origins of

planetary systems as the least important problem of cosmogony, but, for

reasons which can readily be understood, cosmogony has always been more

concerned with this special problem than with any of the others. Indeed

until quite recent years not enough was known of the universe outside our

solar system for the problems of cosmogony to have assumed a definite shape

except in reference to our own system. We now proceed to give a short

account of some of the various theories of planetary origin which have been

propounded.

THEORIES OF COSMOGONY

I. THE NEBULAR HYPOTHESIS OF KANT AND LAPLACE

8. Of all theories of cosmogony, the most enduring, and infinitely the

most famous, has been the Nebular Hypothesis, commonly associated with the

names of Kant and Laplace. Kant's theory was first given in his Allgemeine

Naturgeschichte und Theorie des Himmels in 1755
; Laplace published the

outlines of his theory in 1796 in his Exposition du Systeme du Monde,

developing his ideas further in later editions. Laplace seems to have been

quite unacquainted with the earlier speculations of Kant
;
indeed he speci-

fically states that Buffon was, so far as he knew, the only philosopher who,

since the true nature of the solar system had been known, had speculated as

to the origin of the planets and their satellites. Thus we have two theories,

of distinct and independent origins, trying to explain the same phenomena.
Kant's theories, however, attempted to explain the whole stellar universe,

while Laplace limited himself to the solar system.

* See a description by H. H. Turner, The Observatory 34 (1911), p. 246.
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9. Kant's Theory. Kant supposed the universe to have developed

initially out of a cold nebula at rest. He supposed this nebula to fall in under

its own gravitation, and to become hot in so doing owing to the consequent

compression. He assumed, of course erroneously, that rotation would be set

up in this process. He imagined that the matter would condense into rings,

and on superposing the supposed rotation, he arrived at a system of rotating

rings similar to the rings of Saturn, to which he appealed as evidence of the

truth of his theories. In the second stage of the cosmogonic process, Kant

supposes these rings to become unstable and form by agglomeration into

planets. The persistence of the rotatory motion results in this system of

planets revolving round the sun. The planets continue to contract under

their own gravitation, so that the preceding cycle of processes is repeated on

a smaller scale, and finally we find the planets also surrounded by rotating
satellites*.

10. Laplace's Theory. We turn now to the theory put forward by

Laplace. The great French mathematician was not likely to fall into the

error of believing that rotation could be generated out of nothing, and so the

nebula is assumed to be rotating at the outset. Laplace supposes it to be

hot, without attempting in any way to account for the heat, and supposes it

to be lens-shaped or flat, without attempting to justify this special choice of

shape. The mass is supposed to cool by radiation at the surface, while at the

same time falling in upon itself as a result of the action of gravitation, the

net result being a heating of the central portion and a general shrinkage of

the whole. Since the angular momentum must remain constant throughout
the shrinkage, the actual velocity of rotation must increase, and Laplace
believed that as this increase of angular velocity took place, the outer ring of

matter ceased to be continuous with the main mass. A succession of repe-
titions of this phenomenon leaves a series of concentric annuli of matter,

rotating about a central axis, as imagined by Kant, and from this stage on the

hypotheses of the two philosophers are in agreement.

11. It appears that both Kant and Laplace try to develop a theory in

which a system such as the rings of Saturn represents a half-way stage

between the primitive nebula and the present state of our universe. Neither

theory attempts to explain why the supposed ring system should become un-

stable and agglomerate into planets, and neither theory explains why Saturn's

rings have not become unstable.

Perhaps an unbiassed judge, devoid of preconceived ideas, might expect
a ring of rotating matter to become unstable. But, as Sir G. Darwin f has

*
Fuller accounts of Kant's theory will be found in Poincare"'s Lemons sur les Hypotheses

Cosmogoniques, Ch. i and Darwin's Tides, Ch. 21. An account is also given in Miss Clerke's

Modern Cosmogonies (1905).

t The Tides, p. 410.
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pointed out, if such a ring agglomerated into a planet, the resulting planet

ought to coincide with the centre of gravity of the ring and not with a point
on its perimeter. The stability of Saturn's rings was of course explained by
Maxwell in his celebrated Adams Prize Essay of 1857*.

The theory of Laplace, like that of Kant, contained little but pure specu-

lation. It is however obvious that these theories admit of mathematical

verification or disproof. With the exception of an investigation by Roche f,

in which the primitive nebula is represented by a heavy nucleus surrounded

by an atmosphere of infinitesimal density, almost all attempts to treat the

question mathematically have represented the matter of the supposed nebula

by a homogeneous incompressible fluid. This differs by so much from the

tenuous gas postulated by Laplace, that we cannot with any certainty regard
his theory as being either vindicated or condemned by such researches, what-

ever their result. It may, however, be remarked that the results obtained

from such researches have led to a continual modification of the theory until

in its present form it contains little in the way of detail that would be recog-

nised as his own by Laplace, and perhaps nothing that would be recognised

by Kant. But two outstanding features of the theory have survived, namely

(i) the supposition that our solar system originated out of a nebulous

mass of gas,

(ii) the supposition that the change from the primitive stage to the

present stage has been produced mainly by the agency of in-

creasing rotation.

Of these two suppositions, the former receives almost universal acceptance,

at any rate as a provisional hypothesis, while the latter can probably claim

more adherents than any other theory of planetary origin. In order to avoid

the very ambiguous term "Nebular Hypothesis," which in view of the

innumerable modifications the hypothesis has undergone might mean almost

anything, it will be convenient to refer to these two essential parts of the

hypothesis as the "Theory of Nebulous Origin" and the "Rotational Theory."
These two theories contain about all of the original

" Nebular Hypothesis
"

which can survive serious criticism
;
we shall now consider these theories

in turn in the light of modern astronomical knowledge.

The Theory of Nebulous Origin

12. The general belief in the theory of nebulous origin is based mainly

upon direct observation of the sky ;
a reasoned defence of it might rest mainly

upon a consideration of the classification of stars according to spectral type ;

those stars which are believed to be in the earliest stages of development are

* On the Stability of the Motion of Saturn's Rings (Cambridge, 1859).

t "Essai sur la Constitution et 1'origine du syst&me solaire," Acad. de Montpellier, Section

des Sciences, vm (1873), p. 235.
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observed to be surrounded in general by masses or wisps of nebulous matter,

the stars in the Orion nebula and the Pleiades being obvious instances.

Whether or not these processes of reasoning are sound, there is no question

that the theory of nebulous origin is widely and almost universally held, there

being some room for differences of opinion as to whether the primitive nebula

ought to be thought of as a mass of gas, or a dust cloud or possibly even a

swarm of meteoric stones. For instance Lord Kelvin suggested as the ulti-

mate origin of astronomical bodies, a collection of meteoric stones which were

vaporised by repeated collisions and so gave place in time to a gaseous nebula

of the Laplacean type. Sir Norman Lockyer suggested that many of the

observed nebulae are still in the meteoric state, a view which recent spectro-

scopic evidence has made untenable as a general explanation of nebular

structure.

13. A theory of the order of stellar development recently put forward

by H. N. Russell* strikes at the root one of the principal reasons for believing

in the nebulous origin of stars. Before the appearance of Russell's theory,

the accepted order of stellar evolution, namely through the sequence of spec-

tral types
Nebula, B, A, F, G, K, M,

was almost undisputed. In this classification (, the jB-type stars are the

hottest and stars of M type (red stars) are the coolest. The approximate

temperatures of the different types, as determined by Wilsing and ScheinerJ,

are as follows :

Type BO -Bo, T= 9030 Type G, T= 4450

58-^14, 8880 K 3970

A5-A8, 5780 M 2960

According to the older view of stellar evolution, the B type was supposed
to indicate the stage in which the star was hottest and of lowest density, and

so least removed from its original nebular existence
;
as the star radiated

heat it got cooler, and so passed through the various types in succession
;
a

spectrum of M type was supposed to characterise the oldest stars which were

close to extinction.

Russell shewed that the M stars fall into two very clearly differentiated

classes which he called "giant" and "dwarf" stars, these names referring to

* For an excellent statement by Prof. Eussell himself see Nature, 93, p. 227 (1914) ;
see also

The Observatory, 37, p. 165.

f This is the Draper Classification adopted by Harvard Observatory. A brief but excellent

account of spectral classifications is given in Eddington's Stellar Movements, pp. 710.
Ast. Nach. 183 (1909), p. 87. Here and elsewhere each complete spectral class is divided

into ten subdivisions ; thus between a B star and an A star are supposed to be nine other stages

designated as B 1, B 2,...B 9. A spectrum of exact B type is called BO, and so on.

To avoid confusion I have omitted the O or Wolf-Rayet Type from discussion altogether.
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a great difference in absolute brightness, although not necessarily in mass.

Any doubt that may have been felt as to the accuracy of this fundamental

fact has probably been removed by the investigations of W. S. Adams*, who
has found a purely spectroscopic method of determining the absolute brightness
of a star. Examining 58 red stars, Adams finds that 48 are of absolute

magnitudes between - TO and 3'4, while the remaining ten have absolute

magnitudes between 9*8 and 107, the division between Russell's giant and

dwarf stars thus being a clear gap of 6'4 magnitudes. More recently Adams
and Joyf have spectroscopically determined the absolute magnitudes of 500

stars of types F, G, K and M, and their results confirm Russell's facts com-

pletely. Of the 500 stars examined, 42 were of type M; of these 29 proved
to be of absolute magnitudes brighter than 2'9, one was of absolute magnitude
3'6, and the remaining 12 were all of absolute magnitudes fainter than 9'5.

Again there is a clear gap of about 6 magnitudes between "
giants

"
and

"
dwarfs." A similar, although less pronounced distinction, is found to persist

through types K and G, but it has almost, if not quite, disappeared for type F.

It is thus proved beyond doubt that there exist red stars of extraordinary

brightness, for which no place could be found in the older scheme of stellar

evolution; for it is, as Russell remarks, very improbable that these stars,

some of them 100 times as bright as the sun, are on the verge of extinction

through old age.

Russell accordingly suggests that a star of B type is not at the beginning
of its career, but is half-way through. The star is supposed to have originated
as a giant star of M type, to have passed through the series of types M, K,
G, F, A to the stage B, and then to proceed again through the series A,F,G, K
until it becomes a dwarf star of type M. Only the most massive stars ever

attain to the degree of incandescence represented by a 5-type of spectrum ;

all others turn backwards before this stage is reached, a hypothesis which

gives at once a simple and perfectly acceptable explanation of the known fact

that 5-type stars are of exceptional mass, while at the same time accounting
for the gradual disappearance of the gap between giant and dwarf stars in

types K, G and F.

It will be understood that this brief statement does not give an account of

all the details of Russell's theory, neither have we mentioned the many criti-

cisms which have been brought against it}. For our present purpose, it is

enough to notice that the indisputable facts on which Russell's theory is

based cut away to a large extent the original grounds for the belief that stars

originate out of nebulae. It is not proved that they do not, but there is no

longer any direct evidence that they do
; to retain the theory of nebulous

origin, we have now to imagine the nebulous matter to be or become non-

* Proc. Nat. Acad. Washington, March, 1916.

t Astrophys. Jouru. 40 (1917), p. 313.

+ See for instance W. W. Campbell, Science, 45 (1917), p. 547.
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luminous and remain so until the mass bursts into incandescence as a giant
M star. But, as we shall see later, Russell's theory does not destroy, but

actually strengthens, the belief that a star starts with a very low density, and

this virtually brings us back by a different path to the theory of nebulous

origin.

The Rotational Theory

14. The main outline of what we are now calling the rotational theory has

been sufficiently explained already. This theory originated in an effort to

explain the origin of the solar system. In its application to this particular

problem it has been subjected to many criticisms, one of which in particular

has seemed to many to be unanswerable.

In 1861 Babinet* suggested that a criterion as to the tenability of the

general rotational theory was provided by a calculation of 'the present total

angular momentum of the solar system. He argued that if the planets had

been thrown off by rotation the moment of momentum of the original rotating

mass must have been exactly equal to the total moment of momentum of the

present system. The mass of the original body must also have been equal

to the total mass of the present system, so that on assuming a reasonable

size for this original body, the dynamical conditions of the mass can to some

extent be reconstructed, and in particular we can calculate the amount of

rotation with which it must have been endowed. Babinet pointed out that

the aggregate moment of momentum in the solar system is far too small for

the original mass to have been broken up by rotation alone.

A simple calculation will shew that the greater part of the present moment
of momentum of the solar system resides in the orbital motion of Jupiter.

Taking the moment of momentum of the sun's present axial rotation as

unity, the moment of momentum of the orbital momentum of Jupiter is found

to 'be about 37, that of Saturn about 14, that of Neptune about 4*8, that of

Uranus about 3'3, and the aggregate arising from all the other planets,

asteroids, satellites, etc., is less than O'l. Thus the total is roughly 60 times

the present moment of momentum of the sun's rotationf.

Now imagine the whole mass of the solar system concentrated in the sun,

which can be done with only an inappreciable increase (about '0013) of its

mass, and imagine the whole moment of momentum of the present solar

system concentrated in this one mass. The moment of momentum being

*
Comptes Renduis, 52 (1861), p. 481. See also Moulton, Astrophys. Journ. (1900), p. 103.

t These are the figures given by T. J. J. See (Ast. Nach. 4053). See makes special assump-
tions as to the interior constitution of the sun, but any other reasonable assumption would lead

to similar figures. Fouche (C. E. 99, p. 903 (24 Nov. 1884)) calculates the total momentum to

be 28 '2 times that of the sun, but he assumes the sun to be homogeneous. Lord Kelvin has

given a well-known estimate (Popular Lectures, i. p. 420) according to which the ratio in question

is only 18, but he assumes the sun to be homogeneous, and also neglects the contributions from

Saturn, Uranus, Neptune, etc., this latter procedure being clearly erroneous.
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increased 60-fold, and the mass remaining substantially the same, it follows

that the angular velocity will be about 60 times what it is now, and instead

of having a period of rotation of 25 days, the new sun will have a period of

about 10 hours roughly the same as that of Jupiter. The mean density of

the sun (1'36) is roughly equal to that of Jupiter (T30) so that the primitive

sun reconstituted in this way will be very similar to the present Jupiter, only

of greater mass. The mass of a body, as we shall see later, has almost no

influence on its tendency to break-up rotationally ;
this depends almost

entirely on its angular velocity and mean density. Now Jupiter shews an

ellipticity of only about 3^, and is to all appearances very far from breaking

up under the influence of its rotation, so that we cannot suppose our primitive

sun to have broken up by rotation.

In this we have supposed the primitive sun to be of about the same size

as our own sun
;

it must certainly have been larger, and this makes the result

still more certainly true. The rotational theory asserts that shrinkage is the

primary cause of the inset of instability which results in the throwing off of

a satellite
;

if the primitive sun, when shrunk to the size of our present sun,

does not throw off a satellite, it certainly cannot have thrown off a satellite as

the result of rotation before the shrinkage took place, when its dimensions

may have been a thousand or a hundred thousand times what they now are.

The discussion of whether or not this criticism of the rotational theory is

valid will naturally be deferred until our mathematical investigations have

provided evidence on which to base a judgment.

II. THE TIDAL-ACTION THEORY

15. Suggestions have at various times been made that tidal forces may
play the preponderating part in effecting the birth of satellites, for it is obvious

that, when subjected to tidal forces of sufficient intensity a mass of fluid may
reach a breaking point at which it divides into two or more detached masses.

The most complete form of tidal-action theory is found in the "
Planetesimal

Theory" of Chamberlin and Moulton*.

A non-rotating mass will in general assume a spherical shape under the

action of its own gravitational forces, but will depart from this form when a

second body approaches near enough for its tidal influence to be perceptible.

At the approach of a second body, the spherical shape will at first give place

to a spheroid of small ellipticity, owing to tides being raised directly under

and directly away from the tide-raising body. With the closer approach of

this body the tides continually rise in height, and Chamberlin and Moulton

suppose that ultimately two jets of matter rush out from the two antipodal

* A summary of a comprehensive kind will be found in Chamberlin's Origin of the. Kartli

(Univ. of Chicago Press, 1916).
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points at which the tides are highest. But the tide-raising body does not

stand still
;

it is always somewhat ahead of the diameter through the two

highest tides, and so exerts not only a tide-generating force, but also a couple
which tends to set up rotation in the primary body. The two jets of nebulous

matter are therefore being ejected from a slowly rotating body, and instead

of forming straight lines, form spiral curves.

The authors of the planetesimal theory claim that these conceptions

explain the origin of the spiral nebula formation, which they regard as a half-

way stage in the process of planetary formation, just as Kant and Laplace

regarded the rings of Saturn. The authors further believe that the ejection

of matter will take place by
"
pulsations

"
hence the nuclei observed in the

arms of the typical spiral nebula and that the condensations of these nuclei

ultimately form planets by agglomeration. If all this can be shewn to happen

according to the authors' programme, then clearly the planetary structure and

the spiral nebula structure are explained at one sweep. But whether all this

happens or not can only be decided by exhaustive mathematical investigation.

Perhaps the most obvious criticism that can be brought against this

and all other tidal theories is that they require the close approach of large

astronomical bodies, and that such close approaches are very rare events.

Calculations which will be given later seem to shew that this consideration

must lead to the abandonment of all tidal theories, including the planetesimal,

as explanations of normal cosmogonic processes. It must not of course be

asserted that no system has ever been broken up by tidal forces this would

be contrary to all statistical laws but it will be found that only a small

proportion of the stars in the universe are likely to have been broken up in

this way.

III. OTHER THEORIES

16. In addition to the theories just mentioned, there are a great number
of others in the field which claim to explain the origin of the solar system.

Many of these start from a nebulous mass or swarm of meteorites in chaos,

and regard the spiral nebula formation as an intermediate stage towards the

development of a solar system. Thus in addition to Moulton and Chamberlin,

See* and Arrheniusf both contemplate the possibility of spiral nebulae

forming out of the collision or near approach of two stars, the condensations

in the arms of the spiral being supposed ultimately to form planets circling

around a central nucleus. Sutherland J has suggested that Bode's well-

known law of planetary distances is readily explained in terms of a spiral

origin ;
for Bode's law, usually expressed in the form

r = 0-4 + 0-15 x 2n (n=l, 2,3, ...),

* Researches of the Evolution of Stellar Systems, Vol. i.

t Worlds in the Making. (London, 1908.) J Astrophys. Journ. 34, p. 251.

J. C. 2
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may be equally expressed in the form

(0 = 1,2,3,...)

which may be taken to represent the distances of nuclei along the arms of

an equiangular spiral.

In a somewhat different class come hypotheses, such as those of Faye*
and Ligondesf, which try to prove that our system originated out of a

swarm of meteorites in which order has been produced out of disorder by

collisions, in opposition to the laws of statistical mechanics
j.

Our task in the present essay is not to discuss these and other theories in

detail
;

it is rather to obtain mathematical evidence bearing on the general

problem of evolution, incidentally perhaps examining to what extent the

speculative theories which have just been described are tenable. Many of

these theories, however, have already been condemned by the recent advances

in observational astronomy. For in many cases the theories were not based

on abstract knowledge of the properties of matter or on dynamical laws
;

they rather exhibited a tendency to be based on the latest observational

knowledge with which their authors were acquainted. Up to the discovery

of the spiral nebulae, most theories of cosmogony tried to prove that Saturn's

rings (the most sensational astronomical objects then known) formed an

intermediate stage in the evolution of planetary systems : since the discovery

of spiral nebulae, the tendency has been to try to prove that the spiral

nebulae form the link in question. The more scientific method of procedure
is to limit the investigation to the abstract problem of the behaviour of

masses of astronomical matter under varying dynamical forces; when the

solution of this problem has been carried to the limit of our mathematical

resources, we shall be in a position to survey the different types of formation

that may be expected to be evolved, and possibly not much speculation will

be required to identify them with observed forms. Thus the immediate

object of the present essay will be to collect and arrange the results of the

various researches which have resulted in progress towards the solution of

this abstract problem, adding to them and amplifying them wherever we can.

The dynamical forces which can act on astronomical matter are its own

gravitation, which must always be taken into account: the -gravitational

forces from other bodies, which we may for brevity describe as tidal forces
;

the forces arising from rotation; the forces arising from collisions, impacts,

bombardments, etc. Our problem is to find out as much as we can about

the behaviour of matter under such forces, paying attention especially to

effects of a secular or evolutionary nature.

* Sur VOrigine du Monde. (Paris, Gauthier-Villars, 1884.)

t formation M&canique du Sysieme du Monde. (Paris, Gauthier-Villars, 1897.)

Cf. Poiucare, Lemons sur les Hypotteaes Cosmogoniques, Chapters IV and V.



CHAPTER II

GENERAL DYNAMICAL PRINCIPLES

17. In general the configuration of a dynamical system can be expressed
in terms of Lagrangian coordinates

ft, ft, ft,...ft>... ........................... (1),

while its motion at any instant can be specified in terms of the corresponding
velocities

ft, ft, ft, ... On .............................. (2).

The potential energy W will be a function of the coordinates of position

only, say

^=/(ft, ft, ... W) ........................... (3),

while the kinetic energy T will be a function both of the coordinates of

position and of the velocities, say

T = F(0l ,
& ... en , e,, e2 ,

... en) .................. (4),

and this function will be quadratic in the velocities ft, ft. fti-

The equations of motion will be the Lagrangian equations

d dT dT dW

where F^ F2 ,
... Fn are the "generalised forces" applied from outside.

In a number of cosmogonical problems, we shall be concerned with the

motion of astronomical masses, and the equations determining this motion

will be equations (5) or some appropriate special form of these equations.

But in a much greater number of cosmogonical problems we shall be con-

cerned with astronomical masses which are either in a state of equilibrium
or whose motion is so slow that their kinetic energy is negligible. For such

configurations, putting T=0, equations (5) reduce to

dW ?>w dW
8ft

=' W2

=
'

8ft
=

'
etc...................... (6)'

These may be regarded either as equations of equilibrium or as equations

determining the configuration of a very slowly changing mass. Regarded
as equations in ft, ft, ft, ..., the equations will have a number of solutions of

which a typical one may be taken to be

ft = ^, ft = 2 ,etc............................ (7).

22
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In this solution the quantities 1? 2 ,
... will be functions of the constants

which enter into the function W as given by equation (3). But in problems
of cosmogony in which changes of a secular or evolutionary nature occur,

these constants must themselves be supposed to vary ; they are better spoken

of as parameters than as constants. WJien equations such as (5) are satisfied,

an astronomical mass has assumed a position of equilibrium for the moment,

but with the course of time the physical conditions will change, and the con-

figuration of equilibrium will give place to another. Analytically this process

is represented by slow changes in the parameters which occur in the speci-

fication of W by equation (3).

STATICAL SYSTEMS

Linear Series

18. Let us consider in detail the changes produced in (3l5 <s)2 , ,
the

coordinates of a configuration of equilibrium, as one of the variable parameters,

say p, is allowed slowly to vary.

A slight change in the value of
/u,, say from

//,
to

yu, + dp, will alter the

values of 1} 2 ,
... by quantities which will in general be small quantities

of the same order of magnitude as dp. Thus on making this small change
in

//,,
a configuration of equilibrium such as that given by equations (7)

gives place to an adjacent configuration of equilibrium. On continually

varying p we pass through a whole series of continuous configurations of

equilibrium, and these form what Poincare has called a "linear series*."

We may in imagination construct a generalised space having

as coordinates. Any one plane //,
= cons, will be suitable for the representation

of all the configurations which are possible for one value of
/-t,

and therefore

for all which are possible for one definite physical state of the system. The

particular points in this plane determined by equations such as (7) will

represent the configurations of equilibrium in this physical state.

The function W must, from its meaning, be a single valued function of

0,, 2 ,
and

/Lt,
so that the surfaces W = cons, in the (n + l)-dimensional

space are necessarily non-intersecting surfaces. The condition that a con-

figuration shall be one of equilibrium, as expressed by equations (6), is exactly
identical with the condition that the tangent to the surface W = cons, shall

be perpendicular to the axis of p. Thus if for convenience we think of the

axis of /* as being vertical, the configurations of equilibrium are represented

by points at which the tangents to the surfaces W = cons, are horizontal
;

*
Poincare, Ada Math. 1 (1885), p. 259, or Figures d'Equttibre d'une Masse fiuide. (Paris,

1902.) See also Lamb, Hydrodynamics, p. 680.
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R

let us for brevity call these "level points." On joining up a succession of

level points, such as P,, P2 ,
P3 in fig. 1, we obtain a "linear series."-

Points of Bifurcation

19. The regular succession of such points as we pass along a linear

series may be broken in various ways. One obvious way is by a change in

the direction of curvature of the TF-surfaces, resulting in the formation of a

kink, such as is shewn occurring at

the point Q in
fig. 1. On any surface

on which this formation has just

occurred, there will be three ad-

jacent level points such as R, Slt T^

in the figure. The original linear

series PQ will accordingly become

replaced by three linear series such

as QR, QS and QT as soon as we

pass above the point Q at which

the kink first forms. It is readily

seen that at Q two of the series

QR and QT must run continuously
into one another, and so in effect

form a single new series, while the

series QS may be regarded as a

continuation of PQ. We may accordingly suppose that there are two linear

series PQS and RQT crossing one another at the point Q. A point such as

Q is called by Poincare a "
point of bifurcation."

Another and more usual way in which the succession of level points can be

broken or rather deviated is shewn in fig. 2. In this case, as
/x- increases,

Fig. 1.

Fig. 2.
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two linear series such as P1P2Q and U^.^Q coalesce in the point Q and then

disappear: It will be convenient to refer to a point such as Q in this figure

as a "
turning point."

Still a third possibility is shewn in
fig. 3 ; this however is only a variant

of
fig. 1, and again leads to two linear series crossing one another in a point

of bifurcation Q. Other minor variations may occur, but the principal possi-

bilities are those shewn in figures 1, 2 and 3.

Stability and Instability

20. Every point on a linear series is a configuration of equilibrium ;
the

equilibrium may be stable or unstable. Confining our attention to any one

of the planes /JL
= cons, the condition that a particular configuration of equi-

librium in this plane shall be stable is that the value of W at the point in

question shall be a minimum. Hence, for stability, the concavities of the

different vertical sections of the TF-surface through this point must all be

turned in the same direction, and this direction must be that of TF-decreasing.

Suppose for instance that in fig.
1 W increases as we pass upwards, and

suppose that the concavities for all sections of the TF-surface through P1 are

turned in the same direction as that shewn in the diagram. Then the con-

figuration represented by the point P will be one of stable equilibrium.

On passing along a series such as PQS in fig.
1 or 3, it is clear that one

of the sections must change the direction of its concavity as we pass through
the point Q at which a kink is first formed on the T7-surfaces. Thus con-

figurations which were initially stable give place to unstable configurations

on passing through Q. It appears that a principal series such as PQS loses

its stability on passing through a point of bifurcation.

In
fig. 1, it is clear that if Plt P2 ,

P3 represent stable configurations, then

the configurations represented by Rl} R2) R3 and Tly T2 ,
Ts will also be stable.

Thus stability, which leaves the principal series PQS at Q, may be thought
of as passing to the branch series EQT. Thus there is an exchange of
stabilities at the point of bifurcation Q.

In
fig. 3, on the other hand, it appears that if the configurations repre-

sented by Plt Pz ,
P3 are stable then those represented by Rl} R2 , R3 and

T,, T2 ,
T3 will be unstable, in addition to those represented by Slt S2 , Ss . In

this case there is a disappearance of stability at the point of bifurcation Q.

In
fig. 2, it is clear that if Plt P2 ,

... are stable, then Ult U2 ,
... must be

unstable; while conversely if Ul ,
U2 ,

... are stable, then Plt P2 ,
... must be

unstable. Thus in moving along a linear series there is a loss of stability on

passing through a point such as Q at which ^ is a maximum. But in a

physical problem, //,
will continually change in the same direction, and the



19-21] Statical Systems 23

physical phenomenon which will shew itself as
//. passes through its value at

Q will be a complete disappearance of two sets of equilibrium configurations.

The results obtained may be shewn diagrammatically in the following

figures, in which thick lines represent series of stable configurations, and

thin lines series of unstable configurations, the series PQ being assumed to

be stable in every case.

Q

u
/

,'R

IS

Q

P

(iii)

\

T'I

21. Suppose that
//. changes very slowly in any physical problem, and

for definiteness let the direction of change of
JLC

be that represented by an

upward movement in our diagrams. From what has already been said, it is

clear that we have the following rule for tracing out the sequence of stable

states which will be followed by the system as
//.

varies.

Start from a configuration in the diagram which is known to be stable,

and follow a path along linear series of equilibrium so as always to move

upwards, and so as always to cross over from one series to another at a

point of bifurcation. So long as we do this we are following a sequence of

configurations which is always stable. When it becomes impossible to do

this any longer, a value of
//,

has been reached beyond which no stable con-

figurations exist, and when the physical conditions change so that /a attains

to a still higher value, the statical problem gives place to a dynamical one
;

it is no longer a question of tracing out a sequence of gradual secular changes,

but of following up a comparatively rapid motion of a cataclysmic nature.

' At each point of bifurcation there is necessarily a certain amount of

indefiniteness in the path which will actually be followed. For instance in

fig. 4 (i), the system on arriving at Q may proceed either along QT or

along QR, both being equally consistent with the maintenance of stability,

and so far as can be seen equally likely. In actual fact there may even be

more indefiniteness than this
;
our figures are two-dimensional diagrammatic

representations of (?i+ l)-dimensional spaces, and the line RQT in our figures

may very possibly represent a surface in the (n + l)-dimensional space.

These apparent complications cause no difficulty in actual problems.

They arise from the obvious circumstance that a general discussion of stability,
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although competent to determine when stability ceases, cannot in general

determine what will happen after stability has ceased. In the same way a

general discussion will readily shew that a stick standing vertically on its

point is in unstable equilibrium, but it cannot determine in which precise

direction the stick will fall.

22. In his classical paper* in which the theory of linear series and

points of bifurcation was first developed, Poincare used analytical methods

to obtain results identical with those just found.

Consider a configuration in which the variable parameter has the value /x.

The potential .energy W will be of the form

W=f(0lt 2) ... On) fl)

and the configurations of equilibrium are given by the equations

~r/\f(6\, 2 ,
... 0n, A&)

= 0, etc (8).

As in 17, let ,, 2 ,
... be a configuration of equilibrium corresponding

to this given value //, of the parameter, so that at the point lt 2 ,
... n , /JL,

At any adjacent point j + 80,, 2 + S02 , ... p + S/n, the value of W may
be expressed in the form

The condition that this new configuration shall be one of equilibrium is,

from equations (8),

and similar equations. Writing TT12 for d^W/dO^Bz and so on, the solution of

these equations is

Wut Wu , 7W^ ~'\...\ A

where A is given by
Wu,W12,...Wl

wnt wu , . w .(13),

and so is the Hessian of W with respect to the variables lt 0.2 ,
... n .

*
I.e. ante.
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The values of the ratios

B/UL B/jL SfjL

OVi u(/2 OUn

determine the direction of the linear series through the configuration

i, 2) ... in our diagram. At points such as Q in figs. 4 (i) and 4 (iii)

one or more of these ratios must become indeterminate, so that we must

have (say) 8/jL/S0l
=

0/0. At a point such as Q in fig.
4 (ii) we must have

(say) S/JL/&0! 0. Thus the three points Q in figure 4 are all determined by
the single condition

A = () .................................... (14).

23. We must now try to connect this up with the analytical condition

for a change of stability occurring at the configuration lf 2 ,
... n and

the value
//.

of the parameter. Keeping JJL constant, the change of potential

energy corresponding to changes B0lt 802 ,
... in the values of 1} .. ..., will,

as in equation (10) be given by

,,+ ..................(15)

in which no terms of degree beyond the second need be written down when
80lt B02 ... are supposed small.

Let the coordinates B0lt B02 ... in this quadratic expression for BW be

changed by a linear transformation to new coordinates fa, fa..., such that

BW becomes a sum of squares, say

and let the modulus of transformation be X.

Since the discriminant remains invariant through all linear transfor-

mations, we have

bl} 0, 0, ...

,
62 , 0, .

r W
12> " 1

or bj}, ... bn = \k (17).

The condition that the configuration (17) shall be stable is that BW shall

be positive for all values of B0lt S02 ,
... B0n ,

or again that expression (16)
shall be positive for all values of fa, fa, ...fa. This condition is that

blt 62 ,
... bn shall all be positive.

The coefficients blt 6a ,
... bn are called by Poincare "

coefficients of stability."

A change from stability to instability occurs when any one of these coefficients

vanishes, and the values of
/u-

for which this occurs are, from equation (17),

given by
A =

(18).
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Combining this with the result obtained in the last section, it appears
that a change of stability occurs at every point of bifurcation, and at every

point on a linear series at which
/JL passes through a maximum or a minimum

value, agreeing with the result obtained by other means in 19 and 20.

The criterion of stability in the branch series at a point of bifurcation is

most readily seen by the method already adopted in 21
;
with the con-

ventions there used, it appears that the branch series will be stable if it

turns upwards from the point of bifurcation, and unstable if it turns down-

wards.

ROTATING SYSTEMS

24. This completes the discussion of the stability of statical systems.

The stability of motion of a dynamical system is a very much more com-

plicated question, but assumes a specially simple form when the motion

consists mainly of a rigid body rotation. We proceed to discuss the stability

of such a system.

Let the system be referred to axes rotating in space with any velocity co

about the axes of z in the direction from Ox to Oy. Let x, y, z be the

coordinates of any point referred to these axes, and let x, y, z denote their

rates of increase. The components of velocity in space are then given by

u x yw, v = y + xco, w = z .....................(19)

so that the kinetic energy T is given by

= J2ra (& + y
2 + z2

) + o>2m (xy
-
yx) + J<o

22m (a? + f) ...... (20).

The total moment of momentum M about the -axis is given by

M = Sm (xv yu)

= 2m (xy
- yx) + o>2w (a

8 + f) .................. (21).

Put

TR = &m(&-+F + #) ........................ (22),

U = ^m(xy-yx) .............................. (23),

/ = 2m(#2
+t/

2

) ..............................(24),

so that TR is the kinetic energy relative to the rotating axes, U is the

moment of momentum relative to the moving axes, and / is the moment of

inertia. Then equations (20) and (21) become

T = ^+o>/ + ia>
2/ ........... '. ............ (25),

M= U+ col ........................... (26).

Eliminating U we obtain

GfiI ........................... (27).
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The position of the system may be supposed defined by >/r,
a coordinate

fixing the position of the axes, such that ^ =
o>, and n 1 Lagrangian

coordinates Ol , 2 . . . Qn^ fixing the configuration of the system relative to

the axes, so that the system has n degrees of freedom in all.

The equations of motion are (cf. equations (5)),

in which G is the generalised force corresponding to the coordinate
>|r,

and

so is the couple about the axis of z which acts upon the system.

From the value of T given by equation (25), we clearly have 95
rT

/9^r
=

and dT/dco = M, so that equation (28) reduces to

expressing simply that the rate of increase of the moment of momentum M
is equal to the couple G.

If a mass is rotating freely in space, G = 0, so that M remains constant.

If a mass is constrained to rotate at a constant angular velocity while M
changes, a couple G will be necessary to maintain the rotation, and the

amount of this couple will be determined by equation (30).

Mass rotating with Constant Angular Velocity

25. Let us first consider the problem' when (o is kept constant. To

transform equations (29) we notice that

dx _ -, dx dOs

so that = ^- .

des MS
We accordingly have

= ^
des

~

so that

d fdU\ ^ (. dy ,.dx\ ^ ["
d ( dy\ d fdx\~\

&
= ~m

(
xm -

ywj +*m
[

x
dt bi)

- y dtyJ

\~]

)J

dU ^ ffa . dy .\ ~ [ d fdy\ d /dx\~]Also
w.

= 2m
(aTs

y
-d x

)
+ Sm r dt

-

d fdU\ dU ^ f.dy . dx
so that T- I

-
o/i

= 2zm (x^ y ^-
dt \r)0J OVS \ dVs 00

dx
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so that ffgr
= - &. and . = 0. Then

Using the value of T
7

given by equation (24) and keeping o> constant,

we have

^/ar\_8T_^/aTfi\_aT fl^-^l-i ^
dt (dej w.

" * V 80; /

"

aft
4 *

I

<**W 8^J-
'

a^

so that the equation of motion (29) becomes, using (31),

Thus the equations of motion relative to rotating axes differ from the

simpler equations appropriate to the case of CD = in two respects ;
first by

the presence of what we may call "gyroscopic" terms such as @ls (o0i, and

second, that W -
^&>

2/ replaces the potential energy W of the simpler

equations.

26. The conditions for equilibrium relative to the moving axes are

^ = ^=...=0

and so are determined by the equations

g|(ir-irt)
**.<* ......................... (33),

reducing when there are no externally applied forces, to

^(F-K/)
= .......................... (34).

The difference between these equations and the simpler ones for a system
at rest is merely that W has become replaced by W |o)

2/. The configurations

of relative equilibrium may accordingly be found just as though the system
were at rest under a potential W J&>

2
/, and these configurations will fall

into linear .series as before.

27. To discuss the small oscillations of such a system, let us return to

the equations of motion (30), and suppose we are considering the oscillations

of a configuration which is one of equilibrium under no applied forces, say

0, = @j, etc.

Let the coordinates be replaced by 6 1 lt etc. so that the new values

of Olt &z, ... all vanish in the configuration of equilibrium. The values of



25-27] Rotating Systems 29

W i&>
2/ and of TR for any small displacement may now be expressed in the

forms

2 (W- i&)
2

/) = 611 6>1
2 4- 2618 ft ft, + ...

the condition that equations (32) shall be satisfied in the configuration of

equilibrium requiring the omission of terms of first degree in ft, 2 ,
.... By

a linear transformation, TR and W ^
2/ may be simultaneously reduced

further to a sum of squares, so that we may assume the still simpler forms

2TE = a 1 1

2 4-a2 2
2 + ........................(35),

>2(W -X7)
= Mi2 +M2

2 + ........................ (36).

The equations of motion (32) now reduce to

ft* Mi + a>(&808 + /Ms +...) = F, .................. (37),

0, + M.+ fi>(&i ft + ft,+ ...)
=^ etc (38).

Had the system been at rest, these equations would have reduced to

a,8 ds +bs s
= Fs ,

etc.

and all the properties of
"
principal coordinates

"
would have been immediately

deducible. But a glance at equations (37) and (38) will shew that these

properties no longer persist when the system is in rotation. A disturbance

in which 0j exists alone at first will soon set up oscillations in which 2 , 3 ...

have finite values, and the coordinates ft, 2 ,
... no longer correspond to

independent vibrations.

Since equations (37) and (38) are linear with constant coefficients, it is

clear that there will be a system of separate free vibrations. These may be

found by putting F1
= F2 ... = 0, and assuming ft, 2 ,

... each proportional

to the same time-factor eKt . The equations reduce to

2 + b,) O l + &>X/312 2 -I- a>\ 13 ft + . . .
= 0.

+ *&2 ft, + . . + KX2 + b8) es + . . .
= 0, etc (39).

Eliminating the 0's, we find as an equation for X,

0.

Since /8rs
=

/3sr ,
it appears that this equation is unchanged when the

sign of X is changed. Thus the equation is an equation in X2
, just as when

the system is at rest. But the roots in X2 are no longer all real as they are
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for a system at rest
; they will occur in pairs of the form X2 = p icr, and

these will. lead to roots for X of the form

\= qip,
so that the complete time factor for an oscillation is found to be of the form

Ae^ cos (pt e) + Be~& cos (pt
-

77).

If q is different from zero for any vibration, the amplitude of this vibration

will continually increase owing to the presence of the factors e qt
,
and the

system will be unstable. Thus the condition for stability is that q shall be

zero for every vibration, and this in turn requires that all the roots in X2

shall be real and negative a condition which is the same in form as that for

the stability of a non-rotating system.

A transition from stability to instability occurs whenever one of the

roots in X2 vanishes. Putting X = in equations (39) we find that these

equations reduce to

6^ = 0, M2
= 0, etc.

and the condition for a change from stability to instability is seen to be that

one of the coefficients bl} 62 shall vanish. These coefficients are seen to

be precisely the Poiricare
"
coefficients of stability

"
calculated for a system of

potential energy W i&>
2/.

28. Multiply equations (32) by 0,, #2 ... and add corresponding sides.

We obtain

~(^+TT-!o>2

/) =M +M+ ............ '. ..... (40).

The same result is readily obtained from the equations of energy and

angular momentum. The equation of energy is

2 + ...+a>G .................. (41)

or, using equations (27) and (30),

which is identical with equation (40).

When Fl
= F2

=
. . .
= 0, so that no forces act except the couple G necessary

to maintain the rotation constant, the equation has the integral

TB + W-^1 = constant ........................ (42).

For equilibrium, W \u?I must, as we have seen, be stationary. Con-

sider first what kind of equilibrium obtains when W \u?I is an absolute

minimum. When any small displacement of the system occurs, W Jo>
2/ is

necessarily increased, so that the constant value of TR + W -
J&>

2/ is greater
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than its value when at rest in the equilibrium configuration by a small

constant amount c. Thus throughout the subsequent motion TR can never

increase beyond the value c, so that the motion is absolutely stable. This

argument cannot however be reversed to shew that the system is necessarily

unstable if W ^o>
2
./ is not an absolute minimum.

Let us examine what happens when the relative motion of the system is

affected by dissipative forces, such as viscosity. The right hand of equation

(40) will be negative except when the system is relatively at rest, so that

TR + W ^o)'
2I will decrease indefinitely. If W -

\<?I was an absolute mini-

mum in the position of equilibrium, this condition can only be satisfied by
TR being reduced to zero, and the system coming to rest in its position

of equilibrium. But if W ^o>
2/ was not an absolute minimum in the con-

figuration of equilibrium, there will be a possible motion in which W ^o>
2/

continually decreases while TR remains small at first, but may increase

beyond limit when W |&>
2/ is sufficiently decreased. The system is now in

a restricted sense unstable.

Instability of the kind just discussed is called "secular instability." The

conception of "secular instability" was first introduced by Thomson and

Tait*. It has reference only to rotating systems or systems in a state of

steady motion
;
for systems at rest secular stability become identical with

ordinary stability. It is clear that a system which is ordinarily stable may
or may not be secularly stable, but a system which is ordinarily unstable

is necessarily secularly unstable.

Mass rotating freely in space

29. As Schwarzschildf has shewn, the conditions of secular stability

assume a somewhat different form for a mass rotating freely in space. Here

the rate of rotation is not constant but varies with the moment of inertia of

the mass
;

if we refer the motion to axes rotating with a uniform velocity

the rotation of the freely rotating mass may lag behind that of the axes and

the relative coordinates #, y, z may increase without limit although the

configuration remains stable. It is therefore important to express the con-

ditions of stability in a form which does not involve the constancy of o>.

When the mass is rotating freely in space, G = so that (equation (30))

M is constant. The elimination of o> from equations (25) and (26) leads to

T-T +^ +
2/

where Ts =TR -j?.
* Nat. Phil. 2nd Ed. n. p. 391.

*

t See Schwarzschild; "Die Poincare'sche Theorie des Gleichgewichts." Neue Annalen. d.

Stermcarte Miinchen, 3 (1897), p. 275, or Inaugural Dissertation. Miinchen (1896).
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Using the values of TR ,
U and / given by equations (22) to (24),

27T, = [2m, (^
2 + 2

This expression, being a sum of squares, is always positive. Thus, since / is

necessarily positive and independent of sb, y, z, it appears that T8 is always

positive and is quadratic in x, y, z.

The equation of energy, T + W = cons, now assumes the form

M 2

T8 + TF+=cons............................ (43).

This is of the same form as equation (42), Ts replacing TR and W + M 2

/2/

replacing W - ^w
2
/. By the argument already used in 28, it now appears

that configurations for which

.................................... (44)

is an absolute minimum (M being kept constant) will be thoroughly stable,

while configurations for which this expression is not an absolute minimum
will be secularly unstable, and may or may not be ordinarily unstable.

30. As we pass along a linear series of configurations of equilibrium of

a rotating system, starting from a part of the series which is known to be

stable, the configurations will become secularly unstable as soon as

W -\<*?I ( =constant) ....................... .(45)

or W+M 2

//(M = constant) ........................ (46)

ceases to be ah absolute minimum, the former expression referring to a

problem in which the mass is compelled by external forces to rotate at a

constant rate &>, while the latter refers to a problem in which the mass is

rotating freely in space.

It is now clear that the theory of linear series and stability developed in

1820 will be exactly applicable to the problem of the secular stability of

a rotating mass, W being replaced in the argument of those sections by the

appropriate one of expressions (45) or (46). Secular stability is lost at a
"
turning point

"
or

"
point of bifurcation." At a turning point stability is

lost entirely ;
at a point of bifurcation it may be lost or may be transferred

to the branch series through the point according as the branch series turns

downwards or upwards in the appropriate diagram.
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Various forms for the Equations of Equilibrium

31. The preceding theory has reduced the problem of determining a

sequence of stable configurations to the simpler problem of mapping out all

configurations of equilibrium. For this latter problem the conditions of equi-
librium may be expressed in whatever form is found to be most convenient.

We have already seen that possible forms are

=0 (w =
constant) .................. (47),

= (M = constant) .................. (48).

Another form is contained in the ordinary hydrostatic equations of equi-

librium

in which V is the gravitational potential and p, p denote the pressure and

density respectively.

For a mass of uniform density p, equations (49) have the common

integral

? = V +>2

(x- + ?/
2
) + cons.

and so the equations reduce to the single condition that

F + i&>
2

(#
2 + 2/

2

)
= cons.........................(50)

over the boundary of the fluid.

32. In the classical treatment of the rotational problem by Poincare*

and Darwin f, the equations of equilibrium are introduced in the form (48) ;

while Liapounoffj treats the same problem by means of equation (50).

The method of treatment of the present book finds it convenient to use

equation (50) for the incompressible mass, and equation (49) for the com-

pressible mass, this latter case not being discussed at all by Poincare, Darwin

and Liapounoff.

Thus, so far as the treatment of the problems in the present essay is

concerned, it was unnecessary to introduce equations of the type (48) for the

discussion of figures of equilibrium, but the theory of secular stability could

* Acta Math. I.e. ante, also "Sur la Stabilite de 1'Equilibre des Figures Pyriformes affectees

par une Masse Fluide en Kotatioa," Phil. Trans. 198 A (1901), p. 333.

f "On the Pear-shaped Figure of Equilibrium of a Rotating Mass of Liquid," Phil. Trans.

198 A (1901), p. 301, and subsequent papers. These will be found in Vol. in of Sir George
Darwin's Collected Works.

J "Sur un Probleme de Tchebychef," Memoires de VAcademie de St Petersbourg, xvii. 3 (1905),

and other papers published by the Academy.

j. c. 3
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nardly have been satisfactorily discussed without the help of such equations.

Now that this theory has been established we can discard equations (48).

We have found that stability can be lost at a turning point or a point
of bifurcation on a linear series. The characteristic feature of a turning

point is that the variable parameter attains a stationary value at such a

point ;
the characteristic feature of a point of bifurcation is that correspond-

ing to a single value of the parameter, there shall not only be a single

configuration of equilibrium, say lt 2 ,
but also a small range of

configurations of the form

0! + *!, 2 , 3,.-.

for all values of e so small that e2

maybe neglected.



CHAPTER III

ELLIPSOIDAL CONFIGURATIONS OF EQUILIBRIUM

33. The best-known configurations of equilibrium of a rotating homo-

geneous mass, namely Maclaurin's spheroids and Jacobi's ellipsoids, are both

of the ellipsoidal form, and this form will prove to be of primary importance
in all the cosmogonical problems we shall attempt to solve. We accordingly

devote a chapter to the subject of ellipsoidal configurations.

Looked at merely from the point of view of convenience in the develop-
ment of the subject, the ellipsoidal form has the advantage that the potential

of an ellipsoidal mass is known and is comparatively simple, and that the

ellipsoidal configurations provide admirably clear examples of Poincare's

theory of linear series and stability. These reasons alone might justify our

studying ellipsoidal configurations in some detail, but there are weightier

reasons, as we shall soon see.

Throughout this chapter and the three succeeding chapters the matter

under discussion will be supposed homogeneous and incompressible ;
the more

complicated problems presented by non- homogeneous and compressible masses

will be attacked in Chapter VII.

We shall deal in turn with three distinct problems the first, that of a

mass of liquid rotating freely under its own gravitational forces
;
the second,

that of a mass devoid of rotation but acted on tidally by another mass
;
the

third that of two masses rotating round one another and acting tidally on

/ one another. The ^rst__groblem is of course-of.inie^eaL.in-J2Qnn-ectioji with

the rotational theory of
pla^ietary__evojutipri_^ the second is of interest in

connection with the tidal theory ;
while the third

isjDf
interest as -linking-iip

the two TolHineP~probleTns, ^ind also in connection with soi]oe_double-star

problems: fir-every^ene of Tbese prtrblemspwe^Iiall find ultimately that

the only stable configurations are of the ellipsoidal form, or are ellipsoids

slightly distorted by tidal inequalities.

34. Notation. When one ellipsoid only is concerned, we shall take a, 6, c

to be its semi-axes, so that the equation of its boundary will be

x2
y'

2 z2

a'
+l+c^ 1 <ol >

As in many ellipsoidal problems, it will be convenient to think of the

surface (51) as being the surface X = in the family of confocal ellipsoids

(52) '

32
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We shall write for brevity

az + \ = A, 62 + X = 5, c2 + X=CM
,

j-
............... (53).

[(a
2 + X) (tf + X) (c

2 + X)J*
= (ABC)* = A J

We shall take abc = r 3
. The matter of which the ellipsoid is formed

will be supposed to be homogeneous and of density /o,
so that the mass M

will be given by M =
7rpabc

= f7J7>r
3

.

The potential F of this mass at any external point as, y, z, is, by a well-

known formula,
2 \

...............(54)

in which the lower limit of integration X is the root of equation (52), and

so is the parameter of the confocal ellipsoid on which the point as, y, z lies.

The potential F< of the mass at an internal point as, y, z, is

and so is a quadratic function of x, y, z.

35. To simplify the printing of integrals of the type just written down,
we shall introduce an abbreviated notation. Let us write

(56)

o A
and put further

so that, for instance, equation (55) assumes the form

Vi = - Trpabc (x
2JA + y*Js + z*Jc - J) ............... (57).

It is easily verified that

(58)

or this can be seen from the circumstance that VFi must be equal to - 4>7rp.

We may also note the formulae

(59),

(60),

l)J^+i =^_ ............... (61)

all of which are easily verified by algebraic transformations.

With these preliminaries, we proceed to the three problems already
specified.
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I. FREELY ROTATING ELLIPSOIDS

36. The necessary and sufficient condition that the standard ellipsoid

(51) shall be a figure of equilibrium for a homogeneous mass j)f jlensity p

freely rotating with angular velocity &> is that

*) ..............................(62)

shall be constant over the boundary, V-
t being given by equation (57). Con-

sider the function

+
|]
+ ^-l)

............(63)

where 6 is a constant, as yet undetermined. Operating with V2
,
we find

that this function will be a spherical harmonic, if

-
47T/3 + 2o)2 + 20>rrpabc + + - =

\d- C /

and this can be satisfied by assigning to 6 the value

abc ( + ,- + -v +
i)

(64).

Giving this value to 0, expression (63) becomes harmonic. The necessary

and sufficient condition that the standard ellipsoid (51) shall be a figure

of equilibrium is- that this function shall have a constant value over the

boundary. The function being harmonic, this is equivalent to the condition

that the function shall have a constant value throughout the interior of the

ellipsoid. We must accordingly have

-
irpabc (

+ 07rpabc 4- 1 + *- - 1 = cons.

where is given by equation (64). Equating coefficients of #2
, y

2 and 2
,
this

equation is seen to be equivalent to the three separate equations

...........................(65) '

Jo = ..............................(67).

By addition of corresponding sides we again obtain equation (64) which

gives the value of 0. Thus the three equations (65) (67) contain within
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themselves the necessary and sufficient condition that the standard ellipsoid

(51) shall be a figure of equilibrium under a rotation &>.

37. On subtracting corresponding sides of equations (65) and (66) we

obtain

and the elimination of 6 between this and equation (67) leads to

..................... (68).

It accordingly appears that equations (65) to (67) can be satisfied in two

ways ;
first by taking

a'=62
....................................(69)

N

and second by taking
= #Jc ..............

..
...............(70). C_

Maclauriris Spheroids

38. Let us examine the former alternative first. When a = b, the series,

of ellipsoids become a series of spheroids which include the sphere a = b c

for which ft)
2 = 0.

Equation (65) now becomes identical with (66). The elimination of 6

between this equation and equation (67) gives

ft)
2 a2 - c

2 r \d\
or

a2 -
c;

2 r
a2

J%7rpabc

Since ft>
2 must be positive, it appears that a2 must be greater than c2

;

the spheroids are all oblate. On evaluating the integral in equation (71),

the value of ft)
2
is found to be given by

2-777? &' ^e
*

'

where e is the eccentricity, defined by e2 = (a
2 c

2

)/a
2

.

Thus the eccentricity of the spheroid depends only on the ratio of ft)
2 to p,

as it is apparent from a consideration of physical dimensions that it must.

The following table of corresponding values of &)
2

/p and e is given by Lamb*,

being compiled from values calculated by Thomson and Taitf:

*
Hydrodynamics (4th Ed.), p. 673. I have inserted into this table, Darwin's values for

e= -81267, the point of bifurcation,

t Nat. Phil. 772.
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e
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regard the series of Jacobian ellipsoids as starting at the value a = b (the

point of bifurcation), and the ratio a/6 continually increases from 1 to oc as

we pass along the series. The following numerical values are given by
Darwin*.

a

r%

1
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42. As a problem suggested by Plateau's experiments, let us examine

what would be the sequence of configurations if a mass of gravitating matter

had its angular velocity continually increased by some mechanical means

such as the spinning at an ever increasing rate of a pole throughjts^centre.

The configurations of equilibrium are those already discussed ;
so long as

the mass is constrained to remain .ellipsoidal, they consist of Maclaurin

spheroids and Jacobian ellipsoids. To examine the stability of these figures

we draw a diagram in which the angular

velocity is the vertical coordinate (see

fig. 5)."

We find at once that the Maclaurin

spheroids remain stable until the ro-

tation is given by co
2

/27rp
= '18712. At

. ^n
this stage a point of bifurcation occurs, o^ **

the branch series being the Jacobian ^/
ellipsoids. The Maclaurin spheroids /
accordingly lose their stability, and I

since the Jacobian ellipsoids turn down-
/

wards from the point of bifurcation,
'

these also are unstable. Thus there
Fig. 5.

are no stable configurations of equili-

brium for a rotation greater than that given by o>
2

/27r/o
= '18712. When the

rotation exceeds this amount, the problem ceases to be a statical one and

becomes a dynamical one
;
here we shall not attempt to follow it.

43. Suppose, as an alternative problem, that the mass had been con-

strained to remain a figure of revolution. The Jacobian series of figures

would then have no existence, and the point defined by co*/27rp
= '18712 on

the Maclaurin series would have no physical significance except as being the

point at which the newly imposed constraint first came into play. The Mac-

laurin spheroids now remain stable up to the point defined by &>
2

/27rp
= '225.

This is the maximum value which &> can have for a spheroidal configuration,

and when w exceeds this value there are no possible configurations of equi-

librium at all subject to the constraints which we have supposed to be

imposed. Again the problem becomes a dynamical one, and again we shall

not attempt to trace out this part of the motion.

Stability when the angular momentum is increased

44. The problems just considered are of interest as illustrating the theory
of points of bifurcation, but fail entirely to represent the conditions postulated
in the rotational theory of planetary evolution. To represent these conditions
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the mass must be supposed to rotate freely in space so that its angular mo
mentum remains constant. As it shrinks, its density will continually increase

and this may or may not result in an increase of angular velocity. To studj

the problem by the most direct method, we should have to look for series o

configurations of constant angular momentum and varying density. It is how

ever a convenience to suppose that the density remains constant while th<

angular momentum increases, and it is easily seen that this leads to exactb

the same mathematical problem. We accordingly proceed to study the sta

bility of the Maclaurin and Jacobian series, supposing p to remain constan

while the angular momentum is made continually to increase.

In this problem the angular momentum is given in the last columns o

the tables on pp. 39 and 40, and in a diagram in which the angular mo

Fig. 6.

mentum is taken for ordinate, the series will be found to be as in
fig. 6. Clearb

the Maclaurin spheroids will be stable up to the point at which they meet thi

Jacobian ellipsoids. At this point of bifurcation they lose their stability, am
since the series of Jacobian ellipsoids turns upward at this point, it followi

that stability passes to them.

If the mass is constrained to remain ellipsoidal there is no further pom
of bifurcation on the Jacobian series, and, as the angular momentum con

tinually increases along this series, it follows that all configurations on it ar<

stable. But it will be found later (Ch. V) that when the constraint to remaii

ellipsoidal is removed, the Jacobian series loses its stability at a certain stag<

by meeting a series of non-ellipsoidal (pear-shaped) configurations. This ha;

been anticipated in our diagram.
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45. It will be understood that the foregoing discussion of stability has

been concerned only with secular stability, this being the only kind of stability

which is of interest in problems of cosmogony. The conditions of ordinary

stability are quite different ;
for instance it has been shewn by G. H. Bryan

*

that Maclaurin's spheroid remains ordinarily stable until its eccentricity is

given by e = "9529.

II. TIDALLY DISTORTED ELLIPSOIDS

46. We now pass to a problem in which the distinction between secular

and ordinary stability disappears.

A distant heavy mass will raise tides in a spherical mass of fluid, so that

the fluid assumes the shape of a prolate spheroid. As the heavy mass

approaches, the eccentricity of this spheroid will increase, and the question
arises whether the spheroidal form remains stable no matter how great its

eccentricity. The bearing of this problem on the planetesimal theory and

other tidal-distortion theories is obvious.

47. Suppose that a mass M of fluid which we shall call the primary, is

acted on by tidal forces originating from a second mass M', which we shall

call the secondary. Let us at first suppose that the massM'

of the secondary
is collected in a point, this being of course a legitimate approximation if the

secondary is at a great distance from the primary.

Let the centre of gravity of the primary be taken for origin, and let the

secondary be at a distance R, its spherical polar coordinates (r, 6, <) being

supposed to be R, 0, 0. The tide-generating potential at the point r, 6, <f>

will be

M' M' M'rcosO M'r* D M'r* D
L-TBT + - -+ -TiT P2 (COS 0) + ~B7 A(COS<9) + ...

(73).

The first term on the right M'/R is a constant and so gives rise to no

forces on the primary mass. The second term gives a uniform field of force

of intensity M'/R
2
,
which produces the Newtonian acceleration M'/R2 in the

primary. We can neutralise this term by supposing the axes of reference to

move with an acceleration M'/R
2

;
the centre of gravity of the primary will

then always remain at the origin.
1

We are left with a tide-generating potential

^~r ^2 (cos 6) + i
P3 (cos 6) + (74).

* Phil. Trans. A 190 (1888), p. 187.
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When R is great the ratio of successive terms is of the order of magnitude

of r/R, so that when R is very great, the tidal potential reduces to its first

term

or, writing /* for M'/R3 and transforming to Cartesian coordinates,

........................... (75 >-

48. When the tide-generating potential reduces to this simple form, it is

at once clear that ellipsoidal configurations are possible for the primary. The

condition that the standard ellipsoid (51) shall be a figure of equilibrium undei

a tide-generating potential (75) is that at every point of the boundary

F; + /-iOr
2

-4.y
2-^2

)
= cons...................... (76).

As in 36, this is equivalent to

where 6 is a constant.

Equating coefficients of #2
, 2/

2 and zz
,
we find as the equations to b(

satisfied :

-
Trpabc a2

JA - -~ = - ................... . ....... (78),

(80) -

The addition of corresponding members of these equations gives

while on subtracting corresponding members of equations (79) and (80), w<

obtain

The elimination of between this equation and (81) gives

It is at once clear that as before ( 37) there are two sets of ellipsoida

configurations, and these are obtained by satisfying respectively the tw<

equations
62 = c2 .................................... (83),

m......................... (84) '
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Obviously these two series of configurations correspond roughly to the

series of Maclaurin spheroids and Jacobian ellipsoids in the rotational

problem.

49. Eliminating 6 from equations (79) and (80) and dividing out by the

factor b'
2

c
2
,
we obtain

2irpabc

This does not give the value of /A on the spheroidal series, for on this

series the factor b2
c
2 vanishes. It gives the value of p on the ellipsoidal

series, and shews that
/j,

is necessarily negative throughout this series. Since

fji
is positive in the physical problem, it appears that these ellipsoidal con-

figurations cannot actually occur
; only the spheroidal series remains as a

physical possibility.

To obtain the value of //, on the spheroidal series we may eliminate

between equitions (78) and (81) and put b = c. We find that the spheroids

corresponding to positive values of
//.

are prolate (a > c), and for these

d\ 2c
2_ _

X)
f
(c

2 + X)
c
* + 2a*

l+e

in which e is the eccentricity, given by e2 = (a
2

c*)/a?.

Equation (85) shews that
//,
= when e = 0, as it ought to be

;
it also shews-

that
fjb
= Q when 6=1. On treating equation (85) numerically, it is found

that p continually increases from the value /u,
= at e = 0, until e has the

value '88257.9, after which /* decreases down to the value p = at e = 1. The

maximum value of
//,

is '125504^.

Clearly the configurations of equilibrium which correspond to positive

values of
/u,
form a diagram similar to fig.

4 (ii). It follows that all spheroids
for which e < '8826 are stable, while all others are unstable. So long as

fj, < *1255047rp, there are always two spheroidal configurations, one stable and

the other unstable
;
when

//,
> 125504^, there are no spheroidal or ellipsoidal

configurations at all.

When a tide-generating mass approaches the primary mass, //, may be

supposed to increase continually. We now see that if
/j, changes slowly enough,.

the primary passes through a series of prolate spheroids of continually in-

creasing eccentricity, until
/-t

reaches the value 0-1255047jy>. After this value

of
fj,

is passed the problem becomes a dynamical one. We shall give the

solution of this dynamical problem in a later chapter. For the present we
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notice that the critical stage at which this dynamical motion begins is deter-

mined by

-j-
=

0125504777),

or, since M f7rpr
3
,
it is determined by

r/vi

f )
r (86).

When the secondary approaches to a distance less than this, there are no

configurations of equilibrium for the primary. When the secondary is at this

critical distance, the primary has the greatest eccentricity consistent with

stability. This is given by e = "882579 and the lengths of the semi -axes are

a = I'65390r
;

b = c = 77757r
,

these lengths being very approximately in the ratio 17:8:8.

III. THE DOUBLE-STAR PROBLEM

50. We now proceed to the third problem that of two bodies rotating

round one another without any change of relative position. This problem
has been studied in detail by Roche* and Darwin "f.

Let the two bodies be spoken of as primary and secondary, and let their

masses be M, M' respectively ;
let the distance apart of their centres of gravity

be R, and let the angular velocity of rotation of the line joining them be ew.

It will be sufficient to fix our attention on the conditions of equilibrium of

one of the two masses, say the primary. Let its centre of gravity be taken

as origin, let the line joining it to the centre of the secondary be axis of a?,

and let the plane in which the rotation takes place be that of xy. Then the

equation of the axis of rotation is

x =
M'

fR ^ = ()

The problem may be reduced to a statical one (cf. 31) by supposing the

masses acted on by a field of force of potential

or | or (x- + y
g

)
-

, Rtfx + cons (87).

* E. Roche, "La Figure d'une Masse fluide soumise a 1'attraction d'un Point eloigne."

Acad. de Montpellier (Sciences), i. (1850), p. 243.

t G. H. Darwin, "On the Figure and Stability of a liquid Satellite.'" Phil. Trim*. 206 A

^1906), p. 161, and Coll. Work*, in. p. 436.
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ROCHE'S PROBLEM

51. The simplest problem occurs when the secondary may be treated as

a rigid sphere ;
this is the special problem dealt with by Roche. As in 47

the tide-generating potential acting on the primary may be supposed to be

We shall for the present be content to omit all terms beyond those written

down. The correction required by the neglect of these terms will be discussed

later, and will be found to.be so small that the results now to be obtained are

hardly affected.

On omitting these terms, and combining the two potentials (87) and (88),

it appears that the primary may be supposed influenced by a statical field of

potential

The terms in x may immediately be removed by supposing o> to have the

appropriate value given by
M+M'

and the condition for equilibrium is now seen to be that we shall have, at every

point of the surface,

F6 +^(^-J2/2

-J^)-i-|a>
2

(^ + 3/
2
)
= cons............. (90),

where ft again stands for M'/R
S

.

52. Equating the left-hand of equation (90), as before, to

we find, as the conditions of equilibrium,

. _A
Trpabc ^Trpabc a?

T
>

>

(91)

It will be seen that these equations are more general than either of the

two sets we have considered before, each of which are indeed included as

special cases in the present set. Putting fju
= we obtain the equations of the

rotational problem, while on putting w = we obtain the equations of the

tidal problem.
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It is convenient to put MjM' =p, so that

(94).

The equations then reduce to

^_R)^ ...........................(95),
27rpabc a2

and the special cases are now obtained on putting p = oo (the rotational pro-

blem) and 2>
= - 1 (the tidal problem).

Eliminating 6 from equations (96) and (97) we obtain

while similarly the elimination of from (95) and (97) yields

(a
2 - c2) f"

7
Jo (a

2 ~~r A o-
......

+ X) (c
2 + X) A 2-Trpabc

These two equations are identical, except for differences of notation, with

the two equations which Roche takes as the basis of his discussion*.

53. If we now remove c from equations (98) and (99) by the substitution

c = rj/ab, the resulting equations will give a, b in terms of /z and p.

In these equations the value p = oo has already been fully discussed, and

found to give the series of Maclaurin spheroids and Jacobiari ellipsoids. For

all other values of p, the value p = leads at once to a=b =
c, and so gives a

spherical configuration.

For values of
/u,

other than
//,
= 0, the elimination of

fj,
from equations (98)

and (99) leads to an equation which gives p uniquely in terms of a and 6, and

either equation then gives yu, uniquely. Thus all solutions of equations (98)

and (99) may be represented on a graph in which a and b, both necessarily

positive, are taken as abscissa and ordinate. Each point in this diagram will

correspond to one and only one value of p and /JL. On drawing the loci

p = constant, we obtain the various linear series corresponding to different

values of jo
or M/M' in Roche's problem.

Since the value of p for any value of a and b has been seen to be unique,

it follows that no two of these linear series corresponding to different values

of p can ever intersect. The median line a = b is already occupied by the

*
Equations (4) and (5) (p. 247) of Koche's memoir.
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locus p = oo (Maclaurin spheroids), so that it is impossible for any of the loci

ever to cross this line
; they all lie completely on one side or the other of it.

Moreover the values ofp and
//,
must obviously vary continuously as we move

continuously in the a, b plane.

In
fig. 7 such a diagram is represented. The point S(a=b = r ) represents

the spherical configuration ;
the line OSM (a = b) is the series of Maclaurin

spheroids, and the line TST' (ab
2 =

1) is the series of tidal spheroids. B is the

point of bifurcation on the series of Maclaurin spheroids and JBJ' is the series

of Jacobian ellipsoids.

All points which are on the side T'J' of the median line OSM represent

configurations for which b > a, and therefore configurations in which the pri-

mary is broadside on to the secondary. It is obvious that all these configurations

are unstable, for they would be unstable even if the primary were constrained

to remain rigid. These configurations need not trouble us further and we may
confine our attention to the right-hand half of the diagram.

Linear series for all values ofp pass through 8. The series for p = + oo is

the broken line SBJ, that for p = 1 is the line ST, while that for p = oo is

the line SO. Remembering that two linear series cannot cross, it is clear that

the series for a very large positive value of p must be asymptotic to the line

SBJ. All the series from p = + cc to p = 1 accordingly "lie within the small

area bounded by the lines JB, BS, ST. The series in the area OST are of

course series for which p is negative and numerically greater than 1, while

those in the area MBJ are again series for which p is negative, a second

series for p = oo coinciding with the line MBJ.

Let us now confine our attention to the series which lie inside th,e area

JBST, these being as we have seen the only ones of physical interest. Each

series starts at S and ends at the point in which the lines BJand ST ultimately

meet at infinity. Thus each series begins with a sphere and ends with an in-

finitely long prolate spheroid. As we pass along any one of these series /*

changes while p remains constant. The value of o>
2
,
which is given by equation

(94) accordingly changes also, this giving the value of a real angular velocity

when p is positive, and being regarded simply as an algebraic quantity when

p is negative. The value of &>
2 vanishes only when p = 1 or when //.

=
;

consequently it vanishes at S, at (JT)^ and along the line ST. It follows that

ft>
2
is of the same sign everywhere inside the area SBJT, and this sign is readily

seen to be positive.

Since a>
2 vanishes at both the ends $ and (JT)^ of every series, it follows

that on passing along each series o>
2 at first increases, and then after passing

a maximum value decreases. Roche*, treating equations (98) and (99) by a

*
I.e. p. 251.

j. c. 4
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laborious method of numerical calculation, found that there is only one maxi-

mum on each series. The maximum on the series SBJ (p oo ) occurs as we
have seen at B; the maximum value of G)

2

/27rp is 0*18712. Similarly the

maximum on the series ST(p = 1) occurs when
/-t

is a maximum^nd so at

the configuration of eccentricity '8826. This is represented by the point T"
in the diagram, the value of a)

2

/2?r /
o at this point is 0. Roche has calculated

the maxima of a)
2

/'27rp on other series. On the series p = 0, the series of con-

figurations in which the primary is infinitesimal, he finds the maximum value

of co'
2

/27rp to be O046, and the configuration at which this maximum occurs is

that in which a = I'63r
,
b = -81r

;
this is represented by the point R" in the

diagram. When p = l, the maximum value of &>
2

/27rp is O072, and Roche
finds that the value of this maximum increases continuously from p = to

p = oo .

On connecting the points B, R", T" by a continuous line, we get the loci

of points at which <w
2
is a maximum on the various linear series.

Stability

54. In a physical problem in which &>
2 increased continuously, it would

follow, from the principles already discussed, that all configurations on the left

of this line would be stable, and all the configurations on the right would be

unstable. The stability of the configurations on the left would of course only
be stability so long as the configurations were constrained to remain ellipsoidal,

although we shall see later that this restriction makes no difference.

In the natural double-star problem, the change in physical conditions is

not represented by an increase in <u
2

. Both masses lose energy by radiation,

and shrink accordingly. The rates of shrinkage, and consequent rates of in-

crease in density will in all probability be quite different for the two masses.

We can, however, construct an artificial problem in which the density, if sup-

posed uniform to begin with, remains, uniform throughout the shrinkage, or

in which the two densities, if not supposed equal to begin with, change so as

always to retain the same ratio. The physical conditions are now represented

by an increase in the absolute densities, while the moment of momentum re-

mains constant and, exactly as in 44, these conditions may equally be

represented by supposing both densities to remain constant while the moment
of momentum increases.

55. Let us first consider the general problem in which the secondary is

not regarded merely as a point.

The moment of momentum of the primary about the centre of gravity of

the system is

42
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where k is the radius of gyration of the primary. Adding this to the similar

expression for the secondary, we obtain for the total moment of momentum
M of the system

............... (100),

1 _ 2

or, replacing R by its value (M + JM
v
)*o> ,

M-(J4-JT^).'+-^^-a -7* ...... (101).

(M + 1/0*

56. When the primary M is infinitely massive compared with the

secondary M't
the total moment of momentum M has the value M = Mk-w,

and the variation of M is precisely that of a freely rotating mass
;

it increases

steadily from M = at S to M = oo at / in
fig. 7.

For finite values of the ratio M/M' the value of given M by equation

(101) becomes infinite when o> = i.e. at the two ends of the linear series

of configurations similar to those shewn in fig. 7. Thus on leaving S,

M decreases until a minimum is reached, and all configurations beyond this

minimum will be unstable. Thus the curved line BR"T r

which divided

stable from unstable configurations in fig. 7 must now be replaced by another

curved line passing through 8.

It accordingly appears that when M/M' is large the linear series becomes

unstable very near to S, the range of stability vanishing altogether when

M/M' is infinite. If both masses are rigid, so that &2 and A/ 2 are constants

the limit of this range is easily found from equation (101) by making M = 0.

The limit of stability is found to be given by

...(102)
+ Y

or, in terms of R (using equation (89)),

..................(103)

and the range of stability is again seen to be infinitesimal i.e. limited to

very great values of R when M/M' is infinite.

The result shews that there can only be secular stability of a large and

small mass rotating round one another when the smaller mass is at a very

great distance from the larger*. We are dealing, it must be noticed, with

secular stability only ;
the question means nothing except when dissipative

forces are present. When there are no dissipative forces, as for instance

if both bodies are perfectly rigid, a circular orbit of no matter what radius is

thoroughly stable, the orbit r = a giving place when slightly disturbed to

*
Cf. Sir G. Darwin. Coll. Works, m. p; 442.
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the slightly elliptical orbit r = a (1 e cos 6). And when frictional forces

are introduced, as for instance by making the masses fluid, or by supposing

the solid masses covered by shallow oceans, the instability is one of orbital

motion only and not one of the configurations of the masses. *_When the

secondary is supposed wholly fluid so that k' 2 is variable, the fluidity of the

mass modifies the stage at which instability sets in, but introduces no new

instability of its own. The mechanism by which this instability is set up is

that which has been studied by Darwin under the name of "Tidal Friction"*;

it produces a secular increase or decrease in the mean radius of the orbit.

It is important to notice that the case of MjM
f = oo

,
in which M' is of

infinitesimal mass, is not, from our present point of view identical with the

case of p = oc in the diagram shewn in fig. 7, in which M '

is supposed
to disappear altogether. The former problem is one having one more degree
of freedom than the latter, and this one degree of freedom happens to be

secularly unstable for all finite values of r. In the latter problem, in which

the system is supposed to reduce to a single rotating body, the angular
momentum increases steadily from to oo on passing along the path SBJ in

fig. 7, so that the configurations on this path are all stable so long as the

mass is constrained to remain ellipsoidal.

57. A special problem arises when the rotation of the secondary is not

affected by forces exerted on it by the primary. The primary, which is the

body whose configurations and stability we are specially considering, may
now be a small satellite rotating round a massive planet, which our choice

of terms compels us to call the secondary. The term M'k'z
<*> in equation

(101) may now be replaced by M'k'*w', where a/ is the angular velocity of

the secondary and neither this nor k'2 is subject to variation. The angular
momentum is accordingly

MM'
N\=Mk*a>+ --.o^ + cons................(104).

A similar problem occurs when the secondary is treated as a point so

that A/2 = 0. This leads back to Roche's problem discussed in 51. The

moment of momentum is again given by equation (104) in which the final

constant now vanishes. Let us investigate the stability of systems in which

the moment of momentum is given by equation (104).

58. A case of special interest arises when the primary M is infinitesimal.

The value of M now becomes infinitesimal also, but N\/M remains finite,

being given by
~

*
Sir G. Darwin. Coll. Works, Vol. n.
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The minimum value of M now coincides with the maximum value of o>.

The series of configurations are those represented on the series (p = 0) in

fig. 7, and the minimum value of co occurs at the point R". Thus con-

figurations on the branch SR" are stable, while those beyond R" are

unstable.

The actual value of o> at the point R" is given by

&>
2
/27T,o

= 0-04503*.

The general value of a>
z

/27rp on this series is

_- M'

= *(?-YjL
2-n-p ZjrpR

3 3 \p) R*

so that in the critical configuration we have

=
2-4554^-)

r
'

(105).

Thus a small satellite rotating about a rigid primary of mass enormously

greater than its own cannot be in equilibrium in any configuration whatever

if its distance from the centre of its planet is less than 2*4554 (p'/p)* radii

of the planet. This distance is commonly spoken of as Roche's limit.

The critical value of R may also be put in the form

r (106).

This may be compared with equation (86) which determined the limit of

closest approach under the tidal forces from a secondary mass when the

bodies were not in rotation. The critical value of R just found is about

twelve per cent, greater than that found in the former problem ;
the difference

of course represents the disturbing effect of rotation on the primary.

59. In the more general case in which M is not .infinitesimal, and the

angular momentum is given by the complete equation (104), the maximinn

value for co is not so easily found since k2 will vary with o>. It is however

clear that M will be infinite when co 0, and that co will again increase to a

maximum and again decrease, so that M will pass through a minimum value

which will again divide stable from unstable configurations. Again there

will be a limiting value of R similar to Roche's limit, and there will be no

configurations of equilibrium at all for smaller values of R than this.

* Roche gave 0-046; both here and in equation (105) I quote the more accurate values

deduced from Darwin's calculations. (Coll. Works, in. p. 436.)
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DARWIN'S PROBLEM.

60. In a paper of very great importance, Sir G. Darwin* has discussed

the double-star problem in the case in which both masses are supposed fluid

so that each is subject to distortion from the tidal forces generated by the

other. The discussion falls naturally into two parts the determination of

figures of equilibrium and the determination of the stability or instability of

these figures.

In Roche's problem the secondary was assumed to be a rigid sphere, so

that its potential could be written down in the form of formula (88),

In Darwin's problem, the secondary is a mass of fluid of a shape deter-

mined by the mutual tidal actions between the two bodies, and an expansion
such as the foregoing is no longer permissible. To a first approximation
both bodies may be regarded as ellipsoids. Darwin assumes the bodies to

be distorted ellipsoids and expresses the distortions in terms of ellipsoidal

harmonics. The amount of this distortion is found to be in every case quite

small, so that the supposition that the figures are actually ellipsoidal is

found to give a tolerably accurate solution. In illustration of this the

following figures may be quoted from Darwin's paper f; they express the

proportional increase &a/a in the semi-major axis of the primary which

would be produced by the removal of the ellipsoidal constraint when the

masses are at the closest distance consistent with stability (cf. 64 below).

MJM'= 0-4 0-7 1*0

Sa/a in direction towards secondary T
1

T -^ $

Ba/a in direction away from secondary % -^ -$.

The amount of these corrections is shewn by the dotted lines in figures

11, 12 and 13 (p. 64 below).

For configurations in which the masses are further apart than this

minimum distance the error in the ellipsoidal solution will of course be

less, so that the assumption that the figures are ellipsoidal is seen to give a

very fair approximation.

* Phil. Trans. 206 A (1906), p. 161, or Coll. Works, in. p. 436. The actual paper occupies

88 pages in each place, so that it will be understood that only the merest outline of it is given

here. And, to avoid the complicated methods of ellipsoidal harmonic analysis employed by

Darwin, I have substituted a simpler discussion of the fundamental equations, deriving them

in a form analogous to the equations of Roche already discussed.

t I.e. p. 510.
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61. Our first task must be to evaluate the potential from the secondary,

now assumed to be an ellipsoid of mass M' and semi-axes a, 6', c
'

.

Let us momentarily take the centre of the secondary for origin, then the

potential of the ellipsoid at any external point x, y ',
z will be

where the lower limit X' is the root of

/2 /i/2 ~'-2

^x+^x + c^Vx-^ ............ <109 >

and A' stands for

Differentiating, and bearing in mind that the lower limit X' is a function

of x, y' and z
',
we obtain

d\

L y

,a
/2 + X7

and similar equations give dV/dy', d
2

V/dy'
2 etc.

These equations are general. At a point on the axis of #/, we put y'
= z' 0,

and the value of X' is, from equation (109), X' = x'2 a'-. The equations

become

.(110).

To obtain the differential coefficients of the potential V at the centre of

the primary, we put x = R, and of course X' = R2 a'2
. If F denotes the

value of the potential at this point, and dV/dx etc. denote the value of

differential coefficients at this point, the general value of the potential of

the secondary, referred to the centre of the primary as origin will be

In this expression the terms in xy, yz, zx have been omitted because

they vanish on account of the symmetry of figure of the ellipsoid. Terms of

degrees three and higher have also been omitted because they would destroy

the ellipsoidal shape of the primary. The approximation to which we are

now working is one in which the primary is supposed to remain of ellipsoidal

shape, so that all tide-generating terms of degrees three and higher must
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be neglected. Or we may, if we please, regard the problem as one in which

the primary is constrained to remain ellipsoidal, in which case the forces

of constraint must be just sufficient to neutralise the omitted terms in

formula (112).

The coefficients in formula (112) are precisely those which have been

already evaluated in equations (110) and (111). For we have

dv dv dv dv
^ = -^f etc., so that -^

= ^ =
0,

ox ox oy oz

and similarly d*V/da? = 3 2

F/d#'
2

.

62. Let f, f
'

denote for the moment the distances of the centres of the

primary and secondary from the axis of rotation. Following our previous

procedure, the primary must be in equilibrium under a statical field of force

of potential

or 0,2 (a? + f) m*%x 4. a constant .......... ........(113)

and the condition for equilibrium, as in 51, is that

(114)

over the boundary. The term in x on the right of this equation is removed if

(115).

The similar equation for the secondary is

(116).

Since %+%' = R, it is clear that equations (115) and (116) suffice to

determine f, f
'

and co
2

. The ratio f/f
'

is obtained at once by division of

corresponding sides of the two equations.

These equations, as has been seen, refer to masses which are constrained

to remain ellipsoidal by the supposed application of small external forces.

Had the bodies been rotating freely in space, the ratio f/f would have been

given directly by the condition that the centre of gravity of the two masses

must be on the axis of rotation, namely

M' M~M+M f

The two values of f/(' obtained in these two different ways are not found

to be identical, their difference giving a measure of the error introduced in

supposing the masses to remain ellipsoidal. If we put

r- r ^
= r

' ' '
"

_
rt
, (a

2 + X) A
'

^_ a, (a'
2 + X) A'
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then equation (117) gives %/j;'
= M'/M, whereas equations (115) and (116)

give

i;

;

"ff L
'

f'~ M
X
/'

The difference between the two values of f/f
'

consists of a multiplying

factor I'/J.

Now / can be put in the form

/=f -, (119)
JB u? [u

-
(a

2 - b2

)Y [u
-

(a
2 -

.c
2

)]*

while /' is obtained on replacing a, b, c by a, b', c'. Since R2
is large in

comparison with a2 b2 and a2 c
2
,
it is clear that the two integrals do not

differ by much from one another, both approximating to

*

du 2

The integrals agree more closely with one another than with this limiting

integral, and when the ellipsoids are nearly equal, / and /' become very

nearly equal to each other while differing considerably from 2/'3R
3

. Let us

suppose that

+ ?) ...................(120)

then it is clear that / and /' may, without serious error, be taken separately

equal to the quantity on the right*.

Using this approximation for /, equation (115) becomes

*f-3P<*0
while equation (116) assumes the similar form

These equations are now consistent with equation (117) and by addition

we readily find

'l + t) ........................ (121).

This determines a>, and is now seen to measure the proportional increase

in o>
2

produced by the ellipsoidal shape of the bodies.

To balance centrifugal force', the gravitational attraction between the two

bodies must be a>
2RMM'/(M + M') or, by equation (121)

*
It will be readily verified that our is identical with the f used by Darwin.
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so that f also measures the proportional increase in the gravitational attraction

between the two bodies produced by their ellipsoidal forms.

63. The terms in f have now been made to disappear from equation

(114) and the condition for equilibrium is seen to be that

over the boundary.

Comparing this with equation (90), it appears that the second degree
terms which were used in Roche's problem, namely

^_ (^
_ if _ 0) or ^ (& _ 1^2

must now be replaced by

in which the lower limit V is put equal to R2 a'2
.

Following the former procedure ( 52) we find that equation (122) may
be replaced by the three separate equations

M' fF d\ 2\ a)
2

_^^ "U Uv K2
4- X) A

7
~
AV

~
27rpa6c

~
a2

'

Jf' f
00

rfX o)
2

_6~
M } x>

(6
/2 + X)A' Zirpabc

~
62

'

e

*
......... (

*

26) -

These are the equations of equilibrium for the primary, and there is

a similar set for the secondary. On solving the set of six equations we

obtain a solution of the problem. There is unfortunately no method of

solving these equations exactly except by laborious numerical computations.
But they are of the same general form as equations (91) to (93) already
discussed in connection with Roche's problem, whence it is readily seen that

the general arrangement of figures of equilibrium must be the same as that

already found in 53 for Roche's problem.

Stability

64. The problem of stability demands a more detailed discussion.

The angular momentum of the system is still given by equation (100),

namely

(127),
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but the value of R is now given in terms of &> by

R = (M+M')*(l + tfe>~* ..................... (128),

so that M, expressed in terms of &> alone, becomes

M = (Mk* + M'k'*)

(M+M'Y
This differs from the former value of M obtained in 55 only through

the occurrence of the factor (1 + )*, and as this is never far from unity, it is

clear that ;the general discussion of stability given in 56 and 57 will remain

valid, at least in its general features. Always, except in the special case of

p = oo
,
there is a configuration in which M is minimum

; starting out of

this are two series of configurations along each of which M increases in-

definitely up to M = oo
,
these end configurations each being configurations

of zero rotation (ro
=

0). One of these series ends in two spherical masses

rotating infinitely slowly round one another at an infinite distance, and this

series is stable throughout. At the end of the other series the primary

is an infinitely elongated Jacobian ellipsoid, and this series is unstable

throughout.

Instead of eliminating R from equations (127) and (128), and so obtain-

ing M as a function of o>, we might equally well have eliminated co from

these equations and obtained M as a function of R. The equation obtained

in this way is

M = \M& + M'k'* + R*} (1 + ?)
4

(M + M'$ R
'

*

When M is not very different from M'
,
the value of M reduces to its last

term when R is large. Even for configurations in which the ellipsoids are

almost in contact, it is readily seen that by far the greater part of the value

of M comes fro'in this last term, so that M varies approximately as &. It

follows that the configuration for which M is a minimum nearly coincides

with that for which R is a minimum, this latter being the configuration of

closest approach of the centres of the ellipsoids.

Let R be the distance of closest approach. Then for any value R + BR
which is just greater than R there will be two configurations ;

in one the

ellipsoids are more elongated than in the configuration of closest approach,

while in the other they are less elongated. In the former configuration,

then, kz
,
k* and f are all greater than in the latter, so that, as the values of

R are the same in both configurations, it follows that the more elongated

configuration has the larger value of M.

Now the diagram of configurations, drawn with M as vertical coordinate,

lies as in figure 8. Here is the configuration of minimum angular mo-

mentum, the less elongated configurations OP are stable, while the more'
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CD
2

Fig. 8.

elongated configurations OP' are unstable. We have seen that at the

configuration of closest approach R, increasing elongation goes with increas-

ing angular momentum
;

it follows

that R is on the unstable branch OP' P p

of the series.

Thus the configuration of closest

approach is always unstable
;

it is

fairly near to when M and M' are

nearly equal, but is far removed from

in other cases. Passing to the

limit of configurations of greater

elongation, it is easily shewn that

in the extreme configuration P' in

which M = oo
,

<o = 0, the two bodies

must overlap ;
thus this configuration, although satisfying the mathematical

equations, is physically impossible. At some stage between R and P', there

must be a configuration (7, in which the bodies are just in contact, but without

overlapping ;
this configuration, which we may call the contact configuration,

is the last one which is physically possible. It is clear that all contact con-

figurations are necessarily unstable.

Darwin calculates in detail the configurations C, R and in the case of

p = 1 or M = M'. In the case of configuration the calculation is not very

accurate, for his series do not give good approximations when the masses

are in or close to actual contact.

For the configuration of limiting stability, Darwin finds in this case

a = a
7 = 0-897, 6 = 6' = 0'771, c = c = 0*723, r = 2'638,

the unit being the radius of the sphere formed by rolling the two masses

into one, and the cross-section is shewn in fig. 9, which is reproduced from

Darwin's Collected Works*.

c 6=771

Fig. 9.

* Vol. in. p. 513. I am indebted to the Syndics of the Cambridge University Press for per-

mission to reproduce this figure and also figures 10-14 from the original blocks.
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For the configuration R of closest approach, Darwin gives the value of r

as 2'343, but he does not compute the axes.

For the contact configuration C, Darwin finds*

r = 2-372, a = a' = 1-186.

In these solutions the figures are assumed to be ellipsoidal ;
the harmonic

deformations which have to be superposed will of course bring the vertices

closer, so that actual contact will occur before the vertices of the ellipsoids

touch. Darwin gives the following figure, which he describes as
"
highly

conjectural
"
for such a case.

Fig. 10.

Darwin calculates the value of R in the configurations of limiting stability

and of closest approach (i.e. the minimum possible value of .R) in some other

cases
;
from his results we can compile the following table :

p= 1, 0-8, 0-5, 0-4, 0.

R (limiting stability)
= 2'638, 2*574, 2'59, oc .

# (closest approach)
= 2'343, 2'36, 2'457.

Partial Stability

65. The entry p = 0, R = oo means, as has already been noticed, that

there cannot be secular stability for an infinitesimal planet until it has

been driven off to infinity. The agency by which this driving off is ac-

complished is, of course, tidal friction; the satellite M raises tides in the

primary M'
;
the dissipation of energy in the tides provides the dissipation

necessary for secular stability to have any meaning, and the tidal forces

result in an acceleration of the small body at the expense of the energy of

rotation of the large, this process continuing until the bodies are infinitely
far apart.

*
Approximately : I have extrapolated to get initial contact in Darwin's table on p. 514 of

Coll. Works. Vol. in. Stress should not be laid on exact values, as Darwin specially draws
attention to the bad convergence of the series used in this and similar calculations.



64, 65] The Double-Star Problem 63

On the other hand, if the big body is regarded as a point or rigid sphere,

tidal friction cannot operate, and the problem now becomes identical with

Roche's problem already discussed. The value of R in limiting stability

when p = is no longer oo
,
but 2*455 r. Thus tidal friction in the primary

can increase the value of R from this value to infinity.

Darwin describes a system as
"
partially stable

" when it is stable except

for the tidal friction arising from the tides in the primary. And he remarks

that, inasmuch as tidal friction is a slowly acting cause of instability, partial

stability of this kind is from the point of view of cosmical evolution of even

greater interest than the full secular stability of the system.

Again, a slightly different problem occurs when the big body is supposed

to be an ellipsoid petrified in its configuration of equilibrium, so that the

masses are both in equilibrium but tidal friction cannot act on the primary.

Darwin believes .that the limit of partial stability of a series of configura-

tions, such as that represented in fig. 8, can be found by discovering the

value at which

W = (Mi
.

' M + M'-

is a minimum, this value M' representing all that part of the moment of

momentum which is liable to variation when tides cannot be raised in M'.

A slight modification of the argument of 64 will shew that the configura-

tion of closest approach cannot be even "partially stable." It. accordingly

appears that the configuration of limiting
"
partial stability

"
must lie at a

point intermediate between and R in fig. 8. Darwin calculates some

configurations of
"
partial stability," and gives the following table of values

for R, the closest approach consistent with partial stability, and for the axes

of the primary and secondary when in this critical position, a being the mean

radius of the combined mass :
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it is approximately true that a satellite cannot rotate with partial secular

stability round a planet when within a distance less than about 2J radii of

the combined mass, the densities being the same.

The critical figures for ^>
= 0'4, 0*7 and 1*0 are shewn in figures 11, 12, 13

which are taken, by permission of the Syndics of the Press, from Sir G. Darwin's

Collected Works*.

=762

2485

Fig. 11 (p = 0-4).

fi=815

< 0=815

Fig. 12 (p =

x=762

Fig. 13 (p=l-Q).

Vol. in. pp. 508, 509.



CHAPTER IV

THE GRAVITATIONAL POTENTIAL OF A
DISTORTED ELLIPSOID

66. The last chapter contained a discussion of the ellipsoidal configurations

which can occur in the various problems we have had under consideration, and

it was found possible to investigate their stability or instability subject to their

remaining ellipsoidal. A configuration which is unstable when sirbject to an

ellipsoidal constraint will of course remain unstable when this constraint is

removed, but a configuration which is stable before the constraint is removed

will not necessarily remain stable. We can only discuss whether such a

configuration is stable or not when we have a complete knowledge of all con-

figurations of equilibrium adjacent to the ellipsoidal configurations ;
we then

know the positions of the various points of bifurcation on the ellipsoidal series,

and the stability of this series is immediately determined.

A first condition for being able to discover configurations of equilibrium
of any type is that we shall be able to write down the potential of the mass

when in these configurations. Thus it appears that before being able to dis-

cuss in a general way the configurations of equilibrium adjacent to ellipsoidal

configurations, we must be able to write down the potential of a distorted

ellipsoid.

The method of ellipsoidal harmonics at once suggests itself. It has been

used by Poincare*,
!

Darwinf, and SchwarzschildJ to determine configurations
of equilibrium adjacent to the equilibrium configurations. In this way the

various points of bifurcation on the ellipsoidal series we have had under dis-

cussion are readily determined.

After determining the position of points of bifurcation on the ellipsoidal

series, the next problem is that of determining whether the branch series

through these points are initially stable or unstable, and this, as we have seen,

demands a knowledge of the direction of curvature of these branch series at

the points of bifurcation. We can only discuss the curvature of this series

when the configurations on it are known as far as the second order terms of

a parameter e, which measures the displacement from the original ellipsoidal

configuration. Poincare has devised a method of using ellipsoidal harmonics

* Acta Math. 7, p. 259, and Phil. Trans. 198 A, p. 333.

t Coll. Works, Vol. in. papers 10, 11, 12 and 13.

J Neue Annalen d. Sternwarte Miinchen, 3 (1897), p. 275, or Inaug. Dissert. Miinchen (1896).

Phil. Trans. 198 A, p. 333.

J. C. 5
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so as to give the potential of a distorted ellipsoid as far as second order terms,

but on attempting to apply his method it is found that the second order terms

in themselves are inadequate to determine the stability or instability of the

branch series
;
a knowledge of third order terms is demanded.

As Poincare's method does not seem to admit of extension, or at least of

easy extension, to the calculation of third order terms, it is found necessary

to develop some other method of writing down the third order terms required.

Such a method is now given. In the present chapter we confine ourselves

entirely to this problem in potential theory ;
the determination of the con-

figurations of equilibrium being reserved for Chapter V.

GENERAL THEORY

67. In our discussion of ellipsoidal configurations of equilibrium, the

ellipsoid was supposed to be the surface X = in the family of surfaces

If we write

......

then the potential at the point x, y, z of the solid ellipsoid of density p is, as

in equations (54) and (55), given by

F = (\)/dX ..........................(132),

<- [V(X)/<fXJo

where the lower limit X in equation (132) is the positive root of the equation

/=o.

Suppose the family of surfaces determined by equation (130) to be dis-

torted so that their equation becomes F^,F being a function of #, y, z and

X, and let the distortion be such that the surface X = oo remains at infinity.

We require to find the potential of a homogeneous mass bounded by the

surface X = in the distorted family of surfaces. Let us examine under

what conditions it is possible for the external and internal potentials to be

given by*
f

(134),

,..(135),
I.

* The forms of these equations are of course suggested by analogy with equations (132) and

(133). For a direct derivation of equations (134) and (135) see Phil. Trans. 215 A, p. 29.
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the lower limit in equation (134) now being the positive root of the equation

F=Q .................................(136).

By differentiation of equation (134) we obtain

x x ^ x

which, in virtue of equation (136), is equivalent to

while differentiation of equation (135) gives directly

dX ................. ...(138).

At the boundary, X =
;
whence it is clear that F = F; at the boundary

and that all the differential coefficients of F are equal to those of F;. At

infinity X = oo
; whence it appears from equation (134) that F = at infinity.

It accordingly appears that equations (134) and (135) will give the true values

of the potentials provided
V2 F = ............................(139),

............................(140).

68. By further differentiation of equation (137), we have

so that

V^
=J%(X)VWX-^(X)2g

T

g ...............(141),

while, for the simpler function F;, we have

d\ .................... (142).

Now suppose that F is such as to satisfy at all points of space the equation

Suppose further that F is such that

at infinity i.e. when X = oo .

Then at infinity equation (143) reduces to

52
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in which the left-hand member is now a function of x, y and z only. Suppose
F to consist of a series of integral algebraic terms in #, y, z, then the left-hand

member will consist of a series of such terms, and if this expression plus 4?rp

vanishes at infinity, it must also vanish at all points of space.

Thus if F is such that equation (143) is satisfied at every point of space,

while equation (144) is satisfied at infinity, then equation (145) must also be

satisfied at every point of space. Subtracting corresponding sides of these

equations, we obtain as a third equation, which must be satisfied at every point
of space,

= ...............(146).

By comparison with equations (141) and (142), the last two equations are

seen to be equivalent to

V 2Vi
= -

Hence it appears that ifF is a series of algebraic powers satisfying equation

(143), and is such that equation (144) is satisfied at infinity, then the potentials

of the homogeneous solid bounded by the surface A,=0 will be given by equations

(134) and (135).

Before leaving this result, we may notice that the limit of integration \
is connected with x

t y, z, the point at which the potential is evaluated, by the

relation

F=0 ...... .......................... (147),

which is true at every point of space. On differentiation we obtain

=
9X dx

which is also true at every point of space. Thus equation (143) which must

be satisfied by F may be written in the alternative form

fJo ^ (X) V*Fd\ - V (A.) -"-4ir/> (148).

69. The various possible solutions of this equation, which are such that

the second term vanishes at infinity, determine the boundaries of solids whose

potentials can be written down in the form of equations (134) and (135). One
such solid is already known, namely the ellipsoid. For this F=f, so that

F=fmust be a solution of equation (148) and we must have

............... (149).
Of



68- TO] Solution of Equations 69

This equation ought to be an identity. That it is so is easily seen with

the help of the relation

Now assume that a more general solution of equation (148) is

in which
<f>

is any function of x, y, z and X. The equation of the family of

surfaces X = cons, is now supposed to be

Since
(j)

is so far supposed to be perfectly general, the solution we have

under discussion is in reality perfectly general, although written down in a

form which is specially applicable to surfaces obtained by distortion from the

ellipsoid/= 0.

Equation (149) is true in any case. If/+ < is a solution of equation (148)
we must also have

f* 8# w r/

^ (X) V 2

(/+</>)- i/r (X) 4- L = -^Trp (152).
JO V , /. . , N

On subtracting corresponding sides of equations (149) and (152), and sim-

plifying with the help of relation (150), we. obtain

SOLUTION OF EQUATIONS

70. This equation does not admit of direct solution, but may be effectively

broken up by assuming a solution

(j)
= u+fv ............................'..(154)

in which u and v are functions of x, y, z and X. On substituting this value

for
(j>
and simplifying, equation (153) reduces to

and this will be satisfied if we can satisfy separately the two equations

(155),

^ }
= (156).
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71. Let us consider equation (155) first. On substituting for ^ (X), this

equation reduces to

We have, however,

A.0

so that the equation becomes

n A /^ x dv dv\) d\ /4iA
V 2w+/V 2

?; + 4(S T5 - + ^-H = - -r- ...... (157).
\ Adx 3X/J A \AA=O

This must be satisfied for all values of X, and therefore, in particular, for

the value X = 0. Hence we must have

v = when X = ........................ (158).

It will be remembered that the boundary of the distorted ellipsoid is

supposed to be

and equation (158) shews that < A=0 reduces to MA,=O- Thus different values

of MA=0 determine different boundaries, and if wx=0 can be made perfectly

general we can. solve the potential problem for the most general boundary

possible.

Since v must vanish when X = 0, equation (157) becomes

= ............(160)

in which X7

is- momentarily used to denote the value of X given by the

equationf+ (f>
= 0.

The most general way of satisfying this equation is to make

x dv

where <r may be any function of x, y, z and X which vanishes when X = X'

and also when X = 0.

Regarding this as an equation for v, let us try a solution

v = w +fw' +f2w" + ... +f w + (162).
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We find, on differentiating and simplifying,

71

T V ^(J "-j~ *x ( Yl

so that, on substituting the assumed value (162) for v,

dv00 0V OV\
2 T ^- + ,-^ S^ 3X/

-f . . .

f
-, x dw dw

4 S- + r-

3X-

) ...............(163).

Let us now assume w, w^w" ... to be successively determined by equations

of the form

(166),

where 6 is as yet undetermined. With the help of these assumed relations,

equation (163) becomes

---) ..-(167).

A

Clearly equation (161) will be satisfied if the quantity in square brackets

on the right of equation (167) satisfies the conditions which must be satisfied

by <r in equation (161). It must therefore be made to vanish when X =
and when X = X'.

To satisfy this condition, let us now choose for 6 the value

...] ...(168),

then the expression in square brackets on the right of equation (167)

reduces to
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and this vanishes when X = X' through the factor

/+.+*. ...(169).
1 +v 1+ v

It must also vanish when X = 0, and v given by equation (162) must also

vanish when X = 0. These conditions are most easily satisfied by making

w = w =w"=... = w (n) = ... = 0, when X = ......... (170).

Thus equations (164) (166) will contain a complete solution of the

original equation if w, w', etc. are all chosen so as to vanish when X = 0,

while 6 is given by equation (168).

72. We now turn to equation (156). It is convenient to transform to

new variables f , TJ, f, X connected with the old variables x, y, z, X by the

relations

Differentiation with respect to the new variable X is given by

9 9 a* a a *

Expressed in terms of these new coordinates, equation (156) becomes

du

In this we may put/+ </>
= 0, or, from equation (169),

/-
U

T+i+
and the equation reduces to

Theoretically, this equation determines u/(l+v), so that a solution of

this equation combined with the solution for v obtained in 71 will yield a

complete solution of the problem. For our present purpose it is convenient

to examine solutions in powers of a parameter e.

SOLUTION IN POWERS OF A PARAMETER

73. Equation (174) may readily be solved in powers of a parameter e

on assuming a solution of the form

u

^
- =

effi + e-g* + etg* + (17o).1 + v
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Inserting this value into equation (174), and equating coefficients of

successive powers of e, we obtain

/%
ax"

8^_ iv etc- 22 *

The first equation shews that gl must be a function of f, 77, f only, say P.

Write Pf for 8P/3 etc. and put

A = \-letc................ ............(176),
a2 .4

so that = etc.
8X A*

Then the equation giving g2 becomes

8#2_ !V 8A p i2

ax~
~

4* ax^'

so that g^
here Q is a function of f, 77, f only. Similarly we findw

where R is another function of f, 77, f only, and so on.

This determines the value of ^ . To find u, v separately, we return

to equations (164) (166) of p. 71.

Assume for u, v expansions of the form

u = eul + e?u2 + esus + ........................... (179),

v = evl + e*v2 + e?v3 + ........................... (180).

The coefficients in these expansions are of course not independent of

those in the expansion (175) already assumed for u/(l +v). The relations

between them are readily found to be

................ ....(182),

1) etc......................... (183).
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Let us now assume for w, w', w" ... expansions of the form

w = ew + e*w2 + e?w3 -f . . .
,

w' = ewi + e*Wz + e3ws

' + . . . .

Then the value of 6 given by equation (168) becomes

+'2M" + 3/X'" + . . .)

Equating coefficients of powers of e in equations (164) (166) we now

obtain

STir-' + lr) =-^X (184),A dx d\J

I & +S =-V^-4A^
[f

and similar equations.

74. Let us now introduce an operator D denned by

On differentiation with respect to X, we find

W _ I
(P_

Id2 Id2

so that 3I)/3X is simply V2 transformed into f, rj,
coordinates.

Transformed into f, 77, ? coordinates, equations (184) etc. become (cf.

equation (172))

4^! =-
l~ Ul (189),

C7A< (7A,

We have already found that u
1
= P

)
a function of f, 77, f on

ty>
so that

equation (189) has the integral
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no constant of integration being added since wl must vanish when X = 0.

Integrating equations (190), (191)... in turn, we find

w (n) _ _\_ 1_ nn+i p
{(n + l)\}*^

L

If we suppose </> expanded in powers of the parameter e in the form

< =
efa + e

2

(/>2 + es
(f>3
+ ...

we have

= P -
(i/) P + (i/)

2D2P -
2 (i/)

3^ +

75. To evaluate terms in e2
,
we proceed to equations (186) and (187).

For brevity, we shall limit our discussion to that particular type of distortion

which ultimately proves to be of importance for the problem immediately in

hand. For this, as will appear in the next chapter, u^ is of degree 3 in

f, rj, f. Equations (184) and (185) accordingly .
shew that wl must be of

degree unity, and w^ must vanish. Similarly, u2 will be found to be of

degree 4, so that w2 is of degree 2, w2

'

of degree zero and w" = 0. Again us

will be of degree 5, w3 of degree 3, ws

'

of degree unity, w3

" =
0, and so on.

The value of v1 is accordingly

f1
= -iDP = -i(AP{f + BP,, + CPff) ............(193).

Proceeding to the determination of second order terms, we have from

equations (182) and (177),

= - i (APf + BP,* + CP^
2
) + Q - iP (AP + HP,,, + CP)

= -pP2 + Q ......................................................... (194).

The value of w2 can next be found from equation (186). The right-hand
member reduces to V 2w 2 ,

and the equation, expressed in f, 77, f coordinates,

becomes

so that w2
= -^D

2P2 - \DQ ........................(195),

while similarly equation (136) leads to
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Thus collecting results, we find for the second order terms,

. +A = Q - *DP*

+f\

Proceeding in the same way, we find for the third order terms*,

Us +/^3 = U 3 +f(ws

~
t #2

(PQ) +

and this completes the solution as far as the third order of small quantities.

76. The solution which has been obtained is found, on collecting terms

to be

$ = e(ul +/^) + e> (u.2 +fv2) + e3
(u3 +fus)

+ # [Q
-

+ < [R - IDPQ + Tfa&P* - \f f

Putting X = 0, the value of < at the boundary is seen to be

<
= eP +^ + e3 ........................ (198),

and since P
, Q ,

J^ are entirely at our disposal, this value of
c/>

is capable of

representing a general distortion of the fundamental ellipsoid as far as the

third order of small quantities.

This same distortion might of course have been supposed to be merely

<o = *Po ................................. (199),

it being at once possible to pass to the general form (198) by replacing P
by P + eQQ + e2R . We have introduced Q and -R separately on account of

the limitation which has been imposed that P shall not be of degree above

the third.

77. When. this limitation is removed, equation (199) may be regarded

as representing the most general distortion of any kind which can be ex-

perienced by the fundamental ellipsoid. By analogy with equation (197)

the corresponding value of < is seen to be

e P - \fDP +

-
4<c [DP* -

+ TJ5
' [&P> - 4/Z>

3P3 + d^/'-D'P
3 - ...J etc........... : .(200).

* For details of the calculation, see Phil. Trans. 217 A (1916), p. 7.
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I have not succeeded in obtaining a general direct proof of this formula,

but it is easy to verify it a posteriori for all the cases in which it is used in

the present book.

It may be noticed that if

P-F( X y zr<
'la*' F2 '

then the value of P is

It appears that a term of degree n in P gives rise to

first order terms of degrees n, n 2, n 4, . . .
,

second 2n - 2, 2n - 4, 2n - 6, . . .
,

third 3n-4,3w-6, 3tt-8,...

and so on.



CHAPTER V

PEAR-SHAPED CONFIGURATIONS OF EQUILIBRIUM

78. In Chapter III we discovered the existence of a number of series

of ellipsoidal configurations of equilibrium. We were able to examine the

stability of these configurations subject to the restriction that they were con-

strained to remain ellipsoidal. When it was possible for them to be dis-

torted from the ellipsoidal shape, it was not found feasible to examine their

general stability because we had no means of writing down the gravitational

potential of a distorted ellipsoid.

The investigation of Chapter IV has now provided us with a formula for

the potential of a distorted ellipsoid, and we can proceed to search for con-

figurations of equilibrium which are of the shape of distorted ellipsoids. In

this way we discover the points of bifurcation on the ellipsoidal series already

discussed, and so obtain a complete knowledge of the stability of these

series.

Let us take the equation of the general distorted ellipsoid to be

.
+

8i
+$- 1 + P -

(201).

As far as first powers of e, the internal potential of the solid whose boundary
is given by equation (201) is

Vi = -*paJbcr^d\ (202),
Jo A

where

(203),

and the potential at the boundary, Vb ,
is given by the same formula.

GENERAL THEORY.

79. Let us apply this to the general double-star problem discussed in

50. So long as we are concerned only with the search for configurations of

equilibrium, this problem, as we have seen ( 52), includes the rotational and

tidal problems as special cases, although the problems become separate when

questions of stability are discussed.

The condition that the surface (201) shall be a figure of equilibrium for

the primary mass in the double-star problem is (cf. 51) that

iyS. ||2
'2 \

f) = -^abce(-
+ ^ + ^-l + ePa

]

(204)
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at all points of the boundary. This equation must be satisfied when e = 0,

and for all values of e for which e* may be neglected. Equating coefficients,

we obtain the necessary and sufficient conditions of equilibrium,

JA- "A- -, "*-i '=-,. -(205),
irpabc %7rpabc a2

d\ =0P ............... (208).
o A

Equations (205) to (207) are naturally the same as equations (91) to

(93) of 52; it follows that 6 is the same as before, and that a, b, c as

functions of
/u,
and &>

2 are also the same as before.

Since the value of Vi given by equation (202) must satisfy V 2Fi
- =

4?r/),

we at once have

o A abc

giving, on differentiation with respect to e,

V'f '&,-<),
Jo A

so that, in virtue of equation (208), V2P = 0, and P is a spherical harmonic.

80. Not every spherical harmonic will give a possible value for P .

For, from the general value of < x as given in equation (203), it is clear

that a term in P of degree n in x, y, z will give rise to terms of degrees

n, n 2, n 4, ... in $lt and so to terms of similar degrees on the left-hand

of equation (208). From the form of equations (208) and (203) it is readily
seen that the most general form which will be possible for P will be a

spherical harmonic containing terms of degrees n, n 2, n 4, . . .
, these terms

only differing from one another by even powers of #2
, /*, z*. There will be as

many values for P as there are independent spherical harmonics, for when
the terms of degree n are given, those of degrees n 2, n 4 can always be

determined. Thus the values of P correspond exactly to the different

spherical harmonics, although not identical with them.

81. This result can be obtained rather more simply by direct harmonic-

analysis. Poincare* has given the requisite analysis for the special rotational

problem ;
and inasmuch as the form of equations (203) and (208) have nothing

to do with special values of o>
2 and

/j,,
it is equally true for the more general

problem now in hand.
* Acta Math. 1 (1885), p. 259.
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The condition that equation (208) shall be satisfied for any value of P is

exactly the same as that Poincare's
"
coefficient of stability

"
(cf. 23) shall

vanish, and Poincare gives, in terms of harmonic analysis, a very 'full account

of the conditions under which this can occur*. The discussion is too long to

insert here, and too intricate to summarise
;
the principal results obtained

are the following :

(i) The only type of harmonic for which equation (208) can be satisfied

(or Poincare's
"
coefficient of stability

"
vanish) is the zonal type.

(ii) As the ellipsoid lengthens, the first harmonic for which equation

(208) can be satisfied is the third zonal harmonic, and beyond this point the

equation can be satisfied in turn for zonal harmonics of all orders from

4 to x.

Poincare's discussion, being concerned only with the rotational problem,

deals only with the Jacobian series of ellipsoids, but for the reasons stated

above, is equally applicable to all our ellipsoidal configurations.

It follows that on each of the series represented in fig. 7 (p. 50), as we

proceed from S to (JT)X ,
we must pass an infinite number of points of

bifurcation. Each corresponds to some value of P in equation (201), and

the different values of P are all zonal harmonics
;
the first point of bifurca-

tion is that for which P is of the third degree.

82. The necessity of this result can easily be" seen from physical con-

siderations, although it would probably not be easy to construct a rigorous

proof.

Let W denote the total potential energy of the fluid mass under its own

gravitational forces and the statical field of force (fictitious or otherwise)

arising from rotation and tidal action. When a displacement occurs such

that the equation of the boundary is altered by the addition of the term eP0)

as in equation (201), let the new potential energy be W + &W.

Since the original configuration was one of equilibrium, SW will neces-

sarily be of the second order of small quantities, arid the original equilibrium
will have been unstable if 8W can be made negative for any value of I\.

If m is the mass of any particle of the fluid, and V its potential in the

original configuration, the value of W can be put in the form

Now let a displacement occur such that the typical particle of mass m is

moved to a position at which the potential in the old configuration was V,

*
L.c., 10 and 12. See also Schwarzschild, Inaug. Dissert. Mi'uichen (1896), and Darwin,

Coll. Works, m, pp. 302, 307.
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and in the new configuration is V" . The new potential energy will be

jSwF", so that we may write

The first term jSw (V V) represents the work which would-be^ done in

effecting the displacement if the equipotentials remained fixed in space. The

boundary originally was an equipotential, so that the work done will be that

of moving certain matter from positions inside this equipotential to new

positions outside. It is therefore necessarily positive, and the ellipsoidal

configuration will be unstable if a displacement can be found such that

^m(V V") is negative and numerically greater than the first term.

In the displacement just considered let 8n denote an average normal

depth of matter which may be supposed excavated from one part of the surface

and piled up on other parts, so that p&n is the average mass removed per unit

area of surface. The mean change of potential V V" for such matter will

have an average value comparable with (dV/dn)Sn, so that the work done

will be of the order of magnitude of

IS (210).

The integral is only taken over those parts of the surface where the dis-

placement consists of a depression ;
this may be supposed to be half of the

entire surface. Remembering that

dn

when the integral is taken over the whole surface we readily find that ex-

pression (210) is of the order of magnitude of

-27rpM(Sn)* (211).

This is the negative value of the first term on the right of equation (209).

We now proceed to consider the value of the second term.

Values of P which are of degrees 0, 1, 2 in x, y, z result in displacements
which give rise only to new ellipsoids, so that we need only concern ourselves

with values of P which are of degrees 3 and higher. Displacements in which

P is of degree higher than 2 produce a furrow or system of furrows in the

original ellipsoid. When there are a great number of furrows, either the-

ellipsoid must be very long or the furrows very close together. In the latter

case the second term on the right of equation (209) becomes very small,

through the gravitational effects of successive elevations and depressions

neutralising one another. No corresponding effect occurs in the first term

on the right of equation (209), of which the value is represented by expression

(211). Hence it is seen that the ellipsoid can only become unstable through
a many-furrowed distortion when it is itself very long. It is easily seen that

the more furrows there are in the distortion the longer the ellipsoid has to

j.c. 6
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be before instability can set in through this distortion. It follows that the

ellipsoid will first become unstable through a distortion in which the number

of furrows is the fewest possible, namely one, and this is the third zonal har-

monic distortion.--

83. The value of P at the first point of bifurcation on every ellipsoidal

series must accordingly be of the form

and the corresponding value of P is

*2 \

.(213).

We obtain at once from equation (203),

x

so that we may write

at) .(215).

Equation (208) can now be satisfied, and on equating coefficients we

obtain

0,0=0

.(216).

If we introduce new functions of a, b, c defined by

- r xdx
= r ^dx

.then equations (216) are found to assume the form

ZCL

(217),

*
262 2c2 l

"
a

~
9^2

c ~
9A"2

Ci + 9^ (3 2 + C,)
-

9/-2 i A A 2 '

9/}2 ;~(i j o i_A^n L,U j Q
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Mutiplying equations (218) to (220) by 3, 1, 1 and adding, we find

which is of course merely the condition that P shall be harmonic.

The elimination of a/a
2
, /3/6

2 and 7/c
2 from these same three equations

gives

+ _ -

+ _
CL C

9/3

Y(Cl c2 + dCs + 3c2 c3)
/

9/3 /2$\ 2

-I [ci (& + c
2

) + c2 (3a
2 + c

2

) + c3 (3a
2 + 62

)] + ( -^ )

=
. . .(223),

QJ \ a /

in which we may insert the value of 6 obtained by eliminating p and o>
2 from

equations (205) to (207), namely
o \ /

r

A -J,, + aJc) (224).

Equation (223) now becomes purely an equation in a, b and c
;

it is the

equation which determines the first point of bifurcation on any linear series

of ellipsoidal configurations.

84. Let us limit our discussion to ellipsoids such that abc = r 3
. On re-

placing c by r */ab, equation (223) becomes an equation in a, b only, and so

may be represented by a curve in a diagram such as that in fig. 7 (p. 50).

We may examine in particular the points in which this curve will meet the

spheroidal series of tidal figures and the Jacobian series of rotational figures,

or, more directly, we may search for the first points of bifurcation on these

series.

Tidal Figures

85. On the tidal series of spheroids, b = c, so that c2 = C3 ,
and for a zonal

harmonic distortion we have also @ = 7. Thus equations (219) and (220)
become identical, each reducing to

_3a c
3

c =e ft

while equation (222) becomes

_3a ==
2/3

a4
c4

'

Eliminating a, ft from these equations, and inserting the value of 6 from

equation (81) we find,

2(9 4

tf (3c
2 + 2a2

) a (3c
2 + 2a2

) (c
2 + 2a2

)

62
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In the special case of b = c the integral c2 can be integrated in finite

terms, and equation (225) is found to assume the form

5 - 4
.(226),

where e is the eccentricity, given by e* = (a
2

c2

)/a
2
. On numerical treatment,

it is found that there is only one root of this equation, namely

e = '947741 (227).

The corresponding values of the semi-axes are

a=2'14!75r
,

b = c = '683307r (228),

and the value of
/u,

is
//.
= '1091311.

On comparing this with the discussion of the spheroidal series given in

48 51, we at once see that this first point of bifurcation is beyond the

point at which
//,
reached its maximum. It accordingly follows that all con-

figurations on the spheroidal series are stable up to the point at which
//,

reaches its maximum (e
= '882579; /*

= '125504^), and all configurations

beyond this are unstable.

Rotational Figures

86. The determination of the first point of bifurcation on the Jacobian

series is a much more arduous task. The integrals cannot be evaluated in

Fig. 14.
-
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finite terms, and the equations can only be solved by trial and error. The

calculations have been carried through by Sir G. Darwin*, and the- solution

he obtains is

a = l-885827r
,

& = -814975r
,

c = '650659r (229),

the corresponding value of tf/Z-rrp being '1419990. The shape of the

ellipsoid, together with the pear-shaped figure derived from it, is shewn in

fig.
14.

Double-star Figures

87. The two points which have just been determined enable us to fix

with fair approximation the curve given by equation (223), which is the locus

of all first points of bifurcation.

For in
fig. 15, which reproduces that part of fig. 7 in which the series

of ellipsoidal configurations lie, the two points just determined are repre-

sented by the points B
f and B". These points are so near to one another

that we may regard the straight line B'B" 'as a sufficiently good approxi-
mation to the position of the locus in this part of the plane.

The curved line SR"T" represents the locus of points at which the ellip-

soidal configurations were found in Chap. Ill to become unstable through
the angular momentum becoming a minimum. It is clear that the line B'B"

cannot cross into the area marked off by this line, so that all configurations

on the line B'B" must already have become unstable in the double-star

problem.

88. The results which have been obtained can be now summarised, with

reference to fig. 15 (on the next page), as follows :

In the tidal problem, only the part ST" of the spheroidal series is stable ;

the part T"T is unstable. The range T"B"\$ unstable through a spheroidal

displacement only, and the range beyond B" is additionally unstable through
a pear-shaped displacement.

In the double-star problem, only configurations represented inside an area

such as SR"T"S are stable; all others are unstable. The configurations

inside the area SR"T"B"B'BS are unstable through ellipsoidal displace-

ments only, while the range beyond B'B" is additionally unstable through a

pear-shaped displacement.

In the rotational problem, the range SBB' is stable, while the range B'J
is unstable through a pear-shaped displacement.

* " On the pear-shaped figure of Equilibrium of a Eotating Mass of Liquid," Phil. Trans.

198 A (1901), p. 301, or Coll. Works, in, p. 288. I have verified that Darwin's solution, which

was obtained by harmonic analysis, satisfies my equations (218) to (221). See Phil. Trans.

215 A, p. 53.
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Fig. 15.
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STABILITY OF THE PEAR-SHAPED FIGURES

89. It is accordingly clear that in the tidal and double-star problems
there are no stable configurations beyond the spheroidal and ellipsoidal

figures already specified; the pear-shaped configurations are in every case

unstable, the mass having become unstable before these configurations are

reached. In the rotational problem, on the other hand, the series out of

which the pear-shaped series bifurcates is itself stable up to the point of

bifurcation, so that the pear-shaped figures, as already explained in 21,

may be either stable or unstable.

The criterion of stability for these pear-shaped figures has already been

given in 21
;

if on passing along the series from the point of bifurcation,

the angular momentum is found initially to increase, then the figures are

stable
;

if on the other hand it is found initially to decrease, then the figures

are unstable. As far as first order terms, it is obvious that the angular mo-

mentum will be the same as at the point of bifurcation, so that to apply this

criterion, we must proceed as far as second order terms in our determination

of the series.

This problem has formed the subject of a series of classical papers by
Poincare, Darwin and Liapounoff. The general problem was first opened by
Poincare's memoir in Vol. 7 of the Acta Mathematica (1885), to which

reference has already been made. The criterion of stability was not accurately

.stated here, and the necessary modification was announced by Schwarz-

schild* in 1896. The accuracy of Schwarzschild's criterion of stability was

admitted by Poincare in a paper published in 1901f; in this same paper
Poincare developed a method of carrying ellipsoidal harmonic potentials as

far as the second order terms, and reduced the criterion of stability to an

algebraic form, without however undertaking the necessary computations.
At this stage the problem was taken up by Darwin, who, after preparing the

ground by preliminary investigations!, published in 1902 a paper, "The

Stability of the Pear-Shaped Figure of Equilibrium of a Rotating Mass of

Fluid." In the paper the equation of the pear-shaped figure was found as

far as terms of the second order
;
and its moment of momentum calculated.

This was found to increase on passing along the series, so that the pear-

shaped figure was announced to be stable.

* K. Schwarzschild, Mnnchener Inaug. Dissert. (1896).

t "Sur la Stabilite de 1'Equilibre des Figures Pyriformes affectees par une Masse Fluide en

rotation." Phil. Trans. 197 A (1901), p. 333.

J "Ellipsoidal Harmonic Analysis." Phil. Trans. 197 A (1901), p. 461; "On the Pear-

shaped figure of Equilibrium of a Kotating Mass of Liquid." Phil. Trans. 198 A (1901), p. 301.

Phil. Trans. 200 A (1902), p. 251; see also papers in Phil. Trans. 208 A (1908), p. 1, and

Proc. Roy. Soc. 82 A (1909), p. 188, all combined in one paper in Coll. Scientific Papers, Vol. in,

p. 317.
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/

Darwin's investigation had not been long published when doubt was

cast on the accuracy of his conclusions. A paper appeared in 1905 by

Liapounoff* in which he stated that he could prove that the pear-shaped

figure was unstable. Liapounoflfs method was very different from that of

Darwin, and a large part of his investigation appeared in the Russian

language; owing perhaps to these circumstances neither investigator was

able to announ.ce the exact spot in which the error of the other lay, and the

problem remained an open one. The method of treatment given in the

present chapter will, it is hoped, shew the source of the divergence of the

results obtained by these two investigators.

90. As far as the first order of small quantities, the pear-shaped figure

has already ( 83) been found to be

S + g + |- 1 + eP'
= (230),

where
P -f (*? + frf + 1? + *) (231),

so that

The potential of this figure can be found by the method already given in

70 of Chapter IV. As regards the internal and boundary potentials, the

terms in e will be of degrees 3 and 1, those in e2 of degrees 4, 2, 0, those in

e* will be of degrees 5, 3, 1, and so on. It is at once clear that the general

equation of equilibrium

......(233)

cannot be satisfied as far as e
z
,
for terms in e* of degree 4 in x, y, z occur on

the left of this equation, and have no balancing terms on the right. To

satisfy the equation of equilibrium, it is found to be necessary to add terms

in e
2 of degrees 4, 2 and to the left of equation (230), and such terms then

appear also on the right of equation (233).

91. Thus, to calculate the pear-shaped figure as far as second order

terms, we assume the boundary of the figure to be

where

Q = J [L? + Mif + N? + 2^2 2 + 2m? 2
J
2 + 2wfV + 2 (pf

2 + qjf + r?
8

) + s]

......... (235),

* "Sur un Probteme de Tchebychef." Mtmoires de VAcademie de St P2tersbour(] , xvn, 3

(1905).
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so that

The constant term \s in this value of Q is not necessary to satisfy the

conditions of equilibrium, but is introduced in order to keep the total

volume of the distorted surface equal to that of the original ellipsoid.

The potential of the figure determined by equation (234) can be written

down by the method already explained. We have for the second order

terms

If we now put

(fig i

in which the coefficients cn ,
... are determined by comparison with equation

(237), then the potential at the boundary of the figure (234) will, as far as e
2
,

be given by

Trpabc

+ ex

+ d.2f +4^ + 4] ......... (239).

The value of &>
2 in this configuration is not necessarily the same as in

the ellipsoidal figure, although it must obviously differ only by terms in e2
.

Let us assume the new value to be <
2 + e

2
So>

2
,
where the first term refers to

the value of o>
2 in the ellipsoidal configuration. Then the equation of equi-

librium becomes

Vb + i
(a)

2 + e2
So)

2
) (a* + f) = - -rrpabc 6 (

-
z
+ + -' - 1 + eP + e

2Q ) (240)
\(Z C /

and this must be satisfied for all values of as, y, z and for all values of e*.

Equating terms independent of e we obtain merely equations (65) (67)

of | 36. These are of course simply the equations which determine the

* We might have obtained an appearance of greater generality by replacing 6 in this equation

by an expression of the form 6 + ed' + e
2
0", but it would have been only an appearance. On

equating coefficients we should have immediately been forced to put 0'= 0, and the generality

introduced by the undetermined 0" adds nothing to that already involved in the presence of the

coefficients j>, q, r and s.
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series of Jacobian ellipsoids. Equating terms in e we obtain again equations

(216) which determine the position of the point of bifurcation and the ratio

of the coefficients a, /3, 7 and K. On finally equating terms in e
2 we obtain

the system of equations :

, OL , BM <
6N

(241),

,
C12
= J Y~A

C
4a4 a4o4

J

v_
be

2 a4

! /)

(242).

92. In starting computations, we may first determine the ratios a:/3:y:ic

from equations (218) (221), which are equivalent to equations (216). Assign-

ing to a the arbitrary value a = a2
,
the values of a, ft, 7, K are found to be

a = - 3-556343, /3 = 0*204689, 7 = 0'0679189, K = 0-506278 . . .(243).

The potential coefficients cu , c12 ,
... may now be evaluated in equation

(238).
'

These coefficients cannot be completely determined, but they reduce

to linear functions of the still unknown coefficients L, M, N, I, m, n, so that

equations (241) become a series of six simultaneous linear equations in the

six variables L, M, N, I, m, n.

Solving these equations, the values of these six coefficients are found

to be*

L = - 11-71505, M = - 0-00583504, N= - 0'000808592
}I

Z =-0-00214448, m = 0-232659, n =0'653198 J

The values of dl} dz and d3 may now be evaluated from equation (238),

and expressed as linear functions of p, q and r. Equations (242) now become

three linear equations connecting the three variables p, q, r, and on solving

these, we find

(245),

-0-044997 - 7-83600 - ............. (246),

r = - 0-0140132 - -1647351 ..... (247).
2-7373

*
Details of this computation and of the checks on its accuracy will be found in a paper

already referred to. Phil Trans. 215 A (1915), p. 27.
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When the coefficients have these values, all the conditions for equilibrium
are satisfied. The value of s may still be anything we please, but only one

value of s will keep the volume of the figure equal to the initial volume, and

this value is found to be
c\

2
-
~-______

'

s= -01586814 -13-239893^ ........... ..T.(248).

93. Equations (245) (248) may be written in the form

p=p'+p" etc............................ (249),

2

where f=~ - e* .............................. (250),

and the value of Q given by equation (236) may similarly be expressed
in the form

C. = Q,' + 50.".

The equation of the boundary (equation (234)) now becomes

This will be a figure of equilibrium whatever the values of e and

provided only that they are sufficiently small. If we put e = but retain

the equation becomes

+^ =1-^ -(252) '

and this is an ellipsoid whose semi-axes a', b', c' are given by

9-20894?;

1 + 3-50453?.

Clearly then, as f varies with e = 0, the figure of equilibrium coincides

with the various Jacobian ellipsoids near to the point of bifurcation.

On putting f=0 but retaining e in equation (251) we obtain a series of

figures of equilibrium for all of which the angular velocity is the same as

that at the point of bifurcation.

The two series of configurations obtained by putting e and f = in

equation (251) may be represented by two intersecting straight lines such

as POP', QOQ' in fig. 16, the point being of course the point of bifur-

cation. But the general figure of equilibrium represented by equation (251),

in which e and f are limited only by the condition that e
3 and f* shall be
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negligible, will be represented by all points inside a certain rectangle ABCD
surrounding the point in fig.

1 6. They do not fall into linear series, as it

was assumed by Poincare and Darwin that they would.

Jacobian

P

Fig. 16.

That the two linear series will lose their identity and give place to a

two-dimensional area seems to be predicted by Poincare's analysis of which

an account has already been given in 22, 23 of Chap. II. For the

condition that a point of bifurcation shall occur at 0, namely A = 0, is also

the condition that the direction of the linear series shall be indeterminate

at 0, or, what is the same thing, that the two linear series shall become

merged into an area as they approach the point of bifurcation.

Thus it now appears that an expansion as far as # is not adequate to

reveal the direction in which the second linear series turns on starting out

from the point of bifurcation 0. The difficulty is introduced by the artificial

method of expansion in powers of the parameter e ;
the linear series are in

reality completely determinate, but an expansion as far as e2

only does not

suffice to determine them. A precisely similar complication occurs in con-

sidering the direction in which lines of force start out from a point of equi-

librium in an electrostatic field*.

94. Sir G. Darwin seems to have carried out his investigation under

the impression that there would be a unique configuration of equilibrium
when the calculations were carried as far as e2

,
and this led him to introduce

a spurious condition of equilibrium, the effect of which was to limit him to

one of the doubly infinite series we have discovered f. In point of fact,

* Phil. Trans. 215 A, p. 74.

t For details, see Phil. Trans. 215 A, p. 76.
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Darwin's extra condition of equilibrium could only be satisfied by assigning

to f a special value, namely f = ()*015988e2
,
and this value gives a figure

whose angular momentum is greater than that of the undistorted ellipsoid.

Darwin accordingly announced the pear-shaped figure to be stable.

But we shall now see that this special value for f makes it impossible to

carry the linear series on to third order terms at all. The condition that it

shall be possible to carry on the series to third order terms requires that f

shall have a special value, but this special value is not the one assumed by
Darwin

;
it is a value which shews the pear-shaped figure to be unstable, as

we shall now see.

95. We proceed to calculate the pear-shaped series as far as the third

order terms.

An argument similar to that of 90 shews that the boundary (234) can

only be made a figure of equilibrium as far as third order terms by including
in it additional terms of degrees 5, 3 and 1. We accordingly assume for the

boundary of the distorted ellipsoid,

............... (253),
c

where P and Qo have the values already given in equations (232) and (236),

and

so that

R = -
2 84 a2 a8 bs c8 64 c4 c4a

2nfv + 2 (p?
2 +W +
............(254),

~I

......(255).

96. We can calculate the potential of this figure as far as e3 by the

formulae given in the last chapter. Calculating the terms in es in formula

(197) in terms of the values which have now been assigned to P, Q and R
we find as the value of <,

[15jA
2a3

-f 2|ABa
2
/3 + 2|ACa

2

7 + |B
2
a/3

2 + ^BCa/fy + |C
2a7

2

]

IfB
2
/3

3

+|BC/3
2

7 + f

l|AB/3
3 +

|AB/37
2

4- 1|AC7
3

]
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|B
2
/3

2

[ 3fA
2
a/9 4-21AB/32 +

[ 3fA
2a7 4- |AB/97 4-2iAC7

2
]

[ l|A
2a + fAB/3 4- fACy]

[ 2|AZ 4- JB(Z/34-2>?a) + C (L7 4- 2wa)]

[ IIA (Z/3 + 2na) 4- fB (Ma + 2^/3) 4- ^C (io + mj3 + 717)]

[ liA(Z7 + 2ma) + ^B (^a+ m/S + ny) + fC (Na

[ fA(Jfa + 2tt/3) +l|Blf^ -f

t |A(iVa + 27i7) + iB(^/3 + 2/7 ) +

}A(ia + m/8 + W7)+ |B (M7 + 2W 4- J

[ HA (L/c + 2c^) + IB (UK + aq + /3p) + JC (m + 7^ -f ar)]

A (n/e + og + )8p) + |B

-R2

[ fA (m/e + TP + ar) + -1-8(^ + 75+^) + fC (JVie + 27r)]

-f [ SA(2p* + *a) + ^B(2g/c + 5/8) + ^C (2r/e + 57)]

+ if [*f
4 + ^T;4 + Nr4 + 2!^ + 2m?2p + 2nfV + 2 (pf+ qT;

2 + rf
2

) + s]

4- ^AB2
/3

2

74-2ifACV +HABC/872

]

f
3/ [6AA

2Za4- T
3
FB

2

(Ma 4- 2^^) 4- T
3
^C

2

(^a 4- 2717) 4- gA

-t- 1AC (^7 4- 2wa) 4- ^BC (la 4- m/3 + ny)]

+ 2na) 4- 2|fB
2M^ 4- ^C 2(^ + 2Z7) + 1JAB (Ma 4- 2n)

4- |AC (ia + m/S 4- wy) 4- |BC (My +

-f 2^/3)4- 2ifC
2^7 4- |AB (/a + m/9 4-

+ 1JAC (^a + 2w7) 4- |BC (N0 + 2/7)]

4- |AC (m/c 4- 7p 4- ar) 4- ^BC (lie +yq + /3r)]

-?f [liUA + inB + imC]

[ }nA +I1WB+ ilC]

[ fmA + JlB 4- |NC]

...................................... (256),
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where / stands for A% 2 + Brf + Of
2

1, and G is given by

G = A
{-
3^A3a3 + J^A2Ba2

/5 +^A2Ca2

7 +

+ fAC 2a7
2 + MABCa/37

-
JjA

2C (Zy + 2-ma)

(Ma + 2/i/S)
- ^AC2

(Na + 2nj)
- ^ABC (la + m/3 + ny)

21/5)
- ^BC 2(^ + 2Z7)

+ j5A2^ + _3_ B2j^ + ^C2]^ +ii_BC i +i^ACm + T
3_ABn .........(257).

With this value for < 3) let us put

f /^

I ^d\
= x (Cn

4+ 088^+ C33^
4+ C12 a?

2
i/

2+ C3i^
2
a;

2+ Ca^+^+ lT22/
2 + &3*

2 + 1 4)

...... (258).
The value of Vb the potential at the boundary is

Vb
= -

TT^a&c f [/+ e^ + e
2

2 4- e3 c 3] ^- ;

Jo A

the condition that the figure (253) shall be a figure of equilibrium is, as in

equation (240),

F6 +H 2 + e
2 S 2

) (^
2 + y

2

)
= -^&

\̂df C
, /

......(259).

On equating coefficients of terms independent of e, and of terms in e and

e2 in this equation we obtain precisely the systems of equations which have

been already obtained and discussed
;
on equating terms in e3 we obtain

&,* 4- &4)

On equating coefficients, this is found to be equivalent to the separate

equations :

e
- (260)'

(262),
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and these equations, in combination with the first and second order equations

already discussed, express the condition that the third order figure (253)
shall be a configuration of equilibrium.

97. The numerical discussion of these equations proves long and tedious*.

We first write down the values of Cn , C12 ,
etc. by a comparison of equations

(256) and (258). As a typical coefficient may be given the value of Ci2 which

is found to be

/3 + nABa

-
/ AZ^

l|AC2a7
2 + 1JABCa/37 +

+ 5fA2Bay8
2 + l|A^Ca/37 + 2i|AB^

liABC/3
2

7]

fAC (k + m/3 + n7 ) + |BC (My

T̂ C 2

(Na + 2ny)

|AB (Z + 2na) + |AC (Ly + 2ma) -f JBC (ia + m/3 + ny)] d\

and on computing the numerical values of the various terms this reduces to

Cl2
= _ 0-0002799H - 0-0093206Jtt + 0-0103775N

- 0-00458151 - 0'0016151m + 0'0040268n + 0'0042388.

The remaining C-coefficients may be similarly evaluated, and equations

(260) then become a system of six linear "equations from which to determine

the six unknowns H, jftft, "N, I, m, n. The solution of these equations is

found to be

H = - 12-6275, Jtt = - 0-0307056, N = - 0-0044636,

I = - 0-0116194, m = 0-42602, n = 1-15365.

* For fuller details than are given here see Phil. Trans. 217 A, p. 20.
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98. We proceed next to the three equations (261). On comparison of

equations (256) and (258) it is found that the values of bl5 &2 , &3 are of the

forms

in which Si, S2 ,
S3 are quantities which do not depend on p, (j, t, S. The values

of S
a and 82 are as follows :

^ = f ^7-3 [* (13J A2 a2 + 2J AB/3 + 2lACa7 + f B
2
/3

2
4- J BC/37 + fC2

7
2

)
Jo tin.

- 1 JA (Z/c + 2ap)
- JB (ra* 4- a? + ftp)

- iC (m/e +py + ra)

a3 + f\B
3
/3

3 +ACV + 6T
9
6
A2Ba2

/S + 6T
9
?T
A2Ca2

7

IfAC 2 a7
2 + 1| ABCa/37 + f\B

2C^2

7 + T%BC2
/97

2

] d\

/CO3 ^ 2 [6T%A
3a

|AB (Lj3 + 2^a) + |AC (Z7 + 2??ia) + ISC (/a + m^ + ny)] d\

B* (^ + 2/39) H- T̂ C 2 (NK + 27r)

fAC (mic+ yp + ar) + JBC (^

-
fA (n* + ag + ftp)

-
f B (if 4- 20q)

- JC (/* + yq

4- 5|A
2

Ba/3~ + l|A
2
Ca/97

|ABC/3
2

7] dX

+ HAB (i/a+ 2w/9) + |AC (/a -f m/3 + wy) + fBC (My +

J AZB [^A2 (ZA: + 2a^ + T
8
ff
BS (^ + 2/ty) + -ftC

2(^ + 27r)

+ |AB (n/c + a^+ /3p ) + 1AC (m/c+ 7p+ ar ) + JBC (/A: + yq+ j3r)] d\

J. C.
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while the value of S3 may be at once written down by interchange of letters

in

The three equations (261) can now be written in the form

e o r Adx , r d\ \ . , . r Bd\
. , r c^x \

J o AA2

00 G
d\

<&,

&AB
r*= 82 -2 -^
Jo AA

> (263),

rfx

l\ \

icv

-t-rnB*J t-^-n-v

and p, q, r do not occur in the right-hand members of these equations.

99. These equations appear at first sight to be a system of three simple
linear equations determining p, tj, t, but this proves not to be the case. Let

the equations be written for brevity in the form

(264).

Then, by simple transformation of the integrals, the values of the co-

efficients kit ki t
- are found to be

_/
l~'*~ Cz

~

_3_
4a2

2(9

462 ^'

k " -~
**

~
2

- -- - -

(265),

in which clt c2 ,
cs are the integrals already specified in equations (217).

With these values assigned to kL , &/, ... it will be found that equations

(218) (220), which are the equations determining the third-harmonic dis-

placement at the point of bifurcation, assume the form

=

=
J

.(266).
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=
(267),

On eliminating a, j3, 7 we have the relation

L> l>' le"
A/j_ j A/j 5 A/]^

& &
'

&
"

^ '
I-
"

i^9t
"'3 J

rt
'3

which determines the condition for a point of bifurcation.

On inspecting equations (264) in the light of relation (267), it becomes

clear that in general the solution for p, CJ,
t is p

= = t = oo
,
the ratio of these

quantities, from equations (266), being that of a : (3 : 7. With this solution

the third order terms ^ become identical with the previously found first

order terms P
,
and the attempt to extend the solution to the third order of

small quantities has failed entirely.

It is, however, easy to find the condition that equations (264) shall have

a finite solution. For, assuming p, ff,
t to be finite, and multiplying the three

equations (264) by the minors of &/', &2", k." in the determinant (267) and

adding, we -obtain

*,, *,', m,
T, If' J&
n/2, A 2 , iw\;>

When, and only when, this relation is satisfied, there is a solution such

that p, (j,
r are finite, and there is a genuine third order solution.

After some transformation, this equation can be put in the simpler form

=0 .....................(268).

#-** ............... (269) -

The coefficients in brackets are known; the quantities 2eti, 2Bt2 involve

p, q, r and so also So)2

linearly (cf. equations (245) etc.), and the equation is

seen to be a linear equation for 8(o
2

. Carrying out the necessary computations,
the solution of the equation is found to be

1^=0-0074231 .................. (270).

This gives the value of 8&>a on the true linear series
;

if we attempt to

carry the solution beyond terms of the second order with any other value of S&> 2
,

the solution simply lapses back to the first order solution already found. We
notice that o>

2 increases initially as we pass along the pear-shaped series.

100. On inserting into equations (245) (248) the value of Sco
2

given by

equation (270), we obtain

p= 3124954 ........................... (271),

q = -0103164 ........................... (272),

r = - 0-015236 ...........................(273),

s = -0-256962 ........................... (274),

72
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thus completing the figure as far as second order terms. We have now a full

knowledge of the second order pear-shaped figure, and so are in a position

to determine whether or not it is stable.

Calculation of the Moment of Inertia

101. The question of stability of the pear-shaped figures turns, as we

have seen, on whether or not the angular momentum M of these figures in-

creases or decreases as we pass from the critical Jacobian ellipsoid along the

series of pear-shaped figures.

The moment of inertia Mk* of the pear-shaped figure about its axis of

rotation is given by

Mk2 = I Ip (x
2 + y'

2

) dxdydz (275).

We have determined the coefficient s so that the mass of the pear-shaped

figure shall remain always equal to the mass of the original ellipsoid.

We accordingly have M=%7rpabc, and equation (275) reduces to

the integral being taken throughout the pear-shaped figure.

Transform to new variables x', y', z' given by

x ax, y = by', z = cz' .....................(277),

then equation (276) becomes

1# = ~(&** + Vy''
2

) dx'dy'dz .................. (278),

and the integral is now to be taken through the volume bounded by the

surface

......(279),
which is a distorted sphere of unit radius.

Let r denote the radius vector to this distorted sphere in any direction,

so that r2 = x''
2 + y'

2 + z'*. Let us again transform to coordinates x, y, z,

given by
#' = rx, y'-ry, z' = rz,

so that x, y, z are coordinates of points on a sphere of unit radius. Equation

(278) becomes

S .................. (280),

where dS is an element of surface on this unit sphere.



ioo-i02] Stability 101

Equation (279) becomes

and this may be regarded as an equation to determine r. Let its solution be

supposed to be

esh+ ........................ (282).

Then, on carrying out the integration with respect to r in equation (280)

we obtain

=^ /Y(a
2 dS.

Clearly the term (a
2x2 + 62

y
2
) (5ef) vanishes on integration, so that k2

may
be put in the form k<? + A&2

,
where

^ jj(a
2x2 + 62

y
2

) (^ + 2/
2
) cZ5.

The values of /, # are readily found from the condition that the solution

(282) shall satisfy equation (281). Carrying out the necessary computations,
we obtain

& 2 = 0-844105,

so that the moment of inertia is given by

..................(283).

The Stability Criterion

102. Collecting results, we have now found for the pear-shaped figure

^-= 0-14200 (1 -H 0-0522702
) (284),

k* = 0-8441 (1
- 0'09378e2

) (285),

whence it is readily found that the moment of momentum M is connected

with the moment of momentum M of the critical Jacobian ellipsoid by the

relation

M = M (1-0-06765O (286).

Thus it appears that M < M , the moment of momentum decreases as

we pass along the pear-shaped series. This series is accordingly proved to

be unstable.
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103. The fact that the pear-shaped series is initially unstable shews that

a rotating mass cannot evolve by slow secular- changes through a series of

pear-shaped figures. This somewhat diminishes the interest of the pear-

shaped series in the problem of cosmogony, but nevertheless it remains im-

portant to obtain as clear an idea as we can of the nature of this series. For

we shall find, when we come to the discussion of dynamical motions, that the

unstable series are of the utmost importance in directing the course of dy-
namical or cataclysmal motions such as occur when statical evolution is no

longer possible.

There is nothing in abstract theory to prevent us following out the con-

figuration of the pear-shaped series as far as we like, but the labour of

computation would be so great as to make this course impracticable.

A problem which admits of very much easier solution is the two-dimensional

problem of tracing out the sequence of configurations of a rotating cylinder
of liquid. So far as the three-dimensional case has been solved, the analogy
between the two-dimensional and three-dimensional cases is so very close

that we may reasonably hope that it will persist beyond. If this is so, we can

discover the general nature of the solution to the three-dimensional problem

by examining that of the much simpler two-dimensional problem. We ac-

cordingly turn to a discussion of the two-dimensional problem.

THE CONFIGURATIONS OF EQUILIBRIUM OF ROTATING

LIQUID CYLINDERS

104. Let F (x, y)
= be the equation of a cylindrical boundary in the

plane of x, y, and for simplicity let us assume the axis of x to be one of

symmetry.

Let us change to complex variables f, 77 defined by

and let the equation of the curve become

/(f,i?) = .............................. (287).

If the original curve was symmetrical about the axis of x, the function/
must of course be symmetrical in f and 77.

To write down the potential of a homogeneous cylindrical mass having
(287) as the equation of its cross-section, we solve the equation explicitly
for f ;

let the solution be

f-*(i)M(l) + *(>) ..................... (288),

where
<f>(rj) and -^(77) are terms in ascending and descending powers of 77

respectively, say
........................ (289),

+: ..... .................. (290).
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Then it can be verified* that the potentials of the cylinder, assumed com-

posed of homogeneous matter of density p, are given by

(?) d+r<l> (rj) drj
- ?J + cons....... (291),

e Jo )

(292).

105. Now suppose that a cylinder of matter of density p has for its

equation x* + i/
2 = a2 or

^=a2

when there is no rotation, and that under a rotation a), this gives place to a

boundary of equation

^a' + a^f + ^ + a^p-M'H ..................(293),

or, in polar coordinates,

r2 = a2 + 2a 1rcos0 + 2a2r
2 cos20 + .................. (294).

The condition that the surface (294) can be a figure of equilibrium is

that, at every point of the boundary,

F; + JwV2 = acons......................... (295).

Since the value of r2 at the boundary is given by equation (294), this

condition readily transforms into

Vi + Trp r
2 -

Trp ( 1 -^ J
(a

2 + 2at r cos 6 + 2a2 ?^
2 cos 20 +...) + cons. =

......(296).

This expression must vanish at every point of the boundary ;
it is readily

seen to be harmonic, and so must vanish at every point inside the boundary.

From equation (291) the potential "Pi must be of the form

f) - 77]
acons (297),

where 6,, 62 ,
... are functions of a,, a2 ,

.... Hence equation (296) assumes the

form

26n (" + 77*0
- 1 - [a

2+^^
This must be satisfied at every point inside the boundary ; equating co-

efficients we obtain *

*
Phil. Trans. 200 A (1902), p. 67.
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These are the conditions that the surface (294) shall be a possible figure

of equilibrium under a rotation o>.

The points of bifurcation and points at which o>
2 reaches a turning point

will be determined by the Hessian of this system of equations*, namely

da,

~- ri
-<)'

= (300).

If it were possible to calculate the 6's in terms of the a's and solve equa-
tions (299) and (300) in the most general case, we should obtain a complete

knowledge of all the linear series and their points of bifurcation. As this is

not possible, we start from a known configuration and trace out configurations

by following the different series.

106. The simplest configuration is the circular one, for which

a v a2 (ts
= =0.

With these values all the 6's vanish, and equations (299) are satisfied for

all values of o>. Thus there is a linear series of circular configurations, along
which o> increases from zero upwards, and this is obviously the two-dimen-

sional analogue of the series of Maclaurin's spheroids.

To search for points of bifurcation on this series we examine configura-
tions in which a1? a2 ,

... are all small. Neglecting squares of these small

quantities equation (293) becomes

fr = a2
4- aj (?? + a2

^-
1

) + a2 (rf + a4
?r

2

) +

so that, by comparison with equation (288),

and, from (291),

Vi = Trp [a, (f + 77) + a2 (f
2 + T;

2

) + J a 3 (f + rf) + . . .

-
ft? }

+ cons.

Comparing with equation (297), the value of bn is seen to be an/n. Thus
the determinant in equation (300) reduces to its leading diagonal, and the

points of bifurcation on the circular series are given by

As a typical solution we have

27TP
~ l

n

Cf. 22, p. 24.
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corresponding to a distortion of the circular section such that an alone occurs

in equation (293). The different points of bifurcation correspond to the

different integral values of w.

107. The value n = 1 may be rejected at once, since the corresponding

displacement is merely a rigid-body displacement of the cylinder when at

rest. Thus the first real point of bifurcation is given by n = 2. At this

point

and here the series of circular configurations loses its stability. The branch

series has for its equation initially,

r2 = a2 + 2a2r
2 cos 6 (301),

so is of elliptical cross-section.

When a2 is small, the value of 62 has been seen to be a2 . But when the

boundary is determined by equation (301), the values of the 6's are easily

determined, whether a2 is small or not. Equation (293) reduces to

of which the solution is of the form

where a is a root of

a = a2 (l + a2

) (302).

Thus the general value of 62 is Ja and all the other 6's vanish. The

equations of equilibrium (299) can accordingly be satisfied by a surface of

boundary (301) for all values of a.2 . Thus the branch series through the

point of bifurcation just found is a series such that a2 varies from to oo in

equation (301). The configurations form a series of elliptic cylinders, which

are obviously the two-dimensional analogue of the Jacobian ellipsoids.

The conditions of equilibrium (299) reduce to the single equation

, (303)

which on combination with (302) gives

<w
2

Thus as we pass along this elliptic series, o>
2 decreases from

TT/J to 0. The

angular momentum is however found to increase, so that the series is initially

stable.
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108. To search for points of bifurcation on this series, we have to examine

configurations for which all the a's are small except a2 . We readily find that

bn must be of the form

- + terms linear in an+2 ,
a-n+4 ,

Hence when m<n, dbn/dam = 0, and when m = n>

dan n (1

Thus in equation (300) all terms below the leading diagonal vanish
;
the

determinant reduces to the product of the terms in its leading diagonal, and

the equation for points of bifurcation reduces to the separate equations

- 2aa2 )

= 1- ,4,5,...) (305).

Simplified with the help of equations (303) and (304), this equation is

found to reduce to

This equation is readily solved by graphical methods. In
fig.

17 the

curve which is concave to the axis of a. is the parabola y = J (1
- a2

),
while

Fig. 17.

the remaining curves are the graphs of

U

for the values n = 3, 4, . . . . As we pass along the elliptic series, starting from

the point of bifurcation with the circular series, we may suppose that we pass

along the axis OP in
fig. 17 from a = to a = 1.
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The different intersections between the parabola and the other curves

will represent the different points of bifurcation. And, just as Poincare

has shewn to be the case in the three-dimensional problem, so we see here

that there is one point of bifurcation of each of the orders n = 3, 4, 5, . . .
,
and

that they occur in this order.

The elliptical series accordingly loses its stability at the point of bifurca-

tion n = 3. The position of this point is obtained by solving equation (306)
with n put equal to 3, and the solution is readily found to be a = -J.

From equations (303) and (304) we find that at this point of bifurcation

ft>
2
=f7rp, and Gf2 =f' The configuration at the point of bifurcation is ac-

cordingly the elliptic cylinder

fr = a'+*(P + '7
i

) ........................ (307),

or, in Cartesian Coordinates,

?/
2 =5a2

........................... (308).

109. Near the point of bifurcation, the configuration of the new linear

series will be determined by an equation of the form

f77
= a2 +|(^ + ^)+a3 (r + 7

7

3

) + a
1 (? + 7

7) ......... (309),

and this is at once seen to be analogous to the pear-shaped series in three-

dimensions. The problem before us is to extend this series as far as possible
in the hope, which will be found to be fully justified by the event, that the

series will be found to be closely analogous to the three-dimensional series.

Let us assume for the general configuration an expansion of the form

=i

where 6 is a parameter which vanishes at the point of bifurcation and con-

tinually increases as we pass along the series. The corresponding value

of to may be supposed given by

^ + g6
6 + ..................(311),

it being immediately found that terms in 6, <9
3

,
... are unnecessary. It has

already been seen that S
,
which is the value of 1 &>

2

/27r/9 at the point of

bifurcation, is equal to f .

Let us suppose that equation (310), solved explicitly for f, has the

solution

f-(l-^) <&+&
+ &*+ 6*+-) .........(312),

where f is the already known value of f when 6 = 0, and fg is a general

series of ascending and descending powers of TJ, say

?s
= s + Srf + s2 ij

z + . . . + S-i*/"
1
-f 5_2^~

2 + ............ (313).
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From this expansion for f, the value of Vi can at once be written down
;

it will agree with equation (297) if we take

The equations of equilibrium (299) which must be satisfied are however

of the type

so that the conditions for equilibrium are that

for all s's. Thus in order to satisfy the equation of equilibrium it is merely

necessary that fs shall be of the form (cf. equation (313))

4- ... 4- s-^-1 + *_2T2 + ...... (316).

To introduce the limitation that the curve shall remain of constant area

we must have s^ = 0, as is at once evident on considering the form assumed

by FO at infinity. To keep the centre of gravity at the origin we must

further have s_2
= 0. If we replace s_2 ,

s_3 ,
... by new symbols s(7_i, SCL2 ,

we may write equation (316) in the symmetrical form

(317),

in which there is no term in 8<7 and we know that gCLj must ultimately be

zero in order that the centre of gravity may remain on the axis of rotation.

Thus we have found that the assumed equation (310) will represent a

configuration of equilibrium provided the explicit solution for f is of the

form (312) in which gg etc. are given by equations of the type of (317).

110. Let u^ introduce pQ , plt p2 ,
... defined by

Jfc-& + &,

*
=

So 4 + ^2 ?2 + S4 >. etc.

Then on substituting for 1 &)
2

/2?r/3 from equation (311), the supposed
solution (312) assumes the form

(318).
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This is to be a solution of equation (310), so that the following equation

must be an identity :

psfr +..,)

(319).

To avoid the useless printing of terms which would ultimately be found

to vanish, we shall at once strike out all coefficients sCn of which the true

value is zero. Accordingly, in place of the general equation (317), we assume

separate equations of the form

fj
= 3c3 77

2 + G!
-

c_!?7-
2 - 3c_3 77~

4 - 5c_5 ?7-
6 - 7c_7 77~

8
(320),

f*
- 6/6 r7

5 + 4/4 77
3 + 2/2 77 -f ./o^r

1 -
2/_2 77-

3 -
4/_4 77-

5

(323),

and so on. In these equations terms such as . d^"1 have no value but are

written in for completeness. The quantities d
, f etc. do not themselves

vanish but represent the quantities 2(7 , 4(7 etc. which may have finite values.

Each of the series f1} fa > fs, &, extend to infinity, but we shall not require

more than the six first terms written down to give the approximation to

which we are working. We shall assume three similar series for f5 , fe and f7 ,

the coefficients being denoted by the letters g, h, i respectively.

111. Since equation (319) is to be an identity for all values of 6 and 77,

we may equate the coefficients of and shall obtain a system of equations
which must be true for all values of 77. The equations obtained by equating
coefficients of 6, 6, $2

,
6 s

,
... are found to be as follows :

(324),

.' ........ (325>,

2
) + d4 (^ + f <). . .(326),

4

)

+/o +/2 (^?
2 + fo

2
) +/4 (^

4 + ?o
4
) +/ (^ + ?o

6

) ............... (328),

and similar equations.
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112. Equation (324) is a quadratic equation giving f in terms of 77.

Writing a = 1 for convenience, the solution is

(329)

Inserting this value for f into equation (325), this equation becomes an

equation in 77' having c3) clt c_1} ... as coefficients. Since this equation must

be an identity we may equate the coefficients' of different powers of 77 and

obtain

- - -
fCi

-
f <?_!

=

,
etc.

The first equation is satisfied automatically, as it ought to be. We may
assign any value we please to c3 ,

this merely determining the scale on which

the parameter 6 is measured. Taking c3 = 1 we find in succession

c3 =l, c^-y, 0^ = 0, c_3
=

The vanishing of c_i shews that the centre of gravity of the curve is, as it

ought to be, at the origin. .

The value of is now given in the form

Inserting this value for fx in equation (326) and equating coefficients, we

obtain the equations

Solving, we obtain in succession,

<
= -*+*

(
.

This completes the solution as far as second order terms, and we find,

precisely as in the three-dimensional problem, that there is an ambiguity in

the solution, in that S2 nas n t been determined and cannot be until we pro-

ceed to terms of higher order.
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The third order terms are determined by equation (327). Equating co-

efficients as before, we obtain the equations

f}f e5 + fe3

in which of course the unknown quantity S2 still appears. To satisfy the

first of these equations we must take

The second equation is not, as might at first have been expected, an

equation for e3 . If S2 nas a certain value, it is satisfied by any value of es ,

but if S2 has a value different from this, there is no solution other than

e-A
= x . An examination of this equation will elucidate at once the whole of

the difficulty that was encountered in determining the true second order

solution in the three-dimensional problem (cf. 93 99).

For e3 to have a finite value, 82 must have the value

g2= _8_6_2.5_
(332).

The third equation now does not become an equation for ^ but for e3 + -f-el .

It is satisfied by
es = i6^~ + * ei

= *\
where X may have any value. Finally, the fourth equation does not deter-

mine X
;

it reduces merely to e^ = 0, and so merely provides a check on the

accuracy of our work (cf. 109).

113. Collecting the values of the various constants, we find as the equation

to the surface (equation 293),

4-
2

1- (f
4 + *?

4

)
-W (f

2 +^ +W )

+ #3 ji|5 (5 +^ _ i_7,j)7R. (3 + ^j + terms in 4
,

5
,
etc. (333).

The occurrence of the indeterminate quantity X can easily be accounted

for. For if we have a solution

^ = ^+0/^6% + 0/,+ ..................... (334),

'

corresponding to a parameter 6 which is connected with the rotation by the

relation

l-r,2

/27r/3
= S + ^^ 2 +^^ 3 + ..................(335),

then we can obtain precisely the same solution in another form on replacing

the parameter 6 by 6 + X0 3
. It accordingly appears that the quantity X is
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entirely at our disposal, and we shall accordingly take A, = 0. We shall, as a

matter of numerical convenience, replace the parameter 6 by a new parameter
0'such that 10000 2 = <9'

2
.

As far as terms in #', the pear-shaped figure determined by equation (333)

is now found to be

0'2 1 10?)
= 1.

The corresponding pear-shaped figure in three-dimensions was

and we see that the two figures agree as closely as possible if we take 0' = e.

Thus our new choice of parameter results in 6' having the same meaning as

e has in the three-dimensional problem.

The second order solution now assumes the definite form

rz = 1 + |r
2 cos

2</> + 20' . 10
"

'
(r

3 cos
3</>

- -l r cos 0)

+ 10- 3 0' 2(^ cos 40 - ^r2 cos 20 +
6

^ 4

7B
) . . .(336),

while the value of &>
2
is given by

~ = 0-3750 (1 + 0-0513<9 /2

) . . .(337).
Zirp

We may notice that this rate of increase of o>
2
is closely analogous to that

in the three-dimensional problem

= 014200 (1 + 0-0522702

).

On calculating the moment of inertia of the curve defined by equation

(336), we find

which compares with
Mk* (1

- 0-09378e2
)

in the three-dimensional problem.

Calculating the moment of momentum in the cylindrical problem, we find

M&m = Mk<?a> (l
- 0-1423(9/2

).

This shews that Mk2
a) diminishes as we proceed along the two-dimensional

pear-shaped series, and therefore that the series is initially unstable.

114. The agreement between the two-dimensional and three-dimensional

problems has so far been so marked that it may be hoped that it will persist

into those regions in which the three-dimensional figure cannot be calculated.

On the assumption that this is the case, we may infer the advanced stages of

the three-dimensional problem from those of the two-dimensional problem.
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Writing e for &', and calculating the curve in the two-dimensional problem
as far as e5

,
we find for the equation to its surface expressed in polar coordi-

nates

r* = (1 + -139e2 + -023e4 + ...)
- '2ller cos

+ (-8
- -138e2 - -069e4 + . . .) r

2 cos 20

+ ('063e
- '0064e3 - -0031e5

) r
3 cos 30

+ ('013e
2 + 'OOOSe4 + . . .) r

4 cos 40 4- ('00360
3 + -00093e5 + . . .) r

5 cos 50

+ (-0001e
6
+...)r

8

cos80 + ....................................... (338),

while the equation determining o>
2
is

............... (339).

115. The intersections of the curve with its longest axis are given by

<I> (r, e) = 0,

where

(-2 + 138e2 + -069e4 + . . .) r
2 + (-063e

- '0064e3 - '0031e5 + . . .) r
3

-0008e4 + . . .)
r4 + (-0036e

3 + -00093e5 + . . .) r
5

...)r
6 + C00043e

5 + ...) rf+... . ....................(340).

In this equation only a few terms are written down of the doubly infinite

series which represents the true value of <. For small values of r and e

these terms will give the value of < with considerable accuracy, but for larger

values the approximation may fail. We require to determine over what region
of values of r and e the terms actually written down will give a good approxi-
mation to the whole.

The coefficient of each power of r is an infinite series, of which terms up
to r5 have been calculated. The approximation provided by these terms is

seen to be tolerably good so long as e< 1, but fails when e exceeds a unit

value.

When some definite value less than unity has been assigned to e, the value

of <1> will be given by an infinite series of powers of r of which the first seven

only are known. For small values of r these first seven terms will give a good

approximation ;
for higher values of r the approximation will be poor, while

for still greater values the series will become divergent, and the first few

terms will give no approximation at all. Inspection of equation (340) shews

that the approximation will be tolerably good so long as r2 < 1/e
2

.

j. c. 8
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In
fig. 18, values of r are represented by abscissae and values of e by

ordinates, so that <E> (r, e) is a function of position in the plane, and the

equation 4> (r, e)
= will be that of a curve in this plane. The values of r

and e for which equation (340) has been seen to give a tolerable approxima-
tion are those within the area, shaded in the figure, which is bounded by the

curve e = '

1, r = l/e.

O'

\

\

Fig. 18.

The thick curves in this figure represent the locus <I> (r, e} = calculated

from the terms actually written down in equation (340). So long as we do

not pass far beyond the shaded area, this curve will give a fair representation

of the position of the true curve <l> (r, e)
= which would be obtained by the

inclusion of all terms in the series of equation (340). The most important

points on this curve are those at which de/dr = 0. These are the points

P, P' in the figure, and they may, with sufficient accuracy for our present

purpose, be taken to be r = 2, e = 1 and r 2, e = 1.

116. The diagram given in fig. 18 enables us to watch the changes in the

lengths of the intercepts on the principal axis of the rotating cylinder as e

increases i.e. as we pass along the linear series of pear-shaped figures.

When e=0, the intercepts are represented by the Hne AB, being the

centre of gravity. The complete figure is of course the elliptic cylinder whose

equation is (308), and OA, OB are each equal to the semi-major axis -v/5.
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When e = ^, the intercepts are represented by the line A'E'
;
the centre of

gravity still being on the line 00'. Thus there is a slight elongation at one

end of the figure and a corresponding contraction at the other end. In fig. 19

on the next page the chain curve shews the complete figure for e = ^, the

curve being of course calculated from the complete equation (338), while the

continuous curve represents the undisturbed elliptic cylinder e = 0.

The intercepts of the figure e = J are represented by the line CD in fig. 18,

and the complete figure is shewn in fig. 20. We are still within the limits

within which equation (340) gives a good approximation.

For the value e=\, the approximate intercepts are represented by the

line EF with a new double intercept at P. For values of e greater than

unity, there are four intersections of the surface with its axis, so that the

surface consists of two detached parts. At e = 1 this detachment is just be-

ginning ;
there are two parts represented by EP, PF, but these are still in

contact at P. The curve calculated from equation (340) for the case of e = 1

is shewn in fig. 21. For values of < other than zero the convergence is con-

siderably better than for </>
= 0, and this circumstance enables us to determine

the greater part of this curve with better accuracy than the points E, F in

fig. 18*. It appears that the curve has not yet quite divided, but it is obvious

that it is just on the point of doing so.

Finally fig.
22 shews two ellipses which, with an approximation similar to

that used in 60 65, may be regarded as figures of equilibrium in rotation

about one another. The axes of the greater are in the ratio 2 : 1 which

corresponds to a rotation

455 ..............................(341).

A glance will suggest the probability that this figure gives a good repre-

sentation of the stage succeeding that shewn in
fig. 21. If so the value (341)

ought to represent the value of G>
2

/27r/o given by equation (339) when e is just

greater than 1. The series is not convergent enough for us to determine this

limit from equation (339) directly, but it is clear that the value (341) is a per-

fectly possible value.

Thus we may with fair confidence assert that the two-dimensional series

ends by fission into two detached masses, and in view of the close parallelism

which we have discovered between the two-dimensional and the three-

dimensional problems, it seems highly probable that the three-dimensional

series also will end by a similar fission into detached masses.

* For greater detail, see Phil. Trans. 200 A, p. 100.
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Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.



CHAPTER VI

MOTION WHEN THERE ARE NO STABLE CONFIGURATIONS
OF EQUILIBRIUM

117. The result obtained in the last chapter for the rotational problem
combined with those previously obtained in Chapter III for the tidal and

double-star problems, has now established that

In all the three problems under consideration there are no figures of stable

equilibrium except ellipsoids and spheroids.

In each of these problems the succession of states has been determined

by the continuous variation of a parameter the angular momentum in

the rotational and double-star problems, and the distance R in the tidal

problem. And in each case it is quite possible for this parameter to vary

to beyond the limits within which stable configurations are possible. We
must accordingly try to obtain what information we can as to the changes
to be expected after this limit is passed.

Poincare*, writing with special reference to the rotational problem, re-

marks that if the pear-shaped figure proved to be unstable,
"
la masse fluide

devrait se dissoudre par un cataclysme subit." The pear-shaped figure has

now been proved to be unstable, and we must examine the nature of the

cataclysm. The situation is similar in the two other problems; when the

two masses concerned in either approach one another to within less than

a certain distance no configurations of stable equilibrium are possible, and

a cataclysm occurs.

The term cataclysm provides a convenient name for the events which

take place when stable equilibrium becomes impossible, but we must notice

that mathematically nothing more sensational happens than that a statical

problem gives place to a dynamical one. A statical problem may or may
not admit of solution, but a dynamical problem must always have a solu-

tion. Equations of motion which cannot be satisfied with the accelerations

put equal to zero, necessarily admit of solution when the acceleration terms

are restored.

We now consider the three problems in turn, beginning with the tidal

problem.

* Letter to Sir G. Darwin, quoted in the latter's Coll. Works, in. p. 315.
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I. THE TIDAL PROBLEM

118. In the tidal problem there is no point of bifurcation at the

stage at which instability sets in. We have seen that there is a series

of spheroidal configurations which are thoroughly stable for eccentricities

from to '882579, but are unstable beyond. The vibration for which insta-

bility sets in is one in which the figure remains spheroidal but its eccen-

tricity varies.

We shall now find that when, as assumed in Chapter III, the tide gene-

rating potential reduces to the simple form

there is a possible motion in which the boundary remains spheroidal through-
out

;
the question of whether this motion is stable, as well as that of what

modifications are introduced when the tidal potential does not reduce to this

simple form, will be discussed later.

119. Let us consider the possibility of the general ellipsoid

being a boundary for the fluid mass when in motion. The rates of change
of a, b, c will be denoted by a, 6, c. At every stage of the motion we must

have
abc = r 3

,

so that we necessarily have

And on again differentiating with respect to the time we obtain

a b c d2 62 c2

The velocity-potential of the motion, if the fluid is still assumed incom-

pressible, is given by*

..................... (345),a c

this satisfying the requisite condition V 2 4> = in virtue of equation (348).
The velocity v at any point is accordingly

*
Lamb, Hydrodynamics (4th Edition), 110.



118, no] The Tidal Problem 119

and the pressure at any point will be given by

,....(347).
V U /

The function

...(348)
p \g? o* c*

is a linear function of #2
, y

2 and z*. It can accordingly be made a spherical

harmonic by assigning a suitable value to &
',
and on operating on the func-

tion with V 2
,
the requisite value for 6' is found to be given by

2 1 fa. I ON ,/l 1 IN
(349)abc ^Trpabc \a b

Now during the motion of the spheroid, the pressure over the surface

will be uniform at each instant*, so that the function (348) must be con-

stant over the surface at each instant. If we assign to 8' the value given

by equation (349), the function (348) is a spherical harmonic, so that being
constant over the surface of the ellipsoid, it must also be constant throughout
its volume, and hence the coefficients of #2

, y
2 and z* must vanish separately.

Equating these to zero, we obtain the system of equations

(350),
2jrpabca Trpabc a2

"

c"
A '/^-+l.-Ai-Ti (351),

%7rpabc c
2

-rrpabc c2
'

On adding corresponding sides of these three equations, we again obtain

equation (349) which determines 6', so that the three equations (350) to

(352) contain within themselves the necessary and sufficient condition that

the pressure shall remain uniform (or zero) over the boundary throughout
the motion. The equations are equations expressing d, b and c in terms

of the configuration at any instant
; they may accordingly be regarded as

equations of motion for the ellipsoid (343). Naturally they reduce to the

statical equations (78) to (80) when the ellipsoid is at rest.

Clearly the relation between 6, as given by equation (81), and &', given by

equation (349), is

"-i^ + n+ll (353)

by equation (344). Thus 6' becomes identical with 6 when there is no

motion, or when the figure is instantaneously at rest, so that d = b = c

*
It will be seen that the method we follow is that of Dirichlet, Gott. AMand. 8 (1860), p. 3,

or Coll. Works, n. p. 263. See also Lamb's Hydrodynamics (4th Edition), p. 689.
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120. Multiplying equations (351) and (352) by b, c and subtracting,

I"/* (X-6c)rfX M
<T|

''[Jo (&
2

+X)(c
2 +X)A

+
*7r^&~c~

f

~Fc
'

The integral in this expression may be positive or negative, but the

integral plus 6/bc is found to be always positive.

Since equation (353) has shewn that 6' is always positive, it follows

that the expression in square brackets in equation (354) is always positive,

so that this equation assumes the form

72

3- (b c)
=

(b c) x (a positive quantity) ......... (355).

This shews that any initial inequality in b and c gives rise only to

oscillations about the value b c = 0. We may therefore suppose henceforth

that b = c throughout the motion.

121. Putting b = c, equation (351) becomes identical with equation (352).

From equation (353) we obtain

a Trpabc (0' 0) [c ^Trpabc (6'
-

0)~\ /QK\
k ~ = ~ ~

(oov).
a a2

[c c2

Denoting each member of this equation by 77, equations (350) and (352)

assume the forms

r ~

Trpabc a2

1

~
i

-pabc c2

which are exactly identical with the statical equations (78) and (80) of

Chapter III except that
//,

has become replaced by /*, 77.

Hence, exactly as in equation (85), it follows that

(e) .............................. (359),
Trp

where

The values of the semi-axes of the spheroid are

so that the value of 77 is found from equation (356) to be

ad-cc 1 ./- 21 -5e2

\~|
* - 2u + c'

=
3(1 - #) [**

+ e V +
3 (1

- #) (3
-
f))\

' ' < l>
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Equation (359) may now be put in the form

When
IJL

is given as a function of the time, this becomes_an equation

of motion for e, and so enables us to follow the. changes in the shape of

the spheroid. The equation cannot be completely solved, but the general

character of the motion is easily traced out.

122. To represent roughly the approach and passage of a second star,

we may suppose //,
to start from a zero value and increase slowly at first

but afterwards more rapidly. The initial conditions will be e = and e = 0.

So long as e is so small that its square may be neglected, equation (362)

reduces to

ee = 37rp(l-e*)(^
- F (e)} .

\7Tp
^

J

Provided that
/JL changes slowly, the solution will remain very close to

that of

so long as this equation has a solution i.e. so long as
//,

is less than "12
0777).

But as soon as
//,

exceeds this critical value, f^/Trp F (e) can no longer

vanish or remain small, so that no matter how slowly //, increases, e becomes

finite and e
2

necessarily becomes appreciable. The eccentricity now increases

rapidly, its changes being given by equation (362). This determines the

dynamical motion which occurs when statical configurations of equilibrium

are no longer possible, and we see that it consists of a passage along the

unstable series of spheroids, the rate of motion being determined by equa-

tion (362).

When
fj,

increases more rapidly, there will be no sharp change in the

character of the motion on passing the critical value
//,
= '125^; the statical

and dynamical parts of the motion merge imperceptibly into one another.

In either case equation (362) shews that the motion may or may not pass

the value e 1. In the latter case e increases until a "
turning point

"
is

reached, defined by e = 0, after which it decreases, ultimately coming back

to rest at the value e when dissipative forces are present. At the turning

point e is negative, so that equation (362) shews that
//.
must be less than

7rpF(e) and therefore a fortiori less than the maximum value of TrpF (e)

which is '125^/0. Thus e goes on increasing not merely while p is increasing

but also through the whole period in which /u
> 'I257rp.

123. A case in which the motion can be fully determined, and is more-

over of great importance, is that in which ^ increases and decreases with

great rapidity, so that the primary is
"
impulsively

"
set into motion before
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it has departed far from its original spherical shape. Thus during the short

interval in which /x is finite, we have approximately e = and a = c.

It follows, from equations (359) and (361), that at any instant during

this interval,
a c

where r is the mean radius. Integrating through the interval in which
/JL

is

appreciable, say from to r, we obtain

a c 3r I pelt,
Jo

where a and c are the velocities at the end of the interval in question. We
also have d.-f- 2c = from the condition of constancy of volume, so that

-=-- = 2 (

T

fidt (363).
n r Jo

Each fraction is equal to fee, so that these equations give the value of e,

and therefore the kinetic energy, at the instant t = r. The subsequent

motion is of course one under no applied forces, with this assigned amount

of energy, and so can be completely determined.

The energy equation is readily found to be*

|(3
_
<) (1

- #)-**# = 6
[//*]'

- 4*P
J2

- (

=/- log \

and the turning points, at which e = 0, are accordingly determined by

We may notice that if I pelt > ($7rp)* ,
there will be no turning point

and the motion will overshoot the value e=l. But we shall immediately

see that such motions as this cannot occur, for instability will be set up
before the value e = 1 is reached.

124. We have seen that a motion which satisfies the dynamical equations

is one in which the figure remains always spheroidal, the velocity potential

being given by

(365)

in which b and c remain equal. This motion has not however been shewn to

be stable.

* For details, see Memoirs R.A.S. Vol. 72 (1917), p. 19.
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To examine the stability of the motion, we compare it with a slightly

varied motion in which the boundary varies slightly from the ellipsoidal

shape. Let us assume at any instant that the boundary is

(366)

and that the velocity potential is < + M*, where <3> is still given by equa-
tion (365).

Assuming \P" and -^ to be small, we find, from a consideration of the

normal velocity at a point on the boundary,

, o/^9^ y W z m\=2 - ^- +f - +- -^- (367),
\a? dx b2

dy c
2 dz J62

'by c
2

c)z

so that ^ is algebraically of the same degree as ty.

Let us use Plt P2 >
... to denote products of powers of a?, y, ^ say

and suppose that values for M* and ^ are

^ =^^ + ^^2+ (368),

y>-=q 1Pl +q9Pa + (369),

then, on substituting into equation (367) and equating coefficients, we obtain

1=2^, etc (370),
where

The components of the total velocity v at a?, y, z are

a a^- x - etc.,
a ox

so that

3^ c 9^\
y-7r- + -^-5-),
^9^ c d* J

where u is the velocity when ^ = 0, given by equation (346). Just as in

119, the pressure can be made constant over the surface by satisfying

4> + V + Vb

= -
Trpabc B

f/ -
2
+ + -^^-l + ^ cons.......(372),

\0t 00 /

where 6" is a new constant.

We have already seen ( 120) that the motion is stable as regards ellip-

soidal displacement, so that we may suppose that M* and ty are free from
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second degree terms. The potential Vb at the boundary may be put in the

form

where (Vb\ is the potential when ^r
= 0, arid ( F&)^ represents the terms

in ^ which are of degrees 1, 3, 4, ....

Equating terms of degree 2 in equation (372), we obtain

++ ......(373).

On equating separate coefficients of a?, y
2- and z* we obtain precisely our

previous equations (350) (352) except that 0" replaces &. On adding

corresponding sides we obtain equation (349), with 0" replacing 6'. Hence

6" must be the same as our former ff, and it appears that the changes in the

fundamental spheroid will be just the same as in the former problem in

which
-\Jr

was absent.

On subtracting corresponding sides of equations (373) and (372), we find

Using the values of M* and ty already assumed in equations (368) and

(369), we have

In ( Fj)^ the coefficient of Pl may be supposed to be

Thus on equating coefficients in equation (374) we obtain a system
of equations of which a typical one is

l ...(375).

This and equations such as (370) are the equations of motion giving

changes in the p's and
<?'s.

From them the stability of the motion may be

determined.

Eliminating p l from equations (370) and (375) we find

125. In general these equations are so complicated that no progress
can be made. We have, however, seen that the changes in a, b, c are the
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same as if the figure had remained strictly spheroidal, so that the motion

may be supposed to be accompanied by an increase in the eccentricity e

until a turning point is reached at which e = and a = b c = 0. At this

point equation (376) assumes the simple form

............ (377),

since we have seen that 6' becomes identical with 6 at the turning point.

The stability or instability of the motion at the turning point depends
on the signs of d2

ql jdt
2
)
and since the factor sl is, by its definition, always

positive, these signs are those of the right-hand members of equations such

as (377). But the right-hand members of equations (377) are exactly the

quantities of which the vanishing determines the points of bifurcation on

the spheroidal series. They are all negative so long as no point of bifur-

cation has been passed on the spheroidal series, and one of them changes

sign at each point of bifurcation.

The first point of bifurcation, as we have seen ( 85), occurs when
e = -947741, and corresponds to a third, harmonic deformation. If the

turning point, at which e = 0, occurs before e has reached the value "947741,

then the right-hand members of all the equations such as (377) will be

negative at the turning point, so that the dynamical motion will be stable

up to the turning point and also in returning, and the mass will sink back

into a spherical configuration.

But if the turning point occurs just after e has reached the value '947741,

the dynamical motion at the turning point will be unstable through a third

harmonic displacement. Thus after passing the point of bifurcation a third

harmonic displacement will appear and will increase very rapidly, at least

until after the eccentricity has again diminished to below '947741, at which

stage the third harmonic vibration will again become stable, so that what-

ever third harmonic displacement there may be will oscillate and finally

disappear. The condition that the mass shall depart from the spheroidal

form is thus seen to be that the turning point shall occur for a value of e

greater than '947741.

The intensity of tidal action necessary for this to occur can be determined

accurately in two cases (i) when //, changes very slowly, (ii) when p changes
so rapidly that the tidal action may be treated as

"
impulsive."

When
fju changes very slowly, any value of //, greater than '125504 TT^

will suffice to set up dynamical motion and e will continue to increase until

after /n has again receded below the value '125504 wp. Hence when
//- changes

very slowly the eccentricity will pass above '947741 if
fju

exceeds '125504 TT/O.

In this
//,

stands for M'/R
S
,
where M' is the mass of the tide-raising body
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\

and R its distance. The critical value of R, as we have already seen

(equation (86)), is

R = 21984 f T r (378).\MJ
When

fju changes so rapidly that the forces may be regarded as impulsive;

the turning point is determined by equation (364), and it is found that this

will lie beyond the critical eccentricity '947741 if

Left > 0-675/5* (379).

126. In general we must contemplate not only cases in which the

spheroid runs over one point of bifurcation before reaching the turning point,

but" also cases in which it runs over several points of bifurcation. Some-

where near eccentricity e = "9477, a third harmonic displacement will become

unstable, and the spheroid will give place to a pear-shaped figure. A furrow

will develop near the middle plane of the spheroid and this will increase

rapidly (approximately exponentially) with the time. But meanwhile the

eccentricity of the spheroid may continue to increase, and it may be that

before the pear-shape is much developed, a second point of bifurcation will

be reached, namely that corresponding to a fourth harmonic displacement.

At this stage two new furrows begin to form, but these, like the former

pear-shaped furrow, will be forming in a spheroid which may simultaneously

be elongating itself with considerable velocity. When, or if, the next point

of bifurcation is reached, three more new furrows may begin to form, and

so on.

Fig. 23 shews rough drawings (partly conjectural) of spheroids with the

furrows produced on passing the earlier points of bifurcation. Little doubt

will be felt that such figures will in time break up into a number of separate

detached pieces.

127. So far we have been considering only an idealised mathematical

problem ;
in nature there will be innumerable complications, and we must

try to calculate the effect of the more important of these.

We have supposed the tidal potential to be M' (x
2

^y*- %z
z
)IR\ which

is the potential either of a spherical mass, or of a mass of any shape at a

great distance. In an actual problem the potential will be more complicated

than this, for not only will the secondary mass not be spherical but the

shapes of the primary and secondary will influence one another, as in Darwin's

problem considered in 60. It is however not difficult to shew* that in

the most general case the motion is, in its main characteristics, entirely

similar to that just discussed. The numerical results are slightly altered,

* The question is discussed in detail in a paper
" The Motion of Tidally Distorted Masses,"

R.A.S. Memoirs, Vol. 72.
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EXPLANATION.

(a) Undistorted sphere, and longest spheroid which is statically stable.

(b) Longest spheroid which is dynamically stable, and pear-shaped figure derived by third

harmonic displacement.

(c) More elongated pear-shaped figure, and figure derived by fourth harmonic displacement.

(d) The last figure more elongated, and with fifth harmonic displacement surperposed.

(e) Conjectural drawing of subsequent configuration.
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but the alteration is so slight as to be of no importance within the limits of

accuracy which are required for cosmogonic discussions.

128. A more important matter is that we have in effect supposed the

tide-generating mass to move forward and then backward along a line (Ox)

through the primary, which has in consequence always been an axis of sym-

metry. In nature the tide-generating mass will not in general approach
the primary along a line through its centre; indeed if it did a material

collision would occur, and the course of events before this collision took place

would be relatively unimportant.

We must examine what happens when the tide-generating mass passes

by the primary in an orbit which does not involve a material collision. Let

us examine the motion in three cases, in which the tide-generating body
moves (i) exceedingly slowly, (ii) exceedingly fast, (iii) at an intermediate

rate.

129. When the motion is exceedingly slow an equilibrium theory, such

as has already been developed, will give approximately accurate results if the

major-axis of the primary is supposed always to point to the secondary.

A slow rotation will of course be set up in the primary and this will slightly

alter its shape, but in a search for the general characteristics of the motion,

such as we are now engaged in, small effects of this kind are not worth

delaying over.

130. When the motion of the tide-generating mass is exceedingly rapid,

we may treat the tidal forces as
"
impulsive

"
as has already been done in

123. A tide-generating potential fl acting for an interval dt will set up in

the primary a system of impulsive velocities which may be derived from a

velocit}
7
potential ldt. Thus if the tidal forces act only for a short interval

from to r, they will set up impulsive velocities which will be derivable

from a velocity potential <I> given by

-0= fldt.

To examine the general effect of the motion of the tide-generating mass,

it will be sufficient to consider the simplest case. We shall accordingly

suppose the tide to be raised by a point or sphere of mass M' .

Let v denote the velocity of the secondary mass at any instant. Then in

any interval dt, the secondary moves over a distance of path da = vdt The

contribution to <I> is

but may also be expressed as

M'
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and so may be regarded as the potential of a line density M'/v spread along
the path of the secondary. The whole value of 4> is accordingly equal to

the gravitational potential of a line density M'/v spread along the orbit of

the secondary. To an approximation we may neglect all parts of the orbit

except that near perihelion, so that the value of <$> will be~th"e potential
of a straight rod of line density M'jv, where v is the velocity at or near

perihelion.

If R denote the distance at perihelion we readily find

where a, y, z are rectangular coordinates having the centre of the primary
as origin, and the path of the secondary at perihelion is along the line

#=:.#0)
= 0.

In this velocity potential the constant term does not affect the motion
;

the second term sets up a uniform velocity ^M'/R^v which does not alter the

configuration of the primary.

The third term gives rise to impulsive velocities deducible from a velocity

potential

(381).

Now the impulsive velocities discussed in 123 were deducible from a

velocity potential (cf. equations (345) and (363))

-9*

so that the two sets of impulsive velocities will agree if

M'
(382)'

The final term on the right of equation (380) indicates a tendency for

the axis c to shorten while the axis b lengthens, just as would happen if the

system were in rotation. There cannot ultimately be rotation in this case for

the tidal couples from the two halves of the orbit of the secondary exactly
neutralise one another

;
it therefore appears that the values of b and c will

oscillate about the value b = c, as in 120, and under the influence of

viscosity the figure will ultimately resume its spheroidal form.

Thus, neglecting terms in 1/^
3 etc. it appears that the motion will be

the same, except for the preliminary oscillations in the values of b and c, as

j. c. 9
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that already discussed ( 123) in which p was supposed to act impulsively,

and the motions will agree quantitively if / fidt is supposed given by equation

(382). From equation (379). it appears that the spheroid will lengthen to

beyond the critical eccentricity '947741, and so finally depart from the

spheroidal shape, if

...........................(383).

This criterion only holds in the special case in which the tidal forces

satisfy the condition we have described as
"
impulsive." This requires that

the tidal forces shall come and go before the spheroid is much different from

a sphere. From equations (363) and (382) it is clear that at the end of the

action of the tidal forces, the velocity a of the end of the major-axis is

given by
a =
a
"

R<?v
'

The time during which the tidal forces are appreciable will be of the

order of 2R jv, so that if rQ + 8a is the length of the semi-major-axis at the

end of the encounter we have, as regards order of magnitude,

Let us now agree conventionally to define the action of tidal forces as

"impulsive" when Ba is less than r
,
so that 8b and c are of course less than

j^rv With this conventional definition it appears that an encounter will be

impulsive if
z
.............................. (384).

We see that all encounters at great distances satisfy the condition of the

tidal forces being impulsive. Considering in detail an encounter in which

M '

is equal to the sun's mass (2 x 1033

grammes) and in which the two stars

pass with a relative velocity of 40 kms. a second, we find that the action

will be impulsive if the distance of closest approach ,R is greater than

8 x 10 13
cms., which is about the distance of Jupiter from the sun. Having

regard to astronomical scales of length we may say that all encounters of

stars having masses comparable with that of the sun are impulsive except

the very closest ones.

131. Nevertheless we cannot advance far in our cosmogonic problem so

long as we consider only purely transitory encounters, and we must try to

examine the effect resulting from the actual finite duration of tidal forces.

It is difficult to obtain definite or exact results, but the general nature

of the motion can best be seen by thinking of the tidal body as moving too
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quickly for the series of equilibrium configurations discussed in 122 to be

able to keep pace with its motion.

There will be a lag in the orientation of the primary so that its major-
axis may be expected to point to some position such as T* in fig. 24, when
the tide-raising mass is actually in

a position such as T at a distance /

ahead of T '.

The potential of the tide-gene-

rating mass at T' would be fl = M'jr
where r is the distance OT', but the

true potential produced by the mass

actually at T is
Fig '

The correction which has to be introduced is that arising from the last

term. For simplicity the primary may be regarded as a chain of matter

lying along the axis of a?, and the effect of the correction is to introduce

a force of amount M'l/r
3
per unit mass perpendicular to the axis of a\

Replacing r by its value R x, we find

M'l M'l

The first term will produce a uniform acceleration M'ljR* along the axis

of y. Combining this with the acceleration M'jR? towards T which the

primary has so far been supposed to have, we obtain a resultant acceleration

AT/R* towards T.

The remaining terms on the right of equation (385) set up various

distortions. The second term sets up a uniform rotation at a rate 3M'l/R*

per unit time
;
the third twists the major-axis of the primary into a piece of

a parabola, the next superposes a cubical distortion, and so on. It can be

readily seen from equation (385) that the combined effect of all these dis-

tortions will be to set up such a motion that initially the axis of the spheroid

is bent to the shape of a piece of the curve y = I/a?
3

, a curve shaped some-

what like a boomerang; there seems to be no tendency for the axis of the

primary to assume the shape of a logarithmic spiral, which is the observed

shape of the spiral nebulae.

This last result has an obvious bearing on the tenability of the
" Planet-

esimal Theory" of Chamberlin and Moulton, described in 15.

92
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II. THE ROTATIONAL PROBLEM

132. The diagram of the equilibrium configurations of a rotating mass

of incompressible liquid has been seen to be of the type shewn in fig. 25. At
first the mass moves along the series of Maclaurin spheroids SM until it

comes to the point of bifurcation M. At this point the Maclaurin spheroids
lose their stability, and the motion proceeds along the series of Jacobian

ellipsoids MJ' until the point of bifurcation J is reached. At this point the

Jacobian ellipsoids lose their stability. The second series through J is, as

we have seen, a series of pear-shaped figures such as JP in the diagram. The

s

Fig. 25.

angular momentum of these figures decreases as we proceed along the series

from J, so that the series is unstable and the curve JP turns downwards in

the diagram after leaving J. Thus there is no stable configuration beyond J,

and dynamical motion of some kind must occur as soon as shrinkage has pro-

ceeded so far that the angular momentum is greater than that represented

by the point J.

In the tidal problem we saw that the dynamical motion, when it occurred,

was along the unstable series through the point at which the dynamical
motion commenced. In the present problem such a solution is impossible,

since the angular momentum must remain constant through the dynamical
motion and equal to that at J.

Judging from the analogy of the two-dimensional problem, we may be

fairly confident that the series of pear-shaped figures JP ends in a configura-

tion P at which the mass divides into two parts, and so may be regarded as
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two separate masses just in contact. This configuration belongs not only to

the pear-shaped series of figures but also to one of the double-star figures

investigated by Darwin ( 60 65). It forms one of a series of figures PQR
of which the remaining members consist of double-stars rotating at different

distances apart. If Q is the figure of least angular momentunrrw^ know that

configurations on the branch PQ including P are unstable, while configura-

tions on the other branch QR are stable. Besides the series PQR, which is

continuous with the pear-shaped series, there are an infinite number of other

series of double-star figures, corresponding to all possible values of the ratio

of the masses.

133. In the light of this knowledge we may examine what motion is to

be expected in a Jacobian ellipsoid which has reached the point at which

secular instability sets in.

In
fig. 26 let JJ' represent the series of stable Jacobian ellipsoids in the

neighbourhood of the point of bifurcation J. For any configuration within

the range //', the third harmonic

(pear-shaped) vibration is stable both

ordinarily and secularly. Thus if any ^
small pear-shaped vibration is set up /
when the mass is in a configuration

such as A
y
the representative point j

\
\

/

B" \ D

A"

will oscillate backwards and forwards '

through some small range such as '

AAA" until the vibration is damped -

by viscosity. If the vibration is set

up when the representative point is

at some point B close to /, there may
Fig. 26.

still be oscillation through a small

range, but the motion can only be stable if this range is less than the range
B'B" in

fig. 26. For the point B" represents a secularly unstable configura-

tion, so that if the representative point once passes beyond B", on the

line BB"D, it will not return but will describe some path such as BB"D
in the plane through B.

As the point B approaches J the range of vibration which is possible

without instability setting in becomes smaller and smaller and finally vanishes

altogether, so that in the limit any disturbance, no matter how slight, causes

the representative point to move permanently away from the line J'J. The

path of this point is necessarily in the horizontal plane through J, and we

know that the direction of this path initially is that of the tangent JL at J

to the pear-shaped series JB". In other words the motion is one in which a

furrow first forms on the ellipsoid, as in fig. 14, and this furrow continually

deepens.
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It seems likely that this furrow will deepen until the mass divides into

two parts. If so the motion, which must be in the plane JL in fig. 25, may
end by the representative point coming to rest at some point such as L on

one of the stable double-star figures which consist of two stars revolving
about one another. Thus the "

cataclysm
"
which must occur when the repre-

sentative point reaches the configuration J may be represented by a jump
of this point from J, the highest stable configuration on the ellipsoidal series,

to L, a configuration of equal angular momentum on one of the double-star

series.

Some of these double-star series do not possess stable configurations

having angular momentum equal to that of the critical Jacobian ellipsoid /.

Denoting this latter angular momentum by 0'3898, so as to conform to the

measurement of angular momentum used in our tables on pp. 39 and 40, I

find the following angular momenta for Darwin's figures of limiting partial

stability tabulated on p. 63*.

M'lM 0-33 0-4 0-5 1-0

Ang. Momentum = 0110 0'390 0'413 0'440 0-481

Since all stable figures for which M'\M > 0'33 have angular momentum

greater than that of the critical Jacobian ellipsoid, it is evident that an

imcompressible mass cannot divide by fission into two masses more nearly

equal than 3:1. This theoretical upper limit of W/M for incompressible

masses is just about equal to the observed lower limit of M'jM for actual

masses (cf. 2), but compressibility may tend to equalise the ratio of the

masses.

We have so far supposed that the two masses will assume a position

of relative rest, rotating as a rigid body. Other possibilities, such as that

of the masses describing non-circular orbits about one another or of the

periods of rotation and revolution not coinciding, ought also to be considered
;

for convenience this is deferred to Chap. XI.

III. THE DOUBLE-STAR PROBLEM

134. We found in 58 that in Roche's problem of an infinitesimal

satellite revolving in a circular orbit about a massive primary, there is a limit

of closest approach within which no stable configurations of equilibrium exist

for the satellite. Thus if a small satellite falls, or is in any way driven, into

a certain sphere surrounding its primary, its configuration will become un-

stable and dynamical or cataclysmic motion must ensue. We have further

seen in 60 65 that in the more general double-star problem a precisely

similar situation arises, and it will be clear that the dynamical motion in

* The last figures cannot be guaranteed as I have assumed for 1 + f the uniform value 1-06

from M'/M= 0-4: to M'/M=l. The entry corresponding to 3/'/3/=0-33 is obtained by inter-

polation.
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this more general problem must in its general features be very similar to that

occurring in the simpler problem of Roche.

135. The general nature of the motion can be seen from considerations

precisely similar to those brought forward in considering the- dynamical
motion in the rotational problem ( 133).

Let POP' (fig. 27) represent the series of configurations possible for the

satellite, the branch PO being stable,

the branch OP' being unstable, and |P P'J

the point representing the configura- \
j

tion of limiting stability.
* '

When the configuration is repre-
A-VV

sented by a point such as A on the >yC C' xx,/

stable branch, a small displacement ^ f

will result in stable oscillations

through some small range A'AA".

When the representative point is at C the range of stable oscillations is

very small, and an oscillation of range greater than C'CC" will be un-

stable. Finally at any oscillation at all will result in an unstable motion

which will initially be represented by motion in a direction 00 ', and so

will consist of an elongation of the ellipsoidal figure of the satellite.

The tracing out of this motion must present a problem very similar to

that already discussed in the tidal problem in 118 131 ; unfortunately
the presence of rotation makes it impossible to obtain exact results. But a

good deal of the motion is disclosed by a study of general principles.

The radius of the orbit is determined by the same equation as it would

be if the whole mass of the satellite were concentrated at its centre of mass.

The satellite may be thought of as consisting of two halves H and H', the

former being nearer to the primary than the centre of mass and the latter

further away. If it were not for the presence of H', the half H would be too

near the primary for a circular orbit to be possible under the prescribed

rotation
; equilibrium is maintained by the gravitational pull from H' which

neutralises part of the attraction of the primary on H. Similarly it is only
the gravitational attraction ofH which makes a circular orbit possible for H'.

When the configuration reaches limiting stability at the point 0, a rapid

elongation of figure begins, and this lessens to gravitational attraction be-

tween H and H'. The immediate result is that H is drawn in closer to the

primary, while H' is driven further away. At first this motion is only another

representation of the elongation of the figure of the satellite, but it is clear

that this elongation cannot continue for ever a long thin filament of matter

must be unstable under all conditions. Thus the satellite must before long
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break up into detached masses, much as it was seen to do in the tidal problem,

and of these the innermost will fall in towards the primary while the outermost

will recede from it. If we think of these fragments as ultimately describing

elliptic orbits, the point at which instability sets in will approximately coincide

with the aphelia of the inner pieces and with the perihelia of the outer ones.

If no change of density takes place in the matter of the satellite, the

orbits of the inner fragments will all be within the radius of limiting stability,

so that for each fragment the same process must repeat itself indefinitely, a

limit only being reached when the fragments are so small that their chemical

cohesion is able to defy the disruptive effects of gravitation and rotation.

The outer fragments, on the other hand, will describe orbits which will all lie

outside the radius of limiting stability, and so they will not suffer further

disintegration at first. But the perihelia of these orbits are already very

close to the sphere of limiting stability, and if the agencies which drove the

original satellite inside this sphere are still operative, it may be expected that

before long the new satellites also will be driven in and broken up in turn.

136. If the matter of the satellite is even slightly compressible, and

therefore liable to changes of density, an entirely new feature presents itself.

For the initial elongation of the satellite when the configuration of limiting

stability is reached will be accompanied by a rapid diminution of pressure in

the interior of the satellite, and therefore by a rapid diminution of average

density. The radius of the sphere of limiting stability is however a function

of the density p of the satellite (cf. equation (65)), its radius varying as

p~ . Thus the elongation of the satellite will be accompanied by a rapid

expansion of the sphere of limiting stability; when the satellite breaks into

fragments all these will be within the new sphere of limiting stability, and

the process of breaking up will repeat itself indefinitely.

Whichever way we approach the problem, the final result of the motion

must be a ring of broken fragments, each fragment being so small that

its forces of cohesion can resist the mechanical tendency to disintegration.

Roche has suggested that Saturn's rings may have formed in this way, a

suggestion borne out by the following figures :

Radius of Saturn's outermost ring = 2'30 radii of Saturn.

orbit of Saturn's innermost satellite = 3'07

Jupiter's
= 2'o5 Jupiter.

Mars' =2-75 Mars.

Roche's critical radius, it will be remembered, has been found equal to

2 '45 radii of the primary when the densities of primary and satellite are the

same.
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SUMMARY OF RESULTS

137. At this stage we leave the problem of the motions of an incom-

pressible homogeneous mass of fluid. Before passing on to the jiext problem
it may be of value to summarise, in the briefest and broadest manner

possible, the results which have been obtained.

We have had three distinct problems under discussion I. The Tidal

Problem, II. The Rotational Problem, and III. The Double-star Problem.

In the Tidal Problem we have studied the motion of a primary mass as

tides are raised in it by the continued approach and ultimate recession of a

secondary mass.

In the Rotational Problem we have studied the motion of a single mass

rotating freely in space, the rotation increasing as the mass cools by
radiation.

In the Double-star Problem we have studied the motion of two stars

revolving round one another, a secular change being supposed to occur in

their distance apart.

In all three problems we have found that the motion will consist of two

parts. The first may be described as
"
statical

"
or " secular

"
;
the second

may be described as "dynamical" or "cataclysmic."

In the Rotational Problem and in the Double-star Problem, there is a

quite precise demarcation between the two types of motion. In the Tidal

Problem, the two motions may gradually merge into one another, although
here also there may be a precisely defined point of transition.

In all three problems, the statical motion has been found to consist of a

slow secular change of shape in which .the body under consideration remains

always of a spheroidal or ellipsoidal shape, except that in the tidal and

double-star problems (in which two masses are involved) the spheroidal or

ellipsoidal shape of the primary may be slightly distorted by tides of third

and higher orders raised by the secondary mass. In the Tidal Problem, the

motion is through a series of prolate spheroids ;
in the Rotational Problem

the motion is first through a series of oblate spheroids (Maclaurin's spheroids),

and then through a series of ellipsoids (Jacobi's ellipsoids) ;
in the Double-

star Problem the motion is through a series of ellipsoids.

In all three problems, dynamical motion supervenes when the prolate

spheroid or ellipsoid reaches a certain elongation. The motion results in

the formation of a furrow or system of furrows on the elongated mass. In

the Tidal Problem the furrowing process does not commence immediately,
and there may be any number of furrows formed. In the two other problems,
the furrows start to form at once and only one furrow is formed.
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The final result of the dynamical motion appears in every case to be

fission into detached masses, although a rigorous mathematical proof of this

has not been obtained. In the Tidal Problem any finite number of detached

masses may result (cf. fig. 23, p. 127); in the Rotational Problem the mass

appears to divide into two bodies of unequal size (cf. figures on p. 116); in

the Double-star Problem the mass breaks up into a very great number of

small masses.

Hence it appears highly probable that tidal-action may produce systems

such as are seen in our own solar system and in the systems of Jupiter,

Saturn, etc.; that increasing rotation may produce systems such as are seen

in ordinary binary stars
;
and that the close approach of two stars revolving

about one another may produce systems such as Saturn's rings and possibly

the asteroids also. We shall investigate these conjectures more fully in sub-

sequent chapters ;
before doing so we attempt to gain some knowledge of the

motion of compressible and non-homogeneous masses.



CHAPTER VII

THE MOTION OF COMPRESSIBLE AND NON-HOMOGENEOUS
MASSES

GENERAL THEORY

138. So far we have discussed only the behaviour of masses of perfectly

homogeneous and incompressible matter. In so doing we have followed

the classical line of development, based upon the researches of Maclaurin,

Jacobi, Poincar6 and Darwin. Astronomical matter must however be highly

compressible and far from homogeneous, so that the question of how far we
are justified in attributing to real astronomical matter the behaviour which

is found to occur in ideal incompressible masses is obviously one of great

importance. In the present chapter we shall develop a general theory of the

configurations of equilibrium of compressible masses, and shall in particular

attempt to examine in a general way the effect of compressibility in intro-

ducing departures from the motion predicted by the incompressible model

which we have so far had under consideration.

139. If p is the pressure at any point x, y, z of a mass rotating with

angular velocity about the axis of z, the equations of equilibrium will be

<386>>

(387),

in which V is the potential of the whole gravitational field of force, including
tidal forces if any are present. Thus we may write

V=VM +VT ........................... (389),

where VM is the gravitational potential of the rotating mass under con-

sideration, and VT is the potential of the tidal field.

Writing
H= F+ Jo>

2 <V + ?/
2
) ........................ (390),



140 Compressible and Non-Homogeneous Masses [OH. vn

these equations of equilibrium become

dp dl

= p ............(392),
dy

r
dy

S

/ =p~ ...(393).
dz

r
02

On equating two values of d*p/dyd* we obtain

dp d&_dp 9ft

dz dy dy dz
'

so that

dp dp dp
doc dy dz

...........................(394) '

dx dy dz

It follows at once that the surfaces p = cons, necessarily coincide with the

equipotentials H = cons., and it further follows from equations (391) (393)

that these surfaces also coincide with the surfaces of constant pressure

p = cons. The boundary of the fluid must of course be one of this family of

surfaces, say p = a, and the necessity for the condition that H shall be

constant over the boundary, which has so far been used as the condition for

equilibrium, is at once obvious.

The condition that O shall be constant over the boundary will however

no longer be sufficient to ensure equilibrium ;
it is still necessary but not

sufficient, and equations of equilibrium must be satisfied throughout the

mass.

Masses of Uniform Composition

140. The simplest case arises when the matter is of uniform composition

throughout, so that the pressure is a function of the density, say

?-/</*)

Equations (391) etc. now assume the form

df(p) dp an
o

1^ f = P o etc -

dp ex r ox
If

<f> (p) is defined by

p dp
these become

(395),

_ ,~

dx ox
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so that the equations of equilibrium have the common integral

</>(= + C......................... .....(396),

where C is a constant. At any point inside the mass,

V 2FT =0,
so that, from equation (390),

V2H = 2ft)
3 -

4777) ........................... (397).

Thus on operating on equation (396) with V 2
,
we obtain

= 2ft>
2

........................ (398),

the differential equation which must be satisfied by p for equilibrium to be

possible.

From equation (396) we can obtain p in the form

P

and equation (397) now becomes

= 2ft)
2
........................(399),

the differential equation which must be satisfied by O for equilibrium to be

possible.

141. Let P be any point inside the mass, and let R denote the distance

from P to a variable point x, y, z inside the mass
;
let dS' be an element of

surface of a small sphere surrounding P, and let dS be an element of surface

of the boundary. Then for the value of VM at the point P we have

so that

The integral on the right is of course the potential of a Green's equivalent

stratum; it is a known theorem that the potential of this together with

that of external masses has a constant value inside the surface.
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Since V+ fa
2
(a? + y

2
) is constant over the boundary in a configuration

of equilibrium, the value of VT becomes

For a problem in which VT ,
o> and the shape of the boundary are given,

the value of

is known at every point inside the boundary. It follows that

'dv i .

must be given at all points inside the boundary except for a constant, and

this determines dV/dn at all points of the boundary, except for a constant.

But

[fdV
II to

is given, being equal to 4vr times the total mass of the rotating body, so that

d V/dn is uniquely determined at every point of the boundary.

It follows from equation (396) that under the conditions now contem-

plated, p and dp/dn are determined at every point of the boundary, and

from this and equation (398) it is easy to see that the solution for p is

unique.*

It follows that configurations of equilibrium may be specified by their

boundaries alone, but a more important result also follows. When VT and o>
2

are given and the boundary is given, there will be an endless number of

possible vibrations in which the internal particles move, while those at the

boundary remain in position. The result just obtained shews that none of

these can ever be of zero frequency, so that no points of bifurcation can

occur, and the internal vibrations, if stable in the initial configuration of the

mass, must always remain stable.

From the circumstance that configurations of equilibrium may be specified

by their boundaries alone, it will be clear that the various configurations

must fall into linear series much in the same way as in the incompressible

problem. The configuration for no rotation and no tidal forces will of

course be spherical.

142. In the rotational problem there will obviously be a series, analogous

to the Maclaurin spheroids, in which the boundary is a figure of revolution.

*
It is difficult to construct a rigorous proof, for complications of a mathematical nature

arise. See Proc. Roy. Soc. 93 (1917), p. 416.
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The configurations near to the spherical one are spheroids of small ellip-

ticity, but the series will not remain spheroidal throughout its length. But

the far end of this series is again spheroidal, being in fact identical with the

Maclaurin spheroid for a mass of uniform density <r. Just as in the incom-

pressible problem, this is unstable for all displacements specified by sectorial

harmonic deformations of its boundary*. It follows that, on the series we
are considering, there must be points of bifurcation corresponding to all

sectorial harmonics. The general physical principles explained in 82 lead

us to expect with confidence that the first of these to occur will be that

corresponding to the second harmonic. At this point the circular cross-

section of the figure gives place at first to an elliptic cross-section of small

ellipticity, and the configurations on the new series are analogous to the

Jacobian ellipsoids.

Further, the far end of the series analogous to the Jacobian series is

again identical with that in the incompressible problem, both as regards

configuration and stability, so that again this series must have the same

points of bifurcation as the Jacobian series.

143. Almost identical remarks apply to the tidal problem. Again there

is a principal series of figures of revolution analogous to the tidal spheroids
examined in 49, and again these figures are strictly spheroidal at the two

extreme ends of the series. The stability of the end configuration of this

series a long drawn out line of matter is plainly the same as for the

incompressible mass, so that the same points of bifurcation must occur on

the series.

144. All these statements obviously require slight modification in the

extreme case of cr 0, but except for this case it is clear that the general

arrangement of series and points of bifurcation will be very similar to that

in the incompressible problem. It ought again to be possible to construct a

diagram similar to that of fig. 7 (p. 50) ;
the general arrangement will be

the same but the numerical values different, and the shape of the figures

will of course be different except at the extreme ends of the various series.

Figures of equilibrium which take the place of the spheroidal figures of

the incompressible problem, whether rotational or tidal, may conveniently be

referred to as
"
pseudo-spheroids." Similarly figures which take the place of

ellipsoidal figures of equilibrium may be referred to as
"
pseudo-ellipsoids

''

;

these of course do not enter in the tidal problem, but occur in the rotational

and double-star problems.

145. This general discussion does not touch the question of the stability

of the various branch series; this can only be determined by detailed

*
Of. Poincar^, Ada Math. 7 (1885), p. 259.
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calculations in individual problems. Thus in the rotational problem it is

not possible, from a consideration of general principles, to predict whether

the pseudo-ellipsoidal series will initially be stable or unstable. If in any

problem it is unstable, cataclysmic motion will begin as soon as the first

point of bifurcation on the pseudo-spheroidal series is reached. This motion

will consist at first of an ellipsoidal elongation of the pseudo-spheroid, the

circular cross-sections giving place to elliptical ones, and the points of bifur-

cation on the pseudo-ellipsoidal series will be replaced by
"
dynamical points

of bifurcation" in this motion. In such a case, if ever it occurs, it seems to

be quite possible that the rotating mass may divide up into a number of

detached masses (instead of into only two) very much as in the tidal

problem.

It will, however, be remembered that the angular momentum of the

pseudo-ellipsoidal series is infinite at its far end, so that much the most

likely event is that it increases all along the length of this series
;
in this

case the pseudo-ellipsoidal series would initially be stable. But no such

general consideration can be brought forward in the case of the pear-shaped
series which branches off at the first point of bifurcation, and nothing justifies

us in predicting whether this will in general be stable or unstable. Indeed

it appears to be at least possible that in some problems this series may be

initially stable, a possibility which has been mentioned by Poincare.*

Masses of non-uniform Composition

146. From 140 on, we have assumed the astronomical matter to be of

uniform composition throughout, the pressure being a function of the density

only. When this restriction is removed, the discussion of equilibrium con-

figurations is naturally more difficult.

Suppose that we are dealing with a mass of different types of matter

a, 6, c, ..., these letters referring either to chemically distinct types of matter

or to mixtures of such types in varying proportions.

Consider a special problem in which the values of VT and &> are given,

and in which it is also given that the shells of matter occur in an assigned

order a,b,c, ... from the boundary inwards.

The external boundary will of course be one of the equipotentials H = cons.

The surfaces of transition between the different types of matter will be sur-

faces at which the density changes abruptly. Thus these surfaces will coincide

with surfaces of constant density and hence, by equations (394), they will

coincide with equipotentials H = cons.

* " Sur la Stability de 1'Equilibre des Figures Pyriformes affect^es par une Masse Fluide en

notation," Phil. Trans. 198 A (1901), p. 835.
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As in 141, the values of p and dp/dn are determined at the boundary.
It follows from equation (398) that the arrangement of density is determined

throughout the layer of matter of type a. At the surface of transition to the

next layer, p and dil/dn are continuous, so that p and dp/dn are determined

at the boundary of layer 6, and so also through this layer. Hi fhis way the

configuration can be built up layer by layer, the configuration being uniquely
determined when the order of the layers is determined.

The order of the layers is determined by conditions of stability. We shall

return to a discussion of this matter in the next chapter. For the present
we may notice that any arrangement will be unstable if energy can be gained

by an interchange of any two layers, the instability shewing itself by the

creation of convection currents which result in the actual interchange of the

layers in question. Thus the only arrangement of layers which can be stable

is that for which the potential energy is a minimum. For this arrangement
the results already obtained for a homogeneous compressible mass remain

true ;
in particular the configuration is uniquely determined, and is stable as

regards internal vibrations, when the values of VT and &> and the shape of the

boundary are given.

The Two Mechanisms of breaking up

147. There are two conditions that must be satisfied by a configuration

of equilibrium ;
the equations of equilibrium must be satisfied, and also p

must be positive everywhere. Now the linear series so far discussed have

been series of configurations such that the conditions of equilibrium have

been satisfied everywhere, but we have not introduced the condition that

p must be positive everywhere. Any region on these series in which p is

anywhere negative will represent configurations in which the equations of

equilibrium are satisfied but which are physically impossible through negative

pressures being demanded. Hence if at any point on a linear series the

pressure becomes negative, the series may be supposed to be abruptly termi-

nated at that point : the configurations beyond are of no physical interest.

It is easily seen that p cannot change sign at a point in the interior of

the mass, for p can only change sign by first vanishing, and the points at

which p vanishes determine the boundary. But close to the boundary p can

change sign by passing through a zero value
;
when this happens dp/dn

vanishes at the point of the boundary in question. Thus the normal force

9H/dtt vanishes, which means that the gravitational attraction of the mass is

just neutralised, and ultimately outbalanced, at this point by centrifugal and

tidal forces. When this happens a stream of matter will be thrown off from

the point in question.

j. c. 10
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Clearly it is of the utmost importance to cosmogony to know under what

conditions streams of matter will be thrown off in this way. We have found

two ways in which a mass can break up the one by fission, and the other by
the ejection of streams of matter from a point or points on its boundary. In

an actual astronomical mass, which will happen first ?

This question is one which can only be solved by detailed analysis in

special cases. Now there is an infinite variety of arrangements of compressible

matter possible, while the solution of even a single case is a problem of con-

siderable difficulty and complexity. It therefore behoves us to choose the

special cases which we attempt to solve with skill and care, so as to economise

labour as much as possible.

148. Compressibility of matter is of course associated with variations of

density in the compressible mass, and the greater the compressibility of the

matter, the greater these variations of density will be. In Chapters III VI
we have solved the problem in the special case of a mass having no com-

pressibility and so having no variations of density.

This problem formed in a sense a limiting case of the problem of the

motion of a compressible mass. At the other end of the general problem
there will be another limiting case in which the compressibility is so great

that infinite variations of density may be expected. Mathematically this

limiting case may be specified by the condition that the density is infinite or

zero at different places. Physically, as we shall now see, this limiting case is

not so artificial as its mathematical specification might lead us to suppose.

149. For a mass of gas at rest in isothermal equilibrium, the density at

great distances from the centre falls off' as 1/r
2
. The general law of density

has been obtained by Darwin* and others t. But without detailed analysis

it is clear that, at a sufficient distance from the centre, the law of density

must become |

P = p (a*/r*),

so that, when viewed from a very great distance, the density may be regarded
as infinite at the centre and zero everywhere else. The total mass is how-

ever infinite, so that a finite mass of gas in isothermal equilibrium will be

of zero density everywhere.

Similarly for a mass of gas in adiabatic equilibrium with the ratio of the

specific heats <y equal to 1J, the law of density is

* " On the Mechanical Conditions of a Swarm of Meteorites and on Theories of Cosmogony."
Phil. Trans. 180 A (1889), p. 1, and Coll. Works, iv. p. 362.

f For detailed references see Darwin's paper.

J L. c. p. 377.

A. Schuster, Brit. Ass. Report, 1883, p. 428.
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Again, when the mass of gas is viewed from a sufficient distance, the value

of p becomes infinite at the centre and zero everywhere else. The same is

true for any value of 7 from 1 to 1. The mass is infinite when 7 < 1-J,
but

becomes finite when 7 = 1J.

This same model, in which the density is infinite or very great over a

point or small concentrated area but zero everywhere else, has been largely

utilised by Roche * in his researches on cosmogony. For convenience we may
refer to it as

" Roche's model." Roche interpreted it physically as referring

to a small and intensely dense solid nucleus surrounded by an atmosphere of

negligible density. In Roche's model, the whole of the mass is supposed
concentrated at the centre

;
in this respect it differs from a mass of gas in

isothermal equilibrium, although giving a faithful representation of an

adiabatic mass for which 7 = 1^.

ROCHE'S MODEL

150. We have seen that Roche's model and the incompressible model

form the two limiting cases of the general compressible, mass. The latter has

already been studied in detail
;

it is natural to begin our investigation of the

compressible problem with a discussion of the former.

Roche's model has one great advantage over the incompressible model.

For in studying the configurations and motion of an incompressible mass, one

of the main difficulties was found to lie in the determination of the gravita-

tional potential. Now in Roche's model no such difficulty occurs
;
the mass

is supposed collected at one or more points and the gravitational potential

reduces to M/r, or to a sum of such terms in cases where there is more than

one nucleus. Thus, when there is only one nucleus involved, the quantity
which has been denoted by H assumes the simple form

= + FT + io>
2

(tf
2 + 2/

2

) ..................... (400).

For given values of VT and o>, the surfaces 11 = cons, will be a system of

equipotentials of the usual type ;
since 11 is uniquely determined as a function

of x, y and z
t
two different equipotentials can never intersect. Of the system

of equipotentials only one is suitable for the boundary of the gravitating mass,

this being picked out by the condition that the volume enclosed by it shall

be just adequate to contain the whole amount of the compressible matter.

* " Essai sur la Constitution et 1'Origine du Systems solaire" (1873). Acad. de Montpellier,

Section des Sciences, vm. p. 235. See also Poincare, Lemons sur les Hypotheses Cosmogoniques,

Chap. in.

102
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When either VT or o>
2 are allowed to vary, we obtain a linear series of

configurations by picking out the appropriate equipotential surface from

each set. When VT and <*>
2 both vanish, the equipotentials are spheres and

the boundary is therefore spherical ;
as we pass along the linear series the

boundary will depart more and more from the spherical shape.

One property of Roche's model may be noticed at once. There can be no

points of bifurcation or turning points on any linear series. For when VT

and a) are given, the value of 11 is uniquely determined by equation (400)
and hence the boundary is uniquely determined. But the condition for a

point of bifurcation or a turning point is that there shall be two adjacent

configurations of equilibrium, and hence (by 141) two different boundaries,

possible for the same value of VT and o>.

It follows that all possible configurations for a Roche's model lie on one

linear series, and this may in every case be supposed to originate in the

spherical configuration for which VT and o> both vanish. As we proceed

along this series, the different boundaries are equipotentials which differ

more and more from spheres, until finally it may happen that the equi-

potential which forms the boundary coincides with one which marks a

transition from closed to open equipotentials. On moving one step further

along the linear series we shall find that there is no closed equipotential

capable of containing the whole mass. There is therefore no equilibrium

configuration consistent with values of w2 and VT beyond a certain limit, and

as soon as this limit is exceeded, a cataclysm of some kind must occur.

151. The transition from an open equipotential to a closed one must

necessarily be through one which intersects itself, and therefore through an

equipotential on which a point of equilibrium occurs. Such a point is deter-

mined by the equations
aft = an = an =
dx dy dz

Since H is necessarily constant over the surface of every equipotential,

including the boundary, this condition may be put in the alternative form

or, again, from equations (391) (393),

2 = 0.
dn

We are now back to the point of view of 147
;
the series terminates

as soon as dp/dn vanishes at any point of the boundary. But we have

now seen that this will occur at a point at which the equipotential which
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forms the boundary intersects itself, so that at such a point the boundary
must have the shape either of a sharp edge or of a conical point.

Let us now examine the various types of problem in detail, beginning
with the rotational problem.

The Rotational Problem

152. To discuss the problem of a freely-rotating mass, we put Fr =0, so

that

The condition for a point of equilibrium will obviously first be satisfied in

the plane of xy. It will be satisfied at x, 0, if

MX

and so is first satisfied when

where TO is the radius of the cross-section in the plane of xy. The particular

equipotential on which this point of equilibrium occurs is found to be

M
2 I

T

Since OT 3 =
M/a)

z
,
this equation may be written in the form

i +ig
=
f^ (401),

where sr2 stands for a?
2 + y

2
.

The general equipotentials are found to lie as in fig. 28, the critical equi-

potential being drawn thick.

Fig. 28.
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The volume of the critical equipotential determined by equation (401) is

easily found. Putting rz = ^2 + w2
,
the equation becomes

If we put ta- = 2x3-0 sin 6,

_ 1 - 4 sin2

^

so that the volume is

4?r I ziffdis = 327ror ft

3
I -^

- cos2 6d (cos 6}
J z=v Jo 4cos2 0-l

I

'

= 327rw 3 x -0225466.

The mass is equal to p times this, where p is the mean density, hence

...(402).

Thus the series of configurations possible for the mass in question form a

single linear series, starting from &> = and ending abruptly when

ft)
2

/27rjo
= -36075.

For greater values of o> there is no equilibrium configuration possible.

As a homogeneous mass shrinks, keeping its moment of momentum con-

stant, it is easy to shew that ca?/p will continually increase. It cannot be

rigorously proved that the same is necessarily true for a non-homogeneous
mass, but obviously the normal event will be for shrinkage to be accom-

panied by an increase of o)
2
/p.

We can imagine a mass shrinking and a>
2

/27r^ continually increasing until

it reaches the value '36075, at which the mass begins to break up. When
this stage is reached matter begins to escape at the sharp edge of the

boundary (AA' in
fig. 28), and will escape at just such a rate that o)

2
/27rp

retains the critical value '36075 for the main mass. The subsequent mo-

tion, as well as certain complications that arise, will be considered in a later

chapter.

153. We have already seen that two distinct mechanisms may come

into play to effect the break-up of a rotating mass, and that there are only
two such mechanisms possible. The two models we have studied, namely
the incompressible mass and Roche's model, have now been found to pro-

vide examples of these two methods of break-up, the incompressible model

breaking up by fission into two parts, and Roche's model breaking up by
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the ejection of streams of matter from the equator. It is obviously very
desirable to bridge over, if possible, the wide gap between these two extreme

cases, and this is to some extent effected by the consideration of a third

model, which combines some of the properties of both of the two models so

far discussed.

154. Roche's model consisted of a nucleus of finite mass but infinitesimal

volume, surrounded by an atmosphere of zero mass but finite volume. The

density of the nucleus was accordingly infinite while that of the atmosphere
was zero.

In the new model we take the nucleus to be of finite extent, and there-

fore of finite density, while supposing the atmosphere to remain of finite

extent but of infinitesimal density. Thus the potential of the mass VM may
no longer be put equal to Mjr but becomes equal to the potential of the

nucleus. The nucleus will be supposed to be incompressible and of uniform

density p0) and the atmosphere will be supposed to exert no appreciable

pressure on the nucleus.

Let VN denote the volume of the nucleus and VA that of the atmosphere.
The mass M is equal to p vN) so that the mean density p is given by

VN
P=7W"

Under a rotation co each particle of the nucleus will be subjected to

exactly the same forces as though the nucleus alone were rotating with

angular velocity co, the atmosphere being entirely non-existent. This deter-

mines the configurations of the nucleus
; they consist of Maclaurin spheroids,

Jacobian ellipsoids, etc.

The boundary of the atmosphere must be one of the equipotentials

H = cons.; it must moreover be an equipotential of total volume VA + VN .

Thus to get a complete figure of equilibrium corresponding to a given rota-

tion co, we must first draw a figure of equilibrium appropriate to this

rotation for an incompressible mass of density /o
and volume VN . The boun-

dary of this will be an equipotential Q = cons, of volume % . We must then

draw successive outer equipotentials until a further volume VA has been

enclosed. The equipotential which just includes a further volume VA will

be the required boundary.

It may be that, in drawing these equipotentials, we shall find that closed

equipotentials give place to open ones before a volume VA has been enclosed.

If so, there can be no figure of equilibrium corresponding to the given rota-

tion. If VA
'

is the volume enclosed by the last closed equipotential, the

greatest atmosphere which can be retained at the given rotation will be

one of volume VA ,
and of the atmosphere of the original model, a volume

UA VA must already have been thrown off at the equator.
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For a spherical configuration (o>
= 0) there is obviously no limit to the

value of VA : the critical value vA
r

is infinite. But as o> increases VA
'
will

diminish, and matter will be ejected from the equator as soon as VA = VA '.

Let us examine the value of the critical value VA .

Let the' spheroidal or ellipsoidal figure of the nucleus be supposed to be

the standard ellipsoid

the axis of z being the axis of rotation. At a point x on the prolongation

of the major-axis, the gravitational attraction is

f
00 d\

A = ATTpQabcx I
^ Y r.

> *2 -a2 (a
2 + X)* (6

2 + X)* (c
2 + X)*

For a Maclaurin spheroid, in which a = b, the integration can be effected,

and we find

[1
a tg g2\&~i

sin"1
/

, (403)
ft X GL*

'X

where a = (a
2 c2

)*. The ratio of centrifugal force to gravity at any point

on the #-axis is tfx/X. At a point on the boundary of the nucleus, this ratio

is always less than unity, but it increases as we pass outwards, and the point

at which it attains the value unity is the critical point at which 9fl/8
= 0.

Hence to obtain this critical point, we must equate the right-hand member

of equation (403) to wrx
;
the resulting equation is

ft)
2 fl a Oz

2 -a2

)l-=a6c -sm-1 --^
2?r/3 |_a

3 x tfxz

J
(404).

The value of x which satisfies this equation determines the radius of the

equator of the limiting equipotential.

In the special case in which the nucleus is a Maclaurin spheroid at its

ellipsoidal point, of bifurcation, the value of ft)
2

/27r^ is 0'18712, and the root

of equation (404) is found to be

x = 1-6436 a = 1-5990 (abc)*.

The critical equipotential is drawn in fig. 29
;
it is clear that the value of

VA here is quite small, being in point of fact rather less than one-third of vy .

Fig. 29.
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Thus it wili be seen that the value of the ratio vA /vN steadily decreases

from oo to about J as we pass along the Maclaurin series to the point of

bifurcation, and it is readily found that it decreases still further as we pass

along the Jacobian series. Its value at the pear-shaped point of bifurcation

is about ^.

We can now describe the series of equilibrium configurations assumed by
this model as its angular momentum continually increases. Suppose first

that the ratio VA /VN is greater than J.

For small values of co, the boundary of the nucleus and the atmosphere
will both be spheroids of small eccentricity. For larger values of o> the

boundary of the nucleus will remain spheroidal, while that of the atmo-

sphere will be a pseudo-spheroid coinciding with one of the external equi-

potentials. As &> still increases this pseudo-spheroid will develop a sharp

edge, this occurring when the critical volume VA
'

is equal to VA . After

this, matter will be ejected from the sharp edge on the equatorial plane
of the mass. By the time the rotation is given by a)

2

/27rp
= 18712,

the atmosphere is reduced to about ^VN in volume. Thus p = f /o , and

o)
2

/27rp
= '2496. At this stage the figure loses its symmetry, being no longer

a figure of revolution. The nucleus becomes ellipsoidal, while the boundary
becomes a pseudo-ellipsoidal figure having two sharp pointed ends, and as

the rotation still increases, two streams of matter will be ejected from these

ends. Gradually the nucleus becomes -more elongated and the atmosphere
diminishes more and more, until the pear-shaped point of bifurcation is

reached. After this the nucleus will divide into detached masses, each of

which will be surrounded by a thin atmosphere.

If the original atmosphere were of volume less than ^VN ,
the course

of events would be the same except that none of the atmosphere would

be thrown off until after the symmetry of revolution had been lost. In

this case the sequence of figures would be spheroids of small eccentricity,

pseudo-spheroids, pseudo-ellipsoids, pseudo-ellipsoids with pointed ends and

a stream of matter emerging from each, finally ending in detached masses

surrounded by thin atmospheres.

The Tidal Problem

155. In the tidal problem to vanishes but VT does not, so that equa-

tion (400) becomes

where M, as before, is the mass of the primary, and its centre of gravity is

taken as origin.
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Let us suppose that the tidal forces originate from a secondary mass M ',

which may be treated as a point at a distance R. If r' denotes distance

from this mass, the whole tidal potential is M' /r', but of this a part is

effective only in producing the acceleration M'IR2 of the primary, and this

part may be taken to be a potential M'xjR2

, where the axis of x is taken

to be the line joining the two masses. This part of the potential of the

second mass must be supposed neutralised by the acceleration of the axes to

which the primary is referred, so that the effective tide-generating potential

may be taken to be

v _M' M'x
VT~~~ ~

( } -

The value of H is now

M M' M'x
(406),

and the boundary of the primary must be one of the surfaces H = constant.

On parts of the #-axis which lie between the two masses, we put r = a,

r = R x, and find

M

It is easily found that dfl/dx vanishes once and once only on this part
of the #-axis. On parts of the a?-axis which lie outside the two masses,

between x> = and x = - oo
,
the first term in dfl/dx must be taken to be

+ Mjx\ and it is easily found that in this range also dfl/dx vanishes once

and only once.

Each of the points at which 9O/9# vanishes on the axis of jj is a point
at which one of the equipotentials intersects itself, and so represents a

possible transition from closed to open equipotentials. But it is readily
shewn that, except in the limiting case in which M'/M is infinite, the

equipotentials first open out at the intersection which lies between the

two masses.

Thus the arrangement of equipotentials is as follows : For the highest
values of H the equipotentials are spheres round the nucleus M. As fl

decreases these give place to elongated but still closed figures which persist
until H reaches a critical value fl,, which is the value at the point at

which dfl/dx first vanishes. After this the surfaces are open at the end

towards the secondary until H reaches a second critical value O2 ,
for which

dfl/dx vanishes on the negative axis of x. For still lower values of H the

equipotentials are open at both ends.
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156. In illustration of this the equipotentials when M' = 2M are shewn

in
fig. 30. The values of x for which 9ft/9# vanishes are found to be

x = -457R and x = "85 R, while the critical values of O are Hj = kStfM/R
and H 2

= 3*96 M/R. The last entirely closed equipotential is the curve

1 = 4>'95*7M/R which is drawn thick in the figure. From~a Tough quad-
rature it is found that the whole volume of this equipotential is equal to

that of a sphere of radius "3487?.

Fig. 30.

157. As a second illustration, the equipotentials when M'/M is infinite

are shewn in
fig. 31. The value of H is now given by equation (406), in

which M' and R are both infinite. Thus

or, replacing the infinite constant M'/R by 0,

Fig. 31.
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On the positive part of the #-axis,

( M \^
so that dfl/dx vanishes for a value x = #

>
where # =

( STO]
-R- It is readily

seen that 9fl/3a? vanishes for an equal negative value of #. Thus in this

special case of M'/M = oo it appears that the two critical equipotentials

coincide in one equipotential ;
this is readily found to be given by

and is the curve drawn thick in fig. 31
;
for values of H above this the equi-

potentials are closed curves, for values of H below this, the equipotentials

are open at both ends. By a rough quadrature it is found that the volume

contained by this critical equipotential is that of a sphere of radius '72^ .

158. If the primary, before distortion, was a sphere of radius r
,
the

limit of statical stability, in the case M'/M = oo
,
will be reached when it is

distorted to the shape of the thick curve in fig. 31. Thus it is reached when

M' approaches to a distance R such that

This critical value of R may be put in the form

. ...........................(408).

This may be compared with the critical value of R found in the incom-

pressible problem (p. 46), namely

*r9 ........................ (409).

Similarly for the special case of M' 2M, the critical value of R has been

seen to be given by

which may be written in the form

(410).

This is still closer to the critical value in the incompressible problem, as

given by equation (409). It must however be remembered that equation

(409) applies strictly only to the special case of M'/M = oo
,
since the equation

was obtained by neglecting all terms beyond the second harmonic term in

the tide-generating potential. When the secondary is at a distance of only
2'87r away from the primary, the third harmonic terms may not legitimately
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be neglected and equation (409) requires to be modified accordingly. We
can, however, see that the correction to this equation cannot be large, being
of the order of 5 per cent, at most*, so that equation (409) may be regarded
as giving a tolerably good approximation for all ratios ofM '

to M.

Thus both when M r 2M and when M'jM= oo
,
it appeal'sI/hat hetero-

geneity, even of the very extreme kind now under consideration, has only
a very slight influence upon the critical value of R.

159. We have accordingly found that the series of equilibrium configu-

rations stops for about the same values of R as those for which the corre-

sponding series became unstable in the incompressible problem. In the

incompressible problem it was an easy matter to determine the dynamical
motion which occurred when statical motion was no longer possible. We
found that at first the primary rapidly elongated itself, while still retaining its

spheroidal form. After a time this motion was disturbed by the occurrence of

what we have called dynamical points of bifurcation
;
furrows formed round

the figure and these seemed likely to result in its ultimate fission into a

number of detached masses.

In the compressible problem now under consideration the dynamical
motion is, as we shall see, very similar to that just described. Consider first

the simplest case in which M'/M= 00. In this case, as soon as the critical

point is reached, the equipotential by which the mass is bounded opens sym-

metrically at both ends and matter is ejected. This matter will form two

long symmetrical jets or arms and the elongation of these arms corresponds

fairly closely to the elongation of the spheroid in the incompressible figure

of equilibrium. We shall now see that, during this process of elongation,

dynamical points of bifurcation will oecur, very much in the same way as in

the incompressible problem.

160. The motion of the ejected streams of matter will of course be deter-

mined by the usual hydrodynamical equations which may be expressed in

the form
32# v I dp
-~-

7
= X - -

^- etc.,
ot

2

p ox

in which all the symbols have their usual meanings. As in 140, let us put

f
= *o,

thereby assuming that p is a function of p only, and let us denote the com-

ponents of acceleration of the particle which is at x, y, z at time t

Then the equations of motion become

tc (411).

* Cf. Mem. R.A.S. 72, pp. 1014.
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With a view to discovering dynamical points of bifurcation on the sequence
of configurations determined by equations (411), let us compare this motion

with a slightly varied motion in which the particle which in the original

motion was at #, y, z at time t is, in the varied motion, at the point

a? + f, y + *7,
z + %

at time t.

In the varied motion the particle just specified will have components of

acceleration
'"V* f"

so that the particle which is at x, y, z at time t in the varied motion will

have components of acceleration

Let the values of X and p at the point x, y, z be changed, in the varied

motion, to X + $X and p + Sp. Then the equations by which the varied

motion is governed will be

On subtracting corresponding sides of equations (411) and (412) we obtain

.........(413),

which is an equation of motion for all small displacements which can be super-

posed on to the original motion while still conforming to the laws of dynamics.

The original motion must be determined from the three equations (411).

Equation (413) and its two companions will then determine the dynamical

points of bifurcation on this motion.

Equations (411) cannot be solved in detail, so that an exact knowledge of

the dynamical points of bifurcation determined by equation (413) cannot be

obtained. But a knowledge of the general nature of the solution of equation

(413) can be obtained from a consideration of the simple case in whichfx ,fy
and fz are all constants, so that the jet is supposed to move with uniform

acceleration e.g. as though moving under a uniform gravitational field.

Equation (413) now reduces to

and there are two similar equations. Differentiating with respect to x, y, z

and adding, we obtain
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Let s denote f>p/p, the excess condensation of the varied motion, so that

the bracket on the left-hand side of the above equation is equal to s. We
have

dd> * 1 dp 2 dp
a P = - ^ &P = f s -

op pop op

Using 7 temporarily to denote the gravitation constant, we have

dX dY 8Z
^--H r~ + = = 47T7P,
dx dy 9^

so that

dx dy

Equation (415) accordingly becomes

asr
h -5
--h -5

=
47T7/OS.

(416),

and is now seen to be a differential equation determining the condensation s

in the varied motion.

Putting 7 = in this equation, and thereby neglecting the effects ot

gravitation, we are left with the well-known equation

which simply expresses that any excess condensation s is propagated as a

wave with a velocity \f(dp/dp) relative to the moving jet. In this case any

displacement from the original motion can only give rise to small oscillations

about this motion, so that the motion is thoroughly stable.

Restoring 7 and assuming for simplicity that p and dp/dp are uniform

throughout the jet, we find that a solution of the full equation (416) can be

obtained by taking s proportional to an exponential factor

this solution representing waves of wave-length X projected with a velocity

q\/%7r. Certain boundary conditions must be satisfied in addition to the

differential equation (416). These may be taken to be that s shall vanish at

the two ends of the jet, say at x = and x = L

On substituting the exponential factor into the differential equation (416),

we find that

while the boundary conditions are satisfied if
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where n is any integer. Thus the different values of q are given by

The vibration oflowest frequency is given by n = 1, and cf becomes negative
when I first reaches the value

l=\\J
- f (419).V 7/3 dp

This fixes the first dynamical point of bifurcation
;
as I increases more and

more points of bifurcation occur, the complete set being given by

Thus as I increases, one vibration after another loses its stability. The

initial unstable motion of any vibration is one in which the matter of the jet

tends to collect into nuclei or bunches at the nodes of the wave. Or, alter-

natively, we may consider that a series of furrows tends to form in the jet,

and that these get continually deeper. After passing the first point of bifur-

cation one furrow tends to form, namely a furrow between the jet and the

main body ;
after passing the next point of bifurcation two furrows begin to

form, and so on.

161. Clearly the formation of 1, 2, 3 ... furrows in succession in this

problem is very closely analogous to the formation of 1, 2, 3 ... furrows in

succession which occurs when the incompressible mass passes points of bifur-

cation corresponding to harmonics of orders 3, 4, 5 ....

Although the formation of furrows in these two problems is closely analo-

gous, it would be a mistake to suppose that the two solutions we have obtained

merge gradually into one another as the compressibility of the primary mass

gradually changes. We may notice that the breaking up of an incompressible
mass takes place independently of its size, whereas the breaking up of the

jet of matter formed from the atmosphere in Roche's model will only take

place when the system is beyond a certain size.

162. Further insight into the motion will be obtained from a consideration

of the composite model already discussed in 154. We suppose the primary
to consist of an incompressible nucleus of volume v^and density p , surrounded

by an atmosphere of volume VA and negligible density. Under tidal forces the

configuration of the nucleus will be exactly the same as if the atmosphere
were non-existent, while the atmosphere will be bounded by one of the equi-

potentials surrounding this nucleus.

It will be sufficient to consider the simplest case in which M'jM is infinite.

In this case the total gravitational potential is
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where VM is the potential of the spheroidal primary, and p stands as usual for

M'/R
3

. The point of equilibrium on the #-axis is determined by 9n/3# =

or (cf. 154)

The integral can be evaluated in finite terms, so that the equation becomes

where a2 = a2 - c
2

.

In the special case in which the nucleus of the primary is on the verge

of instability, the value of
/j,

is 0'1255047r/) ,
while

a == (a
2 - c

2

)^
= 1-45970 (a&c)*.

Thus equation (421) reduces to

log 5-^-? = -390343,
x a. x

of which a root is readily found to be

x= 1-37578 a = 2*00822 r .

Fig. 32.

The corresponding figure of equilibrium is shewn in fig. 32. The thick

curve is the boundary of the nucleus, and the thin outer curve that of the

greatest atmosphere which can be retained by this nucleus. The volume VA
of this atmosphere is only about a tenth of 0y the volume of the nucleus. Thus

- ^ and B- 1-70 r..

Hence we arrive at the following conception of the series of configurations
of this model. At first, when the tidal forces are inappreciable, the figure of

equilibrium is spherical, this giving place to a spheroidal figure where the

tidal forces become appreciable but small. As the tidal forces increase, the

boundary of the nucleus remains spheroidal, but that of the atmosphere is a

pseudo-spheroid. If the volume of the atmosphere is greater than about a

tenth of that of the nucleus, this pseudo-spheroid develops two conical pointed
ends at the extremities of its major-axis, and a further increase in the tidal

forces results in matter streaming out from these two ends. (This is in the

j. c. 11
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special case of M'fM = oo
;
in the more natural but less simple case in which

M'/M is finite, the boundary of the atmosphere will be a distorted pseudo-

spheroid : a conical point will develop at one end only, and matter will stream

out only from this end, which is the end nearest to the tide-generating mass.)

Of the matter which streams out, some will fall into the tide-generating mass,

and some will fall back on to the primary. The general effect may be thought
of as the creation of an outer atmosphere in which the subsequent motion will

take place. With a still further increase of tidal forces, the nucleus will attain

the critical shape shewn in
fig. 32, the retained atmosphere now being reduced

to about a tenth of vy. After this the motion both in the nucleus and the

atmosphere will be dynamical ;
the motion of the nucleus will be the same as

that already considered in 118 126 except in so far as this may be altered

by the presence of a resisting outer atmosphere.

The Double-Star Problem

163. To form a double-star problem on Roche's model, suppose we have

two masses M, M' rotating in steady motion at a distance R apart with

angular velocity o>, each body being so highly condensed that the whole mass

of each may be supposed concentrated at its centre of gravity. Let the line

joining them be taken for axis of a?, the centre of the primary being origin.

The value of H is readily found to be

and the point at which dl/dx = is given by

The value of co is given by the usual relation o>
2jR3 =

(M 4- Mf

),
whence

it appears that equation (422) can be expressed in the symmetrical form

where y = R x. The graphs of the two similar

functions in brackets are of the shape shewn

in fig. 33, whence it appears that the root of

the equation is x = OP where P is so chosen that

M x PS = M' x PS'.

There is therefore one and only one root of

equation (422), and the critical equipotential in- P 'x

tersects the axis of x at a point distant OP from

the origin. If the volume of either component of the double star is greater

x=R
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than that of the corresponding branch of this equipotential, dynamical
motion must have occurred before the components approach to within a

distance R of one another, and this motion will consist of matter streaming
out of the conical end of the critical equipotential.

164. Other features of interest in the double-star problem are revealed

by a study of the composite model in which the nuclei are homogeneous
masses of finite size. The different forms which the two nuclei can assume

are precisely those which appear in the double-star problem of Darwin

already discussed in Chapter III ( 60 65). The boundaries of these

masses are equipotential surfaces, and are surrounded by other equipotentials,

any closed one of which may form the boundary of a possible atmosphere.

For instance in
fig. 84, the thick curves form the boundaries determined

Fig. 34.

by Darwin for the closest stable approach of equal masses (cf. fig. 13, p. 64).

The thin curves surrounding the nuclei are external equipotentials, and the

atmospheres of the stars may be bounded by any one of these.

Darwin's figures were at the closest distance which was consistent with

stability for homogeneous masses, but it is at once apparent that the

boundaries of the atmospheres may be closer than this. They may be in

actual contact without stability being violated, or the two atmospheres may
be merged into a single atmosphere which will now be bounded by a single

closed equipotential surrounding both stars. Thus our investigation suggests

that heterogeneity will in general lessen the distance of closest approach
found by Darwin for the incompressible mass.

165. The models just considered may be regarded as marking the limit

of non-homogeneity in one direction, the limit in the other direction being

provided by the perfectly homogeneous model studied in Chapters III to VI.

In both the tidal and double-star problems, the motion of the non-

homogeneous models has been found to be very similar in its broad outlines

to that already discovered for the perfectly homogeneous model. In each

problem we found in both models a single series of configurations of

112
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equilibrium of approximately spheroidal or ellipsoidal shape, these remaining
stable until the two masses concerned reached a certain critical distance

from one another, after which dynamical motion was found to occur. And
the general features of this dynamical motion were broadly the same for each

model in both of the two problems.

In the rotational problem the situation is very different. So long as the

rotation is slow the figures of equilibrium for every model are necessarily

spheroidal in shape, but for more rapid rotations the shapes of the figures of

equilibrium have been found to vary greatly. In the incompressible model,

we found a sequence of figures, spheroidal, ellipsoidal, pear-shaped, ending
with fission into two detached masses. In Roche's model, on the other

hand, we found a pseudo-spheroidal series which ended abruptly by matter

being thrown off from the equator.

The incompressible model and Roche's model, may be regarded as limits

of homogeneity and non-homogeneity. The composite model considered in

154 provided a continuous transition between these two extremes. In this

we had a nucleus of volume VN and an atmosphere of volume VA ,
and were

able to determine the motion for all values of the ratio VN/VA . The limiting

value VN /VA = oo gives of course the incompressible model, while the limiting

value VN/VA = gives Roche's model.

These same two models may, however, be regarded as fixing the limits of

compressibility and non-compressibility, and when they are regarded in this

light the composite model does not provide a gradual transition from one to

the other. A convenient sequence of figures of varying compressibility is

provided by masses obeying the pressure-density law

(423),

where 7 varies from one mass to another. The value 7 = oo provides a

completely incompressible mass, while the value 7 = 1| provides, as we have

already seen ( 149), a model in which the mass is entirely concentrated at

the centre, as in Roche's model.

Thus a general study of figures obeying the law (423) for values of 7
from H to oo will provide a continuous transition from Roche's model to the

incompressible model, through a series of figures of continually varying com-

pressibility. To such a study we now proceed, limiting ourselves, for reasons

already explained, to the rotational problem.
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THE CONFIGURATIONS OF ROTATING COMPRESSIBLE MASSES

166. It will be convenient to write the pressure-density 4aw (423) in

the form
c

'O'

7'

We may notice that this law includes as special cases Laplace's law

[p
=

\G (p
2 "2

)] and also the law obeyed by a gas in adiabatic or convective

equilibrium [pQ
=

0].

We find at once that < (p), defined by equation (395), is given by

so that the general equation of equilibrium (396) becomes

-^ pv~
l = ft + C ........................ (424),

in which, as before,

Operating with V2 we obtain at once as the differential equation which

must be satisfied by p,

' V2

/3
y-1 =

-47r/3 + 2o>
2

..................... (425).

Taking the point of maximum density p as origin, it will be possible to

expand p in the form

P = po- pz- ps
- p,- ...........................(426),

where p2 , p3 , p ... are functions of x, y, z, of degrees 2, 3, 4 ... respectively.
The value of p2 is

the differential coefficients being evaluated at the origin. Since the origin

is supposed to be the point of maximum density, p2 must be negative for all

values of x, y and z. Changing axes, it must be possible to put p2 in the

form

where a denotes the density at the boundary of the mass.

If we further put

p9 + p* +... = - e (p
-

a) POJ
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then the general value of the density given by equation (426) becomes

+
jJ
+ J+eP )

...............(427),

and the boundary, which is defined by the condition p o- has for its

equation

,+f|
+J-l+P. = .....................(428).

If eP is small, this represents a distorted ellipsoid. Now for a perfectly

incompressible mass, the boundaries of all stable configurations have been

seen to be spheroids and ellipsoids, and so are all included in equation (428)

with P = 0. Moreover the general argument of 142 144 has shewn that

the stable configurations of compressible masses can be derived from these

spheroidal or ellipsoidal configurations by continuous distortion. Thus it

appears that the boundaries of compressible rotating masses may be supposed

given by an equation of the form of (428) ;
in this equation eP will be

small if the matter is only slightly compressible, but may become com-

parable with the other terms of the equation for highly compressible matter.

A preliminary problem must accordingly be the determination of the

potential of a mass whose boundary is determined by equation (428), while

the density at any point a?, y, z in its interior is given by equation (427).

The potential of a non-homogeneous distorted ellipsoid

167. Let q be a function of the density p, defined by

<2

2 =^^ ..............................(429).
po~<r

As we pass from the centre to the boundary, p will vary continuously
from p to G-, so that q will vary continuously from to 1. The surface

of constant density p has for its equation

+ + + ^. = 9
2

........................(430),

and this may be regarded as arrived at by distortion from an ellipsoid of

semi-axes qa, qb, qc. Equation (428) is a special case of (430), arrived at by

taking q
= 1.

In Chapter IV we found how to write down the potential of a dis-

torted ellipsoid such as that determined by equation (430), the density

being supposed uniform. Let the potential of a homogeneous mass of unit

density bounded by the surface (430) be denoted by F (q) when evaluated

at a point outside the surface, and by Vi(q) when evaluated at a point

inside the surface.
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Then it is readily seen that the potential of the whole heterogeneous
mass whose density is given by equation (427), and whose boundary is

given by p = a, will be

F = erF (l)+ rV.(q)dp ................... ..._,.. .(431),

(432),

the first formula giving the potential at a point outside the mass, and the

second formula giving the potential at an internal point at which the

density is p'.

168. As in 77, let us suppose that P is put in the form

y z

Introduce new coordinates f, rf , f such that

y-
x

etc' *

and let

so that P reduces to P when /j,
= 0.

Suppose further that /and D are given by

_
(fa?

-I- /i) 7;
/2 + (g

2
c2 + ft) ^2 - 1 ......(433),

2

(434)
/2

Let
^> (g) be given by our former equation (200), namely

< (q)
= e

[P
- IfDP + I

- ie
2 [DP2 -

-
- -] etc.......... (435),

in which y and Z) are now supposed defined by equations (433) and (434).

When
yit
= the equation /=0 represents an ellipsoid of semi-axes qa>

qb, qc. Moreover, when //,
= 0, D reduces to zero and P to P

,
so that <f>(q)

reduces to eP
,
and
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Thus when //,
= 0, the equation

/+*%>- .............................. (436)

becomes identical with equation (430), which is the equation of the surface

of constant density p, where p is connected with q by equation (429).

The value of V (q), the external potential of a uniform mass of unit

density rilling this surface of constant density p, is at once seen, by the

methods of Chapter IV, to be

,...(437),
q I

[(fa*

where the lower limit of integration // is the root of equation (436) at the

external point #, y, z at which the potential is being evaluated. The
internal potential is given by precisely the same formula (437) with // put

equal to zero.

169. The formulae for the potential may be simplified by introducing
a new variable X equal to p/q

2
. If we further put

^&-
we find that

(438),

<439 >*

and
t* 00 /J\

(441),
A'

where A has its usual meaning [(a
2 + X) (6

2
-f X) (c

2
4- X)J% and the lower limit

X' is now a root of

a2

(442) '

The same formula (441), with the lower limit put equal to zero, will give
the value of the internal potential V{ (q).

170. Having evaluated V9 (q) and Vi(q), we are in a position to attack

equations (431) and (432). Only the second of these equations is of imme-

diate importance to- our problem.
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Using relation (429) we find

V,(q)df+

169

...(443),

where q is the x value of q at the point x, y, 2 at which the potential is being

evaluated. The sum of the two integrals in square brackets is found, on

integrating by parts, to become

4-

Since Vi (q')
= V (q), the sum of the first two terms in this expression

reduces at once to Vi(l), so that equation (443) can be put in the. form

where

The first term on the right hand of equation (444) is the internal

potential of a homogeneous solid of uniform density pQ ;
the second term

accordingly represents the effect of the falling off of density from p at the

centre to cr at the boundary.

The value of V (q), as given by equation (441) is a function of q and

also of X', which is connected with q by equation (442). Thus

dV cTPo ax'

dq*

In this equation we have

d\'

and this vanishes from the definition of X' (equation (442)). We accordingly

have, from equations (441) and (439),

r^_^^Jv V dq
2

) A'

while similarly by direct differentiation,

d
5<2>. ,*, r (!_?*>).
dq

9
Jo V dq* ] A

Thus the value of E given by equation (445) becomes

(446).
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This value of E may be regarded as being obtained by a double inte-

gration with respect to <f and X. In fig. 35, let OA, OB represent axes

of q and X respectively, and let the thick

curve PQ represent the relation between q

and X expressed by equation (442). This

curve meets the axis of q at the value q = q',

for by the definition of
q', we have

* +^
where X = 0.

at X = oo .

It clearly meets q = (p
= p )

Thus it appears that the first integral in

the value of E is represented by an inte-

gration over the area BQR while the second

Q A

Fig. 35.

integral is represented by integration over the area RQAS. Thus the whole

integration is over the area which is shaded in the figure, and on changing
the order of integration we find

where the lower limit q is now determined as a function of X by equation

(442).

This completes the evaluation of Ft-. The external potential can be

evaluated in a similar way*, but is not required in the present problem.

Configurations of Equilibrium

171. We may now turn to the conditions of equilibrium, which as we

have seen ( 166) are expressed by the single equation (424), namely

C
,

.

p
1 -

.(448).

In this equation p has the value

- ......(4*9).

Expanding py~
l

by the binomial theorem, we find that equation (448)

assumes the form

* See Bakerian Lecture for 1917. Royal Society Phil. Trans. A (not yet published).
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in which of course

n = y. + 10,2 (a-a + ya)

= p F;(l)-(p -er)#-|->
2

(^ + .v
2
) ............ (451).

Equation (450) contains the solution for all compressible^ masses, and so

must include the solution for the incompressible problem in which pQ <r

vanishes.

In this solution of the incompressible problem, the figure is known to be

ellipsoidal, so that P = 0, while F^(l) becomes the potential of a homo-

geneous ellipsoid of unit density, and so is given by

Vi(I) = -7rabc(JA x* + JBf + Jcz
2 -J) ............ (452).

Thus, omitting all terms which disappear when the mass is incompressible,

equation (450) reduces to

= -
7rp abc (JA x* + JBy2 + Jcz* - J) + &>

2
(x* + y

2
) + C. . .(453).

The term in c (p <r) on the left-hand has been retained because it is

obvious that the equation can only be satisfied by supposing c (p a) to

remain finite when (p a) vanishes. We know that in any case c must

become infinite when the mass is incompressible, for the value of dp/dp
then is infinite.

In the general problem, let us put

.

Trace

this equation defining 6. Then equation (453) becomes

+ f) ......... (455),

and on equating coefficients of 2
, y

z and 22
,
we find

7,

ZTTpQdbc a5

w2

27r/o a6c

Jc

.(456).

These are the conditions that an ellipsoid of semi-axes a, b, c shall be a

figure of equilibrium for a mass of uniform density p rotating with angular

velocity o>. It is at once seen that they are identical with the three

equations (65) (67) which were found to determine the solution of this

problem in 36.
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Thus if we assign to 6 the value given by equation (454), it is clear that

our general equation (450) will reduce, when the mass is incompressible, to

the equation from which the solution for the incompressible problem was

previously obtained. With this meaning for 0, the general equation (450)

becomes

*]
+2^

The solution for the incompressible mass is derived from the equation

-
[2 $]

-- [J^ + J*f + Jc*\ +^c
<* + yV -(458),

which is a special case of the above.

172. On equating coefficients in this last equation we shall obtain

three equations (456) and the solution of these equations will consist of sets

of values of a, b, c and to
2

.

Similarly the solution of equation (457) will consist of sets of values of

a, b, c, ft>
2 and P . In the incompressible problem, P is always zero, and the

sets of values for a, b, c and o>
2 coincide with those found from equation

(458). But in the more general problem, this is not the case.

Let us now agree, as a matter of convenience, that the symbols a, b, c

shall be reserved to refer only to solutions of the incompressible problem.

A solution of the compressible problem may now be designated by symbols

such as a + Aa, b 4- A6, c + Ac. Strictly speaking, the equation of the

boundary ought no longer to be taken to be

2-
2
+ eP = l ...........................(459);

a

it must be taken to be

(a -I- Aa)
2

This however may be re-written in the form (459) if we permit of P
containing terms of degree 2 as well as those of degrees 3, 4, ... of which it

has so far been supposed to consist. Thus, in what follows, we shall

suppose P to include second degree terms and a, b, c will be supposed to

have the meaning just agreed upon.

Let the general value of F;(l) corresponding to the boundary (459) in

which P consists of terms of degrees 2, 3, 4 ... be supposed to be

Vi (1)
= - Trabc (JA x* + JBf + Jcz* -J) +
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so that AF;(1) represents the change produced in F^(l) by the additional

term eP in the equation to the boundary (459).

Let us further agree that &> is to be used to denote the value of o> in

the incompressible problem, the general value of a>
a

being henceforth denoted

by ft>
2 + Ao>2

.

With these conventions equation (457) becomes

With the meaning now assigned to the symbols a, b, c and o>
2
, equation

(458) is also true. On subtraction of corresponding sides of the two equa-

tions, we obtain

Equation (458) determines a solution when the mass is incompressible ;

equation (461) determines the relation between the new quantities intro-

duced by compressibility. More definitely, it connects P , the distortion of

the boundary from the shape suited to an incompressible mass, with p <r,

the range of density, and with A&>2
,
the change in o>

2
.

173. The simplest solution occurs when all the changes from incom-

pressibility are measured by quantities so small that their squares may be

neglected. In this case (p <r)/p ,
eP and Ao> 2 are all of the first order of

small quantities, and equation (461) assumes the simple form

In this equation we notice that E is multiplied by the small quantity

<r)/po, so that in evaluating E we may neglect all further small
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quantities. With this simplification, equation (447) gives as the value of E,

E=7rabc
gJo Jo &

(!-)= (463),
.'o A

in which q is given, now that small quantities of the first order may be

neglected, by
2 _

q
~~

a? *

a2 + X 62 + X c2 + \
'

Substituting this value for q
2 in equation (463), we obtain, to our present

order of approximation,

E= 2 7rabc[J-Z(u?JAA + WfJAB)\ ............ (464),

where JAA ,
etc. denote integrals defined by equation (56) of p. 36.

In calculating Vf(l) we must of course retain small quantities of the

first order. The whole potential of a solid of unit density whose boundary is

determined by equation (459) is

r<a)+Ar<a)--*oT [/++(i)j7Jo *

so that

o

in which, neglecting small quantities of the second order, we may put

* (1)
= e [P - i/DP + i (If)" P -

. .
.].

Collecting terms, equation (462) becomes

f *<'>?- (
&r5)[s"'J"-" + 2 '<>' '"I

JO ^ \ O '

(465)-

Clearly there will be a solution in which PQ consists solely of terms of

degrees 4 and 2 in x, y, z. Let us assume for P the value

P _ /Po
-

<r\ [Lot Mtf Nz* 21fz*
9
~~ *'~ """"

so that

eP = (?^L\ [L? + Mrf + N? + 2Vr + 2m?2
f

2

4- 2rf
a

]
. . .(467).
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Then we may assume*

^T
J

Inserting these values into equation (465) and equating Coefficients, we

obtain

e (L_
' - n * j

- -
j

.(468),

and four similar equations ;
there are also three equations such as

_
.

2-rr (p
-

a) abc

In these equations the six coefficients cn , c^, ... C23 are linear functions of

the six coefficients L, M, N, I, m, n only, but the coefficients, d1} d2 ,
ds are

linear functions of L, M, N, I, m, n, p, q and r.

It follows that the six equations (468) form a set of linear equations for

the determination of L, M, N, I, m, n. The solution of these equations, if

written down directly in analytical form, would be too complicated to convey

any definite meaning to the mind. Fortunately there is an approximate
solution of a very simple type, namely "f*

(approximation A) ......(470).

To understand the meaning of this approximation, we may notice that it

satisfies equations (468) if cu ,
cw ,...caa are neglected. Thus the approxi-

mation is arrived at by neglecting terms of degree 4 in AP;(1), and is

therefore equivalent to treating the boundary q = 1 as ellipsoidal when

calculating its gravitational potential.

174. To obtain some idea of the amount of error involved in this approxi-
mate solution, I have worked out exactly the true solution in two special
cases.

It will be remembered that the configurations for an incompressible mass
consist of spheroids, ellipsoids and pear-shaped figures. The corresponding

configurations for the compressible mass are derived from the foregoing by
distortion and consist of pseudo-spheroids, pseudo-ellipsoids and pear-shaped

* The numerical multiplier 4 is introduced in order to facilitate comparison with the cor-

responding analysis in Chapter V.

t Bakerian Lecture for 1917 (not yet published).
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figures. There are points of bifurcation on the sequence of compressible

figures; at the first of these the pseudo-spheroidal shape gives place to a

pseudo-elliptical shape, and at
x
the second the pseudo-elliptical shape gives

place to a pear shape. The configurations at these points of bifurcation are

arrived at by distortion from the corresponding configurations for the in-

compressible mass, and it is these configurations for which I have calculated

the exact values of L, M, N, I, m, n.

At the first point of bifurcation

a = 6= 11972, c = "69766, ;^-= '18712, = -47125,

the scale of length, which is at our disposal, being chosen so as to make

r = (abc)^
= 1. The exact solution is found, by direct solution of equations

(468) to be

L =M= n = 1-0273 (7-2)-T0466
l = m = 0-3488 (7- 2) -0'23784

^=0-11845 (7
-

2)
- 0-06328,

while the approximate solution (470) is found to be

L = M=n = 1-0273 (7 -2)- 1-0273^1

(exact) ......... (471),

(7
- 2)- 0*2467 Happrox. A) ...(472).

^=011845 (7
-

2)
- 0626

j

It will be seen that the error is of the order of two per cent, in the

terms which do not involve 7.

175. At the second point of bifurcation, at which the pseudo-ellipsoid

gives place to the pear-shaped figure, I find for the exact solution

L = 6-3238 (7-2)- 15-4353

M= 0-22057 (7 -2)- 0-15560

^ = 0-08962(7-2)- 0-04733
|

I =0-14059(7-2)- 0-08468

m = 0-75280 (7
-

2)
- 0*49850

n =1-18103(7-2)- 0*95103;

while the approximate solution is found to be

L =6-3238 (7 -2) -10-1768

M =0-22057 (7-2)- 0-15329

^ = 0-08962(7-2)- 0*04677
^ (474)

L =0-14059(7-2)- 0*08424

m = 0*75280 (7
-

2)
- 0*62860

n =1-18103(7-2)- 1*18103;
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Again, as must in general be the case, there is no error in the terms

multiplied by 7. In the remaining terms, the errors in l
y
M and N

t
the

coefficients which determine the smallest cross-section, are seen to be less

than two per cent, but the errors in the remaining coefficients L, m and n

are very much greater, being respectively 34, 26 and 24 per centr

176. Having determined L, M, N, I, m, n, we complete the solution by

finding p, q, r from equations (469), which, written out in full, become

F
2r<9

At this stage it is convenient to extend the notation already introduced

in 35. By analogy with the integrals J defined in equation (56) we shall

write

With this notation the value of 4c^ is readily found to be

4dj = ZpJAA z
IAA i IAB ~ ~

9
IAC + ^i (478),

in which

r/. M AT
i x _ _ a hr 77- 4-77 4_*1 4 X^^AAA ~T~~H I2 ABB~T~ ~T

|_u>
O

3Z
I-

ft2 ^^

The value of Bl can be determined as soon as the values of the coefficients

L, M, N, I, m, n have been found, and equations (475) etc. assume the form

2^(9 p-^ _ 9r.T 4- SL

0?

These linear equations determine p, q and r. The solution may be

regarded as the sum of two solutions, the first arising from the terms 4^, 4S2

and 483 on the right, and the second from the terms in Ao>2
. The second

solution represents merely a step along the ellipsoidal (or spheroidal) series

corresponding to a small change Aw 2 in the value of o>
2

. To obtain a com-

pressible solution we may give any value to Ao>2
,
the zero value, which is of

course most convenient, giving a solution which corresponds to the same

rotation as the incompressible figure from which it is derived.

j. c. 12
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But to obtain all the compressible solutions adjacent to a given incom-

pressible solution, we must retain Ao>2
. In particular, the retention of A&>2

will be necessary in searching for points of bifurcation in the compressible

problem. A point of bifurcation in the compressible problem will be adjacent
to the corresponding point of bifurcation in the incompressible problem, but

will not in general have the same rotation.

Thus in searching for the points of bifurcation in the incompressible

problem, we retain the so far undetermined quantity A&>2 in our equations.

The three equations (475) (477) determine three relations between p, qt
r

and Aw2
,
but to determine these four quantities fully a further equation is

needed, this equation of course expressing the condition for a point of

bifurcation.

177. Let us confine our attention to the particular point of bifurcation

at which the pseudo-spheroidal figure gives place to a pseudo-ellipsoidal

figure. The corresponding point in the incompressible problem is the point

of bifurcation at which the Jacobian ellipsoids join the Maclaurin spheroids.

At this point equations (69) and (70) of 37 are both satisfied, as well as

the equations of equilibrium (65) (67). Combining equations (69) and

(70), we obtain as the equation determining the position of this point of

bifurcation,
a*JAA = <?Jc (481),

or, using the equation of equilibrium (67),

a*bcJAA = 0abc (482).

The actual values of a, b, c, 6 and &>
2 are those already given in 174.

In the compressible problem, the equation of the boundary has been

taken to be

where F< stands for the fourth-degree terms La?/a* + . . .
,
which have already

been determined. This may be put in the form

where

etc...................... (484).

The condition determining a point of bifurcation in the incompressible

problem is readily seen to be

a*b'cJ'AA = 6'a'b'c,

where 0', J'AA refer to an ellipsoid of semi-axes a, b', c'.
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From equation (445) it is at once seen that 6'a'b'c' = Oabc, so that the

point of bifurcation is determined by

a'
5
b'c'J'AA - a*bcJAA = 0.

Using relations (484), this may be put in the form

% (^IAAA) + p C*44) + "2 (-*-AAC) (485).

This equation, together with equations (475) (477) determine the values

of p, q, r and Ao>2 at the point of bifurcation.

178. In these equations a = b, so that p = q, and the system of four

equations reduces to the three equations

2w
(/) a-) abc

'

in which d^ is given by equation (478) and d3 is given by a similar equation,

or may be more readily derived from the relation

2<t + d3
= 0,

f d\
which is necessarily satisfied since the potential I

</> ( 173) is harmonic.

The value of 8
1 for the configuration in question calculated from equation

(479) is found to be 0*00851, whence the solution of the equations is found

to be

= - 0-016037, -,
- 0-056337, CT

.
= - '04400 . . .(486).2 2

179. It now appears that at the point of bifurcation the rotation

is given by

- -04400 0>.-<7) ............(487).

This relation is exact only as far as first powers of (/o <*")
^o the same

degree of accuracy, the mean density p of the figure is given by

so that equation (487) may also be put in the form

-06827(^-0-) ............. ..... (488).

122
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We may notice that although terms in 7 occur in the equation to the

boundary, yet no such terms occur in equations (487) and (488). This is

necessarily the case, as can be at once seen on considering the incompressible
mass for which 7= oo . For such a mass, we have already seen ( 171) that

c (po <r) and therefore also 7 (pg <r) remain finite, while the value of

&>
2

/27T/5 must necessarily reduce to '18712.

Equation (488) indicates that compressibility increases the value of &>
2

/27rj5

which is necessary for the pseudo-spheroidal form to give place to a pseudo-

ellipsoidal form. Stated in another way, a compressible mass retains the

form of a figure of revolution up to higher values of the rotation than does

an incompressible mass, rotation being measured with reference to the mean

density p.

180. We have so far obtained a solution which is accurate as far only as

the first order of the small quantity pQ cr. The method we have used

admits of extension as far as any power of p
-

&, but the labour of com-

putation makes it almost impossible to carry the calculations beyond second

order terms.

To obtain a second order solution, we may replace eP by eP + e2

Q, and

Aw2

by Aft)
2 + Sft>

2
,
where So>2 is of the second order. Similarly we replace

AFi by AF; + SFi. We are accordingly assuming a boundary of the form

(cf. 172)

l ........................(489),

corresponding to a rotation ft> given by

0,2 = ^2 + Aw2 + 3ft)
2

........................ (490).

The general equation (461), written down as far as second order terms,

now becomes

On equating the first order terms in this equation we of course obtain

equation (462). On equating the second order terms we obtain
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It is readily seen that the appropriate form to assume for Q is one con-

sisting of terms of degrees 6, 4 and 2 in
, TJ, f.

A general discussion of the solution of this equation will be found else-

where*. For our immediate purpose we may consider the particular solution

at the point of bifurcation at which the pseudo-spheroidal form becomes

unstable, thus extending the solution already obtained in 174 to the

second order of small quantities.

181. In this solution x and y enter symmetrically. Let us write cr2 for

f
2 + ?7

2
,
and assume for Q the value

(493).

On carrying out the necessary calculations and solving equation (492)

we find

R= 0-4155 -T7799 (7 -2) + 0-4908 (7 -2)(27 -3)

3S= 01894 -1-4585 (7 -2) + 0-5000 (7 -2) (27- 3)

3T= 0-0506 -0-4124 (7 -2) + 01698 (7 -2)(27 -3)
U= 0-00346 -0-0375 (7

-
2) + 0-01922 (7- 2) (27 - 3)

r= 0-08755 - 010962 (7- 2)

s = -0-01727 +0-04871(7-2)
t = - 0-007862 + 0-02511 (7

-
2)

u = - 0-00550 -0-02651(7-2)
v= 0-00778 +0-03195(7-2)

= _ (&Z5Y [0-01292 + 0-05495 (7
-

2)]
\ o /

This completes the determination of the equation of the boundary as far

as the second order of small quantities.

182. The lengths of the intercept on the #-axis are determined by the

equation jf
= 1, where

............(494),
and the solution of this equation is found to be

*- L
, *P] ^O-^VP ,

r
,

^u
(I 2p\(2L 2p\l

2

J V Po ) L
6

<*
4 F U4 aV I a4

+ Wj +

..................(495).

* Bakerian Lecture 1917. Phil. Tram. R. S. (not yet published).
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From equation (450), the value of fl at a point on the #-axis is given by

JF + 1 (7
-

1) (7
-

2)

= F($), say.

The points on the #-axis at which 3ft/<k
= are given by r- F (Jf)

= 0, or

This condition can be satisfied either by making F' (jf) or djf/dx
= 0.

The first condition cannot be satisfied except when (p <r)/p
= 1

;
in this

case <r = and the equation merely reduces an equation which is auto-

matically satisfied when a = 0. Thus the true points at which 80/8*'

vanishes are given by d;(F/d#
= 0.

The condition that centrifugal force just balances gravity at the equator
is therefore that d$/dx = when

Jff
= 1

,
and this is also the condition that

the surface jp
= 1 shall have a double point on the axis of x. That the two

conditions must necessarily be identical is of course shewn by the analysis
of 151.

The equation djf/dx
= becomes

Using the value of a?\o? provided by equation (495), we find as the

condition that djf/dx shall vanish on the boundary (jf
=

1),

or, inserting numerical values,

_
2)
_

1-0509]
po J

"2)-'0510] + ...=0 ...... (496).
po

For a given value of 7, this equation determines a value of (p <r)/pQ

such that centrifugal force just balances gravity at the instant at which the

pseudo-spheroidal form is giving place to the pseudo-ellipsoidal.

We may alternatively regard the equation as determining a critical value

of 7 when (p cr)/p is assigned. It is this latter use of the equation which

is of primary interest to us, the important case being (/3 &)/po =1- It

seems probable that the full series will be fairly rapidly convergent up to
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this value of (pQ <r)/p ,
so that the critical value derived from the terms

actually calculated may be expected to be tolerably near to the true value.

Putting (p cr)/pQ
=

1, the critical value of 7 derived from the first two

terms of the equation is seen to be

7 = 2-0509 ..............................(497),

while if all the terms written down are used, the value is found to be

7 = 21521 .............................. (498).

We cannot state with great accuracy the value of 7 to which these values

are converging, but there is not likely to be any very great error in taking
it to be 7 = 2*2. Assuming this value, it appears that a mass of gas for

which 7 = 2'2 will begin to lose matter equatorially at precisely the moment
at which the pseudo-spheroidal form becomes unstable and gives place to

the pseudo-ellipsoidal form.

183. The value of So>2 has already been obtained in 181. From this

we find that equation (488) extended as far as the second order of small

quantities becomes

= 0-18712 + 0-06827 + [0-01602 + 0*07098 (7
-

2)]
-

2-7T/3

When 7 = 2'2, this becomes

= = 018712 + 0-06827

(499).

+ 0-03022 ...(500).

The general series of which the first- three terms are here written down is

probably convergent right up to the limiting value (p <r)/p
=

1, but it

is not easy to determine the value to which it converges. At a guess the

value of &)
2

/27rp appears to converge to about 0'3 1.

The critical figure for 7 = 2'2 is shewn in fig. 36, but it is not possible to

draw the figure with much accuracy in the neighbourhood of the sharp edge.

The interior curves are equipotentials and so are also surfaces of constant

density and temperature.

Fig. 36.
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SUMMARY OF RESULTS

184. Let us now recapitulate and summarise the results which have been

obtained in the present and preceding chapters. We have been attempting

to obtain an idea of the configurations which will be assumed by astro-

nomical matter under the influence of its own rotation and under the action

of tidal forces. Some results have been obtained which are applicable to

all matter, but in general the investigation has had to be limited to certain

simplified model masses. The models we have had under consideration

have been four in number :

(A) The incompressible model, consisting of a mass of homogeneous

incompressible matter of uniform density.

(B) Roche's model, consisting of a point nucleus of very great density,

surrounded by an atmosphere of negligible density.

(C) The generalised Roche's model, consisting of a homogeneous in-

compressible mass of finite size and of finite density, surrounded by an

atmosphere of negligible density.

(D) The adiabatic model, consisting of a mass of gas in adiabatic equi-

librium, so that the pressure and density are connected at every point by
the relation p = /ep*, where K and 7 retain the same values throughout the

mass.

Of these four models A and B are limiting cases of the more general

models C and D. If s denote the ratio of the volume of the atmosphere to

that of the nucleus in the generalised Roche's model C, then model C de-

generates into model A when s = 0, and degenerates into model B when

s = oo . Similarly the adiabatic model D degenerates into model A when

7= oo and into model B when 7 = 1| (cf. 149). The relation between the

four models is represented diagram matically in fig. 37.

C

,A

(Incompressible*
=

(Roches model)

Fig. 37.

Independently of the study of any particular model, we have seen that

an increase of rotation to a certain amount will tend to break up the

original mass, while the same is true of tidal forces of sufficient intensity.

Generalised Roche's mode
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The Rotational Problem

185. Let us consider the rotational problem first.

For the incompressible model A, the mechanism of breaking up is very

fully known to us, thanks mainly to the investigations of Maclaurin, Jacobi,

Kelvin, Darwin and Poincare. For small rotations the mass will be spheroidal
in shape, but as soon as the angular velocity exceeds a value co given by
ft)

2

/27r/3
= 018712, the spheroidal form no longer remains stable, but gives

place to an ellipsoidal form. With still further increasing rotation*, the

mass elongates until a furrow begins to form across a section of the ellipsoid,

giving it a pear-shaped appearance. After this furrow has once started, the

motion is cataclysmal until the mass divides into two detached parts.

For Roche's model B, the mechanism of break-up is also fully known.

As the rotation gradually increases, the equator of the mass bulges more

and more, until finally a sharp edge forms on the equator, so that the whole

figure becomes lens-shaped (see fig. 28, p. 149). Any further increase of

rotation now results in matter being thrown off from the equator in a

continuous stream, owing to centrifugal force outweighing gravity on the

equator.

Thus models A and B both break up with increasing rotation, but they
break up in very different ways. We have been able to shew quite generally
that there are only these two distinct ways of breaking up ;

the method of

breaking up of any other mass must be a variant of one or other of these

two. It will be convenient to refer to the first method of break-up, that of

the incompressible mass, as fissional break-up ;
and to the second method of

break-up, that of Roche's model, as equatorial break-up.

It follows that as we pass along either of the chains of models C and D
which connect A and B, or along any other chain of models connecting
A and B, there must be some point on each at which fissional break-up

gives place to rotational break-up. At such a point, the two methods of

break-up must be about to begin simultaneously with the same rotation.

Thus the condition determining such a point is that centrifugal force shall

be precisely equal to gravity on the equator of that configuration at which

the rotation reaches such a value that a figure of revolution is no longer
a stable form for the mass.

We have determined this critical point on each of the two chains of

models C and D. Of these the adiabatic chain D is the more important.
As we pass along this chain from A to B, the value of 7 varies from x to

1*2
;
the critical point is approximately given by 7 = 2*2. Thus a mass of

* The critical angular velocity is w2
/27r/>

= 0-14200, so that u[p^ has decreased, but the con-

stancy of angular momentum requires that
/>
shall have increased so much that w is found also

to have increased (cf. G. H. Darwin, Tides, p. 371).
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gas or other compressible matter in adiabatic equilibrium will break up by
fission if 7 is greater than 22

; it will break up equatorially if 7 lies between

1'2 and 2'2. This latter range of course includes the values of 7 for all

gases whose density is so low that Boyle's law is approximately satisfied
;

for these 7 is always less than T66.

Similarly as we pass along the chain C of generalised Roche's models,

the value of s, the ratio of the volume of the nucleus to that of the

atmosphere, varies from oo to 0. The critical point is found to occur at

about s = J. Thus when the atmosphere is less than a third of the volume

of the nucleus, the mass will break up by fission
;
when the atmosphere is

greater than this the mass will break up equatorially.

These various results may be exhibited diagrammatically as in fig. 38.

Region of

Fissional

Break-up.

Region of

(0-1871 2) (0-36075)

Fig. 38. Kotational break-up. [The figures in brackets denote the values of o>
2
/27r/5.]

The Tidal Problem

186. In the tidal problem we have found precisely similar results, the

incompressible model breaking up by a process very closely analogous to that

of fissional break-up in the rotational problem, and Roche's model breaking

up by a process which is at least suggestive of the equatorial break-up of a

rotating mass.

Going further into detail, we have four 1 thnt the incompressible mass

will, under small tidal forces, have the shape of a prolate spheroid. As the

tidai forces increase, the elongation of this spheroid increases. When the

elongation reaches a stage such that the axes are approximately in the ratio

17:8:8, this spheroidal figure becomes unstable. Dynamical motion ensues,

the elongation at first increasing rapidly until finally furrows form on the

mass and it breaks up into several detached masses (cf. fig. 23, p. 127).

Roche's model also will assume the shape of a prolate spheroid so long as

the tidal forces in action are small. As the tidal forces increase the boundary
of the figure departs from a true spheroidal form

;
conical points form and
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finally jets of matter stream out from these cones, just as they streamed off

at the equator in the rotational problem.

On the chain G of generalised Roche's models, we have found that the

former method of break-up gives place to the latter when s, the_ratio of the

volume of the atmosphere to that of the central mass, has a value approxi-

mately equal to T\j. The chain D of adiabatic models has not been studied

in detail, but it seems safe to suppose that at some point on this chain the

one method of break-up gives place to the other. Assuming this, the results

obtained for the tidal problem are those exhibited diagrammatically in fig. 39 ;

the region to the left of the broken line represents configurations in which

the mass, when broken up tidally, divides into a number of masses of com-

parable size, while the region on the right represents configurations in which

one or two jets of matter will be thrown off from the mass.

CT? /
JUT f \ -1. -\

The figures in brackets denote the values of
( )

. I

ro \ M / J

The Double-star Problem

187. The results obtained for the double-star problem are so similar to

those obtained for the tidal problem that it is hardly worth recapitulating

them in detail. In the double-star problem, as in the tidal problem, there

are two masses concerned, and we have been studying the mutual gravi-

tational action of these two bodies on one another. From the mathematical

point of view the double-star problem is little more than the tidal problem

with a rotation set up just adequate to keep the masses permanently at a

given distance from one another, and this explains the general similarity of

the mathematical results obtained.

We proceed now to apply the abstract results obtained to actual problems

of astronomy and cosmogony.



CHAPTER VIII

THE EVOLUTION OF GASEOUS MASSES

GENERAL THEORY

188. We may begin with a consideration of the general motion of a

cloud of nebulous astronomical matter. This may be supposed constituted

either of gaseous molecules or of dust particles ;
for convenience we shall

speak of the separate particles as molecules.

The equations of motion of a single molecule are

d*x vm
d?

= 6
'

whence we obtain, by direct algebraic transformation,

This is the equation used by Clausius to establish his celebrated theorem

of the Virial. Its importance in theoretical astronomy has been pointed out

by Poincare* and Eddingtonf.

Summing the three equations such as (501), we find

On further summing this equation for all the molecules, or other particles

of the mass under consideration, we obtain

zZ) .................. (502),

where / is the moment of inertia about the origin, defined by

/ = 2ra (#
2 + f 4- zz

),

and T is the kinetic energy of translation of the molecules of the gas. The

last term 2 (xX + yY + zZ) is the Virial of Clausius
;
call it V.

To evaluate the virial, we fix our attention on two particles of masses

mlt m2 at the points xlt ylt z^ and xz , yz , z^ respectively. Let the force exerted

by the second on the first have components H, H, Z, so that the force exerted

*
Leqom sur les Hypotheses Cosmogoniques, p. 94.

t Monthly Notices R.A.S. 76 (1916), p. 525.
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on the first by the second will have components H, H, Z. The contri-

bution of this pair of forces to the virial will be

H (^ - #2) + H (y1
-

3/2)
4- Z (zl

-
z*\

and the whole virial will be

F= 2S[E fa -*a) + H (yi -y,) + Z (^ - *,)] .........(503),

the summation being over all pairs of particles.

Forces such as E, H, Z will consist of the molecular forces between pairs

of molecules in collision or in propinquity, and of the gravitational forces

between pairs of molecules at all distances. For a gas of density so low that

the ideal gas laws may be assumed to hold, all these forces may be neglected

except those of gravitation. For the forces between molecules in collision

give rise only to the Van der Waals' coefficient 6 in the equation of state of

the gas, and the forces between molecules in propinquity give rise only to

the cohesional term, represented by the Van der Waals' coefficient a*. Thus

we may take

H = mlm2 (#a
-
aO/ria

3
etc.,

where r12 is the distance from nil to m2 . Summing over all pairs of molecules

we find

V= 22 [-3. (x,
- xj + H (y,

- yO + Z (*,
-

*)] = - 22^^ .

This is simply the gravitational potential energy of the mass, say W.

Thus equation (502) assumes the form

(504),

an equation first given by Eddingtonf for the motion of a star-cluster, to

which it is also applicable.

189. Let the axes be supposed to move with the Centre of Gravity of

the mass. If the mass has neither appreciable mass-motion relative to its

Centre of Gravity nor rotation in space, T becomes the kinetic energy of

translation of the molecular motion. The energy of internal molecular

motion may be supposed to be &T where /9 is the usual coefficient of the

Kinetic Theory of Gases. In the case of a perfect gas, this is connected

with 7, the ratio of the specific heats of the gas, by the relation

The whole heat-content of the mass of gas, say H, is now given by

*
Jeans, Dynamical Theory of Gases, 2nd ed. 181187.

t I.e. ante, p. 527.
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and the value of E, the total energy, is

E = H+ W=(I + /3)T+ W (505).

From equation (504), a condition to be satisfied by a mass of gas in a

steady state is 2T -f W = 0, or, in virtue of the equation just obtained,

r(-!) = #....." (506).

The special case of /3
= 1 or 7 = f demands attention. For a mass of gas

for which 7 = ^ in a steady state it appears that E = independently of the

radius of the mass. A small radial expansion of the mass can accordingly

take place, the mass passing from one configuration of equilibrium to an

adjacent configuration of equilibrium, without change of energy. Thus in

any configuration of equilibrium the frequency of one radial vibration is zero.

It follows that on any linear series of configurations of equilibrium along

which 7 varies, there will be a change from stability to instability at the

value 7 = f, instability setting in through a radial vibration. Gases for

which 7 = oo are readily found to be stable, whence it appears that masses of

gas are radially stable when 7 > f and are radially unstable when 7 < f*.

In illustration may be mentioned the period of radial vibration for a mass

of gas found by Ritter, subject to certain simplifying assumptions, to bef

where p is the mean density in gravitational units.

As a particular case of our result, it appears that a mass of gas for which

7 < f cannot rest in a state of stable equilibrium except when in a state of

infinite rarity. This result has been obtained only on the supposition that

the ideal gas laws are obeyed throughout. There will be other states of

equilibrium in which the density is so great that the ideal gas laws do not

hold. A mass of gas for which 7 < f and the total energy E is negative must

necessarily fall into one of these latter states of equilibrium.

For a mass of gas for which 7> f, equation (506) requires that E shall

be negative ;
in a steady state the energy is less than that in a state of

diffusion at infinity. As such a mass loses energy by radiation, there will be

a slow secular decrease of E, and therefore a secular increase of T. Thus the

mass will contract as it gets older and will get hotter at the same time, this

process of course continuing until the ideal gas laws are no longer obeyed.

The energy lost by radiation during contraction is equal to the decrease

in E. This, from equation (506), is equal to (1
-

ft) times the increase in T,

* Eraden has obtained this result by a slightly different method (Gaskiigeln, 1907,

Chapter vm).

f Emden, Gaskiigeln, p. 481.
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or to (1 /?)/(! + ft) times the increase in H, the total heat-content of the

gas. The total heat generated by contraction falls into two parts the first

part is radiated away ;
the second is stored up in the gas and goes to increase

the total heat-content H. We have seen that these two parts are in the ratio

(l-/3)to(l+/3). Hence

Of the total heat generated by contraction, a fraction |(1 ft) is radiated

away, while a fraction J (1 + ft) is stored up in the gas.

To form an idea of the way in which the mass gets hotter we suppose that

the contraction is a uniform one, so that after an interval of time each length
in the mass is reduced by the same fraction 6. The potential energy W,
which was initially Xmw'/r, becomes changed to 2mm'/r0, so that the con-

traction increases W to I/O times its initial value. Since 2T + WO
t
both

before and after the contraction, it follows that T must also have increased

to I/O times its initial value. The total heat-content H or T(l + ft) must

have similarly changed. Thus

If a mass of gas contracts 'uniformly, its density being so low that the ideal

gas laws may be assumed to hold, then its heat-content varies inversely as its

linear dimensions*.

SPHERICAL MASS OF GAS

190. To consider secular changes more in detail we shall suppose the

mass of gas to have assumed a spherical form, its boundary being a sphere of

radius a.

Let T, p, p denote the temperature, pressure and density at a distance r

from the centre, and let the density be everywhere so small that these may
be supposed connected by the ordinary gas equation

.............................. (507),ra

where R is the universal gas-constant, and m is the mass of a molecule of the

gas. When the matter consists of a mixture of different types of molecules,

ions, atoms, electrons, etc. m may be supposed defined by equation (507).

rr

Let Mr stand for 4?r I pr
z
dr, the mass inside a sphere of radius r\ then

Jo

the condition for mechanical equilibrium is

Instead of using r as a coordinate, we may more conveniently use q,

defined by r = aq, so that q increases from zero at the centre to unity at the

* This result is obtained much in the form in which I have given it by Poincare (Leqons sur

les Hypotheses Cosmogoniques, p. 95 (footnote) and p. 227) ;
it may be obtained more rapidly

from a consideration of physical dimensions, H necessarily varying as yM2
jr.
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surface. In a uniform shrinkage such as we considered in the last section,

each element of the gas will retain the same value of q throughout the

shrinkage. Changing the variable from r to q, equation (508) becomes

(509),

where M
g is the mass inside a sphere of radius raq\ this of course

remains unaltered throughout shrinkage.

Now let the mass shrink uniformly in a ratio to a new configuration of

radius a', so that of = aO. Let p', p, T be the new values of p, p, T. Since

the shrinkage is supposed uniform, the density p at each point will be I/O
9

times the old density p, so that

p'a'* = pa
3

.............................. (510).

Multiplying both sides of equation (509) by a3
,
it appears that the new

configuration will be one of equilibrium if

'4&!_.&.
dq dq

at every point. Integrating with respect to
</,
we have as the condition of

equilibrium

a'*p'
= a4

p .............................. (511).

Dividing by corresponding sides of equation (510) and comparing with

equation (507) we find

a'T' = aT .............................. (512).

Thus if a spherical mass of gas shrinks uniformly from an equilibrium

configuration, the new configuration will also be one of equilibrium provided the

temperature at every point is made to vary inversely as the radius of the

sphere.

This is commonly called Lane's law*. The analysis has not shewn that

the natural flow of heat will be such that a uniform shrinkage will take

place it merely shews that if, for any reason, a uniform shrinkage does occur,

and the new configuration is one of equilibrium, then relation (512) must be

satisfied at every point of the mass.

It must be noticed that in this law T js the temperature of a given internal

element of the gas, corresponding to an assigned value of q. The emission of

radiation from the mass comes, not from a single layer corresponding to a

single value of q, but from a number of layers near to the surface. Thus the

law (512) has no application to the temperature of a star as determined from

its emission of radiation this is a different question altogether, to which

we shall turn our attention later.

*
J. Homer Lane,

" On the Theoretical Temperature of the Sun." Ainer. Journ. Sci. 53 (1870),

p. 57.
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191. The ratio of the specific heats 7 being assumed uniform throughout
the mass, let us introduce a new quantity k denned by

p = kpv ................................. (513).

Combining this relation with the general equation (507) w^ obtain

. ...(514).m

If a configuration is one of adiabatic equilibrium, k will of course have a

uniform value throughout. We shall now see that only those configurations
are mechanically stable in which k either stays constant or increases at every

point as we pass from the centre to the surface.

To see this, let us fix our attention on any two small elements of gas in

different parts of the mass. Let the first be of mass Mlt volume S^ and

density plt and let it be at a point Pl at which the pressure is pl and the

value of k is fa. Then

Let the same symbols with suffix 2 refer to the second element.

Let us consider the process of interchanging these two elements, the

remainder of the gas remaining undisturbed. To do this, the element Ml

must be compressed or expanded to a volume Bv2 ,
so that its new density

will be MJ&Vt. Let us suppose this contraction or expansion to take place

adiabatically, then the final pressure will be

<*()'
If this element can be placed in the cavity Bv2 at P2 without creating a

disturbance in the remainder of the gas, the pressure just calculated must be

equal to the equilibrium pressure at P2 ,
and this is given by

Jf.
P =

The pressures are accordingly equal if

MV =MV (516).

This is the condition that Ml can be fitted into the place of Mz without

disturbance
;
since it is symmetrical, it is also the condition that M2 can be

fitted into the place of Ml without disturbance. Thus ifMl and M2 are chosen

so that this condition is satisfied, the two elements can be interchanged with-

out any work being done except that done against the gravitational field. Of
the two masses, let Ml be the one originally nearer to the centre. A con-

dition for the stability of the original configuration is clearly that the work

done in any interchange such as that just considered shall be positive, and

j. c. 13
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this requires that Ml shall be greater than Mz ,
or again, from equation (516),

that h\ shall be less than k2 .

Thus the -necessary and sufficient condition for stability as regards inter-

change of places of the different elements or layers of the gas is that k shall

increase continuously from the centre to the surface.

If, in any configuration, dk/dr is negative over any range, convective cur-

rents will be set up and the various layers will change places, until a new

configuration is formed in which dk/dr will be positive or zero everywhere.
And if steady agencies are at work tending to depress the value of dk/dr over

any range to a value below zero, a steady system of convection currents will

be set up of amount just sufficient to prevent dk/dr from falling below zero.

The value of dk/dr will be kept permanently equal to zero over this range, so

that k will be constant, and the equilibrium will be adiabatic.

Homologous Series

192. Uniform contraction of the kind considered in 190 may be spoken
of as "homologous" contraction, the initial and final configurations being

homologous. A series of configurations of equilibrium, each of which may be

derived from the preceding by homologous contraction, may be called a homo-

logous series.

On a homologous series, the relations (510), (511) and (512) hold for every

pair of configurations. Combining these with* equation (513) we readily

obtain the further relation

k'a'(*-W = ka(*-W (517).

Let us examine how many of these homologous series there are. Using
the relation p = kpi, the equation of equilibrium (509) may be put in the

form

afp-^ = -M
q
k-Vy.

cq

If M the mass and a the radius are given, and k is given as a function of

q, we are able to start from the surface (at which p = 0, q = 1 and M
q
= M)

and determine step by step successive values ofp up to the centre q = 0. These

values of p, since k is gwen, suffice to determine p and T uniquely. Thus

given values of M, a and k determine uniquely one equilibrium configuration.

We cannot, by this means, ensure that the total mass obtained by integrating

4-TT/or
2 shall be equal to the assumed value of the mass

;
this difficulty can be

met by admitting as configurations of equilibrium a set of configurations

having point-masses, positive or negative, at the centre. With this con-

vention, it appears that there are just as many equilibrium configurations as

there are sets of values of a and k, k being a function of q.
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The different equilibrium configurations may accordingly be specified by
relations of the type

Different configurations are got by varying a and /"(<?). JFrpm equation

(517) it is clear that a single homologous series will be obtained by varying
a Avhile keeping f(q) unaltered, while the different homologous series corre-

spond to the different functions of q. Thus there are just as many homologous
series as there are functions of q }

but only those series are stable for which

dk/dq is everywhere positive.

The Condition for Homologous Contraction

193. The contraction of a configuration under natural conditions will not

in general be homologous ;
it will be determined by the flow of heat inside

the mass. Starting from any assigned real configuration we can calculate

the natural changes produced in a mass of gas by the flow of heat and con-

sequent radiation in the following way.

Imagine that each element of the gas is held at rest, and let the natural

flow of heat take place for an interval dt, the temperature of the different

elements being changed thereby, and therefore the pressures also. Next

imagine that each element of heat is constrained to remain attached to

its particular element of gas, so that the elements of gas can only change

adiabatically, and allow these different elements to arrange themselves in

equilibrium under their own gravitation. . The final configuration will be

identical with that which would naturally be reached after a time dt.

During the first process, in which heat flows while the gas is held at rest,

the flow of heat per unit area across any sphere may be taken to be /cdT/dr,

where K is a coefficient which must always be positive, from the second law

of thermodynamics. When the whole transfer of heat is by pure conduction,

K will of course be the ordinary coefficient of thermal conduction.

The aggregate outward flow of heat per unit time across a sphere of

radius r, say Er ,
will be

j?r --4ir*f~ ........ ...(518),
or

so that the rise of temperature at a distance r from the centre will be given

t>y

T 9'

This change of temperature will be accompanied by a change in the value

of &, and since p is kept constant this will, from equation (514), be given by

-&' ..............................'m
132
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In the second part of the motion, the various elements all change adia-

batically, so that k remains the same for each. Thus the whole rate of change
of k for the element initially at a distance r from the centre will be given by

equations (520) and (519), or by the single equation

This equation accordingly determines the rate of change of k, in the actual

motion, for any element of the mass. Knowing the rate of change of k we
know the values of k at the end of the interval dt, and these suffice to deter-

mine the whole configuration.

194. The final configuration will be homologous with the original one if

the initial and final values of k for every element are connected by a relation

such as (517). Thus the condition that the contraction shall be homologous

may be put in the differential form

where f is a constant throughout the mass. Comparing with equation (521)
we obtain the condition for homologous contraction in the form

The total heat-content inside a sphere of radius r may be taken to be

Hr
= [*
JO

Using this relation and (518), equation (523) becomes

dEr__ dHr
dr

~
*

dr
'

At the centre Er andHr both vanish
;
at the surface they become equal

to E and H. Hence, eliminating f, the condition for homologous contraction

may be put in the form

or, replacing Er by its value,

?-*........................... (525).

The Permanent Homologous Series

195. If equation (525) holds throughout the life of a mass of gas, its

whole motion will be along a single homologous series. The equation must

of course be true for all values of a and q. Now during homologous con-

traction r*dT/dr is, from equation (512), a function of q only, as of course is

also the fraction Hr/H. The total emission E is a function of a only.
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Thus equation (525) can only be satisfied if tc is of the form

K = (a function of a) x (a function of q) ............ (526).

This requires that as the gas contracts homologously, K
shall^ change in the

same ratio at all points of the mass.

In a mass of hot gas it seems highly probable that the transfer of heat is

effected mainly by radiation rather than by ordinary gaseous conduction*.

Except close to the surface of a gaseous mass it is found that, corresponding

to a temperature gradient dT/dx, there is a flow of radiant energy per unit

area of amount
j~

(

where cr is Stefan's constant (5'32 x 10~5

) and c is the coefficient of opacity
of the gas, this being such that on passing a distance x through the medium
at density p, a beam of light is diminished in intensity in the ratio e~cpx .

This flow of heat may be put in the form

dl
&

>

where the value of K in heat units is

2*
...(528).

cp

This value of K is so much greater than any known coefficient of ordinary

-gaseous conduction, that it appears to be legitimate to assume, as an approxi-

mation, that the whole transfer of heat is radiative.

As homologous contraction proceeds, T3 and p each vary as I/a
3
,
so that

T*/p remains constant. Thus if we assume c to be independent of the density
and temperature, K will be unaffected by homologous contraction, and equation

(526) is satisfied through K being a function of q only.

A permanent homologous series now becomes possible ;
it is defined by

equation (525). In this equation tc, r*dT/3r and Hr/H are unaffected by

homologous contraction. It follows that E is unaffected by homologous con-

traction the emission of radiation remains always the same.

196. It will naturally be suspected that the permanent homologous series

whose existence has now been demonstrated represents a stable final state in

the sense that a configuration not initially on this series will gradually ap-

proach it as contraction proceeds. A rigorous formal proof of this is not easily

constructed, but the general truth of the proposition can be seen as follows.

*
Eddington, Monthly Notices R.A.S. 77 (1916), p. 16.

t Eddington, I.e. p. 19; also Jeans, ibid. 78 (1917), p. 31.
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Consider a configuration in which equation (525), the condition for homo-

logous contraction, is satisfied everywhere except in the neighbourhood of

some point P. Let there be an excess of heat to the right of P and a deficiency

of equal amount to the left of P. Then the temperature gradient from right

to left at P will be in excess of that determined by equation (525), so that

the flow of heat from right to left will be greater than that in the permanent

homologous series. This flow may be regarded as made up of two parts : first

a flow of amount given by equation (525), and, second, a flow in the neigh-

bourhood of the point P, this latter flow being necessarily from right to left.

The first flow results in a homologous contraction of the whole mass; the

second flow reduces the excess of heat to the right of P and reduces also the

deficiency to the left. Thus the final state of the mass is nearer to the per-

manent series than was the original state.

By an obvious extension of this argument it can be seen, although not by
strict mathematical proof, that any configuration not on the permanent homo-

logous series always moves towards that series as contraction proceeds. Thus

a mass of gas which has been contracting for a sufficient length of time may be

assumed to be on the permanent homologous series.

Stellar Radiation

197. We have considered the mechanism by which heat is brought to the

surface of a star, but have not yet considered the mechanism by which it is

radiated away.

To an approximation which will prove to be good enough for our present

purpose, the radiation from a gaseous mass may be thought of as the free

radiation into space from a definite
"
photosphere," this being roughly identical

with the deepest layer of gas to which we can see from outside*.

As a mass of gas contracts, the depth of the photosphere below the surface

will naturally diminish. On account of the increase of density produced by
the lateral contraction of the surface layers, the depth of the photosphere

must decrease more rapidly than the radius a. Thus when a mass of gas

moves through a series of homologous configurations, the various photo-

spheres will not form homologous points on this series.

The position of the photosphere may be supposed to be determined by the

condition that the mass per unit area between it and the surface of the star

is always the same quantity p. Thus if g is the value of gravity at the sur-

face, the pressure at the photosphere will be pg, and the temperature will be

given by

W ..............................(529),

* For a more exact treatment, see Monthly Notices R.A.S. 78 (1918), p. 28.
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the quantities with suffix 1 referring to the photosphere. The total emission

of radiation is now

(m
\ T 3

9) ^4 (530).KJ p l

On the permanent homologous series, E must remain unaltered by con-

traction, so that ml Tl

z
lp l must also remain unaltered by contraction. In a

homologous contraction T3

/p remains unaltered for homologous points, and m
may be supposed to remain unaltered. In a mixture of gases, there must be

a.certain amount of rearrangement when a mass contracts, and the increase of

temperature must alter the degree of ionisation when any is present ;
these

complications prevent a strictly homologous contraction occurring at all, but

we may, as an approximation, neglect them and suppose that the mass can

contract homologously, so that in remains always the same function of q.

Assuming this, mT3

/p will be unaltered by contraction, whence it follows that

i^! TV/pi will remain unaltered for the photosphere if, and only if, mT3

/p has

initially a uniform value throughout the range within which the photosphere
moves.

This range may be regarded as infinitesimal in comparison with the radius

of the star, so that the condition just found may be put in the form of a

boundary condition, namely that at the boundary of the star

(531).r p

This boundary condition together with the differential equation (525)

suffice to determine uniquely the series of permanent homologous configu-

rations.

Mechanical Stability

198. We have not so far discussed the question of mechanical stability

of the permanent homologous series.

From the fundamental equations p = kp? and p = (R/m) Tp, we readily
find that

We are only considering masses for which 7 > f ,
so that _p(

3~4/v) will in-

crease with p as we pass inwards. It follows that on the permanent series

km? will decrease as we pass inwards.

Strictly speaking, a permanent homologous series only exists when m
remains constant throughout contraction i.e. when no ionisation or chemical

change occurs. In such a case m will increase as we pass inwards, so that k

must decrease as we pass inwards. Thus dk/dr will be positive everywhere,
which is the condition for mechanical stability without convection.
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When ionisation is present, the value of m may decrease as we pass in-

wards to the more highly ionised layers, and convection currents may be set

up near the surface.

The investigation of the mechanical stability of the inner layers presents

a more difficult problem. It can however be shewn* that in general the per-

manent series of homologous configurations will satisfy the conditions for

mechanical stability without convection currents being set up except near

the surface, an exception possibly arising when 7 is very close to the value

7-f.

SUMMARY

199. We may now summarise the changes which are to be expected in

a mass of gas in consequence of the continual emission of radiation from its

surface, making for the moment the somewhat illegitimate assumptions that

the mass obeys the laws of a perfect gas, that 7, the ratio of the specific

heats, has a uniform value throughout, and that the opacity c is constant

throughout.

So long as the ideal gas laws are supposed to be obeyed, masses of gas

for which 7 < f cannot condense into spherical masses in stable equilibrium.

Masses for which 7 > J contract and become hotter as radiation proceeds.

We have seen, although by something short of strict proof, that they are

likely to approach to a definite series of homologous configurations, on which,

subject to the assumptions just mentioned, the emission of radiation E remains

constant as contraction proceeds.

Our hypothetical mass has been assumed to obey the ideal gas laws

throughout, so that the laws we have discovered must only be expected to

describe the changes in a star so long as its density remains small. There

will be a stage later than those we have considered in which the laws are not

obeyed owing to the gas laws being substantially departed from. Still later

there will come a stage when the mass has contracted so far that further

contraction becomes impossible ;
its temperature will now fall steadily with-

out contraction taking place. The emission is still given by equation (530),

but ?*! is now approximately constant, so that E falls as 2\
4
.

In fig. 40, let the temperature T^ of the photosphere be represented by the

abscissa and the total emission of energy by the ordinate. In the earliest

stages in which the ideal gas laws hold, the temperature Tl goes on increasing
as contraction proceeds, while the emission remains constant. Thus the

relation between Tl and E is represented by a horizontal line such as PQ
described in the direction of

r

l\ increasing. In the last stages in which con-

traction can proceed no further the relation between 2\ and E is that E oc Tf.

*
Monthly Notices R.A.S. 78 (1918), p. 43.
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and this relation may be represented by a curve such as RO described in the

direction of T^ decreasing. In the intermediate stage in which the gas does

not obey the gas laws, but is still highly compressible, the law relating E and

Tt cannot be precisely specified. Clearly, however, the curve by which it is

represented in fig.
40 must depart asymptotically from PQ and approach

asymptotically to RO. Thus the actual sequence of changes in E and r

l\ will

Fig. 40.

be represented by a curve such as PLMNO in fig. 40. The mass of gas starts

at a low temperature, increases to a maximum temperature and cools again.

Meanwhile the emission of energy will remain constant until approximately
the stage at which the maximum temperature is attained, after which it falls

steadily and rapidly to zero.

200. It will at once be seen that this theoretical result describes exactly

Russell's theory of the order of stellar evolution, of which a brief account was

given in 13. Russell, while pointing out that his theory was in accordance

with theoretical principles, based the evidence for it mainly upon a diagram
of observed absolute magnitudes of stars*. In this diagram the spectral

class, giving a rough measure of the temperature, was taken as abscissa while

the ordinate measured the absolute magnitude. The stars in the redder

spectral classes (M, K, G) were found to fall into two detached, or nearly

detached, groups. In an upper group the absolute magnitude was approxi-

mately independent of spectral type ;
in the lower group it varied rapidly

with spectral type, falling off towards the red end of the scale. These two

groups of stars form what Russell calls "giant" and "dwarf" stars respectively.

Clearly Russell's diagram provides powerful confirmation of our theoretical

diagram shewn in
fig. 40, the stars along the branch PL being giant stars, and

those along the branch ON being dwarfs. Further confirmation has recently
been afforded by the investigations of Adams and Joy f already referred to in

13. Here 500 stars are considered and these are again found to fall into

*
Nature, 93, p. 242 (May 7, 1914), and Popular Astron. 22 (1914), p. 11.

t Astrophyt. Journ. 46 (1917), p. 334.
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two classes Russell's giant and dwarf stars. In each class the absolute mag-
nitudes are found to cluster fairly closely about a maximum of frequency, the

absolute magnitudes of these maxima being as follows :

Spectral type



CHAPTER IX

THE EVOLUTION OF ROTATING NEBULAE

GENERAL THEORY

202. In the last chapter we examined the sequence of changes which

would occur in a mass of gas left to its own gravitation at rest in space. We
found that matter once in existence would either disperse into space or

contract continually. Masses which disperse into space would have but a

transitory existence
;
the permanent bodies in the heavens must be supposed

to be contracting.

We accordingly think of the permanent astronomical bodies as beginning
existence in a state of extreme rarity. If one such mass existed alone in the

universe, it would tend to assume a spherical form if devoid of rotation, or a

spheroidal or pseudo-spheroidal form if endowed with a small amount of rota-

tion. Observation, however, does not encourage the view that the whole

universe originated out of a single mass of gas ;
we shall find it more profit-

able to think of a number of separate and detached nebular masses as forming
the earliest stage in the process of cosmic evolution.

Whether these masses ought to be thought of as being originally endowed

with motion, either of translation or of rotation, we do not know. In any
case they must in time be set into motion by their mutual gravitational

attractions. As the masses move under these attractions there will be occa-

sions in which two of the masses will pass fairly close to one another, and the

tidal couples raised in this way will necessarily set both masses into slow

rotation, the mechanism being that which has already been considered in

131. Rotations set up in this way would doubtless be of very small amount

at first, but they will increase with the shrinkage of the mass in accordance

with the law of conservation of angular momentum.

In this way we are led quite naturally to the consideration of a number

of separately-moving and rotating gaseous masses as providing the initial

material for our problem of cosmogony. The problem of tracing out the

history of the astronomical universe is seen to be closely related to the abstract

problem of following out the sequence of events in a rotating mass of gas.

203. This abstract problem has already been solved in certain ideal cases.

Primarily it has been solved for a mass of gas in adiabatic equilibrium, this

being determined by the relation p = kp? in which k and 7 are supposed con-

stant throughout the mass.
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In the chapter preceding this we found that an actual mass of gas would

not arrange itself in adiabatic equilibrium while contracting under its own

gravitation. In adiabatic equilibrium the quantity denoted by k is everywhere
constant

;
in an actual contracting mass, we found that k, defined by the

equation p = kpi, would increase continually from the centre to the edge.

Except possibly in a comparatively shallow surface layer, there is no con-

vection, and the result of this must be that the heavier elements tend to

congregate at and near the centre, while the lighter elements form a sur-

rounding atmosphere. That this actually occurs is made probable by the

results of spectroscopic examination of nebulous masses. Campbell* found

that in a number of nebulae the different gases are not uniformly distributed

throughout the nebular structure. In some, as for example the Orion and

Trifid nebulae, the hydrogen is definitely found to extend further out than

the other chemical elements. Wright has found that in the planetary nebulae

the helium always favours the central nucleus more than the hydrogen and

nebulium do
;
in some cases the helium is entirely confined to the central

nucleus. Campbell again has found that in a slitless spectrum of the small

planetary nebula N.G.C. 4182 ,
the Hp line of hydrogen forms a circle of

14" diameter, while the first and second green nebulium lines form circles of

diameters only 11" and 9" respectively.

Thus both theory and observation agree in suggesting that the "adiabatic"

model does not altogether give a faithful representation of actual conditions.

The quantity k is not constant throughout the mass but increases from centre

to edge, while the different chemical constituents are not thoroughly mixed

up ;
the heavier elements have sunk towards the centre.

We are accordingly led to inquire to what extent the theoretical results

which were obtained from a study of the " adiabatic
"
model may be expected

to require modification for an actual mass of gas.

204. In our study of the adiabatic model, p and p were supposed con-

nected by the relation

p = kpi,

and k and 7 were supposed constant throughout the mass, but it was nowhere

found necessary to attach any special physical meanings to k and 7. Frorr,

this general relation we readily find that

(532),

since k was supposed kept constant. Thus 7 might have been regarded

merely as a symbol for d log p/d log p.

*
Science, 45 (1917), 11(59, p. 538.
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In an actual mass of gas in which G denotes the ratio of the specific heats

at any point, p and p may be supposed connected by the relation

in which k will vary from point to point. We accordingly firict
"

9]?! = Q +
81 gfc

9 log p d log /?

'

If we use the symbol 7 to denote 3 logp/3 log/o, this becomes

(533).

We have seen that, as we pass along the radius of an actual mass of gas
from the centre to the edge, k will continually increase, or at most remain

constant, while p will continually decrease. Thus k and p change in opposite
senses, so that d log k/d log p will be negative at every point of the gas, and

the effect of the non-constancy of k will be to decrease the value of 7.

The same result may be obtained by noticing that the eqiiilibrium of an

isothermal mass of gas is the same as that of a gas in adiabatic equilibrium
with 7 = 1, while in an actual mass of gas conditions are such that the equi-
librium is intermediate between adiabatic and isothermal equilibrium.

In our study of the "
adiabatic

"
model, we found that the series of

equilibrium configurations was of the same general type for all values of 7
less than

2-J.
In an actual mass of gas, 6r, the true ratio of the specific heats

must be less than If, and the value of 7, as determined by equation (533)

must be still less on account of the non-constancy of k. Thus it seems

permissible to assume that the sequence of configurations in an actual gas
would be of the same type as those in an "adiabatic

"
mass in which y< 2.

And this series of configurations, as we saw, consisted of spheroids when the

rotation was small, these giving place to pseudo-spheroids for larger rota-

tions, and ultimately giving place to a lenticular figure with a sharp edge
from which matter was thrown off.

The effect of the sinking of the heavier chemical elements to the centre

is easily allowed for. It results in an excess of central condensation of mass,

and this may be allowed for by supposing the mass to approach more nearly

to Roche's model than would be the case if the gas were of uniform com-

position. We have just seen that the motion of the gas, even without

allowing for this excess of central condensation, will in its main features be

the same as that of Roche's model. The resemblance of the motion to that

of Roche's model will be still closer when central condensation of mass is

taken into account.
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205. In two cases we have calculated the value of a)
2

/2?rp at which the

sharp edge forms on the equator of a rotating mass of gas. In 152, dis-

cussing Roche's model, or an adiabatic gas for which 7 = 1J, we found the

critical value of a>
2

/27r/5 to be given by

L = 0-36075.
27T/5

And in 183, discussing a mass of adiabatic gas for which 7 had the highest

value consistent with the formation of a sharp edge, namely 2^, we found the

critical value of a>
2

/27r/o to be given, approximately, by

-- = 0-31.

These limits for 7 are much wider than those which can occur in an actual

mass of gas, for which 7 must be greater than 1J and less than If. The

critical values of a)
2
/2?r^ are so comparatively close together that it seems safe

to assume that for an actual gas the critical value must be somewhere between

the two theoretical critical values, and probably considerably nearer to the

former than to the latter. For purposes of rough calculation we shall suppose

that the critical value is given by

^4 = 0-35 .............................. (534).

Comparison with Observation

206. The course of events in our typical nebulous mass of gas may now

be briefly recapitulated. It has been supposed to come into. existence in an

entirely unknown way, probably forming at first an irregular mass of com-

paratively cold gas at a very low density. This will contract under its own

gravitation and would in time assume a spherical form except that it is

repeatedly being disturbed by tidal forces from passing masses. The effect

of these is to set up a slow rotation which continually increases as the mass

contracts. The mass assumes at first a spheroidal form, then a pseudo-

spheroidal form, until, when the rotation reaches an amount given by equation

(534), a sharp edge is formed round the equator. The figure of the mass is

now lenticular in shape, and any further contraction results in matter being
thrown off from the periphery or equator of the lens.

Fig. 41 shews the theoretical cross-sections which have been found for

two rotating masses of gas at the instant at which the sharp edge is first

formed, the two figures corresponding to the two extreme values of 7, 7= 1

and 7 = 2 respectively. The next stage in the motion will consist of the

ejection of streams of matter from the sharp edge.

On comparing these figures with those of actual nebulae shewn on Plate III,

we at once notice the similarity in the cross-sections of the two sets of figures,
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and it seems permissible to identify these actual figures, at least conjecturally

and tentatively, with the theoretical figures shewn in tig. 41. On this

suggested interpretation then, the nebulae shewn on Plate III are masses of

gas, or possibly clouds of dust, in rotation. Rotation has actually been

Fig. 41.

observed spectroscopically in some nebulae, as for instance the last nebula

shewn on Plate III, namely N.G.C. 4594 and the Andromeda Nebula M. 31,

while it would be difficult to imagine any cause other than rotation which

could account for the flattened symmetrical shape of the remainder.

One point of difference perhaps appears between the theoretical and the

actual curves. The photographs shew curves which are somewhat less blunt

near the equatorial edge than the theoretical curves
; in some of the photo-

graphic curves the boundary appears to become convex to its equatorial

section at points near this edge.

The theoretical curves have been obtained on the supposition that the

angular velocity has everywhere the same value
;
the mass has been assumed

to rotate as a rigid body. If shrinkage were an infinitely slow process, or if

the action of viscosity were infinitely rapid, a rotating and shrinking mass

would rotate at every instant like a rigid body, but in nature viscosity acts

so slowly in a mass of gas that we have to contemplate the possibility of

uniform rotation never becoming established*.

To examine the effect of non-uniform rotation, we return to the funda-

mental equations (386) to (388) of Chapter VII. Assuming the pressure to

be a function of the density, these may be expressed in the form

*MW
dx J p dxda;J p

and these will be the equations of relative equilibrium even when &)
2 varies

from point to point in the mass.

Differentiating the x, y equations with respect to y, x respectively and

subtracting, and treating the two other pairs similarly, we find

9ft)
2

_ 9co
2

9&)
2

_ ~

'dy ()x uz

so that ft)
2 must be a function of x*+y\ Thus the surfaces of constant

* Cf. Poincare, Lemons sur les Hypotheses Cosmogoniques, p. 28.
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angular velocity must be circular cylinders about the axis of rotation*. This

being the case, the three equations of equilibrium (535) have the common

integral

and the boundary of the mass must be one of the surfaces

(536).

This equation can be put in the alternative form

F+ <^2 (a? + i/
2
)
= cons.

where o>
2
is used to denote the mean value of &>

2 at all points of the equatorial

plane inside a circle of radius (a? + yrf.

A nebula shrinking homologously in the way described in the last chapter

would increase its angular velocity at the same rate throughout, so that

uniformity of angular velocity, if once established, would not be disturbed by

homologous shrinkage. But if a nebula has shrunk from an approximately
isothermal condition to one in which there is a rapid temperature gradient

from surface to centre, then the outer parts will have fallen in much more

than the inner parts. In the absence of any viscosity at all the conservation

of angular momentum would require that the parts furthest from the axis of

rotation should have a greater angular velocity than the parts nearer the

centre. In such a case w2 would increase with #2 + y
2
,
and when viscosity

acts, but without sufficient power to produce absolutely uniform rotation,

this increase of o>
2 with oP + y* will still persist to some extent.

Thus in a natural nebula, or other rotating mass of gas, we should expect
a*

2 to increase as we pass from the centre outwards. This is the type of

motion observed in the sun, while the measurements of Pease f on the rota-

tion of the Andromeda nebula suggest a similar increase of angular velocity

with distance from the centre.

It will be readily seen that the effect of such a variation in o>
2
is to change

the critical equipotential from the theoretical curves shewn in
fig.

41 in the

direction towards the photographic curves exhibited in Plate III. The

general principle is sufficiently illustrated by a consideration of Roche's

model ( 152). Let ^ stand for x*+ y
z and let TO be the value of r at the

sharp edge of the critical equipotential. The equation of this equipotential is

seen from equation (536) to be

*
Poincare, I.e. p. 32.

f Nat. Acad. Sciences, 4 (1918), p. 21. It would perhaps be straining the evidence to regard

the variation of w with distance as being definitely established, the more so as Pease himself

does not interpret his measurements in this way.
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The value of T O depends only on the value of o>
2 at the boundary of the

figure, being determined by the relation M <w
2
VT^, where w is the angular

velocity at the sharp edge ^ = w . Clearly a lessening of o>
2 as we pass

inwards from the sharp edge -or = tn- will result in a lessening of the value of

the integral, and so in an increase in the value of r corresponding to any

given value of -nr, leading to the result stated.

207. In most of the nebulae shewn in Plate III, as indeed in almost all

known nebulae, the evolution has proceeded somewhat beyond the formation

of the sharp edge; matter has, on our interpretation, already been ejected

from this edge. Thus before attempting a fuller interpretation of observed

nebulae, we ought to return to the theoretical problem, and attempt to trace

out the motion which is to be expected after the formation of the sharp edge.

Let us consider first what may be expected to happen to the main

mass. The ejected matter, as soon as it is of sufficient amount, will exert

gravitational forces on the remainder of the mass, but in the earliest stages

of the motion, so long as the total mass of ejected matter is still small, the

gravitational field set up by this ejected matter may be neglected, and the

main mass may be supposed to be acted on solely by its own gravitation.

As the mass slowly shrinks, the radius of the critical circle on which centrifugal

force just balances gravity will also slowly shrink. Matter will be gradually

thrust across this circle much in the same way in which water would gradually

drip over the edge of a slowly shrinking cup*.

During this early stage, it is impossible for the sharp edge ever to dis-

appear. For if at any instant it did so, the main mass would at once become

a^ain a mass rotating freely in space under its own gravitation ;
the slightest

amount of further shrinkage would produce an increase of rotation which

would again result in the formation of a new sharp edge, and the ejection of

more matter. Thus the motion is one in which the main mass shrinks,

keeping always a sharp edge. Just enough matter must be ejected through
this edge for the main mass to remain always of the form of the critical figure

of equilibrium, the condition for this being that equation (534) shall always

remain satisfied. In the motion before .the sharp edge was formed, the

angular momentum of the mass remained constant, so that &>
2

/27r/5 increased

* Poincare" (Lemons, p. 25) appears to follow Roche in believing that fairly violent oscillations

might be set up in the main mass, so that the rate of ejection of matter would periodically over-

shoot the amount necessary for equilibrium. Thus after an eruption there ought to be a period

of quiescence until the angular velocity has again overtaken the ejection of matter
;
after this

another period of eruption, another period of quiescence and so on.

Although every opinion expressed by Poincare must be considered with the greatest respect, it

is extremely difficult to find any dynamical justification for these supposed violent oscillations.

The oscillations of the main mass appear to be thoroughly stable (this has been rigorously proved

for Eoche's model in 150), and it is- hard to find any agency capable of forcing oscillations of any
but infinitesimal amplitude.

j. c. 14
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steadily. In the motion after the sharp edge has formed, both the angular
momentum and the mass decrease owing to loss from the sharp edge. The

lost particles are those for which the angular momentum is greatest, so that

a result of this loss is that the ratio of angular momentum to mass decreases.

The decrease has to be at just such a rate that w2

/27rp remains constant
;

this condition determines the rate at which matter is thrown off from the

edge of the main mass.

During the later stages of the motion it will not be legitimate to neglect

the gravitational field set up by the ejected matter. The ejected matter will

exert gravitational forces on the main mass, in directions such as to reinforce

centrifugal force and to neutralise the gravitational attraction of the main

mass. Thus each element of matter which is ejected provides in itself a force

tending to increase the rate of ejection of matter. It is at once clear that

the motion of ejection must ultimately become of a "cataclysmic" nature;

it cannot cease until either the main central mass has become entirely

disintegrated, or until the physical conditions of the problem change in

some way.

The Theory of Laplace and Roche

208. Laplace and Roche both imagined the mass to throw off matter for a

time and then to stop. The ejected matter was supposed to form an annulus

or ring out of which planets were ultimately formed. Roche went further

and imagined a continual series of alternations in the physical condition of

the mass, so that the mass threw off a succession of detached rings at distinct

intervals *.

Clearly the ejection of matter at the sharp edge can cease only when the

condition for the existence of a sharp edge and the condition of the constancy

of angular momentum (without ejection of matter) become identical. So long

as the ideal gas laws are obeyed, the former condition requires that w 2

/P shall

remain constant, while the latter requires that o>
2

/p shall vary as (p)*. Thus

it is quite clear that the ejection of matter, when once it has started, can never

cease so long as the ideal gas laws are obeyed. When these laws are sub-

stantially departed from, the ejection of matter may cease, but so long as we

regard our nebulous mass as being approximately a perfect gas, the emission

of matter from the sharp edge will be a continuous process.

209. Let us now examine the motion of the matter thrown off from the

sharp edge. Each particle or molecule, as it leaves the edge, will have a tan-

gential velocity in space equal to cor, arising from the rotation of the mass in

space, and superposed on to this velocity there may be a velocity of ejection

* Cf. footnote to p. 209.
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arising from the motion of the matter inside the mass, and also a velocity of

molecular motion when the nebula is gaseous.

As the problem is one of great complexity, it will be well to separate the

difficulties, and consider first the motion to be expected when the_velocity cor

exists alone or preponderates enormously over the other velocities. This

condition would be approximately satisfied if we could regard the matter of

the nebula as fluid, although it must be remembered that in actual fact a

sharp edge could not form on a fluid mass in rotation unless there was a

considerable central condensation of mass.

Since the sharp edge is determined by the condition that centrifugal force

shall exactly balance gravity, it is clear that the tangential velocity cor will

be exactly that required for the description of a circular orbit. Thus at first

the ejected particles will form a chain of infinitesimal satellites in contact

with the main mass.

As the main mass shrinks, this contact will of course be broken. More-

over, with the shrinkage of the main mass, the gravitational field will change,
so that the velocity of the satellites will no longer be that appropriate to the

description of circular orbits. Clearly a shrinkage of the main mass will

result in a lessening of the radial gravitational force at a fixed distance r, so

that the tangential velocity cor will become greater than the velocity for a

circular orbit at distance r, and the ring will begin to expand. Throughout
this motion the ring will remain circular, its angular velocity being deter-

mined by the constancy of its angular momentum
;

cor2 will always be equal
to the value at the instant of projection.

The ring will not expand indefinitely. To a close approximation each

separate particle will describe an elliptic orbit, the loci of these particles at

each instant being a circle. Thus it appears that the ring may be expected
to expand and contract rhythmically.

Immediately after the ejection of the first ring, a second ring may be

thought of as being ejected with approximately equal values of co and r, and

this will be followed by a continuous succession of other rings. In the

process of expansion and contraction these rings will collide and interfere with

one another's motion.

210. To follow out the train of thought of Laplace and Roche, we should

have to imagine these rings to coalesce into a single ring of finite size which

would rotate with a uniform angular velocity co about the main mass. This

ring will be held together by its own gravitational cohesion but, like the

main mass, it will be subject to the disruptive effects of rotation. Clearly it

will only be matter of very considerable density that will possess sufficient

gravitational cohesion to form a definite ring. Poincare*, by a very simple
* Lecons sur les Hypotheses Cosmogoniques, p. 22.

142
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proof, has shewn that when a ring is formed, the mean density pA of the ring

must always be greater than o>
2

/27r. By a simple extension of Poincare's

method, a much more general result may be obtained.

Consider the equilibrium of any mass whatever which is rotating approxi-

mately as a rigid body with angular velocity co. Let the motion be referred

to axes rotating with uniform velocity co, and let u, v, w be the velocity relative

to these axes at any point of the mass. Let us assume that u, v, w are small

compared with cor, the velocity of rotation.

Then the equations of motion are of the form

du dv i dp
-17 =-5- + (D'X- ^~ .

at ox p ox

Differentiating with respect to x, y, z and adding, we obtain, on using

Poisson's relation V2F= -
4-7T/3,

d (du dv dw\_ ra A 3p\ , !/! %A ,

9 ildP+ + ~
P

~ " + +
8* (p

Let us multiply by dxdydz, and integrate throughout the whole volume

of any detached mass
;
let us further transform the first and last integrals by

Green's Theorem. We obtain

j l!(lu + mv + nw) dS= j[J(2a>
2 -

4mp) dxdydz +
fj

-
|?

dS,

where d/dv denotes differentiation with respect to the inward normal.

The integral on the left measures the rate of expansion of the volume A
of the mass under consideration, so that the equation may be put in the

form

Now p vanishes at the boundary of the mass and must, if disintegration

is not to occur, be positive at all points inside. It follows that dp/dv must be

positive at every point of the boundary, and hence that the final term in

equation (537) must be positive. Thus if p < o>
2
/27r, the whole right-hand

member of the above equation is positive and d
2

A/dt
2 must therefore be positive.

If the mass is relatively at rest, it starts expanding ;
if it is already expanding,

it expands still more rapidly ;
if it is in process of contraction, the contraction

is checked. A condition for a steady state is that d*A/dt
2 shall vanish, and

this clearly requires that p shall be greater than &r/27r, which is Poincare's

result.

211. Returning now to the particular problem in hand, co will be sup-

posed to be the angular velocity of the Laplacian ring. In the earliest stages

of the motion this must be very approximately equal to that of the main
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mass. Thus this angular velocity is connected with p, the mean density of

the matter of the main mass, by equation (534),

a>
2 =0'35 x 27TJ5,

so that Poincare's result takes the form that pA ,
the mean-density of the

matter in the ring, must be not less than 0*35 times p, the mean density of

the main mass otherwise the ring cannot form at all.

To appreciate the full meaning of this result, we must remember that it

presupposes the formation of a sharp edge on the main mass, and that this

sharp edge cannot form at all unless the matter of the main mass has a degree
of compressibility comparable with that of a perfect gas. The ring, if ever

formed, will be a structure in equilibrium under gravitation and its own

pressure. Clearly the matter of a ring of small mass will expand under its

own pressure until its density becomes very small, and the condition that the

mean density shall be as great as 0'35p cannot be satisfied at all the ring
will be disintegrated by its own rotation. Thus we see that a ring of this

type, if it forms at all, must have a mass comparable with that of the main

central body for a ring of mass much less than that of the central body
would have a mean density much less than that of the central body. This

result seems to dispose of Laplace's theory of the formation of the solar system,
for this supposed the planets to have formed out of a ring whose mass must

have been small compared with that of the central mass.

EJECTION IN FILAMENTS

212. The formation of Laplace's ring required perfect symmetry of the

mass about its axis of rotation. To ensure this the mass was supposed to be

rotating freely in space, unaffected by the presence of any other masses. The

distances of adjacent masses in space will in general be so great that their

gravitational influence will be extremely small. For most problems there

would be no question that this gravitational influence might legitimately be

neglected, but the problem we now have under consideration is peculiar in

that even the slightest external gravitational field is sufficient to alter entirely

the nature of the solution.

In the neighbourhood of the mass of gas under consideration the gravi-

tational potential of all external masses will be a spherical harmonic, and

therefore will be capable of expansion in the form

where S
,
Sl} S2t ... are harmonics of degrees 0, 1, 2, ... respectively. As in

previous discussions of the value of VT (cf. for instance, 47), the constant

term $ may be omitted as giving rise to no forces, the term Si may be

neutralised by supposing the areas of reference to have the same acceleration
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as the centre of gravity of the nebula, and terms beyond S2 may be omitted

as being numerically small in comparison with S2 . Thus VT may be sup-

posed to reduce to the single term S2 ,
and the total potential fl (cf. equation

(390)) assumes the form
n==FM + S2 +ift>

2
(^ + 2/

2
) (538).

When the external potential S2 is omitted, the condition for a break-up
n 0) becomes

-

Sr

and the break-up commences simultaneously at all points of the cross-section

in the plane of xy. But when the term S2 is included in H the cross-section

in the plane of xy can no longer be circular
;

it becomes slightly elliptical and

obviously the break-up will occur first at the two -ends of the major-axis of

this ellipse. Thus instead of a ring of matter being thrown off, we see that

matter will be thrown off initially only at two antipodal points.

The first elements of matter thrown off from these two points form in

themselves a tide-generating system whose potential must now be included

in the general tide-generating potential VT . The effect of this addition will

clearly be to reinforce the value of the second harmonic term in VT ,
so that

when matter has once started coming off from two antipodal points, the region
of ejection will concentrate more and more at two points as the motion

proceeds. Under ideal conditions we may expect to have matter thrown off

uniformly from all round the equator ;
under actual conditions we must expect

two streams of matter issuing from antipodal points.

213. At this stage it will be profitable to pause again in our theoretical

investigation to compare theory with astronomical observation.

Theory predicts the existence of rotating masses of gas of a lenticular

form having sharp edges in their equatorial plane. These we have already

( 207) found reasons for identifying, at least provisionally, with the so-called
"
lenticular

"
nebulae of which examples are illustrated in Plate III.

Theory further predicts that an emission of matter ought to take place
in the equatorial plane : most of the examples illustrated in Plate III shew
an extension of figure in the equatorial plane which may very reasonably be

interpreted as matter ejected from this plane. The dark band in nebula

N.G.C. 5866, lying as it does along the equator*, strongly suggests darker

and cooler matter which has cooled after ejection, while still more pro-
nounced dark bands are shewn in the three subsequent nebulae on Plate III.

Theory predicts that the ejection of matter from the equator ought to continue

almost indefinitely, so that the extensions in the equatorial plane ought to

extend further and further as the evolution of the nebulae proceeds. Theory
* Pease (I.e. ante) describes the dark streak as making an angle of 3 with the major-axis of

the nebula.
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further predicts that- the emitted matter ought to proceed mainly from two

antipodal points on the equator of the nebula.

To examine whether these latter predictions of theory are verified, we
must obviously study our nebulae from a line of sight near to the axis of

rotation
;
the photographs shewn in Plate III, all being takerTedgewise, can-

not be expected to give any information on the question. But there is no

reasonable doubt that the last three nebulae on Plate III are nothing but

ordinary spiral nebulae seen edgewise ; although we cannot study the cross-

sections of these by their equatorial planes, there are innumerable other spiral

nebulae whose orientation in space is such that we look almost directly on to

their equatorial planes. Typical examples will be found on Plates II and V
;

other types will be found in any collection of photographs of nebulae. The

general characteristic of all these nebulae is that the two arms proceed ap-

proximately from antipodal points on the equator. That these arms really

represent an ejection of matter from the central nucleus is almost proved by
the two instances of M. 51 and M. 101 already discussed in 4. All this is

quite in accordance with theory.

Two non-typical spiral nebulae are illustrated on Plate IV. The peculiarity
of the first is that the spiral arms have given place to an almost continuous

cloud of gas or dust, the separation of the arms being shewn only by the

faint rifts or lanes between them. The peculiarity of the second is that the

spiral arms are almost circular in shape, so that the whole figure is nearly

symmetrical about its axis of revolution. In this nebula we appear to have

a close approach to the manner of evolution imagined by Laplace. It will be

seen that our tentative hypothesis is able to account for these exceptional
nebulae as well as for those of more normal type.

Thus our conjectural interpretation of all spiral nebulae is that they are

masses of gas or clouds of dust in rotation, this rotation being so rapid that

no figure of statical equilibrium is possible. In the earlier stages of their

evolution, they must have passed through a series of figures of equilibrium of

the pseudo-spheroidal type discovered in Chapter VII, until a sharp edge was

formed. After this, matter was ejected along two arms originating from this

sharp edge. At first the points of origin of the arms were determined by the

infinitesimal tidal forces set up by the rest of the universe ; subsequently the

tidal forces from the symmetrical arms themselves would suffice to confine

the emission to two antipodal points.

214. It is worth noticing that on this interpretation of the spiral nebulae

the mean density of the nucleus can be approximately determined when the

period of rotation is known, the angular velocity &> being connected with the

mean density p of the nucleus by the approximate relation

a)
2 = 0-35 x 2-7T7/5

=
2-27Jo,

7 being the gravitation constant.
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For instance (cf. 6) van Maanen has found the period of rotation of the

Ursa Major nebula M. 101 to be about 85,000 years for a number of points at

average distance of 5' from the centre. The angular velocity is not quite

uniform, increasing somewhat as the nucleus is approached, but if, for pur-

poses of a rough calculation, we assume the period of rotation of the nucleus

to be 85,000 years, we find that the mean density of the nucleus must be

about 3'8 x 10~17

grammes per cubic centimetre. At this density there will

be about a million atoms or molecules of atomic or molecular weight 20 per
cubic centimetre, the mean free path being of the order of two thousand

kilometres.

215. There remain some characteristic features of spiral nebulae which

have not so far been predicted or explained by our theory, and which will

accordingly provide further tests of the tenability of this theory. In particular

may be mentioned the characteristic shape of the arms (cf. 3) and the con-

densations or nuclei in these arms. The determination of the shape of the

arms to be expected on our theory seems at present to be beyond the

reach of mathematical analysis, but the formation of condensations admits

of discussion.

In examining the ejection of streams of gaseous or other compressible
matter under tidal forces ( 160) we found that a long stream of gas must

become longitudinally unstable and will tend to break up into condensations

or nuclei under its own gravitational attraction. Exactly similar effects are

naturally to be expected in the present problem, and these seem to provide a

very natural and satisfactory explanation of the nuclei observed in the arms

of spiral nebulae.

In a stream of compressible matter of uniform density p, the distance

apart of successive nuclei was found to be (approximately)

For a gas, or quasi-gas formed of dust or meteorites, p = Jp<7
2
,
where C is

the molecular velocity, so that

Here p may be taken to be the mean density in the nebular arms. The

mean density of the nucleus, which we have so far denoted by p, will probably
be somewhat greater : let us denote it by Op. Then equation (534) becomes

&>
2 = 0'35 x 27rjBp = 26yp (say),

so that equation (539) gives

e c
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Some idea of the value of can be obtained from the result of 211. If

the matter had formed a ring instead of spiral arms, could not have been

greater than (O'SS)"
1

,
or say 3. The conditions in spiral arms are slightly,

but not widely different, so that 6 does not appear likely to be much greater

than 3, neither does it appear likely to be less than 1. If at a guess we put
6 = 2 our equation becomes

C = lco.

This has a simple physical interpretation the difference of velocity of rota-

tion of two adjacent nuclei on the same radius must be approximately equal
to the molecular (i.e. temperature) velocity in the arms.

For the rotation of the Andromeda nebula, M. 31, Pease* has found the

velocity in kms. per second along the major-axis to be given approximately

by the formula
- 0-48^-316,

where x is measured in seconds of arc. The distance of successive condensa-

tion is perhaps about 3", so that Ico = 1*44 kms. a second about. On our

theory this ought to be at least comparable with the molecular velocity. We
might of course invert the argument. Assume a molecular velocity in the

arms of T44 kms. a second, which is a reasonable value to assume, and our

formula (539) would at once give a value for I just about equal to the ob-

served distance apart of adjacent condensations.

To take another instance, the period of rotation of the Ursa Major nebula

M. 101 has been found by van Maanen to be about 85,000 years. This gives
o> = 2'35 x 10~ 12 so that if at a guess we put (7=1'6 kms. a sec., we obtain

I = 7 x 1011 kms. (about -^ parsec), and this must be the distance of adjacent
nuclei. Since these appear to be at distances of about 5" apart, the distance

of the nebula ought to be about 1000 parsecs (parallax O'OOl"). We have

already estimated the mean density of the nucleus p to be about 4 x 10~17

whence it appears that the mass of the nucleus must be of the order of

1037

gms., equal to 5000 times the mass of our sun.

If we conjecturally suppose the values of C and p to be the same for the

Andromeda nebula as for the nebula M. 101 just discussed, we find that the

Andromeda nebula ought to have a parallax of about 0*0006 and a mass of

the order of 1042

gms., which is of the same order as the probable mass of the

whole universe of stars of which our sun forms a member.

No stress ought to be laid on any of these numbers except as shewing that

our conjectural interpretation of the nuclear condensations in the arms would

predict effects of the right order of magnitude. The figures indicate, how-

ever, that our conjecture commits us to supposing that the mass of the big
Andromeda nebula (M. 31) is comparable with that of the whole galactic

* Nat. Acad. Science, 4 (1918), p. 21.
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universe the " island universe
"
in which we live while the smaller nebulae

are of masses equal to thousands of that of our sun. The masses of the indi-

vidual condensations in the arms appear to be probably about comparable
with that of our sun a conclusion which we shall again arrive at, in a more

precise form, by a different path.

216. So far the ejected matter has been supposed to form a definite fila-

ment. Now it is clear that a jet of gas ejected into a vacuum will merely
scatter into space under its own expansive forces, except when the mass is

so large that its own gravitational coherence is sufficient to outbalance the

expansive forces produced by molecular velocity. We must examine under

what conditions a jet will condense into a filament.

Consider first the simpler problem of the conditions under which a fila-

ment, in existence, can continue in existence without scattering into space.

Let T be the line density, or mass per unit length of a uniform long filament.

The potential of this filament at a point near its surface will be of the order

of magnitude of jr, so that a molecule moving with velocity C will escape

altogether if

JC'XyT,

Thus if C is the mean-square molecular velocity near the surface of the fila-

ment, the filament will scatter into space unless (approximately)

r>a 2

/27 .................................(540).

If the filament is assumed to be in isothermal equilibrium a more precise

result can be obtained. Let p = kp, so that & = J0 2
,
then the potential

must satisfy the differential equation

of which the appropriate solution for a long filament is

J^_ Ar*
P ~

2-Trr
2 (l+Arc

)*'

where c and A are constants of integration. The mass of gas per unit length

is readily found to be r = kc.

The density is finite at the origin only if c = 2
;
in all other cases there is

found to be a nucleus at the origin of line density k (1 -|c), and the mass of

this nucleus together with that of the surrounding gas will give a total mass

per unit length equal to k(l + c).

Interpreted physically, this means that a filament of line density 2k can

rest in equilibrium with finite density at the centre and no tendency to

scatter into space. A filament of line density greater than 2k can rest in

equilibrium with no tendency to scatter into space, but mathematically there

will be zero density at the centre and a line charge repelling the gas ;
in
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nature this would mean that equilibrium could be established only when
A had become so great, and therefore the density so great, that the ordinary

gas laws would be departed from. A filament of line density less than 2k

cannot rest in equilibrium at all under natural conditions
;

it would scatter

into space. Thus for an isothermal filament the exact critical value of T is

seen to be
2k 2C 2

in which the gravitation-constant 7 has been restored. This exact value

differs by a factor | from the general approximate value obtained in

equation (540).

217. Thus the lowest line density for which condensation can occur at

all will be comparable with that given by equation (541). Multiplying this

by expression (539) which gives the length of filament which goes to form a

single condensation in the nebular arms, we find that the minimum mass in

one such condensation must be comparable with

(542)<

For line densities much greater than this, the filament may become

transversely as well as longitudinally unstable, the mechanism again being
that already explained in 160. If the filament is of n times the critical

line density 2C2

/3y, the linear dimensions of its cross-section will be of

the order of n^Cy~^p~^, which is 2n times the critical length (539) at

which wave-motion becomes unstable. Thus when a filament has a line

density much beyond the critical line density 2<7 3

/37, tne motion may be

supposed to be one in which nuclei of condensation form both laterally and

transversely, their average distance being comparable with that given by
formula (539), namely %Cy~^ p~^. The average mass surrounding each

nucleus will be p times the cube of this expression or

..............................(5*3),

which is comparable with our former expression (542), although less by a

factor f .

Inserting our previous conjectural values G = T6 x 105 and p 1'5 x 10~17
,

the numerical value of expression (542) is found to be 16 x 1034
,
or eight

times the mass of our sun, while the numerical value of expression (543) is

about three times the mass of our sun.

Thus we are again led to the conclusion, reached rather more vaguely in

215, that the nuclear condensations in the arms of spiral nebulae are of

mass comparable with our sun.



CHAPTER X

THE EVOLUTION OF STAR-CLUSTERS

218. From a purely theoretical discussion of the evolution of a mass of

rotating gas we have been led to the hypothesis that the spiral nebulae are

merely masses of rotating gas which have reached a stage of disintegration,

the rotation having become so great through shrinkage that configurations of

equilibrium are no longer possible. It would be of the utmost interest to

follow out dynamically the different processes of this disintegration but un-

fortunately the mathematical difficulties have so far proved to be too great.

We have, however, found that the masses of these spirals must be supposed
to be enormously greater than that of our sun, and the general nature of the

disintegration has been seen to consist of the formation in the nebular arms

of condensing nuclei each of mass just about comparable with that of our

sun. Thus the hypothesis which has already been adopted seems to lead

irresistibly to the conclusion that the final result of the process of disintegra-

tion which we see going on in the spiral nebulae must be the formation of

star-clusters.

As to the features to be expected in these final star-clusters our dynamical

analysis has so far told us almost nothing. It seems not unreasonable to expect
that the star-clusters will be of the type we have described as

"
globular

"

thus we may conjecture that the observed spiral nebulae are forming star-

clusters similar to observed globular star-clusters and that the observed

globular clusters have originated out of spiral nebulae.

For the present we shall regard this conjecture merely as a hypothesis
whose truth is to be tested. The hypothesis commits us to what is com-

monly called the "island universe" theory just as the spiral nebulae are

distinct independent objects in space, so the star-clusters formed from them

may be expected to be distinct independent objects in space. The " island

universe
"
theory need not, however, be accepted in any extreme or categorical

form. Twin nebulae are known to exist in the sky, and these may easily be

imagined to form overlapping or intermingling star-clusters. Thus the
"
island

universes
"
may overlap or intermingle one " island

"
may be entirely enclosed

inside another and larger
"
island." These, however, will be exceptional phe-

nomena
; normally we regard the stars as falling into detached clusters or

separate
"
island universes." The particular cluster of which our sun is a

member will be spoken of as the galactic universe.
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219. Some features of similarity between spiral nebulae and star-clusters

have already been noted
;
these fall in naturally with the hypothesis we are

now considering. We have already mentioned (5) that the velocities in space

of the star-clusters are approximately of the same order of magnitude as those

of the spiral nebulae. The masses again are of the same ordef~ofmagnitude.
At a reasonable estimate the mass of the galactic universe is that of

1500 million stars each of mass equal to 1*7 times that of our sun (2 x 1033

gms.),

giving a total mass of 5 x 1042

gms., which is of the same order of magnitude
as our estimate of the mass of the Andromeda nebula M. 31 (p. 217). This

nebula is perhaps the biggest of known nebulae, just as our galactic universe

is the biggest of known star-clusters. Shapley inclines to an estimate of

about 100,000* or possibly moref for the mean number of stars in more typical

clusters. This may correspond to a mass of the order of 1038 which is com-

parable with the mass of the nebula M. 101 conjecturally determined on

p. 217. Finally according to Pease and Shapley ( 6) many of the so-called

globular clusters are in reality of a flattened shape, suggesting that the plane

of the spiral nebula persists as the plane of symmetry of the resulting star-

cluster, this being of course the galactic plane in our own universe.

On the other hand before the hypothesis can be finally accepted some

obvious features of dissimilarity between the spiral nebulae and star-clusters

will demand explanation. The known star- clusters are very few in number

compared with the spiral nebulae, and their observed distribution in space is

different ( 5, 6). Also the star-clusters are on the whole probably more

distant than the spiral nebulae. Curtis J gives 0*033" as the average annual

proper motion of 66 large spiral nebulae, whence, the order of magnitude
of their linear velocities being known, Curtis suggests an average parallax

of the order of O'OOOS". On the other hand Shapley ( 6) has estimated the

nearest star-clusters to have a parallax of only about 0'00012; a later study
of the distances of 69 globular clusters has led him to the conclusion that the

nearest clusters of all, &> Centauri and 47 Toucanae, are distant just under

7000 parsecs (-or
= 0'00014), the furthest, N.G.C. 7006, is distant 67,000 parsecs

(-or
= 0-000015), while the mean distance of 69 is 23,000 parsecsO = 0*000044).

These facts suggest problems which have to be solved rather than fatal diffi-

culties. For the present we may confine ourselves to discussing the general

theoretical problem of the possibility of nebulae evolving into star-clusters.

As we have found it impossible to progress in a forward direction from nebula

to star-cluster, we must attempt to pass backwards from star-cluster to nebula.

220. Of all the star-clusters known to us our own universe is naturally

the best known. Let us try to reconstruct the nebula out of which, on our

present hypothesis, it must have formed.

* The Observatory, 39 (1916), p. 453. f Astrophys. Journ. 48 (1918), p. 181.

J Astron. Soc. Pacific, 173 (1918). Astrophys. Journ. 48 (1918), p. 154.
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Some evidence can be obtained from the masses of the stars and their

distribution, but, except for our own sun there is no means of determining the

mass of a star except when it happens to be a binary. Eddington* has given
a list of all the stars whose masses he believes to be really well determined.

They are only seven in number, their masses in terms of that of our sun

being 07, TO, T3, 1*8, 1*9, 2'5 and 3'4. Including our sun, this gives eight

stars, all of fairly equal mass, the average of these masses being 1*7 times that

of our sun, or 1083 '53

gms. The circumstance that the masses of the stars are

fairly uniform is not unfavourable to our hypothesis as to their origin ;
we

should expect the condensations in the nebular arms, if formed in the way we
have imagined, to be all about equal in mass.

On equating the average mass of the stars to the mass of a nebular con-

densation, as given by formula (543), we can determine the density of the

primitive nebular arms. The equation is

(7
37~V~ i = 1033 ' 53

(544).

Unfortunately the value of p depends largely on the unknown molecular

velocity C, varying as C s
. On taking G = T6 x 10 we find p = 4 x 10~17

. For

cold gas, or gas mixed with solid dust particles the value of C might perhaps
be only a quarter of that just used, and the calculated value of p would then

be only one four-thousandth part of that calculated, say p = 10~20
.

If I is the mean distance of the condensations in the primitive nebular arms,

each member of equation (544) is equal to pi
3
,
so that 1 = p~% x 1011 '18 cms.

Taking p
= 4 x 10~17

,
we find I = 1016 ' 64 cms. =^ parsec. Taking p = 1Q-20

,

we find I = 1017 '84 cms. = 1
parsec.

Compare these figures with the present density and distances in our galactic
universe. Eddingtonf estimates that there are probably between 30 and 40

stars within a distance of 5 parsecs of our sun. The higher estimate gives
a stellar density of one star per 13 cubic parsecs, or per 1056 '54 cubic cms.,

and an average stellar distance of (13)* or 2*3 parsecs. Introducing our

former estimate of 1033' 53 for the average stellar mass, this gives an average

density of matter of about 10"23 in the neighbourhood of our sun.

It is more difficult to estimate the mean-density in the universe as a

whole. At a rough guess, our universe may be supposed to be a lens-

shaped figure of equatorial radius 2000 parsecs and transverse radius

600 parsecs. The volume of such a figure is 4 x 109 cubic parsecs or

1065 cubic cms. Thus a total mass of 5 x 1042

grammes would require a mean

density of 5 x 10~23
, or five times the density just estimated for the neigh-

bourhood of the sun.

Both these estimates evaluate the density of the matter in the bright
stars only; the dark stars, of which it is impossible even to guess at the

*
Stellar Movements, p. 22. t I.e. p. 15.
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number, will increase the density to a quite unknown extent, so that the

estimates only provide lower limits to the true density.

Assuming these estimates to be somewhere near to the truth, a com-

parison with our previous estimate of the density of the primitive nebular

arms shews that the system must have expanded very largely in its passage
from nebula to star-cluster. Even the lower estimate of p = 10~20

requires an

expansion of about six linear diameters. The necessity for some such ex-

pansion can be seen without detailed calculations. Our estimate of p. 217 has

already suggested that the mass of the Andromeda nebula is about equal to

that of our galactic universe, so that we may think of it as a picture of the

primaeval nebula out of which we are conjecturing that our universe has

been formed. But the Andromeda nebula subtends an angle of less than 2

from the centre of our universe, whereas our universe probably subtends

about 30 when seen from the Andromeda nebula.

The idea of such an expansion will probably present no difficulties to the

observational astronomer. The general appearance of the spiral nebulae is

certainly not unfavourable to the view that they are in an expanding state,

and this view is confirmed by the measurements of van Maanen and Kostinsky

already referred to ( 4) ;
the matter in the nebular arms appears to be moving

away from the nucleus with no inconsiderable velocity.

221. For further calculations, let us assume the density of the original
nucleus to have been 10~17

, corresponding ( 214) to a period of rotation of

160,000 years. The mass of the whole system being supposed to be 5 x 1042

gms.,
the volume of the nucleus before disintegration commenced must have been

5 x 1059 cubic centimetres say a figure of radius 30 parsecs in its equatorial

plane and of radius 10 parsecs perpendicular to this.

We suppose that this figure has expanded until its equatorial radius is

about 2000 parsecs say 66 times that of the original nucleus. During this

expansion the angular momentum Mko) must remain constant. The value of

k* may be supposed to have increased about (66)
2 times or say 4000 times, so

that the mean value of o> will have decreased to one four-thousandth of its

former value, and the final period of rotation will be about 640,000,000 years.
Thus our whole system may be expected to average one rotation in 640,000,000

years, or about 0'0020" per annum. The rotation calculated in this way
depends only very slightly on the initially assumed value of p, being in point
of fact proportional to p*.

In this connection it may be mentioned that Charlier* has found that

the node of the invariable plane of the Solar System has a direct motion

on the plane of the Milky Way amounting to 0-003528" per year, or a revo-

lution in about 370,000,000 years. This, as Eddingtonf has remarked, might
equally well be interpreted as a retrograde rotation of the Milky Way in space.

* Lund Meddelanden, u 9, p. 78. t Stellar Movements, p. 260.
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General Stellar Dynamics

222. After this brief consideration of the possible origin of our own

universe, let us proceed to a general discussion of the motions of stars in

clusters. In searching for numerical data we may be guided by the figures

we have conjecturally obtained for the past history of our own universe. We
have a number of stars, or, at first, gaseous condensations, moving in space

under their own attractions and possibly also under the attraction of a central

nucleus. We require to find as much as possible about the nature of the

motion and the evolution of the system.

The motion of the stars may to some extent be compared to the motion

of the molecules of a gas, and certain formulae may be borrowed from the

kinetic theory of gases which will give approximately true results when

applied to a star-cluster.

223. Let us begin by considering the frequency of actual material col-

lisions in a cluster of stars.

At first let us regard the stars as being uniformly spheres of diameter o-,

and let us treat the problem as a purely geometrical one, the gravitational

attractions of the stars being momentarily neglected. By the familiar methods

of the kinetic theory of gases, it is readily shewn that the number of collisions

experienced by any one star in time dt will be

where v is the number of stars per unit volume, and F is their mean relative

velocity.

Thus the mean time between successive collisions of a single star will be

For our universe in its present state we may take v = 10~56 ' 5 and

V= 40 kms. a sec. = 4 x 106 C.G.S. units. Thus formula (545) gives for the

mean interval between collisions 1041 ' 9

/<r
2

years. Even if we assign to the

average star a diameter equal to that of Neptune's orbit, say cr = 4'5 x 1014
cms.,

this gives a mean interval of 4 x 10 12

years, a period which is so large com-

pared with any reasonable estimate of the age of the universe, that it is at

once _clear that the chance of material collisions may be disregarded entirely.

224. This calculation has neglected the effect of gravitational attraction,

which naturally increases the chances of collision. Not only this but stars

will act on one another gravitational ly, and so influence one another's motion,

at distances far beyond those at which material collisions can occur. The

event of two stars coming so close to one another that their gravitational
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attraction appreciably influences their motion may conveniently be referred

to as an " encounter." It now becomes necessary to estimate the frequency
of stellar encounters.

225. In fig.
42 let OPQ be a slightly curved orbit described by a star

of mass M about G the centre of gravity of a second star of mass M ' and itself.

The distance of closest approach PGP' will be denoted by a. The velocity

ofM relative to G will be M'V\(M + M'), where V is the relative velocity of

the pair of stars.

When the star M is at R, the acceleration along GR is yM' cos2
0/<r*,

y being the gravitation constant. Thus the rate of change of velocity along
PG is yM' cos3

0/cr
2

,
and the total change of velocity along PG will be

(546).

This total change of velocity must however be equal to

M'V '

where
-fy

is the total deviation of either orbit
;
thus

.(547).

It must be remembered that this formula may only be used when ^ is

small.

A certain value of ^r will correspond to each value of closest approach a>

and conversely. The value of a which corresponds to a deviation
i/r

of 1 is

.(548).

Taking, as values appropriate to our present universe, M+M'= 6'8 x 1 38

gms.,
V 4 x 106

cms., we find as the value of a- about 3'2 x 1015
cms., or about seven

times the radius of Neptune's orbit.

j. c. 15
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Encounters for which <r is equal to, or less than, this value i.e. encounters

in which the deviation is 1 or more may be expected from formula (545) to

occur only about once in 1011

years. It is true that formula (545) was

obtained only by neglecting the curvature of the stars' paths produced by

gravitational attraction, but it is quite legitimate to apply it to determine

the present critical value of a-, in which by hypothesis the total deflection of

path is only 1.

A similar consideration also justifies our estimate of 4 x 1012

years obtained

in 223 for the interval between collisions. In obtaining this estimate we

neglected the gravitational curvature of the path ;
formula (547) now shews

that this curvature would only be about 7, of which only half, or 3^, would

occur before the collision took place. Thus the estimate will remain very

approximately true even when the full effects of gravitation are taken into

account.

226. We have now, allowing fully for gravitation, obtained two estimates

applicable to a system of stars in the state in which our universe now is.

For the frequency of actual collisions, even assuming the stars to have a

diameter equal to that of Neptune's orbit, we have found 4 x 1012

years, and

obviously for smaller stars collisions would be still more infrequent. For

encounters producing a total deflection of path of 1 or more, we have ob-

tained a frequency of one in 1*4 x 1011

years. These intervals of time are

both so long in comparison with astronomical times that it is clear that, in

statistical calculations dealing with our universe as it now is, we may neglect

altogether the possibility of collisions and of encounters in which ty is as

large as 1, and confine our attention to encounters for which ^ is less than

1. For such encounters formulae (546) and (547) may be regarded as

accurate.

227. We proceed now to study the cumulative effect of these feeble

encounters.

It will be remembered that we have so far been concerned only with

motion relative to the centre of gravity of two stars. In fig. 43 let OP, OQ
represent the velocities in space of the two stars M, M'

;
let these velocities

be denoted by vlt v2 and be inclined at an angle a. Let G divide PQ in the

ratio M' : M, then OG will represent the velocity of the centre of gravity of

the two stars.

The direction of the line of closest approach may be supposed to be SP.

This is necessarily perpendicular to the direction of relative velocity PQ.
Let the angle SPO be j3.

The effect of the encounter is to superpose on to v1} the velocity of M, a
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new velocity ZyM'/o-V along SP. Thus after encounter the components of

the velocity of M along and perpendicular to OP will be

cos/3, sin /3 .(549).

Fig. 43.

228. Let TP be the intersection of the plane POQ with the plane per-

pendicular to PQ in which the direction of closest approach must lie. Let

the angle OPQ be 0, and the angle TPS be <. Then cos ft
= sin 6 cos

cj>.

In a series of encounters all directions in the plane TPS are equally likety

for the direction of closest approach PS, so that all values are equally likely

for
</>. Thus, using a bar to denote mean values over a series of encounters,

cos/3 =

cos2
/3 sn

sm2 a

Returning to formula (549) it is clear that the expectation of the com-

ponent along OP is simply vl ;
the velocity along the original path remains

unaltered. The component of velocity perpendicular to this, say vn ,
can be

in any direction perpendicular to OP. After any number of encounters the

expectation of the value of vn
2 will be

Now

sin2 3 = 1-

sin2

/3.

sn2 a

and since F2 = v? + v<? 20^ cos a, this can be expressed as

87V
152
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A comparison of these expressions shews that, whatever the values of

vl and v2 ,
sin2

/? must always be between J and 1. For rough numerical

estimates, which can at best only be accurate as regards order of magnitude,

we may take sin2
/3 uniformly equal to f , giving

...........................<>
This value of vn

* becomes very large if there are encounters for which V
is very small, but our original formula is not applicable to these. Moreover,

whatever the law of distribution of stellar velocities, the frequency ofencounters

for which V is small must be proportional to V3d V, so that the influence of

such encounters on vn
2

is negligible. We may accordingly suppose V to be

replaced by its average value V.

In an interval t, the number of encounters for which cr lies between a and

cr + da- may be taken to be

so that the expectation of vn
2 after time t will be

^t =
-^L^--\og(^}t (551).

In this evaluation of vn
2 we have assumed M' to be about the same for

all encountering stars
;
if it is not we need only replace M/2

by its mean value.

Further, as the limits indicate, we consider only encounters for which cr

lijs
between two values <TI} <r2 . We notice at once that the expression on

the right would become infinite both for a-^
= and for o-2

= oo . We are not

entitled to put c^ = because by doing so we should be taking into account

the effect of violent encounters, for which our formula does not apply. We
have seen that encounters for which

i/r
> 1 will be of extremely rare occur-

rence. Reserving these for separate discussion, we may give to CTO the

minimum value for which t/r< 1, which we have seen to be about 1015 ' 5 cms.

The circumstance that expression (551) becomes infinite when cr2 =oo
shews that encounters with very distant stars contribute greatly to the value

of vn\ We may, however, use our formula to find the effect of encounters

with fairly near stars, say stars within 20 parsecs, and to do this we put

cr2
= 20 parsecs = 1019 ' 8 cms.

With these values, we have

Vi
104-3 = 9-9.

Thus we find for the expectation of v^ produced by non-violent encounters

with stars within 20 parsecs,
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With 'the numerical values already assumed (v 10~56 ' 54
; M' = 1033 ' 53

,

F= 4 x 106

), this gives vn
* = 7 x lQ- 9

t.

Here t is measured in seconds. If t is measured in years, the formula

becomes, nearly enough,
vn = ^t (552).

Thus in one year the expectation of cross-velocity is J cm. a second
;
in a

million years it is '005 km. a second. It only reaches 1 km. a second after

40,000 million years. Taking v = 25 kms. a sec., the time required for vn
* to

become comparable with v2
,

i.e. for the direction of motion to be entirely

changed by encounters for which
A|T
< 1, is found to be of the order of

1013 '5

years*.

These numbers, it will be remembered, refer only to our universe as it

now is, and measure the cross-velocity to be expected from encounters with

neighbouring stars within 20 parsecs. It is accordingly clear that the velo-

city set up by encounters with neighbouring stars is quite negligible. Thus

we arrive at the very important result that the changes in stellar velocities

may be regarded as coming from the forces exerted by the main body of the

universe : near stars need not be taken into the calculation at all.

229. It now appears that, for our present universe, the problem of stellar

dynamics is the same as the problem of the kinetic theory of gases with the

collisions left out. This being so, stellar dynamics is naturally very much

simpler than gas-dynamics. As Eddingtonf has remarked, it may, in virtue

of the result just obtained, be regarded as a quite different study from gas-

dynamics, or from that of the motion of any type of system that has yet been

investigated. For the action of contiguous units, which becomes gradually

simpler as we pass in succession through rigid dynamics, hydrodynamics and

gas-dynamics, disappears entirely when we come to stellar dynamics.

230. Just as in gas-dynamics, the units in any small region of space may
be classified according to their velocities into a system of showers of parallel-

moving units. But there is the essential difference between the two cases,

that in stellar dynamics these showers retain their identity through very long

periods of time, whereas in gas-dynamics they do not.

Suppose that in any small region of space dxdydz, the number of stars

which have velocities lying within a small range dudvdw surrounding the

values u, v, w at time t is

f (u, v, w, x, y, z, t) dudvdivdxdydz (553).

* This time corresponds to the "time of relaxation" in a gas. For this same time,

Prof. Charlier has obtained, by a somewhat different process, a value of the order of 101(!

years

(Lund Meddel. u. No. 15).

f Stellar Movements, p. 256.
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Within the small range dxdydz, the gravitational forces arising from the

universe as a whole will be sensibly constant
; suppose them derived from a

potential F. Then the motion of every star included in formula (553) must
be determined by the equations of motion,

da_dV dv_dV dw_W
dt'dx' dt~dy' dt~dz

.................. (5

After an interval dt, this group of stars must have velocity components

lying within a small range dudvdw surrounding the values

dx dy dz

while its position will be confined to a small region of space of extent dxdydz

surrounding the point

x + udt, y + vdt, z + wdt.

Hence, with the notation already introduced in formula (553), the number
of stars in this group must be

f[u + ^dt, v + TT- dt, w -f- -= dt, x -f udt, y + vdt, z + wdt, t + dt )

\ ox oy oz )

dudvdwdxdydz ...(555),

so that this expression must be equal to expression (553).

Expanding expression (555) as far as first powers of dt, and equating to

expression (553), we obtain

df^ dV df ,

9F df dV df df df df'
_1_ v

_|_
J

. I / I n, J I n\ > I nit J __ Q / K K K. \

dt dx du dy dv dz dw dx dy dz

This is the differential equation which must be satisfied by the distribu-

tion functiony in every problem of stellar dynamics*.

231. Being a linear equation in /, this equation may be solved in accord-

ance with Lagrange's rule. This rule directs us to find as many integrals as

possible of the system of equations

7
du dv dw dx dy dz /ce>r\* =
8?

=
8?

=
8F

= ==V = (557>

dx dy dz

If El cons., E2
= cons., . . . are all the integrals of these equations, then

the solution of the original equation (556) is simply

/= <(#!, E2 , ...) (558),

* The student of the Kinetic Theory will recognise that it is simply Boltzmann's well-known

equation with the collisions left out. Cf. Boltzmann, Vorlesungen ilber Gastheorie, i. p. 132,
or Jeans, Dynamical Theory of Gases (2nd Ed.), p. 226.
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where < is any arbitrary function. It is however clear that equations (557)

are merely the equations of motion of a star or other particle in the universe,

so that Elt E2 ,
... are the first integrals of the equations of motion*.

232. The general solution (558) contains the most general law of distri-

bution which is consistent with the conditions of continuity, but the finding

of / is only the first step in the solution of a given problem. The potential

V may in general be supposed to be of the form

V=VM + VT (559),

where VM is the potential of the mass of stars under consideration and VT is

that of any extraneous forces. Thus ^*VM = 4>7rp and V 2Fr = at all points

inside the star-cluster, so that

V2F=-47r/> (560).

We need not assume all the stars to be of equal mass or type. Let us

assume them, however, to fall into a number of distinct classes of masses

M
, M', etc., the corresponding laws of distribution being denoted by /, /', etc.

Let the number of stars of these types per unit volume be denoted by v, v
', etc.

Then

p = 2vM=2MJIjfdudvdw (561),

so that equation (560) becomes

(562).

We shall now shew that values of//',... of the form (558) which are also

such as to satisfy equation (562) will give a natural motion of stars.

233. The general characteristic equation satisfied by /is equation (556).

Let us multiply this by ududvdw and integrate with respect to all values of

u, v, w. We have
r r r 7\f r r r

\\\4- ududvdw =
I \fdudvdw

on integrating by parts, while similarly

;- ududvdw = 0.

Hence the resulting equation is seen to be

-T- \fududvdw +5-1 Ifa* dudvdiu + r- I \fuvdudvdw

=- \fuwdudvdw = -=- \\\fdudvdw (563).+
a

* An alternative proof will be found in Monthly Notices R.A.S. 76 (1915), p. 78.
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We may however put

II lfdudvdw = v,

1 1 \fuvdudvdw vwv, etc.,

where wv denotes the mean value of uv for stars of the first class at the point

x, y, z. Thus equation (563) becomes

^(^u)+^(V uz)+~(v lw) + ^(vmu) = v
d^ ......... (564).

dt^ dx dy^ dz^ dx

When there is only one type of star, this and its two companion equations

are simply the hydrodynamical equations of motion of the element dxdydz of

the star-cluster. They could be derived directly from the equations of motion

(557) by the methods of the Theory of Gases*. When there are several types

of star we merely multiply the equations such as (564) by M, M f

,
etc. and

add, and the resulting equations are then seen to be the hydrodynamical

equations of motion of the element dxdydz.

Thus it appears that if equations such as (558) are satisfied by/,/
7

, etc.,

then the hydrodynamical equations will be satisfied at every point of the star-

cluster in addition to the equation of continuity being satisfied. Every such

solution will accordingly give a possible motion of the stars of a cluster in a

field of potential V. In order that the field may be a purely gravitational

field, V must further be such as to satisfy equation (562), while we must still

further have VT if the stars move purely under their mutual gravitational
forces.

Steady Motion

234. The simplest problems of stellar dynamics naturally occur when the

group of stars under consideration is supposed to be in a steady state. The

steady state problem is the analogue of determining the configurations of

equilibrium for a gravitating mass of gas and we shall at once find that there

is a considerable similarity between the two solutions.

Analytically the characteristic of a steady state solution is that /must be

independent of the time; the integrals Elt E2 ,
... which enter into / must

therefore not involve the time. Equations (557) reduce to

du dv dw dx dy dz
TiT = rTr = TTr = = = - - .................. (56o),dV 3V dy u v w
dx dy dz

and one integral can be written down at once, namely the equation of energy

Ei=% (u* + v2 + w2

)
- V= constant.

Jeans, Dynamical Theory of Gases (2nd Ed.), Equations (454), p. 180.
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235. As regards other integrals, equations (565) assume their simplest
form when the cluster is spherically symmetrical, so that V is a function of r

only. Denote dV/dr by R, then dV/dx = xRjr and the equations become

du _ dv _ dw
__
dx _ dy _ dz

xR yR zR u v w
'

r r r

There are obviously three integrals,

OT!
= yw zv cons.,

TV?,
= zu xw = cons.,

-erg
= xv yu = cons.,

these integrals expressing that the moments of momentum per unit mass,

-sTj, -G72 ,
tfr3 ,

remain constant.

It is clear that with the most general value of R there can be no other

integrals, although with special values of R there may be. For instance, if

R = Kr, where K is a constant, there will be integrals of the form

u2
/ex

2 = cons., etc.,

each particle describing an elliptic orbit about the centre.

Apart from very special and artificial cases such as this, the law of distri-

bution in a spherically symmetrical cluster must be of the form

f(Ei, OTJ, ra ,
OT3) dudiMwdxdydz ............... (566).

Not every such law will give a possible cluster, for equation (562) remains

to be satisfied. Since the cluster is supposed to be spherically symmetrical,
the law of distribution must be invariant as regards change of axes, the origin

being kept fixed. Now the only invariant of vrlt t>r2 ,
-nr3 is -raj

2 + -nrg
2 + w^

whence it appears that the law of distribution in a spherically symmetrical
cluster must be of the form

istf+ttf + w,') ........................ (567).

236. The next simplest solution occurs when the cluster is arranged

symmetrically about an axis, say that of z, so that the figure is one of revo-

lution. In this case there is only one general integral beyond the integral of

energy, and this is ws cons. Thus the law of distribution must be of the

form

-r.) ..............................(568).

237. Consider finally clusters which possess no symmetry at all, so that

the only integral is that of energy, and the law of distribution must be

/W ................................. (569).

Inserting for El its value J (u
z + v2 + w2

)
- V, it is clear from equation (561)

that the density p must be a function of V only.
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Now this is exactly the same relation as that obtained in Chapter VII

(equation (396)) in discussing the configurations of equilibrium of a com-

pressible mass, namely
^(p )

= F+0 (570).

In this equation different forms of the function / corresponded to different

relations between pressure and density. It is at once clear that the different

laws of distribution/ in formula (569) correspond exactly to different relations

between pressure and density for a compressible medium.

Further, the different possible configurations of a cluster of stars given by
law (569) must be identical with those of different compressible masses in

which the pressure is a function of the density. In particular, when no

external forces act, these configurations must be spherically symmetrical.

This conclusion, however, is antagonistic to the hypothesis from which we

started, namely that the cluster was to possess no symmetry at all : our search

for asymmetrical clusters has merely led us back to a group of spherically

symmetrical clusters which form only a sub-group of those already discovered

in 235.

238. Thus it has now been found that, except for special isolated cases

such as that mentioned in 235, the only possible configurations for a cluster

of stars moving freely under their own gravitation in steady motion are those

in which the stars either form a.spherically symmetrical figure or a figure of

revolution which is symmetrical about an axis.

For a spherically symmetrical cluster, the law of distribution must be

f(Elt W-f^+^32

) (571);

for a figure of revolution the law of distribution must be

/(#i,O (572).

Let us examine these laws in detail, paying special attention to their

relation to observation in the case of our own universe, and also their relation

to possible final states of the cluster of stars originating from a rotating nebula.

239. If c
2 stands for u2 + v* + w* and r2 for x2 + y

2 + z2
,
the law of distri-

bution (571) may be expressed in the form

/[ic
2 -F, v*<?-(ux + vy + wzY] (573).

If a denote the angle between the radius r and the direction of the velocity

c, ux + vy + wz = re cos a, so that/ may be put in the form

/[ic
2 -

V, r2
c2 sin2

a].

Thus at any point x, y, z in space / is a function of c and a. The velocities

of the stars at this point are accordingly not distributed uniformly for all



237-240] General Stellar Dynamics 235

directions in space. If a velocity diagram be drawn at any point x, y, z,

formed of lines representing the velocities of the stars near this point in mag-
nitude and direction, this velocity diagram will not be spherically symmetrical ;

it will be a figure of revolution having the radius through the point as an

axis of symmetry.

In the particular case in which this figure of revolution is very elongated
in the direction of the radius, the majority of the stars would appear to be

moving in directions only slightly inclined to the radius, and the motion might
be interpreted as that of two streams of stars intermingled, each moving in a

radial direction, but one moving inwards and the other outwards.

This brings to mind a suggestion made by H. H. Turner* to explain
the observed "

star-streaming
"
in our own universe. Turner supposed that

the "
star-streaming

"
might originate in the backwards and forwards motion

of stars describing orbits of high eccentricity (nearly parabolic) about the

centre of gravity of the universe. The question of the possibility of some

such motion was investigated theoretically by Eddingtonf, who found, by a

method different from ours, that steady states of types included in formula
'

(573) were possible. Eddington, however, did not notice that such motions

were possible only in a strictly spherical universe. Our universe is almost

certainly not spherical, being a lenticular or biscuit-shaped structure, and the

star-streaming is almost certainly not along radii but in directions nearly

tangential to radii. Thus it appears fairly certain that a formula such as

(573) cannot express the observed stellar motions in our own universe.

Before leaving this formula, let us notice that the angular momentum of

the whole system of stars about the axis of z

I Illl \f^zdudvdwdxdydz
0.

Since the angular momentum of a system moving solely under its own

gravitational forces must remain constant, it follows at once that a system

specified by formula (573) cannot possibly have originated out of a rotating

nebula or out of any other system in which the angular momentum was not

zero.

240. We pass now to the consideration of the type of motion expressed

by formula (572). In this the total angular momenta about the axes of x and

y are easily seen to be zero, but the angular momentum about the axis of z

is not zero. The plane of xy is accordingly the invariable plane of the system,
and the system can have originated out of a system in rotation, the axis of

rotation having been parallel to the axis of z.

*
Monthly Notices R.A.S. 72 (1912), pp. 387 and 474.

t Monthly Notices R.A.S. 74 (1914), p. 5, 75 (1915), p. 366, and 76 (1916), p. 37.
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Let us pass to cylindrical coordinates OT, 0, z and let the components of

velocity at any point in these directions be denoted by II, ,
Z. Then

'cr3
=

-C3-II, and the law of distribution (572) becomes

/[Hn a + @ 2 + Z2

)-F,<sr<H)] (574).

The velocities at any point are again not distributed uniformly for all

directions in space, but the velocity diagram at any point will be a figure of

revolution having the direction of 6 increasing for axis. In other words star-

streaming will take place, the direction being everywhere along the circles

CT = cons., z = cons., which are circles coaxal with the axis of the whole

universe.

This type of system, we have now seen, is the only type of system in a

steady state which can have originated out of a rotating system. Thus if we

assume, as we most reasonably may, that the cluster of stars generated out of

a rotating nebula will ultimately assume a steady state, then this state must

be one expressed by formula (574). In particular, if our universe is believed

to be in a steady state, the hypothesis that it has originated out of a rotating
1

nebula must fall unless the stellar motions are found to conform to a law of

the type of (574).

STELLAR MOTIONS IN THE GALACTIC UNIVERSE

241. Let us examine the special problem presented by our own universe.

Charlier, who has made a special study of tlie distribution of stellar

velocities, believes that the velocity surface is approximately an ellipsoid of

revolution
;
in his opinion the axis is approximately, though not exactly, per-

pendicular to the radius vector to the centre of the system *. We have seen

that if the system, whatever its origin, were in a steady state, the axes of the

velocity surfaces would have to be either exactly radial or exactly perpen-
dicular to the radius vector at each point. Charlier's result accordingly

indicates that the system has not yet finally attained to a steady state, but

that it is approaching a steady state of the type indicated by the law of dis-

tribution (574). And this steady state is, as we have seen, the one to which it

would necessarily tend if it had originated, as we conjecture, out of a rotating

nebula.

242. Let us try to estimate the length of time required for this final

state to be reached. We have already supposed our universe to have a mass

of 5 x 1042

gms. and an equatorial radius of 2000 parsecs or 6 x 1021 cms. The

period of a star describing a circular orbit round the equator would be about

160,000,000 years f, and the period of description of any orbit by any star

* The Observatory, 40 (1917), p. 390, or Scientia, Aug. 1917.

t Eddington, in his Stellar Movements, using somewhat different data, obtains periods of

300,000,000 years (p. 255) and of 0-5" a century or 259,200,000 years (p. 261).
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would obviously be of the same order of magnitude. This may be compared
with the possible period of rotation of 370,000,000 years for the Milky Way
referred to in 220. Thus after 10,000,000 years the path of the average
star will have undergone a deflection of only about 22 on account of the

description of its orbit under the attraction of the universe as a~ whole, while

encounters with near stars will, as we found in 228, have given it a cross-

velocity out of its orbit of the order of 16 metres a second. This velocity, for

a star moving with a velocity of 25 kms. a second, corresponds to a deflection

of only about 2'.

Thus it appears that after an interval of 10,000,000 years the courses of

the stars will be but little altered
;
their orbits over 10,000,000 years are not

far removed from the straight lines they would describe if gravitation were

suddenly annihilated. It is clear that the approach to a final steady state

is an excessively slow process.

We must, however, bear in mind that the foregoing calculations have

been based upon numerical data derived from a consideration of the system
in its present state. Our conjecture that the system may have evolved out of

a rotating nebula of dimensions much less than those of the present system

compels us to suppose that conditions must have been very different in the

past. Adopting the conjectural figure arrived at in 221, we see that the

period of description of an orbit in the earliest stages of a star's life must have

approximated to 1 60,000 years, as compared with our estimated present value

of about 160,000,000 years. Here we have immediately a shortening of the

time-scale to about a thousandth part of its present value
;
what gravitation

fails to accomplish now in 10,000,000 years may have been accomplished in

10,000 years when the system was young and the stars closely packed

together.

243. A still more far-reaching change occurs when we turn back to

nebular conditions.

In 220 we estimated that the density of stars in the nebular arms may
initially have lain between two limits. According to the first, stars were

7̂ parsec apart, giving about 400,000 stars to the cubic parsec ; according to

the second, in which the stars were parsec apart, there would be 125 stars

to the cubic parsec. Either star-density is very high compared with that of

our present system which we have estimated as one star per 13 cubic parsecs.

Thus the quantity v which we have taken to be 10"56 '5 must be increased at

least a thousand-fold, and perhaps a million-fold before our calculations can

apply to our system in its earliest stages.

The effect on our previous calculations is profound. The times between

successive collisions and the time required for a star to be deflected appreciably

from its course by encounters with neighbouring stars are reduced enormously
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instead of being measured in billions (10
12
) of years they must be measured

only in millions. In a period which is, astronomically speaking, a short time,

each star may be expected to have been knocked about considerably both by
direct collisions and by close encounters with other stars. The only factor

which makes a complete calculation of the final result impossible is that we
do not know for how long the period in which the stars were close together
must be supposed to have lasted.

244. If this period lasted indefinitely we know quite certainly what the

final result would be it would be a final steady state in which Maxwell's law

of distribution of velocities and the law of equipartition of energy would

hold. The final law of distribution would necessarily be of the general type
found to be necessary for every cluster, namely

(575),

but Maxwell's law fixes the form of the function /. The appropriate form

for a rotating system is known to be*

f(Elt BT8)= Cfe-^PEi + fcwa] = (7g-/Wc*-2#F+2(^-^)] ......(576),

where (7, h and k are constants.

The shape of the cluster is determined by making V satisfy equation (562).
It is clear that this demands that the shape and arrangement shall be the

same as that of a uniformly rotating mass of gas in isothermal equilibrium,
the stars of types M, M', . . . playing the same part in the clusters as molecules

of different kinds of gas. Now a uniformly rotating mass of isothermal gas
cannot form a figure of equilibrium at all its molecules merely fly off into

space. It follows that a star-cluster cannot ever finally attain to the equi-

partition law expressed by equation (576).

245. We must therefore suppose our system to have moved part way on

the path towards equipartition but not to have attained it by the time that

its expansion had become so great that all hope of finally attaining it had

disappeared. We may suppose the law of distribution in our system to be

approximately of the general type (575) and we may further suppose the

equipartition law (576) to give a very rough approximation to the actual

form of this law.

Let us examine some of the consequences of the law (576) with a view to

testing whether any of them are fulfilled, even approximately, in our system.

The first property implied in the law of distribution (576) is one of

correlation between a star's mass and its velocity, this being of the kind

predicted by the well-known theorem of equipartition of energy. If c, c'

*
Jeans, Dynamical Theory of Gases (2nd Ed.), 107, 113.
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denote typical velocities of stars of two types of masses M, M', then the law

of equipartition requires that

M^ = M'^ (577),

where the bars over c
2 and c'

2 denote that the means of these quantities are to

be taken over a number of stars of the appropriate types ;
the stars included in

these means may be selected in any way provided that this does not, directly

or indirectly, imply a selection according to velocity. Clearly the law (577)

requires that, statistically, the most massive stars shall move with the smallest

velocities.

It appears to be generally accepted that the stars of greatest mass do, on

the whole, move with the lowest velocities*; Halmf has gone so far as to

claim that the correlation between mass and velocity is actually that required

by the equipartition law (577). Whether we accept this result or not, it is an

undoubted fact that there is a very marked correlation between a star's

velocity and its spectral type, the 5-type stars moving the most slowly, and

so onj, while there is little doubt that B-type stars are on the whole the

most massive.

246. A second property implied in the law (576) is one of correlation

between mass and distance from the centre of the system ;
the most massive

stars tend to remain in the more intense parts of the gravitational field

while the lighter stars spread to greater distances, just as is the case with

molecules of different masses in planetary atmospheres. Remembering that

there is also a correlation between mass and spectral type, it appears that

there ought to be correlation between spectral type and distance from the

centre of the universe, the .Af-stars being statistically the most remote. Cor-

relation of this kind has been found, but the .5-stars, and apparently also

the A -stars down at least to about A 4, appear to form an exception .

247. A third property implied in law (576) is that stars of similar type
shall have the same average linear velocity relatively to the system as a whole,

no matter what part of the system they are selected from. This is probably

approximately true in our system ; there appears to be no correlation between

a star's distance and its velocity ||.

In 221 we imagined our system initially to have been a nebula of about

30 parsecs radius rotating in a period of about 160,000 years. The velocity

of a point on the equator would be approximately 1200 kms. a sec., and the

velocity of the ejected stars must at first have been comparable with this.

*
See, for instance, Eddington's Stellar Movements, Chap. VIII, or Charlier, The Observatory,

40 (1917), p. 391.

f Monthly Notices R.A.S. 71 (1911), p. 634.

Eddington, Stellar Movements, p. 154
; Campbell, Stellar Motions, Chap. VI.

Eddington, Stellar Movements, p. 167.

|| Eddington, Stellar Movements, p. 161; Kapteyn, Amsterdam. Akad. Proc. 1911, pp. 528, 911.
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As the system of stars expanded these stellar velocities must have decreased,

the tangential components in accordance with the law of conservation of

angular momentum and the radial components on account of the gravita-

tional attraction of the central mass. In the present state we may suppose
orbits of an average of perhaps 2000 parsecs diameter to be described in

about 160,000,000 years, this rate of description of orbits would give linear

velocities of the order of 25 kms. a second, which is of the order of magnitude
of observed velocities.

Stars of different masses will describe orbits of different sizes. We have

already seen that according to the equipartition law (576), the most massive

stars will stay nearest to the centre of the universe
; they will therefore

describe the smallest orbits. As the period of an orbit is approximately

independent of its size*, it follows that the most massive stars will move
most slowly. If the law (576) were fully obeyed, the relation between mass

and velocity would be that already obtained in equation (577).

248. A fourth property implied in the law (576) is that there is no star-

streaming at any point or region of the system. The system rotates as a

whole with a uniform angular velocity o>, so that any selected set of com-

parison stars would rotate as a whole with this same angular velocity, and

the only means of detecting the rotation of the system would be by some

method such as that of Charlier explained in 221. Relative to axes rotating
with this angular velocity, the stellar velocities will, if law (576) is obeyed,
be uniformly distributed over all directions in space, and the velocity diagrams
will be uniformly spherical.

Thus the fact that star-streaming is observed is definite evidence that

law (576) is not fully obeyed. On general principles we might expect the

least massive stars to have advanced furthest towards equipartition. As we
believe that there is correlation between spectral type and mass, there ought
also to be correlation between spectral type and star-streaming, in the sense

of Jf-type stars shewing star-streaming least. Such correlation is observed,

with the 5-type stars forming an exception.

249. A fifth property implied in the law (576), or indeed in any other

steady-state law, is that the average radial velocity of the stars of any type
measured from any point which is at rest relatively to the system as a whole

shall be nil.

Campbell f has measured the radial velocities of 1060 stars and after

freeing them from the solar motion finds that 586 are receding from the sun

while only 474 are advancing towards it. Dividing the stars into first type

*
If the stars were arranged in a spherical cluster of uniform density, the period would be

entirely independent of the size of orbit.

t Stellar Motions, Chap. VI.
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stars (B to F4>) and second type stars (F5 to M) it is found that there are

723 second type stars of which 371 are receding while 352 are advancing, the

average velocity being found to be a velocity of recession of less than 1 km.
a second. Of the first type stars, however, 215 are receding while only 122

are advancing, and there is an average velocity of recession of 3'33 kms. a

second. Farther analysis shews that the motion of recession may be attributed

almost entirely to the 5-type stars, 138 of these shewing an average velocity

of recession of 4*93 kms. a second.

Thus although stars of types A, F, G, K, M behave very approximately as

required by the steady-state law (576), it is quite clear that the -type stars

do not, at least if the most direct and obvious interpretation is put upon the

observations. Campbell and others are inclined to explain the observations

away by supposing that there may be a systematic error in the spectroscopic

determination of radial velocities, but our theory suggests another explanation

namely, that the universe is still expanding and that the _M-type stars,

being nearer to their steady state than the 5-type stars, are expanding less

rapidly.

250. We have discussed five properties which ought to be observed in our

system if the final steady-state law (576) gave a tolerable approximation to

the motion. Of these properties we found at least a strong tendency for two

to be obeyed by all classes of stars. The remaining three were obeyed tolerably

well by all classes of stars except the $-type stars and possibly some of the

.A-type stars.

Let us for the moment consider our universe as it would be if these latter

stars were blotted out of existence altogether. Then we have a universe of

which we can understand the mechanism well enough ;
the motion is in

accordance with the laws of statistical mechanics and the system is exactly of

the type we should expect to find formed as the final product of a rotating
nebula.

To a first approximation, to which the J/-stars conform particularly well, this

universe is simply a mass of stars rotating in an equilibrium configuration, the

angular velocity being everywhere uniform and of the order of 1" in 300 years.

Superposed on to the rotational velocity (which does not come into our

observational data, since the comparison stars share it with other stars) are

individual velocities of separate stars ; these, to our approximation, are dis-

tributed according to Maxwell's law, the mean velocity depending on a star's

mass but not on its position in space. The shape of this universe is what we

have called a pseudo-spheroid. The whole equilibrium is analogous to that

of a rotating mass of gas, the stars forming the "
molecules." Throughout the

central portion, this
"
gas

"
is in isothermal equilibrium, although doubtless

this condition changes at the boundary. In accordance with the laws of

statistical mechanics, the heavier stars tend to congregate near the centre,

j.c. 16
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This scheme gives a fair representation of the J/-stars, but when we pass

through K, G, F and A -stars, the representation becomes less good. If we are

right in believing the 3/-stars to be those of least mass we can find a reason

for this. In the earlier stages of evolution of the system, when the stars were

much more closely packed than now, encounters between the various stars

were of frequent occurrence. The light J/-stars would be easily and rapidly

deflected from their paths by encounters with the heavier K, G, F, A -stars, but

these more massive stars would only be slightly affected by encounters with

Jf-stars. Thus we may naturally expect some departure from the equipartition

law to be observed in the case of these heavier stars ; we expect to find some

trace remaining of their original motion along the nebular arms. The actual

motion to be expected has been investigated; we found it to consist of a

motion of
"
star-streaming," the directions of star-streaming forming circles

round the axis of symmetry of the whole figure. This, according to Charlier,

is the type of motion observed, and the amount of star-streaming, which is

insignificant for the 3/-stars, becomes progressively greater as we pass through

types K, G, F, A.

251. Thus the observed stellar motions would admit of a simple and

natural interpretation if only the .B-stars did not exist. The J?-stars fail to

carry on the sequence of the other types K, G, F, A in almost every respect.

No very satisfactory explanation of their anomalous behaviour suggests itself,

but a conjecture may perhaps be risked.

Equation (543) suggests that the most massive stars may perhaps have

been formed when the primitive nebula had its greatest density *, and therefore

in the latest stages of its history. Thus, dividing the stars according to their

present spectral types, the stars which are now 5-stars may, statistically,

have been created last. They may be the youngest type of stars. This con-

ception may go some way towards reconciling Russell's theory of stellar

evolution with older views to the relative ages of stars of different spectral

types; we have already had occasion to notice ( 201) that it is in no way
inconsistent either with Russell's theory or with the results of our own

theoretical investigations on stellar evolution.

Thus we may conjecture that the 5-stars fail even to approximate to law

(576) because they have not had time in which to begin to do so
; they were

created when the universe was already not far removed from its present state

in which collisions and close encounters of stars are very rare. They have

been acted on only by the main gravitational attraction of the universe as a

* The mass depends on C3
/>~^. For homologous contraction p varies as T'J or as C H

,
so that

the masses would all be uniform. But homologous contraction is an ideal process, occurring

only if the physical properties of the gas remain unaltered with changes of temperature and

density. It is possible that actually T3 may have varied more rapidly than p, leading to the result

stated.
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whole, and consequently their original motions persist to a much greater
extent than is the case with other types of stars. Thus they still lie mainly
in the galactic plane in which they were born

; they are still, perhaps, ex-

panding in this plane ;
to a large extent they still move in undissipated star-

clusters, perhaps even carrying wisps of uncondensed nebulous~fnatter along
with them.

Although some such conjecture naturally suggests itself, it has to be ad-

mitted that the subject is full of difficulty. No single hypothesis seems able

to explain all the facts
;
for the present, apparently, we m'ust be content to

hold a number of self-contradictory hypotheses. Each of these hypotheses

can, perhaps, give us a glimpse of part of the truth, but the time for welding
them into one consistent whole has not yet come.

GLOBULAR STAR-CLUSTERS

252. Even the roughest of calculations makes it clear that the dimensions

of globular clusters are much less than those of our galactic universe, while

their star-density is vastly higher. Shapley* has made a special study of the

bright cluster M3 (N. G. C. 5272) in Canes Venatici. He estimates its

parallax to be OO00074" with an error of less than 20 per cent.
;

it follows

that the majority of the stars in the cluster are included within a sphere of

10 parsecs radius. Shapley estimates that such a sphere will contain at least

15,000 stars brighter than magnitude 20. Each of these stars is at least two

absolute magnitudes brighter than the sun.

Now in a sphere of the same radius surrounding our sun there are at most

five stars of absolute magnitude two degrees brighter than the sun. As

regards stars of this brightness, the stellar density in the cluster is 3000 times

greater than that in the neighbourhood of our sun. We are not entitled to

make a similar statement for stars of all kinds, but may notice that the

stellar density of these bright stars in the cluster is far higher than our

estimated stellar density for stars of all kinds in our galactic universe. The

density of these bright stars in the cluster is about four per cubic parsec, as

against our estimate of one per 13 cubic parsecs for stars of all kinds in our

galactic universe.

Thus as regards stellar density the condition of this cluster approximates
more closely to the earlier condition we have imagined for our universe than

to its present condition, and the same is readily seen to be true for other

clusters. To examine the effect on our calculations as to collision-frequency,

etc., let us suppose the stellar density to be 1000 times greater than that

assumed for our universe in 223. Assuming the stars to be of diameter

equal to that of Neptune's orbit we find that a star would experience material

*
Astron. Soc. Pacific, No. 172 (1917) ;

a later study of this and other star -clusters will be found

in Mt Wilson Contributions, No. 152.

162
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collision once in 4 x 109

years ; assuming the masses to be equal to those in

our system, encounters producing a deflection of more than 1 would occur

about once in 108

years ;
the cumulative effect of encounters feebler than this

produces a cross-velocity of 1 km. a sec. in about 4 x 107

years; the "time of

relaxation" (228) is of the order of 3 x 10 10

years.

These estimates suggest that the typical globular star-cluster is hardly

likely to have attained fully to the final steady state of equipartition of

energy, but that this state is likely to be more closely approximated to than

in our own system.

253. If we suppose the cluster to have formed out of a rotating nebula,

the law of distribution of density and velocities must, as in 240, be of the

general form

/(^^H/ftOP + e'+Z')-!^] (578).

Approximation to the final equipartition state will be shewn by the

function / approximating to the special form expressed by equation (576).

This law of distribution can never be fully attained
;
as it is approached, the

stars having the highest total energy escape from the main cluster and form

runaway stars in space just as those molecules which are endowed with the

highest total energy may escape from a planetary atmosphere and describe

orbits in space. These stars carry with them an undue share both of energy
and of angular momentum, with the result that the cluster contracts and

rotates less rapidly ;
the cluster must continually approach, but never quite

reach, a spherically symmetrical configuration.

The investigations of Pease and Shapley to which reference has already

been made ( 6) suggest that the majority of star-clusters still shew evidence

of a flattened form, but the approximation to a globular configuration is

nevertheless tolerably close. The approach to a spherical form will be indicated

by the function / (El ,
v?s) depending less and less upon <73 . In the final

spherical form the law of distribution will reduce to the law/(j'1) discussed

in 237.

In this law the stars behave like the molecules of a gas ;
different forms

of the functionfcorrespond to different relations between pressure and density
in this supposed gas. In the final equipartition law, f (E^ reduces to the

exponential form Ce~2hE>, and the corresponding law between pressure and

density is that of an isothermal gas. With this law the density at a great
distance from the centre falls off as I/?'

2
. Thus the total mass is infinite or

the central density infinitesimal
;
the law is not one which can ever be

attained in an actual star-cluster.

254. Let us simplify the problem by limiting the possible relations

between pressure and density in the supposed gas to those which correspond
to adiabatic equilibrium ;

different laws are supposed (quite* arbitrarily) to
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correspond to different values of 7 in the relation p = tcpv. The approach to

the final equipartition state will be represented by 7 approaching the value

7=1 which corresponds to isothermal equilibrium, but the lowest value of 7
which is possible, short of the cluster scattering to infinity, is 7= 1-|.

Thus

with our arbitrary supposition that different laws are adequately represented

by different values of 7, it appears that the value of 7 cannot fall below 1J,

and the final law of distribution of density in a globular star-cluster would be

the same as that in a gas in adiabatic equilibrium with 7=1J, namely
Schuster's law (cf. 149)

This is the law actually found in a number of globular star-clusters by
Plummer and von Zeipel ( 6). It is at best only approximate ;

indeed it

appears that a law falling off at great distances as r~4 would fit the distribution

in many star-clusters still better*. This is hardly surprising. Our limitation

of the various laws to those corresponding to adiabatic equilibrium was quite

unjustifiable; it may lead to an approximate picture of the processes going
on in a globular cluster but cannot be expected to reveal the whole truth.

*
Monthly Notices R.A.S. 76 (1916), p. 567.



CHAPTER XI

THE EVOLUTION OF BINARY AND MULTIPLE STARS

THE PROCESS OF FISSION

255. The motion of our hypothetical mass of nebulous matter has now
been traced out through its earlier stages in which it formed a rotating nebula,

and through its later stages in which this nebula condensed into stars. In

the last chapter we considered the general nature of the motion to be expected
in the cluster of stars so formed

;
the present chapter will be devoted to the

further history of individual stars.

We have supposed that an individual star comes into existence as a con-

densation in a nebular arm. In this earliest period of its existence its mean

density is very low, being perhaps of the order of 10~17 grammes per cubic

centimetre, and its surrounding atmosphere is contiguous with that of the

neighbouring stars. At this stage it shares in the rotation of the nebula of

which it forms part, the period of this rotation being perhaps of the order of

160,000 years.

As time proceeds the arms of the nebula expand while individual stars

contract, so that the stars become continually more distinct from one another

until finally they may be regarded as entirely separate bodies, each describing

its independent orbit under the gravitational attractions of the other stars.

For purposes of numerical calculation, which must necessarily be very vague
and inexact, let us suppose that the star starts its independent existence as

a separate star when its linear dimensions have contracted to one-quarter, so

that its mean density has increased 64-fold, and is now of the order of

64 x 10~17
. Let us also suppose that during this process the linear dimensions

of the nebula have doubled, so that its period of rotation will have increased

four-fold, to about 640,000 years. This will also be approximately the period

of rotation of the average star when it first starts its existence as an inde-

pendent body.

From these estimates, we find that the value of (o
2

/27ryp for the starWhen
it starts as an independent body will be of the order of '00035. During the

subsequent further contraction of the star, the conservation of angular

momentum requires that co shall increase (approximately) inversely as the

square of the linear dimensions of the star and so as p*, whence it follows

that o)
2

/27T7p will increase approximately as p . By the time the density of
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the star has increased by a further factor 10 the value of co^/^Tryp will have

increased by a factor 103 to 0'35. This is just about the critical value at

which a sharp edge forms ( 205) and the mass begins again to disintegrate

by throwing off matter from its equator.

Naturally no stress can be laid on these particular figures but they suggest
that a star formed in the way we have imagined would begin to disintegrate,

owing to rotational instability, as soon as it had contracted to a density of

the order of 64 x 10~17 x 109
or, say, 1Q- 6

.

256. Consider next the course of events after this density has been

passed. A sharp edge forms and jets of matter are thrown off from the

equator. Will these jets of matter condense into filaments in the way we

have, imagined the arms of spiral nebulae to condense ?

The minimum mass per unit length for which a jet of gas can condense

into a filament has been seen to be about 2C2
/3y ( 216). The velocity with

which the matter is ejected can hardly be less than the velocity of effusion

into a vacuum, say J(7*, and is likely to be greater. Thus condensation can

only occur if the rate of ejection of matter is greater than C3

/6y grammes

per second. Taking the very low value C = 4 x 105
,
the value of this quantity

is found to be 1*6 x 1023

grammes per second. Thus condensation is hardly
to be expected unless the star ejects matter at this rate, which would corre-

spond to a dissolution of the whole star in a few centuries.

This time is so small compared with what we believe to be the time of

shrinkage of a star that the formation of condensed filaments can hardly be

regarded as a probable, or even as a possible, event. If such filaments were

formed, the mass would constitute a miniature spiral nebula ofmass comparable
with that of a single star, and the filaments might ultimately condense into

a system of encircling planets. In some such way Arrhenius, See and others

( 16) have imagined our system of sun and planets to have been formed.

The foregoing calculations make it very improbable that this process can ever

take place in masses comparable only with those of the stars.

This conclusion is in accord with observation, for not a single spiral nebula

is known which there is any reason to suppose lies within the confines of our

galactic system. If such miniature spirals existed we should expect them to

shew a preference for regions near the galactic plane. But the observed spiral

nebulae, with remarkable unanimity, avoid this region : of the thousands of

spirals which are known to exist, not a single one has been found within the

galactic structure f.

257. If the ejected matter does not condense into filaments, it will

form a surrounding atmosphere, and as the dissolution of the central mass

*
Jeans, Dynamical Theory of Gases (2nd Ed.), p. 133.

t Campbell, Science, 45 (1917), p. 530.
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progresses the atmosphere will continually increase at the expense of the

central mass. This motion is one which it is exceedingly difficult to trace out

dynamically, even in its main outlines. It seems possible that the atmo-

sphere may in time condense into nuclei, and that these might ultimately

form planets, but this has to be mainly a matter of conjecture. It is perhaps
worth considering whether the planetary, and possibly also the ring nebulae,

can be bodies of the type we have been considering*. We may also con-

template the possibility of planets being formed in this way although, as we

shall see later, the planets of our solar system cannot have been so formed.

258. The equatorial ejection of matter will continue until a further

critical density p is reached, at which the pseudo-spheroidal figure for the

nucleus becomes unstable and gives place to a pseudo-ellipsoidal form

(cf. 185). The new pseudo-ellipsoidal figure will eject matter only at its

two pointed ends
;

it is perhaps worth considering spindle-shaped planetary

nebulae such as N. G. C. 7009 in this connection (see Plate I). Ultimately

the pseudo-ellipsoidal nucleus gives place to a pear-shaped figure and this

will divide into two detached masses.

The final result of the process of disintegration will accordingly be a binary

star, the two components rotating about one another in a more or less dense

atmosphere of ejected matter, through which they will plough their way.

This formation at once recalls Duncan's attempted explanation of the Cepheid
variables f. At a later stage the atmospheres will condense round the two

stars, leaving an ordinary binary star.

During the process of condensation, the greater part of the atmosphere is

likely to condense round the more massive constituent, so that the light from

the more massive star will be more screened than that from the lighter one.

Temporarily the more massive component may shine less brightly than its

smaller companion. This condition is observed in ft Lyrae, a spectroscopic

binary in which the dark star has a mass about 2 '2 times that of the bright

star, the two masses being very nearly in contact
;
the explanation we have

given of this condition was first suggested by Meyers J. If this is the true

explanation, it would appear that @ Lyrae provides an instance of a binary

star in the very earliest stages of its existence.

259. If the stars may be regarded as masses of ordinary gas, it is not

difficult to obtain an estimate of the critical density p before which fission

cannot begin.

Discussing a mass of gas in adiabatic equilibrium, we found in Chapter VII

that fission could not begin so long as 7, the ratio of the specific heats, was

less than about 2-2.

- See Plate I (p. 5) ; also Campbell, Science, 45 (1917), p. 538.

f Lick Obs. Bull. 6 (1911), 151. See also Campbell, Stellar Motions, p. 307.

J Astrophys. Journ. 7 (1898), p. 21.
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Since for an ordinary gas under ideal conditions, 7 is always less than If,

this result indicates that fission cannot begin, at any rate for a mass of gas
of uniform composition, until the density is so great that the ideal gas laws

are substantially departed from. Koch * has obtained the experimental value

7 = 2*21 for air at 100 atmospheres pressure and temperature 79 C., the

corresponding density being about 180 times that of normal air, or say *23.

Thus if a star were made of air in adiabatic equilibrium, the critical density

p would be something like J.

More generally we have seen that the critical density pQ ,
for a mass of

uniform composition, must be one at which the gas laws are substantially

departed from. Now according to Russell's theory of stellar evolution, for

which as we have seen ( 200) there is a strong theoretical basis, a star is

supposed to get continually hotter until the gas laws are substantially departed

from, after which its temperature begins to decline. On this theory the

point at which the gas laws are first substantially departed from may be

approximately identified with the point of maximum temperature in the star's

evolution, and this corresponds to spectral type B for massive stars, but to a

later spectral type for lighter stars.

The two estimates we have formed of the critical density p are in fair

agreement. Russell estimates the average density of "giant" J.-type stars

to be about j
1

^, so that J is not an unreasonable estimate for the density of

J5-type stars.

It would now follow, from our preliminary theory in which a star is repre-

sented as an adiabatic mass of air, that

(i) no binary star which has formed by fission can have a density of

less than about J,

(ii) no giant binary star can have been formed by fission,

(iii) the temperature of a binary star which has formed by fission must

decrease as its evolution progresses.

260. The densities of eclipsing binaries can be estimated with very con-

siderable accuracy. Shapleyf has computed the densities of 90 of these, the

results being given in the following table in which densities are classified

according to spectral type.

At once it appears that there are binaries of very low density, 33 out of

the 90 having a density of less than y
1

^, and 4 having a density of less than

ToW. Further, in Shapley's table the division into giant and dwarf stars

is quite marked, the entries in the table lying approximately thus : <
;
the

*
Soc. Frang. de Physique, Recueil des Constantes, p. 321.

f Contributions from the Princeton Univ. Observatory, 3 (1915). I have omitted from the

table three stars which Shapley states "should not be given much weight" and "probably
deserve little consideration."
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stars on the lower branch are giant stars. The six stars which occupy the

bottom right-hand corner must all be regarded as binary giant stars, of types

F, G and K and of density less than T^.

logp



260-262] The Process of Fission 251

262. The most plausible conjecture that can be made is perhaps that in

the far interior of a star the atoms must be almost completely broken up into

their constituent electrons*. In this case, the effective molecular weight
would approximate, as Eddington has pointed outf ,

to 2. This limit would

be almost independent of the chemical structure of the matter, since the

number of electrons in all atoms except hydrogen is nearly equal to half

the atomic weight.

This reduction of the effective molecular weight will greatly modify our

numerical estimates. Assuming the star to be made of air (molecular weight
about 30) we found in 259 a critical density p = ^. If other factors remained

unaltered a reduction of molecular weight from 30 to 2 would reduce this

critical density from J to -fa. Other factors do not, however, remain un-

altered. On our present tentative view of the interior structure of a star,

the effective molecular weight m must have its minimum value, nearly equal
to 2, at the centre of the star, and must gradually increase as we pass out-

wards towards the surface. Our critical value 7 = 2'2 was determined on the

assumption that m had a uniform value throughout the star. It was found

that a decrease of m on passing outwards would increase the critical value of

7 ; in the same way a decrease of m on passing inwards must decrease the

critical value of 7. This might possibly result in a still further decrease of

the critical density p.

Beyond this there are general physical considerations which require a

still further adjustment of the critical density. Eddingtonj has pointed out

the importance of radiation-pressure in the internal mechanism of a star.

When there is extreme ionisation in a star's interior, Eddington's conclusions

will need modification, and the disturbing effect of radiation-pressure will be

less than that originally estimated but it will still be appreciable . Finally
the departure of our ordinary gas laws from the laws of a perfect gas, on

which the relation between 7 and the density depends, arises from the "size"

of the molecules and the extension of the field of force surrounding them.

When the gas is highly ionised, we have to deal rather with the extension of

the field of force round individual electrons and positive nuclei, and it is

almost impossible even to guess at the density at which the departure from

the gas laws becomes appreciable.

All these considerations suggest that our preliminary theoretical con-

clusions must be viewed at least with suspicion, so that there is certainly

no ground for surprise that they have not proved to be confirmed by
observation.

*
Eddington, Monthly Notices R.A.S. 77 (1917), p. 596.

"t The Observatory, 40 (1917), p. 44.

+ Monthly Notices E.A.S. 77 (1917), p. 16.

Eddington, Monthly Notices RA 8. 77 (1917), p. 603.
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263. We have seen that a double-star must be supposed to be born as

the result of cataclysmic motion. The pear-shaped figure is unstable, so that

as soon as it is formed dynamical motion ensues and fission results. The

masses are at first projected away from one another with considerable velocity,

but seem likely to settle down finally to describe steady orbits about one

another.

In his researches on this problem, Sir G. Darwin supposed that the initial

orbits would be strictly circular, but this was because he believed the process

of fission to be a statical process and not a dynamical process, as we have seen

it to be. According to Darwin's view, the changes in the star while fission

was taking place were, initially at least, of a purely secular nature, and it was

natural to suppose that the final result would be two masses rotating in actual

contact and at rest relatively to one another.

We have seen that this cannot be the final result of fission for incompres-
sible masses, because such a configuration would be statically unstable, as

indeed was ultimately found by Darwin himself (cf. 64, 65). For a com-

pressible mass, there is no reason why it should not be the final result of

fission (cf. 164) although the intermediate processes would almost certainly

be different from those imagined by Darwin, cataclysmic motion probably

ensuing immediately the pear-shaped figure is formed, but possibly giving

place to steady statical motion before actual fission occurs.

There being no longer any theoretical justification for supposing that the

initial orbits will be strictly circular, we have to consider the possibility of the

masses being thrown apart with appreciable radial velocities, and describing

elliptic orbits about one another.

Consider for simplicity the case in which the original star is supposed to

divide into equal masses, and suppose that fission occurs when the centre of

each mass is at a distance r from the common centre of gravity. Let each

star be supposed to have a radial velocity v in addition Jo the tangential

velocity cor in space resulting from rotation. Each mass will describe approxi-

mately an elliptic orbit in space so that after the orbits are partially described

the masses will again each be at a distance r from their common centre of

gravity, but are now approaching each other with a radial velocity v. A col-

lision of some kind must occur, and since the masses will not be perfectly

elastic, their velocity of recession after collision will be some velocity v less

than v, while the radial velocity cor must, from the conservation of angular

momentum, be the same as before. It follows that the new orbit will be of

less eccentricity than the old, and the eccentricity will further diminish at

each subsequent collision. We cannot argue that the eccentricity will be

finally reduced to zero
;
a limiting value will be reached such that the masses

just graze one another at periastron.
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264. Sir G. Darwin further supposed that immediately after fission the

periods of rotation of the two masses and the period of revolution about one

another would all three coincide, so that the system would rotate as a rigid

body. There is no longer the same justification for this "supposition when it

is recognised that fission occurs only after cataclysmic motion.

We may however notice that only one vibration is unstable at the point
of bifurcation at which cataclysmic motion begins; this vibration is one in

which neither half of the mass gains upon the other either in rotation or

revolution. When the elongation of the pear-shaped figure first takes place,

the pointed end of the pear must, on account of conservation of angular

momentum, lag somewhat behind the rotation of the blunter end, but any
such difference of rotation produces a distortion which corresponds to a stable

vibration : forces of restitution at once come into play and equalise the angular
velocities. Similar forces of restitution will be in operation right up to the

instant of fission, so that in the final system the rotations may be expected to

agree with the revolution, both in period and in phase. The stars will

accordingly rotate about one another like a rigid body except for the slight

eccentricity of orbit discovered in the preceding section.

Comparison with Observation

265. These theoretical conclusions are borne out by observation on stars

of the ft Lyrae type *. In stars of this type the light curve varies continuously,

shewing that the masses must be either in actual contact or close to actual

contact as in
fig. 34 (p. 163). Any difference in the periods of rotation and

revolution would shew itself in nonperiodicity of the light curve; of this

there is no evidence whatever. The eccentricity of orbit is invariably small,

being about 0'02 for ft Lyrae, X Carinae and RR Centauri, in which the

separation calculated from the light curve is zero or negative (corresponding
to imperfect fission), and being 0'03 for U Pegasi in which the separation is

excessively small.

The periods are short, varying from 14 h. 32 m. for RR Centauri to 12*908

days for ft Lyrae.

MOTION SUBSEQUENT TO FISSION

Tidal Friction

266. Darwin has shewn the importance of tidal friction in the subsequent
motion. As the stars shrink, the rate of rotation of each will increase in

accordance with the conservation of angular momentum, so that the rotations

of the separate masses will gain on their revolution about one another, and

*
Campbell, Stellar Motions, Table XXXI.
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the arrangement will be of the type represented in fig. 44. In such a con-

figuration, each mass will exert a couple on the other in such a direction as

to augment the motion of revolution already taking place. These couples

Fig. 44.

are the direct successors of the forces of restitution, mentioned in 264,

which tend to equalise the periods of rotation and of revolution. Let us

investigate the effect of the couples on the orbits of the masses.

Suppose the original star of mass M + M '

to divide into two components
of masses M, M', each of which will describe an approximately elliptic orbit

about the centre of gravity of the two. Let e be the eccentricity and a the

semi-major-axis of the orbit of either mass relative to the other.

If the tidal friction couples were non-existent, there would be the usual

two first integrals of the motion,

-k, where A.-|^.(l-,) .........(579),

Energy = E, where E^-MM'fta .................. (580).

Let the couples produced by tidal friction be supposed to act for a short

interval dt, each star exerting a couple G on the other in the direction of

rotation. The orbit will be disturbed and at the end of the interval dt a new

orbit will be described. The eccentricity and semi-major-axis of this may be

denoted by e + edt, a + ddt, in which e and a may be regarded as rates of

increase during the action of the couple G.

These rates of change are readily found. From equation (580)

1 2E

8othat

a~ MM"
1 da 2 dE

Since G must be supposed to act in the direction of 6 increasing, GO will

be positive, so that da/dt is positive. Tidal friction increases a.

By logarithmic differentiation of equation (579)

1
d_ ox_2<^_lc7a

l- e*dt ( ~hdt adi
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from equation (581). Using equations (579) this becomes

Introducing the polar equation of the orbit in the form

a (1
- e2)

we find

= 1 + e cos 0,

(1
-
g) = ?

[(1
- e9

)
-

(I + e cos <9)
2
],

255

As G acts in the direction of 6 increasing, G/h will be positive, while

e(l+cos
2

#) is necessarily positive. Tidal friction acts mainly when the

masses are closest together i.e. when cos is nearest to + 1. Hence it is

readily found that G cos 0/h is preponderatingly positive and de/dt integrated

through a whole orbit will be positive.

Thus tidal friction increases both a and e, and as the evolution of a binary
star progresses we ought, on the tidal-friction theory, to find (i) increasing

separation, (ii) increasing period, (iii) increasing eccentricity.

267. Campbell has attempted to test these conclusions with the help of

material provided by his studies of spectroscopic and visual binaries*. The

general summary of Campbell's classification of spectroscopic binaries is

shewn in the following table :

Period
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We notice in the last two lines that increasing period goes with increasing

eccentricity, as it ought to do. The parallelism becomes still more striking

when visual binaries are included : Campbell gives the following table :

Type of Star Number Mean Period Mean e

31 2-59 days 0'04

Spectroscopic 13 6'90 0'14

Binaries 33 73'5" 0'36

15 20-5 years 0'38

Visual ( 25 32'8 0'48

Binaries
j

25 1081 0'51

in which the increase of eccentricity with period is very apparent.

Returning to the original table, it will be seen that the entries form

roughly a slanting diagonal thus: -\. Advancing spectral type goes with

increasing period and eccentricity, and these according to the tidal friction

theory increase with age. The inference drawn by Campbell and others is

that, generally speaking, age and advancing spectral type go together*. The

youngest binaries are of types 0, B\ then come types A, F, and finally types

G M. This would bring us back to our theoretical conclusion of 259 that

fission takes place at about .B-type, but we shall immediately find reasons for

modifying very considerably this interpretation of Campbell's table.

268. Increasing separation of the two components of a binary star, whether

under tidal friction or otherwise, requires an increase in the orbital momentum
of the system. So long as the system remains free from external disturbance,

the total angular momentum of the system must remain constant, so that

the increase of orbital momentum is necessarily gained at the expense of

the rotational momenta of the constituent stars. When the masses of the

two components are very unequal there is a large store of angular momen-

tum in the rotation of the more massive one, and separation can proceed

very far before this has all been transferred to orbital momentum. But, as

Russell has pointed outf, conditions are very different when the components
are of approximately equal mass, as is the case with the majority of binary
stars ( 2).

Consider a binary star whose components are of masses M, M'. Allowing
for the finite sizes of the components and for their distortion from the spherical

shape, the force between them may be supposed to be

*
Campbell, Lick Obs. Bull. 181 (1910), p. 42

;
Stellar Motions, p. 269. Eddington, Stellar

Movements, p. 178.

t Axtrophys. Journ. 31 (1910), p. 185.
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as in 62. An elliptic orbit will be described only if f remains sensibly con-

stant
;
in this case the " mean motion

"
n is given by

M+JU'

this reducing to our former equation (121) when the orbit is circular.

The orbital momentum of the system is readily found to be

where I is the semi-latus rectum, equal to a (1 e2 ), whence, on adding the

rotational momenta, the total angular momentum is found to be

M = Mfra + MWu' +
MM'

-. (1 + )* J* ......... (583).

Let us suppose that in the earliest stage of existence the components
rotate fairly close to one another with a common angular velocity in an

approximately circular orbit of radius R. In this case G> = o>' = n, and formula

(583) becomes

M = jftF + M'k'* +
fijjfi

^2

(1 + ?) (M + ^O ^ "
-

an equation which has already been given in 64.

269. Consider first the extreme case in which the masses are supposed

homogeneous and incompressible. To obtain some idea of the ratio of division

of M into its rotational and orbital parts, I have calculated the ratios of the

separate terms in M for Darwin's figures of closest approach, the data being
those already tabulated in 65. The results prove to be as follows :

4- 0-4 0-5 I'OM
Rotational mom. of M' '039 '046 '077

M 1 '160 -135 -077

Orbital momentum '801 '819 '846

Total 1-000 1-000 I'OOO 1-000

With very few exceptions all known binary stars have values of M'jM
lying between 0'4 and I'O. Excluding the few systems for which M'/M is less

than 0*4, it appears that the orbital momentum must initially be at least

80 per cent, of the whole if the components move in circular orbits
;

it would

of course be still greater if they moved in stable elliptical orbits.

Thus no matter for how long tidal friction or other similar tendencies act,

the orbital momentum cannot, in the whole course of a binary star's history,

j. c. 17
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increase to more than 1 J times its initial value. From formula (582) it follows

that (1 + f) I cannot increase to more than 1*56 times its initial value. For

bodies at a considerable distance apart f= ;
for two similar ellipsoids in

contact = 22, which is the maximum value of f. Thus in the whole course

of evolution the value of 1 -f f cannot decrease more than in the ratio 1/22:1.

It follows that at the very most I cannot increase in a ratio greater than

1-56 x 1-22 or T90.

These calculations refer to a perfectly homogeneous mass. To study the

effect of compressibility let us pass to the extreme case of matter so com-

pressible that Roche's model ( 149) may be supposed to give an approximation
to the arrangement of density. We may put &2 = k'* and f= 0. The whole

momentum is orbital, and the constancy of M requires that I shall remain

constant. Thus we may reasonably suppose that compressibility lessens the

possible range of increase in I and that the ratio of 90 per cent, just calculated

for an incompressible mass is the maximum possible, always provided the mass

ratio does not exceed 2^ : 1, and that the system remains free from external

disturbance.

270. Similar calculations can be made with respect to the period. Calling
this P we have

As evolution progresses ^ (1 + f)*, which is proportional to the orbital

momentum, will increase, but not in a ratio greater than 1*25 : 1 if M/M' < 2*5.

Similarly 1 + f will decrease but not in a ratio beyond 1'22 : 1. The factor

(1 e*Y will decrease to an unknown extent, and may decrease beyond limit.

Thus there is theoretically no limit to the increase of P, but large increases

can only occur through 1 e
2

becoming very small, so that a binary in which

P has increased largely must have an almost parabolic orbit. Observation

has so far revealed no binary with a nearly parabolic orbit
;
the largest observed

eccentricities are 0'90 found by Aitken for 7 Virginis and 0'88 found by

Campbell for #AHetis; for these 1 e2 = 0'19
N

and 023 respectively. The

average values of e for binaries of different types will be seen from Campbell's
tables given on pp. 255, 6. Campbell has catalogued e for 75 spectroscopic

binaries*; in only one case (jB Arietis just mentioned) is e greater than 0*80
;

similarly out of 50 visual binaries, e has a value greater than 0'80 in only three

cases (7 Virginis, e = 0'90
; 7Androm. BC, e = 0'82

;
99 Herculis, e = 0'81).

Thus we may take e = 0'80 as an upper limit for e for the great majority of

binaries ;
this makes 1 e2 = 0'36 and the maximum evolutionary decrease in

(I
- e

2

)
f
may be taken to be one of 1 : 0'216.

*
I have excluded Cepheids in view of the uncertainty as to whether these really are binaries

or not.
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With the various maximum figures which have now been mentioned, the

greatest increase possible in P is found to be one of 13'6 times. This is a

maximum, and entirely abnormal increase
;
for most binaries e is not greater

than J, so that (1 e3
)- is not less than 0'65, and the maximum possible

increase in P is one of 4'4 times.

271. Detailed calculations can be made for individual stars. For a Cen-

tauri, P = 81-18 years, M=M' (approximately) and e = 0'53. The parallax
is 0'76" and the semi-major-axis subtends an angle of I7'7l", whence
a = 3'5 x 10 14 cms. and I = 2'5 x 1014 cms. Since M = M' it appears from the

figures on p. 257 that the maximum possible increase in /* (1 + f)* cannot be

greater than 1 : 0*846, so that Z(l + ?) cannot have increased by more than

40 per cent., and I cannot have increased by more than 71 per cent. Thus in

the very earliest stages of the star's history I cannot have been less than

59 per cent, of its present value, say 1*5 x 1014
cms., and a cannot have been

less than the same amount. The period, which is now 81 '18 years, can never

have been less than 20'4 years.

272. Still assuming that the binary system may be supposed to have

been free from external disturbances, a simple relation can be obtained

between the dimensions of the present orbit of a binary star evolved by
fission and those of the primitive nebula out of which the system originated.

Consider the primitive nebula of mass M + M' at the instant at which the

pseudo-spherical form first became unstable. Let r and p denote its mean

radius and mean mass at this instant, so that M+ M' = f Trjor
3
,
and let 6 denote

the value of a>
2

/27rp. The angular momentum at this instant is

M = (M+ M') k*a> = (M + Jf
')

r (f0).

After fission has taken place and the components have become thoroughly

separated, the orbital momentum will be

MM'
p

(If +#"')*

Since this must always be less than M, it follows that at any stage of the

star's orbital motion

I (M+MJK
r M*M'* i-

X *-

Suppose first that the primitive nebula is wholly incompressible. The

figure is a Maclaurin spheroid at its point of bifurcation, so that &2

/r
2 = 0'3838

and = 0-18712. Our inequality becomes

172
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For a compressible mass the value of k'
2

/r
2 is less, but the value of is

greater. It is clear that k2

/r
z will decrease much more rapidly than 6, so that

compressibility lessens our calculated factor '04135 for instance for Roche's

model it reduces to zero.

Thus the inequality (585) will be true independently of the compressibility

of the mass.

For a binary in which the components are of very unequal mass

will be very large, so that I may be very large compared with r the com-

ponents can separate to a distance large compared with the dimensions of

the primitive nebula. But for binaries in which M/M' < 2J, the value of

(M + M')'M*M'* is less than 24*01 and our inequality (585) becomes

I < '9928r.

Thus under no circumstances can the semi-latus rectum of a binary system
in which M/M' < 2J exceed the mean radius of the primitive nebula at the

instant at which the spheroidal form became unstable.

For a Centauri the present value of I is 2 '5 x 1014
cms., subtending an

angle of 12'75". If it was generated by fission, the mean radius of the

pseudo-spheroid just before elongation commenced must have been at least

2*5 x 1014
cms., so that the major-axis must have been at least 6 x 10 14

cms.,

subtending (at its present distance) an angle of at least 30". The mass of

the system being 3'8 x 1033

gms., the mean density must have been less

than 6 x 10"11
.

273. The results just obtained dispose at once of the hypothetical inter-

pretation put upon Campbell's table on p. 255. So long as a binary star is

regarded as a self-contained system, we have seen that, for the great majority

of binaries, the linear dimensions and period of the orbit can only vary

slightly through the whole course of the star's life. A binary star can no

longer be supposed, as it grows older, to pass in turn through the different

columns of that table
;
on the contrary, except in rare cases, it will remain

continually in the same column. Its spectral type and eccentricity will vary

as its evolution progresses, but the general order of magnitude of its period

must remain perpetually the same. If we suppose spectroscopic binaries to

have originated by fission, the problem of explaining why it is that short-

period binaries are generally of small eccentricity of orbit and of early spectral

type, the reverse being true of long-period binaries, admits of no answer so

long as we regard a binary star as a self-contained dynamical system.
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Equipartition of Energy

274. Let us examine how the problem stands when account is taken of

the forces from the other stars. We have seen that in the present state of

the universe the forces from neighbouring stars may be neglected in a

statistical discussion
;
the forces acting on a binary system from outside may

be supposed to be those arising from the gravitational field of the universe as

a whole.

Over the extent of any binary system, the potential of this gravitational

field may be represented by a single second harmonic term, say

the centre of gravity of the binary system being taken for origin. We may
first examine whether the action of such a field is to increase the eccentricity

and period of the orbit of the binary system.

The field may be regarded as the superposition of two fields, having

potentials respectively
-

J fj, (#
2 + y

2 + z2
) and | yiu?

2
.

The first of these fields gives rise merely to a force of repulsion pr acting

away from the centre of gravity of the star. So long as
//.

remains constant,

the apsidal distances of the orbit naturally remain fixed
;
when

jj, increases,

there is an increase in the dimensions and period of the orbit, but when p

decreases, there is a corresponding decrease. Thus any secular change in the

dimensions and period of the orbit can depend only on
yu,

2
,
which is so small

as to be negligible.

The field of force of potential f[MOC* gives rise to a repulsive force 3/u? away
from the plane of yz. As the line of apses of the orbit must be supposed to

make all angles indifferently with the axis of x, it is readily seen that the

average effect of these forces- must be nil. Thus any secular change can be

proportional only to the negligible quantity //.

2
.

It acccfrdingly appears that in the present state of the universe, the

general gravitational field can only have an infinitesimal effect upon the

orbits of binary stars.

275. We have already had occasion to contemplate a past epoch in the

history of the universe, in which the stars were much closer together than

they now are. We have found reasons for supposing that at this time the

stars were close enough to affect one another's orbits in space, to an appreci-

able degree, and it is natural to inquire in what way the close encounters of

this epoch would influence the relative orbits of binary stars.

The problem now before us has a close analogy in the Kinetic Theory of

Gases. In the present epoch the stars have been seen to behave like the
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molecules of a gas in which no collisions occur. In the past epoch that we
have under consideration, they behaved like the molecules of a gas in which

collisions occurred in the ordinary way. Single stars must have behaved like

monatomic molecules and binary stars like diatomic molecules. There is

however the welcome difference that we understand the dynamics of a binary

star, whereas we do not yet understand the dynamics of a diatomic molecule.

The tendency of encounters with other stars must have been towards estab-

lishing an internal distribution of energy such as would be in equilibrium
with the translational energy of the stars. It will, however, be best to state

the problem in a form which does not imply or presuppose any analogy with

the Kinetic Theory of Gases.

276. Let M, M' be the masses of the two constituent stars of a binary

system of total mass M+ M'. Let u, v, w denote the components of the

velocity of the centre of gravity in space, and let r, 0, </>
be polar coordinates

ofM relatively to M'. Then the whole kinetic energy of the system is

| (M+M')(u*+ y
2 +O + ijj^fef

/(^+ r*& + r'sin2

Oft) ...(586).

Following our view of the genesis of binary system, we suppose that when
a double-star first comes into being, the value of r2 will be very small, while

the value of r2 + r2 sin2
6ft, the square of the tangential velocity, bears no

relation at all to the translational velocity of the system as a whole. The

theorem of equipartition of energy shews that the tendency of stellar

encounters must be towards equalising the mean values of the different

terms in formula (586). In the final steady state which would be attained

after an infinite number of encounters, the mean square of the tangential

velocity would be equal to twice the mean square of the radial velocity ;
it

would also be equal to f (M + M'^jMM' times the mean square of the velocity

of translation in space.

Consider the description of an orbit of eccentricity e. Without loss of

generality the plane of the orbit may be supposed to be < =
0, and the equation

of the orbit will be

- = 1 -f e cos 6.

The motion will have the usual integral of momentum r2# = h, so that

dt=r2

d0/h.

Using a bar over a quantity to denote its mean value at all instants of

the description of a complete orbit we readily find that
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The mean square of the tangential velocity will be equal to twice the

mean square of the radial velocity, as required by the Theorem of Equiparti-

tion, when

an equation whose root is

Thus the general effect of stellar encounters is to decrease the eccentricity
of orbits whose eccentricity is greater than '6370, and to increase the eccen-

tricity of orbits whose eccentricity is less than '6370. If the constituents of

binaries start life by moving in nearly circular orbits, the general effect of

stellar encounters must be to increase the eccentricities of these orbits until

they are ranged about a median value e = *6370. This, however, is not the

arithmetic average of all eccentricities in the final equipartition state
;

it can

be shewn that in the final state, the eccentricities would be distributed

according to the law 2ede, so that the average value of e would be f .

If (7
2 denote the mean value of u? + v" + w2

,
the second equipartition con-

dition will be satisfied if

In terms of the period P of description of the orbit, this becomes

If M, M' are fairly equal, the value of (M+M'y/MM' will not differ

greatly from 4. Moreover as equation (587) does not depend greatly on e

we may suppose e to have its equipartition value "6370. The equation now

becomes very approximately

We notice that for a massive slow-moving star, P will be large; fora light

and rapidly-moving star, P will be small. Taking M + M' equal to the sun's

mass, 2 x 1033

grammes, and G equal to 25 kms. a second, the value of the

period is found to be almost exactly three months. For a binary star of nine

times the sun's mass, say an average .8-type binary star, the equipartition

value of G'2 would be only one-ninth of that just assumed, and the equipartition

value of P would be 243 times that just calculated, or about 60 years.

277. It has now been seen that stellar encounters produce the same

general effect as tidal friction, namely increases in the eccentricity, linear

dimensions and period of the orbit. But, whereas tidal friction was found

competent to produce only small proportional increases in the period and
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linear dimensions, stellar encounters increase these quantities until the period

is measured in years, regardless of the value of the initial period.

Any group of stars which has experienced a large number of stellar

encounters will have orbits in which the eccentricities are ranged according
to the law 2ede round a mean value of f ,

while the periods will depend on the

mass of the star, being of the order of a year for stars of the average mass of

1'7 times the mass of the sun.

The interpretation of Campbell's table (p. 255) which now suggests itself

is one which fits in, exactly and completely, with the conclusions we have

already reached from a study of stellar motions ( 251). The stars which

are now 5-stars (including some A -stars) were the last to be born
; they were

born when the universe was already so far developed that close encounters

were rare, and as a result the eccentricities and periods of their orbits differ

only slightly from what they were when fission occurred. The stars of later

type were born earlier; fission took place while close encounters were still

comparatively frequent, so that some approximation at least towards equi-

partition has been attained
;
the periods are for the most part measured in

years and the eccentricities have advanced appreciably towards the mean

equipartition value e = f.

The Genesis of Triple and Multiple Systems

278. After the two components of a binary are fully separated, each will

continue to shrink. If the angular momentum of each component were to

remain constant, this would result in an increase of the value of o)
2

/27rp for

each component, so that fission of the components might eventually take place.

The angular momentum of each component will not in actual fact remain con-

stant, being diminished to an unknown extent by tidal friction, but it is still

possible for fission to take place, although of course not at such an early date

as it would if tidal friction did not operate. Let us examine the conditions

under which this second fission can occur.

Let us consider a limiting ideal case in which tidal friction is supposed to

be wholly inoperative, so that the angular momentum of each component
remains unaltered after fission has occurred. Suppose for simplicity that the

masses are incompressible. The value of o>
2

/27r/o just after fission occurs will

be the same for each component, being given in the last column of the table

on p. 63. If the components are equal this value is 0'0420
;

if they are in the

ratio 2^:1, the value is the nearly equal quantity 0'0435. As shrinkage takes

place the value of <y
2

/27rp will increase for each component in such a way as

to keep the angular momentum constant.

During. this shrinkage the tidal influence of the components on one another

continually decreases. After a time tf/Z-n-p will attain to a value 0'18712.
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The figure of the component under consideration will now be a Maclaurin

spheroid just about to give place to a Jacobian ellipsoid. The increase in

ft)
2

/27r/3 since fission took place is one of about 4*3 times, whence it follows

that the stars will now be separated by about 4 diameters and the tidal dis-

tortion of one on the other may legitimately be neglected. The increase of

density in the mass under consideration will be about (4'3)
3 or 79'5. A further

increase of density to 4'3 times this value is found to bring the figure to the

critical Jacobian ellipsoid, after which fission of the component takes place

and the star forms a triple system. The total increase in density since the

first fission occurred is 79*5 x 4*3 or 342 times, so that the linear dimensions

of the sub-system will be about one-seventh of those of the original system,
while their periods will be in a ratio of about 18 to 1.

279. This calculation has neglected tidal friction altogether ;
it is clear

that any action of tidal friction will postpone the formation of a sub-system
and so will increase the inequality of dimensions, density and period between

the two systems. The calculation has also supposed the masses to be incom-

pressible ;
it is easily seen that compressibility will further increase the

inequalities, for the ratio of rotational to orbital momentum in the original

pair decreases with compressibility.

Thus the inequality we have calculated is the minimum possible. When

triple systems form under natural conditions, the density at the second fission

must be more than 342 times that at the first, and so on*.

With still further increase of density either component of the sub-system

may again sub-divide, but this cannot happen until the original density is

more than (34-2)
2 or 11,700 times that at the original fission, B

while the period of the final system must be less than^ times
A

that of the sub-system of which it is part and less than

3^2 times that of the main system.

A typical multiple system of the kind predicted by the

rotational theory appears to be found in Polaris. This shews

spectroscopically periods of 4 days and 12 years, while

Courvoisier finds that the spectroscopic triple system is in

orbital motion with a fourth visible star, the period being

20,000 years.

A typical visual system of the kind predicted by theory
is illustrated in

fig. 45, this being the star 1502 in Jonck- c
heere's Catalogue^. The figure is drawn to scale to repre-

? c

sent the projection of the system on the celestial sphere, Fig. 45.

*
Russell, to whom the first investigation of this question is due, gives 380 as the minimum

increase, the mass ratio in the first fission not being greater than 3 : 1 (Astrophys. Jo-urn. 31,

1910, p. 196).

+ Memoirs R.A.S. Vol. 61 (1917).
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except that the distance Cc has been somewhat increased. The actual

separations (epoch 1908'9) are

Cc = 310", CD = 22-67" AB = 2417", AC = 235'72".

280. Generally speaking, all that can be observed of a multiple system
is its projection on the celestial sphere at a single instant of time. Even when

the orbital elements of the close pair can be determined, it is still impossible
to determine those of the wide pair. Thus effects of foreshortening and ellip-

ticity of orbit make it impossible to decide whether any observed individual

system conforms to the demands of theory or not.

In a statistical discussion, allowance can ofcourse be made for foreshortening

and ellipticity. A group of triple systems having the same ratio of their semi-

parameters la/llt and oriented at random in space, would shew projections on

the celestial sphere such that the ratio s2/sl of their observed separations ought
to obey a definite law of distribution. The summarised results of an interesting

statistical discussion of this kind by Russell* are shewn in the following

table :



279-281
]

Motion subsequent to Fission 267

than O05 shew an excess of about 6 systems in the last line but one, and of 12

in the last line of all. Doubtless these represent systems having a still smaller

value of /2//J.

Thus, so far as Class I is concerned, the law of distributiorrnf-sJsj is what

might statistically be expected for a number of systems in which ^/^ had

values ranging from about 0'09 downwards. This distribution fully conforms

to theoretical requirements.

The systems in Class II fall into two sharply denned groups. A group of

14 for which s2/s1 is less than 0*15 may very possibly have originated by fission,

but we must look for some other origin for the group of 5 forwhich s9/s1 is greater
than 0*40. Russell, following a suggestion of Moulton's, supposes that these

may perhaps have been evolved from separate nuclei in the original nebula.

There is no reason why, in the star-cluster motion we discussed in the last

chapter, some pairs of stars should not end by permanently describing orbits

about one another indeed it would be contrary to all laws of statistical

mechanics if this did riot happen. Russell further makes the very reasonable

suggestion that if we could extend our survey to systems of still greater linear

extent we should find systems such as the 5 triple systems just discussed

gradually grading into the moving star-clusters such as the Pleiades ( 6).

On this view these triple systems are merely moving star-clusters consisting
of three members, or of two members one of which has subdivided by fission.

281. Russell's investigation accordingly shews that it is possible that the

majority of pairs of stars in orbital motion about one another at distances of

less than about 1000 years' proper motion have originated by fission. It also

assigns a limit of about 1000 years' proper motion to the dimensions of the

orbits of systems which can have been generated by fission, and this, except
for a projectional effect, and for changes which may have resulted from en-

counters with other stars, must also be a limit to the dimensions of the nebulae

out of which binary systems evolved by fission ( 272). Taking 25 kms. a

second as an average stellar velocity* the distance represented by 1000 years'

proper motion would be of the order of 8 x 1016 cms. If a stellar mass of

3'5 x 1033

gins, were spread through a sphere of diameter equal to this, the

mean density would only be about 1'3 x 10~17
.

This density is of the order of magnitude of what we have supposed to be

the density in the original rotating nebula; it is enormously less than the

density at which we have computed ( 255) that fission might be expected to

begin. Moreover, even after allowing for all uncertainties in our theoretical

discussion of the density at which equatorial disintegration gives place to

fission ( 263), it seems impossible that matter of such low density as 10~17

could possibly break up by fission. Thus it seems unlikely that the fissional

* We take the total velocity in 3-dimensional space so as to eliminate the projectioaal effect

just referred to.
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hypothesis can be maintained for systems whose separation is of the order of

1000 years' proper motion.

282. Another hypothesis suggests itself. We identify the density
1'3 x 10~17 which corresponds to a separation of 1000 years' proper motion with

the density in the arms of the original rotating nebula out of which the whole

system of stars was evolved. As stars form out of the nuclei in these arms

the majority will, as we have supposed, move as separate and independent

systems, but there must necessarily be a number of cases in which two ad-

jacent nuclei in the nebular arms remain permanently describing orbits about

one another. Such a pair of stars is dynamically, so far as Russell's investi-

gations go, indistinguishable from a pair which has evolved by fission. It

has not evolved by fission but the relations between angular velocity, separation

and mass are the same as if it had evolved by fission, and the distribution of

momentum between rotational and orbital momentum is the same as if it had

evolved by fission.

Thus we are led to conjecture that wide binary systems of separation less

than about 1000 years' proper motion are the remains of adjacent nuclei in the

original nebula which have never got out of one another's gravitational at-

traction; systems of separation greater than this may perhaps be pairs of

stars which have fallen into orbits round one another in the random motion

of those stars which had become properly separated. Close binary systems

may no doubt have been evolved by fission, but at present it is difficult to

draw the line between such systems and systems which have never formed a

single mass.

The most direct evidence we have on this point is provided by the observed

distribution of periods. We have found that, briefly speaking, encounters with

other systems cause the periods to approximate, on the average, to about one

year. Thus binaries with periods of less than one year probably (although

not certainly) started life with still shorter periods ;
such binaries probably

originated by fission. In the same way, binaries with periods greater than

one year probably started life with still longer periods, so that the majority

of these stars are likely to represent the relics of independent nuclei in the

original nebula. Thus we may perhaps conjecture with some confidence that

such binaries as a. Centauri, discussed in 271, 272, and with it the vast

majority of long-period visual binaries, have not been evolved by fission, but

in more doubtful cases, such as W Crucis which figures in the bottom line of

Shapley's table (p. 250), the only reason for forming a decision is that supplied

by dynamical theory, and this as we have seen leads to very indefinite results.



CHAPTER XII

THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM

283. The sequence of events to be expected in a mass of astronomical

matter left solely to the influence of its own rotation has now been traced out

with tolerable completeness.

Of the five uniformities of structure mentioned in our introductory chapter

we have found that two fall naturally into their places in the scheme of evolu-

tion of a rotating mass, these two being the spiral nebulae and the binary
and multiple stars. Two others, namely the planetary and ring nebulae and

the globular and moving star-clusters, seem at least to be capable of explana-
tion in terms of a rotational theory of evolution, although our interpretation

of these formations was largely conjectural.

The fifth uniformity was that observed in the solar system, and for this

no place has been found in the rotational scheme of evolution. It is true

that we found ( 257) that planets might possibly form out of the atmosphere
thrown off equatorially from a rotating mass of gas, but several objections

present themselves against any attempt to explain the origin of our solar

system in this way primarily the objection that the next stage in evolution

ought to be for the central mass to break up into an ordinary binary star,

whereas our sun and planets are not binary. Also the arrangement of the

components of typical multiple stars such as can have been formed by rotation

(cf. fig. 45, p. 265) does not in the least resemble that observed in the solar

system.

Such considerations alone would throw doubt on a rotational theory of the

evolution of our solar system. Beyond these there is the objection already

referred to in 14, that the total angular momentum of our system appears,

at first sight at least, to be much too small for the system ever to have broken

up by rotation. We proceed to examine this supposed objection in the light

of the theoretical knowledge we have now obtained as to the conditions for

rotational break-up to occur.

THE ROTATIONAL THEORY

284. For an incompressible and homogeneous mass of fluid, rotational

break-up cannot commence until after the configuration has passed the

Maclaurin-Jacobian point of bifurcation ;
at this

018712 . (588).
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For compressible and non-homogeneous masses, rotational break-up can

occur in two, and only two, ways by fission or by equatorial ejection of

matter. Fission can only begin after the configuration has passed the point
of bifurcation at which the pseudo-spheroidal form gives place to the pseudo-

ellipsoidal. The value of a>
z

/27ryp at this point depends naturally on the

structure of the mass. For a gas in adiabatic equilibrium, the possible limits

have been found to be

0-18712<^< 0-31.

The limits for equatorial break-up for a mass in adiabatic equilibrium
have similarly been found to be

0-31 <~^< 0-36075.

In both these sets of limits the entry 0*31 is subject to considerable error,

but this is immaterial to our present purpose. It seems quite certain that a

mass of gas in adiabatic equilibrium cannot break up rotationally unless the

value of o>
2

/27T7p has exceeded the value 0-18712.

A natural mass of gas differs from a mass in adiabatic equilibrium in two

respects the quantity k, or plpy
,
will not be constant throughout the mass,

and the chemical structure will not be constant throughout the mass. For

stability, k must increase on passing outwards along a radius, and the heaviest

molecules or atoms must sink towards the centre. Both of these departures
from the adiabatic arrangement tend to increase the degree of central con-

densation of mass. The mass approaches more closely to Roche's model, and

the critical value of o>
2

/27r7J5 approaches more closely to the value 0-36075.

Thus we seem fully justified in supposing that no mass can break up rota-

tionally until after a)
2
/27ryp has exceeded the value 0'18712.

In particular, if our solar system has been formed by the rotational

break-up of a primitive mass of any kind whatever, the value of a)
2

/27ryp for

this body must have been greater than 0'18712 before break-up commenced.

285. Babinet's criterion ( 14) proceeds on the suppositions that the mass

of this primitive body must have been equal to the total mass of the present
solar system, and that the angular momentum of this body must have been

equal to the total angular momentum, rotational and orbital, of the solar

system.

Neither of these suppositions is altogether justifiable. The supposition

that the angular momentum has remained constant requires us to suppose
that our system has remained entirely undisturbed by encounters with other

systems ever since its birth. This is in opposition to the results reached in

the two last chapters, where we came to the conclusion that most stars, with

the exception of B-type and some A -type stars, shew evidence of having

experienced considerable disturbance by other systems; there is no reason
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why our solar system should be expected to have escaped this common fate.

Close encounters with other systems are now so rare as to be negligible, but

we have been led to suppose that conditions were widely different in the

remote past, so that close encounters in a past epoch may have greatly
altered the angular momentum of our system. There is also- another pos-

sibility to be considered. If a wandering star were to enter into our system
and carry off Jupiter by capture the total angular momentum of the system
would be reduced to less than half, although the total mass would only be

reduced to an insignificant extent. The occurrence of such an event in the

past would invalidate entirely the supposition of the total angular momentum

remaining constant.

286. Leaving this objection aside, let us follow Babinet in supposing
that the primitive body out of which our system formed had a mass equal to

the total mass, and angular momentum equal to the total angular momentum,
of the present solar system. Let us proceed to investigate the possibility

of the value of ^/^Tryp for such a system having ever been greater than

0-18712.

The mass of the system is TOOlS times that of the sun, and this, to

within one per cent., will be 2 x 1033

grammes. The angular momentum M
arises mainly (cf. 14) from the orbital momenta of the four outermost planets,

and these are known perfectly. About a sixtieth of the whole arises from

the axial rotation of the sun, and this, depending on the sun's interior arrange-

ment, is not known with great accuracy. But to within one per cent, we may
take the whole moment of momentum of the system to be

M = 3-3 x 1050 c.G.s. units.

Let r be the mean radius and p the mean density of the primitive mass

before break-up, so that Jf=f 7rpr
3
. Let k have been the radius of gyration,

so that M = M&a). From these relations it follows that, in any configuration

whatever,

or, inserting numerical values for M, M and 7,

l-34xl08 -
(590).

It follows that &>
2

/27T7/5 can only have been as great as 018712 if A;
4

/r
3

was less than 716 x 108 cms. If r
,
the mean radius of the original nebula,

is supposed to have been n times the present radius of the sun, then k2

/r
2

must have been less than 0101/0*. For instance with r equal to the radius

of Neptune's orbit, &2

/r
2 must have been less than 0'0013. The exact value

which ought to be assigned to n can only be a matter of conjecture. It is
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probably large, but whatever reasonable value is assigned to n, the value

of 0'101/\/tt or A^/V
2 comes out very small. Thus there must have been very

extreme central condensation in the primitive mass.

General dynamical theory has shewn that there are two, and only two,

distinct types of rotational break-up. The fissional break-up happens in a

mass in which great variations of density do not occur, while the equatorial

break-up happens in masses with considerable central condensation. We
have seen that, if our system broke up by rotation, there must have been

very extreme central condensation, so that we may be confident that the

break-up, if ever it occurred, must have been by equatorial ejection*.

The values of rf/ZTryp for equatorial ejection range from about 0'31 to

O36075. With central condensation as extreme as that we are now con-

sidering o>
2
/27ry/5 must be very nearly equal to the latter value. Within an

error of about one per cent, we may suppose it to be 0*36.

287. We have now determined three numerical data,

M = 3'3 x 1050
,
M = 2 x 1033

, tf/Ziryp
= 0'36,

all probably accurate to within about one per cent. Equation (590) now

determines the further value

-=3'7xl08 cms.
r 3

This gives the following values for &2

/r
2

,
these still being exact to about

one per cent. :

r = Radius of present sun &2

/r
2 = 072,

r = orbit of earth Ic
2
/r

* = 0'005,

r = Neptune &2

/r
2 = 0"00090.

Exact analysis has not so far sustained the objection of Babinet ( 14) to

Laplace's Theory. The smallness of the present angular momentum does

not shew that the system cannot have broken up rotationally ;
it merely

shews that the value of &2

/r
2 must have been very small if the system ever

did break up rotationally. This necessity for extreme central condensation

was, however, apparent to Laplace, and has been fully recognised by subse-

quent cosmogonistsf. It should, however, be added that See and also

Moulton and Chamberlin, starting apparently from the tacit assumption that

* For an adiabatic mass of gas, the transition occurs when 7 = 2-2 (about), 7 here denoting

(momentarily) the ratio of the two specific heats. The value of fc
2
/r

2 for a spherical mass in

which 7 = 1-66 is 0'22, for one in which 7= 2 is 0'26, and for one in which 7 =00 is 0'40. Thus it

appeais that for a mass in which 7 = 2-2 the value of /c
2
/r

2 will be about 0-29. The flattening

produced by rotation naturally increases fc
a
/r

2
,
so that there is a wide margin of safety in sup-

posing that &2/ro
2= 0-101n~* corresponds to equatorial break-up.

t Cf. Poincare^ Lemons sur les Hypotheses Coanwgoniques, p. 18.



286-289] The Rotational Theory 273

extreme central condensation is impossible, have arrived, naturally enough,

at the conclusion that rotational break-up was also impossible. Such extreme

condensation as is demanded by the rotational theory will be admitted to

be highly improbable, but there seems to be no way of proying it to be

impossible.

At the same time, as we shall now see, a slight change in the form of

the argument brings to light considerations which suggest very strongly that

Laplace's hypothesis musfc be abandoned, at any rate if we hold to the assump-
tion that the angular momentum of the system has remained constant since

its birth.

288. Small values of &2

/r
2 can only mean that the matter in the out-

lying parts of the nebula is of density low compared with the mean density p.

Let pe denote the density of matter near the edge. The interior matter may
then be supposed of density greater than pe . The moment of inertia is

= O2 + f)pdxdydz,

and, since p > pe except near the edge, this requires that

Mk* > pe (x
2 + f) dxdydz.

For the figure corresponding to extreme central condensation ( 152), the

integral is easily evaluated, and found to be equal to 0'52313r 2 times the

volume of the figure. It follows that

0-523 ^< -.
P r a

The table of 287 (opposite) now assigns upper limits to pe/p. We have

r = Radius of present sun pelp-< 0'137,

TQ
= orbit of earth pe/p < 0'009,

r = Neptune pe/p< 0*0017.

289. We have seen that the method of break-up, if this occurred at all,

must have been that of equatorial ejection, as imagined by Laplace and

Roche. They imagined the next stage of evolution to be the formation of a

ring. This, on account of the conservation of angular momentum, must have

rotated with angular velocity &> practically equal to that of the original mass,

and so given by o>
2

/27rjo
= 0'36. The theorem of Poincare, quoted in 210,

now assigns a lower limit to the mean density pr of this ring; it must be

greater than &>
2

/27r, and therefore greater than 0'36/3.

Thus for evolution to have taken place on the lines imagined by Laplace
and Roche, pr must have been much greater than pe ;

the ejected matter must

have increased in density, and so contracted, before a ring could form.

j. c. 18
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To make the matter definite, let us suppose the mean radius r of the

original nebula to have been equal to the radius of Neptune's orbit, about

4'5xl014 cms. The total mass of the nebula being 2 x 1033

grammes, the

mean density p must have been 5'5 x 10~~ 12
. From the table just given, pet

the density in the outer regions of the nebula must have been less than

O'OOlT times this, say less than 9 x 10~ 15
,
whereas the density of the ejected

matter when condensation began must have been greater than 0'36/5 and so

greater than 2 x 10~12
. The ejected matter must have had a density more

than 200 times as great as the density in the outer regions of the nebula.

If the ejected matter remained gaseous such an increase of density would

be unthinkable. It will, however, be remembered that we have already ( 211)

found reasons why the ring of matter imagined by Laplace could not be

gaseous. For Laplace's hypothesis to be saved, it seems to be necessary to

suppose that the ejected matter liquefied shortly after ejection so that the

planets were born in a liquid, or possibly even in a solid state*.

This supposition is not objectionable in itself, but it leads into difficulties

when we proceed to the consideration of the further stages of evolution.

According to the Nebular Hypothesis, the planets shrunk further after their

birth, until the rotation had increased to such an extent that a further

break-up took place, resulting in the formation of satellites. Now if the

planets were born in the fluid state, it is impossible to imagine a further

shrinkage of anything like sufficient amount to effect a second break-up.

Using the relation o)
2

/27rjp
= 0'36, and assigning to p the value already

assumed, namely 5'5 x 10~12
, it is found that the period of rotation of the

original nebula must have been about 35 years, and this must also have been

approximately the period of rotation of the planets when first born. It is

inconceivable that the planets, already fluid, should shrink until this period

was reduced to a few hours, which is the period necessary for rotational

break-up to occur in a fluid mass. Moreover, even if the inconceivable were

to happen, if this shrinkage took place and the planets broke up further, the

break-up of the fluid planets would necessarily be by fission into masses of

comparable size, and the final formation of the planets would be that of a

system of binaries of the well-known type.

290. For the foregoing reasons, it seems probable, although by no means

certain, that we must abandon the Nebular Hypothesis of Laplace. Before

abandoning the rotational theory altogether, we ought perhaps to consider

the possibility, not contemplated by Laplace at all, of the ejected matter

being localised in one or two streams, as we imagined it to be in the forma-

tion of the spiral nebulae.

* A modified form of the foregoing argument has been presented by Jeffreys (Monthly
Notices R.A.S. 78 (1918), p. 424), who arrives at the same conclusion as that stated here.
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The main objection to this form of the rotational theory has been already

stated ( 253) ;
for condensation to occur the emission of matter would have

to be very rapid. Calculation shews that the mass of the earth must have

been ejected in less than three years, and more probably in a-few months*.

A further objection is that even if jets of matter were emitted with

sufficient rapidity to condense in the gaseous form, they would condense into

masses very much greater than the planets of our system we have seen that

to obtain masses comparable with Uranus or Neptune the density must be

about 10~9 which is about 200 times the mean density (5'5 x 10~12
) of the

supposed primitive nebula, and 100,000 times the mean density just calculated

for its outer regions. On this form of the hypothesis we are again brought
to the conclusion that the planets must have started life in the solid or

liquid state, and this is open to the objections mentioned in the last section.

Finally, an objection to any form of rotational theory is that the central

mass ought to continue disintegrating until a double star is formed. Our
sun has left off disintegrating and has not formed a double star, and the same

is true of all the planets.

291. We may perhaps sum up as follows. Babinet's criterion in itself

has not provided conclusive proof against the solar system having been formed

by rotation, and could not in any case do so, for the whole criterion becomes

inapplicable as soon as we admit the possibility of interaction between our

system and external stars. But exact analysis has shewn that the present

angular momentum is excessively low for a system which has broken up by
rotation, so that after making full allowance for the possibility of this angular
momentum having been reduced since the birth of the system, it still seems

highly probable that our system was formed in some other way. Combining
this with the circumstance that we have been unable to discover any process

of rotational fission which would lead to a final formation resembling our

solar system in the least degree, it becomes almost impossible to continue to

believe that our system is the result of a rotational break-up. We have

conjectured that spiral nebulae, star-clusters, binary and then multiple stars

are formed by rotation ; these complete the chain of rotational evolution, and

there appears to be no room on this chain for systems like our own.

THE TIDAL THEORY

292. It being apparently impossible to explain the genesis of our system
in terms of the evolution of a single mass rotating by itself in space, it is

natural to examine whether it can be explained in terms of the interaction of

two masses. This brings us at once to the tidal theory, which has already

been investigated dynamically to a considerable extent.

*
Monthly Notices R.A.S. 77 (1917), p. 197.

182
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The general conception of the Tidal Theory ( 16) as applied to our solar

system is that a second mass has at some past period approached so close to

our sun. as to break it up by intense tidal forces into a number of detached

masses. As between the tidal and rotational theories, first appearances are

all in favour of the tidal theory. We have found that the rotational theory

applied to a mass comparable with that of our sun leads only to a binary star

( 258) or perhaps ultimately to a triple or multiple system of a type which

is well known and has certainly no resemblance to our solar system ( 278).

The tidal theory on the other hand leads at once and naturally to the con-

ception of a number of separate masses becoming detached from the primary
mass and finally describing orbits about it.

A further general feature which favours the tidal theory may be noticed.

A system in rotation, and consequently also a system which has broken up

by rotation, has an invariable plane, which is perpendicular to the original

axis of rotation. Such a system ought to remain symmetrical about this

plane, and the axis of rotation of the central mass ought to remain perpen-

dicular to this plane.

In the solar system over 98 per cent, of the angular momentum is orbital,

the remainder arising almost entirely from the sun's rotation. Of the orbital

momentum over 99*9 per cent, belongs to the outer planets, whose orbits all

lie within 1J degrees of the invariable plane indeed the orbits of Jupiter,

Saturn and Neptune, contributing 94 -

3 per cent, of this momentum, lie within

45' of the invariable plane. The plane of the sun's rotation, on the other

hand, lies about 6 from this plane. The rotational theory fails to account

for this distance between the plane of the orbits and that of the sun's rota-

tion; the tidal theory explains it very naturally by supposing that the

present invariable plane records the plane of passage of the tide-generating

mass, while the present plane of the sun's rotation coincides approximately
with that of the rotation of the original mass.

293. The details of tidal motion have been dynamically investigated for

two models for an incompressible mass of uniform density, and for Roche's

model, representing the limit of non-uniform density. In each case the mass

is found to break up into a number of separate masses, but the incom-

pressible mass breaks up into masses of comparable size, while the very
non-uniform mass breaks up only by the ejection of one or two streams of

matter, which will probably condense into masses small compared with the

central mass. Clearly these latter conditions give the closer approximation
to those observed in our solar system, so that if our system has broken up

tidally, it must have been far from homogeneous when the break-up occurred,

and Roche's model may be expected to give the better picture of the

process.



292-294] The Tidal Theory 277

The action between the two masses in a tidal encounter may be of varying

degrees of rapidity. These we have classified as slow, intermediate, and

transitory.

In a " slow
"

encounter, the changes are so leisurely that an equilibrium

theory of the tides is supposed to give a good enough approximation. For
these we found that break-up would occur if the secondary mass (M') ap-

proached to within about 2'2 x (M'fM)* radii of the primary. This limiting
distance was approximately the same both for the incompressible mass and
for Roche's model, so that it may reasonably be expected to be about the

same also for all intermediate types of structure.

At the other end of the scale come "
transitory

"
encounters. Here the

tidal forces are supposed to be impulsive ;
their function is to set the parts

of the primary into relative motion and the break-up occurs in the subsequent
motion of the primary under its own internal forces. Unfortunately it has

so far only proved possible to work out the details of this motion for the

incompressible model.

294. We have found ( 130) that, with relative velocities of the order of

present stellar velocities (40 kms. a second), all encounters except the very
closest ones may be classified as transitory in the very closest ones, the

action is still more rapid, but the forces may not be treated as impulsive
because the primary has departed substantially from its original spherical

shape before the tidal forces disappear. We have found that a transitory

encounter will break up an incompressible mass if

.(591),
0*675 wp*

where R is the periastron distance, M' the mass of the tide-raising body,

v the relative velocity, p the density of the primary, and 7 the gravitation

constant (now restored).

Our system is unlikely to have been broken up by a very massive star,

for these are rare. It is likely to have been broken up by a star of mass

rather above the average, for massive stars are more likely to effect a break-up
than lighter ones. For definiteness, let us assign to M '

a value equal to

twice the sun's mass, or 4 x 1033

grammes. Equation (591) becomes

R< 1-24 x lO^xtr*?"* ..................... (592).

Taking v = 40 kms. a second and p = 5'5 x 10~12
,
this being the density of

our sun expanded to a sphere filling the orbit of Neptune, we find the limit

for R to be 4'05 x 1014
cms., which is slightly less than the radius of Neptune's

orbit.

Thus with a secondary of double the sun's mass, a relative velocity of

40 kms. a second would require actual grazing contact before tidal forces
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could break up a sun of density such that it just filled the present orbit of

Neptune. Moreover since the critical value of R only varies as p *, it is

clear that even grazing contact would not suffice to break up a primitive sun

of density less than this.

We are hardly free to suppose the secondary to have had a mass much

greater than that already assumed, nor to suppose the primitive sun to have

had a radius much less than that of Neptune's orbit. For, as we shall see

immediately, either of these suppositions would result in encounters capable
of effecting tidal break-up becoming excessively rare events. We accordingly
retain the already assumed values Jlf' = 4xl033

grammes, p = 5'5 x 10~12
,

and examine the effect of assigning a smaller value to the relative velocity v.

With a relative velocity of only 4 kms. a second, formula (592) gives
1*28 x 1015 cms. as the limit for R, but encounters with this velocity are

no longer transitory; on taking v = 4 x 105 the calculation of 130 gives
1'6 x 1C16 as the closest distance of transitory encounters. Indeed the

encounter is so far from transitory that we may expect the calculations

for slow encounters to give a better approximation. Taking M'/M = 2, the

critical value of R for a slow encounter is 2'78r for an incompressible mass

and 2*87r for Roche's model. Taking r = 4*5 x 1014 cms. (the radius of Nep-
tune's orbit), these limits are found to be 1*25 x 1015 and 1*29 x 1015 cms.

respectively.

Thus with a primitive sun filling Neptune's orbit our calculations give
the following critical distances for a mass double that of the sun, passing
with a velocity of 4 kms. a second :

Incompressible mass, transitory R = T28 x 1015 cms.

slow R = 1-25 x 1015

Roche's model R = 1'29 x 10 15

The encounter we are here considering (R= about T27 x 101S
,
v 4 kms.

a second) is neither slow nor transitory, and the actual sun is not likely either

to have been incompressible or to have conformed to Roche's model. But
the calculated values of R agree so closely among themselves that there is not

likely to be much error in taking the limiting value of R to be T27 x 1015
cms.,

or about 2'8 times the radius of Neptune's orbit.

This value of R corresponds to a velocity of 4 kms. a second. Higher
velocities of course require closer approaches, a velocity of 40 kms. a second

requiring as we have seen an approach to a distance of 4 x 1014
cms., which

represents grazing contact. On the other hand lower velocities do not permit
of larger values of R, for these lower velocities give rise to slow encounters

for which R is independent of the velocity. Thus the largest value of R for

which tidal break-up can occur in a sun of density such that it fills a sphere
of radius equal to Neptune's orbit is of the order of T27 x 1015 cms.
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295. The average time between encounters at a distance equal to or less

than R is
;
as in formula (545),

seconds ...........................(593).

In our present universe, v, the stellar density, is about 5 x 10"56
,
while v

averages 40 kms. a second. The average interval between encounters at a

distance less than T27 x 1015 cms. is found to be about 1018 seconds or

3 x 1010

years. This period is much longer than any reasonable estimate of

the age of the universe. Moreover, of the encounters in question, only a few,

namely those having small relative velocities, are likely to effect a tidal

break-up. Thus tidal break-up is an excessively rare event, and only a small

fraction of stars can ever experience it at all. -

This estimate of frequency of encounters which effect a tidal break-up
has of course depended on the assumed density of the broken up star, which

we took to be 5'5 x 10~12
, corresponding to a solar radius equal to the radius

of Neptune's orbit. Greater densities would make tidal break-up still more

improbable, the time interval varying as p* for transitory encounters and as

p* for slow encounters. No reasonable density could make tidal break-up

probable within astronomical time.

Thus if we suppose the constitution of our stellar universe to have been

always as it now is, a tidal break-up would be an abnormal event: the

a priori odds against our sun having broken up tidally would be so great

that we might feel inclined to discard the tidal theory on the grounds of its

inherent improbability.

We have, however, already had occasion to contemplate an earlier epoch
in the evolution of our stellar universe, in which the stars were much closer

than now, their relative velocities probably much smaller than now, and their

densities very low. Making the appropriate alterations in the numerical data,

the mean interval between tidal encounters is greatly reduced. Suppose that

in this earlier stage the mass-density in space was of the order of 10~18

grammes

per cubic cm. Taking the mass of the average star to be 17 times that of the

sun, the value of v, the number of stars per cubic cm., would be 3 x 10~52
,
or

10,000 times that previously assumed. The time-scale (593), which varies as

\jv, is reduced from 3 x 10 10

years to three million years by this change. The

time-scale ought no longer to be compared with the whole supposed age of

the universe, but rather with the duration of the epoch in which the stars

were closely crowded together. Tidal break-up, even now, can hardly be con-

sidered a likely event, but it is considerably more probable than our former

calculations would have shewn it to be, and the improbability of close en-

counters among the stars no longer provides adequate grounds for rejecting

the tidal theory.
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296. Formula (593) shews that the frequency of encounters at a distance

less than R is proportional to R*. It follows that tidal break-up of our sun,

if ever it occurred, is likely to have been caused by an encounter in which the

value of R was not far below the maximum possible. In 294, assuming
certain definite numerical data, we found the greatest value of R at which

tidal break-up could possibly be effected to be about 1*27 x 10 15
cms., the

corresponding relative velocity at periastron being about 4 kms. a second.

But a relative velocity as small as this must be excluded on dynamical

grounds. The relative velocity at periastron must, except in the special case

of a triple encounter, be greater than that due to a fall from infinity, and

when the assumed masses (0 and 2 ) fall from infinity to a distance of

1*27 x 10 15
cms., they acquire a relative velocity of 7*9 kms. a sec. It now

follows that the relative velocity is not likely to have been much greater than

that due to a fall from infinity.

In general this velocity is given by Rv* = 2(M + M') while in 130 we

saw that an encounter would be "
transitory

"
if 2 M'/Rv* was small. Clearly

the encounter we are now considering is far from transitory and may perhaps,

with fair accuracy, be treated as slow. If so, the critical value for R is simply

proportional to rc ,
the sun's mean radius, and we see that the sun is most

likely to have been broken up when its density was very low.

297. On the tidal theory, as we are now considering it, the planets must

have been formed as condensations in an arm of matter thrown out from the

sun towards a passing mass. In terms of the molecular velocity C and mean

density p of the matter in this arm, the mass of each planet ought to be of

the order of J C3
y
~
*
p
~

,
if its birth occurred in the manner considered

in 217.

The calculations already made have shewn that our system is a priori

most likely to have broken up when it was of low density and when our stellar

universe was in the earliest stages of its existence. Let us conjecturally

assume for the nebular arms a mean density 5'5 x 10~13
,
this being one-tenth

of that of our sun spread through a sphere of radius equal to that of the orbit

of Neptune ;
let us assume a molecular velocity of 4 x 104

,
this being about

that of hydrogen or oxygen at their boiling points. The mass of the resulting

condensations is found to be about 10 :i

grammes a mass intermediate between

those of Jupiter and Saturn. It is clear that if our system contained, beyond
the central sun, only planets of masses of the order of those of the two greatest

planets, the tidal theory would provide a highly satisfactory explanation of

the genesis of the system.

298. The tidal theory can only inspire confidence if it proves able to

account for the small planets as well as for the large planets, and also if it can

account for the satellites of the planets in the same way in which it accounts
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for the planets themselves. The systems of Saturn and Jupiter are so like

that of the sun that any hypothesis which assigned different origins to the

system and its sub-systems would be condemned by its own artificiality.

The first five satellites of Saturn all have masses comparable with 5 x 1023

grammes. Assuming these to have been formed by gaseous condensation,

the range of molecular velocities (7= 4 x 104 to = 4 x 105 would give a range
of density from 8 to 8,000,000 if calculated by the method of 284. The

obvious inference is that either these satellites were not formed by gaseous

condensation, or that they are mere remnants of larger masses. Similar con-

siderations apply to the satellites of Mars and to some at least of the satellites

of Jupiter. It is improbable that these satellites are all remnants of much

larger masses
;
their present uniformity of size is opposed to any such hypo-

thesis. Thus we are driven to supposing that they have been solid or liquid

from their birth *.

299. This conclusion is quite independent of the tidal theory, or of any
other theory of cosmogony. The small bodies we are considering are even

now too small to retain an atmosphere ;
if they were suddenly transformed

into a gaseous state, so that gravity was largely reduced at their surface, they
would be still less able to retain an atmosphere, and their outer layers would

rapidly dissipate into space. Whatever theory of cosmogony we hold, it seems

comparatively certain that most of the asteroids, the majority of the satellites

of the planets, and of course the particles of Saturn's rings, have been solid or

liquid from birth.

It is fairly safe to assume that the satellites of Mars, Saturn and Jupiter

originally formed part of these planets, for in each case the plane of rotation

of the planet almost coincides with the plane of the orbits of the innermost

planets. If the satellites had been "
captured

"
or otherwise picked up from

outside, it is improbable that they should have almost unanimously stumbled

into the plane of rotation of the planet for the planes of their orbits. If we

suppose that Jupiter and Saturn have always been gaseous we must suppose
that solid or liquid satellites were born out of a gaseous planet. This might
have happened if the outer layers were at a temperature not far above their

boiling point; the jet of matter thrown out by tidal action might cool still

further by radiation and immediately condense into a solid or liquid mass.

300. The satellites of the smaller planets are not so easily accounted for.

To take a definite instance, the satellites of Mars are too small to have started

life in the gaseous form
; they seem likely to have originated out of Mars

;

Mars itself is too small to have formed as a gaseous condensation out of the

same nebular arms as produced Jupiter and Saturn
;
and yet if the satellites

*
Cf. Jeffreys, Monthly Notices R.A.S. 78 (1918), p. 424.
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of Mars were born in the liquid or solid state out of a liquid or solid primary,

they ought to have been comparable in mass with that primary.

This apparent difficulty may arise largely from our having assumed that

a body may be accurately labelled either as gaseous or as liquid or solid. The
masses we have under consideration must all have been at low temperatures,
and the pressure must have been considerable in their central regions. We
must consider the possibility of formations which are liquid in their central

regions where the pressure is highest, and gaseous in their outer regions.

Such masses will be represented with tolerable accuracy by the composite
Roche's model, of which the behaviour under tidal forces was discussed in 1 62.

We can now perhaps account for the formation of the system of Mars by

supposing Mars to have started condensing in its central regions during or

immediately after birth, and so assuming the structure of a dense nucleus

surrounded by a light atmosphere. A further tidal cataclysm would result in

a jet of the atmosphere being ejected, and if this immediately started to con-

dense into the liquid state the final result might be two small planets of the

kind observed.

The satellites of Uranus and Neptune may be explained in the same way.

The earth-moon system admits of a similar explanation, but may also admit

of explanation in terms of a wholly fluid earth
; pending further mathematical

investigation it is hardly possible to say whether the masses of the earth and

moon are too unequal for the system to have originated out of a wholly fluid

mass. The question reduces ultimately to one of degree only; the earth at

birth was probably more largely fluid than the planets whose satellites are

relatively smaller.

301. The foregoing considerations have shewn that four at least of the

eight planets must have been partially fluid at, or shortly after, their birth.

If once this conclusion is admitted and it seems inevitable on almost any

theory of cosmogony then there is no justification left for assuming, as we

momentarily did in 300, that the two biggest planets, Jupiter and Saturn,

were wholly gaseous at their birth, although the calculation of 297 shews it

to be quite possible that Jupiter at least may have always been gaseous.

302. Let us examine how the tidal theory stands if we admit the

possibility of all the planets having been partially fluid at birth.

We picture the primaeval sun throwing out a jet of matter under the

influence of a passing star. The calculations of 296 have already suggested
that the conditions of the tidal encounter must have approximated to those

we have described as "
slow/' The tide-generating star must have described

an orbit passing within a sphere of radius equal to 2'2 (M'/M) mean radii

of the sun. As soon as the star came within this sphere the tidal ejection of
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matter must have begun. The rate of ejection of matter would be slow at

first, it would increase to a maximum when the passing star was at its distance

of closest approach, and would subsequently diminish to zero. The result

ought to be a filament of matter of which the line density would be zero at

each end and would increase to a maximum near the middle.

As this filament lost heat by radiation, the ends would experience the

greatest fall of temperature, for the ratio of surface to mass would be greatest

here. Thus liquefaction ought to commence near the ends, and after a time the

ends of the filament might be mainly liquid while the middle region was still

almost entirely gaseous. During this process of condensation, gravitational

instability would result in the formation of furrows, leading to ultimate

fission into separate masses.

We have already noticed ( 217) that, when fission of this kind occurs,

small masses- are formed out of dense matter, and conversely. Thus those

planets which formed near the ends of this filament, being formed out of

dense matter, would be those of smallest mass, while the planets formed near

the middle, mainly from uncondensed gas, would be of greatest mass. In

this way the tidal theory readily explains the great inequality between the

masses of Jupiter, Saturn and the other planets, while explaining at the

same time why the two largest planets occur in the middle of the chain. The

theory indicates that the smaller planets must have been mainly liquid or

solid from their birth, while Jupiter and perhaps also Saturn may have always
been almost entirely gaseous. We have already seen that the masses of these

two larger planets are quite consistent with this view of their origin.

303. It is impossible to trace the early life of the planets with any pre-

cision. If it were not for the tangential velocity which they must have

acquired from the gravitational attraction of the passing star, they must have

all fallen back into the sun. If they were endowed with only a small tan-

gential velocity, they would describe highly eccentric orbits; some would

pass through the outer layers of the sun at perihelion and perhaps finally

become merged in the sun's mass, others would pass near to the sun's surface

while escaping actual collision. The tidal forces exerted on these planets by
the sun might result in the creation of systems of satellites encircling the

planets. This hypothesis accounts at once for the directions of revolution of

the majority of the satellites, and explains why their orbital planes are, for

the most part, close to the orbital planes of the corresponding planets.

We have already noticed that the least velocity that the tide-generating

mass can have is that due to a fall from infinity, and this is \/2 times the

velocity for a circular orbit. Considerations of probability make it unlikely

that the velocity was much greater than this minimum, for a much higher

velocity would require an improbably close encounter. As an approximation,

let us suppose that the tide-generating mass had a velocity of 10 kms. a second
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at a perihelion distance of I'2xl015
cms., this being only 22 per cent, more

than the minimum velocity possible. The angular velocity of revolution at

closest approach would be 8xlO~10
. Let us suppose, again as a rough

approximation, that the ejected filament was set in motion so that it rotated

as a straight line with an angular velocity equal to half this, say 4xlO~10
.

Then a point at a distance 9'4x 10 I4 cms. (or 2'1 times the radius of Neptune's

orbit) from the sun's centre would have the velocity appropriate to the

description of a circular orbit
; planets formed at a distance less than this

would describe eccentric orbits which would start by approaching nearer to

the sun.

The innermost planets would describe the most eccentric orbits, for their

velocity would differ most from that required for a circular orbit. Traces of

this law may perhaps still be found in the solar system in which the eccen-

tricity of orbit diminishes on the whole as we recede from the sun, Venus and

the earth forming exceptions. See* has shewn that the action of a resisting

medium surrounding the sun would be to diminish the eccentricities of the

planetary orbits. This is shewn by the analysis already given in 261
;
to

study the effects of a resisting medium we need only change the sign of the

couple G. We find that the action of a resisting medium diminishes both

the eccentricity and the major-axis of the orbit.

The diminution of eccentricity ought to be greatest nearest the sun
;

where the resisting atmosphere may have been supposed to be most dense.

This might perhaps account for the smallness of the eccentricities of the

orbits of Venus and the earth, but if so that of Mercury remains anomalously

large. Similarly the diminution of major-axis ought to be greatest near to

the sun. This would be in accordance with the comparative crowding of the

planets near to the sun (Bode's Law), and with the corresponding phenomenon
in the systems of Jupiter and Saturn.

304. The distance within which a planet must approach the sun for

satellites to be created by tidal break-up depends on the density of the

planet. If we are right in supposing that the small planets at the two ends

of the series, say Neptune, Uranus, Venus and Mercury, condensed to an

almost liquid state immediately after birth, then it seems highly improbable
that these bodies can have been broken up tidally by the much less dense

mass of the sun. We should expect these planets to have remained without

satellites, or at least should expect their satellites not to have been born

by tidal interaction with the sun. The high inclinations of the satellites of

Uranus and the retrograde motion of the satellite of Neptune seem in any
case to suggest some origin other than a tidal encounter with the sun.

On the other hand, if we are right in supposing Jupiter and Saturn to have

*
Researches on the Evolution of the Stellar Systems, Vol. n, Chap. VII. See also Poincare,

Lemons sur les Hypotheses Cosmogoniques, Chap. VI.
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been mainly gaseous from their birth, we might naturally expect them to be

surrounded by systems of satellites moving approximately in the planes of

the orbits of their primaries. The genesis of the earth-moon system remains

indefinite, although not inexplicable, but the satellites of Mars present

something of a puzzle on the tidal theory, as indeed on any other theory of

cosmogony.

305. This vague sketch of the tidal theory will, it is hoped, be read as

an indication of the possibilities open to the tidal theory, rather than as an

attempt to advocate the theory or to present it in a final form. The theory
is beset with difficulties and in some respects appears to be definitely un-

satisfactory. To the author it appears more acceptable than the rotational

theory, or any other theory so far offered of the genesis of the solar system ;

but an enormous amount of mathematical research appears to be needed

before the theory can either be advocated with confidence or finally abandoned.

THE TIME-SCALE

306. Throughout our discussion of the various processes of astronomical

evolution, the question of the time occupied by these processes has, inten-

tionally, been kept in the background.

There are three main sources of information as to the time-scale on which

the duration of these processes must be measured:

I. Lord Kelvin, in a well-known calculation, shewed that the gravita-

tional energy produced by the sun falling to its present configuration from a

state of infinite rarity would only suffice to maintain the sun's present rate of

radiation for about 20 million years. This estimate has been challenged on

the grounds that the sun may have other sources of energy, radioactive energy
in particular.

II. Geological investigations have given various estimates of the time

which has elapsed since our earth assumed its present solid form. These are

not altogether consistent with one another, and a number of early estimates

must be definitely rejected in view of our recently gained knowledge of

radioactive processes, but after excluding doubtful estimates there remains a

number of apparently fairly reliable estimates which seem to converge to a

period of the order of 250 million years for the age of our earth.

III. Some material for estimating the time-scale is provided by the

present motions of the stars. The time of transition of a star across our

galactic universe and back is of the order of 320,000,000 years, and the period

of motion round the milky way, or of rotation of the milky way, is of the

same order of magnitude. The stars shew such uniformity of velocity and

arrangement in different parts of space that we may reasonably suppose that
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they have moved several times across the universe before becoming so

evenly arranged as they now are. For example, the assumption that each

star has made ten journeys to-and-fro would give an age of the order of

3,200,000,000 years.

Here we have three more or less conjectural estimates differing, roughly

speaking, by successive powers of 10. The last and largest estimate, being
most closely allied to the subjects we have been discussing, may be con-

sidered first.

307. The estimate implicitly assumes that the period of motion across or

round our universe has always been the same as now. Our investigations, on

the contrary, have led us to conjecture that our system of stars may have

only recently expanded to its present size
;
we have even found reasons for

supposing that the expansion is not yet finished. If we estimate the age in

terms of its completed orbits among the other stars, it is true that the last

orbit is now being performed at the rate of one revolution (say) per 320,000,000

years, but the first orbit may, we have supposed, have been completed in

160,000 years. The time often orbits will not be ten times 320 million years; it

will be more nearly equal to the sum of ten terms of a geometrical progression

beginning with 160,000 years and ending with 320 million years; this sum
is 560 million years. Considering the uncertainty of all the numerical data,

this estimate may be considered to be in agreement with the geological

estimate, the estimate of 560 million years referring to the time since the

primaeval rotating nebula begun to break up into stars, and the geological

estimate of 250 million years referring to the period since the earth solidified.

308. The only discordant estimate is seen to be that derived from the

sun's radiation. Taking the solar constant to be T92, the sun radiates away
3 '8 x 1033

ergs per second. The gravitational energy gained by the sun in con-

tracting to a homogeneous mass of its present size is 2*2 x 1048

ergs, representing
radiation for 18*3 million years at the present rate. It hardly appears probable
that the sun can have other sources ofenergy comparable with its gravitational

energy. Chemical energy is well known to be insignificant. Lindemann* has

pointed out that radioactive energy will also be insignificant in comparison
with gravitational. It is possible that other sub-atomic changes, unknown to

us, may provide more energy than radioactive changes. If these changes con-

sist of a mere rearrangement of electrons, it is found f that each electron in the

sun would have to fall through a sub-atomic difference of potential equal- to

3000 volts in order to set free as much energy as that set free by gravitational

contraction, so that the possibility of extending the time-scale in this way
seems remote. There remains, apparently as a last resource, the possibility of

energy being created by the destruction of matter, as for instance by positive

*
Nature, April 22, 1915.

f J. H. Jeans, Nature, August 2, 1917.
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and negative charges rushing together and annihilating one another. Taking
the intrinsic energy of an electron to be mC 2

,
where C is the velocity of light,

the reduction of the sun's mass by only one per cent, would set free 1*8 x 105 '2

ergs of energy, or sufficient to furnish radiation at the present rate for

150,000 million years.

309. Before either giving up the question as insoluble, or calling to our

aid stores of energy such as that just mentioned, it will be well to examine

how far the gravitational source of energy is really proved to be inadequate.

The situation is that the total energy of contraction of our sun provides for

radiation at the present rate i.e. as a star of absolute magnitude 5*0 for

only 18*3 million years. Let us consider the problem first in reference to the

universe as a whole, and afterwards with special reference to our sun.

The energy set free by gravitational contraction varies as the square of

the mass of the contracting body. Taking the average star to be of mass 17

times that of our sun, the energy lost in contracting to the radius of our sun

i.e. to a density of 2'3 would be 2'9 times that generated by the contrac-

tion of our sun to its present size. Thus it would provide for radiation for 53

million years as a star of luminosity equal to our sun.

Our sun, however, is somewhat exceptionally bright. To estimate how

far its brightness is above the average, we must limit ourselves to the nearest

stars, for distant faint stars escape observation altogether. Of the nineteen

stars of parallax greater than 0'2" tabulated by Eddington*, only nine have

luminosities greater than j
1

^, that of the sun being taken as unity, while

nine have luminosities less than T̂ , the nineteenth star being of estimated

luminosity equal to -fa.
Moreover no fewer than seven have luminosities less

than T J-^ suggesting that we ought to add to the least luminous stars others

whose nearness has not been suspected on account of their faintness, such as

the near star recently discovered by Barnard. Taking the luminosity of the

average star to be ^, we find that contraction provides for radiation at this

rate for 530 million years, a period which agrees well enough with our other

estimates of the age of the universe.

310. Thus as regards the universe as a whole, there is no difficult

problem associated with the time-scale : the problem only arises in con-

nection with special stars, and our sun happens to be one of these. Both

Russell's theory and the theoretical investigation of Chap. VIII suggest that

in the comparatively recent past our sun must have been radiating even

more energy than at present. On the other hand, when we pass to the

remote past, there is no justification for believing the rate of radiation to

have been so great. There must be a long period between the stage at

which a star is formed in the nebulous state and the period at which it

*
Stellar Movements, p. 41.
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bursts into incandescence as a giant Jl/-star. During this period energy is

radiated in the form of heat, but observation tells us nothing as to its

amount. Theory, as developed in Chap. VIII, shews that the early heat-

radiation will be the same in amount as the later light-radiation provided
the opacity c remains constant. The opacity, however, is not likely to remain

constant; the radiation in the interior of a luminous star is of very short

wave-length*, comparable with that of soft X-radiation, and matter might be

expected to be much more transparent for such radiation than for the radiation

which conveys the energy in the interior of a non-luminous star. Against
this must be set the fact that a comparison of the total emission of a star

with the temperature gradient in its interior shews that the matter of

luminous stars must be very much more opaque than ordinary gaseous matter
;

Eddingtonf calculates an opacity such that light is reduced to 1/e times its

original intensity after passing through -fa gm. per sq. cm. of stellar matter.

Imagine, however, that we could in some way suppose the mean opacity c for

the earlier dark sun to have been forty times as great as for the present sun.

Then the rate of emission of radiation by the dark sun would have been only
a fortieth of the present rate, and the time-scale may be extended about forty

times. More precisely we may perhaps suppose that three-quarters of the

total energy of contraction has been radiated from the sun in its luminous

period, this lasting about 15 million years, while the remaining quarter was

radiated in a non-luminous period lasting for about 200 million years.

Some such course seems to be the only one open if we accept the geological

estimates of the earth's age, while refraining from introducing unknown sources

of solar energy such as that suggested in 308. Our conjecture will not, how-

ever, satisfy those geologists who maintain that the earth has remained at a

temperature near to its present temperature for a period of hundreds of

millions of years.

CONCLUSION

It has not been part of our task to arrive at a conclusion
;
the time for

arriving at conclusions in cosmogony has not yet come. Our object has rather

been to consider different hypotheses in turn, pointing out and perhaps to

some extent balancing the advantages and disadvantages of each, leaving it to

future investigators, armed with more mathematical and observational know-

ledge than we at present possess, to pronounce a final decision.

In so far as one conclusion has seemed to us more probable than another, it

has been something of the following kind. Some hundreds of millions of years

ago all the stars within our galactic universe formed a single mass of excessively

*
Eddington, Monthly Notices R.A.S. 77 (1917), p. 34.

t I.e. p. 28.
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tenuous gas in slow rotation. As imagined by Laplace, this mass contracted

owing to loss of energy by radiation, and so increased its angular velocity

until it assumed a lenticular shape, similar to that of the figures shewn on

Plate II. After this, further contraction was a sheer mathematical impossi-

bilityand the system had to expand. The mechanism of expansion was provided

by matter being thrown off from the sharp edge of the lenticular figure, the

lenticular centre now forming the nucleus, and the thrown-off matter forming
the arms, of a spiral nebula of the normal type. The long filaments of matter

which constituted the arms, being gravitationally unstable, first formed into

chains of condensations about nuclei, and ultimately formed detached masses of

gas. With continued shrinkage, the temperature of these masses increased

until they attained to incandescence and shone as luminous stars. At the same

time their velocity of rotation increased until a large proportion of them

broke up by fission into binary systems. The majority of the stars broke

away from their neighbours and so formed a cluster of irregularly moving
stars our present galactic universe, in which the flattened shape of the

original nebula may still be traced in the concentration about the galactic

plane, while the original motion along the nebular arms still persists in the

form of "star-streaming." In some cases a pair or small group of stars failed

to get clear of one another's gravitational attractions and remain describing
orbits about one another as wide binaries or multiple stars. The stars

which were formed last, the present .B-type stars, have been unusually im-

mune from disturbance by their neighbours, partly because they were born

when adjacent stars had almost ceased to interfere with one another, partly

because their exceptionally large mass minimised the effect of such inter-

ference as may have occurred
; consequently they remain moving in the

plane in which they were formed, many of them still constituting closely

associated groups of stars the moving star-clusters.

At intervals it must have happened that two stars passed relatively neai

to one another in their motion through the universe. We conjecture that

something like 300 million years ago our sun experienced an encounter of

this kind, a larger star passing within a distance of about the sun's diameter

from its surface. The effect of this, as we have seen, would be the ejection

of a stream of gas towards the passing star. At this epoch the sun is sup-

posed to have been dark and cold, its density being so low that its radius

was perhaps comparable with the present radius of Neptune's orbit. The

ejected stream of matter, becoming still colder by radiation, may have con-

densed into liquid near its ends and perhaps partially also near its middle.

Such a jet of matter w.ould be longitudinally unstable and would condense

into detached nuclei which would ultimately form planets. The more liquid

planets at the end of the chain would be those of smallest mass ;
the gaseous

centre would form the larger planets Jupiter and Saturn. Owing to the

orbital velocity which had been communicated to these planets by the

-i.e. 19
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attraction of the passing star, they would not fall back into the sun but

would describe elliptic orbits, passing fairly near to the sun's surface at their

closest approach. As they passed relatively near to the sun, the same pro-

cess as resulted in the formation of planets out of the sun, may have resulted

in the formation of satellites out of the planets. It is not difficult to account

for the systems of Jupiter and Saturn in this way, but the satellites of

Neptune, Uranus, Mars and the earth are less easy to explain. The system
which interests us most nearly, namely our earth-moon system, is just the

one about which it is most difficult to come to any definite conclusion. For

the earth-moon system is exceptional in the system of the planets, just as

the solar system to which it belongs appears to be exceptional, and for ought
we know may be unique, in the system of the stars.
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