proceedings

ACADEMY OF NATURAL SCIENCES

PHILADELPHIA.

1880.

PUBLICATION COMMITTEE:

Joseph Leidy, M.D., Geo. H. Horn, M.D., William S. Vaud,
Thomas Meghan, John H. Redfield.

Editor: ED W ARD J. NOLAN, M.D.

PHILADELPHIA:
ACADEMY OF NATURAL SOIENOES, S.W. Corner Nineteenth and Race Streets.
1881.

Academy of Natural Seiences of Philadelphia,
March, 1881.

I hereby certify that printed copies of the Proceedings for 1880 have been presented at the meetings of the Academy, as follows :-

EDWARD J. NOLAN, Recording Secretary.

LIST OF CONTRIBUTORS.

With reference to the several articles contributed by cuch.

For Verbal Communications see ficueral Index.
Allen, Harrison. Description of a fæetal walrus 38
On the Temporal and Masseter Muscles of Mammals. 385
Barbeck, Wm. On the Development of Lemna minor. (Plate XVIII.) 230
Bergh, R. On the Nudibranchiate Gasteropod Mollusca of the North Pacific Ocean, with special reference to those of Alaska. Part II. (Plates I.-VIII.) 40
Chapman, H. O. On the Structure of the Orang Outang. (Plates XI.-XVII. 160
Genth, F. A., Jr. The So-called Emery Ore from Chelsea, Bethel Township, Delaware County, Pa 311
Hartman, W. D. Description of a Partula supposed to be new, from the Island of Moorea 229
Heilprin, Angelo. On the Stratigraphical Evidence afforded by the Tertiary Fossils of the Peninsula of Maryland. 20
On some new Lower Eocene Mollusca from Clarke Co., Alabama, with some points as to the Stratigraphical Position of the Beds containing them (Plate 20) 364
Kingsley, J. S. Carcinological Notes, No. 1 34
Carcinological Notes, No. 2.-Revision of the Gelasimi. (Plates IX. and X.) 135
Carcinological Notes, No. 3.-Revision of the Genus Ocypoda. 179
Carcinological Notes, No. 4.-Synopsis of the Grapsidæ 187
Leidy, Jos. Rhizopods in the Mosses of the Summit of Roan Moun- tain, North Carolina. 333
Lewis, Henry Carvill. The Optical Characters of some Micas 244
On Siderophyllite, a new Mineral. 254
The Surface Geology of Philadelphia and Vicinity. 258
The Iron Ores and Lignite of the Montgomery Co. Valley 282
On a new Fucoidal Plant from the Trias 293
The Trenton Gravel and its relation to the Antiquity of Man. 296
On Philadelphite (Sp. Nov.) 318
Lockington, W. N. On a Pacific Species of Caulolatilus. 18
Description of a new species of Hemitripterus from Alaska 283
Description of a new species of Catostomus (Catostomus Cypho) from the Colorado River 237
McCook, Rev. H. C. The Shining Slavemaker.-Notes on the Archi- tecture and Habits of the American Slave-making Ant, Polyergus lucidus (Plate 19) 376
Rand, Theo. D. On Randite. 274
Report on Plants introduced by means of the International Exhibition, 1876. 182
Vodges, Anth. W. Description of a new Crustacean from the Upper Silurian of Georgia, with remarks upon Calymene Clintoni 176

PROOEEDINGS

OF THE

ACADEMY OF NATURAL SOIENCES

or

PHILADELPHIA.

1880.

$$
\text { January 6, } 1880 .
$$

The President, Dr. Rusomenberger, in the chair.
Forty-two persons present.
The following papers were presented for publication:
"On the Nudibranchiate Gasteropod Mullusea of the North Pacific Ocean, with special reference to those of Alaska," by Dr. R. Bergh, of Copenhagen. Part II.
"The Terrestrial Mollusea inhabiting the Cooks or Harvey Islands," by Andrew Garrett.

The deaths of Dr. S. S. White and Joshua 'T. Jeanes were amounced.

January 13.

The President, Dr. Ruschenberger, in the chair.
Forty-two members present.
On disarticulating branches in Ampelopsis:-Mr. 'Thomas Meeman remarked that some species of Ampelopsis threw oft their dead wood hy disarticulation, as he pointed out some years ago to be the ease with Thuja and Taxodium among coniferons trees. This was especially the case with Ampelopsis quinquefolia. and A. bipinnala. These, in common with many other climbins plants, produced some portions of their ammal srowth of so tow
a vital power, that they were soon killed when severe weather oecurred. In the grape vine, for instance, the extreme ends of the strong branches and whole lengths of weaker ones died during the winter. 'These remained on till eut away by the pruner, or until they fell by natural decay. In the Ampelopsis named they were thrown off by an articulation, so that by spring no dead wood of the past season's growth would be found on the plants. Every node included in the dead portion, separated; so that under the platis the pieees may be gathered like the separate vertebre in a skeleton.

The Ampelopsis, when rmming up a tree or wall, seldom sent out lateral branches till it reached the summit. When these side branches were produced, they appeared, alter a few years, as thick bushy masese, having the look of a hedge ammally pruned. It appears that in these cases the ammal growth is disarticulated at just one node above that one made last year-the branch thus gaining but one node a year. A bushy branch of a dozen years old, will thus have but a dozen nodes of living wood.

The observations were of some interest just now, from the diseovery of a speedes of Vitis in the South I'acifie, which produced tubers at the ent of the hranches, which at the end of the season were thrown off by a disarticulation, and in this way aided in propagation and distribution. Though the disarticulation in the neighboring genus Ampelopsis, as now noted, results only in ridding the plant at once of useless wood, it showed a relation of powers in allied species that must he of serviee to those engaged in studies of derivation.

Geo. Vaux was elected a member of the Council to serve for the unexpired term of C. Newlin Pierce. Aubrey H. Smith was elected to serve for the unexpired term of Edw. D. Cope.

January 20.

The President, Dr. Ruschenberaer, in the chair.

Forty persons present.

Nolice of the Cruel Thread Worm, Filaria immitis, of the bory.-Prof. Lamy directerl attention to a specimen, presented by Mrs. Laura M. Towne. of Beanfort, S. ('., consisting of the heart and part of one lung of a dog, containing thread worms. The right ventricle of the heart and the pulmonary artery contained a bunch of the parasites, and several also were contained in the lung. A similar sperimen, with the ventricle literally stuffed full of worms, is preserved in the museum of the University of Penn-
sylvania. The parasite was described, thirty years ago, in the Proceedings of this Aeademy, under the names of Filaria Camis cordis and Filaria immitis (sce Proc., 1850, 118; 1856, 2, 55), and since has been repeatedly noticed by observers as infesting the dog in Europe, India, China, Japan and this country:

The specimen presented is accompanied with a letter from Mrs. 'Towne, giving an account of the oceurrence and symptoms of the parasite as follows :
"I lost several dogs of different breed, age and birthplace, with the same symptoms-a severe and pereuliar comeh heing the prinfipol one. A gentleman living on a meightoring i-land (the sea Istamls of sonth (arolima) lon ener thires haming does in two or three years with the same symptoms. I watched my two remaining dogs closely. They were a large Newfoundland (mixed) and a sinall terrier. Both had the peculiar cough, which was excited by any movement, especially after sleeping. It always ended, after a few coughs, in a violent effort to bring something up from the throat. This did not seem nansea or sickness, and as the dogs never threw up anything, I thought it was due to hairs in the throat. The two dogs had another symptom. When they began to run violently, as at hogs, or a strange dog, they fell dom, became stifl and insensible, but in a short time would get up and resume the chase.
"The little dog died with hemorrhage from the bladder or kidneys; but no post-morten examination was made.
"The large dog soon began to congh up bloody phlegm, with considerable fresh blood at times. I found in the phlegm one morning two Filarise alive, and at least six inches long. I sent word of this discovery to the owner of the hunting dogs, and when his next one died he had it opened, and found the heart and liver filled with Filarie.
"My large dog grew so ill that I had him shot. His symptoms were drowsiness, sleeping with the upper eyelids raisel, and the inner lining showing very red; holding his head to one side, one ear dronpel; dragerge of one hime leg: thrning romed and rombl
 which he rolled over and over and drew his head baekward. He was fat and had a good appetite to the last.
"The sister of this dog was given to me. She had a slight cough, but it increased rapidly: After about three months' attempt to eure her, I had her shot before her sufferings beeame severe. Her heart is the one you have. She was fat when she died, and seemed in grod health, except for short breath in ruming, the cough and unusual sleepiness.
"In the post-mortem of the first dog, I fomd one Filaria lying at full length in the windpipe, and in the large artery others stretehed at length and crowded close. Upon cutting into the.
heart, the worms burst forth in bunches, slowly uncoiling themselves. They were white, stiff and wire-like, and not in the least stained with blood. They lived in water about twenty-four hours. The large blood-vessels of the lungs were filled densely, and even from the small ones long Filarixe were with some difliculty withdrawn. No worms were found in the kidneys."

Jandary 27.

The President, Dr. Ruschenberger, in the chair.
Nineteen persons present.
A paper entitled "Carcinological Notes, No. 2. Revision of the Gelasimi," by J. S. Kingsley, was presented for publication.

The death of 'Thomas M. Brewer, a correspondent, was announced.

Chas. W. Pickering, John S. Jenks, Wm. H. Jenks, A. R. Thomas, Ferris W. Price, John Wagner, Chas. P. 'Tasker, Henry F. Fommad and George W. Biddle were elected members.

Angelo Heilprin, of New York, Dr. C. A. White, of Washington, Albert De Selle, of Paris, R. Hoernes, of Vienna, Georges Rolland, of Paris, and Victor Raulin, of Bordeaux, were elected correspondents.

The following were ordered to be printed:-

ON THE PACIFIC SPECIES OF CAULOLATILUS

BY W. N. LOCKINGTON.

In the Proc. Acad. Nat. Sci., Phila., 1865, pp. 66-68, Dr. Gill enumerates four species of his genus Caulolatilus, one of them, C. chrysops (Latilus chrysops, Val.) from the Atlantic, the others from the Pacific Ocean.

These species are: C. anomulus (= Dekaya anomatus, Cooper), C. princeps ($=$ Latilus princeps, Jenyns), and C. affinis, Gill. The first and second of these are stated to differ in the proportion hetween the length of the posterior dorsal spines and the distance between the dorsal fin and the lateral line; as well as in the length of the pectoral ; while the third species (characterized from a specimen about three inches long) is deseribed as follows: "I'rofile quadrant, in front almost vertical; Greatest height less than four times (.27) in the length (exclusive of the caudal), that of caudal peduncle about nine times. Head more than $\frac{1}{3}^{3}$ of the length, while its height is to its length as 2212 : 31. Diameter of eye equal to almost $\frac{1}{2}$ the height of the head. Preorbital very narrow. Teeth of preoperculum strong and distant; those of the middle directed obliquely upwards. Sixth dorsal spine equal to $\frac{1}{4}$ of the length. Anus behind the middle of the length. Caudal rather exceeding the height of the head. Pectorals equal to $\frac{1}{5}$ of the length. Tentrals shorter (.18) inserted beneath the base of the pectoral, its spine at the vertical of the upper axil. D., vii, 25. A., ii, 22. P., 18. Color reddish brown on head and back, lighter on the sides. A very distinet blackish spot above the axilla of the pectoral. Locality, Cape St. Lucas." Dr. Gill states his belief that the large eyes and the narrow preorbital are characters of youth ; and, moreover, hints a doubt as to the specific identity of C. princeps and C. anomalus, but thinks it scarcely probable on account of the few species known to be common to Lower California and the Galapagos, the localities from which the types of C. anomalus and C. princeps were respectively procured.

As I have lately obtained two individuals of a species of Coulolatilus in the markets of San Franeiseo, I contribute a tolembly full description, embodying the ehayacters of the two (which evidently belong to the same species) and notes upon the peeuliarities of each. The difference in some of the proportions
between these two individuals has almost convinced me of the identity of C.princeps and C. anomalus; and I am inclined to think it probable that the type of C. affinis is only a somewhat abnormal specimen of the same species. The chief differences between the smaller of my specimens and the type of C. affinis are the more quadrantiform outline and greater length of the head and the smaller number of dorsal spines and anal rays in the latter.

As, however, the form of the head differs so considerably in individuals evidently belonging to the same species, too much stress must not be laid on the former character ; and the variation in the number of dorsal spines (viii-ix) and dorsal and anal finrays in specimens of undoubted C. anomalus on record, forbid us to think the latter a positive character.

It is quite possible that an individual may have acquired the form of head of the adult, while still of small dimensions. The dorsal spine may be expected (judging fiom the two specimens here described) to increase in their proportional length inversely to the size of the fish.

If my conjecture be correct (and I only give it as a conjecture), then there is only one Pacific species at present known, ranging at least from the (Galapagos to the Bay of Monterey, near Sim Framcisco; representing in this ocean the C.chrysops of the Atlantic, and varying somewhat according to age and locality. To thoroughly settle the question, a thorough examination of several specimens from the Galapagos, and a comparison of them with others from Lower and Upper California, will be necessary.

Presuming, for the occasion, that they are identical, the synonymy will be as follows:

Caulolatilus princeps (Jenyns), Gill.
Latilus princeps, Jenyns, Zool. Beagle, 52, pl. 11.
Latilus princeps, Günther, Cat. Fish. British Museum, II, p. 253.
Dekaya anomala, Cooper, Proc. Acad. Nat. Sci. Phil., 1865, p. 68.
Caulolatilus anomalus, Gill, Proc. Acad. Nat. Sci., Cal., 1865, p. 68.
Caulolatilus affinis, Gill, loc. cit.
Caulolatilus anomalus, Streets, Bull. U. S. Nat. Mus., No. 7, p. 48, 187%.
D. viii-ix, 25-26. A. ii, 24-26. P. 19-20. V. $\frac{1}{5}$. C. ac. 13-14. C. 13.

General Description.-Profile more or less decurved, the curvature increasing with age; posterior portion of dorsal outline nearly straight; abdominal outline regularly curved. Greatest
 total length ; head, $4 \frac{3}{4}-4 \frac{5}{5}$ in the same. Greatest thickness about $2 \frac{1}{3}$ in the greatest depth. Eye, $4-5$ times ; snout, $3-3 \frac{1}{3}$ times in the length of the head. Interorbital width, measured round the curve of the forehead, $2 \frac{1}{7}-2 \frac{5}{7}$ in the same. Caudal peduncle, $8-4$ times in the greatest depth. Distance from the spinous dorsal to the lateral line, $\frac{11}{15}-1 \frac{1}{5}$ times in the height of the last dorsal spine. Nostrils conspicuous, on the horizon of the centre of the pupil, an-
 distant from the eye about one-third of the diameter of the latter.

Eyes large, lateral, subcircular, their posterior margin nearer the tip of the opereulum than that of the snout.

Mouth slightly ascending forwards; tip of the intermaxillary level with the lower margin of the orbit; posterior extremity of maxillary nearly vertical with the anterior orbital margin. Maxillary narrow throughout, its posterior portion free, but the
 in the closed mouth. Jaws equal in front in the closed mouth. Teeth in jaws in several rows in front, diminishing to a single row farther back on the sides, rather small, slender, acute, recurved at tip, but those in front of the mandible in the onter row inclined forwards. Teeth in front largest, those on the sides diminishing, but the hindermost tooth on each side of each jaw more or less developed as a canine, though still shorter than the anterior teeth.

No teeth on romer or palatines. Upper pharyngeals set with sharp, irregularly fareal, carliform teeth: lower phary newals with an outer and immer row of similar terth, with some irregularly platad teeth between the rows. Lower pharyngeals entirely separate.

Gill-rakers of front of first branchial arch slender, rather stiff, about $\frac{1}{3}$ the diameter of the eye, all the others tubercular.

Hinder border of preoperculum rectical, very slightly curved, lower angle rounded, set with teeth which slightly increase in size at the angle, but do not extend along the lower border. Operculum ending behind in a broad flat spine.

Dorsal commencing above the upper pectoral axil, very long, the tips of its terminal rays reaching the caudal accessories; the length of its base about half the total length of the fish; spinons dorsal $: 3^{2}-4$ times in the total lemgth of the lin, and lower than the soft portion. First dorsal spine shortest, the others increasing rapilly for the fifth, more slowly to the eighth or nimith: the longet $6 \frac{1}{4}-8$ times in the total length of the fin.

Soft dorsal contimuns with the spinous portion, and almost equal in height throughout, the last ray excepted. Last ray much shorter than the others. Height of soft dorsal, in front \therefore - if times in the lotal lenoth; many of the rays simple, some slighty bifureate at the tip, the two or three last rays twice branched.

Anal commencine under fifth dorsal ray, its length about $\frac{2}{3}$ of that of the dorsal, with which it is coterminous. Inal spines very small, closely adpressed to the first rays; rays similar and about *-pual in laneth to those of the dorsal, the last mueh shorter than the others. Pectoral lanceolate, the seventh ray longest, the rays (iecreasing rapilly on each side. the lowest scarcely one-fifth as long as the seventh. Length to tip of longest ray $1 \frac{1}{7}-1 \frac{1}{9}$ in that of the head. Most of the rays twice branched, tip of the longest reaching a little beyond the anus. Base of pectoral slightly oblique.

Ventrals inserted under the hinder margin of the pectoral base, their tips not reaching to the anus; their length about $\frac{2}{3}$ that of the pectoral; the last four rays twice bifurcate.

Candal about one-sixth of the total length, with numerous accessory rays, causing a widening of the caudal base; principal rays three times forked: hinder border deeply and triangularly emarginate, almost forked.

Lateral line indistinct, tubes simple; about 145 scales in its length, parallel or nearly so with the dorsal outline.

A bout forty scales between the ventrals and the lateral line, and thirtecen abose the latter. Srales of body almost rectangular, their ingertudinal exeeerling the transerse diameter, the free margin finely ctenoid. All the scales small, those of the abdomen rather smaller than the others, especially front of the paired fins.

Sicales extending upon the cheeks and opercular apparatus, but the snout and forehead to abore the centre of the eyes, the upper borler of the orbite: properenlar margin, jaws and gill-membrane scaleless.

No scales upon dorsal or anal; caudal covered with small seales over the greater portion of its surface. Pectorals more or less -aly witerionly mear the hase. the scates extemding farther between the central than between the lateral rays.

Color leaden-gray, becoming darker above, but fading to a dirty creamy-white below. Vertical fins slaty-gray. Dorsal surface of head darker than the rest of the body.
 founded were procured in the market of San Franciseo, and were brought from the vicinity of Monterey Bay: One is an adult, the other an immature individual, and the two present considerable variation in external form, and in the proportions of some of the parts, as will be evident by the dimensions and further deseription of each specimen here appended.

Dimensions of the Two Spechmens. No. 1. No. 2.

F'urther Description of No. 1.-Snout very declivous, dorsal outline in advance of the dorsal rising rapidly, owing to a great accumulation of adipose tissue about the upper part of the body ; posterior part of dorsal outline regularly descending almost in a straight line; abdominal outline regularly curved.

Greatest depth a little less than four times; head, $4 \frac{3}{4}$ times in the total length; greatest thickness, $1 \frac{8}{3}$ in the greatest depth. Eye, $4 \frac{3}{4} 7$; snout, 3 , interorbital width (rombd curve of forehead), ${ }_{2}^{2}$ times in the length of the head. Caudal peduncle, four times in the greatest depth. Distance from the spinous dorsal to the lateral line, measured along the curve of the side, one-third longer than the longest spine.

Denticulations of ${ }^{\text {p }}$ preoperculum rather blunt; opercular spine blunt.
'Teeth somewhat irregular, canines less distinct than in the young.

Anal spines short and weak, but stiff, and distinctly recognizable as spines; the first very short, the second abont half as long as the first ray.

Lateral line less conspicuous than in the young.
Upper part of the head and along the line of the back approaching a chocolate tint.

Vertical fins darker nearer the margin. No black spot above pectoral axil.

The whole fish is exceedingly oily, and the abundant exudation of this oil renders it exceedingly disagreeable to handle.

Further Description of No. 2.-Dorsal outline from tip of lower jaw to vertical from posterior margin of eye, much less convex than in the adult; rise from thence to the origin of the dorsal very slight; a gradual descent in an almost straight line from thence to the caudal peduncle. Abdominal outline regularly curved to caudal peduncle. Greatest depth, $5 \frac{1}{8}$; length of head, $4 \frac{5}{6}$ times in the total length; eye, 4 times; snout, about $3 \frac{1}{3}$ times in the length of the head. Interorbital width, measured round its curve, about one-fifth more than the length of the snout, or $2 \frac{5}{7}$ in the length of the head. Caudal peduncle, 3 times in the greatest depth.

Distance from the spinous dorsal, at its posterior part, to the lateral line nearly l_{b} in the length of the longest spine, and less
than one-third of the semicircumference of the borly. Longest (9th) dorsal spine, 23 in the length of the head.

Forehead and occiput transwersely much less arcuate than in the adalt, the large deposit of fat on these parts in the latter being absent in the young.

Opening of mouth slightly less oblique than in the adult, the maxillary extending a little farther back. 'J'eeth much as in the adult, but the hindmost tooth in each jaw, but especially in the upper, assuming more distinctly the proportions of a canine. though still smaller than the front teeth.

Denticulations of opereulum proportionately more conspicuous. and more acnte than in the adult, opercular spine ending in three denticulations.

Ninth clorsal spine, $6 \frac{1}{4}$ times in the length of the fin, about $2 \frac{1}{2}$ in the greatest depth. Rays of soft dorsal about $2 \frac{1}{6}$ in the great-
 closely attached to the first ray, very small, flexible, and searcely recognizable as spines.

A black spot above the upper axil of the pectoral; upper parts without the warm tint of the adult. No large development of adipose tissue.

Since the above paper was written, a third specimen of Cautolalitus from the same locality has come into the possession of the California Academy of Sciences. This example is about equal in length to the larger of the two deseribed, but the development of fat upon the oceiput is much less marked, so that its proportions are very nearly those of the type of C. anomalus.

Although I am perfectly aware that specimens from the Galapagos would be required to settle the question of the identity of C. princeps with C. anomalus and C. affinis, I believe that the comparison of these three examples, evidently all of one species. and sharing among them characters relied upon as specific, certainly throws great doubt upon the distinctness of the three deseribed species. Dr. Bean (in lit.) doubts the specific identity of the two specimens deseribed in this paper, and draws attention to certain differences of proportion, but the only diflerences of magnitude are thase eathed hy the development of fat on the oeviput.

ON THE STRATIGRAPHICAL EVIDENCE AFFORDED BY THE TERTIARY FOSSILS OF THE PENINSULA OF MARYLAND.

BY ANGELO HELLIPRIN.

'The 'Tertiary deposits of Maryland have from time to time attracted the attention of investigators more or less eminent in their special lines of research, the results of whose observations, owing to the then imperfect stateof Americangeological amd paleontological science, only very gradually tended to unfold the true relations existing between the synchronous formations of the east- Λ tlantic and west- Λ tlantic countries.

Maclure, on the map accompanying his "Observations of the Geology of the United States" (1817), classed all the late superficial deposits of Maryland under the general term "Alluvial," which term was likewise applied to almost the entire border deposits of the Atlantic and Gulf slopes. In 1824 (J. A. N. S., vol. iv) Say described about forty species of fossil shells collected by Mr. Finch from the same state, but excepting some passing reflections on the nature of the deposit whence they were obtained, and on the great resemblance existing between some of the forms amb forms still living on the coast, no special geological inferences were drawn from the collection. From a comparative examination of the contained fossils, Van Rensselaer ("Lectures on Geology," 1825, p. 261) subsequently referred the deposits in question to the Upper Marine formation, which view was concurred in by Morton in a paper read before the Academy of Natural Sciences of Philadelphia in June, 1828. In a previous paper ("Geological Observations on the Secondary, Tertiary, and Alluvial Formations," J. A. N. S., January, 1828), published conjointly by Vanuxem and Morton, no attempt was made to correlate the various divisions of the American and European Tertiary formations.

Conrad, wlio, more than any other American geologist, contributed to advance our knowledge of the geology and paleontology of this latest period, was the first to recognize the existence of at least there distinct post-feeondary formations in M ryland. the oldest of which he identified by a series of a few fossils found near Ft. Washington, on the Potomac, as belonging to the Eocene, and the newest, as exposed on the southeast extremity of the peninsula, to the Post-Pliocene (J. A. N. S., vol. vi, and Bulletin

of the National Institution, 1841). The intermediate depositwere classed as the Upper Marine, but subsequently under Lyell: designation of Miocene. Conrad's original observations were in general confirmed by his later researches, and the relations of at least a great portion of the Miocene of Maryland, as well as of almost the entire Atlantic slope, were clearly pointed out ly Lyell in 1845 (Proc. of the Geolog. Soc., vol. iv; p. 547).

It is mainly in relation to this last formation that we wish to draw special attention, there being but little question concerning the original determination of the Eocene and Post-Pliocene (Pliocene ?) deposits. That the great bulk of the deposits known as the Medial 'lertiary of Maryland are not synchronous with the South Carolina deposits classed by T'uomey and Holmes at Pliocene, an assumed fact insisted upon by Conrad, and for which there appears to be no evidence, an examination of the following table of mollusca will clearly demonstrate :

Lameilibranchiata of the Medial Tertiary Formations of Maryland.

Anomia epotippium,* Amphidesma carinata,* " subovata,	Cardita protracta, " granulata,* Cardium laqueatum,	Leda concentrica, Lima papyria, Lepton (:) mactroides,
Area callipleura,	acutilaquea-	Lucina anodonta,*
" idonea,	craticuloides,	" Foremani,
" incile,*	eptopleura,	subobliqua,
" subrostrata,	Corbula cuneata,**	subplana,
" Marylandica,	idonea,	" cribraria,**
triquetra,	clevata,	crenulata,**
" centenaria,*	inequalis,*	" contracta,*
" improcera,*	Crassatella Marylandica,	" divaricata,*
stilicidium,	turgidula,	Mactra incrassata,
Artemis acetabulum,*	melina,	" ponderosa.
concentrica,	undulata,*	agosi
($=$ A. elegans?),	Cytherea Sayana,***	subcuneata,
Astarte vicina,	albaria,*	delumbi
" cunciformis,	= C. idonea)	Modiola Ducatellii,
obruta,	Marylandica,	Mya producta,
perplana,	subnasuta,	Mytilus incurva.
exaltata,	Isocardia fraterna,	Ostrae liorginica,*
varia	Markoci,	" pererassa,*
distans,	Leda liciata,	P'enopase Americuna
plamulata,	" acuta,**	retlexa, ${ }^{\text {\% }}$
" undulata,*	" (Yoldia) laevis,	porrecta,
Cardita arata,*	(Nucula) proxima,	'. Goldtus

Pecten	Madisonius,	Perna maxillata,	Telli	a lenis,
"	Humphreysii,	Petricolar centenaria,****	Vent	tetrica,
"	Jetlersonius,	Plicatula marginata,*	"	Mortoni,
"	concentricus,	P'holadomya abrupla,*****	"	alveata,
،	Clintonius,	Pholas ovalis,	"	inoceriformis,
"	septenarius,*	$(=P$. costata?)	* "	stamineus,
Pectun	culus parilis,**	Stavicava rugosa,	"	tridacnoides,*
،	lentifor-	Solen ensis,*		violacea,*
	mis,*	Tellina requistriata,	"	Rileyi.*
	subovatu	"6. biplicata, ${ }^{\text {, }}$		

The species in italics are still living on the American coasts; those followed by an " are described by Tuomey and Holmes as occurring in the Iliocene formation of South Carolina.
[Note.-The preceding table has been compiled as accurately as posible from the various papers pertaining to the pateontology of the State, but owing to their number, and to the numerous publications in which they have been spread, it has proved impossible to collect them all, and no doubt some few species will be found occurring in the State which have escaped our notice. These will probably be very few in number, and will not materially affect the general conclusion. The following twenty-two species, mainly those described by Say from the collection of Mr. Finch (J. A. N. S., vol. iv), have no stated locality: Arca centenaria, A. improcera, A. incile, Astarte distans, Crassatella undulata. Leda acuta, L. concentrica, L. proxima, L. levis, Lucina contracta, L. divaricala. L. subobliqua, Panopra reflexa, Pecten Jeffersonius, P. Clintonius, P. concentricus, P. septenarius, Pectunculus subovatus, Plicatula marginata, Tellina æquistriata, Venus deformis (tridacnoides), and V. Rileyi.]

It will thus be seen, that of about one hundred species of bivalves, only thirty-six (36 per cent.) are common to about an equal number (105) from the South Carolina deposits; and further, that, whereas, of the preeeding emumeration of Maryland mollusca only about fifteen per cent. are recent forms, no less than forty per cent. (or according to Tuomey and Holmes, nearly filty ${ }^{\text {pere }}$ (ent.) of the South Carolina Pliocene (comadt's Miseene) bivalve mollusea are still living. There remains, therefore, no question regarding the relative ages of the two formations.

An examination of the fossiliferous strata exposed in sections at various points on the western shore of Chesapeake Bay, in

Anne Arundel and Calvert Counties, on the Patuxent River, near Benedict, and on the St. Mary's River, St. Mary's County, tend to show, moreover, that the series of deposits intermediate be ween the Eocene of Fort Washington and the Pliocene of the southeast extremity of the peninsula belong to two different periods of formation, an older and a newer; those belonging to the latter period being characterized by a lama, the proportion of living forms in which is far in excess of that in the former. Sections of the newer deposits are exhibited in Calvert County, near Cove Point, on the Patuxent River, below Benedict, at about water level, on the same river, further north, in the deposits above the Perna beds, and more especially on the St. Mary's River, St. Mary's County. The older deposits are best shown in the oyster heds, rising a few feet above tide-water, at Fair Haven, Anne Arundel County (which point was considered by Conrad as the northern termination of the peninsular Miocene formation), in similar beds, also only a few feet above water level, at a point about twenty miles further south ("Colonel Blake's," of Conrad). in the sections exhbited by the Calvert Cliff's, and in the Perna beds on both banks of the Patuxent River. There is, further. strong, although not conclusive evidence, for considering the beds containing Perna maxitlata and Ostrea pererassa as the lowest of the series.

The following tables exhibit as nearly as possible the distribution of Lamellibranchiata in the deposits of both periods, those of the newer being for convenience of comparison divided into the Patuxent and St. Mary's groups :
(11.DER PFRR1OD).

22 Modiola Ducatelii,
23 Ostrea percrassa,
24 Panopata porrecta (Goldfussi)
25 Pecten Humphreysii,
26 " Madisonius,
27 Pectunculus parilis,
28 " lentiformis.

29 Perna maxillata,
30 Pholas ovalis, (=P. costata?)
31 Tellina lenis,
32 Venus alveala,
33 " staminea,
34 "Morloni?

NEWER PERIOD,-I. PATUXEN'X GROUP.

1 Anomia Conradi,
(=A. ephippium?), $\quad(=$ L. Floridana $)$,
2 Arca idonea, St. M., 14 Mactra incrassata,
3 Artemis acetabulum, St. M., 15 Mya producta,
4 Astarte undulata, St. M. 16 Panopæa Americana,
5 Cardita protracta, 17 " porrecta (Gold-
6 Cardium laqueatum, St. M.,
7 Carbula idonea, St. M., E., 18 Pecten Madisonius, St. M., E..
8 Crassatella Marylandica, E., 19 Petricola centenaria,
9 Cytherea Sayana, St. M., 20 Pholas ovalis,
10 " Marylandica, $(=P \cdot$ costata?), St. M..

11 6 albaria, 21 Tellina biplicata, E.,
12 Isocardia fraterna, St. M., 22 Venuis Mortoni? St. M.
II. ST. MARY'S GROUP.

14 Corbula idonea,
15 Cytherea Sayana,
16 (Artemis) concentrica, \dagger (=A. elegans?).
17 Isocardia fraterna,
18 Lucina cribraria, \dagger
19^{*} Mactra ponderosa, \dagger
20 " subcuneata, \dagger
21 " fragosa, \dagger
22 " delumbis, \dagger
23 Ostrea Virginica, \dagger
24 Panopæa porrecta,
25 Pecten Madisonius,

* Corbuta cuneata'and Mactra ponderosa are also found in the newer deposits of Calvert County, near Cove Point.

26	Pholadomya abrupta, \dagger	30	Venus alveata,	
27	Pholas arcuata,	31	"	Mortoni,
	$(=P$ costata $)$,	32	"	tetrica, \dagger
28	Saxicava rugosa, \dagger	33	"	mercenaria, \dagger
29	Solen ensis? \dagger	34	"	inoceriformis. \dagger

Note.-The italicized names represent species supposed to be identical with living forms ; those (in the Patuxent group) followed by the letters Sit. M. and E., species common to St. Mary's and to Easton (Choptank River) ; and those (in the St. Mary's group) followed by a \dagger, species peculiar to the locality.

A comparison of the foregoing lists will show at a glanee, that of the thirty-four bivalves belonging to the older formations, at most only three (or 9 per cent.) are found to be living forms (Pholas ovalis [= P. costata?], Venus alveata, and Venus Mortoni), and that only six (18 per cent.) and seven (21 per cent.) are comcommon respectively to the Patuxent and St. Mary's exposures, viz. :

To Patuxent.

Artemis acetabulum,* Corbula idonea, Pholas ovalis,* Panopæa porrecta, Pecten Madisonius, Venus Mortoni,

To St. Mary's.

Artemis acetabulum, Corbula idonea,
Pholas arcuata (= costata).
Panopæa porrecta,
Pecten Madisonius, Venus Mortoni, " alveata.*

[^0]Deducting two or three species that are also found at Easton, we still have left twenty-three (or 68 per cent. of the whole number) that are not found in the later deposits.

Museum of the Academy fails to reveal anything answering to Comrad's original description. This species appears moreover to be identical with the Fenus concentrica deseribed by 'Tuomey and Holmes in their work on the Plocene fossils of south Carolina (1857, p. 82), and to which Conrad, apparently withont good reason, applied the specific name of intermedia Basiniu [Artemis] intermedia, in lis check list of Miocene fussils (Proc. A. N. S., 1862, p. 575). The A. acetabulum is found fossil in the tertiary deposits of Maryland, Virginia, North C'arolina and South ('arolina, and must be carefully distinguished from the A. concentrica of Born, to which it bears only a distant resemblance. Another fossil species is probably the E. elegrans, Con. (living on the Florida coast, one almost perfect specimen, which agrees in all essential respects with the recent forms, is in the Academy Miocene collections, but, unfortunately, the locality whence it was obtained is not given. In his account of the geology and organic remains of the peninsula of Maryland (1830, J. A. N. S., vol. vi, p. 212), Conrad mentions the Cytheren (Artemis) concentricu, Lam., as occurring in the St. Mary's exposure, but as subsequently "Fossils of the Medial Tertiary," 1834, p. 30 , , it is distinctly stated that the same does not occur in the Miocene formation, it is highly probable that the original observation was erroneons. ('ertainly nothing corresponding either to the species in question or to A. discus is to be found in the MIaryland Miocene collection of the Academy.

The common species inhabiting the southern coast is not the A. concentraca of Born, with which it has been frequently confounded, and to which it bears only a very slight resemblance, but the A. discus of Reeve (loc. cit.). A third siecies, the A. Dosinia) Floridana Con., is unquestionably very chosely allied to the last, from which it differs esseutially only in the greater obliquity of the pallial sinus. In other respects it agrees with the figuses and minute description of Born's species as given by Agassiz in his "Iconographie des Coquilles Tertiaires" (Nouv. Mém. de la Société Helvétique, 1845, vol. vii).

I am disposed to consider the various forms of Venus alveata and V. acitionato as mere varieties of one and the same species, a series of intermediate stages seeming to link them together. The V. uthletu constituted by Comrad to embrace the V. athletu of Say, V. latiliratu of Tuomey and Ifomes, and the V. puphin of Lamarck, appears likewise to be nothing but a varicty of the same form. The V. alceata is included by Stimpson among the living mollusca of the Atlantic coast (Smithsonian Check Lists, $1866 /$, but this fact appears very doubtful in the opinion of Tryon ("American Marine Conchology," 1873, p. 160). It must be confessed, Lowever, that there exists a very striking agreement between the fossil sihell and specimens of the V. paplia, Linn., from St. Thomas, the main

On the other haml, the fissils of the newer heporits a- exhihitert in the sections on the west bank of the Patuxent show a very decided similarity to those of St. Mary's, for out of the twentytwo species of bivalves oceurring there, no less than eleven (or just 50 per cent.) are also common to the last mentioned locality. There can, therefore, I believe, be no reasonable doubt that the deposits exposed on the Patuxent liver inforeliately ahose the Perna beds constitute a direct continuation of the highly fossiliferous strata bordering both sides of the St. Mary's River. 'These last mumber among their fossil fama also about thirt f-four species of Lamellibranelis, the same number as is found in what we have designated as the older group, but of these thirty-four, about
 twenty), or 65 per cent. are peculiar to the locality: Moreover, of the entire number, about nine (or 27 per cent.) are still living on the Itlantic eoast. The rlissimilarity of the 1 wo famare eamont fail to strike the least observant investigator, and Conrad has dwelt at some length upon this curious manifestation (A. J. Science, vol. xxviii, p. 282, and Bull. National Institution, 1841, p. 176). That paleontologist singularly emongh (aplmantly not having made any exact numerical estimates cither of the living forms, or of the forms found in one locality and not in the other) explains the ditherences ats due solely to variable local conditions.'
difference being a tendency on the part of the latter to lose the finll solidity of its ribs some distance before they reach the posterior slope. 'The V. alveuta exhibits a similar tendency, but not quite to the same extent.
I have been unable to discover any description of the Pholus ovalis, Con., nor is there any mention made of it either in the Miocene check list prepared by Conrad in 1862, (Proc. A. N. S.), or in that of Meek, of litit (Smithsomian Miscell. (oollections . I have, therefore, enly doultfully referred it to P. costata.

1'Thus he states (A. J. S. loc. cit.) : "If our coast were now suddenly elevated, we should find spots where the shells would eemsist hiedly of an immense number of Modioln demissa mixed with Liltorina lillorea and Melampas bdentatus ; these are found on the margin of the lagoons at high water mark, the Modiole imbedded in a tenacions soil. At a little distance would be found Venus mercenaria, Mya arenaria, Solen onsis, Solecurtus Caribeus; among theso would be Ostrea Virginitbna, I'usus cinereus, and a few of Pecten concentricus. Such is the group existing on the sandy shore of the Estuaries. Hard by, would be a vast deposit of oyster shells with Eikimus, and immense raasses of Serpute. Thwse live on the bottom of the largoons, which is composed of a mixture of samd and

This interpretation might very satisfactorily account for the phenomenon as far as generic distribution alone is concerned, and, indeed, it wouhd even hold good in its bearings on a limited number of species, but it would hardly apply to a case such as the present one, where the specific dissimilarity is so vast in such a comparatively very limited geographical extent.

Now, if the supposition that the deposits in question were deposited at two different periods be a correct one, and paleontological evidence goes far to prove that they were, we should naturally expect to find also some direct stratigraphical evidence afforded by the superposition of the strata themselves. ${ }^{1}$ 'The following section was obtained by Conrad at a point on the Chesa-
mud. Then would be found another group of shells which live only in deep water, the Astarte lunulata, Nucula limatula, N. proxima, Cardita borealis, Pholas costata, in company with great numbers of Mytili. This deposit we should recognize as having been formed in harbors, like those of Newport and Charleston.

It will be observed, that in the above conception Conrad has confined himself entirely to generic and not specific distribution.
${ }^{1}$ It may as well be remarked, that, although in the foregoing examination of the molluscous fauna I have dwelt exclusively upon the Lamellibranchiata, the Gasteropodu offer equal, if not greater support to the general conclusion arrived at. On comparing the lists of geographical distribution given by Comrad in the Bulletin of the National Institution (pp. 181-7), it will be seen, that not a single recent form occurs among the eighteen enumerated from the Calvert cliffs at "Hance's;" and further, that only two species, Voluta mutabilis and V. solitaria, are common to the forty-two found at St. Mary's. Of these last eight (or 19 per cent.) were considered by Conrad to be recent forms:

Buccinum trivittatum,
" lunatum,
" quadratum,
Natica heros,

Natica duplicata, Dentalium dentalis, Fusus cinereus, Scalaria clathrus.

Nearly all the species found on the west bank of the Patuxent also occur at St. Mary's, and the same can be said of those collected in Calvert county near Cove point the southern extremity. Singularly enough, that although three species of Turritella - T. indenta, T. exaltata, and T. perlaqueata-were collected from Calvert cliffs in the upper portion of the county, none of them appear to have been found near Cove Point, where "vast quantities" of a new species, T. plebeia, "the common species of St. Mary's River" (loc. cit. p. 182), appear suddenly to make their appearance.
peake, near " Beckett's," about twenty-eight miles south of Fair Haven :

Feet in Thickness.

The shells obtained at Ilance's, about four miles further north, were the following :

Bivalves.
Astarte varians, " exaltata, Artemis acetabulum,
Arca subrostrata, " dipleura, Cytherea subnasuta, Cardium leptopleura, Crassatella melina, Corbula idonea, " elevata,

Univalves.
Bonellia lineata, Cancellaria biplicifera, " engonata, Dentalium thalloides, Fissurella Marylandica, Voluta mutabilis, Infundibulum perarmatum, Marginella perexigua, Pleurotoma Marylandica,

Bivalves.
Isocardia Markoéi, Lima papyria, Lucina Foremani.
" subplanata,
" erenulata,
Pectunculus lentiformis, Venus latilirata,
" Mortoni?
" staminea.

Univalves.

Pleurotoma bellacrenata, Scalaria pachypleura, Solarium trilineatum, Sigaretus fragilis, 'Trochus peralveatus, Turritella indenta, " exaltata, " perlaqueata, Voluta solitaria.

It will be at onee notieed that in addition to the lowest fossiliferous stratum, extending to ahout seren feet above water level, a second highly fossiliferous one manifests itself at a height of about twent -seven feet, in which were recognized among other shells Artemis ucetubulum and Pecten Madisonius. The mineral character of this upper deposit is deseribed by Conrad as heing a " quartzose samb, very incoherent," which is exactly what we meet with in the arenacoons deposits on the west bank of the latuxent River, near Benedict, and which we have identified as equivalents of the st. Mary's deposits. They are described by Conmad as heing composed of an "arenaceous, fossiliferous stratum," the sand of which is "quartzose and incoherent" (B. N. I., p. 185).

We have thus exposed in one section two highly fossiliferous strata, the upper of which shows a very decided analogy to what we have designated as the newer group, and the lower of which assumes a distinct personality for reason of its position, and the paleontological characters impressed upon it. Proceening from this pomt southeastward, and therefore in the general direction of the dip of the beds, we should natually expect to meet a point where our upper stratum, or its equivalent, would descend nearer to the level of the Bay, and in fact we do find just such a point near Core l'oint, where "the group most characteristic of these tertiary deposits, imbedded in sand," descends to a height only about fifteen : feet above water mark (B. N. I., p. 183). The fossils found here are also nearly all found at St. Mary's, and they are, moreover, "highly ferruginous, as much so as many of the erag fossils of Great Britain, which they greatly resemble, also, in other respects" (Conrad, loc. cit.). On the St. Mary's River, the southeastermmost extension of the formation, the same deposit sinks almost to water level, as might well be expected on following the general direction of the dip. Here, the Pliocene deposits, well characterized by their fossils, make their appearance.

On proceeding from our first point almost due northwards, and therefore at a consillorable angle to the line of strike, we meet with just the reverse phenomena met with on our southern journey. At Fair Haven, where Courad obtained the following section,

Feet in Thickness.

50	Whitish Clay.
	Bones of Cetacea.
3	Clay, with siliceous casts of marine shells and fragnents of bones.
5	Clay, with Ostrea percrassa, Pecten Humphreysii.

the highly fossiliferous stratum found at water mark, at Berketts. is prohably represented hy a hed of clay three feet in thickness. commencing at a leeight of five lect, and which contains "great numbers of hate, water-worn, siliceous casts of small shefls. chiefly Turrifella. the suecies not yet determined." Below this an entirely new deposit now malies its appearance, a ber of clay of five feet thickness, characterized by Ostrea percrassa and Pecten IHumphreysii. This last, therefore, probably represents the most ancient post-Eocene deposit exhibited on the Chesapeake. Ostred pererassa and leden Mhmphreysia were also found by Conrad at Ituntingtown, Calvert county, where in a " depression or small valley" a race-way had been excavated through the fossiliferous "marls." The lowest member of the section was "quartzose sand, with easts of Perna marillata." On the east bank of the I'atuxent River, moreover, near the mouth of st. Leonard's Creck, Conmad observed immmerable casts of Perna morillala imbedded in a stratum of fine siliceous sand, and resting on the fragmentary rock considered by him as the "foumbar tion of the peninsula " (B. N. I., p. 184).

We should naturally look for some deposit eontemporaneous with that occurring on the west bank of the Patuxent, at sume point northeast of that locality where a seetion may present itselt. This we find at Easton, on the Choptank, where the molluscous fossil fama corresponds very closely with that olsemed on the former river. The deposits of the older period, on the other hand, reappear in Cumberland County, New Jerses, in the "Miocene marl" of Shiloh, containing the following assemblage of fossils (Cook, "Geology of New Jersey," 186s, p. 297):

Bivalves.
Ostrea Mauricensis, " pererassa,
Plicatula densata,
Carditamera aculeata, " arata, Crassatella melina,

Astarte Thomasii, Venus Dueatellii, Periploma alta, Corbula elevata, Saxicava myaformis.

Four species of the above are also found in Maryland, three of which, ()strea percrassa, Crassatella melina, and Corbula plerata, are found, I helieve, exclusively in the deposits designated as those of the older period. None are recent forms.

The small percentage of living forms occurring in the "older deposits," as compared with that of the "newer," leaves little doubt for the inference that the deposits in question were formed at two different periods, the latest of which clearly helongs to the Miocene. A comparative examination of some of the peculiar fossil forms of the older deposits, together with the extremely low percentage of living forms, seems to indicate an age more nearly Oligocene than Miocene, although perhaps not a single Eocene species is represented. This last fact need not surprise us, however, as the relationship of the Oligocene to the Miocene appears to be greater in almost all the localities of its representation than to the Eocene. The Eocene, moreover, of Maryland is represented only by a very limited number of fossils, and Conrad, himself, has called attention to the fact, that there appears to exist a greater amount of difference between the Eocene and Miocene formations than obtains between the Secondary and Tertiary, or between the Devonian and Carboniferous systems (B. N. I., p. 177). The following comparison may serve to throw some light upon the relative age of the deposits in question :

Peras maxillata, Lam.

This species agrees thoroughly with the figure and description of the same given by Goldfuss in the "Pectrefacta Germanize" (vol. ii, p. 106) and to which the locality Weinheim (Oligocene) is assignerl. The sub-Apennine species, formerly classed under the same name, is considered by Deshayes to be distinct, and he has applied to it the specifie name of Soldenii (Lamarck, "A mimaux sans Vertétres," 2ded., vol. vii, p. 79). A second species of Perna, the P. Smalbergeri, Desh., also occurs in the Oligocene locality of

Weinheim (Sandluerger." Comehyliendees Mninarr Tirtiörherkpos." p. 367).

Mytilus inourva, Conr.
This large species of Mytitus may perhaps be taken as the representative of I . Heidingeri, II rnes (\because Fossilen Mollustren des Tertiärbeckens von Wien," Abhand. d. k. k. geolog. Reichsanstalt, iv, p, 35fi), foumd both in the Oligocene (Egrenthror) and Miocene divisions of the Viemna hasin. Rolle (S゙itzungalerielle d. li: Alout. d. Wissertsehaften, 1859, p. 64) and sandbereer consider the .H. Haidingeri as the equivalent of M. Fienjesi, Brongrn., ocernriug at numerons Oligocene localities of the Viema and Mentz hasins.

Isocordia Markoei, Conr.

This Isocardia is, it appears to me, erroneously referred by Hörnes (loc. cit., p. 165) to the I. cor, L., from which it is very readily distinguished hy its relatively much greater height, and greater development of the umbones. It is a singular fact, that this species of Isocardia was followed in the later period by the I. fraterna,* Say, which is barely distinguishable from fossil examples of the I. cor from Astigiana and Sicily:

It is worthy of remark, that Rolle (loc. cit., p. 81), as early as 18.59 , only four years after beyrich fir-t applied the term oligeceme to some of the midhle Tertiary deposits of morthern firmathy. hinted at the possible existence of the same formation on the banks of the Patuxent, his conclusions being drawn from an examination. among other fosilk, of specimens of I.minn amamenta, Say, Arca idonea, Conr., and Cardium laqueatum, Comr.

[^1]
CARCINOLOGICAL NOTES No. I.

BY J. S. KINGSIEY.
It is the intention of the writer in this series of notes to give descriptions of new species, rectifications of synonymy, facts relating to geographical distribution, and other matters of importance concerning the Decaporda. Unless otherwise stated all specimens are in the collection of the Academy of Natural Sciences of Philadelphia.

Genus PSEUDOTHELPHUSA Saussure.
(Potamia Latr. et Boscia Edw. preoc.)

Pseudothelphusa latifrons.

Potamia latifrons Randall, Journal of the Academy of Natural Sciences of Philadelphia, viii. p. 120.
Carapax smooth, regions and sutures indistinct. Frontal crest. bery prominent, uninterrupted. Front reflexed, making with the surface of carapax an angle of about 45 , its margin undulating and its surface and margin granulate. From the front arise processes which all but join the inferior margin of the orbit. Superior margin of orbit crenulated. Anterolateral teeth more prominent than in any other of the genus and extending back to the posterior third of the carapax. Below, the carapax is everywhere granulate and especially so on the sub-branchial regions and near the mouth. Inferior margins of orbits denticulate. ('helipeeds nearly equal. Anterior surface of meros granulate, as are the outer portions of carpus and upper portions of the hands. The dactyli with rows of small tubercles above.

The species is a true Psendothelphusa, the antemme being as in that gemms, but the reflexed front gives it a peculiar appearance and with the larger anterolateral teeth will readily separate it from all other known forms. The emargination of the external margin of the orbit is no more marked than in P. rlfilensis (Edw. and Lucas) Smith, the type of which, by the way, is in the Museum of the Academy.

Pseudothelpusa sinuatifrons (A. M.-Edw.) Smith.
The lorality of this species was not known to Alphonse Milne. Edwards. There are two males in the Icademy's collection from San Domingo (W, M. Gabb),

Genus DILOCARCINUS.

Dilocurcinus puardatinus Gerstweker, Archiv fïr Naturges hich'e sxii. p. 148,18 T6.

Gerstaecker gives doubtfully south America as the hahitat of this species. There are specimens with the label "? Upper Amazon, Dr. Wilson."

Dilocarcinus spinifrons, nov.

Carapax regularly arenate, regionsolisolete, sides aremate, armed with four spines besides the spiniform angle of the orbit; the margins of the spines finely serfate. Superior margin of the orthit obscurely crenulate, inferior dentienlate with a strong spine mear the interior angle. Front arlvaned, with about fourteen spines. A spine at the anterolateral angles of the huceal area. Cheliperts sub-equal, meros with two spines at about the midule of the posterior margin and a single one on the anterior margin at about the middle, and one on the distal portion of the upher marein : the spine on the interion surface of the ernpus longe shember. atere Hand with an acoute spine above at the artioulation of the dactylus. fingers with the denticulations fine but acoute. Ambulatory feet less dilated than is usual in this gemus. The spined front reandily separates this from all other species.

Upper Amazon, Dr. T. B. Wilson.
Genus THELPHUSA (including Geothelphusa Stm.)
Of this genus forty-five species have been described. The localities from which I have examined specimens are marked with an exclamation point (1).
 aurantice IIerklots.
pelii Herklots.
atkinsoniana Wood-Mason.
Northern Indin.
austeniana Wood-Mason. India.
bayonioa Capello. West Africa.
bayonioa var. a Capello. West Africa.
berardi Savigny.
Egypt, Nile (!); Red Sea.
ohilensis (Heller) A. M.-Ediv. Chili.
corrugata IIeller. Madras, Java.
crassa A. M.-Edw. Australia.
cristata A. M.-Edw. East Indies(!).
dehaani White. Japan.
berardi DeIIaan.
juponica Merklots.
denticulata M.-Edw. Chinn.
depressa Kirauss. Port Natal.
difformis M.-Edw. Red Sea.
edwardsii Wood Mason. Burmnh.
fluviatilis (Bosc.) Latr. Mediterranean
Region, Greece (!), Gnarda Sea (!),
(Museum Peabody Academy).
grapsoides White. Manilla.
? subquadrata Gerst.
goudoti M.-Edw. Madagasear.
guerini M. Edw.
hispida Wood-Mason. hydrodromus Gerst.
indios Latr.
canicularis Westwood.
? aurantia Gerstacker.
? rotunda Freycinet.
inflata M.-Edw.
jagori von Martens.
lævis Wood-Mason.
larnaudi A. M-Edw.
leschenaulti Edw.
India (!), Mauritius, Tahita.
lugubris Wood-Mason.
margaritaria A. M.-Edw. West Africa. nilotica M. Edw. Nile.

India.
Burmah.

India.

Pt. Natal.
Philippines.
India.
Siam.

To this list I would add three more :

Thelphusa emarginata nor.

Carapax glahrous, longitudinally strongly arched. Post-frontal crest continuous, nearly straight, obscurely crenulate, epibranchial tooth obsolete, a tooth between the extremity of the post-frontal erest and the angle of the orbit. Protogastric region very short, front ahout one-fourth the width of carapax, slightly simute. External angle of orbit slightly emarginate. Anterolateral margin cristate; crest, however, soon becoming obsolete. Chelipeds sul-equal, meros with the margins tuberculate and with a strong spine on the distal portion. Upper and outer surface of carpus with indistinct squama, inner portion two-spined, the proximal spine exhibiting a tendeney to become bifid. Hands with the upper margin olsoletely tubereulate, fingers roughened, not gaping. Ambulatory feet slender, compressed.

Is very near T. depressa Krauss, but differs from that species in the narrower and straighter front, the tooth just behind the angle of the orbit, and in the non-gaping fingers of the chelipeds.

Length 54 mm ., breadth 56 mm .
West Africa, Du Chaillu; Port Natal, Dr. T. B. Wilson.
The name is pronosed on account of the emargination of the orbit.

Thelphusa enodis nov.
Carapax smooth; post frontal crest wanting. Fpibranchial tooth very small. Front narrow, strongly curved downward, its margin concave. Chelipeds unequal, hands with the inferior
margin regularly arcuate. Is very chosely allied to T. la ifs. Rut differs in the flatter carapax, the concave front, and the rowlarly areuate lower margin of the hands. In all other re-pects Mr. Wood-Mason's description and figures (Journal A-satie sorciety of Bengal, vol. x1, p. 201, Ill. xiv, fig. 1-6) would well apply to it.

Thelphusa rugosa nov.

Carapax depressed, cervical suture and post frontal crest well marked, the crest interrupted. Front nearly straight; protogastric region nearly smooth: epilmanchial tooth small, directed inward, lateral portions of carapax with transverse rugae as in many Gropsi, the margin of the anterolateral portion obscurely crenulate. Chelipeds subequal; the outer surface of meros and carpus with squamose ruga, the ruga on the hands indistinct. Carpal joints of the first three pairs of ambulatory feet with the sides cristate ; dactyli pointed.

Length 26 mm ., breadth 32 mm .
This species is nearest T. denticulata, but will be readily identified from that species by the more crenulated margin hetween the orlit and the cpibranchial tonth, and by the rugre on the lateral portions of the carapax.

Acanthocyclus gayi Edwards and Lucas.
The type of this species is in the museum of the A cademy.

DESCRIPTION OF A FETAL WALRUS.

BY HARMISON ALLEN, M.D.

The Academy is the possessor of a foetal walrus, which was presented hy Dr. I. I. Hays, and hrought by him from the Aretie region of eastern North America. I have thought that a figure with meaturments of this rare, if not mique, specimen would be of value.

The specimen is straight, or nearly so, and it is by this simple test distinguished from other embryos of Carnivora. There is neither flexure of the head upon the trunk,
 or the trunk upon itself. The limbs are folded close to the trunk, this feature being most pronounced in the inferior pair, which are inclined upward upon the ventral surface of the body, and carry between them the rudimentary tail. The median margin of the first toe of the anterior extremity bears a small, rounded membranous lobe, or lappet. The muzzle exhibits the future position of the vibrissa by six rows of minute papillæ. The muzzle projects slightly beyond the line of the mouth. The position of the future nostrils is seen by two slightly convergent slits.

The vent is a semicircular slit-like opening upon the lateral and posterior surfaces of a rounded nipple-shaped organ, which is probably the future penis or clitoris.

The eye is closed, rather prominent, and presents a palpohmal fissure, which is directed obligitely upward and forward.

The auricle is represented by a membranous fold laid close to the head. The slit-like opening refining its position lies $33^{\frac{1}{2} \prime \prime}$ behind the eye, and extends slightly downwards and forwards. The auricle extends in advance of this slit to the distance of $1^{\prime \prime \prime}$,
where it ends in a minute elevation. A probe can be readily inserted in the slit, and can be passed forward.

The color of the specimen is a rlull white or waxy:
No trace of hair is anywhere visible.

> Mersurements.

Length of specimen, $1^{\prime \prime} 9^{\prime \prime \prime}$.
Length of head, $9^{\prime \prime}$.
Width of body at widest part, $1^{\prime \prime}$.
Length of anterior margin of anterior extremity, $4 \frac{1}{2}$ "'
Length of posterior margin of anterior extremity, $2^{\prime \prime \prime}$.
Length of anterior margin of posterior extremity, $4^{\prime \prime \prime}$.
Length of posterior margin of posterior extremity, $f^{\prime \prime \prime}$
Distance between vent and navel, $7 \frac{1}{2}{ }^{\prime \prime \prime}$.

ON THE NUDIBRANCHIATE GASTEROPOD MOLLUSCA OF THE NORTH PACIFIC OCEAN, WITH SPECIAL REFERENCE TO THOSE OF ALASKA.

by dr. r. bergh, COPENHAGEN.

PAR'T II.

DIAULULA, Bgh.
Diaulula, Bgh., Malacolog. Unters. (Semper, Philipp. II, ii), Heft xiii, 18\%8, p. 567 ; Heft xiv, 1878, p. xxxv. Gattungen nordischer Doriden, Arch. f. Naturg., xxxv, 1, 1879, p. 343.

Forma corporis subdepressa. Dorsum minutissime villosum, holosericeum, molle. Tentacula digitiformia. A pertura branchialis rotundata, crenulata; folia branchialia tripinnata. Podarium antice bilabiatum, labio superiore medio fisso.

Aimatura labialis nulla. Lingua rhachide nuda, pleuris multidentatis, dentibus hamatis. Prostata magua; penis inermis.

In their general form the Diaululix ${ }^{1}$ somewhat resemble the Discodorides and the Thordisx, ${ }^{2}$ although their habitus still is peculiar. The back is villous, as in these genera and especially as in the Thordisx, but finer and more velvet-like. The tentacles are finger-shaped, smaller than in the Discodorides, larger than in the Thordisæ. The branchial-slit is rounded, crenulated; the branchial leaves tripinnate. The anterior margin of the foot bilobed, the upper lip broader, with a median fissure. As in the Thordisæ, there is no armature of the lip-disk. The radula nearly agrees with that of the Discodorides; the rhachis is naked; on the pleura there is a rather broad series of plates of the usual hook-shape. The stomach is enclosed in the liver (not free, as in the Discodorides and in the Thordisæ). As in the Discodorides, there is a large prostate and an unarmed penis.

Only the following species appears to be hitherto known, from the northern Pacific.

1. D. Sandiegensis (Cooper).
${ }^{1}$ Diaulus, medicus, cf. Martialis, I, 48, p. 40.
${ }^{2}$ (if. my Malacolog. Untersuch. (Semper, Philipp II, ii), Heft xii, 187\%, p. 518, (Discodori8) ; p. 540 (Thordisa).
2. D. Sandiegensis, Cooper. Plate V, fig. :3-9.

Doris (Actinocyclus?) Sundiegensis, Cooper, Proc. of the Califomia Acad. of Nat. Sciences, ii (1862), 1863, p. 20.4; ${ }^{1}$ iii ($18(3: 3)$; 1868, p. 58.

Color corporis e brunnco lutescens, annulis nigris maculatus; vel brunneus.

Habitat. Oceanum Pacificum orient. (San Diego Bay; Santa Barbara; Sitka Harbor; Puget Sound).

Accurding to Cooper, numerous specimens of this species were
 Bay, at or near low water mark; according to Cooper, it is a very "active" species; Cooper later obtained two specimens at Santa Barbara Island, on rocks at low water. During the expedition to Alaska a specimen was taken by Dall in Sitka Harbor, on algie, in August. 1865, at the depth of six fathoms (another in August, 187:3, in Puget Sound, by Dr. Kennerly, on alga, at low water).

Through the kindness of Dall, I have seen the original (rather
 the back bright chocolate-brown, with six black rings, of which there are two smaller ones between the rhinophoria; the rhinophoria, the gill and the foot seem bright-yellowish; one figure shows five, another six branchial leares.

The length of the first specimen, sent to me preserved in spirits. was about 2.2 .0 mm , the licight reaching 9.0 mm ., and the breadth 13.0 mm . ; the breadth of the foot reached 10.0 mm ., the height of the rhinophoria 2.0 mm ., the branchial leaves 3.3 mm . ' The color was uniformly brownish-gray; nearly symmetrically on each side of the true back was an annular black spot.

The form of the rather soft body clongate-oval, not much depressed. The head quite concealed between the mantle and the foot; the outer mouth had the form of a vertical slit; at each side a short finger-shaped tentacle. The margin of the rather large rhinophorholes rather prominent, crenulate; the rhinophoria strong, the club

[^2]with ahout thirty leaves (on wach side). The back all over minutely and densely villous (lig. 3). The margin of the rather wide (5.0 mm .), roundish branchial aperture like the margin of the rhinophor-holes, prominent, finely crenulate; the branchial leaves (retracted) six in number, wery strong, tri- or quadripinnate. The anus strong, about 15 mm . high, cylindrical, closing the branchial ring posteriorly; the renal pore as usual. The edge of the mantle rather thick, projecting about 2.0 mm . from the body; the sides low. The genital opening as usual, with two distinct apertures at the bottom. The foot strong, broad, somewhat narrower towards both ends; in the anterior margin a strong furrow, towards the median line deeper and forming two lips; the superior broader and divided in the median line.

The cerebro visceral ganglia kidney-shaped, the visceral larger than the cerebral ; the pedal of roundish contour, scarcely larger than the visceral. The buccal ganglia of oval form, connected by a short commissure; the gastro-r2sophageal roundish, short-stalked, in size about one-fifth of the former, with one very large and one large cell.

The eyes short-stalked, with black pigment and yellowish lens. The otocysts scarcely smaller than the eyes, overcrowded with otokonia of the usual kind. The leaves of the rhinophoria strengthened with long, perpendicular spicula, calcified at the surface. The tentacula with a mass of shorter, but otherwise similar spicules, lying irregularly. The villi of the back closely set with perpendicular spicula (fig. 3). The anal papilla with long, perpendicular spicules; the stalk of the branchial leaves with many shorter spicula, irregularly situated; in the leaves themselves were no spicules. In the interstitial connertive tissue large spicules were seen rather sparsely.

The oral tube was about 1.5 mm . long, wide, with strong longitudinal folds. The bulbus pharyngeus only about 4.0 mm . long, by a height of 2.0 mm ., and a breadth of 4.0 mm . ; the rasp-sheath very prominent on the hinder part of the under side of the bulbus; the inner mouth with a yellowish, not thin, cuticula. The tongue with rine rows of tweth, in the rasp-sheath also eleven rows of developed and two of not quite drveloped teeth, the total number thus being twenty-two. In the posterior rows of the tongue the number of plates was twenty-eight or twenty-nine, on each side, and seemed in the succeeding rows not to surpass thirty. The color of the teeth hornyellowish ; the height of the outermost 0.06 to 0.08 mm ., the height rising to about 0.18 mm . The form of the teeth as usual; the wing rather narrow ; the innermost (fig. 5aa, b) not very different from the
others (fig. 5, fi), the hoily of the outermost three of four fige fuo. is, as usual, of reduced size.

The glandule salivales (5.0 or 6.0 mm .) long, in the anterior part about one-third larger than in the rest, measuring 1.0 man. in dianumer. yellowish ; in the rest of the length much narrower, whitish.

The œsophagus is about 9.0 mm . long, rather wide. Tbe stomach is included in the liver, not spacious. The intestine appears on the surface of the liver in the usual manner, paring forwarls, forming a short flexure, and rumning straight batkwards to the anal tube, which has in its interior many fine longitudinal folds: the total length of the intestine about 20.0 mm ., with fine longertudinal folds through it- whole length. The cavity was empty. The liver yellowish, about 17.0 mm . long, ly a breadth of 8.11 mm ., and a height of about 7.01 or 7.10 mm . ; the anterior end truncate, the posterior end rounded; on the right side. of the forepart a flattened impression for the anterior genital mas. The resica fellea, as uanal, behind and at the left side of the poldur. elongate-pyriform, grayish, taken together with its duct about $2 . \mathrm{H}_{\mathrm{g}} \mathrm{mm}$. in length.

The heart as usual. The two gland. sanguinere as usual, whitish; the foremost more triangular, about 3.5 mm . long; the posterior broader, about 2.0 mm . long.

The gland. hermaphrodisiaca with a rather thick yellow layer clothing the grater part of the surface of the liver pexef the posterior ent ; in the lobules of the organ were rather large ofrene cells and masses of zöjsperms. The anterior genital mass large, compressed, about 10.0 mm . long, by a height of $6 . .3 \mathrm{~mm}$. and a breadth of 3.0 mm . 'The ampulla of the hermapheoditic duct strone. erayish. when unrolled about 2500 mm . longe somewhat coiled on the anterior end of the left side of the mass and on its inferior flatened elge behind the larer prostate; it reaches a diameter of 1.2 mm . The mate branch of the ampulla (fig. Ra) thin, white, passing into the narrow inferios end of the prostate, thus forms the fore-end of the whole grenital mass. The prostate (hig. sh) is of dirty sellow color, flattened and irregularly pyriform, the length about 6.3 mm.. hy a hreadh of as much as 3.0 mm . ; the spermatoduct (fig. Sc) issuing from the upper part of the posturior sile of the gland, in its first theker part nearly at long as the prostate; in the rest of its lenght thinner, making several coils and passing (lige ?a) into the male oreran. The retracted penis (fir. s.t strong, about 2.5 mm. longe, the praputiun with fine longitudinal folds (figg. 9), from the aperture upwarde and nearly
filled by the glans, which had nearly the form of a human penis, with a well developed head with romd aperture; this head seemed covered with very small, low and rounded, solt papilla. 'The spermatotheca were whitish, spherical, of the diameter of about 2.3 mm ., filled with epithelium, fatty matter and altered semen; the chief duct a little longer than the spermatotheca, gradually passing into the simple ragina, that was about half as much in length (and was filled with sperma). The spermatocysta of violet-gray color, somewhat flattened, of oval outline, of the length of about 2.3 mm ., filled with sperma. 'The posterior half, or a little less, of the large mucous and albuminous gland, chalk-white; the anterior, more than half, of grayish or (on the left side) yellowish color; the structure as usual.

A variety of the species (according to Dall, it also belongs to this species) was, moreover, obtained by Dr. Kennerly, in August, 1873, on alga, at low water, in Puget Sound, Washington 'Territory (fig. 6-9).

The ringle indivikual was rather large: the length 40.0 mm ., hy a breadth of 28.0 mm ., and a height of 13.0 mm .; the breadth of the foot 15.0 mm , of the margin of the mantle 11.0 mm .; the height of the rhinophoria 5.0 mm ., of the branchial leaves nearly 5.0 mm . The color of the upper side obscure olive-gray, with rather large (diameter about 4.0 mm .) black and blackish spots; the under side yellowish. The seneral form and the hearl, with the tentacles, as above described. The openings of the rhinophor-holes as above, the club with about twenty-five leaves. The branchial opening as above (diameter, 3.5 mm .) ; the retracted branchial leaves six in number; the anal tube nearly 3.0 mm . high. The back villous, as in the typical individual. The foot as above.

The peritoneum colorless, without larger spicula; but in the region of the ventricle of the heart the pericardium is brownish.

The central nervous system as above; the proximal olfactory ganglia bulbiform, a little larger than the buccal; the distal ones smaller than the proximal, at the root of the club of the rhinophoria. The buccal ganglia of oval form; the commissure between them being about one-third of the largest diameter of the ganglia. The eyes, the octocysts, the leaves of the rhinophoria and the villi of the back as above.

The oral tube large, of a length and diameter of 40 mm . 'The bulbus pharyngeus 4.0 mm . long, by a height of 4 and a breadth of 3.5 mm . the sheath of the radula less prominent than in the former
speecimen; the cuticula of the lip disk as above. The tongue with ten rows of plates, further back eleven developed and two younger rows, the total number thus twenty-three. In the posterior rows of the tongue there were as many as thirty-four dental plates on each side of the rhachis; they resembled those above described (fig. (i, 7).

The salivary glands yellowish, riblon-shaped. The stomach as above. The anteriorly proceeding part of the intestine 7.0 mm . long, by a diameter of about 2.0 mm . ; the receding part about 20.0 mm . long, by a diameter of 1.5 mm . In the stomach and the rectum were pieces of a Keratospongia and diflerent Diatomacea. The liver 23.0 mm . long, by a breadth and a height of 11.0 mm . ; the anterior end truncate, with a median deep and narrow slit for the wsophagus and for the intestine; the right anterior half of the liver rather excavated, especially beneath; the substance of the liver yellow.

The foremost glandula sanguinea about 4.5 mm . long, by a breadth of 2.5 ; the posterior 4.0 mm . long, by a breadth of 2.5 mm .; both very flattened (about 0.8 mm . thick), grayish-yellow. 'The kidney with its whitish network, eontrasting prettily with the yolk-yellow hermaphroditic gland ; the urinary chamber not wide; the tube on its floor thin.

The hermaphroditic gland clothing nearly the whole liver (with its posterior end), as in the former specinen. The anterior genital mass about 11.5 mm . long, by a height of 9.5 and a breadth of 5.0 mm ., the ducts also projecting 3.0 mm . The ampulla of the hermaphroditic duct yellowish-white, about 35.0 mm . long, by a diameter of 1.25 mm ., running across the upper part of the left side of the genital mass, and forming several windings on the anterior part of the upper margin.

The large prostate as above (fig. sb), dirty yellow; 7.5 mm . long, by a diameter at the upper end of about 4.0 mm . ; the part (fig. S_{c}), from which the spermatoduct proceeds, much brighter than the rest of the organ. The thin spermatoduct forming (fig. 8) a little coil at the upper end of the penis; when unrolled about 12 mm . long. This last (fig. $8 d, 9$) organ strong, about 4.0 mm . long, by a diameter of 1.5 mm .; the prominent orifice in the vestibulum (fig. $8 e$) with strong longitudinal folds; the glans conical, filling nearly half (fig. 9) of the cavity of the organ, the surface (under a power of 350) smooth. The spermatotheca whitish, spherical, with a diameter of 3.5 mm ; the spermatocysta short, sausage-shaped, about 4.0 mm . long, of reddishyellow enlor. The duct from the spermatotheca to the vagima rather thick, 3.5 mm . long; the vagina larger than the pemis, (i.0) mm. long, by a diameter of 2.5 ; the inside with fine longitudinal folds, and with
spema in the cavity. The mucous gland large, 9.0 mm . loner, by a height of $\bar{i} . \mathrm{i}$ and a thickness of 4.0 mm . ; whitish, yellowish chalkwhite and yolle-yellow ; the duct rather short, with the usual strong fold. The vestibulum with longitudinal folds.

JORUNNA, Bergh.
Jorunhed, PGh., Malacolog. Vinters. (Semper, Philipp. II, ii) IIeft x, 1876, p. 414, note. Gatt. nord. Doriden, Arel. für Naturges., xxxv, i, 1879, p. 346 .

Corpus subdepressum ; dorsum minutissime granulatum, sub-asperum, branchia e foliis tripinnatis formata; tentacula digitiformia; podarium sat latum, margine anteriore sulcatum, labio superiore latiore et medio fisso.

Armatura labialis nulla. Radula rhachide nuda, pleuris multidentatis, dentibus hamatis. I'enis stylo armatus; glandula et hasta amatoria.

This genus was established by the author on the D. Juhenstomi (1876) in reference to the results of the anatomical examination of Hancock and Embleton; he regarded it as nearly allied to the Fentrodorides, just founded by him. ${ }^{1}$ After the present examination of the D. . Fohenstoni by the author he is not ertirely certain of a generic difference between the formmee and the Kentrodorides. The latter have been examined only from rather insufficient material, and the basta has not been seen in any of the species, only a papilla in connection with a peculiar gland; still the Kentrodorides are of a quite different habitus, very soft, and the upper lip of the anterior margin of the foot is more developed, while the innermost plate of the tongue is somewhat different from the others. If not identical with the Kentrodorides, the Jorumere are certainly very nearly allied to them.

The forumes are rather depressed; the back finely granulated, covered with equal minute papillular ; the retractile gill formed of tripinnate leaves; the tentacles digitiform ; the foot rather broad, deeply grooved in the front margin, and the upper lip of this larger and cleft in the middle line. The lip-disk not armed, covered with a simple cuticula. The rhachis of the radula naked, the pleure with many hook-formed plates. In the vestibulum genitale are four apertures:

[^3]one for the penis, which is armed with a stylus; another for a himsiou cmatorie, through which opens a peculiar gland (quite as in the gemus Asteronotus) ; a third for the vagina, and the fourth for the chuct of the mucous gland.

Only one species of the genus seems hitherto known, beloming to the northern part of the A tlantic Occan. The spawn of the speries is known from Alder and Hancock, but nothing chis is known of the biology of the animal.

1. J. Johnstoni (A. et H.).

Doris Johnstoni, A. et H. Oceanum Atlantic. septentr.
Jorunna Johnstoni (A. ct II.). Plate VIII, fig. 19; Plate IX, fig. 1-11.
Doris Johnstoni, Alder et Hanc. Monogr. Part I, 1845, fam. 1, Pl. ̃; Part V, 1851, fam. 1, Pl. 2. f. 8-11.
Doris Johnstoni, Hanc. et Embleton, Anat. of Doris. I'hilos. Thans. 1n5i, II, p. 212, 215, 216, 220, 233, Pl. XII, f. 2, 10 ; l'l. XIV, f. 9,10 ; Pl. XV, f. 1-2 ; pl. XVII, f. 2-3.
Deris Jolenstoni, Forbes and IImley, Hist of Br. Moll., III, 1s.3., p, Thi.
? Doris tomentosa, Cuv., Fischer. Journ. de Conchyl., 3me Súr., x, 1870, p. $290 \cdots 293$; XV, 1875, p. 211, note.
? Doris tomentosa, C. Verany, catalogo. 1846, p. 16-21. Ver., Hanc. et Embleton, 1. c. 1852, 1. 220.2
? Doris tomentosa, C. Philippi, En. Moll. Sic. I., 183, p. 104 ; II, 1844, p. 79, T'ab. XIX, f. 9.

Color flavescens, dorso interdum maculis fuscis seriatis ornatus; rhinophoria fusco-maculata; branchia albescens.

Hab. Oceanum Atlanticum septentr.
This species, that was first described by Johnston under the name of D. obvelute (Mïller), was (1845) established by Alder and Hancock. Hancock gave a series of anatomical remarks upon this very interesting form and of figures referable to it. Since then nothing new seems to have been published about the species; but a few months ago I (l. c.) gave a short notice of the generic characters of the group.

Of this form I have only examined a single specimen, captured in March, 1870, in the neighborhood of Mellebik, on the north coast of Seeland (Denmark).
${ }^{1}$ R. Bergh. Weber das Cieschlecht Asteronotus, Ehrbg. Jahmb. Wer Drut schen Malakozool. Ges., iv, 1877, p. 161-173. Taf. I-II.
${ }^{2}$ According to Hancock and Embleton (1. c., p. 220), the dart (hasta amatoria) in Doris Johnstoni is straight, in D. tomentosa, Ver., curved.

The specimen was of a uniform yellowish color; the rhinophoria finely dotted with brown (but not the branchial leaves). 'The length of the rather contracted and somewhat contorted individual was about 18.0 mm . by a greatest breadth of 10.0 and a height of about 7.0 mm .; the height of the (retracted) rhinophoria 2.5 , of the tentacles nearly 1.5 , of the (retracted) gill 2.5 mm . ; the greatest breadth of the mantlemargin 3.5 mm ., of the foot 50 mm .

The form is elongate-oval, the mantle-margin rather thick, not very broad. 'The back covered all over with very minute granules, sometimes, especially on the middle of the back, crowded in irregular and roundish small groups; the under side of the mantle-margin smooth. The (contracted) openings of the rhimej hor-helws appear ats a simple transverse slit, the granules of the back reaching forward to the opening, those in this neighborhool not latreer than the rest. The club of the rhimphoria stont, with about thirty broat laters. The opening of
 forwarls (a* contracted) ; the gramules of the hack reaching to the sery margin of the gill-slit, but not larger than the rest. The gill consisting of eleven branchial leaves, ${ }^{2}$ five lateral pairs and an anterior unpaired Ieaf; the anal tube low, truncate, nearly central; the renal pore at its right side. The head rather small; the tentacles digitiform, somewhat flattened. The sides of the body nearly imperceptible; the genital opening contracted. ${ }^{3}$ The foot rather strong, somewhat pointed at the end; the anterior margin with a deep furrow, the superior lip rather strong and prominent, cleft in the median line.

The peritoneum with very fine dark points (brown-black) spread everywhere; entirely without true spicules.

The central nervous system showed the cerebro-visceral ganglia somewhat elongate, thicker and broader in the posterior part, nearly not excavated in the exterior margin; the pedal ones of oval form, larger than the visceral. The olfactory ganglia very short-stalked, bulbitorm, a littlesmaller than the buecal ; a small optie graglim, the optic nerve short. At the inferior side of the posterior part of the right visceral (fig 1a) ganglion is a short-stalked (fig. 1b) ganglion genitale giving off several nerves, one of them has at its root another ganglion (fig. 1c). The common commissure not longer than the

[^4]franswerse diameter of the pedal ganglion, rather strong. 'The buceal ganglia of roundish form, connected through a very short commissure ; the gastro-wsophageal ganglia short-stalked, reaching scarcely onequarter of the size of the former, with one very large and some smaller cells. ${ }^{1}$

The eyes with black pigment and shining, horn-yellow lens. The otocysts at the slight emargination at the outer margin of the cerebrovisceral ganglia, crammed with otokonia of the usual kind. 'The broad leaves of the rhinophoria stiffened in the usual way by loner, much calcified spicula, perpendicular on the free margin of the leaves. The skin of the back crowded with spicula, ${ }^{2}$ mostly very large and much calcified; in the rather low (height 0.5 mm .) granules (fig. -2) crowded erect spicules. In the interstitial tissue of the intestines true spicula are neither many nor large.

The mouth-tube about 2.0 mm . long, strong, rather wide, quite as usual. 'The bulbus pharyngeus 3.0 mm . long, with a height of 2.3 and reaching a breadth of 2.5 mm . ; the rasp-sheath also projecting 1.0 mm . from the hindermost part of the under side of the bullus. The form of the bulbus and its retractors as usual; the lip-disk whitish, clothed with a yellowist! cuticula. The tongue of usual form ; on the shining horny-yellow radula cleven rows of teeth, further backwards twelve developed and four younger rows ; the total number of rows thus twenty-seven. ${ }^{3}$ 'The teeth of yellowish color; the height of the outermost 0.06 , of the next 0.08 mm . ; the height reaches at most about 0.22 mm . The two foremost rows were rather incomplete, in the fourth row were twenty-four, and the number of teeth then increases to twenty-seven. ${ }^{4}$ The rhachis (fig. 3 a) rather broak. The plates of the usual form, ${ }^{5}$ with the usual wing-like expansion of the exterior part of the body and of the root of the hook (figs. 4, j) ; the first (fig. 3) with lower hook, which on the succeeding tecth sluwly
${ }^{1}$ This representation of the central nervons system in most points argrees with that of Hancock and Embleton (1. c. p. 2:33, P1. XVII, ficr. 2. :3).
${ }^{2}$ Collingwood (Amals and Mag. of N. IIist., 3 Ser., III, 1859, 1). 16?) mentions the spicules of this species (fiom the estuary of the Mersey) ats "very elegant, consisting of a broad embosied plate with a domble and beatifully serrated edge, terminating abouptly in a blunt apex."

* Alder and Hancock mention twenty-four rows, whereof eleven were on the tongre.
- Alder and IFancock mention twenty-five plates in the rows.
© ('f. my Mahacolog. Luters. (Semper, Mhilipl. II, ii), Melt NII... 1sis. (Asteronotus), p. 6i36.
increases in height; then the teeth keep the same height and decrease again in the outer part of the rows (fig. 5) ; the four to six interior teeth are more ereet, with shorter body and thinner hook (figs. $5, ~ 6$).

The salivary glands long, thin, whitish. ${ }^{1}$ The asophagus about 6 mm . long, rather wide, with strong longiiudinal folds." The stomach small, included in the liver ; the biliary apertures as usual.

The intestine issues through the liver behind the region of junction of the first and second third of the liver ; the first anteriorly proceeding part lodged in a groove on the superior side of the liver, not passing beyond the anterior margin of that organ, about 9.5 mm . in length; the rest of the intestine about 10.0 mm . in length; the diameter of the intestine $(0.8-1 . .3 \mathrm{~mm}$. ; the longitudinal folds rather strong.

The liver of yellowish color, more grayish on the surface; 9.0 mm . in lengtin, by a breadth of 5.5 and a height of 4.0 mm . ; the posterior end rounded; more than the anterior half of the under side, especially its right part, is excarated (for the anterior genital mass) and behind this is a deep transverse groove. The vesica fellea lying at the left side of the offshoot of the intestine, rather small, in height about 1.25 mm ., reaching nearly to the surface of the liver, nearly cylindrical.

The heart as usual. The sanguineous glands whitish, rather flattened; the anterior obliquely triangular with the point, as usual, adhering to the under side of the junction of the two cerebral ganglia; in length 2.0 by a breadth of 1.5 mm . ; the posterior transversely elongate-oval, with a breadth of 3.5 by a length of 1.5 mm . The renal syrinx melon-shaped, its largest diameter about 0.75 mm . ; its free duct nearly three times as long; a strong continuation of it passing along the floor of the rather large renal chamber, to the region of the pylorus.

The hermaphroditic gland spread in large groups of ramifications over nearly the whole liver and by its brighter yellowish color somewhat contrasted with it; in its lobules were masses of zo"isperas and rather small o". rene cells. The anterior genital mass ${ }^{3}$ in length 5.0 by a breadth of 2.5 and a height of 4.0 mm . the right side rather convex, mecting the more flattened left side at the sharp superior margin,
: They are in this way also mentioned by H. and E. (1. c., p. 215, Pl, XII, fig. 2cc).
z The dilatation on the cesopharus mentioned and figured lyy II. and E. (1. c., p. 215, P1. XII, fig. 2d) could not be seen in the specimen examined by me.
${ }^{3}$ Cf. the Pl. XIV, f. 9, of Hancock and Embleton.
the under side flattened. The ampulla of the hemmpheoditic orlam? resting on the superior posterior part of the genital man, whitish, making a latge curve, about i. 0 mm, long, with a diameter of warly 1.5 mm . The spermatoduct in its first part, as near as could be determined, rather thick than thin, not very long, forming (fig. 11e, Te) a little coil on the upper end of the penis. The penis (fig. if eylindrical, curved, about 2.5 mm . long, by a diameter of about 0.8 mm .; the inside with many longitudinal folds ; at the upper end of its cavity a low truncated conical prominence (fig. 116, with a rather wide: aperture (fig. 11b), through which upens a little hag fig. 111, whese inside wats clothed with a thin yellowish cuticula, and contained a hollow, nearly colorless tube, that could be extended by tension; it wat probably prointed (the point seemed broken off); its length was about 0.9 mm . ; the spermatoduct opened (fig. $11 a$) in the upper part of this bag. Hancock has (l. c. Pl. XIV, fig. $9 c, 10$; Pl. XV, fig. 1,2) seen the penis and the "stiletto," but he too seems (l. c. p. 220) not at all clear about these organs. At the side of the opening for the penis in the vestibulum genitale was another aperture which leal into a bag, from whose bottom projected a hard, whitish, som+what compressed conical spur (fig. $7 d, 10$, that under the influence of nitric acid grew more pellucid, but developed very little gas; through the: axis of the organ down to the fine aperture on the point, passes a slender tube (fig. 10), the continuation of the fine coileal duct of the gland of the organ. ${ }^{1}$ This glamd (glandula hastatoria, fig. ie, sel) overlies the upper part of the vagina (fig. $7(t, h)$; it is heart-shaped, of a transverse diameter (breadhh) of 2.1), and a thickness of 1.0 mm . the gland did not contain any larger cavity. The spermatothecat (lis. Sa) whitish, nearly spherical, having a largest diameter of 2..5 mm. ; filied with fatty cells and detritus; the two ducts (fig. Sr.e) as u-ual, the vagina rather wite fig. Fu, b), with longitudinal folds on the inside. The spermatocysta yellowish, spherical, 1.5 mm . in diameter (fig. 8b), filled with zö̈sperms ; short-stalked. The mucous gland not forming quite half of the anterior genital mass, consisting of a smaller anterior bieonvex part, and a large flattened wing-like peaterior part ; the space between them nearly filled by the spermatotheat

[^5]and the spermatocysta, the color of the gland yellowish-white, on the left side of the anterior part a central yellow mass; the duct of the mucous gland rather short.

All the former genera of Doridide belonged to the large group of Dorididec critptobranchiatie; ${ }^{1}$ the following are to be registered in the group of Dorididse cleutherobranchiatix (D. planerobranchiatix). This section is also characterized by the non-retractility of the gill, by a sucking-crop connected with the bulbus pharyngeus and by a peculiar armature of the tongue, consisting usually of a single large lateral plate and a single or several outer plates. 'This group seems chiefly limited to northern climes, and contains at present the genera Akiodoris, Acanthodoris, Adalariu, Lamellidoris, Goniodoris and Doridunculus, ${ }^{2}$ also Ancula, Drepania ${ }^{3}$ and Idalia.

AKIODORIS, Bergh

Akiodoris, Bgh. Gattuugen nordischer Doriden, 1. c., 1879, p. 354.
Forma ut in Lamellidoridibus. Nothrum supra granulosum. Branchia non retractilis, e foliis tripinnatis non multis et ad modum ferri equini positis formata. Caput latum, veliforme; tentaculis brevibus, lobiformibus. Apesture rhinophoriales integre.

Discus labialis sine armatura. Ingluvies buccalis bulbo connata. Radulat rharhide quati nula; phenris dentibus laterabibus depressis non multis; (12-13) quorum duo intimi fortiores, quasi subhamati. Penis glande uncis simplicibus, furcatis vel palmatis armatus. Vagina indumento valloso peculiari instructa.

The animals belonging to this group resemble externally especially the Lamellidorides. The back is finely granulated; the head large, veil-shaped, with short tentacles, which are lobate and pointed The openings of the rhinophor-holes with plain margins, surrounded by several larger papillæ. The non-retractile branchia nearly horseshoeshaped, consisting of a mediocre number of leaves. The lip-disk
${ }^{1}$ Cf. my "Gattungen nordischer Doriden," 1. c. p. 341 .
2 The genus Doridunculus of G. O. Sars (Moll. regionis aretica Norveg., $1878, \mathrm{p} .309$. Tab. 27, fig. 2a-d, 'Tab. XIV, fig. 5), which externally approaches Gonioduris and other Dorididce elcutherobranchiato in the character of the radula, is hitherto only known from the northeasern part of the Atlantic (Lofoten), and by a single species (D. echinulatus, S.).
${ }^{3}$ In the Anculce and Drepanice the penis is amed as in so many Doridides with a series of small hooks.
without armature. The tongue with transverse thickenings of the rhachis; the lateral plates somewhat depressed ; the two first different from the rest, larger and with a denticle at the root of the hook; the rest without any such, the external quite without a hook. A sucking-crop on the upper side of the bulbus pharyngeus, but sossile, depressed conical, and not consisting of two symmetrical halves. The large stomach free on the surface of the liver. The glans of the long penis with a strong and quite peculiar armature, consisting of strong hooks, partly simple, partly bifurcate and partly digitate, with strong digitations. The ragina with a peculiar armature of high palisades.

This interesting genus externally most resembles the Lamellidurides, both in reference to the nature of the back, to the form and size of the gill and in the want of armature of the lip-disk; the region of the openings of the rhinophor-holes differ in the want of a glahella and by the presence of a larger number of surrounding papilla. 'The genital opening somewhat recalls the Acanthociorides, as do also the (tripinnate) branchial leaves and the sucking-crop, but this is not divided in two distinct halves as in this last genus. The armature of the tongue is very different from that of the Lamcllidnrides. Adalarix and Acrnthodorides; the large hook-formed lateral plates of these genera are wanting, and in their places are two large depressed lateral plates, with small hooks; the external plates somewhat recalling those of the Adalarix: the rhachis rather broad, with transwerse thickenings of the cuticula, corresponding to the rows of plates. In the very peculiar form of armature of the glans penis, and by the peculiar clothing of the vagint, the Aliodorides difler from all the above-cited genera.

Only a single species of the genus is hitherto known, the new one, that will be described below.

1. Ali. Tutescens, Bgh., n. sp. Oceanum Pacificum.
2. Alk. lutescens, Bgh., n. sp. PI. IV, fig. 3; pl. V', fig. 11-11: pl. VI, fig. 1-20; pi. V'It, fig. 1-8; pl. VIII, lig. 1-2.
Color lutescens.
Ifabilat. Oceanum Pacificum septentrion. (Nazan Bay).
Of this form I have had a large single specimen for examination, obtained in August, 1873, by Datl, on stony bottom, at low water, in Nazan Day, Atkat Island, Aleutians.

According to Dall, the color of the living amimal was "yellowishwhite;" preservel in spirits, it was of a uniform dirty yellowish culor.

The length was 32.0 mm ., by a breadth of 19.0 mm ., and a height of 13.0 mm . ; the breadth of the foot 12.5 mm ., of the mantle-hrim 3.0 mm. : the height of the rhinophoria 3.0 mm ., of the branchial leaves 2.5 mm . ; the length of the genital opening 2.25 mm .

The form was clongate-oval, somewhat larger than that of the Lam. bilameliato. The papilla of the back relatively smaller and more rounded than in that animal. The openings of the rhinophor-holes an oblique oval slit ; the margins plain; several (six to eiglat) larger papill:e of about 1.0 mm . in height) in the immediate vicinity of the holes; the club of the rhinophoria with about thirty leaves. The branchia with about ten leaves. The anal papilla low, with a stellate aperture ; the renal orifice as usual ; the interbranchial space crowded with rather pointed and high papilla. The head and tentacles as in allied forms. The genital papilla of oval form, with a large, longitudinal, erescentic slit. The rather broad foot with the usual anterior marginal furrow. The peritoneum colorless, without spicula.

The central nervous system more flattened than in allied forms; the cerebro-visceral ganglia reniform, a little broader in the anterior part; the pedal ganglia less flattened than the former, larger than the visceral unes, of oval form, on the outside of the cerebro-visceral. The proximal olfactory ganglia a little smaller than the buccal ones, bulbiform ; distal ganglia could not be found. The commissure not broad, not short. The buccal ganglia of oval form, closely connected; the gastro-(1)sophageal roundish, rather long-stalked, in size ahout onesixth of the former, with one large cell and several (three or four) smaller ones.

The nervi optici rather long; the eyes with yellowish lens and black pigment. The otocysts in the usual place, filled with otokonia of the usual kind. The leaves of the club of the rhinophoria very richly furnisherl with thick (diameter, 0.04 mm .) and long spicula, more or less calcareous, and very often giving off a thick twig of greater or less length (I'l. V, fig. 12) ; for the most part set perpendicularly or obliquely on the free margin of the leaves. The axes of the organs and the short stalk stuffed with strong and very much calcified spicules. In the skin of the back a mass of spicula of the same kind (Pl. IV, fir. 1:) as above, or still more hardened; the papilla of the back solislified in the usual way (IPl. V, fig. 11). In the interstitial tissue fewer and smaller spicules.

The oral tube rather short, wide. The bulbus pharyngeus of usual form, about 5.5 mm . long by a height of 4.5 mm ., (and at the upper
part of the sucking-crop of 5.5 mm .), and a breadth of 4.75 mm .; the sheath of the radula projecting about $1 .: 3 \mathrm{~mm}$. hackwards and downwards. The lipolisk large. clothed wish a think yellow cutionla ; the true mouth forming a narrow vertical slit. The cap-ohaped weth-ing-crop almost exactly as in Ac. pilosa, but more conical and without external signs of duplieation : on the inside clothed with a yellowish cuticula, opening into the hucal cavity throngh a wile slit. The tongue rather broat ; on the fine redhli-h-y llow colured radula $-\cdots$....nteen rows of teeth, also on the point of the tongue were traces of six entirely vanished rows ; the two dirst rows very incomplete, reduced to some external plates. Further bach wards were sten forty-two heveloperd and three younger rows or, all in all, the animal presented sixtytwo rows of teeth. The most external plate of each row is quite colorless, the next two or there pale !ellowish, the following all of horny-yellow color; the rhachis colorless. The length of the most external plate about 0.035 mm ., of the next about 0.05 mm ., of the following 0.07 mm . ; the length of the second large plate about 11.2 mm.. of the first 0.02 .2 mm ; the hreadh of the rhathis ahout 11.2 .2 mm . The rhachis thickened hetwern the rows and forming arehed elevations between them (Pl. VI, fig. $1 a, 3$; Pl. VIII, fig. $1 a$). The first two plates rather large (Pl. VI, fig. $1 b b, c c, 4-6 ; \mathrm{Pl}$. VIII, fig. $1 b, c$); with a short strong hook and a stout denticle at each side of it, the outer denticle hroader ; the houk of the sexond plate somewhat larger than that of the first : sometimes a slight crenulaton on the outer margin of the first plate (fig. i). All the fillowing two or deven plates (Pl. VI, fig. $2 e, f ;$ Pl. VIII, fig. $2 a, b$) of the same type, by degrees decreasing in size, consisting of a quadrilateral hasal prart. from which (ll. VI, fig. $\mathbf{i}-13$), in most of them, rises a strong, short. broal hook; the two or three outmost plates IM. VI, fiq. ? ; 1'I. VIII, fig. - ${ }^{\prime}$) formed of the hasal part alone ; the rest with the hook gradually more developed.

The salivary glamds yellowish-white, flattened. ribbon-shapued, of about 10.5 mm . in length, reaching to the cardia, where they are agglutinated one to another; the breadth in the foremost part

- about 0.i.5 mm, in the midlle 1.5 mm . the posterior part agrain some. what narrower; the duct of the gland rather short.

The asonhagus rather wille, about 13.0 mm . hang, the insite with rather strong longitulinal folds; it opeos into the stomach, whish lina free in a cleft on the upper side of the liver. This orean (I'l. VI, fige $17 a$) is of oval form, of about 6.5 mm . largest diameter; the inside
with rather strong longitudinal folds; the pylorus (fig. 17) in the neighborhood of the cardia. 'The intestine advancing from the stomach to the fore-end (tig. 173) of the liser, in this part about 10.0 mm . long; forming a knee and retrograling to the anal nipple in a length of $2: 3.0 \mathrm{~mm}$. The contents of the stomach were indeterminable animal matter, mixed with some diatomacer.

The liver 20.0 mm . long by a height of 10.0 mm , and a breadth of about 12.0 mm . ; the posterior end rounded ; a little more than the anterior hatf of the under side obliquely flattened (by the anterior genital mass) showing the cardiae end of the (esophagus and the root of the hermaphroditic duct. On the anterior part of the upper surface is a cleft for the stomach and for the biliary sac ; the color of the surface and of the substance of the liver is grayish-yellow. The biliary sac (fig. $17 c$) lying before the stomach, on the right side of the intestine, large (as the stomach), somewhat flattened, grayish, of rounded outline and about 4.5 mm . largest diameter; the contents, as in the stomach.

The heart as usual. The sanguineous gland whitish, entirely covering the nervous system, about 6.0 mm . long, by a breadth of 4.5 and a height of only 1.0 mm .

The hermaphroditic gland yolk-yellow, covering the upper side of the liver with a thick layer ; in its lobes large öggene cells and masses of zösperms. The anterior genital mass large, about 14.0 mm . long by a breadth of 9.0 and a height of 11.0 mm ., flattened and a little excarated on the left side, with an excavation on the fore side, the right side very convex. The hermaphroditic duct whitish, rather thin (diameter about $0.75-1.0 \mathrm{~mm}$.), passing straight over the left side of the © 9 nital mat- 10 it: anterior emd, without formation of any (distinct) ampulla. The first part of the spermatoduct whitish, forming several long windings on the upper part of the forepart of the mass and passing into the yellowish (Pl. VI, fig. 18a) continuation; this, with its numerous coils, forms a large flattened layer on the fore-end of the right side of the mass; it then rather suddenly passes into a much thinner whitish continuation (fig. 18b) about 6 mm . long, that slopes (fig. 18c) into the penis, which (retracted) was lying on the lowest anterior part of the right side of the mass. The penis was cylindrical, of the length of 11.0 mm . by a diameter of 1.5 mm .; the truncated, cylindrical, yellowish (under a magnifier nodulous) glans forming (Pl. V, fig. 13, 14) a prominence of the length of nearly 1.0 mm . in the vestibulum. This glans was partly covered on the outer side
fig. 1:3, 11), but especially on the margin of the wide, gapins anilio. and on its inside for a length of about 4.0 mm . (Pl. VII, figs. 2-4),
 were very strong and for the most part broad and high (iig. 3, 4), even reaching a height of about 0.3 mm . (fig. 4). In the interior of the glans, especially in its posturior part (lig. Se), the daws wepe lish broad and simply uncinate or bifurcatel, otherw ise mo-lly howhor and with digitations of the margin. The horly of the claws wat plain or curved ; the end simply pointed, bi- or trifurcate or with digitations. sometimes very strangely formed. They con-isted of a cutioulat and its matrix; very often, especially on the outside of the glans, the puticula was torn off and the (fig. 20) rounded or printed nateal matrix was left. The whitish spherical spermatotheca I'l. VI, lig. 1!a wat about 3.5 mm. in diameter, laterally communicating throurh a short petiolus adhering to the upper end of the vagina, with a sinuosity into which opens the clongate, jellowish spermatocystat (fig. 1! b), which hat a length of about 2.0 mm ., and from which issues the long duct of the mucous gland, fig. 19e). The grayish vacina very strong (lig. I ae). about 7.10 mm . long, clongate-conical; the lowest part wile, having a diameter of about 3.2 .5 mm ; the walls thick, with a very preculiar internal lining, consisting of eylindrical palisades IPl. VII, firg. ifs. of' a height of about 0.4 by a greatest diameter of $0.07-0.05 \mathrm{~mm}$.; between the larger were seen smaller and wery small ones. The palisades seremed to be densely chothed (tig. \&) with cilia, and showed a nearly colurless axis (fig. 6, 8) up to their points ; the axes were often denuded, fig. 6i) after the sheath has been torn away. This lining continued up to the superior end of the vagina, but not beyond it.

The mucous gland large, whitish, and yellowish-white; the anterior half yoll-yellow, denuded on the fore-end of the genital mas: ; the duct short.

A varicty (Jl. VI, fig. 14-20) of this species has also been finumb by Dall, in July, 1573 , at low water, in Kyska Harbor (Alentians. Aceording to Dall the color of the living animal was "yellow ish." The animal preserved in spirits was of a uniform light yellowish color. The length about 18.0 mm . by a breadh reaching 8.0 mm and a height of 6.0 mm . ; the breadth of the foot at the fore-end 5.0 mm ., the margin of the mante freely projecting 1.5 mm . the height of the rhinuptaria 1.5 mm ., of the branchial leaves 1.5 mm . Around the plain margins of the rhinophor-holes seven to nine large conical tuberches ; the clab of the rhinophoria with about twenty leaves Around the braumhial
ringe, as well as in the centre of it around the vent, rather large conical tuhereles 1.5 mm . in height; the branchial leaves, fifteen in number, as far as could be determined.

The oral tube strong, 4.5 mm . long, wide. The bulbus pharyngeus sbout 5.5 mm . long, by a height of 3.0 , and a breadth of 3.75 mm .; the rasp-sheath ahont 1.7 .5 mm ., froely projecting, bent upwards. The cuticula of the lip-disk yellowish. The tongue with about thirty-five rows of phates (fig. $1 t-16$; fiurther backwards, twenty-five developed and four younger rows; the total number of rows sixty-four. On the posterior part of the dongue fourteen plates, the number increasing backwards to lifteen or sixteen. The five anterior rows very incomplete, only represented by $1,7,9,10,12$ plates (on each side). The plates as above. The breadth of the rhachis reaching to about 0.17 mm . The glandula salivales 6.0 mm . long. The stomach (fig. $17 a$) about 4.0 mm . long. The contents of the digestive cavity a mass of sponge. The vesica fellea (fig. $17 c$, about 2.5 mm . high, with strong folds on the inside. The anterior genital mass quite as above, also the spermatotheca and the spermatocysta (fig. 19), the penis (fig. 18, 20), and the vagina (fig. 18, 19).

LAMELLIDORIS, Alder et Hancock.
Lamellidores, A. et H., Monogr. Brit. Ňudibr. Moll., Part ViI, 1855, p. xvii. Lamellidoris, A. et II., R. Bergh, Malacolog. Untersuch. (Semper, Philipp. II, ii), Heft xiv, 1878, p. 603-615.
Lamellidoris̈, A. et H., R. Bergh, Gatt. nörd. Doriden, l. c., 1879, p. 362-365.

Corpus vix depressum, nothao granulato. Branchia (non retractilis) e foliis (multis) simplicita pinnatis, ut plurimum in formam ferri equini dispositis, formata. Caput latum, semilunare, angulis tentacularibus. Aperturae rhinophoriales, margine integro; tuberculis anticis 2-3, calvitie postica.

Cuticula apertura oralis infra asserculis duobus incrassata, et ante amulus papillarum angustus. Lingua rhachide lamellis humilibus instructa; pleuris dente interno hamiformi permagno et externo compresso lamelliformi unco minuto pradito armatis. Ingluvies buccalis (suctoria) petiolo bulbo pharyngeo connata, tympaniformis.

Penis apice (glande) curvatus, non armatus. Vagina brevis.
The genus Lameilidoris was established (1855) by Alder and Hancock, to receive two small groups of Doridider, one with the D. bilamellutu as type, to which especially the name of the group is here
 the naked rhachis of the tongue, with the D. depressa, A. et H., as type. Hancock has given some anatomical remarks on the typical form (D. bilamellata, L.) ; but nothing else had been since made
 U. Sars.2

The Lamellidorides approach the Acanthodorides, but differ even here, externally, by the coarsely granulated surface: of the back and by the larger number of the branchial leaves, which are set in the form of a horseshoe; the openings of the rhinophor-holes, the tentacles as well as the genital opening are also of a different shape. More notable still are the anatomical differences: the Letmellidmeriles want the armature of the liphlisk, which is found in the other group. the armature of the tongue is quite different ($1, \mathrm{I}-1-\mathrm{I}, 1$), and the buceal erop is connected with the bulbus pharyugeus by a stalk. Thir penis is quite different from that of the Acmuthonturides, and whthont true armature; the vagina is short. After all the Letmellidurides are much more allied to the Adalarice.

The form of the boly, as in the Iconthedurides not very depmesinat. The back covered all over with semi-globolar and showt club-formed papillat. The openings of the rhinophor-holes with phain maruins ant

[^6]oommenly two larger papilla before and a bare space behind them. The gill (not retractile) consisting chicfly of several (usually 20-30) tripinnate leares, set in the form of a horseshoe. The head large, wil-formed (semilunar), with produced and pointed side-parts, which are allherent to the foot nearly to the point. The genital openings not being a slit, but on a large tubercle.

The cuticula of the oral aperture is thickened below, near the median line, into a ledge; and on the outside is a ring of hard papillæ. The buccal crop, connected through a petiolus with the foremost part of the upper side of the bulbus pharyngeus, is drum-shaped; on the inside clothed with a strong cuticula. The tongue has on the rhachis thort compressed lamellar, on each side of these is a very large upright plate with large compressed body and a hook which on the inside is either plain or denticulated; at the outside of this plate is another, compressed but much smaller and with a little rudimentary hook. The alivary glands forming a short, coiled mass at each side of the root of the wsophagus. The wsophagus without diverticle at its origin. The spermatoduct (as in the Acanthodorides) very long; the penis short, its glans curved and clothed with a rather thick cuticula, but otherwise not armed. The spermatocysta imbedded in the mucous gland; ${ }^{1}$ the vagina short.

About the biological relations of the animals belonging to this group very little is hitherto known. Where the species occur, they seem to be rather abundant in individuals (cf. about the Lam. bilumellata, Collingwood, in Ann. Mag. Nat. Hist., 3 S. III, 1859, p. 11;:3). The spawn of several species (L. bilamellata, L. diaphana, L. inconspicua, L. aspera, L. depressa, L. pusillat has been described by Alder and Hancock, and that of a single species (L. muricata) by Sars, Meyer and Moebius, etc. The first stages of the development of this last form have been followed by Sars. ${ }^{2}$

The group seems limited to the northern part of the Atlantic and of the Pacific. To the same belong with certainty some properly examined species, and, besides, several others mentioned in the literature can, with more or less probability, be referred to it.

[^7][^8]
A.

1. L. bilamellata (L.). Oc. Atlant.
2. L. varians, Bgh., n. sp. Oc. Pacif,
3. L. hystricina, Bgh., n. sp. Oc. Pacif.
4. L. muricata (O. Fr. Müller). Oc. Pacif.
5. L. diaphana (Ald. et Hanc.). Oc. Atlant.
D. diaphana, A. et II., Monogr. Part ii, fam. 1, Pl. 10 ; P'art vii, Pl. 46 suppl. fig. 9.
6. L. aspera (A. et H.). ${ }^{1}$ Oc. Atlant.
D. aspera, A. et H., 1. c., Part v, fam. 1, Pl. 2, fig. 15 ; Part vi, fam. 1, Pl. 9, fig. 1-9; Part vii, Pl. 46, suppl. text ; Pl. 48, suppl. 6ig. 2.

13.

7. L. sparsa (A. et H.). Oc. Atlant.
D. sparsa, A. et II., 1. c., Part iv, fam. 1, Pl. 14; Part vii, Pl. 46, suppl. text.
8. L. depressa (A. ct H.). Oc. Atlant.
D. depressa, A. et H., 1. c., Part v, fam. 1, Pl. 12, fig. 1-8; Part vii, Pl. 46, suppl. fig 12.
? Villiersia scutigera, d'Orb., Mag. de Zool., 1887, p. 15, Pl. 109, fig. 1-4.
9. L. inconspicua (A. et H.). Oc. Atlant.
D. inconspicua, A. et H., 1. c., Part v, fam. 1, Pl. 12, fig. 9-16; Part vii, Pl. 46, suppl. fig. 13.
10. L. oblonga (A. et H.). Oc. Atlant.
D. oblonga, A. et H., l. c., Part v, fam. 1, Pl. 16, fig. 4-5; Part vii, Pl. 46, suppl. fig. 10.
11. L. pusilla (A. et H.). Oc. Atlant.
D. pusilla, A. et H., 1. c., Part ii, fam. 1, Pl. 13; Part vii, Pl. 4G, suppl. text ; app. p. iii.
12. L. luteocincta (M. Sars). ${ }^{2}$ Oc. Atlant.
13. L. (?) ulidiana (Thomps.). Oc. Atlant.
D. ulidiana, Th., Aun. Mag., Nat. Hist., xv, 18, p. 31.
D. ulidiana, Th., Ald. et Hanc., l. c., Part vii, p. 42, app. p. ii.
14. L. (?) tenella (Agassiz). Oc. Atlant.
D. tenella, Ag., Gould, Rep. on the Inv. of Massachusetts, ed. Binney; 1870, p. 229, Pl. xx, fig. 289, 290, 293.
15. L. (?) pallida (Ag.). Oc. Atlant.
D. pallida, Ag., Gould, 1. c., p. 220, 1Pl. xx, fig. 284, 287, 288, 291.
 naturh. Foren. i Kbhvn., 1871, p. 179) this species ought to be identical with the D. muricata of Meyer and Moobius; but this is, of course, impossible.
"The organs of the bulbus pharyngeus of this species have just been figured by G. O. Sars (Moll. reg. arct. Norv., 1878, Tab. xiv, fig. 3).
16. L. (?) diademita (Ag.). Oc. Atlant.
D. diademata, A.g., Gould, 1. c., p. 230, l'1. xxì, fig. 298, 300, 301-304.

1i. L. (\%) griseet (Stimps.). Oc. Atlant. Gould, 1. c., p. 232, Pl. xx, fig. 292. 295.
18. L. (?) derelicta (Fischer). Oc. Atlant.
D. derelicte, F., Joum. de conchyl., xv, 1867, p. 7.
19. L. (?) tuberculata (Hutton). Oc. Pacif. (Nova Zeland.).

Onchidoris tuberculatus, IIutton, ef. Abraham, 1. c., p. 226.
20. L. (\%) eubalia (Fischer). Oc. Atlant.

Doris eubalia, F'., Journ. de conchyl., xx, 1872, p. 10.

1. L. bilamellata (L.), var. piacifica. Plate V, fig. 10 ; Plate XI , fig. 3-9.

Color alhido-flavescens, marulis fuscis plus minusve variegatus.
Dentes laterales margine lavi.
Hab. Oc. Pacific. sepentr. (Mar. Beringi).
Six specimens of this variety of the Atlantic species were taken by Dall, in Bering Sea (Hagmeister Id.), in August, 1sty, at low water, on a gravel beach. Three were sacrificed for the anatomical examination.

According to Dall, the color of the living animal was "yellowishswhite with brown macule."

The length of the specimens preserved in spirits was $11-13.0 \mathrm{~mm}$. by a height of $4.5-5.5 \mathrm{~mm}$. and a breadth of $6-10.0 \mathrm{~mm}$. ; the height of the rhinophoria 1.75-2.2, of the branchial leaves $1-1.2 \mathrm{~mm}$. ; the breadth of the foot at the fore-end about $5-8.0 \mathrm{~mm}$. the margin of the mantle projecting freely about $1.5-2.0 \mathrm{~mm}$. The color of the individuals on the back was yellow-white, marmorated with light reddish-brown. this marbling always occupying the spaces between the tulpercles, which are nearly white (or light yellowi-h ; the branchial. laves of the same reddish color; the club) of the rhinophoria yellowishwhite; the under side of the body yellowish-white or whitish.

The form was elongate-oval. The heard flattened, nearly semicircuLar, with the tentacular edges a little prominent. The vieinity of the posterior margin of the rhinophor-holes plain, at the anterior two large erect tubercles; the club of the rhinophoria with about twenty leaves, the stem rather short. The back covered all over with semighobular and short club-shaped roumded tubercles of different sizes, mostly small, mixed with many larger ones $(1.75 \mathrm{~nm}$. in diameter; the larger tubercles mostly showing a spinous surface (I'l. V, fig. 10) ${ }^{1}$ when magnified.

[^9]The openings of the rhinophor-holes and of the branchial area (fig. 36b) surrounded by large and small tubercles which also were spread over the central part of it (fig. 3). 'The branchial leaves (fig. 3urt) were about twenty-four or twenty-five in number, set in a transverse reniform ring; the leaves in the front part much larger than the rest. The anus as usual, scarcely projecting. 'The under side of the margin of the mantle quite smooth. The grenital openings always quite contracted. The foot large, with a fine line along its anterior margin.

The cerebro-visceral ganglia short-reniform; the pedal ones not much smaller, of oval form, set nearly at a right angle to the inferior face of the former; the olfactory ganglia bulbiform or ovoid. The
 the olfactory ones; the commissure between them very short; the gastro-csophageal ganglia not very short-stalked, roundish, in size about one-quarter of the buccal ganglia, with three large cells. 'The three commissures very distinct, the sub-cerebral and the pedal connected throughout most of their length; the visceral thin, not giving off a genital nerve.

The eyes with black pigment, yellowish lens; the nervus opticus nearly as long as halt the breadth of the cerebral ganglion. The otocysts as large as the eyez, crowded with otokonia of the usual kind.
 on the other hand, were filled with such spicules, partly circularly and concentrically arranged. The tubercles of the back stuffed with ordinary spicules (fig. 10) in the usual way, the larger spicules mostly very prominent on the surface

The oral tube as usual. The bulbus pharyngeus of the usual form, about 2.0 mm . long; the lip-disk with a rather thick yellowish cuticula, and inwards with the same belt of (about ten to fifteen) rows of small denticles as in the L. Inystricina (cf. below) ; the sheath of the radula somewhat bent upwards, freely projecting behind the bulbus for as great a length as that of the bulbus itself. The tongue (in the three individuals) with ten or cleven series of plates, in the sheath ten or eleven developed and three younger rows; the total number of rows being thus twenty four or twenty-five. The plates light yellowish in their thicker parts, otherwise nearly colorless. 'The length of the median plates reaching about 0.12 mm ., the height of the external ones 0.10 mm . The median (fig. Ta and exterior plates (fig. 76) quite as usual ; the large ones of the usual forms (fig. 76), sometimes, especially
the foremost, with rather bituse point (fig. 3). The buceal erop (fig. 4, 5 as laree as the bulbus, of quite the usual form, rather petiohate.

The salivary glambs forming on each side a large, thick, whitish mass between the bulbus and the central nervous system (with the glandule sanguinere).

The osophagus rather wide. The stomach and the intestine as usual. The liver as usual, much flattened on the right anterior half.

The heart rather large. The gland, sanguines large, whiti-h, cowering the upper side of the central nervous system, the foremost part in one individual very narrow. The renal syrinx about 1.0 mm . long, with strong longitudinal folds, its clothing as usual.

The anterior genital mass $4-4.5 \mathrm{~mm}$. long hy a breadth of $1.2 .0-1.5$ and a height of $3-3.3 \mathrm{~mm}$., yellow-white, plano-convex ; the anterior. and partly the superior portion formed by the coils of the whitish spermatoluct ; in one individal one coil embraced the sheath of the radula. The first part of the spermatoduct strong, when unrolled about 25.0 mm . long; the succeeding part of the length of $4-5.0 \mathrm{~mm}$., thinner; the rest about 7.0 mm . in length, stronger, nearly as in the first part. In the beginning of this last part the true spermatic duct was rolled up in tight coils, the remaining part of its length was nearly straight. The penis ahout 1.5 mm . long, with the usual glans in the interiot. The spermatotheca (fig. lifa) spherical, its chief duct nearly twice a long as the bag, the vagina short fig. Ge). The spermatocysta appeared pyriform (fig. 6d)

In color this form seems to differ from the typical one, as that is represphted by Alder and Ilancock (Monogr., Part vi, 185.4, fam. 3, 11. (9); in the anatomical relations no specific differences could be detected.

A specimen of another variety was obtained by Dall, on a gravei beach, at low water, in June, 1×64, at Port Etches (Prince William Sound. According to Dall, the mantle was of "brown" color.

The specimen had a length of 18.0 mm ., by a breadth of 8.9 mm ., and a height of 5.0 mm . ; the height of the leaves of the gill was about 1.0 mm . The color of the back was brownish and yellowish; that of the gill, as well as of the rhinophoria; yellowish. The number of leaves of the gill was about thirty.

The bulbus pharyngeus about 1.75 ma. long, by a height of 1.5 mm .; the sheath of the radula nearly as long as the bulbus; the buccal crop
${ }^{1}$ In one specimen the form of this organ was entirely as figured in my Malacolog. Untersuch. (Semper, Reisen). Tab. LXV, fig. 2.
a little larger than the bultus. The radula browni-h-y.llow, with nine rows of teeth, further back fifteen developed and two soumper rows, the total number being twenty-six. The teeth quite as above, dark, horn-colored in their thicker parts; the median ons reating a height of 0.16 mm . The salivary glands as above-mentioned.

The biliary sac uncommonly small. The black contents of the rectum consisting of undeterminable animal mattor, mixed with latrer and smaller pieces of small crustacea. The liver much flattened on the right anterior half.

The anterior genital mass large, about 7.0 mm . long, 5.0 mm . high, and :3.0 mm, thick. The ampulta of the hermaphemlitic duct whith. forming a long ansa, about 5.0 mm . long. The spermatonluct - forter than in the other form, otherwise, with the penis, as in that form. The spormatotheca yellowish, short, sac--haped, of a largsot diameter of 3.0 mm .; the spermatocysts about 0.3 mm . long, pyriform. The mucous gland chalk-white and brownish-gray.

Of another variety, Dall, in August, 1872, obtained six specimens, in Sanborn Harbor (Shumagin Ids.), on stony bottom, at low water.

According to Dall, the color of the back of the living animal is "red-brown, with whitish papillie." The color of the backs of the specimens preserved in spirits was rather unitomly, dirty bownyellowish, commonly much lighter on the middle, the papilte whitish; the gill and the rhinophoria of the color of the back; the under side of the whole body yellowish; more whitish on the mantle. The length of the animals varied from 18.0 to 25.0 mm ., by a breadth of 11.0 to 16.0 mm ., and a height of 8.0 to 120 mm . ; the breadth of the forst 7.5 to 12.0 mm . ; the heright of the rhinopharia rearhiner 3.0 mm ., that of the gill 2.0 mm . The form as usual. The lorseshoe shape of the gill very pronomeed, the number of leave. wenty-eight to thirty. The gill was surrounded by higher papilla, which, in the largest specimen, reached the height of about 2.5 mm . ; the space inclosed by the gill closely set with similar papillie, the largest (as large as the above mentioned) in the periphery. 'The gill ean be so deeply drawn back in its groove, that these external and internal papilla shut over and quite conceal it; the papilla of the centre smaller ; a crest or some few papille in the median line go from the anus backwards, between the incurved ends of the gill. 'The anus small, very slightly prominent; the renal pore on the right sille. The openings of the rhinophor-holes as usual, before them the two nsual papillae, behind them a bare space. The papilte of the back quite as
in the previnuly examined form, the larest (in the largest speemen) reaching the height and the diameter of about 1.5 mm ., those in the neighborhood of the gill somewhat larger.

Two smather individuals were disected, the larger being harder than these and not so suitable for that purpose. The peritoneum was colorless.

Tlie central nervous system just as in the former specimens, but the buceal ganglia smaller than the offactory, and the gastro-usophageal short-stalked.

The eyes as above. The otocysts, under the glass, very distinct as chalk-white points on the hinder and outermost part of the cerebral ganglia. The leaves of the rhinophoria without spicula. The skin and the papilla of the back as above or still more crowded with very hard spicula.

The oral tube large, (in both individuals) about 2.5 mm . long. The bulbus pharyngeus of the usual form, (in both individuals) about 3.0 long, by a breadth of 1.8 mm , and the height nearly the same; the sheath of the radula projecting straight backwards 2.0 mm . The buccal crop, lying to the left side of the bulbus, somewhat compressed, of about 3.0 mm . largest diameter, the stalk nearly half as long as the largest diameter of the crop. The tongue with ten rows of teeth, further backwards also eleven or twelve developed and three younger rows, the total number thus being twenty-four or twenty-five. They were entirely as in the form first examined.

The salivary glands, the pyloric part of the intestine, with its biliary sac, and the liver as usual. The sanguineous gland whitish, much flattened. cosering the whole upper side of the bulbus pharyngeus and the central nervous system ; a flattened cavity in its interior. The hermapheslitic gland, harough its more reddish color, contrasting with the grayish color of the liver.

The anterior genital mass 11.0 to 12.0 mm . long, by a height reaching 7.0 to 8.0 mm ., and a breadih of 4.0 to 4.5 mm . The ampulla of the liermaphroditic duct lying transversely on the lowest and most anterior part of the back of the mucous gland, rather straight or forming nearly a circle, about 5.0 to 7.0 mm . long, whitish. The spermatoduct making many coils on and before the anterior part of the mucous gland; the first part about 35.0 to 45.0 mm . long, the second nearly 25.0 mm . long ; the penis about 1.5 to 2.0 mm ., projecting frerly from the vesthblum, conical; the glans seemed rather short. The spermatotheca of about 3.0 mm . diameter, whitish. The
 gland, only a part of its chief duct free on the surface of this last ;
 incurved; the duct to the mucous gland (fig. $6 d$) passing from the end of the bag, the other strong, longer (fig. (fc), opening in the duct of the spermatotheca, where it begins to be wider (ragina); the vagina (fig. $6 c$) rather wide, but short. 'The mucous gland whitish, yellowish and dirty yellow. ${ }^{1}$
2. L. varians, Bgh. Pl. XI, fig. 13, 14; P1. XILI, fig. 1.
L. varians, B. R. Bergh, Malacol. Unters. 1. c., 1878, p. 613, 614.

Color corrulescens vel albescens vel flavescens.
Dentes laterales margine interno denticulati fere usque ad apicem. Hab. Oc. Pacif. (Ins. Kyska).

Of this species six specimens were taken by Dall, in July, 1573, at Kyska Island, on sandy ground, at a depth of $9-14$ fathoms. Four specimens were sacrificed to the anatomical examination.

According to Dall the color of the living animal is "bluish." 'The animals preserved in spirits were of a uniform whitish color, so too the rhinophoria and the branchia. Their length was 9.12 .0 mm , by a breadth of $5.3-7.0$ and a height of $3-4.5 \mathrm{~mm}$. ; the breadth of the foremost part of the foot $3.6-5.0 \mathrm{~mm}$. The height of the rhinophoria reached about 2.2 mm ., of the branchial leaves 1.0 mm .

The form almost entirely as in the typical form and as in the L. hystricina. 'I he head as in the last species; also the openings of the rhinophor-holes, with their (mostly three) larger tubercles, set with equal spaces; the club of the rhinophoria with about twelve to fifteen rather thick leaves. The tubercles of the back as in the L. luystririna; the number of larger ones much exceeding that of the smaller, which are scattered between them. The branchial disk as in the L. hystricina, also the branchial leaves, whose number did not surpass twelve to twenty. The foot as usual.

The central nerwous system (fig. 1) nearly as in the L. Thystricinct. The cerebro-visceral ganglia of roundish or oval form, ats also the pedal ones which were not much smaller than the former. The com-

[^10]missura pedalia nearly as long as the diameter of the pedal ganglia; the suberebral lying rather close up to the pedal; the visceral quite free, mbich thinner. A very short-stalked smaller ganglion (fig. l c) connected with the under side of the right visceral ganglion, gives oft a nerve that swells into a new ganglion, which sends out three nerves (N. genitalis). The offactory ganglia short-stalked, spindle-shaped. The buccal (fig. 1 d and the gastro-nsophageal ganglia (fig. 1e), nearly as in the L. heystricinu; the commisure between the first extremely short, the gastro-œsophageal somewhat smaller.

The mervi optici one to one and a-half times as long as the diameter of the cereloral ganglia; the eyes with black pigment, yellowish lens. The otocysts (fig. 1) lying rather backwards, a little smaller than the eyes; the otokonia of the usual form, in number about fifty. The leaves of the rhinophoria without spicula. In the skin were almost no spicula and no larger or calcitied ones on the surface of the rigid papilla of the back, which thus were rather smooth. In the interstitial comective tissue small calcified cells, but no larger spicula.

The mouth-tuise as in the L. hystricina. The bulbus pharyngeus as in that species, but the sheath of the radula shorter and less prominent, bent upwards, sideways or down and forwards. On the interior part of the nearly colorless labial disk, the usual belt of (about twatve to fifteen) rows of small denticles. The tongue strong, rather long, with curved superior and nearly straight inferior margin. In the mature radula twelve to fourteen or sixteen rows of teeth, further backwards fifteen or sixteen to eighteen rows of developed, and three of partly developed teeth; the total number of rows thus thirty, thirty-one or thirty-five to thirty-seven. The median plates (fig. 14, of nearly the usual form, in the under side rather excavated, with thickened margins. The large lateral plates (fig. 13) formed nearly as in the L. hystricina, but larger, reaching a height of 0.12 mm . ; the denticulation of the interior margin of the hook stronger, with more (about twenty, denticles and reaching farther out towards the end of the hook. The exterior plates nearly of the same form as in the last species, reaching to the height of about 0.6 mm .

The sucking-crop quite as in the former species.
The salivary glands much smaller than in the former species, reduced to a large, scarcely lobed, whitish mass on each side of the root of the œesophagus.

The: wsophargus somewhat spindle-shaped. The stomach included in the liver. The intestine issuing from the liver behind its middle.

The liver of grayish-white color, of the length of about $9.5 \mathrm{~mm} . \mathrm{by}$ a breadth of 4 and a height of about 3.75 mm . ; the hinder end roumded, the fore-end rather truncated, the anterior onn-third wn the upper and right side flattened by the anterior genital mass.

The heart and the renal syrinx as usual ; the median renal chamber continued to the fore-rnd of the liver. The samenineons ylames ronnected on the upper side of the central nervous sy-tem the a flatrened whitish mass.

The glandula hermaphrodisiaca clothing the upper side of the liver. and searcely distinct from it in color; in its lobules were laren wage cells. The anterior genital mass comprested, plano-conswx ; 40 mun. long, by a height of about 3.3 and a brealth of 1.2 mm . The albuminous gland on the left side of the mass and forward-, yellowi-h, wery tinely gryated on the surface; the mucous gland whiti-h, pelluedil. The spermatoduct as well as the (3.0 mm . long) penis as in the L. echinatc. The spermatotheca rather small, spherical.
L. varians, var.

To this same species belonged certainly five specimens of a Lumellidoris, which were taken by Dall in July, 1873, at Unalashka Island (Aleutians), at the depth of sixty fathoms on mul and stones. Neverthelese, the color of these animals in the living state was, acoording to Dall, "yellowish-white."

The size and the particular measures accorded with those of the more typical individuals, referred to above.

The central nervous system as just mentioned, so even the eyes and the otorysts. The bulbus pharyngeus of the usual form : on the thot "leven rows of teeth, farther backwards twenty-six developed and four not quite developed rows, the total number thas forty-one. The phatequite as formerly described. The sucking-crop quite at in the typical form, aloo the salivary glamls. The whitish sanguineous gland entirely covering the central nervous system. 'The penis as usual.

Two specimens of another varicty of this form were gotten by Dall. in July, 1stis, at Kyska I-land, on sandy bottom, and at a depth of nine to fourteen fathoms. In a living state they were, according to Dall, of Jellowish color.

The length of the animals preserved in spirits was 8.5 to 9.0 mm .. by a breadth of 6.0 mm ., and a height of about 3.5 mm . 'The color was uniformly whitish or yellowish-white. One indivilual wus dis. sected.

The central nervous system was as above mentioned, and also the eyes (their nervi optici rather long), and the otocysts (the number of the otokonia about one hundred). The bulbus pharyngeus as usual; on the tongue sixteen rows of teeth, farther backwards eighteen rows of developed and four of younger teeth; the total number of rows, thirty-eight. 'The plates as above; the length of the median plates 0.05 to 0058 mm .; the height of the anterior large lateral plates about 0.14 mm ., of the posterior about 0.17 mm . ; the number of denticles on these plates mostly fifteen to twenty. The vesica fellea was at the left side of the pylorus.

3. L. hystricina, Bergh.

L. hystricinc, Bergh, Mal. Untersuch., 1. c., 1878, p. 614, T'ab. Ixviii. fig. 17-23.

Color cœrulescens.
Dentes laterales margine interno denticulati sed non usque ad apicem.

Habitat. Oceanum Pacificum (insula Kyska).
One specimen of this species was found by Dall, at Kyska Island (Aleutians), on rocky bottom, at a depth of ten fathoms, in June. 1873. According to Dall, the color of the living animal is bluish.

The specimen preserved in spirits was 9.5 mm . in length, reached a breadth of 60 mm ., and a height of the true body (without the papillæ) of 3.5 mm . the breadth of the foremost part of the foot was .i.f mm ., the height of the rhinophoria was about 2.1 mm ., of the branchia about 1.2 mm ., of the dorsal papillæ 1.2 mm . The color was uniformly whitish.

The form was oval, the back not very convex. The head rather larere, formed like a velum, that is radiately folded, and has its side parts connected with the ends of the anterior margin of the font; in the middle of the hinder part of the under side of the velum is a transverse slit, in which the small mouth-pore opens. The opening of the rhinophor-holes was nearly round, with the margin rather thin, here were three papilla of the same kind as on the back; the rhingphoria stout, the club with about twenty leaves. The back covered all over with mostly stout, club-shaped papillar, apparently set without order. and extending nearly out to the very margin of the mantle, which is thin and has on the upper side smaller, cylindrical or club-shaped prapilla. The papilla all firmly atherent to the skin, the spicules shining through all ower on the back and in the papillar. The branchial
 larly alternating in size. The branchia composed of twelve small leaves of the usual kind. The centre of the disk and the anus as usual. The foot somewhat shorter and narrower than the back. broader in front, with the anterior margin rather straight, rounded posteriorly.

The cerebro-visceral ganglia showed the visceral part a little larger than the cerebral, the pedal somewhat smaller than the visceral; the four commissures as usual; the offshoot of the nerva genitalis could not be determined. The buccal ganglia rounded, connected through a short commissure; the gratro-u-ophateal having about onc-upartur of the size of the latter.

The eyes with very rich black pigment; the nervus opticus not short. The otocysts as large as the eyes, filled with otokonia of the usual kind. In the thin leaves of the rhinophoria no spicula. In the skin of the back and in the dor-al papillat an chormous amount of irrestar or rounded particles, often coalescing together in larger, irregular lumps, which very oftem were crowded together in irregular hat ; in the papille also were long, strong and very much calcified spicula, often of uneven surface, whose points, as usual, often projected on the surface of the papille. In the interstitial comnective tissue, including the ends of the diflerent ducts of the genital orvans , vagina, mumon glamd duct), matses of latere amb long (as much as 0.9 mon.), maheifine spicula.

The mouth-tube was about 1.0 mm. long, rather wide, with strong. longitudinal folds. The bulbus pharyngeus of usual, irregular fomm. the bulbus proper of the length of about 1.75 mm . ; the sheath of the radula, nearly as long as the bulbus, curved downwards. The labial disk oval, at the inner margin of darker color, and there showing (fig. 17) a narrow belt of small, yellowish denticles, of a lreight of 0.007 to 0.015 mm .; this belt seems continued a short space up in the mouth that is otherwise, like the rest of the buccal cavity, clothed with a rather thick, yellowish cuticula. It he tongue rather long and narrow, in the groove on its back sixteen rows of teeth, in the sheath ejighteen developed and six mbleveloped rows, the total mamber moner quently forty. The color of the true lateral teeth yellowish, the nthers neady colorless ; the height of the onter per moto-plates abont dot.an an

[^11]Secth strone, tinely denticulated (with six to eight denticles) on the imner side of the hook, and with a strong, rounded prominence at the base of this (fig. 18a, 19, 20) ; the external pseudo-plates with the usual eurved points (fig. 18b). Irregularities in the form of the last were often observed (fig. 23). ${ }^{1}$

The (rop) entirely as in the typical species, the largest diameter 1.3 mm .

In the stomach indeterminable animal matter and a little, undeterminable worm, of the length of 2.0 mm .

The hermaphroditic gland as usual ; the lobules filled with sperma. The anterior genital mass rather large, measuring in length 4.5 mm., in height $2 . .5$ mm., and in breadth $2 .: 3 \mathrm{~mm}$. ; the left side flat or a little excarated, the right rather convex. The mucous gland, as well as the allmminous gland, white and yellowish-white. The spermatoduct not very lones, but rather strong, continued in the very strong penis, that (retracted) forms the fore-end of the whole mass. The penis has a length of about 3.5 mm ., by a diameter of 1.3 mm . ; the inferior +nd rather constricted ; the superior three-guarters of the organ compact, perforated through the axis by the dense coils of the spermatoduct proper ; the inferior one third hollow, including the curved and pointed glans.
2. L. muricata (Müller). Plate IX, fig. 18; Plate XI, fig. 10-1 . .

Doris muricata, O. F. Müller. Zool. Dan. Fas. III, 1789, p. 7, Tab. LXXXV, f. 2, 3, 4.
Doris muricutu, Müller. Sars, (formia 3) Lovén, Ind. Moll. Scand. 1846, p. 5.

Doris muricatn, Meyer und Moebius. Fiauna der Kieler Bucht, I, 1805, p. 73-75, Taf. Vc, fig. 1-8.
? Lamellidoris muricata, Müller. G. O. Sars, Moll. reg. arct. Norv., 1878, p. 307, Tab. XIII, fig. 6.

Color flavidus vel luteo-albus.
Dentes laterales magni hamo denticu'ato sed non usque ad apicem. Hab. Oc. Atlanticum septentr.

The original specimen on which Miller founded his Doris muricata does not exist. and by his incomplete description it is now completely impossible with full certainty to determine what species was meant by his description. In future the species described by Meyer and Moebius

- From the presence of only one individual, the examination of the radula was extrenely difficult and limited, as also that of the genital organs.
and by me ounht to be called by that name. To the same is withoue doubt to be referred the second variety (β) of the D. muricata (Miller, Sars) of Lowin (the first being the 1). Lene wi of Alder).
of this form, and under that name. I have had two woll conterses? -pecimens for examination, kimdly sent me by Mr. Friele, of Buereme and caught in the neighborhood of that place.

The individuals (preserved in spirits) were of light yellowish color. The length $9-10 \mathrm{~mm}$. by a breadth of $5-1 \mathrm{l} .0$ and a height of maarls $\therefore .0 \mathrm{~mm}$. : the breadth of the foot reaching 3.5 mm . : the height of the rhinophoria 1.5 , of the branchial leaves 1.0 mm . The form of thr animal as usual; the warts of the back not larce, mostly truncate. clavate. The openings for the rhimophoria as usual, with two tuhurcles before them, or one on each side; the club with about fifteen to twent! Leaves.2 The branchial leaves about twelve to fourteen. as far as could be determined ; ${ }^{3}$ the space inclosed by the gill covered with the usual tubercles; the anus presenting the ordinary features. The head rather large, the side parts adhering to the foot throughout their whole length. The genital groove with three openings ; a foremost round, a median spalt-formed, and a posterior large and round.

Both individuals were di-sected ; the peritoneum was colorless.
In the central nervous system the cerebro-visceral ganglia appearent rather short, reniform ; the pedal ones of roundish form, somewhat larger than either of the former; the commissures rather short. The nifactory ganglion short-stalked, nearly spherical, situated rather posteriorly on the upper side of the errebral ganglia, end nearly alarge as the buccal ones. The huceal ganglia of oval outline. con-. nected hy a short commissure : the gastromsophageal nearly splerical. in size about one-quarter of the former, short-stalked: a scoondary ganglion lying above the last on the œsophagus.

The eyes not short-stalked; with rich black pigment anl yellow l-ns. The otocysts a little smaller than the eyes, filled with otokonia of the common kind. In the leaves of the rhinophoria rather few but large spicula of the same kind as in the skin, more or lest perpondienlar on the free margin; the axes of the club like the stalk still more richly endowed with smaller and larger spicules. Tinder the glas the.

[^12]-kin between the warts, as well as the warts themselves, showed the white spicules everywhere shining through; the spicules of ten projecting from the surface of the warts The spicules for the greater part very large, long, and reaching a diameter of at least 0.05 mm ; they were strongly calcified, mostly straight or slightly curved, the surface nearly even. In the interstitial tissue were rather many spicules, but (as in the rhinophoria) less calcified than in the skin.

The mouth-tube rather wide. The bulbus pharyngeus of nearly uatual form, about 1.6 mm . long; the sheath of the radula, moreover. projecting backwards about 0.4 mm ., bent somewhat upwards or downwards: the lip-disk with a rather thick yellowish cuticula ; the suckingcrop large, larger than the true bulbus, to which it adheres by a very short petiolus. The tongue with nine rows of teeth, further back twenty to thirty-two developed and three younger rows ; the total number of rows, thirty-two to forty-four. ${ }^{1}$ The yellow median plates (fig. $10 a$) about 0.0 .5 mm . long, of the usual form. The large lateral ylates yellow, of about 0.12 mm . height ; the form as usual; the hook with about fifteen to sixteen fine denticles, and a strong tooth at the inside of the base (fig. 10 bb). The external plate colorless, about 0.04 mm . in height, with the usual rudiment of a hook (fig. $10 c, 11 b$). ${ }^{2}$

The salivary glands white, rather thick, making two or three short coils at the sides of the cesophagus. The resophagus as usual. The intestine emerging from the liver at about the middle of its length : the biliary sac (fig. 18) is at the pyloric part of it, situated deeply. scarcely showing itself on the surface of the liver and opening (fig. $-18 a)$ into the stomach close to the pylorus. The liver about 6.5 mm . long by a breadth of 3.0 mm . and a height of 2.0 mm ., deeply excavated in the anterior third of its right side, and of light yellow color. The sanguineous gland much flattened, whitish, heart-formed, of about 1.5 mm . largest diameter. The renal chamber rather wide, the tube on its floor strong.

[^13]The lobes of the hermaphroditic gland without developed soxnal elements. The anterior genital mass about $2.5-3.10 \mathrm{~mm}$. in length ly s height of 2.0 mm . and a breadth of $1.0-1.5 \mathrm{~mm}$. The ampulla o: the hermaphroditic duct of yellowish color, rather thick - 0.7 .5 mm . diameter), making a wide curve. about 2.5 mm . long. The spermat... duct long; its first part thinner, about 9.0 mm . long, then through a stricture of the length of nearly 1 mm ., passing into the thicker part. which in its last half increases in thickness, and, all in all, has the. length of about 6.0 mm . by a diameter of $11 . \% 5 \mathrm{~mm}$. ; the last pam: (fig. $12 e$) passes into the penis', in whose cavity (fig. 12hb the glan(fig. 12a) projects as a short club, the proper seminal duct passine down to the gland in nearly continual cork-serew windings, and oftea shining through the walls of the external coat. The spermatuthera whitish, nearly spherical, of about 1.0 mm . diameter, filled with sem:inal matter and detritus; the spermatocysta elongate, nearly twice a long as the former, yellowish, deeply imbedded in the mucous glamb. filled with ripe semen; its duct somewhat longer than the cysta. The. vagina short. ${ }^{2}$ The mucous gland yellowish and yellow.

The species approaches to the L. hystricina and L. varians (of the Pacific), but differs entirely in its colors; still the possibility cannot be denied that further investigations may show both the l'aciti. "species" to be merely varieties of the old Lamellidoris muricat" of the Atlantic.

ADALARIA, Bergh.
Adalaria, R. Bergh. Malacolog. Unters. (Semper, Philipp. II, ii). Hef: XIV, 1878, p. xl.
Adalaria, R. Bergli. Gattungen nord. Doriden, 1. c. 1879, p. 360.

Forma corporis fere ut in Lamellidoridibus. Nothe um papilluhatum vel subgranulosum. Branchia (non retractilis) e foliis vix multis, in formam ferri equini ut plurimum dispositis formata. Caput ut in Lamellidoridibus, latum, semilunare, tentaculis vix ullis vel brevissimis lobiformibus. Aperturie rhinophoriales integree, tuberculianticis 2-3, calvitie postica.

Discus labialis non armatus. Lingua rhachide lamellis deprew iinstructa; pleuris dente laterali interno hamiformi majore et suri
${ }^{1}$ The exserted penis is figured by Meyer and Moebius (1. c. taf. fig. \& and mentioned as cylindrico-conical.

* The upper end of the vagina seemed to present a particular diverti- le.
antium externorum sat applanatorum praditis. Ingluvies buccalis bulbo pharyngeo petiolo connata.

Penis glande parva inermi. Vagina brevis.
The genus has been established by the author (1878) to receive the D. proxima and its allies. The Adalarice externally approach nearest to the Lamellidorides ; their branchial leaves are also dis. posed mostly in horseshoe form, but fewer in number. The head and the tentacles are more as in the Acouthodorides. The back is nearly as in the Lamellidorides, but the granules are sometimes more pointed The opening for the rhinophoria as in the Lamellidorides, with plain margin ; before them two to three tubercles, behind them the glabella. The lip-disk only covered by a strong cuticula. The armature of the tongue approaching to that of the Acanthodorides. The rhachis of the tongue carries depressed small yellow plates; at each side of these a large hook-formed yellow plate, and further outwards a series of smaller, nearly colorless plates, of which the inner ones are more compressed, the rest depressed. The sucking-crop as in the Lamellidorides, through a petiolus fixed to the bulbus. The salivary glands a: in the Lamellidorides. The esophagus wider at its root. The penis unarmed; the vagina short.

The Adalaria are Lamellidorides with a tongue resembling that of the Acanthodorides; they form a sort of connecting link between these two groups.

Of the typical species, the spawn is known (through Alder and Hancock) and some few notices have been published about their hiology (through Meyer and Moebius ; Sars mentions ${ }^{1}$ the swimming of Ad. Lovéni.

The genus seems to belong to the northern oceans; only five species seem hitherto known.

1. Ad. proxima (A. et H.). Oc. Atlanticus sept.
2. Ad. pacifica, Bgh., n. sp. Oc. Pacif.
3. Ad. virescens, Bgh., n. sp. Oc. Pacif.
4. Ad. albopapillosa (Dall). Oc. Pacif.
5. Ad. Lovéni (A. et H.). Oc Atlant. sept.
6. Adalaria prozima (Alder et Hancock). Pl. IX, fig. 12-15.

Doris prosima, A. et H. Monogr. Part VI, 1854. Fam, 1, Pl. 9, figs. 10-16 ; Part VII, 1855. Pl. 46, suppl. f. 8.
Doris proxima, Meyer u. Moebius, Fauna der Kieler Bucht, I, 1865. P. 69-71 ; taf. V b, fig. 1-8.

[^14]Color flavus vel e rubro flavus.
Dentes laterales magni) hamo edentulo : extorni numero 10 .
Hab. Oc. Atlant. septentr.
Of this form I have had for examination threw equecimens of nearly tupal size, kindly sent me by Prof. Movebius in Kiel, and caught in the neighborhood of that town.
The individuals were of a uniform whitith color, the liver shining *eddish-gray through the foot. Alder and Hancork have already ro. marked this shining through of the liver. The length wat $7.11-5.1 \mathrm{~mm}$. by a breadth of $5.0-5.5$, and a height of about 8.5 mm. : the heright of the rhinopheria about 1.25 , of the branchial leaves 0.7 .5 mm . The form nearly as in the Ad. pucinico, also the tubereles (fig. 12: of the back and the surroundings of the rhinophor-holes; the branchial leaves nine to ten in number. The number of branchial leaves according to Alder and Hancock is eleven, according to Mwer am? Moebius eight or nine. The rhinophoria with ahout fifteen to twenty leaves. The lateral parts of the head nearly commate with the fore. and only slight traces of true pointed tentacles. The foot as in the next species.

The three individuals were anatomically examinel. The periton-um colorless.
The central nervous system as in the $A d$. pacifica, but less depressed. The eyes and otocysts as in that species; the last with about 200 otok nia of very varying diameter, reaching about n. 1 mm. The spicula of the skin as deseribed by English and Cierman authors; a rather large quantity spread in the skin of the head.

The bulbus pharyngeus with the erop) of the length of about $1 .$. i mm., by a height of 1.5 and a breadth of 0.8 mm . : the erop making about half of the bullus: the lip-di-k with streng yellowish cut. cula; the sheath of the radula a little prominemt, bent more or lesupwards. The tongue narrow and pointed, with seven to nine rowof teeth, further backwards thirty or thirty-one rows of developeed and three of younger teeth: the total number thus amounts to forty or forty-three. ${ }^{1}$

The teeth as in the Ad. pacifica. The large lateral yellowish, the ases noarly colorless. The length of the median weth ahout o.0es on 0.03 mm . 'The large lateral (fig. $1: 32,14$, showed the prominenve

[^15]at the inside of the root of the hook quite as in the $A d$. pacifica. The external teeth (fig. 15) only nine or ten in number, ${ }^{1}$ fewer than in that species, always absent on more than half the tongue.

The salivary glands as in the next species, also the osophagus, the tomach and the intestine. The liver also of nearly the same form, the inferior part of the posterior end continued as a little cone; the surface especially of the back part) yellowish-white; the substance yellow. The vesica fellea in its usual place, small. The heart as usual, also the sanguineous gland. The renal syrinx and the urinary chamber as usual.

The anterior genital mass rather compressed, of angular-roundish outline, of about 1.75 mm . largest diameter. The spermatoduct seemed shorter than in the next species, especially the second part; the penis short. The spermatotheca pyriform ; the spermatocysta of more oval form, having only about one-quarter of the size of the former, and filled with sperma. The mucous gland whitish and yellowish.
2. Adalaria pacifica, Bergh, n. sp., Pl. IX, fig. 17; Pl. X, fig. 1-3; భ1. XI, fig. 15 . Color lutescens.
Dentes laterales (magni) hamo edentulo; externi numero 15.
Habitat. Oceanum Pacificum (Unalashka).
Of this species Dall caught three specimens, in September, 1874, at Unalashka, on a bottom of mud and shells.

According to Dall, the color of the living animal is "yellowish;" the specimens preserved in spirits were of a uniform yellowish color. The length of the two larger specimens about 12.0 to 14.0 mm ., by as breadth of 8.0 to 9.0 mm , and a height reaching 4.5 to 5.0 mm .; the breadth of the foot 6.0 mm ., the height of the rhinophoria about 1.5 mm ., of the branchial leaves 1.2 mm .

The form as in the $A d$. proxima, a little broader anteriorly. The back covered all over with a mass of rather stout, subglobose and subpetiolate tubercles quite as in the typical species, mixed with much fewer smaller ones. The larger ones, under magnification, showing the perpendicular spicula shining through, while other spicula were detected irregularly scattered in the intervals between the tubercles. The rhinophor-holes nearly without projecting margin ; the adjoining part of the back, behind, smooth; immediately before the holes, on

[^16]the contrary, two or three larger tubereles; the club of the rhimpmineria with about thirty leaves. The branchial area surrounded by larger tubereles. The branchial leaves in number, eleven or twelve; imm. diately before the two hindermost was the slightly prominent anu-, and at its right side the renal pore; in the space between the atus and the branchial leaves, three or four larger and two or three smaller ubercles. The head large; the tentacles short, pointeml. The foot broad, rounded behind, a little beroader in front; the furrow on the anterior margin very indistinct. The three individuals were all dissected. The peritoneum was colorless.

The central nervous system rather flattened; the cerebral ganglia barger than the visceral, which were lying at their outer margin and were a little larger than the pedal ones; the proximal olfactory gaterlia bulhiform, less large than the buceal ones, which were of short, oval form, connected through a very short commissure ; the gastron-stuphab geal ganglia short-stalked, rounded, nearly half as large as the former, with-a very large cell. The subcerebral and the pedal commis-ures connented, the visceral free.

The eyes with coal-black pigment, yellow lens: the nurvus opticus in one individual with black pigment. The otocysts, under a magnifier, very distinct as chalk-white points at the hinder margin of the weberal granglia, nearly as latge as the eyes, tilled with ordinary otokonia. In the leaves of the rhinophoria seanty, scattered spicules. perpendicular on the free margin, not much more calcified than in the skin; in the stalk of the organ the spicules larger and less scanty. The skin, especially its tubercles, with many loner spicules and calcified cells and groups of such cells; the form of the spicules different from
 Part vi, fam. 1, PI. 9, fig. 15), and by Meyer and Moebius (1. c., figs. \therefore :9), much less calcified, more straight and of more uniform shape. In the interstitial connective tissue of the chief ducts of the anterior genital mass were scattered large spicules.

The mouth-tube wide, about 1.3 mm . long. The bulbus pharyngeun of rather compressed form, about 2.0 mm . long; the sheath of the radula stemely projecting from the himber emb, marly as lomg as the bulbus, more or less curved upwards; the lip-disk oval, with a rery strong yellowish cuticula. The tongue with ten or eleven rows of plates, further back twenty-nine to thirty-four rows of developed and three of younger plates ; the total number thus forty-two, fortythere, forty-seven. The median plate (PI. IX. firs. 1:a; I'l, X, lig. 1,
vellowish, of a length of about $0 .(145 \mathrm{~mm}$., with a median furrow along the upper side and with thickened margins. The harge laterals hom yellow in color, reaching the height of about 0.1 mm . (Pl. IX. tig. 1th: Pl. X, tig. 2aa', hook-shaped, with a strong, rounded prominence at the inside of the root of the hook (fig. 17). On each side (Pl. X, fig. 2b, c) of the two large plates (in two individuals) constantly fifteen smatler, nearly colorless plates of a lenoth of about 0.06 mm . These plates were all somewhat depressed; the five inner ones smaller, somewhat compressed, fig. 2, is, 15) ; the others (fig. 2, 3) hroader, with the uper edge broad and irregularly teathed; the outermost (fis. 2r) a little smaller than the adjoining plates. The bases in each of thee, fifteen) plates large, forming nearly half, or at least making move than a third of the size of the whole plate.' The erop of the bulbus of the usual form, as large or a little larger than the bulbus itself; with a very short stalk with strong longitudinal musculature. its aperture opening immediately behind the lip-disk.

The salivary glands large, white, very elongate, in their foremost part broader, and with several coils filling the space lift between the crop, the bulbus and the cesophagus.

The ersophagus long. The stomach small, enclosed in the liver: the intestine rather short, forming its knee behind the fore-end of the liver. The large posterior visceral mass about 9.0 mm . long by a breadth of 4.3 and a height of 3.5 mm . ; the posterior end somewhat printed, thongh rounded; the fore-end broader, perpendicular, somewhat flattened on the right side; the color of the surface (hermaphroditic gland) ash-gray, the interior (the liver) brown or black brown, or quite yellow.

The heart as usual. The sanguineous gland irregularly reniform, situated somewhat more towards the left side, rather thick, whitish, anering the central nervous system and a large part of the bulbus pharyngeus from above. The renal syrinx as usual.

The hermaphroxitic gland without developed sexual elements. Ther anterior genital mass proper rather small, compressed, of about 2.5 mm . largest diameter, but the loop of the spermatoduct (and the penis) nearly as large as the rest of the mass. The spermatoduat long, in its first part white, rather strong; nearly as long as the secomd in which it passes through a stricture; this last part is thicker, cylindrical. elongaterl, about 5.0 mm . long, passing without exact limits into the

[^17]short pernis. The spermatotheca pyriform, about 1.3 mm . kane; the spermatocysta not having one-fourth of the size of the last; both empty. The mucous gland whitish and yellow-whitish.

This seems even externally to differ somewhat from the typical firm. of which it nevertheless may prove to be but a variety. Neither Ahu.. and Hancock, nor Meyer and Moebius saw more than eight to (mine, ten extermal plates on the tongue of $A d$. prorime, while thi- Pacif. form always presented fifteen.
3. Adalaria virescens, Bgh., n. sp. Plate X , ti . 4 , 5 .

Color virescens.
Dentes laterales (magni) hamo edentulo ; externi numero 15.
Hub. Oc. Pacific. septentr. Unalashka.
Of this species Dall found four specimens at ('nalashka, on gravil. in a depth of nine to fifteen fathoms, in September, 1874.

Accorling to Dall the color of the living animal was "greenish," and the animals preserved in spirits showed remains of the same colo: as a uniform grayish green. The length of these was $11.5-12.0 \mathrm{~mm}$.. by a breadth of 8.0 mm . and a height of 5.0 mm , the height of the rhinophoria about 2.0 , of the branchial leaves about 1.0 mm .

The form, as well as the rhinophor-openings, were quite as usual; the cluh of the rhinophoria with about thirty-fise leaves. The gill not large, with nine to twelve leaves; the space within the gill as usual, also the arms and the renal pore. The back covered with granulations and short clubs. The head, with the tentacula and the genital opening as usual.

Thre individuals were dissected ; the peritoneum was colorless.
The central nervons system showed the cerebral ganglia larew that the visceral, which were lying on the outside of and behind the former. very distinct from them ; the pedal ones being intermediate in si\% betwen the cerebral and the viseral ganglia. On the exterior part of each cerehral granglion a little short-stalked ganglion (gang. optioum :) was eatily visible under a hand magnifier. The (proximal) olfactory ganglia bulbiform, short-stalked, a little larger than the buecal granglia, which were shortoval, connected through a very short com. mis-ure ; the gastro-tsophageal being about one-fourth to one-fifth of the size of the former. In the neighborhond of the pronis a little owal ganglion (g. penis) having a largest diameter of about 0.85 mm . (fig. 5), containing only rather small cells.

The eyes with black pigment ; the otoeysts with not very many and not murh calcified utokonia. No distal olfactory ganglion, as far as could be seen; no spicula in the leaves of the rhinophoria. The skin as in other species : the spicula projecting on the surface of the granulations of the back.

The bubbus pharyngeus about $1-1.5$ mom. in length; the sheath ot the radula projecting $0.75-1.0 \mathrm{~mm}$., bent upwards ; the sucking-crop a little larerer than the bulbus itself, short-stalked; the lip-disk as usual. The tongre compressed, sather prominent, with six, eight, and nine rows of teeth, also further back twenty-four, thirty-two and thirty-three developed and three younger rows; the total number of rows thus being thirty-five, forty-one, forty-five. The median plates, the large lateral and the (fifteen) external ones scarcely different from those of the last species.

The salivary glands rather strong, with two or three short coils filling the space at the sides of the cosophagus (fig. 4), white. The (rsophagus (fig. $4 a$, wide in its upper part, the rest narrow. The anteriorly proceeding part of the intestine 2.0 mm . long, the other retra ceding part $\div .0 \mathrm{~mm}$. long; no biliary sac could be found either at the pylorus or higher up. The liver about 90 mm . long by a breadth of 4.2 and a height of 4.0 mm . ; of brownish-gray color ; the anterior end truncate, inclined downwards and hackwards; the anterior one-third of the right side flattened for the anterior genital mass ; the posterior end somewhat pointed, rounded at the point.

The sanguineous gland whitish, covering the anterior end of the bulbus pharyngeus and the foremost part of the central nervous system or this last and the hinder part of the bulbus.

The anterior genital mass about 3.5 mm . long by a breadth of 0.75 and a height of 1.5 mm ., a very large part of it formed by the thick part of the spermatoduct. The ampulla of the hermaphroditic duct about 2.0 mm . long, rather thin, whitish. The spermatoduct long; the first part thimer, about 8.0 mm . long; the rest making a large curve, about 5.5 mm . long, about three times as thick as the first, with a diameter of $0 .(i \mathrm{~mm}$. ; the spermatoduct proper making many coils in its interior course downwards to the penis, which shows a little unarmed glans in the bottom of its orifice; in one individual the penis was exserted as a conical prominence of the height of 1.0 mm . The jeermatotheca pyriform, about 1.0 mm . long, of grayish color; the fpermatocysta a little less large, spherical; the vagina rather short. The mucous gland rather small.

Eren this species might perhaps be merely a variety of the former atill it is of a quite different color and the back much more corar-aly granulated.

4 Adalaria albopapillosa (Dall), Pl. IX. fig. 16: Plo X, fig. 9-11.
Alderia (??) albopapillosa, Dall, Amer. Journ. of Conch., vii, 2,1872, p. 137.

Color pallide flavescens, papillis dorsalibus niveis.
Dentes laterales (magni) hamo basi denticulato.
Habitat. Oceanum Pacificum septentrion. (Sitka).
Of this curious animal Dall caught three specimens [in company with the Ihoris (Archidoris) Montereyensis and the Fiothlin (IFer missenda) opalescens], in July, 1865, on alga, at the depth of six fathoms, at Sitka (Alaska).

Aecording to the drawings of Dall, the color of the living amimal is very pale yellow, the back all over covered with chalk-white papillie: the length was 8 , the breadth $\underset{2}{ }$ lines. The three origina! specimens preserved in spirits were of a length of 5.5 to 7.0 mm ., of a greatest breadth of 4.0 to 4.5 mm ., and a height of 2.75 mm . The color was uniformly translueent grayish and yellowish whitish. The form of the animal was oval, the mantle a little larger than and hiding the rest of the body. 'I he back convex, covered all over with a multitude of 'ylindrical or fusiform, relatively rather large papille, reaching to the height of a full millimetre, and with some few small ones fyread between them. The rhinophor-openings at their usual plate, havingr. as usual (with retracted organs', thin margins; before them always two larger papille, behind them a little naked space." The cluh of the (yellowish) rhinophoria with about twenty-five leaves. The: gill rather small; the branchial leaves (yellowish, as usual, set in horseshoe form, lower or at least not higher than the dorsal papilla, in number, ten to twelve; the anal papilla rather low, with one of the ordinary papilla before and one behind it ; the space betweon the

1 "Of an opaque white, the remainder of the amimal except the eyes, being translucent yellowish."-Dall.
" Dall did not detect the retracted rhinophoria ("tentacles none"); the "black eyes sessile on the anterior surface of the body, near the mantle margin," did not exist in the figure, but in one individual two black sandparticles were lying there. The true eyes of the animal coukl not be detected through the skin, and were lying more backwards.
branchial leaves and the anus otherwise naked. ${ }^{1}$ The genital opening as usual. The foot rather large, with a very fine furrow in the anterior margin. The head as usual; the tentacles relatively rather large

The three individuals were dissected. The peritoneum was colorless.

The central nervous system quite as in the former species, the visceral granglions lying outside of the cerebral; no distal olfactory ganglion could be detected; the buccal ganglia connected through a commisture at least as long as the diameter of the ganglion; the gastro-1rsophageal ganglia and the eyes as in the former species. The otocysts could not be detected. In the leaves of the rhinophoria the spicula much more scanty. In the skin the same kind of not much calcified spicula as in the former species; the papille of the back very richly endowed with such, and commonly with a mass of them projecting with their points (I'l. IX, fig. 1(i) on the surface of the papillie.

The bulbus pharyngeus as in the former species; the length about 1.5) mm., two-fifths of which is the straight, backwards projecting sheath of the radula; the cuticula of the lip-disk as usual: the buccal crop somewhat compressed, with rather long pedicel. The tongue with nine or ten rows of plates, farther backwards sixteen or seventeen developed and three younger rows; the total number of them, twenty-nine or thirty. The median plates (fig. $9 a, 10 a$) nearly as in the former species, or a little shorter. The large lateral plates (fig. $90,10 \%$) rising to the height of 0.12 mm ., yellow; their form as in the former species, but at the inside of the hook at its root were three to six or seven to eight small denticles. The external lateral plates (fig. $10 \cdot d, 11$, farther backwards, in number constantly eight; the outermost (fig. $11 a$) very small, the others as in the former species.

The salivary glands, as far as could be determined, were as in the last species; so also the osophagus and crop; also the stomach and the intestine, which seemed to have the usual bag (pancreas, biliary sac) at the pyloric part. The sanguineous gland flattened, grayish, cordate. The liver of brownish-gray color.

In the hermaphroditic gland no ripe elements were found, and the anterior genital mase was very small

[^18]The species is eacy to distinguish from the former, hy it-color ami "npecially by the denticulated hook of the large lateral plates.
5. Adalaria Lovéni (Alder et Hancock). P1. $\mathbf{\lambda}$, fig. 6-8.

Doris muricata? O. F. Müller, Sars, Bidr. til Süedyrenes Naturh., 1829, p. 15. Tab. II, fig. 7, 8.
Doris Lovéni, Alder et Hanc. Ann. Mag. Nat. Hist., 3 Ser., X, 18p2, p. 262.
ramellidoris Lovéni, F'riele et Arm. Hansen, 1. c. p. 3.
Lamellidoris Lovéni, G. O. Sars. Moll. reg. arct. Norv., 1878, p. 364. Tab. XIV, fig. 1.
? Lamellidoris muricata (Muh. Abildyaard. Mörch, Faumula Mohl.
Ins. Färöens. Naturh. Foren. Vidsk. Meddel., 1867, p. 75.
Doris muricata, Müller, Sars (*), Lovén, Ind. Moll., 1846, p. ฮ.
Doris muricata, M. Sars. Reise i Lofoten og Finmarken, 1851, p. 7 j .
(Color dorsi et rhinophoriarum e brunneo lutescens, pagine inferioris et branchiæ lutescens.

Dentes laterales (magni) hamo edentulo; externi (lingua;) numero 12.

Hab. Oc. Atlant. septentr.
This species was first noticed by Sars, who hesitatingly regarded it as perhaps the Doris muricata of Mueller. It is, moreover, the principal form of the Doris muricute ("Mueller, Sars ") of Lovin (his second variety being the true L. muricata); has been established (1862) as a species by Alder and Ilancoek, and has as such been adopted by Friele and Hansen, as well as by G. O. Sars, who lately gave figures of the teeth on the tongue. The species has heen much confounded with the " D). muricata," which is a Lamelliduris; it is vertainly distinct from the Ad. prorima, and seems also to difler from the other described species.

Of this form I have had fifteen individuals for examination, kindly aent me by Mr. Friele, of Bergen, and dredged in the neighborhood of that place.

According to Mörch, Rink, Grönland, I, 1857. Tillay 4, p. is, the it thericuta, Sars, should be the D. liturata, lieck; this lat is a mere variety of the Lamelldoris hilamellata, and with this should, on the other hamd. aweording to Mörch (Faunula Molluse. Isl. Natuhh. Foren. Vidensk. Meeldel. 1868 , p. 203), the D. prorimu of Meyer and Moehtus be symonymonwhich belongs to the quite different genus, Adalaria. An example moreif such were needed-of the way in which the Nudihanchinte hase lmen synonymized and systematized.

The color of the animals preserved in spirits was uniformly yellowish. The length was 13.15 .0 mm ., by a breadth of $8.5-9.5$ and a height of $4-5.0 \mathrm{~mm}$. the breadth of the foot 6 mm . ; the height of the rhinophoria about 2.5 mm ., of the branchial leaves $1.0-1.3 \mathrm{~mm}$. : according to M. Sars the height of the rhinophoria is four to five times that of the tubercles of the back. (l. c. p. 16 , also in one of his figures fig. 7). The form as usual ; the back covered all over with large rounded tubercles, which rose to the height of 1.5 mm ., and were of a similar breadth; they were sessile or more or less subpedunculate. sometimes set in indistinct longitudinal rows; between the larger tubercles everywhere were smaller ones of different sizes; on the margin of the back were tubercles of middle size or smaller; the spicula rather indistinct between and in the tubercles. The rhinophoropenings as usual, two large tubercles before them; the club of the organs: with about twenty-five leaves. The gill with eight to twelve leaves; according to M. Sars, the number of branchial leaves is tento Lovin, eight to ten. A large (high) tubercle between the hindermos: leaves, before it the low anal papilla, and to the right side the renal pore; some few smaller papillie were spread over the space between the anus and the branchial leaves. The head large, broad; the shors tentacule pointed. The genital opening as usual.

Six individuals were dissected. The peritoneum was colorless.
The central nervous system rather flattened, especially the viscerab ganglia, which lay on the outer side of and behind the cerebral ones. which were a little lareser the pedal ones larger than either of thst other ganglia, situated perpendicularly upon the former. The proximal olfactory ganglia bulbiform, a little smaller than the buccal ones : no distal could be found. The length of the commissures equal to ther largest diameter of the pedal ganglia; the subcerebro-pedal abons three times as thick as the visceral. The buccal ganglia of oval form, connected through a short commissure; the gastro-cesophageal abous one-sixth of the former in size, with one very large cell.

The eyes with black pigment, yellow lens; the nervus opticus abou: as long as the largest diameter of the cerebral ganglion. The otocys:of the same size as the eyes, situated externally at the junction it the cerebral and the visceral ganglia; with about fifty ordinary otokonia, but among them four to six larger ones, of a diameter of about 0.025 mm . The leaves of the rhinophoria nearly withous spicula; in the axes, and especially in the stalks, on the contrary, in enormous quantity of large spicula, in great part transversely sitio-
ated. In the skin a rather large quantity of spicula. The broat centres of the warts of the back challs-white in transveres: sortion, ons account of the mass of strong spicula which aseend in hundle. through the axes of the warts, their peripheral parts being free from spicula. The spicula, for the most part, staff-shaped or cruciate, reaching :s dianceter of about 0.08 mm . small aml large roundeal ones wer. also very common ; the spicula mostly very strongly caldifiesl. In the interstitial tissue calcified cells were seen scantily.

The mouth-tube was 1.5 mm . long; the bulbus pharyngeus about 1.5 mm . long, the sheath of the radula projecting about 075 mm .. bent upwards; the sucking-crop nearly as large as the proper lullou-. short-stalked. The lip-disk with the cuticula rather thick, wpecially at the inferior median line, here sometimes prominent and remindiry one of the two blades in the Acanthodorides. The tongue (in the sis individuals examined) with seven to nine rows of teeth; further backwards twenty-nine, thirty-one, or thirty-four (in three individualdeveloped, and three younger rows; the total number of rows was thus forty-two to forty-six. The median plates (fig. Xit) and the larer lateral (fig. $6 a \alpha, 7,8 b$) ones quite as in the $A d$. Pac*foca, also the external ones (fig. $6 b, 8 r$), but the number of those wever surpassed trm or twelve; ${ }^{1}$ frequently all gone from the tongue. and only existing in the two to four posterior rows ; the height of the large lateral phaterising to about 0.09 mm .

The salivary glands, as usual, white. The msophagus somewhat wider in its first part ; the stomach as usual ; the liver of usual form. its substance of yellow color ; on the first quarter of the richt sifle an impression for the anterior genital mass. The vesica fellea rather smaller, on the right side of and a little behind the pyloric part of tha. intestine, with its upper end appearing on the surface of the liver: the duct nearly as long as the bag, opening in the stomach.

The sanguineous gland of subquadratic form, the largest diametor about 2.3 mm ., very much flattened, whitish. The tube on the flows of the renal chamber rather strong.

The hermaphroditic gland clothing the liver with a thin, whitisl: gray layer. The anterior genital mass small, nearly umdewhopes. much compressed, of about 1.75 mm . in length, the height a little he.. The ampulla of the hermaphroditic gland thin, otherwise a- waual.

[^19]The spermatoduct as usual, also the penis. ${ }^{1}$ The spermatotheca amd the spermatocysta as usual. The mucous gland very small, whitish and yellow.

ACANTHODORIS, Gray.

Achethedneis, liray, Figs, of Moll. Animals, iv, 18i00, p. 103, Guide Moll. Brit. Mus. 1857, p. 207.
Leanthoiloris. Alder and Hancock, Mon. Brit. Nud. Moll., vii, 1555., p. 43, app. p. xvii. G. O. Sars, Moll. reg. arct. Norvegix, 1878, p. 308, Tab. xiv, fig. 4.
A centhedoris, R. Bergh, Gattung. Nord. Doriden, 1. c., 1879, p. 3 3if 360.
Forma corporis subdepressa. Notheum supra sat grosse villosum. Branchia non retractilis) e foliis tripinnatis non multis et in orbem positis formata.

Caput latum, veliforme; tentaculis brevibus, lobiformibus. Margo aperturæum rhinophorialium lobatus.

Discus labialis armatura e hamulis minutis formata et infra cuticula incrassata prominenti instructus. Lingua rhachide nuda; pleuris angrustis dente laterali, hamiformi permagno et dentibus externis minutis (4-8).

Ingluvies buccalis bulbo pharyngeo connata.
l'enis armatura e hamulis minutis formata instructus. V'agina longissima.

The genus Acanthodoris was established by Gray, to reccive the Joris pilosa with its non-retractile gill. Alder and Hancock adopted the genus, made an anatomical examination of the typical form and gave it natural characters, which were then adopted by Gray. In several new malacological publications of a systematic nature the genus has been omitted, and in the last twenty years no new information has been published, until G. O. Sars lately gave some notes on the bulbus pharyngeus.

The Acanthodorides approach the Lamellidorides, yet differ externally in the scattered soft villosities of the back and in the smaller number of the leaves of the gill, which are arranged in a circle.

Internally they differ still more, in the presence of a strong, oral armature, in a different dentition $(4: 8+1+0+1+8+4)$, by a pecu-

[^20]liarly armel fonis and by the imbelding in the pharyngeal halthes en the buccal crop. ${ }^{1}$

The Acanthodorides are not much depressed. The back is covered with soft villi of papillar ; the opmings for the rhimophoria hase holnal margins. The gill is not retractile, athl comsint- of several generally seven to nine) tripinnate leaves, quite distinct from one another. ${ }^{2}$

The labial disk is provided with a densely set armature of small horks, passing back ward on the curioula of the momth. This late alow, in the lowest part of the mouth, at each side of the median line is thickened and prepects like two thin, lencem-haped blates over the bare space left hetween the lower parts of the prelumile collar.? The. form of the bullus phargngens is as in the Fomellizorides. but the. buceal crop is imberded in the upper wall of the hulbus, opening int." it through a slit, and is not connected with it by a short stalk.

The tongue is not broal, but nearly fills the buccal cavity, with a flat furrow for the ralula. This lat has a naked rhachis, with a low and narrow, longitudinal fold. The pleuree contain a very large, compressed, upright, lateral plate. with a lare body and a rathor short. strong hook, denticulated or plain along the inner margin: at the onter side of the large, plate are serveral four to eight small, external plates (increasing in number backwards. The sativary glanks lons. thicker in their foremost part. The ursophagus with a litue, erup-like diverticle at its root. Above the pyloric part of the inteatine opmen a
${ }^{1}$ The genus Calycidoris, of Abraham (Notes on some new genera of Nudibranchiate Moll., Anm. Mag. Nat. Hist., 4th ser., xviii, 1876, p. 132 ; and Revision of the Anthobranchiate Nudibr. Moll., P. Z. S., 18\%r, p. 22t), which is said to be allied to the Acanthodorides and Lamellidorides, still differs by its "subretractile" gill, with simple pinnate leaves, and does not possess external plates on the radula. The genus is very probably apmeryhal; in the phameromanchate Domitate it often happens that the gill appears as if more or less retracted in a cavity. Λ single new species is mentioned, of unknown habitat, the C. Guntheri, Abr., 1. c., p. 13:3, Pl. vi, fig. 1.

* Alder and Hancock mention and figure (1. c., Pl. 15, fig. 2, 3) the branchial leaves as "united at the base ;" so do Meyer and Moebius (1. c.. $p .65)$; this is not the case. The leaves are quite isolated, but there are usually one or two foliola stamling leetween them, which might simmate a coherence of the leaves (cf. also Pl. xv, fig. 6, A. and II.).
${ }^{3}$ These thickenings of the cuticle have been regarded, both by Alder and Hancock, and more lately by Meyer and Moeloius (1. c., p. 64, tal. v A, fig. 8, К 9), as "jaws," but have hardly anything in common with those orgaus properly so called.
little sac, which seems to be homologous with the biliary sac (pancreas, autt. of other Iomidida. Alder and Hancock, therefore, have denominated that part of the digestive tract as "stomach," although it in no essential respect differs from the rest of the intestine, and is just like that part in the Chromodorides, and should be undoubtedly regarded as the pyloric part of the intestine, when that sac opened lower down, as in the Chromodorides, ${ }^{1}$ in the cavity, which is included in the liver, and seems to be the true stomach. The spermatoduct and the chief duct of the spermatotheea (vagina) are of very considerable iength; the former consisting of two different parts, a superior softer, and an inferior very muscular part, internally clothed with an armafure, which is continuous through the penis. This last is rather short, the superior part solid and projecting as an armed glans into the inferior, hollow part (praputium). The armature consists of rows of hooks continued in the interior of the organ, and, as mentioned above, farther upwards; quite like that of the Polyceridx, ${ }^{2}$ Phyllidiidxe ${ }^{3}$ and Doriopsidx. ${ }^{4}$

About the biological relations of these forms very little is yet known and that only with reference to the typical species, through Alder and Hancock, as well as Meyer and Moebius. The spawn is figured by Alder and Hancock (l. c., Pl. 15, fig. 9), and by Meyer and Moebius 1. c., fig. 13,14) ; about the development nothing is yet known.

The few known species of this genus seem limited to the northern parts of the Atlantic and of the Pacific.

1. Acanthodoris pilosa (O. F. Müller). Oceanum Atlanticum et Pacificum. Doris pilosa, Cuv.
Doris stellata (Gm.), Cuv. ${ }^{5}$
${ }^{1}$ ('f. my Malacolog. Unters. (Semper, Philipp., II, ii), Heft xi, 1877, p. 464-494; Neue Nacktschnecken der Südsee, ii, Journ. der Mus. Godeffroy, Heft viii, 1870, p. 72-82 ; idem, jv, l. c., Heft xiv, 1879, p. 1-21.
= Cf. my Malacolog. Unters. (Semper, Philipp., II, ii), Heft xi, 1877 (Trevelyana, Nembrotha).
${ }^{3}$ Cf. my Bidr. til en Monogr. af Phyllidierne, Naturh., Tidskr. 3, R. V., 1869 ; Malacolog. Unters. (Semper, Philipp., II, ii), Meft x, 1876, p. 377387.
${ }^{4}$ Cf., 1. c., Heft x, 1876, p. 381-387; Journ. der Mus. Godeffioy, Heft viii, 1875, p. 82-94.
${ }^{5}$ According to Fischer (Note sur quelques espèces du G. Doris, decerites par Cuvier, Journ de Conchyl. \& sér. x, 1870, p. 290), the Doris steliuta, Cuv., and the I) lcoois, Cuv., are identical with his D. pilosa, and this with the typical form of Müller.

The D. stellata of Philippi seems a quite different form, a Plasydoris

Doris lavis, Cuv.
? Doris fusca, O. F. Müll., Zool. Dan. (descr.). ${ }^{1}$
? Doris tomentosa, Lovén, Index Moll. 1846, p. 4.
2. A. subquadratu (Ald. et IIanc.). Oceanum Atlanticum.

Doris subquadrata, A. et II. Monogr., Part. V, 1851, fam. 1, Plate 16, f. 1-3; Part VII, 1855, p. 43, and III, Pl. 46, Suppl. f. 14.
? (D. stellata, Cuv. ?). Lebest, l3cob. über die Mundung einiger Gasteropoden. J. Müller, Arch., 1846, p. 444-446, Taf. NiI, fig. 10-13. ${ }^{2}$
3. A. carulescens, Bgh., n. sp. Oceanum Pacificum.
4. A. ornata, Verrill. Notice of recent additions to the mar. fauna of the eastern coast of Nortl Amer. XXXVIII; Amer. Journ. of Sc. and Arts, XVI, 1878, p. 313. Oc. Atlant.
5. A. stellata (Gm.), Verr., 1. c., p. 313, D. bifida, Verr. Oc. Atlant.
6. A. citrina, Verr., 1. c., p. 313. Oc. Atlant.
7. A. ? mollicella, Abraham, 1. c., 1877, p. 228, Pl. NXX, fig. 1-4. Oc. Paciñeum.
3. A. ? globosa, Abr., 1. c., 1877, p. 228, Pl. XXX, fig. 5-9. Oc. Pacif.

1. Acanthodoris pilosa (0. F. Müller). Plato X, fig. 12-15; Plate XI, fis. 1-2; Plate XII; Plate XIII, fig. 2-5.
Acanthodoris pilosa (O. F. Müller), Alder and Hancock. Monogr. Br. Nudibs. Moll., Part V, 1851, fam. 1, Plate I, f. 1, 3-5, 12; l'late 2, f. $2-6$; Plate 15; Part VII, 1855, Plate 46; Suppl. Plate 48, f. 1.

Doris pilosa O. F. Mallers, Meyer und Moehins, Fanna der Kicher Bumt. I, 180ũ, p. 63-67c. tab.; taf. V, A.

Color pagina superioris corporis albus vel luteus vel fuscus vel griseus vel rubro-brunneus vel niger.

Dentes radula hamo pro parte denticulato.
Hab. Oceanum Atlanticum septentr., Pacific. septentr.
 II, ii.). Heft. xii, $187 \pi, \mathrm{p} .507$.
${ }^{1}$ It is in most cases a quite useless task to try to elucidato the species of Dorides of the elder authors; their examinations were all too superficial and their descriptions don't contain the data necessary for their verification. The best way would be to wholly cancel these names (D. fusca, M. ; D. lavis, L., ete.) which have given later authors so much trouble. On the Doris fusca of O. Fabricius, Mörch has even formed a grenus P'roclaporia (Rink. Grönland. I, 1857. Tillag. 4, p. 78), that must be cancelled, too.
= The short statements of Lebert about form and color of the animal
 the species described by Alder and Hancock. The figures of tho (tongro) teeth given by Lebert, rough as they are, suffice, on the other hand, to secure the identilication with the D. subquadrate, or at least with a nearly related species.

Of this species I have had a lot of specimens for examination, all presumel in spirits: partly (two) from the neighborhoorl of Bergen Norway). kindly sent by Mr. Friele, partly (one) from the Frith of Kiel, sont by l'rof. Mombius; but particularly (seventern) from the coast of Denmark (Striib, lille Balt.)

The individuals varied much in eolor. The variability of the color is notel by . Wher and Itancock. They were whitish, or whitish sprinkled with brownish, or dark (bluish) gray, or yellowish, or brownish, or reddi-h-brown on the back, with whitish or yellowish sides ame foot. The longth reaching 12.0 mm ., by a breadth of 8.0 and a height of 5.0 mm . ; the foot then about 4.0 mm . broad, the branchial leaves reaching to the height of about 1.0 mm .

The back covered all over with the soft, slender, conical and pointed, erect ior curved) papillir of very different sizes, most of them small; between these are larger ones ${ }^{1}$ some of the largest divided into two or three proints, and some of them connate and forming small crests, divided above into two or three points. The margins of the sheaths of the rhinophoriat rather prominent, divided into several (six to eight) smaller and larger pointed lobes; the club of the rhinophoria with about twelve to twenty leaves. ${ }^{2}$ The branchia, in both Norwegian specimens, with eight tripinnate leaves, otherwise with seven to nine (as mentioned by Meyer and Moebius). The anal papilla low, with several papillular and a star-shaped aperture ; on a low crest, issuing from its postrrior, is a strong papilla. The head and the tentacles (Plate X, fig. 143) as figured by Alder and Hancock (1. c., Plate 15, fig. 1 . The anterior margin of the foot with a fine transverse furrow (Plate \mathbf{X}, fig. 1ta). The genital opening is a longitudinal slit (Plate XI, fig. 2) .

The peritoneum was mostly of reddish-brown color.
The central nervous system showed ${ }^{3}$ the cerebral ganglia roundedtriangular, not much flattened, a little larger than the more rounded visceral, which lie behind and on the outside of them and show a slight notch in the outside; on the inferior side of the visceral ganglia the pedal ones are set nearly perpendicular on the latter, connected by the

[^21] of the ganglia. From the outer part of the right visceral ganglion issues a nerve nearly as long as the transverse diameter of the whole central morrons system and welling to a rather lare qumblion fungl. penis) at the root of the penis; this ganglion contains only rather
 (Plate \mathbf{X}, fig. 15). 'The part of the brain which gives ofl' the nervus opticus, smmlates a ganglion. The proximal ganglia wlactoria balbi. form, somew hat smaller than the hoeal ganclia, but mueli laver than

 roumbed, having ahout one-fifth of the size of the last, comtainimg one very large cell and a few smaller.

The eyes with black pigment and yellowish lens. 'The otocysts lying at the hinder part of the cerebral ganglia, as large as the eyes; with numerous small otokonia, which in the specimens from Kiel, were not much calcified. No trace of spicula in the leaves or other parts of the rhinophoria. The spicula of the skin were, so to speak, limited to the margins of the mantle and of the foot; in the last they
 except that in the foremost and hinder part of the sole some few spicula were sem scattered.

The amount of spicula in the skin seems to vary notably in the Acanthodoris pilosa, as seems to be the case in general in different forms of Dorididre, especially, as far as hitherto known, in the Polyceratide (Polycera, Ancula). (Cf. Meyer and Moebius, Fauna der Kieler Bucht, I, 1865, pp. 52, 60.) F'rey and Leuckart (Beitr. zur Kenntn. wirbellose Thiere, 1847 , p. 145 ! described a very regular position of the spicula, but not, as it seems, in accordance with nature.

In the margin of the mantle the spicula were arranged as figured by Alder and IIanc., l. c., I'art VII, Pl. 48, supplem. fig. 1, only more concentrically at the transition from the margin to the side of the borly; a narrow belt of spicula crossed the back before the region of the gill. Some spicula were also seen in the tentacles. Thes spicula reached a notable length (at least 0.6 mm .), in old individuals they were more calcified than in younger ones. The skin was filled with uniecllular glands, especially in the dorsal papillies. ${ }^{1}$

The mouth-tube was wide and strong, about 1.5 mm . long; the bulbus pharyngeus in the largest individuals about 2.75 mm . long, by

[^22]a breadth of 2.0 and a height of about 3.0 mm . ; the sheath of the radula projecting backward nearly 1.0 mm . ; the lip-disk sometimes surrounded by a ring of black pigment. The armature of the lipdisk entirely as shown (PI. XII, figs. 1-4, 10-11) by me in the form from the Pacific, also the crop (Pl. XIII, fig. 2) of the bulbus. ${ }^{1}$ The tongue in the eight specimens examined was proviled with five, seven, eight, nine rows of plates, farther backwards also sixteen to twenty developed, and three younger rows; the total number amounting thus to from twenty-seren to thirty. ${ }^{2}$ The large lateral teeth ${ }^{3}$ yellow in the body, equecially in the anterior-inferior part, with commonly five to eight denticles on the inside of the hook ; sometimes, especially in the younger plates, the number of denticles rose from elewn to fitteen. sometimes the three to four outermost denticles were much larger than the re-t, sometimes the denticulation was quite irregular; the leeight of this plate reached 0.4 mm . The outer plates (Pl, XI, fig. 1) commonly four to six, seldom seven to eight; in a series of four on the hindur part of the tongue, the outermost measured about 0.0.), the next $0.09,0.11,0.125 \mathrm{~mm}$; they were quite colorless, compressed, with the upper side flattened, and rather erect.

The salivary glands as in the purple-colored form from the Pacific. No constant dilatation of the middle of the asophagus (as figured, Pl. I, f. $12 g$, by Alder and Hancock), but a strong, particular one at the root as figured (1. c. Pl. I, f. 12f) by Alder and Hancock and by me (Gatt. nordischer Doriden, l. c. 'Taf. XIX, fig. 14c). The stomath as in the Iacific form ; the intestine sometimes dilated in its first part, sometimes absolutely of the same caliber as the rest, and neither externally nor internally different from it; a little bag (biliary sac, which has been noticed by Alder and Hancock (l. c. Pl. I, fig. $12 k$), opening into the right side of this part of the intestine. The posterior visceral mass (liver) flattened and excavated on the anterior-inferior right half. The sanguineous gland whitisl, consexoconc:are, short and irregularly kidney-formed, with the excatration

[^23]forwards, trannversely situated, with a largent diameter of 3.0 mum. The renal chamber and the syrinx as in the form from the Pacific.

The hermaphroditic gland as in this last variets, its whice cotor onn-ra-sing with the hue of the liver. The anterior genital mans at short pyramidal form, with the point outwards, about 4.75 mm . long, the berauth and the height a litue less. The ampullat of the lecrmaptero. ditic gland yellowish-white, forming a single thsa, about 4.0 mon. long. by a diancter of 0.7 .5 man. lyiug on the upper part of the bakk of the mucous gland. The spermatoduct yellowish, about 15.0 mm . long, constricted a little above the middle of it- length; strong, sloping inta the penis, which is about 1.0 mm . long. The armature of the penis entirely as in the furm from the Pacibic, continued batewards in the interior of the spermatoduct for a length of 6.0 mm . ; the hooks rising to the height of about 0.035 i man, nearly colorless. ${ }^{1}$ 'The s! $\mathrm{m}-\mathrm{r}$ matotheca (Pl. XIII, fig. Su) *pherical, of a diameter of ahout $\because 1$ mm.. greenish or whitish; the spermatorysta (tigr. Sh) much smaller. pyritom, yellowish; both filled with sperma The ohief duct (the vagina, fige. idd) very long, with several (four) longitudinal tolis, which are folded again transversely : the structure seemed to resemble en. cirely the form from the P'alitic ; in the cavity was more or lase - permat. The mucous gland yellow and yelhwish-white; the fold of the duc: with hrownisherray points, but no batk !igment on the lower part ot the vagina or penis.

One specimen of this typical form, with "brown mantle," and in all re-spects agreeng with the Athatic. was drealyed by Dall at Ky-kas. in June, 1873 , on rocky bottom at the depth of ten fathoms.

An individual of a (in living state) " yellowish-white" variety was drefged ly Dall in Popmfl Strait (Shamagin I-lande), on rocky bottom at a depth of six fathoms.

The animal preserved in spirits was 10.0 mm . long, by a breadth of 6.0 and a height of 4.5 mm . ; the rhinophoria 1.5 mm . high, the gill 1.0 mm ., the foot 3.0 mm . broad. The color yellowish-white. In the club of the rhinophoria about thirty leaves; nine branchial leaves: the anal papillt with three small protuherances; the remal pore very distinct on the right side. The genital opening very wide; the bulbus pharyngeus 2.0 mm . long; the tongue with seven rows of plates. the total number of these twenty-six $(16+3)$; five external

[^24]plates. The divertiche of the wsophagus nearly as larce as the trae bulbus. 'The spermatoduct and the penis as usual, also the vagina; the spermatotheca of 1.6 mm . largest diameter. No trace of pigment on the vagina or penis, and the peritoneum was colorless.

Another variety of the species, with "brown mantle and yellowishwhite papilla," was dredged by Dall, in Yukon Harbor (Shumagins), in August, 1874, on sand and stones, at a depth of six to twenty fathoms.

The individual preserved in spirits was 9.0 mm . long, by a breadth. of 6.5 mm ., and a height of 4.5 mm . ; the breadth of the foot 4.0 mm ., the he ight of the gill $1 . . \mathrm{mm}$. The back of the animal densely browndotted, especially the circumference of the gill and the free area left in the middle of the gill; the dorsal papillar all whitish; the stallk of the rhinophoria and the inferior part of the club densely dotted with brown, also, in a somewhat slighter degree, the outsite of the branchial leaves. 'The under sile of the mantle and the upper side of the margin of the foot and, in a slighter degree, the sides of the body and the sole of the foot dotted with an enormous quantity of brownish-gray points. 'The form as usual. The gill with nine leaves, of which the two posterior were much smaller than the others.

The central nervous system as usual ; the ofocysts very conspicuous under the magnifier as chalk-white points. The mouth-tube 2.0 mm . long. The bulbus pharyngeus 2.0 mm . long; the sheath of the radula projpeting 2.0 mm ., bent downwards. The armature of the lip-disk (P1. XII, fig. 10, 11) very like that of the var. albescens (cf. Pl. XIII, fig. 4). The buccal crop as usual. The tongue with nine rows of plates; the total number of rows, twenty-five $(13+3)$. The large lateral phates as usual ; the denticulations rather long amb somewhat irrerular. The number of the external plates (fig. 12) reaching to six.

The sulivary glands, the usophagus with its diverticle, the pyloric part of the intestine with its bag (biliary sac), and the liver, as usual. The sanquineous gland rather larere, covering, besides the centra? nervous system, the whole of the bulbus pharyngeus.

In the lohes of the hermaphorlitic gland, masess of zo"sperms. The anterior genital mass of the usual form ; the ampulla of the hermaphoroditic duct somewhat larger. The spermatoduct as usual ; so, too, the penis, with its armature ; the length of the glans about 0.5 mm . The spermatotheca and the spermatocysta as usual; also the chief duct (vagina), the cavity of the last filled with sperma. The mucous yland yellowish-white and in the centre (athuminous gland) brownish-
gellow. Yery scanty hlack pighemt on the infe rion part of the warios and of the penis; the peritoneum of the back, on the contrary, very dark brown.
2. Acanthodoris pilosa (0. F. Miiller), var. allescens, I1. X., fig. 14, 15; 11. XI, lig. 2; P1. XII, fig. 13-16.
Color flavescente-albidus.
Hamus dentium (linguas) edentulus vel parce denticulatus.
Habitat. Oceanum Pacificum septentrion. (Aleutian Islands).
Two rather large specimens of this varicty have been dredged by Dall, in June and July, 1873, at Kyska Harbor (Aleutians;, on sand or on rocky bottom, at a depth of nine to fourteen fathoms.

According to Dall, the color of the living animal was "yellowishwhite;" that of the specimens preserved in spirits was so, too, but very likely much more whitish. The length was 16.0 or 17.0 mm ., by a breadth of 6.5 to 8.0 mm ., and a height of 6.5 mm . ; the height of the rhinophoria 2.5 to 3.0 mm ., of the gill 3.0 to 4.0 mm . ; the breadth of the foot 5.0 or 6.0 mm ., the length of the genital opening 2.0 or 3.0 mm . The form as in the typical D. pilosa; the rhinophoria showed about twenty-five broad leaves in the club; there were nine branchial leaves; the anal papilla very low; the renal pore rather large.

The central nervous system as previously described. The distal olfactory ganglion small; a large (diameter, 0.4 mm .) ganglion penis (fig. 15). The eyes with rich, coal black pigment ; the otocysts visible under a lens as chalk-white points, with about one hundred and fifty otokonia.

The bulbus pharyngeus 3.5 mm . long, with the sheath of the radula projecting 1.3 to 1.5 mm ; the height of the bulbus, with the crop, 4.0 to 4.5 mm ., its breadth 2.5 to 3.0 mm .

The older elements of the lip-plate (Pl. X1I, figs. 13, 1.4) agrecing in form with those of the typical species, but oftener showing a granulated interior; the said elements reaching a length of about 0.0 .4 mm . 'The diameter of the disk and mouth about 3.0 mm . 'The breadth of either half of the disk 0.66 mm .

The tongue showed nine or ten rows of teeth; the whole number of rows, twenty-nine (16 or $17+3$). The large lateral tecth were as in the typical species, reaching 0.65 mm . in height (Pl. XII, fig. 15, 16), without or with only a very slight denticulation of the hook (fig. 15). The number of the outer teeth, three to fise. ${ }^{1}$

[^25]The salisary glands deeply imbeded in the cavity for the wsophagus at the fore-end of the liver. 'The œsophagus with its rather large (1.5 mm . long) diverticle, the stomach, the intestine with its little (1.0 mm . long bag, as above. 'The liver 7.0 to 9.0 mm . long, 5.0 to 6.0 mm . broad, $\overline{5} .0$ to 6.25 mm . high, of yellowish-gray color. The sanguineous gland of irregular, oval form, of a largest diameter of 4.0 man.. ly a the huess of 1.0 mm ., and of gray ish color. The renal syrinx about 0.75 mm . long.

The anterior genital mass 6.0 or 7.0 mm . long, 4.0 to 6.0 mm . high, and 3.0 or 4.0 mm . thick. The ampulla as usual; also the (about 40.0 mm . long) spermatoduct and the (nearly 2.0 mm . long) penis, with its armature; the hooks often set in pairs. The spermatotheca (diameter, 4.0 mm .) and the spermatocysta (diameter, 1.5 mm .) as above; the chief duct, with the vagina (about 23.0 mm . long, by a diameter of 0.4 to 1.0 mm .), as usual, and also its internal cellular clothing I'l. X, fig. 13); the yeliow nucleoli somewhat brighter; the cavity nearly filled with sperma. The mucous gland as usual. No black pigment on the inferior part of the vagina or on the penis.
3. Acanthodoris pilosa (0. F. Mïller), var. purpurea, Pl. XII, fig. 1-9.

Color e purpureo brunneus et flavescente-albidus.
Jhbitnt. Oceanum L'acificum septentrion. Insula Aleutiane (Unalashka).

Only two specimens of this species were dredged by Dall, in September, $1 \backsim 7$, on mud and stones, at a depth of about sixty fathoms.

The color of the living animal was, according to Dall, "purple-brown and Fellowi-h.white." The length of the animals preserved in spirits was 24.0 or 25.0 mm ., by a breadth of 9.0 or 10.0 mm ., and a height of 7.5 mm . ; the foot 6.0 mm . broad ; the height of the rhinophoria about 3.0 mm ., of the branchial leaves 2.3 mm . The color of the batck reddi-h-hrown; the stalk of the rhimophoria brownish, the club yellowi-h; the branchial leaves yellowish-white, the last brownish at the rhachis; the under side of the mantle margin, with the sides of the borly, the head and the foot, yellowish-white, dotted with brownishgray all ower, the color much more scanty on the sides of the foot and still more so on the head and on the sole of the foot.

The form was somewhat elongate. The back covered all over with pointed, rather 0.75 mm , high, digitiform, soft papille and with inter mixed smallew ones. The margin of the rhinophor-holes with several printed, projecting, digitiform processes; the stout club of the rhino-
phoria with about twenty leaves. The hranchial leaves -tmors, inh beth individuats erght in number, the two himbermont soprated lig a mam: w crest, which rises into a larger papilla; before this the anal papilla, covered with some papillx, at its right side is the renal pore; on the space before it were several smaller papille. 'The under side of the free margin of the mantle (about 2.0 mm , broad) smooth. The hear large, the tentacles short. The genital opening a rather large, crescentic orifice. The foot rounded behind.

The peritoneum was richly dotted on the back with brownish-red.
The central nervous system nearly quite as in Ac. pilosa; the proximal olfactory gancriat of oval form, trum distaf wats combl not he detected in the root of the rhinophoria, but only a fu-ithom =welling of the nerve, with scattered nervous cells. The subcercbral and pedal commissures connected, the visceral isolated. The buccal ganglia larger than the olfactory, of oval form, connected by al commissure nearly as long as each ganglion ; the gatimo monphat fal gatzliat haveloped on the side of the nerve, which is a little longer than the ganglion, and in size about one-fifth of the former ; the contents one very large cell, three or four smaller and several quite small ones. On the upper part of the penis the large ganglion remital\% of ahout the diameter of 0.3 mm ., rounded, partly covered with black pigment, consisting of only rather small cells; in the first parts of the nerves given off from the ganglion, one or two rows of nervous cells of the same kind as in the ganglion.

The eycs with black pigment, yellow lens; the optic nerve rather long. As chalk-white points the otocysts were situated on the liinder part of the cerehral gancrlia, where they touched the pe hal was: they were filled with solid, yellowish otokonia of about the usual form and size, but, in both respects, rather irregular. In the leaves of the rhinophoria no spicula. In the margin of the mantle and of the foot almost no spicula at all, but everywhere in the skin, especially on the back and the papilla, were an cnormous quantity of large and small glamblar openinge. In the interstitial connective tiosur were hardly any calcified cells at all.

The mouth-tube was about 2.3 mm . long, wide, with a glandular belt on the outside, not closed below ; on the inside lined with a yellowish cuticula. 'The bulbus pharyngeus strong, about 4.0 mm . long, and the sheath of the radula projecting nearly 10 mm, Tram the powerior part of the under side, directed straight backwards or downwards; the height (through the buccal crop) 4.0 mm ., the breadth 2.5 mm . The
buecal whe making nearly half of the whole bulbus, and of the maval form; the walls very thick; the compressed and rather small cavity communicating through a long cleft with the anterior half of the small buceal cavity. The lip-disk (fig. 1) of rounded contour, clothed throughout its whole breadth (on each side to about 0.5 mm .) with the light, horn-yellow colored armature; the lowest part of this, as usual in the Acanthodorides, injured or wanting; the breadth of the belt deereasing towards the upper end, where it is interrupted in the middle line, also at the lower end. The armature (fig. 2bb, 3b, 4) composed of how in. whose peints are directed forwards towards the opeming of the mouth), nearly like, but still differing a little from those in the typical $A c$. pillosa, reaching the height of about $0.04 \mathrm{~mm} .$, yellowish, with rounded, bifid or irregularly cleft points. The lancet-shaped (fig. $1 a, 2 a, 3 a$) blades at the inferior angle of the mouth as usual. The tongue with nine or ten series of plates, farther backwards thirteen to fifteen developed and three undeveloped series; the total number in this way, twenty-five to twenty-eight. The large lateral plates relatively larger than in the Ac. pilosa, and (fig. 5, 6) less thick in the anterior-inferior part of the body, with relatively larger hook; the denticulation of this last much weaker and much more irregular ; in one specimen generally two to four denticles, sometimes only a few very insignificant ones or none at all (fig. 6) ; and this was the case with the other specimen, in which only some few phates showed two small denticles. ${ }^{1}$ The outer lateral plates as in the typical form, scarcely more than from four to six.

The salivary glands whitish, rather strong at their short first part, in the rest of their length thin (fig. 7), accompanying the ocsophagus to the cardia; the duct rather short (fig. $7 a$).

The œesoplagus forming a little crop, ${ }^{2}$ with thin walls and longitudinal folds on the inside ; in the rest of its length rather thin. The stomach rather small, with the usual biliary apertures. The intestine (fig. 8a) somewhat inflated in its first part, with many rather strong folds and one particularly thick; a little over the point, where it appears on the surface of the visceral mass, on the right side, a little, scarcely pedunculated bag (fig. 8b), of the length of 1.0 to 1.25 mm ., with fine, longitudinal folds; the rest of the intestine (fig. $8 c$) somewhat narrower; the total length of the intestine about 12.0 to 13.0

[^26]mm ., by a diameter of 1.0 to 1.5 mm . The contents of the stomach and of the intestine indeterminable animal matter, mixed with an enormous quantity of different and partly very handsome forms of Jinlumuma, with some pulylhalomia and some omall ...phyala, and fragments of the same.

The liver about $9-9.5 \mathrm{~mm}$. long by a breadth (at the forepart) of $6.5-5.5$ and a height of $6.25-6.0 \mathrm{~mm}$. ; the posterior lall somewhat pointel, the anterior notably flattened and excatyatel on the riaht -ible : around the cardia the liver appeared naked (not covered by the lhermaphmatit: gland) of (greeni-h) gray color, in sections it was yollowish.

The ramifications of the aorta nearly as in the typical Doridide, ${ }^{1}$ the row of the posterior aortat still longer and the Art syringis menelis strongrer and more ramilied. The sanguineous gland yellowi-1t-white. rather flattened, of irregular triangular form, lohulated, about :3..) mon. long.

The renal chamber large; the yellowish-white renal syrinx about 0.75 mm . long, its tube somewhat more than twice as long, immediately continuous with the tube on the floor of the renal chamber.

The hermaphroditic glaml easily distinguishable from the liser through its more whitish color : the secondary (ovigemont) luhes rather small: in the lobes zowserms and large oiggene cells. The anterior genital mass of plano-convex heart-shape with the peint down and backwards; the length about 5.0 mm . by a breadth of 4.0 amd a height of 5.0 mm . The ampulla of the very thin and white hermaphroditic duct resting on the uper posterior part of the mucous gland, yollow. short and thick (4.0 mm . long ly a diameter of about 1.2 .5 mon. forming a simple ansa. The vas deferens yellowish, stronge re-ting upot. the upper side of the genital mats with its large eools and Iremy deseembing before its anterior margin to the penis, constricteal about tha
 the enl of the spermatoduct somewhat thicher, about 21 mon. Lung. somewhat curved; its lower part hollow, the rest solid and yrominent in the casity of the former as a erlindrical glans of the lenght of ahoms 0) 6 num. The glans with about ten series of yellowish hook, whieh from a rather large hasis raised to the height of ahout 11.01 mon. : the continuation of the armature reaching through the interior of the ghans and of the spermatoluet nearly up to the strieture of the lath, hut the

[^27]number of sories here smaller, about five to eight. The eprematotheea whiti-h, forming an owal hag of 8.0 mm . largest diameter; the spermacocysta yollowi*h, of $1.3-1.5 \mathrm{~mm}$. largest diameter, the ducts as in the typical Ac. pilosa The chief duct, too, very (about 25.0 mm .) long, rolled up in many coils, partly spiral, the diameter varying bef ween about 10.3 and 11.7 .5 man. ; the last fouth of the duct (vagina) with seattered Whack pigment, somewhat narrower and with a rather strong retractor muscle at its commencement ; the interior of this duct with some few strong lonsitudinal folds, clothed with a cuticula, and under the same a very fine layer of round and angulated cells with a large round or oval vucleus of the diameter of about 0.4 mm . and a rather larese yellow nucleolus (Pl. X, fig. 13). In the cavity of the vagina more or less sperma. The mucous gland yellowish and white; the central mass falbuninous gland yellow ; the duct with scattered black pigment on the outside also on the outside of the lower part of the penis), with the usual foll. The vestibulum genitale with black pigment on the folds, the same pigment was seen in the lowest part of the cavity of the penis and of the ragina and on the folds of the duct of the mucous gland.

A very similar animal, but "with brown mantle," was dredsed by Dall in Ǩy-kia I Iarbor (Aleutians) in July, 1873, on saml, at a depth of nine to fourteen fathoms.

It was of large size ; the length 21.0 mm ., by a breadth of 11.0 and a height of 9.0 mm . the margin of the mantle 2.0 mm . broad, the foot fi.t) mm . broad; the height of the rlinophoria and of the gill 3 mm .; the genital aperture 3.0 mm . broad. The color dirty brown on the upper sile; the rhinophoria and the branchial leaves yollowish, dotted with grayish, ecpecially on the stalk of the rhinophoria; the sule of the forot yollowish, the under side of the animal whitish; ihw under side everywhere with an enormous quantity of gray and black dots. The number of branchial leaves nine.

The peritoneum black.brown; the central nervous system, eyes, otocyst., at preaiously described. The bulbus phargngeus of the length of 4.5 mm, by a breadth of 3.0 and a height (with the crop) of 4.75 mm. ; the sheath of the radula projecting 1.25 mm ; the erop alone of the height of 2.3 . mm , and 3.25 mm . broad. The lip-li.k as abowe, the thickenings in the lowest part of the mouth 1.2 mm . long, of which nearly half freely projected. On the tongue nine row: of

[^28]plates, farther backwards eighteen luveloped and three jomber rows. the total number thirty; the plates denticulated as previously mentioned, the lefight of the large plates riving to 10.7 mm ; The nmmber of extemal plates four to five. 'The wesplageal divertice of a lar zeot diameter of about 8.0 mm . The pars perica of the intertione of about 4.5 mm . length, with higher folds than in the rest of the inte- ine., which had a length of about 15.0 mm . ; the hag at the firet part of the integtine $1 ., 5 \mathrm{~mm}$. long. The liver 12.0 mm . long by a brealth of s. 11 and a haight of 6.0 mm . The sanguineous glamls whitish, 5.0 man. long by a breadth of 6.0 mm . and 2.0 mm . thick, convexo-concave, the foreond flattened, by the buccal crop), the hinder end with two transwere furrows (froduced by two coils of the spermatoluct ; the anterion emitai mass 8.0 mm . long by a breadth of 3.5 and a height of 7.5 mm. The ampulla of the hermaphroditic duct 5.0 mm . long, whiti-h. The wils of the spermatoduct and of the vagina in this individual cosering the upper side of the mucous gland, and ascending to the back betweren the pharyngeal bulbus and the liver: a coil of the formor embraced the sheath of the radula. The first part of the spormatoduct 12.11 mm . Long, the last of the length of about 2.5 .0 mm ; the penis absut $3 . .5 \mathrm{~mm}$. long, the armature as usual. The spermatotheca nearly splurical, of 3.5 mom. diameter ; the spermatocysta yellowish, round, with a diameter of 1.5 mm . ; the chief duct, vagina) $3: 3.0 \mathrm{~mm}$. long with at entral diameter of 1.2 mm . ; the structure of the wall as above; the last, narrower part (from the m . retractor downwards), 5.0 mm . long. 't he vestibulum, as well as the inferior part of the vagina and of the pr-nis, with very scanty black pigment.
4. Acanthodoris cærulescens, Bgh., n. sp. Plate XIII, fig. 6-7; Plate XIV, fig. 10.

Color paginae superioris corporis cærulescens.
Ientes ralula hamo per totam fere longitudinem denticulato.
Hab. Mare Beringianum (Nunivak Island).
One specimen of this species was found by Dall at the north ent of Nunivak Island, Bering sea, in July, 1874, on stony bothom, at the depth of eight fathoms.

According to Dall, the color of the living animal was blui-h. The animal preservel in alcohol had the length of 14.0 mm . hy a liofith of 5.0 and a breadth of 5.0 mm . the length of the foot was 12.5 mm . by a breadth of 6.5 mm. ; the height of the rhinophoria 2.0, of the leranchial leaves 1.5 mm . The color uniformly gellowish-white. with the back of a slightly bluish hue.

The form elongate-oval. The back covered all over with irregular (the ereate height reaching about 1.5 mm .), conical, rather soft and flexible papilla, in general larger than in the typical species. The margin of the rhinophor-holes thin, somewhat prominent, with two anterior strong tubereles and a posterior much smaller one; the stalk of the clab rather low, the latter with about twenty-fise to thirty leawes. The hamehia consisting of nine to ten leaves, the arjacent border set with several strong tubereles: the branchial leaves quite isolated at their has-, apparently simply pinnate. The anus prominent, before the same a small tuberele, behind it a much larger one. The margin of the mantle rather thin, on the upper side covered with a mass of small wi :ail larger papillix and tubercles, the under side smooth. The heal braml. Hat, with prominent rounded, flattened tentacula. The foot broad, rounded behind.

The central nervous system as in the typical species; the buccal gancrlia rounded, the commissure between them very short. The eyes with hack pigment and yellow lens. The otocysts a little smaller than the eyes, with numerous otokonia of the usual form, and reaching a length of 0.0 .3 mm . 'The leaves of the rhinophoria without spicula; in the axes of the organs large, molecularly calcified cells and groups of smaller calcified cells. In the papilla of the skin of the back were no spicula at all, on their surface the usual large quantity of glandular cells; in the skin beneath the papille cells and groups of cells as in the case of the rhinophoria.

The mouth-tube rather wide, with strong cuticula. The bulbus pharymens formed apparently as in the typical species; the lip-plate compused of many rows of rather low (the height rising to about $0.0: 2$ man.) , very (fig. ©) finely striated columns. The tongue with ten rows of teeth; further back, twenty-six developed and three undeveloped row: ; the total number thus thirty-nine. The lateral plates large. jellow, of usual form, with a series of denticles abog nearly the whole of the inner margin of the hook (fig. 1 fia). The external plates colorless, eight in number; somewhat depressed (fig. 7, 16), obliquely rising from the cuticula of the tongue (fig. 7 , of nearly equal size: (xcrphing the outermost (fig. 16b), which is much smaller.

The salivary glands seemed of the usual form. The asophagus and the stomach as usual. The intestine issuing from the liver at the middle of its length on the left side, rather short. The liver of the lengt! of about 9.0 mm . by a breadth and a height of about 4.2 mm . :
the right anterior half exparated (om acoount of the anterion ernita mass) ; the color brownish-gray.

The heart and the sanguinous gland as nsual, al-o the renal chamber and the renal syrinx.

Tise homapheroditic gland by its yollowish color contra-ting with the liver, chothing the under side, part of the left side, and its right anterior half. The anterior genital mass rather compressed, about 6.0 mm . long liy a breadh of 2.0 mm . The ampullat of the hermapheroditic duct rather short, sausate-shaped, about 2..3 mon. loner, curver and whiti-h. The larger part of the penis was gone, but hook- were seen in the remaining part as in the typical species. The sperma totheea rather large, bag-shapeel, about 3.5 mm . long; the vagina rather wide, ahout 10.0 mm . loner. The mucous gland white, and the albuminous gland yellowish-white. ${ }^{1}$

This species seems very distinct from the typical one, by its color and by the different form of denticulation of the large plates of the tongue.

POLYCERATID狌。

This laree family, so rich in generic forms, wats found represented in the northern Pacific only by two generic types, Polycera and Irioplea.

POLYCERA, Cuvier.

Polycera, Cuvier, (1812?), Regne-anim., 1817, ii, p. 390. ${ }^{2}$ Regne-anim, ed. 2 , iii, p. 5 .
Themisto, Oken, Lehrb. der Zool., 1815, p. 278.
Cufca, Leach, Moll. Britann. Synopsis, 1852, p. 21.
Polycera C, Ald. and Hanc., Observ, on the genus Polycera, Ann, Mag. of Nat. Hist., vi, 18 11 , p. 337-342, P1. IN.
Timiacia, O. Fr. Müller, Zool. Dan., i, 1781, p. 6j-68. ${ }^{3}$
 Pl. xii, figs. 1, 2.
: The antaine genital mass was son hatemed and ahteren, that the mature of its different components could not be determined with certainty.
: According to a note of Hermannsen, under the genus Themisto, Oken, (Ind. Gen. Malacoz. primordia, ii, 1849, p. 522), the genus Polycera was estahimed ly Cuvier, 1812, [hut this is pmbalily a typuraphial error, since, under the genus Polycera itself, he indicates only the year 1817Dall,] (cf., l. c., p. 314).
${ }^{3}$ Limacia, Hartm., Neue Alpina, i, 1821, p. 208 (Arion, Fér.).

Limbus frontalis digitatus vel tubereulatus. Branchia i)-7-foliata. Apmendices dorsales extrabranchiales 1-3. Tentacula brevia, lobiformia.

Lamella mandibulares laterales fortes, sat applanater. Radula rhachide nula; pleuris dentibus lateralibus hamatis duobus (margine levi), interno minore, externo majore, et dentibus externus 4-8.

Prostata magna; pleuris ut in omnibus Polyceratis.
The genus Polyrera was established by Cuvier (1812?, to receive the Ituris quadrilineata of Miller and (in 1830) allied forms; a few Years afterwards, 1815 , and not knowing the genus of Cuvier, Oken formed his The'mistr, nearly identical with the Polycera of Cuvier.* The Cufac of Leach 1552 , is entire ${ }^{\text {C }}$ congeneric with the genera of Cuvier and Oken, as is also very likely the Phonerobranchus of A. Fridol Moquin-Tandon : The Limacia of O. Fr. Miiller (1781), contains a whole series of different Nudibranchiata, among them the D. 'uadrilineata, and, as first-named species, the D. verrucosa; the name cannot therefore be employed here.

Although, through Cuvier and Alder (1841), their external characters were somewhat made known, still Polycera, like so many other Nudibranchiata, remained very superficially known, until the large monograph of Alder and Hancock, ${ }^{1}$ that first really unveiled their external and internal structure, although Frey and Leuckart ${ }^{2}$ had given some anatomical notices of these animals. Lately more light has been spread over the northern species of the group, through the investigations of Meyer and Moebius, ${ }^{3}$ and of G. O. Sars. ${ }^{4}$

The true Polycera shows a form of body common to the whole family. The well-developed frontal margin is more or less curved in

[^29]the middle, with its free marerin tubereulated or digitate. 'The iroutal veil is continued in a more or less tuherculated ridge, that limits the trae back, and posteriorly ends in a single strong or in several swaller dorsal (branchial) appendices on the outside of and behind the regies of the gill. The true back with longitudinal rows of more or leas developed connected tubercles, sometimes forming low longitudinal ridges. The number of leaves in the club of the rhinophoria is not Barge. The gill is comprosed of a moderate number (five to seven) of leaves, which are either simply pinnate or composite (hi- or tripinnate). The tentacles are small, flattoned or auriculate. The jaws or mandibular plates in form somewhat recall those of the - Eolidiodn, strong, Alattened, sometimes with a peculiar superior process. The rhachis of the radula naked; on the pleura two large hook-formed lateral teeth, of which the outer is much larger than the inner ; at the outside of the laterals are four to eight, somewhat flattened uncins. A large prostate gives the genital apparatus a particular feature ; the armature of the penis is of the usual kind.

About the biological relations of Pulyeper very little is known, as asual among the Vudibrazelicutu. The spawn of the most common northern species is known, and a part of the developmental history has been investigated by Ray Lankester. ${ }^{1}$

A small number of species have heen deseribed by different authors in the course of years. Aher and Iancock (Monogr. part 7, 185. p. 45, XVIII) establishel and rather well characterized two groups of Polyerra; aceording to these authors Gray soon after (Guide I, 1857, p. 213) denominated these groups Polycera (typical) and Palia. which perhaps might be conserved as subgenera.

I. POLYCERA (stricte).

Margo limbi frontalis digitatus. Folia branchialia simpliciter pinnata ; appendices dorsales (branchiales) singula majores.

Lamellæ mandibulares processu superiori alæformi.

1. P. quadrilineata (O. F. Müller). M. Atlanticum; Mediterraneum.
2. P. horrida, Hesse. Journ. de Conchyliol., 8-., NiII, 4, 1873, p. 345. M. Atlanticum.

[^30]3. P. plabeia, Lovén. Index Moll, 1846, p. 6. ${ }^{1}$ M. Atlanticum.
a l^{\prime}. darfom is (Quatref.). Phamérohanche doxiforme. Moquin-Tandon. (piseud. A. Frédol) Le monde de la mer., 1864, Pl. XII, fig. 1. M. Mediterraneum.
; P'. Chterridu Quatref.) Phamerobanche at ehevrons. Moquin-Tandon. (do) l. c., pl. NII, £. 2. M. Mediterraneum.

II. PALIO, Gray.

Mitrgo limbi frontalis tuberculatus. Folia branchialia bi- vel tripinnata; appendices dorsales (branchiales) minores, complures.

Lamelle mandibulares simplices (sine processu superiori).
6. P. Lessoniz (d'Orb.). Pol. ocellata, A. ct II. M. Atlanticum.
7. I'. pudica, Lovén. Ind. Moll., 1846, p. 6. M. Atlanticum.
S. P. pallida. Bgh.. n. sp. M. Pacificum.
9. P. dubia, Sars. Bidr. til Söedyrenés. Naturh., 1829, p. 13. Tab. 2, fig. 5, 6. Lovén, Ind. Moll., 1846, p. 6. M. Atlanticum sept.
10. P. ? Cookit, Angas. Journ. de Conchyl., 3 S., IV, 1, 1864, p. 58 ; P1. V, f. 6. M. Pacificum.
11. P. ? Capensis, Quoy et Gaim. Voy. de l'Uranie. Zool., 1824, p. 417 ; P1.66, f. 4. MI. Capense. ${ }^{2}$
P. pallida, Bgh., n. sp. Plato XV, fig. 14; Plato XVI, fig. 1-9.

Color flavescens. Branchia sexfoliata.
Lamelle mandibulares fere ut in Poỉ. Lessonii, sed magis elongatae. Armatura lingualis fere ut in Pol. Iessumii; dentes externi 5.

Hab. Oc. Pacificum septentr.
Of this form Dall dredged a single individual in June, 1873, at Kyska IIarbor (Aleutians), at the depth of ten fathoms on rocky bottom. According to Dall, the color of the living animal was "yel-lowish-white."

The length of the animal preserved in spirits was 7.0 mm ., with a height of 4.0 and a breadth of 3.0 mm . ; the height of the branchial leaves about 1.0 mm ., also that of the rhinophoria; the breadth of the

1 "Viridifusea, sulphureo maculata, papillis frontis 10, branchials utrinque una postica majore ; 11 mm . Bohus," Lovén.

This, as well as the other new Polycerce of Loven, has not since been seen (Cf. G. O. Sars, Moll. reg. arct. Norv., 1878, p. 313).
" of the three (not too naturally represented) "Polycere" of Λ. Fredol (Moquin-T'andon), the one (1.c. Pl. XII, fig. 6) seems to be the Pol. Lessonii, the other two (fig. 3, 4) belong undoubtedly to the genus Thecacera.
foot 2.0 mm . The eolor of the animal whiti-h, that of the rhimptume and the branchial leases more yrllow: the margin of the foot white.

The form as usual. The head rounded, with a prominence on the upper lateral part; the mouth a vertical slit. The margin of the thinophor-grooves plain. The stalk of the rhinophoria nearly as hifh as the club, eylindrical; the club rather flattened, with ahont tifienn leaves; before the rhinophoria a low transverse frontal veil with scareely more than two prominences ; the reil eontinued backwarls as a rather indistinet prominent line on each side of the smonth remmled back: the pericardial region a little peominent; behime the midale of the length of the back, the gill with -ix tripinnate leaves in a slight curve ; behand them the quite low anal nipple, and towards the right fide the renal pore; lehind the gill a little flattemed space with a slight crest on each side with three papilla. The sides of the body rathor high. In the region of the anterior angles of the foot the genital papilla with the exorted penis without its recurved point, 0.7 .5 mm . highi, and below it a folded lamolla, the duct of the macous gland. The foot rather narrow, of nearly the same breadth; the rounded anterius angles somewhat prominent; a fine furrow in the anterior margin.

The intestines inlistinctly apparing through the walls of the body. The peritoncum colorless, nearly without spicula.

The central nervous system (fig. 1) very depressed; the cerebral ganglia of rounded-twiangular form, a litthe lar tor than the more rounded visceral (fig. la); the pedal ones more pyriform, a little larger than the last; the proximal) olfactory eranclia bulbitiom, not suite as large as the buewal ones, which were (fire lhi) of romended forts, connected by a not very short commissure; the gastro-asophageal Gancli: of about one eighth of the size of the former. roumded.' The :hree inferior suberehral, viseral, and pedal commisures or at least the visceral one) free.

The eyes fig. 1) short-stalkel, with black pigment and pale yellowinh lens. The otocysts (fig. 1) in their usual place, very short-stalked. with about eighty otokonia of the ordinary kind. In the stalk of the rhinophoria some scattered yellowish thick spicula, of the same kind as in the skin of the back; none, on the contrary, in the leaves of the club. In the skin sume scattered, yellowish, thick, straight or curved spicula; mostly of about $0.15-0.3 \mathrm{~mm}$. in length, and of the usual form. In the interstitial tissue very few larger spicula.
${ }^{1}$ In the other species of Polycera I have examined. I never saw gastrosesophareal ganglia, nor any in Euplocamus or in Phocamopherus.

The oral tube whitish, of about 1.0 mm . length, wide. The bulbus pharyngeus clear brownish-yellow, somewhat pyriform, with oblique Hattened posterior end, in length about 1.6 , by a height of nearly 1.3 , and a breadth of 1.5 mm . ; the sheath of the radula a little prominent downwards, and to the left from the hindermost part of the under side of the bulbus. The lip-disk clothed with a brownish-yellow cuticula, that is continued into the two mandibular plates behind the lip-disk at the entrance of the oral cavity, the form of the mandible could not be determined with certainty; a yellowish cuticula clothes the rest of the cavity. The tongue with ten rows of plates, further backwards six developed and two younger rows; the total number eighteen. ${ }^{1}$ The rhachis (fig. 2) not very narrow. The plates yellow. The length of the first plate about 0.11 , of the second 0.20 , of the inmost of the external plates 0.14 , of the following $0.12,0.10,005$ and 0.06 mm . (all from the hinder part of the sheath). The first lateral plate (fig. 2aa, 5., 6) formed somewhat as in the P. Lessomi, the hook still smaller; the second of the same form, but larger (fig. $2 b b, 3$), the books much larger, especially the anterior, which is broader and excavated (fig. 7). More outwards five external plates (fig. ユlcc), all with a crest, which is larger in the two innermost; adjoining the outermost of these plates several longitudinal folds of the lingual cuticula, which sometimes simulate one to two plates more (fig. 2).

The salivary glands whitish, elongate. The ω^{2} sophagus rather wide, the stomach inclosed in the liver. The intestine appearing at the middle of the length of the liver a little to the left, at the bottom of a deep and large cavity in the upper side of the liver; the pyloric part

[^31]of the intestine rather wide, its curve reaching to the bullat pharyngeus. The liver about 5.11 mm . long ly a breath of $3 . . . \mathrm{i}$ and a lexizht of 3.25 mm , the furm conical, the porterior end rountal, ther anterios much broader, flattened and aljuining another flattoning wh the inferior part of the right side of the organ ; the color was yellowish.

The sanguineous gland of quadrangular form, of a dianeter of ahout 1.5 mm ., whitish.

The hermaphroditic gland with its yellowi-h-white lobes covering nearly the whole surface of the liver: in the lobes large oigene colls. The anterior genital mass of the length of ahout 4.0 mm . by a beight of 3.0 and a breadth of 1.5 mm . The ampulla of the hermaphroutio duct resting on the inferior margin of the genital maw, whitish, straight, of the length of 3.0 mm hy a diameter of about 0.5 mm . At the anterior end of the ampulla a flattened hody ([mostate) that freely prejects before the anterior margin of the rest of the genital mass ; it was of about the same length as the ampulla, but nearly tw io.. as broal; the cavity of the organ rather large and the walls rather thin. The prostate slopes gradually inte the thin but strone -promatoduct. which is about 6.0 mm . long and terminates in the penis. which was shert, conical (fig. $\mathrm{K}_{\mathrm{t}}, 9$), about 0.55 mm . long, and torminated in a comewhat flexible, yellowish glans fig. s, 9, 14i, of the length of about 0.37 mm . by a diameter at the base of about 0.09 , and at the point of 0.037 mm ; through the largest part of its length it was corered with (in all about twelse) series of small chitinizal ereats, which did not surpass the height of ahout $0.016=5 \mathrm{~mm}$. (firs. 14 : the armature only continued through a short part of the interior of the spermatoduct. The spermatotheca spherical ; the spermatocy: ta pyriform, filled with sperma. The cordate mucous gland whitish and yellowish-white (fig. $8 b$).

This species approaches to the $P_{\text {Pol }}$. Lessonii, but seems even different in color from that and the other A thantic forms, and also difiers in the slight development of the frental seil and of the lateral un-isof the hack, as well as in the number of the external plates of wonge. and ${ }^{1}$ in the nature of the armature of the penis.

[^32]TRIOPHA, Bergh, n. gen.
Forma corporis fere ut in 'riopis, sicut quoque margo frontalis; margo dorsalis appendicibus nonnullis nodosis vel breve ramosis. T'entacula compresso-poculiformes (auriformia) ; rhinophoria retractilia, clavo perfoliato. Branchia quinquefoliata. foliis tripinnatis.

Os lamellis duabus fortioribus e baculis minutis compositis armatum. Lingua rhachide dentibus spuriis (t); pleuris dentibus lateralibus 3-4 (corpore processu alxformi et hamo applanato instructis) et serie dentium externorum (10-11) armatis:

Prostata?
This interesting form, that forms a link between Polycera and Triopa on one side, and the Euplocami on the other, approaches more nearly to the latter than to the former.

In the exterior, the Triophes resemble the Triopre, but still differ in some points sufficiently. The appendices of the back are more composite; the tentacles seem different from those of the Triope (which have them folded lengthwise and obtuse at the end; see for comparison, Pl. XV, fig. 12); they are compressed cup-shaped or auriculate. The gill contains five leaves. Whilst the Triope want an armature of the true month, ${ }^{2}$ the Triophce are provided with two strong plates (composed of densely set staffs). Whilst the rhachis of the tongue in the Triope is naked, the Triophe show four false plates, ("bosses" of Dall, simple thickenings of the base membrane of the radula), here; instead of the two peculiarly formed lateral plates on the pleure in the Triopa, ${ }^{3}$ the Triophe have three or four lateral plates (with a wing-like process of the body and a depressed hook) ; with, on the outside of these, a series of (ten to eleven) uncinal plates, nearly as in the Triopa. After all, the Triophae are closely alleal to the Colya, ${ }^{1}$ and essentially difter from these

[^33]only in the armature of the tongne, which in the Colgce exhibits only a single series of (false) rhachidian plates and (on each side) two lateral plates in form approaching those of ' Polycera. The nature of the prostate is unknown; the armature of the penis not differing much from that ordinary in the large group of the Polyceratide.

Although somewhat approaching to the Euplocami in the form of the appendices of the back, in the armature of the true mouth and of the pleure of the tongue, the T'riophee still entively sliffer in the form of the tentacles, in the number of the branchial leaves and very likely in the nature of the prostate.

The Triopha have hitherto been only found in the Pacific Ocean.

1. Tr. modesta, Bgh. n. sp. Oc. Pacificum.
2. Tr. Carpenteri, Stearns. Proc. of the Cal. Acad. of Sci., April 7, 1873, p. 2, fig. 2. Oc. Pacificum (California).

Tr. modesta, 13gh. n. sp. Pl. XIV.fig. 17-20; P1. XV', fir. 1-10.
? T'riopa Carpenteri, Stearns. l. c. p. 2, fig. 2,
Color e flavido albescens. Appendices dorsales pance; folia branchialia 5 .

Hab. Oc. Pacif. septentr.
Of this form Dall has obtained a single individual at ľukon Harbor (Shumagins), in August, 1874, at a deptlı of six to twenty fathoms, on a bottom of sand and stones. 'The color of the living animal was, according to Dall, "yellowish-white."

The animal preserved in spirits was of whitish color; the dorsal appendices, the gill and the rhinophoria more yellowish. The length of the animal 16.0 mm ., by a height of 7.0 and a

Dorsum papilligerum, presertim margo frontalis et dorsalis. Branchia pauci ($4-5$ foliata.

Mandibula triangulares, fortes. Radula fere ut in Polyceratis, dentibus lateralibus (2) et externis (7), sed preterea dentibus medianis (spuriis) instructa.

Merely one species of the genus is yet known, one of the first described Nudibrcanchiuta, the Doris lacera of Alildgaard (Zool. Dan., IV, 1806, p. 23, Tab. CXXXVIII, fig. 3, 4), which has been found too on the coast of America (Cf. Verrill, notice of recent addit. to the Mar. Fama of North Am., XXXVIII. Amer. Jour. of Sc. and Avts, XVI, 1878, 1p, D11\%.
brealth of 5.5 mm . ; the height of the branchial leaves 1.25 , of the rhinophoria 2.0 mm . ; the breadth of the foot 3.5 mm .

The form as usual. The head flattened in front, semilunar; the tentaches compressed-exp-shaped, rather short (ahont 1.0 mm . long. trumeated at the end. longitudinally folded and open at the outer side. The frontal margin not projecting much, with many smaller and larger short digitations and crenulations; in font in the median line were two small conical papille before the region of the rhinophoria. 'The margin of the rhinophorholes somewhat projecting, smooth: the (deeply retracted) rhinophoria with rather short stalk; the elub with thirty-five to forty rather broad and thin leaves.

The hack rounded over from site to sirle, without rertam limits between it and the sides of the body. At the lateral parts of the back (on each side) five appendices; the first standing a little behind the end of the frontal margin; the next about in the middle of the space between the first and third; this last a little before the region of the gill; farther backwards were also two similar ones. The appendices were club-shaped, with simple or composite norlosities spread upon their bodies, and especially at their hases: the third was the largest, reaching the height of about 2.5 mm . all the others a little smaller, and all of about the same size. Much smaller, conical or club-formed simple Mapilla were scantily and irregularly scattered on the back. The gill consisting of five strong, tripimnate, quite separate leaves, a single anterior and two lateral pairs. The anal nipple nearly in the eentre of the pristeriorly open branchial circle, a blunted, nearly cylindrical prominence, about 0.5 mm . in height; at its base on the right side and a little forwards was the very distinct renal pore. The sides of the body rather high and smonth; the genital opening a short longitudinal slit lying rather forwards, with two openings at its bottom. The foot not very narrow, of nearly the same brearth thronghont its whole length ; the anterior border emarginated in the middle, with a fine line.

The intestines did not shine through the integuments. The peritoneum was colorless, without spicula.

The central nervous system (Pl. XV, fig. 1) Hattened; the cerebro-visceral ganglia (fig. $1 a$) reniform, a little narrower at the forse-and: the pertal ones (fig. $16 b$) rounded, scarcely larger than the visceral ; the large commissure (fig. 1) as usual ; small
optie granglia (fig. 1). The proximal olfactory ganglia (tie. 1e) bulbiform, the n. olfactorii mot very long; the distal olfactory ganglia inverse pyriform. The luceal ganglia (fig. ldd) wyoicl, connected nearly without commissure; the gastro-mesophencal ganglia small (fig. 1e), with one large cell.

The cyes (fig. 1) with coal-black pigment and yellow lens. ${ }^{1}$ The otocysts at the usual place on the under side of the ementrovisecral ganglionic mass, crowded with otokonia of the usual kind (fig. 1). In the leaves of the rhinophoria no spicula; in the axes and in the stalk, on the contrary, spicula of the same kind as in the skin or often larger. The skin with few and small spicula and calcified rombed cells, here and there lying in grouns. The marginal dorsal appentices covered all over with above-mentioned nodosities; at their points perhaps a similar (but empty) bag as in the typical speries (Cf. Pl. XIII, fig. 16.17).

The anal tube large, 3.0 mm . long. The bulbus pharyngeus strong, of the length of 4.0 by a height of 3.0 and a breat:h of 3.3 mm . ; the radula-sheath projecting ahout 1.0 mm . from the hinder part of the under side of the loulbus. The lip-disk rather convex, with vertical oral slit (Pl. XV, fig. 2), clothed with a pale yellow cuticula, that behime the oral slit on each sike is continued in a triangular, brownish-yellow lip-plate of a gratest breadth of 1.0 mm (fig. 3), narrow at the inferior end, broader at the superior, and composed of simple, somewhat curven, crect stafts (fig. 4,5) about 0.18 mm . in height (fig. 4). The tongue broad; in the amber-yellow radula, thirteen rows of plates, further backwards in the sheath, six developed and two younger rows; the total number thus twenty-one. The three foremost rows of the tongue very incomplete, reduced to the outermost (four to five, six to seven, nine to eleven) uncinal plates. The rhathis rather broad, bearing two quadrangular thickenings of the cuticula ($\mathrm{Pl} . \mathrm{XV}$, fig. $6 a$) of the length of about 0.18-0.2 mm ., more thickened and yellowish in the anterior margin, otherwise colorless. At the outer side of these median plates is a somewhat shorter and narrower plate (fig. 6bb), of yellowish color; in the posterior rows (Pl. XIV, fig. 20) much broader. The three sucereding phates hrowni-h-yellow, hook-ohiapul, all nearly of the same form and of the same but outwardly slowly

[^34]decreasing size (Pl. XV, fig. Gcd); the fourth lateral plate, on the tongrue especially, with a small hook (fig. 7a) that is more developed backwards, and in the four youngest rows is developed quite (P l. XIV, fig. 17) as in the three plates mentioned. On the lateral parts of the pleure ten to eleven extemal (uncinal) plates, the tour to five interior (fig. $7,8 a b, 10 ; 17 b c$) with a more developed erest, the rest ($\mathrm{fig} .7 b$) narrower.

The salivary glands (Pl. XV, fig. 1la) nearly as long as the duct (fig. 11b) ; both together about 5.5 mm . long, descending along the whole back side of the bulbus pharyngeus; the gland whitish, smooth.

The osophagus rather long (6.5 mm .), and wide especially in the posterior part (diamoter 2.0 mm .), entering into the interior part of the liver; with rather strong and numerous folds; the eombon's (as in the intestine, spongiary masses and different Padiolarix of a diameter of 0.09 mm . The intestine issuing from the liver a little before the middle of the upper side of this organ ; the anteriorly proceeding part reaching the anterior margin of the liver and about 4.5 mm . long by a diameter of 1.5 mm . ; the retrocessive part 7.0 mm . long by a diameter of 0.75 mm . The liver divided by a deep furrow from the right margin into two halves of nearly equal size; 6.0 mm . long by a breadth of 3.75 and a height of 3.4 mm . the posterior extremity rounded; the anterior half of the inferior side ohliquely flattened; the color yellowish-gray; the cavity of the interior rather small.

The pericardium of oval form, large, having the length of 3.5 mm . The samguneous gland whitish, of the length of 2.5 mm . by a breadth (at the anterior end) of 2.5 mm . The renal syrinx short-pyritorm ; the tube of the organ strong.

The hermaphroditic gland not much developed, paler than the liver, with large oögene cells. The anterior genital mass small, about 1.5 mm . long by a height of 0.75 and a breadth of about 0.5 mm . The ampulla of the hermaphroditic duct yellowish, rather long, forming corkscrew-like windings. The spermatoduct not long, passing into the short penis. This, with its armatue of very minute hooks, the spermatotheca, the spermatocysta and the vagina, as far as could be determined, as in the typical Triopa. ${ }^{1}$ The gland whitish.

[^35]This species may perhaps be the Triopa C'arpenteri of Steams; it has, like that, five branchial leaves, and does not difler much in the number of the dorsal appendices (six) or the form of the frontal margin ; but the dorsal nodosities of the last species are orange-colored, and the rhinophoria, the dorsal appendices, and the branchial leaves tipped with orange. 'Through the great kindness of Mr. Dall I have seen a drawing of the animal of stearns, from specimens secured after those he had described, but they do not give more details than the original description; and Stearns seems not to possess the original specimens, which very likely are lost forever. On the other side, it must be remembered that Sars (Beretn. om en i Sommeren, 1849, foretaren zoolog. Reise i Lofoten og Fimmarken, 1851, p. 74) found "the young individuals of Iriopa lacera (M.) entirely white, also on the tentacles amb gills, merely the liver shines bowni-h thrmugh the skin."

EXPLANATION OF THE PLATES.

An asterisk denotes that the drawing is by camera lucida, the fraction denotes the magnification.

The serial numbers of the plates (Part I, plates i-riii, Part II. plates ix-xvi) are solely referred to throughout the text. As lart II appears in another volume of the Proccedings of the Academy, the plates of Part II have been for that reason renum-
 being Plate ii, etc., in the new volume. 'The serial numbers referred to in the text, follow the new numbers for Part II in parentheses throughout this explanation.

Plate I (L) .

Jorunna Johnstoni (A. and H.).

1. a, stalk of the (b) gangl. genitale; c, gangl. genit. secundarium,* 200.0 .
2. Granules of the back, stiffened by spicula,*20n.
3. Part of the middle of the radula, with the two innermost lateral plates; a, rhachis,* $\underline{3}_{1}^{50}$.
4. The hook of a plate from the back,* ${ }^{3}$? ${ }^{5}$,
5. Outer part of two series of plates with 8 plates, ${ }^{*} \frac{350}{1}$; $a a$, outermost.
6. Outer part of another series with 3 plates,* ${ }^{3} 50$.
7. a-b, vagina; c, gland. hastatoria; d, opening of the bag of the spur ; e, spermatoduct ; f, penis, $* \frac{5_{5}}{1}$.
s, a. Apermatotheces ; c, its chief duct; d, gland. hastatoria; b. spermatocysta ; e, duct to the mucous gland, $* \frac{55}{1}$.
8. a, Duct of the gland. hastatoria; b, the bag of the spur; c, opening of the bag,* $\underline{2}_{1} 00$.
9. u. spermatofluct ; b, opening of the bag at the bottom of the penis ; in the interior a dart (?),* 350 .

Adalaria proxima (Λ. and H.).
12. 'I'ubercles of the back.
13. I part of the rhachis from above; a, median plates; bb, large lateral plates,* $\frac{150}{1}$.
14. P'art of the radula, obliguely, from the side, the hooks of the large lateral plates of both sides, $* \frac{750}{1}$.
15. Two series of (9) external plates; a, the imermost; b, the outermost,* ${ }^{750}$.

Adalaria albopapillosa (Dall).
16. Part of the surface of a tubercle of the back,* $\frac{350}{1}$.

Adalaria pacifica, Bergh.

1\%. a, median plate; b, large lateral plates from the side, * 3 ㅇ.

> Lamellidoris muricata (O. Fr. Müller).
18. The vesica-fellea; a, its duct.

Plate II (X).

Adalaria pacifica, Bergh.

1. Merlian pseudo-plate (or boss), from the upper side,* ${ }^{5} 5$ ㅇ.

2, 2. Part of the rarlula, with series of (5-7) lateral plates; $a-a$, 1-2 complete rows of (15) external plates, and 1-2 incomplete rows; $b b$, innermost plates of the row; $c c$, outermost, $* \frac{3}{3} \frac{1}{1}$. .
3. Outer part of a row with 9 erect plates; a, innermost,* 750 .

Adalaria virescens, Bergh.
4. a, œsophagus, with its dilatation; b, salivary gland; c, its duct.
5. Ganglion penis,* 20n.

Adalaria Lovéni (A. and H.).
6. Median part of the radula from ahove, with (ua) larese lateral plates ; $b b$, innermost part of two rows of external plates. with 1-5 plates,* 35 은.
个. Large lateral plate, from the side, $* 350$.
8. Piece of the left part of the radula;* $\frac{150}{1}$ a, two median pseudo-plates or bosses ; b, large lateral plates; c, two incomplete rows, with $6-7$ plates.

Adalaria albopapillosa (Dall).
9. $a,(2)$ median pseudo-plates; bu, ($2-: 3)$ large latemal plates of both sides, ${ }^{750} 1$.
10. a, (3) median pseudo-plates; bb, (2-4) large lateral plates of both sides; c, innermost part of three (right) rows of external plates, with $3-4$ plates; d, (left) row of 7 external plates,* ${ }^{7}{ }_{1}$.
11. Four outermost plates of a row ; a, outermost, * 7^{5}.

> Acanthodoris pilosa (O. Fr. Mïller).
12. End of the everted penis; a, opening,* 3 $_{1} 0$.
13. Epithelium of the vagina, * $\frac{350}{1}$.

Acanthodoris pilosa, var. albescens (Pacifica).
14. a, anterior margin of the foot; b, edge of the tentacle.
15. Ganglion genitale from the penis,* 100 .

Plate III (XI).

Acanthodoris pilosa (Mïller).

1. Three external plates ; a, outermost, ${ }^{*} 3 \underline{1}$.

Acanthodoris pilosa, var. albescens.
2. The genital opening with its evertel marsin ; a, the two foremost apertures.

Lamellidoris bilumellata (L.) var. Pacifica.
3. Part of the branchial area with $(a a)$ some branchial leaves ; bb, some of the larger surrounding tubereles. In the centre the amal nipple, the renal pore and interbranchial tubereles.

1. The sucking erop, from the edge.
\therefore The half of the same, from the inside; a, stalk.
$\therefore a$, spermatotheca; b, spermatocysta; c, duct of the last; d, duct to the mucous gland ; e, vagina.
\quad. a, two median pseudo-plates; b, a lateral plate; $c c$, three external plates,* ${ }^{*}$ in 0.
\because External plate from the side, $* 750$.
2. Two of the foremost lateral plates with blunted end,* ${ }^{750}$.

Lamellidoris muricata (Müller).

10. a, Modian peanlo-plate shining through the left of the lateral plates, $b b$; c, three external plates, ${ }^{*} \frac{750}{1}$.
11. an, Basal erlge of three lateral plates; b, external plates,* $7 \underline{1} 0$. 12. a, Glans penis ; $b b$, preputium ; c, spermatoduct,* 100.

Lamellidoris varians, Bergh.

13. Lateral plate from the side, $* \frac{750}{10}$.
14. Median pseudo-plate, from above,* 350.

Adalaria Pacifica, Bergh.

15. Innermost part of two rows of external plates,* ${ }^{\frac{75}{1} 0}$; a, two innermost; b, the third failing (in the anterior row) ; c, eighth.

Plate IV (XII).

Acanthodoris pilosa (O. F. Müller), var. purpurea.

1. Lathial di.sk, with (a) the lancet-fommed bades projecting in the lowest part of the mouth proper.
2 . The lancet-formed blades (a) with the adjoining part (b) of the armature of the mouth,* 100 .
\therefore a. The ristht lancet-fomed blade; b, the adjoining part of the armature, * 350.
2. Elements of the armature, ${ }^{*} 7_{1} 0$.
\therefore Lateral plate, from the side, ${ }^{*} \frac{350}{}$.
3. The hook of a plate, from the side.* $3_{1}{ }^{20}$.
4. Salivary gland ; a, duct; b, posterior end.
5. a, pars mylorica intestini; b, vesica fellea; c, intestimum descendens.
6. P'art of the vas deferens, with its stricture,* $10 n$.

Acanthodoris pilosa (M.) var. brunnea albopapillosa.
10. $a b$, Lancet-formed blades from the under side, * ${\underset{1}{1}}_{10}$.
11. a, Part of left; b, of right lancet-formed blade; c, adjoining part of the armature of the mouth, * $\boldsymbol{I}_{1}^{5!}$.
12. $a a$, Upper part of three lateral plates; $b b$, two series of external plates ; from the sheath of the radula,* 350 .

Acanthodoris pilosa (M.) var. albescens.
13. Elements of the armature of the mouth,* $z_{1} 50$.
14. Isolated element,* 751 .
15. Upper part of a lateral plate, from the outside, ${ }^{*} \frac{355}{1}$.
16. Upper part of a lateral plate, from the inside, *30".

Plate V (xili).

Lamellidoris varians, Bergh.

1. The central nervous system, obliquely, from the under side, * $\frac{35}{1}$; a, ganglia cerebro-visceralia; bb, ganglia pedalia; c;, gangl. penis and gangl. genitale; d, ganglia buccalia; ee, ganglia gastro-osophagalia. The eyes and the otocysts visible.

Acanthodoris pilosa (M.), var. albescens.
2. The bulbus pharyngeus, from the side; a, cuticula and the lancet-formed blades; $b b, \mathrm{~mm}$. retractores bulbi; c. the sucking-crop; d, salivary gland, above this the right buecal and gastro-xsophageal granglion: e. the sheath of the rathen f, the crop of the resophagus ; g, continuation of the wsophagus.
3. Lateral plates, from the outside, *20․
4. Part of the armature of the spermatoduct, with its hooks,* ?

Acanthodoris pilosa (M.).

5. a, spermatotheea; b, spermatocysta; c, duct to the mucouk gland; dd, duct to the vagina.

Acanthodoris cærulescens, Bergh.
(i. Part of the armature of the mouth, ${ }^{750}{ }_{1}$.

7 . Extermal plates, from the side;* 7500 , innermost.

Chromodoris Dalli, Bergh.

3. The upper part of a branchial leaf,* 100 .
4. Part of the lip-plate, from above,* 750.
5. Elements of the lip-plate, $\frac{750}{1}$.
6. Bart of the rhachis, with three (bosses or) false plates,* $7 \frac{5}{1}$.
7. a, false plate, obliquely, from the side,* 750.
8. The 13 th plate, from the side, $* \frac{750}{10}$.
9. The 9 th plate, from the side,* $\frac{750}{1}$.

Triopa clavigera (O. Fr. Mïller).

1.). I'ubercles of the back.
[(i. Vertical section of one of the appendices of the back; a, bag at the point.
17. Elements of this last bag.

1ヶ. Spicula of the skin.*
19. Lowest part of the mouth, with its cuticula; a, the free margin,* 200.
20. Hindermost part of the bulbus ; a, tongue ; b, sheath of ther radula.

Plate VI (XIV).

Chromodoris Dalli, Bergh.

1. The buecal (a) and gastro-resophageal (b) ganglia,* 1 in 1 .
2. Part of the median portion of the radula; a, false plates, on each side the 2-3 innermost (lateral) plates,* $\frac{750}{1}$.
3. Outer part of two series of plates with 11 plates; a, outermost; b, eighteenth,* $\frac{7 \% 0}{1}$.
4. a, spermatotheca; b, spermatocysta; c, duct to the vagina; d, duct to the mucous gland,* $\frac{5,5}{1}$.

Chromodoris Californiensis, Bergh.

5. Hinder part of the body, from the under side, with 5 knots on the mantle-margin; a, foot,* $\frac{75}{5}$ ㅇ.
6. Upper median part of the true mouth,* さ50.
7. Part of 4 series of hooks of the lip-plate, from above,* $\frac{750}{}$.

8-10. Elements of the same, in different positions,* ² 5.
11. Three innermost plates ; a, the first, $* \frac{750}{1}$.
12. One of the largest plates, ㄱ5ㅇㅇ․ 2
13. Hook of 3 larger plates, obliquely, from the foreside, *i5".
14. Hour outermost plates ; a, outermost,* Z_{1}^{50}.
15. 'I'wo irregular outermost plates; a, outermost,* $\frac{750}{1}$.

Acanthodoris cærulescens, Bergh.
16. Series of plates; a, two lateral plates; b, the outermost of the external plates,* $2_{1} 00$.

Triopha modesta, Bergh.

17. Part of one of the hindermost series of plates (in the sheath), with (a) 4 lateral plates and $(b, c) 2$ external plates,* 200 .
18. a, second and b, third large lateral plates, from above and from the back,* $\frac{20!}{1}$.
19. a, fourth; b, fifth plate (as in fig. 18 from the tongue), * ${ }^{2}={ }_{1} "$.
20. Outer false plate of the rhachis (from the sheath),* 350 .

> Triopa clavigeru (M.).
21. a, second lateral plate ; b, two external plates,* zio.
2%. First lateral plate, ${ }^{*} \frac{33}{5} 0$.

Plate VII (XV).

T'riopha modesta, Bgh.

1. (entral nervous system,* 3_{1}^{5}; a, ganglia cerebro-visceraliu; $b b$, pedal ganglia; c, ganglia olfactoria proximalia; dd, buceal ganglia; e, gangl. gastro-œsophagal.
2. The labial disk with the true mouth.
3. Upper commissure of the lip-plates, * 3_{1}^{5}.
4. Elements of the lip-plate,* ${ }^{3} 5^{-}$.
5. Upper ends of two elements,* $\frac{150}{1}{ }^{0}$.
6. Median part of a series of the teeth; a, (false) median plates of the rhachis; $b b$, external plate of the same; $c c$, first lateral plate ; d, third lateral plate,* 3 픙.
7. Continuation of the former ; a, fourth plate; b, outermost plate,* $\frac{350}{1}$.

- Four (imer) meinal plates; a, the second ; b, the fifth,* ? ${ }^{5}$ ".

9. First lateral plate, ${ }^{*}-\frac{350}{}{ }^{0}$.
10. Seventh and eighth external plates,* $\frac{350}{1}$.
11. Salivary gland ; a, gland ; b, duct,* $\frac{5}{1}$.

Triopa clavigera (M.).

12. Tentacle.
13. Part of the armature of the penis.* $\frac{150}{1}$.

Polycera pallida, Bergh.

14. The glans penis,* 750.

Plate VIII (XVI).

Polycera pallida, Bergh.

1. Central nervous system, from the upper side, ${ }^{*} \frac{55}{1}$; $a \alpha$, visceral ganglia; b, ganglia buccalia and gastro-osophagalia.
2. Part of the radula with two rows ; $a a$, interior ; $b b$, exterior lateral plates ; cc, uncinal plates,* $\frac{350}{1}$.
3. Exterior lateral plate, from the side,* $\frac{350}{1}$.
f. Under side of the two lateral plates:* αa and b, as in fig. 2. $+\frac{35}{1}$.
4. First lateral plate, from the side, * ${ }^{3}{ }^{5}{ }^{0}$
5. The same, from above,* $\frac{359}{1}$.
6. Hook of the second lateral plate,* $\frac{350}{1}$.
7. (Bonital papilla and everted penis with its glans; b, prominent fold of the duct of the mucous gland.
8. Glans of the penis, with the end of (b) the spermatoduct,* $\frac{350}{1} ; a$, point of the glans.

Archidoris Montereyensis (Cooper).
2r. Large lateral plate, from the side, * 3 응.
31. Outer part of two series of plates with 4 platea; aa, outer. most,* 350 .

Aphelodoris Antillensis，Bergls．
 （Cf．Malakozoölog．Blätter，N．S．，i，18ヶ9，p．107－113）．

12．a，ganglia buccalia．with b，ganglia gastro－asophagalia；c， secondary ganglion，＊2n！。
 plates，${ }^{250} 10$ ．
14．A large lateral plate，＊$\frac{250}{1}$ ．
15．Outermost double plates of two series，${ }^{*} \frac{\text { Zin }}{11}$ ．
16．Outer part of two series with two plates ；$a a$ ，outermost，$\frac{\text { Is．n }}{\text { I }}$
17．The sixth plate from the outer margin of the radula，${ }^{*} \frac{350}{1}$ ．
18．Outer part of three series with 3 plates；a ，outermost，＊ 3 豆？

Polycera Holbülli（Müll．）．

19．The genital papillæ，from the front．
20．The same，from the side．
21．First lateral plate，from above，＊${ }^{*} \frac{3 n}{}$ ．
Jantary， 1880.

ERRATA FOR PART I．

On account of the inability of the anthor to read the proofs． and from certain obscurities in the manuscript，some errors crept into the first part of this paper，and the arrangement of the para－ graphs was somewhat confused by the printer．

The delicacy and beanty of the plates in their original state． insing been destroyed by the printer，the present ones have been steel－surfaced，to avoid，if possible，a similar misfortune．

The－pecitic name C＇aliforniensis（Chromenloris）was＝ulatitute． in the printed text for Calensis，which appeared on the plate and in the manuscript under the idea that the latter was intended merely as an abbreviation．

The following list of errata has been received from the anthor ： it is believed that the present concluding part of the paper is much less in need of such corrections．

[^36]Page 135 (79), line 11: for dentibus medianis denticulati read dentibus medianis denticulatis.
-. 135) (79), line 18 : for caducous read not caducous.
. 135 (79), line 19 : a semicolon is needed before "the foot."
." $136(8$), line 5 : the comma after "laterales" to be cancelled.
" 136 (80), line 17 : a comma is needed after " 1,5 "; the comma after "rhinophoria" to be cancelled.
-. 138 (82), line 5 : for Plate I. fig. 9, read Pl I. fig. 9-12.
.- 140 (8.4), line $39:$ for (fig. 11, one to four) read (pl. I. f. 11 ; pl. II, f. 1-4).
-. 141 (8.), line 1: for The intestines are read The intestine is.

- 141 (85), line 3 : for anal papillae read anal papilla.
.6 141 (85), line 34 : for 2 w . pl. read w. 2 pl .
* 141 (85), line 35 : for 2te Heft read 2 tes Heft.
" 141 (85), line 41 : for ab read ob.
" 142 (86 , line $6:$ for denticalis read denticulis.
" 144 (88), line $16:$ for M. retractoris read M. retractor.
" 145 (89), line $9:$ for 3 R. J. read 3 R. I.
" 140 (89), line 27 : for Dentes medianæ read D. mediani.
" 145 (89), line 27 : for altamen read attamen.
" 146 (90), line 22 : for mantle read muzzle.
" 147 (91), line 11 : for anal read oral.
- 150 (94), line 4 : for Animal read Color animalis.
" 150 (94), line 3: before Dendron. Dalli, B., insert " 2 ."
"، 152 (96), line 27 : for side, the read side. The.
" 153 (97), line 17 : for Dalzell read Dalyell.
.، 153 (97). line 27 : for Tr. glaucæ read Tr. glamae.
" 154 (98), line 15 : for cucculata read cucullata.
" 154 (98), line 19 : for Duvancelia read Duvaucelia.
" 1 万丂 (99), line $8:$ for of the papillæ read of the papilla.
" $156(100)$, line 11 : for is contracted read was contracted.
" 156 (100), line $16:$ for The larger mucous gland read The larger opening of the mucous gland.
" 156 (100), line $19:$ for before which read, below which.
- $156(100)$, line 38 : for in the hinder part read between the hinder parts.
، 159 (103), line 20 : for The cardia were wide, etc., read the cavity was, etc.
" 159 (103), line 26 : for but backward at the front and end read bent backward at the frontal end.
" $160(104)$, line $1:$ for Fig. 63 a read 15 a.
" 161 (105), line 33 : for bulbus, and read bulbus, or.
" 161 (105), line 38 : for Beitr. read Bidr.
.، 102 (106), line 17 : for dentates read dentatis.
" 163 (107), line 33 : for leaves 80 read leaves 8 .
". 163 (107), line $9:$ for Fig. 6, 7, read Fig. 10, 11.
" 165 (109), line 25 : for Fig. 1-7 read Fig. 8.14.

Pace 166 (110), line 19 : for Fig. 1 read Fig. 8.
" 167 (111), line 4 : for Fig. 2 read Fig. 9.
" 167 (111), line 6: for Fig. 3 read Fig. 10.
" 167 (111), line 15 : for Fig. 4 read Fig. 11.
" 167 (111), line 16 : for Fig. 1 a read Fig. 2 a.
" 167 (111), line 16 : for Fig. 5 read Fig. 12.
" 167 (111), line 19 : for Fig. 4, 5, read Fig. 11, 12.
" 167 (111), line 23 : for Fig. 6, 7, 8, read Fig. 13, 14, 33 b.
" 168 (112), line 5 : for Plate XII read Pl. XIV.
" 168 (112), line 6 : for punctus read punctis.
" 170 (114), line 5 : for Fig. 13 read Fig. 15.
" 170 (114), line 24 : for latium read latum.
" 170 (114), line 26 : for minutissimus read minutissimis.
" 170 (114), line 33 : for the gills read the gill.
" 171 (115), line 34 : for Branchix read Branchia.
" 172 (116), line 17: for Samso reud Samsö.
" 173 (117), line 30 : substitute a semicolon for the period.
4. 173 (117), line 31 : substitute a period for the semicolon.
" 175 (119), line 23 : for 1.3 read 13.
" 175 (119), line 23 : for 77.0 read $7-7.8$.
" 175 (119), line 2.4 : for the light read the rightit.
« 176 (120), line 7: for individual read individuals.
" 176 (120), line 21 : for leg read bag..

- 177 (121), line 1: for branchie read branchia.
" 177 (121), line $32:$ for of the right hand are read of the right hand one, is.
" 180 (124), line 10 : for spermatocysts read spermatocyst.
" 180 (124), line 33 : substitute a semicolon for the period.
" 183 (127), line 3 : for c read a.
" 183 (127), line 18 : for (F.) read (O. F. Müll.)
" 183 (127), line 21 : for inside read outside.
" 183 (127), line 23 : for the same read the same from the inside.
" 184 (128), line 13 : for d read a.
" 184 (128), line $16:$ for b read a.
*. 186 (130), line 12 : for of read f.
" 186 (130), line 26 : for 2. read $2,2$.
" 186 (130), line 33 : for e read c.
" 187 (131), line 27 : for to the twelfth read to b, the twelfth.
" 188 (132), line 12 : for cuticle rend skin.

February 3.

Mr. Meeman, Vice-President, in the chair.
'I'wenty-one persons present.

February 10.

The President, Dr. Ruscnenberger, in the chair.
'i'wenty-six persons present.
The death of Adolph E. Borie, a member, was amounced.
Sartorius ITuscle of the Gorilla.-Mr. Howard A. Kelly described the sartoxius muscle in the right leg of the Gorilla bourtutyte (romg), from the (ogode river, West Africa, partialls di-acted. and described by I)r. Chamman in the Proe. Acad. Nat. S(i.. Phila.. 1879.

The muscle is 10 inches long, and $\frac{1}{2}$ inch broad. Tendinous for about $\frac{1}{2}$ inch at its origin, and its insertion. It arises from the iliac bone at the beginning of the middle third of the distance from between the anterior superior spine of the ilium, and the -rmphysis phlis. Itsinsertion is on to the imer face of the tihis (which is $5 \frac{1}{2}$ inches long), 3 inches below the knee joint.

Six inches from its origin the muscle is reinforced by a muscular slip $\frac{1}{4}$ inch in breadth. This slip arises at the lower part of the mithle thim of the femmr. between the origin of the quadriceps (x.an-or. aml the insertion of the alductors, it joins the sartorins muscle opposite the knee joint.

In consulting the Iiterature on the myology of the Gorilla, no reference to any such slip has been found. Among all the numerous anomalies recorded of this muscle, in the human subject, no corresponding variation has been found.

February 17.

The President, Dr: Ruschenberger, in the chair.
Thirty-three persons present.
A paper entitled "Description of a New Crustacean from the Upper Silurian of Georgia, with remarks upon Calymene Clintomi," by Anthony W. Vogdes, was presented for publication.

Germination in Acorns-Mr. Thomas Meehan referred to some interesting facts in the germination of Querous virens, as lrought to his attention by W. St. J. Mazjek, of Georgetown,

South Carolina. It was generally known that in this species the cotyledon did not divide into two lobes as usual in acoms, but seemed to be of one solid mass, without any trace of a division. In germination, however, two petioles were developed as in other acorns, but instead of these being very short, indeed nearly sessile, as in the ordinary white oak, they were produced apparently in the much advanced specimens sent by Mr. Mazyek to $1 \frac{1}{2}$ inchers in length treare the phunale and hypocot yolonary pmonens of the embryo commenced their growth. In respect to the latter, a small ovate, striate tuber, apparently as one might judge from the shrivelled-preciment on hamb. nearly me-fourth the size of the acom was formed. and from this tulner the radicle proceatad ami. afterwards, the plumule on its upward growth.

Mr. Mechan said he had since examined sprouting acorns of Quercus alba, Q. rubra, Q. arenaria, and Q. prinoides, noticing a very slight tendency to a tuberous condition, only in the last named. But in regard to the lengthening of the petioles, he was surprised to find a variation in each species. In Quercus prinoides, the petioles were nearly an inch in length.

He believed the discovery would be of great value to systematic botanists in the determination of species in this very diflicult genus, and should examine and report after an examination of many other specits. hat thought proper to eall the attomtion of the Acallemy to the matter in this carly stage that due eredit might be recorded to Mr. Mazyek for his interesting discovery.

Mr. Edw. Potts, at the request of Mr. Meehan, had made sections of both the acom and the spindle-shaped radicle, with the result of finding the cell structure of the latter an almost exact counterpart of that in the nut: i.e., sub-spherical cells of uniform size, gorged with starch grains. So similar were they that it would be nearly impossible for an observer to say which he was examining but for the cortical tissue surrounding the root. It seemed that the food supply of the young plant had been thus withdrawn from a position exposed to hot sun and drying winds, to one protected by the earth and in the direct line of growth. No line of specialized cells could be discovered in the sections of the nut, indicating the possibility of a separation as in other species into two cotyledons; so that to all intents and purposes it might be called monocotyledonous.

February 24.

The President, Dr. Ruscuenberefer, in the chair.

Twenty-nine persons present.
A paper entitled "Carcinologieal Notes, No. 3," by J. S. Kingsley, was presented for publication.

The death of John Rice, a member, was announced.
R. S. Huidekoper, M. D., David Townsend, John B. Wood, Thos. Miles, Frances Emily White, M. D., and John S. Capp were elected members.

The following were elected eorespondents:-Robert Caspary, of Konigsberg, X gostimo 'Todaro, of Palermo, J. E. Bommer, of Brussels, 'Weorloro Camel, of Pisa, I. T. (ieyler, of Frankfort-on-the-Mane, Robert Schomburg. of Adelaide, and A. Inostranzeff, of St. Petersburgh.

Maroh 2.

The President, Dr. Ruschenberger, in the chair.
Twenty-eight persons present.
The death of Wim. Maxwell Wood. M. D., a correspondent was announced.

On a Filaria Reported to have come from a Man.-Prof. Lerdy exhibited a large thread-worm, which had been submitted to his examination by Dr. J. J. Woodward, U.S. A. It was recently presented to the Army Nedical Museum, at Washington, hy Dr. C. L. Garnett, of Buffalo, Putnam Co., West Virginia. Accompanying the specimen, is the (opy of a letter from Dr. Garnett ta Dr. Woodward, from which the following is an abstract: "Inringe the winter of 1876 , a man, a common laborer, aged about fifty; presented himself to me for treatment having a gleety discharge from the urethra, with a burning sensation during and after micturition. Previously, he had heen treated for gonorrhoa, and I prescribed accordingly. The patient not improving, applied to other practitioners. In April, 1878, he came to me with a round, vivid-red worm, twenty-six inches in length, (the specimen you now possess) which was alive and very active in its movements, instantly coiling up like a watch-spring on being touched. Having no work on helminthology for reference, the only description I found which appeared to answer to the worm was that of strongylus gigas, in Niemeyer, vol. II, p. 47. The patient is an illiterate man, with no motive for deception. He informed me that he discovered the worm protruding from his penis and drew it out without pain or rlifliculty. He was in much agitation and alarm about the occurrence, fearing, as he said, that "there might be more behind that one." F or a few days previous to its passage, his urine was of a milky hue and some time subsequently of a yellow cast and slightly tinged with blood and mingled with mucus. The man is truthful, and no douht exists in my mind, or in the minds of his neighbors as to the correctness of his statements. I regret.
 suhject, and send you the specomen in a firsh state. but the the-y routine of a country practitioner's life leaves no time for the - : mis of other than subjects of practical value in one's every day experience."

The worm preserved in alcohol is much coiled, of a clay color and opacque, or only feehly translueent. hat more so at the head nad If it is really a human parasite, it appuarso do difer from all than heretofore deseribed, and also seem- different fionn othor komwu
 Guinea-worm, Filaria medinensis, thomgh manly related th the Its characters are as follows: Body long. restiform, nean: wh-

Pig. 1.

Fig. 2.

1. Cephalic extremity ; 2. Caudal extremity; the diagonal marking indioates the crossing of the fibres peen in the integument. Five diameters. formly cylindrical, smooth, shining, elastic, tough, without evident amulation other than transverse wrinkling, with the anterior extremity evenly tapering in the continuous head, the end of which is rounded and smooth or without appendages of any kind; the posterior extremity not tapering, with the caudal end incurved, bluntly rounded, without appendages and imperforate or without evident anal or genital aperture. Mouth a terminal pore without lips, papilles, or armature of any kind. Pharynx crlimdrical, and opering into
 of worm. 2f inches, greatest thickness, $1 \% \mathrm{~mm}$. Witth of head just behind the rounded extremity, $10: 375$ man.: opposite the ammencement of the intestine, 0.625 mm ; at the middle. 1.5 mm . at the incurved caudal extremity, 1.5 mm . Length of cesophagus, $1 \cdot 125$.

The worm, of exceedingly simple character, is chombe neithers fiordius nor a Mermis and though apparently mote nearly allied to Pilaria, a more intimate knowledee of its structure may prove it to be different. For the present it was proposed to distincmish it with the name of Filaria restiformis.

On Rochelia patens.-Mr. J. H. Redfietd remarked at the meeting of the Botanical Section, that Rochelia patens was founded by Nuttall, upon a plant collectel by Wyeth on Flat Head River, in the Rocky Mountains, and was described in the Journal of the Academy, 1st series, Vol. VII, p. 44, in 1834.

Dr. Gray in the Synoptical Flora of North America, I I, p. 19%. remarks concerning the plant that it may be an Eritrichium, but has not been identified, nor was it in the Academy's Herbarium.

Mr. R. stated that this specimen had been recently fomm amores the Acadeny's specimens of E'chinospermum, and had been pronounced by Dr. Gray to be Echinospermum floribundum. Iehm.. a species widely diffused in Western North America.

The following report upon the pilants introluced through the medium of the Centennial Exhibition was read :

REPORT ON PLANTS INTRODUCED BY MEANS OF THE INTERNATIONAL EXHIBITION, 1876.

The committee appointed on the 10 th of October, 186 , at the request of the C'nited States Centemial Commission, to examine and report upon the subject of the introduction of insects* and plants through the medium of foreign exhibits, respectfully reports that it has delayed reporting on the plants till now in the belief that some solitary plants might be overlooked, which producing seed and increasing in following seasons, might be then discovered by their mreater numbers. But only those named in the list have been found, and only in isolated specimens showing no disposition whatever to spread and remain with us. So far, therefore, as the ohject of the committee appointment is concerned, it may be said in effecet that no plant has been introduced, to our knowledge, by the agency of the exhibition.

It is but justice to say that the plants have been collected by our estecmed fellow member, Mr. Isaac Burk, whose familiarity with the hotany of Fairmount Park, rendered him particularly fitted to detect any new introduction. Some of the few plants namel are from the western portion of our country, others from Europe, and a few from Japan.

Lepidium sativum, L.	Killingia pumila, Mx.
Bunias Erucago, L.	Fimbristylis miliacea, Muhl.
Crepis tectorum, L.	Cyperus diandrus, Torr.
Centaurea nigra, L.	Triticum villosum, Beand.
Hypocheris radicata, L.	Triticum clavatum, Stedl.
Desmodium tomentosum, D. C.	Leuccea Langsdorffana, Steudl.
Cycloloma platyphylla, Moq.	

Respectfully submitted.

> John L. LeConte, Geo. H. Horn, Joseph Leidy, J. Gibbons Hunt, Thomas Meehan,

Committee.

* The report upon the insects was printed in the Proceedings of the Academy of Natural Sciences of Philadelphia, for 1876, page 267.

March 9.

The President, Dr. Ruschenberger, in the chair.

I'wenty-three persons present.

Momamniry Cilants of Pats-Dr. H. Astafe exhibited specimoma of hats ri-aceted to show the position and peculiarition of the mammary glands. These bodies have been described as postaxillary and two in number. For Desmodus this account is correct. For Phyllorhina, Nycteris and the common red bst of this country (Atalapha (=Lasiurus) noveboracensis) it is incorrect. In the first two the glands answering to the axilla ace low down and have their nipples on a line with the midnle of the claviele. In the common red hat the grand answering to the so-called post-axillary is outsicle and below the axilla, but on a line with it. It necupieindeed, the lower third of the side of the chest and lowelers upon the inferior line of the chest. In addition to this there is constantly present a pectoral grland situated as in Quadrumana amd the human species. These glands resemble one another in teneral appearance and size, being circular in form, without hair, of a dull yellow color, possessing a well-heveloped nipple, aml measuring 3 lines in diameter.

It is interesting to observe that the specemens of non-lactating bats show ho external signs of mamma. The mammary reotons are covered with fur of the same character as seen elsewhere. Neither in a female with embryos lines in length is there any external development. If such a specimen be dissected, the locality of a rudiment of the gland can be detected by the porition of a small circle of thin, dark skin with a ceentral white -pot. such structures representing the patoh of modified skin and nipple ready to receive the future developing active gland. No mammary strmeture in this stage is anywher visible, nor is there any subcutameons fat. Dissection of the body of the lactating femate on the other hand shows the mamma to be as large as the extemal conformation, and the pectoral and lateral thorade regions to the occupied hy a larere but sharply limited masis of fat, which mamup into the axilla and encroathes upen the dorsal surface of the trunk. 'The rest of the under surface of the animal is without fat. It is likely that there exists in the hat the same provision moted in analogous structures of many lower animals,-namely, the presence of secomdar! sexual characters (among which the milk gland may be placed) which practically disappear in the ferimets between sexual activity.

Maren 16.

Mr. Vaux, Vice-President, in the chair.
Thirty-five persons present.
A paper entitled "Careinological Notes, No. IV," by J. S. Kingsley.

The death of Dr. Wm. M. King, U. S. N., a member, was announced.

March 23
The President, Dr. Ruschenberger, in the chair.
One hundred and fifteen persons present.
The following papers were presented for publication :-
"On the Gestation and Generative Apparatus of the Elephant," by H. C. Chapman, M. D.
"On a New Species of Hemitripterus from Alaska," by W. N. lockington.

The death of Hector Tyndale, a member, was announced.

Marche 30.

Mr. Vaux, Vice-President, in the chair.
Thirty-eight persons present.
The death of Jacob Stauffer, a correspondent, was announced.
Paris Haldeman, Geo. B. Heckel and Emlen Physic, M. D., were elected members.

The following were ordered to be printed:-

1.1

$$
: 1
$$

KINCSLEY ON CELASIMI.

CARCINOLOGICAL NOTES, Ro. II.-REVISION OF THE GELASIMI.

bY J. S. KINGSLEY

I have endeavored in this paper to straighten out the speceies of the "Fiddler Crabs," hasing my work on the large eollections of the Acardemy of Natural Sciences of Philadelphia and of the Peabody Academy of Sciences at Salem, Mass. My material has been ample, embracing more than half the known forms, among which are types of Smith, Guerin, Eydoux, Leconte and Say, with other specimens from Guerin's collection which were identified by comparison with the types of Mine Edwards. I have reduced considerably the number of specific forms, and in so doing I have been actuated not by any desire to overturn the work of others. but merely to arrive at the true limits of the species. A similar reduction in other genera must be marle, and will be made, hy any one who attempts to study the forms of the whole world, and does not limit himself to those of a small portion of its surface. Among the important features of this praper is the extension of the range of many forms, which has been accomplished either by finding new localities among the specimens stmedied, or hy a union of two or more so-called species which hore different names in different portions of the world.

I have endeavored to give deseriptions and figures of all known forms of Gelasimi, and when possible I have taken them from the specimens themselves; when I had no specimens, I have given a description compiled from some other earcinologist, and have followed it by the initial of his name. The same remark will apply to the figures. Localities from which I have examined specimens are followed by an exclamation point (!), and the museum in which the forms are preserved is indicated by an abbreviation ; these abbreviations are: Phila. Acad., Academy of Natural Sciences of Philadelphia, Pa.; Peab. Acad., Peabody Academy of Sciences, Salem, Mass.: C. ('., Union College. Schenectady, N. Y.

Genus GELASIMUS Latreille.
('ancer (pars.) Linne, Herbst, Fabricius, Ie (ieer. Ocyphda (pars) Boàc, Histoire Naturelle des Crustaces, ii, p. $240(1828)^{1}$; Latreille,
' I have never seen a copy of the first edition of this work published in the "An X" of the first French Republic (1802-3 of accepted chromology). and my references are either quoted from the second edition by Desmarest. or at second hand from Milne Edwards, or some other author.

Histoire des Crustaces et de la Insects, vi, p. 27, "An. XI" (1803-4.) Uea Leach, Trans. Limn. Soc., London, xi, p. 309 (1815). Gelasimus Latreille, Nouvelle Dictionnaire d'Histoire Naturelle, xii, p. 517 (1817) ; Henri Milne-Edwards, Histoire Naturelle des Crustaces, ii, p. 49 (1837) ; Annales des Sciences Naturelles, IUI serie, xviii, p. 144 (1852) ; Dana, Crustacea of the United States Exploring Expedition, pp. 312 and 315 (1852); Hess, Archiv für Naturgeschichte, xxxi, Pt. II, p. 145 (1865) ; Alphonse Milne-Edwards, Nouvelle Archives du Museum d'Histoire Naturelle, xi, p. 271 (1873); Gonoplax (pars.) Lamarck, Histoire Animaux sans Vertebres, v. p. 253 (1818).

The grenus (ielasimus belongs to ('yelometopre (0) appodoidea ot Dana), family Macrophtholmidix (Dana), and sub-family Ocapudinat of the same author. It is characterized hy the rhomboidal carapax, brouder in front, the elongate ocular pedicels, the eyes proper heing placel at the extremity, and by the great inequality of the chelipeds in the male.

In my studies I have found the characters derived from the larger cheliped of the male to be the most constant; while the relative proportions of the carapax, the front and the margins of the orbit, are of but slight importance and very variable.

But two species ever referred to this genus by authors, are now referred to other genera; Crplasimus cordiformis forming the type of the genus Helocius of Dana, and Gelasimus tel"sornuirus Owen, which helongs to the genus Marrophthalmus.

The genus may be divided into two groups, possibly of subgeneric value, according as the front between the eyes is wide oi narrow, and the wide fronted section again according as the male abdomen is seven or five jointed.
§ A. Front very narrow between the eyes.

1. Gelasimus maracoani Latreille. Pl. ix, f. 1.

Ocypoda maracoani Latreille, Hist. Crust. et Ins., vi, p. 46 (1803). Gelasimus maracoani Latreille, Dict. d'Hist. Nat., xii, p. 519 (1817); Desmarest. Consid. (pars) p. 123 (1825) ; Edw., Hist. Nat. Crust., ii, p. 51 (1837) ; Ann. Sci. Nat., III, xviii, p. 144, pl. III, f. 1 (1852); Dana, U. S. Ex. Ex. Crust., p. 318 (I852) ; White, List. Crust. Brit. Mus., p. 35 (1847). Gonoplax maracoani Lamarck, Hist. An. Sans Vert., v, p. 254 (1818). Gelasimus armatus Smith, Trans. Conn. Acad., ii, p. 123, pl. ii, f. 5, pl. iii, f. 4 (1870) ; Report Peabody Acad. Sci., iii, p. 91 (1871).
Regions distinct, each branchial ornamented with a longitudinai ridge, from which branch off smaller ones. Ischium of larger
rheliped with a prominent tooth helow ; meros with a footh on posterion margin at the articulation with the carpus, otherwise smooth and rounded, its upher and lower margins with spinifinm teeth which are more pominent ahove; (arpus elongate, with indistinct tubercles. Hand very large, compressed, externally tuberculate on the basal portion, above with several teeth like those of meros, inferior margin proximaly tubereulate, outer surface of thumb, with large shatlow puncta, the lower portion being marginate. Occludent margin with three rows of tubercles. the middle one forming a prominence at the hasal two-tifths, the of her rows umbluting, extremity contorted, acute; imer surface nearly smooth, with a tubercular ridge rmming from the artirulation of dactylus to the middle of lower margin of the palm; dactylus lamellate, externally granulate, lower margin nearly stradint, upper margin arcuate, basally tubereulate, tip acute and nearly at right angles with oceludent margin, inner surface nearly smoth, somewhat concare, with a longitudinal tuberculate ridge near the occludent margin.

Bahia, Brazil! Dr. Wilson. Natal! [?] Dr. Wilson (labeled G. natalensis). South America! (Phila. Acad.) West Coast of Nicaragua! McNiel (Smith's types in Peab. Acad.). Cayenne (Latr. Edw.), Brazil (Latr. White), West Indies (White), Rio Juneiro (Dana).
'The only differences between Smith's types and specimens from other localities, are the more crowded spines on the upper border of the meros and the more sparse tuberenlation of the hasal portion of the hand, chamaters surely not of specifie importance.
2. Gelasimus hetercheles Kingsley. PI. ix, f. 2.

Seba, Thesaurus, iii, pl. xviii, f. 8 (1758); Cancer vocans major Herbst, Naturgesch. Krabben und Krebse, pl. i, f. 1 (after Seba) (1790). Ocypoda heterocheles Bosc, Edit. I, "tom. ii, p. 197, 1802" (teste Auct.) ; Edit. II, i, p. 250 (1828) ; Cancer uka Shaw, Naturalist's Miscellany, XIV, pl. 588 (after Seba). ${ }^{1} \quad$ Gelasimus maracoani (pars) Desmarest, l. c., p. 123 (1825). Gelasimus platydactylus Edw., Hist. Nat. des Crust., ii, p. 51 (1837) ; Ann. Sci. Nat., 1II, xviii, p.

I have been umable to ascertain the date of this volume. The first volume of the series bears the date 1790, the twenty-fouth (and last) 1313, but no others are dated; it would, however, seem probable that the fourteenth volume appeared in 1803, while the "An X," in which Bose's first edition appeared, embraced parts of 1802 and 1803.

144, pi. iii, f. 2 (1852) ; Saussure, Revue et Magazin de Zoologie, I1, v, p. 362 (1853) ; Smith, Trans. Conn. Acad., ii, p. 122 (1870). Gelasimus princeps Smith, 1. c., p. 120, pl. ii, f. 10, pl. iii, f. 3-3e (1870) ; Report l'eab. Acad., iii, p. 91 (1871); Lockington, Proc. California Acad., vii, p. 145 (1877).
Carapax transversely nearly flat; meros of larger cheliped rounded posteriorly, its lower margin crenulate, its upper produced into a broad, arcuate, laminiform, dentate crest; carpus

 portion swollen, upper and lower margins tubereulate, external surtace of palm tubereulate, of thmo smooth, except a cremulatent riber below. The immer surface smooth, with a tubereulate ridse ruming from the lower margin at the hase of the thumb obliquely "pward and backward, and meeting a similar ridge from the base of the dactylus; occludent margins of thumb with three rows of tubereles, (the middle the most prominent) and somewhat angulated beyond the middle. Dactylus with the upper margin and outer hasal portion tubereulate, the oceludent margin rather prominent in the middle.

Mexico! (Guerin-Meneville). Jamaica! (Dr. Wilson) Phila. Acad. Cayenne, Edw. IV. Coast Nicaragua! (McNiel, Smith's types Peab. Acad.). Lower California (Lockington). Mazatlan (Saussure).
Seha's figure represents the carapax as gramulate and the front rather broad (in these respects he has been followed by Herbst and Shaw), otherwise his figure answers well. Bose says that the species is black! Smith's types agree well with the Jamaica -pecimens which I have seen, except that the meral erest in the Nicaraguan specimens is more distinctly dentate.
3. Gelasimus bellator White. Pl. ix, f. 3.

Petiver, Opera, i, Pl. 78, f. 5 (1767) ; Gelasimus bellator White, Catizlogue British Museum Crustacea, p. 36 (1847) ; (sine descr.) Voyage of H. M. S. Samarang, Crustacea, p. 49 (1848) ; Edw., Ann. Sci. Nat, III, xviii, p. 146 (1852).
Carapax arcuate, front but little enlarged below the eycs. Meros of larger cheliperd posteriorly with an oblicque rounded ridger, its uper and lower margins cremnlate, the former even henticulate: karpus externally polished, above gramalate, innor wargin denticulate, outside of palm and hasal portion of dactylus -ranulate, inside of palm gramulate lout withont tuberealar ridgen

- xeept a short curvent one mear the one ludemt margin; thumb.... temally mareined helow, its ocelublent marcin theminer a prom: nence at the distal third; dactylus with the margins nearly parallel, the occlumbot obe with scattered larger fobercles. tip acute.

Australia! (Dr. T, B. Wilson) Phila. Acad. Luzon (Petiver) Phitippines (White).
4. Gelasimus styliferus, Edw. Pl. ix, 1. 4.

Gelasimus platyductylus Edw., Ill. Edit. Regne Animal, Crustaces, pl. xviii, f. 1 a (without date). Gelasimus styliferus Edw., Am. Sci. Nat. III, xviii, p. 145, pl. iii, f. 3, (1852) ; Smith. 'Trans. Conn. Acad., ii, p. 118, (1870).

A species very near (${ }^{t}$. platydactylus, but having the marginal resest of the arm leas developed and the eye stalks temminated liy
 of heterochelos.

Guayaquil, Equador, (Edw.).
5. Gelasimus heterophthalmus Smith. P1. ix, f. 5.

Gelasimus heterophthetmus Smith, Trans. Conn. Acad. ii, p). 116, [1]. ii, f. 6, pl. iii, f. 1 (1870) ; Rep. Peab. Acad. Sci. iii, p. 91 (1871).
Meros of larger cheliped with posterior margin rounded, the inferior crenulate, superior with a broad crest, carpus with the "pper outer surface ermalate, elsewhere smonth. Hame inflatel. inasal portion of palm externally grambate thumb pumetate, with an external elevated ridge. Inner surface of palm smooth, with two rows of tubercles much as in G. heterocheles. Fingers compressed, the thumb with a deepemargination at the hane and a prominent tubercle just beyond, occludent margin of finger nearly straight.

Gulf of Fonseca, West Coast of Nicaragua! MoNiel (Smith's types in Peab. Acad.).
This species is closely allied to G. heterocheles. When I examined the specimens, the prolongations of the ocular peduncles described by Prof. Smith were broken off.
6. Gelasimus heteropleurus Smith. Pl. ix, f. 6.

Gelasimus heteropleurus Smith, Trans. Conn. Acad., ii, p. 118, pl ii. f. 7, pl. iii, f. 2 (1870) ; Rep. Peab. Acad., iii, p. 71 (1871).
Carapax hat slightly comvex. one side prombont laterally. orme eye with a stylet about as long as the cornea, similar to those found in certain Acypoda: Meros of larger cheliped with the
marwins denticulate, the upper one produced distally into a crest, (axpus gramulate above. Hand externally gramulate on the basal fortion, the upper and lower margins denticulate; the immer surface of the palm has an oblique line of tubereles ruming ohliquely upward and backward from the lower margin at the base of the thumb to near the articulation with the carpus. Fingers short, compresed. the thumb with the lower margin regularly arcuate ; the uper margin of dactylus nearly straight as are the oceludent margins of each.

Gulf of Fonseca! McNiel (Peab. Acad., Smith's types).
7. Gelasimus cultrimanus White. Pl. ix, f. 7.

Gelasimus vocans Edw., Annales des Sci. Nat., III, xviii, p. 145, Pl. 111, f. 4 (1852) ; Stimpson, Proc. Phila. Acad., 1858, p. 99 (1858) ; Heller, Reise der Novara, Crustacea, p. 37 (1865) ; Hilgendorf, in van der Decken's Reise, p. 83 (1867); Alphonse Milne-Edwards, Nouv. Arch. du Mus. d'Hist. Nat., ix, p. 272 (1873). Gelasimus cultrimanus White, Catalogue Brit. Mus. Crust., p. 35, sine descr. (1847) ; Voyage of the Samarang, Crust., p. 49 (1848). Gelasimus nitidus Dana, U. S. Expl. Exped. Crust, p. 316, Pl. X, f. 5 (1852).

Carapax smooth, arcuate. Meros of larger cheliped with an ohlique ridge on the upper posterior surface which gradually disappears belore the articulation with the carpus; the inner nargin somewhat cristate, distally with a prominent tooth and sometimes traces of a second; carpus externally granulate, a portion near the articulation with the meros smooth, inner surface with a strong spiniform tubercle. Palmar portion of hand swollen and externally granulate. granules larger below. On the inner surface there is an oblique tubercular crest near the lower margin but not extending to it, and a second near the occludent margin. Thumb with an impressed line on the onter surface, the lower margin granulous, the occludent margin broadly excavate; this excavation is sometimes regularly curved, but generally shows traces of a division into two sinuses; the distal fourth bends abruptly downward to meet the inferior margin. Finger granulate above near the base, occludent margin nearly straight.

[^37]There is a considerable confusion regarding this species. Edwards considers this as the Cancer vocans of Linne. Linne in his tenth edition p. $6: 2 ;$, 1757) quotes Rumphius, Pl. XIV, f. E.; and Catesby's. Carolina, ii, PI. XXV. Rumphius' figure (of a specimen from Amboina) represents a form with the fingers mes. larly tapering, an I resembling (i. Artrofmom more nearly than any other species with which I am acquainted, but the figure is not accurate enough to have any systematic value. Catesby's figure is the well-known Ocypoda arenaria of North America. Linne (in the Amœnitates Academici, vi, p. 416) gives a deseription. which does not at all apply to this speceies, and cquotes in aldition Maregrave, Piso, Rumphius, Catesby, and Seba, in the orler given, showing a still greater confusion. In his 12th edition, p). 1041, Gronovius and Petiver are added to the list, but no hints showing what should be regarded as the Cancer vocans. As there exista such confusion, it is impossible to apply the mame conome with certainty, to any species, and for that reason I have thought it best to allow it to lapse into synonymy and take the first reengnis uble description for this species.
8. Gelasimus marionis Desmarest. Pl. ix, f. 8.

Gelasimus marionis Desm., Consid. sur le Crust., p. 124, Pl. XIII, f. 1 (1825) ; Edw., Ann. Sci. Nat., III, xviii, p. 145 (1852).
Carapax smooth, amd with each margin terminated by an arnte angle directed forward: an H -shaped impression on the carapax. Ocular peduncles slightly enlarged at the extremity, and without a terminal point. Inferior border of the orbit crenulate. Right hand greatly larger tham the left. greatly compresient, kasally gramulate; finger straight, its siles smooth, its ocelulent margin gramulate; thumb arcuate below, with its internal border hroally excavate in the middle, and armed with fine teeth. Length, 8 lines; breadth, one inch (Desmarest).

Manilla (Desm.) Malabar (Edw.).
I have not seen any form corresponding to this description or figure.

9. Gelasimus dubius Stimpson.

Gelasimus dubius Stm., Proc. Acad. Nat. Sci., Phila., 1858, p. 99.
Carapax and front as in G. cultrimanus. Inferior margin of orbit cremulate, externally angulate. Meros of larger cheliped spinulose, hand stout, externally granulate or tubereulate; in-
ternally with crests as in G. cultrimamus, but less prominent. Digits rather broad, externally sulcate; immer margin nearly ot raight, irregularly dentate, two or three teeth larger than the others (Stm.).

Loo Choo (Stm.).
10. Gelasimus forcipatus White. Pl. ix, f. 9.

Gelasimus forcipetus White, Catalogue Brit. Mus. Crust., p. 36, sine descr. (1847) ; Voyage Samarang Crust., p. 50 (1848). Gelusimus coarctatus Edwards, Ann. Sci. Nat., III, xviii, p. 146, Pl. III, f. 6 (1852) ; Heller, Crustaceen Sud. Europas, p. 100 (1863) ; Alph. Milne-Edwards, Nouv. Arch. du Mus. d'Hist. Nat., IX, p. 272, Pl. XII, f. 4 (1873).

Carapax convex, narrowed behind. Meros of larger cheliped axtemally gramulate. its margins denticulate. ('arpus granulate, inner margin produced but without a prominent tooth. Palm "xtomally grambate, its upper horder slightly margined, its lower tuberculate; on the inside a few tubercles in a curved line near the base of the dactylus, and an oblique line from the lower margin runs up to the articulation with the carpus, dactylus Iramulate at the hase, otherwise the hand and fingers are smooth. Thumb regularly tapering, with an extemal impressed line, it.s occludent marein regularly arcuate, with generally a prominent tubercle near the middle. Dactylus with a prominent distal dentate lobe.
[?] Odessa! Guerin (Phil. Acad.). Philippines! Drs. Wilson and Burroughs (Phil. Acad.). Australia! E. Wilson (Phil. Acad.). Borneo (Adams and White). Odessa (Edw.). New Caledonict (A. M.-Edw.).

I have united these two nominal species from an actual comparison of specimens. In the collection of Guerin-Meneville now in the possession of the Pliladelphia Academy, is a specimen labelled " Cielrsimus cooretotus Edw., Cat. Mus., Paris, Odessa," and which was probably one of the original specimens which was the foundation of Elwarl's description. I am strongly inclined to doubt of the authenticity of the locality "Odessa," as I have been unable to find any other authority than that of Edwards. Marcussen in his Fauna of the Black Sea (Archiv. für Naturereschichte xxxiii, 11. 358-363, 1867) does not mention it. His -ubsequent paper and that of Uljanin, I have not seen. Heller merely quotes from Milne-Edwards.
11. Gelasimus arouatus De IIaan. PI, ix, f. 10 ,

Ocypode (Gelasimus) arcuate De Haan, Fauna Japonica, Crustacea, p. 53, I'l. VII, f. 2 (1835). Gelasimus arcuatus M.-Edw., Ann. Sci. Nat. III, xviii, p. 146 (1852) ; (?) Krauss, süd Afrikanische Crustaceen, p. 39 (1843) ; A. M.-Edw., Nouv. Arch. du Mus., ix, p. 273 r (1873).

Carapax with sides carinate, carina acute, scarcely granulate: inferior margin of orbit granulate. Meros of larger cheliped, atoow enncave, below flat ; intemally with an acrute granular tilat Carpus externally convex, above flat, hand twice the breadth of the carapax. fingers compresionl. smosth, extrmally lometmbinall! sulcate (De Haan).

Japan (De Haan). New Caledonia (A. M.-Edw.). [?] Natal Buy (Krauss).
12. Gelasimus tetragonon Ruppell. Pl. ix, f. 11.

Seba Thesaurus, iii, Pl. XIX, f. 15. ? Cancer serratan Forskal, Deser. Animalium, etc., p. 87 (1775). Cancer tetragonon Herbst l. c., i, p. 257, Pl. XX, f. 110 (1790). Gelasimus tetragonon Ruppell, Beschreibung und Abbildung 24 Krabben des rothes Meeres, p. 25, P1. V, f. 5 (1830) ; Edw., Hist. Crust., ii, p. 52 (1837) ; Ann. Sci. Nat. III, xviii, p. 147, Pl. III, f. 9 (1859) ; White, Cat. B. M. Crust, p. 36 (1847) ; Guerin, Voyage Coquille, p. $10\left(1839^{1}\right)$; Heller Reise der Novara, p. 37 (1868) ; Hilgendorf in van der Decken, p. 84 (1867); Kossman Reise nach rothen Meeren, p. 52 (1877). Gelusimus duperreyi Gnerin, l. c., Pl. I (1826); Dana, U. S. Ex. Ex. Crust., p. 317 (1852). Gelasimus desjurdinii Guerin, MS. Gelasimus tetragonon var spinicarpa Kossmann, 1. c., p. 52. Kossman gives a reference to a paper by Poulson, but as the title is written in Russian I have not been able to verify it.
Carapax strongly arcuate, front not expanded bolow the eyes. Meros of the larger cheliped with the upper mamin teminating distally in a strong spine, carpus smooth, the imer marein anote. its hasal portion sometimes expamed into a strong tooth. Iland compresserl, externally finely gramulate, a shatlow pit with coarse punctie near the base of the thumb; internally granulate but withont tubereular ridges: thmm with two promineness on the distal half'; the finger regularly tapering.

Mauritius! Dr. Wilson, Guerin's Collection; Tongatabou! Wilkes Expedition; Tahiti! A. Garrett ; Sandwich Is ! Dr. W. N. Jones
${ }^{1}$ The title page of the volume bears the date 1830, but the introduction to the Crustacea and Aıachnidi is dated " 15 Novembre, 1838 ," so that it is probable that the volume did not appear complete until 1839. The plates bear date 1826 .
(Phila. Acad.) ; Taluiti and Sundoich Is.! A. Garrett (Peab. Acad.) ; Red Sea and Nicubar Is. (Heller); Zanzibar (Hilgendorf); Bourbon (Edwards) ; Nezo Caledonia (A. Milne-Edwards).
13. Gelasimus aoutus Stm.

Getasimus acutus Stm., Proc. Phila. Acad., 1858, p. 99.
('arapax narowed behind, anterolateral angles prominent, acute. marginal line distinct. Front narrow, not constricted, inferior margin of orbit erenulate, externally acute, internal suborbital lobe convex; a crest on the sub-hepatic region parallel to the infertor margin of the orbit, the included surface smooth. Larger hamd coarsely granulate, a tuhercular ridge on the inner surface. Fingers not longer than the palm, externally suleate, inner margin dentate, median tooth larger, but no sub-terminal tooth (Stimpson). Macao (Stimpson).
14. Gelasimus forceps Milne-Edwards. Pl. ix, f. 12.

Gelasimus forceps Edw., Hist. Nat. des Crust., ii, p. 52 (1837); Annales des Sciences Naturelles, III serie, tome xviii, p. 148, Pl. III, f. 11 (1852) ; White Cat. Brit. Mus. Crust., p. 36 (1847).
Carapax narrowed behind, lateral angles prominent, acute; orbits below with two denticulate margins. Meros and carpus smooth, the lower margin of the meros crenulate, upper cristate, fincly dentate ; hand smooth or indistinctly gramulate, fingers long, slender, finely denticulate, the thumb with a distal lobe (Edwards).

Australia (Edwards, White).
I have not forms referable to the two foregoing species.
15. Gelasimus longidigitum (nov.). Pl. is, f. 13.

Closely alliced to forceps in shape of carapax, orbits below with a simple smooth margin. Meros and carpus smooth, the inner margin of the carpus acute, cremute. Basal portion of the hand externally obscurely granulate; internally with an oblique tubercular ridge, and a few tubercles near the base of the fingers. Fingers compressed, long, fincly denticulate, and narrower near the base than at the middle point.

Moreton Bay, Australia! E. Wilson.
16. Gelasimus smithii (nov.). Pl. ix, f. 14.

Carapax gibbous, front narrow ; meros with a strong, ol, lique ridger on the upper outer surface, the imner upper margin produced intor a prominent rertical crest. Carpus externally nearly smooth.
the inner margin slightly produced and denticulate. I'alm externally gramulate above, smooth below, its upper margin granulate and indistinctly indicated by an impressed line on the outer surface, and its imner surface smooth, without tubercular ridges. except one at the base of the fingers. Fingers long, slender, slightly compressed and regularly tapering, the extremity of the dactylus somewhat expanded and excavate.

> Natal! E. Wilson (Phila. Acad.).

Named in tionor of my friend Prof. S. I. Smith, of Yale College, who has monographed the American species of this genus.
17. Gelasimus urvillei M.-Edir. Plo ix, f. 15.

Gclasimus urvillei M.-Edw., Ann. Sci. Nat., III, xviii p. 148, Pl. III, f. 10 (1852).

Rusembles closely (i. forreps. but has the merdio-frontal -ulcus nearly linear, and the fingers shorter, the anterior border of the meros of the larger cheliped obtuse amd smambate M.-EXW. Vanikoro (M.-Edw.).
18. Gelasimus dussumieri Mo.-Edw. Pl. x, f. 16.

Gelasimus dussumieri M.-Edw., Ann. Sci. Nat., III, xviii, P1. IV, f. 12, (1852)? Hilgendorf in van der Decken's Reise in Ost Afrika, Crustaceen, p. 84, Pl. IV, f. 1 (1867) ; Alph. MI -Edw., Nouv. Arch. du Mus. d'Hist. Nat. LX, p. 274 (1873).
 is less marked, the median sulens of the front entirely linear and the anterior borter of the meros of the lareer chelipend denticolate. Chela very large, G. rubiripes is closely allied, but appears to he distinguished by the form of the fingers of the larger hame. the larger tubercles of the carpus, etc., (Ex. auct.).

Malubar and Samarang (Edw.) ; New Culedonia (A. M.-Edw.) ; Zanzibar (Hilgendorf).
19. Gelasimus rubripes Jaeq. and Lucas. Plo x, f. 17.

Gelasimus rubripes Jacquinot and Lucas, Voyage des Astrolabe et Zelee Crustacea, p. 66, Pl. VI, f. 2 (1853) ; Heller, Reise der Novara Crustaceen, p. 38 (1867).
Orbits granulate above and below, carpus of larger cheliped with the external portion gramulate, its margins finely denticulate. Hand frominently granulate, internally smooth exeept fine eramulations at the origin of the thamh: helow strongly demate, linger smooth exeept at the base where it is erambate: the inmer marein of the thamb, with three large tecth, the intervals hatwern which
are finely denticulate. Thumb smooth below its inner margin with several rows of gramulations and a prominent tooth near the middle (J. et L.).

> Unkinoion (J. and Li) Nicobars (IIeller).
20. Gelasimus signatas Hess. Pl. x, f. 18.

Gelcsimus signatus Hess, Archiv für Naturgeschichte, xxxi, p. 146, Pl. VI, f. 6 (1865).
\therefore Front between the eyes not so small as a G. variatus, cheliped one and a half times the breadth of the body; arm, carpus and hand bright red, fingers white. Arm below with two rows of fearly lwhereles, tingers with an elevation at the midule of the inner border, distally arcuate and pointed " (Hess).

Sydney, Australia (Hess).
21. Gelasimus crassipes White. Pl. x, f. 19.

Gelasimus crassipes White, Cat. B. M. Crust., p. 36, sine descr. ; Adams and White, Voyage Samarang Crustacea, p. 49 (1848).
? G. brevipes Edw., Ann. Sci. Nat., III, xviii, p. 146 (1852).

- C'arapace very much arched, suddenly narrowed behind, front with a lobe without narrow stalk. Four hind pairs of legs thicker and stronger than in the other species "(Ad. and White).

Philippine Islands (White).
Thare have been deseribed three other species * belonging to the nurow-fronted section, one of which has been made the type wit the genus Acauthoplar by Milne Edwards. A fourth species from Bahia, Brazil, is in the collection of the Philadelphia Academy. So far as 1 am aware these are all females and are represented by only a single specimen each, and as I am strongly inclinel to consider them the females of well-known forms I omit descriptions of them.

* Gelasimus insignis Smith, Trans. Conn. Acad., ii, p. 120 (1870). Acanthoplax insignis Edw., Ann. Sci. Nat., III, xviii, p. 151, P1. IV, £. 23 (1852) ; Archives des Museum, vii, p. 162, Pl. II, f. 1 (1854).一 Chili (Edw.).

Gelasimus ornatus Smith, Trans. Conn. Acad., ii, p. 125, Pl. II, f. 9, Pl. III, f. 5 (1870) ; Report Peabody Acad. Science, iii, p. 91 (1871). West Coast Nicaragua! McNiel (Peab. Acad.).
Acanthoplax excellens Gerstäcker, Archiv für Naturgeschichte, xxii, p. 138 (1858).-No locality.
\&B. Front broad between the orbits:

* Male abdomen seven-jointed.

22. Gelasimus vocator Martens. PI. x, f. 20 .

Cancer vocator Herbst, Bd. iii, h. iv, p. 1, Pl. LIX, f. 1 (1804).
Gelasimus vocans Edw., Hist. Nat. Crust., ii, p. 54 (1837) ; Ill. Edit. Règne Animal, Crustacea, Pl. XVIII, f. 1 (no date) ; White, Cat. B. M. Crust., p. 36 (sine synon.), 1847.

Gelasimus vocans (pars) Gould, Invertebrata of Mass, p. 32.) (1841).
Gelusimus rocuns our. a Dekay, N. Y. Fauna Crustacea, p. 14, I'l. V I, f. 10 (1844).

Gelasimus palustris Edw., Anw. Sci. Nat., III, xviii, p. 148, Pl. IV, f. 13 (1852) ; Stimpson, Annals N. Y. Lyceum Nat. Hist., p). 62 (1860); Smith, Trans. Conn. Acad., ii, p. 127 (1870)
Gelasimus pugillator Leconte, Proc. Acad. Nat. Sci., Philadlelphia, 1655, p. 403.
Gelusimus brevifrons Stimps., Ann. N. Y. Lyceum, vii, p. 229 (1860); Smith, Trans. Conn. Acad., ii, p. 131 (1870); Lockington, Proc. Cal. Acad., vii, p. 147 (1877).
Gelasimus sp. Saussure, Memoirs Société Plyys. et IIist. Nat. Genève, xiv, p. 440 (1858).
Gelasimus vocator Martens, Archiv für Naturgesch., xxxv, p 1 (1869 ; xxxviii, p. 104 (1872) ; Kingsley, Proc. Phila. Acad., 1879, p. 400.
Getasimus pugnax, mordax et rapax Smith, Trans. Conu. Acad., ii, pp. 131, 135, 134, Pls. II, f. 1, 2, 3, IV, 2, 3, $4(18 \pi 0)$.
Gelesimus affinis Streets, Proc. Phila. Acad., 1872, p. 131.
Ge'asimus crenulatus Lockington, Proc. Cal. Acad., vii, p. 149 (1877).
Garapax smooth, meros of the lareer cheliped with its maruins daticulate or tuborculate, carpus extomally wrambate。 inmonally with an oblique tubercular ridge. Hand tuberculate, its inner surface with a ridge running, up from lower margin to carpal sroove; in front of this are scattered grambles. Thumb straight, exiremity obliquely truncate, finger strongly arcuate. longer than the thumb.

East Coast of America, from Cape Cod! to Purit, Braztl! West Indies! and.Aspinecall! West Coast of Mexico! Punama!

The localities from which I have examined specimens number over thirty and embrace several hundred specimens. I find in Hae Cinerin Collece ion two specimens from Mantitins which ulasely reaemble Cuban forms.

This is, without much doubt, the species intended lyy Merbst; Edwards quotes the Cancer palustris of Sloane as this species, but aside from the fact that his Mistory of Jamaica was published in 1725 , and his mane is therefore ante-Linnean (and is also poly-
nomial), Shane gives not the slightest deseription, but says that it agrees perfectly with the figure of Maregrave which is the G. maracoani of authors. I think that any one studying as I have large series of specimens, will agree with me in uniting these various forms under one specific name, as the characters which separate them are varialile and not of speeifie importance. Probably G. minax should also be included here, as suggested by Professor Smith.
23. Gelasimus minax LeConte. Pl. x, f. 21.

Gelasimus minax LeConte, Proc. Phila. Acad., vii, p. 403 (1855); Smith, Trans. Conn. Acad., ii, p. 128, Pl. II, f. 4, Pl. IV, f. 1 (1870) ; Rep. U. S. Fish Commission for 1871-72, p. 545 (1875); Kingsley, Proc. Phila. Acad., 1879. p. 400.
Carapax strongly arcuate longitudinally, the branchial regions granulate anteriorly. Meros of larger chelipeds, with the upper and lower margins tuherculate as is the upper portion of carpus ; inner margin of carpus with prominent tubercles, its inner surface with an ohlique tubercular ridge. Palm cristate above, externally with large depressed tubercles above, smaller below, inner surface also tuberculate and with a ridge of tubercles running obliquely up from the lower margin at the base of the thumb to the depression into which the carpus folds, and a second curved one near the base of the fingers. Fingers long, slender, regularly tapering. finger longer than the thmmb and distally strongly arenate. Beesley's Point, Dennis Creek, N. J.! S. Ashmead (Phila. Acad., LeConte's types) ; Bluffton, S. C. ! Dr. Mellichamp (Peab. Acad.); Northampton Co., Va.! H. E. Webster (Union College) ; Nero Haven, Conn., and St. Augustine, Fla. (Smith).
24. Gelasimus annulipes M.-Edw. Pl. x, f. 22.

Gelasinus annulipes M.-Edw., Hist. Nat. Crust., II, p. 55, P1. 18, f. 10-13 (1837) ; White, Cat. B. M. Crust., p. 36 (1847) ; Edw., Ann. Sci. Nat. III, xviii, p. 149, Pl. IV, f. 45 (1852) ; Dana, U. S. Ex. Ex. Crust., 317 (1852) ; Heller, Reise der Novara, Crustacea, p. 38 (1867) ; Hilgendorf in Baron Decken's Reise, p. 85 (1867) ; Monatsberichte Berliner Akademie, 1878, p. 803 ; Kossmann, Reise nach rothen Meeren, p. 53 (1873) ; Spence Bate in J. K. Lord's Naturalist in Vancouver. Gelasimus macrodactylus Edwards and Lucas in D'Orbigny's Voyage, 27, P1. XI, f. 3 (1843) ; Nicollet in Gay's Hist. Chili Zool., iii, 165 (1840); Edw., Ann. Sci. Nat., III, xviii, 149 (1852). Gelasimus lacteus Krauss, Sud. Af. Crust., p. 39 (teste Hilgendorf). Gelasimus pulchellus Stimpson, Proc. Phila. Acad., 185̄8, p. 100. Gelasimus annulipes var albinana Kossmann. l. c.. Gelasimus rectilatus Lockington, Proc. California Acad. Sci., p. 148 (1877).

Carapax transversely nearly flat; inferior margin of orbit crenulate. Meros of larger cheliped smooth, angles rounded, carpus the same with a few obsolete granulations on the upper surface. Hand smooth, sub-marginate below, an oblique row of tubercles on the immer surface, rumning up and back from near the lower margin half way to articulation with the carpus, and two similar curved lines near the articulation of the dactylus. Thumb recrularly tapering. a prominent tuberele near the midult, extremity sub-excavate. Dactylus distally strongly curved, extending slightly beyond the thumb.

Australiu! E. Wilson; Singapore! Dr. Mrcartee (Phila. Acad.); Zanzibur! (C. Cooke) "N. W. Boundary Survey, A. Campbell, Commr., Dr. C. B. Kennerly" ! (Peabody Acad.) ; Seas of India and Asia (Edw.); Ceylon, Nicobars Madras (Heller); Mozambique Inhambeni (Hilgendorf) ; Pondicherry (White); Valparaiso (Edw. and Lucas) ; Vancouver (Bate) ; Lower California (Lockington) ; Tahiti (Stm.) ; Red Sea (Kossmann).
25. Gelasimus lacteus DeHaan. P1. x, f. 28.

Ocypode (Gelasimus) lacteus DeHaan, Fauna Japonica Crust., p. 54, Pl. XV, f. 5 (1835). Gelusimus lucteus Edw., Ann. Sci. Nat., III, xviii, 150, Fl. IV, f. 16 (1852) ; Stm., Proc. Phila. Acad., 1858, 100 ; Miers, Proc. Zool. Soc., 1879, p. 36.
Carapax longiturlinally strongly arcoate, trancrersely mearly that ; anterolateral angles promiment; meros of latere chatipeal - aternally gramalate a constriction of the upher mate in forar the articulation with the carpus, lower crenulate or exen denticulate farpus extemally smooth, imere elge acote denticulate; hame externally finely granulate, above more plainly so; a crenulated ridee near the imer lower margin and one or two near the linders. fingers clevated, strongly compresed, the thmmb sublenly narrowed near the apex.

Japan! E. Wilson ; Pondicherry! Dr. T. B. Wilson (Phila. Acad.) ; Japan (DeHaan) ; China (Edw. Stm.).

2a. Gelasimus splendidus Stm.
Gelasimus splendidus Stm., Proc. Phila. Acad., 1858, p. 99.
Inferion margin of onf ceremate, externally rommed. Larger hamb nearly smonth, internally with an ohligue tulumenlar erest. Crest at the base of the fingers nearly obsolete. Fingers long, leader, slightly denticulate. Thumb with the apex exeasate (Stm.).

I have not seen this species; it, however, appears to be very near umulipes.
27 . Gelasimus minor 0 wen.
Gelasimus minor Owen, in Beechey's Voyage of the Blossom ; Aprpendix ; Crustacea, p. 76, Pl. XXIV, f. 2 (1881).

Oahu, Sandwich Is. (Owen).
This species is very near the annulipes of Edwards, the only ditference being the larger teeth of the fingers of the cheliped.
28. Gelasimus triangularis A. M.-Edw.

Gelasimus triangularis A. M.-Edw., Nouv. Arch. du Mus., IX, p. 275, (1873).

Is distinguished from cultrimamus, forcipatus, oreuatus, tetragomoin, dussumieri, perplewus et lutreillei by the earapax greatly larger in front and smaller hehind ; the lateral angles are spiniform and directed strongly forward, the front between the eyes is large and rounded. Larger cheliped externally smooth, palmar portion long and proximally inflated. Immer surface with a granular ridge, inner margin of fingers dentate, finger a little longer than the thumb. This species is allied to G. minor liy the form of the hand, but is distinguished by the more triangular carapax (A. M.-E.).

New Caledonia (A. M.-Edw.).
29. Gelasimus gaimardi Edw. Pl. x, f. 23.

Gelasimus gaimardi Edw., Ann. Sci. Nat. III, xviii. 150, Pl. IV, f. 17, (1852) ; Heller Reise Novara, Crust., p. 38 (1867).

Very near ammlipes, but having the front more protonged and more rounded below and the external [internal ?] crest of the hand olture and not denticulate, resembling that of G. latreillei (Edw). Tongatabou (Edw.) ; Tahiti. (Heller).
30. Gelasimus panamensis Stm. Pl. x, f. 24.

Gelasimus panamensis Stm., Ann. Lyc.; VII, p. 63 (1860) ; Smith, Trans. Conn. Acad., II, 137, PI. IV, f. 5 (1870!
Carapax depressed. Anterior and inferior margins of the meros of the larger cheliped crenulated, posterior rounded. Carpus very short, smooth; hand smooth externally and internally, fingers regularly tapering.

Gulf of Fonseca! McNiel (Peab. Acad.).
31. Gelasimus pagillator.

Ocypoda pugillator Bosc., Hist. Nat. Crust., Edit. I, i, p. 197, 1802-3, (teste Auct.) Edit. II, i, p. 250 (1828) ; Latr. Hist. Crust. et Ins. vi, 47 (1803-4). Ocypoda pugillator (pars.), Say, Jour. Phila. Acad. 1,

71 and 443 (1817-18). Gelasimus pugillator Latr., Nouv. Dict. d'Hist. Nat. Edit. II, p. 519 (1817) ; Desmarest Consid. 123 (1825), Edw., Ann. Sci. Nat. tom. cit. p. Pl. IV, f. 14 (1852); Stm. Ann. N. Y. Lyc. VII, p. 62 (1859) ; Smith Trans. Conn. Acad. II, p, 136, P1. IV, f. 7 (1870); Rep. U. S. Fish Comm. 1871-72, p. 545 (1875). Gelasimus vocans (pars.), Gould, Invertebrata of Massachusetts, 1). 325 (1841) ; Dekay, N. Y. Fauna, Crust., 14, PI. VI, f. 9 (1844).

Carapax polished, swollen, nearly quadrate Meros of the barger cheliped with the outer surface rugose, bpper and lower nargins crenulate. Carpus gramulate extemally, fis immemarein seute : hand inflated. the batal pertion ertanulate ant marginea above and below ; inner surface roumberl, erranulate, but withou: any trace of a tuberculate risger except one formon by a rontinuas tion of the imer matrin of the thumb. Thumb nearly -traight. a ridge on the onter surface, a latere tuberele near the mithle of the inner margin, the extremity obliquely truncate. The lineer is bonger than the thomb, regularly tapering and distally troner? areuate. There is a specimen in the collection of the Ihilaluthia Aeademy from surinan which appears to be intermediate, in the characters of the hand, hetween this and hi. moder The fingerare shorter, the gramules on the outsice of the palm much more prominent than in typieal pmgillator, and there are traces. thousi faintly indicated of a tubercular ridge on the inside of the palm:

Newo Jersey! T. Say, Wm. Wood; Manatee Rivor! S. Ashmead; Mauritius! Guerin's Collection; Greenpoint, L. I.! S. F. Baird; Beston Harbor! J. H. Slack (Phila. Acad.) ; Nantucket and Key West, Fla.! A. S. Packard; Bluffton, S. C.! Dr. Mellichamp; Savannah, Ga.! no collector's name given (Peab. Acad.) ; Beuufort. N. C.! H. E. Webster (Union College) ; New Haven, Conn., Egmont Key and St. Augustine, Fla. (Smith); South Carolina and Cayenne (Edw.).
89. Gelasimus chlorophthalmus Edw. P1. x, f. 2B, 27.

Gelasimus chlorophethalmus Edw., ITist. Nat. Crust. II, 54 (183i) ; Amm. Sci. Nat. tom. cit. 150, Pl. IV, f. 19 (1852); Mcleay in Smith'* Zool. S. Africa, p. 64 (1838) ; White, Cat. B. M. Crust., p. 86 (1847); Guerin, Iconog. Crust., Pl. IV, f. 3 ; Hilgendorf in Deeken's Reise Crust. p. 85 (1867); Monatsberichte Berlin Akad., 1878, p. 803 : Gelasimus marionis Edw., Hist. Nat. Crust., II, 58 (183i) ; Gelasimus perplexus Edw., Ann. Sei. Nat. tom. cit., 150, P1. IV., f. Is (1852) ; Heller, Novara Crust. p. 38, Pl. V, f. 4 (1867) ; 1. M.-Edw. Nouv. Arch. Mus. IX, 224 (1873); teste Hilgendort.

C'arapax ar mate. Larger hamd small, joints all smooth, fingers short. frementy shomer than the palm; the rideres on the inside - the min wither smooth or olsobletely grambate ; fingers denticulate, regularly arcuate.

Ishund of Bourou! Gueriu's Collection (Phila. Academy); Mauritius (Edw., White); Zanzibar, Mozambique and Mascarenes (Hilgendorf); Juva (Edw.), Ceylon and Madras (Heller); New Caledonia (A. M. fidw.).
I ako um lerstand that Maillard found this species at Remnion, but I have not seen the work.

Hilsendorf from an actual comparison of specimens says that t ie furplerus and rhlorophthatmus of Edwards are the same. The G. stenodactylus of Lockington (Proc. California Acad., vii, p. 149, 15:5). from West ('oast of Lower California, would :1'pear from the description and a rough figure of the hand sent me by the anthor to be near this species ; it certainly is not stenodactylus of Edwards and Lucas.
33. Gelasimus subcylindricus Stimpson. Pl. x, f. 29.

Gelasimus subcylindricus Stimpson, Ann. N. Y. Lyc., vii, p. 63 (18599); Smith, 'Trans. Conn. Acad., ii, p. 137, Pl. IV, f. 6 (1870),

Carapax obscurely granulate. Margins of meros of larger chapel granulous. Hand internally without tubercular ridge except two or three parallel curved rows near the base of the fingers, externally granulate. Fingers closely resembling those of G. vocator, the common east coast form (Smith).

Matamoras on the Rio Grande (Smith, Stm.).
34. Gelasimus latreillei E Lw. Pl. x, f. 31.

Gelasimus latreillei Edw., Ann. Sci. Nat., III, xviii, p. 150, P1. IV, f. 20 (1852) ; A. M. Edw, Nouv. Arch. Mus., ix (1873).
('arapax smooth, lateral angles far behind the front. Greater cheliped smooth; meros with the upper and posterior margins rounded. the upper ending in a prominent tubercle, the lower crenulate and prominent. Inner upper margin of carpus minutely cremulate, the others rounded. Hand cristate above, externally microscopically granulate, internally with a smooth ridge near the lower margin, no tubercles present; fingers slender, slightly :ompressed, regularly arcuate, with fine tuberculations on the , ecludent margins, the extremity of the thumb subexcavate.

Philippines! Dr. T. B. Wilson (Phila. Academy); Isle of Borabora (Edw.) ; Nero Calerionia (A. M. Edw.).

/
4.

Dath's Eixpl in Alasker /Proce al. it.s. Iliblucl. libioll. II

$-$

$-$

-/

 : r.....
 1:5-20. Tirioper chenuserie 11.

li,it, $\therefore . .$. , \because......

$$
14
$$

(

,
(,

$$
-\quad 1
$$

\mathcal{N}

1-9. P'olge pallidar. B.

IZ-IS. Appleled. Intill. Ω.
11) - 2\% Rivlyc. Malloilli , II:
35. Gelasimus tangieri liydoux. Pl. x, f. 30.

Gelasimus tangieri Eydoux, Magazin de Zoologrie, 1835, clvii, P1. XVIL: Edw., Ann. Sci. Nat., 1852, p. 151, P1. IV, f. 21 ; Heller, C'rustaceen des südlichen Europas, p. 101 (1863).

Carapax transversely nearly flat, the sides of the branchial regions strongly arcuate; above everywhere granulate; lower
 roughened, the upper margin produced into an arcuate erest which is fringed with hairs, the lower margin with two rows of
 an oblique ridge on the inner surface with a slender obtuse spine at about the middle. Palm margined above, and armed with phiniform bubereles. extermally with demencel fulnerele, inferion margin denticulate to the tip of the thumb; internally a row of tubercles near the base of the fingers, a second rums obliquely npwat from the lower marin, medine a thime rmmine back and from the articulation of the finger, elsewhere internally smooth. Fingers elevated, strongly compressed. Dactylus with the upper margin and outer basal surface tuberculate; the rest of the outer surface finely grambate. Oceluhent margins of both timers with
 that of the thumb with a prominence near the middle. Meral joints of the ambulatory feet denticulate above and below.

Tangier! Guerin's Collection (Eydoux's Types); West Africa! (Duchaillu); [?] Bethia! E. Wilson (Phila. Acad.); Cadiz and Coasts of Morocco (Edwards).

Edwards' figure is very poor.
36. Gelasimus perlatus Iferklots. PI. x, f. 25.

Gelasimus perlutus Herklots, Additamenta ad Faunam, p. 16 (1851 : Edw., Ann. Sci. Nat., III, xviii, p. 151 (18テ̃̃); IIilgendorf, Monatsberichte Berlin. Akad., 1878, p. 806.

Carapax arcuate in both directions, above with patehes of granules more prominent on the anterolateral portions. Larger cheliped much smaller than is usnal in the genus. Meros granulate, the posterior margin rounded, the anterior produced in an arcuate crest ; carpus and hand extemally granulate. Hand cristate above, internally without tubercular ridges, fingers compressed.

Guinea! E. Wilson (Plila. Academy); Boutry, West Coust of Africs (Herklots); Loando, Chinchoro, Liberic (Hilgendorf).

This species is closely allied to tangieri, but differs in the proportionately smallex cheliped without tuhereular didges on the immer sufface ami in the more sparse tuberentation of the carapax.

* * Male Abdomen five-jointed.

37. Gelasimus stenodaotylus Edw. et Lucas. Plo. x, f. 33-55.

G lasimus stenodactylus Edw. and Lucas, in D'Orbigny's Voyage Crust. p. 26, P1. XI, f. $2(1843$) ; Nicollet in Gay's Hist. of Chili, Zoologic iii, p. 165 (1849) ; Edw. Ann. Sci. Nat. III, xviii, 149 (1852). Gelasimus gibbosus Smith, 'Irans. Conn. Acad., II, p. 141, Pl. II, f. 11, Pl. IV, f. 8 (1870), Lockington, l. c. Gelasimus leptodactylus et poeyi Guerin MS.

Carapax smooth, transversely flat, the regions strongly gibbous. Meros and carpus of larger cheliped elongate, meros smooth, its amgles romeled, earpus externally meonspicuously granulate, its inner margin acute denticulate. Hand externally smooth or $\underline{\text { granulate, a tubercular ridge on the inside of the palm, running }}$ ohliquely from the lower margin to the groove in which the carpus folds. Fingers much longer than the palm, intermally denticulate.

Mexico! Cuba! Brazil! Guerin's Collection (Phila. Acad.) ; Gulf of Fonseca! McNiel (Peab. Acad.) ; Gulf of California! iV. N. Lockington (Brown University) ; Valparaiso (Edw. and Luc.).
Of the following species I can say but little. I have not seen specimens which would answer to the deseriptions and figures, while the descriptions are so meagre that I camnot decide regarding their aflinities.
38. Gelasimus variegatus Heller, Verhandlung der Zool. But. Gesellschaft, Wien, 1862, p. 521.
" G. annulari affinis sed brachium chelipedum ad marginem superiorem carinatum et dentatum, index dactylo paulo brevior acuminatus. Mudras."

This is described as one of the specimens collected by the Novara in her voyage around the world, but in Dr. Heller's final memoir on the Crustacea of that expedition, this species is not mentioned.
39. Gelasimus variatus Hess, Archiv. für Naturgeschichte, XXXI, 146, l'l. VI, f. 7 (1865). Pl x, f. 32.

Cephalothorax smooth, greatly swollen. Front between the eves small. Greater cheliped of male somewhat longer than the breadth of the carapax. There is a large triangular depression at
the base of the index finger; the index finger is somerrhat bent, the thumb is straight; both are tubereulate on the inner margin.

Sydney, Australic.
40. Gelasimus porcellanus White, Cat. B. M. Crust., p. 36 (eine deser.), Adams and White, Voyage of the Samarang, Crustacea, p. 50 (1848), Ediv., Ann. Sci. Nat., ILI, xviii, p. 151 (1852).
"Eye pedicels very long, frontal portion of carapax not narrowed at the base; hind part of carapax much longer than the sides. Fore-legs with the lower claws thickenerl at the end, the
 the smaller crenules. Hab., Borneo." (Adams and White.)
41. Gelasimus inversus Hoffmann, Rech. Faun., Madagasear, p. 20, Pl. IV, f. 23-26.

Madagascar.
I have never seen this work, the quotation heing taken from the Zoological Record.

ENPLANATION OF PLATES.

1. G. maracoani.
2. G. heterochelcs.
3. G. bellator.
4. G. styliferus (after Milne-Edw.)
5. G. heterophthalmus.
6. G. heleropleurus.
7. G. cultrimanus.
8. G. marionis (after Desmarest).
9. G. forcipatus.
10. G. arcuatus.
11. G. letragonon.
12. G. forceps (after Milne-Edwards).
13. G. longidigitum.
14. G. smithiz.
15. G. urvillei (after Milne-Edwr.).
16. G. dussumieri (after Milne-Edw.).
17. G. rubripes (after Hombron et Jacquinot).
18. G. signatus (after Hess).
19. G. brevipes (after Milne-Edr.).
20. (r. rocator.
21. G. minax (drawn from type).
22. G. annulipes.
23. G. gaimurdi.
24. G. panamensis.
25. G. perlatus.
26. G. chlorophthalmus.
27. G. perplexus (after Elwards).
28. G. lacteus.
29. G. subcylindricus (after Smith).
30. G. tangieri (from type).
31. G. latreillei.
32. Ci. varialus (after Hess).
33. G. sterodactylus (from Brazil).
34. G. stenodactylus (after Edmards et Lucas).
35. G. stenodactylus (from Mesico).

Apils 6.

The l'resident, Ir. Ruschenberger, in the chair.
Forty-two persons present.
The death of $\mathbf{W m}$. Theodore Ropper, a correspondent, was amounced.

April 13.
The President, Dr. Ruschenibenger, in the chair'
T'wenty-eight persons present.
A paper entitled "Deseription of a New Species of Catostomus (C. cypho), from the Colorado River," by Wm. N. Lockington, was presented for publication.

The death of M. Laporte, Count de Castelnau, a correspondent, was announced.

Remarks on Pond Life.-Prof. Leidy remarked, that at the invitation of Mr. Joseph W. Griscom, he had recently visited some little ponds in the vicinity of Woodbury, New Jersey, which were remarkable for the profusion of minute invertebrate life. The ponds occupy hollows in the woods, and consist mostly of aecumblated rain water, though several are likewise supplied by surines. Several are completely dried up during the smmmer. Mr. Griscom says they continne rich in animal life even during the winter.

Of animals, entomostracans are exceedingly numerous and variech. Among some of the most beantiful and conspicuons were noticed abundance of Branchipus, of which two species from the same locality have been recently described by Mi: Ryder, wader the names of Chirorephalus holmanii and Streptocephalus: scalii. There are also wonderful multitudes of many species of copepods, ostracods and cladoceres, several of which are conspicuous for their large size and bright red color.

In one of the ponds a bright green Hydra was frequent, and in another a pinkish one was abundant. These appear to be the H. gracilis:and H. rar".mon of Agassiz, but it is a question whether they are not the same as the H. viridis and $I I$. fusca of Europe. Some of the Hydras were of a bright red color, and Mr. Griscom intimaterl that this was due to the pinkish variety feeding on red entomostracans. This was confirmed by some of the pink ones which were brought home and kept in a jar with abundance of
red Cyclops, becoming, after a few clays, as a result of feerling on the latter, of the same orange-red hue. Sulsecquently, when food became scarce, the red Hydras lost their bright color.

In one of the ponds, the stems of rushes and dead branches of trees were invested with a bright grass-green stratum, consisting

 animal ranged from 0.108 mm . long by 0.06 mm . broadd, to 0.12
 by 0.102 mm . broad at the peristome. In a large active bunch, most of them measured 0.09 mm . long and loond. The pedicels were from five to eight times the length of the botly.

In another pond, the water was rendered turbid from the profusion of Folvox globator. In a bay of this pond filled with dead leaves, a portion of water taken into a jar appeared opalescent from the quantity of minute white flakes it contained. 'These, on examination, proved to be S'pirostomum ambiguum. In the same pond, the Spatterdock, Nuphar advena, was just about unfolding its leaves, and many of these were thickly invested with a clear jelly, dotted with bright green spots. These proved to be Stentor polymorphus. On the under side of a few open leaves on the surface of the water, were many spots of bright green and dull rectdish. 'The former consisted of groups of the green Iorticella before mentioned, the other consisted of attached groups of a lilac- or amethystine-colored Stentor, probably S. igneus. Similar groups of this Stentor were observed on a tloating log, which had been in the water since last year, as it exhibited attached many statoblasts of a Plumatella. Ehrenberg describes S. igneus as hright yellow or vermilion: ぶtoin as homl rent, or whon lilac.
 tached to Hottonia. Stein says he never saw it fixed. but always swimming.

The Woodlbury variety which might be mamed S. amethystinus, was abundant and invariably found in conspicuous groups, visible to the unaided eye, and when detached, though the animals swam
 they actually gathered together in groups. They all contained an abmotance of chlomphyl, apparently heriven from fomb. hot the exterior structire was invariably of a distinct amethystine hue. dependent on fine molecules. The color was more pronomed in the longitudinal bands approaching the peristome. The nuclens was spherical.

In the attached state, when the animal was fully extended :und presented a trumpet slape, it was 0.6 mm . long by 0.18 mm . wide at the peristome. This was a common size, but some measured were 0.84 mm . long. In the conical form, when swimming, individuals ranged from 0.27 to 0.42 mm . longr. Jn the most con-
tracted condition of oval shape, they measured $0^{\circ} 15 \mathrm{~mm}$. long by 0.15 mm . broad. The nucleus, 0.03 mm . in diameter.

Ehrenberg and Stein give for S. igneus one-sixth of a line length, so that the variety indicated would appear to be much longer.

April 20.
Mr. Thomas Meeitan, Vice-President, in the chair.
Twenty-nine persons present.

April 27.

The President, Dr. Ruschenberger, in the chair.
Thirty-four persons present.
Lionel S. Beale, of London, was elected a correspondent.

$$
\text { May } 4 .
$$

Mr. Thomas Meeian, Vice-President, in the chair. Twenty-eight persons present.

May 11.
The President, Dr. Ruschenberger, in the chair.
Twenty-two persons present.
The following papers were ordered to be printed in the Journal of the Academy.
.- The 'Cerestrial Mollusca inhabiting the Cooks or Harvey Islands," by Andrew Garrett.
" The Placenta and Generative Apparatus of the Elephant," by Henry C. Chapman, M. D.

MAy 18.

The President, Dr. Iischenberger, in the chair.
Twenty-six persons present.
A paper entitled "On the Structure of the Orang Outang," by Henry C. Chapman, M. D., was presented for publication.

The death of Wm. Logan Fox, a member, was amounced.
A fine portrait in oil, by Uhle, of Isaac Lea, LL. D., was presented to bhe A cademy, and the following resolution was manimously adopted :
liesolved, That the thanks of the Academy be presented to Dr. Isaac Lea, for his gift of an admirable portrait of himself, which has heen lomer desimed hy the sociefy and wemelly ly the sonion members, who are cognizant of his rabuable contrihntionto science, as well as towards the prosperity of the Academy.

$$
\text { May } 25 .
$$

The President, Dr. Ruschenberger, in the chair.
Twenty-two persons present.
The • Proceedings of the Mineralogical and Geolowical sicetion of the Academy of Natumal scemees of I'hilathphia, for the years 1877,1878 and 1879 ," was presented for publication.

Henry S. Gratz, R. S. Peabody, Mrs. R. S. Peabody and William Barbeck, were elected members.

Adolf E. Nordenskiold of Stockholm; Carl Ochsenius of Marhurg. Oscar Hertwig and Iichamb Itertwig of Jona, wert elected correspondents.

The following were ordered to be printed:-

ON THE STRUCTURE OF THE ORANG OUTANG.

BI HENRY C. CHAPMAN, M. D.

Trarious parts of the Orang, Simia satyous, L., have been dissected, described, and figured by Tiedemann, ${ }^{1}$ Owen, ${ }^{2}$ Sandifort, ${ }^{3}$ Cuvier, ${ }^{4}$ Schroeder van der Kolk and Vrolik, ${ }^{5}$ Rolleston, ${ }^{6}$ Selby, ${ }^{7}$
 others. It was hardly to be expected, the subject having been investigated by such eminent observers, that I could hope to find anything particularly new to science. It occurred to me, however, that it might not be altogether useless to bring to the notice of the Academy a general resume of the results of my dissection of the Orang that died at the Philadelphia Zoological Garden in February last, more especially as the memoirs referred to below are scattered through the journals, and are often limited to descriptions of certain parts of the animal only, such as the brain, muscular system, ete.

My Orang was a young male, supposed to be about three years old. The following measurements were taken: From vertex to rump, 16 inches ; upper extremity, $20 \frac{1}{2}$ inches ; arm, 7 inches ; forearm, 8 inches; hand, $5 \frac{1}{2}$ inches; lower extremity, $17 \frac{1}{2}$ inches;
 whe was the length of the upere extrenity, it heing ? inches longer
: Tiedemann, Zeit. Phys. Darmstadt, 1827.
${ }^{2}$ Owen, Proc. Zool. Soc., i, 1830, 1831.
${ }^{3}$ Sandifort, Ontleerhundige Beschryving, Leiden, 1840.
${ }^{4}$ Cuvier and Laurillard, Planches, 1849.
${ }^{3}$ Schroeder van der Kolk and Vrolik, Verhandelingen Kon. Nied. Inst., 1849; Verslagen Kon. Acad., 1862.
${ }^{6}$ Rolleston, Nat. Hist. Rev., 1861.
© Selby, Nat. Hist. Rev., 1861.

- Huxley, Med. Times, 1864.
${ }^{3}$ Bischoff, Munich Abhand. 1870.
${ }^{30}$ Barnard, Proc. American Assoc., 1876.
${ }^{11}$ Langer, Sitzungsberichte, Wien, 1879.
${ }^{12}$ Gratiolet, Plis Cerebraux des I'rimates, no date.
${ }^{13}$ Spitzka, Journal of Mental and Nervous Diseases, 1879.
Note.-I regret that when dissecting the Gorilla I was unacquainted with Mr. Macalister's valuable paper in the Proceedings of Royal Irish Academy for 1873.
 Gorilla ${ }^{1}$ which I dissected, the difference in the extremities in that animal being $3 \frac{1}{2}$ inches, whereas in the Chimpanzee ${ }^{2}$ I found only a difference of $1 \frac{3}{4}$ inches. The foot in the Orang, howerer, was $\frac{1}{2}$ inch larger than the hand, whereas in the Gorilla the hand was $\frac{1}{2}$ inch larger than the foot; in the Chimpanzee the difference in this respect was $\frac{3}{6}$ inch in faror of the foot. The foot in the Orang, however, resembled superficially a hand much more than it does in the Gorilla. Indeed the distinctness of hand and foot superficially is more marked in the Gorilla than in the other anthropoids. I found the thoracic, abdominal and pelvic viscerae perfectly healthy. The animal seemed to lave died from congestion of the brain; there was also some cerebritis. As the osteology of the Orang has been thoroughly described by Prof. Owen ${ }^{3}$ and others it will not be worth while for me to dwell on that part of its organization. I will pass therefore to the muscular system, and more particularly to that of the extremities, as being the most interesting as compared with man.

Muscular Systems.-In Prof. Bischof1's ${ }^{4}$ paper on the Gorilla an excellent figure is given of the muscles of the fice of the Orang, from a preparation by Rudinger. 'These muscles were deseribeat by Prof. Owen, ${ }^{5}$ but not figrured. The same facial museles are found in man and the Orang with the exception that there is but
 of man, though on accomnt of its size it may represent both the zygomaticus major and minor. The facial muscles in the Orang are not as well cliflerentiated as in man, rather hanging together. I noticed that the digastricus had only the posterior head. 'There was nothing peculiar, however, about the sterno cleiclo mastoid, omohyoid, or the scaleni. The omocervicalis or elevator clavicula passed from the transverse process of the atlas to the acromial end of the clavicle, as I found it in the Chimpanzee and in the Gorilla. 'Ihe pectoralis major arose in three portions : the first. from stemum and first intereostal space ; the second, from sternal part of third, fourth, fifth, and sixth rihs, and the third from costal

[^38]portion of fomth, fifth, sixth and seventh ribs. This distinction in origin is partly visible even in man. There was nothing noticeable about the pectoralis minor or subchavins, supraspinati or teres. The latissimus dorsi, as in all monkeys, gave off the slip the latissimo combloides, which, however, in the Orang seareely reached the condyle, and was pierced by the ulnar nerve. The biceps, triceps, and brachialis anticus were well developed, and the extemal cutaneons nerve passed through the coraco-hachialis as in man. The anterior aspect of the forearm was quite human. The pronator radii teres arose hy two heads, hetween which passed the median nerve. The flexor carpi radialis and ulnaris and the palmaris longus were well developed. The flexor sublimis did not difler from that of man. The flexor profundus was rather separated into two portions, one for the under and the other for the remaining fingers. There was no trace of a flexor longus pollicis either as a distinct muscle or as a slip from the flexor profundus. The abductor, flexor brevis, adductor and opponens pollicis, abductor flexor brevis, and opponens minimi digiti, and the lumbricales were all present. As regards the back of the forearm, the supinator longus arose higher than in man. The supinator hrevis, and extensor radialis longior and brevior, extensor ossi metacarpi pollicis and exterior secundi internodii pollicis did not difler from those in man. The alsence of an extensor primi internodii pollicis was noticeable, as was also the fact of the extensor indicis giving a slip to the middle finger and the extensor minimi digiti one to the ring finger, making eight tendons supplying the back of the fingers with the four from the extensor communis digitorum. 'The interossei were the same as in man. Bricfly, the upper extremity of the Orang in its museles diflered essentially from that of man in the absence of the flexus longus, and primi internodii pollicis and in the presence of the alditional tembons to the ring and middle fingers. The Orang' agreed with the Gorilla in not having a flexor longus pollicis, but disagreed with it in having the pronator radii teres arising hy two heads, in the presence of a palmaris longens, in the alditional temtons for ring and midhle fingers, and in not having the extensor primi internodii pollicis. As compared with the Chimpanzee, the Orang agreed in reference to the pronator radii teres and palmaris longus, hut in the extensor ossi metacarpi pollicis being single, and in the absence of the flexor longus pollicis as a slip from the pro-
fumdus, and in the preance of the additional extenom tembens it differed.

As might be expected from the elongaten form of the pelvis ame the absence of the romm ligament of the hip-joint in the Oramge the glutei museles differ somewhat from these of man. The glutans magnus (Pl. 12, e) in the Orang-not as large or an lle-lyy as its glutans medius-is inserted together with the tenom ragina fiomoria, which is scantily reveropect, if at all, into the flece ciata of the thigh. the glutares medins heing inserten into the great trochanter. Parallel with the lower enge of the gluterns mediu- (Pl1. 12, 以) is seem a small muscle rising from the celge of the great seiatic notech, and inserted
 pond to part of the pyriformis in man, the sacral portion of the muscle not heing developect in the Orang. The glutans minimus is represented by a musele arising from the external edge of the ilemm, and passing almost rertically downwards matil insertel into the great trochanter, close to the pyriformis (P1. 12, a). At first sight this musele serems much displaced if it is the ghuarus minimus, hut if one can imagine the ilem (Pl. 12, d) in the Orang to be widened outwardly to the same extent as seen in man, there would be little or nothing anomalous about the muscle. From the position of the glutatus minimus in the Orang, it would seem that this musele would supplement, to a certain extent, the want of the ligamentum teres, which, it will he rememberel, is absent in this ape.

In the Chimpanzee there is so little that is peculiar about the glutarus minimas that I had no difficulty in identifying it amb the same can he said of the dorilla. In the aceome of the Chimpanzee by Traill ${ }^{1}$ however, the gluteus minimus is deseribed as a distinct new muscle, the semanorins; the muscle I have flem ritact as pryitiomis, Traill regardel as the ghtarns minimus, the priformis, according to Traill, being absent. Since then, this socalled seansorius muscle has been referred to by Bischoir, Owen, Huxley and others, as a distinct muscle. With all deference to such eminent anatomists, I cannot see any essential diflerence het ween the se:msorins of Traill, ame the glutarus minimus in men.

${ }^{1}$ Wernerian Transactions, p. 18, 1821.

${ }^{2}$ On looking up the literature upon the anatomy of the Orang, I find that in $18 \% 6$ Prof. Barmard, op. cit., considered the scansorius as being homologrous with the ghaterns minimus, amel mentioned in his pagre that

The oldurators, gemelli and quadratus femoris, were well dereloped. There was nothing peenliar about the museles of the thigh either on the anterior or posterior surface; the rectus arose, however, only from the inferior spine of the ileum. In the leg anteriorly, I noticed the tibialis anticus divided into two tendons; otherwise, the muscles were as in man. The peronens longus and brevis were well developed, but there was no peronens tertius. The soleus, as usual in monkeys, had only the plantar head, and there was no trace of a plantaris, although, according to Sandifort, it is present. The flexor longus digitorum supplied the perforating tendons for the second and fifth, the flexor longus hallucis those for the third and fourth digits. There was no slip from the longus hallucis for the big toe, that muscle, therefore, except from its origin, scarcely deserves that name. The flexor brevis digitorum supplied the perforated tendons for the second and third toes. Those for the fourth and fifth came off from the flexor longus digitorum. The tendon for the fifth toe was not perforated. There was a connecting slip betwreen the third and fourth tendons. The external head only of the flexor accessnrius was present. In addition to the abductor, flexor brevis and adductor of the hallux, there was a wellmarked opponens hallucis. The lumbricales for the second and fiftl digits came from the flexor longus digitorum, those for the third and fourth digits from the flexor longus hallucis. The abductor and flexor brevis minimi digiti were well developed, but there was no transversus pedis. The interossei were like those of the hand. Briefly, as compared with man, the leg and foot of the ()rane differ in the ahence of the peroneus tertitus, plantaris, flexor longus hallucis and transversus pedis, in the fibular origin of the soleus, and external origin of accessorius only, in the distribution of the perforating and perforated tendons for the toes, in the interossei, and in the presence of an opponens for the big toe. In this lattrer rejued the Orang differs not only from man. hat from all the other monkeys and anthropoids, the foot having a very hand-like anparamere at compared with that of the (iorilla and Chimpanze. The foot of the Orang differs further in the absence of a special

Prof. Humphrey held essentially the same opinion. I was not amare, until I had finished my dissection, of the views previously published by these anatomists, and am glad to liave been able, independently, to come to the same conclusion.
 opponens, and in a partly developed accessorins. 'The perforated tendon for the fifth toe in the Gorilla came from the flexor longus balluris, whereaspin the Chimpanze ame (orame it it -lyption lay the tendo: of the longus digitorum. If Prof. Huxley's canon lee accepted that the distinction between a hand and a foot consists in the latter possessing tarsal bones, the peroneus longus and brevis, the short extensor and short flexor muscles, then the posterior extremity of the Orang terminates in a foot. It appears to me, however, that the difference between the hand and foot in man, the Gorilla, Chimpanzee, and the lower monkeys, is greater than that observed between the corresponding members of the Orang.

Alimentary Canal, etc.-It is usually stated that the urula is absernt in the Orang, ant, on looking intu the month, at fir-t -i_ht this appears to be the case, as it does not hang down as in man between the pillars of the fances-nevertheless it exists. I found
 palatine spine. It contained the azygos uvulie muscle. Prof.' Bischofl ${ }^{1}$ mentions also finding the urula in the Orang. The circumvallate papilla of the tongue are disposed in the form of a Λ, as in man; I found this to be the case in the female Chimpanzee, ${ }^{2}$ of which I gave an account, and also in a male which I hat the opportunity recently of dissecting. 'The salivary glands with their ducts were well developed, the submaxillary being very large both relatively and absolutely, as compared with man. 'The stomach in the Orang (Pl 1.13, fig. 1) is not so hmman in its form as
 thints of thestomath, heing more dongated and contrinted trom the pyloric part, which was tubular. The greater curvature measured 6 inches, the less 4 . The small intestine was 8 feet 4 inches in length, the large 4 feet. The constant presence of valvulae conniventes in the small intestine of the Orang appears even at the present day questionable by some anatomists. In speaking of these folds occurring in the Gorilla, Bischoff ${ }^{3}$ refers to Owen not finding them in the Orang, while they are said to exist by Sandifort, Mayer and Barkow. As to his own opinion on the subject. he expresses himself as follows: "Die beiden jetzt aut"s Neue

[^39]von mir untersuchten Diannlarme des Orangs ans Dresten mad ans der hiesigen Zoolog. Sammlung, sowie der eines Z/weiten Chimpanzee ans Dresten, zeigen keine Spur der genamiten Falten. Ich halte mach alle diesem ihre Gegenwart beim Orang und Chimpanzee fïr zweifelhaft; heim Gorilla, wemn gleich in schwacher Entwicklung, für gewiss ; individuelle Verscheidenheiten sind doch in einem solehen Punckte nieht wahrscheinlich." I found indieations of valvula comiventes in the Orang, but of the most rudimentary character as compared with man. In places they run parallel with the long axis of the intestine (Pl. 14, fig. 2), then transversely as in man (Pl. 14, fig. 3), then again as at first, and afterwards again transversely. They are found in parts of the jejunum and ileum. The valvula comiventes I found very well developed in the male Chimpanzee (Pl .14 , fig. 4), but not at all in the female. I noticed in the Orang the villi and solitary glands; the Pever's glands were rery well developed. I counted fifteen, some of which measured 4 inches in length. The ceccum and ileocolic valve did not differ from the same parts in man. The vermiform appendix attained a length of $6 \frac{1}{2}$ inches absolutely, and wats relatively much larger than that of man, reminding one of the condition of this structure in the human embryo. As regards the large intestine, the only noticealle peculiarities were the large size of the solitary glands, and the fact that the mucons membrane of the ascending colon was thrown into well-marked longitudinal folds, with transverse comnecting ones, exhibiting quite a reticulated appearance (Pl. 14, fig. 1). This is not the case in the Chimpanzee. The peritoneum was disposed as in man. The transverse colon was comnected with the stomach, as was also the case in the Chimpanzee, and Prof. Bischoff ${ }^{1}$ noticed that this obtains also in the Gorilla. As is well known, the transverse colon in the monkeys can be raised entirely without drawing up, with it the stomach, with the exception sometimes of the Macacrues, in which I have noticel a slight peritoneal comection between pyloric part of stomach and colon, indicating a leginning of a gastrocolic omentum? I did not notice any thing peculiar about the spleen or pancreas. The quadrate lobe of liver was alsent; the spigelian lobe, however, was very well reveloped ; the hepatic duct opened at a little distance from the pancreatic. I found in the small intestine, five fine specimens of

[^40]the Ascaris lumbrionites and one in the large and in the camonn a Trichocephalus dispar. I believe this is the first time these entozoa have been fomed in the same amthropoil. Acomeling to Diesing ${ }^{1}$ the Triefureflatus is fomm in the Orames and Coblimhle states that Murie sent him an Ascaris from the Chimpanzee.

Respiratory siystem. - In the ()rang, as in the (iorilla ame Chimpanzee, particularly in the male-, the rentricles of the laryns are frolonged into the so-called larymeal ponches. In yonnes -pectimens of the anthroperil-, these prollhe; though not so well developed as in the artults, can manally, however, he perfectly identitial. In dissecting my Orang, after remosing the skin in the cembial region, I noticed what appeared to me to be the laryogeal prou-lns. and by passing a tule into one of the vontricles of the larynx. the pouch of that sile could he rearlily intlated. On tracing. however. the anterior wall of the pouch downward, I noticed that it was attached to the front of the sternmen ant clavicle, ami on opening the pouch and following its posterior wall, I foumet it attacherl to the back of the sternum and first rib. Thus the interior of the pouch corresponied with the space hetween the two layers of the
 but in the Orang it is empty and communicating with the interior of the larynx. 'The pouch was not lined with mucons membiane. recembling the remaining fasciat, which was indeed continuons with 1t. Supposing that my dissection really representel the true relation of these parts, then, morphologioally speaking, the laryngeal pouch in the anthropiots would be homologous with ant replace the two layers of the cervical fascia in man, so familiar to the surgeon. There was nothing especially moticeable almon the vocal cords. epighotis or trachea. The lunes (I'l, 1: fig. 2), howerer, were not divided into lobes as in the Gorilla and Chimpanzee.

Vascular System.-I did not notice about the heart anything especially different from the hmman. In reference to the arizin of the ressels, howerer, the immminate arae ofle the left eamial and continuing an eighth of an inch then diviched into the right carotid and right subchaian, the left subclarian coming off syarately from the aorta (Pl. 13, fig. 2). In the Gorilla and male Chimpanzee I found the disposition of thene ressel- the sathe as in man, which is the case in the Otang, accombing to Samlifiote. In the female Chimpanzee there were two innominates, a long and a

[^41]short one, the latter dividing into left carotid and subclavian. The arteries and reins of the extremities did not difter from those of the Gorilla and Chimpanzec. I found in the Orang, as in them, the "long saphenous artery" accompanying the nerve and vein of same name. The mesenteric ressels exhibited loops along the borders of intestine.

Genilo-urinary Apparatus.-The general appearance of these struetures resembled strikingly those of man (Pl. 15). The kidney measured $1 \frac{1}{t}$ inches in length, and exhibits only one papilla. The ureters were 5 inches long. The bladder was 2 inches in length and 1 in diameter. The testicles measured $\frac{6}{8}$ of an inch in length, and were situated near the inguinal canal. The (avity of the tuniea raginalis testes was shat off from the general peritoneal cavity. The vas deferens was 4 inches in length, the seminal vesicle 1 inch; the seminal cluct was very short. The caput gallinaginis was well developed, as was also the prostate. 'The penis measured 2 inches in length, the glans was of cylindrical shape. There was no bone in the penis. The Cowper's glands were relatively large.

Nervous System.-The brain of the Orang has been figurediby Tientemann, samelifort, Schroeder van der Kolk and Vrolik, Gratiolet, Rolleston, etc. On account, howerer, of the few illustrations extant, and of the importance of the sulbject, I avail myself of the (1plortmaty of presenting several views of my Orang's brain (Pl's 1 jand 17), which was removed from the skull only a few hours after heath. The membranes were in a high state of congestion, and a lit'le of the surface of the left hemisphere had been disorganized by diswase, otherwise the brain was in goorl condition. It weigher uxactly 10 ounces. The brain of the Orang in its general contour :erembler that of man more than those of either of the Chimpanzees which I examined. In these the brain was more elongated. The general character of the folds and fissures in the brain of the Orang, Chimpanzee, and man are the same, there are certain minor nifferences, howerer, in their disposition in all three. The fiscure of Silvius in the Orang runs up and down the posterion brauch pursuing only a slightly backward direction, the anterior branch is small. The fissure of Rolando, or central fissure, quite apparent, is, however, situated slightly more forward in the Orang than in man. It differentiates the frontal from the parietal lobe. The parieto occipital fissure is well marked. hordered externally
by the first orecipital fild it de-cemis internally on the me-int-ride of the hemisphere s.paratiug the parital from the owipital holo. . In the Orang, the pariet oneseripital fisare dons not made the calcarine, being separated from it by the "deuxieme plis de passage interne " of Gratiolet, or " untere innere Scheitelbogen-Winclung" of Bischoff. I have noticed this separation as anomaly more than once in man.

According to Bischoff, this disposition obtains in the Gorilla, amh seems to the u-nal alon in the Chimpanzee. In the female Chbinpanzee, however, on the left side I found the parieto-occipital fissure passing into the calcarine, as in man. The frontal lobe is easily distingui-hel from the parietal hy the fisante of Roblambe. and from the temporal by the fissure of Sylvius. In the Orang it is higher, wider, and more arched than in the Chimpanzee. The anterior central convolution in front of the central fissure runs into the post-central convolution above and below, as in man. It is difficult, howerer, to identify the three frontal convolutions seen in man and the Chimpanzee, the frontal lobe of the Orang diviling rather inte, two convolutions, the midde one iming hally defined. This is due somewhat to the length of the pre-central fissure, which is as long as the fissure of Rolando, extending farther upward than in man. There was nothing particularly noticeable about the base of the frontal lobe; on the mesial surface it ran into the parietal. The part above the callosomarginal fissure in the 0ramy is not as distinctly divided inte. convolutions as in man, thongh these are not con-tanty preewh even in all human brains. The parietal lobe is separated from the fromatal liy the central fissure, from the onceipital and temporal incompletely, by the parietonecipital and sylvian fioures. The pusterior-central convolution is well defined. The pratictal fiowte in the Orang is more striking than that of man, rearmbling the Gorilla's: it is twice as long as the corresponting fissure in the Chimpanzee, extembing from the transtere necipital fissure, at in sometimes the ease in man, almost into the fissure of Rolando. It is unbridged and without a break, and divides the parietal lube completely into upper and lower parietal lobules. The upper: parietal lobule is bounded externally by the parietal fissure: posteriorly it is separated from the occipital lobe, internally by the parietooccipital fissure ; externally it is continuous with the occipital lobe, as the firsi occipital gyrus, anteriorly: it is sepa-
matal from the persterior central convolution more eompletely than in man, by a fissure which runs parallel with the central fissure. There is in the Orang, also, a fissure running parallel with the parietal, which subdiviles the uper parietal lobale into inner and outer portions. The precumens, or the space on the mesial sile of the parietal lohe between the parieto-oecipital fis-umes and the aseending branches of the calloso-marginal, is well defined. The lower parietal lobule in the Orang divides naturally into the supramarginal and angular gyri. The supramarginal fold curves around the upper end of the posterior hranch of the fissure of Sylvins and rums into the superior temporal gyrus. 'The angular gyrus, which is very evident, arches aroum the first temporal fissure, and becoming continuous with the second occipital fold, passes then into the upper temporal gyrus. The occipital lobe, separated from the parictal, internally, hy the parieto-occipital fissure, is continuous with upper parietal lobule through the first occipital gyrus, and by the second occipital gyrus with the angular. There are no sharp lines of demarkation between the occipital and temporal lobes. In the occipital lobe of my Orang the transverse occipital fissure was present, and received the parietal fissure. The calcarine fissure was well marked, hut was separated in the Orang from the parietooccipital fissure by the "deuxieme plis de passage interne" of Gratiolet, the "untere imnere Scheitelbogen-Wrindung" of Bischonl. The cuncus of the Orang is therefore somewhat different from that of man. In man I have seen these two fissures separated as an cumomaly. The calcarine passed into the hippocanpal fissure, so that in the Orang, as in monkeys generally, the gyrus fornicatus was separated from the hippocampal gyrus, whereas in man these convolutions are continnous. This disposition has been noticed in the Hylobates, in Ateles, and in one Chimpanzee, where the calcarine did not reach the hippocampal. The first occipital gyrus is very well developed, and, as the late Professor Gratiolet olserved, is one of the most striking convolutions in the brain of the Orang. It rises so to the surface that the internal perpendicular fissure or external part of the parietoorcipital fissure is almost entirely lridged over, the opereulum so characteristic of the monkey almost disappearing. It is continuous with the upper parietal lohnle arching around the parietooccipital fissure. This convolution comes to the surface in the

Hylohates and Ateles almost to the same extent as in the Orancs. but it is more developed in the latter than in the Chimpamzee. It is called also the "premier plis de passage externe," hy Gratiolet, the "obere ininere Scheitelbogen-Windung," by Bischotl, the " iirst annectant gyrus," by Huxley, and "first bridging convolution," by Turner. The second occipital convolution connects the occipital lobe with the angular gyrus. In my Orang it was partly concealed hy the first occipital. It was not, as superficial as in man. 'The third occipital gyrus is continuous with that part of the temporal lobe below the first temporal fissure. I noticed, also, in my Orang the "quatrieme plis de passage " of Gratiolet. On the mesial side of the occipital lobe in my Orang, was well seen the "deuxieme 'plis de passage interne" of Gratiolet, the "imtere
 calcarine from the parieto-occipital fissure; and in both the Orang and Chimpanzee, more equerially on the left sikn, I han hon difliculty in recognizing the " premier plis re pat-ater int erne " at Gratiolet, its convexity turning inwards, while that of the first occipital gyrus, or the "premier plis de passage externe," turns outward. These two convolutions, the first occipital gyrus and the "premier plis de passage interne," in my Orang were continuous. They are regarded as one by Bischoff, forming his "obere innere Scheitelbogen-Windung;" but as two by Gratiolet, constituting his "premier plis de passage externe et interne."

The temporal lobe in the Orang is much less convoluted than in man, or even in the Chimpanzee: The first temporal fissure and first temporal convolution are well marked, but the second and third are badly defined. The fusiform and lingual lobes are separated by the inferior occipito-temporal fissures, the collateral fissures of IHuxley. The island of Reil was perfectly covered in both the Chimpanzee and the Orang by the operculum, but was not convoluted in my Orang. The surface in places was slightly roughened. I noticed, however, three or four convolutions in the Chimpanzee. On making a section of the left hemisphere of the Orang I noticed that the corpus callosum was relatively smaller than in man, but that the rentricle exhilited an anterior, middle and posterior cornu, the corpus striatum, faniat semicircularis, thalamus opticus and formix were well developert. the hippocampus major with corphs timbiatum were porioutly erinem. and the hippocampus minor larger relatively than in man. I did
not see a trace of the emmenentia collateralis; this is : often, howerer, absent in man.

The cerebellum in my Orang was relatively larger than that of man, but smaller than that of either the Chimpanzees I have dissected, and was just covered and no more by the posterior lobes of the cerebrum. 'This relation is still retaned in my Orang, though the hrain has been lying in alcohol for thee months since it was taken out of the chloride of zine in which it was placed until the pia mater could be removed. During this period it has been suluject to the conditions, such as the want of the support of the membranes, the effect of pressure, etc., urged by Gratiolet, Huxley, Rolleston, Marshall, ete., as suflicient to explain why after death the cerehellum was uncorered by the cerebrum in the Orang and Chimpanzee, as held by Owen, Schroeder van der Kolk and Vrolik, and Bischoff. Every anatomist knows that the brain after removal from the skull, especially without the membrane, if left to itself, rery soon loses its shape. It is absolutely necessary therefore to examine the brain in situ, and after remoral from skull to plare it in some hardening fluid in which it will float. Even with these precautions, through the change of the surroundings, shrinkage, etc., the brain is always somewhat altered. It happens, however, that I have had lying in alcohol for some years a number of human and monkey brains. Among the latter, examples of the genera Cebus, Ateles, Macacus, Cynocephalus, Cercopitheeus, etc., taken out of the skull sufficiently carefully, but preserved in the rudest mamer without any regard to the above precautions. Now, while all of these brains hare somewhat lost their matural contour, they are not so changed that in a single one, human or monkey, do I find the cerebellum uncovered by the cerebrum, and in every instance the posterior lohes overlap, the ceretellum to a greater extent than I find is the case in my Orang. If the cerebrum and cerebellum in the Orang and Chimpanzee invariably bear the same proportion to each other as they do in man and the monkeys, why should not the brain of an Orang or (himpanzee, after lying in alcohol for some years, exhibit the eerebellam covered hy the cerebrum as in them? Why shonld it he meressaty to replace the brain of the Chimpanzee or the Orang in the skull, to make plaster casts, etc., if there is no difference between their brains and those of man and the
monkeys, for there is no neeessity of having recourse to sitch measures to prove that the cerebellum is covered in the latter?

In the account I gave of the female Chimpanzee. ${ }^{1}$ I stated that I found the cerebellum uncovered. I had the opportunity a short time since, of verifying that statement in the male, noticing in situ that the cerebellum was uncorered hy the posterior lobes. This was found to be the ease by Mr. Arthur Browne, the Superintendent of the Phila. Kool. Garden, in a thitd Chimpanzes which died there. With all deference to Prof. Marshall's ${ }^{2}$ photograph of a plaster cast of the brain of a Chimpanzee, and howerer it may truthfully represent the relations of the cerebellum in his specimen, I must say that it would be simply monstrous if accepted as an illustration of either of mine, and with protound respect for Prof. Huxley's ${ }^{3}$ opinion regarding the interior of the skull being a guide for the determination of the proportion between postexior lobe and cerebellum, I find it anything lut a safe one as regards the anthropoid apes. For the space between posterior lobes of brain and dura mater and bone, both posteriorly and laterally, I find very variable in situ, due to the state of the blood ressels and amount of fluid in arachmoid and subarachmoid cavities. In speaking of the Gorilla, Prof. Bischotl ${ }^{1}$ observes. p. 100, "Das es bei ersterem am wenigsten von oben Hinterlappen der grossen Hemi-
 oben mit seinem hinterem Rande sichtbar wirl." And in reference to the Chimpanzee, ${ }^{5}$ p. 95 , "Die Hinterhauptslappen des grossen Gehirns bei diesem Affen wie bei dem Menschen das kleine (xehirn iiberzogen und von oben fast ganz bedecken." And Trolikistates. p. 7, of the Orang: "Ce lobe posterieur ne se prolonge pas autant que chez l'homme; il ne recourve pas si bien le cervelet du moins il ne cache pas complétement surtout vers les cotes." 'The finct of the cerebellum being covered by the posterior lobes in my Orang and that figured by Gratiolet, and but slightly uncovered in that of Vrolik's, is no more strange than that Bischoff ${ }^{7}$ should find it. eovered in one Hylobates, and Prof. Huxley having stated it to be uncovered in another.

I did not observe anything particularly noticeable about the

[^42]pons or medulla, except that in the latter the olivary bodies are not as distinct as in man. As regards the peripheral nervous system it was essentially the same as the human. As the brain of the ():ang which I have just endeavored to deseribe is the property of the Acalemy, the animal having been bonght and presented by Mr. Wm. S. Vanx, and as it was desirable to preserve it in its present condition, I could not make use of it to examine the structure minutely. I would refer those interested in the histology of the anthropoid brain, to Dr. Spitzka's paper. ${ }^{1}$

What can be inferred from the general organization of the Orang as to its relation to the other primates? The Orang like man has twelve ribs, whereas the Gorilla and Chimpanzee have thirteen; on the other hand the carpal and tarsal bones are nine in number in the Orang, while the Chimpanzee and Gorilla agree with man in having eight. The upper extremity of the Orang rescmbles that of the Gorilla in the absence of the flexor longus pollicis. The Chimpanzee and man are alike in this respect, at least the slip from the flexor longus digitorum in the former is finctionally a flexor longus. In the absence of a flexor longus hatluwis, and in the presence of an opponens hallucis, the Orang differs from man, the anthropoids and all the monkeys. The great blood-vessels arise from the arch of aorta in the Gorilla and man in the same way; the same disposition is usually seen in the Chimpanzee, rarely in the Orang. The lungs in the Orang are not divided into lobes as in the Gorilla, Chimpanzee and man. The stomach in the Gorilla and Chimpanzee is human in its form; in the Orang, however, it is quite different. The peritoneurn in the Gorilla, Chimpanzee and Orang is like that of man ; in the lower monkeys it is different. The brain of the Orang in it - alobular form, in the cerebellum being usually corered by the cerebrum, and in the development of the first occipital gyrus, resemhles man more than that of the Gorilla and Chimpanzee. On the other hand, the frontal and temporal lobes in the Orang arw hot a-much conwoluted as in the Chimpanzee, and still less than in man, and the island of Reil is not convoluted at all, at least in my Orang.

It will be seen from the above illustrations, of which many nthe- - bight he given, that the Gorilla and man, in some respects, agree with and differ from the Chimpanzee and Orang; while

[^43]from other points of view the Orang approacheo man move alo-ly than either the (iorilla or Chimpanzee, amt that as regath ceptain muscles, man and the lower monkeys agree in having them, whil. they are absent in the anthropoids. From these facts we may reasomahly infer that the ance-tral form of man was intermentian. in character as compared with the living anthropoids or lower monkeys, agrecing with them in some respects, and dilfering Tron. them in others. The Orang is closely allien on the (ibhon- the (Hhimpanzee to the Macacopes, and the wap between these ant the Semnopithecus is bridged over by the Mesopithecus of Gaudry: Until, however, the palcontologist will have procured more material like that from Pikermi, and interpreted it as ably, it will seem to me promature to offer any dratel genealowical trea of the Primates.

DESCRIPTION OF A NEW CRUSTACEAN FROM THE UPPER SILURIAN OF GEORGIA, WITH REMARKS UPON CALYMENE CLINTONI.

BY ANTHONY W. VOGDES, U. S. A.

Calymene rostrata Vogles.
This species differs in one aspect from the usual forms classed imbler the genns Colymuene, in having a projecting process arising directly from the cephalic shield in front of the glabella, and in this respect resembles Homalonotus rhinotropis of Angelin, a species which has been referred by Salter, in his monograph of British Trilobites, to M. Finiyltii. Salter says "the front margin Fig. 1. is of most singular structure and may be

Calymene rostrata Vucrles. The xhalella and tixed cheeks showing the projecting process. described as tricuspid. The narrow edge is so deeply indented, and at the same time folded, that the front portion overhangs the rostral shield, forms one projecting angle flanked by two smaller projections opposite the axial furrows, exactly like the salient and re-entering angles of a fortification." Our species has only the central triangular projection, the margins of which are deflected, and the marginal border unites and forms a triangular projection, directly in front and on the median line.

The following characteristics are drawn from three specimens, consisting of the glahella and fixed checks, and many bygidia found associated with them at the same locality.

The glabella is convex and widens out posteriorly, being contracted in front; the sides are marked with three lobes, the basal one large, the middle lobe nearly spherical, the third is somewhat obsicurely defined. The fixed cheeks are seprarated from the glabella ly deep dorsal furrows, but opposite the eyes the furrows are restricted by a buttress thrown across it, nearly touching the middle side lobes; the cheeks are gibbous but not elevated above the glabella, they are narrow along the sides of the glabedla and widen out laterally from the eyes. The facial sutures cut the posterior angles of the head, but anteriorly from the eyes these lines run almost straight with a slight tendency outward, and pass over the margin. The neck furrow is continued nearly to the posterior angles of the
head. The frontal limb is triangular in outline, and prolonged into a prominent projection, the bourrelet of the limb is detined by a triangular ridge which forms the base of the projection. The projection is formed by the thickening of the crust and by the union of the outer marginal borders along the median line, it is pointed and has its sides deflecent. The -gace het wem the from of the glabella and the base of the projection is somewhat depressed.
The pygidium is obtusely triangular, with the front greatly arched in uncrushed specimens, but this character seems to be
 so much arehent, and correspond in this re-pect to typical feygidia of C. blumenbachii. The axis occupies along the anterior border about one-third of the width of the tail, and gradually tapers posterionly into an olituse point: it is markel with almont cipht on nine articulations, the anterion one bing slighty arehen forwambut the others are extended almost straight across it. The dorsal furrows are well defined. The lateral lobes are marked with five pairs of ribs, four of which are grooved and double halfway up; they are contracted along the dorsal furrows, but widen out laterally: The ribs curve downwato and hackwats, and are separatend from each other by well-defined grooves, the

Calymene rostraia Vowles. 'The pytidtum msually foumd assochated with the head.
last pair unite and form a ridge extending around the posterior termination of the axis.

Geological Position.-Clinton Group, Taylor's liddge, near Catoosa Station ; and also at Dug Gap, Georgia.

Among the trilobite specimens which I have collected in Georgia, there are three morable checks and one pygidium showing a strong resemblance to the same parts of Calymene Clintoni as figured by Prol. Hall in Pal. N. Y., vol. ii, pl. 66 a, fig. 5. These fragments were found associated with two glabelle,
 just referred to ; therefore, for the purpose of comparison, I carried the specimens to the American Museum, and through the courtesy of Prof. Whitfield was enabled to study the trilobites found in the Clinton Group of New York. The Georgia forms are ahmost identical with those of Yew York, hut show some
rariations from the typical C. Clintoni; I shall, therefore, describe these fragments.

Calymene Clintoni Yanuxem.
(ilabellat slightly comex, the hase broad, so as to form a nearly cumilateral triangle. The sides are marked with three lobes, the posterior one being twice as large as the middle lobe, but the anterior one is ill-defined. The dorsal furrows are deep. The occipital ring triangular in front, and narrowing out laterally. The frontal limb is broad, and equal to half the length of the glabella, and arched in front. It is worthy of remark that this character is not common to the minute glabella found in the same beds. The fixed cheeks have a buttress thrown across them

Fig. 3.

Calymene Clintoni Yanuxem The qlabeda and fixed Cheek s-howinir the wide frontal limb. extending along the sides of the glabella, but this does not elevate them above it. The movable cheeks are triangular in outline, and posteriorly extended into spines, and correspond to those figured by Prof. Hall, Pal. N. Y., vol. ii, pl. 66 a, fig. 5, c. They are convex laterally along their inner half, and grooved near the outer margin, which is defined by a raised border. The pygidium is triangular in outline, and resembles the figure of this part given ly Prof. Mall, Pal. N. Y., vol. ii, pl. 66 a, fig. 5 a, d, except in size. The axis is
Fig. 4. marked with about eight articulations. The lateral
 lobes are not marked with ribs, as usual in Caly. mene, and in this respect the pygidium bears some resemblance to that of C. arago and C. salteri, two European forms found in the Lower Silurian, and described by Rousault in 1849.

Geological Position.-Clinton Group, Catoosa ralymene clineoni Station; also in the Hematitic lied at Dug Gap, Vanuxem. The
movable chiceh.

CARCINOLOGICAL NOTES, No. 3.-PEVISION OF THE GENUS OCYPODA.

BY J. S. KIN゙GSLEY゙

 I have observed the rule adopted in previous papers of following the locality from which I have seen specimens, by an exclamation point. In all other cases the nane of the person who has reported a species from any place follows that of the locality: 'the same conservative spirit which pervades my paper on the "Fiddler Crabs" (Gelasimi) will be found in this. Many of the characters given by anthors prove to be of no specific value, but I have not rentured to unite forms unless I had specimens which corresponded to each nominal species.

OCYPODA Fibricius.

Cancer l. c., Fabr. Ocypoda Fabr., Suppl. Ent. Syst.. 347 (1798); Edw., Hist. Nat. Crust., ii, p. 41 (1837) ; Dana, U. S. Ex. Ex. Crust., p. $32 \pm$ (185̃).
Carapax transverse, rhomboidal or nearly square. Fyes stout, the cornea occupying the larger portion. Meros of external maxillipeds shorter than ischium. Chelipeds unequal.

In many species there is a stridulating organ composed of a row of tulnereles on the inner surtace of the palm, which, hy heing drawn atouss a ringe on the ischinm of the chelipent, proluce a noise.
§ 1. Ocular pedicels prolonged beyond the cornea as a spine or style.

1. O. ceratophthalma Fabr.

Cancer ceratophthalmus Pallas, Spicelegia, p. 83, P1. Y, f. 17 (1:72). Ocypoda ceratophthalma Fabr., 1. c., 347 (1788); Latreille, Hist. Crust. et Ius., vi, 47 (1803-4) ; Encyc. Meth., x, Pl. 274, f. 1 ; Lamarck, Hist. Animaux sans Vert., v, $252(1818)$; Desmarest. Consid. sur le Crustaces, 121, Pl. NII, f. 1 (1825) ; Edw., Hist. Nat. Crust., ii, p. 48 (1837); III. Edit. Regne Animal, Pl. XVII, f. 1 ; Ann. Sci. Nat., IIJ, xviii, p. 141 (1852) ; Krauss, S. African Crust., p. 41 (1843) ; Stimpson, Proc. Phila. Acad., 1858, p. 100 ; Hess, Arehiv. für Naturgeschichte, XXXI, 143 (186.5) ; Martens, Vorhandl. Zool. Bot. Gesellsch. Wien, 1866, p. 381 ; Heller, Reise Novara, Crust., p. 42 (1867); Hilgendorf in v. Decken's lReise, Crust., p). S.?, 1866° A. M.-Edw., Nouv. Arch. du Mus., ix, p. 270 (1873). Cuncer cursor Herbst., Pl. I, f. 8-9 (1790). Ocypode brecicornis Edw.,

Hist. Crust., if, 48 (1837) ; Ann. Sci. Nat., III, xviii, 143 (185?); Dana, U. S. Ex. Ex. Crust., p. 326 , PI. XX, f. 3 , 1852. Ocypode brocicornis ver longicornuta Dana, 1. c., 327, P1. XX, f. $+(185)$. Ocyproda egyptica Gerstaceker, Archiv. fur Naturgeschichte, xxii, 134 (1856) ; Heller, Sitzungsberichte Wien Akad., xliii, p. 361 (1861) ; Hofmann, Rech. Mama Madagascar Crust., p. 14 (1874 teste Zool. Record) ; Miers, Aun, and Mag. Nat. Hist,; V, ii, 409 (1878).

Carapax nearly square, granulate, foont strongly deflexed, orbits sinuate, oblique, the lateral angles being far behind the front. These angles are nearly right angles. Orbits with an indistinet fissure below. Eyes terminated with a style which in most eases is long and eylindrical, extending far beyond the orbits. In the joung, however, it is small and in some cases even wanting; that form, when small and conical, characterizes the nominal species brevicornis; maxillipeds granulate. Meros of larger cheliped, whhternoms armert with spiniform tubseles, more prominent on the anterior margins. Carpus granulate, with internally one or two teeth. Hand externally acute, tuberculate, serrate below, the inner surface with scattered tubercles. Stridulating ridge at -ome di-tance from the base of the fingers, staight and composed of rounde tubercles. Ambulatory fect with acute granules, which exhibit a tendency to arrange themselves in rugre.

Natal!(E. Wilson); Mauritius! (Guerin's Collection); Anjir, Ternate, Amboina, Adenare, Zanzibar, Benkula (Hilgendorf); Sendwich Is., Tahiti, Bonin, Loo Choo, Hong Kong Ouisma (Stm.); Egypt, Mauritius, Bombay, Australia (Edw.) ; Ceylon and Nicobar's (Heller) ; Madugascar (Hoffmann) ; Tongutabu (Dana).
I -pereimen rolloreterl by the Wilkes Expertition ("East Indies ") has the carapax intermediate between this species and cursor. The ocular styles are wanting. Milne-Edwards': figure in the Regne Animal is different from any specimens that I have seen. I agree with Kossmann in considering xgyptica as but a variety of ceratophthalma.
2. O. platytarsis Edw.

Ocypode platytarsis Edw., Ann. Sci. Nat., III, xviii, p. 141 (18J2); Ifeller, Reise Novara Crust., p. 42 (1867).
Carapax wider than is usual in this genus and covered with large granules. Superior margin of orbit sinuate, the external ancres rommerl; sirles parallel about one-fourth of their length. ()? hit with an indistinet fissure blow. Eyes spinerl as in reralophe
thalma (leste Edw., the single specimen I have seen has the ever broken). External maxillipeds gramulate; meros of larger cheliped with the upper margin produced and dentate, the lower spined, the posterior with transverse granular rugre, carpus
 ridges carved and composed of crowded gramules. Ambulatory feet with ruga and subspiniform tubercles, clactyli broad.

Pondicherry! Guerin's Collection (labelled by Guerin "Ocypoda platytarsis, Edw., Cat. Mus., Paris") and probably one of the original specimens). Tuhiti and Nicoburs (IIeller).

3. O. urvillei Guerin.

Ocypoda urvillei Guerin, Vogage Coquille, Crust. p. 9, Pl. I, f. 1 (1836), Edw. Hist. Crust., II, p. 49 (1837), Ann. Sci. Nat. III, xviii, p. 141 (1852), Owen in Beechey's Voyage Crust., p. 80 (1839, Dana, U. S. Ex. Exp. Crust., 328, P1. XX, f. 5 (1852).
Carapax wider than long, superior margin of orbit sinuate,
 to angles of orhit. Meros of latere cheliperl romment abore, it two other margins denticulate. Carpus with a strong internal spine. Hand externally granulate, serrate above and below; the -tribulating ringe nearly staight, a little remote fomb the fimgor
 the way to the upper. (Guerin.)

Tahiti (Guerin) ; Isle Bouron (Edw.) ; Sundwich Is. (Dana .

4. O. macrocera Edir.

Ocypoda mucrocera Edw. Hist. Nat. Crust., II, 49 (1837), Amn. Sci. Nat. IV, xviii, p. 142 (1852), Heller, Novara Crust., p. 142 (186\%).
Orbits wide, oblique, angle obtuse, eyes with a spine as in U. ceratophthalma. Larger hand very short, broad and a little pinose ahore : its palmar fortion bromber than lomg. The fimects of the smaller hand lamellate and very hroal at the if extremitios. Ambulatory feet roughened above. (Edw.)
E. Indies, Pondicherry, [?] Bruzil (Edw.) ; Tahiti, Nicoburs (Heller).
5. O. gaudichaudi Elwards et Lucas.

Ocypoda gutudichaudi Edw, et Lueas in D'Orbigny's Voyage, Crust., p. ${ }^{2} 6$, Pl. NI, f. 4 (1843, Edw. Ann. Sci. Nat. III, xviii, 142 (1852), Nicollet in Gay's Chili, Zool. III, p. 163 (1849), Stimpson, Ann. N. I. I.yc. Nat. IIist., VII, p. 61 (1859) ; Smith, Rep. Peab. Acad. Sci.. ILI, p. 91 (1871) ; Streets, Proc. Phila. Acad., 1872, p. 240.
('ar:pax hongitulinally atrongly arcuate, di-tal fromion of fomat nearly vertical. Superior border of orbit simate internally, its
 wards. Lateral angles ne:aly right amoles, the sides behind them being coneave for about a filth of the length of the carapax; whits withateep medianfisume bolow. Eyes with a short eonical style reaching to, or slightly beyond, the angle of the orbit. Extermal maxilliperls nearly smonth, or with a few inconspicuons granules. Meros of larger cheliped with the upper and lower matroins spino-tuberenlate, the posterior with transwerse ruge. ('arpus eramulate; hand subspinose ahove, fine? y serate below, intemally grambate and with a well-marked transverse stridulating ridge, fingers lamellate, the extremities truncate.

Chili! Guerin; Panama! Capt. Field and McNiel (Phila. Acad.); Gulf of Fonseca! McNiel (Peab. Acad.) ; Callao (Edw. et Lucas) ; Valparaiso (Dana).
6. O. fabricii Elw.

Ocypoda fubricii Eds., Hist. Nat. Crust., II, p. 47 (1837), Ann. Sci. Nat. XVIII, p. 142 (1852), Hilgendorf in Decken's Reise Crust., 82, Pl. IIl, f. 1 (1867).

Carapax convex, finely granulate, front strongly deflexed, orbits strongly sinuate; lateral angles acute and some distance posterior to the base of the rostrum ; sides parallel for abont a third of the length of the carapax. Orbits without emargination helow; eyes with a slint conical style, not reaching beyond the orthital angle. Anterior margin of meros of larger cheliped crenulate, ristally spinose, posterior margin rounderl, rugose. Carpus granulate, as is the outside of the hand; inner surface of the hant polished, with minute seattered gramules; stridulating widge straight, composed of small, closely set granules; lower margin of hand fincly serrate; fingers of moderate length. Joints of ambulatory feet with transverse rugæ.

Australic! E. Wilson; Natal! E. Wilson; Oceanica (Edw.); Zanzibur (Hilgendorf).

7. 0 . cursor.

Cuncer cursor Linn., Syst. Nat. Edit., xii, p. 1039 (1766). Ocypoda ippeus Olivier, Voyage, p. 234, Pl. XXX, f. 1 (1807); Savigny, Egypt, Pl. I, f. 1; Lamarck, An. sans Vert., v, p. 252 (1817); Desm., Consid. Crust., p. 121 (1825); Edw., Hist. Crust., ii, p. 47 (1837); Moseley, Notes by a Naturalist on the Challenger, pp. 48-49, woodcut, 1879. Ocypoda cursor DeHaan, Fauna Japonica, Crust., p. 29; Edw., Ann. Sci. Nat., III, xviii, p. 142 (1852); Stm., Proc. Phila. Acad., 1858, p. 100; Heller, Crust. S. Europa, p. 99 (1863).

Carapax arcuate, front strongly depressed. Upper margin of orloits but slightly simute and mearly transerse. Lateral anelus acute, the sides converging posteriorly, making the campan wile-t at the angles. Orbits below with a slight meerlian fi-sure. Eyes terminated by a short conical style armed with pencil of hairs. Meral joint of cheliped with the spines and rugre much less pominent than in (). cophpholmone. ('arpus internally with a denticulated tooth. Hands small, externally with depressed gramules, the lower margin finely serate, the up川er rommerl amb without spiniform tubercles. Intemally the ham is mean! smonth except below where there are granules similar to those of the outside. The stridulating rider is rery near the fingers ant is crossed by numerous fine strix. The propodal joints of the ambulatory feet spined below, the dactyli of the second pair hatry.

```
Senegal! (Guerin); Syria, Egypt (Edw.); Cape Verdes (Auct.); Greece (Guerin).
```

This is probably the speceies describerl hy Hasselyuist (Iter Palestinum, p. 483, 1757) under the name C'ancor amomalus, limt he gives many chatacters which will ally to no known decaporl and so to awoid confusion I refrain form applying lis name to this species. Mr.Leay, in smith's Zoology ol Sonth Africa, mentions "C'eratholhthalme rursor Dellatn," an expmesionn hut to be found in the pages of that Dutch Carcinologist.
8. 0. ryderi Nov.

Carapax coarsely granulate, the upper margins of the orthts sinuate, transerse, lateral angles acute. sicles aremate, the carapax loing withest at the anterior third, as in 1 . aremaria. the lateral margins anteriorly finely serrate.

Eyes not reaching the extmmities of the orhits, terminaterl hy a minute spine. Cheliperts like those of o , aromurits : ambulatory feet roughened by subspiniform granules.

> Natal! (E. Wilson).

This species is closely allied to the Ocypoda arenaria of the coasts of America, but is rearlily sepmated by the ocular spines and the gramulations on the ambulatory feet. It is dedicated to
 Philadelphia.

S11. E゙yles without an ocular spine.
9. 0. arenaria Say.

Cuncer arenarius Catesby, History of the Carolinas, ii, Pl. 35 (1731 and 1771 *). Cancer quadratus Fabr., Ent. Syst., ii, p. 439 (1793). Ocypotla quadrata Fab., Suppl., p. 347 (1798); Bose. Edit., 1, "i, p. 194 ;" (teste Auct.) Edit., II, i, p. 247 (1828; ; Latr., Hist. Crust. et Ins., vi, p. 49 (1803-4). Ocypoda arenarie Say, Jour. Acad. Nat. Sci., Phila., i, p. 69 (1817); Edw., Hist. Nat. Crust., ii, p. 44, Pl. XIX, f. 13-14 (1837); DeKay, N. Y. Fauna, Crust., p. 13 (1841); Gibbes, Proc. Am. Assoc., iii, p. 180 (1851); Gerstäcker, Arch. für Naturg., xxii, p. 36 (1856); Guerin in La Sagra's Hist. Cuba, Crust., p. 7 (1857); Martens, Arch. für Naturges., xxxviii, p. 103 (1872 ; Smith. U. S. Fish Comm. Report for 1871-72, p. 545 (1875); Kingsley, Proc. Phila. Acad., 1878, p. 322. Ocypoda albicans Latr., Encyc. Méth., x, Pl. 285̃, f. 1 (after Catesby vix O. albicans Bosc.). Ocypoda rhombea Edw., Hist. Nat. Crust., ii, 1. 46 (1837); Ann. Sci. Nat., III, xviii, p. 143 (1852); Gibbes, l. c., p. 180 (1851); Dana, U.S. Ex. Exp.Crust., p.322, Pl. XIX, f. 8(1852); Heller, Reise Novara, Crust., p). 42 (1867); Smith, Trans. Conn. Acad., ii, p. 135 (1870); Streets, Proc. Phila. Acad., 1872, p. 240. Monolepis inermis Say, 1. c., p. 157 (Megalops).

Carapax convex, granulate above, front but little deflexed; lateral angles of carapax acute, extending as far forwarl as the middle of the front. Lateral margin crenulate, arcuate, the carapax being widest at the anterior third. Orbits below with piniform tubercles and occasionally a distinct emargination. Eyes with the extremities rounded and not reaching to the extremity of the orbit. Chelipeds with spines and tubercles; the meros with the upper and lower margins spined, the posterior rounded and crossed by tubercular rugæ. Carpus with the tubereles obsolete above but pronounced near the margins, the inner margin armed with one or more strong spiniform teeth. Hands tuberculate, the upper margin spined, the lower serrate. A tubercular stridulating ridge on the inside near the fingers. Fingers strongly inflexed. Ambulatory feet compressed, hairy, their sides smonth, the upper portion margined and crossed by transverse ruge.

[^44]Young specimens (less than 10 mm . broarl) have the lateral angle further back than in the adult, while the spines of the chelipeds are wanting or but faintly indicated.

The O. allicans of Bosc, Lamarek and Desmarest lias the eves terminated hy a style, a feature I have never observed in any specimen of O. arenaria. The locality given is South Carolina. The O. Thambea of Jabricius is not this species, as his expression "Carpus utrinque unidentatis, manibus sublaeris" will not apply to this form, but agrees better with O. cordimona. Falricius gives no locality for his specimens. The Brazilian forms (rhombea Auct.) show no differences from northern specimens. I have seen specimens from over thirty localities embraced in the limits of Great Egg Harbor, N. J. (Say's trpes), to Rio Janciro, Brazil, and also specimens from the west coast of Mexico (Dr. W. H. Jones).
10. O. convexus Quoy and Gaimard.

Ocypoda convexus Quoy et Gaimard, Voy. Ľranie, Zool., iii, p. 52J, Pl. LXXVII, f. 2 (1828); Edw., Hist. Crust., ii, p. 49 (1887).

Carapax granulate, sides arcuate, front deflexed, orbits sinuate. lateral angles behind the base of the rostrum, acute. Meros internally entire, distally tubereulate; carpus tubereulate, its inner surface with a bifid tubercle. Hands cordate, extemally. granulate, serrate aloove and below.

This brief description is taken from the figure of MM. Quoy and Gaimard. I have never seen the species. It is said to have some from Australia.

11. O. cordimana Desm.

? Ocypoda rhombea Fabr., Suppl. Ent. Syst., p. 318 (179S). Ocypnode cordimana Desm., Consid. sur les Crustaces, p. 121 (1825); Edw., IIfist. Nat. Crust., ii, p. 45 (1837); Ann. Sci. Nat. III, xviii, p. 143 (1852); Jacquinot et Lucas, Voy. Astrolabe et Zelee, 1). 64; Heller. Reise Novara Crust., p. 42 (1867); A. M. Edw., Nouv, Areh. Mus.. ix, p. $2 \pi 1$ (1872). Ocypoda rhombea? Desmarest, 1. c., p. 122; Randall, Jour. Phila. Acad., viii, p. 123. Ocypoda pallidulu Jacquinot et Lucas, l. c., Pl. VI. f. 4. Ocypoda luevis Dana, U. S. Expl. Exped. Crust., p. 325, Pl. XX, f. 2 (1852). ? Ocypocta conexa Stm., Proc. Phila. Acad., 1858, p. 100.

Carapax arcuate, evenly gramulate. Front strongly deflexed. Orbits sinnate ahove; lateral angles acute, but not extencling afir forward as the base of the front. Sicles in the adult slightly
arcuate, but in the young they are parallel or even coneare, converging hehind. Eyes, without styliform process, and extending nearly or quite to the orbital angle. Meros of chelipeds with its anterior margin eremulate in the young, in the adult with spiniform tubercles. Carpus extemally granulate. Hand short, broad, cordate. gramulate internally and externally, its lower margin serrate, the stridulating ridge nearly obsolete. Fingers short, (compsessed, the thumb slightly hooked at the extremity. Meral joints of the ambulatory feet with transverse rugae. Carpal and proprdal joints similarly roughened and covered with a short pubescence.

- Var Zealand! Mauritius! (Guerin) ; Australia! (E. Wilson); Sandwich Is.! (J. K. Townsend) ; Tahiti! (A. Garrett) ; Mozambique and Zanzibar (Hilgendorf); Red Sea, Manilla, Nicobars (Heller); Hong Kong, Loo Choo (Stm.) ; Japan (Edw.).
The following are not true members of the genus:
O. angulatus Latr.
O. aurantia Bosc. ex Herbst
O. carnifex Latr. ex Herbst
O. helerochelos Bosc.
O. hispana Bosc. ex Herbst
O. hydrodromus Latr. ex Herbst
O. longimana Latr.
O. maracoani Latr.
O. macrocheles Bosc.
O. pugillator Bosc.
O. quadrata Bosc.
O. rufopunctata Latr. ex Herbst
O. senex Latr. ex Fabr.
O. tetragonon Bosc. ex Herbst
O. tridens Latr. ex Fabr.
O. vocans Latr.
= Gonoplax angulatus.
$=$ Thelphusa aurantia.
= Cardiosoma carnifex.
= Gelasimus heterochelos.
- Sesarma sp.
- Thelphusa hydrodromus.
- Gonoplax rhomboidalis.
= Gelasimus maracoani.
=? Macrophthalmus sp.
- Gelasimus pugillator.
= Sesama sp.
- Trapezıa rufopunctata.
=Thelphusa sp.
$=$ Gelasimus tetragonon.
=? Pachygrapsus sp.
= Gelasimus sp.
I. have not been able to identify
O. granulata Bosc. (Edit. ii) p. 247.
O. macleayana Hess, Archiv. für Naturgesch., XXXI, p 143, Pl. VI, f. 8 (1865).

Australia.
O. unispinosa Rafinesque, Precis de découvertes Semiologiques, p. 21, No. 35 (1814).

CARCINOLOGICAL NOTES．No．IV．－－SYNOPSIS OF THE GRAPSID気．

BY J．S．KINGSLEEY．

The following paper is a continuation of my studies of the （＇atometopa contained in the Musemm of the I carlemy of Natural Sciences of Philadelphia．In it I have endeavored to embrace every known species of the family with suflicient references to their geographical distribution．To aid in the irlestifications of speries I have compited analytical tahles form mon of the equeran but descriptions are given of only those species of which I have examined specimens．I have reduced considerably the number of nominal speedes but helieve that I am fully warranted in rele－
 geographical distribution，or sariatoms of minor importance．All localities from which I hate examined specimens are marked with an exclamation point（！）．The clasitication emploseal is mamly

 Series，Zoologie，tome xx，pp．163－200，1853），and Kossmann
 Meeres，1877），being comparatively worthless．Owing to the limited amount of space at my dispo－al，the syonymy and hithi－ ography have been condensed as far as possible．

Family GRAPSID夙 Dana．（Grapsoidiens M．Edw．）．
Carapax subpuadrate．depresed．Front generally broul．Eyen short．Antennulæ transversely plicate．Epistome short，some－ times linear．Meros of the external maxillipeds bearing the palpus at the summit or at its external angle．Second joint of the alnan． men of the male nearly as wide as the adjacent portion of the sternum．

The Grapsider are all inhabitants of the temperate or tropical waters，and generally live near the shores．A few，however（e．g． Nautilograpsus and Varuna），live on the high seas．The family may conveniently be divided into two ${ }^{1}$ sub－families，by character： derived from the antenue．In the Grapsinx the antenne are

[^45]covered by the front; in the Plagusinx they are received into notehes in the front and are visible from above.

Analytical Key to the Genera of the Grapsidx.

Antenne covered by the front.
GRAPSIN \nrightarrow.
External maxillipeds without a piliferous ridge. Grapsini. External maxillipeds widely gaping.

Antenne excluded from the orbit.
Meros of the external maxillipeds as long as the ischium. Goniopsis. Meros of the external maxillipeds shorter than the ischium.

Metopograpsus.
Antennæ entering the orbit.
Front less than half the width of the carapax.
No tooth behind the orbital angle. Epigrapsus.
One tooth behind the orbital angle.
Fingers of cheliped excavate.
Grapsus.
Fingers acuminate.
Sides straight. Orthograpsus.
Sides areuate in front.
Geograpsus.
Two teeth behind the orbital angle. Leptograpsus.
More than two teeth behind the angle of the orbit.
Male abdomen five-jointed, antennulæ transverse, front straight. Grapsodes.
Male abdomen seven-jointed, antennulæ oblique, front excavate.

Cyrtograpsus.
Front more than half the width of the carapax.
Carapax transverse.
Pachygrapsus. Carapax longer than broad.

Nautilograpsus.
External maxillipeds without a rhomboidal gape.
Palpus articulating with the imer angle of the meros of the external maxillipeds.
One tooth behind the orbital angle. Brachygrapsus. Several teeth behind the orbital angle. Euchirograpsus.
Palpus articulating with middle of the anterior margin of the meros of the external maxillipeds.
Exognath of external maxillipeds very broad. Ptychognathus. Exognath much narrower than the ischium.

Sides of carapax entire.
Acmaopleura.
Sides of carapax dentate.
External distal angle of the meros of the external maxillipeds expanded.
Joints of ambulatory feet rounded, dactyli styliform.
Pseudograpsus.
Ambulatory feet compressed, dactyli flattened, natatorial.

Varuna.
Meros of external maxillipeds not expanded.

> Meros of external maxillipeds broader than long.
> Meros as long as ischium.
> Meros shorter than ischium.

Meros as long or longer than broad.
Front nearly half as wide as carapax. IFeterogruphsus.
Front not over one-third as wide as carapax. Eriocheir.
Palpus articulating with the outer angle of the meros of the external maxilliped.
One tooth behind the orbital angle. Perigrapsus.
More than one tooth behind the orbital angle. Plutygrapsus.
External maxillipeds with an oblique piliferous ridge. Sesammins.
Meros of external maxilliped elongate, its apei rounded.
Antenne excluded from the orbit.
Metasesarme.
Antennæ not excluded from the orbit.
Carapax subquadrate, sides arcuate.
Joints of ambulatory feet entire. Surmatium.
Joints of ambulatory feet dentate. IRhuconotus.
Carapax quadrate, sides straight.
Sesarma.
Carapax elongate, narrowed behind.
Aratus.
Meros of external maxilliped short, its distal border truncate or even excavate, and bearing the palpus.
Antenuæ excluded from the orbit. Clistocoloma.
Antennæ entering the orbit.
Sides of carapax straight. Helice.
Sides arcuate.
Sides entire.
Cyclograpsus. Sides emarginate or toothed. Chasmagnathus.
Antenne lodged in notches in the front, and visible from above.
PLAGUSIN゙E.
Meros of external maxillipeds large, as broad as ischium. Plugusiu. Meros small and much narrower than ischium. Leiotophus.

Sub-family Grapsinæ (Grapsince et Sesarmine Dana).
Antennulæ more or less transverse, and covered by the front.
Tribe GRAPSNNI (Sub-family Grapsinx Dana).
§ External maxillipeals withont an oblique pilititon- rinler on the ischial and meral joints.

Genus GONIOPSIS De Ilann, 1535 (Goniograpans (pars) Dana, 1851).
Carapax flat; front vertical, over half as wide as carapax; sides straight, one-toothed. Suborbital lobe broad, reaching the front and excluding the antema from the orbit. lixternal maxillipeds slender ; meral and ischial joints of equal length.

1. G. cruentatus I) Hann ex Latreille.

Cancer mutienla De'Geer. Memoirs pour servir a l'Hist. Insectes, vii, 417, Pl. XNV, 1778 (non Linné).
Grrapsus cruentatus Latreille. Histoire Naturelle des Crust. et Ins., vi, p. 70 (1803-4).
Goniopsis cruentutus De Haan. 'Fauna Japonica Crust., p. 33 (1835).
Groapsus longipes Randall. Jour. Phila. Acad., viii, p. 125 (1839).
Goniopsis ruricola White. List Brit. Mus. Crust., p. 40 (1847).
Grapsus pelli Herklots. Additamenta ad Faunam Carcinologicam Africe Occidentalis, 8, P1. I, f. 6-7 (1851).
Goniograpsus cruentatus Dana. U. S. Expl. Exped. Crust., p. 342, Pl. XXI, f. 7 (1852).

Front granulate, supra-fiontal lobes four, margins crenulate, whits entire above, distally emarginate. Carapar with oblique transverse ridges. Anterior margin of meros of chelipeds expanded, dentate, the upper and lower margins with spiniform tubercles, as is also the upper margin of carpus. Hands with -piniform tuhercles above and below, the middle of the outer surface smooth, the inner surface with scattered prominent granules. Thumb, and finger sub-excavate, the latter spinose above. Ambulatory feet compressed and armed with stiff llack bristles. Posterior angle of meros of last pair rounded, in the other feet sentate.

Florita! (H. E. Webster, in Union College Museum) ; Bahamas! Cuba! (H. F. Baker) ; Surinam! (Dr. Hering, Randall's type of G. longipes) ; Gaboon, W. Africa (Du Chaillu); West Coast of Nicuragua! (J. A. McNiel, in Museum of Peabody Academy); Tropical Seas of America (Auct.).

Genus METOPOGRAPSUS M.-Edw., 1853.
Front more than half the width of carapax, deflexed. Sides straight. Internal suborbital lobe very broad, reaching the front and excluding the antenna from the orbit. Meros of external maxilliped short, much broader than long.

Key to Species.
Antero-lateral margin entire.
Frontal margin sinuate,
messor.
Frontal margin straight. latifrons.
Antero-lateral margin toothed. oceanicus.
M. messor Edwards ex Forskal.

Caneer messor Forskal, Descr. An. in Itin. Observ., p. 88 (1775).
Grapsus guinardii Andouin, Expl. Pl. Savigny (teste Edw.). Grapsus messor Edw. Hist. Nat. Crust., ii, p. 88 (1837).

Grapsus thutwhier Owen. In Beechey's Voyage, Zoology', p. 80, P1. XXIV, f. 3 (1839).
Grapsus parallelus Randall. Jour. Acad. Nat. Sci., Phila. viii, p. 127 (1839).
Metopograpsus messor, thukuher', eydouxi et intermedius Edw. Ann. Sci. Nat., III, xx, p. 165 (1853).

Carapax slightly narrowed behind, plications and rugie more or less distinct. Frontal lohes rather prominent, fontal marein sinuate, smooth or crenulate at the angles. Meros of chelipeds with the posterion surface mgose, the anterion matwin watanlen and distally truncate, a few spinose teeth near the base and several on the truncate margin. Carpus externally rugose, internally with a prominent hifich or ynadrifid tuberele. Hands with obligue folds alowe aml helow, amd a lougiturlinal rimge on the lower outer surface. Fingers sub-excavate. Last joint of male abdomen but slightly narrower than penult joint.

Sandwich Is. ! (Nuttall, Pease, Jones, Wilkes' Expedition); Tahiti! (A. J. Garrett); Australia! (E. Wilson); Mauritius! (Guerin); Aden;! Natal! (Dr. T. B. Wilson); Indian and Pacific Oceans (Auct.)
M. latifrons Edwards ex White.

Grapsus latifrons White, in Jukes' Voyage of the Fly, ii, p. 337, Pl. II, f. 2 (1847).

Metopograpsus latifrons et maculatus Edw., Ann. Sci. Nat. III, xx, pp. 166 and 165, Pl. VII, f. 1 (1853).
Metopograpsus pictus A. M.-Edw., Ann. Soc. Ent. France, vii, p. 283 (1867) ; Nouv. Arch. du Mus., ix, p. 289. Pl. NIII, f. 2 (1873).

Carapax narowed hehind, plications intistinct; fontal loles granulate on the edge. Front broad, nearly straight, margin denticulate. Chelipeds similar to those of M. messor. Base of lact joint of male ahmomen mush natrower than the exiremity of penult joint.

Batavia! (Dr. Wilson); Singapore (White); Jura (Edw); Nero Catedonia (A. M.-Edw.).
M. oceanious Jacq. et Lucas.

Metopograpsus (Grapsus) oceanicus Jacquinot et Lucas, Voyage Astrolabe et Zéelee, Crust., p. 73, Pl. VI, f. 9 ('Text 1853, Plates 18.12-53).
Metnpograp)susquadridentutus. Stimpon, Proce Acal. Nat. Sci. Phil.ulelphia, 1858, p. 102.
Pulo Man (J. et L.); near Hong Fiong (Stm.) ; Nicobar Is. (Heller).
sides areuate, entire orbits externally open; external maxillipeds gaping, meros shorter than the ischium, rather broad abdomen of the male five-, of the female seven-jointed.
E. politus Heller.

Epigrapsus politus IIeller, Verh. Z. B. Ges. Wien, 1862, p. 522.
Nectograpsus politus Heller, Reise der Novara, Crustaceen, p. 57, P1. V, 1. 3 (1865).

Nicobars; Takiti (Heller).
Geaus GRAPSUS Lamarck (restrict).
Sides arcuate, with one tooth behind the orbital angle; front narrow, deflexed ; antennæ entering the orbit. External maxilliperts shmber, gaping: meros oblong. Fingers of chelipeds excavate.
G. maculatus Edwards ex Catesby.

Pagurus maculatus Catesby, Nat. Hist. of the Carolinas, ii, Plate XXXVI, f. 1 (1743 et 1771). ${ }^{2}$
${ }^{1}$ Dr. Heller, in his preliminary account of the Crustacea collected by the Nowara Expedition (Verhandl. Zool. Bot. Gesellschaft, Wien, 1862, pp. $\therefore 19$ ins, characterizes several genera and species of which $n 0$ mention is made in the final report. These are Mencthius brevirostris which is probably Acanthonyr corsobrimus A. Edw., of the final report ; Xuntho tetrundon is Eudora tetraodon, Carpilodes granulatus appears to be C. tristis Dana. Lupa hirsuta was probably referred to Neptunus sanguinolentus. Thel2,husu wïllerstorji appears to be I. leschenumdii, I'uruthelphuse dentipes to be I. Widentatu, Helucius areolutus to be H. cordiformis, Metuplux hirtipes is apparently referred to a new genus, Grapsus depressus is probably Geogrupsus crinipes, Grapsus declivifrons is apparently rechristened Pachygrapsus intermedius, Heterogrupsus burbigerus has its specific name altered to barbimanus, Epigrapsus nov, gen. reappears as Nectograpsus nov. fen. with no reason assigned for the change. Metusesarma grunulutus is redescribed as new under the name rugulosa. Plaguisetes elatus is probably, as pointed out by Mr. Miers (Ann. and Mag. Nat. Hist., ix, p. 147, 14is, Acmithoryclus guyi of the final report. Gelusimus voriegutus appeas, to lave been finally referred to G. annulipes. Palinurus paulensis was afterward apparently referred to P. letundii and P'elias notatus is referred to Auchistia. All this sluffling of names is made without the slightest hint to aid one in correlating the two papers, and is a proceeding which camot be too strongly condemned.
${ }^{2}$ There were at least two editions of Catesby bearing dates as above, and as the second appeared thirteen years after the tenth edition of the Symem Ninturn of Limme, and five after the twelfth edition, the names employed by Catesby will hold.

Cancer grapsus Linu., Syst. Nat., Edit., x, p. 630 (1758).
Grapsus pictus Latreille, Hist. Crust. et Ins., vi, p. 69, P1. XLVII, f. 2 (1803-4.)
Goniopsis pictus De IIaan, Fauna Japonica Crust., p. 33 (1835).
Grapsus strigosus Brullé, in Webl et Berthelot Hist. Canaries, ii, Pl. II ; Crustacea, p. 15, 1836-44 (teste ${ }^{\circ}$ Edw.) ${ }^{1}$
Grapsus maculatus, vebli, ornatus et pharaonis Edw., Ann. Sci. Nat. pp. 167-8, Pl. VI, f. 1 (18.53).
Grapsus altifrons Stimpson, Aunals N. Y. Lyceum Nat. Hist., vii, I' 230 (1860).

 crenulate, regularly arcuate. Lateral margin arcuate. Inferior border of orbit with a deep fissure. Anterior border of ischium
 tuberculate, the posterior surface plicate. Carpus with distant tubercles, is interior margin with a laminate spine. Haml above tuberculate, externally with longitudinal ridges, below with
 prominent. Fingers short. tip excavate Ambulatory fece compressed, propodal and dactylic joint spinose.

Floridu Feys! (Webster, Ashmead); West Indies! (Lawrence, Wood, Wilson, Gües, Lea) ; Sun Lorcnzo! (Wilkes' Expedition); Pernambuco! (Dr. Wilsou); Tuhiti! (A. Garrett); II: C'oast Mexico! (Dr. Jones) ; Central America! (McNiel) ; Seac Zculund! (Dr. Wilson); Meuritius! (Guerin); Natal! (Dr. Wilson); Georgia, Culifomiu, Peru, St. IHelena and C'ape Ferde Is. (Niers); Paumotu und IIarcuian Is. (Dana) ; Ilonduras! (no collector's name).
'I'he genus Grapsus, as well as several others, is divided into sections by Milne-Edwards, characterized either by having the perteriow distal angle of the meros of the lat pair of : an? fulators feet regularly rounded, or dentate; but in specimens of G. maculatus, I have occasionally found this angle on one side entire, and the other dentate.
G. maculatus var. tenuicristatus Martens ex Herbst.

Cancer temuicristutus IIerbst. Krabben und Krebse, P1. III, f. 33-84, 1790 (teste Martens).
Groupsus rudis Edw., Hist. Nat. Crust., ii. p. 8 r (183r).
(Frupsius hirtus Randall, Jour. Phila. Acad., viii, p. 124 (1839).

[^46]Is distinguished from the typical forms of C. maculatus only by the hairy carapax and meral joints of the ambulatory limbs, and the narrower carpal spine. All other characters which have been given prove inconstant. Dr. Martens, by an examination of Herbst's type, has shown the identity of Herbst's temuicristatus, and Edwards' rudis.

Itucaiun Is.! (J. K. Townsend, Randall's type); Oahu! (Dr. W. H. Jones) ; Ceylon (IIeller) ; Bonin (Stm.).
G. strigosus Latreille ex Herbst.

Ciencer strigosus Herbst, Pl. XLVII, f. 7 (1799).
G'rupsus strigosus Latr., Hist. Crust. et Ins., vi, p. 70 (1803-4).
Gropsus albolineatus Lamarck, Hist. Animaux sans Vertebres, v, p. ~49 (1817).
Goniopsis strigosus De Haan, Fauna Japonica Crust., p. 33 (1835).
Grapsus granulosus, peronii et pelngicus Edw., Ann. Sci. Nat., III, ג.x. p. 169 (1853).
Gropsus longipes et subquadratus Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, pp. 102 et 103.

Carapax but little convex, posteriorly with oblique transyerse lines. anteriorly with squamiform tubereles. Frontal lobes morterate frontal margin crenulate. Orhits with a deep fissure helow. Epistome short. Meros spined anteriorly, its other margins rounded, the posterior surface with transverse rugæ. Carpus gramulate and bearing internally a slender spine. Hands much as in G. maculatus. Posterior distal angle of meros of last pair of ambulatory feet denticulate.

Natal! Australia! (Dr. T. B. Wilson) ; Sandecich Is.! (in Peabody Acad.). Its distribution is embraced within the above limits and Hong Kong (Stimpson).
G. gracilipes Milne-Edwards.

Grapsus gracilipes Edw., Ann. Sci. Nat., III, xx, p. 168 (1853).
China (Edwards).

Subgenus Orthograpsus, nov.

Carabax transeree, broadest behind. Sirles straight. with one tooth behind the orbital angle. Antenne entering the orbit. Fingers of chelipeds acute.
0. hillii nov.

Carapax depresserl, plications faint. Supra-frontal lobes modcrate: front straight, narrow, deflexerl. Sirles of carapax straight, posteralital troth small. Meros of external maxilliped a little
longer than broad. Chelipeds much as in Metopograpsus messor: the hand granulate above, fingers acuminate. Posterior distal angle of meral joints of ambulatory fient rombled, motion or fimely serrate, there being a variation in the sides of the same specimen.

West Indies! (Dr. Wilson) ; Fey West, Fla.! (Dr. A. S. Packard, Jr., Peab. Acad.).
0. longitarsis Kingsley ex Dana.

Grapsus longitarsis Dana, Proc. Acad. Nat. Sci., Phila., 1851, p. 249.
U. S. Expl. Exped. Crust., p. 339, Pl. XXI, f. 4 (18テ̃).

Paumotu Arehipelugo (Dana).
Genus GE0GRAPSUS Stimpson, 185s (Discoplax, Am. Eil., 1867).
Carapax depressed, sides curved in front, straight behind, one tooth behind the angle of the orbit. Front narrow, strongly deflexed. Internal suhorbital lobe large. Antennæ entering the orbit. Dactyli of chelipeds acuminate.

Symopsis of Species.

Meros of chelipeds with a laminiform expmaion of the anterion marain.
Front nearly straight.
Folds of carapax transverse. liciclus.
Folds of carapax oblique. grayi.
Front arcuate.
crinipes.
Meros not expanded, carapax tuberculate anteriorly. longipes.
G. lividus Stimpson ex Milne-Edmards.

Grapsus lividus Edwards, Hist. Nat. Crust., ii, p. 85 (1837).
Grapsus brevipes Edw., Ann. Sci. Nat., 1II, xx, p. 170 (1853).
Geogrupsus lividus Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 101.
Geograpsus occidentalis Stimpson, Annals N. Y. Lyc., vii, p. 230 (1860).

Carapax much broader than long, depressed. Plications nearly transverse. Frontal lobes prominent, front deflexed, its margin nearly straight. Silles of carapax slightly areuate. Ohhit witha deep fissure below. Meros of chelipeds above and below with transverse rugre, its anterior margin expanded, proximally denticulate, distally the teeth are larger. Carpus granulate and with a short spine on the imner margin. Hand and dactylus tuberenlate above, externally and below with short, oblique rugie ; fingers acuminate. Distal angle of meral joints of the last pair of ambulatory feet rounded.

Isle Du'tholomere, W. I.! (A. Goës) ; Chill! (Guerin) ; Wist Inclies (Iuct.) ; Črpe St. Lucus (Stm.).
G. crinipes Stimpson ex Dana.

Grupsus crinipes Dana, Proc. Acad. Nat. Sci. Philadelphia, 1851, p. ~24. U. S. Expl. Exped. Crust., p. 341, P1. XXI, fo. 6 (1852)'.
Gécograpsus crinipes Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 101.
Grupsus depressus Heller, Verh. Z. B. Gess. Wien, 1862, p. 521.
Carapax depressed, the sides neally parallel, folds of the carapax oblique, frontal lobes but little prominent, front arcuate. I-chial joint of cheliped spined in front; meros with the anterior margins expanded, finely servate proximatly, more coarsely so at the apex ; carpus and hamel rombened above, a few inconspicuous lines on the lower outer surface of the palm. Distal angle of meros of the last pair of ambulatory feet rounded.

Sunducich Is.! (Dr. W. H. Jones) ; Tahiti (Heller).

G. grayi A. Milne-Edwards ex H. Milne-Edwards.

Grapsus !frayi Edw., Ann. Sci. Nat., III, xx, p. 170, 1853.
Geograpsus rubidus Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 103.
Gcograpsus grayi A. M.-Edw., Nouv. Arch. du Mus., ix, p. 288 (1873).
Carapax somewhat inflated, its folds oblique; frontal lobes prominent, front nearly straight. Orbit with a slight fissure below; chelipeds much as in G. crinipes. Distal angle of meros of last pair of feet rounded, entire or dentate.

This is probably the adult of the preceding species.
Tuhiti! (A. Garrett) ; Australia, Mauritius, Zanzibar (Hilgendorf) ; Mradagascar, India, Bonin, Nevo Caledonia (A. M.-Edw.).
G. longipes Kingsley ex A. Milue-Edwards.

Discoplex longipes A. M.-Edw., Ann. Soc. Ent. France, vii, p. 284 (1867). Nouv. Arch. du Mus., ix, p. 294, Pl. XV (1873).

Nero Caledonia (A. M.-Edw.).
Genus LEPTOGRAPSUS M.-Edwards (pars), 1853, Stimpson.
Carapax with the sides arcuate, two-toothed. Front less than half the width of the carapax, not deflexed. Internal sub-orbital lohe small, antennæ entering the orbit. Meros of external maxillipeds as broad as long, but shorter than the ischium.

Leptograpsus variegatus Milne Edwards ex Fabricius.
Cancer rariegutus Fabr., Ent. Syst., ii, p. 450 (1793).
Gropsus marginatus Latr., Hist. Crust. et Ins., vi, p. 71 (1803-4).
Grapsus personatus Lamarck, Hist. An. sans Vert., v, 249 (1817).
Aropssus pictus Quoy et Gaimard, Voyage Uranie et Physiciene, p. 523, P1. LXXVI, f. 2 (1824).

> Grapsus strigillatus White, in Gray's Zoological Miscellany; p. 78 (1842).

> Grupsus cariegutus Edwards et Lucas, in d'Orbigny's Voyage, p. 27 (1849).

> Grapsus planifrons Dana, Proc. Acad. Nat. Sci. Philadelphia, 18j1, p. 249. Ǔ. S. Expl. Exped. Crust., p. 638, Pl. N゙XII, f. 3 (185き).

> Leptograpsus variegutus Edw., Ann. Sci. Nat., III, xx, p. 171 (1853).
> Leptogrupsus bertheloti, cerreauri, ansoni et gayi Edw., 1. c., p. 172 (1853).

Carapax nearly flat, transversely plicate. Protogastric region
 prominent. Front slighty depreanh, it maryin cromblate and nearly straight. Orbits with a narrow, deep, external fissure. Mures of chelipals with the anterion homlef expamber, hlentate : the other angles rounded, the posterior surface rugose. Carpus thberculate and with a short spine on the internal surface. Ham 1 tuberculate abore, externally smooth. In the young there is an elevated line along the outside of the palm. Ambulatory feet with stiff setæ.

Pernambuco! (Dr. Wilson) ; C'hili! (Wilkes’ Expedition) ; Australia! (E. Wilson); -Yew So. Wrales! (Capt. Putnam, Peabody Academy) ; Iste Guam (Quoy and Gaimard) ; C'tueries (Edw.); Forfoll: I. (Miers) ; Shanghui (IIeller).

Genus GRAPSONES Heller, 1865.
Carapax depressed, sides arcuate and dentate in front, behind straight. Fromt le-s than half the width of the carapax. -tmondy deflexed. Orbits extemally open. Internal sub-orbital lobe small, antembe entering the orhit. Meros of extemal maxilliped longer than broad. Male abdomen fire-jointed.

G. notatus IIeller.

Grapsodes notatus Heller, Novara Crust., p. 58, Pl. V, f. 2 (1865). Nicobars (Heller).

Genus CYRTOGRAPSUS Dana, $1851 .{ }^{1}$

Carapax broader than long, front narrow, excavate, sides arenate, with three teeth behind the orbital angle. External maxillipeds widely gaping, without a piliferous ridge. Epistome very

[^47]short. Antenna entering the orbit. Male abdomen sevenjointed, the second joint very short.
C. angulatus Dana.

Cyrtograpsus angulutus Dana, Proc. Acad. Nat. Sci. Phila., 1851, p. 250. U. S. Expl. Exped., p. 352, Pl. 22, f. 6 (1852).

Crigptegrapsus angulatus Smith, Trans. Conn. Acad., ii, p. 37, 1869.
C'arapax uneren, gramulate. Sides three-toothed, second tooth small. Orbits with a slight fissure above. Feet all granulate. Hands inflated, fingers acuminate.

Rio Negro, Putagonia! (U. S. Expl. Exped.).
C. cirripes Kingsley ex Smith.

Cryptograpsus cirripes Smith, Trans. Conn. Acad. ii, p. 11, Pl. I, f. 3 (1869).

Carapax depressed, areolate; front narrow, slightly excavate. Siles of "amana strongly arcuate, with four tecth behind the angle of the orbit, the second and last teeth much smaller than the others ; all of the borders of the carapax are crenulate. Chelipeds stout, gramular. Propodal joints of first, second, and fourth, and dactylus and carpus of fousth pair of ambulatory feet hared.

Rio Janeiro! (Captain Harrington, Peabody Academy of Science, Salem, Mass., types).

Genus PACHYGRAPSUS Randall (1839); Stimpson (1858).

Caramax somewhat narrowed behind, and with transverse strix. Front more than half the width of the carapax, sides entire, or with one or two teeth; inner sub-orbital lobe small, allowing the antemme to enter the orbit. External maxillipeds widely gaping, meros as broad as long. Type, P. crassipes.

Synopsis of Species.

Sides entire.
Front straight or nearly so.
Numerous transverse folds on carapax ; lower margin of hand spined.
corrugatus.
Carapax but little plicate, hands smooth below. cthiopicus.
Front strongly sinuate.
Hands smooth. minutus.
Hands externally with longitudinal ridges. plicatus.
Sides with one tooth behind the orbital angle.
Posterior distal angle of meros of fifth pair of feet rounded.
Front with a prominent tooth at angle.
crassipes.
Front slightly sinuate without prominent teeth.
maurus.
Posterior distal angle of meros of fifth feet dentate.

Fingers of cheliped smooth.
Fingers dentate or spined above. Sides two-toothed.

Transverse lines of carapax naked.
Transverse lines of carapax haired.
Unknown to me.
transversus.
gracilis.
marmoratus. pubescens. lutipes.
P. crassipes Randall.

Pachygrapsus crassipes Randall, Jour. Acad. Nat. Sci. Philadelphia, viii, , .127 (1839).
Grapsus eydouxi Edw., Ann. Sci. Nat., III, xx, p. 170 (18⿹̈3).
Leptograpsus gonagrus Edw., l. c., p. 173 (1853).
Carapax somewhat arenate, sides with a simele tooth behime the orbital angle ; frontal lobes prominent ; front heflexeld it margin nearly straight, the angles with a prominent tooth. Meros of chelipeds with the anterior margin produced. di-tall! truncate amb dentate. Hames inflated. margined above and with a lomgitminal rifge on the lower onter surface: fingers excarate. Di-tal ancle of meros of posterior ambulatory feet rounded; dactyli of the ambulatory feet spinulose.
(?) Sundzoich Is.! (T. Nuttall, Randall's type); California from San Francisco! to San Diego! (Many collectors); ? Nero Procidence, W. I.! (H. C. Wood, Jr.) ; Yokohuma (Tozzetti).

P. maurus Lucas.

Pachygrapsus maurus Lucas, Expl. Algiers, Crust., p. 20, Pl. II, f. 5 1849).

Goniograpsus simplex Dana, Proc. Acad. Nat. Sci. Phila., 1851, p. 249 ; U. S. Expl. Exped. Crust. p. 344, Pl. XXXI, f. 8 (1852).
Pachygrapsus simplex Stimpson, Proc. Acad. Nat. Sci. Phila., 1858, p. 10%.

Algiers (Lucas) ; Madeira (Dana); Rio Janeiro (Dana, Heller).
P. transversus Gibbes.

Pachygrapsus transversus Gibbes, Proc. Am. Assoc. Adv. Science, iii, p. 182 (1850).

Goniograpsus innotatus Dana, Proc. Acad. Nat. Sci. Phila., 1S5́s, p. 249 ; U. S. Expl. Exped. Crust., p. 345, Pl. स Kil, f. 9 (1852).
Leptograpsus rugulosus Edw., Amn. Sci. Nat. III, xx, p. 122 (1853).
Pachygrapsus levimanus Stimpson, Proc. Phila. Acad., 1858, p. 102.
Metopogrrupsus dubius et miniutus, Saussure, Mem. Soc. Phys, et d'Hist. Nat. Geneve, xiv, pp. 444-445, Pl. II, f. 16, 17 (1858).
Grupsus declivifrons Heller, Verhandl. Z. B. Gesellschaft, Wien, 186?, p. 521 .

Puchygrapsus intermedius Heller, Novara Crust, p. 44 (1865).
Puchygrapsus socius Stm., Ann. N. Y. Lyc. x, p. 114 (1871).
Pachygrapsus advena Catta Ann. Sci. Nat. VI, iii, No. 1. p. T, Pl. I (1876).

C'ampax depresiml, shining, with transverse plice, ohlique on the Hanchial region. Sides semerally slighty areuate, with one tooth hehind the orbital angle. Frontal lobes prominent, front sinuate. Meros of chelipeds with transverse rugæ, the inner marcin dentate; carpus rugose, with an internal roumbed tuherele. Hamb minutely gramulate, a longitutinat ridge on the lower outer -urface, margins rommed; datelys with the upper margin smooth. Posterodistal angle of the meros of last pair of ambulatory feet dentate.

Florida! (A. S. Packard; Peab. Acad.; Brown Univ.; H. E. Webster, Union College) ; West Indies! (S. G. Morton, H. C. Wood, Jr.); Brazil! (Dr. T. B. Wilson); California! (J. L. Leconte); Nero Zealand! (E. Wilson); Tahiti (A. Garrett); W. Coast Nicaragua! (J. A. McNiel, Peab. Acad.); Australia (Stm.); Rio Juneiro (Heller); Madeira (Stm.).

P. gracilis Stimpson ex Saussure.

Metopograpsus gracilis Saussure, 1. c., p. 443, Pl. II, f. 15 (1858)
Grapsus guadulpensis Desbonne et Schramm, Crustaces de la Guadaloupe, p. 48 (1867).
Pachygrapsus gracilis Stimpson, Aun. N. Y. Lyc., x, p. 113 (1871).
Grapsus (Leptograpsus) rugulosus Martens, Archiv für Naturgeschichte, xxxviii, p. 102 (1872).

Carapax much as in P. transversus, but with no folds on the cardiac region; lateral margins nearly straight, one-toothed. Frontal lohes nearly ohsolete; front nearly horizontal, regularly arcuate and minutely cremulate. Chelipeds and ambulatory feet nearly as in P^{\prime}. transterstos, the ham and dactylus, howerer, heing spined or toothed above.

Florida! (A. S. Packard, Jr., Peab. Acad.); West Indies (Auct.).
P. corrugatus Kingsley ex Martens.

Grapsus (Leptograpsus) corrugatus Martens, 1. c., p. 107, P1. IV, f. 8 (1872).
P. æthiopicus Hilgendorf.

Grapsus (Pachygrapsus) athiopicus Hilgendorf, in von der Decken's Reisen in Ost-Afrika, Crust., p. 88, Pl. IV, f. 2 (1869).

Uyurunya, Eust Africa (Hilgendorf).
P. plicatus Stimpson ex Milnc-Edwards.

Grapsus plicatus Edwards, Hist. Nat. Crust., ii, p. 89 (1837).
Grapsus Frcusii Edwards, Ann. Sci, Nat. III, xx, p. 170 (1853).
Pachygrapsus plicatus Stimpson, Proc. Acad. Nat. Sci. Phila., p. 102 (18:58).
Pachygrapsus striatus.A. M.-Edw., Journal Museum Godeffroy, iv. p. 82 (1873).

Carapax broader than long, everywhere crossed by plications which are bordered by short hairs ; frontal lobes prominent, front sinuate. Sides of carapax entire. Meros and carpus of chelipeds externally plicate, inner margin of meros expanded, proximally denticulate distally with spiniform teeth. C'arpus with a prominent internal spine. Hand and dactylus granulate above, externally the hand bears several longitudinal rugat. Fingers short, gaping, extremities excarate.

Oalu! (Dr. W. H. Jones); Tichiti! (A. Garrett, Peab. Acad.); Heir Caterlonia; Simoan Is. (1. M.-Edw.); -lutal (Krauss); Loo ('\%oo (Stimpson).
P. marmoratus Stimpson ex Fabricius.

Cancer marmorutus Fabricius, Ent. Syst., ii, p. 450 (1793).
Grapsus varius Latreille, Hist. Crust. et Ins. vi, p. 69 (1503-1).
Grapsus murmoratus Desmorest, Considerations, p. 131 (1825).
Leptogrupsus marmoratus Edw., Aun. Sei. Nat. III, xx, p. 181 (1853).
Puchygrupsus marmoratus Stimpson, Proc. Acad. Nat. Sci. Phila., 1858, p. 102.

Carapax depressed, naked, transversely plicate; frontal lobes prominent, front depressed, slightly arcuate, or sometimes a little sinuate. Sides with two teeth behind the angle of the orbit. Meros of chelipeds expanded in front, expansion distally trumeate and dentate. Carpus and hand tuberculate above, the former with a prominent internal tooth. Fingers slightly exeavate. Posterior distal angle of meros of last pair of feet rounded, entire.

France! (Guerin); Bosphorus! (Smithsonian); Mediterrancan (Auct. ; Madcira (Stm.).
P. pubescens Heller.

Puchygrap)sus pubezcens Heller, Novara Crust, p. 45 , Pl. IV, f. \pm (186.j). Chili (Heller).
P. minutus A. M.-Edwards.

Pachygrupsus minutus A. M.-Edw., Nour. Arch du Mus., ix, 1. 292, Pl. NIV, f. 2 (1873).

Neie Citledonia (1. M.-Edw.).
P. simplex Kingsley ex Herklots.

Grapsus simplex Herklots, Additamenta, etc., 1). 9, Pl. I, f. S (1851).
Boutry, West Coust of - Hjrica (Herklots).
Genus NAUTILOGRAPSUS Edwards (Planes Eell ${ }^{1}$).
Carapax narrow, regularly arcuate, sides slightly convex, and bearing a rudimentary tooth behind the orbital angle. Front

[^48]mome than half the with of the carapax. Extermal maxillipets broad, meros broader than long. Posterior feet compressed.
N. minutus Edwards ex Limé.

Cenieer minutus Linné Syst. Nat. Edit. xii, p. 1048 (1766).
Grapsus minutus Latreille, Hist. Crust. et Ins., vi, p. 68 (1803-4).
Grupsus cinereus Say, Journ. Acad. Nat. Sci. Phila. i, p. 99 (1817).
Grapsus pelagicus Say, 1. c., p. 442 (1818),
Ilanes clypeatus Bowdich, 1. c., p. 15, Pl. f. 2 (1825).
Girapsus testudinerm et pelagicus Roux, Crust. Med., P1. VI, f. 6-7 (18:8-30).
Ocypode (Grapsus) pusillus De Haan, op. cit., p. 59, Pl. XVI, f. 2 (1835).

Ñantilograpsus mimutus Edw., Hist. Nat. Crust. ii, p. 90 (1837).
Grapsus dicis Costa, Fauna Napoli, Crustaces, Pl. IV, f. 1 (1838-1851).
Plemes minutus White, Cat. Brit. Mus. Crust. p. 42 (184\%)
Āeutilograpsus Major et Smithii, McLeay in Smith Zool., South Africa, Annulosa, pp. 66-67 (1849).
Planes linneana Bell, British Stalk-eyed Crustacea, p. 135 (1851).
Planes cyaneus Dana, Proc. Phil. Acad., 1851, p. 250.
Aimetinctrupasa ungustutux Stimpson. Proc. Acad. Vat. Sci. Plila., 1858, p. 103.

Carapax smooth, arcuate in both directions; front nearly straight, post-orbital tooth small, sometimes obsolete. Sides armatw. Meros of chelipeds with its inner distal border dentate; Cappis with a turerele on the inner surface; hand smooth, fingers deffexed. Ambulatory feet compressed, ciliate.

Gulf Stream! (Many Collectors); West Indies! (Dr. Griffith); Surinam! (Dr. Hering); Falkland Is.! (Dr. Wilson); Peru! (Dr. Ruschenberger); West Coast of Hexico! Alaska! (Dr. W. H. Jones); Ohina! (Capt. Putnam); Nero Zealand! Natal! (Dr. Wilson); Rio Gambia! (J. Cassin); Mediterranean (Dr. Wilson); France! Guerin); "toutes des mers!" (Guerin). Guerin's ideas of the distribution leave nothing more to be said.

Genus EUCHIROGRAPSUS M.-Edwards, 1853.
Cumpax depresserl, subpuadrate, sicles slightly arcuate, with thee treth behind the orlital angle: orbits entire. Antemme long,
sies in these words: "A small crab, f. $3, c$ and b, which I conceive to be a new species of I'mmen was found in great numbers amongst the anatifere." In a font-note the species is descrilued as follows: "It was of a delicate, but bright, rose-calor; from the symmetrical form of its test notched so regularly as to increase the projection and distinctuess of its chaperon, it may be called I. rlyprifo,". This can hardly be considered as a sufficient description to establish the genus, and hence I prefer to retain the commonly accepted name.
entering the orbit: Meron of the external maxillipent- abont half the length of the irchimm, it outer alistal amgle roumbed. its innes: excavate and bearing the palpas.
E. liguricus Edwards.

Euchirograpsus liguricus Fdwards, Archives du Museum, vii, p. 10: Pl. X, f, 2 (1853).

Nice (Edwards).
Genus BRACHYGRAPSUS nov.
Carapax broaler than long, arenate, wifhout tran-vera lineation. siles nearly straight, with ome tooth hehind the angle of the orhit. Meros of the external maxilliperts shorter than hroad. it- extermal distal angle prominent, the internal one bearing the palpus. ${ }^{\text {l }}$

B. lævis nov.

Front straight, extemal angles of orbit not prominesit. woth of lateral marginspiniform. Moros of chelifeal triquetral, haring an obtuse tooth on the upper border. Carpus with an acute internal spine. Hands inflated, smooth; fingers acute. Ambulatory feet clomgate. slember. hut slighty rompresed, the dawyit longer than the propodal joints.

> Nerr Zealand! (E. Wilson).

Genus PTYCH0GNATHUS Stimpson, 1S5S (G̈nathograpsur A. M.-Edwards).
Carapax flat, lateral border emarginate. External maxillipeds very broad, nearly meeting, the exognath fully as broad as the ischium. The carpus bears the palpus at the middle of the anterion matrin. and hat the external distal angle strmerly froblucel.

> Synopsis of Species.

Exognath of external maxillipel extending to or exceeding the external distal angle of the meros.
riedelii.
Exognath extending only to the middle of the meros.
Oblique portion of branchial ridge bounded by a granulated ridge.
pilipes.
Oblique portiou without a prominent boundary: pusillus. Insufficiently characterized.
aluber.
P. glaber Stimpson.

Prychognuthus gluber Stimpson. Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 104.

Bonin I. (Stm.

[^49]Tr. Stimpomis short diagnosis perents no characters whichare not held in common hy hoth P^{\prime}. ricdelii and pilipes, excepting the non-pilose hand, which in other species of the genus is only of sexual importance.
P. riedelii Kingsley ex A. Milne-Edwards.

Gnathograpsus riedelli A. M.-Edw., Nouv. Arch. du Museum, iv, p. 182, P1. NXVII, f. 1-5 (1868).
P. pusillus Heller.

Celcbes (A. M.-Edw.).
Ptychognuthus pusillus Heller, Riese der Novara Crustaceen, p. 60, 1867.
Gnathograpsus barbatus A. M.-Edw., Nouv. Arch. du Museum, ix, p. 316. P1. XVII, f. 4, 18~~.

Carapax depressed, nearly smooth, with a few shallow impressions anteriorly. Front slightly sinuate. Antero-lateral margin with two inclistinct teeth hehind the orhitalangle. Chelipeds finely granulate, but without spines or tubercles. Hands of the male with a lanose spot on the outsille at the base of the fingers; in the fernale this is wanting. The exognath of the external maxillipeds reaches only to the midrle of the meros. Ambulatory feet slender, compressed.

Mauritius! (Guerin ${ }^{1}$); Nicobars (Heller); Nero Catedonia (A. M.Edw.)
P. pilipes Kingsley ex A. Milne-Edwards.

Gnathograpsus pilipes A. M.-Edw., Nouv. Arch. du Museum, iv, 184, Pl. XXVII, f. 6-10 (1868).
This species is scarcely more than a variety of P. pusillus, but I prefer for the present to leave them separate.

Philippines and Celebes (A. ML-Edw.).
Genus ACME0PLEURA Stimpson, 1858.
Carapax repressed, the antero-lateral margins entire. External maxiliperts nearly mecting the meros, hearing the palpus on the middle of the anterior margin ; the exognath narrow.
A. parvula Stimpson.

Acmeopleura parcula Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 105.

Japan (Stimpson).
Genus PSEUDOGRAPSUS M. Edwards (1837), restr.
Carapax depressed, transverse; sides arcuate, with two teeth behind the orbital angle. Front less than half the width of the
${ }^{2}$ These were labeled by Guerin "Sesarma penicillata sp. ined."
earaphex. Meros of external maxillipeds broader than long. shorter than the ischium and with its external distal angle strongly produced.

Synopsis of Species.

Hands inflated without elevated lines.
Fingers with many long hairs, carapax inflated. setosus.
Hairs on the hand between the bases of the fingers short, carapax flat.
albus.
Hands with an elevated line on the lower outer surface, fingers
without hairs.
crassus.

P. setosus,

Cancer barbatus Rumph., Pl. X, No. 2 (1705).
Cancer setosus Fabricius, Suppl. Ent. Syst., p. 339 (1798).
Grapsus penicilliger Latr., Reg. An. (I Edit.), iii, p. 16, Pl. XII, f. 1 (1817).

Eriocheir? penicilliger De Haan, Fauna Japonica, Crust., p. 31 (1835).
Pseudograpsus penicilliger Edw., Hist. Crust., ii, p. 82 (1837).
Pseudograpsus barbatus Edw., Ann. Sci. Nat., III, xx, p. 191 (1853). Eastern Seas (Auct).
P. albus Stimpson.

Pseudograpsus albus Stimpson, Proc. Acad. Nat. Sci., Phila., 1858, p. 104.

Japan (Stimpson) ; New Caledonia (A. M.-Edwards).
P. crassus A. Milne-Edwards.

Pseudograpsus crassus A. M.-Edw., Nouv. Arch. du Mus., iv, p. 176, Pl. XXVI, f. 6-10 (1868).

Celcbes (A. M.-Edw).
Genus VARUNA Edwards, 1830 (Trichopus De Maan, 1835).
Carapax depressed, sides areuate, two-toothed. Antenmule oblique. Antennæ entering the orbit; external maxillipeds slightly gaping. Meros much shorter than the ischium, its extermal distal angle expandel. Patpus artirnlating with the minhle of the anterior margin. Exognath half as wide as ischium. Ambulatory feet compressed, natatorial.
V. litterata Milne-Edwards ex Fabricius.

Cancer litterata Fabr., Suppl. Ènt. Syst., p. 342 (1798).
Trichopus litteruta De Haan, Fauna Japonica, Crust., p. 32 (1835).
Varuna litterata Edw., Diet. Class. d'Hist. Nat., xvi, p. 511 (1830). Hist. Nat. Crust., ii, p. 95 (1837).

Carapax smooth, cardiac region partly circumscribed. Front straight, orbits fissured above, lateral teeth separated by slight fissures. Posterior margin of meros of ehelipeds acute, the
inferior granulate the anterior with spiniform tubereles. ('arpus with a prominent internal spine and one or two smaller ones. Hambe inthtal, rough, am elevated line on the lower outer margin. Ambulatory feet strongly compressed, margins ciliate. In a specimen from New Kealand the carpal spines are wanting.

Philippines! (E. \& T. B. Wilson) ; Indian Ocean! (Guerin) ; Newo Zealund! (E. Wilson) ; Ohina! (Capt. Putnam, Peab. Acad.); Penang! (J. P. Ward, Peab. Acad.) ; Jupan (Miers); Mauritius (A. M.-Edw.).

Genus UTICA White, 1847.
Carapax depressed, sides more or less arcuate, two-toothed. Antennula oblique. Antenne entering the orbit. Meros of external shorter than the ischimm, its external angle not expanded. Posterior feet compressed.

Synopsis of Species.

Inner margins of fingers strongly haired.
Hands naked.
Angles of front acute. gracilipes.
Angles of front rounded.
barbimanus. glabra.
U. gracilipes White.

Utica gracilipes White, Proc. Zool. Soc., 1847, p. 86. Adams and White, Voyage Samarang, Crust., p. 53, P1. XIII, f. 6 (1850).

Philippines (White.)
U. glabra A. Milnc-Edwards.

Utica glabra A. M.-Edw., Nouv. Arch. du Mrus., ix, p. 296, P1. XIV, f. 3 (1878).
D. barbimanus A. Milne-Edwards.

Vtica barbimanus A. M.-Edw., 1, e, p. 897, PI: XIV, f. 4 (1873). drere Caledonia ($\mathrm{A}, \mathrm{M},-\mathrm{Edw}$.

Genus GLYPTOGRAPSUS Smith, 1870.

Carapax transverse, distinctly areolate, sides areuate, threetoothed. Antennæ entering the orbit. External maxillipeds nearly mereting. Ischium aucl meros nearly equal in length, very broant, the meros being broarler than long, its external distal angle not expmanfert. Ambulatory feet elongate, the dactyli quadrangular and spinose.
G. impressus Smith.

Glyptograpsus impressus Smith, Trans. Conn. Acad, ii, p. 154 (1870). Acajutla, West Coast of Central America (Smith).

Genus HETEROGRAPSUS Lucas, 1849.
(I'seudograpsus, pars, Lidw, Dana: Hemigrapsus Dana.
Carapax arcuate, front inclined, antero-lateral margins dentate. External maxilliperl- nearly closing. Themeros at lon- or homeer than broad, and bearing the palpus on the middle of its anterior border, the exognath narrow.

As the distinctions between the species are mainly comparative and the descriptions of authors are very bricf, no synopsis can be given. The species may however be divided into two sections, according to the number of teeth on the antero-lateral margin.
A. Antero-lateral margin with two teeth behind the orbital angle.

H. lucasii Edwards.

Heterograpsus sexdentatus Lucas, Exploration Algiers, i, p. 19, Pl. II, f. 4 (1849), (nec Edwards).

Heterograpsus lucasii Edwards, Ann. Sci. Nat., III, xx, p. 192 (1853).
Carapax regularly arcuate, epigastric lobes but slightly indicated. Front four-lobed. Antero-lateral margin with two prominent, narrow, acute teeth. Chelipeds without spines or tubereles, the hands of the male are smooth and rounded, in the female they have a double crest above and two elevated lines on the outer surface. ${ }^{1}$ Ambulatory feet slender, naked; dactyli long and slender.

Algiers! (Dr. T. B. Wilson) ; Candiu (Edwards!.

H. sexdentatus Edwards.

Cyclograpsus sexdentatus Edwards, Mist. Nat. Crust., ii, p. 79 (1837).
Hemigrapsus sexdentatus Dana, U. S. Expl. Exped., Crustacea, p. 348, Pl. XXII, f. 2 (2850).
Heterograpsus sexdentatus Edwards, Amn. Sci. Nat., III, xx, p. 102, Pl. vii, f. 7 (1853).
Carapax arcuate, surface uneven, laterally granulate. Epigastric lobes prominent. Front straight. Antero-lateral margin with two teeth behind the orbital angle, the teeth broad, the emarginations narrow. Chelipeds without spines or tubereles.
 dactyli short and stout.

Australia! (E. Wilson) ; Neno Zeutund! (Dr. T. B. Wilson) ; Bu!! of Islends (Dana).

[^50]H. sanguineus Elwards ex De Haan.

Grapsus sanguineus De Haan, Fauna Japonica, Crustacea, p. 58, Pl. XYI, f. 3 (1835).
Grapsus marmoratus White, Cat. Brit. Museum, Crust., p. 41, 1847 (sine descr.).
Pseudograpsus nudus Dana, Proc. Acad. Nat. Sci. Phila.; 1851, p. 249. Expl. Exped., Crust., p. 335, P1. XX, f. 7 (1852).
Iteterograpsus sanguineus, marmoratus et maculatus Edw., Ann. Sci. Nat., III, xx, p. 193 (1853).
Hetcrograpsus mudu» Stimpson, Proc. Acad. Nat. Sci. Phila., 1858, p. 104.

Carapax posteriorly nearly flat, in front arcuate, with scattered punctax and a curved line of larger depressions rumning inward from the last tooth of the lateral margin. Front obsoletely twolobed; antero-lateral margin with two teeth closely similar to thuse of $I I$. sertentulus. Cheliperds smooth, with small red spots. which persist in alcoholic or dried specimens: Hands with an external crest, becoming obsolescent with age; fingers excavate. Ambulatory feet short, stout, naked, punctate; the dactyli very stout.

California! (many localities and collectors); Vancouver Is.! (Dr.
A. S. Packard, Jr., in Peabody Acad. Science) ; San Lorenzo, Gulf of California! (Wilkes' Expedition); Australia! (E. Wilson); Japan (De Haan); Punipet and Auckland (Heller); IIong Fong (Stimpson) ; Sitka (White) ; Polynesia (Edwards).

[^51]Haroaian Is. (Dana).
H. crenulatus Edwards ex Gurrin.

Grapsus crenulatus Guerin, Voy. Coquille, ii, pt. i, p. 15 (1838). ${ }^{1}$
Cyclograpsus crenulatus Edw., Hist. Nat. Crust., ii, p. 80 (1837).
Hemigrapsus crenulatus Dana, U. S. Ex. Ex., Crust., p. 349, P1. XXII, f. 3 (18i2).

Heterograpsus crenulatus Edwards, Ann. Sci. Nat. III, xx, p. 193 (1853).

Heterograpsus barbigerus Heller, Verh. Z. B. Gesellschaft Wien, 1862, p. $52 .$.
Meterograpsus burbimanus Heller, Novara Crustacea, p. 53, P1. IV, f. 5 (1867).

Australia (Guerin); Nero Zealand (Edwards); Bay of Istands (Dana) ; Punipet and Auckland (Heller).
${ }^{1}$ The title bears the date 1830 , the introduction to the Crustacea and Arachnida, "15 Novembre 1838," and the plates 1826. Guerin in his description, refers to Milne-Edwards' classic work as then in manuseript.
H. olozgatus A. M.-Edw.

Heterograpsus clongatus Alph. Milne-Edwards, Nouv. Arch. du Museum, ix, p. 317, P1. XVII, f. 5 (1873).

Noio Craledoniu (A. M.-Edrs.).
H. oregonensis Stimpson ex Dana,

Pseudograpsus oregonensis Dana, Proc. Acad. Nat. Sci. Philadelphia, 1851, p. 248. Expl. Exped. Crust., p. 334, Pl. NX, f. 6 (18.52).
Ireterograpsus oregonensis Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 104.

Carapax depressed, anteriorly irregularly roughened; protogastric lobes defined. Front four-lobed, the inner lobes the more prominent. Antero-lateral margin with two prominent teeth. Chelipeds without spines or tubercles. Hands with an elevated line on the lower outer surface, the inner surface of the hand of the male with a pilose spot. Ambulatory fect moderate, ciliate. Pacific Coast of North America from Puget Sound! (Geo. Davidson); to Suntu C'ruz! (Miss Hecox).

There are two specimens belonging to this species in the Museum of the Academy, bearing the label "New I'rovidence, W. I., Dr. H. C. Wood, Jr."
H. penicillatus Stimpson ex De IIann.

Eriocheir penicillatus De Haan, op. cit., p. 60, Pl. XI, f. 6 (1835).
Heterogrupsus penicillatus Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 104.

Japuen (De IIaan).
H. erythræus Kingsley ex Kossmann.

Pseudograpsus erythraus Kossmann, Reise in den Küstengebiete des rothen Meeres, p. 61, Pl. 1, f. 5 (1877).

Red Sea (Kossmann).
H. pallipes M:Ine-Edwards.

Prseudograpsus pallipes Edw., Hist. Crust., ii, p. 82 (1837).
Meterograpsus pullipes Edw., Ann. Sci. Nat., III, xx, p. 194 (1853).
Australia (Edw.).
B. Antero-lateral margin with three teeth behind the orbilal angle.
H. octodentatus Edwards.

C'yclograpsus octodentatus Edwards, Mist. Nat. C'rust., ii, p. 80 (1837).
Metcrograpsus octodentatus Edwards, Ann. Sci. Nat., III, גi, p. 194 (1853).

Locality unknown.
H. affinis Kingsley ex Dana.

Hemigrapsus affinis Dana, Proc. Acad. Nat. Sei. I’hiladelphia, 18j̄1, p. 250. U. S. Exp. Exped., C'rustacea, p. 350, P1. AXIII, f. 5 (1852).

Patagonia (Dana).
H. spinosus Edr.

Heterogreppsus spinosus Edw., Ann. Sci. Nat., III, xx. p. 194 (1853). Tanilioro (Edw.) ; Australia (A. M.-Edw.

Genus ERIOCHEIR De Haan (1835).
Carapax quadrate, antero-lateral margin two-toothed. Front much less than half the width of the carapax. Antennule oblique. Antenne not excluded from the orbit. External maxillipeds nearly closing. Meros as long as broad, the external distal ancrle not expanded and the carpus articulating with the middle of its anterior border.

Synopsis of Species.
Sides convex.
Mesial frontal lobes rounded. japonicus.
Frontal lobes acute.
sinensis.
Sides straight. rectus.
E. japonicus De Hazn.

Eriocheir juponicus De Haan, op. cit., p. 59, P1. XVII (1835).
Carapax nearly flat, surface uneven. Front four-lobed, mesial lobes rounded, outer lobes acute; protogastric lobes prominent, grammate. Antero-lateral border two-toothed, with indications of a third. Meros of chelipeds with the margins granulate, the posterior terminating in an acute tooth. Carpus with a prominent internal spine; distal margin of the carpus and external surface of the hand with thickly set long hair ; the inner surface of the palm with a short horizontal line of granules. Fingers sub-excavate. Ambulatory feet hairy above.

Japan! (no donor's name).
E. sinensis.

Eriocheir[us] sinensis Edw., Ann. Sci. Nat., III, xx, p. 177 (1853). Arch. du Mus., vii, p. 146, Pl. IX, f. 1 (1854).

China (Edw.).
E. rectus.

Eriocheir rectus Stimpson, Proc. Acad. Nat. Sci. Phila., 1858 p. 103.
Macao (Stimpson).

Genus PERIGRAPSUS Heller, 1862.

Carapax convex, sides arcuate, with one tooth behind the angle of the orbit. Front harrower than half the width of the carapax. Meros of the wexprial maxilliped a little longer than broat and hearing the palpus on! the evtermal angle. Thactyli of ambulatory feet spined.
P. excelsus Ifeller.

Perigrupsus excelsus Meller, Verh. Zool. Bot. Ges. Wien, 1862, p. ion2.
Novara Crust., p. 50, Pl. V, f. 1 (1865).
Tuliti(Heller).

Genus PLATYGRAPSUS Stimpson, 1558 (Platynotus De Haan, 18:35, preoce.).
Carapax flat. Front horizontal. Sides nearly straight, with two teeth behind the angle of the orbit. Meros of the external maxilliped longer than the i-chimm ant haring the patpu- on the external angle.
P. depressus Stimpson ex De Maan.

Platynotus depressus De Haan, Fauna Japonica, Crust., p. 63, Pl. VIII, f. 2 (1835).

Platy!rapsus depressus et convexiusculus Stimpson, Proc. Acad. Nat. Sci. Phila., 1858 , p. 104.
 lobes the larger; sides with two teeth behind the angle of the orbit, the posterior tooth indistinct. Chelipeds smooth and unarmed; meros with the anterior margin acute; carpus without spines or tubercles; hand with an elevated line on the lower outer surface; fingers slender, gaping. Ambulatory feet elongate.

Jupan! (no donor's name); Hong Fony (Heller); Loo C\%oo (Stimpson).

Tribe Sesarmun (Sub-family Sesurmince Dana).

Meros :mmi in himm of thereternal maxillipefts crosed ubliphuly by a piliferous ridge.

Genus METASESARMA Edw (1853).

Carapax quadrate, sides but slightly arcuate, entire; front broad, deflexed. Sub-orbital lobe large, meeting the front and excluding the antemat fom the orhit. Meros of external maxilliped greatly elongate, its apex rounded.

Gymplsis of Species.

Hands smooth, externally and above.
rousseauxi.
Hand roughened above.
gramularis.
Iland roughened above and externally.
trapuzium.

M. rousseauxi Edw.

Metasesarma rousseauxi Edw., Ann. Sci. Nat., MII, xx, p. 88 (18j3). Arch. du Mus., vii, p. 158, Pl. İ, f. 1 (185゙4).
M. granularis ${ }^{1}$ Heller.

Metascsarma granutaris Heller, Verh. Z. B. Ges, Wien, 1862, p, 52.
Metasesarma rupulosa Heller, Novara Crust., p. 65 (1865).
Taれiti (\#eilex'),
M, trapezium Stimpson ex Dina.
Searrma trapezium Dana, U. S. Expl. Exped. p. 354, Pl. XXII, f. 8 (185̄2).
Metasesarma trapezium Stimpsou, Proc. Acad. Nat, Sci, Phila., 1861, 1. 373.

Sandroich Is. (Dana).

Genus SARMATIUM Dana, 1851 (Metagrapsus Edw., 1853).
Carapax convex, sides arcuate, entire or toothed. Front inclined. less than half the width of the carapax. External maxillipeds nearly as in Sesarma. Ambulatory feet with the margins entire.

Synopsis of Species.

Sides of carapax with two teeth behind the orbital angle.
Hands externally smooth and rounded.
Carapax smooth, hand transversely plicate above. crassum.
Carapax areolate, hand smooth above. curvatum.
Hands externally roughened.
Hands externally bearing a pectinate crest.
pectinatum.
Hands without a prominent external crest.
Hands with an internal granulate ridge.
Hands entire within.
punctatum. indicum.
Sides of carapax entire.
integrum.
S. crassum Dana.

Sarmatium crassum Dana, Proc. Acad. Nat. Sci. Phila., 1851, p. U. S. Expl. Exped., Crust., p. 358, Pl. XXIII, f. 1 (1852).

Samoan Is. (Dana).
S. curvatum Kingsley ex Milne-Edwards.

Sesarma curvata Edw., Hist. Crust., ii, p. 75 (1837).
Metagrapsus curvatus M.-Edw., Ann. Sci. Nat. III, xx, p. 189 (1853). Arch. du MLus., vii, p. 160, Pl. X, f. 3, 1854.

Senegal (Edw.).
S. pectinatum Kingsley ex Milne-Edwards.

Metayrapsus pectinatus Edw., Ann. Sci. Nat. III, xx, p. 189 (1853). Martinique (Edw.).
S. punctatum Kingsley ex A. Milne-Edwards.

Metargrapsus punctatus A. M.-Edw., Nouv. Arch. du Mus., ix, p. 308, Pl. XVII, f. 2 (1873).

New Caledonia (A. M.-Edw.).

[^52]S. indicum Kingsley ex A. Milne-Edwards.

Metragrapsus indicus A. M.-Edw., Nouv. Arch. du Mus., iv, p. 174, XXVI, f. 1-5 (1868).

Célebes (A. M.-Ldw.).
S. integram Kingsley ex A. Milne-Edwards.

Metagrapsus integer A. M.-Edw., Ňouv. Arch. du Mus., ix, p. 309, Pl. XVII, f. 3 (1873).

Nero C'aledonia (1. M.-Edw.).

Genus RHACONOTUS Gerstweker, 1856.
Carapax sub-quadrate, sides arcuate, toothed. Front marrow, about one-third the width of the carapax. Meros of external maxillipeds nearly as broad as long and about half the length of the ischium. Ambulatory feet compressed, the margins of the joints serrate.
R. crenulatus Gerstacker.

IRhaconotus crenulatus Gerstrecker, Archiv für Naturgeschichte, xxi, p. 142 (1856).

Locality unkinorn.
Genus SESARMA Say, 1818. (Pachysomu De Iaan, 1835. Holometopus Edw., 1853.)
Carapax thick, quadrate, lateral margins straight, entire or toothed. External maxillipents with an ohlique piliferols ritue crossing the ischium and meros; the meros elongate, its apex rounded. Antenne entering the orbit.

I have not attempted to revise the species of this genus on account of a lack of sufficient material. I merely give a list of the described species, indicating in a few cases the synonymy, but learing the tabik of (omparing alarer number of por descrip) tions to some future carcinologist.
S. affinis Edw. (=?quadrata).

Grapsus (Pachysoma) affinis De Haan, op, cit., p. 61, P1. XVIII, f. j (1835).
Sesurma affinis Edwards, Ann. Sci. Nat., III, xx, p. 183 (1853). Japan (De Haan); China (Edw.); Nutal (Krauss).
S. africana Elwards.

Sesurma africana Edw., Hist. Nat. Crust., ii, p. 73 (1837).
Sonegal (Edw.).
S. americana Saussure.

Sesarma americana Saussure, Mem. Soc. Plyss. et Ilist. Nat., xiv, p. 441 (1858).
S. angolensis Capello.

Sesarma angolensis Capello, Descr. tres sp. Nov. Crust. du Africa Occident, p. 4, f. 2 (1864).
S. angusta Smith.

Sesurma angusta Smith, Trans. Conn. Acad., ii, p. 159 (1870).
Panama (Smith).
S. angustifrons A. Milne-Edwarls.

Sesarmat angustifions A. M.-Edw., Nouv. Arch. du Mus. Bulletin, v, p. 26 (1869).
S. angustipes Dana.

Sesarma angustipes Dana, U. S. Expl. Exped., Crust., p. 853, Pl. XXII, f. 7 (185\%).
S. aspera Heller.

Sesarma aspera Heller, Novara, Crust., p. 63, Pl. VI, f. 2 (1865).
Nicobars, Ceylon, Madras (Heller).
S. atrorubens Hess.

Sesarma atrorubens Hess, Archiv für Naturgeschichte, xxxi, p. 149, Pl. VI, f. 12 (1865).
S. aubryi A. Milne-Edwards.

Sesarma aubryi A. M.-Edw., Nouv. Arch., Bulletin, V, p. 25 (1869), Nouv. Arch., ix, p. 307, Pl. XVI, f. 3 (1873).

Nero Caledonia (A. M.-Edw.).
S. bidens Milne-Edwards ex De Harn.

Grapsus (Pachysoma) bidens De Haan, op. cit., p. 60, Pl. XVI, f. 4, Pl. XI, f. 4 (1835).
Sesarma bidens Edw., Amn. Sci. Nat., III, xx, p. 185 (1853). Japan (De Haan); Hong Kong, Nicobars (Heller); Friendly Is.
(Dana) ; Ceylon, Zanzibar (Hilgendorf).
S. boucourti A. Milne-Edwards.

Sesarma boucourti A. M.-Edw., Bulletin, 1. c., p. 28 (1869).
$\operatorname{Siam}(A$, M.-Edw.)
S. chirogona Tozzetti.

Sesarma chirogona Targioni-Tozzetti, Zoologia del Viaggio della Magenta, p. 136, Pl. IX (1877).

Yokohama (Tozzetti).
S. cinereus Say ex Bosc.

Grapsus cinereus Bosc., Hist. Nat. Cuıst., i, p. 204, Pl. V, f. 1, 1802-3 (teste Auct.).
Sesarma cinerea.Say, Jour. Acad. Nat. Sci., Phila., i, p. 442 (1818).
Virginia! to Florida! and the West Indies!
S. dentifrons A. Milne-Edwards.

Sesarma dentiffrons A. M.-Edw., Bulletin, l. c., p. 31 (1869).
Samoan Is. (A. M.-Edw.).
S. dehaani Milne-Edivards.

Grapsus (Pachysoma) quadratus De Haan, op. cit. p. 62, Pl. VIII, f. 3 (1835).

Sesarma dehaani Edw., Ann. Sci. Nat., III, xx, p. 184 (1853). Japan (De Haan).
S. dusumieri Milne-Edwards ($=$ S. bidens).

Sesarma dusumieri Edw., Ann. Sci. Nat., III, xx, p. $18{ }^{\circ}$ (1853). Bombay (Edw.).
S. elegans Iferklots.

Sesarma elegans IIerklots, Addit. ad Faunam Afric. Occident., p. 10, I'l, I, f. 10 (1851).

> Boutry, West Africa (Herklots).
S. elongata A. Milne-Edwards.

Sesarma elongatum A. M.-Edw, Bulletin, 1. c., p. 30 (1869).
Madagascar (A. M.-Edw•).
S. erythrodactyla Hess.

Sesarma erythrodactyla Hess, Arch. für Naturges., xxxi, p.151, Pl. VI, f. 10 (1865).
S. eydouxi Milne-Edwards.

Sesarma eydouxi Edw., Ann. Sci. Nat., III, xx, p. 184 (1853). Cochin China (Edw.); Madras (IIcller).
S. fascicularis Hilgendorf ex Merbst.

Cancer fuscicularis IIerbst, Krabben und Krebse, Pl. XLVU, f. む̀ (1795).

Sesarma mederi Edw., Ann. Sci. Nat., III, xx, p. 185 (1853) teste Hilgendorf.

Bataria (Edw.).
S. frontale A. Milne-Edwards.

Sesarma frontale A. M.-Edw., Bulletin, 1. c., p. 27 (1869).
Madagascar (A. M.-Edw.).
S. germani Λ. Mrilne-Edwards.

Sesarma germani A. M.-Edw,, Bulletin, 1. c., p. 28 (1869). Poulo Condore.
S. gracilipes A. Milne-Edwards.

Sesarma impressa jun. Homb. et Jacq., Voy. Ast. et Zelee, Crust., Pl. VI, f. 5.
Sesarma gracilipes Edw., Ann. Sci Nat., III, xx, p. 182 (1853). Vaoa (Edw.); Nicobar's (IIeller).
S. guerini Milne-Edwards.

Sesarma guerini Edw., Ann. Sci. Nat., III, xx, p. 183 (1853).
Locality unkinown.
S. guttatum A. Milne-Edwards.

Sesarma guttatum A. M.-Edw., Bulletin, 1. c., p. 26 (1869). Zanzibar (A. M.-Edw.).
S. hæmatocheir Kingsley ex De Hanan.

Grapsus (Pachysoma) hematocheir De Haan, op. cit. 1). 67, Pl. VII, f. 4 (1837).

Holometopus hematocheir ${ }^{1}$ Edw., Aun. Sci. Nat., III, xx, p. 188 (1853). Jupan (De Maan).
II. Milne-Edwards has elevated this species to distimet semeric mank on what seem to me wholly inadequate characters. A similar proceeding with other Sesurmus would result in the creation of nearly a husen genera.
S. impressa Milne-Elwards.

Sesarmu impressa Edw., Mist. Nat. Crust, ii, p. 74 (1837).
Locality unknozon.
S. indica Milne-Edmards.

Sesarma indica Edw., Hist. Nat. Crust., i i, p. 74 (1837). Indian Seas (Edw.); Ceylon and Nicobars (INeller).
S. intermedia Milne-Edwards ex De Haan.

Grapsus (Pachysoma) intermedia De Haan, op. cit., p. 61, Pl. XVI, f. ј (1835).
Sesarmat intermedia Edw., Ann. Sci. Nat., III, xx, p. 186 (1853).
Sesarma leve A. M.-Edw., Bulletin, l. c., p. 27 (1869).
Japun (De Maan); Shanghai, Mong Kong (Heller); Arrow Is.) A. M.-Edw.).
S. lafondi Jacquinot et Lucas.

Sesarma lafondi Jacquinot et Lucas, Voyage Astrolabe et Zelee, Crust., p. $70, \mathrm{Pl} . \mathrm{VI}, \mathrm{f} .4$ (1853).

Batavia (J. and L.).
S. leptosoma Hilgendorf.

Sesarma leptosoma Hilgendorf, in Decken's Reise, p. 91, Pl. VI, f. 1 (1869).
S. lividum A. Milne-Edwards.

Sesarma lividum A. M.-Edw., Bulletin, l. c., p. 25 (1869), N. Arch., ix, p. 303, Pl. XVI, f. $2(1873)$.
S. longipes Krauss.

Sesarma longipes Krauss, Süd Afric. Crust., p. 444, P1. III, f. 2 (1843). Umlass River, S. Africa (Krauss).
S. Müllerii A. Milne-Edwards.

Sesarma mülleri A. M.-Edw., Bulletin, 1. c., p. 29 (1869).
Desterro, Brazil (A. M.-Edw.).
S, obesum Dana.
Sesarma obesum Dana, Proc. Phila. Acad., 1851, p. 250 ; U. S. Expl. Exped., Crust., p. 35 万ु, Pl. XXII, f. 10.

Balabac Straits (Dana).
S. oblonga Martens.

Sesurma oblonga Martens, Monatsber. Akad. Wiss. Berlin, 1868, p. 611. Philippines (Martens).
S. obtusifrons Dana.

Sesarma obtusifrons Dana, Proc. Phila. Acad. 1851, p. 250; U. S. Expl. Exped., Crust., p. 355, Pl. XXII, f. 9 (1852).

Sandwich Is. (Dana):
S. ocoidentalis Smith.

Sesarma occidentalis Smith, Trans. Conn. Acad., ii, p. 158 (1870).
West Coast of Central America (Smith).
S. pentagona Hutton (- ? S. tetragona).

Sesarma pentagona Hutton, Trans. New Zealand Inst., 1875, 1., 279.
New Zealand (Hutton).
S. quadrata Milne-Edwards ex Fabricius.

Cancer quadratus Fabr., Suppl. Ent. Syst., p. 311 (1~98).
Ocypoda plicatu Bosc., op. cit., i, p. 198, 1802-3 (teste A. M.-Edw.).
Grapsus (Rachysoma) pictus et affinis De Haan, op. cit., pp. 61-66 (1835-37).
Sesarma quadrata Edw., Hist. Ňat. Crust., ii, p. 75 (1837).
Sesurmre picta Ǩrauss, op. cit.. p. 45 (1843).
Jupan (De Haan) ; Nero C'eletlonire (A. M.-Edw.) ; Zunzihur (Hilgendorf).
S. recta Randall.

Sesetrma recte Randall, Jour. Acad. Nat. Sci., Plila., viii, p. 123 (1839).
Surinam! (Randall).
S. reticulata, Say.

Sesarma reticulata Say, Jour. Acad. Nat. Sci., Plila., i, pp. i:3, 76 et 442, Pl. IV, f. 6 (1818).
Sesarma cinerea De Kay, N. I. Fauna, Crust., p. 15 (1842).
Virginia! to Floriala!
S. ricordi Milne-Edwards.

Sesarma ricordi Edw., Ann. Sci, Nat., III, xx, p. 18:3 (1853). IInyti (Edw.).
S. roberti Milne-Edwards.

Sesarma reticulata McLeay in Smith Zool. S. Africa, p. 60 (18), vix Say.
Sesarma roberti Edw., Ann. Sci. Nat., III, xx, p. 182 (1853). Gori! (Dr. Wilson) ; So. Africa (McLeay).
S. rotundata Hess.

Sescerma rotuntatu Hess, 1. c., p. 149, Pl. VI, f. 9 (1865).
Sydney (Hess).
S. rotundifrons A. Milne-Edwards.

Sesarma rotundifrons A. M.-Ed., Bulletin, 1. c. p. 30 (1869).
Samoan Is. (1. M.-Edw.).
S. rupicola Stimpson.

Sesarma rupicola Stimpson, Proc. Phila. Acad., 18j8, p. 10ti.
Jupan (Stimpson).
S. schiuttei Hess.

Sesarma schültei Hess, 1. c., p. 150, Pl. VI, f. 11 (186כ).
Sydney, Australia (Hess).
S. similis Hess ($=$ S. atrorubens).

Sesarma similis Hess, 1. c., p. 150 (1865).

S. sinensis Milne-Edwards.

Sydney (Australia).
Sesarma sinensis Edw., Ann. Sci. Nat., III, xx, p. 186 (18.j3).
Chinn (Edrr.).
S. smithii Milne-Edwards.

Sesarma smithii Edw., Ann. Sci. N̄at., III, xx, p, 187 (185:3); Areh. du Mus., vii, p. 149, Pl. IX, f. 2 (1854).

Netul (Edw.) ; Nevo Caledonia (1. M.-Erlw.).
S. suloata Smith.

Sesurma sulcate Smith, Trans, Comn. Acad., ii, p. 150 (18:0). Corinto, Nicaragua! (J. A. McNiel, Peab. Acad.
S. tæniolata Miers ex White MS.

Sesarma ternioleta White MS., Miers, Proc. Zool. Soc., London (1877), p. 13\%.

Philippines! (Dr. Wilson, with White's label).
S. tetragona Milnc-Edwards ex Fabricins.

Cancer tetragonon Fabricius, Suppl. Ent. Syst., p). 341 (1798).
(iralzsus tetragonon Latr., Hist. Crust. et Ins., vi, p. 71 (1803-4).
Sesarma tetragona Edw., Hist. Nat. Crust., ii, p. 73 (1837).
Zunzibur (Hilgendorf) to Nero Caledonia (A. M.-Edw.).
S. trapezoida Milne-Edwards.

Sesarmu trapezoida Edw., Hist. Nat. Crust., ii, p. 74 (1837). Locality unknown.
S. ungulata Milne-Edwards.

Sesırma ungulata Edw., Ann Sci. Nat. III, xx, p. 184 (1853).
Celebes (Edw.).
S. vestita Stimpson.

Sesterma vestitu Stimpson, Proc. Aeat. Nat. Sci. Phila., 1858, p. 106. Japan (Stimpson).
S. villosum A. Milne-Edwarts.

Sesarma villosum A. M.-Edw., Bulletin, l.c., p. 31 (1869).
Samoan Is. (A. M.-Edw.).
S. violacea Herklots.

Sesarma violaceu IIerklots, op. cit., p. 10, Pl. I, f. 9 (1851). West Africa! (Du Chaillu).

Genus ARATUS M.-Edw., 1853.
Carapax trapezoidal, elongate, narrow behind, sides straight, entire; front deflexed, very broad. External maxillipeds as in Sesarma. Ambulatory feet compressed, the dactyli very short. A. pisoni Milne-Edwards.

Sescrmu pisoni Edw., Hist. Crust., ii, p. 76, Pl. XVI, f. 4-5 (1837).
Aratus pisoni Edw., Ann. Sci. Nat., III, xx, p. 187, 1853.
Carapax transversely arcuate, the branchial regions obliquely plicate. Front vertical, its margin two-lobed. Meros of cheliberis triguetral. the maroins denticulate, the anterior one slightly expanded distally. Carpus externally granulate. Hands everywhere granulate, the fingers ornamented with pencils of stifi hlack hairs.

F'lurida! (H. E. Webster, Union College); Hest Indies! (many collectors and localities) ; West Coast of Nicaragua! (J. A. McNiel, Peal. Acad.) ; Rio Janeiro (Heller); Praya, Brazif (Martens).

Genus CLISTOCELOMA A. M.-Edsards, 1873.
Carapax sub-çuadrate, sides dentate. Sub-ocular lobe large. united to the front and excluding the antenne from the orbit. Meros of external maxillipeds short and rounded.
C. balansæ A. Milne-Elwards.

C'listocalomu butcense A. M.-Tdw., Nouv. Arch. du Mus., ix, p. 311, Pl. XVII, f. 1 (1873).

Nerc C'rledonia: A. M.-Edw.).
Genus HELICE De Iaan (18:5).
Carapax quadrate, front deflexed, sides straight, with one, two or three teeth behind the orbital angle. Antenne entering the orbit. Meros of extemal maxillipeds as long as or longer than the ischimm, its external distal angle prominent, its distal border truncate.

> Synopsis of Species.

Lateral margin with three tecth behind the angle of the orbit.
Ambulatory feet with a single distal spine on the meros.
A transverse ridge ou the branchial regions.

No transverse crest on the branchial regions.
Hands smooth. spinicurpit.

Hands roughened. latreillei.
Meral joints of ambulatory feet with several spines. dentipe*. Lateral margin two-toothed.

Hand strongly gramulate.
gentirlunueli.
Hand nearly smooth.
Meral joints of ambulatory feet with a spine on the upper distal margin, the hands of the male with a pilose spot at the base of the fingers.
pilimanu.
Meral joints without spines, hands of male without pilose spots.
craxsar.
Lateral margin one-toothed.
gibóa.
Imperfectly characterized.
leachii.

H. tridens De Hann.

Carapax longitudinally strongly convex, punctate, front curved downward, its anterior border sinuate when viewed l'rom above. Superior margin of the orbit simate, oblique; lateral margin with three teeth behind the orbital angle, the posterior tooth rudimentary. Branchial regions with an ohlique ridge ruming inward from this tooth. Orbits coarsely crenulate below. Inferior borders of the meral joints of the chelipeds with small tubercles. Carpus spined on the inside. Hands externally
smooth, sub-cristate and granulate above, internally granulate; fingers excavate. Carpal and propodal joints of the first two pairs of ambulatory feet pilose in front.

H. spinicarpa Edwards

H. spinicarpa Edwards, Ann. Sci. Nat. III, xx, p. 190 (1853).

Locality unknown.
H. dentipes Heller.

Helice dentipes IIfller, Novara Crust., p. 62, Pl. V, f. 5.
Ceylon (Heller).
H. latreillei Edwarde.

Cyclograpsus latreillei Edwards, Hist. Nat. Crust., ii, p. 80 (1837).
Helice latreillei Edwards, Ann. Sci. Nat. III, xx, p. 190 (1853).
Mauritius (Edwards).
H. gaudichaudi Edwards.

Helice gaudichaudi Edwards, Aun. Sci. Nat. III, xx, p. 190, Pl. VII, f. 6 (1853).

Sumatra (Edwards).
H. pilimana A. Milne-Edwards.

Helice pilimana Alph. Milne-Edwards, Nouv. Arch. du Mus., ix p. 313, Pl. XVIII, f. 1 (1872).

Nero Caledonia (A. M.-Edw.).

H. orassa Dana.

Helice crassa Dana, Proc. Phila. Acad. (1851), p. 252~U. S. Ex. Exp., Crust., p. 367, Pl. XXIII, f. 8 (1853).
H. lucasii Edw., Ann. Sci. Nat. III, xx, p. 190 (1853).

Carapax closely sesumbling that of H.tridens, but with but two teeth behind the orbital angle. Carpus of cheliped without an internal spine. hands extemally microscopically gramulate, more coarsely so internally, the uper margin acute. Carpal and propodal joints of the first two pairs of ambulatory feet, pilose.

This is probably but a variety of H. tridens. Small females show the elevated line on the hand characterizing H. lucasii.

New Zealand! (Dr. Wilson); Aukland (Heller); Australia (Dana).

H. leachii Hess.

Helice leachiz Hess, Archiv für Naturgeschichte, xxxi, p. 153 (1865).
Sydney, Australia (Hess).

Genus CYCLOGRAPSUS Edw. (1837)(restrict). (Gnathochasmus McLeay.)
Carapax depresed, sides arcuate, entire front about half the width of the carapax. Antenna not excluded from the orbit. Meros of the external maxilliperls short, about as long as the ischium ; its external angle well marked, the palpus articulating with the anterior margin.
C. punctatus Milne-Eidwards.

Cyclograpsus punctatus Edw., Hist. Nat. Crust., ii, 1). 78 (18:37).
Gnathochasmus barbatus McLeay, in Smitlı, Zool. S. Africa, p. Gij (1838).

Sesurma barbata Krauss, Sud Af. Crust., p. 4.), P1. III, f. 3 (18.1:3).
Cyclograpsus uudouinii, lavauxii, solitei, granulosus et reynaudi Eidw., Ann. Sci. Nat. III, xx, 1. 197 (1853).
Cyclograpsus lœvis Hess, Archiv für Naturgeschichte, xxxi, 1). 15シ (1805).

Carapax smooth or slightly granulate; sides areuate in front. straight behind. Front broad, nearly straight. Orbits extemally broadly emarginate, the emargination continuing backward as a groove for some distance. Hands externally smooth, intermally

 much narrower than the sisth.

Nero Zealand! (Guerin); Australia! (E. Wilson and Wiikes' Expedition); Cape of Good Hope, Madras, Juiva (Heller); Feu Guinea (Edw.).
C. granulatus Dana.

Cyclograpsus grounulatus Dana, Proc. Acad. Nat. Sci. Phila., 1851, p. 251 ; U. S. Ex. Exp. Crust., p. 361, Pl. XXIII. f. 4, 18.52).

Sandicich Is. (Dana).
C. cinereus Dana.

Cyclograpsus cinereus Dana, Proc. Acad. (1851), p. 2ī1; U. S. Ex. Exp. Crust., p. 360, 1’. XXIL, f. 3 (1852).
Cyclograpsus eydouxi Edw., Ann. Sci. Nat., III, xx, p. 198 (1853).
Valparaiso and Sandwich Is. (Dana).
C. Iongipes Stimpson.

Gyclngrapsus longines Stimpson, Proc. Acad. Nat. Sci. Phila. (1858), p. 105.

Bonin Is. (Stimpson :
C. integer Milne-Edwards.

Cyclogrupsus integer Edw., Hist. Nat. Crust., ii, 1). 79 (183\%).
F'lorida! (A. S. Packard, Jr., Peab. Acad.) ; Brazil (Edr.).
fienus CHASMAGNATHUS Dellann, 1S35. (l'aragrapses Eitw.).
Carapax convex, sides arcuate, dentate, front curved downward Antenna not excluded from the orbit. Meros of extermal maxillipeds longer than hroad, widest distally. its anterior border slightly exeavate, the palpus medially articulated.

Symopsis of Species.

Lateral margin with three tecth behind the orbital angle, the posterior tooth inconspicuous.

> concexus.

Lateral margin with two teeth.
Front rounded.
urrillei.
Front nearly strajeht. gaimardiz.
Front excavate.

> Carapax and cliclipeds granulate. granulatus. Carapax and chelipeds smooth.

Episastric lobes prominent.
Epigastric lobes inconspicuous.
lovis.
subquadratus.
Lateral margin with one post orbital tooth.
quadridentatus.
C. convexus DeHarn.

Chasmagnathus converus Dellaan, Fauna Japonica, p. 56, Pl. VII, f. 5 (18:5).

Japan (DeMaan); Eastern Scas (Astams and White).
C. subquadratus Dana.

Chosmagnathus subqucedratus Dana, Proc. Acad. Nat. Sci. Phila., 1851, 1. 251; U. S. Ex. Exp., Crast., p. 363, Pl. XXIMI, f. 5 (18ã2). Fevo Zealand? Australia? (Dana).
C. lævis Dana (=? C. subquadratus.)

Chasmagnathus lecis Dana, Proc. Acad., p. 252; Ex. Exp., p. 365, P3. XXIII, 1.7 (185) $)$
Paragrapsus verreauxi Eilw., Ann. Sci. Nat., III גx, p. 195 (1853).
Paragrapsus lœvis Heller, Novara Crust, p. 55 (1865).
Carapax slightly convex, punctate; regions not defined. Epigastric lobes prominent. Front deeply excavate in the middle, When riemed from above. Antero-lateral teeth separated by narrow fissures. Chelipeds everywhere smooth. Anterior surface of carpus and propodus of first pair of ambulatory feet tomentose. Australia! (Guerin ; New Zeculand (Miers).
C. urvillei Kings'ry ex Milne-Edwards.

Paragrapsus urvillei Edw., Anm. Sci. Nat., III, xג, p. 196 (18.)3). Vanikaro I.(Edw.).
C. granulatus Dana.

Chasmagnathus granutatus Dana, Proc. Acad., 1851, p. 251; U. S. Ex. Exp., Crust., p. 364, Pl. XXIII, f. 6 (18.)2).
Helice granulata Heller, Novara Crust., 1. 61 (1865).
Carapax convex, distinctly areolate, gramulate; the granules on the branchial regions being larger; epigastric lohes obsolete. Front curved downward and, riewed from above, deeply excavate.

Sides of carapax acute, the fissumes between the teeth being very slight; all of the border of the carapax finely crenulate. Chelipeds externally gramulate. Carpus produced internally; the inner surface of the hand with a pateh of granules on the immer surface. Carpal joints of the ambulatory feet longitudinally sulcate.

Rio Janciro! (Wilkes' Expedition); Rio Grande, Brazil! (Capt. Harrington Peabody Academy).
©. gaimardi Milne Ellwards.
Cyclograpsus guimardi Edw., Hist. Nat. Crust., ii, p. 79 (1837).
Paragrapsus gaimardi Edw., Amı. Sci. Nat. III, xx, p. 1946 (1853.
Australie (Edwards).
C. quadridentatus Kingsley ex Milne-Edwards.

Paragruqsus quadridentatus Edw., Amn. Sci. Nat., III, xx. p 195 (1853).

Austrulia (Edw.).

Sub family Plagusinæ Dana. ${ }^{1}$

Carapax flattener, antennule longitudinally plicate, lodged in sinuses of the front, and visible from above.

Genus PLAGUSIA Latr., 18116 (restrict).
Meros of external maxiliped well developert, as boad as the ischium.

P. speciosa Dana.

Carapax arcuate, covered everywhere with squamitorm tubereles. the inter paces being elobed with a short pubescence, these tubercles being similar in their arrangement to those of P. depressen Say, but much more depressed than in that species. The margius of the inter-antemular portion of the front is simple. Inferior margin of the orbit acute, minutely denticulate. Sides of caraprax with two equal acute spiniform teeth behind the angle of the orlhit. Fect closely resembling those of l '. depressa, the ornamentation being similar, but not so prominent. The hands, however, are externally marked by six longitudinal impressed lines, the lowest of them being on the inferior margin. The fingers are witely gaping, the extremities deeply excavate. The dentiform proeess

[^53]on the cosa of the third pair of ambulatory feet is minutely denticulate. The only additional character in the female is that the squame of the carapax are more depressed.

Mr. Miers (l. c., p. 151) remarks: "Only a carapax of this species is known." The carapax referred to, Dana's type, was destroyed in the Chicago fire. The Academy possesses two specimens, male and female, sent by Mr. Andrew Garrett, from 'Tahiti.

```
Genus LEILOPHUS I Miers, 1876. (Acanthopus DeHaan.)
```

Meros of external maxillipeds very small, and much narrower than the ischium.
L. pilimanus Miers e:c A. M.-Edw.
-bucimen- of this rare species are in the musemm of the A catemr, from the Sandwich Is. (J. K. 'Townsend) and Tahiti (A. Garrett). So far as I am aware, the only other specimen, in any collection, is the type in Jardin des Plantes at Paris. The British Museum has no specimens.

I am unable, either from the poorness of the descriptions, or possible inacerracy of the figures, to assign the following species to their proper generic positions.

Cyclograpsus ? tasmanicus Jacquinot et Lucas, Voyage Astrolabe et Zélee, Crustaces, p. 76, Pl. VI, f. 6 (1842-53).

Tasmania (J. et L.).
Cyclograpsus minutus J. et L., 1. c., p. 75, P1. VI, f. 8 (1842-53). Chili (J. et L.).
Grapsus inornatus Hess, Archiv für Naturgeschichte, xxxi, p. 148, Pl. VI, f. 11 (1865).

Sydney, Australia (Hess).
Grapsus 7uzardi Desmarest, Consid. sur les Crust., p. 131 (1825).
Senegal (Desmarest).
Cancer tridens Fabricius, Suppl. Ent. Syst., p. 340 (1798). E. Indies (Fabricius).

Fancer hispanus Herbst, P1. XXXVII, f. 1 (1796).
Goniograpsus pulcher Lockington, Proc. Cal. Acad., vii, p. 152 (1876). Lower California (Lockington).
MI. Henri Milne-Edwards (Archives du Museum, vii, p. 158, 18:5) mention- a genus Itolograpsus, possibly intending Ifolometopus.

[^54]
June 1.

The President, Dr. Ruscinexberger, in the chair.

'Twenty-nine persons present.

A paper entitled "Description of a Partula supposed to be new, from the Island of Moorea," by W. D. Hartman, M. D., was presented for publication.

The Treasurer having amounced the reception of a gift of twenty thousand dollars from Jos. Jeanes, acting for the heirs of the late Joshua T. Jeanes, who, in an unsigned codicil to his will, had indicated his intention of bequeathing that amount to the Academy, the following preamble and resolutions were unanimously adopted:

Whereas, The late Mr. Joshua T. Jeanes in a codicil to his will bequeathed to the Academy twenty thousand dollars, an act which may be regarded as significant of his appreciation and approval of the objects of the Society, but left this codicil without his signature, and therefore legally inoperative ; and,

Whereas, His executors have placed in possession of the Treasurer of the Aeademy the sum mamed, thus manifesting their respect for the intention of their late brother in a most generous and affectionate manner ; be it

Resolved, That the Academy of Natural Sciences of Philadel-
 of the executors of the late Joshan II'. Jeanes in bestowing on the Academy twenty thousand dollars in compliance with his wish, simply indicated.

Resolved, That the money thus bountifully given to the Society be invested securely in the name of the Academy of Natural
 fund which shall be named the Joshua 'T. Jfanes Fund and the income thereof shall be applied towards defraying the ordmary expenses of the Society.

Serpentine Belts of Radnor. Tounship, Delauare Co.- At the last meeting of the Mineralogical and Geological Section of the Academy of Natural Sciences, 'Tumonome D. Ranio read a paper on the Serpentine Belts of Radnor 'Township, Delaware County, and the adjacent rocks. He adduced facts which he thought incompatible with Mr. Charles E. Hall's view, that the middle belt consists of altered Hudson River shales, and stated that the belt was not continuous but was a succession of outcrops nearly east
anh west from atch othor, the strike of which was, wherever oh) servable, more N. E. and S. W. than the line joining them, thas acheing in struture with what I'mot. Rogers states of the trat
 attention to the existence of two trap dykes or two branches of that extending through the Gulf' Valley, and to curious markings in quartz rock in the vicinity, suggestive of fossils in a formation regarded as azoic.

Tune 8.
The President, Dr. Ruschenberger, in the chair.
'Twenty-two persons present.
A paper entitled "On the Development of Lemna minor," by Wm. Barbeck, was presented for publication.

June 15.

The President, Dr. Ruschenberger, in the chair.
Eighteen persons present.
A paper entitled "A Bibliographical Catalogue of the Genus Partula, with observations on the Species," by W. D. Hartman, M. D., was presented for publication.

June 22.
The President, Dr. Ruscirenberger, in the chair.
Eighteen persons present.
The deaths of Wm. G. E. Agnew and Morris L. Hallowell, members, were amounced.

June 29.
The President, Dr. Ruschenberger, in the chair.
Eleren persons present.
The deaths of B. F. Lautenbach, M. D., and Wm. Kent Gilbert, M. D., members, were announced.

On some Homologies in Bunodont Dentition.-Dr. Harrison Allen, in speaking of the tecth of the Carnivora, Insectivora and ('hirontera, lwelt mon the forms of the canines and premolars as
being valuable guides in interpreting the plan of the molars. He traced the shapes of the last-mamed teeth from the sub-conical form of the canine, with its associated eusplets or cingules characterizing the canines, up to the complicated figures of the molars. Among

 plets, and is of still greater interest inasmuch as the molars retain in all essential features the same parts. In genera where the form of the molars is not so retained, the manner after which the departure takes place in the upper jaw is as follows:

1. The buceal cingulum becomes rleveloped.
2. The buceal surface of the main cusp is directed oblifuely backward and inward, and at the same time becomes concave.
3. In genera having the W-shaped pattern, the first V answers to the concave, obliquely placed buccal surface of the main ensp). The second V is a regetative repetition of the first, and is formed from the posterior cusplet of the canine.

The W thus formed is a conspicnous feature in the molars of most Insectivora and Chiroptera. It can be traced through its several stages of development from the Carnivora. The genera of the Procyondie exhibit the transition adrantageously. The W of the upper jaw, while forming a portion of the free under-surtace of the crown, is not functionally active as part of the grinder. but is an extremely obliquely placed portion of the shearing buccal surface, and is not arlicular.

The V V seen from the palatal side of tooth form the summits of two downward-projecting, prismoidal, shearing columns. Examined in relief from before backwards these columms are seen to be of diflerent relative lengths. In Vespertilio and Antrozous. for example, where the appearance of the under free surfaces of the crowns are almost identical, conspicuous differences in the lengths of the columns are detected when the teeth are examined with the columns in antero-posterior relief.

The elevations placed to the palatal side of the loase of the columns are developments from the palatal fold of the cingulum of the caniniform tooth. If one cingule be alone developed it lies to the median side of the first V. Should a second be present, it lies in an analogous position to the second V, and is much less pronounced than the first.

The diflerences in the forms of the lower molars are traceathle to similar modifications of the simple cone and associated eusplets. The second V is incomplete, the anterior limb not joining the first to form a true W. There is no disposition to form a lingual outgrowth. In its stead a tendency to backward propection from the base of the second V exists. This projection is eonveniently called the "heel" of the tooth, and is always articular.

The forms of the canines and premolars are not as simple and uniform as they at first sight appear. They often present remarkable differences in their details. This is especially true of these
 should be carefully studied in the ditlerent genera: Full descriptions of these diflirences would he ont of plate in a commmateation of this kind. One notable leature of many as seen in the canines is especially well developed in the bats, viz., the junction of the buccal and palatal surfaces resulting in forming a thin compressed posterior edge. 'This may receive the name of the "sabre" edge. It is repeated and exaggerated in the last premolar amd fioms at ka-t in (hiropterat (other than the Pteropicke) the "sectorial" surface of the tooth. It constitutes a sharp" obliguely-platert rioloe which is parallel with the last stroke of the first V, and is doubtless serially homologous therewith.

The following were ordered to be printed:

DESCRIPTION OF A PARTULA SUPPOSED TO BE NEW, FROM THE ISLAND OF MOOREA.

bY W. D. Hartman, M. D.

Partula Mooreana, Hartman.
Shell sinistral, ovate, elongate, thin, transhueent, pale yellowi-h horn-color, apex darker ; whorl- is, flatly combex, boty-whorl, with or without from one to three narrow, pale, hrown revolving haml-; surface smooth, with fine, ohligue striations, which are duellosaterl by crowded waved spiral strix; a narrow white line beneath the suture; aperture hearly half the length of the shell, lip white, moderately reffected, pillar tooth oval, prominent, situated ne:arest the superior angle, umbilicus open, moderately compressed.

Length 18 mill., diameter 9 mill.

In one hundred and forty-six species and varieties of Partula represented in my collection, this shell possesses constant and well-marked specific characters. Mr. Garrett informs me that fifteen hundred specimens were all sinistral and dentate. The surface of the shell resembles P. spadicea and varieties from Moorea in possessing the thickly crowded waved spiral strix.

This species is arboreal, and is not uncommon on bushes, in Taianai V'alley, the metropolis of I^{\prime}. westlum P'e. - I^{\prime}. जlemestomen Ph.

ON THE DEVELOPMENT OF LEMNA MINOR.

13Y WM. 13ARHECK.

In the early part of last Λ pril, I foumd, in a little pond near Camden, N. J., among patches of Riccia fuitans, a number of minute brownish bodies, which under the lens had very much the apparance of serminating spores, showing at the top a greenish, prothallium-like outgrowth. They were of an oval form, and less than a millimetre in size.

I sccured several of these little bodies, and, upon further examination under the microscope, I found that they contained a well. developed embryo, which was enclosed by a comparatively large cotyledon. 'Ihus they were evidently the seeds of some monocotyledonous plant.

I was not able to return to the pond until a week later. Within this week the germination had been completed in a number of specimens, and numerous little plants were developed, most of them still in connection with the seed. These obovate, indlisinnetly thresenerved inclividuals, with a single root hanging from the under surface, were apparently Lemna minor. Thousands of fresh seeds had meanwhile appeared at the surface of the water, most of them germinating, and thus I could get the specimens in all stages of their development. I have tried to show this gradual development (up to the completion of the second froncl) by a series of illustrations, Plate XVIII.

Figure - a ant II represent longiturlinal nections through a seed in which the germination is about to commence. (Fig. I is from the centre, Fig. II from a part nearer to the surface).

The seeds are seen surrounded by a comparatively strong coat, the testa (t), which is considerably thickened towards the top, where it covers the lid, or operculum (o), by means of which the mycropyle is closed. In (c) we have the large cotyledon, surrounded by a scanty layer of endospermium ($s p$.); in (v) and (u.) the two lobes into which the cotylerlon will afterwards split, begin to be differentiated. The axis of the embryo (e) forms an obtuse angle with the medial line of the cotyledon. In (p) we hase the plumula, in (f) the radula of the embryo $;(f)$ indicates a fis-ure insile of which the gemma of the second frond is being formed.

In Fig. III the testa has been removed from the cotyleilon (c). The two lobes are distinctly separate, (u:) bearing the operentum under which the upper part of the plamula is concealed. 'The radula (r) is further descloped; in (g) we have the but of the second frond. The section in Fig. IV shows the plumula (p) fully developed into the first frond, which in (r; sends down itradula. The angle formed by this frond and the axis of the cotyledon is about 120°. Corresponding to the first figures ((\%) and (w) , are the lobes of the cotyledon. (We have to bear in mind that all the figures represent thin sections through the different parts.) In reality the lobes of the cotyledon are two parallel ohovate sheets enclosing the basal part of the much larger, likewise obovate frond. In this figure the gemma has been so fir developed ats to show in (f) the fissure in which the bud of the third frond is being clifferentiated. Its elongated inferior part (p^{\prime}) is the secondary plumula. In using a high power, the microscope will show in the region indicated hy (r) several rows of rery wite cells. Here the separation of the frond from the cotyledon will take place.

In Fig. I this separation is complete. In (1^{\prime}) we have the yet more elongated plumula, in (r^{\prime}) the radula of the second frond. and $\left(f^{\prime}\right)$ shows again the fissure for the formation of the third individual.

The section represented in Fig. VI goes through the radula (r). showing a central vascular bumble (i) surrounded by a tissue of very loose, almost hyaline cells ($k \cdot$). In the further development of the rootlet this outer tissue will follow the growth of the vascu lar bundle to a certain extent ; then its hasal part will be separated from the frond. But, remaining in connection with the more and more extending vascular hundle, this wide-celled tissue will form at the top of the full-grown root the well-known hood or calyptra, characterizing the roots in all Lemnacea.

The last two figures (VII and VIII) need no further explanation. They show the formation and completion of the second frond ($1 l^{\prime}$), from which the third individual will be developed in the same way as has been illustrated in the first figures. In ($p^{\prime \prime}$) we have the plumula, in ($r^{\prime \prime}$) the radula of the third fronds; $\left(f^{\prime \prime}\right)$ in Fig. VIII shows the fissure for the formation of the fourth individual.

In this way we see the propagation continned throngh the summer, plant after plant being formed from a cleft of the preceding individual through a process of prolification.

My investigations have been made only on the Lemna minor, but there is no reason to doubt that in the development of the whole family of Lemmucta (analogous to our speries) we have an interesting instane of parthenogenesis, there being seeds (produced in autumn by a sexual process) from which, during the eontice of summer, qemeration after generation is propagated without any further fertilization.

DESCRIPTION OF A NEW SPECIES OF HEMITRIPTERUS FROK ALABKA

HY W. N. LOCKINGTON.

Hemitripterus cavifrons, nor. sp.
D. iv-xiv, 1-12. A. 14. P. 20. T. $\frac{1}{3}$. C. 3-12-3. L. lat. 44.

Head rery large and depressed; abdomen protuberant, so that the depth equals the width; snout to tip of ascending process of pre-maxillary rising at an angle of about 45°; thence to occiput. along the median line of the fish, deeply concave: from occiput
 point at about the tenth dorsal spine. Outline of anal base corresponding to that part of the dorsal directly abore it.

Depth, $3 \frac{1}{2}$; greatest width, $3 \frac{1}{2}$; length of head, $3 \frac{1}{2}$; length of pectoral rather more than 4 times in the total length, caudal included.

Axial length of snout, $3 \frac{3}{5}$; longitudinal diameter of orbit, 6_{7}^{3} : interocular width, $2 \frac{11}{7}$ times in length of head; least depth of caudal peduncle rather less than 5 times in greatest depth.

Anterior nostril on a level with the centre of the pupil, and prolonged into a conspicuous tube; posterior nostril somewhat tubular.

Orbits elevated considerably above the general surface of the forehead, so that the concarity of the inter-ocular area is equal to about $\frac{3}{4}$ of the transverse diameter of the eye; eyes lateral, somewhat elliptical.

Mouth very large, very slightly oblique; its width from tip to tip of the opposite maxillaries, $1 \frac{1}{6}$ in the length of the head, and exceeding that of the upper jaw by more than one-third.

Pre-maxillaries not forming the whole of the margin of the upper jaw, the maxillaries entering into it posteriorly.

Posterior extremity of maxillary considerably behind the orbit, its upper margin not concealed by the pre-orbital in the closer mouth.

Lower jaw slightly projecting beyond the upper.
Several rows of sharp, recurved, cardiform teeth, forming a broad band, in both jaws, also on the romer, palatines and pharyngeal bones. The teeth on the vomer and palatines slightl; longer than those on the jaws.

So gill-rakers; pharyngeal bones large.
supra-ooular and post-ocular ridges prominent, the former curved inwards posteriorly, parallel to the postocular; between the two, at the posterior upper angle of the eye, are two sinall spines or short ridges.
()ecipitat rilere with theer tuhercles, the anterior near the postocular ridge, the two posterior near together and elongated transversely; a low ridge between the first and second.

Temporal ridge with three tubercles, the first immediately exterior to the first of the occipital series, the second a longitudinal ridge; the third rounded, close to the second.

A long low crest across the operculum; just above and anterior to this a shorter ridge comnecting it with the temporal series; a tubercle on the supra-scapula; no spines upon the head, except two upon the posterior border of the pre-operculum.

All the butereles of the head and the spines of the pre-operculum, covered by skin.

Maxillary with a fimbriated skinny flap neax its posterior wiremity: lower margin of mandible set along its whole length with skịny flaps, of which three pairs are especially long and fimbriated on both edges, while the posterior flap is very broad.

Lips well developed; lower lip pendulous at sides, and to a rasher l.... stent in fromt, and bearing a fimbriated flap on each side.

Two pairs of similar flaps on the snout, and two over each eye.
Gill-membranes continuous below the throat.
Branchiostegals, 6.
Origin of first dorsal slightly anterior to the lorrer pectoral :axil : first two spines longest, about $2 \frac{1}{7}$ in the length of the head, fourth mace: shorter than the third, and a little shorter than the fifth: sixth. seventh and eighth much longer than fourth, the remaining frines diminishing to the eighteenth, which is the shortest.

A tag at the end of each spine, the membrane between the two parts of the first dorsal notched considerably.

A -pine at the commencement of the second dorsal, the hase of which is contained more than $2 \frac{1}{2}$ times in that of the first, the rays increating in length to the fifth, which is about $\frac{1}{2}$ longer than the lougest spine of the first dorsal; upper margin of second dorsal, convex.

Anal longer than soft dorsal, arising opposite the last spine of the first domal. and deminating somewhat pesteriof to the -aneme Ninth to twelfth rays slightly the longest.

Pectorals Jery broad and rounded, their base oblique, the tip of the longest (sixth) ray reaching to about the sixteenth dorsal ray; rays simple. the lomeret a little lean than ome-fomth the total length of the fish.

Ventrals small, narrow, the longest (middle) ray rather more than half the length of the lomeest pectomal ray. hut hot rearding to the vent.

Caudal truncate on hinder margin, rather narrow, rays simple.
Vent midway between insertion of ventrals and origin of anal.
Lateral line with a series of skinny fimbriated flaps, similar to those upon the head.

Body and head scaleless, but the former covered all over with
 protuberant portion of the abdomen.

Color, in alcohol, blotches of dark purplish-brown on a lighter ground; the blotches on the fins conspicuous, and lunning into transverse bars on the pectorals. Abrlomen, light dirty-brown.

A single specimen of this interesting species was obtained by AIr. W. J. Fisher, at St. Paul's, Kodiak. It is in the museum of the California Academy of Sciences.

Hemitripterus cavifrons is the western representative of H. acadianus of the Atlantic, and differs from that species in the following characteristics, among others :-

The great depression of the inter-ocular area, whence the specific name: the erreater number of dorsal spines: the shorter pectomats: the lesser depth of the posterior anal rays; the absence of hooklike papillar along the lateral line and the pescence in their pace of fleshy slips ; and the smaller size of the bony papillte along the dorsal region.

Dimensions.

'Total length, 15.75
Greatest depth, 4.50
Least depth of caudal peduncle, 92
Length of head, 4.50
Width 4.50
" of mouth, from tip to tip of maxillaries,. 3.75
Length of upper jaw along its curve, $\because .75$
Axial length of snout, 1.25
Longitudinal diameter of eye, 70
Interocular width, 1.70
Width of pectoral base, 2.75
Length of longest (sixth) pectoral ray, 3.88
Tip of snout to origin of dorsal, axial, 2.75
" 6 " " 6 along top of head, 3.25
Length of base of spinous dorsal, 6.50
Height of first spine, 1.75
" second spine, 1.70
.. fourtl spine, 90
.. fifth spine, 98
.. sixth spine, 1.00
.. eighth spine, 1.20
-. eighteenth spine, 88
.. spine of second dorsal, 1.00
" longest (fifth) ray of second dorsal, 2.00
Length of base of second dorsal, 2.50
Tip of lower jaw to ventrals, along abdomen, 3.75
" 6 " origin of anal, along abdomen, 8.80
rent, 6.32
Length of ventrals, 2.00
" base of anal, 3.44

* longest anal 1ays (9-12) 2.10

DESCRIPTION OF A NEW SPECIES OF CATOSTOMUS CATOSTOMUS CYPHO FROM THE COLORADO RIVER.

BY WM, N. LOCKINGTON.

Catostomus cypho, sp, nov.
D. 3, 14. A. 2, 7. C. 7-1-16-1-7. P. 18. V.10. L. lat. 79.

Head conical; snout long, much depressed; dorsal outline
 a prominent and considerably elevated hump, which attains its greatest height at a distance from the occiput about equal to the length of the smont, and thence descends to the origin of the dorsal.

Along the base of the dorsal fin the dorsal outline descends
 the fish; caudal pedumele extremely elongated, and widening considerably toward the caudal base.

Abdominal outline almost straight to the origin of the anal. thence diminishing to the caudal peduncle.

Greatest depth, at anterior pectoral axil, contained not quite $4 \frac{1}{4}$ times; head a little more than 4 times in the total length: snout a little more than 25 , eye between 8 and 9 times in the length of the head; length of top of head not quite $2 \frac{1}{4}$ times in the distance (in a straight line) from the tip of the snout to the dorsal; inter-ocular width equal to the length of the snout: pectoral about $1 \frac{1}{3}$ in length of head; candal peduncle about $3 \frac{2}{5} \mathrm{in}$ the greatest depth.

Month rather wide, inferior. Lower lip small, in two distine oroid lobes, covered with low, flat-topped papilla; the front of the dentary bones covered by a well-developed, round-edged, homy plate. Lower lip quite distinct from the upper; the skin of the cheeks forming an obliquely ascending orease, which does not. however, cover the angle of the mouth.

Anterior nostril horizontally subelliptical; postesior large, vertical, crescentic, entirely covered by its anterior tlap.
'Two distinct rows of pores on the top of the head;: comnected on the occiput with a series rumning behind and below the ere almost to the tip of the snout.

Pharyngeals areuate, with mumerons teeth, regularly diminishing posterionly.

Operenlar region well dereloped; the distance from the posterion maryin of the cye to that of the operevelum being, to the length of the shout, about as cherentonine. Posterior margin of operenhm and sub-operculum forming a continuous bold convex curve.

Pectorals triangular-ianceolate, fourth and fifth rays longest; their tips extending to beyond the middle of the pubic bones, rays once or twice bifureate, the first two excepted.

Ventrals reaching beyond the rent, the third rays longest, the last about two-thirls as long; all the rays twice bifurcate except the first.

Dorsal well developed, fourth and fifth rays longest, and contained about $1 \frac{1}{3}$ times in the greatest depth; first three rays simple, the others twice bifurcate.

Anal considerably shorter than the dorsal, but equal in depth to the height of the latter ; the first two rays simple, the others (except the last) twice or thrice bifurcate; first ray about half as long as the second.

Origin of the dorsal about one-sixth nearer to the tip of the snout than to the centre of the base of the caudal (measuring along the axis of the body), the base of its eighth ray above the anterior axil of the ventrals.

The tips of the anal rays reach beyond the first caudal accessories.

Caudal with numerous accessory rays, the longest about half as long as the outer simple principal ray; the other principal rays three times bifurcate; posterior margin of fin triangularly emarginate.

Scales cycloid, of variable size ; each scale with 8-16 conspicuous radiating strix on its exposed portion ; the strix and their interspaces crossed by numerous, much less distinct concentric striæ. Engaged portion of each seale withmumerous diverging stria, less distinct than those of the free portion. Scales along and near the lateral line larger than those above and below, and increasing eronsiderably in size posteriorly, as do also those above and below, ©r that the largest seales of the borly are upon the peduncle of the tail. The seales diminish much more rapidly in size downwards than upwarls, so that those of the abominal region and behind the pectoral base are by far the smallest. Scales somewhat pentagonal, the length exceeding the height; those upon the caudal peduncle almost twice as long as high.

Fins scaleless, as is also a small patch on the anterior part of the dorsal hump.

Lateral line deflected near its origin, then ruming along the median line of the body to the origin of the candal. Pores simple.

Color of the preserved specimen silvery-gray above, light straw-color or creamy on the abdominal region and under side of the head; fins light uniform slaty-gray. The color is produced by numerous dark dots upon the scales and membrane betweer them, but fewer upon the scales, the outlines of which are therefore quite distinct.

The hump is supported anteriorly by a very large trapezoidal inter-neural, formed of a thick central pillar with anterior and posterior alee, the latter twice as large as the former. The upper margin of the bone is highest at the point of the central pillar. from which it slopes anteriorly and posteriorly. The base of the central pillar is broadly expanded transversely, offering a double articulating surface on its under side. The next inter-neural is a thiin flat sub-rectangular plate, while the next three are expanded above, attenuated below; the fifth lent, and smaller than the fourth, the lower portion of which is also bent forward. Interneurals of dorsal fin with a central ray and an anterior amel posterior expansion dying out at their lower fourth; symmetricul. except that supporting the first two rays. This is evidently formed by two inter-neural bones, united by a thin bony plate. which forms a broad expansion in front of the first, and a narrow one behind the second.

Upon the first vertebra there is a broad articulating surface. apparently for the reception of the first inter-ncural, as a thin longitudinal perpendicular partition exactly fits into a notch between the two articulating surfaces of that bone. The transverse processes of this vertebra are broadly expauded inferiorly. and their lower edges suturally united to a pair of very large bony plates of complex form, connecting the air-h)adder with the bavk of the skull.

From the anterior margin of each neurapophysis of the next nine vertebree springs an upward-directed process, which, in the first of these vertebra, is almost as long th the nemal spine, hat which diminishes in size on each successive vertelnal.
The neural spines of the first two of these vertelras are hifid.

The single specimen from which the above description is taken vas homeht from the Cohorado River, at the junction of the Gila, and was sent to the muscum of the California Academy of Sciences by John E. Curry, Escy., Civil Engineer.

It is said that the species is not uncommon in the locality from which this specimen was procured, and it is much to be regretted that we have only this example, especially since it is greatly damaged by the extraction of the large inter-neural some two years ago. 'The air-bladder is destroyed, so that it is impossible to tell whether it agrees with the other species of Catostomus, in having that organ divided into two portions. The extremities of the fins are also much broken, and the shape of the body distorted.
Dinensions.
INOHES.
Total length, $11 \frac{1}{4}$
Length to base of caudal, 813
Greatest depth, about 25
Length of head, $2 \frac{3}{4}$ top of head, $2 \frac{1}{3}$
" snout, from eye, $1_{16}^{1 /}$
Longitudinal diameter of eye, $\frac{5}{16}$
Inter-ocular width, $1_{1 / \frac{1}{16}}$
Depth of head, at front of eye, $1 \frac{3}{3}$
Snout, from front of uostrils, $\frac{27}{3} 2$
'lip of snout to origin of dorsal, in a straight line, $4 \frac{3}{4}$
Length of luase of dorsal, 23
Height of longest dorsal ray, $1 \frac{1}{1} \frac{5}{6}$
'Tip of snout to anterior portion of pectoral base, $21 \frac{3}{6}$
Length of peetoral fin, $2 \frac{1}{3}$
'Tip of snout to anterior portion of rentrals, $5_{\frac{3}{16}}$
Length of ventrals, $1 \frac{5}{8}$
anal base, $\frac{7}{8}$
" longest anal ray, $1 \frac{1}{1} \frac{5}{6}$
'Tip of' snout to origin of anal, $6 \frac{3}{4}$
Width of caudal peduncle, $\frac{25}{3}$
Length of first inter-neural, $\frac{1}{1} 5$
Height of 29

PROCEEDINGS

 or тhe
of Natural Sciences of Piiladelpilia.

$$
187 \gamma-18 \gamma 9
$$

May 28, 1877.

A New Polariscope.-Mr. H. C. Lewrs remarked that a cheap and accorate polariseope for the measurement of the optic-axial divergence in minerals had longe heen a desileratmon amonte mineralogists. He wished to direct attention to an instrument for this purpose, lately made for him by Queen \& Co., of this city, which had proved very satisfactory. The light was polarized by reflection from a plate of hatk ghas- convereed upon the mating -tact
 A graduated circle of steel, having through its axis a sliding forephe, is fastemed at rightanglesto the-tage. I printer memms the amonnt of rotation of the firceps. The mineral tole examinal is either held in the forceps or is attached by a drop of oil to a piece of thin glass which is held in the same way. Cross-hairs are fixed below the eye piece, and the measurement of the divergence of the optic axes is performed in the nsual way. The instrument was found to work admirably and could be recommended. 'The adjustments were made quickly and the axial divergence could be determined to within 30^{\prime}. It is simple, absorbs but little light, and gives good re-ult- cren with rerl -mall framents of minerals.

A Garnet with Inverted Crystallization.-Mr. Lewis exhibited a gamet which he had fommel in fermantown, amd-taten that it showed a very porfect example of inverted erystallization. Its form was a perfect trapezohedron except that one octant was depressed, its apex lying within the erystal, one-half way towards the centre. The re-entrant angles corresponded in position with the trihedral edges on the opposite octant of the crystal. 'The gamet was an isolated one found in a matrix of gneiss. Attention was called to the fact that such inverted crystallization was apparently more common in the isometric than in other systems of ceystallization and comment was made upon the cause of such phenomena.

$$
\text { June 25, } 1877 .
$$

Change of Serpentine into Quartz.-Mr. Mreonora: D. Rand described and presented specimens showing the change of se:
pentine into quartz, very strikingly shown near a quarry of serpentine rock on the farm of dohn stacker, about a third of a mile N. W. of Radnor Station, P. R. R., Delaware Co., Pa.

The outcrop of the serpentine is accompanied by a rock, locally called " lronstone," which however is a cellular quartz, generally stained by oxide of iron. It occurs as loose masses in the soil, Eenerally of small size, but sometimes of orer a hundred pounds weicht ; the cavities are frequently lined with drusy quartz. This rock is of common occurrence in comection with serpentine belts, but that it has arisen from a decomposition of the serpentine, has, he believed, not been observed elsewhere. On the south side of Stacker"s quarry a iew feet below the original surface of the ground, is a bed of soft serpentine much cracked; a foot or two above, these cracks are found lined with chalcedonic quartz, of paper-like thinness ; above, the quartz thickens, the serpentine becomes more and more decomposed, until near the surface the puartz only remains, with the carities empty, or filled with what appears to be oxide of iron with alumina. It is an instance of pseudomorphism on a large scale, the progress of which can be traced, step by step, from almost unaltered serpentine to almost pure quartz.

Well-water.-In this connection the analysis of the water of a well 50 feet deep in the serpentine, about 400 hundred feet from the quarry, but under the same quartz outcrop, may not be uninteresting.

In a gallon of 70,000 grains,-mean of three analyses :-
Grains, per Gall. Parts in $1,000,000$.

A New Locality for Siderite.-Mr. H. C. Lewis announced Dunbar, Fayette Co., Penna., as a new locality for Siderite. It there occurs in finely erystallized specimens in the interior of nodules of amorphous Siderite. These norlules or concretions are of various and often curious shapes. Doubly terminated limpid quartz crystals and minute but very perfect crystals of Pyrite are associated with those of Siderite, forming handsome specimens.

Magnetite Markings in Muscovite.-Mr. Lewis made some remarks on the markings in the Muscovite of Brandywine Hundred, Delaware. He pored that these markings were Mag netite, ly exhibiting their attractability by the magnet, and sain
that in order to exhibit this properly, the section must be exoedingly thin. Hestated that an optical examination had pmoned that the direction of the main line of the mankine cormatomited with or was at right angles to that of the erystallographic axes of the Muscovite. He erhihited a plate of the mina -hown diantimety to be a twin hy the two liflerent grominge of Magntite markings. Examination in the polariscope confirmed this structure. Thus, fremently, the ervatalime strue eure of the mica and the dieention of its a res may le ascertained by an intuection of the- markinga alone. It appeared, therefore, that the form and direction of the making was determined, not by indepemdent ars tallization of the Magnetite formine them, but in part at laa-i by the Mnacovite from which it had probably been derived. These markings are, in
 the statement in Dana's Mineralogy (p.150), referring to these markings, that "the branching at angles of 60° indicates com-bu-ition parallel to a dodecalnefral fare." wa-mi-hanling, implying that this form wa- prohlucell by :an inherent property of the Itagnetite, and not, as he thouglit now appears, by the erystalline structure of the Muscovite.

September 24, 1877.

A New Locality for Asbolite. Mr. Lewrs stated that he had found Asbolite at Flourtown, Montgomery Co., a new locality for this mineral. It is found in iron ore mines as an incrustation upon Psilomelane. It is of a bluish-black color, is as soft as graphite, and gives a shining streak when scratched by the nail. The blowpipe indicates a considerable percentage of cobalt.

A New Locality for Fluorite-Mr. W. W. Jefferis stated that a few days since he was shown a massive specimen of Fhorspar of a deep purple color, which was found in the limestone near the villace of Howellville. in Trentyrin Town-hip, Che-ter County, Pa. This is the third locality of fluor in this county".

Epidote in Molybdenite.-Mr. Lewis mentioned that while examining some Molybdenite from Frankford, Phila, he had found plates of a transparent hard mineral, of a light greenishyellow color, somewhat resembling Wulfenite, occurting in thin layers and minute scales between the foliæ of the Molybdenite, and sometimes coating it as a thin film. It was not until after a careful examination that it was proved to be Epiclote in an musual form and situation.

October 22, 1577.
A New Locality for Millerite'- Mr. 'Treo. D. Ravin amounced the diseovery of Millerite in Dolomite, from the Soapstone cquarry on the Schnylkill. in Philahlelpha, mear the Montromery Chmay line. It oceured in capillary crystals in cavities of the Dolomite.

THE OPTICAL CHARACTERS OF SOME MICAS.

BY IIENRY CARYILL LEWIS.
For the determination of the true characters of the micas-a class of minerals rapidly gaining in importance-a knowledge of their optical chameters is almost as necessary as is that of their chemical composition. The optical is certainly the most ready methon of determination. The investigation here recorded is but a partial one, and it is hoped that in the future it may be extended so as to include most of the American micaceous minerals. The measurements have heen made for the most part upon minerals which have never been optically examined, and are chiefly American. A few foreign species have heen introduced for comparison. The micas examined are largely those in the collection of the Academy. Others were either in the writer's collection or have been kindly given him by friends. The source from which each specimen has been obtained is noted in the tables given below.

The polariscope used was made by Queen \& Co., of this city, and was described before this Section at its meeting last May. It reads to within 30 '. The figures given below represent the mean apparent optic-axial angular divergence for white light. As the angle is somewhat different in different specimens and sometimes even in different portions of the same plate, the figures must be regarded as only approximate. In each case they represent a mean of a number of separate measurements, and collectively are the result of over 1600 such measurements.

Phlogopite.

1. Sussex Co., N. Y. Hexagonal crystals, jellow, transparent. (Acad. Nat. Sci.)
6°
2. Burgess, Ont., Can. Clear brown. (A. N. S.) $6^{\circ} 45^{\prime}$.
3. N. Shore of Rideau Lake, Burgess, Can. Angle varies in same piece. Clear brown. (J.Willcox.) $6^{\circ}-12^{\circ}$
4. Hammond, St. Lawrence Co., N. Y. Clear yellow. Hyperbolas closer in the centre than they are near the edges of the crystals. Crystals are sometimes uniaxial in the centre and biaxial at each end, while the plane of the optic axes at

one end is at right angles to that at the other end, viz. :
One crystal had angle at centre, $7^{\circ} 30^{\prime}$, angle at edge, $11^{\circ} 15^{\prime}$. (A. N. S.)
5. Jefferson Co., N.Y. Brownish-yellow. (A. N.S.) $11^{\circ} 21^{\prime}-12^{\circ} 50^{\prime}$.
6. Vrooman's Lake, Jefferson Co., N. Y. Wine-yellow. (A.N.S.) $122^{\circ} 5^{\prime}$.
7. Oxboro', Jeflerson Co., N. Y. Light yellow. (A. N.S.)
$13^{\circ} 12^{\prime}$.
8. Ottey Lake, Burgess, C. W. Brown heargonal
crystals. (W. W. Jefferis).

A crystal from the same locality (J, Willcox) gave for the outer part of erystal, $13^{\circ} 41^{\prime}$; centre of crystal, $11^{\circ} 23^{\prime}$.
9. Calumet Is., Canada. Greenish-yellow, transparent. (A.N.S.) $13^{\circ} 20^{\prime}-14^{\circ} 18^{\prime}$ 。
10. New Hampshire. Reddish-brown, similar to
Darby Biotite; nearly uniaxial in thin plates. $13^{\circ} 10^{\prime}-17^{\circ}$.
11. Sparta, N. J. Dark brown; by reflected light nearly black.
$14^{\circ} 20^{\prime}$.

> 12. Vrooman's Lake, Jefferson Co., N. Y. Clear pale yellow. Some crystals show identical phenomena with those from Hammond, St. Lawrence Co.

13. St. Denis. "Plumose mica:" brown: thick.
nebulous hyperbolas.

14 : 0^{\prime}.
14. Warwick, N. Y. Dark green; cleaving into
rhombs; often mistaken for Biotite.
15. Pope's Mills, St. Lawrence Co., N. Y. Deep
reddish-brown. (W. W. Jefleris.)
16. Vesuvius. Black by reflected light, dark red-
dish-brown in thin plates. With icespar:
very opaque. (A. N. S.)
17. Clark's Hill, St. Lawrence Co., N. Y. Brown. (W. W. Jefferis.)
$15^{\circ} 10^{\prime}$.
$\begin{array}{lll}\text { 18. Kennett Square, Del. Co., Pa. Brown; in lime- } \\ \text { stone. } & 15^{0} 20^{\prime} \text {. } \\ \text { 19. Edwards, N. Y. Pearly white. (W. W. Jefferis). } & 15=30^{\prime} \text {. }\end{array}$
20. Rossie, St. Lawrence Co., N. Y. Yellowishbrown. (A. N. S.)
$15^{\circ} 52^{\prime}$.
$\because 1$ ．S．Burgess，Can．Large brown crystal，purple on edges．（A．N．S．） $16: 3 s^{\prime}$.
$\because 2$. Clark＇s Hill，near Rossie，N．Y．Brownish－ yellow．（A．N．S．） $16^{\circ} 45^{\prime}$.
23．Clark＇s Mills，N．Y．Light brown，transparent： （probably identical with Nos．17，20，22）． （A．N．S．） 17.
24．Canada．Asteriated Phlogopite． 19
25．S．Burgess．Clear yellow－brown．（A．N．S．） 19
26．Burgess，C．W．Yellowish－brown crystals，with secondary cleavage along diagonal．（W．W． Jefferis）． 20
27．Rossie，N．Y．Black by reflected，reddish－ brown by transmitted light．（A．N．S．） $21^{\circ} 13^{\prime}$ ．
28．Vesuvius．Black，crumbling，very opaque， mixed with black hornblende．（ $1 . \mathrm{N} . \mathrm{S}$. $21-20^{\prime} \pm$.29．Burgess，C．W．Asteriated，not transparent，silvery－brown．（A．N．S．）$21^{\circ}: 35^{\prime}$ 上．
30．Rossie，N．Y．Black by reflected，dark brownby transmitted light．Contains apatite．（A．N．S．）22° ．
31．Chester Co．，Pa．Feebly asteriated；locality wrong？；probably from Rossie，N．Y．（A． N．S．） $23^{\circ} 15^{\prime}$ ．
32．Alamutchie，N．J．Clear reddish－brown．（Frankl． Inst．） $30^{\circ} 5^{\prime}$ ．33．Van Arsdale＇s Quarry，Bucks Co．，Pa．Red－brown；with graphite，etc．34^{2} ．
Biotite．
1．Easton，Pa．White，silver mica． $2^{2} \pm$.
2．Antwerp，N．Y．Greenish－white． 0 ．
3．Culsagee，N．C．White． 0° ．
4．Vesuvius．White． 0° ．
5．Darby，Del．Co．，Pa．Deep red． 0° ．（6．Delaware Co．，Pa．Crystal in muscovite；blackby reflected，brownish－red by transmitted light．$5^{3} \pm$.7．Scotland．Brown．0 。
8．Rossie，N．Y．Brown． 0° 。Probably several of these Biotites have an angle of $1^{\circ}-2^{\circ}$ ．

Lepidomelane.

| Arendal, Norway. Black; uniaxial. | 0°. |
| :--- | :--- | :--- |
| Frankford, Phila. Black; uniaxial. | 0°. |

Muscovite.

1. Brunswick, Me. Bright green scales. (A. N. S.) $56^{\circ} 25^{\prime}$.
2. Pennsbury, Pa. (A. N. S.) $56^{\circ} 50^{\prime}$.
3. Vesuvius. Witli adularia. (A. N. S.) $59^{\circ} 20^{\prime}$.
4. Dutton's Mills, Del. Co., Pa. (J. M. Cardeza.) 60°.
5. St. Lawrence Co., N. Y. Greenish-white, plumose radiated crystals, showing Airy's spirals.
(A. N. S.)
$60^{\circ} 40^{\prime}$.
6. Darby, Phila., Pa. Small scales in gneiss. $61^{\circ} 10^{\prime}$.
7. Siberia. (A. N. S.) 63°.
8. Germantown, Phila. Smoky brown, clearcrystals. $63^{\circ} 4^{\prime}$.
9. Plainfield, Conn. Margarodite. Contains 5 p.c. $63^{\circ} 15^{\prime}$.
of water.
10. Poorhouse, Del. Co., Pa. $63^{\circ} 47^{\prime}$.
11. Germantown, Pa. $64^{\circ} 23^{\prime}$.
12. Germantown, Pa. Containing enclosed crystals
of a black, uniaxial mica. $64^{\circ} 30^{\prime}$.
13. Frankford, Pa. In hormblende rock: in calcite.
with fluorite and epidote. (T. D. Rand). $6 t^{\circ} 50^{\prime}$.
14. Falls of Schuylkill, Phila. In hornblende rock. 65°.
15. Cumberland, Englancl. "Nacrite." (A. N. S.) 65°.
16. Goyaz, Brazil. (A. N. S.) $65^{\circ} 50^{\prime}$.
17. Brandywine Hundred, Del. Containing mag-
netite markings.
$65^{\circ}-67^{\circ} 30^{\prime}$.

After heating until it whitens, it has an angle of 49°.
1ヶ. Litchfield, Me. (A. N. S.) $65^{\circ}-68^{\circ} 34^{\prime}$.
1!. Portland, Conn.
66°.
20. Sonthern Colorado. Jdentical with mica of
Pennsbury, Pa., and Brandywine Hundred.
Del., haring magnetite markings.
21. Grafton, N. H.
$66^{\circ} 12^{\prime}$.
$\because 2$. Chandler's Hollow, Del. (J. M. Cardeza.) $66^{\circ} 40^{\prime}$.
2:.) Black Hills, W yoming. (A. N. S.) $66^{\circ} 48^{\prime}$.
24. Zinnwald, Bohemia. (A.N.S.) $66^{\circ} 51^{\prime}$.
$\because 5$. Buncombe Co., N. C. (A. N. S.) $67^{\circ} 30^{\prime}$.
21. Germantown, Pa. Large silvery plates. $67^{\circ} 30^{\prime}$.
27. Dixon's Quarry, Del. Pale green. $67^{\circ} 45^{\prime}$.
25. Comecticut. Green scales. (A. N. S.) $67^{\circ} 45^{\prime}$.
29. Georgetown, Col. 68°.
30. Upland, Del. Co., Pa. Pale green. (J. M. Cardeza.) $69^{\circ} 19^{\prime}$.
31. Germantown, Pa. Pale green. $69^{\circ} 38^{\prime}$.
:3‥ Chester Co., Pa. (A. N. S.) $69^{\circ} 45^{\prime}$.
33. Westchester Co., N. Y. $70^{\circ} 14^{\prime}$.
34. Fabyans, White Mountains, N. H. $71^{\circ} 30^{\prime}$.
:3,. Glacier of the Aar, Switz. (A. N. S.) $74^{\circ} 10^{\prime}$.
35. 'Trumbull, Conn. Margarodite. 75°.
:3T. Paris, Me. Rose-color. (A. N. S.) $\pi \pi_{i}=15^{\prime}$ 。

Where not otherwise indicated, the abore muscovites are of a clear yellowish-brown tint.

Lepidolite.

1. Altenberg, Saxony. With Pycnite; sometimes
distorted. (A. N. S.)
2. Zinnwald, Bohemia. Often very irregular. On different parts of the same piece the angle varies from $34^{\circ} 30^{\prime}$ to $51^{\circ} 30^{\prime}$. (A. N. S.) $49^{\circ} 30^{\prime}$
3. Paris, Me. Much distorted; several axes. (A. N. S.) $90^{\circ}+$.
4. Middletown, Conn. 66°.
Talc.
5. Lafayette, above Manayunk, Pa. Exfoliating: fan-shaped crystals: images much distorted. $12^{\circ} 40^{\prime}$.
6. Lafayette, Pa. Clear. 15°.
7. Lafayette, Pa. Foliated talc; distorted images. 15°.
8. Harford Co., Md. White. 15°.
9. Shetland Is. Clear pale green, sometimes nearly uniaxial. 17°
Pyrophyllite.
$106^{\circ} 51^{\prime}$.
Westana, Sweden.

Serpentine.

Chrysotile from Chester Co., Pa, shows strong (louble refraction when the fibres make an angle of 45° with the plane of polariza-
tion of the instrument. Bissectrix apparently parallel to the fibres. P'robably orthorhombic. Common serpentine and Williamsite show no double refraction.

Damourite.

1. Culsagee, N. C. In seales : analyzed by Koenig. (F.A. Genth.)
2. Unionville, Pa. "Emerylite:" irregular hyperbolas. (A.N.S.) $69^{\circ} 3$ ® $^{\prime} \pm$.
3. Unionville, P’o. On corundum. $i_{2}{ }^{2}$.
4. Unionville, Pa. "Corundellite." (J. M. Cardeza.)
5. Horsjoberg, Swerlen. (T. D. Rand.) 〒20.25'.
6. Chester Co., Pa. "Margarite:" irregular, showing sometimes four hyperbolas. (A. N.. S.) $72^{2} 30^{\prime}$.
7. Haywood, N. C. "Altered from corundum." (F. A. Genth)
8. Unionville, Pa. Analyzed by Sharpless. (F. A. Genth.)
9. Unionville, Pa. Analyzed by Koenig. (F. A. Genth.)
10. Newtown, Comn. With Cyanite. $7 t^{2} 24^{\prime}$.
11. Newlin, Chester Co. "Margarite." (A. N. S.) $25^{\circ} 50^{\circ}$.

It is evident that the minerals labelled Emerrlite, Corundellite, Margarite, etc., are all Damourite.

Euphyllite.

1. Chester Co., P'a. (A. N. S.)

$$
\begin{array}{r}
37^{\circ}-40^{\circ} . \\
36^{\circ} \cdot 30^{\prime} .
\end{array}
$$

2. Unionville, Pa. "Original." (F. A. Genth.)

A thicker piece in which the hyperbolas were very dim, hat an angle of $45^{\circ} \pm$.

This result is interesting, as the optical angle given loy Silliman is 71°.

> Cookeite.

Paris, Me. In small scales.
420.40°.

Vermiculite．

1．E．Nottingham，Chester Co．，Pa．Hallite．In green erystals：miaxial．
－．Cecil Co．，Md．，Magnesia Quaryy．Mallite．Con－ tains enclosed arrow－shaped erystals like Hal－ lite：miaxial．
\therefore Chester Co．，Pa．，Brown＇s Quarry．Uniaxial． （＇I．D．Rand．）

4．Macon Co．，N．C．Maconite．In brown scales； uniaxial or with a divergence of $1^{\circ} \pm$ ．（ F ． A．Genth．）
\therefore Mineral IIill，Del．Co．，Pa．Pale green．（A．N．S．）
15．Lemni，Del．Co．，Pa．Brown and green；some－ times a very small optic angle occurs．
－．Culsagee，N．C．Culsageeite．Yellowish－brown： variable angle．Sometimes the angle varies as different portions of the same piece are moved into the field．One piece gave 9° ， and another was nearly uniaxial．The angle given is the most constant one．
－．West Chester，Pa．Jefferisite．Variable angle ： a specimen gave at one part $16^{\circ} 30^{\prime}$ ，and at another 25° ，the latter being the most distinct ； a very thin piece gave $11^{\circ} 30^{\prime}$ ，and a thicker piece $27^{\circ} 20^{\prime}$ ．Apparently the optic－angle in－ creases with the thickness of the plate．Some good specimens gave $22^{\circ}, 25^{\circ}$ ，and 28° ；mean angle probably，
9．Lafayette Soapstone Quarry，Montgomery Co．， Pa．Brown scales in chlorite slate ：constant angle $32^{\circ}-36^{\circ} 30^{\prime}$ ；mean，
10．Germantown，Phila．Brown plates in hornblende rock．Optic－angle constant within $31^{\circ} 20^{\prime}-$ $39^{\circ} 30^{\prime}$ ；the most constant angle is
If is rery probsble that，as sugesesed hy Prof．Cooke，the raria－ fion in the optic－angle of the Vermiculites is cansed by twinning

Ripidulite.

1. Patterson's Quarry, Newlin 'Township, Chester Co., Pa. Irregular green plates; with cormdum; inclination of bissectrix to normal to cleavage plane, $5^{\circ} 30^{\prime}$: optic-axial divergence variable on the same plate on accome of twinning, rarying from 50° to 590° ' (T . D. Rand.) Generally as given.
$.79^{\circ} 30^{\prime}$
2. West Chester, '’a. Green plates ; inclination of bissectrix 10° : axial divergence,
$78 \cdot 300^{\prime}$
3. Brinton's Quarry, Chester Co., P'a. Fine clear green plates; inclination of bissectrix, $12 \circ 30^{\prime}$. $\rho>\nu$. Axial divergence,
4. Dudleyville, Ala. l'ale rose-color; on chromite. Inclination of bissectrix, $16^{\circ} \beta^{\circ}>\nu$. (F. A. Genth).

In all of these, double refraction is feeble compared with that of Muscovite. It is observed that the inclination of the hissectrix to the normal to the cleavage plane increases with the divergence of the optic axes.

Prochlorite.

Brewster, N. Y., Tilly Foster Mine. Uniaxial. 12.

Margarite.

1. Cullakanee, Ň. C. White, "altered from corundum." Irregular figures. (F. A. (ienth.) $110^{\circ} \ldots$.
2. Chester, Mass. Rose-color, with corumdum; irregular, in some places showing four hyperbolas; one piece gave $89^{\circ} 30^{\prime}$. $1123^{\circ} 5^{\prime}$.
3. Dudleyville, Ala. White, clear; inclination of bissectrix, $1^{\circ} \pm$ (F. A. (Genth). 1225°.
4. Cullakanee, N.. C. White. "altered from Zoisite."

Inclination of hissectrix to normal to cleavage plane, $2^{\circ} \pm$. (F. A. (renth.) 124°.
The large optic-axial divergence of Margarite readily distingruishes it from Damourite and other micas which resemble it. If further observations agree in showing that the bissectrix is inelined to the nomal to the eleavage plane, it will show that Matgarite is Monoctinic and not Orthorhombic as has heen supposed.

October 22, 1877.

A Neu Loculity for Analcite.-Dr. A. E. Foote called attention to the ficet that Analcite had been found at Falls of Schuylkill, -a new locality for that mineral.

November 26, 1877.

On the Mreasurement of Plane Angles.-Mr. Lewis described a simple and quick way of measuring plane angles in minerals. It was a method which he had found rery useful in the measurement of all edge angles, of cleavage and striation angles, the angles

A paper protractor was constructed, the radii of which, distant each from each 1°. were continued from the circumference to the centre. Horizontal lines, about twenty in number, are drawn across these, parallel to the radius 0° and at right angles to the radius 90°. These lines being parallel, the angles formed by the intersection of any radius with each of them are equal. In order to measure the angle of a crystal, it is laid on the protractor, bure o! it-entere is made pamallel to at horizontal line, and then the erystol i- - lin along that line motil the other edge, forming with the first the angle to be measured, becomes parallel to one of the
 cumference of the protractor. Angles approaching 90° are read on one of the upper horizontal lines, while those of less amplitude are read correspondingly farther down. A magnifying lens is conveniently used to determine the exact coincidence of the edges of the crystal with the lines of the protractor. Very large crys. tals as well as crystals as small as a millimetre in cliameter can be measured in this way.

It was found that this method of measurement was very convenient, and, if the protractor had been carefully made, was exact to within 30^{\prime}; while it applied to those eases in which neither the reflective nor the hand goniometer could be used.

December 17, 1877.

On an Esffoliating Talc.-Mr. Henry Carvill Lewis described a variety of talc, occurring at the soapstone quarry above Mana-
 in Dolomite, and is much more similar to Pyrophyllite than to (rommon tale. It moserne liffers fiom common tale by exfoliating when held in the flame of a candle or Bunsen burner, and war. therfore at first mi-taken for Pyrophyllite. In the closed
tube it exfoliates and gives off water. In optical chavacters it is identical with common talc, having been foum to have an axial divergence of about $12^{\circ} 40^{\prime}$, frecuently distorted. It imarked with striations or cleavage planes crossing at andes of $1 ; 0$ and 120°. In this respect it is like Jeflerisite or Culsareesitr. while in common tale such markings are rarely visible, and never distinct. It has the chemical composition of tale, exeept that the percentage of water is larger than usual, being 7.0 : per centum. None of this water is hygroseopic, as its weight remains constant in a desiccator over sulphuric acid.

The water of two other tales from the same locality was determined. A massive tale which does not exfoliate in the Bunsen burner flame or in the platinum crucible, but cloes so at the point of the blowpipe flame, contains 4.23 per centum of water.

A foliated tale which is caused to exfoliate only very slightly even in the blowpipe flame, contained 2.84 per centum of water. and this was driven off only at an extremely high and long continued heat.

In these three tales, therefore, we have the interesting results :

1. 'That there is a direct ratio between the amount of combined water and the amount of exfoliation.
2. 'That there is a direct ratio hetween the tenacity with which the water is held and the temperature at which exfoliation oceurs.

It is thought that perhaps these results may have a hearing in an explanation of the properties of the varions Vermiculites.

January 28, 1878.

Tin in North Carolina.-Mr. Lewis exhibited a small piece of tin ore said to have been found in Sury Co., 工. C., and which had been handed to him for examination. It was a solt, lioht earthy mass of a brown color, crumbling when pressed, which. when held in a candle flame, became covered with small globules of pure tin. The earthy base was a silicate of alumina, iron. and lime, and was partially soluble in acid. The tin was reduced hy very gentle heat, far less than that required to reduce Cassiterite. It was suggested that the tin existed in it either native or as an ochre or hydrous oxide. No sulphides were present. It was questioned whether the specimen exhibited was a gennine native product.

A New Locality for Gypsum.-Mr: 'Tinen. D. Risin amonnced? his discovery of gypsum, as an efllorescence upon oneiss, at at cuarry near Darby, P'a.

ON SIDEROPHYLLITE－A NEW MINERAL．

いど HFNRY゙ CARVILL LEWIS．

dmong other interesting mincrals which are found in the neigh－ Borhood of Pike＇s P＇eak．Colomato，is a hard hatek mica，oceurring sometimes in large and fine crystals，which the writer has been unable to identify with any known species．

It is monorlinic，and has an eminent micaecons basal cleavage． It has the following characters：

Hardness，3．2．Specific gravity，3：1．Lustre，bright micaceous． Color，black by reflected light，and fine chrome－green by trans－ mitted light．Opaque except in very thin pieces．Streak，pale green．Lamine rery brittle．Biaxial；optic－axial divergence 10° ．．

In its composition it appears to be an iron－alumina mica．The analysis here given is a mean of two made by the writer．In one the mineral was fused with sodic carbonate before solution，and in the other it was lissolved in hydrochloric acid．The analyses were performed in the usual way．Iron was estimated by solution in sulphuric arid in a closed flask，and subsequent titration．The percentace of alkalies was kindly determined ly Mr．F．A．Genth， Jr．The percentage of water is that given off on moderate igni－ tion．On strong ignition the mineral loses over 3 per centum of its weight，some of the alkalies being driven off．

		0 ratio．		
SiO_{2}	36.68	2.44	2.44	2.00
$\mathrm{Al}_{2} \mathrm{O}_{3}$	20.41	1.19 \}	1.95	109
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.55	． 06 \}	1.25	1.02
FeO	25.50	． 717		
MnO	2.10	． 06		
Mg O	1.14	． 06		
CaO	． 81	． 03	1.29	1.00
$\mathrm{Na}_{2} \mathrm{O}$	1.09	． 03	1.22	1.00
$\mathrm{Li}_{2} \mathrm{O}$	． 37	． 02		
$\mathrm{K}_{2} \mathrm{O}$	9.20	． 20		
$\mathrm{H}_{2} \mathrm{O}$	1.01	． 11		
	99.86			

This gives $R:$ II $: S i=1: 1: 2$ ，and for the ratio of bases to Silica $1: 1$ ．It is therefore a Unisilicate in which the water is basic．

It has the formula

$$
\frac{\mathrm{C}}{\mathrm{~S}}\left\|\mathrm{O}_{4}\right\|\left(\frac{1}{2}\left(\mathrm{~K}_{2}, \frac{\mathrm{E}}{=}\right)+\frac{1}{2} \beta \stackrel{i}{\lambda 1}\right)_{2} .
$$

and the symbol

$$
\mathrm{R}_{3}, \frac{\eta}{\Gamma}, \mathrm{Si}_{3}, \mathrm{O}_{12}
$$

Before the blowpipe it fuses with intumescence at about 2.5 to a black glass. It sometimes gives a red lithia color to the dlame. It is soluhle in hyilrochlorie ant -ulphurle arinh. with arpasation of silica. In its pyrognostic propertics it is thus similar to Annite,
 but the absence of magnesia, and its physical and optical properties, distinguish it from that mineral. It occurs in good erystals
 oceur in the vicinity. The material upon which this investigation has been made was obtained from Dr . A. E. Foote, of this city.

The name of Siderophyllite (σ ónpos cúhon) has been given in allusion to the large percentage of iron which it contains.

February 28, 1878.

On Sterlingite and Damourile.-Mr. M. C. Lewis stated that an optical examination of a number of American damourites had shown that they all had a large optic-axial divergence. This angle was generally $72^{\circ}-74^{\circ}$. It is an angle somewhat larger than that of muscovite, and is remarkably constant in different specimens. On the other hand, the original damourite of Delesse has, according to Descloiscaux, an optic-axial divergence of only $10^{\circ}-12^{\circ}$. No such angle has been found in any of the American damourites. As it has been shown that damourite ("hydro-mica") is an important element in our rocks, and is of wide distribution and frequent occurrence, it is essential that its characters should be well known.

The damourite of Sterling, Mass., conforming precisely, both as to (o)mpsition and structure, with the type of American famourite, ant which Prot. ('ooke has shown to have an optic-axial divergenee of $70^{\circ} \pm$, has been named by him, Sterlingite. This distinctive name was given solely on account of its larger optic angle. But it appears that this large angle is characteristic of all American damourites, and probably of many European ones. ${ }^{1}$ It therefore follows either that allofour damourites should be called Sterlingite. or that the name should be dropped; there would otherwise be confusion. Notwithstanding the exeeptional optical character of the mineral examined hy Descloiseanx, it is thought that identity of chemical composition and of physical properties is sufficient reason for retaining the original name of Damourite.

Marel 25, 1878.

Tanadium in Philadelphia Rocks.-Mr. Lewis said that he had discovered the presence of Vanadium in hornblendic gneiss near Wayne Station, Germantown. The presence of sphene in that rock suggested the search for vanadium, recent researches having shown that this element frequently accompanies titanium. The following method was employed for its detection. The pulverized rock was slowly heated in a crucible with sodic carbonate and sulphur. After partial fusion the mass was digested in warm water and the filt rate acidiferd. The precipitate was washed, isuited. and fused with sodic carbonate and sodic nitrate. It was now digested in water, filtered, the filtrate concentrated, and solid ammonic chloride added. A precipitate fell, which was found by blowpipe and other tests to contain pure vanadium. An exfoliating hydrous mica occurred at this locality, resulting
${ }^{1}$ V. "The optical characters of some Micas:" by H. C. Lewis, Proc. Min. and Geol. Section, October 22, 1877.
perhaps from the alteration of homblende, and which was helieved to be a new species, in which there was . 38 per centum of oxide of vanadium.

A New Locatity for Epsomite.-Mr. Lewrs reported latring foum Epsomite in Sideling IFill T'umel, E. Broad 'lop İ. Ii., Huntington Co.. Pa. It there oceurs in small, colorless, acicular crystals in an olive-colored shale in the lower part of the Vespertine formation (No, 今).

November 25, 1878.

THE SURFACE GEOLOGY OF PHILADELPHIA AND VICINITY.

BY HENRY CARVHIL LEWIS.

At intervals during the past year the writer lias been devoting some attention to the gravels and clays of our city, and although the work as yet is only preliminary, and is still in progress, it is thought that a sketch of what has been done may serve to show what an interesting field is open for more thorough investigation. A large number of localities have been examined and many sections have been made, but it is proposed at present merely to summarize the facts olserved.

The Upland Terrace.-1. A traveller going from the city upon the Germantown Railroad will notice in the cuttings for new streets between 'Tenth and Broad Streets, and in the railroad cut at New York Junction, numerous exposures of red or yellow gravel, often orerlaid by clay. The brickyards in the vicinity of Nicetown expose large beds of brick-clay containing occasional well-rounded boulders and pebbles. The land so far has been comparatively level, and no rocks have been seen. Just before reaching Wayne Station, rocks rise upon both sides of the road, the clay and gravel disappear, and a rolling wooded country is entered. A thin covering of light micaceous soil containing no pebhles or boulders corers the gneissic rocks from here to Chestnut Hill. There is a great contrast between the two regions.
2. On the Pennsylyania Railroad it will be noticed that, soon after leaving the depot, gravel corers the rocks along the Sohuylkill, and as the railroad turns back from the river, a platear of clay follows. The Centennial grounds lie upon this clay, and boulders are freguent. Tyon reaching Fifty-seventh Street, opposite Belmont and George?s Hill, the hill is entered by a cut, the rocks come to the surface, and the drift is no more seen.
3. Again, on the North Pennsylvania Railroad gravels first appear, then, on higher groumd, clay, and soon after passing (ireen Lane Station, the rocky uplands, free from drift.
4. So, too, on the West Chester Railroad, gravels and clays corer the eroum up to the base of the hill on which Swarthmore College stands.
5. On the other hand, the New York division of the Pennsylvania Railrod and the Philadelphia. Wilmington and Baltimore

Railroad, which run parallel with the Delaware River, do not rise out of the region of drift.

Now, connecting by a line the four points mentioned, it will be found to represent a long straight hill 200 feet or more in height, having a northeast and sonthwest trend, parallel to the river, and lying at a mean distance from it of about four miles. We have traced it from Bucks County, through Philadelphia and Delaware Counties, into the State of Delaware, and find that it uniformly defines the western boundary of the drift. 'This hill is easily recognized where uncrossed by creeks, being remarkably straight and of miform height. It forms the limit of tidewater, and is recognized where it crosses streams by the occurrence of rapids or falls. Being the first hill of importance west of the Delaware, it often commands a fine view and is a favorite site for residences. The geographical position of this ancient terrace may be more exactly defined in the vicinity of Philadelphia, as the hill which crosses Second Street Pike near Foxchase, and crossing Tacony Creek farther south, runs nearly parallel with it as far as Crescentville; which crosses Green Lane and Ňew Second Street road near the place of Mr. J. L. Fisher ; crosses the North Pennsylvania Railroad above Olney road, and the lork road below the Jewish Hospital; which crosses Germantown Avenue at the railroad bridge (being here called Negley's Hill), and rumning along the railroad to beyond Wayne Station, passes
 to F'alls of 'chuylkill. Thance, pasing ('h: George's Hill, it crosses the Pennsylvania Railroad near Hestonville, and Haverford Road at Haddington; passes back of the Burd Orphan Asylum into Delaware County, and rums north of Kelleyville, Clifton and Morton to Swarthmore College, and thence past Village Green into Delaware.

This hill, which is approximately parallel not only to the river, but also to the shore of the Atlantic Ocean and to the line of strike of the Cretaceons formations of New Jersey, forms, as we have seen, the main dividing line between the ancient and the morlern formations.

We shall call it for convenience the Upland 'Terrace. The strike of the gneiss forming it corresponds elosely with the trend of the terrace itself. A boulder-hearing clay rests upon its sontheastern slope at a uniform elevation of $150-170$ feet above mean oceanlevel. While it is true that, as will appear hereafter, there are
patches of an ancient gravel on high points back of it, the Upland 'Terace nevertheless remains as the most important geological feature in southeastern Pemnsylvania.

Between the Upland Terrace and the Delaware, clays and gravels cover the rocks in a continuons sheet except where eroded away in the neighborhood of streams. The amount of their erosion is in some respects a measure of the age of the surface formations. It has been noticed that these formations in the vieinity of Philadelphia have undergone very different amounts of erosion, the amount of such erosion increasing as we recede from the Delaware; and this fact is regarded as oflering evidence that the deposits are of different ages; those lying farthest from the river and highest in elevation being the most ancient, and those which are close to the river, which have undergone but little erosion, being the most modern of our surface formations. Examples of crosion of the Philadelphia gravel may be well seen on the Philadelphia and West Chester Railroad which crosses a number of creeks and runs nearly parallel to the terrace for several miles. As each creek is approached the drift ${ }^{1}$ disappears and rocks come to the surface. So on the Schuylkill, no gravel is seen on the river drive in the East Park, but upon going back from the river and rising 100 feet above it, as far as the East Park Reservoir, gravel appears abundantly. Yet on the same river, nearer the Delaware, a newer gravel, made of different materials, not only forms its banks but underlies it.

Recent Alluvium.-The most recent of all the surface deposits is the stiff bluish clay which covers the low ground in the southern part of the city. The Richmond meadows and the flats of Moyamensing, Greenwich and Tinicum are covered by this deposit. It is bounded by a low terrace which may be called "The F'loodplain Terrace." This terace, up to which the river often comes in times of flood, crosses Gouth Broad Street diagonally below Moyamensing Avenue, and crossing the Delaware extension of the Pennsylrania Railroad near Penrose Ferry Road, winds around Point Breeze Park back towards the Gas Works, and passing below Suffolk Park crosses into Delaware County. This terrace is about ten feet above mean tide. It is the lowest and newest of all the terraces and is formed of the next older formation, the "River gravel." The mud or clay lying between this terrace and

[^55]the river is too stiff to be useful for brickmaking. Blackened fragments of twigs, roots and leaves are frequent in it, and it is said that tronks of the white cedar abound in it in some places. There is here an indication that these beds are sinking and that, as on the Atlantic coast, the water is encroaching. Frequently a good peat covers the clay.

The River Gravel.-Forming the Floodplain Terrace and lying back of it, is a light sand and gravel free from clay, which may be designated the "River Gravel," since it formed the ancient river bed. It is composed of a light micaceous sand made from the wear of gneissic rocks, overlying a clean, loose gravel, whose peb)bles are composed of the recks which form the river bottom farther north. The pebbles are generally flattened and are composed of gneiss, Triassic red shale, Triassic argillite, etc. It is of a gray color, white quartz pebbles being comparatively scarce. It underlies the river to a great depth and forms islands in it. Frequently large boulders lie upon the river gravel. Bridesburg and the Lazaretto are built upon it. The sand is used for building purposes. It is bounded by the "River Gravel I'errace," a terrace rising some trenty feet above mean tide, and which is capped by the red gravel and brick-clay about to be described, while rocks are frequently exposed at its base. The Chester Branch of the Reading Railroad lies below this terrace, and the present line of the Philadelphia, Wilmington and Baltimore Railroad is above it.

The Red Gravel and Brick-Clays.-The built-up portion of the city stands upon an extensive deposit of brick-clay and gravel, sections of which are exposed in every cutting. The brick-clay invariably overlies the gravel, and will therefore be first deseribed. By fir the finest exposures of brick-clay are those on either side of Long Lane, in the "Neck." The clay here is very compact, free from sand and gravel, and is often 15 feet or more in depth. Loam lies above it, and is mixed with it for brick-making. Wellrounded boulders of Potsdam, Medina, 'Irias, ete., are frequent. The whole lies upon some 20 feet of stratified gravel. It is a much finer and deeper clay than that of the northern part of the city, as at Nicetown. It is interesting to note that while the clay which is farthest from the Upland Terrace and lowest in clevation is purest and deepest, on the other hand that near the termace and more than 100 feet above the river is both shallow and sandy. It suggests that the former was deposited in deep water and the latter near the shore. At the base of the terrace the clay is but
two or three feet deep. The boulders of the Nicetorn clay are similar to those of the Neck clay, except in the fact that in the latter there are numerous rombled and shaxp fragments of triassic red shale, while in the former boulders of that material are very scarce. The boulders of both clays are invariably derived from a northern source. No shells or organic remains have as yet been noticed in this formation.

Beneath the clay, and often unconformable with it, is the Philadelphia red gravel. It is a clayey gravel which packs well and is much used on roads, and whose red color is cansed by the fermginous clay in which the pebbles are imbedded. The pebbles are composed of all kinds of rock and are not flattened as are those in the river gravel. The predominant material is white quartz, but pebbles of all other materials, as conglomerate, sandstone, fossiliferous hornstone, flint, red shale, etc., are numerous. Stratification is observed in almost every section exposed. Good sections of gravel are seen near the University of Pennsylvania. It has here an clevation of ahout 50 feet, and comes to the surface of the ground with but a very slight covering of clay. The gravel is here over 15 feet deep, and as it is in some respects a typical exposure, a section is herewith presented.
Ft. BRICK-CLAY.

It will be noticed, in the first place, that the clay lies in the form of erests and hollows upon the gravel. This is almost invariably the ease. Beautiful examples of ware motion may be seen at 'Twenty-eighth Street and Columbia Arenue, at 'Tenth and
 In each of these we have apparently the action of a rushing flood of water upon the gravel. Often the clay lies in a kind of pot-hole in the gravel, and a concentric structure of clay and pebbles can be seen. The following section, at I'wenty-eighth Street and Columbia Avenue, shows six well-marked waves of gravel and clay, the clay always filling the hollows between the crests of gravel.

Fig. 2.

The approximate dimensions of the waves are given in the diagram. Along the line of contact between clay and gravel there are alternate streaks of fine and coarse gravel.

A very beantiful example of water action is exposed at Fifteenth and Clearfield Streets, in a cut about 100 feet in length (Fig. 3).

The second point to be noticed in the section near the University is the stratification of the gravel, and its division into layers of three different colors,-red, black and yellow. It is instructive to note that this division is by no means a local one, but exists
 in widely separated parts of the city. While the colors are of course due simply to different states of oxidation of the iron, the fact that they mark continuous deposits through long distances, indicates a uniformity in the condition of deposition which could be clue only to the presence of a large body of water.

In the third place, the section (Fig. 1) shows the important fact that the gravel rests, not upon a hard floor of rock, as is usual with the drift in more northern States, but upon a completely decomposed gneiss. This is universally the ease in every section examined in the vicinity of Philadelphia. In no case does the gravel rest upon
maltered rock, except possibly in the vicinity of streams where the water has croded amay the soft rock. In such positions, however, the gravel also is usually eroded, except in the case of the "River gravel "proper. It will be observed that a sharp stratified micaceous sand, made up of the materials of the decomposed gneiss, and often showing "flow and plunge" structure, lies below the gravel. In the section giren, a well-rounded boulder of a lower Silurian sandstone is seen partially imberded in the decomposed gneiss. This fact offers two interesting deductions:-
(1.) 'That the gneiss was decomposed before the deposition of the gravel.
(2.) That water, not ice, was the agent of such deposition.
(1.) As additional evidence in support of the first dectuction, it has been observed in several sections that portions of the decomposed gneiss have been taken up and interstratified in horizontal layers, either with the gneissic sand, or with the gravel itself. That the steeply-dipping decomposed gneiss should be thus re-stratified, as though by a flood, and that, on the other hand, no such phenomena are ever observed in undoubted glaciated regions, can only be explained upon the assumption that the gneiss was decomposed before the Glacial epoch. That such decomposition took place in a yet earlier geological age, will be indicated below under a description of the "Bryn Mawr gravel."
(2.) Absence of a glacier in this region is indicated by the wave-like junction of gravel and clay, by the stratification of the gravel, and by the presence of decomposed gneiss. No polished surfaces of rock have

Fri. 3.

ever been observed in this region, although the occasional slickensides upon the gneiss in some quarries has been mistaken for glacial strie. Frequently the lower yellow gravel is replaced by a yellow sand more or less fine, which is used for building purposes; and in this there are oftengoodexamples twi hofohligne lamination and of "flow and plunge;"-structures attributable to flowing water. Examples may be seen on the North Penna. R. IR and in the East Park. The boulders of both clay and gravel, if not brought down by water alone, have been dropped by tloating ice. The absence of life in either deposit indicates that the water was too cold to support it.

The conclusion is therefore forced upon us that, during the melting of the great Northern Glacier, whose southern terminus. crossed the river probably near Belvidere, the flooded Delaware, then a great torrent five or ten miles wide and at least 150 feet deeper than it is now, deposited at first gravels and afterwards, when quieter, clays; while fluating iee carried downaliealy rommend boulders and dropped them upon its bed.

The uniform elevation of the edge of the clay at the base of the Upland Terrace can hardly be accounted for upon another hypothesis.

The presence of an actual glacier over this region has, however, been brought forward as the only explanation of our surface deposits. 'Thus, in a recent paper, ${ }^{1}$ the author, after inspection of a gravel opening in West Philadelphia, concludes "that this belt of drift deposit is no other than a glacial moraine formed by the Schnytkill glacier receding from the site of the city:" He adds, "the surface of the gneiss where laid bare is comparatively smooth, and shows evidence of having been polished, though so soft as not to retain the marks of glaciation." To us the very locality described (Forty-fifth and Spruce) offers strong evidence of the absence of all glacial action. The gravel, contaning no seratched pebbles, is horizontally stratified and shows flow ancl Hunge structure; while the underlying decomposed gneiss, so tar from being polished, is seen in several places to have been taken up by the swiftly flowing water and mingled with the gravel which it bore along, so that several layers of decomposed gneiss, each about half an inch in thickness, and soon dying out, alternate with the lower portion of the gravel.

[^56]It has been smpposed that the bending over of the outcrops of
 been caused by the pressure of a glacier. A very beautiful example of such broken ant bent-over strata is seen in a quarry at Edge Hill. That such phenomena are to be explained, not by glacial agencies, but by the force of gravity only,-being the gradual sliding-down-hill of the soil known as "creep,"-is shown by the facts, (1) that such bending over is always towards a lower eleva-tion,--down hill; (2) that on the two slopes of the same hill the strata lave been seen to be bent over in opposite directions. Thus at various points along the long ridge of altered Primal state- known an Ellge Hill, the slate on one slope are bent towarts the south, and on the other towards the north. A similar fact has been noticed in the gneiss forming the Upland Terrace. Monemer, such hemeling of the st mata often occurs in regions quite free from drift.

If, as we have conjectured, the Delaware Valley was filled with a large body of water when the drift was deposited, it is reasonable to suppose that the Schuylkill also was of far greater size, and that some boulders would be brought down the valley of that stream. Here again facts sustain the hypothesis. In the gravel taken from the excavation for the East I'ark Feservoir, associated with Triasice red shale and other houlders, we have found partially worn fragments of chlorite slate containing octagonal erystals of magnetite. evidently derived from the steatite quarry at Lafayette, six mileo above on the Schuylkill. At 'Twenty-eighth Street and Columbia Avenue is a large boulder of trap. irlentical with that of the trapherlye which crosses the Schnylkill River at Conshohocken.

It thus appears that during the (ilacial epoch the waters of the Schuykill emptied into those of the Delaware at Falls of Schuylkill, the city proper being entirely submerged.

Before closing our account of the Philarlelphia red gravel-the " V"nivmity gramel," as it might he called for distinction-it will be necessary to say a word as to what occurs on the New Jersey side of the river. If we are correct in ascribing this gravel and brick-tlay to a flooded river valley, smilar deposits at the same elevation must be foum on both sides of the river. Althongh we have been able to do but very little work upon this point in that State, it has been observed: (1) That there is a sand at Camden near the river, similar to the sand of the "River gravel" of lower

Philadelphia; (2) that at a higher elevation there are deposits of superficial yellow brick-clay quite distinct from the underlying plastic clays; (3) that boulders identical with those on this side of the river oceur in the brick-elay; (4) that a stratified red gravel containing Triassic shale, and similar to the University gravel occurs ; and, (5) that there are indications of the existence of a Terrace, several miles from the river, bounding the brick-clay and its boulders, and composed of an older, and probably oceanic, gravel and sand.

The lossiliferous Gravel.-There seems to be evidence that between the Upland Terrace and the River Gravel Terrace there is an intermediate terrace, back of which is a gravel somewhat
 comparative absence of Triassic reel shale, and by the presence of numerous pebbles of flint, hornstone, or limestone, which are frequently fossiliferous. These pebbles, as well as those of white quartz, are not fresl-looking, but are eaten and weather-wom by age. In both its position and its appearance it is an older formation than the red gravel. It is of a yellowish color, becoming white when exposed to the weather, and is more sandy than the red gravel. For these reasons it is less esteemed for road-making. The Germantown Railroad euts through this gravel at New lork Junction. We have found here pebbles containing Cyathophylloid corals, Favosites, a Trilobite, etc. The Comnecting Railroad at Ridge Avenue Station cuts through the same gravel, and here we have found Strophomena, etc. Other fossils have been found below the clay in the East Park and at the Centemial Grounds.

This gravel is found on the high level plateau which lies at the base of the Upland Terrace, and is covered by more recent brickclay. It lies farther from the river and at a higher elevation than the red gravel, and there is a decided rise in the ground from the latter to the former. This terrace has been observed in many places near and in the city, but has not as yet been traced contimumely and ite existence is donhtiul. Xearly all the hriek-a and in the city, except those in the "Neck," lie upon this gravel and back of this terrace, which lies at a mean dist:mee of about a mile inside of the Upland Terrace. It seems as though the flood, diminishing in breadth, had eroded away the clay within this "Red Gravel Terrace." The red gravel comes to the surtace, with very little overlying clay, at elevations below about 100 feet; while at a higher elevation is the brick-yard phatean.

The I'emsylvania Hospital for the Insane stands upon the hill forming this immer eravel Terrace. Its course is somewhat paralled to the main Upland Terrace, and it crosses Walnut Street near Fittieth Street, and broad street near the Reading Coal Road erossing. In Prof. Rogers (beological Map of Pemssybania, where a romgh attempt is made to represent the bomblary of the drift, the line in one place corresponds quite closely with what we have pre--umed to he the " Red Gravel Tervace; " but it appears that in most places in that map the boundary is meant to be merely a hypothetical one. While the existence of this inner terrace is yet doubtfinl and while it is probable that red gravel will be foum above it amb fissiliferous gravel helow it, ret nothing has yet appeared to controvert the assumption that the latter gravel is older than the former. How much older, and whether of oceanic or of freshwater origin, is not yet determined. Here, again, a study of the New Jersey gravels will be of assistance.

The Branchtown Clay.-Having now described the surface deposits lying between the Delaware River and the Upland Terface, it remains to point out the existence of some isolated patches of gravel and clay which have been noticed on some of the hills back of and above this terrace.

In the village of Branchtown, on a platean 250 feet above the river, there is a local deposit of invick-clay lying in an oblong belt rumning N. E. and S. W., perhaps a mile in length and an cighth of a mile in breadth. That it is not a clay formed in place by decomposition of the gneiss is shown by the presence in it of pebbles and rounded boulders of foreign rocks. The smaller pebhles consist of quartz, and the larger of a friable quartz sandstome. probably Potsham. Not a single fragment of 'Triassie red shale, and not a single pebble of flint or fossiliferous rock was found: and in this it is distinguished from any deposit heretofore described. Nor were any of the pebbles formed of the materials of the bed of the Delaware River. Numerous sharp fragments, often six inches square, of white or yellow siliceous sandstone and of bown ja-pery quarizite, hoth probably of lower Siluzian age, were fimmat. The peculiar conglomerate described below as "Mt. Itolly Conglomerate" does not oceur. Decomposed gneiss lies below the clay, which is two to three feet deep. The presence of sharp and rounded boulders of a rock in place farther north suggests an werland floorl dwing glacial times; but the complete absence of
all traces of Triassic red shale a formation of latere extent -ix milu. moth of here, over which such a floed munt have pasced. i- dithecult to explain upon that hypothesis. This belt of clay, which may be called for convenience the "Branchtown clay," extends S . W. to Chelton Avemue and Chew Street, in Germantown, and to the N. E. to Limekiln Pike and City Line Road, and is the site of several brickyards. The clay plateau is bounded on the N. W. by a hill 325 feet high. Doubtless this clay will be found in other places, when more light will be thrown upon its origin and age.

The Bryn Mawr Gravel.-Upon the summits of some of the highest hills in the eneissie region hack of Philatelphia, at a mean distance of about nine miles from the river, and at elevations of tron 325 to 450 feet above it, there are isolated patches of an ancient gravel, different from any yet described, to whirh we have given the provisional name of "The Bryn Mawr Gravel." It can alway's be recognized hy the presence of sharp or partially romblen fracments of a hard, heavy iron sandstone or conglomerate. Such fragments are often covered hy a brownish-hata iron glaze. Nome than ten years ago, the writer notied in the - ofil of the upper part of Germantown, pieeres of this conglomerate, matike any kinown rovk. and it is only of late that its origin has been suspected. It consists of well-rounded pebbles of quartzite or siliceous sambtome cemented by iron into a stone which is often very hard. This conglomerate is foumd in oecasomal fragmont- "pon eromm wer soo feet high, but is not foumb in abmatance mutil an elevation of over 400 feet is reached. At these highest points it oceurs in a red erravel whose pehbles are identieal with those of the comghomerate.

One of such points is near Chestnut Hill, on the City Line Road at its highest elevation, near Willow Grove Road. Here, nearly nine miles from the river and 425 feet above it, is a patch of this gravel and conglomerate. The larger pehbles amblymbers. like those of the Branchtown Clay, consist of a friable quartzite sandstone or a jaspery quartzite. Sharp fragments of quartzite are numerous; but there are no traces either of 'Triassic red shale. of fossiliferous pebbles, or of rounded pebbles of the underlying gneiss. It rests upon a much decomposed gneiss. The conglomerate sometimes contains eavities filled with white sand. The tract of gravel is of an oval form, whose mojor axis points N. E. and S. W. It crosses the Township Line Lioad near the Bethesda

Home, he:ar which phace hate heon fomma sharp boulder of conglomwate then five in diameter, seremb framents of ferruginous samdstone equally large, a partially rounded boulder of white quartz nearly four feet long, and numerous fragments of quartzite and Primal rocks. The gravel is here in part replaced by clay.

A similar tract of this gravel occurs at Bryn Mawr, extenting from that place to near Cooperstown. A good section is exposed in the railroad cut below the station. From this locality, so easy of access from the city, we have named the formation. It is here about 430 feet high, and nine miles from the river. The gravel is ten feet deep, and lies upon a steeply-dipping gneiss so completely decomposed that it is as soft as clay. Underneath the bridge, a soft white kaolin-like material, conformable with the gneiss, shows a decomposed steatite,-being probably the continnation of that which crosers the schuylill at Lafayette. Here. as at Chestunt Hill, the eravel lies in an isolated patch upon a hill. distant from any stream or other eroding agency. The gravel holds sharp fragments of primal rocks and also the iron conglomerate. As at Germantown, the fields below, to the south, contain occasional fragments of the conglomerate.

Another good exposure of the Bryn Mawr gravel is on a hill cososed hy the rod learling from Haverford College to Cooperstown. The conglomerate is here in large, sharp fragments, and the erravel shows slight horizontal stratification. On the erest of the hill, some 450 feet high, there is a weather-worn boulder, four feet in diameter, of a soft, coarse, brown sandstone of Bryn Mawr age, apparently in place.

A fonrth, precisely similar exposure of gravel with conglomerstr, and at about the same elevation, caps the hill back of Merlia, near the Rosetree.

Without describing any further exposures, it already appears that in these elevated patches of ancient gravel we have the last remnants of a once continuous formation. The very great erosion which has swept away all but these few traces is a sufficient proof of its age. There are no points at all approaching the elevation of these hills, between them and the Atlantic Ocean; and it is at once suggested that these patches are the remnants of an oceanic deposit, possibly of Tertiary age. It is interesting to find that a precerely similar formation caps some of the hills in New Jersey. On top of the hill at Mount Holly, N. J., is an identical con-
glomerate and gravel, similar in appearance, and composet of the same materials as the formation in P'ennsylvania. The conglomerate has the peculiar ferruginous glaze already noticerl. It here overlies Cretaceous marls and sands.

From its abundance at this place, and in order to show its conneetion with P'enn-rlvaniadeporit-, we - hall call the comelomeman. of the Bryn Mawr gravel, "Mt. Holly Conglomerate." I'rof. H. D. Rogers ${ }^{1}$ suggests that this rock at Mt. Holly may be of Miocene age; but Prof. Cook, not distinguishing it from the modern iron crusts in the red Philadelphia gravel near the river, considers it very recent. In the consideration of its age it is worth noting that the sand of southern New Jersey, apparently of late Pliocene age, frequently contains rounded pebbles of Mt. Holly conglomerate, thus showing that the latter is an older formation.

From the identity of their contained boulders, it is probable that the Branchtown elay and the Bryn Mawr gravel are nearly coeval. Being oceanie, it is preamed that they will hem remenized all along the gneissic hills of the southern Atlantic States.

We have given this detailed description of each of the surface formations near Philadelphia in the hope that they may be recognized elsewhere by other geologists. It has been found that a careful examination of the materiah compri-ing eanh gravel. tohen in comection with their eleration above tide, is the only means of discriminating hetween them. Howhltery ohecrvations in thetaded localities are of little value. Should this work he extended in Pemnsylvania and New Jersey, and the distinctions between the four gravels described be carried out, it is thought that, notwithstanding the shifting character of the underlying strata in the latter State, much may be done not only towards an exact determination of their age, but towards a settlement of some of the vexed problems of surface geology in Eastern America.

Recapitulation.-The results obtained may be brietly summarized as follows:-

Forming the N W. boundary of the Philatelphia gravel and brick-elay is a hill of gneiss, rising 200 feet or more above the river, which may be called the Upland Terrace. It has a N. E. and S . W^{γ}. trend, and in this vicinity is at an average distance of ${ }^{\circ}$ five miles from the river.

[^57]Within the Cpland Torrace, resting upon its slope, and extending to the river, is a series of stratified gravels and a boulderbearing brick-clay. Of these, the oldest is the "Fossiliferous gravel: " a gravel bing near the terrace and under the brick-clay. and containing pebbles which frequently are fossiliferous. Of more recent age, and at a lower level, is the "Philalelphia red gravel," which is made up of the pebbles of the Fossiliferous gravel mixed with fragments of Triassic red shale and other rocks brought down the Delaware Valley. It is distinctly stratified, rests upon deeomposed gneiss, and contains rounded boulders dropped by floating ice. Upon both of these gravels rests the Philachelhia hrick-clay, often lying uneonformably upon them in at series of potholes or wave-like forms, and apparently an aqueous deposit.

A yet more recent formation, the "River gravel and sand," lies within the others and close to the river, and is made up of flattened pehbles composed of the rocks over which the river flows. Epon this, in the river flats, lies a modern mud, the "Recent Alluvium."

Back of the Upland Terrace, isolated patches of two surface deposits, more ancient than any yet described, lie upon the hills. These are, the "Branchtown clay," at a height of 250 feet, containing boulders of Potsdam rocks, but no traces of Triassic red shate or of fossiliferons pebbles; and the "Bryn Mawr gravel," which capsi hills of a higher elevation, and which, containing houkters and pebbles of identical material with those of the last. is characterized by the presence of a hard iron conglomerate or sandstone. This conglomerate, occurring also in New Jersey, and named the "Mt. Holly Conglomerate," is conjectured to be of Tertiary age.

In these seven formations is written the geologic history of the Delaware Valley.

Much remains to be done before any certain results can be expected. It is hoped that the imperfect examination here recorded may form the basis for a future and more thorough sturly, which, extending to wider fields, shall make more exact the hnowledge of our surface geology.

October 28, 1878.
On a Bell of Steatite and Serpentine in Radnor, Del. Co.-Mr. Theu. D. Rand read a paper on a belt of Steatite and Serpentine, in Radnor 'Township, Delaware Co., Pa.
(Published in Proc. Acad. Nat. Sci.)
November 25, 1878.
Chromite near Radnor, Pa.-Mr. Theo, D. Ravd amounced the occurrence of Chromite in considerable quantity in the

February 24, 1879.
ON RANDITE.

BY THEODORE D. RAND.

At the December meeting of the Mineralogical Section, Mr. Gohlsmith made a commmie:tion in regard to the mamimm-y ellow coating found at the south end of the largest quarry at Frankford, northeast of Adams Street, stating that he found in it, carbonic acid, silicic acid, phosphoric acid, uranium, alumina and lime; and that his conclusion was, that it was a mixture of autumnite and calcite. The writer stated at the same meeting that he had made an incomplete examination of the same mineral, which, in great part, confirmed Dr. (Goklsmith's observations, lat that he failed to find whesphoric acid, and promised the Section the result of experiments then under way.

At the meeting of the Academy held December 31st, 1878, Dr. Koenig communicated the results of a full quantitative analysis, giving the composition, a hydrous carbonate of uranium and lime, to which he gave the name Randite.

The writer's results differ somewhat from those of Mr. Goldsmith and Dr. Koenig. Owing to the very small amount of the coating, and its close adhesion to the rock, proper separation was impossible, and the first experiments were made by treating the rock and coating, first with acetic acid, to remove calcite, then with dilute hydrochloric acid. The coating was unaffected by the acetic acid, as proven by one specimen, in which, after solution of a large amount of calcite, the Randite was left in tufts of acicular crystals. The acetic solution contaned chiefly lime, with a little alumina, but no uranium.

The hydrochloric solution yielded a small amount of silica, almonina, sulphuric acid, and phosphoric acid, with a large amomet of lime and uranium.

In the treatment with acetic acid, bubbles appeared to rise from the coating-a multitude of tiny bubbles ; on the succeeding treatment with hydrochloric: acid, the hubhes were much larger, and fewer in number, and appeared to rise from a carbonate in the crevices of the rock.

The proportion between the lime and uranium may be given as follows:

Koenig. Rand, 1. Rand, 2.

Lime,	56	38	26
Uranium,	44	$1 ; 2$	74

10.708 gm. of coated rock, after treatment with acetic accid. yielded to 8 p. c. hydrochloric acid, cold, in abont five minutes (the coating having disappeared), .122. On evaporating the solution to dryness there was a residue less than 001 gm . The solution was precipitated by ammonia, in the presence of chloride of ammonium ; the solution with oxalate of ammonia gave carbonate of lime, .0365 . The precipitate treated with acetic acid dissolved wholly, except 001 of a white precipitate, which contained phosphoric acid, and was probably phosphate of alumina. The solution precipitated by phosphate of soda gave phos. uran., $.0711=\mathrm{U}_{2} \mathrm{O}_{3} .0569$.

Uranic oxide,	.0569	46.71
Lime,	.0204	16.61
Phos. al?	.001	.89
Undetermined,		$\overline{35.69}$
		$\overline{100 .}$

About 100 grams of the rock, free from the coating, were treated with acetic acid in excess. A large amount of lime was dissolved, and a trace of alumina. The residue, treated with hydrochloric acid, yielded a little silica, some alumina, and considerable lime.

I infer from these tests that the mineral has not the composition
 if pure material can be obtained.

March 24, 1879.

Some Microscopic Enclosures in Mica.-Mr. Theo. D. Rand deacribed, and exhibited under the microseope, certain erystals, veto.. incluted in mica, chiefly from Swain’s quarry, ('hester C'o. Pa.

Of these, the magnetite dendritic markings, and similar markings of red and brown colors, apparently due to oxidation of the m:anelite, are most common and hest known. Besides these the following occur:-

Hexagonal (rystals, hack and opaque ; angles, 60^{-}and 120 . In the form of the erystal in this deseription, the form of the section exhibited under the microscope is intended. A similar crystal, brown in color. perhaps the same substance, translucent; probably biotite or lepidomelane.

Hexagonal or rhombic crystals of a hright red color, sometimes with the angles moditied ; angles ti0 and 120°. There are some specimens which indicate the change of the black into the red rhombs. One of the red rhombs contained a black crystal, with faces parallel to those of the rell, and one, a very symmetrical amb simple crystal, from near Newtown Square, Delaware Co., Pa., was black for about one-fourth its length, the remainder red.

Rhombic crystals, polarizing light, giving very brilliant colors. At first this was supposed to le due to films of the mica itself, but the regularity and brilliancy of the rhombs, eompared with the mica, and their angles, seem to render this more than doubtful, the angles being between $73 t^{2}$ and 78 . They are almost universally accompanied hy, and in contact with, the red or black rhombs, and generally both.

Quartz crystals, generally flattened, sometimes very minute, sometimes large enough for the crystallization to be seen with the naked ere ; generally masses of crystals, showing distinct crystallization on the edges only, oceasionally separate doubly terminated prisms. Some of the specimens with polarized light are very beautiful.

A substance usually presenting the form of disks, $\frac{1}{5}$ inch and losi in rliameter, showing, with polarized light, a radiation from the centre, and a change of brilliant colors as the analyzer is rotated. Apparently the same material occurs in acicular erystals. often twinned at 60° and 120°, in a plumose form, and in a form rlonely resmbliner a section of agate acooss the layers. Some of theoe di-ks appear to be strictly a madiation of acieular erystals from a centre, others to be marle up of three or more oval masses; sometimes the latter are separate, or joined two, three, four, or six trogether, showing apparent twimning at $4 ; 0^{\circ}$ and 120°; these oval masses, with polarized light, take each a single tint at a time. This material was found also in mica from near Newtown Square,
 Avenue, Fairmount Park, associated with rhombs apparently of lepidomelane or biotite, and also with quartz.

On the Bryn Mawr Gravel.-Mr. Menry Cainili Lewis remarked, that since the presentation of his paper on the *-Surface Geology of Philalelphia and vicinity." he had bern ahbe towstend the investigation then hergun, consitherahly heyom the limito of Philadelphia. The "Upland 'Terrace" has now been traced con-timou-ly from near Trenton, thromgh limeks, Philadmphia, and Delaware counties, to beyond Wilmington in Delaware. As far as could be judged, the clay comes up to a uniform level along this terrace. It has been gratifying to find that the main characteristies of the diferent deposits. recomed in the praper retiomel 10. are constant throughout the whole of this region.

The principal difleoulty in the work has heen want of teprographiral data. While within the limits of the eity, the topereraphioal map of the Water Department had been of great service, but beyond these limits elevations had to he estimated from oreasional ratroad levels. Topography is an aid in all geological invertiontions, but in the study of surface geology it is a necessity.

It is now desired to call attention to the great development of the Bryn Mawr gravel in Delaware, and to the indiations of itassuming an important position in the geologe of the sonthern States. In Bucks Comoty, north of Philarlelphia, the formation has been recognized but scantily, but as we go south of the city it increases largely in extent. Numerous hills in Delaware C'o. have been foumd to be capped by this formation, and in northem Delaware it cover- the gheissic hills in patehes several mile- lone and comes close to the river.

The Upland Terrace, after crossing the Delaware State line about two and a-half miles back from the river, gradually approaches it, until near Bellevue Station, P. W. and B. R. K., its base is but half a mile from the river. It forms the upper portion of Wimington, and then tremds A. E. towards Baltimore north wi the railroad and away from the river. In the neighborhood of Wihmington the Bryn Mawr gravel lies diecoly upman batk of the Upland Terrace, which is here about 300 feet high. It is abundant to the southeast of Tallyville, Del., covering a large tract of country, and it appears on the hills on both sides of the Brandywine in the neighborhood of Dupont's Powder Mills. It is fomm on the Philatelphia and Wimangtom Tumprike. two milas northeast of Wilmington, and one mile firom the river. In many places it is five feet deep, and it seems less eroded than in Pemnsylyania. It consists of sharp pieces of Mt. Holly conglomerate and iron sandstone with well-rounded pebbles of quartzite and of Potsdam sandstone, heing identical with that of Chestnut Llill and Bryon Mawr.

This formation, so abundant in Delaware, is thus proved to be by no means a local one, and it is probable that it will be identified with some of the formations grouped together under the name of "Southern Dritt."

The Bryn Mawr gravel has also recently been found in the Montgomery County limestone valley, and there seems to be a close comection between it and the surface or drift iron ores of that valley. Some of these ores appear to be simply a very ferruginous variety of the Mt. Holly conglomerate. They overlie macombormahly the steeply-dipping decomposed shates which hold a more ancient and richer ore.

In Bucks County there occurs a gravel different from any yet described, which at first occasioned some confusion. It has proved to be the result of the decomposition of the lower Triassic conglomerate, the pebbles of which, loosened from their cementing material, have been scattered through the soil. These Triassic pebbles are formed of gueiss, not Potsdam. Hills of red shale border this gravel.

A preliminary map of the Surface Geology of Southeastern Pemmelvanial was exhifited, and it was suggested that its publication would be of service to many besides geologists.

April 28, 1879.
On some Enclosures in Mica.-Mr. Lewis exhibited some plates of Muscovite which he had found on Shoemaker's Lane, Germantown. which contained microscopic erystals of peculiar shape. They comsisted of a dark green mica, prohably Lepidomelane, in minute sharp crystals thickly disposed throughout the muscovite. These crystals were frequently arrow-shaped, and generally much elongated. Large numbers of them were shaped like a musket. They were very different from any of the enclosures in the muscovite of Pembshury, Del. C'o., and were interesting objects under the microscope.

On Dendrites.-Mr. Henry Carvili Lewis made some observations upon dendrites and their mode of growth. He stated that dendrites were not caused by filtration of metaliferous water, but that they frequently grow upward by chemical or capillary action. He described an exposure of white lower Triassic sandstone in a quarry in the southern part of Norristown, where dendrites of oxide of manganese were seen upon the surface of the rock, growing from below upwards. The dendrites were apparently in process of growth, and were so soft that they could be scraped with a knife from the rock. The material thus obtained gave a bright metallic streak on the fingers, and was shown by the blowpipe to be hydrous oxide of manganese. It was observed that while the rock above and below these dendrites was spotted with minute rust-specks of manganese, the portion upon which the
dendrites grew was pure white and free from such specks. It seemed that the material of the dendrites is abstracted from the rock and by some segregating force built up into tree-like forms. Anexamination of their - fracture-howed that the dembice-s we.t. quite amorphous and that very frequently the upper extremities of their branches were thicker than the stem portion, as though
 the growing points. No crystalline structure was apparent, the dendrites being bounded throughout by curved lines. It looked as thongh they might have grown by a -ucce-s-ion of comentric metallic shells.

It was remarked that these dendrites were quite different from those in muscovite and other crystals, which, frequently derived from the substance of the crystal, have been so influenced by its structure as to become often pseudomorphic. It was noted that there are several distinet kinds of dendrites. They may be internal, as in moss agate; or external, as in the case now described. 'They may also be either crystalline or amorphous. The crystalline dendrites are subdivided into those which have been free to crystallize of their own accord, and into those which have been influenced by the crystalline structure of the mineral in which they exist. Examples of each were cited.

On a Jurassic Sand.-Mr. Lewis directed attention to a fine sand of considerable extent and depth, which he had found underlying the lower Cretaceous plastic clay. If this clay, as is supposed, is the base of the Cretaceous formation, the sand below it may be

 sandstone. It is either white or pale yellow in color, and about 15 feet are here exposed. Underneath the plastic clay south of Trenton, N. J., the same sand is at least 30 feet deep. It is sug-
 correspod stratigraphitally with the " Hatinge -atiol." Thin overlying clay contains fossils at Baltimore, which Prof: Uhler identifies as Wealden.

Upon the summit of the same hill, near Elliton, where the abovedescribed sand is exposed, "Bryn Mawr gravel" oceurs in abundance. It contains … Mt. Holly conglometate." amil hat the -atme features as in Delaware and Pemnsylvania. Whether or not it has any comnection with the plastic clay is not known. This same plastic clay, of probably Wealden age, occurs at 'Turkey Hill, in Bucks County, Penna.

$$
\text { MAY } 26,1879 .
$$

Potsdam Sandstone near King of Prussia.-Mr. Tmeonome D. Rand called attention to primal (Potsclam) sandstone rocks in the bed of a valley on the farun of Samuel 'Tyson, south Chester Valley Hill, near King of Prussia, Montgomery Cumty, l'a.

A Vere Locality for Amethyst.-Mr. W. W. Jefferis announced that Amethysts, well erystallized, and of a rich purple color, had been found this spring, for the first time, in the northern part of Newlin 'Township, Chester County. They were brought to the surface by deep plowing, and were supposed to be derived from a vein of this mineral.

September 22, 1879.

A New Corundum Locality.-Mr. W. W. Jefferis remarked that a rein of blue Corundum, similar to that found in North Carolina, was struck, on the south side of the Serpentine Ridge, in Newlin Township, Chester County, a short time since. The vein is well defined, being between walls of Culsageeite, in large plates of a yellowish green color. Over 500 lbs . of massive blue corundum has been taken out within ten feet of the surface.

The Minerals of Surry County, N. C.-Mr. H. C. Lewis communicated the following list of minerals which he had found near Dobson, Surry Co., N. C., during a recent visit to that locality :-

Native sulphur, galena, pyrrhotite, pyrite, chalcopyrite, hematite. menaccanite, magnetite, limonite, hausmannite, psilomelane, wad, homblemde, actinolite, asbestos, garnet, tale, steatite, ripidolite. chlorite.

The psilomelane occurred in a bed about 18 feet in thickness.
The magnetite was frequently polar. Native sulphur occurred in cavities in quartzite as a coarse loose powder of rounded waxlike grains, and was the result of the decomposition of pyrite.

It was also stated that rutile occurred in Alexander Co., N. C.a new locality.

Fossil (?) Casts in Sandstone.-Dr. J. M. Cardeza exhibited "perimens of (puartz sandstone (Pot-clam?) which he had found lying loose upon the soil at Dutton's Mills, Pa., in which were ohlong rounded casts of sandstone, alout an inch in length, and similar to one another in shape. It was questioned whether they might not be fossils.

On a Peculiar Stratification in Gneiss.-Mr. Theodore D. R.avo stated that while much of the porphyritic gneiss of the belt rumming sonthwest from the Falls of schmykill at the surface was in rommerl boukter-like masses, which had heen mistaken for trap, some of it presents at the surface a thin-bedded structure with, apmarently, very distinct stratification. Recently the cut of the Pemnsylania Railroad through this belt, between Merion and Ehm stations, about a mile from the boundary of the ('ity of Philadelphia, has been widened, and on the south side may be seen an interesting section. A mass of the gneiss, perhaps 15 feet across.
has been cut through, and almost encireline it may be seen the thin-bedded variety, with its apparent stratification tangential to the mass from which, by decomposition, it evidently was derived. The true stratitication of this bed of gneiss appears to be more nearly horizontal and less contorted than that of any of the rock: of the vicinity of Philadelphia.

A New Locality for Lignile.-Mr. Henry Cabviml Lewis amounced the discovery of lignite, or brown coal, in the limestone valley of Montgomery County, a mile and a-half from the boundary of Philadelphia. Me had found it, last June, at Marble Hall, close to the marble quarry, within a few feet of diggings for iron ore. In order to ascertain its extent and geological position more definitely, he had caused a shaft to be sunk 40 feet deep)

 feet thick of a tough black fire-clay filled with fragments of lignite. These fragments, sometimes a foot or more in length, lay in all directions in the clay: 'They had the form of twigs and branches,
 grain of the wood. 'The smaller pieces were generally flattened, and ofien as soft as charcoal, but the larger ones were quite hard and brittle and had the shining fracture of true coal. It burned with a bright yellow flame. Frequently balls of pyrite oceurred with the lignite.

The clay which contained it was underlaid by sand, and appeared to dip south. It had an east and west strike, like that of the lime stone and of the iron ores. In appearance it was similar to the sub-Cretaceous plastic clays of New Jersey, which also contained lignite resembling that of Marble Hall. White kaolin and white and red potters' clay occur in the vicinity and are probably of similar age. 'They are all older than the surtace deposits and gravel of the valley.

It was stated that while lignite is not uncommon in the 'Triassic formation, its occurrence in a Silurian limestone valley is of great
 new geological epoch into this region and revolutionizes our ideas of the age of many of the so-called "Primal" iron ores.

On Serpentine in Buch's County.-Mr. Lewis called attention to the fact that while serpentine was abundant in Delaware Co., it had not been recorded as oceurring anywhere in Bucks C'o. He had recently noticed an exposure of it in that countr, near the village of Flushing, Bensalem Township. I narrow dyke of havel. impure serpentine here crosses the road near the Neshaminy Creek. He thought that the genesis of serpentine and its relation to the gneissic rocks was still uncertain.

October 27, 1879.

the iron ores and lignite of the montgomery co. valley.

by heniry carvidid lewis.

The discovery of lignite in the iron ore region north of Philadelphia introduces some new considerations in the study of its geology, and has a direct bearing upon the age of its iron ores. Lignte was fomed in this valley many years ago, but was supposed (0) be 'Triaseic, and therefore unimportant. Before judging of the combertion that the ocenrence of lignite in the Montgomery Co. limestone valley will have with the geology of the Atlantic coast, it will be important to enumerate other localities of a similar nature where that mineral has been found

In his Geology of Vermont, Prof. E. Hitcheock described an occurrence of lignite in a similar position at Brandon, Vt., and proposed a theory which excited much attention, but which has been rejected by many geologists. It was shown that a steeplycliphing stratum of lignite lay within beds of plastic clay, katin and iron ore, all dipping steeply southeast. The iron ore deposit wats sometimes 100 feet deep, and all these beds rested against a limestone which had the same steep dip. Mottled clays were described as similar to those of Martha's Vineyard and the Isle of Wight, and much of the formation was said to resemble a metamorphosed mica schist. The stratum of lignite was opened from near the surface to a depth of 80 feet, and was used as coal. It prowed to be generally dicotyledonous, and to contain twigs and fruits which belonged to a tropical climate, and which Professor Lerpuereux referred to a Tertiary epoch, probably Miocene. From this discovery, Prof. Hitcheock proposed the theory that all the limonite iron ores of the Atlantic coast in similar geological positions were Tertiary and of oceanic origin. On the other hand, it was argued that an isolated example was not sufficient to establish such a wide conclusion, and the lignite was regarded as locally formed by having been washed into an existing cavern in the limestone floor.

The next occurrence of lignite is a very similar one at Pond Bank, near Chamberslourg, Pa., described in an interesting

[^58]paper by Prof. Lesley. ${ }^{1}$ Here again it was found in a limestone valley close to iron ore excavations. It was at a depth of 40 feet, below strata of clay and sand. According to the superintendent of the mine, it was in two strata, the lowest of which was 18 feet in thickness, and was separated from the upper bed, 4 feet thick, by a stratum of sand. Below it, at a depth of 65 feet, red and white plastic clay occurred. The strata were nearly horizontal. It was thought that the lignite was not necessarily comected with the iron ores, but was a local deposit of late date, made in a shallow pond, and that, as at Brandon, a sink-hole had been formed in the underlying limestone. It was regarded as of the latest 'lertiary age.

Lignite has also recently been discovered by Prof. Prime, in Brown's iron mine, at Ironton, Lehigh Co., Pa.2. He states that it occurs in a white plastic clay, but does not give the depth at which it was found. Ife believes that it was transported by ice and water in the Glacial epoch, and refers the iron ores of the valley to the same origin.

The writer believes that in the light of facts now developed, this theory of the age of the lignite cannot be maintained. After an inspection of the locality, he has found that the surface-drift and boulders of that valley lie unconformably upon the formation containing the lignite. The lignite lies at a depth of 46 feet from the surface, in a tough plastic clay, which is entirely free from boulders. About 30 feet of potters' clay and decomposed hydromica slate lie umo the ligmitice statum, amd resting upon the whole is 15 feet of drift. This surface drift, of yellow brick-clay, boulders, gravel and drift iron ore, is thus of quite different character from the strata below it, and is probably deposited by glacial waters. The underlying formations have, apparently, in some places, a dip like that of the adjacent limestone, and are certainly more ancient than the surfice drift.

The lignite recently found by the writer in the Montgomery Co. valley, and described at the last meeting of the Section, oceurs under conditions very similar to those above indicated. In immediate proximity both to a limestone outcrop and to iron ore diggings, it was found at a depth of 35 feet, in a plastic clay which contains no gravel or boulders, and whiel is overlaid by

[^59]- Fiay and decomposed hytromica slate. A surface drift, containing from ore, gravel, ami oceasional houlders, lies unconformably upon the whole formation. The section here presented was made in a shaft which the writer was allowed to have sunk within a few feet of Mr. Hither's mathle puary, Marhle Mall, Montgomery County.

10		"Top dirt," yellow, impure.
$13 \frac{1}{2}$		Soft white decomposed hydromica slate or impure "kaolin," containing occasional broken seams of sharp quartzite, but no pebbles.
$2_{\frac{1}{2}}$	-	Coarse white sand and rounded pebbles ; apparently a decomposed sandstone. Tough mottled red clay.
7		Blue plastic clay.
3		Lignite in a very tough, dark clay.
2	By	Coarse yellow sand, with fragments of stony iron ore and with pebbles.

The lignite bed contains occasional streaks of fine gray sand, and is underlaid by a coarser sand. So far as could be judged from the very limited exposure, it dipped south, at an angle of about 30°; becoming thicker as it dipped. The lignite lies in framments in the day, and consists of twigs and hranches of land phats, apparently all dicotylerlonons. The lignite frequently shows a brilliant black lustre when transversely fractured. The small fragments ire more like charcoal, and are often in the form of flattened twios. Some of these appear to he partially roumed hy attrition. Noshells or marine fossils occur. Pyrite frequently encrusts the lignite or forms nodules, and when exposed to the air decomposes into ferrous sulphate.

At this same locality, lignite has been taken from three other shafts in addition to the one just described. Two of these are
close to the Marble Quarry, but the third is ahout 400 fece east of these, behind the barn of Mr. II. S. Hitner, who says that it was found many feet below the surface. These facts indicate an east and west strike to the lignitic strata, and an extent of 400 feet in length and 40 feet in breadth. Shafts 100 feet north of these struck iron ore, but no lignite. They exhibited the following succession of strata:-(1) "Top dirt;" (2) Decomposed hydromica slate; (3) White clay ; (4) Yellow sand ; (5) Iron ore.

Recent explorations have shown that Marble Hall is not the only locality where lignite is found, but that it occurs in a number of other places in the same valley. About a mile and threequarters west of Marble Hall it was formerly found in a field on the Ridge Road, opposite a house once owned hy W. Potts. It was at a depth of about 40 feet. Red and white potters' clay. white kaolin and iron ore are found close to the opening. The lignite at this place is hard, and is said to burn well. Another locality is on the farm of W. Wills, south of Plymouth Creek, about one mile from Conshohocken. Considerahle quantities of lignite have been here exhumed, the pieces being often a foot in length. This shaft was opened about thirty years ago, and was probably the locality referred to by Dr. Leidy. Lignite has also been found in a number of iron ore pits south of here and east of Conshohocken. It is said always to occur in fire-clay.

The above localities are all included in a strip of country about two
 east and mest dircetion. The lignite appears to form two distinct, na. row lines of outcrop with a definite E. and W. or E. N. E. and W. S. W. strike, -thus conforming with the limestone. While its dip has not been actually established, the decomposed slates and sandstones of apparently similar age have been observed to dip $40^{\circ} \mathrm{S} .20^{\circ} \mathrm{W}$.

From these facts it would appear that the lignite is not a mere local wash or accidental deposit, but that it is part of a stratified and distinct formation, having a trend like that of the limestone, and of considerable extent ; and when the strata in the Montgomery County Valley are compared with those in other parts of the country, it will be seen that we have here to deal with a formation which, closely connected with the limonite iron ores of the great limestone valleys, and having remarkably similar characters throughout, may prove an important feature in American reology.

In entering upon a consideration of the age of the lignite, it will
be desimble briefly to sketch the geology, and especially the surtace geology of the valley in which it oceurs.

The underlying rock is an altered lower Silurian limestone, the "Auroral " of Rogers, which in the southern part of the valley is "ry stalline mathe amd in the northern part is a sandy magnesian limestone. It has an E. and W.strike and a steep south dip, and is supposed to have an inverted synclinal structure. The limestomb rises iothe surface in a serics of parallel ridges, and between these lie the iron ores and the lignitio strata. Bounding the valley are hills of altered shale of probably Potsdam age. Beyond this line of hills to the north, are the Triassic red shales and sandstones, while to the south is the Philadelphia gneissic district. In many places the North Valley Hill has been eroded away and Triassic strata lie directly upon the limestone.

The irom ores of this region probably belong to four different genlogical ages, and may therefore be divided into four classes.

1. Gneissic Ore. This ore, never found in the valley, occurs in the greissic rocks of Chester County north of the Chester Yalley, and has been formed in place from the altered gneiss. It dips with the enfiss, and is generally aceompanied by scales of graphite. Prof. Rogers ${ }^{1}$ supposed that this ore belonged to isolated patches of Triassic red sandstone. The writer, however, has not been able to confirm his sections, nor to show the presence of any more recent formation than the gneiss.
2. Primal Ore. The hydromica slates which lie between the Pot-dam sandstone and the limestone liberate, when decomposed, a rich limonite ore which is largely mined in portions of the valley. Although in very irregular beds, a steep dip can be rerognized. It is perhaps rlerived from the decomposition of pyrite. This is probably the ore mined at Edge Hill.
3. Tertiary Ore. This ore, associated with which are the deposits of lignite, plastic clay, kaolin, fire-sand, etc., has been hitherto confounded either with the Primal ore or with the Drift ore of the valley. In that part of the valley under discussion there are three distinct lines of outcrop of this ore, having nearly an E. and W. treml. A ridge of limestone separates two of these lines. The ore lies, sometimes at a great depth, below a re-stratified deromponel hyrlromica slate. This latter formation is almost identical in appearance with the decomposed Primal slate in place

[^60]at the edges of the valley, and has therefore been mistaken for it. The discovery of lignite below it proves its re-stratification in a later age. In many places shafts have been sunk over 100 feet without coming to the limestone. The ore, originally derived either from the limestone or from the primal slates, appars to lir below the lignitic strata.
4. Irift Ore. Resting often meonformally upon these latio amb capping the elevations throughout the valley, is a dritt depmeit of gravel and boulders containing a workable iron ore. The composition of this drift is most interesting. Its boulders, almost without exception, are composed of a loose-grained Potsdam sandstome, -a formation not now existing either on the North or somth Falley Hill at this place, and found only in a limited expor-low at the eastern end of the valley. The somblhns limenie is frementy found in these boulders. Moreover, notwithstanding the large extent of 'Triassic red shale and sandstone immediately to the north of the valley, and the occurrence of that rock resting often directly upon the limestone, not atrace nor a fragment of Triassic rocks have been found in this dritt.

The evidence is here strong that this drift has not been caused by any flood from the north in a modern age. Additional evidence
 region north of here is absolutely free from drift of any kind. A careful study by the writer of much of that region has shown that not a single drifted pebble is there found. The soil is formed from the rocks below it, and such clays as occur are bog clays of local origin and recent age. 'That the pebbles of the valley drift have not been derived by weathering fom the neighbring lower Triatsic conglomerate, which hohds when laree pehbles, i- -hown by the fact that such pebbles are here formed entirely of gneiss or gneissic quartzite, and never of Potsdam, and therefore are quite different from those in the valley.

The drift ore and gravel does not lic in hollows, as though locally washed, but is found in patches upon the elevated portions of the valley, as though it were the remnant of a once continuous deposit.

The facts above enumerated suggest a possible origin at an age when clifls of Potsdam sandstone, since eroded away, stood as a high barrier between the limestone valley and the Triassic rocks north of it. Such a barrier would eflectually prevent 'Triassic fragments from mixing with the drift of the valley, and would.
during its degradation, offer the material for the pebbles and boukders of that drift. In Triassic times some such barrier may have formed the southern shore of the 'Triassic waters. It has
 the sub-Cretaceous plastic clays of the Delaware are formed of Potsdam sandstone, and that therefore during lower Cretaceous times also, some such mountain of Potsdam must have ollered
 both in Pennsylvania and New Jersey, contain an abundance of Poisitan pehbles. The hypothesis that the materials for the sub)Cretacenusplastic clays and the Tertiary gravels were fornished hy hills now sunk beneath the Atlantic Ocean ${ }^{1}$ is not sustained by What is known of the configuration of the seathottom. The theory now offered is supported by numerons ficts concerning the power uf erosion, which geological considerations in other fied hase presented.

In a fomer paper on "The Surface Geology of Philarlelphita :and vicinity," the writer showed that, in addition to the clays, four separate gravels of different ages can be distinguished in that region. These are (1) "The River Gravel," the newest of all the gravels; (2) "The Philadelphia Fed Gravel," of Champhain age: (3) "The Fossiliferous Gravel," recently proved by the writer to be of upper Tertiary, perhaps Pliocene age, and now called the "Glassboro Gravel ; "(4) "The Bryn Mawr Gravel," the oldest of the gravels, also oceanic, and conjectured to be of upper Miocene age. This last gravel, and this only, agrees in its characters with the valley drift now under consideration. In the absence of all Triassic fragments, in the presence of Potsdam boulders, and in the amount of erosion, these two gravels are identical, and it seems probable that the "Drift Iron Ore" of the one is only a very ferruginous variety of the "Mt. Holly Conglomerate" of the other. This being the case, we have here a formation which, not withstanting its houklers, suggestive of floating ice, ap)pears to be older than an oceanic Pliocene gravel. There is perhaps no good reason why a glacier might not have existed in upper Tertiary times, boulders formed by which may still be found. However this may be, it appears that there are strong grommlis for assigning an upper Tertiary age to the drift ore and gravel of the Montgomery County Valley.

Returning, finally, to the lignite and associated strata, shown to

[^61]be older than the formation just described, and shown by its own characters to bear no trace of chacial agencies, we may conjecture, without any reference to the plants of the lignite, a midlle or lower Tertiary age. From the steep dip of the beds,-a fact diflicult to ex-plain,-and from the great resemblance of the plastic clays to those in New Jersey, on the Delaware, the writer at first supposed them to be of Wealden age. Some facts in comnection with a gravel found in Virginia and other Southern States, which, in both appearance and position is very similar to the Bryn Mawr gravel, were at first thonght to indicate a Jurassic age. But after a comparison with the other lignite localities, and especially with that at Brandon, where the fossils were shown to be of 'Tertiary age, this view can hardly be sustained. The absence of shells or marine plants indieates a period of inland waters, and the plants at Brandon belong to a tropical climate.

It is now suggested that the periorl of the lignite may correspond most closely with that called by European geologists the Oligocene. Since, in the present state of our knowledge, it is obriously unsafe to make the age of these lignite deposits contemporaneous with any exact geological epoch, and as there is a possibility of their belonging to some period not recognized elsewhere, it will probably be wiser for the present to group them together under the name of The Brandon Period. As more facts develop and wider comparisons can be made, more certain conclusions will be possible; and it must be understood that the theories here proposed are brought forward only as those which now appear best to explain the facts observed.

Postseript. - Since the presentation of the above paper, the writer has been in correspondence with Prot. N. A. Bihikor, of Augusta, Georgia, who has recently discovered lignite in that vicinity: The
 two and a-italf miles from Berzelia, and sixteen miles from Augusta. It is described as lying back of the outcrops of gneiss and limestone, and is apparently in a very similar geological position to the Pennsylvania locality. Iron ore, plastic clay, kaolin, and decomposed sandstone occur with the lignite. As in P'ennsylvania, the lignite was found in a plastic elay beneath 25 leet of a decomposed sandstone. Four strata of lignite, separated by layers of shale and clay, were found at a depth of from 30 to 45 leet from the surface. A series of coarse and fine sands and clays underLaid these deposits and were penetrated to a depth of 95 feet.

Thee ditterent shatis were sumk, the extremes bemg boo feet apart, in all of which lignite was foumd. The shat in which the following section was made is about 150 feet from an otiterop of hornstone and quartzite, and 300 feet from a creek which lies 200 feet below it.

Mottled clay.
Decomposed sandstone.
Crust of iron sandstone and spathic iron.

Decomposed sandstone
with thin layers of clay.

Nodules of pyrite.
Lignite.
Shale and clay.
Lignite.
Shale and clay.
Lignite.
Shale and clay.
Lignite.
Light-colored shale
with fossil plants.
Dark-colored (bituminous) shale.
White clay with streaks
of rose-color, etc.
Sandy clảy.
Ferruginous coarse sand with nodules of clay iron-stone, 4 inches to $2 \frac{1}{2}$ feet in diameter with ochre, clay, etc., and quartz pebbles sometimes 3 inches in diameter.

Light-colored shale.
Yellowish sand.

Sandy clay.

White, very fine micaceous sand with clay.

The second stratum of lignite is the best, and contains fragments
 been found in this and other layers. Some specimens were imbedded in a layer of brown sandstone. The fossils appear to be fragments of trees, grasses and other land plants, none of which, however, were sufliciently perfect to be determined. No shells were found.

The whole section at Berzelia is remarkably similar to those at Brandon, Chambershure, Ironton and Marhle Hall, and with them indicates the existence of a great inland fresh water ''ertiary formation in Eastern America, during the Brandon Period, once fifty miles broad and nearly a thousand miles long.

An Enclosure in Quartz.-Mr. II. C. Lewis exhibited a crystal of quartz trom Uerkimer County, N. Y., in which, hanging from a bubble which moved in a cavity containing liquid, was a tuft of minute acicular crystals of a pure white color. A microscopical examination had failed to identify them with any known substance. The erystals were similar to those of many organic salts. It was conjectured that they had crystallized out from the liquid. Under a power of 75 they looked like tufts of white wool, and it was suggested that if future investigation failed to refer them to a kown mineral species, it might be convenient to give them the name Evilite (from हैpu», wool).

In other cavities in the same crystal there was an amorphous yellowish-brown waxy substance of unknown composition.

Menaccanile and Talc from Maryland.-Mr. Wm. W. Jefferis remarken that in Marford Comety, Md., near the village of Dublin, there is a rein of green foliated Thate in the serpentine, which has been opened about 6 feet in length. It has furnished cleavage foliated specimens over a foot in extent. The same vein contains Menaccanite in tabular crystals, well crystallized. Yellow beryl has also been fomel there, showing all three in the same specimen.

Sunstone in Labradorite.-Mr. Jefferis stated that on examining a specimen of Labradorite in his possession, from the coast of Labrador, he found that in addition to the usual play of colors (h) ane areen), by turning it in another direction it showed immerable crystals of githite, making it a beautiful sumstone, which, he helieved, was an musual thing, and which he had not found mentioned in the books.

On a Probable Pseudomorphism of Gummite and Uranotile after Uraninile.-Dr. A. E. Foote remarked that among a number of specimens of gummite and uranotile, that he had recently received from Mitchell Co., N. C., he noticed some which were of remarkably regular form. The edges were slightly rounded, but they Were apparently simple prisms belonging to the triclinic system. On breaking these open he found a solid core of uraninite, surpommited hy a layer of gummite, and this, in turn, surrounded by a layer of uranotile. Although crystals of uraninite have never been observed, he ventured to suggest that this is plainly a case of psendomorphism after uraninite. He hoped hereafter to obtain crystals whose angles can be accurately measured.

He had ohscrved at least twenty specimens having evidently the same crystalline form, and all plainly psendomorphs after some pre-existing crystal. 'The majority of those that were broken open showerl the alteration of uraninite into grmmite, and of gummite into manotile; though in a few the mraninite had been changed, and the crystal showed simply gummite and uranotile.

November 24, 1879.

ON A NEW FUCOIDAL PLANT FROM THE TRIAS,

BY HFNRY CARVIITA JFWIS.

The fossil described here as Palxophyous limaciformis, sp. nov.,
 stand out in relief upon a slab of 'riassic sandstone. It was found by the writer near Milford, New Jersey, in upper 'Triassic strata. Its general facies is like that of some species of l'alrophyous and Astrophycus of the Carboniferous age, and of Buthotrephis of the Clinton group, and it belongs to the same order of plants-that of the fucoid or marine algæ. The general, rather
 that of Fucoides, is well applicable to it.

The frond is cylindrical and jointed. The ramuli, or short
 an inch in length. They are spindle-shaped, attenuate, and more

Nat. Size.
Polcophycus limaciformis Lewis, sp. nor. or less curved at both ends. 'They are very frequently aggregated in bunches of three or more, radiating from a common point of growth, and are generally detached from the main frond. The form of these bodies is characteristic of the plant, being distinetly snail-shaped; hence its specific name, " limaciformis."

At the locality where it was found there also occur specimens of ripple-marked sandstone, also of rain-prints and mud-cracks. 'These show the physical conditions under which the plant grew-that of mudflats in shallow water frequently left exposed to sun and rain. The rain-prints have been compared with
modern rainprints made in mud, and their great similarity noticed. One specimen of a fincoid foumd here has apparently been so confised and distorted by the heating of a heavy ram-stom that its structure can scarcely be recognized.

Fucoids of somewhat similar appearance have been described from more amcient geological horizons, but not, so far as can be learned, from the Trias. The occurrence of a plant which has the characters of marine algae in a formation supposed to have been deposited by fresh water is interesting.
r'siscript. Since the above paper was presented, a photograph of this fossil has been sent to Mr. Leo Lesquereux, the distinguished paleobotanist, who, in a letter to the writer, says: "Your plate represents what I consider a new species of Palxophycus, whose analogy is with P. (species undetermined) Hall, Paleont. of N. Y., vol. i, Pl. 70 (Hudson River group); also distantly related to F'ucoudes auriformis and especially F. heterophyllus, same author, l. c., ii, Pl. 3, figs. 3, 4. You may also find a kind of analogy to what Hall considers and figures as roots or also as stems of some marine plants, same vol., Pl. 8, figs. 4, 5, and pl. 9, fig. 4 , and also pl. 10, figs. 5, 7 (all Clinton plants). The type is evidently old, rather Devonian, even upper Silurian. European authors have nothing like this from the Trias, Jurassic, Cretaceous or Eocene."

The Northern Belt of Serpentine in Radnor Tounship.-Mr. Rand made the following communication.

Some time ago, in a communication to the Academy, (Proc. Ac. N. S., 1878,402) I described a belt of serpentine in the valley of the Gulf Creek, Radnor Township, Delaware Co., Pis. Recently a trench for water pipe on the property of Judge llare has enabled me to procure specimens illustrating a section across the bed and on both sides of it, which are presented herewith. 'The section is on a line nearly N. $75^{\circ} \mathrm{W}$. The belt is probably not far from N. $70^{\circ}-73^{\circ} \mathrm{E}$., or akout two-thirds that of the section, but this is not certain. While deductions firom these few specimens would not be safe, yet the strong resemblance between the decomposed
 rocks 40 fect distant, points more to an alteration in phace than to a distinet bed.

Garnet mistaken for Corundum.-Dr. J. M. Cardeza called attention to a garmet rock at Chel-ea, Delaware Co., Pan, which is quarried and used as corundum.
the trenton gravel and its relation to the antiquity of man.

BY HENRY CARVIEL, IJEWIS.

In the course of an investigation of the Surface Geology of Southeastern Pennsylvania, some facts have been developed in connection with one of the gravels, which, bearing directly upon the Antiquity of Man in America, become of great interest. Among the many scientific problems now attracting attention, none perhaps holds a more prominent position than that of the Antiquity of Man. It is a subject which, notwithstanding the mumerous facts gathered and the hulk of literature puhlished, must be regarded as still in an undecided condition.

As the Delaware is in many respects a typical river, and as therefore deductions made here will hold good for the valleys of many other rivers of the Atlantic coast, it is thonght that a record of the investigation will be of more than mere local interest. The subject will be approached from a purely geological standpoint. The main diticulty in inquiries of this kind has been the absence of exact geological data. Hasty conclusions have been drawn from an inspection of relics found in a gravel, which a more accurate knowledge of the age of that gravel would not have sustained.

The writer has shown in former papers ${ }^{1}$ that the gravels of the I) elaware Valley belong to several distinct ages; and if therefore at any place the remains of man are shown to occur, it will be all important to know to which of these gravels they should be referred.

The surface formations of Southeastern Pennsylvania may be divided into five clays and four gravels. The following is believed to be the succession in which they occur, beginning at the oldest: (1) Jurasso-Cretaceous plastic clay; (2) Tertiary clays, (" Brandon P'eriod ") ; (3) Bryn Mawr gravel, (upper 'Tertiary ; (4) Branchtown clay ; (5) Glassboro gravel, (Pliocene) ; (6) Philadelphia red gravel, (Champlain); (7) Philadelphia brick-clay, (Champlain); (S) Trenton gravel, "Eskimo period"); (9) Recent alluvium. Of clays, the oldest is the Jurasso-Cretaccous plastic clay exposed at 'Turkey Hill, Bucks Co. A similar plastic clay,

1 "The Surface Geology of Phila. and vicinity." Proc. Min. and Geol. Section, Acad. Nat. Sc. Phila., Nov. 1878.
which, however, may be of later age, has been passed throngh by artesian wells in the southern part of Philadelphia. The next oldest clay appeare to the the potters clay of the Montunamery Co. lime-tone valleg, which, contaning somet ime- lignitw, ami movelais
 (iatel limonite ores, to an inland Tertiary formation, dow " Bramdon Period," possibly of Oligocene age. ${ }^{1}$ A third clay, the "Branchtown clay," found at high elevations in a few places in the gneissic region, containing occasional houlder-, was mate as a perion of general submergence and appars to the of a lat Tomiany age. The "Philatelphia brickeclay" of more recemt formation. of large extent, and with numerous boulder- is confmeal to the river valley. This elay deposited at the close of the Glacial perionl hy the waters resulting from the melting of the great Northem (ilacier, rests against the rocky"mpland terrace" at a height of about 150 feet above the present river. The fifth and newest clay is the recent bog clay or mud in the flood-plain of the river, still in process of formation.

The gravels are distinguished from one anoher thath log their composition and by their relative hypometrical positiont. The "Bryn Mawr gravel"- the oldest gravel of comseruence in this region-is readily distinguished from others ly the peculiar materials composing it, and is also known by being fomm at high elevations (400 feet) in oftem isolateal patches, capping the gnei-ric hills. It is characterizen by absence of fossiliferons or Triassic pebbles and by the presunce of an iron conglomerate, amb is of oceanic origin, and probahly upper Tertiaryage. ${ }^{*}$ I similar gravel occurs on the heights of Georgetown, D. C. The next oldest gravel, also oceanic, and which here occurs at lower elevations than the last, the writer called in a former paper " The Fossilifurous Gravel." It frequently contains pebbles formet of Niagara limestone and other fossiliferous rocks, and has heon fismed abundantly in New Jersey as well as in Pennsylrania. It is well exposed in the railroad cut at Ridley Park, Del. Co. It is the yellow gravel which caps the watershed between the Atlantic and the Delaware at a height of nearly 2 ow feot, and is now mamel for distinction "The Glasbluro gravel." Ito pelbles are frequembly

[^62]weather-worn and eaten by age and have thus a much more ancient a!pearance than the smooth, fresh-looking pebbles of later gravels. It contains no houkders of consequence and is believed to be of Pliocene age.

Lying at a lower level, within the Glasshoro gravel, and formed ut : a mixture of its pebbles with others brought down the Delaware valley, is a third gravel-the "Philadelphia red gravel." This, like its overlying hrick-daty, is confined to the river valley. It in distinctly stratified; it contains numerous fragments of Triasice red shale and of gneiss, and smooth houlders of Sihurian rocks; it shows flow and plunge structure and wave action on a layge seale ; and like the older gravels, it rests upon a decomposed gheis-s, which is sometimes interstratified with its lower layers. There are numerous exposures near the University of Pemnsylrania. The writer has identified it on the Potomac and other river, and it appears to belong to the age of the melting glacierthe Champlain epoch.

The last and newest of all the gravels is one which, at Philadelphia, seemed to be of little importance. It lies close along the river. and rising a few feet above it, extends but a short distance back from the river bank. It covers the flat ground of C'amden and the lower part of Philadelphia, and forms islands in the river. It was called The River gravel-and sand. It is this alluvial gravel, the latest, except the recent mud-flats, of all the surface formations, which is the subject of the present paper, and which. from its great development farther up the river, is now named The Trenton Gravel. It is in this gravel, and in this gravel only, that traces of man have been found.

The Trenton Gravel at Philadelphia is composed principally of a sharp micaceous sand, which, when below water-level, becomes a" \&uicksand." Gravel lies below the sand. Tnlike all the other eravels, it contains but few pebbles of white quartz, and is of a dark gray color. Its pebbles are made exclusively of the rocks forming the upper valley of the river. Their shape is also very "haracteristic. The peblles of the older gravels are oval or eggshaped, but these are for the most part flat. This flat shape is characteristic of all true river gravels. At several places along the Delaware, gold has been obtained from this gravel. The absence of clay in any of its layers indicates the action of swiftlyrunning water. Data obtained from artesian wells have shown
that this formation has a dephth on I Maware Armone. Philaidphia, nf about sofeet, and that it extembl-up to about Thimlami Market Streets. On Smith's Island and on the bar in the river opposite Cooper's Point, it is 100 fect deep, lying upon rock. It therefore
 Street some very large boulders are seen lying upon the sand.

On tracing the 'Trenton gravel up the river, it is found to be
 the Neshaminy Creek, its boundary is generally between the line of the Pemnsylvana Railroal amb the I Pelaware. From thin pmint the bounding terrace trends directly towards Morrisville and away from the present river. Thus, at Bristol, the gravel and its overlying sand extends two miles back from the river, and is bounded by a well-marked hill, upon which lie the older gravel and brick-clay of Champlain age. These and the Tertiary gravels extend nearly seven miles inland. At Tullytown the 'Trenton gravel extends two and a-half miles back, and at the canal shows The followings sucession of -tratit: (1) samly loan, l fiom: (2) fine gray " moulding-sand," $2 \frac{1}{2}$ feet; (3) sharp "bar sand," 1 foot; (4 clean gray river gravel of unknown depth. In other openings near here the gravel is so full of boulders that these are dug in large quantitios and sent to Philablehhia for "conhbestones." Sear Wheatsheaf station, close to the raileoal, an openiner which has exposed a section of the Trentom gravel nearly half a mile in length. exhihits well the general features of the fommation. The pebbles, of characteristic shape and color, are mate of gray Triassic. argillite, slate. red shale, sambtome. conglomerate, amd varions wher rocks found farther up the valley, while large and often sharp, boulders of red shate ami other materials frequenty onewr. The whole formation hath a very fresh appearamee when compareal with older gravels. Near Turkey Hill a large smooth boukder. five feet in diameter, lies upon the sand.

It Morrisville the narrower portion of the valley begins, and from here up, the river flows on a rocky buttom, and the glavel is shallow and is confiner to the immediate vicinity of the river. The older gravels of oceanic origin continue across New Jersey and do not appear above Yardleyville. The Philadelphia rei gravel is no more seen, but the brick clay with its bonlders oeer. sonally appears part wa! up the steep hill- enoto-im, the salley. and is abundant in the side valleys formed by tributary streams.

Above Yardleyville, therefore, we have to deal with but two surfice formations,-the boulder-bearing brick clay, often much eroded, and the Trenton gravel, confined to the bottom of the valley and showing but little erosion. It will be well to bear in mind the distinction between these two formations.- the one of yracial, the other of post-glacial age. The writer has traced them as far up as the Water Gap, past the great terminal morame into whetated resions. It is interesting to note that while the modified moraine material close to the river at Belvidere is in some points -imilar to the 'Trenton gravel, and is the source of part of that formation, the morane on the Lehigh River at Stemton and at other inland localities contains pebbles and boulders very similar to those of the Philadelphia brick-clay.

Throughout the whole course of the Trenton gravel it is observed that it lies within a chamel previously excavated down to the rock through the boulder-bearing brick clay and its red gravel, which, as shown in a former paper, belong to the Champlain epoch. The Trenton gravel is therefore, later than the Glacial and Champlain epochs; and this is a fact which, when considered in connection with the human relics found in this gravel and the consequent antiquity of man, it will be most important to remember.

Haring now sketched the character and position of the Trenton gravel along the Delaware valley, we are prepared to examine the formation as exposed at the locality whose name we have chosen to distinguish it.

Trenton is in a position where naturally the largest amount of a river gravel would be deposited, and where its best exposures would be exhibited. It is at the point where a long, narrow valley with precipitous banks and continuous downward slope, opens out into a wide alluvial plain at a lower level. It is here that the rocky floor of the river suddenly descends to ocean level and even sinks below it, forming the limit of tidewater. Thus any drift material which the flooded river swept down its chamel would here, upon meeting tidewater, be in great part deposited. Large houlders which had been rolled down the inclined floor of the "1per valley would here stop in their course, and all be heaped up with the coarser gravel hy the more slowly flowing water except such few as cakes of floating ice could carry oceanward. On the other hand the finer gravel and sand would be deposited farther down the river.

This is precisely what occurs at Trenton. The material, which at Philadelphia is generally fine, grows coarser as the river is ascended, until at Trenton we find often immense boulders imbedded at all angles in the gravel. Moreover, the river has here cut entirely through the gravel down to the rock, exposing at one place a clift of gravel 50 feet high. At Philatuphia, om the wher hame, as we have seen, the river still flows on the trop, of the gravel. This fact may also be accountel for. Having hempel up a mass of detritus in the old river channel as an obstruction at the month of the gorge, the river, so som as its volume diminisher, would inmediately hecin wearing away a mew channel for itself down to ocean level. This would be readily ammurhised through the loose material, and would be stopped only when rock was reached. On the other hand, that gravel which had been deposited at places farther down the river where it, bimitom was below ocean level, would remain un-eronled or nearly so. When the river had attained the level of the ocean there would be no weca-ion to col a deep chamel, and it would therefore flow on the of the gravel which it had deposited. It is necessary that this
 wam various thembes to explain the high hank of eravel at Trenton. The fact of the river having cut through the gravel at Trenton, while at Philahlelina it thews upon it, is flue the the emfiguration of the rock floor of the river, which at Trenton rises ahove ocean level. and at Philatelphia lies nearly 100 feet lehow it.

In addition to the exposure upon the river bank, where the whole depth of the formation is seen, the long railroad cuts made by the l'ennsylvania R. R. at Trenton, afford excellent sections of the gravel. It exhibits the distinctive charamentertion of a true riverdenoit, and is very different from the grawho whieh are found at higher levels. It contains no clay; its pebbles are mate of the rocks of the river heal and are flattemet, amblhe stratification of the whole deposit is well seen in the alternations of sand and gravel. It extends several miles back from the present river, covering the low ground along the Assunpink Creek, and indieating the existence here of a former bay or arm of the Delaware. This bay was shaped somewhat like a horseshoe, which had one extremity in Trenton at the hill above the canal, and which washed the base of the hill north of the Assumpink Creek, and, extending about three miles back from Trenton, and sweeping
around the "Bear Swamp," had its other extremity near the house of Dr. C. C. Abbott, below Chambersburg. This village was moder water: Another bay extended up the valley of Crosswicks reve. Bonkters of Champlain age lie upon the Tertiary gravelwhich form the ancient bank.

From the extent of the Trenton gravel in this vicinity. statements have been puhlished that it covered the whole southern patt of the state, and that at the time of its deposition the Delarrare River emptied into the ocean at Trenton. It is evident that the listinction between the very different gravels of this region bas not heen pereeived. Careful examination will show the great dissimilarity hetween the Trenton gravel and such gravels as ocemr at Princeton Junction and interior New Jersey, which are in great part of Pliocene age, and will prove that it is confined to the ancient river bed.

The presence of very large boulders on the river bank at Trenton has led some geologists to suppose that the formation was a glacial moraine. The occasional though very rare examples of scratcher pelbhes and polished houlders, which the flood hat eviBently carried down from the moraine material north of Belvidere. have been brought forward as supporting this theory. Yet the absence of till and of angular masses of rock, and generally of materials foreign to the Delaware Valley, when regarded in connection with what we have shown to be the general characters of the formation, can not be explained upon this theory. The character of the river banks along the valley render the presence of a glacier at Trenton extremely improbable. These show no marks of glacial action. We have, moreover, already shown that the Trenton gravel is more recent than the deposits of Champlain age, and that, lying in a chamel cut within them, it is the most recent of all the gravels. Clearly the Delaware Valley and the channel of the river were excavated in a time previous to the duporition of the Trenton gravel. The channel subsequently having been filled up by this gravel, the diminished river still later has cut a new channel either completely through it, as at Trenton, or partially, as at Philadelphia. It is probable that -light mululations of the level of the coast have aided in produriner these changes.

Before deseribing the human relics found in the Trenton gravel. there are several facts bearing upon its origin and age which it will be well to consider.

It has been noticed that from Trenton to Philadelphia the erechflowing into the river Delaware have a steep south bank, while the ground north of the creek is flat. The writer finds that the flat ground north of the creek is made of Trenton gravel, while the southern bank is made of older formations which have heen formerly cut away by water action coming from the north. Thus, the steep south bank of the Neshaminy" is made of "I'hilatelphia red gravel " of Champlain age, while a tlat plain of Trenton gravel lies south of the creek. The same configuration of the banks of creeks on the New Jersey shore has been noticed by Prof. Cook. By assuming that the river at the time of the deposition of this gravel was of larger volume than now, this fact is of ready explanation. The southern bank of the creek, often of Cretaceous or Tertiary strata, in each case formed the shore of the ancient river. and was worn away into a steep bank by the flood from the north. Similar in cause and effect are the present banks of the Delaware. which are steep on the outside of each curve of the river, and flat and covered with recent alluvium on the inside.

Another fact showing river action is the frequent occurrence of exposures of "flow and plunge structure" in this gravel. In these the layers are seen to dip up stream, as would be expected by downward flowing water. It is interesting to find, on the other hand, that the same structure in the 'Tertiary gravels, both of Pennsylvania and New Jersey; shows layers dipping southeast, as though deposited by incoming oceanic tides.

Another instance of the thuviatile character of the 'Trenton gravel is found in the peculiar topography which it sometimes exhibits. Frequently. in-teat of forming a dat phan, it them- hiaher atomed close to the present river chamel than it does near its ancient bank. Moreover, not only does the ground thus slope dommeart on retreating from the river, but the boulders become smaller and less abundant. Both of these facts are in accordance with the laws of river deposits. In a time of flood the rapidly flowing water in the main channel, bearing detritus, is checked by the more quiet waters at the side of the river, and is forced to deposit its gravel and boulders as a kind of bank.

In determining the comparative age of the 'Trenton gravel, a guide may be found in the amount of its erosion. In this respect a marked contrast exists between this and more ancient gravels. Unlike the land covered by older surface formations, that covered
hy the Trenton gravel is remarkably level and free from hillocki or ravines. The change in topography may be well seen in the neinhborthool of Trenton, and an be noticed ahmost anywhere along the valley. This fact alone would indicate a more recent age tham that of the elays and gravels of the Champlain epoch. This diflerence is much more marked when comparison is made with the oceanic gravels.

The actual time necessary for the Delaware to cut down to the rock through 50 feet of this gravel at Trenton is by no means great. Numerous facts have been adduced by geological writers and hy engineers to show how rapidly a stream of water can wear through loose gravel material. When it is noted that the gravel cliff at Trenton has been made, not by a straight downward cut, but by a side wearing away as at a bank, and when it is rememhered that the erosive power of the Delaware was formerly very much greater than it is now, it will be conceded that the presence of the cliff at Trenton will not necessarily infer its high anticuity. From what is known of the action of rumning water upon gravel, it is thought that the time necessary to produce the erosion now olserved might be reckoned by hundreds rather than by thousands of years. While the gravel was of course formed in a previous time, the rapid action of the flood which deposited it, shown in many places by the character of the gravel, indicates that the time necessary for its deposition need not have been long.

Having now shown that the Trenton gravel is a true river deposit of modern age, it will be of interest to inquire how such a flood as we have proved to exist could have originated. No flood within the historical epoch has been known to at all approach in magnitude that which deposited the Trenton gravel. No boulders of the size foum in and upon that gravel are ever carried down the river by recent ice-cakes. In fact, at Trenton and below, the boulders of this gravel are often much larger than any in the Champlain gravel of that part of the valley.

We have seen that at the time of the Trenton gravel flood, the lower part of Philarlelphia, the whole of Bristol and Tullytown, and almost all of Trenton were submerged. That the climate was then cold is indicated not only by the suggestion that there were then probably wery large masses of boulder-bearing ice floating in the river, but also by the fact that, as the writer is informed by Dr. C. C. Abbott. bones of Arctic animals (walrus, reindeer, mastodon),
often rounded by attrition, have been found in this gravel. Athough the Trentongravel has none of the features of a momine. it is true that the cliff at the base of Riverview ('emetory, holding immense boulders. has the appearance of having been deporitel by glacial waters. It other places, the boulders resting upen the sand overlying the gravel suggests the grommang of laref for caken derived from sonne mass of ice large enough to be called a glacier.

It is difficult to imagine an origin for such a flood as we have described other than the melting of a glacier. We have shown that the flood was not an inroad from the sea, but that it came down the valley. No rain-storms of modern experience could have supplied such an amount of water. 'To call the time of this flood a " Pluvial Epoch," will be of little assistance, since no origin for such extraordinary rains is suggested. except under a rery different dimate, or by evaporation from a melting glacier.

Yet suchatgeier camot be the great glacier of the Glacial epoch. That was the glacier which in its melting deposited the brick-clay and red gravel which we have shown to be much older than the Trenton gravel. It must have been, if a glacier at all, another and more recent one whose melting calnsed the flood which fomment this gravel. This last glacial food flowed in a chamel excavated through the deposits of the first glacial period.

It appears, then, that there is evidence of a Second Glacial berioel-a perion in which was depositerl the last of the grasels. and which has but lately passed away. From the limited extent of its deposits it is inferred that the second glacier was much smaller than the first, and that its southern extremity was confined to the valley. A second glacial period is recognized in Europe under the name of the Reindeer Period.

It is thought that the hypothesis of a second and more local slacier, long subsequent in age to the first great glacier, will explain all the facts observed. The 'Trenton gravel cannot be assigned to the first glacial perodod exeopt hy as-uming that them
 tion which can harlly be maintained. Some European archeologists have held that the Palæolithic Era, the era of the river gravels, is antecedent to the Reindeer Period, the period of the eave-men. No such distinction has been observed on the Delaware.

epoch cannot be proved in America, the facts here observed will indicate a much more recent date for the disappearance of the great glacier than has been assigned to it. The period of the Trenton eravel food, whether contemporaneous with atacier or not, is the period of the last geological deposits here known : the recent mud-flats being alone excepted.

We have now glanced at the characters of the 'Trenton gravel. and have indicated, so far as the facts at hand allow, its position. origin, and relative age.

It is in this gravel that the writer's friend, Dr. Charles C. Ahhoth, of Trenton, has made the interesting discovery of stome implements of human workmanship, which, in their shape and characters, are quite malike those of the Red Indians of the Itlantic coast. ${ }^{1}$ He has found them imbedded at varions depths in the apparently undisturbed gravel of the cliff at Riverview Cemetery and in other places near Trenton. They are of palaolithic type. and difler from Indian stone implements by being larger, ruder. and made from a different material. They are composed of gray argillite, a rock which is found in place farther up the river, and which is a Triassic shale altered and hardened by the heat from adjacent trap dykes. They occur in positions which render it extremely probable that they helong to the same age as that of the deposition of the gravel, or at least to an age when it was overflowed by the flooded river. There are two points which offer strong evidence in that direction.

The first is the fact that modern Indian implements, "neoliths." are never found associated with these "palaoliths" in the gravel. Although abundant on the surface, it is stated that they never occur at a depth of more than a few inches in undisturbed soil, while the palaoliths are found often ten or more feet from the surface. This faret alone argues a different age for the two classes of implements.

The second fact is that when found below the surface of the gromed, these patiooliths always oceur in the Trentongravel and never in older gravels. The writer, in company with Dr. Abbott, has gone over much of the groumd where the implements oceurverl : and it was very interesting to find that it was only within the limits of the Trenton gravel, previously traced out by the writer.

[^63]that Dr. Abbott had found implements below the surface. Beyond the terrace of older gravels the palmoliths sometimes occur with implements of the modern type, but are not imbedded at any depth. In Pennsylvania, moreover, the writer has found similar palwoliths in the region covered by the Trenton gravel and in that region only. Here, then, is the strongest probability, even if the implements were found upon the surface only, that they belonged to and were of coeval deposition with the river gravel.

The implements of argillite found at the lowest depth in undisturbed gravel have been generally decided by archeologists to he of human origin. It is, however, true that there are many shar $]$ fragments of this rock in the 'Trenton gravel which are of natural origin, aml that pelhles and partially rommed frasment- of the same rock are frequent. The writer has found several fragments of argillite in the gravel exposed at the cut near Wheatsheaf Station, Bucks Co., Pa., which, whether they were artificial of natural, it was impossible to determine.

All the evidence that has been gathered points to the conclusion that at the time of the Trenton gravel flood, man in a rule state lived upon the banks of the ancient Delaware. He may have been in the habit of spearing fish and seals with spears pointed by his rough stone implements, and these having been dropped into the flood may have sunk into the loose and shifting gravel. 'The weathering upon the implements is so slight as to aftord no evidence of their high antiquity. Many of the palaeoliths found in the river gravels of Europe, are of very similar type. As a rule. probably the implements of the Trentom gravel are - -mewhat mant rude. The writer is informed that even more primitive forms are now in constant use among some of our Western Indian tribes.

It is interesting to find, as pointed out by archacologists, that until lately the Eskimos have used stone implements quite as rude and similar in appearance to those found in the 'Trenton and other river gravels, and it has been suggested that that race, now living in a climate and under conditions perhaps similar to those once existing on the Delaware, may have some kinship with the preIndian people of this river. It may be that an Eskimo race, living here at the time of the flooded Delaware, were driven north hy the coming of the Red Indians. If future archaological work shows this surmise to be correct, the writer suggests that the period of the Trentongravel and of this palaolithic people,--a perioni
peohaps following a secomb glacial age, -might appropriately be called The leskimu leviod. This name, derived from a higher order wf leings than that which gave the name Peimder Period, is much mone shegestive and is probably of fully as wide application as the latter name. A term already in use, the Palrolithic Era, is also convenient.

It has been held that the oceurrence of palaeoliths at Trenton whered evidence of a very high antiquity of man in America, and, the gravel being considered as a glacial moraine, that man's exist"hee was carried back to interglacial and even preglacial times. ${ }^{1}$ As we have seen, the geological investigations along the Delaware Talley, describerl in this praper, throw quite a new light upon this sulyect. They show that the implement-bearing gravel is of postylacial age and is a river cleposit of comparatively recent formation : and that neither in the gravels of the Champlain epoch nor in deposits of any previous age have any traces of man been discovered. The evidence appears to indicate the origin of man at a time which, geologically considered at least, is recent.

The actual age of the Trenton gravel, and the consequent date to which the antifuity of man on the Delaware should be assigned, is at ifuestion which geological data alone are insufficient to solve. The only clue, and that a most unsatisfactory one, is afforded by calculations based upon the amount of erosion. This, like all geological considerations, is relative rather than absolute. The same reasoning that showed that the modern river channel might have heen excarated in hundreds rather than thousands of years, will inticate that no great length of time is necessary to produce all the surface features of the Trenton gravel. While the writer may renture to express the opinion that there is no reason geologically for carrying the age of this gravel and the antiquity of man on the Helaware farther hack than a very few thousand years at the most, he is fully aware that any close approximation can safely be arrived at only by extended comparison with other river gravels and hy a much more complete series of observations than have yet heen possible. Ethnological considerations, which make palaeolithic man to antedate the oldest races of the mound-builders, will have a learing upon this question. Meteorologists may show that

[^64]a cold climate and a perioul of a flood far larow than :ny of laters. perience may require a long lapse of time. These considerations: are not within the scope of this paper. It has been the aim of the writer to define the antiguity of man in relation to geolnoteal rather than to historical events. If, in -howing that the E-kime perion is the last of the geological ages, it does not neroseasily follow that it is by any means reeent, it must he remembered. on the other haml. that its high antiquity is not proven by the facts thus far observed.

The conclusions to which the farts seem to pmint may hrifly he summarized as follows:-

1. That the Trenton gravel, the only gravel in whiehimplementoccur, is a true river deposit of post-glacial age, and the most recent of all the gravels of the Delaware valley.
2. That the palæoliths found in it really belong to and are a part of the gravel, and that they indicate the existence of man in a rude state at a time when the flonded river flowen on top of thigravel.
 considered, an extreme antiquity of man in Eastern America.

Note on Philadelphite - a new mineral.-Mr. Lewis gave a preliminary description of a new vermiculite from near Wayne Station on the (iermantown Railroad, which he proposed to call * Philadelphite." It oceurs in plates of a brown color and talcose lustre, existing as seams in an altered hornblende rock. When luated, it exfoliates with great force to many times its original size and becomes of a coppery bronze color. It was stated that while exfoliating, it was able to lift over 50,000 times its own weight. It had a hygroscopic power nearly as great as that of chloride of ableimm. Itsontical characters and its chemical composition were given.

Amalysis ut lhiludelphite.-Mr. Reuben Hanes contributed the following analyses of Philadelphite.

Specific gravity (determined in alcohol of 95 p. c.) 2.78-2.96.

	I.	II.
SiO_{2}	39.06	38.52
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	20.59	20.01
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.75	14.82
$\mathrm{Fe}_{2} \mathrm{O}$	2.04	2.04
CaO	.99	1.08
MgO	11.49	11.32
MnO (traces)	\ldots.	\cdots
$\mathrm{Li}_{2} \mathrm{O}$ (traces)	\cdots.	\cdots
$\mathrm{K}_{2} \mathrm{O}$	6.89	6.61
$\mathrm{Na}_{2} \mathrm{O}$.90	.64
$\mathrm{H}_{2} \mathrm{O}$	4.27	4.27
F (traces)	$\cdots \cdots$	\cdots
	100.98	99.31

Per cent. of hygroscopic water in I, 3.12 p. c.; in II, 3.43 p. c.
In these analyses the mineral was dried at $100^{\circ} \mathrm{C}$., the hygroscopic water not being included in the determinations. Owing to its very hygroscopic nature, it was found very diflicult to obtain its weight at $100^{\circ} \mathrm{C}$. accurately. It gains rapidly in weight while being weighed upon the balance. Examples of its hygroscopic power were given. The analyses were made by dissolving the mineral in concentrated hydrochloric acid. Iron was estimated wolumetrically and the alkalies by Smith's method of fusion.

December 22, 1879.

THE SO-CALLED EMERY-ORE FROM CHELSEA. BETHEL TOWNSHIP. delaware county, PENNSYLYANIA.

By F. A. GENTH, JR.

At the November meeting of this Section, Dr. Cardeza called the attention of the members to a garnet rock, mined as emeryore, at Chelsea, Bethel Township, Delaware Co., Pa., and subsequently left it with me for analysis.

The rock is composed almost exclusively of rounded rhombichodecahental grains of red gramet, varying in -iz, trom a fraction of' a millimetre to over one centimetre; also a little quartz, biotite, muscovite, and magnetite. It is very friable, being easily crushed.

Its fracture is uneven, excepting in some of the larger grains, which are so much intersected by mica, that, when struck by a hammer, they brak into amgular fragment-, apparently showime a crystalline cleavage. Specific gravity $=4.028$.

An analysis of the smaller and purer grains, obtained by washing and picking out, gave:

SiO_{2}	$=$	41.11
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$=$	2.11
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$=$	21.60
FeO	$=$	25.86
MnO	$=$	2.22
CaO	$=$	1.89
MgO	$=$	5.41
		100.20

Which proves it to be an ordinary iron-alumina garnet.

Some New Mineral Locatities.-Mr. Joseph Whacox annomed the following new mineral localities:

Burgess, Ontario, Canada, on the north shome of Ridean Lake: Phogopite, (ireen lyroxene, Apatite, Kireon. North Ehmsley. near Otty Lake, ('anada: Phogopite, in Largated perfect corstals. Bedford, 'Irontenac Co., Ont., Can.: A patite (unusually tine, Black Pyroxene, Scapolite. Near Westport, Ontario, Cam. : Black Tourmaline. Russel, St. Lawrence Co., N. Y.: Steatite pseudomorphous after Tremolite and Scapolite: Black Tourmaline, with modified terminations. Macon Co.. N. ('.: Crystak of Biotite in Muscovite.

All the above were found in fine specimens, well crystallized. Specimens were exhibited to the Section.

ON PHILADELPHITE (Sp. Nov.).

BY HENHY CARVILL LEWIS.

The mineral to which the above title has been applied was found by the writer four years ago, in what was then a (quarry of hornblendic gneiss, close to the boundary of the I'wenty-second Ward. Philadelphia. The locality is on Germantown Avenue, at the bridge crossing of the Germantown and Norristown Railroad. near Wayne Station. The quarry is now walled up, and is used as a coal and lime yard.

Geologically, the locality is just at the base of the termace of metamorphic rocks which bounds the drift formations underlying the greater part of the city: Quatermary clays, boulders of the Champlain period, and tertiary gravels appear within a hundred feet of the quarry, and the waters of those diflerent epochs have successively eroded the hill rising above it. This hill, here called Negley's or Logan's Hill, about 225 feet in height, is part of the same hill or "Upland 'Ierrace," which, trending nearly northeast and southwest, has been traced continuously from here into Maryland, on the one side, and across New Jersey on the other, and Which, thongh composed of quite different rocks in different places. forms throughout, the boundary of the post-jurassic formations. ${ }^{1}$

The rock at this place is a hard black homblendic gneiss. sulyject to decomposition in its upper portions. It is well exposed in the cut on Wayne Street, where numerous minerals occur, and it is the same which is quarried at Frankford and at MeFinney's quarry, both noted mineral localities. In its altered state it crumbles easily, and when heated exfoliates. In this condition. after being crushed in a mill between heary iron rollers, it is sometimes used as a building sand.

The mineral here described as Philadelphite belongs to the vermiculite group of hydrous silicates. It oceurs both disscminated in seales throughout the gangue-rock, and also in seams, an inch or more in thickness and many feet long. Associated with it in the same quarry are erystals of sphene, epiclote and homblemice and specks of ehalcopyrite. It has been founcl in small quantitice also at Wayne Street, at MeKinney's quarry, and in (iermantomm.

Since most of the vermiculites occur in serpentinous or chloritic formations, it is to be noted that no such rocks oceur here or in the vicinity. The mineral is probably derived originally from hormblende.

Physical Characters.-Hardness, 1.3; Specific gravity, 2.80 (taken in alcohol and referred to water). Lustre pearly. Color, hy retlected light, honze; hy transmitted light, hrownish red, and in very thin laminæ, brownish yellow. Opaque, except in thin picees. Streak brownish yellow. Laminæ unelastic, readily tlexible, tough, not brittle. Feel greasy.

Crystallogromitic Characters.-Monoulinic. Cleavage; hasal, eminent; also, occasionally, a cleavage parallel to the diagonals. Striations crossing at about 90°, causing the mineral to break into nearly rectangular fragments, are sometimes observed, and these are parallel to the plane of the optic axes and to the diagonals of the rhomb. No triangular striations as in Jefferisite. Plates often contorted and wrinkled. Twin crystals frequent, observable by polarized light. Optically biaxial. Double refraction strong, negative. Optic-axial angle, $31^{\circ} 20^{\prime}-39^{\circ} 30^{\prime}$; generally 37° 士. Crystals sometimes nearly 2 inches wide and $\frac{1}{2}$ inch high. The herperbolas are well defined in the polariscope. and the angle of their divergence is more constant than in some of the other rermiculites. Twinning produces variations in the angle. ${ }^{1}$

P!/rognostic Choracters.-In the closed tube it gives off water and exfoliates with great foree, in a direction perpendicular to its base, to ten times its original rolume. Upon exfoliation it becomes of at bright copper color and takes a metallic lustre. It also becomes hrittle and more opaque. The exfoliated mineral has a far more distinct and frequent secontary vertical clearage than it has before exfoliation, and the basal clearage is also easicr. It shows strong double refraction in the polariscope, and has an optical divergence of about the same amount as that of the mignited mineral 30° to 37°). The hyperbolas are extremely ill-defined, and no exact measurements could be taken. It is yellow by transmitted light. It forms a fine object under the microscope by reflected light. The fine copper color gained on exfoliation is characteristic, disfinguishing it from the other vermiculites. The color is obtained whether it is heated sudrlenly in the flame, or slowly in an air-bath tr exfoliation. Epon long-continued ignition in a platinum cru-

[^65]cible, heated without access of air, it becomes a steel-gray color, its iron having been reduced. Before the blowpipe it gives the violet
 not intumesce when further heated.

With the fluxes it reacts for silica and iron. It is readily dissolverl by hot sulphuric acid, the pure white silian lacine hef it the original shape of the mica. It is dissolved in hydrochloric acid upon long digestion.

Chemical Composition.-In the investigation of the chemical composition of Philadelphite the writer has had the valuable advice of his friend, Prof. F. A. Genth, of the University of Pemnsylvania. The method used in the estimation of vanadium is entirely due to him. The writer is also indebted to his friend, Mr. Reuben Haines, of Germantown, for two analyses, and for some interesting experiments.

Of the four analyses given below, Numbers I and II are by Mr. Haines; Nos. III and IV by the writer. Nos. I and II were mate upen the pulverizerl minerat, previon-ly drich in an ar-lath at $100^{\circ} \mathrm{C}$.; the hygroscopic water, amounting to over 3 p.c., not being included in the determinations. "In both the analyses the sample was dissolved in concentrated IICl , and the SiO_{2} purified by digestion with HCl . The Fe and Al were precipitated together by NH,IIO and the Fe titrated by permanganate. The ferrous oxide was found by dissolving the weighed mineral in sulphuric acid in a closed flask from which the air was expelled by boiling with sodic carbonate, and titrating as before. 'The magnesia was weighed as pyrophosphate and the alkalies were separated by
 controlling the result by ignition of the platinic salt in hydrogen and weighing as metallic platinum. 'The combined $\mathrm{H}_{\mathrm{O}} \mathrm{O}$ is an average of the results of experiments N゙os. IV and VI (given below) taken at a red heat on bottom of crucible."

Analyses Nos. III and IV were made upon the ignited mineral, this being considered its most constant state. The atomic water was determined separately, and the analysis of the anhydrous mineral reducerl when the percentage of water was added. 'Lhe ignited mineral being with difliculty solnhle in acid, it was decomposed by fusion with sodic carbonate for amalysis. Alter repeated evaporation of the silica with 1 Cl , it was fomel still to contain titanic acid, which was extracted hy evaporation with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and precipitated by dilution and boiling. Adeli-
 after reduction with $\Pi_{2} \mathrm{~S}$. In one analysis titanic acid was separated from SiO_{2} by volatilizing the latter with HF , dissolving the residue in $\mathrm{I}_{2} \mathrm{SO}_{4}$, diluting and boiling. Ferrous oxide was determined in the air-dried mineral as in analyses I and II. Iron and alumina were estimated by precipitation by boiling with sodic acetate in a neutral solution, dissolving in HCl, reprecipitating with $\mathrm{NH}_{4} \mathrm{HO}$, igniting and weighing together. In the filtrate InO was precipitated by bromine and ignited.

The following method was employed for the detection of vanadium. Al arammes of impure mineral weremixed with 90 grammes of sodic carbonate and 100 grammes of sulphur, and the whole heated slowly in a Hessian crucible covered by charcoal until partially fused. It was then digested in warm water, filtered, and to the filtrate dilute HCl was added, precipitating a copious heary flocculent brown mass of the sulphides of vanadium, copper, cobalt and nickel. The precipitate was washed, ignited and evaporated with nitric acid, when it gave a red residue. This was fused with a mixture of sodic carbonate and sodic nitrate, and extracted with water in order to separate the oxides of copper, cobalt and nickel. Solid ammonic chloride was now added to the aqueous solution, when vanadate of ammonia was precipitated. Upon ignition it was changed to vanadic oxide, and was found to be pure, giving all the characteristic reactions.

For the estimation of vanadium the following method was employed. $4 \frac{1}{2}$ grammes of the pulverized ignited mica were fused with a mixture of 3 parts NaCO_{3} and 1 part NaNO_{3}, the mass extracted with $\mathrm{H}_{2} \mathrm{O}$, filtered, and the filtrate digested with $\mathrm{H}_{2} \mathrm{~S}$. Traces of CuS and FeS were filtered off, and the silica eliminated by evaporation to dryness and addition of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. $\Pi_{2} \mathrm{~S}$ was again added, giving a blue solution. After driving off the $\mathrm{H}_{2} \mathrm{~S}$ by heat, the vanadic acid present was estimated volumetrically ly the addition of a measured portion of a standard solution of permanganate of potash.

Magnesia was determined as pyrophosphate, and the alkalies by means of Smith's method. Phosphoric acid was precipitated as phosphomolybdate of ammonia, and weighed as pyrophosphate of magnesia.

On account of the remarkable hygroscopic poweis of Philadelphite, great difliculty was experienced in the estimation of the comhined water. Nearly one-half of the water in the air-dried mineral
is hygroscopic, and may be driven off either by long exposure over sulphuric acid in a desiccator, or by drying in an atir-bath at 100° C. The percentage of water given in the analyses represents approximately the amount of water in the mineral after such resiccation.

Spec. grav. (taken in alcohol of 95 p . c.) 2.78-2.96.

	I.	II.	Mean.	Quantivalent ratio.		
SiO_{2}	39.06	38.52	38.79	2.587	2.557	5.45
$\mathrm{Nl}_{2} \mathrm{O}_{3}$	14.75	14.82	14.78	. 861	1.622	3.42
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	20.59	20.01	20.30	. 761	1.02-	3.42
$\mathrm{Fe}_{2} \mathrm{O}$	2.04	2.04	2.04	. 056		
MnO	trace	trace	- .		
MgO	11.49	11.32	11.40	. 570		
CaO	. 99	1.08	1.03	. 037	. 831	1.7
$\mathrm{Na}_{2} \mathrm{O}$. 90	. 64	. 77	. 025	. 831	1.15
$\mathrm{Li}_{2} \mathrm{O}$	trace	trace		
$\mathrm{K}_{2} \mathrm{O}$	6.89	6.61	6.75	. 143		
F	trace	trace				
$\mathrm{H}_{2} \mathrm{O}$	4.27	4.27	4.27	. 474	. 474	1.-
	100.98	99.31	100.13			

II ygroscopic water in I, 3 12; in II, 3.43.
Spec. grav. (taken in alcohol of 84 p. c. on the air-driect mineral) $\therefore .51$.

	III.	IV.	Mean.	Quantivalent ratio.			
SiO_{2}	35.94	35.52	35.73	2.38	2.43	5.05	5
TiO_{2}	1.30	. 77	1.03	. 05	2.40	5.05	5
$\mathrm{Al}_{2} \mathrm{O}_{3}$	15.23	16.32	15.77	. 91			
Fro	1:1.4	19.4:	11.414	-7:	1.1:i)	: 3.4 :	3
$\mathrm{V}_{2} \mathrm{O}_{3}$. 37	. 36	. 37	. 01			
FeO	2.09	2.28	2.18	. 06			
MnO	. 46	. 55	. 50	. 01			
$\mathrm{NiO}\}$	trace	. 06	. 06	. .			
CuO	trace	. 08	. 08				
MgO	11.41	11.72	11.56	. 58			
CaO	1.38	1.54	1.46	. 05	. 87	1.80	2
$\mathrm{Na}_{2} \mathrm{O}$	1.42	. 38	. 90	.03			
Li, O	trace	trace		.			
K 2	6.52	7.11	6.81	. 14			
$\mathrm{P}^{\prime} \mathrm{O}_{3}$	trace	. 11	. 11	.			
Cl	trace	trace					
$\mathrm{II}_{2} \mathrm{SO}_{4}$	trace	trace	.	\cdots			
$\mathrm{H}_{2} \mathrm{O}$	4.34	4.34	4.34	. 48	. 45	1.-	1
	99.94	100.683	100.45				

11 ygroscopic water in II I and IV, 3.2.4.

From both these pair of analyses we have the ratio
R: 픈: $\mathrm{Si}: \mathrm{H}=2: 3: 5: 1$ and $\dot{\mathrm{R}}$ 关: $\mathrm{Si}:$ 并 $=1: 1: \frac{1}{6}$. The ratio of bases to silica is $1: 1$, and for sesquioxides to protoxides. $\stackrel{\text { Y }}{\mathrm{I}}: \stackrel{\text { " }}{\mathrm{R}}=2: 1$.

Philadelphite dried at $100^{\circ} \mathrm{C}$. appears to be a unisilicate, the water not being basic.

The formula may perhaps be written

$$
\frac{s i n}{5}\left\|O_{4}\right\|\left[\frac{2}{5}\left(\mathrm{~K}_{2}, \frac{\cdots}{25}\right)+\frac{3}{5} \beta\left(\frac{11}{41}, \mathrm{~N}_{2}\right)\right]_{2}+\frac{2}{5} \text { ac }
$$

The general symbol would be,

$$
\stackrel{\text { R }}{4}^{4} \stackrel{: 1}{\mathrm{I}_{2}}, \mathrm{O}_{20} . \mathrm{Si}_{5 \cdot} 2 \mathrm{H}_{2} \mathrm{O} .
$$

The water will be regarded as water of crystallization. Prof. Cooke has shown the close chemical relation between the anhydrons rermiculites and hotite. A like result is brought out hy the following analysis of ignited Philadelphite. The analysis is a mean of the two analyses of the anhydrous mineral which formed analyses Nos. III and IV of the mineral dried at $100^{\circ} \mathrm{C}$.
V.

$\frac{2}{2}$			Quant. ratio.		
SiO_{2}	37.35	2.49)	2.54	2.82	3
TiO_{2}	1.08	. 05 \}	2.54	2.82	3
$\mathrm{Al}_{2} \mathrm{O}_{3}$	16.49	.96)			
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	20.33	$.76\}$	1.73	1.92	2
$\mathrm{V}_{2} \mathrm{O}_{3}$. 38	. 01)			
FeO	2.28	. 06			
MnO	. 52	. 01)			
MgO	12.09	. 60	. 90	1.-	1
CaO	1.53	. 05	. 90	1.-	1
$\mathrm{Na}_{2} \mathrm{O}$. 94	. 03)			
$\mathrm{K}_{2} \mathrm{O}$	7.13	. 15			
	100.12				

 grous as the anhydrous mineral is to hiotite in its formula, it has been shown that physically and optically the two minerals are quite discimilar, and it is not proven that they have any necessary connection. It is by no means a hydrous biotite in the sense that margarorlite is a hyroms muscovite, in which cave the characters. optical aurl physical, are inentical. Such hrolrous hotites occur in several places in the vicinity of Philadelphia, in a partially
altered micaceous gneiss, in which the muscovite has become margarodite, and the orthoclase become white and crumbling. Such mica exfoliates slightly when heated, is miaxial, fusible
 It frequently oceurs enclosed in crystals of margarodite, or in muscovite passing into margarodite.

Hygroscopic Properties.-In the determination of water in its litterent states in Philarlelphite, the prineipal ditlenlty was on account of the strong hygroscopic properties possessed by the mineral. Ifter the water has heen expelled by heat of desionation. it is rapidly absorbed again from the air, if exposed. Upon the balance, the dried mineral gains so rrapidly that it was found necessary while weishing to enclose it in corkel tnbes. It apmans to absorb water with the avidity of chloride of calcium. Even when enclosent in watch-glasises elat-ped together ant standing in
 The following experiments ly Mr. Hatines illu-tmate it hygroscopic properties :
(1) Weight of undried mica, 9935Grammes.
Heated at $100^{\circ} \mathrm{C}$. for $1 \frac{1}{2}$ hours,
Weight after standing in balance-case with CaCl_{2} for 3 days, 9915
Reheated for 3 hours at $100^{\circ} \mathrm{C}$., 9580
Left on balance 20 minutes. Gain in weight, 0070
Left on balance 2 hours. 'Total gain in weight, 0085
(2) Weight of undried miea, 1.1280
Heated at $100^{\circ} \mathrm{C}$. for 3 hours, 1.0965
Left in balance-case with CaCl_{2} for 1 hour, 1.1175
Left in balance-case with CaCl_{2} for $1 \frac{1}{2}$ hours, 1.1230
Left in balance-case with CaCl_{2} for $2 \frac{1}{2}$ hours, 1.1250
Left in balance-case with CaCl_{2} for 2 days, 1.1260
(3) Undried mica heated at $100^{\circ} \mathrm{C}$. for $6 \frac{1}{2}$ hours. Loss, 2.49 1. c.
On standing in balance-case with CaCl_{2} for $2 \frac{1}{2}$days, regained nearly the whole of its originalweight (all but 2 milligrammes). Againheated at 100° for 3 hours, loss of weight,3.09 p . с.
These experiments, showing that nearly the total amount ofhygroscopie water is regained even in the presence of such an
active desiceator as chloride of calcimm, indicate a remarkable hygroseopic force in the dried substance ; a property not easy to explain. It will be noticed that this force is exereised much more powertully immediately after desiceation than it is after a lapse of time. Experiment No. (2) shows that two-thirds of the water is albsorbed during the first hour. It has been found that the amomnt of water in the powdered mineral varies with the hygrometric state of the atmosphere at the time of weighing. It is interesting to note that several of the zeolites, a class of hydrous silicates whose exfoliation by heat is very like that of the vermiculites, also have strong hygroscopic powers, losing and regaining part of their water with ease. ${ }^{1}$

Water of Crystallization.-The water in Philadelphite probably exists in three theoretical conditions, viz. :-Hygroscopic water, water of erystallization and water of constitution. The first is driven off by drying at $100^{\circ} \mathrm{C}$. or by exposure to dry air over $\mathrm{H}_{2} \mathrm{SO}_{4}$; the second by gentle ignition, and is accompanied by exfoliation ; the third by strong and prolonged ignition. The latter, which probably does not much exceed 1 per cent., and which the analyses have shown is not needed with the basic radicals to complete the unisilicate formula, will be regarded with the water of crystallization. The most satisfactory determinations of the water of crystallization have been made by subtracting the hygroscopic water from the total water.

The following experiments have been made upon the amount and condition of the water.
(1). The dry mica, which had been out of the quarry for more than a year, was cut into pieces about 5 mm . square, heated in a platinum crucible to a bright red heat for 25 minutes, cooled in a desiccator over $\mathrm{H}_{2} \mathrm{SO}_{4}$ for half an hour, and then quickly weighed. It lost 7.58 per cent., which will be regarded as the total amount of water.
(2). The finely powdered mica holds more water. Different experiments gare:-7.84 (ignited 10 minutes), $7.89,7.90,8.11$ (ignited 25 minutes), 7.50 (powdered just previous to ignition). strons ienitionof the powered mica proinal, ly rolatilizes some of the alkalies in addition to the water.

[^66](3) The tincly powdered mica was divided into two portions. one of which was spread out on an open wateln-rlats, the other placed in a crucible. Both were weighed, put in a desiccator over sulphuric acid, and let stand unopened for two months. 'That in the erucible lost 2.76 per cent. of water. 'That on the watelh-glas: hatd lost :3st per cent. On standing is or 4 minutes upon the scale-pan it gained .53 per cent. of water from the air: L'pon exposure over sulphuric acid in the desiccator $2 t$ hours longer and then being quickly weighed, it was found to have lost 3.99 per cent. It was now placed in an air-bath and kept at a temperature of 100° C. for 4 hours. After cooling 15 minutes in the desiceator: it was found to have gained in weight about $\frac{1}{2}$ per eent., indicating that the desiccation over sulphuric acid was more complete than that in the air-bath at $100^{\circ} \mathrm{C}$. That in the erucible lost on ignition 5.97 per cent. of its weight.
(t). The powdered micat was placed in a watch-glass in a desiccator over sulphuric acid.

After 27 clays it lad lost 2.28 per cent.
" 40 6 "6 : " 2.3 (5
During weighing, it was enclosed in clasped watch-glasses. It was now put in a crucible and ignited.

The dried mineral lost on 1 st ignition, 5.18 per cent.

$$
\begin{array}{lllllll}
6 & 6 & 6 & 201 & 6 & 5.36 & " \\
6 & 6 & 6 & 38 & 6 & 5.47 & 6
\end{array}
$$

(5). The following direct determinations of water of erystallization were made from the mica, dried in a glass tube, corked while weighing, and then ignited in a crucible.

	Desiccation.	Time or Desiccation.	Innition	$\begin{gathered} \text { Loss of } \\ \text { water in } \\ \text { dried miner:l. } \end{gathered}$
(i)	$100^{\circ} \mathrm{C}$. in air-bath.	24 hours.	15 min .	5.38 p.c.
(1)	"6 6	3 days.	20 min .	5.
(c)	over $\mathrm{H}_{2} \mathrm{SO}_{4}$	2 weeks.	is times.	5. ${ }^{\text {a }}$ (0)
			Mean.	¢. 3 ²

This determination is thought to be too high, inclutines some hygroscopic water, since the mica in a tube camot be perfectly desiccated.

A mean of the three determinations of hygroseopic water ahb sorbed over sulphturic acid gives 3.2 \& per cent., which deducted
from the total water, 7.58 per cent., gives for water of erystallization, 4.34 per cent. As will be seen below, a similar amount is deduced from Mr. Haines' experiments.

The following experiments by Mr. Haines have been kindly Haced at the disposal of the writer. They may be relied upon as having been performed with great care.
I. The powdered mica is placed in a desiccator over concentrated sulphuric acid.
(a) Dried 15 days. Loss, 2.69 per cent.
(b) " $10 \quad$ "
" 2.89 "
II. The undried mica is heated in an air-bath at $100^{\circ} \mathrm{C}$.
(a) Heated 3 hours. Loss, 3.14 per cent.
(b)
" 3.33 "6
(c)
(d) $\quad 6 \quad 5 \frac{1}{2} \quad$ "
" 3.42 66
" 3.69 6
Weights. Per cent. of loss.

III. Weight before heating.	1.0880	
Heated at $100^{\circ}, 1 \frac{1}{2}$ hours.	1.0613	2.46
" $4 \frac{1}{2}$ "	1.0598	2.59
Over $\mathrm{H}_{2} \mathrm{SO}_{4}$ and heated 5 hours at 100°.	1.0558	2.96
Heated 2 hours at 100° and cooled over $\mathrm{H}_{2} \mathrm{SO}_{4}$.	1.0613	2.46

Weight. Total Loss from Incre p.c. of p.c. of loss. $100^{\circ} \mathrm{C}$. ment total 10 oss fr.
IV. Weight before heating. . 9035

Heated at 100° C. for 1 hr . . 8743 . 02923.23
" 100° "6 2 "6 . 8730 .0305 337

" $\quad 119^{\circ} \quad$ " $61 \begin{array}{llllllllll} & \text { " } & .8705 & .0330 & .0025 & .0010 & 3.65 & 0.28\end{array}$
" full redheat $5 \mathrm{~min} . .8350 \quad .0685 \quad .0380 \quad .0355 \quad 7.58 \quad 4.34$
-" over blast lamp
1st time. .8270 .0765 .0460 $\quad 0080 \quad 8.46$
" over blast lamp
2d time. $8280 \quad .0755 \quad .0450 \quad 8.35 \quad 5.15$

```
                                    Weight. Total Ionsfrom Incre- J.e. of p.c. of
                                    loss. 100.C. ment total loseir.
```



```
    " at }10\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ . .7827 .0225 2.79
    " at }12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ . cooled
        for 3 minutes. .7757 .0295 .0070 .0070 3..6; 0.8!)
    " at }150\mp@subsup{0}{}{\circ}\mathrm{ cooled for
        3 minutes. .7682 .0370 .0145 .0075 4.59 1.85
    6 at 170}-175\mp@subsup{5}{}{\circ}\mathrm{ cool-
        ed for 4 min. .7682 .0370 .0145 4.5% 1.85
    " 190
        minutes. .7647 .0405 .0180 .0035 5.03 2.30
VI. Weight of undried mica. .9855
        " at }10\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ , heated
            several hours. .9615 .0240 2.43
Below faint red heat. . 9445 .0410 .0170 .0170 4.16 1.7%
Heated to pale red at
    bottom of crucible. . 9320 .0535 .0295 .0125 5.32 3.07
        Heated to bright red at
    bottom of crucible. . .2210 .0645 .0405 .0110 6.54 4.21
        Heated to full red on
    whole crucible. . .148 .0707 .0467 .0062 7.17 4.85
```

VII. Total water.
(a) Loss of weight at red heat,
7.30 per cent.
(b) " 6 on ignition,
7.50 "
(c) 6 6 6 times, 7.86 6

From the above experiments of Mr. Haines in connection with Nos. (1), (2) and (3) under "lygroscopic properties," we may deduce the following percentages:

For total water, we have (IV), $7.58 \mathrm{p} . \mathrm{c}$. ; (VI), 7.17; (VII, a. b, c), 7.30, 7.50, 7.86 .

Mean total water, 7.48 per cent.
For hygroscopic water, driven off at 100°, we have
Exp. (1) Exp. (1) Exp. (2) Exp. (3)
Analysis I. Analysis II. Heated $1 \frac{1}{2}$ hrs. Reheated 3 hrs. 3 hrs. 3 hres.

A mean of these if determinations gives for hygroscopic Water 8.17 per cent.

Subtateting this from the mean total water, 7.48 per cent., we have for water of erystallization 4.31 per cent., an amount closely agreeing with that deduced from the writer's experiments. The desiccation over sulphurie acid in Exp. I is for too short a time to completely extract the hygroscopic water.

The exact state of the water camot yet be regarded as certainly established. There is no reason why a fixed temperature of 100° C. should divide the hygroseopic water from the water of crystallization. The above experiments show that the loss of water as the temperature is raised above that point is a very gradual one. It is cliflicult to see in what manner the water driven off at 190° in experiment T, differs from that driven off at 100°. It will be seen hereafter that much of the water can be driven off without exfoliation. Again, there is no sufficient reason why some of the water absorbed by sulphuric acid in the desiccator may not be water of crystallization. It has been long known that sulphate of copper either at $100^{\circ} \mathrm{C}$. or in a desiccator orer sulphuric acid loses much of its water of crystallization. M. Damour has shown that chabazite loses nearly half of its water in a desiccator. It -rome prohahle that Philadelphite, with other vermiculites, holds its water in a similar manner. From the experiments here detailed it would seem that we may define water of constitution to be the more closely combined, and hygroscopic water the less closely combined water of crystallization; and the distinction between the three states of water then becomes a theoretical rather than a practical one.

Temperature of Exfoliation.-The temperature at which exfoliation oceurs is from 150° to $160^{\circ} \mathrm{C}$. It has been found that the exfoliation temperature is proportional directly to the original volume of the substance, and inversely to the rapidity of the application of heat. The larger the piece experimented upon, the higher the temperature necessary to make it exfoliate, and the more rapidly the heat can be applied, the sooner will it exfoliate; as the following experiments will show.
(a) Very small fragments heated on a wateh-glass in an air-bath hegan to exfoliate at $150^{\circ} \mathrm{C}$.
(b) A large piece heated similarly did not exfoliate at $210^{\circ} \mathrm{C}$.
(c) A piece was immersed in melted parafline. At $100^{\circ} \mathrm{C}$.
bubbles went off' slowly, but there was no exfoliation. 'The temperature being raised, it made the first movement at lfo , exfoliated vigorously at 175°, and at 180° rose from its support to the surface of the paraftine.
(d) Another piece similarly immersed gave hubbles hriskly at 130°, and began to exfoliate at 160°.
(e) Pieces thrown into melted parafline whose temperature had previously been raised to 160° C., immediately exfoliated and rose to the surface.
(f) A large piece did not exfoliate even after the temperature had been gradually raised to $225^{\circ} \mathrm{C}$.
(g) Immersed in melted sulphur, it immediately exfoliated and strongly effervesced.
(h) Immersed in concentrated sulphuric acid which had been heated to $160^{\circ} \mathrm{C}$., it immediately exfoliated and became pure white, being completely and immediately decomposed. Immersed similarly at a temperature of $150^{\circ} \mathrm{C}$. it exfoliated, but clicl not become immediately white. At a lower temperature no extoliation oceurred. A similar piece being similarly immersed and the temperature raised, began to exfoliate at $130^{\circ} \mathrm{C}$., and continued exfoliating as the temperature rose, though being meanwhile decomposed. This sudden change of form and color upon immersion in hot sulphuric acid recalls a somewhat similar change in the efllorescence of protosulphate of iron when immersed in the same acid.

It is seen from these experiments that no absolute determination of the exfoliation temperature is possible. By a very slow heat a large proportion of the water (about 5 per cent.) can be driven otl and the mica raised to a high heat without any exfoliation of consequence. The following experiment illustrates this fact.
(k) A piece of Philadelphite was cut into two equal portions. One piece, heated suddenly on platinum foil to a red heat, exfoliated to ten times its original volume. The other piece was slowly heated in an air-bath. It $285^{\circ} \mathrm{C}$. it had extoliated hut very slightly. It was then taken ont and heated on platinum twil to a red heat, when it exfoliated very little more, becoming unly onefourth the length of the first piece.

A similar experiment has been mate upon heulanclite ame stillite from near Philadelphia. Both of these zeolites, as is well known. exfoliate largely when held in the llame. It has heen fomut that if they are heated rey slowly on phatinum foil, they ean he rased
to a white heat withont exfoliation, and when afterwards held in the tlame, extoliate but slightly. Apparently the water in Philadelphite is combined precisely as in the zeolites.

It appears that it is as ditlicult to make a distinction between water of cry-tallization and water of constitution as it is to make one between the former and hygroscopic water.

Amount of Exfoliation.-The amount of exfoliation is quite constant at ten times the original volume.
\(\left.$$
\begin{array}{ccc}\begin{array}{c}\text { Original thichness. } \\
\text { Inches. }\end{array} & \begin{array}{c}\text { Thickness after exfoliation. } \\
\text { Inches. }\end{array}
$$ \& Ratio.

.015 \& .13

.015 \& .17

.02 \& .2

.03 \& .25

.04 \& .47

.06 \& .68\end{array}\right\}\) mean | $1: 10$ |
| :--- |

These experiments were made byeating the mica on platinum foil over the flame of a Bunsen burner. The heat must be sudden in order to have a large exfoliation (v. Exp't. k). Exfoliation takes place in one direction only, viz., at right angles to the clearage. No lateral expansion whatever occurs. When the thame is applied to one side of the mica, that side exfoliates the most, and calleses the exfoliating mineral to curve in the opposite direction.

Force of Exfoliation.-It has been found that the force exerrised during the exfoliation of Philadelphite is enormous. In one experiment a fragment of it while exfoliating lifted more than . 1,000 times its own weight. The force of exfoliation is governed by a law which is the inverse of that controlling the exfoliation temperature. It may be stated thus: The force of exfoliation increases directly with the rapidity of the expulsion of water, and inversely with the volume of the substance. The latter part ot the law follows as a necessary consequence of the first part, since the smallew the fragment. the more rapidly and completely can it be heated. Various experiments were made, and thongh performed in an extremely rough manner, will give an idea of this force. 'To find what amount a given weight of the mica could lift when exfoliating, iron pombl-weights were placed upon the ring of a retort stand and connecten with the fragment of mica placed on a support immediately below them. A pencil of chalk or gas
carlon resting loosely in a perpendicular position hetween the mica and the centre of the weights connected them so that any expansion of the mica would lift the weights from ofl the ring on which they rested. The blowpipe flame was now directed from one side upon the mica.

a, retort stand. b, ring. c, support. d, weight. e, pencil of chalk.
f, fragment of mica.

In the following table of experiments, the first column represents the weight of the fragment of mica, and the second column, the iron weight which was lifted by the exfoliating mica.

Phitadelph	hite.		Weight.		
15 g	grains	lifted	10 lbs .	avoirdupois.	
6	"	،	10 lbs .	"	
$5 \frac{1}{2}$	"	"	10 lbs .	:	
$2 \frac{1}{2}$	"	6	10 lbs .	:	
2	"	"	5 lbs .	"	
$1 \frac{1}{2}$	"	"	2 lbs .	¢	
1	"	"	3 lhs .	"	
$\frac{2}{3}$	"	"	2 lbs .	"	
$\frac{1}{2}$	6	"	3 lbs .	"	readily
$\frac{1}{2}$	"	"	4 lbs .	6	,

In the last experiment the four-pound weight was lifted up and thrown off the ring supporting it ; the weight lifted being 56,000 times the weight of the mica.

A remarkable motive power is here dereloped. 'That it is owing solely to the escape of the combined water is shown by the fiet that if the weights are so arranged that the mical can only slightly expand, and, after heating, are removed, the miea will expand no more, or very slightly more, upon further application of heat, the water having been in great part expelled. It the mica is confined under a weight so heary that it is impossible for it to
extoliate, and is suddenly heated by the flame, it necasionally (xplocles with a loud report, throwing ofl fragments laterally into the air.

It may be stated that the exfoliated mineral when powdered, forms a handsome and permanent bronze powder not liable to tarnish. and useful in the arts.

A Potsdam Sandstone Outcrop on the S. Talley ITill of C'hester. Valley.-Mr. H. C. Lewis remarked that an occurrence of Potsdam sandstone on the farm of Mr. S. 'Tyson, near Kingr of P'russia. Montgomery Co., to which Mr. 'T. D. Rand had directerl attention last May, was of considerable interest. A recent examination of the locality with Mr. Rand, had shown that the blocks of samclstone there found were not, as had been supposed, out of place. but belonged to a narrow outcrop of the sandstone on the South Valley Hill. It had a strike, and apparently a dip, nearly identical with that of the limestone in the valley below. In one place the decomposed rock is quarried for white sand. Pits for iron ore have been sunk in a very ferruginous variety of the same rock. The exposure, which can be traced by hlocks upon the surface, suddenly comes to an end in a ravine, as though by a fault. A tongue of sandstone blocks extends three hundred yards on more down this ravine, towards the raller, in a line at right angles to the line of strike. On the farther side of the ravine, to the east, no sandstone has been found, its pace being filled by the usual damourite slate of the South Valley Hill. The blocks of sandstone therefore make an "L," the shorter arm of which extends down the ravine. There is here an interesting example of the work of erosion in carrying down these blocks to a lower level. Whether or not the existence of a fault can be proved, the occurrence of Potsdam sandstone at a new locality on the South Valley Hill is well worthy of study: This formation forms the North Talley Hill, but is almost totally absent on the south Valley Hill. It is found here only in a few isolated patches. Its place is supplied by a greenish damourite slate. If, as is sup)posed, the North and South Valley Hills are opposite sides of a synclinal trough which dips beneath the limestone of Chester. Valley, it is curious that the rocks of each hill are so very dissimilar: It is important that each one of the rare exposures nf sandstone on the South Valley Hill should be made known, and it is thought that a determination of their relations to the arljoining slates will greatly help to elucidate the geology of that region.

JUEY 6.
The I'resident, Dr. Ruscmenberger, in the chair. Eleven persons present.

JULY 13.
The President, Dr. Ruschexberger, in the chair. Six persons present.

July 20.

The President, Dr. Ruschenberger, in the chair.
Ten persons present.

JULY 27.

The President, Dr. Ruschenberger, in the chair.
Eleven persons present.
The death of Constantine Hering, M. D. was announced.
Fresh-water Sponges of Fairmount Park.-Mr. Potts reported that he had found in a small stream within the limits of the late
 species of Fresh-water Sponges, one of which appears to be un-- leweriberl and the others ditlior in important point-trom the pathlished descriptions. In anticipation of a more detailed paper rescribing these and some other forms which had come under his notice, he said-that one of these known as the common green -ponge of thi-neightorhoot. resembles tha- Entopean symmilla lacustris in its general appearance and in the shape of its skeleton and dermal spicule; but differs in that the seed-like bodies or spherula are entirely smooth, showing no incrustation of curved pined spiculæ as described in the European species.

The second form was first seen as a thin rust-colored incrust:rtion, afterwards discovered to consist of spherulx forming a continuous layer. Supposing this to be new he harl named it provisionally S. Morgiana ; but later examinations of the living
 of Leidy.
 Willow roots. matting them together and that fimminer loose ir-

 globular, light rellow or hown, rathremmern- amoner the
roots and spiculx; covered with long birotulate spiculic radially arramged: foramen chomated into a tulne larimg at it - "xtroming

 decomposes early in the season and most of the skeleton spicule are then washed away; but these tendrils hold the mass of

 name S. tentasperma or tendril seeded.

Dr. M. H. De Bey of Aix-la-Chapelle and Irof. 'Torquato Taramelli of Pavia were elected correspondents.

August 3.
The President, Dr. Ruschenberger, in the chair
Sixteen persons present.
The death of James Ridings, a member, was amounced.
Notes on Jarosite.-Prof. George A. Kionit communicated his discovery of Jarosite at the "Iron Arrow Mine," in Chatfee Co., Colorado.

The mineral occurs there in seams and cavitics of silicions thurgite and hematite, which iron ores crop out on the steep side of a Porphyry hill about 600 feet above the Arkansas River. flowing at a distance of two miles to the south.

The mineral appears in small, but very brilliant crystals, isolated

 erystalline masses were observed.

The crystals are rhombohedrons (resembling cubes), modifiet by the basal plane. The speaker had not ohserved as yet a cerytal of sufficient size to be accurately measured. Hardness slightly above selenite; color, from light amber-yellow to deep brown.
 ons on the fracture. Sp . gr. $=8.144$.
 hefore mentioned, which showed an admixture of chaleedony aml
 mechanically, being too small.

The mean of two analyses gave :

$$
\begin{aligned}
& \mathrm{Fe}_{2} \mathrm{O}_{3}=51.10 \\
& \mathrm{~K}_{2} \mathrm{O}=7.13 \\
& \mathrm{Na}_{2} \mathrm{O}=0.84 \\
& \mathrm{SO}_{3}=28.57 \\
& \mathrm{H}_{2} \mathrm{O}=10.56 \\
& \mathrm{SiO}_{2}=2.40
\end{aligned}
$$

C'alculated from the analysis:

$\mathrm{K}_{2} \mathrm{Fe}_{0} \mathrm{~S}_{4} \mathrm{O}_{22}+6 \mathrm{H}_{2} \mathrm{O}$	$=$	S 9.5 S
$\mathrm{Fe}_{4} \mathrm{H}_{2} \mathrm{O}_{7}$ (Thurgite)	$=8.67$	
Excess of water	$=$	0.39
Chalcedony $\left(\mathrm{SiO}_{2}\right)$	$=$	2.40
		$\underline{100.94}$

This result may be estimated as a confirmation of Richter's amalysis, which gave to Jarosite the formula of "alunite," with which it is isomorphous.

$$
\begin{array}{r}
\text { Thus Alunite }=\mathrm{K}_{2} \mathrm{Al}_{6} \mathrm{~S}_{4} \mathrm{O}_{22}+6 \mathrm{~A}_{2} \mathrm{O} \\
\text { Jarosite }=\mathrm{K}_{2} \mathrm{Fe}_{6} \mathrm{~S}_{4} \mathrm{O}_{22}+6 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

The utmost care was given to the estimation of the alkalies, the sulphrie acinl and the water, as the question of eonstitution mant. he dependent mainly upon them.

August 10 .

T'he President, Dr. Ruschenberger, in the chair. Sisteen persons present.

August 17.

The President, Dr. Ruschenbergerb, in the chair.
'Iwelve persons present.
A paper entitled " Rhizoports in the Mosses of the Summit of Koan Momatain L . C.." hy Jǒ. Ledy. M. D. was presented for publication.

August 31.

The President, Dr. Ruschenberger, in the chair. Fourteen persons present.
The following was ordered to be printed:

RHIZJPODS IN THE MOSSES OF THi: SUMMIT OF RJAN MOUNTAIN. NORTH CAROLINA.

13X JOSEPM LEIDX゙, M. 1.
In a trip to Roan Mountain, Mitchell Co., North Carolina, in the early part of July, the writer was led to make some observat tions on the microscopic animal life, among the mosses on the summit of the mountain. 'The top of Roan Monntain, at an altitude of 6367 feet, forms an extensire grassy prairie, suitable for pasture. It is adorned with broad patches of the beautiful Ploododendron cataubiense, and bordered with forests, chiefly of FirsAbies canadensis and A. Fraseri. 'The floor of the forests, made up of broken granitic and gueissoid rocks and fallen timbers, is thickly carpeted with a luxuriant growth of mosses, conspicuously decorated at the time by the common Wood-Sorrel, Oxalis acetosella. Chief among the mosses, each apparently attempting to ontvie the others in the exuberance of its growth, were the three protty Hypnums-H. splendens, H. criste-castrensis, and $I I$. triquetrum.

Clouds, dews, and frequent rains keep the mossy carpet more or less moist or wet the greater part of the time, and it thus comes to be a favorable habitation for many of the humbler forms of animal life. The shell-covered Rhizopods abound ; and the Wheel Animalcule, Rotifer vulgaris, and the Water Bear, Macrobiotus: Hufelaudii also find a suitable home in it. When the mosses hecome more or less dry, the animalcules they shelter become torpid, and then again become active on the restoration of moisture.

In water squeezed from the Hypumms, besides the animals just indicated there were noticed a few young Anguillules, pollen grains of Abies, starch grains, spores of lichens and fungi, ova, regetal hairs, etc. Few or no living Diatomes or Desmids were present.

The Rhizopods observed were as follows:
Nebeda fabbelulum.-Common. Nearly circular in outline. nsually slightly broader than long, and commonly with a short neek or rim to the month; colorless or with a feehle yellowish fint ; composed of circular cancelli of variable size and propor-
:imb and deerwo of di-tinetness. Individual specimens presented the following measurements. ${ }^{1}$
:t. Specimens of equal length and breadth, or of greater breadth than length.

2.	"	0.066,	"	0.069 ,	"	"	"	0.018 ,	"	0.006
3.	"	0.06'6,	"	0072,	"	"	"	0.015 ,	"	0.006
4, $)^{\text {a }}$	"	0.066,	"	0.072,	"	"	"	0.018 ,	"	0.006
16.	"	0.072,	"	0.078,	"	"	"	0.018 ,	"	0.003 .
7.	"	0.078,	"	0.078,	"	"	"	0.024 ,	"	0.006
8, 9.	"	0.078 ,	6	0.084,	،	"	"	0018 ,	"	0.006 .
10.	"	0.078,	"	0.084,	"	"	"	0.024,	"	0.004 .
11.	"	0.084,	"	0.084,	"	"	"	0.024 ,	"	obsolete.
12.	"	0.084,	"	0.09,	"	"	"	0.018 ,	"	0.006 .
1.3.	"	0.084,	"	0.09,	"	"	"	-0.021,	"	0.006
14-18.	"	0.084,	"	0.09,	"	"	"	0.024,	"	0.006 .
19.	"	0.081,	"	0.096,	"	"	"	0.024,	"	0.006
20 。	"	0.096 ,	"	0.096,	"	"	"	0.03,	"	0.006 .

b. Specimens slightly longer than broad.

22, 23. ${ }^{\text {a }}$	0.084,	"	0.078,	"	"	"	0.018 ,	"	0.006 .
24. "	0.09,	"	0.084,	"	"	"	0.018 ,	"	0.0
23. "	0.09,	،	0.078,	"	"	"	0.024,		0.0

In many the sarcode was contracted into a ball, encysted, and the month of the shell closed with an opercle. Sarcorle colorless, but -ometimes mingled with yellow and brown food halls; some oleaginous in appearance. Mostly, a pore was readily distinguishable on each side of the body of the shell, about one-third the distance of the length above the month ; and the wall of the shell wa-observed to be semsibly thickener approaching the pore. The -hell was usually minutely and more or less distinctly cancellated, the ameelli being rircular, sometimes nearly miform, at others greatly diftering in size. Occasionally the cancellated condition wan so indistinct that the shell appeared faintly granular and even nearly structureless.
${ }^{1}$ The measurements are given in divisions of the millemetre. As nearly all the Rlaizopords indicated are compressed forms, the measurements are friven from their most convenient position as usually seen, that is to say, in the greater breadth.

Nebfea enllaris.-Oceasional. Flask-like forms, with the usual variations in the condition of the cancellated structure of the shell; sometimes finely punctate, but mostly with distinct circular cancelli, more or less uniform or greatly varying in proportionate size. In several specimens the cancelli of the shell appeared to be like minute lenses or spheres, and to present an external convexity. Individual specimens measured were as follows:

1.	Length	0.06,	breadt	0.036,	breadth	of m	0.ms
2.	"	0.066,	"	0.0:36,	"	"	0.015.
3, 4.	."	0.066,	"	0.039,	"	"	0.018.
5.	"	0.066,	"	0.042 ,	"	"	0.0:5
6.	"	0.066,	"	0.042 ,	"	،	0.018 .
7.	"	0.072,	"	0042 ,	،	،	0.018
8.	"	0.072,	"	0.048 ,	"	"	0.018
9.	"	0.096,	"	0078 ,	"	"	0.024

Mralosnienia tincta? - One specimen only: Sarcode eneysterl as a ball 0.048 diameter, containing much brownish food and bright yellow oil-like globules. Shell structureless, pale yellowish. with a pair of pores piercing the body above the junction of the neck. The specimen looked like a Nebela flabellulum, but the $\frac{1}{1}$ inch magnifying power showed no structure to the shell.
Length $0.0^{\prime \prime} 5^{\prime}$), breadth 0.07^{-2}, breadth of in outh 0,024 , length of neck 0.004 .5 .
Difflegha alobulosa.-Rare. Small forms with shells of fine sand and dirt. From hemispherical to globular and with circular mouth.

1. Brendth of shell 0.06 , height 0.042 , bre utth of mouth, B.0ts.
$2 . \quad$. 00.06 , " 0.018 , " ". 0.02t.
Difflugita constricta.-Rare. Shell of yellowish dirt and sand.

$$
\text { Length } 0.07 \because \text {, breadth } 0.0 \pi \because \text {. }
$$

Difflugid arcula.-Rare. Shell hemispherical, brownishoincorporated with dirt and fine sand; mouth trilobate.

Breadth $0.1 \ddot{0}$, height 0.09 , breadth of mouth U .0 s ,
Ifereopera petricola.-Occasional. Purplish brown, with variable proportions of incorporated sand.

$$
\begin{aligned}
& \text { 1. Length } 0.09 \text {, breadth } 0.078 \text {, brealth of mouth } 0 .(14 . \text {. } \\
& \because . \quad \text {. } 0.096, \quad . \quad 0.078, \quad \text {. }
\end{aligned}
$$

Assulina seminulum.-Somewhat frequent. Of raried size and hne: from nearly colorless to dark brown, and mostly lighter at the neek Mostly empty shells; often living specimens.

Evglypia areolata, Ehr:-Small compressed spineless forms, oceasional. A living specimen measured as follows:

Length 0.06 , breadth 0.018 ; breadth of mouth 0.015 .
Eugliphi strigosa-Oceasional. An empty shell measured: Length 0.06 , breadth 0.042 ; breadth of mouth 0.012 .

Trinema exchelys.-Common. Small forms of much variety:

In some positions, on dripping ledges and cliffs, from among the greater phofusion of Hymmms, there grew enshion-like masseof bright pea-green Sphagnum, sometimes rose tufted. Water squeezed from the Sphagnum, exhibited many Diatoms, a few Desmids, pollen of Abies, starch grains, spores, etc. It also contained many Rhizopods, an oceasional Infusorian, a few Auguillules, but no Rotifers nor Water-bears. Of Rhizopods the following were observed:

Nebela collaris.-Abundant and of much variety in shape and size and in the arrangement and distinctness of the cancellated structure of the shell. Compressed pyriform, or flask-shaped. with oval or ovoid body and with neck of variable proportionate length and breadth. Cancellated structure very variable ; mostly of circles, minute and nearly uniform, or greatly varying in size among themselves or in proportion with the shell. Dead shells most frequent; in living ones observed, the sarcode mostly contracted and inactive, often encysted; least frequently in an active
locomotive condition. Small forms common; giant forms few. Individual specimens noted as follows:

1. Length 0.078 , breadth 0.06 ; brealth of mouth 0.018 . Compressed oral: living.
2. Length 0.078 , breadth 0.06 ; breadth of mouth 0.018 . Oral with short neck. Empty shell ; cancelli circular, variable, the largest 0.006 , the smallest 0.003.
3. Length 0.078 , breadth 0.06 ; breadth of mouth 0.01 . Oval with short neck; living, active; nucleus, 0.12 .
4. Lenzth 0.081 , breadth 0.054 ; breadth of mouth 0.018 . Empty shell. with sharply defined circles, large and small, together with a few rods.
5 Length 0.084 , breadth 0.012 ; breadth of mouth 0.018 ; with neek 0.018 long. Empty shell, with minute circles on the neck, but unusually large in proportion to the shell on the body where they ranged from 0.006 to $0.01 \geq$.
5. Length 0.084 , breadth 0.048 ; breadth of mouth 0.018 . Flask-like empty shell, with minute circular cancelli 0.003 or less.
6. Length 0.08 ! breadth 00.54 ; breadth of mouth 0.012 . Flask-like empty shell minutely and uniformly cancellated.
7. Length 0.084 , breadth 0.06 ; breadth of mouth 0.015 . Oval, empty.
8. Length 0.09 , breadth 0.072 ; breadth of mouth $0 . \mathbf{V}^{2} 1$. Flask-like.
9. Length 0.096 , breadth 0.078 ; breadth of mouth 0.024 . Pyriform; neck 0.006 long ; cancelli circular, variable in size, a few on the fundus to 0.012 . sarcode an encysted ball, with yellowish oil-like food globules; diameter of hall 0.048 .

Some giant forms especially noted were as follows :
11. Length 0.18 ; breadth 0.09 ; breadth of mouth 0042 . Living ; shell nearly replete with sarcole, colorless but containing a multitude of bright yellowish and brown globules from 0.006 to 0.012 .
12. Length 0.21 ; breadih 0.12 ; breadth of mouth 0.048 . Empty shell of faint yellowish tint; basis of structure faintly and uniformly puactate with only distinct minute circular cancelli approaching the fundus.
13. Same size as preceding. Shell mostly of minute circular cancelli, larger near the fundus and there mingled with a few square ones. Shell closed by an operculum. Sarcode contracted into an oval mass 0.144 by 0.072.
14. Length 0.192 ; brealth 0.102 ; brealth of mouth 0.018 . Shell with minutely cancellated structure. Sareode in a ball 0.084 by 0.072 .

Nebela flabeldulum.-This form comparatively rare. Shell nearly circular in outline, with a short neek, mostly composed of minute circular cancelli more or less nearly unitorm or variable : ravely of elliptical cancelli.

Shell with minute elliptical caucelli.
Difflugia constriota.-Rare. Only a few specimens seen. small forms, with shell of minute same grains and yellowish dirt. l'yriform viewed from the front or back.

Difflugia pyriformis.-Rare. Shell of dirt and fine sand.

1. Length 0.084 ; breadth 0.048 ; breadth of neck and mouth 0.024 .

Difflugia arcula.-Rare. Shell yellowish, incorporated with more or less brownish dirt and sand. Form hemispherical ; mouth trilobed.

$$
\text { 1. Breadth } 0.132 \text {; beight } 0.09 \text {. }
$$

Centropyxis aculeata.-Rare. Shell of pale brown chitinoid membrane incorporated with more or less dirt and sand; with coarser grains of the latter along the course of the usually six spines. Mouth oval, with a more or less sinuous border.

$$
\begin{aligned}
& \text { 1. Length } 0.096 \text {; breadth } 0.084 \text {; breadth of mouth } 0.024 \text {. } \\
& \text { 2. " } 0.12 \text {; " } 0.096 ; \text { mouth } 0.03 \text { by } 0.024 \text {. }
\end{aligned}
$$

Heleopera petricula.-Occasional; shell incorporated with more or less dirt and sand, and of a purplish brown tint.

$$
\begin{aligned}
& \text { 1. Lengeth } 0.09 \text {; breadth } 0.078 \text {; breadth of mouth } 0.042 \text {. } \\
& 2 \text { ، } 1.108 ; \text { " } 0.09 \text {; " } 0.036 \text {. }
\end{aligned}
$$

Euglipifa areolata, Ehr.-Small compressed forms, without spines or other appendages. Abundant. Apparently from six to fifteen teeth to the mouth of the shell. Mostly empty shells. Often living specimens.

Euglypha strigosa.-Compressed, hirsute forms. Occasional. Usually with about ten teeth to the month of the shell; scales ilistinct ; finely hirsute all orer except near the mouth.

1. Length 0.102 , breadth 0.072 ; breadth of mouth 10.021 : hairs 0.0108 long.
\therefore " 0.108 , " 0.06 ; " " 0.0 ± 1; " 0.012
Euglypha brachita.-One empty shell observed, with but one divergent spine, and five or six teeth to the mouth.
2. Length 0.102 ; breadth 0.04 ; breadth of mouth 0.012 ; length of spine 0.042

Euglypha cristata.-One empty shell, with acute fundus. hut without spines, and four teeth to the mouth.

1. Length 0.54 ; breadth 0.012 ; breadth of mnuth 0.009 .

Euglypila ciliata.-Compressed forms, with short spines or hairs along the acute lateral borders. Rare. Nucleus 0.018 .
i. Leugth 0.108 ; breudih $0 . n_{6}$; breadth of mouth $0.0 \geq 1$; hairs or spines 0.012 long. Ten teeth to mouth of the shell.
\because Length 0.102 ; breadih 0.072 ; breadth of mouth 0024 ; spines 0.008 long. Nucleus of sarcode distinctly and uniformly granular (breaking up into spores?), 0.018 diameter. Ten or twelve teeth to mouth of the shell.

Placocista spinosa.-One specimen observed, living, but the
 with two nucleoli.

1. Length 0.084 , breadth 0.054 ; breadth of month 0.021 . Lateral spines short. hair-like, single or in pairs, 0.009 long. Nucleus $0.0 \div 1$ by 0.01 : nucleoli 0.00 :

Assulina seminulum.-Moderately frequent; from nearly colorless to dark brown, mostly lighter at or near the mouth. Living and dead specimens observed.

2.	,	0.048 ,	"	$0.0: 36$,	"	"	(1).012.
3.	"	0.072 ,	"	0.048 ,	"	"	0.018 .
4.	.	11.10 -	.	11.107%	.	.	4.0 .1
5.		0.1078,	"	0.078,	"	"	U. 0124 ,
(i, 7	"	0.084 ,	"	$0 \cdot 072$,	"	*	0.021.

'Thinema enchelys.- Frequent and of varied form amd size, though none of the largest variety observed. Usually pyriform : often oval ; rarely obovoid; of raried proportionate length and breadth, of narrowing opposite the month, and degree of whliguity: Mostly dead shells, though frequent living individuals ohserved langing from 0.024 to 0.072 in length. Specimens presented the following measurements.

It is worthy of special remark that among the Rhizopods of the sphagnum of Roan Mt., there were observed no individuals of Hyalosphenia papilio and H. elegans, which are so common in the sphagnous swamps of the eastern plains.

Shitember 7.

Dr. R. S. Kenderdine, in the chair.

Fifteen persons present.

On large Sphene from Canada.-Dr. A. E. Foote recorderl the occurrence of erystals of sphene of unusual size in the comnty of Renfew, Canada, near the upper part of the navigahle portion of the Ottawa River. The largest crystal collected weighed $2: 3 \frac{1}{2}$
 fore found.

September 14.

The President, Dr. Ruschenberger, in the chair.

'I'wenty-eight persons present.

The death of Prof. S. S. Haldeman, a member, tas announced.
On the Timber Line of High Mountains.-Mr. Mrfmas remarked that on the tops of most high mountains we find a total
 sists for dhe most part of acanlu-abl peremials. Lower down we may find some woody species, and often we come to dwarfed forms of trees of species, which, still lower down, form forests of considerable height, and which as timber trees make what is known to mountain travelers as the "Timber Line." Thus: in the mountains of Colorado, the forests commence at about $700(0)$ feet

 as the "Timber Line." On Gray's I'eak he found P'inus aristatu. Pinus flexilis, Abies concolor, and Abies Eingelmannii, with some willows forming the timber line. The Coniterots trees were probably 30 or 40 feet high, and it was interesting to note that this tall timber as smhlenly reaneal. an if a wom has been cut half away by a woodman's axe. But at once commencing where the tall timber ceased, the same species exist as dwarl
 but a fonet, thongh trailing wishly wore the examel. In thi-
 hundred feet higher up, or half way from the recognized timber line to the top of the mountain. Other observers have noted that the average of 11,000 feet marks the entire timber line of the Rocky mountain range.

So far as he knew this peculiar timber line has been referred wholly to climatic conditions, of which temperature amd moisture
hate heen rectarded as the chief elements in producing the results. That admirable botanist and energetic collector, Dr. C. C. Parry, in a paper on the Rocky mountain alpine region, published in the "Proceedings of the American Association for the Advancement of Science " for 1869, p. 249 , remarks that the most satisfactory explanation is that the su called timber line matis the extreme point of minimum temperature below which no exposed phenogamons plant can exist. All that survives above this point does so by submitting to a winter burial of snow, beneath which protecting cover it is enabled to maintain its torpid existence.

The great objection which this purely meteorological view presented to Mr. Meehan's mind was that the dwarfed and gnarled eoniferae extembing so many humbed feet up the monntain sides. never produced seed, and we are reduced to the alternative of heliewing either that the seeds have been (arried up) the mometain sides in conomons quantities and to enormons distances from the frutive trees below hy wimls, or else that there were seed bearing progenitors of these scrubly pines, beneath the tall protecting branches of which they had their carliest stages of growth. He was satisfied from subsecuent ohservations in the momatains of North Carolina, aml in the White Mountans of New Hampshire. that this last view is the correct one,-that large timber trees at no very remote period extended much further up the mountain sides than they do now, and that they have since disappeared for reasons presently to be stated, leaving only the younger trees to struggle on as best they may.

Roan Mountain in North Carolina is about 6300 feet above the level of the sea. Timber extends to its summit on some parts of it, while in other parts it is destitute of timber for many homdreds. of feet down its sides. The species on the summit is Abies Frazeri, and Abies nigra. Oak and other trees come occasionally to near the top and at about 6000 feet he measured a black oakQuercus tinctoria, that was 5 fect in circumference at 3 feet from the ground, and was perhaps 40 feet high. The places destitute of trees were the steep declivities,-while those on which the trees were growing were of a more level character. Further down the mountain sides the sterel inclines would he clothed with forent growth, as well as those of a more gradual ascent. It is of the summit only that the differences in inclination, presented different forest aspects. But in the spaces clear of "Balsam "as the Abies Frozri is popularly known, an occasional one of good size would be seen. In the close Balsam woods, both on the summit and lower down the mountain sides, crops of young plants would he found under the mature trees, but, what was very remarkable, there had evidently been no young trees started till the parentwere near maturity. A large area with trees 30 or 40 feet high would have an undergrowth of yomg ones a foot or so high. while other areas of younger trees, would have immmerable small -redlings growing anong the damp moss beneath them, and it
was further interesting to note that in most cases the crops of young plants in each area were about the same are in each case. as if the seeds in the several locations had all started to grow together in some one particular year, and probably at no other time. On the naked places, where few or no trees were now found, the surface would be closely covered by a matted growth of a grass almost peculiar to that region, Danthonia compressa, but a close examina-
 mould which had been formed by ages of decaying Hypmum or Sphagnum moss, and the evident remains of roots, just as we now find under the Balsam trees, and there is no doubt from these fiacts that these steep upper declivities were once clothed with trees and mosses, to which the grass previously named succeeded.

With these facts in mind he examined the arhoreal features of the White Momatains in Xew Hamphater. On Monnt Wa-himeton. which is a little over 6000 feet, the timber runs up to about 4000 feet; while Mount Webster, a mountain forming the southern peak of the same chain, and about 4000 feet high, has little timber above 3000 feet. Clearly, climatic reasons will not account for these peculiarities. On Mount Washington there is much of the same character as distinguishes the forests of the Rocky Mountains. As alrearly noted the timber line becomes marked at about 4000 feet. For at least another thousand feet we meet with scrubby bushes of Abies Balsamea, Abies nigra, and Abies alba. with some Betula papyracea. Beyond this, and almost to the summit, an occasional specimen of one or another of the conifere may be seen. Is noted in regard to the Colorado serubby growth,
 from a carefinl -hryey if the lecations, that many in the areat
 the seeds up these mountain heights. Moreover, there were many eases where there were intermediate areas clear of alt scrubly spruce plants, and where seeds could be bronght hy winds in these modern times much casier than to the heirhts above. Besides this, it was evident that many of these dwarted specimen: were of immense age. Some that he examined were certainly
 than lis wrist, aud, trailing on the ground, ondnpted bot 16 or 20 square feet of space. There seemed to he hut little doubt that at some time in the past Mount Washington had forests of coniferie at much higher elevations than at present, if not perhaps elean up to the summit; that these serubby plants now there were seedlings that had sprumg up moler the elder ones, and that in time the older ones were destroyed, le:aring the small ones beneath alone to their fate.

An examination of diflerent parts of Mount. Washington shows not only that this is the true explamation of the ahsence of grod timber beyond what is known as the timber line, but that the same law is in progress to day as in centuries past. Illustrations
of this are numerons. There is now a railroad rumning straight up the mountain side from the base to the summit. Near the timber line, a cut had to be made through an area covered by mature Balsam Firs. This cut was about 8 or 10 feet deep. Under the trees moss and dead roots and old fir leaves had made the earthy strata of a foot, or in places, more in depth. The moss was still green from the rains, melting snows, and fogs of this clevated region, and sustaining the various kinds of low vegetation common to these alpine heights. Young firs were springing up in great abundance. But all the larger trees were dead, though here and there might be seen a branch with a few lingering green leaves. 'This mass of dead, standing timber occupied several acres. The reason for their death was evident. The railroad cut showed that the forest stood on a mass of large but loose gneiss rocks. through which the waters from the two thousand feet of loose rock above rushed as soon as the railroad cut was made, carrying with it all the carthy matter on which the larger trees subsisted, hut leaving the tongh turf matter at the surface, on which smaller trees of the same sort may live for many years, though the larger ones cannot longer exist. With the death of the larger trees there is, of course, an increase of light, and then the Hierochlo, with other grasses and sedges, speedily take possession, holding. together the loose soil, and even permitting in many cases an increase of the earthy layer, hy holding much of the disintegrated rock which may be washed or blown on from above. Carefully *xamining patches of scrubhy spraces above the timber line, it is not uncommon to find dark patches of vegetable mould evidently the remains of large trees that have been growing where now only the masses of small scrubby plants exist. In some places a sharp stick may be pushed down among the scrubby firs and spruces, and the earth found to be but a foot or so deep over the loose mek helon, from which the earth has been wholly washed away. deain, there are some places often nearly an acre in extent where the scrubly firs are still standing, dead, from the earth having heen washed away from below upwards, not leaving enough for even the moderate demands of these little bushes.

In view of the facts detailed we may conclude that at the devation of these mountain chains, the lowland vegetation was carried up at the same time. The summits, covered by luxuriant forests would present a cooler surface to the moist clouds, and there would be less condensation than on bare sun-warmed rocks. and deep snows would be less frequent, and not sulficient to interfere much with arboreal growth. But the rain would of necessity carry down the earth and disintegrated rock to lower levels ; and fhe melting snows, shch as there were, would make this downwarl pogress of the soil rontinuous. In some mountains where the rock was easily broken by frost, as in Colorado and the White Mountains. it would be very difficult for the soil to hold its own against these forces of gravitation; but on more solid rock the mass of tree
roots protecting the rock, and retaining the earthy matter would longer hold its own. In the former case with the gradual washing away of the earth the larger trees will have to find a lower level; the summit condensing more moisture, and having a cooler atmosphere, would form heavier masses of longer enduring snow, atul thus keep down from tall growth the yomere trea- lath at the older and larger ones retired. They would have to be low bushes by the absence of earth for vigorous growth, and remain trailing bushes, throngh the - !perinemmbent and long contimuel mat- of snow.

We thus see that though a long continued mass of snow has much to do in marking a timber line, that line is precedent to the snowy mass. The primary cause is the gravitation of disintegrated rock - the movement of the hill top towards the sea. From the moment the momatath rearhen its highes print it commanome its downward march. The entire reduction of the highest to a level with the plain is but a question of time. The frost and rain and melting sumw will do it all, aml this redurtion, bringing down not only the earth, hut cold-lowing plant- to watmer level- mu-t
 vary the timber line.

In low hills as well as in high momtains the forees of gravitation are also at work: But the sides are seldom so steep as in the loftier hills,- the rains do not gather with such force nor are the melting snows of near the same duration. 'There are sudden washes, but not the continuous roll of the earth to the bottom. In time they maty exhibit the same phenemena of the di-atpearaneq. of species from their summits as their loftier brethren; but the centuries here will gather much more slowly to produce a similar effect.

In conclusion he would saty briefly that the "timber line" of high momtain tops results from the washing down of the earth from the higher elevations.

Mr. Redfield remarked that there could be no doubt that influences other than climatic (such for instance as the washing away of soil, mentioned by Mr. Mechan) do often modify and change the timber-line upon mountains. But he was unable to accept Mr. Meehan's views as to the insignificant part played by climatic causes, and still held them to be the prevailing factor in the problem. Dr: Parry's explanation by the weight and deppth of winter snows might not always be the correct one, but snow and ice must be very important agents, and Mr. R. thonght that in considering climate, we should have regard not merely to the present period, but to past great secular periods. He then referced to the glacial age, when not only the White Mountains, but all
 changes gradually retreated, leaving only the mountain tops eovered. The slow retreat of the glanial conville wa- followed
by the adrance of fitting arboreal regetation, until a point was reached when the present climatic conditions were such as to limit any higher adrance of the trees.

Seiptember 21.

The President, Dr. Ruschenberger, in the chair.
'I'wenty-eight persons present.
Bone Caves of Pennsylvania.-Prof. Leiny remarked that in the early part of August, in company with Dr. 'T. C. Porter of Easton, he had visited Hartmans C'ave in the vicinity of Strondsburg, Pa. They had been invited by Mr. 'T. Dunkin Paret, of that place, who had recently modertaken the explomation of the (ave, and hat obtained from it an interesting and important rollection of animal remains, which had been submitted to Prof. Leidy's examination.

The cave is situated about five miles from Delaware Water Gap, in a ridge which separates Cherry Talley from the valleys of the Pocono and McMichael's ('reeks. The vidge is an anticlinal fold of the Itederberg or Ipper Silurian limestone, and the cave, occuppes the axis of the fold and opens in the face of a cliff formert by a cross section of the ridge. An accumulation of debris forms a slope at the base of the cliff, and above the debris and just below the arching roof of the cave, a low passage way has long been known into which adrenturous boys would creep.

Mr. Paret eommenced the exploration by having a passage dug through the debris to the entrance of the cave, and then extended the trench within the latter for upwards of a hundred feet, and to a depth sufficient to walk erect. At one place within the cave the digeing was carried to the rock floor. It would thus appear that the cave is occupied by a bed of clay about 10 feet in depth. On this is a thin layer of stalagmite and on this again about a foot of black friable earth mingled with animal and vegetal remains.

No remains have been found imbedded in the clay nor on the rocky floor in the pit dug through the latter.

Prof. Leidy supposed that during the glacial period, a stream of water, from melting snow and ice at a higher level, had made a passage way through the fissured limestone of the antirlinal axis and had left in it the abmodant clay deposit. When the cave ceased to be a water course the layer of stalagmite was formed and subsequently the more friable earth accumulated from materials, such as dust and leaves, blown in and mingled with the remains of animals, occupants of the cave, and of their food. The recess of the cave above the clay floor appears to have been too small to be inhabited by the larger carnivorous animals or man, and therefore no large entire bones of these have been found in the ossiferous stratum.

The remains thus far discovered are of such interest as to encourage Mr. Paret to continue further exploration Most of these collected to the present time were exhibited by Prol: Leidy. and consist of the following :

Numerous fragments and splinters of limb bones of smaller and large animals, many or most of which exhibit the marks of being gnawed, whether by rorlents or small carnivores is somewhat uncertain. A few also show the marks of canine teeth, of medium sized carnivores. Some of the splinters pertain to such large and strong bones as to render it questionable whether they were produced by even our largest carnivores, and probably are the remnants of human feasts, in which the bones were crushed to obtain the marrow. Numerous bones and fragments of others of the smaller and smallest animals. These include especially limb, bones, and lower jaws, and less frequently skulls, fragments of others ame vertebrat. Many of ther ate aloo ghatwed, while mamy are not.

The fragments of larger bones may be supposed to have been conveyed into the cave by small carnivores. A few pieces of bone are somewhat charred; and a small fragment of a lower jaw, containing a molar tooth, of the Bison, also apparently exhibits the marks of fire. 'This probably is a remmant from a human feast, which may have been carried into the cave by some small gleaner.

All the bones and fragments together amount to about half a bushel. Most of them pertain to amimals of a kind still living, though some of these no longer belong to the fanna of our state, and a few of the remains are those of extinct animals. How lar the remains of different species are cotemporary is meertan, though it is most probable that they were introduced through a long succession of years from the time following the glacial period.

The remains of extinct animals consist of an incisor tooth and half a dozen molars of the great rodent Custoroides ohioensis, and portions of the upper and lower jaw, with teeth, of a young Peccary, the Dicotyles nasulus, previously known only from a single fragment of an upper jaw, discovered in Indiana, (Extinct Mammalia of North America, $385, \mathrm{pl}$. xxviii, tigs. 1, 2. dour. Acad. Nat. Sc., vii, 1869).

The remains of animals no longer living in Pennsylvaniat are as follows:

Bones and teeth of the Caribou or Woodland Reindeer. Rangifer caribou.

A fragment of the lower jaw containing the last molar tooth, of the Bison, B. americamus.

Many lower jaw halves, and other hones and teeth of the W ood. rat, Neotoma floridana. Most of these are of comparatively large size, and of the character of -imilar remain- retioned hy Irof. Batirl to as stpposed extinct-peedic, with the name wf lintoma
magister, (U. S. P. R. R. Exp. \& Surveys-Zoology. viii, 1857, 498).

Remains of other mammals are as follow : Lynx, Felis canadensis: Wolf, Canis lupus; Gray Fox, Vulpes virginianus; Skunk, Mephitis mephitica ; Weasel, Putorius ermineus ; Raccoon, Procyon lotor; Mole, Scalops aquaticus; Dusky Bat, Vespertilio fuscus; Little Brown Bat, V. subulatus; Woodehuck, Arctomys monax: Porcupine, Erethizon dorsatus; Beaver, Castor fiber; Muskrat, Fiber zibethicus; Gray Squirrel, Sciurus carolinensis; (iroum sunirrel. Tamias striatus: (iray Rabhit, Lepmes sylraticus; Meadow Mouse, Arvicola riparius; White-footed Mouse, Hesperomys leucopus; Deer, Cervus virginianus: Elk, Cervus canadensis.

Among the remains, none have been identified as positively pertaining to our domestic animals, unless, perhaps, a pair of specimens are to be referred to this category. The specimens are the complete isolated first and second large molars of a foetal or new-born Horse!
The collection further contains mumerous hird bones, chicfly of the Wild Turkey, Meleaymis yalloparo: some of turtles, the Box Turtle, Cistudo clausa, the Snapper, Chelydra serpentina, etc.; and others of several species of snakes.

In the same stratum were also found a number of shells of mollusks. chiefty Helis albolabris, H. alternata, and H. tridentata. Also a valve of Unio complanatus.

Of vegetal remains there were a few small fragments of charcoal, and many seeds, consisting of those of the Dogwood, Cormus florida, Pig-nut, Carya porcina, and Walnut, Juglans nigra.

The human remains are of an interesting character. One is a large stone celt of hard lrown slate, oltained from the hone earth some distance within the cave. There are five bone awls, several of which exhibit marks of gnawing. Some of these were found in the cave, and others in the outside debris. An implement consists of the prong of an antler worked so as to be barbed on one side, and was probably used as a needle for making nets.
A small implement of bone, resembles in its present condition a crochet needle such as is now employed by ladies in making worsted work. It is much gnawed away on one side, and looks as if it may have heen like an ordinary needle with a perforation, and this now rendered incomplete from the gnawing.

Another implement is a fish-hook worked out of bone.
Such bone implements are among the rarest of human relies in our portion of the country.

Another remarkable relic is a cone shell bored through the axis as a bead. The shell is a marine species, Conus tornatus, found on the western coast of Central America. Its presence among the (ave remains, would indicate an extended intercouse among the inhabitants of early times.

The investigation of the interesting collection of remains secured by Mr. Paret, had led Prof. I. to examine a small collection of
 mpwards of thirty years ago, as a sample of many of the same
 appears to have since been obliterated in the guarying of limestone. At the time of the presentation of the specimens of bones they were recognized as pertaining to existing species of animals and were therefore regarded as of little interest, thongh fortunately they have been preserved.

Prof. Leidy remarked that these bones were of the same character as those of Hartman's Cave, and he had distinguished among them the following:

The Black Bear, Ursus americanus: Raccoon, Skunk, Gray Fox, Deer, Moose, Alce americamus; Woodland Reindeer, Bison,

 and Cattish.

The examination of these collections show that the exploration of small caves may not only prove of ethnographic ralue, but serve to give us information relative to the early fauna of the country. 'Thirty years ago Prof. Baird gave an account of the exploration of some bone caves in this State (Proc. Am. Assoc., II, 1849,352). He refers to a rast accumulation of remains in one of the caves, and remarks that the number of species of mammalia found is twice that of present existing species in Pennsylvania. It is to be regretted that no further account has yet been given of the species to which the remains belong.

Dimorphic Flowers in Houstonia.-Mr. Thos. Meehan remarked that flowers dimorphic in their sexnal character were well known. Generally there was little difference in the corolla between the short styled or long styled flowers, but in Houstonia corulea, L. the long styled form was accompampanied by a thick tube, while the tube in the short styled form was not more than half the diameter of the other. In this species of Houslonia the anthers were placed on a ledge which was at the base of the tube in the long styled form. In the short styled form the anthers were bronght to the mouth of the corolla without any lengthening of filaments, but by the bringing up of this ledge on which the anthers are placed. The position of the anthers at the month or at the base of the tube, was in fact decided by the modification of the form of the corolla tube. This had been explained in the lirst series of "Flowers and Ferns of the United States." In a recent examination of Iloustonia serpyllifiolia, Mx., on the top of Romn Mountain in North Carolina, Mr. Mechan found precisely the same characters in that species. On the same mountain Houstonia purpurea, $L_{\text {., }}$ abounds, and also has at similar sexual dimorphism, but in_this case the elevation of the anthers is clue
to the leng thening of the stamens and the form of the corolla-mbe is the same in both sexual forms. The number of plants representing each sexual form is about equal. In a handful of plants gathered at random there were of Houslonia serpyllifolia thirteen with hongetyes and shont stamens, and eleven with short styles and the anthers in the mouth of the tube. Of Houstonia purpurea there were thirteen with long styles to fourteen with short ones. An interesting fact in connection with these sexual differences is that the dimorphism seemed to be wholly in the shortening of the style or filaments, and did not seem to effect injuriously the anthers or stigma. Both forms seemed to be equally fertile.

In answer to a question by Mr. Redfield, Mr. Meehan said there did not appear to be any intermediate forms. The stigma or the inthers were either exactly at the throat of the flowers, or exactly at the base. In regard to cross fertilization the longs styled would be in the best position for receiving pollen from foreign flowers, but the short styled one would more readily receive its own. As (ross and self-fertilization had an equal advantage he would infer that the dimorphism had little reference to fertilization as a final cause.

Cleistogamy in Oxalis Acetosella, L.-Mr. Meeman observed that under the forests of Abies Frazeri, on Roan Mountain, North ('arolinal, carly in August Oxalis Acelosella was abondantly in Hower.

In a large number of cases examined he could find no traces of any disposition to produce seed vessels, hut pushing out, beneath the soil or near the surface were numbers of cleistogene flowers, from which, in all probability, seeds would be produced in abundance.

Most plants which produced eleistogene flowers, also produced the usual open corolla bearing flowers at one time or another in the season, and it had been suggested that this bright petalled condition was for the purpose of attracting insects, and thus give the species some chance to escape from the evils which cleistograny, or close-breeding is supposed to involve. It is worthy of note that no day insects were noted to visit the flower of the (), alis blooming in these dark fir forests, thongh nocturnal ones might supl! the deficiency. Mr. Meehan remarked, however, that no rule could be deduced from single observations, or observations repeated in the same localities, as the behavior of plants and insects varied with circumstances. The Oxalis might not be cleistogene, might be visited by insects, and the open flowers might be fertile elsewhere. He referred in illustration to Amphe:arpixa monoica, Nutt., which near Philadelphia sometimes protheed no seeds from the petaliferous flowers, while at other times these flowers were remarkably fertile. Again, all his examinations in the locality mamed had resulted in finding that the
petat-hearing flowers wrere a-perferty fortized in the umespanded corollas as were the cleistogene flowers. But he was prepared to expect different results elsewhere.

September 28.
The President, Dr. Ruschenberger, in the chair.
Thirty-four persons present.
The following papers were presented for publication in the Journal:
"The Parasites of the Termites," by Jos. Leidy, M. D.
"Remarks on Bathygnathus horealis," by Jos. Leidy, M. D.

Octorber 5.

The President, Dr. Ruscheniberger, in the chair.
Thirty-two persons present.
The death of James C. Fisher, M. D., a member, was amounced.
Sexual Variation in Castanea Americana, Mirha,-Isaac C. Martindale stated he had recently visited Pitman Grove, Gloucester Co., New Jersey, in order to examine some chestnut trees growing there, and remarked that it was well known there are but two species of chestnut trees in this country, the chinçupin. Castanea pumila, found occasionally in New Jersey, and abundantly further south, and the common chestnut, Castanea Americana. The chinquapin attains the height here of ten to twelve feet, being a shrub rather than a tree. In Maryland, Virginia and North Carolina, it often reaches four times that height, and becomes nearly a foot in diameter. It is from those States that most of the chinquapins found in our markets come. The burs contain but a single mut, and it quite small, but as a clister of five or six together is not unferquent, nearly as many chinguapins may be found on a branch, as chestnuts on the common chestmut trees. The leaves of the dwarf chestnut, as it is sometimes called, are woolly underneath, even in their mature condition, while on the other they become green on both sides as they reach full size.

A peculiar feature in the flowering of the chestmut, namely, that the trees bear two sets of flowers, was pointed out hy Thomas Meehan, of the (fardener's Monthly, a close ohserver of' vegetahle growths, more than a year ago. His ohservations are recorded in the Proceedings of the Academy of Natural Seiences of Philadelphia, for the year 1879. It may not be diflicult for any one to recall the manner of the intloresence. which eonsists of the

Howers growing on a stem, botanically called a spike, from four to six inches in length, there being from thirty to sixty flowers together. These come from buds in the axils of the first leaves of the season, and are composed entirely of staminate (male) llowers. They are very odorous when in fill bloom, and often so abmulant as to give the trees a white apmearance when seen at a distance. As soon as these flowers fade, which is in a few days, a dianticulation takes place close to the bratheh, and the spike falls to the ground. About ten days later, a second flowering takes place, these spikes coming from the later axillary buds of the season, and instead of being all staminate as in the first instance, at the base of the spike will be found one, sometimes two, ramely more pistillate female, fowers. These are fertilized by the staminate flowers that are in hossom at the same time; the staminate part of the spike falls away after flowering, but the pistillate part remains attached to the branch, and developes into a bur, containing from two to five or six nuts. What may be the use of the first set of blossoms, has not yet dawned upon the mind of man ; it would seem a great waste of energy to provide for such an abmalance without a purpose, hut the prodigality of nature is visible in numerous other instances as well.

The variety of forms of the nut was greater in the locality referred to than he had ever seen before. One tree was particularly attractive, the shape of the bur being exactly pyriform instead of globular ; its chestnuts, of course, corresponding somewhat in slape, being long and slim.

Near the southern line of the tract was found one tree, and afterwards in another part a second tree, which will require special notice. The former was about twenty feet high and six inches in diameter, while the other was at least seventy-five feet in height, and more than two feet in diameter at the base, a very wide spreading and thrifty looking tree. In these, the later blossoms refered to, insteal of being part staminate and part pistillate, have been all pistillate, conserpuently were suceeeded by burs all along the spike, numbering in those counted from fifty to sixty fogether, and hanging from the hranches like bunches of grapes. Every branch of the tree that bore any at all, had them of this character, so that there were doubtless hundreds if not thousands of them. An important point is here manifested. These flowers being all pistillate, and the staminate ones (the first hossoms refereed to) having fallen, there was nothing to fertilize them, conserpuently they could not attain much size nor develop chestnuts within the bur, except that rarely the first or second nearest the base contained three or four very small nuts. These nuts, however, were without germs.

He had been unable to find any record of such an occurrence in this country before, but Dr. Masters records it as having been noted iu France. The superintendent of the grove to whom belongs the credit of first detecting these trees, could not say

ChAPMAN, ANATOMY OF ORANG OUTANG.

Chapman, ANatOMY OF ORRNG OUIANC.

Proc A. N. S. Phi 1880

PROC. A. N. S. PHILA., 1880.

PROU. A. N. S. PHILA. 1.880.

CHAPMAN. ANATOMY \triangle PANS AHM

PROC. A. N. S. PHILA., ISSO.

BARBFCKK ON LEMMA.
whether in past years they had borne burs in this mamer or not.

It will be remembered that oceasionally in a field of corn the tassel, which is the staminate (male) flower, has a number of grains of corn intermixed. These grains come trom pistillate (female) flowers, oceurring among the staminate ones; thus it may be observed that our chestnut tree is not the only instance of deviation from the regular laws of development. It has been argned that a want of nutrition will account for this and similar
 the trees in question is not such that a lack of nutrition can well apply.

Mr. 'Thomas Mefian remarked that he believed instances of' the changes of flowers normally of one sex to the other, were occasionally met with, though he could not refer to many without turther thought or investigation, hut it weomreal to him fult then that it was not unusual for soménormally male spikes in Careas to have female Howers among them. He had himself seen well developed ovariums among the aments of Populus alba, and the case of female flowers among the male catkins of willows, was well known to teratologists. Reference had been made to his papers on sex as influenced by nutrition. His view of sex. as well known, was that in the earlier stages. between the cessation of regetative growth and reproductive growth, a regetable cell might be either male or female, and that the power of that cell to assimilate nutrition, involved the question of sex. If a full sup) ply was received, the female form resulted; if limited, the male was produced. In most eases this assimilative power influenced only the branches or cells in the immediate vicinity of the flowers. There might be no difference in the cells of the whole plant in a general way to avail themselves of a full supply of mutrition. He did not know that there was greater reqetative strength in the plant of Maize, which bore some females among the "tassels" or males, than there was in the normal plant. There certainly was no difference in the vegetative strength of plants of separate sexes in many classes of plants. But there were instances which pored that the whole individnal plant was influenced by laws of mutrition when the question of sex was involved. The femate 11 emp , the femate spinate. the female Croton, when the plants were wholly hi-sesual, were cases he could readily eall to mind where vequtative rigor lawored the whole plant.

The common Ambrosia artemisiep/olia. which often arons so thickly over cultivated tields as to appear as a rearular fam crop, each plant fighting for mutrition with its meighbor, produces almost wholly male blossoms; the lew females are found at the base of the male spikes. But when we go to the maize or the potato fields, where the plants are few and well fed. We may :ay
time tind plants which have a great abundance of female flowers, indeed, sometimes plants which are wholly female.

In the case of these chestnuts he would not say it was a want of nutrition which made these normally male flowers become female. That was not his view of the case. On the contrary, it was that better mutritive advantages prevailed to influenee the female sex, and these long spikes of chestnut fruit proved the fact rather than interposed an objection. It was a simple and uncontroverted fact that these young chestnuts were being nourished, were imbibing nutrition, while if they had been normal male flowers, they would have been dead months ago. It was evilent to the senses that nutrition was in the end involved, and we only had to consider at what point of early cell life its influence was felt. The old idea would probably be that the question of nutrition followed the "fiat" which made sex, while his views deduced from the numerous facts he had published on the question, were that nutrition, in its various phases, was itself the law-maker. As to the greater power behind this, which decreed that this should be the law, and that the law should produce such even divisions in the proportion of the sexes, it was another question. He only claimed that his discoveries had brought us a step nearer to this greater cause.

Note.-I have since learned through an old resident in the vicinity, that the large tree has borne such burs for many years, and that it is known throughout the neighborhood as the "he" tree.-I. C. M.

October 19.

The President, Dr. Ruschenberifer, in the chair.
Thirty-five persons.present.

October 19.
Dr. R. S. Kenderdine in the ehair.
Twenty-eight persons present.
The Publication Committee reported in faror of publishing the following papers in the Journal of the Academy :-
"The Parasites of the Termites," by Jos. Leidy, M. D.
"Remarks on Bathygnathus orientalis," by Jos. Leidy, M. D.

October 26.

The President, Dr. Ruscienberger, in the chair.

Nineteen persons present.

The deaths of Dr. Chas. H. Budd and of Joshua Lippincott. members, were announced.

Samuel R. Knight, M. D., and Rev. Wm. F. C. Morsell were elected members.

November 2.

The President, Dr. Ruschenberger, in the chair.
'T'wenty-four persons present.
Rain Trees. Note on Fucca gloriosa.-Mr. 'Tiomas Meeman referred to a branch of Yucca gloriosa, exhibited a few erenings ago, taken from a plant growing in his garden, and which had flowered during September, the usual period for blooming near Philadelphia. Walking through his garden with Mr. Isaac C. Martindale, the latter had called his attention to moisture which covered the whole outer surface of the flowers, and collected in drops at the drooping apices of each leaf' of the perianth. The plant was within a few days of going wholly out of bloom, but during these few days the exhibition of moisture continaer, and the appearance of the leaves beneath showed that the dropping of liquid had been going on for some time, and perhaps during the whole flowering seaton. There was no perceptible sweetness in the liquid, but the presence of ants indicated that it might possibly have a slightly sacharine character, though not sensible to the human tongue. It was diflicult to decide whether this liquid was an exudation from the leaves of the perianth or was simply an exercise of the power of condensing moisture in the atmossphere which some plants possessed, notahly the l'ithecelobium Saman, Benth., famous as the " Rain-tree " of Peru, which watered its own roots by the moisture condensed from the atmosphere. thus enabling the tree to live in almost ramless regions, if the reports of travelers are to be fully credited. He hoped to make further ohservations on the Yucca another year.

Notember? ?

The President, 1)r. Ruschexbeberat, in the chatir.
'Twenty-four persons present.
The resignation of Mr. (ieo. Vanx as a member of (oumeil wats read and accepted.

November 16.

The President, Dr. Ruschenberger, in the chair.

Forty-two persons present.

The death of Alexander Wilcocks, M. D., a member, was announced.

The following was unanimously adopted :
Resolred-That the thanks of the Academy of Natural Sciences of Philadelphia be presented to Mrs. Isaac Hays for Waugh's excellent portrait of the late President, Isaac Hays, M. D., whose labors and influence during more than sixty years contributed largely to promote the interests of the society.

Direcism in Andromeda Catesbaci, Walter.-Mr. Thos. Meehan remarked that in 1867 he had reported to the Academy the diœcism of Epigra, and he believed this had stood so far the only case of unisexuality reported in the whole of the large order Ericacere. He said he had now to add another in Andromeda Cateshat of Walter, of which he exhibited specimens gathered last year on the Catawba River, in North Carolina. In the course of many days' journeyings he had the opportunity of examining numerous plants in many different districts, and they were all either wholly sterile or wholly fertile in separate plants, as in the specimens exhibited. Occasionally, as often seen in diocious plants, a few capsules would be found on the sterile plants, but he could not say whether the seeds in them were perfect.

Mr. Redfield inquired whether Mr. Meehan had examined the flowers, and found intermediate stages of development in the sexual organs ?

Mr. Meehan replied, that the plants were out of flower when observed; that it was the abundant fertility in some plants, and absolute sterility in others that had attracted his attention. From the remains of the few faded flowers he could find on the plants the stamens appeared perfect on the staminate plant, with no trace of pistil or ovarium, while in the fertile plants no trace of stamens could be found about the remains, though it is probable from analogy in Epigæa, these organs in the fresh flowers wonld be found to exist in a rudimentary state.

On Fresh-water Sponges.-Mr. Potts, continuing the subject of ${ }^{\circ}$ American forms of fresh-water sponges treated of some weeks ago. said that the munber of speces noticed during the few months in which they harl clamed his attention gave some reason to believe that the Order Spongida has many more representatives in our fresh waters than has been generally supposed.

On a former occasion he had described three species of spongilla from a small stream near Philadelphia, one of which, then named S. tentasperma, but which he now preferred to call s. temosperma, exhibited fieatures so exceptional at almont io elaim for it generic distinction.

He had since found the S. frayilis of Leidy plentifully in the Schuylkill river below the dam, (Leidy's original locality), and ahove the dam a lacustrine form diftering from that indiove alloled to. A very slender green species creeping along stems of sphagnum, etc., had been reeeived from a swamp near Absecom, N. J. As it appeared to be entirely without spined spicule of either class, he proposed for it the name S. aspinosa.

From the Adirondack lakes a beautiful species, believed to be identical with S. stognotis, Wawson, had been received through the kindness of Prof. H. Allen. Another lacustrine form which yet is not quite s. lumatris, was bought from the lake near Catskill Mountain Honse ly Professors Cope and Hunt. It- statuhas not been fully determined.

From the cellar of an old ruin at Lehigh (rap, P'ennsylvania, he had obtained four species, all of which appeared to the new. These were all thin. creeping or encrusting sponges, three of them of the birotulate type, briefly described as follows:
S. argyrosperma-seed body or spherulx, large, silver-white, densely covered with radial spicula, the shafts of which are lone. stout, with numerous long spines, straight or curvent ; the rotula at each end being replaced by $1-4$ strong recurved hooks.
S. repens-found creeping over the stems and leaves of Potamoyeton: spharula also closely covered with spiculac, horter and more slender than those of the preceding species; their shatts nearly smooth, the rays of the rotule, six, eight or more, unifioml? incurved like the ribs of an umbrella.
S. astrosperma - thespharmar have the apparame of heine much smaller than in either of the former species, which is ponatly due to the fact that the hirotulate spicular surrounding the real capsules are very short; the length of the shaft being less than the diameter of the rays. They are rather aparaly sattemed oner the surface of the nearly transparent sphere, suger-ting the name star-seeded.

The remaining form is considered a variety of s' fragilis, and called minuta; spherula much smaller than in the type species, the lermal and superincumbent spicula terminated hy -happmoiniwhile in the other they are universally truneate or rounded.

A more particular deseription with measurements, etc., is intended.

Mr. Ezra T. Cresson was elected a member of Council, to fill the vacancy caused by the resignation of Mr. Geo. Vaux.

November 23.
The President, Dr. Ruschenberger, in the chair.
Thirty members present.

November 30.

The President, Dr. Ruschenberger, in the chair.
Thirty-six persons present.
Note on the Seed-vessels of Wistaria.-Mi. Thomas Meehan remarked that most persons knew that special temperatures were required to insure the germination of various seeds. 'The common chickweed germinated at a little above freezing point, while one of 70° was required by most palms. Heat and moisture had also a varying influence on the opening of seed-vessels, some requiring more or less than others. He exhibited some seedvessels of Wistaria simensis and Wistaria frutescens, to illustrate the point. A box, four inches deep, with some seed-vessels of Chinese Wistaria was placed on a shelf in a cool room. A fire happened to be made in the room and kept up all night, and the next morning the capsules had burst, and scattered the seeds and open vessels about the room. So great was the force of the expansion that some seeds were projected ten feet from the box. One large seech-ressel had heen lifted hefore opening by one or more beneath, over the four-inch side of the hox, and had fallen on the eromed at least two feet away from the box in a horizontal line. The few that had been thrown on to the floor by the explosion of their companions did not open, owing to the difference in the temperature of the floor from that of the shelf. Five seed-vessels of each of the two species were then placed together on the shelf, where the temperature of the atmosphere was about 45°. After four days they were examined. The American species had all opened, but without expelling the seeds, which were still attached to the carpel; hut those of the Chinese Wistaria were still mopened. The Chinese Wistaria recuired a much higher temperature to open the (apsules than the American, though it might be that hygrometrical comditions would vary the exact degree reguired.

Mr. Martindale observed that the seed-vessels of the Chinese Wistaria were much more indurated and rigid than the American species, and required more force to open them. He had noted that such hard seed-vessels always exerted a greater projectile power when opening.
C. S. Turnbull, M. D., and J. M. Anders, M. D., were elected members.

December 7.

The President, Dr. Kuscheniberger, in the chair:
T'wenty-three persons present.

I) ecemiber 14.

'The President, Dr. Ruschenberger, in the chair.
Thirty-two persons present.
A paper entitled "On some Lower Eocene Mollusca from Clarke Co., Alabama, with some points as to the stratigrapheical position of the berls containing them," by Angelo Heilprin, was presented for publication.

The Phalanges of Bats.-Dr. Aldwa, in reviewing the manner after which the phalanges in mammalia are enumeraterd. spoke of the propricty of including the terminal amt laghous tip on the fingers, present in many bits, in the series of phalanges.
 second linger in lihimopomar athaland, nor should they, Dr. Allen held, hesitate in so including the terminal segments in other genera. It is interesting to observe that in ALolossus perotis the terminal joint in the second finger is hony, and anchylosed to the first
 accepted, from one to three joints are present in all the tingers. The position taken hy recent writers that the Phyllostomiche are distinguished from other families by the presence of the third
 can be counted in other fimilies, the terminal joint, however, remaining in them cartilaginous.

1) ecember 21 .

The President, Dr. Rusenmabereier, in the chair.
'Ten persons present.
Note on a new Northern C'utting Ant. Alla septentrionalis:Dr. McCook remarked that he had the pleasure of amouncing an interesting discovery of a species of culting ant upon the eastern central coast of the State of New dersey. 'The discovery was made by Rev. (icorge k. Morris at a new watering place called Island Heights, which is located upon it swelling bhaf on the northern bank of 'Tom's River, near its mouth, three miles from the Athantic Ocean, in abont lat. fol N .

Mr. Morris, who has heen much interested in noting the habits of ants, observed this species carrying the needle-like leaves of the pine into their nests, and thereupon followed their behavior until he found it to be quite like that of the cutting ant of 'Texas, Atta fervens. Dr. McCook having been informed of the above discovery, made a journey to Island Heights in the early pari of September, 1~80. Unfortunately a severe eastern storm set in before the train reached Tom's River, and continued during his stay with such rigor as utterly to preclude observation of the out-door behavior of the ants. However, by working in the storm, protected by rubber garments and a temporary shelter, he was able to make a study of the internal architecture of a nest.

The opening from the surface appeared to be a single narrow tubular gallery, X, of about two inches in length, which penetrated the ground at an angle of near 45 , and entered a spherical chamber, V-a sort of vestibule-about $1 \frac{1}{2}$ inches in diameter. Within this a few ants were found, nothing more.

This vestibule communicated by a short gallery, Y, with a second chamber or cell, C, having generally a spherical shape, but more irregular in outline than the vestibule. It was about 3 in. in diameter. Within this were several small masses of an ashen-gray, fibrous pulp or papery material, closely resembling that found by him in the large cells or caves of the Texas cutting ant. ${ }^{1}$ This was evidently the leaf-paper formed by the manducation of the pine leaves. It was exceedingly fragile, even more so than the leaf-paper of the Texas Atta, and could not be kept together in the original mass for examination. It appeared, however, to be without the decided cellular arrangement first observed by him in the leafpaper of the Texas ant, whose "combs "-the analogue of those of other hymenopters, as

[^67]the bee and wasp-were composed of irregular hexagonal cells of varions sizes.

None of these leaf-paper masses exceeded an inch in height; they lay upon the floor of the cave, C, or were upheld by the filamentous rootlets which penetrated within the hollow, or, more properly speaking, around which the cave had been formed. In this respect also the habit of the northern ant resembles that of the southern. Although, as said, the out-foor behavior of the ant could not be observed by Mr. McCook, the insects having all been driven in-doors by the storm, these were observed to some extent by Mr. Morris, the discoverer, during the summer. Mrs. Mary Treat also visited the Heights and noted the same. From verbal reports received from these persons the analogy between the two insects, in respect of gathering and transporting leaver, apparto be quite elose There are many points, howeror, which remain to be determined accurately, which it is to be hoped will be done next summer.

The following accomit was commmicated to the -peaker ly Mr. Mons, and is incorporated, by his permission, in this note :-
"In answer to your questions I would say, when first observed. there were two columns, one going each way, and moving very deliberately. If alarmed hy any rudeness on my part. they sought safety by remaining perfectly motionless for some time, making it diflicult to find them, as they are nearly the color of the dry leaves.
*Those in the column geing homeward were carrying little pieno. of the pine needle or leaf, eut from seedline plants abomt Ebehon high and upwamls. In some instances the piece of leat was moi as long as the ant itself, but in others it was longer than the bearer. The appearance presented by the column was very singular, for instead of carrying their burdens as other ants do, so far as I have observed, they bore the load on the head, resting in a saddle-like, V-shaped space hetween ridges on the heal, ramming from the base of the mandible on each side to the top of the head. One end was held firmly by the mandibles. The effect at a little distance was to give them a 'shoulder arms' appearance.
"Tracing the column back, I readily found their foraging gromud a few feet from the formicary. There were the remains of several seedling pines which had been stripped and ent down nearly to the ground. Some ants were at work on the only one left standing, and I enjoyed the pleasure of witnessing their operations. There lay on the ground a few pieces, which were picked up, as a watched, and carried away. On the plant there were two at work cutting. Climbing out on a leaf to a position near the end, the ant applied her mambles.and moved around as -he ent, mutil the piece was severed, when she repeated the process, in most cases allowing the severed pieces to fall. One anter hell on tollor las
cutting, backed down with it, and started ofl home. In no instance have I ever found one of these ants carrying a load of any kind in any other way than as deseribed above. Your account of the 'Texas ant would answer as well for this.
"The little leaf-cutters at Island Heights have no mounds at the entrance to their formicaries. I found many nests, but none with a mound. The sand pellets in every case where I found ants at work were carried ofl' several inches distant on every side and scattered, as if for secrecy. 'The ants' movements were exceedingly deliberate, always. Some seemed overloaded and rested often, but never laid down their load.
"All the colonies were comparatively small. I was unable to find any indication that they were comected one with another.
"There is not, so far as my observations go, any elaborate opening and closing of gates, such as you describe, but in wet weather I nsually found a leaf over the entrance to their nest.
"The architecture of their caves is a miniature copy of that of your 'Texas cutting ant.
"I found them cutting only the pine leaf and the leaf' of a small shrub called Cow Wheat (Melampyrum americanum). Of this plant they took the petals also. They carried the dry curled leaf as well as the green and freshly cut.

- They al-n antry and incorperate into the ne-t material the drop pings of certain larve that feed on oak leaves."

Mr. Morris observed at the same place a second and larger form of leaf-cutting ant, which he thinks to be a distinct species; but as he was not able to point out any of the nests to Mr. McCook and has not yet made thorough examination, this point remains to be solved.

The ant whose economy is described above closely resembles the famous Alta fervens of our southern regions, having the same leaf-hrown color and the same characteristic spines. It is distinguished by a black longitudinal band along the median dorsal part of the abomen, amd by a similar band along the middle part of the face. makking the fursow formed by two ridges, the prolongation (apparently) of the antemal ridees to the vertex of the caput. A double row of spines extends along the entire thorax and nodes, expanding at the prothorax into about four. Two castes of workers were found, appearing to be the workers major and minor, in length respectively 4 and 3 millimetres, or about one-sixth and one-eighth of an inch. The species appears to be new, and Dr. McCook at least ventured conditionally to name it the Northern Cutting Ant-Atta septentrionalis.

The discovery at so northern a point of this species, with habits quite identical with those of tropical congeners, seemed to the -beaker tobe aremarkably interesting fact in the distribution of our ant fauna. He was at once impressed by the striking contrast between the vast myriads of workers, the extensive excavations, and the formidable and vigorons activities of the 'Texas colonies,
and the small numbers, slight excavations and apparently sluggish movements of their northern allies. And he could not forbear the thought that these New Jersey communities of Alta septentrionalis seemed like the feeble remnant of a vigorous race left or thrust by some untoward change upon unfavorable sites, which must work toward their extinction.

December 28.

The President, Dr. Ruscmenmeraer, in the chair.
Eighty persons present.
The following papers were presented for publication :-

ON SOME NEW LOWER EOCENE MOLLUSCA FROM CLARKE CO. ALABAMA, WITH SOME POINTS AS TO THE STRATIGRAPHICAL POSITION OF THE BEDS CONTAINING THEM.

BY ANGELO HELLPRIN.

The following species of fossil mollusca, for which I am indebted to Dr. Eugene 1. Smith, State Geologist of Alabama, were obtained from sections exposed in that State on Knight's Branch and Cave Branch, tributaries of Bashia Creek (Clarke Co.), and from Wood's Bluff on the Tombigbee River, near the mouth of Bashia Creek, and some twenty-eight miles north of St. Stephen's. They occur in probably the oldest marine tertiary deposits of the State, and occupy a horizon nearly parallel with that which is characterized by the fossils of Upper Marlborough and Piscataway River, Maryland, and Pamunkey River, Virginia. The following enumeration of fossils from the three localities first named, will best illustrate the palaontological relations of the beds containing them toward each other, and to the various Eocene deposits of the Atlantic and Gulf slopes :
Fossils from Knight's Branch.
Astarte tellinoides, Conr. (Var. A. sulcata, Lea.)
Cytherea perovata, Conr.
Cytherea Nuttalliopsis, Heilpr. sp nov.
? Cardita alticosta (Blandingi), Conr.
Corbula rugosa, Lam.
(C. oniscus, Conr ; var. C. gibbosa, Lea.)

Ancillaria (Ancillopsis) subglobosa, Conr.
Natica æetites, Conr.
Turbinella (Caricella) Bandoni, Deshayes, sp.
(Voluta Bandoni, Desh.)
Lævibuccinum lineatum, Heilpr. sp. nov.
Rostellaria (Calyptrophorus) trinodifera, Conr.
Solarium cupola, Heilpr. sp. nov.
Fusus interstriatus, Heilpr. sp. nov.
Fusus sub-tenuis, Heilpr. sp. nov.
Fusus (Strepsidura) subscalarinus, Heilpr. sp. nov.
Tornatella (Tornatellaa) bella, Conr.
Ostrea.
Cylicosmilia.

Fossils from Cave Branch.
Dentalium micro-striu, Heilpr. sp. nov.
Natica retites, Conr.
Natica Mississippiensis, Conr.
I'yrula mullangulata, Heilpr. sp. nov.
Pyrula tricostata. Desh.
Turritella carinuta, Lea.
Solarium cupola, Heilpr. sp. nov.
? Pleurotoma acuminala, Sowerby.
Pleurotoma moniliata, Heilpr. sp. nov.
Cassidaria (fragment). Closely allied to C' carinata, Lam.
Voluta (Athleta) I'uomeyi, Conr.
F'usus pagodiformis, Heilpr.
Fusus interstriatus, Heilpr. sp. nov.
l'usus subtenuis. Heilpr. sp. nov.
F'usus (Strepsidura) subscalarinus, Heilpr. sp. nor.
Leda protexta, Comr.
Cardium (Protocardia). Young of C' Nicolleti? Conr.
Ostrea (same species as from Knight's Branch).
Fossils from Wood's Bluff.
Dentalium micro-stria, Heilpr. sp. nov.
Natica limula, Conr.
Pyrula mullangulata. Heilpr. sp. nov.
T'urritella carinuta, Lea.
Solarium cupola, Heilpr. sp. nov.
Solarium delphimuloides, Heilpr. sp. nov.
Cancellaria erulsa, Brauder, sp. (C. tortiplira? Conr.)

Pleurotoma (Cochlespira) eristatu, Cons.
Pleurotoma, n. sp.
Ancillaria (Ancillon)sis) suluylobosen. Coms.
Pseudoliva vetusla, Conr.
Pseudoliva scatima, Meilpr. sp, nov.
Voluta (Alhleta) T'uomeyi, Coms.
F'usus per!octifiom ins, Heilpr.
? F'usus: (Levifusus) trabectus, Comr.
F'usus interatoiatus, Heilpr. sp. nov:
Fusus. n. sp.
? Cardita allicosta (Blandin!!i), ('onn'.
Leda poolerta, Comr.

Pecten Poulsoni, Morton.
Ostrea (species different from that of Knight's Branch and (ave Branch.)

From an examination of the above tables it will be seen that a fair propertion of the fossils from Knight's and Cave branches are hedd in common by both deposits, and therefore there can be no reasonable doubt that they represent about equivalent horizons. Of the hitherto madescribed forms ' 'ytherea Nutfallipssisand Litribuccinum lineatum appear to have been obtained only at the former, and Pleurotoma monilinto at the latter locality, although it is highly probable that further investigation will reveal their muthal presence in both localities. The described American forms are mainly those occurring at various heights on the Claiborne exposure. A comparison of these forms with those obtained by Tuomey (First Biennial Report of the Geology of Alabama, p. 146 from the Bathia Creek sections near Choctaw Corner, shows the two groups to be of a contemporaneous age, for from bed No. 2 of that section Prof. 'Iuomey obtained (among others) species of " Ostrea, Cytherea, Cardita, Cardium, Rostellaria, Actron, Voluta, Infundibulum, and Solarium," which appear to have been identical with the species ohtained by Dr. Smith from the two localities above mentioned. ${ }^{1}$

[^68]| 1 | Hard Limestone. | 4 feet. |
| :---: | :---: | :---: |
| 2 | Marl, highly fossiliferous. | 25 feet. |
| 8 | Blue Sand. | Variable. |
| 4 | Lignite and Clay, | 6 feet. |
| 5 | Laminated Clay, Sand and Mud. | Thickness undetermined. |
| 6 | Liguite. | Thickness undetermined. |

(Tuomey: First Biennial Report, p. 145.)
Note.-Beds 5 and (6 do not properly belong to the section, but "represent beds seen on another part of the stream below the preceding." (Loc. cil. p. 146.)

The fossils from Wood's Blutf, some 15 miles IV. of Choctaw Corner, were obtained by Dr. Smith from a bed of indurated green sand rising about $10-15$ feet above water line, which bed may possibly represent the lowermost portion of bed No. 2 of the Bashia section. Some support is given to this view by the circumstance that at this point-Wood's Blutl- the basal lignite (which in the above named section has a thickness of 6 feet) has disappeared, and more especially (at least, as showing it to possess a distinctive character) hy the general tacies of the representative molluscous fitua. Although there exists a close similarity between the general assemblage of its fossils and those of the two "Branches " of Bashia Creek, yet the number of peenliar forms is considerably greater, and consequently the aggregate possesses a mueh more decided individuality than obtains with either of the deposits in question. Horeover, I am informed by Dr. Smith that the fossil fituna of Knight's and C'ave Branches corresponds most elosely with that of bed Nor. f^{\prime} ot the Wood's Blutl' section, an aluminous deposit about $21-26$ feet above water level, and containing species of Dentalium, 'Tornatella, Solarium, Turritella. and Rostellaria identical with forms from the two first mamed localities. The disappearance of the hasal lignites at Wrood's

[^69]Bluff may be accounted for on the supposition that they have dipped under. which would be in harmony with what we know concerning the dip) of the beds in this regrion. This is but locally or at best, but partially indicated in Tuomey's reports, but judging from the contour lines of the cretaceous formation on the greneral mapis appended to the first and second Reports, and from the north and south sections on the map of 1849 , as well as from the facts obtained in Mississippi, it must be in a direction west of the southern line, or in other words, S. by W. Dr. Smith has found the loss by dip in a southerly direction on the Tomhigbee River to be about 10 feet to the mile, which accords well with Hilgatds observations on the Cpuer Eocene and Oligocene formations of Mississippi. ${ }^{1}$

From pareontological evidence alone the three exposures in question might readily be taken to represent rather an Wper than a Lower Eocene horizon, for in addition to the species typical of the American Middle Eocene. or Claiborne group proper (Caleareous Claihorne of Hilgard), and to the new or undescribed forms, we have the following which have not been hitherto recognized as belonging to the formation, and which, on the contrary, were originally described (at least the majority of them) from deposits of newer date.

Caricella (Voluta) Bandoni, Deshayes, sp. (-Imimaux s. Tertibr., Bussiu de P'arix, II, Pl. 102, tigs. 13 and 14), frum the "calcaire grossier," Middle Eocene of most geolugists, Upper Eocene of Judd.

Kinight's Branch.
Natica Mississippiensis, Conrad (J.A.N.S. 24 series, i, p. 114), originally described from the Vickstur: (Oligocene) qroup, but also foand in the Jackson (Upper Eocene) deposits.

Cave Branch.
Pleurotoma acuminata, Sowe by (Mincral Conchology, Vol, ii, j. 105), from the London Clay of Higbgate (Lower Eocene of most geologists, Middle Eocene of Judd), and Barton clay (Upper Eocenc)! (I have bad no specimens of this species with which to institute direct comparisons, but from a careful examination of Sowerby's and Edwards' figures and descriptions there appear to me to be no justifiable grounds for separating the species figured on Pl. 20, fig. 10, from its European ally.

Cave Branch.
Pyrula tricostata, Deshayes ('oquilles lossil.s, ii, p. 584), from Rétheuil and C'uiseLamothe, Middle Eccene (Suessonian of d'Orbigny). Care Branch.

Hilsard foumd the dip of the Jackson and Vickskurg strata to be from 10 to 12 feet per mile S. by W., at "points where the great regularity of succession for a considerable distance seemed to indicate a normal contiguration." (A. J. Science, new series, xliii, p. 36.)

Pecten Poulsoni, Morton (Synopsis Org. Rem. Cret. Group, p. 59), as companion of Orbitoides Mantelli, Mort. sp., and, according to Hilgard, an ewaentially Vicksburg (Oligocene) fossil.

Wood's Ihuft.
Cancellaria evulsa, Suwerby [luccinum evulaum, Brander] (Miner. Cunchot., iv, p. 81), from the Barton clay (Upper Eocene) of Eogland, and Grignon ("Calcaire grossicr") of France. ${ }^{1}$

Wood's Bluff.
Pleurotoma (Coohlespira) oristata, Conr. (J. A. I. S., 2d ser. i, p. 115), originally described from the Vicksburg group, but doubtful whether differing from the Pleurotoma bella, Conr., from the Upper Eocene of Texas. Wood's IBluff.

In ablation to the abowe, there is amone the fo--il- from Wimels Bluff an immature Cardium (Prolocardia), which may possibly
 it agrees in outline and general ormamentation, or that of C. Firgimiana, Conr. (l'ammeney liver), an umbereribed -perime. lmt of which a labeled specimen is in the collections of the Academy: The absence of asperulations on the posterior slope of the specimen in question, however, rendering it uncertain whether they were ever present, or whether they are merely abraded or waterworn, allows of no absolute specific retermination.

Whatever may be the palæontological facies of the deposits in question, however, there can be no reasonable doubt as to their true position, since Dr, Smith, as he informs me, has traced bed
 drift) of his Wood's Bluff' section to the mouth of Witeh Creek, about 2 miles below on the 'Tombigbee River, where its relation to the overlying " Buhrstone " is made manifest in an exposure just beyond the mouth of the creek. White Blutf, about 250 to 275 feet in height, hamtifully exhibits the white silieerne dat -twneand silicified shells so characteristic of the southem Buhrstone formation. These occupy the uppermost portion of the blutit, and make up fully 100 feet of its vertical height; the intermediate portion extending to the water's level, is mainly composed of laminated lignitic clays, with occasional intercalated heds of pure lignite. It becomes manifest from what has just heen stated that the fossiliferous beds of Wood's Bluil' (et conseq. the equivalent deposits on Knight's and Cave Branches and Bashia ('reek) must be between 150 and 200 feet below the have of the Buhrstone
${ }^{1}$ A very closely allied species, the Tritonium(!) pauciraricutum of Gabb, occurs in the Téjon group (Upper Cretaceons-Eocene?) of (alifornia, associated with Curdite planicoste and other characteristic forms of Thertiary fossils.
 been considered as the base of the Eocene formation in South Carolina. Lllowing a uniform southerly dip of 10 feet to the mile. these same beds must be about 250 to 280 feet below the "bed of green sind" mentioned by Tuomey (1st Biennial Report, p. 148) as occurring at Baker's Bluff, a few miles above St. Stephens, (stated to be "rich in organic remains, identical with the fossils of Claiborne ") and which, immediately above St. Stephens ('Tuomey, loc cit., p. 149), dips beneath the water-line. This approximate determination of position agrees closely with the observations made in the northeastern portion of the county, for Dr. Smith found by actual barometric measurements that the "chalk hills" (Buhrstone) near Lower Peach Tree on the Alabama River, and at a locality about 7 to 8 miles south of Choctaw Corner, were about 250 feet above Knight's and Cave Branches, and the marl bed (No. 2) of Tuomey's Bashia section.

Whether these older Eocene deposits underly the bluff at Claiborne has not yet been proved, but it is but fair to presume that they do. Likewise, it remains to be shown what relation the basal lignite on Bashia Creek bears to the "Northern Lignite" of Hilgard.

CYTHEREA, Lam.

Cytherea Nuttalliopsis, n. sp. Pl. 20, fig. 1.
Shell sub-elliptical, moderately ventricose, its surface covered with fine concentric strix, which are apt to become roughly imbricate on the basal margin; umbones not very prominent, rather anterior; lumle cordate, deeply impressed at about its middle, its outline clearly pronounced hy a sharply impressed line; posterior extremity regularly rounded, the anterior somewhat produced; margin entire; pallial sinus somewhat angular, pointing toward the centre of the shell.

Length, $1 \frac{1}{2}$ inch. Knight's Branch, Clarke Co., Ala.
This species most resembles among American species of $C y$ thereat the C' Nuttalli, Conr., from which it may be distinguished by the greater production forward of the anterior extremity, and by the median depression in the lunule. In this last character it agrees with C. Poulsoni, Conr., from which, however, it very materially differs in form, and in the much lesser development of the umbones.

PSEUDOLIVA, Swain*on,
Pseudoliva scalina, n. sp. P1. 20, fig 12.
Shell bueciniform, of about seven volutions ; the whorls ronghly plicated; the folds on the body whorl appearing as shoukder nodules; rlentiferous sulcus well pronouncerl, followed by ahout five impressed revolving lines, which slightly erenulate the margin of the onter lip; revolving lines on the hody-whorl above the sulcus almost obsolete ; aperture slightly exceerling the spire in length: columella callous; suture deeply chameled.

Length, $1 \frac{1}{2}$ inch. Wood's Bluti, Clarke ($o .$, Ala.

LEVIBUCCINUM, (1.mra .

(Amer. Jour. Conchol., i, p. 21. Genus not characterizel.)
Shell having the general form of Metula, II. \& A. Adams, hut destitute of all traces of a posterior canal ; aperture between bucciniform and fusiform, about the length of the spire. 'This genus is distinct from Buccinamops of (i'Orbigny, muder which the Buccinum (Lavibuccinum) prorsum, Conr., is erroneonsly clased in the Prodiome de Paléontologie, ii, p. 369.
Lævibuccinum lineatum, n. sp. Pl. 211, fig. 5.
Shell fusiform, of about seven convex volntions, which are throughout their whole extent covered by fine, but distinct, revolving lines; aperture slightly exceeding the spire in length, sub-canaliculate anteriorly; columella gently areuate; outer lip striate within.

Length, 1 inch. Knight's Branch, Clarke Co., Ala,
This species mainly differs from the $/$. prorsum, Conr., in having the revolving lines equally distinct over the entire surface of the whorls. The Anurex (Fusus it Buerimum unc\%) mitraformis of Brocehi, from the Oligocene and Niocene deposits of France, Austria, and Italy, is a closely related species.

FUSUS, Lamarck.

Fusus subteauis, n. sp. Pl. 20, fig. 4.
Shell fusiform, of about seven sub-angular volutions; whorls ornamenterl with somewhat obserne longitmlinal lidh-atunt twelse on the body-whorl, which are cut by several prominent revolving ridges commencing at the shoulder angulation: shoulder of the whorls more or less smooth, with an ohscome median revolvine line. and a prominent suln-sutural one: :perture ahout the length of the
spire, or shichtly exceding it, the canal gently curved, moderately contracted, and somewhat expanding at the extremity ; outer lip thin, and showing internally the external ornamentation; base with numerous revolving lines, which alternate in coarseness.

Length, $1 \frac{1}{4}$ inch. Knight's Branch; Cave Branch, Clarke Co., Alabama.

Fusus interstriatus, x. sp. 11. 20, fig. 11.
Shell fusiform, slender, composed of about ten convex volutions, the first three of which are smooth; whorls ornamented with both longitudinal plications and revolving lines, the last of which (about eight in the upper whorls) alternate with finer intermediate strix ; the longitudinal plications distinct on the earlier whorls, but becoming much less so on the body-whorl, and the one preceding; aperture about the length of spire ; the canal somewhat tortuous : outer lip thin, dentate within.

Length, 2 inches. Knight's Branch; Cave Branch, Clarke Co., Alabama.

Subgenus HEMIF USUS?

Fusus (Hemifusus?) engonatus, 1. sp. Pl. 20, fig. S.
Shell turreted, of about ten volutions, the first three whorls smooth and convex, the remainder strongly carinated, and traversed by mumerous fine revolving lines, which on the median portion of the body-whorl alternate with intermediate finer strix; body-whond impresed immertiately below the carination (shoulder angulation) ; lines of growth sinuous, and approximating the charaderistic lines of the I'leurotomidre; aperture considerably exceeding the spire in length; columella slightly arcuate, and presenting a rudimentary fold at about its central portion.

Length, $1 \frac{1}{3}$ inch. Wood's Bluff, Clarke Co., Ala.
This species resembles the Fusus bifasciatus of Deshayes (Animaux sans Vertèbres, Bassin de Paris, II, pl. 84, figs. 15 and 16) from the Paris basin, but may be readily distinguished from that species by its more slender form.

Subgenus STREPSIDURA, Swainson.
Fusus (Strepsidurı) subscalarinus, n. sp. Pl. 20, fig. 7.
Shell somewhat buceiniform, whorls about eight, sub-angular. the first three or four smooth, the remainder ornamented with both longitudinal costie and revolving strix, the latter showing a
tendency to alternate in size; the costa are arcuate, not in a regular continuous series, those on the body-whorl extending considerably below the middle of the whorl; aperture athout the length of spire, the canal somewhat reflected ; columella covered with a callous deposit, considerably twisted ; onter lip ilentate within.

Length, 1 inch. Knight's Branch; Cave Branch, Clarke ('o., Alabama.

This species greatly resembles the F'usus sealurimus of Deshatyes (Coquilles Fossiles, I I, p. 574, Pl. L工̌III, fiss. 27 and 25), lut may be distinguished by the lesser prominence of its costae, and by the presence of well defined strise over the entire surface of the whorls. In this last respect, as well as in the subansulated form of the whorls, it also differs from the Fusus scalariformis. Nyst (Coquilles et Polypiers Fossiles, 1). 504, I'l. NL, ligs. 5a, (i). from Lethen, Belgium.

TURBINELLA, Lamarck.
Subgenus CARICELIA, rommad.
Turbinella (Caricelia) Bandoni, Deshayes, sp. Pl. : 0 , lig. $1 \bar{j}$.
The large species of Caricella from Knight's Branch agrees so closely with the ligures of Foluta Bandomi, Desh. (Animaut sans Vertebres, Bussin de Puris, II, pl. 102, figs. 13 and 14), from the Paris basin, that I do not feel justified in considering it a distinet species. 'The American form appears to have been somewhat more elevated, but this is probably no more than a varietal circumstance.

Length, 4 incles. Knight's Branch, Clarke ('o., Ala.

PLEUROTOMA.

Pleurotoma moniliata, n. sp. P1. 20, fig. 9.
Shell fusiform, elevated, of about eight volutions, the whorls considerably contracted above the shoulder; whorls ornamented with a double series of nodes, the lower much the most strongly developed, which gives to the upper portion of the spire a moniliform appearance; surface of entire shell traversed hy fine revolving lines, which become more distant, very prominent, and alternate on the median portion of the body-whorl; aperture about the length of spire ; the relative position of the upper :and lower nodes corresponds to the sinuons lines of growth.

Length, 1 inch. Cave Branch, Clarke Co., Ala.

Pleurotoma acuminata? Sowerby. Pl. 20, fig. 10.
(Mineral Conchology, II, p. 105.)
Shell fusiform, acuminate, of about nine volutions ; whorls flattened. longitmbinally plicated and traversed by fine revolving lines, which heeome crowded on the concave upper portion of the whorls, and alternate on the basal portion of the body-whorl; suture bordered inferiorly by an elevated line, which is somewhat crenulated by the sinuous lines of growth; aperture less than one-half the length of shell.

Length, 1 inch. Cave Branch, Clarke Co., Ala.
This Ilfurotoma corresponds very closely with the descriptions and figures of P. arcuminuta as given by Sowerby in the "Mineral Conchology," and by Edwards in his monograph of the English Eocene mollusca (Palrontographical Society Reports, 1854, p. $230, \mathrm{pl}$. xxvii, figs. $3 a, b, c, d$), and will probably prove, on direct comparison, to be referable to that species.

> PYRULA, Lamarck.
> (Ficulc, Swainson.)

Pyrula multangulata, n. sp. Pl. 20, fig. 2.
Shell elongated, sub-claviform ; apex of spire obtuse, consisting of three smooth volutions; whorls about seven, covered with revolving strix, which are very fine on the upper portion and shoulder of the borly-whorl, but less so and attemuate on the basal portion; hody-whorl occupying about three-fourths of the entire shell, marked by two prominent and one lesser carinx, and a single row of crenulations on the shoulder angulation ; the fourth whorl (the first one bearing ormamentation) appears cancellated; columella curved.

Length, 1 inch. Cave Branch; Wood's Bluff, Clarke Co., Ala.
Pyrula tricostata, Deshayes. Pl. 20, fig. 6.
(Coquilles Fossiles, ii, p. 584, Atlas, Pl. 79, figs. 10 and 11.)
Althongh I have no specimen of Pyrula tricostata for direct comparison, I have, nevertheless, but very little hesitation in referring the Alabama form above figured to the same species, as it agrees in all essential respects with the figures and descriptions of that form as given by Deshayes in the Coquilles Fossiles. Three unnamed specimens of a Piyrula in the Academy collection from Dax, France, which I believe to be the P. clava (Oligocene?) of Basterot, somewhat resemble the Alabama species, but are
comparatively much more robust, and have the costal norles and revolving strise considerably more developed.

SOLARIUM, Latmarck.
Solarium cupola, n. sp. Pl. 20, fig. 14.
Shell convexly conical, mound-like, of about five volutions; whorls ornamented with alternating coarse and very fine concentric lines, and appearing double from a medial impression (the
 possesses); base similarly ornamented as the upper surface, convex, and strongly materinel hy the prolongation imbinty of the outer wall; umbilical margin finely crenulated, the umbilicus broadly open, amb exhihting the eoneentrically -triated internal volutions of the apex ; aperture rhomboidal.

Length, $\frac{2}{3}$ inch; diameter, $1 \frac{1}{4}$ inch. Cave Branch; Knight's Branch; Wood's Bluff, Clarke Co., Ala.

Solarium delphinuloides, n. sp. Pl. 20, fig. 1\%.
Shell convexly conical, of about seven volutions; the whorls ornamented with several beaded revolving lines, two or more of which near the upper margin, and one near the basal margin being the most prominently defined; base convex, sul)-marginally channeled, and ornamented with numerous finely beaded revolving lines, which become most prominent in the umbilical region; umbilical volutions distinct to the apex, transversely striated, supermedially carinated; umbilical margin crenulated; aperture subcircular.

Length, $\frac{1}{2}$ inch; diameter, $\frac{3}{4}$ inch. Wood's lBlutt, Clarke Co.. Ala.

DENTALIUM, I.
Dentalium micro-stria, n. sp. 11 20, fig. 3.
Shell slender, considerably curved and greatly attenuated, faintly striated, the strite most conspienons on the attennated portion; posterior aperture entire, there being nofisime: anterior aperture circular.

Length, $1 \frac{1}{\underline{3}}$ to 2 inches. Cave Branch: Wond's Bluti, ('larke Co., Ala.

THE SHINING SLAVEMAKER.-NOTES ON THE ARCHITECTURE AND HABITS OF THE AMERICAN SLAVE-MAKING ANT, POLYERGUS LUCIDUS.

By Rey. Henry C. McCoor, D. D.

August 21st, 1878, at the foot of the Allegheny Mointains, near Altoona (Bellwood, Pa.), I discovered a nest of Polyergus lucidus, Mayr, the American representative of the well-known European P. rufescens. The latter is the Amazon or Legionary Ant of Huber.and is:associated with that author's discovery of compound ant-hills, the term applied to those nests in which certain ants have associated with them, in a sort of slavery, ants of another species. Huber made a full and interesting account of the predatory excursions of P. rufescens, ${ }^{1}$ and other interesting behavior, which Forel ${ }^{2}$ has recently fully confirmed and completed. It is, however, of interest, to cliscover the existence of the same habits in a closely allied species in America, and this record is therefore presented. Morcover, there are here some details of architecture which may prove of value in themselves.

The nest of Lucidus above referred to was situated in the gravelly soil of a valley between the mountains and the Juniata River. The field was sown in clover, and had not been plowed for several years. While passing through the lield, I observed several ants rescmbling at first sight the common mount-makers, Foimica exsectoides, issuing from a hole. I stopped to note them more carefully and saw a worker of Polyergus lucidus come out and return to the same nest. I at once began an exploration of the nest, as my time was limited, and professional duties prevented extended studies of the out-door habits of the creatures. There were four gates (fig. 1, Pl. 19), separated a few inches from each other. 'Two were simple tubular openings into the ground, about three-fourths of an inch in dianeter ; the others were two similar openings remosed several inches from the first named, and united by a worm concave road, like a half tube. 'The four were arranged upon the are of a circle. The nature of the soil, which was filled with coarse gravel and stones, prevented me from noting (as per-

[^70]

IIC COOKOn Slave-Inakins AI:
haps it had prevented the ants from making) any orderly arrangement of galleries and rooms in stories. But chambers were discovered, placed one above the other, united by tubular salleries. and extending down at least twenty-two inches, the ifepth to which the exeavation was carried. The general character of these may he shown by the following examples. 'Twelve inches from the surface the trowel uncovered an opening into at cavity: By sently removing the earth, a similar opening was made just opporite (fig. 2, Pl. 19). When the little bridge between the two was cut away there was exposed an ovoid room (fig. 3, Pll 19), in which were a number of ants, chiefly males and females of Lucidus. The room was an inch high at the middle, and an inch and a half across from wall to wall; a tubular gallery led from it into the earth beyond. Another chamber, found at ten inches below the surface, was a large irregular cavity, which appeared, on removing a smooth stone, flush up against which it had been mined (lig. 4, Pl. 19). It was three inches long, one inich and a quarter high, at the highest point, and extended inward at the deepest point nearly two inches. The line of the roof against the stone was irrecular. falling to seven-eighths of an inch to five-eighths, rising to seveneighths, and at one end terminating in a gallery-like extension of half an inch. A gallery opened downward near the stone and one opened inward at the imermost point. This chamber was also occupied chiefly by males and females. This sulliciently characterizes the internal architecture.

Mingled with the Lucidus ants in large numhers were workers in three forms, major, minor, and dwart, of the species Formica Scheruffiussi.

August 23d, the excavated nest was visited, and these ants were found to be busy in part upon the galleries, which they were cleaning out, dragging the pellets of sand to the opening with the design apparently of closing them. None of the Lucidus :ant: were engaged in this work. Another portion of the slaves was engaged in an extensive migration. ${ }^{1}$ A few of the slaves were earrying their fellows, but for the most part the deportation was confined to the males and females of Ltuedus. 'The mamer in which the latter were seized and carried off was well ohserved and is :a follows: The slave approathed the winged queen (for examplen
${ }^{1}$ I have referred to this migration in "The Arricultural . Int of Texas," p. 154.
and after the usual touching and crossing of antenne the mandihles were tightly interlockerl (lig. 5. Pl. 19) : the head of the slave was then raised, and simultaneously the body of the queen drawn batck, stretched quite out in a straight line, and then doubled under. the ablomen being thrown upwarl apparently resting against the lower part of the face and the fore-part of the thorax (fig. 6, Pl. 19). In this position the large virgin queens were carried up the perpendicular face of the cutting for eighteen or twenty inches, and then for the distance of six feet over the ground and through the grass. The time consumed in this journey was a few seconds over one minute. I frequently observed this carrying of the workers of Lucirlus, in the artificial rolonies which I afterwards formed and brought to Philadelphia. The process was substantially the same, although often the master was simply dragged along the surface. More than once a slight opposition was made to this treatment. The slaves, or at least certain individuals of them (for I am persuaded that ants have their personal peculiarities of disposition and moods like larger animals) seemed at times to have a prejudice against the presence of the Lucidus ants above ground, and would unceremoniously seize them and carry them below. I have seen a master or more properly "mistress," thus served several times, each time returning in a dogged sort of resistance to the will of her servitor. These emmet mistresses too, apparently know something of the bitterness of bondage to a capricious domestic "help."

The wonderful muscular force of the grip which Lucidus takes with her mandibles was thus illustrated: One worker had for some reasom fallen under the displeasime of another, who held her firmly grasped by the middle thorax. Anxious to preserve my colony from umecessary loss, I lifted the two out on the point of a quill toothpick, laid them in $m y$ hand, and thrust the fine point of the quill between the jaws of the aggressor, and so teased her until she released her hold of her fellow. 'The rescued ant instantly clasped the palm of my hand, threw her abdomen under, and thus with back curved up like an angry cat, sawed and tugged at the skin until an abrasion had been made. While watching this operation the other ant was still clinging to the quill, and to her I next tumed my attention. She was holding fast in her mandibles the point of the toothpick, with her body stretched straight out into space, her limbs stretched outward, except one
hind leg, which was a little bent upward. 'Thus, without any lerceptible support, except that which her jaws gave her upon the quill point, she hung outstretched for several minutus. How long she would have kept this position I know not, fior I dropped her into the nest by elipping ofl with scissors the point. of the quill, which, after hugging fiercely for a while, she finally abandoned as an unresponsive and unworthy foe.

In the course of the ahove migration, one queen was seen to resist earriage so vigoronsly that she was finally dropped, and, refusing to give the slave a hold upon the mandibles, was seized by the wing and dragged off. The Lucidus ants seemed to have no volition in nor direction of this movement. I released a mmmber from their porters during varions stages of the transit, who always wandered about with a confused, aimless and irritated manner until again seized and borne oft by slaves.

The locality to which the formicary was being thus transported was about six feet distant from the gates of the original nest. It was either an old nest or a portion of the one just disturbet. The quarters at least appeared to have been formerly prepared and occupied. The gates of the nest were placed in one sloping side and in the angle of a deep cross-furow, and were quite well concealed by tall grass and clover, tufts of sheep-shaw and various small weeds (see fig. \bar{i}). In the angle of the furrow was a cleft in the earth nearly two inches long, one end of which was rounded into a gate of the size and character of those first described, and at the other end into a smaller similar vertical tube. This entrance was so well concealed by grass that I diel not see it for some time (fig. 8, Pl. 19). Two and a half inches diagonally ahove this was a lateral cleft, three inches long, from a half to three-fourths of an inch high, and penetrating into the earth laterally at raminns points by galleries. The stalks of grass growing upon the stle of the slope above sent down their roots through the roofort this chelt restibule into the floor. On one side of the cleft half an inch abowe it. was an entrance, with a dome-shaperl restihule. On the other side. three inches ahove, was a fourth gate, opening umber a bomme stone. While some slaves were engaged in deporting their formica fellows and Polyergus associates into the wew home, whers were busy bringing out straws and sand as thongh propring the galleries and chambers within. Oceasionally a Latidus worker would show herself for a moment at the grate with outreachent
antemate and open mandibles, as thongh on the watch for intruders. and then slowly return to the interior.

September 17 th, twenty-seven days after the discovery of this formicary, I was again at Bellwood, and revisited it. The new nest seemed to be deserted; the ground around the gates seemed to have been recently disturbed by a visitor, and no ants were visible. The old nest, however', was abundantly peopled, and numbers were found two and a half feet below the surface, from which I was enabled to gather a large colony of slaves and workers of Lucidus. The winged forms were gone. Mr. Edgar Kay, who had assisted me in the excarations at the first visit, and had kept an eye upon the nest, reported that a few days after my departure (in the latter part of August), he had seen one male and several females taking flight. They perched upon grasses, etc., and thence flew eastwaird, at a height of forty or fifty feet, to the end of the field, some 300 feet distant. It is probahle that after this marriage flight of the sexes, the workers returned to the old home.

After these ants were colonized, I was able to observe several facts, chiefly confirmatory of those recorded by Huber, Forel and others, of the European Polyergus. The masters never work; the colony was changed several times in order to incite to new work in mining galleries and rooms ; clusters of Lucidus were placed by themselves; always they remained idle. The slaves wrought with the greatest industry and energy as long as there was any need; the masters would crowd into the galleries, and move about in an aimless way, but I never could trace any attempt either at directing or aiding in the work. So also I never saw one attempt to eat. Sugar was fed freely and the slaves freely partook, until they became gorged, and their abdomens grew transparent with the pouched supply of liquid sweets. The masters strode over the grains of sugar, and even when I had supposed that I had prepared them with a good appetite by previous fasting, they partook of nothing. Yet they are in good condition, and evidently well fed. They doubtless are fed by the workers who must disgorge the food, as when feeding larvæ, callows, males, females, and even each other. I have, however, never yet seen the actual passing of nutriment from one to another, although often observing Lucidus and Schauffussi in the posture which is commonly assumed when this mode of conveying food is being practiced.

In galleries and rooms the Lucidi hang upon the sides or to the
ceiling, or are snugged in little clusters with the slaves. In changing formicaries they were found thus rolled together in balls, slaves and masters-or more properly, mistresses, for all workers are modeveloped females-mingled in a pomiormon-mam.

One such change was made October 14 th, the weather at the time being chilly, and the furnaces not yet fired in the honse. But little effort was mate to dig new gatlemies matil erening, when I warmed up the glass globes by a gas-lamp. My experience here has been quite the opposite of Huber's, who took such pains to keep his artificial nests of P^{\prime} ' rufescens from the light. Just as with my agricultural ants, so P. lucidus at once turned to the genial warmen ami light, gathering in a great hall within the comfortable glow. A few of the slaves mounted the glass in the warmest place to be found. As often as I would revolve the globe, the cluster of snugging ants would unravel and transfer itself in new mass upon the side toward the flame. The slaves also cheerfully work on the side toward the light, and indeed seem to prefer to do so.

Lucidus cleanses herself quite freely, but also I have very frequently seen her soliciting the slaves to this service, who sometimes consent, and go over the body from antemae to abdomen. licking and scraping it. The need of this service especially appeared upon examining a dead Lucidus. Its body at varions parts was covered with minute white, oroid oljects, apparently parasite eggs. I thought them parasites, but could discover no trace of life, or appearance of being living creatures. One seemed to be suspended to the ant's body by a thread-like attachment. Many of the slave-makers are thus affected. While taking out the colony one slave was found upon which were fastened two small white insects, apparently mites, which I could not then examine, and unfortmately lost among my specimens. I have often observed ants to be infested with mites in natural site, and partienlarly in artificial nests. The greatest care is required to keep them in healthy condition while in confinement. The admitalhe structural provision for cleansing the person given to :ants. ${ }^{1}$ is certainly needed in view of the lialibity to such dangers.

The listless, heavy manner that is characteristic of Latedus in common, is wholly changed at any alarm, or the presence of :an enemy. Her true character and duty to the commmenty then

[^71]appear. Various experiments established the fact that some of these slave-makers (apparently) always keep on guard, and that certainly some are ready to spring at once to repel any attack. For example, one of the slave-making formica sanguinea, found in the same neighborhood, was dropped into the Polyergus colony. The hostile presence was instantly discemed and a Lucidus worker sprung upon the Sanguinea and seized her near the throat. Several slaves ran to the fray, and took part by seizing legs and antenna of the intruder. Not wishing such an unequal conflict, I lifted the principal combatants out, having teased away the others, and set them down to fight it out fairly. Lucidus had Sanguinea grasped by the face at the eye with her mandibles when first removed. This was not satisfactory, for she began cautionsly and deftly to release her hold, preparing herself meanwhile, so that with a quick snap she seized her foe by the neck, then turned up the abdomen, and, as I suppose, ejected poison upon the face and mouth of Sanguinea. I separated the two before either had been mortally hurt. However, Lucidus had lost the flagellum of one antenna. I put her back into her nest. The battle-scarred warrior had no sooner struck the soil which she had so gallantly defended, than she was violently seized by a slave, and dragged up and down by her sound antenna, the poor jointless scape meanwhile thrust out and waving piteously. The late exalted mien and ferocious aspect were now gone, and the warrior cringed her borly and drooper her limbs like-it is no mere fancy word-painting this-a sullen criminal in the hands of a policeman. The two disappeared from my sight in the mouth of a gallery ; but half an hour afterward I saw the same warrior, whom I recognized by the mutilated antenna, in the clutch of one of her scarlet fellowsoldiers, who was mounted upon her back and holding her by the neck.

I am happy to record that two days thereafter I saw the same reteran, evidently again in "good odor," perambulating the surface of the formicary. It is probable that in the battle her body had been tainted by some odor peculiar to her adversary, which had made her obnoxious. It may be, indeed, that the loss of the upper part of the antenna may have impaired recognition, and so caused this hostile treatment. At all events I could not but wonder whether any thought went through the little creature's brain analogous to our meditations upon the ingratitude of Repub-
lics, and the vanity of military wlory! 'This incident, and many other observations, go to establish that in the function of the warrior is the true economy of this ant. 'The mammer in which her European congener Rufescens makes her raids upon the nests of formira fiusea and F^{\prime}. cumicularia, marching in solinl colnmm, and conducting war with activity, intelligence and suceess, may be read in the fascinating pages of Huber and Forel. 'Were is no doubt that our American species has precisely the same habit. Mr. Joseph Jeanes, a well-known member of this Λ cademy, has described to me the raids of an ant ohserved hey him upon his country-place at Fox Chase, which, from his deseription of the insect, without a specimen, I should have little hesitation in identifying as our P. lucidus.

The slaves, however, are not deficient in the eombative faculty They spring to repel a hostile attack as freely and fiercely as the masters. 'They do this independently, too, just as they conduct their mining operations, and their ahility to wage successtul warfare seems to be quite in keeping with their martial spirit. Dr. Darwin has conjectured, ${ }^{1}$ that the slave-making instinct maty have originated from the unintentional rearing of pupe collected for food, who proving themselves useful and congenial inmates of the nest, suggested the collecting of pupat to be reared. Thas originated a habit, which by natural selection was strengthened and made permanent, and finally increased and modified, until an ant was formed as abjectly dependent on its slaves as P ' rufeserns. Whatever credit we may give to this ingenious hypothesis, it must be said, that in the case of our F^{\prime}. Schau!finssi, natural selection has not operated to degencrate the soldierly courage and faculty, and remand the duty of defense to those associates in whom the military faculty has been specialized. In other words, if Lucidus has become specialized as a warrior, (lropping an original disposition and ability to labor, her slave has not become specialized as a worker, nor dropped her combative faculty, but seems to be possessed in all respects of the normal habits and nature of ants of her species. It least I could trace in her no effects of slavery, other than the strange association with and care of her abductor. One, therefore, who aceepts Dr. Darwin's suggestion, must allow that natural selection has wrought toward specialization in one seetion of the eorlon!, hat has heem-natrended
' Origin of Species, p. 26.
in its operations upon the other section. It is doubtful if the amomalous conditions thus raised by Dr. Darwin's explanation, be not more diflicult to explain than the original conditions to which the hypothesis was applied.

It is important to note the wide distribution of this insect across the American Continent. During the summer of 1879, while eneamped in the Garden of the gods, studying the Honey and Occidental Ants, a nest of Lucidus was discovered just inside my tent door. Its gate was a simple opening into the ground, into which both Lucidus and her slaves were frequently passing. There was a similar opening under a small bush about three feet distant. The slave, or worker, was here precisely the same, Formica Schauffussi, which is found so often in the compound nests of both F^{\prime}. sanguinea and Lucidus in the Eastern States. On one occasion I captured a slave carrying a winged queen from one opening to another.

A comparison of a Lucidus taken at Bellwood, at the foot of the Allegheny Mountains, Pennsylvania, with the Colorado specimens, shows no difference except that the Pennsylvania example is slightly more robust and of a somewhat darker color. The peculiar uniform gloss which gives the American ant its specific or varietal name, as distinguished from the duller color of the European species, P. rufescens, marks equally the Eastern and Western representatises. The European ant is decidedly smaller than her American congener. The Colorado F. Schauffussi is of a more uniform and darker brown color than the Allegheny Mountain specimen.

I have no specimens of Lucidus from points intermerliate of the localities above named, but no rloubt the species is spread over the whole of our Continent. ${ }^{1}$ That it carries with it its characteristic habits, even its favorite domestic servant and associate, and that in these respects it exhihits the hahits of its closely allied congener of Europe, affords another interesting point in the geographical distribution of our insect fauna.

[^72]
ON THE TEMPORAL AND MASSETER MUSOLES OF MAMMAI.

BY HARHSON ALIEN, M. D.

Systematic writers have described the temporal and masseter museles in mammals as being distinct from one another. I hope to show that they are, in the great majority of forms, parts of the same muscle.

I have found in my dissections that the temporal musele, ${ }^{1}$ as a rule, has a deep and a superficial set of fibres. The deep set arises from the floor of the temporal fossa, and makes up the greater part of the musele. Most of the fibres unite to form a tendon, which is inserted upon the apex of the coronoid process of the lower jaw. Many of the fibres which do not so unite are inserted upon the median surface of the coromodid process : othens again are continnons with the superticial fibmes. The -uperticial art of dine arise from the temporal aponeurosis. It is continuous in the main with the deep fibres of the masseter, and the fibres are inserted upon the lateral surface of the coronoid process. A partially distinct slip arising from the median aspect of the malar bone. and the ridge on the squama over the external auditory meatus, is an accession to the superficial fibres, but possesses a tendeney to unite with the fibres of the deep set in the anterior portion of the fossa. These fibres may receive the name of the suprazygomatic portion of the masseter. They are inserted at the lase of the coronoid process, forming a thin glistening tendon within and a little posterior to the anterior border of the bolly of the masseter. The supra-zygomatic slip is merged with the large superficial mass in the dog.

I believe that I have detected as part of the general plan of the masseter muscle, when well developed, that it is composed first of a tendino-muscular layer, rising tendinously from the anterior part of the zygoma or the maxilla near the infra-orhital foramem. and is inserted muscularly into the angle; second, of a meanly vertical layer, tendinous below near the angle, muscular near the zygoma; third, of a mearly vertical layer, having a disposition to become tendinous, both near the angle and at the malar hone: fourth, of a smaller layer occupying the fossa on the lateral surface of the ramus, and which exhibits a glistening layer of
${ }^{1}$ For convenience the temporal and masseter will be held as distinct in the descriptions.
tendon at the origin from the malar bone. The fibres beneath this are continuous, in most mammals, with the superficial layer of fibres of the temporal muscle, including the supra-zy gomatic slip, which, in some animals, is distinct in great part from the fibres
 ral resemblance to the internal pterygoid muscle, which, wherever exampled, has shown these imperfect attempts at planal cleavage.

This outline being borne in mind, it may be well to turn to the descriptions employed by writers on comparative anatomy.

The descriptions of the muscles in Meckel (Vergleich. Anat., iv, 495) are very general. The temporal is said to be covered by a conspicuous aponeurosis; the muscle to be more or less fanshaped, and gradually narrowed from above downward. The masseter is said to be divided ordinarily into an outer, longer, stouter and straight layer and an inner, shorter, weaker layer, in which the fibres are more or less obliquely placed from above downward and before backward.

Cuvier (Leçons d'Anat. Comp., 2d Ed, iv, 1 me Part, 64 infra) describes the temporal in the apes, bats, insectivora, rodents, twotoed ant-eater, hog, ruminants and the cony. None of these includes the arrangement of fibres above given. It is true that in the anteater the masseter and temporal muscles are united, but no detail of the character of the union is presented. Mivart (Elements of Anatomy, 310) repeats this statement. It is evident that the mion of the muscles is here thought to be exceptional. Cuvier and Laurillard further describe the masseter in the bats, rodents, artioclactyles, ant-eater and the cony as composed of two portions, a zygomatic and a maxillary. The former is present in all; the latter is seen in the rodents, artiodactyles, the ant-eaterand the cony.

Mivart (l. c., p. 309) describes the masseter in Lagostomus and Dasyprocta as follows, as of "great development:" "The masseter is divided into three portions, and traverses the singularly enbarenl infra-orbital foramen spoken of in describing the skeleton." According to the interpretation used in this paper, the masseter in rodents has even fewer subdivisions than in some other mammals. Of these, at least one only passes in such direction as to permit the expression that it "traverses the infra-orbital foramen;" and this part is not separable from all the fibres lying on a plane lower than that of the zygoma.

The descriptions of Cuvier and Laurillard of animals I have not dissected, may be here epitomized:

In the horse a sinall superficial slip of the temponal exista. which cloes not conceal the main tendon.

In the lion (Pl. 143 and 144, fig. 2) the parts markent morkionsoutien and jugo-soutien answer in position to the superdicial and supra-zygomatie lasiculi. 'The slips ate identified, howerer, with the muscles of the external ear.

In the description of the myology of Erinacens ecamentus the authors use the following language: "Between the crotophytie (temporal) and the masseter muscles in the position of the alsent malar bone a red muscle-fasicle is seen, which we have hom unable to identify. It is lost posteriorly upon the temporal aponenrosis, and passes mader the masseter to he is.serted upon the anterior border of the ascending ramus of the mandible."

I do not hesitate to classify this slip with the supra-zyemomati. slip of the masseter (see fig. 2, Pl. it of C. \& L.). Nothing to invalidate such identification can be presented exeepting the fact that the slip has an alleged origin from the temporal aponelironis. It is in every way likely that either the glistening main tenton or the aponeurotic texture of the superficial portion of the temporal is here described.

In the abore descriptions no mention is mate of the union of temporal and masseter except in the ant-eater, and in mone is the method of description the same as employed in this paper.

In making the dissections it was found convenient, after preparing the superficies, to dissect the masseter as fur as the retention of the zygomatic arch in position would permit. Then this arch was sawn through at either end, and turned down. 'This exhiljiterl the continuity of the fibres attached to it, and the temporal. The latter muscle was then studied carefully: Lfter this the head was sawed through from right to left vertically (frontal cut) in orcler to expose the arrangement of fibres on the merlian aspect of manlible in rodents, or, in lien of this, an antero-posterior section was mate.

Attention will now be invited to the detailed amamgement of the parts in different mammalian types.

In Macacus nemestrinus we find the filnes of :lponentotic omigin (superficial fibres) arising as in man. In athlition, a slip of libres. arising from the inner surface of the malar hone and the oecipital crest, passes forward and oblicuely downando to be continuon= with the deep masseteric libres. Thas slip is the supu:t-zymomatic. and is believed to be an upward proloneration of the deep
masseteric fibres. It joins the superficial fibres on a line with the coronoid process. The deep fibres furnish a brilliant tendon, which extems forwards quite to the orbito-trmporal septum; thus diflering strikingly from the arrangement in man. The deep filmes are further seen to he imperfectly differentiated from the internal pterygoid musele.

The masseter muscle is composed of the following:-1st. A layer arising aponeurotically from the anterior third of the zygomatic arch, and pasing obliquely downward and backward to the amgle. 2d. A la, er resembling the foregoing; it arises from the zyomatic arch at its middle. The fibres are nearly vertical and end tendinously at the angle. 3d. A layer arising tendinomuscularly from the posterior third of the zygomatic arch. Its fibres are inserted upon the upper half of the ascending ramus of

Fig. 1.

Transverse eection through masseter and tomprial museles fone inch behind the (ye), 'anis familiaris.
x, Superfictal temporal fibres. XX, Deep temporal fibres.
$X X X$, Superficial masseterio fibre, separated trom x by a tempinsus sheet. XXXI, Internal phersertid muscle, cat transversely. the lower jaw. These layers merge anteriorly; indeed, are indistinguishable at the anterior border.

In the dog the superficial fibres are much better developed than in either the macaque or man, and cover in the deeper fibres, while they do not form at any part a suprazygomatic slip; the general arrangement of both temporal and masseter muscles as in other mammals. The masseter exhibits six cleavages, of which the last or deepest occupies the fossa ou the outer surface of the ramus, and is directly continuous with the superficial fibres of the temporal (fig. 1).

In the coati, Nasua narica, the superticial fibres, as in the dog, completely conceal the deep fibres. The supra-zygomatic slip is heantifully distinct. Branches of a conspicuons vemule which can be seen lying upon the superficial portion disappear athruptly as they approach the upper border of the supra-zygomatic slip. Subsequently dissection detects the trunk
of this vein lying between the masseter and temporal masses, behind the zygoma. The central tenclon is thicker at the root of the zygoma and the bone over the external auditory meatus than any other locality in the temporal fossa.

The masseter has fine layers, closely resembling those in the dog. The deepest layer, namely, that one whose fibres oceupy the ramal fossa, has a much thicker aponeurosis than the other layers, the anterior portion of the first alone excepted.
 the temporal are everywhere thick. The aponeurosis is well developed. The supra-zygomatic slip is not distinct. The deep portion of the muscle exhibits a white gli-toning temton. which does not, however, extend as far as the orbito-temporal septum. The anterior portion of the muscle is marle up as is nsmat hy the union of the deep and superficial portion. In addition to its forming the slip passing down to the front of the base of the coronoid, it sends a powerful bundle to the median side of the coronoid, a thin movable layer of muscular tissue, which passes in front of the coronoid, between the medio-coronoid and precoronoid portions.

The masseter is highly tendinous superficially. The tendeney to cleavage is not pronounced, and the continuity of the deep fibres with the surereficial filmes of the temproral is rery noticeathe.

In the squirrel, Sciurus hudsonicus, the superficial portion of
 slip, while demonstrahle. is not later. Then suphomed combinests layer of the masseter arises from a spur on the maxilla below the infra-orbital foramen. It passes, as is usual, downward and backward toward the angle. This layer does not, as in most mammals. form the entire superficies. A second layer arises from entire inferior border of the zygoma, which appears to be lost upon the foregoing about midway between the zygoma and the angle. Upon turning this last layer downward, the third and last layer is seen, which is continuous in the ordinary manner with the temporal ftbres. 'The arrangement of fibres on the median surtace of the mandible was not examined.

In the North American poreupine, Erethizon dorsutus, the masseter consists of a superficial set of fibres arising temdinonsly from the malar bone, and passing downward and hackward to the angle of the mandible. It arises from the anterior three-fourthe
of the lower border of the malar bone, the entire lower border of the enormons infra-orbital formmen. Its insertion is not only upon the angle but the median surface of the ramus as well. The last-named insertion occurs as follows: The anterior edge of the muscle becomes stout and broad as it approaches the rounded border of the bone in front of the angle. It minds round this border, receiving as it does so a large accession from the angle, and a portion of the adjacent median surface from the lower jaw. This portion of the masseter lies below the jaw on the soft parts of the neck. In addition to the above, a long, stout, fusiform belly is inserted by fleshy fibres at a point half way up the ramus in front, and above the upper border of the insertion of the internal pterygoid muscle.

Beneath the superficial fibres just described, the masseter in Erethizon exhibits the usual tendinous fibres arising from the angle and passing upward and forward. The third set is of great importance in this animal. It agrees with the general plan of arrangement in other mammals examined, but is remarkable for its extent. It arises from the lower and median border of the zygoma by tendinous fibres, from the side of the maxilla, at the nasal region and supra-orbital surface of the same bone by fleshy slips, also fleshy from the upper concave border of the zygoma, where fibres form the supra-zygomatic slip; tendinous and fleshy from the anterior and lower half of the inner wall of the orbit. The insertion of this set of fibres is upon the ramus. between the angle and the sigmoid notch. The anterior part of the insertion is rounded and tendinous. It lies beneath the corresponding border of the surperficial portion, and receives the fibres passing through the infra-orbital foramen. The remaining portions unite to be inserted as already indicated.

The temporal muscle possesses a superficial portion, which everywhere covers in the main muscle. Its aponeurosis arises from the vertex, the upper border of the posterior half of the orbit and the posterior and upper half of the inuer wall of the same depression. It thus covers in the post-orbital process of the frontal bone. It is inserted entirely upon the main tendon, and receives no fasiculus from the masseter. The reep or main portion extends its aponeurosis forward, to be inserted stoutly upon the post orbital process of the frontal bone. A thin aponeurosis passes. downward, thence to the mandible behind the coronoid.

It will be seen that the plan of the muscles is the same as in other mammals, but is remarkable for the muscles' sublivisions remaining distinct from one another. In rodents hatwing the large infra-orbital foramen, the masseter musele is deseribed as having a separate portion passing there through. Wivart, in his Elements of Anatomy, page 309 , saty, in this connection: "In certain rodents, e. g., Lagostomus and the A irouti, the masseter diviles into three portions, and traverses (that is, one of these portions traverses) the singularly enlarged infrit-orhital foramen." This is a correct expression of the view usually tanght. According to the plan of description followed in this paper the masseter of E'rethizon in nowise difters from the muscles of the same name in other mammals, except in the extent of development of the layer to which the pre-foraminal fibres belong. I have had no opportunity of examining Lagostomus, but it is probable that the masseters are much alike in all. The porcupine is further of interest in the extent of eneroachment of the musenlar fibres upon the orbital space. Both masseter and temporal appropriate large surfaces. It is noteworthy in addition to find that the post-orbital process is here purely muscular in significance. It is. indeed, imbedded in muscle. Notwithstanding its size, the process has no septal signifieance in this rodent.

In Calogenys the temporal is thin in the temporal fossat lout thick and massive on posterior wall of the orbital space. 'I'he superficial layer and supra-zyomatic slip are distinct. liatiner these two portions of the temporal from the temporal fossa no muscular fibres are seen beneath. A distinct tendon heromes visible, however, underlying the junction of the superticial :met supra-zygomatic portions In the orbital space the superticial portion is exceedingly robust and extends medianly the entire depth of the posterior wall. The temporal is inserted into the lower jaw as follows: The superfieial portion arising from the temporal fossa, and the zygomatic portion are inserien throngh the main tendon upon the apex of the coronoid process ; the orbital portion upon the median side of the same tendon and the merlian surface of the coronoid its entire length.

Comparing the plan of this musche to the others deseriberl it may be satid that the deep part of the mmsele is ahsent, untesis the greater bulk of the orhital portion is assigned to the deep part. It has been generally found that the deep and supertieial portions
are continuons anteriorly. It is probable that while the deep part is alsent from the temporal fossal proper, it remains in position in the orhital space at a point answering to the post-septal depression in animals having a partition between the orbit and the temporal fossar. But white the deep part is absent from the proper temporal fossat, a stout glistening temton is here in the usual position of the central tendon, and, ats in E'rethizon, is concealed from without. It is interesting to note that the supra-zyomatic slip is temporal, it heing doultful whether any of its fibres are continuous with the masseter.

The masseter bears a general arrangement to the muscle in Erethizon. The anterior edge is less muscular than in the latter genus. The mandibulo-zygomatic portion, whose origin from the mandihular angle occupies the lower one-third of the surface, constitutes the massive fleshy belly. The fibres are for the most part nearly horizontal. It is covered for the upper halt of its surface by the enormous malar bone. The slip from the merlian surface of the mandible is arranged as in Freflizon. It lies in part in front, and in part heneath the internal pterygoid. Its junction with the main horly of the masseter conceals the tendinous anterior edge thereof and is continuous with those fibres arising from the angle and the basal thind of median surface. The deep mandibulo-maxillary portion is as in Erethizom in all essential features. It is contimuous with the superficial parts. A thin layer of orbital fibres overlies the temporal muscle in the orbit. Another layer is apparently continuous with the buccinator.

In Dasyprocta the general plan of arrangement seen in Colofenys is followed. The mincte points of distinction therefrom not being noteworthy save the continnance of the main tendon within the orbital space, where it overlies the deep anterior vertical fibres.

In Cuvier and Laurillard (Pl .245) the slips of the temporal are representer as parts of a bi-peniform muscle. I find the suprazycomatic fibres more horizontal in position, darker in color and more convex than the remainder of the muscle.

In the bats the superficial portion of the temporal may be small or well developed. In the first rariety a good example is seen in Phiyllostoma hastatum and other American leaf-nosed bats in which forms the superficial portion is confined to the anterior fourth of the temporal fossa. The supra-zygomatic slip is also very
 lialf of the fossa. In Desmodus the fibres are confined to the

Fic. \%

The temporal and masseter muscles in a Fox Bat (Epomophorus).

XX, Superficial fibres of same.
NXX, Supra-zyromatic slip of masseter muscle.
XXXX, Masseter musele. anterior portion of the fossa ; they are weak and unimportant. The supra-zygomatic slip overlies the tendon of the main muscle above the zyoroma. In Lonchoglossa the muscle is poorly developed throughout. The superficial fibres are reduced to mere rudiments. 'The supra-zygomatic slip is present. The deep portion does not reach the vertex.

The museles in Pteropine bats resemble those in the American leafonoserl forms. Thes superficial thres are confinel tothe anmewn third or half of the temporal fossa as seen in l'teropus medtus; Epomophorus and Cyonycleris amplexicaudata. 'The supra-

In Megaderma frons and Phyllorlina bidens the parts bear a general resemblance to the above group. The supra-zygomatic slip is absent in the latter species.

In Molossus the superficial fibres are enormonsly developed. they entirely cover the deep, and arise from a continuous osseous surface at the vertex which, being broad anteriorly, narrows gradually toward the occiput. The fibres arising from the vertex-crest, when such is present, are those belonging to the superficial set. The supra-zygomatic slip is present. A similar arrangement is seen in Noctilio, in which form the main mass of fibres possess an unusually deep set central tendon, and the superficial layer extends backward along the line of the vertex to the oeciput. Lasionyeteris, Atalapha, Vesperus and Vesperugo have an arrangement of the temporal fibres similar to the above but vary in the degree of development of the anterior slip.

To sum up the knowledge possessed of the temporal musele in the Chiroptera it may be said that the (deep portion is most exposed in Pteropus and its congeners, and the fimily lhyllos. tomididx, owing to the small development of the anterior tibres. In Tespertilionide and Molossi the deep portion of the temporal
is more concealed owing to the greater development of the anterior fibres. Those in Noctilio appear to be dixectly continuous with fibres arising from the occipital crest and inserted on the outer surface of the main tendon. With respect to the masseter it may be said to be simpler than the typical description given at the begiming of this paper. It possesses but slight tendency to planal cleavage.

In the bovine type of the ruminants as seen in the head of a calf the first or superficial layer of the temporal is continnous with the masseter as shown in the above forms, the deep layer is much less conspicuonsly developed than in them. The temporal fossa being shallow-and not high-the central tendon is produced backward and is relatively small and insignificant. It is not traceable over a shor't distance beyond the top of the coronoid.

The masseter muscle possesses six layers. The first is broad and attached to the superior maxilla by an oblique line extending the entire distance from the inferior border of the orbit to the gum line over the first molar. The second arises tendinously from the angle of the lower jaw and extends obliquely upward and forward, half way up the ascending ramus. The third layer is tendinous at the anterior superficies of the malar bone, the fibres arising thence including the anterior half of the surface of the zygoma. The fourth layer arises from the inferior border of the zy goma at its anterior two-thirds, and is inserted muscularly upon the ramus about midway between the zygoma and the lower border of the mandible. It is this layer which is continuous with the temporal as in other quadrupeds.

The masseter exhibits a fifth slip which appears to be a differential from the second or third layers, it overlies the temporomaxillary articulation in the form of a well-defined bundle which arises tendinously from the root of the zygoma. It is inserted on the ramus near the posterior border at about its middle. A sixth layer exists in the form of a narrow, bright tendon and associated fibres arising from the root of zygoma leneath the foregoing.

Nothing similar to the fifth and sixth layers were seen in the other amimats cxaminerl. The sixth layer of the dog being ratherat sub-division over the ramus in front of and remote from the joint. It is every way likely, however, that the number of the layers in
masseter will be found to be variathle. 'The parts in the maticitar of the Tirginian deer (C'oriucus riryminomes) presemted (wiontially. the same features as in the call." 'The sumerticial layer of the temporal resembles that of the calf, but the man tembon is small and is without muscular fibres, as it lies behind the orbito-temporal septum. The superficial portion is small. It lies bedind the coronoid, in the posterior superior portion of the temporal fiss at.

It must be said that the human anatomist seems warranterl in treating the masseter and temporal muscles distinct. I?nain, indeert, aflirms that some of the posterior temporal filsers arising from the temporal fascia blend with the deep fibres of the masseter, but the mion of the muscles in man is a rare anomaly. Macalister (Muscular Anomalies in Hman Anatomy. 'Irans. of the Royal Irish Academy, xxv, 1872. 18.) has met with it but once. I have seen it once only. ${ }^{1}$ No mention is anywhere made of the presence of the supra-zygomatic slip. It is (fuite likely that it may be oceasionally seen in the cellulo-adipoce tissue above the zygoma. Of the presence of any peculiarities in the anthropoid apes in these muscles I am uninformed.

The arrangement of the superficial layer of the temporal muscle in man is very similar to that seen in the (puadruped. 'This layer arises from the temporal aponemosis, and while thin posteriorly is thick anteriorly, behind the orbital septum. If this layer of fibres be divided posteriorly and the anterior portion turned forward, a thick radiated tendon is displayed beneath. 'This is the tendon of the (leep) set of fibres which here as in (fuadrupeds constitute the mass of the muscle. The fibres of the superticial and deep sets are continnous behind the orhital septum. 'This method of displaying the temporal muscle has heen for many rears employed by Prol. Joseph Leidy in his demonstrations at the University of Pennsylvania.

From the above examination I have come to the followiner eonclusions :-
(1) While it is convenient to separate these muscles it must he remembered that in many mammalia the tenteney is for the masseter and temporal maseles to unite-the deep part of the former being continuous with the superficial part of the latter.

[^73](2) Man, and some of the Rodents-the latter illustrated in Erethizon-are exceptions to the tendency. In these forms the temporal is distinct from the masseter. In the same order, as in Colomenys amd Insigprocta, the deep portion of the temporal is either absent or represented in a single orbitally disposed mass of vertical filbres.
(3) The muscles in question have been much neglected. They should the carefully dissected in all myological studies of the mammalia.

The following reports were real amb reformi to the I'mbleasion Committee:-

REPOR'T OF THE IPRESIIENTT

For the Year ending November 30, 1880.
Nothing has occurred during the year to disturb the Society in its usual course. It is a source of satisfaction that its finameial condition is better now than it was at the close of last year. Although its current income is not yet quite equal to the sum it needs or desires, it still remains free from debt.

The eftort begun more than a year ago to collect subscriptions for the purpose of establishing a maintenance or working-fund. has not been as successful as was expected. The aggregrate of subscriptions is now $\$ 2(380$, of which $\$ 1550$ have been paich. It may be hoped that at the close of 1881 the Treasurer will be able to report that the Maintenance Fund has been largely increased. The effort should not be abandoned in despair.

In this connection it may be mentioned that an addition of $\$ 3000$ to the permanent fund of the Academy has been made by reserving for investment, under a by-law (Chapter IX) enacted May, 18\%6, all moneys received from members for commuting their semi-annual contributions, as long as they may retain their
 and the fund accruing from it is conveniently called the Lifemembership Fund. The income from it is applicable to the payment of the ordinary expenses of the society.

The Charlotte M. Eckfeldt Fund, formed of money received, June, 1879 , from the executors of the late Mrs. C. M. Eelifelelt. Who made the Academy one of her residuary legatees, amounts to $\$ 2466.86$. The income from it has been temporarily assigned to the use of the Publication Committee.

The heirs of the late Mr. Joshua T. Jeanes, who died sudedenly January 30,1880 , have generously given to the Academy twenty thousand dollars, the sum which he hat indieated his intention to bequeath to the Society in an unsigned codicil to his last will. The money has been invested in approved mortquges, and by order of the Academy constitutes the Joshua T. Jeames Fume, the income from which has been duly made applieable, like that of the Maintenance Funcl, to the general purposes of the society.

The Thomas 13. Wilson Fund, the Elizabeth Phyle Stott, the Isaac Barton, and P'ublication Funds are unchanged. Owing to circumstances over which the Academy has no control, the income of the year from the I. V. Williamson Library Fund has been somewhat diminished. But it is confidently conjectured that in a short time it will be the same that it has been in the past.

The financial condition of the Academy will be found detailed in the Report of the Treasurer, to whom the society is much indebted for the time, care and labor which he bestows in the discharge of the duties of his office.

Five young men have been receiving the benefit of the Jessup Fund; two for two months each, one for five, one for six, and one for eight months during the year.

A brief account of the origin of this fund, and the manner of ${ }^{\circ}$ its application, may interest those especially who have become members of the Society within the past few years.

Mr. Augustus E. Jessup, who became a member of the Academy November, 1818, and died in Wilmington, Del., December 17th, 1859, gave the institution and its purposes a high place in his estimation. He had expressed his intention to bestow on the Academy, if ever able, a sum of money to constitute a perpetual fund for specified purposes. His children determined that this intention of their father should be realized, although he left no written instructions on the subject.

In a letter dated March 6th, 1860, and addressed to Dr. Isaac Lea, then President of the Academy, they stated that, in accordance with what they believed to be the intention of their father, they proposed ".to pay to the Academy one hundred and twenty dollars per annum to be applied to its Publication Fund; and the further stim of four hundred and eighty dollars per annum, to be used for the support of one or more deserving poor young man or men who may desire to devote the whole of his or their time and energies to the study of the natural sciences; and that they looked forward to investing in trust, at some not distant time, the principals of the smms maned, for the purpose of creating a perpetual fund for the above-named uses."

Substantially these are all the instructions given to the Academy for its guidance in the administration of these tro funds-one to be applied to its publications, and the other to the support of students-aggregating six hundred dollars a year. They paid
this sum regularly from March, 1860 , until Fehmary: 1×5 s. when they transferred to the Academy-" the: principals of the: नmmnamed "-ten consolidated montgrage bonds of the P'hiladhphia and Reading Railroad Company: Thus Mr. Jesenpis chilhtren gencronsly fulfilled their promise and realized their father's intention. 'They have also consented that women may enjoy the benefits of the student fimd.

The action and language of the Messis. Jessup imply, without any doubt whatever, that their intention was to qive to the Aeademy six hundred dollars per annum: one humired amed twenty dollars applicable only to the Publication Fund, ant four hundred and eighty dollars to the support of students. And to secure this sum to the Academy ammally forever, they save to it in trust an investment, the par value of which is ten thonsand dollars, an amount equal, at the rate of six per cent per ammom. to "the principals of the sums named for the purpose of ereating a perpetual fund," designed to be the impersonal stececsoor and never-lying agent of the Messrs. Jessap for the payment of six hundred dollars ammally to the Academy.

As trustee, the Academy is bound in honor, if not in law, to adopt such proper measures as may be necessary from time to time, to preserve entire not only the principal sum, hut also to prevent, if possible, the income from ever becoming less than six hundred dollars, the specitied sum it has been authorized and directed to expend amnually for the purposes named. Leduction of this income must be detrimental to those who mas properly ask assistance from it, to the extent of any diminution it may sulfer, It is designed to benefit stuclents of the future as avell as those of the current time. The interests of those of the coming centuries in it are entitled to present consideration and protection, if needed.

The instructions under which the Jessup Finel for stulents was established, describe in general terms the requisite qualitientions of those upon whom the A cademy may bestow it hemefits.

An eligible candidate for aid from the fessup) Fimul, is wermited by those instuctions to possess the following qualifications:

1. Evident "dlesire" to devote the whole of his time :mat energies to the study of the natural sciences.
2. He must be so poor as to the depement on his own lator fint a livelihoorl, and therefore, unless he can he otherwise supported.
he cammot derote the whole of his time and energies to the study of the matural sciences, to which he seeks to dedicate himself.
3. He must be "deserving" of support in this connection. This condition means much. To deserve any support from the fessup Fumd, he should possess a quick natural intelligence, ahove the average; a good and sufficient education, including, perhaps, a knowledge of the German and French languages; industrious and orderly ways ; integrity in every sense beyond suspicion, and lastly, a manfest intention to dedicate his lifetime and energies to the study of the natural sciences.
4. He must be "young "-say under twenty-five years of age.

Under such conditions, and with faculties suitably equipped and di-posed. the candidate may pass through an apprenticeship here provided, and become a practical naturalist.

The application of the fund is entirely at the discretion of the Academy. It would not violate the letter of the trust by using it to support approved students of the natural sciences without giving them instruction, or granting them the use of its library or museum or its hall as their workshop. The trust does not require that the Acarlemy shall be the preceptor of the beneficiaries of the Jessup Fund in any degree. But inasmuch as one of the functions which the society has prescribed for itself is to impart and diffuse knowledge, it seems peculiarly proper that it should direct and facilitate the studies of these beneficiaries.

The four hundred and eiglity dollars may be given amually to support one, or be divided between two or more, as may seem to the Academy expedient. The time during which any one may receive assistance from the fund, is limited at the discretion of the Academy.

After due consideration of the subject at the start, it was determined that the approved candidate should be received at first on probation, for one month, and if the trial were satisfactory, he might he appointed a beneficiary for two years, and then retire in faror of another, unless there should be special reasons for his continuance.

Inasmuch as the members of the society pay dues for their right to use the library and museum, it is considered proper to require the beneficiaries of the Jessup Fund to give, daily, a part of their time and labor to the Academy, under the direction of the curators, as compensation for instruction, and the use of the

Academy's property. This time is empleryed in work incifiont in taking care of, mounting, and armanging specimens in the mancentu. such as cleaning them when necessary, labelinge, etc.. :l kind of work which is pertinent to the vocation of a maturali-t, anm through which the beneficiaries become familiarizerl with matural objects, more perfectly than they can be in any other way: It should not be forgotten that the Acarlemy has always been dupendent, almost exelusively, upon the umpad labor of its members for the care of its museum, and this circumstance, perhaps, (explains why beneficiaries of the Jessup Fund are expectent to do any kind of work in the Academy that the curators and other members are in the habit of doing. They are, in fact, regarder as almost apprentices, who should be ever ready to arail themselves of the opportunities afforded to learn everything pertinent to the career of a naturalist.

Applications for the benefits of the Jessup Fund, are consillered and decided by the Council of the Aeademy.

Between March, 1860, and November, 18s0, thirty-four persons have received aid from the fund, for a longer or shorter perion than two years. Of these, five have died, well known and much respected naturalists. Five of those, now living, are professors and eminent men. It is beliesed that all of this class of gentlemen have acquitted themselves satisfactorily, and that all gratefully appreciate the benificence of the Jessup) Funt, as well :k the adrantages derivable from it ; and it is hoped that none will ever regret any of the work he has done, or the time he has spent in the Academy.

The annual reports of the curators and librarian show the extent of increase of the museum and library; and those from the several sections of the Academy: indicate that they are active amd prosperous.

During the year, more than 600 pages of the Proceedings hatwe been published, and the fourth part of the eighth quarto volume of the Joumal of the Acalemy is passing through the press.

The proceedings of the Entomological section are printed on the premises by some of its members, and issued separately: This section has published more than 370 patees amel i plates during the year.

The second volume of a "Manual of C'onchology, ぶtut tuml :mut Systematic, with Illustrations of the species;" hy (ivorge If.

Tryon, Ir.. publisherl hy the "uthor and issued from the Academy, has been published durin! ihe year. It includes 289 pages of text, 70 plates with 975 figures.

Proti-an" Leidy"s almirable work on "Fresh-Wat: r Rhizopods of North America," forming Vol. XII of the final reports of the Yiated states Geologieal and Geographical Survey of the Territories, under the direction of Dr. F. V. Hayden, is so closely comnected with the Aeademy, that its publication during the year may he mentionerl here. Dr. Leidy, at the stated meetings of the society, gave rerhal accounts of very many fresh-water rhizopods which are described in his work, and the Academy's library was the sole sonree from which he was enabled to prepare the bibliography of the subject.

Few persons devote their whole time and energies to natural history for a living. Generally, the study is an occupation for leisure hours, and may be regarded as a secondary pursuit among us, which yields little or nothing towards a livelihood. Satisfactory stuly of natural history requires so much to aid its votaries, in the way of collections and books, that it is extremely rare to find any one person rich enough to procure all that is needed. For this reason many of like tastes associate, each contributing his quota, for the purpose of gathering what is necessary or desirable to be used in common for self-instruction.

In one sense the Academy may be regarded as an association of this kind.

A prominent object of the Society is to afford opportunity to those who desire to undertake self-culture in any or all the departments of the natural sciences. From its leginning in 1812 , continuously to the present time, members have freely contributed specimens to its museum, and. books to its library. Besides, materials of this kind they have given money liberally, established permanent funds for several specific purposes, and employed whatever time they could fairly take from their daily arocations in working with their own hands to render the constantly increasing means of study as casily available as possible. The value of personal lal,or gratuitously given to establish and promote the growth of this institution cannot be orer-estimated. A result of the joint efforts of the members of the society since its foundation is the opportunity of self-instruction here liberally afforded to those who may choose to avail themselves of it.

Although the muscum is deficient in many of its departments, it is remarkably suflicient in some, and as a whole is very extensive, and in every sense very valuable. The uneøual develonment or growth of the several departments is ascribable to the dependence of the collections for increase on clonations exclusively, and the want of money to purchase desiderata, and not to indifference or ignorance of those to whom the immediate care of the museum is confided.

At this time the library as a whole, though not complete, is perhaps the best collection of works on natural history in this country, and the Library Fund, given by Mr. I. V. Williamson, provides liberally for its increase.

The opportunity for self-culture to be found now in the museum and library, with all their deficiencies, is a result of the generosity, goodwill, industry and benerolence of very many members and friends of the Society. Some expert naturalists may disparage this opportunity of self-culture, such as it is, and take pleasure in pointing out its defects and deficiencies, but those just entering the field, as well as those not yet proficient will find it fully sufficient for their use and worthy of cordial approbation.

Objection has been made to the regulation which restriets the use of specimens and books to the premises of the Academy, suggesting that study would be rery much facilitated by loaning specimens and books to members, especially to those who are advanced students and experts. 'The answer is that the loan of specimens: and books, which may be regarded as a luxury rather than as a necessity to students, would somewhat facilitate the work of one bormower, but while they were in his possession the studies of several persons having oceasion to consult the same specimens and books might be much retarded or hindered. Besides, loaning books and specimens increases the chance of their loss and injury.

After ample experience in the practice of loaning, and due consideration of the whole question, the Academy adopted the existing regulation of loaning specimens only on a recommendation of a majority of the curators, approved by a vote of the Icademy: and by prohibiting the circulation of books, has made the library a library of reference exclusively. It is contidently believed that the common interests of all concerned are best served by strict adherence to this practice. It promises "the greatest grod to the greatest number" of those who have oceasion to examine
specimens or consult books, because, come when they may, from fir or near, they are reasonably sure to find in the building whatever belongs to the museum or library.

The regulation in question is approved by an experience of more than a quarter of a century. It is supposable that it would have been changed long ago had the members of the society believed it to be injurious to their common interests.

It may be freely granted, howerer, that there are persons-those who are seldom spontancously considerate of the convenience and rights of others to the use of property held in common, to whom all restrictive rules appear unwise-especially when they are an obstacle to the satisfaction of some transient interest or desire. The same individuals would probably discover a grievance in the loaning system, should they find that those very specimens and books which they desire to refer to at the moment, had just been borrowed and taken out of the building, to be returned at the end of a fortnight or possibly a month. Persons of such temperament, unhappily for themselves as well as their associates, are prone to find that "All goes wrong, and nothing as it onght," where others of more happy constitution discover nothing unpleasant.

The opportunity of self-instruction in the Academy is good as it now is. It is accessible to those who may. desire to make use of it under the rules of the society. They must come spontaneously. The Academy is not prepared to enlist regulars, hire mercenaries, or solicit volunteers in order to bring into more extensive use the opportunity of self-instruction which it has busilt up.

When both the museum and library were easily contained in one small room, the effort of the Academy to increase its means and opportunities of self-instruction was approved. No one commaine? of its deficiencies. All cheerfully endeavored to use profitably what it had. The propricty of admitting to its membership those who possessed no other qualifications than friendliness to sifentife phenits and personal respectalbility was not questioned. But since the possessions of the Academy have grown to be extensive and of great value in every sense, there are individuals who lament that they are not greater, and seem pleased to disparage its condition, its course and its organization. Ignoring all that is recorded in the sixteen volumes of the first and second series of the Jommal of the Academy and in the thirty-two

Volumes of its Proceedings, they imargine that it sarly lackis the afllatus of pure science and does nothing to peomote rasanch. Their tone implies that the eapahilities of the institution, tho potentialities of its possessions might be made mome u*- linl to truly qualified investigators by reforming the pesent syatem and poliey, which are too broadly in the interest of legemmers and amatern's in science. They seem to believe that the collectionshould be placed under the control of expert specialishs, with power to loan specimens at their discretion; that the books of the library shoukd be allowed to circulate freely, and dinally, that the society should consist of proficients exclusively, of at least include a privileged class of experts.

Whether the Acarlemy should now permit its catensive maseum and library, which have cost so much time, labor and money to form, to be diverted from their present ways of uselulness to students generally, and appropriated by skillerl investigator:, is a question too important to be hastily decided. ${ }^{1}$

The by-law of May, 1876 , which provides for the appointment of professors, remains inoperative. No candidate hats phesenterl himself during the year. No report has been reecived from the Professor of Histology and Microscopic Technology, who was appointed April 16,187 个.

In conclusion, it may be said that the condition of the Acanemy has never been better since its fomedation than it is at the preaent time. It is independent of debt, and its income has heen so far inereased that it is hoped, under a carelul administration of its financial affairs, it will soon be suflicient to meet the nsual demands.

The whole is submitted.

W. S. W. Ruschenhencim.

1 A society composed exclusively of proficients may be desiratile and even essential to the progress of original investigation in Philadelphia. Those who are of this opinion might possihly form such a sociely at unce, and in the course of time acquire all it may need ; :mel, without coveting or attempting to appropriate its possessions, permit the Academy to exist for the benefit of those proficients who apmove of its omganization ats well as of begrimers and amateurs. Some of these might become yualitied to be admitted to membership of any society composed exelusively ot senerally recognized masters in science.

REPORT OF THE RECORDING SECRETARY.

The Reconding seeretary respectully reports that during the fear emting November 30th, 1840 , 1 wenty-six members and twent y correspondents have been electerl.

Resignations of membership have been received from D. E. Dallam and J. D. Thomas.

Records of the death of twenty members and four correspondents have been published in the Proceedings under the dates of announcement.

Twenty-five papers have been accepted for publication as follows : H. C. Lewis, 7 ; J. S. Kingsley, 3 ; Jos. Leidy, 3 ; H. C. Chapman, 2; Harrison Allen, 1; R. Bergh, 1; Andrew Garrett, 1; A. W. Vogdes, 1; W. N. Lockington, 1; W. D. Hartman, 1; Wm. Barbeck, 1; Angelo Heilprin, 1; 'T. D. Rand, 1, and F. A. Genth, Jr., 1 .

Twenty-two of these papers have been published in the Proceertinga and three in the dournal. In addition, ninepaperspubli-hed in the Proceedings, together with reports of a mumber of important verbal commmications, formed the Proceerlings of the Mineralogical and Geological Section of the Academy for the years 1877 to 1879 .

Two hundred and eighty-eight pages of the Proceedings for 1879 and three hundred and fifty-two pages of the volume for 1880 have been printed during the year. The concluding number of Volume VIII of the Journal will be issued early in January.

The list of those making verbal communications at the meetings includes the names of Messrs. Leidy, Meehan, Allen, A. J. Parker, Wilcox, Koenig, Cope, Kelly, Ryder, Evarts, Frazer, Dercum, Horn, McCook, Barbeck, Kingsley, Chapman, Potts, Canby, Foote, Coates, Tasker, Martindale, Pike, Ford, Maldeman, Redfield, Porter and Hongh.

At the meeting held January 13th, 1880, Messrs. Aubrey H. Smith and Geo. Vaux were elected to fill vacancies in the Council caused by the absence from the meetings thereof for six consecutive months of Dr. C. Newlin Peirce and Prof. Edw. D. Cope, and on November 16, 1880, Mr. Ezra 'I'. Cresson was elected to fill a vacancy caused by the resignation of Mr. Geo. Vaux.

All of which is respectfully submitted.
Edw. J. Nolan,
Recording Secretary.

REPOR'T OF TIIE CORRESPONDING SECRETARY:

In accordance with the By-Laws of the Acmlemy, the Corresponding Secretary presents the following Report of the business of his oflice during the year ending November :30th, 1850 .

There have been elected twenty Correspondents, as follows:
Angelo Heilprin,* New York Uity; Dr. C. A. White, Washington, D. C.; Albert de Selle,* Paris, France; Victor Ratulin,* Bordeaux, France; R. Hornes,* Vienna, Austria; Georques Rolland, Paris, France; A. Inostranzeff,* St. Petersburg, Ikussia ; Dr. Robert Schomburgh* Adelaide, Australia; Dr. Iferman T. Geyler, Frankfort a. M., Germany; Robert Casparis, Konimblury, Germany; Agostino Todaro, Palermo, Italy ; J. E. Isommer, Brussels, Belgium ; Prof. Teodoro Caruel,* Pisa, Italy; Lionel S. Beale,* London, England ; Prof. Richard Mertwig,* Jena, Austria; Prof. Oscar INertwig,* Jena, Austria; Dr. Carl Ochsenius,* Marburg, Prussia; Dr. M. If. De Bey, Aix-la-Chapelle, Prussia; Prof. Adolf E. Nordenskjold,* Stockholm, Sweden; Prof. Torquato Taramelli,* Pavia, Italy ; all of whom have been promptly notified, and acceptances have been received from those whose names are marked with an asterisk, *.

The donations to the Museum have been numerous and valuable, as will be learnen from the Curators' report, and prompt acknowledgments have been sent to the various donors, numbering in all 228.

Letters transmitting publications have leen received from Corresponding Societies or Institutions, at home and abrome to the number of fifty-one ; from individuals, four.

Letters or other acknowledgments of the reception of the publieations of the Academy have been received to the number of filty-two.

In addition to the above, thirteen letters of a miscellaneons nature have been received, and those requiring an answer have been in all cases replied to.

> Respeetfully submitted,
(ieonae h. Hons,
Corresponding sicretury.

REPORT OF THE LIBRARIAN.

During the past year, from December 1st, 1879 , to November B0th, 1880, the library of the Academy has been increased by $274 t$ additions, mainly exchanges received for the publications of the Academy: The accessions have included 310 volumes, 2345 pamphlets and parts of periodicals and 89 maps, photographs, portraits, etc.

They were derised from the following sources :-

Societies 1018.
I. V. Williamson Fund 52.2.

Editors 487.
Authors 218
Dr. I. Minis Hayes 118.
Win. S. Beebe 61.
Wilson Fund 50.
Department of Mines, Nova Scotia, 23.

Geological Survey of Sweden 23.
Geological Survey of Belgium 19.
Department of the Interior 1%.
Isaac Lea 14.
Jos. Leidy 14.
Geological Survey of Pemsylvania 13.

University of Chili 12.
Dr. F. V. Hayden 11.
Wm. S. Vaux 10.
Geological Survey of Canada 10.
Department of Agriculture 10.
Smithsonian Institution 8.
Engineex Department, U. S. Army 7.

Geological Survey of India 6.
J. H. Redfield 6.

Geological Survey of Wisconsin 5.
Colonial Secretary N. S. IV ales 5.
Geological Survey of Minnesota 5.
Treasury Department 5.
Geol. Surv. N. Zealand 4.
Yale College 4.
Jinist. of Pub. Instruction, Belgium 4.

War Department 2.
U. S. Coast Survey 2.

Kansas State Board of Agriculture 2.

Geol. Surv. N. J. 2.
Jos. M. Gazzam 2.
R. Schomburgh 2.

John Brazier 2.
Mrs. Charles Pickering.
S. S. Haldeman.

Rathmell Wilson.
U. S. Commission of Fish and Fisheries 1.
Commissioners of Fisheries, California.
Mines Commissioners of Maryland.
Geol. Surv. Kentucky.
Geol. Surv. Indiana,
Geological Survey of Japan.
University of Minnesota.
Directors of City Trusts.
Meteorological Office, Canada.
South African Museum.
Government of Victoria.
Commissioners of Public Charities, Peuna.
East Indian Government.
Bureau of Education.
Public Library, Nilwaukee.
Astor Library.
Library Co. Phila.
Mercantile Library Associations of San Francisco, st. Louis, New York and Cincinnati, each 1.

British Museum 9.
The books and pamphlets thus acquired were distributed to the several departments of the library as follows:-

Journals 1969.
Geology 132.
General Natural History 169.
Anthropology 88.

Conchology 68.
Botany 61.
Anatomy and Physiology 41.
Entomology 36.

Ornithology 3.1.
Bibliography 26.
Physical science 21.
Mineralogy 16.
Helmintholory 16.
Aericulture 13.
Chemistry 11.
Encyclopedias 10.

Mammalogy 9.
Ichthyology 4.
Voyares and Tratvels \&
Herpetalory : :
Microscopy 1.
Miseellameons (lintory, statistics. Polities, etc. 12.

From the above statistics and the accompanying list wh arditions it will be seen that, apart from exchames recefow? from societies and editors, the growth of the library has been matuly depenclent upon the I. T. Williamson F'mut.

It gives the Librarian pleasure to be able to report the comple. tion of the card catalogne of all the special departments of the library coming within the province of the Academy: It is to he hoped that some of the remaining sections, at present arranger on the gallery, may soon be disposed of hy sale or exehamge, as they embrace books of a chameter rarely or never consultem in the Academy ; although many of them would he of importance and value elsewhere. 'The revision of the catalogne of journals and periodicals is progressing slowly, as time is taken arter the completion of each geographical section to apply for all detiefencies noted. The answer's to such applications thus far mate have been so satisfactory as to warrant the hope that important additions will be received from this somee during the coming year:

The collection of portraits of the P'resiclents and benclactors of the Academy has been increased by the addition of a tine oil painting of Isaac Lea, LL. D., hy Uhle, one of IIr. Isatace Hays. hy Waugh and a life-sized crayon portatit ol Mr. Isataly I. Williamson. For these gitts, interesting not only as worlin wita, but also as memorials of men to whom the society is inclebted for many aud permanent benefits, the thanks of the A cantemy are due to Dr. Lea, Mrs. Dr. Isanc Hilys and Mr. Williamson. The Academy now possesses the portraits of eight out at' it- ten
 being yet lacking. It is to be hoped that these maty he supplied. and that the series, which will certamly le of ereat interest hereafter, may be kept complete.

Fine fiamed photographes of I)r. Jos. Iatidy :and the Late l'rot:
 De Lamoy has presented a death mask of lor. damen ditken M, i_s.

For the amome expemted from the rarious fump for books you are respectfully referred to the report of the Treasurer.

Edw. J. Nolan,
Librarian.

REPORT OF TILE CURATORS.

The Curators respectfully report that the Museum of the Academy continues in its usual good state of preservation. The following report of the Curator in charge gives brief notice of what has been done, and the additions which have been made during the year.

Sir:-I would respectfully report, that during the year all the collections of the Museum have been carefully inspected and cared for, and that they are in good condition. The vertebrate fossils are in process of arrangement.

Dr. J. Allen Kite has been engaged in the arrangement of the collection of Burd-skeletons, and Mr. Angelo Heilprin in the arrangement of the Invertebrate fossils.

The specimens received during the year have been labeled and placed in their proper positions.

The contributions in the various departments during the year, excepting those reported on by some of the special sections, are as follows :-

Mammals.-Zoological Society of Philadelphia: Two Macacus ocreatus, Macacus maurus, Ateles ater, Cercopithecus lalandi, Pteropus vulgaris, Herpestes griseus, Bassaris astuta, Viverra indica, two Tragulus Javanicus, Dasyprocta acouchi, Cologenys paca, Sciurus variabilis, Hypsiprymnus rufescens. Jacob Binder: I collodid mass with morlules of osteorentine embedded, from the tusk of an Elephant. Dx. H. C. Chapman : Placenta of Asiatic Elephant, born in Philadelphia. Dr. Geo. H. Horn: 'Two Atalapha (Lasiurus) noveboracensis, Phila. Jos. Jeanes: 'Two young Elephant skulls, Elephas indicus and E. africanus. Albert Koebele : Nycticejus crepuscularis, Florida. Dr. Jos. Leidy : Hesperomys (sp.). Roan Mt., N. C. ; Buffalo jaw, from a forest in the Uintah Mts., portion of the great part of a skeleton observed by him in the locality in which it is now extinct. Miss Miller: Horns of Chamois, Alps. W'. S. Vaux: Young Orang-Outang, from Philadelphia Zoological Gardens.

Pirds:-Philarlelphia Zoologieal Society: Syralis fancoolr, Bior togerys santhoptera, Brazil; Anser indicus. F. W. Allen: Dio-
medea exulans. Iill: Otus vulgaris. Mrs. Herbert liussell Walsh: 'Two hundred and ninety-seven (one limulred and twentyone species) Bird skins, collected and prepared by the late liobert Frazer.

Amphibians and Fishes-Albert Koubele: Eleven sueeies . Imphibians, Florida. Dr. Jos. Leirly: 'I'wo species SA:amanders. two do. Fishes, Roan Mt., N.. U. Dr. H. Allport: Errimyzon sucetta, Centre Co., Pa. S. IV. Ayer: Opercular honee, ete. Megalops thrissoides. Mr. Molbrook: Aro!!!rieosus (V'omer) setiminnie, Atlantic corst, Md. Dr. Wr. H. Jones: Nine species of Fishes, Atlantic and Pacific Oceans. J. E. Mitchell: Amblyopsis spelaeus, Mammoth Cave, Ky. National Mus., thronern smiths. Inst.: Fifty-two species of North American Fishes.

Articulates.-J.J. Brown: Lepas pectinata, Balamus, dete. Florida. Dr. H. C. Chapman : Lepidnohes, and Nymphon. Mt. I)esert, Me. C. Chambers: Grillotalpa lonyipenmis, Philadelphia. John Ford: Libinia canaliculala, Atlantic City, N..J. (ieo. Huberton: Libinia canaliculata, Limulus polyphemus. ('ape May, N. J. I)r. W. H. Jones: Thirty-four species Crustacra, Atlantic and Pacific Oceans; Nautilograpsus minutus, taken from sile of ship Acapulco. J. S. Kingsley: Six species Crustacea, in exchance. Dr. J. A. Kite, Wasps' nest, Morgan Co., Pa. Alhert Koehele: 'Two species Crustaceans; two species Myriopoda, from Flomila. J. E. Mitchell: Nest of 'I'arantula, Califomia, Dr. 'L'. 11. Streets: Forty-ttro specimens Lepicloptera, Mantis (sp.), Jokohama, Japan. U. S. Fish Commission, through Simitlss. Inst.: 'Thity nameel species of Crustacea, Coast of Ňew England.

Vermes, Echinoderms., Calenterales, Jrmyzoans and Porifera. -U. S. Fish Commission, through Smiths. Inst. : Thirteen species of Annelida, Coast of New England. Dr. IV. II. Jones: F'our species of Ammelida, P'acilie Ucean. Irs Jos. Lody : Loe otmethe interior of pouch of White Pelican (ALenoproin perale, Levidy Florida. Laura M. 'Lowne: Frilaria immilis, from heart of duen, Beanfort, S. C. J. J. Brown: Cidaris tribulwides, Haiti. John Ford: Euryale (sp).), Palermo, Italy: Ǔ.s. ľish ('ommis-ion. through Smiths. Inst.: Sixteen species Eehinorlermata, Coast of New England. Dr. W. D. Martman: Kotula (sp), Mantatascar? U. S. Fish Commission, through Smiths. Inst. : Eleven :-pecies of Culenterata, Coast of New Eingland. Ins. WI. II. Jones: 'Thaitem species Coblenterata, Pacific Ocean. 1)r. H. (.. Chapman: Hydroids, from Mt. Desert, Me. Li. S. Fish Commision, throngh
 New England.

Anna 'L. Jeanes: Glass models of Ihyouphore matnifico.

 Nemacula primula, Peachice hustatu, Mh!mactis, thuridu. Silactis artemisia, Tubuluria indivisu, Corymmiphen mulems, Lummedeat amphora, Bougainvillia firulicosa.

Fossil:-Dr. Carter, through Dr. Jos. Leidy: Fragments of hones of L'intatherium, Palaosyops, and fossil turtle-eggs, near Ft. lbidger, Wyoming. Walter Collins: Eight species of Fossils from the "retacons matl. Blackworltown, N. J. Dr. (omson.

 teoth, Matine\%, Contral ('osta ('o., ('al. (i. N. I'. (xalle: Fharl's teeth and fragments of bone, Ashley River beds, S. C. Gustavus
 John Gibb: 'Three fossils, Central coal shaft, Fairburg, Ill. Dr. Geo. M. Lawrence: Ammonites (sp.), Cretaceous of Hemstead Co., Ark. R. L. Lamborn: Fish tooth (carboniferous), lnwin Station, Westmoreland Co.. Pa. Dr. Jos. Leidy : Ivory of Mastodon, bored by mollusks, Rib of Manatee, and two fish vertebra.

 coal fossils, Schuylkill Co., Pa. J. W. Pike : Forty-eight specimens of fossil ferns, etc., Mazon Creek, Grundy Co., Ill. J. H. Redfield : Pentremites Gordonii (subcarboniferous). E. S. Reinhold : Thirtysix specimens coal fossils, Mahanoy City, Pa. A. L. Siler: Fosil (sacrum), West hanch of South fork of Rio Tirgin River, above (ilendake, Ctah. Wm. Spilhman: ('rolorhynchus ormatus, Clark C'o., Miss. Charles Wiachsmuth: Forty-five spectes of Crinoids, from the Burlington Limestone, Burlington, Iowa. Harry H. Wheeler: Crinoid, cut from a side-walk paved with upper Silurian Limestone, Wabash, Ind.; Four fossil Fishes, near Fort Bridger, W yoming.

Ethnological and ITiscellaneous.-Stephen Bowers: Sixteen Indian skulls, from a burial place, Santa Barbara, Cal.; Skull of Flathead Indian, Oregon ; Sknll of Peruvian, Onca, Peru. Miss E. S. Boyd: Hawaian skull, Sandwich Islands. W. C. Desmont: Dart, used in salmon fishing by the Digger Indians, Sacramento River, Cal., 1858. Jacob Geismar: Stone axe and arrow-head, Haddonfield, N. J. Prof. S. S. Haldeman : Eight pieces modern Puehlo potiery, New Mexico; Tmisian drum, Tunis, N. Africa; Stone tomahatik, two hammers, chisel and pestle, Gloncester Co., N. J.; Stone chisel, Indiana; Iestle, Ohio; Stone implement found on the farm of Mr. Wittmer, Lancaster Co., Pa. ; twelve pieces P'ueblo pottery, New Mexico; two stone hammers, modern Sioux, and fragments of an earthen pot, from a cave, E. Tenn.; fiftr-bern pieces of native potter!, two Sorcerer's chairs, ('onjuror's rattle, Necklace, three bowls made of the gourd-like fruit of the (alabsish tree (Comsention anjela, by the Intians of British Guiana ; Native eloth, Island of Corisco. Prof. W. de M. Hooper: Stone implement, used for skinning, Misner's Farm, Pittsburg, Carroll Co., Ind. Wm. L. Mactier: Snow-shoes, made by the ()tomagon Indians of Michigan. Miss Miller: Antique linen shawl, vase, lamp, mummied human hand, ibis, etc., Egypt. Wm. J.

Potts: Fragments of Indian skeletons, pottery, (etc.. lank of the Delaware River, below K'aigh's Point. ('ameden. N. .I. Jos IVil. cox: Fragments of pottery, from a mombl. St. Johnc: Liver, Fla.: Stone axe, pentle and arrow-head, Mitchell Co., N. (. : - 'lwo pieces Ancient I'eruvian pottery:

Respectfully submitted by
(\quad F. Patices.
Joserfi Lerdr:
C'henirmen Civmenow.

SECTION.

During the past year eighteen (18) meetings were held; the average attendanee being thirty (30) persons.

The Annual exhibition was held on the evening of October 15 th, at which time a large and interested company was present.

The following is a summary of the principal subjects presenter during the year :-

Dec. 1st, 1879.-Filarix in the Bronchial 'lubes of C'attle, by Dr. James McCoart.

Dec. 15th, 1879.-Modern Microscopical Work, hy Dr. J. Gilbbons IIment.

Dec. 15th, 1879.-Deseription of I'sorosperms fount in C'yst: of Fishes, by John Rycler.

Jan. 5th, 1880.-Pleuro-Pneumonia of Cattle, by Dr. John Gadsclen.

Jan. 15th, 1880.-The Microscope as a means of Investimation, by Dr. Carl Seiler.

Feb. 2d, 1880.-The Preparation of Material for Microscopical Examination, by Dr. Seiler.
 Mr. John Ryder.

Feb. 2d, 1880.-Observations upon the Nervons Eystem of the Common Centipede, by゙ Mr. John liyder.

Feb. 2cl, 1880.-Observations upon a specimen ot frlimplio. rium, by Mr. Edward Potts.

Feb. 1 Gth, 1880 .-The Mounting of Mieroscophe ()hyecte, hy Ils: Seiler.
 by Mr. John Ryder.

Matroh 1-t, lsun.-Injecting and special Methocts of mounting Microscopical Objects, by Dr. Carl Seiler.

March 1st, 1880.-Observations upon Sponges, by Mr. John Ryder.

Mareh 1-t, 1sso. I Plan to show Opaque Ohjects with the Gas Microscope, by Persifor Frazer.

M:meh lith, Issu).-Lithological Stuclies with the Microscope, by Persifor Frazer.

April 5th, 1880.-Histological Studies, by Dr. Seiler.
April 19th, 1880.-Lantern Exhibition, by Mr. Holman and Mr. Ryder.

May :al. 1xro.-Communication upon Fresh-water Sponges, by Mr. E. Potts.

May 1ath, lşo.-Commmication upon the Eggs of the matica, by Mr. E. Potts.

Sept. 6th, 1880.-Life Forms at Atlantic City, by Mr. E. Potts.
Sept. 20th, 1880-Communication upon the Larvæ of King Crabs, by Mr. E. Potts.

Oct. 14th and 15th, 1880.-Annual Exhibition.
Nov. 1st, 1880.-Report of the Committee on Exhibits and Improvements in Microscopical science at the Annual Exhibition, by Dr. Hunt.

Nov. 15th, 1850.-Communication upon the Development of the Pyrulla, by Mr. Charles Perot.

The following Members and 1 ssociates were elected during the year.

Members:-John C. Wilson, Otto Lathy, Howard Kelly.
Associules:-Dr. Joseph Simsohn, Dr. James A. McCoart, Dr. Erlward T. Bruen, Dr. John W. Gadsden, Dr. Monroe Bond, Dr. J. H. Wills,

Robt. J. Hess,
Recorder.

REPURT OF THE CONCIOLOGICAL SECTION.

The Pecorder of the Conchological Section respectfully reports that during 1880, Dr. R. Bergh, Dr. W. D. Hartman, and Mr. Angelo Heilprin have presented papers upon the Mollusea, which have been aceented and published in the Academy's Proceedings.

The Section has arrain lost a valued member, Professor S. S. Haldeman, who died September 10th, 1880. Professor Haldeman manifested his interest by frequent contributions to our Museum, as well as by papers published in the American Journal of Conchology. He also presented to us a number ol copies of text and plates of his celebrated monograph upon the Fresh-water Univalve Mollusea of the United States. These the Section reissued, the work having been long out of print, and the sale resulted to its pecuniary advantage.

Mr. George Wr. Tryon, Jr., Conservator of the Section, reports as follows :

About fifty distinct donations and purchases of recent shells will be found recorded in the detailed list hereunto appended.

 in the cases.

Mr. Charles F. Parker has, as usual, afforded valuable assistance in preparing these specimens for exhibition.

Mr. John Ford continues to prepare for us sections of univalve shells, showing their internal form and structure. He has presented over fifty of these during the year. We are indeloted to Miss Anna 'T'. Jeanes for a number of beautiful glass models of mollusks, and to Mr. Joseph Jeanes for a fine suite of Califormia shells, and mounted linguals of Chitonidx, ete.

Mr. John II. Redfield has presented his entire and very complete collection of Marginellidx.

The U. S. Fish Commission, and Dr W. II. Jones, U. S. N.. have presented numerous specimens, both in alcohol and dry:

We have received from Dr. Isate Lea, the type series of Claiborne (Ala.) Eocene fossils, described and figured in his "Contributions to Geology," numbering 228 species.

Mr. John A. Ryder has prepared a drawing in outline of the gigantic Architeuthis princeps, Verrill; although only ${ }^{\top}$'s of the natural size, this drawing is upon a canvas twelve feet in length. It is exhibited upon the wall of the Conchological gallery.

Our collection of fossil shells, the systematic arramgement of which has been so long neglected, has at length, under the competent supervision of Mr. Angelo Heilprin, receivel that attention which its importance merits. Mr. Heilprin has critically studied
and arranged the whole of the North A merican Eocene Collection, and is now engaged upon the Miocene. These shells have all been labeled and mounted by Mr. Parker. A suitable label has been placed upon the drawers containing the "Swift Collection," and these have been made accessible to the public. The Cephalopoda, Muricidx, Purpuridx, Fusidx, and Buccinidx of the general collection have been rearranged in accordance with the latest information tupon these groups ; and it is proposed to continue this work of revision upon the other families of marine shells as opportunity offers.

A rearrangement of the Land shells in accordance with the natural groups of Dr. Louis Pfeiffer's " Nomenclator Heliceorum Viventium," and of the Unionidæ, in accordance with the latest edition of Dr. Lea's "Synopsis," will be commenced as soon as possible.

The Museum of Recent Conchology now contains 38,624 trays and 136,387 specimens.

There have been no changes made in the By-Laws of the Section. The officers for 1881 are:

Director-W. S. W. Ruschenberger.
Vice-Director-John Ford.
Recorder-S. Raymond Roberts.
Secretary-John H. Redfield.
Treasurer-Wm. L. Mactier.
Conservator-Geo. W. Tryon, Jr.
Librarian-Edw. J. Nolan.

> Respectfully submitted, $$
\text { S. Raymond Roberts, }
$$ Recorder.

The following are the additions to the Conchologieal Cabinet received during 1880 :
R. Arango. Two hundred and seventy-four species and rarieties of Cuban shells.
W. G. Binney. Helix Mayrani, Algiers. Testacella haliotoidea, England.

John Brazier. Bythinia hyatina, from New South Wales. Eicrlty-four species Laud, Fresh-water, and Marine shells from Australia.
J. J. Brown. A collection of mollusks from Florida and Haiti.
W. W. Calkins. Unio Blandingianus and Iritonidea tincta, Florida.

Caleb Cooke. Melanio scabra, '/anzibat.
W. II. Dougherty: Bulimusi Sachiederemus, C'oalaila, Mexiou.

John Ford. Area peralu, Say, Newport, R.1. Five steceof marine shells, Atlantic City, Ň. J. Myllihs hommlus, Sily, from Seekonk liver, Providence, R. I. Heli, lumeroulus: Commad. Sinaitic Desert. Natica duplialatand N. heros, with nillus, ova eapsules of N゙osisa Irivillala, Atlantic City, N. J. Fine surecimen of C'assis tuberosa, Bahamas. Orer filty specimens, sections of shells.

Andrew Garrett. Parlula decusisala and I'. Ifan!mentos. I)ominique Is., Marquesas. P. influl(, Taiwata, Marquesas. P'urluln (sp.), Moorea, Society Isles. 'Thorhus trochmilem, Socicty Isles. Cardium (sp.), I'ammotus Is.
E. Hall. A collection of land and fresh-water shells from varions localities. 'Twenty-six species of forsh-water shells.

Dr: W. D. Hartman. Embryonic Partule. Ciyclustomen in. complus, near bogota, S. A. Helixs similaris, Fer., diphan. Thnew species of Partula from Marquesas Islands. P'artula liaiotensis (type) from Raiatea. Parlula approatimalu, Raiatea.

Henry liemphill. Over two hundred spectes and varieties of California shells.
J. G. Hidalgo. Muner Trojoni (type), Lessel Antilles. liarimula nodo*a, Brazil.

Amat 'L'. Jeanes. (rlass models of twelve spectes of mudihnanchiate mollusks.

Joseph Jeanes. Momnted linguals of thintr-seren suecies of mollusks. Ninety-nine species and varieties of lamel, fresh-water and marine shells from Calitornia.

Dr. W. II. Jones. 'T'wenty-five species of pelacie mollnsks from
 Kerondrenii.

Henry C. Lea. 'Twenty-four specics of ('labome Focene fossil shells, trpes of his deseriptions.

Dr. Isatac Lea. 'Type collection of' Clathorne (Ala), Eoteme shells, consisting of 2.28 species ; arranged as deecribed and tigured in his "Contributions to (icoloury". Folula Tunmmia. Eilemont Ker, Fla.

Joseph Leidy. croniobersis purarimu. sisy, l'iedmont spring. North Carolina
E. 'T. Nelson, E'unteura T'ampaensis, C'onr., 'l'ampa B:ay, Fla.

 hombed specimens of about two hamhed speedes and varietics. Spirifor muromalus, Hamilton eroup).
 Helier cimamome'a. Trivier pellus:dula, sandwich lsles. ('mlin-
 Port-an-Prince, Hayti.

Dr. IV S. W. Ruschenberger, Dione lupinaria, San Blas.
Prol'. D. S. Sheklon. Physa !!yrina, young, Davenport, Iowa.
Hon, F^{F}. E. Spimmer. Seren lots of matine shells (filty-six species) from the month of' St. John's River. Fla.
U. S. Fish Commission. Fifty-four species of marine Mollusca from the New England coast.

1I. A. Ward (purchased). Glass models of six species of Cephalopods.
J. F'. Whiteaves. Eight species of fluviatile and marine shells, from queen Charlotte's Isl. and Gulf of St. Lawrence.

REPOR'L' OF 'IHE BOTANICAL SEC'IION.

Whe Vice-Director takes much pleasure in reporting to the Academy the continned prosperity of the botanical department, which, in fact, is quite equal to all that can be expecterl of it, until, by the good fortune of an endowment, funds can be supplied regularly to extend its work. Meetings have been held overy month throughout the year except July and August, at each of which valuable communications have been made by various members. Some of the more important of these have been communicated to the general meetings of the Academy, and have found a place in its published proceedings.

The Section now consists of thirty-one members, one having been added during the year.
'The Conservator's report to the Section of the condition of the Herbarium has been adopted by the Section as its report to the Academy, and is as follows :-

The accessions to the Academy's Herbarinm during the past year have been large and valuable, and the mounting and distribution of the plants received have made large demands upon the time of the Conservator and of the members of the Section who have kindly aided him.

Among the valuable contributions received were the collections - ft the late Dr. Chames l'ickering, mate in the years $1844-5$. during a jommey to Malta, Egypt, Dralia and Imdia, and presented to the Academy by his widow, Mrs. Sarah S. Pickering. The number of - peeces is w-mmated at about 1500 , and, as none of them were anmerl, the labor of distributing them in their proper natmal
orter (which has been pertormed hy Mexists. Mowhan and limks). has been slow, but is now completed.

From Dr. Gray, of Cambridere, important (omtrihution hatio been receised. Dr. (ituber has presemted at collocetion of 100 species collected by himself recently in l'otur Rion. whil. armm. 250 species of Mexican plants, collecterl he Inrs. I'ary ancl I'ahmer, hate been adrled.

In the department of the Lower ('ryptopans the additions hate heen of a nearly complete series of the Mosses and Hepratine of N. America. collected ant named by the late lamented An-tin, and presented by the liberality of members of the Suction, and of 200 species of N゙. American Fungi, collectert, determined :mml propared loy J. B. Ellis, and presented byy Mr. Martimetale.

The total number of species contributerl during the yenr is estimated at :3100, a very large proportion of them heine new to the Herbarium.

Some progress has heen mate in the momting of the North American Iferbarium, the orders from L'olemoniacea to scropphe Lariacea inclusire having heen completed. Mr. Acrihmer has continned his work upon the determination and the mommting of the Grasses, though interrupted hy long and serions illness. 'Thuse familiar with Merbarimm work can apprectate the amount of lahor ret required to sift the material now 1 pon our shelres. to determine the douhtinl species and to mount the whole. Volunteer labor is hardly adequate to take care of the new aceresions, and, until some endowment shall secure to the Leademy the constant $^{\text {and }}$ Work of a competent hotanist, the completion wh the ta-k mat remain for the finture.

Much inconvenience has heen heretofore experienced fion the want of a proper place to receive and disphay such seed-resisels and vegetahle products as were too large to plawe in the hewhatimu sheets. Such objects have necessatrily heen placed in the arallery of the Mnseum, too distant from the botanic:al working-mom to the readily consulted. The liberality of a member of the - deademy, whose atid has often supplemented its neerls ant shatamed the hands of its workers, hats removed this dillienter : ame we have now in the botanical room a most convenient and eapacinnc working table, containing sixty-four large drawers lor the reerption of seed-ressels, pine-cones, wood-sections, ete.

The Conservator must acknowledge, ats hementione, the whicient
aid received from Mr. Chas. F'. Parker in the work of poisoning and arranging the collections received during the year and for other material assistance.

Joun H. Redfield,
Conservator.
December 13th, 1880.

The ollicers elected for the forthcoming year are :
Director.-Dr. W. S. W. Ruschenberger.
Vice-Director.-Thomas Meehan.
Recorder.-F. L. Scribner.
Cor. Secretary.-Isate C. Martindale.
Conservator:-John. H. Redfield.
Treasurer:-J. O. Schimmel.
Respectfully submitted,
Thomas Meegan,
Vice-Divector:
Donations to Herbarium and Jluseum.-Mrs. Sarah S. Pickering, of Cambridge, Mass. : 1200 species plants, collected by the late
 Arabia, Y/anzibar and India, also lot of seed-vessels, etc. Chas. F. Parker: Lechea Nove C'esarix Austin, Bergen Co., N. Y., (author's type); Fraguria Gillmani, Clinton, Detroit, Mich. (author's type); Guizotia oleifera, D. C., African species, from Ballast, Camden, N. J.; Lycopus sessilifolius, Gr., Batsto, N. J.;
 Phlor shelln-i", (ir., Nashville. Temn. : species plants fiom California, new to tha rollection : 111 species of plants from Emope. Syria, S. A frica, etc., many of them new to the collection. Dr. Asa Cray: 161 species plants from California, Arizona, Oregon, Washington 'Terr., Turkistan, and Micronesian Islands, mostly new to the collection. Prof. C. J. Sargent: Aster Herveyi, Gr., Tiverton, R. I. ; Photographs of Conifere, from Oregon. Geo. E. Intenpert. Boston: ('hrilaulles riseida, Davenp), ('aliformia. Isaac C. Martindale : 'Third and fourth centuries of Ellis' North American Fungi; C'orethrogyne filayinifolia, Nutt, San Diego Co., Cal.; specimens of Castanca vesca, L., var. Americana, with abnormal fertile spikes, from Pitman's Grove, N. J.; Bark of Pinus mitis, Mx.; Brickellia Vincentiana, Greene, new species, New Mexico; Corrigiola litteralis, L., Ballast, near Philadelphia. Dr. C. C. Parry, Davenport, La.: Tithonia tubxformis, Cass., cult. at Davenport, from Mexican seed; Mexican mats and rope made from fibre of Algave heteracantha; Fibre of Agave Americana. A. L. Siler, Utah: Pentstemon Sileri, Gr., nov. sp., Beaver Dam Mts., Utah. Mrs. M. J. Myers, Syracuse, N. I.: Epipactis Hel-
leborine Rich, var, wiridans Gir., near Syrachec, N. Y. In. Thos.
 Co., Pa. Wm. H. Dongherty: Skeleton of stem of (lpuntine im-

 color, P'ers., Coblj's Creek, Darhy, P'a. 'Thomats Blamb. N. Vork Wax, from the leaves of the C'amauha I'alm (('murni-in mofifen : Whip from the bark of -Jamaica : l'aper firm the fibse of Plantain and Banana, Jamaica; A!!rislica firturonns. Hontt.. Niutmeg with its Mace and outer husk, Jamaical : Seerls of the following plants from West Indies: Lucumo mommmsin, (iris., firnillea
 Antenanthera par:omina, L.: Thnus precalnitus, I... (imitnulina Brmdue, L. Anacardium neçidentale. L.。 ('uilandina Jiomduerlla. L.: Wood of the Down tree (1) Whoma Latmpus:). 'Thons. Meehan: Pellaea alromprpurea, Link., collected in Southern Ltahs, hy A. L. Niler; Sedum Mreham. (iray, collecterl insonthern Utah, hy A. D. Siler. Isaac Burk: Wood of Heritiera. Ifrica. Inr: A. I' Garber: 95 species of plants, collected hy him at l'awo. Porto Rico, in 1880, named by Dr. (iray and Mr. Oliver of Kintucky. John H. Redficld: 217 species plants colleeted by Dr. C'. ('. 1'arry and Dr. E. Palmer, near San Luis Potosi, Mexieo, named at Kew and Cambridge; 5 t species Ferns, collected by A. Fendler. in the Island of 'Trinidad, W'. I., in 1879-s0, supplementary to a collecetion presented in 187S. mamed hy I'rof. 1). ('. Eaton: 7 speciuplants from Florida and Tropical Imeric:n. .J. II. Reclfichl. J. ('. Martindale. Thos. Mechan, Wm. M. ('anhy, 1)!. ('has, E: Schatter, 1)r. J. Bernard Brinton: Complete set of the Mosserime Ilepatica of N. America, collected and mamed hy the late ('oe F. Anstin, consisting of 518 species of Mosses and 124 species of Hupaticar.

REPOR'T OF TME ENTOMOLOCiIC IL SECTION゙

The Entomological Section, throughout the past year has held its regular meetings, excepting during the months of July and August. Most of the meetings have been quite interesting, owing to the many original communications, hoth verhal and writen. that have been presented. These lectures, as they may he called. were devoted to illustrating some of the variations wh form, etc.. of many entomological species and genera. It the same time opportmity has been aftorded to those so desiring. to desoribe new species of the entomological fanma, and to present their whservations the public. 'That the clams of prority of deseription thus made, might not be lost by the several aththors, suth communications have been condensed and published in the P'roceediners of the Section. The more full and complete papers are, as hereto.
fore puhbished in the 'lramsactions of the American Entomological Society. There have been eight papers presented and published by the latter society during the year, comprising 338 pages of printed matter in octaro form, illustrated by seven plates. This, in comnection with 24 pages of the published Proceedings of the Section make a total of 362 pages of entomological publications issued since last ammal meeting.

The entomological collections of the Academy have been carefully attended to through the year, by the Conservator, Mr. Geo. 13. Cresson, and have been preserved from all infection or loss.

By the cleath of Mr. James Ridings, in July, the section lost one of its most ralued members. Mr. Ridings was one of the founders of the American Entomological Society, and through his many valuahle discoveries was well known among the entomologists of the United States.

At the ammal meeting of the section, held December 13th, the

Director.-John L. LeConte, M. D.
Tice-Director-George II. Horn, M. D.
Treasurer.-E. T. Cresson.
Recorder.-J. H. Ridings.
Conserator:-Geo. B. Cresson.
Publication Committee-George H. Horn, M. I. Samuel Lewis, M. I).
At the last annual meeting of the American Entomological Society the sum of seventy-five dollars was contributed towards the funds of the Academy.

Respectfully submitted,
James H. Ridings,
Recorder:

REPOR' OF MINERALOGICAL AND GEOLOGICAL SECTION.

 respectfilly report:

Meetings of the Section have been held monthly, except during July and August. The attendance has been good. A number of interesting papers were read, and many valuable communications and donations made. During the year, the first volume of its pro(equlings wa- pulblisherl. containing scientifie papers and commonnications to January 1st, 1880. The collection of local rocks and
minerals has outgrown the place providerl for it．It is almont complete as to the rocks of Phaladelphia，ank of I Pdaware，Mont－ gomery and Bucks counties．Believing，ats he does．that this collection will grow into one of great importance and interest．In： is glad to state that the desire of the Section for a hetter location for it has been granted by the Council of the Acarlomy．

Reshortfully submitterf，
Theo，I）．IiAND．
limitur．
Philathelphila，December 2ilh，15か\％．
To the Director of the Mineralorgical and（roblorgical Sertion：
The mineral collection of the Academy has been improved during the past year by the addition of the usual number of dona－ tions．These have been carefully labeled and placed in the cases by Mr．Charles F．Parker，to whose industry and care we are chiefly indebted for the satisfactory arrangement and labeling of all our specimens．I submit with this a list of the donations during the past year．The collection is in a satisfactory con－ dition．

Josepif Willcox．
Conservutor：
Additions to Mineraloyical Cabinet during the year 1ssen：－ Jas．W．Beath：＇Twenty－five specimens of polished Igates，from Oberstein，（remany，and Paraguay ；Crocidolite，S．Africa．C．S Boutcher：Proustite，Gumnison．Co．．Colorado．Walter Collins： Asphaltum，Cretaceous Marl，Blackwoodtown，Ň．J．Chas．I）ohle： Millerite，Chalcopyrite and Niccoliferous Pyrrhotite，（iap Mine， Laneaster Co．，Pa．WY．H．Dougherty：Native Golk，also a tine col－ lection of Native Silver，Silyer ores，Argentiferons（ialena，Ruhy Silver，Cassiterite，etc．，Mexico；Green same，San Antonio River． ＇I＇exas．John Ford：Stilbite，Frankford．Philada．：Actinolite， Ilormblende，Lafiayette．Montgomery（＇o．．I＇a．John（iarvin： Native Gold in Quartz，Battle Branch，（iar．E．（ioldsmith：Lignite． containing Fichtelite，Brazil Prof．ふ．ふ．Hakleman：Stalactite． and six specimens of－ 1 gates，Argentine Repuhlic．İ．I＇．Haneock： ＇Two specimens Jeflersonite，Sterling，Sussex Co．，N．．J．；＇Thorite， Brevig，Norway．W．W．Jefferis：（quartz pemul，alter I）og－tooth Spar；P＇icrolite（Nlickenside，）Newlin，（＇hester（＇o．．I＇：；W＇avellite． Es．Whiteland，（＇hester Co．，l＇a．1）r．（i．A．Koenig ：darosite． Chattee Co．，Colorado．Dr．Isatac Lea：Amazonstome，and a line specimen of smatone，near Media，Del．（＇o．，l＇a．Dr．．Jus．Lacidy： Three specimens of＇lalcose slate，soapstone（？nary shore of the 1）elaware River，ahove Eanton，I＇a．；（＇ormalun，Lammens（＇o．．．s．（＇． Biotite，Steatite（Quarry on Bushkill Creek，near Easton，I＇a．H． C．Lewis：Philaclephite，Phila．；Ilyalite，（iemmantown，Ihila．：

Malite, Saltwille, Via. Wm. Lorenz: Chrysotile, Canada. Mr. Loyer': Corundum, Chester Co., l'a. Miss Miller: Crystals of Silver, Lake Superior; Hematite, Gypsum, Stalactite, Chlorastrolite, Halite, ete., from various localities. Dr. Weir Mitehell : Silicitied Wood, Missouri River, above Bismarek. L. Palmer: Albite, Vermiculite, I) el. Co., P'a. Theo. D. Rand: Kammererite and Chromite, Radnor, Del. Co., Pa.; Crystallized Quartz in Potsdam sanlstone, Mont. Co., Pa.; Herrengrundite, Herrengrund, Hunצary; Orileyite, Burmah. J. L. Reed: Asbestus, Italy; Chrysotile, Ontario, Canada. 'I. W. Ried: Chalcopyrite, Montgomery Coo, Pa. Dr. W. S. W. Ruschenberger: Copper Slag, Caldera, Chile, 1856. Dr: J. Richard Taylor: Cerargyrite, Chloricle of Silver, with fractured Wavellite crystals, Galena with free Sulphur, Millerite, and argentiferous Carbonate of Lead, Leadville, Colorado; Ore from the Ohio Mine, bearing Gold, Silver and Copper, Breckenridge, Col. C. M. Wheatley: Fine specimen of Byssolite, Chester Co., Pa.; Azurite on Chalcopyrite, Upper Salford Mine, Montgomery Co., Pa.; Aurichalcite on Calcite, and white Apatite with Byssolite; Chalcopyxite, Pyrite and Melaconite, Jones Mine, Berks Co., Pa. Dr. Jas. W. White: Corundum, Zircon, Storeville, Anderson Co., S. C.; Corundum, Concord, N. C. ; Andesite with Corundum, Hog-back Mt , N. C. ; a collection consisting of Zincite,
 Damourite, Stalagmite, etc., from various localities. Joseph Willcox: Autunite (Uranite), Mitchell Co., N. C.; Pyroxene, Biotite?, Apatite, Burgess, Ontario, Canada; Corundum coated with Margarite, Iredell Co., N. C.; Danburite, Russel, St. Lawrence Co., N. Y.; Black Tourmaline, Westport. Ontario, Canada; Scapolite, Pyroxene, and four specimens of A patite, Bob Lake, Ontario, Canada. A. E. Foote, in exchange for duplicate books : nine specimens of A patite, Renfrew, Ontario, Canada; Chrysotile, four specimens of Titanite (Sphene), Titanite (Lederite), two Vי-uviante, Beryl. Triphyllite. Celestite. Wollastonite, Gummite, Uranotile, Toumaline, Octahedral Crystals of Fluorite, with A patite and Calcite, from various localities. Purchased : Limonite, Superior Mine, Michigan.

Additions to Rock Collection.-John Ford: Hornblende, Soap--tme Quarry. Lafayettr Pa.: 'Tomrmaline and Homblemderehist, T'unnel near Girard Ave. Bridge ; Decomposing Gneiss with Mica, ditto with Quartz, ditto with Manganese?, near west end of Callowhill st. Pridere. Philarlelphia. (i. H. Ivens: Georle of Limonite, Kent Co.. Md. W. W. Jefferis : Gneiss. John Hartman: T'wo - pecinen- of Crritalline kag. taken from hearth of Blast Furnace, Charlotte, N. Y. Dr. Jos. Leidy: T'alcose Slate, Soapstone quarry. Pot Rock. Delatware River, above Easton. P'a.; Inclurated Clay (Bridger Eocene), near Fort Bridger, Wyoming. H. C. Lewis: Glacier-scratehed boulder, Belvidere, N. J. 'Theo. D. Rand: Twenty-a•边-perinens of Rocks, from the neighborhood of Philarlolphiar for Local liork collection; thees speremens of

SUMMARY OF THE REPORT OF WM. (. HENSHEY゙, Treasurer, for the year ending Noy. 30, 158!.

Dr.

\qquad
" Initiation fees 2:3 110
" Contributions (semi-annual contributions) $224+9$
" Life Memberships 50040
" Voluntary Contributions from Life Members. (i1.) 01
"Admissions to Museum 45 B ?
" Sale of Guide to Museum t르웅
Duplicate Books. 775
Donation from Mineralogical and G. Section towarls Proceedings :35 00
" Donations towards Plates for Proceedings 10 00
". Imerear an bermais. -..4.4
" Interest on Phil. and Erie Railroad Bonds 80) 10
" Life Member Fund. Interest on Investment 12000
" Maintenance Fund. $: 300 ;$
" Publication Committee. W. S. Vaux, Treasurer. 517
D'ublication Fund. Interest on Investments. 200) 010
" Barton Fund. 240011
" Wilson Fund. Towards Salary Librarian 30010
Freight returned. 430
Phila. and Erie Railroad Bond, Transferred to Mainte- tenance Fund J1000 10

[^74]
Cr

Salaries, fanturs. etw. tetan on
Freight 60 5!
Inspecting Boiler. 1020
Repairs 18805
Insurance :30 011
Jars and Bottles if 11
Coal. 19.50
(iar. iT
Mounting Bird. 125
Stationery and Postage Stamps. 13655
B.auk n of
Alcohol $: 3150$
Publication Committee. W. S. Vaux, Treasurer (13) 33
Newspaper Reports 6400
Water Rents. $21 ;$
Trays 420 0
Binding 11840
Printing and Paper 153!
Plate-and Printing. 1:2:
Miscellaneons 4485
Life Membershins transferred to Life Memhership Fund. $5(10) 40$

LIFE MEMBERSHIP FLND. (For Maintenance.)

13.ARTON FUND. (For lrinting and Illustrating Publications.)
Balance per last Statement $\$ 24000$
Interest 24000
$\$ 48000$
Transferred to General Account. 24000
Balance $\$ 24000$
JESSUP FUND. (For Support of Students.)
Balance last Statement $\$ 55167$
Interest on Investments 56000
Disbursed 11167
590
Balance $\$ 52167$
MAINTENANCE FUND.
Total amount received $\$ 155000$
Interest $3010(1)$8158000
Le-s paid fin Printing $\therefore 23$ (1:5)
Invested in Bonds Phila. and Erie Railroal 3000
Interest Tyansferred to General Account10. $\%$; 1.5
P;ilance
I. V. WILLIAMSON LIBRARY FLND.
Balance 513024
Rents Collecter 9700
Ground rents Collected. 109600
For Books. $\$ 57756$
Expenses Sale of Prop'ty for arrearages of Ground-rent. 16725
Costs, Insurances, ete 3747
Repairs to Properties 23237
Taxes. 20402
Water Rents 4140
Collecting 53 70
1880．］ naturat sciences of pildadefiphia 127
IUBLICATTON FliNU．

 Interest on Investments． 570 110
Received from W．S．Vaux for Duplicate Books． $\therefore-1!17$
Paid for bouks － 811 （ii）
＂Binding 115%
To General Account towards salary of Librarian． ：30）（1）
Palance．

\qquad 3611 \％ $\$ 10002$
MRS．STO＇T FUND．（For l＇ublication．）
Twelve Month Interest 311210
Paid to（W．S．Vaux）Publication Committee $11: 10$
JOSHUA T．JEANES FUND．（For Maintenance．）
Bequest hy him pait hy Hoir－ $\$ 20,0,1(1) 110$
Invested in three Mortgages．．$\$ 1000$（10）
B（）nO）（10）
10,1041010
ECKFKLT FUND．
To be invested ミ゙ン4に si

The election of ollicers lor 1881 was held, with the following result : -

President. . . W. S. W. Ruschenberger, M. D.

Fice-Presidents.

Recording Secretary,
Corresponding Secretar!/.
G'reasurer.
Librarian,
Guralors.

Councillors 10 serve three yeurs.

Wm. S. Vaux,
Thomas Meehan.
Edward J. Nolan, M. I).
Geo. H. Horn, M. I).
IVm. C. Henszey.
Edward J. Nolan, M. D.
Joseph Leidy, M. D.,
Wm. S. Vaux, Chas. F. Parker, R. S. Kenderdine, M. I.

Wm. L. Mactier, Aubrey II. Smith, Hemry C. Chapman, M. D., Geo. Y. Shoemaker. Edw. S. Whelen, Clarence S. Bement, Aubrey H. Smith, S . Fisher Corlies, (ieo. Y. Shoemaker.

ELEC'TIONS DURING 1880.

MEMBERS.
January 27.-A. R. Thomas, M. D., Wm. H. Jenks, Jolm S. Jenkis. ('has. W. Pickering, Hemy F'. Formad. M. D., Charles P. 'Tasker, John Wagner, Ferris W. Price, Geo. W. Biddle.

February 24.-R. S. Huidekoper, M. D., Frances Emily White, M. D., David 'Townsend, Thos. Miles, John S. Capp.

March 30.-Paris Haldeman, Geo. B. Heckel, Emlen Physick, M. D.

May 25.-Menry S. Gratz, R. S. Peabody; Mrs. R. S. Peabody, Wm. Barheck.

October 26.-Rev. Wm. F. C. Morsell, Samuel R. Knight, M. D:
November 30.-Charles S. Turnbull, M. D., James M. Anders, II. D.

For list of Correspondents elected see Report of the Corresponding Secretary.

AJIITHONS 'TO LIBRAKY.

December 1s1, 18Tt) - Norember ;otht, $188(1$.

Abbot, E, II. Physies and hydranlies of the Mississippi River. Ir. I. Minis Hays.
Allen, J. A. U.S. Geol and (icogr. Surv, of 'Ter. Miscellancons publications, No. 12. History of North American l'innipels, 1sinu. The Department of the [nterior.
Allen, T. F. Characea of America. I'ts. 1 and 2. 1. V. Williamson Fund.
Allis, O. A. Deformity from fractures at the lower ent of the humerus. The Author.
Alumni Association, Philadelphia College of l’armacy: 1 Gth anmual report. The Society.
American Angler's Guide. Bd Ed., 184!. S S. Haldeman.
American Musoum of Natural History. 11 th annual report. The lirector.
Annual record of science and industry for 1878. I. V. Williamson Fund.
Arango, R. Contribucion a la fana malacologica Cubana. The Author.
Archaological Section of the St. Louis Acatlemy of Sciences. Contributionto the arebeology of Missouri. I'art I, Pottery. The Aearleny.
Astor Library. Blst annual report, 18so. The Trustees.
Baillon, M. II Dictionnaire de botanique. 12me Fase.
Natural history of plants. Vol. 6. 1. V. Williamson Fumh.
Balfour, F. M. Comparative embryology. I. V. Williamson Fund.
Barber, E. A. Comparative vocabulary of Utali tialects. The Author.
Bárcena, Mariano. Terremoto del 17 de Mayo de Lsisy
Viaje a la Carerna de Cacahumilpa, 1874. The Author.
Datos para el estudio de las rocas mesozoicas de Mexico, y sus fusile: caracteristicos, 1875. Dr. Jos. Leily.
Barrande, J. Brachiopodes. Vol. 5, 1879. The Author.
Beale, L. S. How to work with the microscope. ith Lit. I. V. Williamson Fund.
Benthan, G. and J. D. Hooker. Genera plantarum. Vol. :3, I't. I. 1. V' Williamson Fund.
Berg, Dr. C. Observaciones acerea de la familia Hyponomeutidie.
Apuntes Lepidopterologigues.
Hemiptera argentina, 1879.
La Reina de las Flores, 1880 . The Author.
Binney, W. G. North American species of 'Konites. The Authur.
Board of Directors of City Trusts. Woth annual report. The Board.
Bocage, J. V. Barboza de. Melanges ornithologiyues, V.
Liste des Antilopes d'Augola.
Algumas observaçes e additamentos ao artigo do si. A. C. s'mith intitu lado "A sketch of the birds of Portural."
Note sur une nourelle espece africaine du genre "Coracias."
Aves das possesines portuguezas d'Africa occidental, 1 the and lith List.
subsidios para a faum das pos, porturnezas d'dtrie:a uccitental.
Aves da hambezia e do Transvaal. The Author.
Bobnensieg, (i. C. WV. and W. Burck. Hepertorium anmumm litemtura botanice periodicte. 'I'. 5, 1479.
Encyklopadie der Naturwissenschaften. Ie Ahth., is Lief., 1sis). I. V' Williamson Fund.
Bolton, II. Carrington. Thble showing the behaviot of certain minerats with Citric Acid alone and with rengents. 'Tlie Juthor.
Bommer, J. E. Monographie de la classe des Fougires, lait. 1)r. Fi. V. Hayden.

Borre，A．I＇reudhomme de．Espèces de la tribu des Féronides qui se rencon－ trent en Belgique．1re l＇artie．
Ripeeces des tribus des I＇anageides，les Loricerides，des Licindes，des Chlienibles et des Broseides qui se rencontrent en Belgique．
De la meilleure disposition ì donner aux caisses et cartons des collections 1゙いいいた
Note sur le Breyeria Borinensis．The Author．
Brazier，J．Synonyms of，and remarks upon lort Jackson，New Caledonian and other shells，with their distribution．
Brief account of the natives of western Australia，1879．The Author．
Brehms Thierleben． 8 Bd．，1－8 Heft．I．V．Williamson Fund．
Herićre，L．Catalogue des mollusques observés dans le Départment de la Nievre．I．V．Williamson Fund．
Bromn，H．G．Morphologische Studien über die Gestaltung－Gesetze der $\mathrm{Na}-$ turkürper überhaupt，und der organischen insbesondere．1858．Dr． Jos．Leidy．
Thier－Reichs．Ger Bd．，III．Abth．， $2-12$ Lief．Wilson Fund．
Rrihhl，C．B．Zootomie aller Thierklassen．Atlas．Lief． 14 \＆15．I．V． Williamson Fund．
Brun，J．Diatomées des Alpes et du Jura．I．V．Williamson Fund．
Brush，Geo．J．Mineral locality at Branchville，Connecticut．4th paper． The Author．
Buchanan，J．Manual of indigenous grasses of New Zealand．Wellington， 1880．Geological Survey of New Zealand．
Bureau of Education，circulars of information，Nos． 2 and 3．Department of the Interior．
Bureau of Statistics，Treasury Department，quarterly reports，Sept．30，1879－ June 20，1880．The Department
Butler，A．G．Illustrations of typical specimens of Lepidoptera heterocera in the collection of the British Museum．Pt．14．The British Museum．
Calkins，W．W．American conchology．Catalogue of Uniones．1880．The Anthor．
Cameletti，J．Il binomio di Newton．The Autl：or．
Catalogue of the Queensland Court，International Exhibition．Sydney， 1879. J．Brazier．
Cafalogue of the officers and students of Yale College，1879－80．The College．
Catalogus der ethnologische Afdeeling van het Museum van het Bataviaasch Genootschap van Kunsten en Wetenschappen．2e Druck．The Society．
Central Park Menagerie，report of Directors，1879．The Directors．
Chambers，V．T．President of Cincinnati Society of Natural History，anmual address，187！．The Author．
Chapman，II．C．Memoir of James Aitken Meigs，M．D．
Lecture introductory to the course of Jefferson Medical College for the session of 1880－81．The Author．
Chatin，J．Les organes des sens dans la séric animale．I．V．Williamson Fund．
Chief of Engineers，report，1878．Parts 1， 2 and 3．Engineers＇Department， U．S．A．
Chief Gold Commissioner for the Province of Nova Scotia，report，1863．De－ partment of Mines．Nova Scotia．
Chief of Ordnance，annual report，1879．War Department．
Chili．Memoria de Guerra i Marina， 1878.
Memoria de Relaciones Esteriores， 1879.
Memoria de Ministro de Justicia，etc． 1879.
Memoria de Ministro del Interior， 1879.
Projecto de Codigo rural， 1879.
Anuaria hidrografico de la Marina de Chili，Ano V．
Anuaria de la Oficina central meteorologica，1874．
Anuaria estadistico，1876－77．

Sessiones estraordinarias de la Camara de senalures，149\％，Som． 1 \＆ 2.

Estadistica Agricola 187ī－78．
Estadistica bibliogratica le la Literatura Chilena，TR．2．U＇niver：ity ot Chili．
（hurch，J．A．New methorls of ore concentration and goll amaleamatim．
The heat of the Comstock lode．The Author．
Clement，Ch．Constitution Geologique le Luxemhourg．1atil．Wh：F．V． Hayden．
Cobbold．＇I＇．S．Parasites．187！．I．V．Williamson Fiunl．
Cohn，Ferd．Biologie der Pflanzen．111，I．I．V．Williamson Fumb．
（＇olbeau，J．A．J．Matériaux pour la Faune malacologique de Religue，I．The Author．
Colonial Museum and（ieological Survey of New \％ealand，1til Ammal rea port．187\％．
Kaport of Geological Explomations，1878－79．The Author：
Commission de la Carte créologique de Belgique．Holpoken et Contieh，Anvers， Lennick－St－Quentin，Malines，Lierre，Heyst－op－len－Berq，I＇utte ant Boom，with maps．The Commission．
Commissioner of agriculture，report，1875．The Author．
Commissioner of Fisheries of the State of California Heport 1s：an lsill The Commissioners．
Commissioners of l＇ublic Charities of the State of I＇ennsylvanin．Tenth ath－ nual report，Jan．1880．The Board．
Comptroller of the Currency，annual report，1879．The Author：
Cope，E．D．Un the foramina perforating the posterior part of the－quamesal bone of the mammalia．
On the genera of the Creotunta．The Amhor．
Cresson，E．I．and Edw，Norton．Tenthredinidie and Uroceridte wionth America．The Author．
Covier，G．Revolutions of the surface of the glohe．1831．Dr．I．M．Hays．
Dana，J．D．Manual of geology，Bil Ehl．，1880．1．V．Williamson Fuml．
Dawkins，W．B．Early Man in Britain and his place in the＇lertiny perim， 1880．I．V．Williamson Fuml．
The classification of the tertiary periorl by means of the mammalia．
Further discoveries in the Cresswell C＇aves，1879．The Author．
Dawson，Geo．M．Geological map of a portion of the southern interior of British Columbia．（ieological Survey of Canala．
Defandolle，A．and C．Monographiae phanerogamarum podromi．Vol．\because. 1870．Wilson Funt．
Decken，（O．van der．Reisen in Ost－Afrika．：Ber Bul．，111．Ahth．I．V：Wil－ liamson Fund．
De Cleref，F．S．A．Het Maleisch der Molukken，187̄i．Liatavian ．Lemlemy of Sciences．
Deparment of Agriculture Special Report，Nos．20－27．
Circular regarding needs of．The Department．
Department of Mines，Nova Scotia，reports，18おご，1sijt，1815．5，1min－1mi！．We－ partment of Mines，Nova Scotia．
Same，18lif．Dr．Jos．Leily．
Department of Statisties and Geology of the State of Iniliana， 1 st anmual report， 1879．The Department．
Deshayes，G．P．Animaux sans vertibres découvertes dans le has－in de l＇aris． T．2me，texte，pp．fif1，et seq．Athas，planches $40-10 \overline{\text { ．}}$ ．I．V．Williamson Fund．
Dohen，A．Catalogus Hemipterortme，18is？．Dr．Jos Leity．
Doremus，C．A．and R．A．Withaus．Chemistry of the Cohb－Mishop poisoning． The Authors．
Draper，J．W．Experiments on sular light．Dr．I．Minis Mays．

Duméril. A. and Bocourt. Mission scientifique au Mexique et dans l'Amerique Centrale. Recherches Zoologiques. 3me Partie. Etudes sur les reptiles et les batraciens. 1. V. Williamson Fund.
Eaton. D. C. Ferns of North America. Pts. 22-27 and Title and Index to Vol. 2. .J. II. Redfield.
Ellet, C.. Jr. The mountain top track, 1856. Dr. I. M. Hays.
Elliott, D. G. Monograph of the Bucerotide. 1'ts. 7 and 8.
Monograph of the Felide. P't. 5.
Encyclopedia Britannica. 9th Ed. Vols. 10 and 11. I. V. Williamson Fund.
Encyklopadia der Naturwissenschaften. 1 Abth., 6-1: Lief. I. V. Williamson Fund.
Engelman, Geo. Revision of the genus Pinus and description of l'inus Elliottii, 1880.
Acorns and their germination. The Author.
Engler, A. Entwicklungsgeschichte der Pflanzenwelt. I. Th. I. V. Williamson Fund.
Evarts, H. C. M. D. A new species of Ophrydium. The Author.
Exposition Universclle de 1878 . Catalogue du Ministère de l'instruction publique les cultes et cles beaux-arts. Tomes 1,2,3. Section Belge. Catal. officiel. Minister of Public Works.
Falsan, A., and E. Chantre Monographie géologique des anciens glaciers et du terrain erratique de la partie moyenne du Bassin du Rhone. Atlas, 1875. Society of Agriculture of Lyons.

Farlow, IV. G. Impurities of drinking-water. The Author.
Financial reform almanac, 1880. Cobden Club.
Fisher, l'. Subdivisions des ammonites. The Author.
Fitzgerald, R. D. Australian urchids. I'ts. 1-5. Colonial Secretary, New South Wales.
Fol, H. Etudes sur les Appendiculaires du Détroit de Messine, 1872. The Author.
Foote, A. E. Catalogue of minerals. 5th Ed. The Author.
Friele, II. Tungebevabningen hos de Norske Hhipidoglossa. The Author.
Fritsch. A. Fauna der Gaskohle und der Kalksteine der Permformation Bohmens. Bd. 1, H. 1 und 2. I. V. Williamson Fund.
Frommann, C. Structur und Bewegungserscheinungen des Protoplasma der Pflanzenzellen. I. V. Williamson Fund.
Galvani, Luigi, portrait of. Academy of Sciences of Bologna.
Geological and Natural History Survey of Minnesota, reports, 1874, 1875, 1876, 1877-78. N. H. Winchell.
Geological explorations and surveys west of the 100th Meridian. Topographical Atlas. Wheeler, 1875. Engineer Department, U. S. A.
Geological Survey of Canada, reports of progress, 1844, 1848-49, 1850-51, 1851-52, 1852-53, 1853-56, 1857, 1858, 1875-76. The Survey.
Geological Survey of India. Records, Vol. X1I, Iarts 2 and 3. Memoirs, 8vo, Vol. 16, P't. 1. Memoirs, 4to. Palæontologia Indica, Ser. II., Vol. I, 4 ; Ser. XIII, I. 1; Ser. XIV. I, 1. The Survey.
Geological Survey of Kentucky. A general account of the Commonwealth of Kentucky. Report on the timbers of Boyce and Mercer Counties. By W. M. Linney. Chemical report of the soils, coal, ore, etc. By Robert Peter. The Survey.
Geological Survey of New Jersey. Annual report, 1879. The Author.
Geological Survey of Sweden. Eleven geological maps. The survey.
Geology of Wisconsin. Survey of $1873-79$, Vol. III, with folio Atlas. Annual report, 1879. The Survey.
Geyler, II. T. Ueber fossile Pflanzen aus der Juraformation Japans. The Author.
Gibson, G. A. Sequence and duration of the cardiac movements. The Author.
Gilbert, G. K. Geology of the Henry Mts., 1877. Department of the Interior.

Gilpin，E．The mines and mineral lands of Nova Scotia，18hd．Fepartment of Mines，Nova Scotia．
Gould，J．The birds of Asin．P＇s．28，29， 20 and 31.
The hirds of New fiuinea．l＇ts．：3－11 inc．Wilson Fiund．
Graf，L．Anleitung zur Kenntniss des l＇terdes nach بeiner iuszeren Kïrper－ form，1846，Dr．Jos．Leidy．
Grateloup，Dr．Discours sur les sciences et les arts，18：57．Dr．I．Mini－ Hays．
Gray，Asa．Botanical contributions，V．The Author．
Gray，A．F．Littorina litorea，Linn．on the Ameriean const．The Author．
Gruber，W．Beobachtungen aus der menschlichen und vergleichenden Anatomie． 1 and 2 II．I．V．Williamson Fumd．
Ueber den anomalen Canalis basilaris medianus des Ox vecipitale beim Menschen．The Anthor．
Hasst．J．von．Geology of the Provinces of Canterbury and Westland．New Zealand．The Author．
Haeckel，E．Das System der Medusen，ler Thi，le Halfte．T＇est and Athas I．V．Williamson Fund．
Haldeman，S．S．Unsymmetric arrow－heads and allied forms．The Author．
Hamilton，G．Biographical sketch of Janes Aitken Meigs，M．D．The Author．
Hampe，E．Enuneratio muscorum，1879．I．V．Williamson Fund．
Hanstein，J．v．Das Protoplasma，1880．I．V．Williamson Fund．
Hayden，F．V．Five maps of portions of Wyoming，Htaho and Ciah．Depart－ ment of Interior．
The Great West，1880．The Author．
Hays，Dr．Isaac，framed portrait of．Dr．I．Minis Hays．
Hector，James．Handbook of New Zealand，1879．J．Mrazier．
Heger，A．Useful tables for finding specific gravity：The Author．
Ifeinemann，F．C．Catalognes， 1880 ．The Author．
Heller，A．A Kir．M．Termeszettudomanyi Jarsulat Kïnyveinek Czimjegy－ zeke，1877．Royal Hungarian Society of Sciences．
Helmholtz．Sensations of Tone，1875．I．V．Williamson Fund．
Heule，J．Handbuch der Eingeweidelehre des Menseben．
Henry，Jos．A summary of researches in sound，1879．Smithsonian Inst．
Herman，O．Ungarns Spinnen－Fauna．is Bd．Royal Hungarian Society of Sciences．
Hermann，L．Handbuch der Physiologie．こer Bd．Der Th．， 5 Bd． 1 Th．I． V．Williamson Fund．
Hertwig， $0 . \&$ R．Die Actinien，1879．Dr．F．V．Hayden．
Hesse－Martegg，E．von．Nord－Amerika． $1-4$ Bul．Dr．F．V．Mayden．
Heude，R．1＇．Conchyliologie fluviatile de la l＇rovince de Nanking et de la Chine Centrale．Gme and bine Fasc．I．V．Williamson Fund．
Hewitson，Wm．C．Illustrations of Diurnal Lepiloptera．I＇t．1．I．V＇．Wil－ liamson Fund．
Hewitson，W．C．and F．Moore，Description of New Indian Lepidopterous Insects．Rhopalocera，Heterocera．Asiatic society of Bengal．
Hicks，H．On the l＇re－Cambrian rocks of west and central Ross－shire．The Author．
Llidalgo，J．（i．Moluscos marinos de Espana，Portugal y las Baleare－ Ent．15，16，
Moluscos del Viaje al Pacifico，1862－65．P＇，Wa，Ent．1．The Author．
Hidegh，K．Chemische analyse ungarischer Fahlerze．Royal Hungarian Society of Sciences．
Hind，II．Y．Report of the Waverly Gold District， $186!$ ．
Report on the Sherbrooke Gold District， 1870.
Report on the Mt．Uniacke，Oldham and Renfrew（iold Mining Districts． 1872．
Report on a topographical survey of part of the Cumberland Coal Field， 187：3，Department of Nines，Nova Scotia．

His, W. Amatomie menschlicher embryonen. 1. 'lext and Atlas. 1. V. Williamson Fund.
llooker, J. D. The flora of British India. Pt. VII. The E. Indian fovernment.
Hull, Edw. Geologienl age of the rocks forming the Southern Itighlands of Ireland.
On the upper limit of the essentially marine beds of the Carboniferous Group of the British Isles adjoining continental districts.
On the geological relations of the rocks of the South of Ireland to those of North Devon and other British and continental districts.
On the origin of the "Scalp,"
On a deep boring for coal at Scarle, Lincolnshire.
On the relations of the Carboniferous, Devonian and Upper Silurian Rocks of the South of Ireland to those of North Devon. 'The Author.
Humphreys, J. T. Discoveries of minerals in Western North Carolina. The Author.
Hunfalvy, P. Literarische Berichte aus Ungarn. $8 \& 4 \mathrm{Bd}$. The Hungarian Academy of Sciences.
Hutton, F. W. Manual of the New Zealand Mollusca. Geological Survey, N. Z. Huxley, T'. H. The Crayfish. 1880. I. V. Williamson Fund.
Index Catalogue of the Library of the Surgeon-General's Office. Vol. I. War Department.
Inostranzeff, A. Metamorphosirte Gesteine im Gouvernement Olonez. •1879. I. V. Williamson Fund.

Ein neues, ausserstes Glied in der Reihe der amorphen Kohlenstoffe. 1880. The Author.
Inspector of Mines of the anthracite coal regions of Pennsylvania, Reports, 1878. Joseph M. Gazzam.

International Exhibition, Sydney, 1879. New Zealand Court. Appendix to official Catalogue, 1880. The Commissioners.
Jeffreys, J. G. The deep-sea mollusca of the Bay of Biscay. The Author.
Joly, N. E. Une lacune dans la série tératologique remplie par la decouverte du genre Iléadelphie.
Sur le placenta de l'Ai.
Nouvelles recherches tendant à établir que le prétendu Crustacé decrit par Latreille, sous de nom de Prosopistoma, est un veritable insecte de la tribu des Ephémèrines.
Contribution à l'histoire naturelle et l'anatomie des Éphémèrines.
Études sur l'embryogénie des Éphémères. The Author.
Julien, A. A. Spodumene and its alterations. The Author.
Just, L. Botanischer Jahrsbericht. 5er Jahrg., 1877, 3e Abth., Ger Jang. 1 H. I. V. Williamson Fund.

Kansas State Board of Agriculture, quarterly report, Sept. 30, 1879. March 31, 1880. I'lie Author.
Keller, Ferd. Lake dwellings of Switzerland, 2 vols., 1878. I. V. Williamson Fund.
Keyserling, E. Die Spinnen Amerikas. Laterigradae, 1880. I. V. Williamson Fund.
Kiener, L. C. Species général et iconographique des Coquilles vivantes. Livr. 150-165. I. V. Williamson Fund.
Kingsley, J. S. Synopsis of the N. A. species of the genus Alpheus.
Notes on the N. A. Caridea in the Museum of the Peabody Academy of Sciences. 1878.
Decapod crustacea of the Atlantic coast, whose range embraces Fort Macon.
North American Crustacea belonging to the sub-order Caridea.
Development of Moina.
Geographical distribution of crustacea. The Author.

Kingston, G. T. Report of the Meteorological office of the bominion of Canada, 1879. The Superintentent.
Kjerulf, Th. Die Geologie des sudlichen und mittleren Norwegen. 1880. The Author.
Klaproth, M. H. Analytical Essays. 2 vols, Sivo, 1801. Dr. 1. M. Hays.
Klein, E. and E. Noble Stuith. Allas of histology, P'ts. !-12. I. V. Willinuson Fund.
Klunzinger, C. B. Die Korallthiere des Rothen Meeres. Ber 'th. I. V. Williamson Fund.
Kneass, S. H. Coal mines of the Lykens Valley Coal Company. 1444. Dr. I. M. Hays.

Kobelt, W. Illustrirtes Conchylienbuch. 8 e \& ge Lief. I. V. Williamzon Fumt.
Koch, A. Description of the Missourium, 1841. Dr. I. Minis Hays.
Källiker, Alb. Grundriss der Entwicklungs-Geschichte des Mensehen und der häheren Thiere. 1880. I. V. Williamen Fund.
Kokscharow's Materialen zur Mineralogie Russland. Bu. VItI, sigs. b-!. I. V. Williamson Fumt.

Kossmann, R. \%oologische Ergebniss einer im Auftrage der K. Acod. der Wissen. zu Berlin ausgefiihrten Reise in die Küstengeliete des rothen Meeres. 2c Hilfte, 1o Licf. I. V. Williamson Fund.
Küchenmeister, II. Die Parasiten des Menschen. De Aufl. 1 \& 2 Licf. I. V. Williamson Fund.

Kuntz, O. Speciesbeschreibung und Rubus, 1879. I. V. Williamson Fund.
Liedy, Jos. Fresh-water Rhizopods of North America, 1819. Department of the Interior.
Lente, F. D. Higher education of medical men. The Author.
Lenckart, R. Die Parasiten des Menschen unil die von ihnen herriihremden Krankheiten. 1er Bd., 1 Lief. こe Auflage, 1sig. I. V. Williamson Fund.
Lewis, H. C. The Trenton gravel and its relation to the antiguity of man.
The optical characters of some Micas.
On Siderorhyllite.
On Philadelphite.
On a fucoidal plant from the Trias.
The surface geology of Philatelphia and vicinity.
The iron ores and lignite of the Montgomery County Valley. The Author.
Librarian of Congress, annual report, 1879. The Author.
Libmary Co. of Miln., Bulletin, n. s. No. 5. The Libmery Co.
Lieberkïhn, N. Keimblitter der Sangethere, 1s7!). 1. V. Williamson Fund.
Light-IIouse Board, aunual report, 1870. Treasury Department.
Lindsay, W. I. Mind in the lower animals. シ̈ vols. I. V. Witliamson Fums.
Linnarsson, (i. Om Faman i Lagran med P’araloxites (̈llantion-. (ieolugionl Survey of Sweden.
Lippineott, J. S. The critics of evolution. The Author.
List of vertebrated animals now or lately livings in the Gardens of the \%oulugical Society of Lomdon. 1st Supplement. The Snciety.
Lockington, W. N. Notes on Pacitic const erustacea, 1878. The Author:
Loewe, L. Nervensystem der Situgethiere unt thes Mensehen, 1shu) 1. V. Williamson Fund.
Lyman, Benj. Smith. (icological Survey of Japan. Ruport of progrees for 1878 and 1879. Tookei, 1879. The Survey.
Melanchlan, R. Monographic revision and synnpisis of the Trichopteta of the European fruma. Pt. 9. I. Y. Williamson Fumel.
MacLean, J. P. Mound-luilders, 1879. I. V. Willimason Fund.
Malaise, C. Description des gites fossilifieres Devoniens et d'allemrement du terrain Crétacei. Belgian Geologieal Survey.
Matlery, Garrick. Sign language among the North Imeriean Imdians, 1sis).
Introduction to the study of sign language among the North American Inclians. Smithsonian Institution.

Mallet, J. W. La Barcenite, 1878. Dr. Jos. Leidy.
Marten, E. von. Conchologische Mittheilungen, 1 Bi., 1-4 II. I. V. Williamson Fund.
Martin, E. Histoire des monstres. I. V. Williamson Fund.
Martin, K. Die 'Tertiarechichten auf Java. Palwontol. Th. 2-4 Lief. I. V. Williamson Fund.
Martindale, I. C. Notes on the Bartram Oak. The Author.
Martini is Chemnitz. Systematisches Conchylien-Cabinet. Lief. 281-296. Wilson Fund.
Marsh, O. C. New Jurassic reptiles. The Author.
Maryland, repori on new map of, 1836. Dr. I. M. Hays.
Mason. John J. Microscopic studies on the central nervous system of reptiles and batrachians. 1 and 2. The Author.
Matteucci, C. Leçons sur les phénomènes physiques des corps vivants. Ed. Francaise. Dr. Jos. Leidy.
Mechan, Thos. Native flowers and ferns of the United States. 2d Ser., Pts. 1-24. 1879. The Publishers.
Meigs, J. A., death-mask of. C. W. De Lannoy.
Mencke, M. Beiträge zur Biologie der Spaltpilze. I. V. Williamson Fund.
Mendell, G. H. Blasting operations at Lime Point, Cal., in 1868 and 1869. Engimeer Department, U. S. A.
Mercantile Library Association of the City of New York, 59 th annual report. The Directors.
Mercantile Library Association of San Francisco, 27th annual report. The Trustees.
Mexican antiquities, 61 photographs of. (Poinsett Collection.) Wm. S. Beebe.
Milne-Edwards, M. Mélanges Carcinologiques. Text and plates. Dr. Jos. Leidy.
Leçons sur la physiologie et l'anatomie comparée de l'homme et des animaux. T. 14 me , 1re Pt. Wilson Fund.
Mines Commission Report, 1880, Annapolis. The Commissioner.
Minks, A. Das Microgonidium, 1879. I. V. Williamson Fund.
Mission Scientifique au Mexique. Récherches Zool. 7me, Partie T. 2. . 1880. I. V. Williamson Fund.

Moleschott, Jac. Untersuchungen zur Naturlehre des Menschen und der Thiere. XIII Band, $3 \& 4$ H. I. V. Williamson Fund.
Moller, V. v. Die Foraminiferen des russischen Kohlenkalks. The Author.
Mongredien, Aug. Free trade and English commerce. 4th ed.
The western farmer of America, The Cobden Club.
Morse, Edw. S. Ancient and modern molluscan fauna of Omori, Japan. The Author.
Mueller, F. de. Index perfectus ad Caroli Linnai Species Plantarum. 1880. The Author.
Müller, N. J. C. Handbuch der Botanik. 1er Bd., 1er Th. I. V. Williamson Fund.
Museum Ludwig Salvator in Ober-Blasewitz bei Dresden. The Author.
Nagle, J. T. Summary of births, marriages, still-births, deaths, etc., in New York City. 1878. The Author.
Native Tribes of South Australia. 1879. R. Schomburgh.
Netoliczka, E Untersuchungen über Farbenblindheit und Kurzsichtigkeit. 2 Nos. 1879. The Author.
New York, geological reports, 18:37, 2d Ed. 1840, 1841 \& 1851. Dr. I. M. Hays.
Oiseaux dans la nature. Livr. 1. I. V. Williamson Fund.
O'Neill, T. Warren. The refutation of Darwinism, 1880. The Author.
Orr's Circle of the sciences, Nos. 1 \& 2. 1854. Dr. I. M. Hass.
Packard, A. S., Jr, Zoology. 1879. I. V. Williamson Fund.
Palwontographica. 26er Bd., 3. Lief., 27er Bd., 1. Lief. \& Supplement III, 3., 8. \& 9. Lief., H. 4. Wilson Fund.

Palxontologie Francaise, 1 re Ser. An. Invert. Ter. Jurawsique Livr. 42 and 45, 2e Ser. Végétaux. Ter. Jur. Livr. 29. Wilson Fund.
Palwontological Suciety's Publicntions, Vol. 34. I. V. Willianson Fuml.
Pasteur, L. Stulies on fermeatation, 187!. I. V. Williamson Faml.
Paulucci, M. Excursione scientifica nella Calabria, 187̄-is. Fauma Malin cologica. I. V. Williamson Fund.
Yeabody Academy of Science, Salem, Mass. Visitors' ('atulome of the Mruscum. 187!. The Society.
Pennsylvania, Geological reports, $183: 3$ and 183ib. Dr: I. M. Hay -
Pfeiffer, L. Nomenclator Heliceorum viventium. ন. is 6. Lief. I. V. Williamson Fund.
Physical Scicnce, Agriculture, cte. S1 pamphitets on. Dr. I. M. Mays.
Pickering, Chas. Vocabulary of the Soahili language. Mrs. Chas. Pickering.
Porter, J. Topographical description of Plainfieh, 18:\%1. Dr. I. M. Hayz
Prazmowski, A. Entwickelungsgeschichte und Eermentwirtung einiger line-terien-Arten. I. V. Williamson Fund.
Public Leelger Almanac, 1880. The Publisher.
Public Library, Milwaukee, ot anmunl report. The Trustecs.
l'utuam, J. D. Biological and other notes on the Coccilie, 184). The Author.
Quaritch, B. Letter to General Starring, Jan. 14, 184). The Author.
Rand, B. H. Two lectures on impure air and ventilation. The Author.
Ratzel, Fr. Die Vereinigten Stanten von Norl-Iterika. Zer Rand. I. V. Williamson Fund.
Report of Commissioners appointed under resolve of 1855 , (hap, is , concerning the artificial propagation of fish. Boston, 1857. Dr. I. M. Hays.
Reyer, E. Vier Ausfluge in die Eruptiomassen bei Christianin.
Yinn in Birna, Siam \& Malakka.
Zinn in Australien und Tasmanien. The Author.
Riviére, E. Grotte de Saint-Benoit. 187 s .
Le pliocènc de Castel d' Appio en Italie, 1879.
De quelques hyperostoses de poisons trouvées dans les grottes quarternaires de Menton en Italie.
Note sur des instruments en obsidienne trousí en Griece. 1si!!. The Author.
Robert, P . Les oiseaux dans la nature. Livr. -̈-10. I. V. Willianson'Fund.
Roberts, E. l'. Directions for sowing, transplanting and raising the Mulberry Tree, 18:3!. Dr. I. M. Hays.
Roomer, F. Lethea geognostica. I. Th. I. V. Williamson Fund.
Rossmaissler's Iconographie der Europiischen Land-uml Süsswasser-Mfllusken. VII, 1-3. Wileon Fund.
Rochrock, J. 'I. Catalogue of trees and shruhs in the horticultural eratens adjacent to Horticultural Hall, Fairmount. 1850. The Author:
Roucher-Deratte, C. Leçons physiologico mínorologiques sur les comstitutions des saisons. $180 t$ Dr. I. M. Hays.
Russ, Dr. K. Die fremultindischen Stubenvärel. III, 7-4. I. V. Williamsun Fund.
Rutherford, J. Coal-fields of Jova Scotia. Wepartment of Mines, Aluya Ecotia. Ryiter, J. A. Ichthydium ocellatum, 1880).

On the oceurrence of Freia prolucta, Wright, in the Chesapeake Bay, ete. The Author.
Sadler, John. Report on temperature during the winter of 1-is-i! at the Moyal Botanic Garden, Elinburgh. The Author.
Saint-Lager, Dr. Reforme te la nomenchaure hotanique. The Authur.
St. Louis Mereantile Library Association, ammal report, 157!!. The Directors.
Saunter, W. Tea-culture as a probable Amerion induatry, 18:4. Wepartment of Igrieulture.
Saussure, II. de. La Grotte du Scé. The Author.
Schetller, II. Die Naturgesetze. Bter Th., bite, ite und site Lief: The Author.

Schimper, W. 1', and K. A. Zittel. Handbuch der lalacontologic. 1. Bd., 3te und tie lief. 1. V. Williamson Fund.
Schlegel, H. Muséun d'histoire naturelle des lays-Bas. T. 8, Monog. 41. Wilson Fund.
Schmidt, Emil. Kraniologische Untersuchungen.
Mitheilungen aus der anthropologischen Literatur Amerikas. The Author.
Schmidt, O. Die Spongien des Meerbusen von Mexico. 2tes (Schluss-) Heft. 1880. Muscum of Comparative Anatomy.

Schomburgh, R. On the naturalized weeds and other plants of South Australia. On the Urari.
Catalogue of the plants under cultivation in the Government Botanic Garden, Adelaide, South Australia.
Report on the progress and condition of the Botanic Gurden and government plantations during the year 1879. The Author.
Scott, W. 13., and II. F. Osborn. Early development of the common newt. The Authors.
Scudder, S. H., Writings of, compiled by George Dimmock. 1879. The Editor. The Devonian Insects of New Brunswick. The Author.
Second Geological Survey of Pennsylvania. $\mathrm{C}^{3}, 2$ vols., $\mathrm{G}^{2}, \mathrm{G}^{3}, \mathrm{H}^{4}, \mathrm{I}^{3}, \mathrm{O}^{2}, \mathrm{P}^{2}$, $Q^{2}, Q^{3}, \mathrm{R}, \mathrm{T}, \mathrm{V}^{2}$. The Commission.
Same. Report 1'. Jos. M. Gazzam.
Seomann, B. Flora Vitiensis. 4to. 1865-73. I. V. Williamson Fund.
Semper, C. Reisen im Archipel der Philippinen. 3ter Th., àter Bd., 5 H Wilson Fund.
Sheafer, P. W. Anthracite coal-fields of Pennsylvania and their exhaustion.
Diagram of the progress of the anthracite coal trade of Pennsylvania. The Author.
Short, J. T. North Americans of antiquity. 1880. I. V. Williamson Fund.
Sigsbee, C. D. U. S. Coast Survey. Deep-sea sounding and dredging. 1880. C. P. Patterson.

Smith, F. Description of new species of Hymenoptera in the British Museum. 1879. Trustees of the Museum.

Smith, J. A Mutations of the earth, 1846. Dr. 1. M. Hays.
smith, J. L. Minerals and mineral waters of Chili. Dr. I. M. Hays.
l'rogress and condition of several departments of industrial chemistry. Paris Univ. Exp., 1867. Dr. Jos. Leidy.
Smithson, James, Scientific writings of. 1879.
Smithsonian Institution and National Museum, visitor's guide.
Smithsonian Institution Miscellaneous Collections, Vol. 16 and 17. Contributions to Knowledge, Vol. 22.
Report, 1878.
Journal of Board of Regents, etc. The Institution.
Smyth, R. B. The aborigines of Victoria. The Government of Victoria.
Snellen van Vollenhoven, S. C. Pinacographia. Pt. 9. I. V. Williamson Fund.
Soret, L. Rapport du President de la Société de physique et d'histoire naturelle de Genéve, 1879. The Author.
South African Museum, report, 1879. The Trustees.
Spencer, H. Ceremonial institutions. 1880. I. V. Williamson Fund.
Stearns, R. E. C. New species or variety of land snail from California. The Author.
Steenstrup, J. Sepiella, Gray.
De Ommatostrephagtige Blicksprutters indbyrdes Forhold. The Author.
Steiner, L. H. Annual address before the American Academy of Medicine at New York, Sept. 16, 1879. The Author.
Stille, A., M. D. Humboldt's life and character, 1859. Dr. I. M. Hays. Memoir of Isaac Hays. The Author.
Stone, O. Extra-meridian determination of time. The Author.
Strebel, H. Fauna mexikanischer Land-und Susswasser-Conclylien. Th. 4. 1. V. Williamson Fund.

Strecker, II. Buttertlies and moths, 187! The Author.
Strobel, D. Materiali per una malacostatica di terra e dacyna dolci Disp. 1-4.
Struckmann, C. Die Wealden-Bildungen der Uimgegend won Hammere, 1n- 1 . The Author.
Sveriges Geologiska Undersikining. Ser, A A, Nius. 1;8, 15!, il anil iz: . 134 and 5: C $8 \mathrm{vo}, 31,32,34$ and 35 ; C foo, $2!1$ and 33 . The Survey.
Taplin, Rev. G. Folklore, manners, customs and languages of the somphe Australian aboriginese, 1879 . Ih. Schomhurgh.,
'Tapparone-Canefri, C. Museum l'auluccianum. Études malacologiguce. Tine Author.
Taramelli, 'T. Catalogo ragionato delle Rosce del Fruili.
Sulla formazione serpentinosa dell' Ipennino l'avese.
Monografica stratigrafia e paleontologica tel Lias nelle l'rovincie V'enete. The tuthor.
Tate, R. Zoologica et Plaontologica Miscellanea, chiefly relating to South Australia.
The natural history of the country around the head of the great Australian Bight.
The Adelaide Philosophical Society. Inniversary address of the President. The Author.
Taylor, R. C. Coal regions in the environs of Blossburg, 183\%. 1)r. I. II. Hays.
Taylor, W. B. A memoir of Joseph Henry, 2d Ed. Smithsonian Inst.
Thomas, C. H., M. D. Researches on hearing through the medium of the teeth and cranial bones. The Author.
Traill, G. W. The Alge of the Firth of Forth. The Author.
Trautwine, J. C. Internal improvement system of the South, 1889. 1Jr, 1. 11. Hays.

Tryon, G. W. Jr. Manual of Conchology, Pts. $\overline{5}-8$. The Author.
Turnbull, C. S. Audiphone and Dentaphone. The Author.
United States Coast and Geodetric Survey. Pacitic Coast lilot. Coasts aml islands of Alaska. 2d Series, 18:9. C. 1'. L'atterson.
United States Commission of Fish and Fisheries. lart V', lieport of the Commission for 187%. The Commission.
United States Entumological Commission. Bulletin Nos. :3, 4 and is. Department of the Interior.
United States Geographical Survey west of the 100th meridian. Reports, Vols. 2, 3, 4 and 5. Engineer Department, U. S. 1
United States Geological and Geographical Survey of the Territories. 11th annual report. Bulletin, Vol. Y, No. :3. Lepartment of the laterior.
United States National Museum. Bulletin Nos. 1:3 and 17. Department of the Interior.
University of Minnesota, report of the Regents of, 1872. The Regents.
Vaeek, Mich. Vorarlberger Kreide, 1879. The Author:
Yan Beneden and Gervais, MM. Ostéographie des Cétacés vivants et fossiles. Text and atlas, Lief, 17 and 18. 1. V. Williamson Fuml.
Van der Berg, L. W. C. Verslag van cene Verzamelung Mnleische, Arabische. Javanasche enandere Handschriften doorde Regeering van Nederlandech Indie. Bataviau Academy of Sciences.
Vanuxem, L. Experiments on anthracite, phanbago, cte., Ines. 1)r. I. M. Hays.
Vélain, Ch. Étude microscopique des verres resultant de la fusiou decendres de graminées.
Mission de l' lle de Saint l'aul. Recherches giologignes. the Paria, 1874. The Author.

Victoria. Reports of the Mining Survegors, :3st December, 1sin, :3 ist March, 1879.

Mineral statistics of, 1878.

Report of Inspector of Mines, 1878. Dr. F. V. Hayden.
Vogdes, A. W. Monograph of the genera Zethus, Cybele, Encrinurus and Cryptonymus. The Author.
Wagner, Wm. Five new fossils of the older pliocene formation of Maryland and North Carolina. The Author.
Waterhouse, Owen. Illustrations of the typical specimens of Coleoptera in the collection of the British Museum. Pt. I, Lycidæ. The British Museum.
Watson, R. Chemical Essays, Fth Ed. 5 vols., 1800. Dr. I. M. Hays.
Watson, R. B. Mollusea of H. M. S. "Challenger" Expedition. I't. 5. The Author.
Watson, S. Geological Survey of California. Botany, Vol. 2. I. V. Williamson Fund.
Weismann, Aug. Uber die letzten Ursachen der Transmutationem, 1876. Dr. Jos. Leidy.
Wex, G. v. Improvement of the Danube at Vienna, 1880.
Second treatise on the decrease of water in springs, creeks and rivers, 1880. Engineer Department, U. S. A.

White, C. A. Paleontological Field work for the session of 1877.
Cretaccous fossils of the Western States and 'Territories.
Note on the occurrence of Productus giganteus in California.
New invertebrate fossils from the Mesozoic and Cenozoic rocks of Arkansas, Wyoming, Colorado and Utah.
Description of a very large fossil gasteropod from the State of Puebla, Mexico.
Contributions to paleontology, Nos. 2-3. The Author.
White, F. E. Valedictory Address, Woman's Medical College, 1880-81. The Author.
Whiteaves, J. F. On some marine invertebrata of Queen Charlotte Island. The Author.
Whitfield, R. P. Fossil crustaceans from the Upper Devonian rocks of Ohio. The Author.
Whitney, J. D. The Geological Survey of California. An address delivered before the Legislature of California.
Lecture on geology delivered before the Legislature of California, Feb. 28, 1862. Dr. Jos. Leidy.
Wilhelm, K. Siebröhrenapparates dicotyler Pflanzen. I. V. Williamson Fund.
Wilkes, Chas. Western America, 1849. Dr. I. M. Hays.
Wilson, T. B., engraved portrait of. Rathmel Wilson.
Winchell, A. Preadamites, 1880. I. V. Williamson Fund.
Witter, F. M., Catalogue of Iowa mollusca in the collection of. The Author.
Wood, H. C. and H. F. Formad. Research on the effects of inoculating the lower animals with diphtheritic exudation. Dr. Wood.
Woodward's Gardens, illustrated guide to. 1880. The Author.
Woolls, W. Plants indigenous in the neighborhood of Sydney. The Author.
Yale College, Catalogue, 1880.
Obituary records of graduates, 1880 and supplement.
Yale College in 1880. The Librarian.
Yarrow, H. C. Mortuary Customs amoug the North American Indians. The Anthor.
Young Men's Mercantile Library Association of Cincinnati. 45th annual report, 1880. The Association.
Zeiler, R. Explication de la Carte géologique de la France. Tome Ame, 2e Parte. Dr. F. V. Hayden.
Zesch, F. and O. Reinecke. Coleoptera of Buffialo. The Autbor.
Zoological record, Vol. 15, 1878. I. V. Williamson Fund.
Zoological Society of London, list of vertebrated animals, 7th Ed., 1879.
Catalogue of Library. The Society.
Zuckerkandl, E. Morphologie des Gesichtsschaidels. I. V. Williamson Fund.

JOUliN゙ALS AND PERIOInl（ALA．

Adelaide．Ihilosophical Society．Transactions，1878－74．The Socsefy．
Amsterdan，K．Akademie van Wettenschappen．Verslagen en Meterteelingen．
 Deel．Jaahrboek，1878．Irocessen－Verbaal，Afil．Nat．Mei，1478－Apr． 187！．Verhamdlingen，Deel 19．Alf．Nat．Deel 12．The Suciety．
Angers．Société Nationale d＇Agriculture，Sciences et Arts．Mómoires，T．19， and 20 ．The society．
Atco Science Alrocate，Vol．1，No．1．The Editor．
Augsburg．Naturhistorische Verein，25er Derichte．The Society．
Baltimore．Imerican Chemical Journal，Vol．1，No．1．The Eilitor．
American Journal of Mathematics，Vol．シ̈，Nos：；s and it：Vol，：N，Nis． 1. The Editor．
Johns Hopkins Lniversity．Studies from the Biological Lahoratury，Xor． 1,2 and 4．Report of the Bd year．The University．
I＇eabody Institute，leth and libth annual reports．The Trustees．
Batavia．（ienootschap van Kunsten en Wetenschnppen Tijdschrift，Deel $2 \cdot \%$ ．
 Deel 14，Nos． 2,3 and 4 ；Deel 15 ，Nos． $2,3,4: 1$ eel 115 ，Nos．1－4． Gedenkboek，17TE－1878．The society．
Natuurkundig Vereen in Nederlandsch Indie．Tijulschrift，Zevemle Kerie． Deel 8．The Society．
Belfast．Jaturalists＇Field Club，annual report．Vol．1，P＇s，is ant 6．The Sosiety．
Natural History and Philosophical Society．P＇roceedings，Nessione にースー 79，1879－80．Tha Society．
Berlin．Archiv fïr Naturgeschichte，fter Jahrg．． 511 ；t5er Jahry．． 1 ：and is H．；Her Jahrg．，1， 2 and is II．The Editor．
Deutsche Geologische Geselischaft．Zeitschrift，： 11 Bol．，थ． 211 ： $3: 3131$. 1 II．The Society．
 Society．
Gesellschaft Naturtorschenter Freumbe．Sitzungs－Berichte，1s－i！．The society．
K．Preussischen Akademie Iler Wisscnschaften．Donatshericht，1sī！，Juli－ 1880，Juli．The society．
Der Naturforscher，12 Jahrg．，No．27－1：Jahrg．，No．1：，The Eatitor．
Naturae Novitates，18i9，No．1！1－18ヶ0，No．S．The Eilitor．
Verein zur Betioderung des Gartenbatues．Momatschrian，2a Jahmar．．lan－ Dec．The Suciety．
\％eitschrift fiir die gesammten Naturwissensehaften，ial Folipe，：link，No． 4．The Eilitor．
 society．
Besançon．Acatćmie des sciences，lielles－Lettres ef Auts，1Niti－is．The society．
Reziers．Socioté l＇Etude des Sciences Noturelles．Holletin。 Inmeo 1，こ̈ and i），Fasc． 1 and 2. ．The Society．
Bonn．Archiy fïr Mikroskopische Anatomie，lier Lat．，：： 11 －ker Likl．，\＆ 11 ． I．V．Williamson Fund．
Naturhistorische Verein．Verhamllumen，Baer Jahrif．Dé amt int ，hahme． le Halfte．The society．

 Cah．，and＇T．\＆，le＇inh．The society．

Boston．American Academy of Arts and Sciences．Proceedings，Vol．16，Pts． 1 and 2. The Society．
Socicty of Natural History．Proceedings，Vol．20，Pt．3，and pp．278－384． l．V．Williamson Fund．
Braunschweig．Archiv für Anthropologie，12．Bd．，2－4 Viertelj．I．V．Wil－ liamson Fund．
Verein tiir Naturwissenschaft．Jahresbericht，1879－80．The Society．
Bremen．Naturwissenschaftiche Verein．Abhandluogen，6．Bd．，2tes und Schluss H．，Beilage No．7．The Society．
Brooklyn．Entomological Society．Bulletin，Vol．2，Nos．4－12．The Society．
Brunn．Naturforschende Vercin．Verbandlungen，17．The Society．
Bruxelles．Société Belge de Microscopie．Procès Verbaux，1879，Nor．27－， 1880，No．12．Annales T．4．The Society．
Société Entomologique．Compte liendu，Ser．2；No．60－72．Annales T． 22. The Society．
Société Malacologique．Annales，T．9me，2e Fasc．Procès Verbaux，T． 8， 4 Oct 1879－7 Fer．1880．The Society．
Buda－P’est．M．Tudom．Akademia．Ertekezések a matlı．Tudományok Käréböl，「Kotet， 1 Szam－9 Kotet，19．Math．es Termeszet．Közlemenyek， 14 and 15 Kötet．Evkönyvei，Tizenhatodik Kötet， 11 Darab．The Society．
Ungarische National－Museum．T＇ermészetrajzé Fuzetek， 4 Kötet，3．The Museum．
Buftalo．North American Entomologist，Vol．1，Nos．6－12．The Editor．
Craen．Académie Nationale des Sciences，Arts et Belles－Letters．Mémoires， 1879 The Sociery．
Société Linnéenne de Normandie．Bulletin，3e Ser．，Vols． 1 and 2．The society．
Calcutta．Asiatic Society of Bengal．Journal，Vol．47，Pt．1，No．4；Pt．2， No． $4 ;$ Vol．48，Pt．1，Nos．1－4；Pt．2，No．1；Vol．49，Pt．1，No． 3. Proceedings，1879．Nos．＇2－10．The Society．
Same．Journal，Vol．48，Nos．128－130．Proceedings，1879，Nos．5－10． Isaac Lea．
Stray Feathers，Vol．8，Nos．2－6．I．V．Williamson Fund．
Cambridge．Appalachian Mountain Club．Appalachia，Vol． 1 and Vol．2，Nos． 1 and 2．The Society．
Bussey Institution．Bulletin，Nos．2－4，and Yol．2，Nos．1， 2 and 3．The Institution．
Harvard University．Library Bulletin，Nos．14， 15 and 16．Bibliograph－ ical Contributions，Nos． 1 and 2．The Trustees．
Museum of Comparative Zoology．Memoirs，Vol．6，No．1：Vol．7，No． 1 and No．2，Pt．1．Reports，1878－79；1879－80．Bulletin，Vol．5，No． 16 and title；Vol．5，Nus．1－11；Vol．7，No．1．The Director．
N゙uttall Ornithological Club．Bulletin，1880，Jan．－Oct．The Society．
Peabody Museum of American Archaology and Ethnology． 12 th and 13th annual reports．The Director．
Psyche，Nos．65－76．The Editor．
Cap Rouge．Le Naturaliste Canadien，Dec．1879－Oct．1880．The Editor．
＂is－el．Malakozoologische Blitter，Neue Folge，ユ2．Bu．，1．Bg．－3．Bd．，2．Bg． I．V．Williamson Fund．
Verein für Naturkunde．Bericht 26 und 27．The Society．
Cherbourg．Société Nationale des Sciences Naturelles．Mémoires，T． 21 and Catalogue of Library．The Society．
Chicago．American Antiquarian，Vol．2，No．8－Vol，3，No．1．The Editor．
Central Fishcultural Society．Proceedings，1st An．Meeting．The Society．
Oriental and Biblical Journal，Vol．1，No．2．The Editor．
Christiana．Archiv for Mathematik og Naturvidenskab． 4 Bd．， 3 H．－ $5 \mathrm{Bd} ., 3$ 11．The Editor．
 The society．

 2d Ser．，Vol．1．Nos． 4 and 6，and Vol． $2:$ ：：alser．Vol．4．11！．1．V Williamson Fund．
 laeg， 1877,187 s．I．V．Williamson Fumul．
K．V．Villenskaberues Selskab．（oversigt 187！，No．B，14s（1，Nu．1．Nlirif

Cordoba．Academia Nacional de Ciencias Exactas．＇T．．̈，Ent． 1 ix z．Palmir． T．ㄹ，Ent．4；＇I＇．：3，Ent．1．The Society．

Danzig，Saturforschente Gesellschaft．Schriften．Neue Folge，\＆．BH．，1．II The Society．
Harmstalt．Verein fiir Erdkunde．Notizblatt．：F＇olge，18．H．The society
Davenport．Academy of Satural Sciences．I＇roceedings，Vol．ㄹ，It．：2：Vin B，P＇t．1．The Society．
Dijon．Académie des Sciences，Arts et Delles－Lettres．Aunoe，1א：8－7！！．The Society．
Dorpat．Naturforscher Gesellschaft．Sitzumgsherichte，f（w lBl．，ひ．II．Ar－ chiv tïr die Naturkunde Liv－Ehst－unl Kurlamls，1．Ser．，Bu．A．Ni，4． The Suciety．
Dresdeu．K．Leop．－Carol．－Deutschen Akademie der Naturforscher．Ninsa Acta，Vol＇s 39 and 40．Leopoldino，11．12－15．The Society．
Naturwissenschaftliche Gesellschaft Isis． 1879 Jan．－Dec．The Society
Verein fiir Erdkunde．Jabresbericht lGer．The seretety．
Dublin．Koyal Dublan Society．Proceedings，n．s．1，1－3；11．1－ti．＇lrans－

Royal Geological Society of Ircland．Journal，Vol 1．j，No．2．The Society．
Eastou．American lnstitute of Mining Engineers．＇Iramsactions，Vol． 7
Edinburgh．Botanical Society．Transactions and Proceedings，Vol．1：3，P＇t．：3 The Society．
Geological Society．Transactions，Vol．3，I＇t．．2．The sociely．
Royal Society．Proceedings，Vol．10，No．10\％．Transactions．Vol．こ̌a，I＇t 2 ，and Vol．24，Pt．1．The Society．
Scottish Naturalist．Nos．37－40．The Editor．
Emden．Naturforschende Gesellschaft．Jabresherichtiter：Kileine schriften． 18．The Society．
Erlangen．Physikalisch－medizinische sucietiit．Sitzunrsberichte， 11 II The society．
Frankfurt a．M．Aerztliche Verein．Jahreshericht 2̈er．The Society．
Deutsche Malakozoologische Gesellschatt．Nachrichtshlatt，1ssio，No． 1 The Society
Senckenbergische Niturforschende Gesellschaft，Abhanlhumen 11．Ih1． 411．Bericht．1878－7：3 The Society．
Der \％oologische Garten，こ0 Jahrg． $7-1 \%$ ．The \％oologieal sueiety of Frank－ ford．
lireiburg，i．B．Naturforschende Gesellschaft．Berichte，IBh．7．11．1．The Society．
Gand．Archives de Biologie，Van Beneden amt Vian Bambeke，＇I＇I，F゚：－c． 1－：），I．V．Williamson Fund．
Geneva．Schweizerische paliontologische（iesellsehatt．Ahhamblmmen Vol． （i．I．V．Williamson Fund．
 The Society．
Genoa．Societa di Letture e Conversazioniscientitiche．diomale，Anno：So 10－Anno 4，No．4．The Society．
(iiessen. Oberhessische Gesellschaft fuir Natur- und Heilkunde, 18 er Bericht. The Society.
Glasgow. Philozophical Society. Proccedings Vol. 11, No. 2. The Society. (iïttingen. K. Gesellschaft der Wissenschaften. Nachrichten, 1879. The Society.
Guadalajara. Sociedad de Ingenieros de Jalisco. Boletin T. 1, No. 1. The Society,
Hamburg. Naturwissenschaftlicher Verein. Abhandlungen $\overline{7} \mathrm{Bd} .1$ Abth. The society.
Harlem. Hollandische Maatischappij der Wetenschappen. Natuurkundige Verhandelingen, Deel 4, 1 Stuk. The Society.
Musée Teyler. Archives Vol. $\overline{0}$, Pt. 2. The Director.
šociété Hollandaise des Sciences. Archives, T. 14, 3e Livr.-T. 15, 2e Livr. The Society.
Helsingfors. Finska Yetenskaps Societet. Üfversigt, 21. Bidrag, 32. Obserrationes Méteorologiques, 1877, 1878. Acta, XI. The Scciety.
Siillskapet pro fauna et flora Eennica. Ny serie, 2, 3, 4, 6-11 Haftet. Acta I. Meddelanden 1-5. The Society.
Hermannstadt. Siebenbiirgischer Verein fiir Naturwissenschaften. Verhandlungen und Hittheilungen. 30 Jahrg. The Society.
Hobart Town. Royal Society of Tasmania. Papers and Proceedings, 1878. The Society.
Jena. Meciizinisch-naturwissenschaftliche Gesellschaft. Zeitschrift, 13er Bd. 3 H.-lier Bd. 2 iI. Sitzungsberichte, 1879. The Society.
Kansas City. The Kansas City Review of Science and Industry, Dec. 1879Nov. 1880. The Editor.
Lausame. Société Vaudoise des Sciences Naturelles. Bulletin, No. 83. The Society.
Leipzig. Archiv fuir Anatomic und Physiologie. Anatomische Abth. 1879, 5, H. $-1880,3$ H. Physiologische Abth. 1879. 5 H.-1880, ;) H. Verzeichniss, 1884-1876. I. V. Williamson Fund.
Botanisches Centralblatt, No. 1. I. V. Williamson Fund.
Botanische Jahrbïcher, Engler. I, 1, \& \& 3. I. V. Williamson Fund.
Fiirstlich Jahlonowski-sche Gesellschaft. Preisschriften Ňo. …The Society.
Jahrbiicher für wissenschaftliche Botanik. 12er Bd., 1 \& $2 \mathrm{H} . \mathrm{I}$. V. Williamson Fund.
Journal für Ornithologie. 27 Jahrg. 3 H. -28 Jahrg. 1 H. I. T. Williamson Fiund.
K. Sichsische Gesellschaft der Wissenschaften. Abhandlungen NII, 2, :3 \& 4. Berichte, 1879. The Society.
Kosmos, III, 7-IV 8. I. V. Williamson Fund.
Morphologisches Jabrbuch. 5er Bd. 3-6er Bd. 3. 1. Y. Williamson Fund.
Zeitschrift für Krystallographie und Mineralogie, Groth, 2er Bd. Ges H.5er Bd. 1. I. V. Williamson Fund.
Zeitschrift für wissenschaftliche Zoologie, 33er Bd. 1—35er Bd. 1. I. V. Williamson Fund.
Zoologischer Anzeiger, 2 Jahrg. Nos. 42-68. The Editor.
Liege. Socićté Royale des Sciences. Mémoires, 2me s. T. 7 and 8. The Society.
Lille. Bulletin Scientifique du Départment du Nord, Nov. \& Dec. 1879. The Editor.
Société des Sciences, de l'Agriculture et des Arts. Mémories, 4e ser., 'I.' 7 and 8. The Society.
Lisbon. Associacĩo des Engenheiros Civis Portuguezes. Revista de Obras publicas e Minas. T. 10, Nos. 118, 121. The Society.
Liverpool. Free J'ublic Library, Niuseum and Walker Art Gallery, 27th annual report. The Trustees.

London．Ammals and Magazine of Natural History，Dec．Inil－Nos．，Itari I．V．Williamson Fund．
Astronomical Register，Oct．，187！－Nov．，1ssu）1．Y．William－on Fuml．
British Association for the Advancement of seience．Report，fent meeting．I．V．Williamson Fumb．
Curtis＇Botanical Magazine，Nos． $1110-1125$ ．I．V．Williamson Fiund．
Entomological Society．Transactions，1879．The society．
Gardner＇s Chronicle，Nos．307－3．39．The Elitor．
Geological Magazine，Oct．，1879—Nov．．1s：4．1．V．Williamson Fuml．
Geological Society．Quarterly Journal，Nos．14（！－143．The Suciety．
 Fund．
Ibis，（Oct．，1879－July，issu．I．V．Williamson Fund．
Journal of Anatomy and Physiology，Vol．12，P＇1．丷三：Vol．1：3，No．ご－ Vol．14，No．1．I．V．Williamsou Fund．
Journal of Botany，British and Foreign，（oct．，1879—Nov．，18ヶ（）．1．V． Williamson Fund．
Journal of Physiology，Michael Eoster．Vol．ㄹ．，Nos．3－（5．1．V．William－ son Fund．
Journal of Science，Oct．，187！－Nor．，1880．1．V．Williamson Fund．
Linnean Society．Journal，Botany，Vol．11i，Nos．！18－10！：Zoulogy，Vol． 13，Nos．72－79．Transactions，2l Ser．，Kuology，Vol．1，1＇te．i－s： Botany，Vol．1，I＇ts． 5 and 6．List， 1871 －78．The society．
London，Jdinburgh and Dublin P＇hilosophical Magazine，Dec．，187！－Nine． 1881．1．V．Williamson Eund．
Mineralogical Socicty of Great Britain and Ireland．Mineralogical Mara－ zine，Vol．2，Nos．15－18．The Society．
Nature，Nos． $524-560,562-566,568-573,575,576$ ．The D：ditur．
Notes and Queries，Nov．，1879－Oct．，1880．The Editor．
Popular Science Review，Oct．，1879－Oct．，1880．1．Y．Williamson Fund．
Quarterly Journal of Microscopical science，Oct．，1879—Oct．，1880．I．V． Williamson Fund．
Royal Asiatic Society of Great Britain and Ireland．Journal，n．s．Vol． 12，Nos．1－3．The Society．
Royal Geographical Society．Proceedings，n．s．Vol．ㄹ，Nos．1－8．Jourual． Vol．48．The Society．
Royal Institution of Great Britain．Proceedings，Vol．！！，Xos． 1 and 2． The Society．
Royal Microscopical Society．Journal，Vol．2，No．7－Vol．B，No．5．The Society：
Society of Arts．Journal，Vol．27．The Suciety．
Triibner＇s dmerican and Oriental Literary Record，Nos．143－154．The Publisher．
Zoological Society．Proceedings，1879，No．\＆－1880，No．2．Tramsactions， Vol．10，No． 13 and Vol．11，No．2．The Society．
Zoologist，Oct．，1879－Nor．，1880．1．Y＇．Williamson Fund．
London，Canada．The Canadian Entomologist，Vol．10，No．12－Vol．12，No． 10．The Editor．
Louvain．Université Catholique．Annuaire，time Aunce．Twenty－three Thesis．The University：
Lïbeck．Naturhistorische Museum．Jahresbericht，18：！The Society．
Luxembourg．Institut Royal．Publications，T．17．The societs．
Lyon．Académie des Sciences，Belles－Lettres et Arts．Mimoires，Clasee den Sciences，T．23；Classe des Lettres，T．18me．The Society．
Société d＇Agriculture，Histoire Naturelle et Arts utiles．Annates tme Ser．，T．10me；tme ser．，T．1．The suciety．
Société d＇Étules Scientifiques．Bulletin No．I，Tomes 4 and i．The Society．
Société Linnénne．Anuales，n．s．T．2＂，话 and 25．Thu Society．

Madisnn. Lotanical Gazette, Vol. 5, No. 1. 'The Editor.
Madrid. Memorial de Ingenieros y revista cientifico-militar, Ano:3:3, No. 22Ano :35. No. 21. The Editors.
Marhurg. (iesellschaft ziix Befïrderung der gesammten Naturwissenschaften. Sibungoburichte, dahrg., 15is-iy. Schritten, svo, Bd. Z. Nos. t, 5, 6. Sehviften, fto, Bul. ㄹ., Supplementheft, 1-4. The Society.
Metz. Academie. Nemoires, Années 77 and 78. The Society.
Sociéte dhistoire naturelle. Bulletin, ้e Ser., 5me Cahier, 1re Partie. The Society.
Mexico. Ministerio de Fomento. Annales, III, 185 et seq. Minister of Works, Mexico.
Museo Nacional. Anales, Vol. 1, No. 7-Vol. 2, No. 2. The Director.
Revista cientifica Mexicana, '1. 1, Nos. 1-11. The Editor.
Sociedad de Geografia y Estadistica de la Republica Mexicana. Boletin, T. 4, No. 7-'I'. E, No. 3. The Society.

Sociedad Mexicana de Historia Natural. La Naturaleza, T. 4, Nos. 16-20. The Society.
Milan. Accademia fisio-medico-statistica. Atti, 1880. The Society.
Regio Istituto technico superiore. Programma, 1879-80. The Society.
Milwankee. Naturhistorischer Verein von Wisconsin. Jahresbericht fuir das Jahre, 1879-80. The Society.
Montpellier. Académie des Sciences et Lettres. Mémoires de la Section des Sciences 'T. 9, Le Fasc. The Society.
Montreal. Annuaire de Ville-Marie, 3me Livr. and 2d Vol, 1 and 2 Livr. and Supplement. L. A. Huguet-Latour.
Canadian Naturalist, n. s. Vol. 9, Nos. 4, 5, 6. The Editor.
Natural History Society. Proceedings, 1869, '70, '71, '73, '78. Annual reports, 5th-ith; Constitution and By-Laws. L. A. Huguet-Latour.
Numismatic and Antiquarian Society. Canadian Antiquarian, Tol. 9, Nos. 1 and 2. The Society.
Moscow. Sociéte Impériale des Naturalistes. Bulletin, 1878, Nos. 3 and 4 ; 1879, No. 1. Nouveau Mémoires, 'l'. 14, Livr. 1. The Society.
Itanich. Ciesellschaft für Inthropologic, Bthnolosie und Irgeschichte. Beitrage, $3 \mathrm{er} \mathrm{Bd.}, \mathrm{Nos}. \mathrm{1-4} .\mathrm{The} \mathrm{Society}$.
K. Sternwarte. Beobachtungen, 1879. The Director.
K. B. Akademie der Wissenschaften. Sitzungsberichte der math.sphys. Classe 1879, No. 1-1880, No. 2. Abhandlungen, historische Classe, $14 \mathrm{er} \mathrm{Bd} ., 3 \mathrm{e}$ Abth.; 15 er Bd., 1 er Abth.: philos.-philol. Classe, 14 er Bd., 2e Abth. ; 15er Bd., 1e Abth.; mathem.-physik. Classe, 13er Bd., 2 e Abth.
Naples. R. Istituto d' Incoraggiamento alle Scienze naturali, economiche e technologische. Atti, 22 Ser., T. 16. The Society.
Neubrandenburg. Verein der Freunde der Naturgeschichte in Mecklenburg, 38 Jahrg. The Society.
Neuchatel. Société des Sciences Naturelles. Bulletin, T. 11, :3me Cahier. The Society.
New Berlin. Entomologist's Exchange, Nos. 1-6. J. S. Kingsley.
 The Editor.
Connecticut Icademy of Λ rts and Sciences. Iransactions, Vol. b, No. 1. The Society.
New York. Icademy of Sciences. Innals, Vol. 1, Nos. 9-13. The Society.
American Bookseller, Vol. 8, No. 11-Vol. 10, No. 1. The Editor.
American Chemical Society. Journal, Vol. 1, No. 10-Vol. 2, No. 7. The Society.
American Entomologist, Vol. 33, No. 2. The Editor.
American Geographical Society. Bulletin 1880 , No. 1 ; Journal, Vol. 10. The Socicty.

American Journal of Microscopy，Vol．f．No．¿－Vol．i，No，lll．Ther Edionr．
American Monthly Microscopical Journal．Vol．1．Nos．1－11．The Eilitor．
American Museum of Satural History，11hh Anmal Report．The llirewtar
Forest and Stream，Vol．1：3，No，2h—Vol．15，Nis．17．The E，titur．
Index Medicus，Vol．ㄹ．Vins．1－10．Wm．S．V：ux．
Library Journal，Vol．4，No． 11 －Vol．S．No．11．1．V．Willismon Fuml
Monthly Index to current periolical literature，V＇ol．］．Nu．S．Thr louk． lisher．
New Fork Medical Eelectic，Nov．1si！！－Oct．184）．The Erlitor．
Sew lork Medical Journal，Dec．1s7！－Vor．Lisu．The Editun．
Popular Science Monthly，Dee．157！！－Dee．1880．The Elitor．
［＇ublishers＇Weekly，Vol．18，Nos．1－1；．The Elitor．
Science，Vol．1，Nos 1－2：2 The Editor．
Torrey Botanical Club．Bulletin，Vol．1i，Si，j！！－Vol．F．Sin．11）．The Society．
Orieans．Société d＇Agriculture，Sciences，Belles－Lettres et Arts．Mímire－ Vol．21，Nos．2＇it ？．The society．
 moires，T．4l．The Society．
Annales des Mines．T．14，tme Lirrs．－T＇．1\％，tme Livr．Ninister of ［ublic Works，France．
Annales des Sciences Geologirpues．T．11，Nos． 1 N 2．The E．litor．
Annales des Sciences Vaturelles，Zoologie et Paleontolngie，T．S．No． 4 － T．3，No．6；Botanique，T．\＆，No．33－T．10．No．1．1．V．Williatuson Fund．
 I．V．Williamson Fund．
Ecole polytechnique．Journal， 1 ＇．2se．The Virector．
Journal de Conchyliologie，T．19，No．4－＇＇．21，No．3．The Eltitnr．
 2 ．The Directors．
Revue Internationale des Sciences．187！！，No．11—1siou，Nin．．The Editor．
Revue Scientifique de la France et de l＇Étranger，！me Ammie No．2u－ln 1 No．4．The Ellitor．
Société d＇Acclimatation．Bulletin，sept．187！－I pitt．184t．The society．
Société des Antiquaires de Picardie．Memoires，Bme ser．．T＇ti，The Society．

 The Society．
Société Entomologique de France．Ammales． Partie Supplem．The Society：
Société Geologione de France．Bulletin，Vol．T，Nos．1－7．The suciety
Société mationale d＇Agriculture de France．Bulletin．Anmie lsial．Nós． j is ti．The Society．
societe Zoologique．Bulletin，187：1，1－4．The society．
 N゙ゥ．．．The Publication Cummittee．
dielel and Ahont，n．s．Vol．1，No．1：3．The Eiitor：
 So．… I＇roceedings，May，188U．The Publication Committee．
American Journal of Melieal sciences，Jan．to Oet．，18su）．The E．litur．
Amerjean Journal of Pharmacy．Dee．1，7：－Now，14sin．The Edtor：
American Naturalist．Dec．18－！——Dec．18so．The Editor．
American P＇harmacentical Association．Proceedings，こ̈th Inmual Report． The Society．

Ameriean Philosophical Society. Proceedings, Nos. 108-106. The Society.
Dental Cosmos, Dec. 1879-Nov. 1880. The Editor.
Franklin Institute Journal. Dec. 1879-Nov. 1880. The Society.
Gardener's Monthly, Dec. 1879-Nov. 1880. The Editor.
Historical Society of Pennsylvania. Magazine, Vol. ひ̈, No. 4-Vol. 4, No. 3. The Society.
Medical News and Abstract, Nos. 444-456. 'The Editor.
Naturalist's Leisure Hour. Nov. 1879-Nov. 1880. The Editor.
Pennsylvauia Museum and School of Industrial Art, 4th Annual Report. The Director
Stoddart's Review, Vol. 1, Nos. 1-19. The Editor.
Zoological Society. 8th Annual Report. The Society.
Pisa. Nuovo Giornale Botavico Italiano, Yol. 12, No. 1-3. The Editor.
Società Malacologica Italiana. Bulletin, Vol. 4, No. 21-Vol, 6, No. 14. The Society.
Società Toscana di Scienze Naturale. Processi Verbali, 9 Nov. 18799 Mag. 1880. Memorie, Vol. 4, No. 2. The Society.
l'oughkeepsie. Nociety of Natural Science. Proceedings, Oct. 1, 1878, to July 1, 1879. The Society.
Providence. Rhode Island Historical Society. Proceedings 1878-79. The Society.
Literary and Historical Society. Session 1879-80. The Society.
Regensburg. K. B. Botanische Gesellschaft. Flora, n. r. 37er Jahrg. The Society.
Zoologisch-mineralogischer Verein. Correspondenz-Blatt, 33er Jahrg. The Society.
Rome. R. Academia dei Lincei. Atti, Serie Terza, Transunti Vol. 4, Fasc. 1-7. The society.
St. Gallen. Naturwissenschaftliche Gesellschaft. Bericht 1877-78. The Society.
St. Louis. Academy of Natural Sciences. Transactions, Vol. 4, No. 1. The Society
Missouri Historical Society, Nos. 1-4. The Society
St. Petersburg. K. Akademie der Wissenschaften. Repertorium für Méteorologie, Bd. 6, H. 2. Mémoires, T. 26, No. 12-T. 27, No. 4. Bulletin, Vol. 25, No. 3-Tol. 26, No. 1. The Society.
Hortus Petropolitanus. Acta, T. 6, Fasc. 2. The Director.
Physikalische Central Observatorium. Annalen, 1878, Nos. $1 \& 2$. The Director.
Societas Entomologica. Horae, T. 14. The Society.
Salem. Essex Institute. Bulletin, Vol. 11, No. 10 -Vol. 12, No. 6. The Society.
Santiago de Chile. Revista Mrdica de Chile. Ano 7, Nos. 1 \& 2. The Editor.
Universidad de Chile. Anales, 1872, Nos. 1 \& 2. The University.
Schweizerische naturforschende Gesellschaft. Verhandlungen. Jahresb. 1877-78, 1878-79. The Society.
Springfield. Familiar Science and Fancicr's Journal. December, 1880. The Editor.
Staunton. The Virginias, Nos. 1-10. The Editor.
Stettin. Entomologische Verein. Zeitung, Jahrg. 40. The Society. .
Stockholm. Entomologisk Tidskrift, I, 1 \& 2. The Editor.
Stuttgart. Neues Jahrbuch für Mineralogie, Geologie und Paleontologie. 1879,8 H.-1880, Bd. 2, H. 1. The Editor.
Verein für vaterlandische naturkunde in Württemberg, 36er Jahr. The Society.
Sydney. Royal Society of New South Wales. Journal and Proceedings, Vol. 12. The Society.

Tokic. Vuiversity, Science Department. Memoirs, Vol. 1, I't. 1. The Liniversity.
Toronto. Entomological \&ociety. Annual liemort, 18:! The suciety
Toulouse. Acmhomie des Sciences. Inseriptionse liellu-Lentres. Mómoires,
 The Society.
Revue Dycologique, こe Ammic, Jins 1 and ㄹ. The Eititor:
 The Society.
Tromso. Museum. Aarshefter: Il. The Mnsenm.
Upal. Ohservatoire de l'Université. Bulletin, VIIL. The Director.
Regia Societas Scientiarum. Nova Acta, Be Ser., Vol. 11), Nu, 2. The Society.
Litecht. K, nederlandsch meteorologisohe tnstitum. Janrhek, 15i!. The Elitor.
Vienma. Anthropologische Gesellschati. Mitheilumen, !1 Bh.. Nus. Tand 8, 10 Bil., Nos. 1-7. The sinciety.
Embryologische Institute iler K. Ǩ. Üniversitat. Wittheiluneen, 1 Bu., 4 H. ; थ Bit., 1 H. J. T. Williamson Euml.
K. Akademie ier Wissenschation. Sitzunceherichte, Mathem,-naturs.

 1-3 II., III, 1-; II. Deukschriften, mathem.-naturw. ('lasse, 3!ter Bul. The Society.
K. K. geologischen Reichsaustalt. Jahmbeh, 29er Bu., :3 and 4, 18su), Nos. 1, 2 and 3 . Terlandlungen, 157!, No. 10: 18s0, Nio. 11 . Ahhandlungen, Bił. … J. 5. The Director.
K. K. zoologisch-botanische Gesellschatt. Verhanilungen. Vol. 24. The Society.
Oesterreichische Gesellachaft fïir Múteorulogie. \%eitschritt, 1:: Bd. The Society.
Verein zur Verbreitung nąturwissenschaftlicher lieumnisse. Schriften, 2 er Bd. The Society.
 Liamson Fund.
Washiugton. Philosophical Society. Bulletin, Vols. $1, \because$ and $: 3$. The Socicty.
United States National Museum. Proceedings, Vol. 1. Department of the Interior.
Wellington. Ver Zealand Institute. 'Transactions, Vol. 12. The Society.
Worcester. American Antiquarian Society. l'roceedings, Nos, ity and $i 5$. The Society.
Wïrzburg. Botanische Institut. Arbeiten, 2er Bu., :3 II. 1. V. Williamson Fumd.
Whysikalisch-mediciuische Gesellschaft. Verhanllungen. Jene Folge, 14 Bd., 1-4 H. The Society:
\%oologische-zootomische Institut. Arbeiten, ber lid., 1 II. I. V. Williamson Fund.
Zurich. Naturforschende Gesellschaft. Vierteljahrschuriti, wer Iahrg., 1-4 H. The society.

INDEX TO GENERA．

1880.

Abies．．．．．．．．．．．．．．．．．．．．．．．．3333， 3 －	350		，
Acanthocycles	37	Cancellaria．．．．．．．．．．．．．．．．．．29， 36.5	$3{ }^{3} 3$
．Icanthouluris	－4	C＇ance：．．．．．．．．．．．．．．．．．．．．．．．．	174
Actarn．	Bfit	C＇ani	144
Acmøe＜opleura．．．．．．．．．．．．．．．．．．．188，	204	Cardita．．．．．．．．．．．．21，24，364，305	$3 ¢ 9$
Adalaria．	i．）	Carditauera．．．．．．．．．．．．．．．．．．．．．．．．．．	14
Akiodorus	52	Cardium．．．．．．．．21，23，ㄹ 4，29，365，	369
Alce．	815	Carex．	15
Ambrosia	343	Cariacus．	3！${ }^{-5}$
dmpelng	－	Caticella．	I7
Ampuicarpana	\therefore 二 5	farya．	＋－
Amphinestua．．．．．．．．．．．．．．．．．．．．．．\quad I，	21	Ca－silaria	31．
Anarcharis	8：． 4	Ca－tanea．	二i！
Analcite．	202	Castur．	4
Anciliaria．．．．．．．．．．．．．．．．．．．．．．．． 364 ，	365	Castoroide	47
Anlromeda	二小）	1：atu－tomu	－${ }^{\text {l }}$
Anomia．．．．．．．．．．．．．．．．．．．．．．．．．．．． 21 ，	24	Caulolntilus．．．．．．．．．．．．．．．．．．．．．．．．． 1 \％，	14
Antrozous	227	Centaurea	：3－
Aratus ．．．．．．．．．．．．．．．．．．．．．．．．．．14：4．	$\because 18$	Centrayss	14
Arctomy	：！	Cervas．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	
	－	Chasmagnathu－．．．．．．．．．．．．．．．．．I－．	21
	$\because 4$	1 ＇helydra	14，
Artibeus	393	Chirocepl	1：19
Arvicola．	348	Chromite．	27.
Asbolite	243	Cistudo．	45
Assulina．．．．．．．．．．．．．．．．．．．．．．．．．．．． 336 ，	3：199	Clistocœloma．．．．．．．．．．．．．．．．．．．． 189.	213
Astarte．	364		896
Astrophye	293	Conus．．．	4．
Astarte．．．．．．．．．．．．．． $21,20,24,29$ ，	$\because 2$	Cookeite．．	$\because 4!$
Atalapha．．．．．．．．．．．．．．．．．．．．．．．．．．I3． A $^{\text {a }}$	： 41		1） 4
Atta．．．．	8.8 .4	¢́иrıu＊．．．．．．．．．．．．．．．．．．．．．．．．．．．	：－
		C＇rassatella．．．．．．．．．．．．．21，2：3， $24,2!9$	\because
Betula	．，	Culsagerit．	
Biotite．	246	Cyclograpsus．．．．．．．．．．．．．．．．．．．．． 18 ！	291）
Bonellia	29	Cyclu！am $1 . .$. ．．．．．．．．．．．．．．．．．．．．．	
Brathygrapsus．．．．．．．．．．．．．．．．．．14．	218	1 ylien－milia．．．．．．．．．．	相4
Branchipus	156	Oyonycteris．．	
Buccinu	28	Cyperus．．．	130
Buxias．	132	Cyrlograpyus．．．．．．．．．．．．．．．．．．．． 185.	197
Buthotrephis．	2983	Cytherea．．． $1,2: 3,24,29,364,364$,	370

1 Siviluri= 3ッ2
Hemitripterus
Hesperomys 348
Damomrite 249, 256 Heterograpsus 267
 \therefore :.) Hierochloe 344
Dasyprocta 386, 392, 396 Holograpsus 224
Thek:yya 1i: Homalonotus 176
Dentalium $28,29,365,367,: 37$ $15 i$
He-mmlinm 1:2 Houstoni: : $4!$
Desmodus 183,398 Hyalosphenia 335,340
lianlula. 4 Hy:la: 1.11
!lientyles. 343
:47 Hypnum
linely!y: $1 ; 3$

 3:\%, :3:3
bihnorvinus :3.)
Dulumite $\because 1: ;$
Doridunculus 5:
Doris 85
Echinospermum 131
Jetlericire 253
Echinus. 188,192
Epigrapsus
Epigrapsus 393
Epromite. 2.5
Erethizon 348, 389, 33^{2}, 396
Erinateus $3:$
Eriocheir 189, 210
Euchirograpsus 188, 202
Euglypha ?:34, :3:38
Euphyllite 249
Eustrongylus 131
Felis 348
Fiber 346
Eilaria 10, 130
Fimbristylus 182
Fissurella 29
Flourite 243
Formica 376
Fucoides 293
Fusus 375
liarnet 241
Gelasimus 135
Geograpsus 188, 195
Glyptograpsus 189, 206
Goniopsis 188, 189
Gordius 131
Gurilla. 125
Grapsodes 188, 197
Crapisus 188, 1!12
Heleopera 335, 338
Helice. 18!, 21!4
Helix 348
Megaderma 393
361
361
Isocardia $21,23, ン 4,29$, 32
Jarmsite ;:;
Jorunna 46
Juglans 348
Killingia 132
Levibuccinum 34, :31
Lagostomus 391
Lamellidoris 58
Lasionycteris 393
Lasiurus 133
Latilus 1:3
Leda 21, 23
Leiolophus 189, 224
Leda 365
Lemna 230
Lepidium 132
Lepidolite 248
Lepidomelane 247
Leptograpsus 188, 196
Lepton 21
Leptonyx 227
Lepus 348
Leucœa 132
Lignite 281
Lima 29
Linguella 59
Lonchoglossa $3!3$
Lucina 21, 23, 24, 29
Macacus 387
Macrobiotus 333
Mactra 21, :24, 27
Margarite 251
Marginella 29

Taxolium 9 Varuna 187, 188, 205
Te!lina -4 Venericardia Btif
The! fhusa 3.5 Venus.................2.2. 21, 2.. ご!. 82
Thuia !) Vermiculite 250
Tornatella $36 \pm, 366$ Vespertilio 227,348
Trinema. 336,339 Vesperugo 393
Tr:mina. 10t V esperus. :7:;
Triticum 132 Vitis 10
Tritonium 369 Voluta 365
Ir chus. 157
Turbinella. 3ht, 37: Vorticella 1.5
Turritella 29, 365 Vulpes 348
Unis. Wistaria 358
Ursus 349Utica..................................... 189, 206 | Yucea355

GENERAL INDEX.

Additions to library, 429.
Agnew, Wm. G. E., Announcement of leath of, 22 C .
Allen, H., Description of a fuetal Walrus, 38 ; Mammary Glands of Bats, 138 ; On some homologies in Bunodont Deatition, 226; the Phalanges of bats, 359: On the Temporal and Masscter Muscles of Nammals, $38{ }^{5}$.
Barbeck, Wm ., On the Development of Lemna Minor, 226. 2:0.
Pergh, R., On the Nudibranchiate Gasteropod Mollusea of the North Pacific, with special reference to those of Alaska, ?), 40.
Biological and Microscopical Section. Report of. 415.
liotanical Section, Report of, 418 .
Boric, A. E., Announcement. of death of, 128.
Brewer, T. M., Ammomeement of death of, 12 .
Bindi, Dr. Chas. H., Announcement of leath of, 355.
Cardeza, J. M., Fossil (\because) C'asts in Sandstone, 280: Garnet mistaken for Corundum, 295.
Chapman, II. C., On the Gestation and (ienerative Apparatus of the Elephant, 134, 158; On the Structure of the Orang Outang, 150, 160.
Conchological Section, lieport of, $\$ 1 \&$.
Cresson, Ezara 'T., Election to Council. :357.
Elections during 1880, 428
Entomological Section, Report of, $\{21$.
Fisher, Jas. C., Announcement of death of. 351.
Foote, A. E., A new locality for Amalcite, 252 ; On a probable P'seudormorphism of Gummite and Uranotile after Uraninite, 2!2: On a large Sphene from C'amada, 34].

Fox, Wm. Logan, Immonecment of death of, 15:!
Garrett, Andrew, The Terrestrial Mollusea inhabiting the Cooks or Harvey Islants, 9, 158.
Genth, F. A., Jr., The so-cilled EmeryOre from Chelsen. Bethel Township. Delaware C'o., 1’a., : : 11 .
Gilhert. Wim. Kent. Inuouncernent ot death of: 2.26.
Haines, R., Analysis of Mhiladelphite. 810.

Haldeman, S. S. Announcoment ot death of: 3.41.
Hallowell, Morris, I_. Annonncement of death of, 2eti.
Hartman, W. D., Description of a Partula stuposed to he Jew, from the Island of Noorea, $2.25,22!1$: A Bibliogrophical Catalngue of the Genus l'artula, 븡.
Hays, Isaac, Resolution of Thanks for Portrait of, :307t.
Heilprin, A., On the stmatigraphieal Evidence aftorded hy the Tertiary Fossils of the Peninsula of Maryland. 20 : On some Lower Eocene Mollusca from Clarke (O., Ala., with some points as to the stratigraphieal position of the lbeds containing them,

Hering, Constantiate, Imbothe ment of leath of, :Z3U.
Hess, li. J., Report of liological atad Microscopical section, 414.
Horn, (ieo. H1., leport of ('urrespome ing secretary, 40%.
Index in (iemera, firl.
Jeanes, Joshua, 'I.. Anmuncement of death of. 9: Resulution regarding Bequest of, 20.\%.
Jetleris, W. WI., I new heality for Fluorite, \ddot{l} : $:$: A new locality for

locality, 280: Menaccanite and Tale from Maryland, ?!2; Sunstone in Labradorite, 블․․
Kielly, II. A., Sartorins Muscle of the Gotilla, 1롱․
King, Dr. Wim. M., Announcement of death of, 134.
Kingsley, J. S., Carcinological Notes, No. 1, 34: Carcinological Notes, No. 2 2, Revision of the Gelasimi, 12, 135 ; Carcinological Notes, No. 3, 179; Carcinological Notes. No. 4, 134, 187.

Konig, Geo. A., Notes on Jarosite, 231.

Lautenbach, B. F., Announcement of death of, 226.
Laporte, Count de Castelnau, Announcement of death of, 156.
Lea, Israc, Resolution of thanks for Portrait of, 159.
Leidy, Jos., Notice of the Cruel Thread Worm, Filaria immitis, of the Dog, $1^{1 \prime}$: On a Filaria reported to have come from a Man, 130; Remarks on Pond Life, 156: Rhizopods in the Mosses of the Summit of Roan Mountains, N. C., 332, 333 ; Bone Caves of Pennsylvania, 846; The Parasites of the 'Termites, 851,354 ; Remarks on Bathygnathis borealis, 351, 354 ; Report of Curators, 410.
Lewis, H. C., A new Polariscope, 241; A Garnet with inverted crystallization, 241 ; A new locality for Siderite, 242; Magnetite Markings in Muscovite, 242; A new locality for Asbolite, 243: Épidote in Molybdenite, 243 ; The optical characters of some Micas, 244; On the Measurement of P'lane Angles, 252; On an Exfoliated 'íalc. 252; Tin in North Carolina, 25:3; On Siderophyl-lite-a new mineral, 254; On Sterlingite and Damourite, 256 ; Vanadium in Philadelphia rocks, 256 ; A new locality for Epsomite, 257 ; The surface geology of Philadelphit and vicinity, 258; On the Bryn Mawr Gravel, 277; On some enclosures in Mica, 278; On Dendrites, 278; On a Jurassic Sand, 279: The Minerals of Surry County, N. C., 280; A new locality for Lignite, 281; On Serpentine in Bucks Co., 281; The Iron Ores and Lignite of the Montgomery Co. Valley, 28:~ An enclo-ure in Quartz, 292: On a new Fucoidal plant from the Trias, 293: The

Trenton Gravel and its relation to the Antiquity of Man, 296; Note on Philadelphite-a new mineral, :310; On Philadelphite, 313: A Potstam Sandstone Outcrop on the S. Valley Hill of Chester Valley, 329.
Lippincott, Joshua, Announcement of death of, 355.
Lockington, W. N., On the lacific species of Caulolatilus, 13; On a new specics of Hemitripterus from Alaska, 134, 233; Description of a new species of Catostomus (C. cypho) from the Colorado River, 156,237 .
McCook, Rev. H. C., Note on a new Northern Cutting Ant (Atta septentrionalis), 359: The Slining Slave-maker-Notes on the Architecture and Habits of the American Slavemaking Ant (Polyergus lucidus), 376.

Martindale, Isaac C., Sexual variation in Castanea Americana, 351.
Meehan, Thos., On disarticulating branches in Ampelopsis, 9; Germination in Acorns, 128; On the Timber line of high mountains, 341 ; Dimorphic flowers in Honstonia, 349 ; Cleistogamy in Oxalis acetosella, 850 ; Sexual variation in Castanea Americana, 351; Rain Trees -Note on lucca gloriosa, 355 ; Dioecism in Andromeda catesbæi, 356; Note on the Seed-ves=els of Wistaria, 358: Report of Botanical Section, 418.
Mineralogical and Geological Section, Proceedings of, 159, 241 ; Report of. 4ㄹ.?
Nolan, Edw. J., Report of Recording Secretilry, 406 ; Report of Librarian, 408.

Officers for 1881,
Parker, Chas. F., Report of Curator in Charge, 410.
Potts, Edw., Fresh-water Sponges of Fairmount Park, 330; On Freshwater Sponges, 356.
Proceedings of the Mineralogical and Geological Section of the Academy, for the years 1877,1878 and 187.3. $150,2 \pm 1$.
Rand, Theo. D., Serpentine belts of Radnor Township, Del. Co., 225; Change of Serpentine into Quartz, 241; A new locality for Millerite, 243; A new locality for Gypsum, 252; On a belt of Steatite and Serpentine in Ralnor, Del. ('O., 273 ;

Chromite near Radnor, Pa, 27: Gn Randite, 274 ; some microseopic onclosures in seme, 276 ; Potstam Sandstone near king of l'russia, 27!) On a peculiar stratification in Gineiss, 280; The northern belt of Serpentine in Kadnor Township, 265 ; Report of Mineralogical and (ieological Section, 422.
Redfield, J. H., On Rochelia patens, 131; On the timber line of high mountnins, 834 ; ; Report of Botanica! Section, 418.
Report of Biological and Mieroscopical Section, 413 .
Reprort of Botanical Section, 418 .
Heport of Conchological Section, $\$ 14$.
Report of Corresponding Secretary, 40 i Report of Curators, 410.
Report of Entomological Section, 421 .
Report of Librarian, 408.
Report of Mineralogical and Geological Section, 422.
Report of President, 397 .
Report of Recording Secretary, fuc.
Report of Treasurer, 425.
Report on Plants introducel by means of the International lixhithition. 1876, 13:2.
Rice, J., Announcement of death of : 130.

Kidings, farnes, Anmomberment of heath of, :":31.
Rillings, .J. H.. Liepuri of lintomological Fection, 421.
 section, 414.
Roepper, W: 'T., Ambotnatmont of death ot: l.jis.
liuschenberger, W. S. W.. Jieport of the Pre-ident, $: 3: 17$.
Stauffer, fac., Innomenement of heath of, $1: 3.4$.
Tynilill, Hector, Anmouncement of leath of: $1: 3$.
Vanx, Geo., Election to Conncil, 1(1): Resignation from Council, :355.
Vodges, A. II., Description of a new Crustacean trom the Upper silurian of (ieorefia, with remarks upon Calymene Clintoni, $12 s, 17 \%$.
White, S. S., Announcement of death of, ! !
Wilcocks, Dr. Alex., Annotncement of death of, : 35 j j.
Willcox, Jos., Sume new mineral locali. ties, : 12 : Repor: of Mineralogical :and Geolngical section, fize.
Wood, W. M., II. D.. Annonncement uf leath uf, 1\%n?

Academy of natural sciences
1
A2
v. }3
Biological
\& Medical
Scriale
of Philadelphia
Proceedings

```

\title{
PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET
}

UNIVERSITY OF TORONTO LIBRARY
\(\qquad\)```


[^0]:    * There appears to be much confusion regarding the species of Artamis found fossil in the Atlantic tertiary deposits, and their relation to the forms now living on the Florida coast. In 183? ("Fossil Shells of the Tertiary Formations," p. 20) ('onrad characterized the species A. actabulum, which appears to have been until then confounded with the A. concentrica, Con., non Born A. discus, Reeve, "Conchologia Iconica," vol. vi, sp. 9), inhabiting the southern coast. No mention is there made of its being found also in a recent state, but subsequently, $18: 3$, " Fossils of the Medial Tertiary Formations," p. 29 , we find the following statement: "This fine species is very common in the localities named, and also ocours recent on the Florida coast." In the list of shells inhabiting the Florida coast, prepared by the same anthor in $1846, \mathrm{~A} . \mathrm{J}$. Science, de series, ii , p. 393), only two species of Artemis are catalogned, A. eligins and A. concentricu, and it therefore appears highly probable that the statement considering A. acelabulum also as a living form was founded on a misconception, the more especially, as an examination of the recent shells in the

[^1]:    * On comparison with specimens from the Enylish Crag this species will be found to differ very broadly from the $I$. C'yprinn rusticat of sowerby, with which it has been confounded.

[^2]:    " "「ale brownish-yellow, with large, amnular, brown spots, irregularly scattered, varying from twelve to twenty, or enticely brown. Surface slightly rough ; sometimes a little tubereulated. Dorsal tentaeles conical, retractile; branchice large, xising in five parts, which become tripinnately divided, expanding so as to cover the posterior thind of the body like an mabrella. Mouth probosciliform, with two short lateral tentacles. Tength, is inches; hreadth, $2 \frac{1}{2}$ inches; height, $\frac{1}{2}$ inch.-Coonmat, 1. c.

[^3]:    ${ }^{1}$ I. Bergh, Malacolocr. Unters. (Semper, Philipp. II, ii) Meft x, 1876, p. 413 427, Tab. XLIX-LI.
    ${ }^{2}$ Jórunna, Björnis filia. Laxdäla-Saga. Hafnix, 1826, p. 21.

[^4]:    ${ }^{1}$ Alder and Hancock mention merely ten to fifteen leaves.
    ${ }^{2}$ Alder and Hancock mention fifteen leaves.
    ${ }^{3}$ The representation of the penis (?) (l. c. Pl. 5, f. 3) by Alder and Hancock cannot be correct.

[^5]:    ${ }^{1}$ These organs, the gland and the spur, have also been seen (1. c., Pl. XV, fig. 9) by Hancock, but he does not mention them (in the text, and explanation of the figures). In another of his figures (fig. 106) the spur is designated (1. c., p. 248) as "male intromittent organ," and the (fig. $10 e, f$ ) true penis as "penis-like organ fumished with a stiletto."

[^6]:    ${ }^{1}$ According to II. \& A. Adams (the Gen. of Recent Moll., II, 1858, p. 657), Lamellidoris is a synonym of "Onchidoris, Blv.," which name is employed by Adams for a group, whose type should be D. pusilla, A. et H. (that scarcely belongs to the true Lamellidorides). Cf. also Gray: Guide I, 1857, p. 207.
    The genus Onchidoris of Blainville (Man. de Malac., 1825, p. 480, Pl. XLVI, f. 8.), ought to be rejected entirely, as founded very likely ouly on bad observation ; the genus figures with nearly impossible characters, inth in relation to the tentacles ("quatere tentacules comme dans lus $l$ ) , mis. outre deux appendices labiaux") and to the anus.("médian it la partic inférieure et postérieure du rebord du manteau"). The type of the genus Blatinville found in the British Mus. (London), where it seemed to have disappeared, at least it was not to be found in the collection of nudibranchiates which I looked over in May, 18i3 (while, on the contrary, I found the long-lost type of the genus Linguella, Blv., in his original glass, and so have re-established the denomination Linguella for the much lates (1861) Sancara, Bgh. Cf. my Malacolog. Unters., Heft vi, 1874, p. 248). Sater, Mr. Abraham (1. c. p. 2.25 ) seems to have found the original speec. men again.
    ${ }^{2}$ G. O. Sars, Moll. reg. arct. Norv., 1878, p. 306. Tab. Nlll, ligs. $\overline{5}, 6 ;$ Tab. XIV, fig. 2, 3.

[^7]:    1 The spermatocysta has not been seen by Alder and Hancock. Cf. l. c., 1852. Pl. XIV, fig. 8 (p. 219).

[^8]:    ${ }^{2}$ Archiv. für Naturges, 1840 p. 210, Tab. 7.

[^9]:    ${ }^{1}$ Cf. my "Malacolog. Unters." (Semper, II, ii) Tah). LXVIII, fig. 15-10.

[^10]:    'In my "Malacolog. Unters." (Semper, Philipp. II, ii, IIeft xiv, 187s, 1. 606-613; 'Tab. lxiv, fig. 13, 14-19; 'Tab. lxv, fig. 1-5, (3-13) I lawe given
     landic variety ( $D$. ǐututa, Beck).

[^11]:    2 In the outer mouth was found a little Caprella, of the length of 3.0 mm .

[^12]:    1 Aecombing to Loven the color is yellowish; to Meyer and Mfobine white or yellowish-white. the rhinophoria orange-colored.
    : Accoming to Meyer and Moebius the dub of the bhinomhonia has hus: sine or ten leaves.
    ${ }^{3}$ Meyer and Mloebius mention eight leaves as nearly constant.

[^13]:    ${ }^{2}$ Meyer and Mohbius (1. c. p. $\mathbf{7} 3$ ) mention twenty-nine rows ; Alder and Hancock thirty.
    ${ }^{2}$ The representations of the external plate by Meyer and Moebius 1. c. fig. 2, 6) are not natural. Alder and Hanc. (1. c., Part VII, p. ii, Pl. 48, supplem. text) mention two external phates in their D. muricata (as in their D. diaphana); either the D. muricata of A. and $H$. must be another species. or they must have fallen into error from the particular view which is sometimes had in certain positions of the hind ends of the large lateral teeth with the external ones.

[^14]:    ${ }^{1}$ Sars, Bidr. til Söedyrenes. Naturhist. 1829, p. 17.

[^15]:    ${ }^{1}$ Alder and Hancock notice forty-one, Meyer and Moebius thirty-nine rows of plates.

[^16]:    : The number of external plates is, according to Alder and Hancock, ten, to Meyer and Moobius, eight or nine.

[^17]:    ${ }^{1}$ In both individuals the three to five foremost rows were without the -maller plates, and the following two or three very incomplete in this respect.

[^18]:    1 A coording to Dall, the "anus is terminal under the edge of the mantle." This was erroneous. He did not sec the gill, but regarded the dorsal papillir as "branchial appendages."

[^19]:    ${ }^{1}$ According to Friele and Hansen (1. c. p. 3) the number of external plates is twelve ; the figure of these authors (Tah. II, fig. 1 is rather ham. G. O. Sars has eleven to twelve external plates in his figure.

[^20]:    ' Sars (1. c. p. 16) mentions and figures (idg. 8) the penis as "a large, white, conical" organ.

[^21]:    ${ }^{1}$ Alder and Hancock, also Meyer and Moebius give eighteen to twenty leaves. Cf. the figures 7-8 of Meyer and Moebius.
    ${ }^{2}$ (onlinigwood (Amm. Mag. N. II., 3 ser. vi, 1859, p. 46\%) remarks that it ' when not in motion, bears a great resemblance to a miniature hedgelng."
    *The representation of the system given by Ifancock and Embleton (On the anatomy of Doris, Philos. Transact. MDCCCLII, Plate 17, f. 8 . is not very like nature.

[^22]:    ${ }^{1}$ Of. the (not very good) fir. 6 by Meyer and Moebius.

[^23]:    1 The first specimens of the Northern Atlantic left at my disposition being too small and too few for a thorough examination, I am obliged to refer to my examination given herewith of the form from the Pacific. Cf. moreover my figures in "Gatt. nord. Doriden," l. c. Pl. XIX, figs, 10, 11. The cron is rather well figured by Alder and Hanc. (l. c. Pl. I, f, 12c).
    ${ }^{2}$ According to Meyer and Moebius, the number of plates ("of the radula ") is thirty-one, to Alder and Hancock, twenty-seven.
    ${ }^{3}$ Cf. my Gattungen mordischer Doriden, 1. c. 'Taf. XIX, fig. 12.

[^24]:    ${ }^{1}$ The armature of the penis has been first seen by 1I. Friele and (f. Armater Hansen (Bidr. til Kundsk. om de Norske Nudibranchiar. Christiania, Vidsk..Selsk. Forh., 1STj, extras, 1.4).

[^25]:    ${ }^{2}$ Cf. my Gatt. nordischer Doriten, 1. c., 'Taf. six, fig. 13.

[^26]:    ${ }^{1}$ Although very like the plates of the Atlantic form, they still bore a somewhat peculiar aspect.
    ${ }^{2}$ Cf. my Gattungen mordischer Doriden, 1. c., Taf. xix, fig. 14.

[^27]:    ${ }^{1}$ Cf. my Malacolog. Unters. (Semper, Philipp.) Tab. XLVIII, fig. 11.

[^28]:    ${ }^{1}$ The length of the spermatoduct and the duct of the spermatotheca (vagina) was much more considerable than in the typical form.

[^29]:    * A careful search has failed to find any other ground for supposing that Cuvier described the genus Polycera in 1812, or at any date before 1817, so that the 1812 of Hermamsen is almost certainly merely a misprint. The name Themisto, of Oken, if congeneric, should therefore take precedence. -Dall.
    ${ }^{1}$ Alder and Hancock, Monorrr. Brit. Nudibr. Moll., Part 2, 1846, fam. 1, P1. 23 ; Part 4, 1848, fam. 1, Pl. 24 ; Part 5, 1851, fam. 1, Pl. 22 ; Part 6, 1854, fam. 1, Pl. 17 (anat. !) ; Part 7, 1855, Pl. 46 supplem. figs. 20, 21.

    2Frey and Leuckart, Beitr. zur Keuntn. wirbellose Thiere, 184̃, p. 6670, taf. i, fig. 12, 13.
    ${ }^{3}$ Meyer and Mocbius, Fauna der Fieler Bucht, i, 186., p. 49-5\%, m. 2 taf. und taf. iv, A, B.

    - G. O. Sars, Moll. reg. arct. Norv., 18is, p. 312, 313, Tab. xiv, fig. 14-10.

[^30]:    ${ }^{1}$ Ray Lankester, Contrib. to the Developm. hist. of Moll, Philos. Trans., MDCCCLXXV, p. 29, Pl. 10, f. 1-9.

    Meyw and Moebius have, moreover, given a ligure of the shell of the embryo of their Pol. ocellata (l. c., fig. 10).

[^31]:    ${ }^{1}$ According to Alder and Hancock Monog. Part VII, 185:, Pl. 41 supplement, fis. 20,21 ), the number of rows was fifteen in the Polycera quadrilineatu, sisteen in the $l^{\prime}$. ocelluth, thirteen in the $P^{\prime}$. Lessonii ; Alder and Hancock saw (1. c. four external plates in the Pol. quadrilineata, five in $P$. ocellata, and six in $P$. Lessonii. Meyer and Moebius saw five to seven external plates in their Polycer ocellath, whilst the number of rows 1. c. Pl .50 , is noted as thirteen to fifteen ; in the $P$ '. quadritineatia they found four to five external plates and twelve to thirteen rows. In four specimens of Pol. quadrilineata I saw six to eight rows on the tongue, more backwards six to seven developed, and one not quite developed row; the total number of rows was fourteen to fifteen. In all specimens there were but four external plates. In fon specimens of Pol. Lessonii I saw nine to ten rows on the tongue, more backwards eight to seven or five developed, and a single not developed row; the total number of rows was sixteen to eighteen. In all the specimens there were eight external plates.

[^32]:    ${ }^{2}$ The armature of the penis of Polyc. quadrilineala (hitherto the only species in which an armature has heen deseribed as fignoel ly Prabe and Hanseu (1. c. Tab. II, fig. 3) is very different from that of the Pacific species, and that diference has leen comtinmed by my eammenation of typical specimens.

[^33]:    ${ }^{1}$ IIaving at first and rather superficially examined the exterior, I first regarded the animal as a Triopa, and called it so [s. part l, p. 128 (72), and the Plates (XIV, XV)].
    ${ }^{2}$ Sce for comparison Pl. XIII, fig. 19.
    ${ }^{3}$ See for comparison P1. XIV, fig. 21, 22.
    4 The diagnosis of the Colgce would be:
    Forma corporis fere ut in Triopis. Vagine rhinophoriales calyeiformes oblipus: rhinophoria retractilia clavo perfoliato. Tentacula :buriformia.

[^34]:    ${ }^{1}$ Alder and Hancock (l. c. part VI) also saw small optic ganglia in the Triopa clavigera.

[^35]:    ${ }^{1}$ Sce for comparison, Pl. XV, fig. 13.

[^36]:    1＇age 128（ 72），line 15 ：for Triopa modesta，B．，read Triopha modesta，B．
    ＂ 129 （ 73 ），line 22 ：for mandibula read ．Mandibula．
    ${ }^{6} 130$（ 74 ），line 2 ：for genus read penis．
    ．6 132 （ 76 ），line 30 ：a comma to be put before the parenthesis，and the comma after the parenthesis to be cancelled．

[^37]:    Philippines? Dr. T. B. Wilson (Phila. Acad.) ; Moreton Bay, Australia! E. Wilson (Phila. Acad.); Coast of Malabar! Guerin's Collection (Phila. Acad.). This specimen (labelled "G. crassimanus Coll. Mus.") has the excavation of the thumb of the larger cheliped plainly divided into two parts. Java, Malabar (Edw.) ; Nicobars (Heller); Zanzibar (Hilgendorf) ; New Caledonia (A. M.-Edw.).

[^38]:    ${ }^{1}$ Proc. of Acad. of Nat. Sciences, Philadelphia, 1878.
    ${ }^{2}$ Proc. of Acad. of Nat. Sciences, Philadelphia, 187!.
    ${ }^{3}$ 'Irans. of Zool. Society, 18:3).
    ; Beitrage, Munich Lblancl., 1870.
    ${ }^{3}$ Proc. of Zool. Socicty; i, 1830, p. 28.

[^39]:    ${ }^{1}$ Beitrage sur Gorilla, p. 37. ${ }^{2}$ Op, cit., p. 57. ${ }^{3}$ Op. cit., pp. 40, 41.

[^40]:    ${ }^{1}$ Op. cit., p. 39.

[^41]:    ${ }^{1}$ Helm., vol. ii, p. 534.
    2Entozon, p. 291.

[^42]:    ${ }^{1}$ Proceed. of Acad., 1879.
    2 Natural IIistory Review, $18 / 51$.
    ${ }^{3}$ Man's place in Nature, p. 07 . Das Gehirn des Gorillas, $187 \%$.
    "Gehirn des Chimpanzee, 1871. GAmsterdam Verslasen, Deel 13, 186?.

    * Beitrage zur Hylobates, 1870. *Vertebrate Anatomy; p. 411.

[^43]:    ${ }^{1}$ Op, cit.

[^44]:    * There were at least two editions of Catesby published, bearing dates respectively as aloove and as the second is post-Linnean, the names employed b) him must hold. I think that another edition exists in the libnary of the Essex Institute at Salem, Mass., the date of which is between those quoted above, but I have nothing at hand by which to decide the matter.

[^45]:    ${ }^{1}$ The characters given by Dana for the Sesarmine I do not consider of suficient importance to warrant its retention as a sub family，and would rather consider it as a group of the Grapsine．

[^46]:    ${ }^{1}$ Brulle gives not the slightest description which will distinguish his specimens from either muculutus or strigosus.

[^47]:    ${ }^{1}$ For some reason, Prof. Smith in his paper on Brazilian Crustacea (Transactions of the Comnecticut Academy of Arts and Sciences, Vol. ii, pp. 1-42, 1869), and in his notes on Ocypodoidea (1. c., p. 154), refers several times to this gemus, and always as ('ryptogrupsus.

[^48]:    ${ }^{1}$ The genus Plunes is a MS. one of Leach. Bowdich, in his "Excursion to Madeira and Porto Santo," p. 15, f. $2(1825)$, tigures aud mentions a spe-

[^49]:    ${ }^{1}$ I am not certain as to the exact position of this genus, as it appears to combine the characters of both the Cyclometopu and Catometome. In the form of carapas and strow of of the extemal masillipecis it clowly reamhes Troureat. In the male genital apremlages it is allied to the timplain. where for the present I prefer to allow it to remain.

[^50]:    I Milne-Edwards (1. c., p. 192,) divides this section of the genus into two groups, one with the hands rounded and without longitudinal erests, the other with crests a division which evidently cannot be maintained.

[^51]:    H. crassimanus Kingsley ex Dana.

    Hemigrapsus crassimanus Dana, Proc. Phila. Acad., 1851, p. 250. U. S. Ex. Exped., Crust., p. 349, Pl. XXII, f. 4 (1852).

[^52]:    ${ }^{1}$ I have here as in other places employed the earlier name; what reason Dr. Heller had for the change I cannot imagine.

[^53]:    ${ }^{1}$ This sub family havingr recently been revised by Mr. Miers (Annals and Magazine of Natural History, V, ix, p1, 14\%-1ist, February, 187s, and as I agree with his determinations and ideas of specifie limits, $I$ omit the synopsis of species from this paper, merely givins a few notes on the more uncommon forms.

[^54]:    ${ }^{2}$ In the dismemberment of the genus Plagusia of Latreille, the name Plagusia should have been retained for this section.

[^55]:    ${ }^{1}$ The term "drift" here includes all superficial formations of whatever age.

[^56]:    1 "On Glacial Deposits at W. Phila.," Proc. Am. Phil. Soc., Nior, 1875.

[^57]:    ${ }^{1}$ Report on the Geology of N. J., 1839.

[^58]:    ${ }^{1}$ V. Prof. Leidy, Proc. Acad. Nat. Sci., Phila., 1861, 77.

[^59]:    ${ }^{1}$ Proc. Amer. Phil. Soc., ix, 463.
    ${ }^{2}$ Report DD., 2d Geolog. Survey of Pa., p. 76.

[^60]:    ${ }^{1}$ Geol. of Penna., I, 87.

[^61]:    ${ }^{1}$ Report on Clay Deposits of N. J., 1878, pp. 20.31.

[^62]:    ${ }^{2}$ V. "The Iron Ores and Lignite of the Montgomery Co. Valley," by the writer. Oct., 1879.
    ${ }^{2}$. "On the Bryn Mawr Gravel," by the writer, Mar., 1879.

[^63]:    ${ }^{1}$ V. Tenth and Eleventli Annual Reports of the Peabody Mruseum of American Archæology.

[^64]:    ${ }^{1}$ It will he remembered that Sir Charles Lyell, in his Principles of Geolugy, 11 th Ed., vol. 1, p. 286 , conjectures the period of the great glacier to have been about 200,000 years ago.

[^65]:    ${ }^{1}$ T. Prof. Cooke's Paper on the Vermiculites, Proc. Amer. Acad., Boston, 1874, 35.

[^66]:    ${ }^{1}$ Damour (Ann. d. Mines, IV, x, 208) shows by an experiment similar to those given above, that the water lost by heulandite exposed over $\mathrm{H}_{2} \mathrm{SO}_{4}$ is all regained in $1 \frac{1}{2}$ days.

[^67]:    ${ }^{1}$ Proc. Acad. Nat. Sci. Phila., 1879, p. 37.

[^68]:    ${ }^{1}$ The species enumerated by Tuomey are Ostrea compressirostra, Cardita planicosta, Rostellaria volata, Acteon pomilius, Volute Sayana? Cardium Firnll ti, and 1 uf"ndibnlum fromhiformis. Thespecimens appear to have been submitted to Mr. ('onrad. who eonsidered the determinations of Tnomey as. at least in part, imperfect, and substituted the following specific names ( $A \mathrm{~m}$. Journ. Science, new series, xl, p. 266) : Ostrea Carolinensis (species from the Santee Canal, South Carolina), Volutilithes [Athleta] Tuomeyi (described by Conrad [Proc. Acad. Nat. Sciences, vi, p. 449 ] in 1855 from Bashia Creek), and Protocardia Virginiana? The following remark in pencil occurs in the volume of Toumey's Reports, contaned in the libmary of the Academy: "All doubtful except Venericurdia planicosta. T. A. Conrad." Tuomey's Rostellaria velata and Acteon pomilius were in all probability lioxtulluriu trinodifera and Tornut,lla bellu, which would better agree with the descriptions of obviously the same fossils as given in Hale"s report ( $\therefore$. S. Hale: The Geolory of Suuth Alabama, Am. Journ. Seicnee, new series, vi, p. 355).

[^69]:    ' Section as yet unpublished, but communieated by letter to the ather.

[^70]:    1 "Natural History of Ants." Johnson's translation. London, 1820.
    2 "Les Fourmis de la Suisse."

[^71]:    'See " Agricultural Ant of Texas," p. 130.

[^72]:    ' P. rufexcens of Europe has not yet been found in the warm plains of the South of that Continent. (Catalogue Emory-Forel, p. 450, Mitth.d. Schweizerischen Entomol. Gesellschaft.) It would be a valuable contribution to our knowledge of distribution were we to know whether or not P. lucidus is found in our Southern States. We might venture the anolorical prediction from the above habit of its European congener, that it is not found in the Gulf States.

[^73]:    I In a dissection of the mmseles in a mulato child at tomm, I fomm the deeper plane of masseteric fibres arising from the external suthe of the temporal tendon.

[^74]:    S7Tm: f11

