PROCEEDINGS

OF THE

Academy of Natural Sciences

OF

PHILADELPHIA

Volume LX

1908

PHILADELPHIA
The academy of natural Sciences
logan square
1908-1909

The Academy of Natural. Sciences of Philadelphia
March 3, 1909.
I hereby certify that printed copies of the Proceedings for 1908 have been mailed as follows :-

EDWARD J. NOLAN, M.D., Recording Secretary.

PUBLICATION COMMITTEE:

Henry Skinner, M.D. Henry A. Pilsbry, Sc.D.,

Witmer Stone,
William J. Fox,

Edward J. Nolan, M.D.
The President, Samuel G. Dixon, M.D., ex-officio. Editor: Edward J. Nolan, M.D.

CONTENTS.

For Announcements, Reports, etc., see General Index.

Boyer, Charles S. A new species of Cymatopleura (Plate XXVIII), 554
Brown, Arthur Erwin, Sc.D. Generic types of Nearctic Rep- tilia and Amphibia, 112
Calvert, Philip P., Ph.D. The composition and ecological relations of the Odonate Fauna of Mexico and Central America (Plate XXVI), 460
Chamberlin, Ralph V. Animal names and anatomical terms of the Goshute Indians, 73
Revision of North American Spiders of the Family Lycosidæ (Plates VIII-XXIII), 158
Colton, Harold Sellers. How Fulgur and Sycotypus eat Oysters, Mussels and Clams (Plates I-V), 3
Some effects of environment on the growth of Limnea colu- mella Say, 410
Fowler, Henry W. Notes on Sharks, 52
A synopsis of the Cyprinidæ of Pennsylvania (Plate XXVII), 517
Harshberger, John W., Ph.D. The directive influence of Light on the growth of Forest Plants (Plates XXIV, XXV), 449
Ishikawa, Chiyomatsu, Ph.D. Description of a new species of Squaloid Shark from Japan, 71
Montgomery, Thomas H., Jr., Ph.D. Remarks on Prof. Chamberlin's revision of North American Lycosidx, 513
Моore, J. Percy. Some Polychætous Annelids of the Northern Pacific Coast of North America, 321
Pusbry, Henry A., Sc.D. Notes on Succinea ovalis Say and S. obliqua Say (Plate VII), 45
On the classification of Scalpelliform Barnacles, 104
iv. CONTENTS
A comparison of the Land-Snail Fauna of Korea with the Faunas of Japan and China, 452
On the teeth of Hawaiian species of Helices, 560
Clausilidæ of the Japanese Empire, XII (Plates NXX, NXXI, XXXII), 561
Pilsbry, Henry A., Sc.D., and Y. Hirase. New Land and Fresh-water Mollusca of the Japanese Empire, 31
New Land Shells of the Chinese Empire-I, 37
New Land Mollusea of the Japanese Empire, 586
Pilabry, Henry A., and E. G. Vanatta. Notes on Polinices didyma, with description of a new Australian species (Plate NXIN), 555
Rehn, James A. G. Acrididæ (Orthoptera) from São Paulo, Brazil, with descriptions of one new genus and three new species, 12
Rehn, James A. G., and Morgan Hebard. An Orthoptero- logical Reconnoissance of the Southwestern United States. Part I: Arizona, 365
Snyder, John Otterbein. Description of Trachypterus selen- iris, a new species of Ribbon-Fish from Monterey Bay, California, 319
Stone, Witmer. Methods of recording and utilizing Bird- Migration Data, 128
Recent additions to our knowledge of the Flora of Southern New Jersey, 457
A review of the Genus Piaya Lesson, 492
True, Frederick W. Remarks on the fossil Cetacean Rhab- dosteus latiradax Cope (Plate VI), 24
Wellman, F. Creighton, M.D. On the Meloidæ of Angola, 600
Wellman, F. Creighton, M.D., and Walther Horn, M.D. On the Cicindeline of Angola 505
Young, Robert T. Notes on the distribution of Colorado Mammals, with description of a new species of Bat (Eptesicus pallidus) from Boulder, 403

PROCEEDINGS

ACADEMY OF NATURAL SCIENCES

OF

PHILADELPHIA.

1908.

January 7.

The President, Samuel G. Dixon, M.D., in the Chair.
One hundred and six persons present.
The Hayden Memorial Geological Medal ${ }^{1}$ was presented to Charles D. Walcott, LL.D. The presentation address was made by Dr. Persifor Frazer and responded to by the recipient of the award. A reception was tendered Dr. Walcott at the close of the formal proceedings.

The following Standing Committees were appointed by the Council to serve during the ensuing year:

Finance.-John Cadwalader, Edwin S. Dixon, Effingham B. Morris, Horatio C. Wood, M.D., and George Vaux, Jr., Treasurer.

Publications.-Henry Skinner, M.D., Henry A. Pilsbry, Sc.D., Witmer Stone, Philip P. Calvert, Ph.D., and Edward J. Nolan, M.D., Editor and Treasurer.

Library.-Dr. C. Newlin Peirce, Henry Tucker, M.D., Thomas Biddle, M.D., Benjamin Sharp, M.D., and George Vaux, Jr.

[^0]Instruction.-Benjamin Smith Lyman, Henry A. Pilsbry, Sc.D., Charles Morris, Philip P. Calvert, Ph.D., and Dr. C. Newlin Peirce.

Committee of Council on By-Laws.-Arthur E. Brown, Sc.D., Thos. H. Fenton, M.D., John Cadwalader and Chas. B. Penrose, M.D. The President is, ex officio, a member of all Standing Committees.

January 21.
The President, Samuel G. Dixon, M.D., in the Chair.
Ninety-seven persons present.
The deaths of Jacob Reese, March 25, 1907, and of Miss Adeline Tryon, January 20, 1908, members, were reported.

Dr. Casey A. Wood made an illustrated communication on the eyes and eyesight of birds. (No abstract.)

Dr. William J. Sinclair was elected a member.
The following was ordered to be printed:

HOW FULGUR AND SYCOTYPUS EAT OYSTERS, MUSSELS AND CLAMS.

BY HAROLD SELLEER COLTON.

Since observations on the habits of Prosobranch mollusks are fragmentary and few. I embraced an opportunity of studying Fulgur carica, Fulyur perversu and Sycotypus cunaliculutus under conditions as nearly natural as one can hope to have in a laboratory located far from the sea. Most of the observations were carried out in the Vivarium of the Lniversity of Pennsylvania; these were supplemented by studies on fresh material under more natural conditions at the Fisheries Laboratory at Woods Hole. ${ }^{1}$

The individuals studied in Philadelphia had heen in captivity a long time. All had been there a year and many several years. 'The F'ulgur carica had come from Woods Hole and the Jersey coast. F. perversa I had brought up from Clearwater, Florida, two years and a half before. Of these latter none had died a natural death during that time.

The salt water aquarium in which they were confined was about five feet wide and eleven feet long. There was three feet of water over the greater part, but a shallow beach at one end.

On the beach I was accustomed to place oysters that I kept as a stock to feed the animals in this tank. Every week I chopped up an oyster or two and distributed the juice and fragments all over the tank. This stimulated the lulgurs and sycotypi to activity and to make frequent raids on the living oysters on the beach. This ted me tw inquire into the kind of food, the amount of food, and mothon of feeding of these gasteropods.

There is but one actual observation on the mamer of feodine of these mollusks that I have been able to diseover. Stimpson (1seio), in speaking of syycot!pms, said: "In eating (it) applies conl of proboscois to the clan's foot, and with a sulden jerk of the limenal riblon inwarl and sidelong takes a strip) of flesh."

The "impression" that most persons hold with referenoer to the manner of eating and the habits of the sygcotypus and foulyur is expmesseal by Hervick (1906): "Since this animal is a great pest to the wy termen and clam-diggers, it is of some interest. to know

[^1]how this gasteropod accomplishes its destructive work of boring through the shells of oysters and clams and rasping out their soft contents by means of the file-like tongue." Although this is in the introduction, he does not mention again how Sycotypus bores through shells and had only the "impression" that they did bore.

Ingersoll (1884) has given the most detailed description of the food and the manner of taking it that I have been able to discover. "The food of the conch (Fulgur or Sycotypus)," says he, "being mainly the flesh of other mollusks, its method of killing them is one of brute strength, since it is unprovided with the silicious, file-like tongue by means of which the small drills set at naught the shelly armor of their rictims. The conch is a greater savage than that. Seizing upon the unfortunate oyster, unable to run away, he envelops its shell in the concave under surface of his foot, and by just such muscular action as you would employ in grasping an object in the palm of your fist, crushes the shell into fragments and feasts at leisure on the flesh thus exposed. One planter thought one Winkle (Fulgur and Sycotypus) was capable of killing a bushel of oysters in a single hour. They do not confine themselves to oysters altogether, of course; any mollusk or other animal sluggish or weak enough to be broken up suffers from their predacity. I was told in New Jersey by an intelligent man that a conch would even pull a razor clam out of its burrow and devour it. If this be true the soft shell clam also falls a victim to the same marauder. The Quahog is generally safe."

I quote this because my observations and experiments unfortunately contradict so many of these interesting statements.

My experiments as to the kind of food were restricted to live Lamellibranchs, because I never was able to observe them eat chopped oyster or chopped meat. Chopped oyster certainly stimulates them and perhaps they will eat it. I cannot tell. Table I gives the results of my studies at Woods Hole and Philadelphia. (x) indicates that the particular bivalse was fed to the conch and eaten; (o) indicates that it was fel to the conch and not eaten; and (-) means that the particular form was not supplied with the indicated food.

Table I.

	Sycotypus.	F. carica.	F. perversa.
M ya_{6}....	... x	x	-
Venus	0	x	x
Enzi*... -	x	-
Modiola.	0	x	-
Mytilu*	x	x	-
Ostrea..	x	x	x

At Woods Hole Sycotypus and F. carica were found only at places where Ensis (razor clams) were abundant. I could not find them on any other beach. Although I did not observe Sycotypus eating Ensis, I think there is every reason to suppose that they do.

The experiments on the amount of food are too few to be definite. The results, such as they are are expressed in Table II. (x) indicates present but not eaten. (o) indicates not present.

Table II.

No.	Conch.	Days.	Ostrea. Mya.	Venus.	Mytilus.	Modiola.	
4	Sycotypus..........	10	x	13	x	7	x
4	F. carica...........	10	x	x	2	3	1
3	F. periersa........	42	7	0	0	0	0
4	F. carica...........	42	0	0	0	0	0
2	Sycotypus........	42	4	0	0	0	0
1	Sycotypus..........	2	4	0	0	0	0

Very often one individual would eat a couple of clams or oysters in a day, but as a rule the meals were far apart.

Notwithstanding most persons' "impressions," it is highly improbable that these mollusks ever bore through Lamellibranch shells. I have never seen a hole that would fit their proboscis, nor does the wearing of the teeth on the odontophore indicate that they were worn down against a hard substance. Plate I, figs. 3-4 show the median tooth of C'rosulphinx which bores rapidly through the shells of mussels. The former shows a tooth before being worn and the latter a tooth worn down. These teeth compared with a similar series, Plate I, figs. 1 and 2, showing F^{\prime}. carica, suggest that there are two methods of wear. In Crosolphinx the teeth are worn evenly off so that a straight line will join the tops. The large teeth are worn level with the short ones. In F'ulgur, however, the teeth are broken off in almost any way: Examimations of the radular of Nasse obsoleta, Nosset trivittenta, Lumutio and Purpura lapillus seem to substantiate the view. But with the exception of Purpura and perhaps Nassa obsoleta, too little is known how they take their fook to remder any general conchusions tenable. In the case of these last two, I'urpure, which has a radula worn like C'rosetphinx, has been observed to bore (Wilcox, 1905) : and Jussu, with wear such as I have described for Fulgur, has never been seen to bore, but will crawl between the values of $M y$, wedging the valves apart, and devour the flesh (Dimon, 1905).

The other method of attack (Ingersoll, 1sst) is bey breaking the shell. As deseribed bey Ingersoll this is utterly impossible. Hownere.
both F. perversa and F. carica do injure the shell of Venus mercenaria (Quahog): and, althourh they leave marks on the shell of Mytilus (mussel) and perhaps (istret, the shell of Mya (soft shell elam) is left - without a seratch.

In the case of Sycotypus cating oysters, I have been able to watch the whole purness from the beginning to the end without interruption, so I will take this as my first example. It will be an account of the behavior of a single individual.

The sygcotypus had not been fed for a month or so and was buried in the gravel. Tostimulate, I added some very finely chopped-up oyster to the aquarium. When it started to crawl out of the gravel, a few minuto after I addel the oyster juice, I placed some live oysters in the aquarium with it. It attacked one of the oysters five minutes after I placed them with it. Fifty minutes afterward it left the empty shell. Coing a foot to another oyster, it began to attack it twenty minutes after it left the first one.

The syycotypus crawled on top of the oyster, which closed its valves. The conch waited two minutes when the oyster opened its valves (Plate II. fig. 7). Rotating its shell on the axis of the columella through an angle of 70°, it thrust its own shell between the valves of the oyster and introduced its proboscis between the shells (Plate II, fir. S). Forty minutes later it left the empty shell.
symonyms does not wetge the shells of My, apart. because it can get at the wit parts without doing so, since the valves grap slightly (Plates II and III, figs. 11, 12). To test this I introduced an oyster that had had three-quarters of an inch broken from the margins of both valves on the end away from the hinge so that the valves appeared to grap. I fonnd that Sycotypus attacked this one in the same manner a- it aftacked M! !e and did not wedge the shells apart (Plate I, fig. 6).

Foulyur cating Venus is a much more complicated case. The conch (Fiulgur prrverse or F. carica) grasps the Vemus in the hollow of its
 its own thell margin. By contracting the columellar musele it forces the mavins of the shells together, which results in a small fragment being conppel from the shell of Venus. This is repeated many times and, finally, the erack between the valves is enlarged to a width of Bmm, or more (text fig.).

The proboscis is normally about 5 mm . to 8 mm . in diameter There are three ways in which it may get at the animal. First, it may flatten wh ite proluacis so that it will go throngh the crack; secondly, it may pour in a secretion between the values which kills the clam.
and, thirdy, it may wedge its shell between the valves of the Tenus. By contracting its columellar musele it may actually welge the valves apart. Vemus is much more sensitive to mechanical stimuli than is Ostron. Vemus never opens its valves of itself when it is in the grasp of a Fulyur, while Ostrea, after the first shock, opens wide its valves as if no danger were near.

Fulgur and Sycotypus often break their own shell when opening owisters and clams, and this accounts no doubt for the irregular growth lines seen on their shells.

This method of inserting the margin of a gasteropod between the valves of a Lamellibranch has been noticet hefore. Francois (1590)

Quahog shell clipped by Fulgur.
briefly reports that Murex forlispinna has a special tooth on the margin of its aperture for the purpose of inserting between the valves of Arow. It may be that this mamer of attacking the soft parts of bivalves is a very common habit of Prosobranch mollusks.

All writers recognize F'ulgur and Sycotypus as pests to the oyster mon. How many oysters will be destroyed will depend on the average mumber eaten in agiven time. Although 1 have found them to eat two oysters one day and two the next, there follows a long rest periond where the individual remains buried in the sand-sometimes for days, sometimes for months.

Notwithstanding that Ingersoll (1584) says, "It is needless (1) sal that they do not burrow at all," I find that they are buried about (i.)
per cent. of the time, the tip end of the black siphon alone projecting above the sand -5 mm .-a most inconspicuous object.

The following tablegives the records of the activity of nine individuals for a period of six weeks. It indicates the periods of rest and activity expressed in days. Plate V shows these periods of rest and activity distributed in space.

Table III.

Giasteropod. Days active.	Days buried.	Days quiet.	Days of food.
.sycotypus No. 2........... 21	16	3	2
" No. 10........... 2	38	0	1
F. carica No. 3............. 9	25	6	0
" No. 4.............. 5	34	1	0
" No. 5............. 11	0	14	0
" No.6.............. 10	4	26	0
F. perversa No. 1........... 7	29	4	1
" No. 710	30	0	2
" No. 8........... 7	33	0	1

These experiments were carried on in Philadelphia and so were not under perfectly natural conditions. They show how far apart the meal times are. During these experiments F. carica never ate. If these observations reflect at all the normal habits of the individual, they cannot, I think, be a very serious oyster pest.
Sycotypus and Fulgur do not always react to their food in the same manner, but they react to different Lamellibranchs in a way best suited to getting at the soft parts of the animals. Therefore the behavior is adaptive (Jennings, 1906, 1907).

Another question is, are these organisms intelligent? Jennings (1906) defines intelligence as a modification of behavior in accordance with experience. The usual way to test this is by habit formation (Jennings, 1907). "(1) The organism must be presented with a problem to be solved. (2) The organism must 'try' to solve the problem in several different ways. (3) It must be able to solve the problem in but one or a few ways."

In accorlance with these criteria I presented the mollusks with a simple maze problem with oysters as "bait." Although without food for a week, they buried themselves in the sand and did not move again. At the end of two weeks I discontinued the experiment. To show the normal behavior of these animals I plotted their movements for a periok of six weeks. This gave no results except those embodied in the earlier part of this paper. The diagrams show, however, how very sluggish these mollusks are. It is probably impossible by any of
the ordinary methods to determine the intelligence of Sycotypus and Fulgur. The solution of this problem awaits some ingenious future investigator.

- Summary.

1. Fulgur and Sycotypus are very hardy and live well in captivity.
2. Fulgur probably attacks any Lamellibranch.
3. Sycotypus will attack any except Venus.
4. Oysters are eaten in less than an hour. Clams in from an hour to an hour and a half. Quahogs from seven hours to three days.
5. They do not bore shells with the radula.
6. They open shells of oysters by wedging their own shell between the valves, and tear out the flesh with their radula. They probably treat Quahogs in the same way.
7. Some shells are injured in the process, depending on the amomit of gap and the sensitiveness of the organism to mechanical stimuli.
S. Their meals are far between.
8. They spend their time between meals buried in the sand.
9. They may not be as serious a pest to the oystermen as previously reported.
10. Their behavior is adaptive. As yet we have no proof that these animals are intelligent.

Literature.

1s95. Cooke. Cambridge Lat Hist., Vol. HI, p. 60.
195. Dimox, A. C. Cold Spring Harbor Monayraphs, V, pp, 31-36.
1590. Financols. Arch. Exp. G., (2), IX, p. 240 .
1570. Gould. Invertebrata of Mass,, 2d. ed., by W. G. Binney.
1906. Hemmick, J. C. Mechanism of the Odontophoral apparatus in Sycotypus canaliculatus, 1 m. Not., Vol. XL, p. 707.
1854. 1Ngensoll, E. Fisheries Industries of the U. S., Section I, p. 694.
1906. Jeswings, M. S. Behurior of the Louer Organisms, p. 334.
1907. Jexsings, H. S. Behavior of the Starfish Asterias forreri, U of C'al. ${ }^{\prime}$ ubl. in Zool., Vol. 1V, No. 2. p. 155.
1860. Stimpon. Check List, p. 6.
1882. Tryos, G. W. Structural and Systematic Concholoyy, p. 137.
1905. Wilcox, M. A. Biology of Acmaea testudinalis, Im. Nat., May, 1905. p. 325.

Deschiption of Plates l-V.

Figs. 1 and 2 were drawn with the aid of a camera lucida and magnified about 72 diameters.

Figs. 3 and 4 were drawn with a camera lucida and magnified abont 270 times.
The succeeding figures were drawn fre-hand from living anmals with the exception of figs. 7 and S, which are semi-diagrammatic. They are a natural size.

Plate 1.-Fig. 1.-Median tooth of Fulgur carica (unused).
Fig. 2.-Median tooth of Fulgur carica (worn).
Fig. 3.-Median tooth of C'rosalphinx (unworn).
Fig. 4.-Median tooth of Urosalphinx (worn).
Fig. 5. Sycotypus eating an oyster viewed from above.
Fig. 6.-Sycotypus eating an oyster viewed from side. The oyster had had the end toward the conch broken for about $\frac{?}{4}$ inch.
Plate II.-Fig. 7.-Sycotypus on top of oyster (semi-diagrammatic).
Fig. S. - The same a few seconds afterward, showing the margin of the Sycotypus shell wedging apart the shells of the oyster.
Fig. 9.-Sycotypus wedging apart the valves of an oyster.
Plate III.-Fig. 10.-Sycotypus in search of food.
Fig. 11.-Sycolypus eating Mya.
Plate IV.-Fig. 12.-Sycotypus eating Mya.
Fig. 13.-F. carica eating Venus, showing how it holds the shell.
Plate. V.-Diagrams illustrating the wanderings of F. perversa, F. carica and S. canaliculatus during a period of six weeks. Each square of the diagram represents one square foot. Each of the diagrams represent an aquarium of salt water five feet by eleven feet. The plottings were made daily. The Roman numerals indicate the identification number of the individual welks. Arabic numerals indicate days at one spot. (o) means an oyster eaten. (B) indicates that the individual was buried.

, February 4.

Dr. William P. Wilson in the Chair.

Thirty persons present.
The Publication Committee reported the reception of a paper entitled "Acridida (Orthoptera) from sio Paulo, Brazil, with deseriptions of one New Genus and three New Species," by James A. G. Rehn (January 27).

Witmer Stone made a communication on the geographical distribution of plants and animals in Southern New Jersey. (No abstraet.)

February 18.

Arthur Erwix Brows, Sc.D., Vice-President, in the Chair.
Nincty persons present.
The reception of a paper entitled "Remarks on the Fossil Cetacean Rhabdostens latiradix Cope," by Frederick W. True (Fehruary 1か. was reported by the P'ublication Committee.

Phili P. Calyert, Ph.D., made a communication on the general results of nine years' study of the dragon-flies of Mexico and Centra! America for the Biologia Centrali Americana. (No abstract.)

Burton Chance, M.D., was elected a member.
The following were ordered to be published:

ACRIDIDE (ORTHOPTERA) FROM SÃO PAULO, BRAZIL, WITH DESCRIPTIONS OF ONE NEW GENUS AND THREE NEW SPECIES.

bi dames A. G. Relli.

The material treated in the following paper represents the Pyrgomorphine and Locustine of a collection of Orthoptera made at several localities in the state of san Paulo, Brazil, by Mr. Adolph Hempel. and presented to the Academy by the author.

The Acridine belonging to this collection has already been treated, in conjunction with other South American material of that subfamily. in a paper in these Proceedings. ${ }^{1}$

PYRGOMORPHINスE.
ommexecha serville.
Ommexecha servillei Blanchard.
1:37. Ammexecha Servillei Blanchard, Ann. Soc. Entom. France, V. 1). (i13. P1. NXII, figs. 2 and 3. [Province of Corrientes, Argentina.]
Sion Paulo. September 13 and 19, 1900. (Hempel.) Three \mathbf{B}^{-}. three

Reboucas. september 26, 1900. (Hempel.) One ${ }^{7}$, one ?
Previous records for this species are Porto Allegre, Rio Grande do sul (Karsch), Sierra Geral, Santa Catharina (Karsch), São Paulo (Bruner), Matto Grosso (Karsch), Brazil, Asuncion and San Bernarlino. Paracuay (Bruner).

TROPINOTUS Serville.
Tropinotus affinis Bruncr.

Jundiahy: April 17. 1s98; September 10, 1899. (Schrottky.) Jwの, 1wo

The bowed lateral carines of the pronotum appear to be the chief diagnostio character of this species, unless this is also shared by T. scabripes stal, which has mot been examined.

[^2]
ELEOCHLORA St®.

Elæochlora arcuata n. sp.
Types: $O^{\text {or }}$ and \circ; Jundiahy, State of São Paulo, Brazil. March 1, 1899 ($\sigma^{`}$). (Schrottky.) [A. N. S. Phila.]

This peculiar species belongs to the section of the genus containing E. trilineata and viridicata (Serville) and humilis and pulchella Rehn. as well as the rather aberrant picticollis (Gerstaceker). It is readily separated from any of these species by the well elevated and longitudinally arcuate median carina of the pronotum, the tubercles of the pronotum also being blunter and fewer than in the allied species. The male can also be immediately separated from the above species. except picticollis, by the short acute tegmina.
size rather large; form of the female quite robust, of the male slen-

Fig. 1.-V:lenchlora arcuata n. sp. Lateral view of male type. ($\times 2 \frac{1}{2}$.)
derer. Head with the occiput rounded; fastigium subhorizontal, very - lightly excavated, longer than boad, the apex - lightly acute-anmulate. the apical margins slightly arcuate in the male; angle of the fationimu when viewed from the lateral aspect narrowly rounded into the moterately ($~$ f) or considerably (O^{*}) retreating face; frontal coita very much narowed at its junction with the fastigium, slightly but rexpllarly expanding ventrad to the clypeus, suleate exeept in the very narrow dorsal portion; eyes of the male elliptical, oval, of the female ovate; antenne not complete. Pronotum rugoso-punctate, with the prozona tectate, the metazona with the disk flattened and the carima considerably elevated, the outline of the earina when viewed from the lateral aspeet being very slightly areuate in the female, very con-
siderably so in the male; cephalic margin obtuse-angulate, slightly more marked in the male than in the female; caudal angle acuteangulate, the apex sharp and the margins slightly arcuato-emarginate: lateral shoulders marked on the metazona, a contimuation descending (1) liquely ventro-cephalad on the prozonal portion of the lateral lobes prozona of the disk with accessory lateral shoulders, which are less marked than the primary ones, converging from the principal transverse sulcus to the cephalic margin, all the lateral shoulders more marked in the male than in the female; transverse sulei three in number. all cutting the median ridge, but only the caudal one doing so deeply; greatest median width of the pronotal disk contained about twiec in the length; lateral lobes of the pronotum with the ventral margin abtusc-angulate. Tegmina of the male exceeding the length of the pronotum by about half the length of the head, of the femate about "qual to the length of the metazona and half of the prozona; shape of the male tegmina sublanceolate, of the female tegmina sub-riomboid. the greatest width of the male tegmina contained two and a half times in their length, that of the female tegmina contained once and two-thirds in their length. Wings much smaller than the tegmina. not functional in either sex. Prosternal spine erect, conical; interspace between the mesosternal lobes very slightly transerse, the angles of the lobes broadly rounded; interspace hetween the metaaternal lobes distinctly areuate transverse. Abdomen compresed in both sexes, distinetly carinate dorsad in the male; supra-anal Whate of the mate acute-angulate, distinctly suleate mesal, the sulens marrowed meso-caudad ; cerci of the male very small, simple, styliform; subgenital plate compressed, produced, rostrate, the apex elevated and Alender. Cephalic and median limbs moderately rolonst in the male. rather weak in the female. Caudal femora about one and one-third (6) or one and twothirds (σ^{3}) the length of the promotum, rather Acmater, tapering, no appreciable pregenicular constrictiom, dom:o modian carima sparsely servato-lentate, pattem of the payimather i:reqular and not deoply impresself caudal thbise about equal to the fomma in longth, armed on the external margin with ton to twelve spines, wh the internal with nine to ten spines, those of the internal margin longer than these on the extemal ; tarsi distinctly depresent.

General offor wive-grees becoming bownish on some areat and
 of the ereneral color :atide from a dull browal suberoal medio-longitudinal bar of rusect on the wertex and oceciput, berdered latemad by perenty dofined blarkinh area-; eyes burnt umber. Prometum very dull odive-
green dorsad, the median carina and angles marked obscurely with burnt sienna; lateral lobes with considerable parrot green mesad, the cephalic and ventral margins narrowly and the caudal margins rather broadly margined with ochraceous-buff, the marginal color blending into the general color. Tegmina blackish, broadly margined, except toward the apex where the paler color narrows until completely absent at the very apex, with ochraceous-buff, principal veins of the median portion of the tegmina apple green. Limbs distinctly brownish, the caudal tibix and tarsi vinaceous-cinnamon, tibial spines wholly black on the internal margin, tipped with black on the external margin.
Head bice-green with a very pale ochraceous-buff occipital and fastigial band as in the male, which band, however, has the lateral defining bars poorly indicated; eyes vandyke brown; antemas pansy purple with the proximal joint of the color of the head. Pronotum generally more oil green than olive-green; median carina marked with a bar of madder brown which narrows caudad and is poorly outlined cephalad; ventral and caudal margins of the lateral lobes with very faint and poorly defined light margins. Tegmina oil green with a pale margin similar to the male, in addition to which the green area is outlined by a heavy pencilling of black, quite distinct on all but the ventro-caudal portion, while the sutural margin has a very fine black edging to its proximal half; principal veins of the green area apple green. Limbs oil green tending toward apple green, caudal tarsi marked with maroon purple dorsad, caudal tibie with the spines as in the male.

Mcasurements.

A paratypic female has also been examinet. It differs from the female type only in the tegmina being more produced and nearer to the type seen in the male.

CHROMACRIS Walker.
Chromacris miles (Drury).
Jundiahy. (Schrottky). One ós. This individual has the lighter color of the wings rich yellow.

Chromacris nuptialis (Gerstaecker).
1573. Romalca nuptialis Gerstaecker, Stett. Entom. Zeit., NXXIV, p. 1S5. [Salto Grande, ${ }^{2}$ Brazil.]
Jundiahy. January 20, 1899 (ㅇ). (Schrottky.) One ơ, one ㅇ.
The markings of the tegminal veins in this species remind one of the similar pattern noticed in the otherwise very different C. icterus.

ZONIOPODA Stal.
Zoniopoda tarsata (Serville).
Jundiahy. January 28, 1899. (Schrottky.) One ơ.
This specimen agrees fully with the original description and two Rio Grande do Sul specimens determined as tarsata, received from the late Dr. Saussure.

LEPTYSMA StåI.

Leptysma gracilis Bruner. ${ }^{3}$
1906. [Leplysma] gracilis Bruner, Proc. U. S. Nat. Mus., NXX, p. 658. [Sĩo P'aulo, Brazil.]
São Paulo. September 5-19, 1900. (Hempel.) Six 0^{7}, four + .
This series shows an appreciable amount of variation in the form of the fastigium, some having the angle more acute than others.

Leptysma filiformis (Serville).
Sio Paulo. September 1 and 7, 1900. (Hempel.) Three $\frac{?}{}$.
PARACORNOPS Giglio-Tos.
Paracornops longipenne (De Geer)?
1773. Acrydium longipenne DeGeer, Mém. d'Hist. Ins., MI, p. 501, P1. 42, fig. 9. [Surinam.]
Sio Paulo. September 14, 1900. (Hempel.) Five ${ }^{7}$, one 우.
We have followed Bruner in considering this form the same as 1)efiecr's species, the correctness of which association can be determined definitely only by the examination of Surinam material.

The specimens in hand are brownish instead of greenish as deseribed by I beGeer, but as far as can be determined from his figure they do not diffor structurally, and in dimensions they fully agree with those given by him.

[^3]
OMALOTETTIX Bruner.

Omalotettix signatipes Bruner.

São Paulo. September 1 to 14, 1900. (Hempel.) Nine ${ }^{\circ}$.
These specimens are uniformly, though slightly, smaller than Chapada, Brazil, and Sapucay, Paraguay, females, but in no other respect do they appear to differ from topotypes.

HOMALOSAPARUS ${ }^{5}$ n. gen.

A member of the Xiphiolec and related to Saparus Giglio-Tos and Xiphiola Bolivar, differing from the former in the less compressed general form, in the form of the frontal costa, the less produced head, the less compressed pronotum, the more rounded tegmina, the more robust limbs and the produced subgenital plate; differing from Xiphiok n the more compressed form, in the absence of distinct lateral angles to the pronotum, the absence of any costal projection between the antenne, in the broader tegmina, in the narrower interspace between the mesosternal lobes and in the produced subgenital plate and slender cerci.

Vertex ascending; fastigium rectangulate; frontal costa not projecting between the antenne, becoming obsolete ventrad of the ocellus: face declivent; eyes acute ovoid, hardly projecting; antemar heavy, depressen, very slightly expanded proximal. Pronotum rugoso-punctate; dorsal transverse sulci three in number; median carina distinet: caudal angle of the disk subrectangulate; lateral angles without carina. Tegmina exceeding the apex of the abdomen, rather broad. greatest width in the listal third; intercalary wein absent. Prostemal -pine erect, slender, apex blunt; interspare betwern the mesesternal lobes very distinctly longer than broad; interspace between the metasternal lobes very narrow. Subgenital plate of the male produced. acmuinate, keeled. Caudal femora moderately inflated; candal tibia with nine spines on the lateral margins.

Type.-H. canonicus n. sp.

Homalosaparus canonious n. sp.

Type: Ơ; São Paulo, Brazil. September 13, 1900. (Hempel.) [A. N. S. Phila.]

Size medium; form distinctly compressed; surface rugulosi-punctate. Head with the occiput regularly ascending to the interocular region which, with the fastigimen, is subherizontal; interocular rewion - lighty more than twice the width of the interantemal portion of the frontal costa; fastigium broadly trigonal, the apex with a short, distinct. median, longitudinal sulcus; angle of the fastigium and vertex, when

[^4]subperpendicular to a short distance ventrad of the insertion of the antenne, then considerably declivent; lateral foveole indistinct, punctate; frontal costa slightly constricted dorsad and obsolete from a point rentrad of the ocellus where it is slightly narrowed, entire length impresso-punctate; eyes acute dorsad, strongly elongate-ovoid

Fig. 2.-Homalosaparus canonicus n. gen. and sp. Lateral view of type. ($\times 2 \frac{1}{2}$.)
and somewhat longer than the infraocular portion of the gene, when viewed from the dorsum the eyes are seen to be very slighty prominent; antenne about as long as the head and pronotum together, heavy, distinctly depressed, very slightly expanded proximad and with a

Fig. :3.-Homalusapmerus canonicus.s 11. gith. sated op). Jorsal view of head and pronotum. (x 23.1 very slight expanded distal clavation. Pronotum about half again as long as the dorsal surface of the head; cephalic margin subtruncate with an extremely slight median emargination, caudal margin subrectangulate, apex finely angulate; median carina low, distinct, severed three times; lateral shoulders distinct on the metazona, rounded and descending ventro-cephalad on the prozona; lateral lobes about as deep on their greatest dorsal length, ventral margin rotundato-emarginate cephalad, arcuate caudad. Tecgmina exceeding the tips of the caudal femora by about the length of the head; greatest width at about three-fourths the length from the proximal extremity and contained about four and a half times in the tegminal bength: costal margin with a very considerable rounded lohe, distad of which the margin is straight to the point of greatest width and areuate thence to the apex, sutural margin straight except for a slight proximal arcuation, apical region ob-
liquely truncate with the apex rounded rectangulate. Wings fully developed. Prosternal spine erect, rather slender, hardly tapering, bluntly pointed. Interspace between the mesosternal lobes broad cephalad, sharply narrowed to about a third the cephalic width, then slightly and regularly expanded with the caudal angles of the lobes rounded, the whole shape of the interspace being like a letter X with the upper portion abnormally expanded and the lower portion dramn out; interspace between the metasternal lobes narrow, inverted, cuneiform. Abdomen moderately compressed; supra-anal plate produced subequal in width in the proximal half, distinctly narrowed mesad and thence arcuate to the rather blunt apex; cerci slender, subequal in the proximal half, roundly emarginate on the dorsal margin in the distal half, the apex blunt, the distal fourth seen to be distinctly arcuate mesad when viewed from the dorsum; subgenital plate acute scaphiform, the apex acute-angulate, and the lateral portions of the plate distinctly constricted proximad, ventral aspect with a distinct median keel. Cephalic and median limbs rather slender. Caudal femora about two-thirds the length of the tegmina, the greatest width contained about four times in the length, dorsal carinæ serrato-dentate, pattern of the pagine well impressed, genicular lobes acute; caudal tibix slightly shorter than the femora, lateral margin with nine spines one of which is quite small and apical, internal margin with ten spines, one apical; caudal tarsi comparatively short and with the pulvilli large.

General color prout's brown, tawny-olive ventrad and tending toward seal brown on the dorsum of the head, disk of the pronotum and proximal portion of the tegmina. Head with the face washed with walnut brown, several pale bars crossing between the labrum and median ocellus; labrum ochre; siles of the head ventro-caudad of the eyes washed with seal brown; eyes russet; antenne wool brown dorsad. vandyke brown ventrad with the tip blackish. Pronotum slightly. touched laterad with walnut brown. Tegmina sprinkled rather sparingly with small subquadrate maculations of seal hown; angle of the anal field rather pale. Wings transparent, tinted with pate brownish. Caudal femora with an olscure pregenicular ammulus of seal brown, tubereles on the carine and pattern of the pagina Mackish: caudal tibies with the spines maize yellow with seal brown tips.

Measurements.

Length of body, $\quad 25.2 \mathrm{~mm}$
Length of pronotum,
Greatest caudal width of pronotum,
Length of tegmen,
Length of caudal femur,

A series of five paratypic males have also been examined, taken from the first to nineteenth of september, 1900. In size they show some little variation, and in color there is a tendency in some specimens to a more gravish coloration than in others, while in one specimen the color pattern is much more contrasted than in the type. Pale hars on the lateral angles of the pronotum are sometimes present, the ventral half of the eye also being suffused with seal brown in some -pecimens, while the small tegminal maculations frequently show a tendency to associate in oblique transverse bars well defined or much interrupted and from one to three in number.

SCHISTOCEBCA Stå.

Echistocerca gratissima n. sp.

Schistocerca lineata (Stoll)? according to Bruner, Proc. U. S. Nat. Mus., NXX, pp. 675, 676 (1906). ${ }^{\circ}$
Type: O' São Paulo, Brazil. September 14, 1900. (Hempel.) [Acad. Nat. Sci. Phila.]

Fig. 4.-Schistocerca gratissima n. sp. Lateral view of type. $\left(\times 1 \frac{1}{2}\right.$. $)$
Allieyl to S. pallens (Thunberg) but differing in the shorter, blunter fastigium, the lesser space between the eyes, the broader and more truly elliptical eye, the more arcuate facial outline when viewed laterad and the anomalous pink and green coloration.
size laree; form rather slemer. Head with the oeciput considerably elevated and rounded, descending regularly to the fastigium and romminiz into the frontal cosita; interspare between the eves slightly wereding the greatest width of the fastigium; fatigimu about as long as bond. condiderably exmated ; fromal costa slightly constricted

[^5]ddorsad, thence of a uniform width to the clypeus, deeply sulcate from between the antenne to near the clypeus; facial outline when viewed from the lateral aspect slightly arcuate; eyes elliptical oval, distinctly longer than the infraocular sulcus; antennæ somewhat exceeding the length of the head and pronotum together. Pronotum rounded dorsad, hardly constricted, not tectate, disk of the metazona slightly flattened; cephalic margin of the disk very slightly angulate with a hardly appreciable median emargination, caudal margin of the disk nearly rectangulate, the apex very broadly rounded, median carina present but not high, cut by three transverse sulci, prozona and metazona subequal in length, the width of the metazona slightly greater than its length, lateral angles not apparent on the prozona, well rounded on the metazona; lateral lobes considerably longer than deep, narrowing ventrad, ventral margin truncate on the caudal half, obliquely emarginate on the cephalic half. Tegmina exceeding the apex of the abdomen by a distance about equal to the length of the pronotum; costal margin considerably arcuate in the distal third; apex broadly rounded. Prosternal spine stout, acute, very considerably retrorse; interspace between the mesosternal lobes longitudinal, subcuneate, the inter-pace cephalat being nearly as wide as the lobes; metasternal lobes contiguous. Abdomen somewhat compressed ; cerci of

Fig. 5.-S'chistocerca gratissima n. sp. Dorsal view of head and pronotum of type. ($\because 1+$) moderate length, the apex somewhat narrower than the base, subtruncate; subgenital plate moklerately prolucenl, the apex rather deeply divided. Caudal femora about reaching to the apex of the abdomen, rather slender, medio-doral carina serrate. pagine with the pattern distinctly but not very decply impresent: caulal tibie with the spines quite long, nine in number on the external and eleven on the internal margins.

General colors oil green, liver brown and salmon-buff. Head with the face, an infraocular bar and the fastigium and occiput green. remainder salmon-buff ; a poorly defined medio-longitmdinal owerpital pale band present, bordered laterad by poorly defined darker area-: eyes burnt umber; antemar dull pinkish. Pronotum with the dersmu green with a subequal median har of vinacems-rufons; lateral lohn. vinaceous-pink with a broad oblique har of green. Mesothoraric amb metathoracic epimera green, mesothomere and metathomeic epionerna and ventral portions of the thorax pinkith. Themina with a contal
bar of primrose yellow extending over almost the whole of the costal half of the costal field, the greater portion of the margin of this pale area being narrowly elged with maroon, remainder of the tegmina liver brown, the principal veins maroon, several pale areas, caused hy the coloration of adrentitious veins, distributed over the median protion of the tegmen; anal field with a rather broad longitudinal band of vinaceous-cinnamon. Wings slightly infuscate. Cephalic and median limbs buffy washed dorsad with greenish. Caudal femora with the dorsal half oil green, the ventral half salmon-buff; the division along the middle of the pagine being indicated by a slightly blackish area, genicular arches chestnut; caudal tibise and tarsi pomegranate purple, the spines maize yellow tipped with black.

Measurements.

Two paratypic males in the Academy Collection and one of the same sex from Surinam (V-IX; Fruhstorfer) in the Hebard Collection have been examined. This series shows a considerable amount of variation in size and some in color. One São Paulo male is about equal to the type in size, the other two specimens being appreciably smaller. The additional Sĩu Paulo individuals agree fully with the type in color, while the Surinam male has the greens much deeper, almost french green, and the pink shades almost replaced by yellowish-white, sometimes greenish-yellow, the purplish color of the caudal tibise being weaker and replaced on the ventral surface by oil greenish.

DICHROPLU8 St 8 .

Dichroplas brasiliensi Bruner.
1906. Dichroplus brasiliensis Bruner, Proc. U.S. Nat. Mus., XXX, pp. $678_{\text {r }}$. 682. [Victoria, Brazil.]

Espirito Santo, Brazil. [Hebard Collection.] One 9.
São Paulo. September 14, 1900. (Hempel.) One 우.
The pale hars mentioned in the original deseription are bout faintly indicated in these specimens.

8COTU88A Giglio-Ton.

Beotuan brasilionsis lisuner.
1906. [SCotussat brusiliensis J3runer, I'roc. U. S. Nat. Mus., XXX, p. 689. [São I'uulo, Bruzil.]
Sino Paulo. September 7-19, 1900. (Hempel.) Six o ${ }^{7}$, four 9.

These specimens agree fully with the original description except in the number of external tibial spines. In three of the males both tibiæ bear eight spines, and another male has cight on one tibiæ and nine on the other. In consequence the presence of nine spines cannot be considered diagnostic.

REMARKS ON THE FOSSIL CETACEAN RHABDOSTEUS LATIRADIX Cupe.

by frederick w. true.

The genus and species Rhabdosteus latiradix were first described by Cope in 1867^{-1} and were based on a rostrum from Charles County, Md., near the Patuxent River, collected by James T. Thomas. Three teeth were also "with much probability" assigned to the species. Cope remarked: "Joseph T. Thomas, the discoverer of this cetacean, tells me that he has seen portions of the muzzle between two and three feet long."

No further original information regarding the species appears to have been published until 1890, when Cope published figures of the type specimen, as restored, and of a tooth. He remarked, however, that the posterion parts of the maxillary and premaxillary bones "were restorel from a different specimen from that represented in the rest of the figures.". This "different specimen" was figured by Mr. Case, in 1904 , together with still another rostrum ${ }^{3}$ and the three teeth.

Irom an examination of the three beaks, which were very kindly placed in my hands for study by the authorities of the Philadelphia Acadeny of Natural Sciences and Mr. Witmer Stone, it appears probable that three species are represented. The rostrum figured by Mr. Case in I'l. 15, fig. 1, is the same as that described by Leidy, in 1869 , as probably belonging to I'riscodelphinus grandavus.* I have remarked in a previons praper that the reasons for identifying the rostrum with that speries are mastisfactory; but, however that may be, the rostrum cortainly does not helong to the same species as the one called Rhabdosteus latirnhix hy ('une, nor is it likely that it represents the same genus.

The "different -perimen" mentionend by Cope in 1590 , and figured by Mr. Case in 1'l. 15, fig. 2, does not, in my opinion, belong to the species laterodix, mon is it at all probable that it helonge to the genus Rhabdosteus.

[^6]Leaving out of consideration for the moment the rostrum originaily assigned to Priscodelphinus grandæuvs (Case's Pl. 15. fig. 1), I would remark that the restoration of neither of the other two beaks appears to me satisfactory, and that the figure published by Cope in 1890 is even less so. As regards the latter, by adding a portion from the second beak to the posterior end of the type, Cope has, in my opininn, produced a figure which does not represent any species which has actually existed, and, furthermore, as the portion added is itcelf incorrect, the erroneousness of the figure is compounded. It showht also be remarked that in the side view (Cope's fig. 4 (1a)) the alventi are much smaller than in the restoration of the type itself.

Cope's note on the genus Rhabdosteus, published in 1s90, is as follow:
"The muzzle reaches an extraordinary elongation, and for the greater part of its length forms an edentulous cylinder, which resemblè the beak of the sword-fishes. The few teeth which remain at the batec of the muzzle are like those of Platomistu, with roots compresed so at to be longitudinal, and crowns compressed so as to be transverse, to the axis of the skull. The R. latiradix Cope is not uncommon in the Miocene beds of Maryland. Its skeleton is unknown. The nearest approach to Rhabdosteus is made by the genus Stenodelphis."

After repeatedly examining the type specimen (Pl. VI), I am satisfied that this characterization is only partially correct.

The alveoli, as restored, are horizontal. They are nine in number, about equal in size, and situated in advance of the depression in the palate in which a lozenge-shaped area of the vomer usually appears. Hence, they are hardly likely to represent the posterior end of the series. That the alveoli should be horizontal in the midde of the series is improbable. No known cetacean has such a conformation, and on anatomical grounds it appears unlikely to occur. The lower (or inner) margin of the alveoli and the lower half of the various septa are alone preserved, and this only on one side of the jaw. No distinct trace of the upper (or outer) margin of the alveoli and septa can be seen on the long rod-like superior portions of the maxillar. 'The narrow inferior strip of the maxilla, which bears the incomplete alveoli and septa (already mentioned), has been placed outside the larger pieere, which forms the proximal end of the palate, and parallel with it. Such a combination could be justified only on the ground that the maxilla had split lengthwise, and that the outer and inner pieces represent two parts of one and the same bone. This is improbable, as the inferine surface of the larger piece is convex, while that of the smaller piece is nearly phane. The smaller piece is, in my opinion, much more likely
to have been anterior to the larger piece originally and in line with it, though this would bring the rather large alveoli farther forward than might be expected. If the superior, rod-like portion of the maxilla were turned outward on its axis, so as to bring the alveoli nearly or quite to a vertical position, a space would apparently be left between the premaxilla and maxilla. It is not reasonable to suppose that any such space existed originally.

In view of the circumstances mentioned above, I think it is unlikely that the raal form of the rostrum can be determined until additional specimens have been collected, or at least until the type specimen has been taken to pieces, so that all the surfaces of the component bones can be examined.

- It should be remarked that at the anterior end of the small piece of the maxilla which bears the alveoli there is a space of 19 mm ., in which it is obvious that no alveoli existed, and between this and the first alvertus which is traceable is another space of about 25 mm ., in which additional alveoli may or may not have existed. In any case, the fragment in question bears the end of the series of alveoli, and, if it is properly oriented, the anterior end. As the fragment bearing the alveoli is much shorter than the rod-like portions of the maxillæ above it. this confirms to some extent Cope's assertion that the muzzle "in the greater part of its length forms an edentulous cylinder."

Measurements of the type-bcak of Rhabdosteus latiradix Cope.

tored,	440 mm
h of the same, as restored,	39
I ength of longest piece of premaxilla preserved,	330
Length of longest piece of maxilla preserved,	277
Breadth of premaxilla at posterior end,	11
Breadth of premaxilla at anterior end	7 '
Brealth of portion of maxilla above the alveoli at poster	
readth of alveoli at anterior end,	7
Cireatest breadth of palate between alveoli, as restored.	21
Lerngth of the palatal portion of the left maxilla, which tains the alveoli,	166
Breadth of the same at the anterior end,	$4 \times$
Preadth of the same at the posterior end,	4 "
Length of larger palatal fragment (left), which is interna the preceding in the restoration,	193
Breadth of the same at the anterior end,	5
Breadth of the same at the posterior end,	16
l,ength oceupied by nine alveoli,	103
Antoro-ponterior breath of largest septum between alveoli,	5
Antero-posterior breadth of largest alveolus,	7

The "different specimen" mentioned by Cope, and figured by Mr. Case. ${ }^{6}$ consists of two pairs of slender elongated bones, of which the outer pair represents the superior rostral portion of the maxillis, and the inner pair the superior rostral portion of the premaxills. The maxillæ diverge at both anterior and posterior ends, while the premaxille diverge at the anterior end and converge at the posterior end. At the latter point, in the median line, is inserted a piece of bone which may represent a portion of the vomer or mesethmoid.

After examining this specimen, I am of the opinion that it is not properly put together, especially as a space is left between the maxille and premaxillæ proximally. The small fragment inserted between the premaxilla does not belong in that position. It is unsymmetrical and probably represents some portion of the maxilla.

Traces of several alveoli are visible on the under side of the maxillsp. at the proximal end. That these bones are acuminate at this end is due to the fact that both the inner and outer edges are abraded. The bones should be turned outward somewhat on their axes, so that the lower free border, which is now directed outward, would be directed downward. This would bring the maxilla into such a position that the upper surface would be horizontal proximally, very much as in Inia.

The two inner bones are probably premaxilla, although at the anterior end the imer surface is plane or elightly convex rather than concave. At the middle, the inner wall is concave, with traces of a contimuous longitudinal ridge. If they are really premaxillis, they should be transposed, that on the right side being placed on the loft and vice versa. At the same time they should be given a quarter turn on their axes, so as to make horizontal the inner surfaces which are now vertical. This would also cause the bones to diverge at the posterior end, as they do in Inia and most other Odontoceti, leavine space for the prenarial triangle. Their shape would then correspond closely to that of the same bones in Inia, except that the sides near the proximal end would be somewhat more nearly vertical.
The specimen probably represents a genus allied to Inia, but it is impossible without more material to determine its relationship arentrately. It does not agree with any European genus of which the rostrum has been figured, nor with any Americangenme of whith the rostrum is available for comparison.

[^7]

Vie. 1.- Koutruma ot Priseodelphinu sp.? from the Mio. ceneof shiloh, S.J. supertior murface. ($\frac{1}{2}$ nat. aizu.)

The third rostrum (text fig. 1), which is that mentioned by Leidy in 1869 under Priscodelphinus (or Tretosphys) grandorus, ${ }^{7}$ and also figured by Mr. Case, ${ }^{8}$ has, as already mentioned, no close relationship with the other two. It may for the present be considered as representing a species of Priscodelphinus, although, as explained in a previous paper, ${ }^{9}$ the reasons for referring it to that genus are not satisfactory.

The principal peculiarities of the rostrum are that the premaxillæ are much depressed, but not narrowed, anteriorly, that the anterior alveoli are larger than the posterior ones and directed forward. and that the external free border of the maxillæ is rounded (see text figs. 2 and 3).

Fig. 2.-Transverse section of the same at the posterior end. (Nat. size.)

Fig. 3.-Transverse section of the same at the anterior end. (Nat. size.) In figs. 2 and 3 the maxille are indicated by horizontal lines and the premaxillse by oblique lines

The three teeth which were provisionally referred to Rhabdosteus by Cope are preserved in the Academy of Natural Sciences of Philadelphia, and were examined by me in 1907. Very good figures of the largest one were published by Cope

[^8]in $1890 .{ }^{10}$ This tooth and one other are blackish in color, while the third tooth is yellowish. The last mentioned is 21 mm . long, and that figured by Cope 23 mm .

As mentioned by Cope, both crown and root are compressed, the former at right angles to the latter. ${ }^{11}$ This form of tooth occurs in Stenodelphis and in some genera of Delphinide. The crown is slightly recurved. The base of the crown is somewhat convex, both internally and externally, and is marked off from the root by a distinct constriction, due in part, no doubt, to wear.

Teeth similar to these in size and form, from Baltringen, Würtemberg, Germany, were described and figured by Dr. J. Probst in 1856, ${ }^{12}$ under the name of Schizodelphis canaliculatus H. von Meyer. This species is considered identical with S. sulcatus by Dr. Abel, but the teeth of the latter, figured by Dal Piaz, ${ }^{13}$ are certainly different. as regards the shape of the crown and the direction of its compression, from those figured by Probst. Even with allowance for variation, it seems to me probable that they may represent two different species of the genus Schizodelphis. The principal difference between the teeth assigned to Rhabdosteus and those figured by Probst is that the crown is shorter in the former.

On the whole, it seems probable that the teeth described by Cope belong to the genus Schizodelphis, but this is not a sufficient reason for considering Rhabdostcus synonymous with Schizodelphis, especially. in view of the fact that it is uncertain whether the teeth have any direct connection with the type rostrum of Rhabdosteus. The most that can be said is that the alveoli of Rhabdosteus indicate that the teeth had flattened roots of the same size as those of the teeth which Cone assigned to that genus.

Explanation of Piate VI.

Piate VI.-Fig. 1.-Type specimen of Rhabdosteus latiradix Cope. Superior surface. Scale $\frac{1}{83}$.
Fig. 2.-The same. Left side. Scale $\frac{1}{26}$.
Fig. 3.-The same. Inferior surface, Scale ${ }_{2}{ }^{2}$.

[^9]
Мarch 3.

Arthur Erwin Browx, Sc.D., Vice-President, in the Chair.
Sixty-four persons present.
The reception of a paper entitled "New Land and Fresh-water Mollusea of the Japanese Empire," by H. A. Pilshry and Y. Hirase (February 28), was reported.

Dr. Johi W. Harshberger made a communication on his dendrological studies in Italy, with special reference to the influence of vegetation on the building up of the islands on which Venice is placed, and on the condition of the timber foundations of the Campanile as revealed at the time of its fall. (No abstract.)

March 17.

Arthur Erwin Browa, Se.D., Vice-President, in the Chair.
Fifty-nine persons present.
The Publication Committee reported the reception of a paper entitled "New Land Shells from the Chinese Empire-I," by H. A. Pilsbry and Y. Hirase (March 11).
E. (. Cosklin, Ph.D., made a communication on some phenomena and causes of heredity. (No abstract.)

The following were ordered to be published:

NEW LAND AND FRESH-WATER MOLLUSCA OF THE JAPANESE EMPIRE.

BY H. A. PILSBRY AND Y. HIRASE.

? Among other new forms noticed below, the first Pisidium from Japan is described. It is from the island of lesso, where the palmarctic element is much better represented than in other parts of the Empire.

Formosan Spectes.

Cyclophorus formosaensis Nevill.
This is apparently confined, in its typical form, to northern Formosia. Numerous specimens from Hōzan, Ensuiko, sammaipo and Hotawa -places all in the interior below the middle of the island-differ by having a strong keel at the periphery, and may be known as C. f. interioris n. subsp., Sammaipo being type locality. It is this form which we formerly listed as C'. turgidus P'fr. from Hotawa (Proc. Acad. Nat. Sci. Phila., 1905, p. 722). It differs from C.turgidus in the very much smaller central nipple or mucro on the inside of the opereulum. The shells are practically intistinguishable. Our former opinion that ('. formosuensis is a variety of ('.turgidus must be retracted. We douht whether ('. turgidus occurs in Formosa. The species of this group of Cyclophori stand very close, and their differences are not of much importance, yet the areas ocrupied by the several slightly differentiated races are mainly different.

Cyclophorus friesianus slldff.
This species has been found at Tapanii, Formosa, the specimens agreeing well with the original description except by their smaller size, alt. 19, diam. 22 mm . It differs from C. formosaensis interioris only in havingmanerous lowsiral rideres abowe and below the peripheral keels. The operculum is like that of formosaensis, eventy convex inside with a very small central nipple.

species of Japin and the Ryukyo lsavis.

Cyclotus tanegashimanus n, sp).

Shell very similar to C. cempramulatus Ma:ts., but if specimens of the same size are compared, tencyoshimamus is seen to have the umbiliens a trifle larger and the aperture just perceptibly smaller; the lip is less expanded. The operettum is distimelly convex externally, and much
more decply concave inside, than that of C. campanulatus. The edge is bevelled and flat between projecting outer and inner laminæ.

Alt. S.5, diam. 12.2 mm .; whorls $4 \frac{1}{2}$.
" 7.1 " 10 " $4 \frac{1}{2}$.
Tanega-shima, Ösumi. Types No. 94,711 A. N. S. P., from No. $54 b$ of Mr. Hirase's collection.

The Cycloti of this group, represented in Japan by C. campanulatus, and in China by C '. stenomphalus and its allies, are very similar in shape and color. The form described above is well distinguished by its externally convex operculum, that of C. campamulatus being flat outside and much less concave within.

Spiropoma yakushimanum n. sp.

The shell is depressed, very openly umbilicate, solid, yellowisholivaceous, somewhat brownish on the last whorl, the cuticle much paler or usually wanting on the inner whorls. Surface glossy where mworn, marked with growth-lines and very indistinct traces of spiral strix. Whorls fully $4 \frac{1}{2}$, quite convex, the first one projecting a little; last whorl tubular, very convex at the base, deeply descending in front. Aperture oblique, longer than wide. Peristome contracted, being thickened within and shortly built forward; obtuse, whitish. It is thickened in the posterior angle, but usually has a small notch there. The columellar margin recedes rather conspicuously. The short parietal margin is thick and straight.

Alt. 7.3 , diam. 12.5, alt. of aperture including peristome 5.3, width 4.7 mm .

Alt. 6.3 , diam. 11.5 mm .
The operculum is conic, composed of $7 \frac{1}{2}$ flat whorls separated by a narrow ledge with raised outer edge, producing a narrow spiral chamel along the suture; summit obtuse.
laku-shima, Osumi. Types No. 94,716 A. N. S. I', from No. 1,447 of Mr. Hirase's collection.

Compared with S. juponicum (A. Ad.), this form differs in the more descending last whorl, the deeper umbilicus and more excised or receding coltmellar lip. The aperture is longer than wide in yakushimamum, nearly round in japonicum. It is perhaps more closely related to S' nakulai of 'Tanega-shima, a smaller shell with an operculum of fewer whonds, but having an aperture much as in S. yakushimamum.

Diplommatina gotoensis n. pr.
('losely related to l). cassa, but with longer conical spire, rapidly tapering amb ernice alone the penultimate whorl, which is the largest:
pale reddish or yellowish-corneous; very finely and evenly striate throughout. Constriction in the middle in front. Last whorl smaller, only moderately ascending to the aperture. Aperture subcircular, the outer lip reflexed, duplicate, the two lamine close together, a narrow opaque whitish streak just behind the reflection; indistinctly angular at the base of the columellar lip. Parietal callus thin with low, thread-like elde, not very distinct, and rising to the middle of the front of the penultimate whorl. Columellar lamella horizontal, thin, rather long. Palatal plica quite short and situated wholly to the left of the parictal callus. Inside, the columellar lamella is evenly high and thin throughout. Internal parietal lamella low and rather long.

Length 3 , diam. 1.5 mm . ; whorls $6 \frac{1}{2}$.
" 2.7, " 1.3 " " 61 2.
Goto, Hizen. 'Types No. 84,905 A. N. S. P., from No. $604 b$ of Mr. Hirase's collection.

This species resembles D. nipponensis Mlliff. in shape and sculpture, but differs by the position of the constriction, which is median in gotoensis, above the termination of the outer lip in nipponensis. In the latter species the palatal plica lies under the parietal callus. D. cassa is a more cylindric species, the cone of the spire shorter. D. kyushuensis Pils, and Hir., a widely distributed species in Kyushu, is closely related to D. gotoensis, but it has a palatal plica about twice as long, and the columellar lamella is much stronger near its inner termination than near the aperture, while in D. gotoensis it is about equally strong throughout.

Eulota (Plectotropis) lepidophora scutifera P. and I., n. subsp.
The shell elosely resembles E. lepidophora tenuis Gude, but differs by its more convex whorls and consequently deeper sutures. The periphery is often a little less angular than in temuis. Surface, when unworn, copiously covered with triangular cuticular scales.

Alt. 4.3 , diam. 8.7 mm . ; whorls $5 \frac{1}{2}$.
" 4, " 7.3 " " $5 \frac{1}{4}$.
Iheyajima, Ryukyugroup. Types No, 94,705 A. N. 太. I'., from No. $1,290 \mathrm{~b}$ of Mr. Hirase's collection.

Eulota (Aegista) celsa P. and H., n. sp.
The shell is convexly conic, deeply umbilicate, the umbitious cylindric, well-like, the periphery obtusely angular. Surface lusterless. chestmut brown, finely but not strongly striate on the upper surface, the strise indistinct at the base; on the last part of the last whorl near the aperture the strite are partially interrupted into long qranules. The
spire has convex outlines and an obtuse apex. Whorls $6 \frac{1}{3}$, convex, very slowly widening, the last one very slowly and slightly descending, indistinctly angular at the periphery in front, becoming rounded on the last half. The aperture is quite oblique, very much larger than the umbilicus. Peristome thin; outer margin only very slightly expanded; basal margin deeply arcuate, slightly expanded; columellar margin broadly, triangularly dilated. The terminations of the lip are widely separated, parietal callus very thin.

Alt. 10.5, diam. 12 mm .; alt. and width of aperture 6 mm .; width of umbilicus 3 mm .

South Nishigo, Uzen. Type No. 94,740 A. N. S. P., from No. 1,438 of Mr. Hirase's collection.

This peculiar Aegista has some superficial resemblance to Trishoplita hilgendorfi Kob. It is closely related to E. eminens P. and H., but differs in being larger, stronger, with less scaly sculpture, and a little less strongly angular. It is quite possible that intermediate provinces between Shima and Lzen will be found to have connecting links between E. eminens and E. celsa; yet at present they seem to be sufficiently distinct.

The type specimen is higher than others in the type lot. The lower ones have less convex outlines, the spire being less convexly conic; the last two whorls have sculpture of long granules in places; and the umbilicus is much wider than in the type. Alt. 9, diam. 13.8 mm .; aperture $6 \times 6 \mathrm{~mm}$. ; umbilicus 3.5 mm . wide (celsus, lofty).

Ena reiniana vasta n. subsp.
Shell very large, cylindric. The cuticle is glossy, yellowish brown, and copionsly granulose except on 3 or 4 earliest whorls; but many old shells have lost the cuticle and sculpture in part or wholly. Whorls 8 to $9 \frac{1}{2}$.

Length 37.5, diam. above aperture 11 mm .

"	35	"	"	"	10.8
"	32.5	"	"	"	11.2

S. Nishigō, Uzen. Types No. 94,686 A. N. S. I'., from No. 1,439 of Mr. Hirase's collection.

This is the largest of the Japanese Bulimini. It is larger than Ena rciniana omiensis, and copiously granular when unworn.

Ena roiniama ugoensis n. subsp.
Shell very short and obese, reddish on the spire, whitish on the last whorl, under a thin yellow cuticle; gramulation only weakly developed. Whorls $7 \frac{1}{2}$.

Length 26 , diam. above aperture 10 , length of aperture 10 mm .
Kitaura (Cape of Ojika), Ugo. Types No. 94,738 A. N. S. P., from No. 1,444 of Mr. Hirase's collection.
The obese shape, length about $2 \frac{1}{2}$ times the diameter, is the chief character of this local race.

Pythia pachyodon n. sp.

This species of the scarabcus group is nearly uniform blackish olive. but with a blackish band below the suture and sometimes with more or less brown suffusion. The surface is rather finely wrinkle-striate, with some widely spaced spiral lines. Spire angular on both sides, with whitish streaks in front of the angle. Whorls 10. Base perforate or umbilicate. Aperture with two stout parietal teeth and a strong columellar lamella. Teeth in the outer margin irregular, three larger, with two or three minute ones.
Length 30.6, greatest diam. 18.5, antero-posterior diam. 13.5 mm .; length of aperture 18.5 mm .

Loochon (Okinawa) and Oshima, in the Ryukyu Islands. Types No. 87,537 A. N. S. P., from Mr. Hirase.

Pythia ægialitis n. Ep.

The shell is similar to P ' pachyodon, but is copionsly mottled with dark brown on a pale corneous-yellowish ground ; the markings sometimes partially obscured when the surface is superficially worn. Teeth of the inner margin as in P. pachyodon; three teeth in the outer lip.

Length 25.3 , greatest diam. 15.6, antero-posterior diam. 11, length of aperture 16.7 mm .

Loochoo (Okinawa) and Oshima, Ryukyu Islands.
The specimens from Oshima are somewhat longer and comparatively less wide than those from Loochoo Island.

While ellosely related to the P. searabrus group, which is compored of very poorly characterized species, yet the two Ryykyan forms do mot exactly agree with any of them, and it may be well to have definite designations for them.

Besides these forms, P. cecillei Phil. has been found by Mr. Hirase at Hirado, Hizen, and P '. nemu Bavay was deseribed from apecimens taken at Loochoo.

Pisidiam japonioum n, nj). Fir. 1.
The shell is subghobese, rombled-oval, with large very wide, monderately projerting rommed beaks; surfaro glos-y, wery timely, irregularly -triate ; cuticle lieht yellow; valses very consex, מot very inemuipartite.
both ends rounded, the posterior shorter and wider. Hinge very short, the lateral teeth short and wide, rather near together, stout but low;

Fig. 1.-Pisidium japonicum, lateral, posterior and interior views.
only the anterior one projecting above the level of the valve. Cardinal teeth minute, almost obsolete, narrow, very low and somewhat elongate.

Length 2.37, alt. 2.16, diam. 1.87 mm .
Alkeshi, Kushiro, Yesso. Types No. 94,744 A. N. S. P., from No. 181 of Mr. Hirase's collection.

This is the first Pisidium to be described from Japan. It is a very small species, unusually globose, with very large full beaks.

NEW LAND SHELLS OF THE CHINESE EMPIRE-I

BY゙ H. A. PILSBRY AND Y. HIRASE.
The following species were collected by Mr. Nakada in the course of several months' work, chiefly in the north. A more ample report will be published later. Working chiefly in the densely populated northeastern provinces and not far from the coast, the number of species taken was naturally not great, though some, such as Vallonia patens Reinh., Eulota? mumieriana Cr. \& Deb., etc., are forms hitherto but little known. Around Soochow and Hangchow a fauna richer in Clausilie. Helices and C'yclophoride was encountered, most of the species in this region being among those deseribed by l'ère Heude and earlier naturalists.

DIPLOMMATINID雨.

Diplommatina hangohowensis n. sp. Fig. 1.
The shell is short, eylindric, the summit shortly conie, hese rounded; corneous or pale brownish, somewhat translucent, the upper part whitish or pale red. Whorls $5 \frac{1}{2}$, very convex.

Fig. 1.-Diplommatina hanychouensis. The first whorl is smooth; following whorls are very finely and delicately rib-striate; on the pemultimate whorl the ribs are moneh weaker, and the last whorl is smooth. In back view the pernultimate whorl is lagest, the last whorl much smaller and quite glossy, ascending a little near its end, and constricted in front, above the columella. A short palatal plica shows through, just left of the parictal callus. The aperture is nearly circular. The peristome is expanded and thickened, with a flat face and inconspicuous inner rim; at the base of the columella it is very indistinctly angular; it is interrupted above, the margins joined by a thin parietal callus, with thin adnate edge. Columellar lamella well developed.

Length 2.4, diam. 1.3 mm ., alt. of aperture 0.95 mm .
Hangchow, province of Che-kiang, China. 'Types No. 94,748 A. N. S. P., from No. 1,479a of Mr. Hirase's collection.

This species of the section Sinica is smaller than D. porillus Gredler, and differs hy its smooth last whorl and very short palatal plica. It is more related to D. hungerfordiana of Formosa, which differs in shape. D. schmucteri Mlldff. is unlike hangchouensis by the shape of the aperture.

A variety also from Hangchow may be called D. hangchowensis granum. It is larger, length 2.7, diam. 1.5 mm ., with 6 whorls and pale reddish-corneous color. The cone of the spire is longer than in D. hangchowensis.

HYDROCENID平.

The genus Georissa is represented by six species in China: G. bachmanni Gredl., G. sinensis Hde., G. nivea Hde., G. sulcata Mlldff., hungerfordiana Mlldff., and G. heudei P.\& H. In all of these except sinensis and heudei the glossy, flat operculum is retracted some distance in the aperture, This is the normal condition in Georissa.

In G^{\prime}. simensis and G. houdei the thick, calcareous operculum lodges at the edge of the peristome, as in Bithymia, being larger than in Georissa proper. We propose to signalize this feature by the erection of a new subgenus Georissopsis, the type being G. heudei.
Georissa (Georissopsis) heudein. sp. Fig. 2.
The shell is minutely perforate or subperforate, conice, higher than wide, gray, more or less reddish in places, sculptured with very fine, close spiral striæ, usually in

Fig. 2.-G. heludei and outline of operculum, interior view.
 large part lost by erosion. There are $3 \frac{1}{2}$ to $3 \frac{3}{3}$ whorls, the first corneous and glossy, the rest very convex, separated by deep sutures. The aperture is subvertical, broadly semicircular, the outer margin very convex, inner margin nearly straight; the basal margin is very broadly rounded, the upper end narrowly rounded. The peristome is thin, acute; the inner lip is built forward, standing frew fom the whorl exept for a short pace near the posterior end, leaving an umbilical area.

Length 3.4, diam. 2.1 mm .

semicircular in shape, calcareous, thick, white, with a dark nuclear dot nearer the outer border; around this it has concentric growth-lines. The inner face is concave. Near the lower third a stout rib arises about the middle of the width, running to the columellar border where it projects as a short point.

Hangehow, province Che-kiang, China. Types No. 94,745 A. N. S. P., from No. 1,477 of Mr. Hirase's collection.

This species is very similar to G. sinensis (Hde.) in characters of the shell, but it differs in the operculum, which is figured as with subcentral nucleus in G. sinensis, while in G. heude the nucleus is near the outer border. We have no reason to doubt the accuracy of Heude's figure. It was drawn by Rathouis, whose faithful drawings have probably never been surpassed. Unfortunately Père Heude, who described G. sinensis as a Realia, did not describe the operculum, merely saying that "l'opercule est celui du genre."
some specimens from Changyang, received as (i) sinensis, are much smaller than Père Heude's type. They have a dark, subcentral nuclear dot.
G. heudei occurred at Hangchow with the much smaller G. bachmanni Gredl.

HELIOID平.

Eulota læva P. and H., n. sp.
The shell is sinistral, depressed-globose with conic spire, narrowly half-covered umbilicate, thin, light corneous-yellow. Surface glossy, smooth to the eye, but under a lens it is seen to have wery weak, faint growth-lines, the last two whorls densely, minutely gramular, the granu-

Fig. 3.-EE. Lera, basal, front and dorsal views.
lation weak on the upper surface, more distinet on the hase: there are also some weak traces of a few coarse, impressed spirals on the last whorl. The spire is conie with slightly conves omtines and obtuse apex. Whorls 5 t. Alowly inereasing convex, the lat domenting a little
to the aperture and indistinctly angular in front, the base very convex. The aperture is quite oblique, the upper and baso-columellar margins about equally arcuate, the outer are more strongly curved. The peristome is thin, narrowly but well expanded, the hasocolumellar margin reflexed, somewhat dilated towards the columellar insertion.

Alt. 12.5, diam. 13.8 mm . ; aperture 7.5 mm . high, S wide.
Hangchow, province Che-kiang, China. Type No. $9 \pm, 739$, A. N. S. P., from No. 1,475 of Mr. Hirase's collection.

This is a more compact shell than Eulota fortunci and quite different in sculpture. The generic position is uncertain, until the soft anatomy can be examined. It may belong to the section Eulotella, or it may be a Gancsella. The minute granulation is like some species of the G. japonica group. We do not know of any sinistral Ganesella, but there are many sinistral species of Eulota.

Dead and bleached shells which have lost the cuticle do not show the granulation described above. The largest example seen measures, alt. 12, diam. 16.5 mm . It is a dead shell.

Eulota (Plectotropis) scitula P. and H., n. sp. Fig. \&.
The shell is rather narrowly umbilicate, conic above, convex below, strongly angular at the periphery; uniform chestnut brown. The surface is rather dull, finely closely and rather weahly marked with growthstris. which in quite fresh, unworn shells hear short adnate cuticular threads on the base, giving it a sparscly scaly appearance. The last two whorls have also a very close, fine sculpture of heautifully even spiral

Fig. 4.-Eulola (I'lectotropis) scitula.
strise. The omblines of the conie spire are nearlystraight. Whorls $6 \frac{1}{3}$, slowly increasiner, moberately convex, the last descenting very little or not at all in front, convex bencath. The aperture is strongly oblique, rommed hanate. P'eristome thin, narmoly but distinetly expanded, the basoenhumellar margins a little reflexed, dilated towards the columellar insertion; ends widely separated, joined by a thin film.

Alt. 6.5, diam. 9.2 mm . ; aperture alt. 4, width 4.6 mm .; umbilicus 1.7 mm . wide.

Alt. 6.5, diam. 9 mm .
Hangchow, province Che-kiang, China. Types No. 94,741 A. N. S. P., from No. 1,471 of Mr. Hirase's collection.

A small, beautifully sculptured shell, which we are unable to identify with any of Père Heude's species from the lower langtee valley. It has some resemblance to E. inornata and belongs to a group of thin, dull species with the shell spirally engraved, cuticular scales small or wanting, and usually with no peripheral fringe. Other seceses of this group are E. osbecki, inornata, hachijoensis, fulvicans, lautsi, micra, perplexa, inrinensis, hebes, etc.
Chloritis impotens P. and H., n. sp. Fig. 5.
Shell depressed-globose, narrowly umbilicate, thin and fragile, corneous-brown. The surface has a somewhat silky sheen, and under the lens is seen to be densely set with small wramules, which are long in the direction of growth-lines, and arranged in oblique, forwardly descending rows, though this arrangement is not everywhere visible, being in part or wholly lost near the mouth. This granular sculpture extends almost to the apex, only the initial half whorl or less being smoothish, though not glossy. On the last two whorls the granules

Fig. 5.-C. impotens, basal, front and dorsal views, and sculpture of last whorl below suture.
bear short cuticular appendages in fresh, unworn shells, such as are often present in Egista and Plectotropis. The spire is low-conic. Whorls 5, convex, at first slowly increasing, the last one abruptly becoming much wider, about twice the width of the preceding, not noticeably descending in front, rounded at the periphery. The aperture is rommed-lumate, moderatelyolligue. P'eristome thin themehome. the outer and basal margins very slightly expanded, columellar margin broadly, triangularly dilated, half covering the umbilicus.

Alt. 8.7, diam. 12.6 mm . ; alt. aperture 6.5 , width 7.5 mm .
Chifoo, province P'e-chili, China. Types No. 94,742 A. N. S. P', from No. 1,468 of Mr. Hirase's collection.

A thin, fragile shell, with large aperture and densely, minutely granose-scaly sculpture. In fully adult shells the gramulation is more or less worn from the apical and early whorls, and on the last whorl the loner erranules appear to be glossy, but hardly if at all raised above the dull surface. The generic position of this snail is uncertain, but it has the shell characters of Trichochloritis rather than of any group known anatomically to belong to Eulota.

PUPILLID平。

Hypselostoma (Boysidia) hangohowensis P. and H., n. ap.
The shell is high-conic, with obtuse apex and convex base, minutely perforate, with a long curved umbilical rimation, dark brown. The spire is straightly conic, composed of $5 \frac{1}{2}$

Fig. 6.-H. hangchowensis. convex whorls. The last whorl ascends slowly to the aperture, its latter part being straightened and built forward to the level of the ventral face of the shell. There is no crest or marked constriction behind the lip. The aperture is truncate-oval, the upper margin straight. Peristome thin, well expanded, continuous; with a shallow dent outside at the upper third of the outer lip. The angular and parietal lamellx are concrescent into one stout straight lamella reaching to the margin, wider in the middle of its length, where it shows traces of its dual composition. The columollar lamella is strong, slopes obliguely downwarl as it enters, and the outer end reaches to, but not upon, the expansion of the lip. There are two short palatal plime, the lower one somewhat more deeply placerl.

Alt. 2.9, diam. 1.8 mm . ; largest axis of aperture 1.3 mm .
Hangchow, province Che-kiang, China. 'Type No. $94,743 \mathrm{~A} . \mathrm{N} . \mathrm{S}$. P., from Mr. Hirase.
(ompared with $/ /$. (Boysiditi) hummu (iredler, this is a much smaller shell, with only two palatal plice instead of three, and the anguloparietal lamella is les. distinetly hifid, as seen in an ohliquely basal view. It is not closely related to other described species.

1/. handromrnsis was found with Bifidarin (Bensonella) plicidens (Bens.), a species not before reported from China, but found in the IRyukyou Islands, as well as in subhimalayan India.
II. Hanuma as described and figured by Gredler has the last whorl
built forward, carrying the aperture free from the preceding whorl. We have not seen this form; the specimens of hunana before us, while agreeing with Gredler's description in other characters, do not have the last whorl free in front, though the peristome is continuous. They are like Père Heude's figures of hunana. Dr. von Möllendorff has unnecessarily altered the name hunana to hunanensis.
We share with Gredler the opinion that Boysidia is a section or subgenus of Hypselostoma rather than a distinct genus.

April 7.

Arthur Erwin Brown, Sc.D., in the Chair.
Thirty-seven persons present.
The Publication Committee reported the reception of papers under the following titles:
"Description of a new Species of Squaloid Shark," by Chiyomatsu Ishikawa, Ph.D. (March 18, 1908).
"Notes on Succinea oralis Say and S. obliqua Say," by H. A. Pilsbry (March 21).
"Animal Names and Anatomical Terms of the Goshute Indians," by Ralph V. Chamberlain (March 28).
"Notes on Sharks," by Henry W. Fowler (March 28).
"Generic Types of Nearctic Reptilia and Amphibia," by Arthur Erwin Brown (April 7).

The death of Henry Clifton Sorby, a correspondent, March 9, was reported.

Dr. Henky W. Catteli made a communication on Trypanosomiasis in man and animals. (No abstract.)

April 21.

Arthur Erwin Brown, Sc.D., in the Chair.
Twenty-eight persons present.
Ther I'ublication Committee reported that papers under the following titles had been presented for publication:
"()n the (lasification of scalpilliform Barnacles," by Henry A. Pilsbry (April 21).

Thre lrath of James M. Ridinors, a member, March 7, was announced.
Mr. Habodid Selmers Colmon made a communcation on Charles Wilson Peale and the Philadelphia Muscum. (No abstract.)

Henry II. Donaldson, M.D., was elected a member.
The following were ordered to be printed:

NOTES ON SUCCINEA OVALIS Say AND S. OBLIQUA Say.

by henry a. pilsibry.

Since Gould's publication on the suceineas of Massachusetts in 1841, there has been more or less confusion as to the identity of Succinca oralis Say. The facts in the case were pointed out by Dr. Binney in 1851, but unfortunately a faulty manner of correcting Gould's mistake was adopted, resulting in two errors of nomenclature in place of one. Some years ago the writer rectified the current usage, restoring Say's name oralis to its original significance. This correction has been accepted by many recent writers, but there are a few conspicuous exceptions; hence it seems necessary, in the interest of uniform nomenclature, to demonstrate the status of S. ovalis by giving its history somewhat fully.

Observations on the mantle-markings of Succinea, made in New York several years ago, also find place here. These color markings are shown to be highly variable among individual: of a single colony, yet the general pattern differs to a greater or less extent in different species. The subject is worth further investigation, both from the stamlpoint of variation and also systematically, as an aid in distinguishing species in this difficult genus.
Succinea ovalis Eny.
The actual type or types of Succinca ovalis say are no longer in existence; but three specimens labelled and mounted on a card hy say are extant, representing what hesubsequently comsilered to be s.onalis. The original description must have been drawn from immature individuals, the measurements, "length nine-twentieths of an inch. aperture seven-twentieths," being only about two-thirds to threnfourths the ordinary size attained around Philadelphia. The proportion of aperture to length given by Say agrees with specimens I hate measured, but with no other succinea of this reyion. This comman Philadelphian smail, still living in Fairmont l'ark, is imdistinguishable from what Lea subserquently deseribed from Nimport, R. I., ats totteniana.
 Férussac records succinea oralis say as commminated to him hy say, and figured on plate XIs, fig. 1 of the Histoirc, ete., which was
issued in 1822. The two figures given represent the form now commonly known as "S. totteniana" (but properly called S. ovalis Say), and still found around Philadelphia. These figures agree perfectly with the specimens labelled by say in the collection of the Academy. On the same plate Férussac figures larger forms ("S. obliqua" of authors) as varieties of S. putris (figs. 7, 8). He also figures large oralis (totteniana) from "the islands Miquelon and siaint Pierre, near Newfoundland" (fig. 9).

The species S. oralis was therefore very well figured by Férussac, from author's specimens, prior to S'ay's description of S'. obliqua; and there was but scant excuse for mistaking it, except that but few American workers possessed the large and expensive Histoire naturelle générale et particulière des Mollusques terrestres et fluriatiles.

Beck, 1837, and other early European writers accepted the species, referring to Férussac's figures.

Succinea oralis was correctly recognized also by various early American writers for the form later known as totteniena. See DeKay's New York Fauna, Mollusca, p. 53, Pl. 4, figs. 51, 52. It was Gould who by error shifted the names, in the first edition of the Invertebrata of Massachusetts (1841). He recognized three Succineas in that State:
S. ovalis, fig. $125[=$ S. retusa Lea].
S. campestris, fig. $126[=$ S. ovalis Say $=$ totteniana Lea $]$.
S. avara, fig. 127 [correctly identified].

Gould subsequently recognized his two mistakes, and finding that the names S. ocalis say, obliqua say and campestris (iould, not Say, all applied to one species, he proposed to retain the name obliqua for it, and to use " S. ovalis Gild. not Say" for S. retusa, the snail he had figured in error as Say's ovalis.

De Kay, C. B. Adems and Sager, who used Gould's work, were in some measure misled, especially in regard to S. compestris. DeFay (1843), as mentioned above, correctly identified S. ovalis.

In 1851 I)r. Amms Binney lucidly discussed the American Suceineas in Vol. II of the T'errestrial Mollusks, pp. 63, 64. His exposition of the history of S. ovalis Say leaves little to be desired, and may well be quoted here:
"Succinca ovalis Say.-This species, diffused universally in the midde and northern states of the lnion, is that which is deseribed in the works of Messms. (iould, Mighels, Kirtland and sager as Succinea compestris say. It varies much in size, and in the divergence of the last whorl from the axis of the shell, and this last variation when
strongly developed constitutes Succinea obliqua Say. Succinea oralis of Messrs. (iould. Adams, Mirhels and sager is not the oralis of Say, but a species which was unknown to him. As, however, the ovalis of Gould is that now most eommonly known under the name of Succine oralis, we propese to retain it, and to apply to Mr. Say's species his second name, obliqua."

Fig. 1.-Tablet bearing Succinea ovalis, mounted and labelled by Thomas Say. Nat. size.

Fig. 2.-Say's tablet of Succinen obliqua. Nat. size.

The tablet of three specimens of S. oralis labelled by say is photographed, fig. 1. A series of modern peecimens from Faimount Park is shown, fig. 3. These show a considerable amount of variation in contour, some being as long as say's types of s. obliqua, shown in fig. 2. Philadelphian examples do not attain a large size, rarely exceding 16 or 18 mom. in length. It is a rerion of crystalline metamorphie rock, defieient in lime, where the land shells generally rm umber the size usual in New lork or the West. The color is yellowish green, and the shell very thin.

This type of shell is widely distributed, from Ontario to the mount ains of North Carolina and west to Minnesota and Missouri.

Fig. 3.-Succinca oralis Say. Fairmount Park, Philadelphin. Nat, size.
In the examples of S. omalis taken at Chitmoneo Falle the upper part of the spire in living animats is whitish with a papery : last, whorl is pale buff, beeoming olivaceous and du-ky wow the lune.

marked with some black blotches, but in others there is a pattern of black streaks very much like that of S. ovalis chittenangonsis. See Pl . VII, figs. $9,10,11,(N o .90,084,90,085$ A. N. S. P.)

Succinea obliqua say, 1824 , also was described from Philadelphia, two cotypes mounted on the cards used by Say, and inscribed with his autograph label, being still preserved. They are photographed in fig. 2. These specimens have the spire longer than in ovalis, the suture more oblique, hut are otherwise very similar. They are greenish-yellow, though not quite so green as oralis, and the abundant series of other Philadelphian specimens before me leaves no doubt that they intergrade perfectly with Philadelphian ovalis. It will not, I think, be possible to use the name obliqua in a varietal or subspecific sense, though it might be used to indicate the elongate phase or form which the species often assumes, if a name for that be desired. ${ }^{1}$ It must be understood, however, that the longer phase occurs with the shorter typical oralis, and is fully connected therewith by intermediate individuals in the same colonies.

The synonyms of S. ovalis, and early references thereto discussed above, here follow:

Succinca oralis Say, Journ. A. N. S. Phila. I, 1817, p. 15. Férussac, 'Tabl. Syst., 1821, p. 26; Hist. Nat. Moll. Terr., Pl. NIA, fig. 1 (not S. ovalis Gould).

Succinea obliqua Say, Major Long's Second Exped., II, 1824, 260, Pl. 15, fig. 7. DeKay, New York Fauna, Moll., p. 53, Pl. 4, fig. 53. Binney, 'Terrestr. Moll., II, p. 69.

Succinca campestris Gould, Invert. of Mass., 1841, p. 195, fig. 126. MeKay, New lork Fauna, Moll., p. 53, Pl. 4, fig. 54 (not S. campestris Say).

Succinca totteniana Lea, Proc. Am. Philos. Soc., II, 1S41, p. 32.
Succinea ovalis optima n. subsp. Fig. 4 .
In many localities from New York to Mimesota and Iowa a form much more robust than typical ovalis is found. The shell has coarser wrinkle sculpture, and yellow predominates rather than green. The rontour is about that of the larger examples of ovalis (such as those Say called S. obliqua), but varies to nearly or quite as broad as typical ovalis. The suture is deep, and at the last whorl oblique. The largest sperimens I have seen are from the type locality, Crugers Valley, near Upper Red Hook, Duchess Co., N. Y., collected by Mr. W. S. Teator. 'Two of them measure:

[^10]Length 26 , diam. 16, length of aperture 18 mm . 25 " 13.5 " " 17.5 "

This size is not often reached. In the middle West a length of 20 mm . is near the maximum, and the size of some individuals which seem to be adult is not greater than the largest of the typieal form of s. oralis.

Fig. 4.-Succinea ovalis optima. Nat. size.
This large race is what has commonly been called s. obliquus.ay, but the true obliqua is merely the longer phase of typiral orulis, and the name is not fairly applicable to the form above described. I have not examined the living animal of this race.

I picked up a single bleached sperimen of s. o. optiman on the beach at Galveston, Texas, in liswo. It had prohably floated there, as I do not think it exists in the Austroriparian zone.

Succinea ovalis chittemangoensis n. subsp. 1 ll. V11, flgs. 1 to 8 .

The shell is yellow or pinkish-y ellow, much lengthened, with a longer spire than any other race of S. ovalis; suture deep; whorls $3 \frac{1}{2}$, the last rather flattened above, not so convex there as in S. oralis or S. o. optima. Aperture very oblique, relatively small.

Length 22.5 diam. 11.5, length of aperture 14 mm . (No. 90 () (0S7).

23.3	"	11.3	"	"	$1 \cdot t$	'	($\mathrm{No} 90,081).$.
21	"	11.3	"	"	13	"	(No.90,079).
19	"	10.5	"	"	12	"	(No. 90,0®3).

Cotypes from a sloping weed-covered talus near the foot of Chittenanto Falls, Madison Co.. N. Y.. No. 90.087. 90.(081 and 90,(079. A. N. s.
 l'ilsbry.

A very large series was taken, associated with a few S. omolis, from which they are easily separated by the characters given above. I have seen this form from nowhere olse. The locality is on the ()nomban: : limestone (eoniferous).

In the living animal the mantle as seen through the shell is pale yellow with a slight olive tint, olive over the lung; the apex is more or less ruddy. This eround is profusely striped and blotehed with black on the last $1 \frac{1}{2}$ whorls, as shown in figs. 1 to 5 . Over the kidney the black houthes are interrupted and the ground tint is lighter, making a light streak across the whorl, partially seen in figs, 2 and 5 at the right upper portion of the last whorl. Very exceptionally the black blotches are almost absent, as in figs. $6,7,8$. Fig. 8 represents the least marked individual seen, and probably to be regarded as a case of partial allinism. The lower edge (collar) of the mantle is gray peppered with white dots. The foot is pale yellowish, back and flanks gray with slate tesselation, tentacles slate. The posterior end of the foot is somewhat blackish above. All figures of plate VII were drawn from living animals. In alcohol the black and gray pigment remains, but

Fig. 5.-S. ovalis chittenangoensis. $\times 2$.
the yellow tint is fugitive. The pattern of pigmentation of the lung has clearly been influenced by a tendency of the markings to follow veins; but in many specimens this tendency has been lost to a great extent.

S'ummary. (1) Succinea oralis Say was based upon Philadelphian specimens of the form subsequently described as S. totteniana Lea. It was well figured by ferussac from examples sent by say, as early as 1822. The proportion of aperture to length given by say applies to no other Succinet of the region about Philadelphia. (2) Succinea ovalis Goukd, 1841 , is a totally different species, which was described as S. retusa by Lea in 18:37. The true identity of S. ovalis was recognized by 1)r. Binney in 185\}. (3) Succinca obliqua Say, 1824, was based upon elongate specimens of s. oralis say, also from Philadelphia. It
is an absolute synonym of S. oralis. (4) S. totteniana Lea and Binney is absolutely identical with the typical S. ovalis Say.

Explanation of Plate VII.
Figs. 1-8-Succinca ovalis chittenangoensis n. subsp. 1,2, No. 90,081 A. N. S. P.; 3, No. 90,$079 ; 4,5$, No. 90,$080 ; 6$, No. 90,$083 ; 7,8$, No. $90,082$.
Figs. 9-11-Succinea ovalis Say, Chittenango Falls. 9, 10, No. 90,055; 11, No. 90,084.

NOTES ON SHARK8．

13Y HENRY W．FOWLER．
The speries included in this paper are based on material contained in the collection of the Academy of Natural recences of Philadelphia， unless otherwise stated．

HEXANCHID軔。

Hexanchus griseus（Gmelin）．
A dried skin without data．
Heptranchias cinereus（Gmelin）．
Hearl $6 \frac{2}{5}$ to $6 \frac{1}{2}$ ；lepth 10 to $10 \frac{3}{4}$ ；snout 3 in head ；eye 4 to $4 \frac{1}{2}$ ；length of mouth $2 \frac{1}{4}$ to $2 \frac{1}{3}$ ；interorbital space $3 \frac{1}{6}$ to $3 \frac{3}{4}$ ；front margin of first dorsal $2 \frac{3}{5}$ to $2 \frac{2}{3}$ ：front margin of anal $3 \frac{5}{6}$ to $4 \frac{2}{7}$ ；least depth of caudal peduncle 4 ；front margin of lower caudal lobe 2 to $2 \frac{1}{5}$ ；length $32 \frac{1}{2}$ to $35 \frac{1}{2}$ inches． Two examples from Italy（C．L．Bonaparte，No．245）．

Also 2 dried skins without data，the larger $44 \frac{1}{2}$ inches long．

HETERODONTID\＆．

Heterodontus japonicus（Duméril）．
Heal $5!$ ：depth $7 \frac{1}{4}$ ；depth of head $1 \frac{3}{5}$ in its length ；width of head $1 \frac{1}{5}$ ； height of first torsal $1 \frac{2}{7}$ ；height of second dorsal $1 \frac{1}{2}$ ；height of anal $1 \frac{3}{5}$ ； lower camial lobe $1 \frac{2}{5}$ ；pectoral $4 \frac{2}{5}$ ；tail $4 \frac{1}{8}$ in lenerth of body；width of pectoral $1 \frac{1}{2}$ in its length．Color in alcohol deep brown with obscure scattered brown spots on trunk，which are however rather sparse． Length 25 inches．No data．

Also jaw of another，from Japan in 1891 （Frederick Stearns）．

SCYLIORHINID雨．

Poroderma stellare（Linneruy）．
 width of momth $2102 \frac{2}{3}$ ；interombital space $2 \frac{1}{6}$ to $2{ }^{2}$ ；first donsal $1 \frac{1}{3}$ to 17 ；second donsal 17 to $2 \frac{1}{8}$ ；anal $1 \frac{3}{5}$ to $2 \frac{1}{2}$ ；caudal from origin of lower
 Italy（Bomaparte）．Also 2 dried skins，Nos。 ${ }_{T}^{89}$ and $\frac{83}{T}$ ，with same data．

Two other drierl skins without data．

This genus must now be known by the above name, as Dr. Gill's specification of Catulus stellaris Smith as the type of Catulus ${ }^{1}$ is not admissible. Under Catulus three species are included by Smith, viz.: Squalus canicula Linn., Scyl. marmoratum Bennett, and C. eduardii Smith. The first of these is here considered as the type, thus allowing it to fall a synonym of Scyliorhinus Blainville. The type of Poroderma Smith may be considered its first species, Squalus africanum Gmelin.

Galeus melastomus Rafinesque.
Head $6 \frac{1}{15}$ to 7 ; depth 10 to $14 \frac{7}{8}$; snout 2 to $2 \frac{1}{8}$ in head ; eve $3 \frac{3}{4}$ to $4 \frac{2}{3}$; width of mouth $1 \frac{9}{10}$ to $2 \frac{1}{5}$; interorbital space 2 to $2 \frac{2}{3}$; first dorsal $1 \frac{3}{5}$ to $2 \frac{1}{2}$; second donsal $1 \frac{7}{8}$ to $2 \frac{3}{5}$; base of anal 1 to $1 \frac{3}{7}$; caudal from origin of lower lobe $2 \frac{1}{2}$ to 3_{5}^{3} in rest of body; length 7 to $18_{\frac{7}{5}}$ inches. Ten examples. Italy (Bonaparte, No. 253).

Also 3 dried skins without data.
The above generic name may be adopted for this genus, as Rafinesque includes but two species. They are G. melastomus and Squalus uyato, of which the first may be considered the type. If his intention was to have made S. galeus Linncous his type he certainly has missed the opportunity, as that species is not even mentioned, and the inference may be only surmised by reference to his Ind. It. Sicil., 1810. Pristiurus Bonaparte is thus superseded by Galeus Rafinesque.

HEMISCYLLIID.

Chiloscyllium indioum (Gmelin).
Three examples from Padang (C. H. Harrison, Jr., and II. M. Hiller), Sumatra. Color when fresh in arrack more or less uniform dull brown, lower surface of head, abdomen, and bases of pectorals and ventrals dirty cream-white. The largest 21 inches long. The youngest with very distinct markings. One specimen now in Stanford University.

Oreotolobus japonious (Regan).
One example without data. The Japanese material called O. barbatus by Jordan and Fowler ${ }^{2}$ is this species.

GINGLYMOSTOMID.E.

Ginglymostoma cirratum (Gmolin).
One from St. Martin's (R. E. Van Rijgersma), W. I. Three other dried skins, and one alcoholic, may have the same data. They are all

[^11]uniformly brown and without spots. The largest is but a little over 2 feet in length. The st. Martin's example shows: Heal $5 \frac{1}{2}$; width of head about 1 in its length; snout $1 \frac{5}{6}$; eye 8 ; width of mouth about 3 ; interorbital space $\frac{1}{3}$; buccal cirrus 6 ; front margin of first dorsal about $1 \frac{1}{3}$; of second donsal $1 \frac{2}{5}$; of anal $1 \frac{2}{3}$; pectoral $1 \frac{1}{6}$; ventral $1 \frac{3}{3}$; least depth of caudal peduncle 4_{5}^{2}; length about 23 inches.

Two other examples, probably the Squalus punctatus Schneider, one evidently from St. Martin's (Rijgersma), W. I., and the other from Tortugas (James Roosevelt), Fla. Both are rather sparsely spotted with deep brown. Head 5_{5}^{7}; depth $7 \frac{2}{5}$ to 8 ; snout $1 \frac{7}{8}$ to 2 in head; width of mouth $2 \frac{1}{5}$ to $3 \frac{1}{2}$; interorbital space $1 \frac{2}{5}$ to $1 \frac{3}{5}$; front margin of first dorsal $1 \frac{1}{5}$ to $1 \frac{2}{3}$; of second dorsal $1 \frac{3}{4}$ to $1 \frac{7}{8}$; of anal 2 ; least depth of caudal peduncle $4 \frac{1}{2}$ to 5 ; pectoral $1 \frac{1}{8}$ to $1 \frac{1}{5}$; ventral $1 \frac{5}{6}$ to 2 ; length $12 \frac{1}{2}$ to $14 \frac{3}{3}$ inches.

In the preliminary account of this genus by Müller and Henle ${ }^{3}$ no species is mentioned, though Drs. Jordan and Gilbert have designated Squalus cirratus Cimelin' as its type. Müller and Henle's next account includes species." Dr. Gill designates "Type Ginglymostoma concolor." ${ }^{\text {" }}$ which may be assumed to be congeneric with the species of the present group, though somewhat confusing as . Nebrius Rüppell (its type I. concolor Rüppell) was admitted to Ginglymostoma by Dr. Gill himself.

CARCHARIIDA.

Carcharias littoralis (Mitchill).
Heal 5 ; depth s_{4}^{3}; length of first donsal 2 in head; of second dorsal $2 \frac{1}{3}$; of anal $2 \frac{3}{2}$; of lower caudal lobe $2 \frac{1}{3}$; peetoral $1 \frac{1}{3}$; tail $12 \frac{1}{2}$ in length of body; entire length $44 \frac{1}{2}$ inches. Nantucket (B. sharp), Mass.

Head of a large example from Sea Isle City (IW. J. Fox), and jaws from Townsend's Inlet (J. D. Casey), N. J., latter wrongly confused by me with Lamna cornubica. Also 3 other pairs of jaws without data.

ALOPIIDAE.

Alopias vulpes (Gmelin).
 shout about 33 ; eye abeut 6 ; width of mouth 3 ; interombital space $2 \frac{2}{3}$;

[^12]front margin of first dorsal $1 \frac{3}{7}$ ；least depth of caudal perluncle ${ }^{23}$ ； ventral $1 \frac{9}{10}$ ；about 38 series of teeth in upper jaw and 28 in lower； pectoral reaching $\frac{1}{3}$ to ventral，and its greatest width 2 in it．s length． Color in alcohol dull gray－brown，more or less uniform，lower surface of trunk and head，also of pectoral and ventral，a little paler．Donsals： and caudal like back．Iris pale slaty－gray．Length 49 inches．New－ port，R．I．J．C．Dunn．

Also a large dried skin（Bonaparte $\frac{40}{\mathrm{~T}}$ ），probably from Italy？

LAMNID平。

Isurus oxyrinchus Rafinesque．

Jaws of a large example，evidently this species，without data． Possibly from Italy？

Lamna cornubica（Gmelin）．
Head about 5 ；llepth about $6 \frac{1}{3}$ ；snout about 25 in heal ；eye 7_{4}^{3} ；wilth of head about 3 ；gape of mouth $2 \frac{5}{7}$ ；interorbital space $3 \frac{3}{4}$ ；height of first dorsal $2 \frac{2}{5}$ ；length of second dorsal $4 \frac{3}{7}$ ；of anal $t^{\frac{5}{5}}$ ；least depth of caudal peduncle 9 ；greatest width of catial peduncle $4 \frac{1}{4}$ ：front margin of lower caudal lobe $1 \frac{1}{2}$ ；pectoral $1 \frac{1}{4}$ ；ventral 3 ．Color in alcohol dull gray－brown on upper surface of body，and pale or whitish below，line of demareation along side of caudal petuncle sharply defined．Dorsal and upper surface of caudal like back．lower pale like belly，though with more or less grayish．Upper surface of pectoral like back，lower paler like belly．Ventral and anal pale，slightly with grayish．Iris pale olive－gray，eyeball whitish．Teeth whitish．Length $27 \frac{1}{2}$ inches． Italy（Bonaparte）．

OETORHINID尼．

Cetorhinus maximus（Gunner）．
Although there is no example in the collection，a largedried mounted skin，said to have been taken in Monterey Bay，Cal．，was cxhibited in Philadelphia several years ago，and was examined hy Mr．Witmer Stone and myself．

GALEORHINID为．

Cynais canis（Mitchill）．
Nantucket（Sharp），Mass．；Newport（J．Lecidy and s．Powel），R．I．； Sea Isle City（Fox），Atlantic City（C．W．Buringer，（i．W．Tryon，Jr．）， and Great Egg Harbor Bay（Leidy），N．J．；E．Coast I＇．N．（Nmiths． Inst．）；Italy（Bonaparte）．

Mustelus mustelus (Linnxus).
(M. equestris Bonaparte, Icon. Faun. Ital., Pesc. III, pt. 2, vii, 183t, descr., Pl., tig. '2, mari d'Italia.)
Head $6 \frac{1}{2}$; depth about 9 ; width of head $1 \frac{4}{7}$ in its length; depth of head at posterior margin of eye $2 \frac{1}{2}$; snout measured to eye $2 \frac{2}{5}$; eye $5 \frac{2}{5}$; wilth of mouth 23 ; interorbital space $2 \frac{3}{3}$; width of internasal space $6 \frac{1}{2}$; front margin of first dorsal $1 \frac{1}{6}$; of second dorsal $1 \frac{1}{5}$; of anal $2 \frac{2}{7}$; least depth of caudal peduncle 6 ? ; front margin of lower caudal lobe $2 \frac{1}{10}$; upper margin of pectoral $\frac{1}{1} \frac{1}{1}$; front margin of ventral 2 .

Body very clongate, depressed in front, sides well compressed, and tapering posteriorly into a long slender caudal, greatest depth about origin of first dorsal. Edges of body rather slightly convex or depressed, a very obsolete or slight median ridge down back most pronounced on upper surface of caudal peduncle, and down postventral and postanal regions a well-developed deep median groove. Caudal peduncle slender, compressed, and its least depth about $1 \frac{7}{3}$ in its length.

Head well depressed, profiles tapering similarly, and as viewed above rather elongate with somewhat attenuately convergent margins though tip rounded. Snout broadly depressed, edge rather trenchant, and its length but a trifle less than its width. Eye elongate, large, laterally superior, and placed about midway in length of head. Mouth rather broad. symphysis of mandible slightly in front of anterior margin of eve, and rami would nearly form a right angle. Lips thin and hardly developed. At angle of mouth externally a rather long fleshy fold forming a well-developed flap projecting posteriorly, and though groove distinct posteriorly around it, it extends but very little along outer margin anteriorly. About 55 series of blunt tubercles or pave-ment-like teeth in each jaw. Buceal folds rather narrow. Tongue lavee, breal, its surface minutely asperous, and edges all free and sharp. Nostrils large, well separated on each side of snout below, near last third in lenget of latter measured to eye, and each with a well-developed flap. Internhtal space broad, well depressed, and but very slightly convex.

Gill-openings 5, last 2 over base of pectoral, and third deepest or about 2 in interorbital space. Spiracle small, distinct, and placed behind eye a space equal to about $\frac{1}{3}$ its horizontal diameter.

Benly rosered everywhere with minute shagreen denticles of uniform size.

Origin of first donal much closer to origin of pectoral than that of ventral of a little nearer tip, of sumut than origin of second dorsal, its
apex forming nearly over its posterior basal margin, and a long slender point projecting behind equal in length to width of mouth. Origin of second dorsal a little nearer posterior basal margin of first dorsal than origin of upper lobe of caudal, base of fin like that of first dorsal well elevated and fleshy, and fin otherwise similar with posterior point about equal to eye horizontally. Caudal long and slender, origin of upper lobe hegins a little behind that of lower, and its distal expansion about $3 \frac{1}{2}$ in its own length. Lower caudal lobe a little elevated below, and length of its base about $1 \frac{1}{2}$ in entire length of upper. Anal inserted a little hehind middle of base of second donsal, or a little nearer origin of lower caudal lobe than tip of depressed ventral, and similar to second dorsal, only smaller, posterior point equal to horizontal eye-diameter. Pectoral large. upper margin rather evenly convex, reaching $\frac{3}{5}$ to origin of ventral, and its posterior margin slightly concave. Ventral inserted about midway between origin of ventral and that of anal, rather broad, and its lower margin a little concave. Clasper small, about half length of posterior point.

Cohor in alcoholdull uniform gray-brown above, merging into grayishwhite tint uniformly over lower surface of body. Upper fins like back or with grayish, both pectoral and ventral paler below. Iris pale brassy and pupil slaty.

Length about 26 inches.
No. 617, A. N. S. P., cotype of M. equestris Bonaparte. Italy (Bonaparte, No. 248). From Dr. T. B. Wilson.

Also Nos. 618 to 620, with same data. They show: Head $5 \frac{3}{7}$ to $6 \frac{1}{5}$;
 $4 \frac{1}{3}$ to $6 \frac{1}{5}$; width of mouth $3 \frac{2}{T}$ to $3 \frac{1}{2}$; interorbital space $2 \frac{1}{2}$ to $2 \frac{3}{5}$; front edge of first dorsal $1 \frac{1}{7}$ to $1 \frac{2}{3}$; front edge of anal $1 \frac{2}{7}$ to $2 \frac{2}{3}$; pectoral 1 to $1 \frac{3}{5}$; length $10 \frac{1}{2}$ to 213 inches. The smallest example is uniform on the back, like the larger ones, and is without any spots or markings. My confusion of these examples with Gateorhimus gateus" was due to the original labels being evidently wrongly placed. I hate verified this by an examination of Bomaparte's original catahgue, where they are also wrongly entered in the latter's own handwriting.
Mustelus mento Cone. Fig. 1.
(Proc. Am. Mhiloscoc. Phila, XVII, 1877, P. 47, Pacific ()cean at Pecasmayo, Peru.)
Head about 5 ; depth 7 ; width of head $1 \frac{3}{3} \mathrm{in}$ its length; snout 25 ; eye 51 ; width of mouth $3 \frac{2}{3}$; interorbital space 23 ; front margin of

[^13]first dorsal $1 \frac{9}{10}$; front margin of second dorsal $2 \frac{2}{7}$; front margin of anal about 3 ; front margin of lower caudal lobe $2 \frac{1}{2}$; least depth of caudal peduncle $6 \frac{1}{4}$; pectoral $1 \frac{3}{7}$; ventral $2 \frac{9}{10}$. Body rather well compressed, back elevated, edges rather rounded or convex, a very slight median keel down back and a slight merlian depression down postventral and postanal regions. Caudal peluncle slender, well compressed, and its least depth about $\frac{3}{7}$ its length. Head broad, depressed, profiles similar, and when viewed above rather narrowly convergent

Fig. 1.-Mustclus mento Cope. (Type.)
with rounded tip. Edges of snout rather trenchant, and its length equal to its greatest width. Eye elongate, and its center a trifle posterior in length of head. Mouth moderately broad, symphysis falling but a trifle before front of eye, and rami would form a right angle. Jips thin and little free. At each corner of mouth a pointed flap, free behind and with a rather long outer fold. 'Teeth pavementlike, in about 50 series. Upper buceal fold papillose, with a slightly ragged margin, not entire as stated previously, and narrow. Lower buccal fold entire. Tongue rather pointed, its upper surface very finely asperous, and margins free. Nostrils large, inferior, well separated, about last third in snout mossured to eye, and each with a well-rleveloperl flap. Interorbital space convex. Body
everywhere minutely roughened. Origin of first dorsal nearly midway between tip of snout and origin of second dorsal, apex of fin falling about mislway in its length, and posterior pointed flap equals eve horizontally. Origin of seeond dorsal a little neare that of first dorsal than last caudal vertebra. Anal with its apex about opposite its posterior basal margin. Upper lobe of caudal begins a little after that of lower, and its distal expansion about $2 \frac{4}{7}$ in its length. Lower caudal lobe a little elevated in front, and its height about $3 \frac{2}{5}$ in its length. Pectoral reaches $\frac{3}{3}$ to ventral. Ventral inserted a trifle nearer origin of pectoral than posterior basal margin of anal, and reaching a trifle more than half-way to anal. Color in alcohol with under surfaces of pectorals and ventrals grayish, otherwise fins of more or less uniform tint of back. Iris pale yellowishbrown, pupil dusky. Length $12 \frac{1}{\ddagger}$ inches. No. 21,104 , A. N. S. P.. type of M. mento Cope. Pacific Ocean at Pecasmayo, Peru (J. Orton). Coll. of 1576-77. From Cope.

Triakis felis (Ayres).
Santa Barbara (U. S. F. C.), Cal.
I adopt Mustelus felis Ayres for this species, as his name has evident priority. His paper was read December $4,185 t$, which is in the signature dated December 25. This was received by the Academy of Natural Sciences of Philadelphia on February 6, 1855. ${ }^{10} T$. semifasciatus (iirard oceurs in No. 6 of the same volume, ${ }^{10}$ which was elsewhere ${ }^{11}$ not acknowledged as having been received until February 20. 1855 , and therefore this date may be accepted for its publication.

Galeorhinus galeus (Linnsus).
Head $5 \frac{4}{7}$; depth about $8 \frac{1}{5}$; snout about $2 \frac{1}{5}$ in head; eye 5 ; lenerth of mandible 3 ; width of mouth $2 \frac{1}{5}$; tip of snout to mandible $2 \frac{2}{2}$; interorbital space $2 \frac{5}{7}$; front margin of first dorsal $1_{1} 9$; of second dowsal 3_{5}^{5} : of anal $4 \frac{7}{3}$; least depth of caudal peduncle about 5 ; pectoral $1 \frac{2}{5}$; ventral 3 ; length 17 inches. Italy (Bomaparte, No. 254). The other three examples are all smaller, the smallest 9 inches long and showing the attachment of the placenta still in good preservation. These were confused as Galeus mustchus by me, as abready explained.

Also a dried skin, without data, if inches loner.

[^14]Galeorhinus zyopterus Jordan and Gilbert.
(Bull. U. S. Nat. Mus., XVI, 1883, p. 871, evidently based on G. galeus Jordan and Gilbert, Proc. U. S. Nat. Mus., III, 1850, p. 42, San Pedro, California; Jordan and Gilbert, l.c., p. 458, San Francisco, Cal.)
Head $5 \frac{2}{2}$; depth 11 ? ; width of head $1 \frac{3}{5}$ in its length; depth of head at posterior margin of eye about $2 \frac{3}{4}$; snout $2 \frac{1}{5}$; eye $4 \frac{1}{2}$; width of mouth at corners $2 \frac{1}{3}$: interorbital space $2 \frac{1}{5}$; front margin of first dorsal 2 ; of second dowal about 2 ; of lower caudal lobe $1 \frac{3}{5}$; least depth of caudal peduncle 5 ; upper margin of pectoral $1 \frac{1}{3}$; front margin of ventral about 5 .

Body elongate, slender, depressed anteriorly and tapering back from head. Down middle of back, also middle of postventral and postanal regions, a longitudinal groove. Caudal peduncle slender, its least depth about $2 \frac{1}{2}$ in its length.

Head broadly depressed, about equally so above and below, and as viewed from above profile rather elongately convergent with rounded tip. Snout well depressed, its edge but slightly trenchant, and space between its own tip and front of mouth equal to width of latter. Eye large, elongate, lateral and its center falling a trifle posterior in length of head. Nictitating membrane large, well developed, and with a deep pocket between itself and eye. Rami of mandible would nearly form a right angle, though symphysis not quite extended forward till opposite front rim of eye. Teeth pointed, mostly tricuspid, and directed towards side of mouth, with outer cusp of each of lateral teeth best developed. About 44 ? series of teeth in upper jaw. Buccal folds rather well developed and papillose. Tongue large, broad, flattened, rounder in front, and its edge free. Nostrils rather large, well separated or internasal space about half width of mouth, each with a small fleshy joint, and placed about last $\frac{2}{7}$ in snout measured to front of eye. Interorbital space broad, a little convex, and depressed medianly.

Gill-openings 5, last 2 over base of pectoral, and third and fourth largest or about $1 \frac{3}{5}$ in eye horizontally.

Bonly cosered everywhere with simple shagreen points of moderately small and uniform size.

Orisin of first dorsal a little nearer that of second than tip of snout, forming a rather romded lobe with its apex just before posterior basal margin of fin, and point of latter equals age horizontally. Origin of seeond domal nearer that of first than end of last candal vertebra by a spare equal to width between outer erges of nostrils, apex of fin forming about over middle of its length, and its postorior point about $1 \frac{1}{3}$ in cero horizontally. Origin of anal a trifle after that of second dorsal, its apex forming about first thire in its lengeth and its posterior point $1 \frac{2}{7}$ in "yo horizontally". Origin of lower catalal lobe a little in advance
of that of upper, and height of fin at this point about $2 \frac{2}{5}$ in length of its base. Upper caudal lobe broad, its expansion at end nearly equal to width of mouth or about $3 \frac{2}{3}$ in its length. Pectoral broad, larger than first dorsal, and reaching $\frac{4}{7}$ to ventral, with posterior margin a little incised. Ventral inserted a little nearer origin of finst dorsal than that of anal, and reaching $\frac{3}{7}$ to origin of latter. Clasper equals posterior anal point.

Color in alcohol deep gray-brown on back, becoming paler gray on sides, and lower surface whitish. Lepper surface of snout pale brownish. Teeth all whitish. Iris livid grayish and pupil slaty. Nictitating membrane pale like side of head. Dorsals pale brownith, upper or outer portion of lobe dusky to blackish and posterior point becoming very pale to whitish. Caudal pale brownish, end of upper lobe and notch behind lower dusky to blackish, fin otherwise more or less pale. Pectoral dusky or blackish above, pale to grayish below. Ventral and anal whitish like lower surface of body.

Length 123 inches.
No. 582, A. N. S. P., cotype of G. zyopterus Jordan and Gilbert. San Francisco, California (U. S. F. C. No. 27,190).

Galeocerdo tigrinus Muller and Henle.
Head $6 \frac{1}{6}$; depth $11 \frac{5}{6}$; width of head $1 \frac{5}{8}$ in its length; :nout 3 ; width of mouth $2 \frac{1}{10}$; space between tip of snout and front of mouth 4 ; interorbital space $1 \frac{18}{3}$; pectoral $1 \frac{1}{4}$; base of ventral $4 \frac{1}{3}$; caudal nearly 2 in rest of booly. Body broad, depressed, and trunk rather slender posteriorly. Caudal peduncle broad, and side from below second dorsal bluntly keeled till opposite middle of lower elongate caudal lobe. Head large, very broad, depressed. Snout broad, rounded. Length of preoral region about $\frac{3}{3}$ width of mouth. Eye anteriorly lateral, with nictitating membrane. Mouth large, beginning well before eye, and gape extends one diameter behind latter. Comer of mouth with long outer fold. 'Teeth about $\frac{18}{1 \frac{A}{B}}$, broad, compressed, directed laterally, finely serrated along margins, and with five small cusps externally. Tongue broad, not free. Lips rather thin. Nostrils lateral, with small flaps, and nearer front edge of snout than front of mouth. Luterorbital space convex. Anterion gill-openinge large, thimb harest, and last two over base of pectoral. Peritoneum silvery. Shagreen very fine. First dorsal inserted opposite posterior basal edge of pectoral, with sharp point behind, and height of fin a little less than base. Secomb doral insertex about midway between candal pits and origin of ventral. A narrow median low keel along back between donsals. Anal small, inserted below first third of base of second dorsal, its margin deeply
concave, and with a sharp point posteriorly. Lower caudal lobe about $2 \frac{1}{5}$ in upper. Caudal notch near tip. Pectoral falcate, margin concave and reaching posteriorly below posterior base of dorsal. Ventral small, broad, obtuse, and inserted nearly midway between posterior basal edge of first dorsal and origin of second dorsal. Color when fresh in arrack slaty-gray, paler below. Cpper surface of body and pectoral, also dorsal and caudal, variegated with deep leaden-gray blotches, and many of those on side of trunk more or less elongate and vertical. Length $39 \frac{1}{4}$ inches. Padang, Sumatra (Harrison and Hiller).

Very large jaws from Guaymas, Mexico; also a pair from Beesley's Point: N. J. (S. Ashmead); a pair from between 'Turk's Island and Barbadoes (Dr. W. H. Freeman).

Prionace glauca (Linnæus).

Head 5 ; lepth about $10 \frac{1}{2}$; width of head about 2 in its length; snout $2 \frac{2}{5}$; eve about $7 \frac{1}{2}$; width of mouth about $3 \frac{1}{3}$; interorbital space $2 \frac{3}{5}$; front margin of first dorsal $2 \frac{1}{5}$; front margin of second don:al $4 \frac{2}{3}$; front margin of anal about 4 ; least depth of caudal perduncle about $7 \frac{1}{8}$; pectoral $1 \frac{2}{7}$; ventral $3 \frac{1}{4}$. Teeth with entire edges, and each lateral tooth of upper jaw followed by about four cusps and in lower by one or two. Median tecth in each jaw erect, smaller and with a single slender point. Color in alcohol deep chocolate-brown on back and upper surface, and lower surface pale creamy-white. Dorsals and caudal, except basally at lower lobe, which is whitish, dark like back. Upper surface of pectoral and ventral dark like back, though latter paler, and lower surfaces grayish to whitish like belly. Entire lower surface of head whitish like belly. Iris grayish-slaty, pupil pale. Length 23 inches. Italy (Bonaparte, No. 250).

Another dried skin, without data, is 48 inches long.
Eulamia milberti (Muller and Henle).
One from Creat Egy Harbor Bay (Dr. J. Leidy).
The name C'archarias Rafinesque cannot be applied to this genus, as the only species mentioned for it, and therefore its type, is taurus, a :and shark identical with Agassiz's genus Odontaspis. C'archarhimus lhamwiller2 is next innoter. It is based on commersonii, lamia, lividus, ustus, hutordon, wrous, lroussometii, glaucus, carulous, megalops, heterobranchialis, cornubicus, monensis?, vulpes. Drs. Jordan and Gilbert restriof the first species (commersomii) as its type. hut all the evidence -hows it to be a momern mulum, and their sugrestion that it is based on Lacefredres figure of $L_{\text {e }}$ siquale Requin's seems only assumption when

[^15]judged from Blainville's work alone. If the next of Blainville's rpecific names are considered, lamia is found first proposed as C'archurius lamiu by Rafinesque, ${ }^{14}$ without description or diagnosis, and simply as "(※̌qualus carcharias Linnæus). Carcaria lamia. Pesce Caine, Imbestinu, ò Lamia." Thus it would be typified by S. carcharias Linnæus, which wouk upset Carcharodon of smith. in which case I shall consider the Squalus culpes Gimelin the type of Carcharhimus Blainville. The next generic name available is Eulumin (iill, which had best be adopted.

Fig. 2.-Eulamia odontaspis Fowler. (Type.)
Eulamia odontaspis np. nov. Fig. 2.
Head $5 \frac{3}{4}$; depth $8 \frac{8}{3}$; width of head about $1 \frac{2}{3} \mathrm{in}$ its length; depth of head at first gill-opening 1 : :now 2 ; widh of month $2 \frac{1}{2}$: interorntal space 2 ; front edge of first dorsal $1 \frac{3}{3}$; of second domal 2 ; of anal $2 \frac{1}{6}$;
 $1 \frac{1}{3}$; ventral 23.

Borly depressed anteriorly, apparently rather robust, a slight median

[^16]depression down back and another down postrentral and postanal regions, greatest depth about origin of dorsal. Caudal peduncle compressed, and its least depth about $1 \frac{7}{8}$ in its length.

Head rather well depressed, profiles similar apparently. Snout well depressed, rather short, when viewed above broadly convex, and its length to front of mouth about $\frac{3}{5}$ its width at that point. Eye small, elongately ellipsoid, and its center about fist $\overline{5}$ in head. Nictitating membrane rather broad. In profile end of mandible a little before front rim of eye as seen from below profile of symphrsis rat her broadly convex in front, and its length $\frac{4}{5}$ its width. No grooves at corners of mouth. Teeth about $\frac{25}{2} 27$, similar in both jaws, without basal cusps, edges entire, slender, compressed, of rather uniform size and sharply pointed. Nostrils large, lateral, below on snout near last third of its length. Interorbital space broadly convex.

Gill-openings 5, second and third deepest or about 5 in head, and last two over base of pectoral. No spiracle.

Body covered with very fine shagreen, scarcely rough to touch.
Origin of first dorsal about midway between tip of snout and tip of posterior depressed point of second dorsal, and posterior point $2 \frac{7}{8}$ in length of fin. Origin of second dorsal about an eye-diameter nearer that of upper caudal lobe than posterior basal margin of first dorsal, and posterior point of fin 23 in its front margin. Caudal rather small, upper lobe begins a trifle behind lower, and its length about $3 \frac{3}{5}$ in rest of booly: A pit on caudal peduncle, both above and below, at origins of caudal lobes. Anal begins very slightly behind origin of second dorsal, and fin reaching $1 \frac{1}{2}$ to origin of lower candal lobe, tip of posterior proress not extending back beyond that of end of fin in front. Pectoral horod, insertod rather low, and when depresed reaching about opposite origin of first dorsal, its greatest width 1 条 in its length. Ventral broad, its origin slightly behind tip of depresed domal, and depressed fin reaching $1 \frac{3}{4}$ to anal. Claspers small.

Cobor of dried skin dull brown generally, lower surface seareely paler. Fins all unicolor.

Length about $20 \frac{7}{8}$ inches.
Type No. 34,634 , A. N. S. P. No data, but probably from the Inclian Ocean?
'This interesting specimen is probably identical with Day's figure of C'archarias ellioti. ${ }^{15}$ His description, however, differs in the outer lathal groove, serrated teeth with basal cusps, fist domsal begimning

[^17]behind base of pectoral with its base being nearer latter than ventral, inner margin of pectoral $\frac{1}{3}$ of its outer and fin reaching below end of base of dorsal, anal below last $\frac{5}{3}$ of second dorsal, and caudal $3{ }^{3}$ in total. His figure of a skin, 6 feet long, differs in some minor details from my example, which however may be due to age.
(OSos, tooth, 'aonic, scale; hence Odontaspis, an old generic name applied to the sand sharks, and here used with reference to the superficial resemblance of this species.)

Eulamia longimanus (Poey).

Head about $6 \frac{3}{7}$; depth $8_{5}^{\frac{1}{5}}$; width of head $1 \frac{3}{5}$; snout $2 \frac{3}{4}$ in head ; width of mouth $2 \frac{1}{5}$; interorbital space $1 \frac{9}{10}$; height of first dorsal $2 \frac{4}{5}$; of second dorsal $7 \frac{3}{1}$; least depth of caudal peluncle 4 ; lower caudal lobe $2 \frac{1}{3}$; pectoral $1 \frac{1}{3}$; ventral 23 ; upper caudal lobe $3 \frac{3}{3}$. Teeth all finely serrated and upper but little notehed on outer margins. Dorsal inserted just after base of pectoral. Width of pectoral 2 in its length. Length 39 inches. Dried skin without data.

Jaws of large example from West Palm Beach (G. B. Wood), Fla., in 1907. Another pair of jaws from the Gulf of Florida (Dr. G. Watson) is probably this species.

Eulamia menisorrah (Miller and Henle).
Head $6 \frac{1}{6}$; depth S_{6}^{7}; wilth of head $1 \frac{2}{3}$ in its length; snout $2 \frac{1}{1}$; width of mouth $2 \frac{2}{3}$; tip of snout to mandible 3; interorbital space 2 ; height of finst donsal $1 \frac{1}{s}$; pectoral 1 ; length of ventral to posterior tip $1 \frac{1}{1} \frac{1}{2}$; least depth of caudal perluncle $4 \frac{3}{3}$; caudal 3 in rest of body. Teeth without serrations, each with several small cusps. Length $25 \frac{1}{3}$ inches. Padang (Harrison and Hiller), Sumatra.

Also a very young example with same data. Edge of first dorsal very narrowly margined with black, also ends of second dorsal and caudal.
Ealamia oxyrhynohus (Maller and Henle).
 about 2_{1}^{1}; width of mouth 23 ; interorntal space 3 ; front margin of finst donal $2 \frac{1}{5}$; of serond donal 4 ; of anal about 4 ; of lower cambal lobee
 in snout; eye s; upper candal lobe equals head; length 17! in hes. 1)ried skin without data, though probably from surinam? (Herinq?").

It differs a little from Müller and Henle's figure, ment likely in respect to age, in having insertion of finst domal a little mone poiterion or "pposite posterior basal edge of pertoral, depresisen pecteral mot. reaching beyond posterior basal makin of first dosal, depresed firat
dorsal reaching $1 \frac{2}{3}$ to ventral, origin of anal slightly before that of second dorsal, and origin of ventral nearly midway between posterior basal margin of first dorsal and origin of anal.

Scoliodon laticaudus (Muller and Henle).
A small example, $7 \frac{1}{2}$ inches long. Straits of Malacca. It agrees largely with Müller and Henle's figure.
Sooliodon terræ-novæ (Richardson).
Bayport (Cope), Fla.
Two dried skins, larger 38 inches long, are evidently this species; no data.

SPHYRNID平。

Sphyrna tiburo (Linnæus).

Newport (Powel) R. I.; St. Augustine (W. Blanding), Fla., in May, 1832.

Sphyraa tudes (Valenciennes).
Head $4 \frac{3}{3}$; depth 7 ; length of disk, along its posterior margin, $\frac{3}{4}$ its width transversely at second undulation; width of head just after hammer $2_{\frac{1}{1} \sigma}$ in head; width of mouth about $3 \frac{1}{8}$; third gill-opening $5 \frac{3}{3}$; front margin of first dorsal $1 \frac{1}{5}$; length of second dorsal $2 \frac{2}{5}$; of anal 2 ; least depth of caudal peduncle 4 ; pectoral $1 \frac{3}{5}$; ventral $2 \frac{2}{7}$. Teeth in about 26 series in mandible. Color in alcohol plain pale brown, a little darker on upper surface of body and paler or whitish on lower. Fins all grayish-brown. Iris slaty. Length 8 inches. Surinam (Hering).
Sphyraa zygæáa(Linnæus).
Nantucket (Sharp), Mass.; Sea Isle City (W. J. Fox), Holly Beach (Miss Edith Ives) and Grassy sound (Fowler), N. J.; Surinam (Hering); Panama (W. s. W. Ruschenberger); Italy (Bonaparte, 251); Padang (Harrison and Hiller), Sumatra. Also 4 dried skins without data.

8phyrna blochii (Cuvier).
Head 63 ; depth about 93 ? ; least width of head behind hammer 1_{5}^{2} in its length; greatest width of hammer 23 in its length, measured along its inmer margin; least widh of hammer 4 ; space hetween tip of snout medianly and maryin of upper jaw about 3 in head; wilth of mouth 2 ; length of third gill-opening about 4 ; base of first dorsal $1 \frac{1}{3}$; entire length of seromd domal about 18 ; hase of anal about $2 \frac{2}{3}$; least depth of caudal peluncle :3! front margin of lower candal lobe $1 \frac{1}{3}$; length of pectoral 1; base of ventral $2 \frac{2}{5}$; clasper ${ }^{15}$.
bondy long, slemder, apmarently little compresed, but rather rounded
or robust, greatest depth about origin of dorsal, and edges of body depressed or flattened. No very evident pits at origins of caudal lobes. Caudal peduncle rather robust, scarcely compressed, and its least depth $1 \frac{3}{7}$ in its length.

Head moderately large, well depressed both above and below and with evenly convex surfaces. Snout rather broadly depressed and moderately short, as viewed from above front margin undulate with a median emargination where tip would form. Each side of head produced laterally into a very narrow long depressed hammer-like process with its front margin much thicker than posterior, also former as viewed above a little undulate in profile while posterior is nearly straight. Along anterior margin of each hammer a rather deep groove, extending from nostril half-way to median point of snout and distally to end of hammer. Eye at anterior external lateral extremity of hammer, elongate, rather small, and its horizontal diameter about $4 \frac{1}{5}$ in distal expansion of hammer. Nictitating membrane broad, conspicuous, and evidently leaving a deep pocket on each side. Mouth broad, margin of upper jaw rather evenly lunate or convex, and ramus of mandible would form a very obtuse angle. Gape of mouth about $\frac{3}{5}$ its width. No groove at each corner of mouth. Teeth all moderately large, directed laterally, entire, rather broadly triangular, and each with an extemal notch, no basal cusps. About 28 series of teeth in upper jaw and about 24 series in lower. Nostril inferior on hammer along its anterior margin near basal fifth of latter, as measured along its posterior margin, or about inner $\frac{2}{5}$ of space between tip of snout and end of hammer. Nostril furnished with but a slight flap. Top of head rather broadly convex.

Gill-openings, first a little nearer posterior margin of hammer hasally than origin of dorsal, last two over base of pectoral, and second and third largest. No spiracle.

Body covered entirely with very minute ohagreen denticles of apparently uniform size. On lower surface of hammer anteriorly a number of more or less conspicuous small pores.

Origin of first dorsal nearer tip of snout than that of second or about. opposite first fifth in space between origin of pectoral and that of ventral, fin high, faleate, apex forming above just behind its base which is 17 in its height, and its posterior point about 3! in head. Origin of second dorsal a little nearer that of first dorsal than end of last caudal vertebra or about over middle of base of anal, base of fin
 of anal a little nearer posterior basal margin of wentral than orivin of
lower caudal lobe, larger and also inserted well before second dorsal, posterior point about $1 \frac{3}{4} \mathrm{in}$ its length and anterior lobe about equal to length of base. Origins of caudal lobes nearly opposite(?), and distal expansion of upper $7 \frac{2}{3}$ in its length. Anterior lobe of lower caudal lobe $2 \frac{1}{10}$ in length of latter. L'pper caudal lobe $2 \frac{1}{3}$ in rest of body. Pectoral much smaller than first dorsal, interventral space about $\frac{1}{3}$ in length of fin, and greatest width about 2 in latter. In form pectoral rather falcate and pointed and would reach about $\frac{3}{5}$ of space to ventral. Ventral inserted a little nearer origin of pectoral than that of lower caudal lobe, fin low, its greatest height about last fourth of its length, and clasper well developed.

Color of dried skin deep dusky-brown over entire upper surface of boly, including dorsals and upper lobe of caudal. Upper surfaces of pectoral and ventral of same tint. Entire lower surface of body pale gray-bown, this also largely over remaining portions of fins, anal and claspers. Teeth whitish.

Length $50 \frac{1}{2}$ inches.
Pondichery, India. June 9, 1S40. Thomas Ryan.
It differs from Cantor's figure ${ }^{16}$ in the narrower and longer hammer.

SQUALIDE.

Oxynotus centrina (Linnæus).
Hearl $5 \frac{3}{3}$ to $5 \frac{3}{3}$; depth $5 \frac{3}{4}$ to $7 \frac{1}{3}$; width of head $1 \frac{4}{7}$ to 2 in its length; depth of hearl $1 \frac{1}{2}$ to $1 \frac{5}{7}$; snout $2 \frac{5}{6}$ to 3 ; eye $3 \frac{2}{5}$ to 4 ; width of mouth $3 \frac{3}{3}$ to $\frac{1}{3}$; interorbital space $2 \frac{1}{1} \frac{1}{3}$, to 3 ; first dorsal spine $1 \frac{1}{3}$ to $1 \frac{3}{5}$; second dorsal spine $1 \frac{2}{3}$ to $1 \frac{1}{15}$; least depth of caudal peduncle 4 ; height of lower caudal lohe 2 to $2 \frac{4}{4}$; peetoral 1 ; ventral $1 \frac{4}{7}$ to $1 \frac{2}{3}$; length $9 \frac{1}{4}$ to 12 inches Italy (Bonaparte, No. 242). From Wilson.

Also another, dried skin, with same data, No. $\frac{41}{T}$.
Squalus acanthias Linnaus.
Castine (G. B. Wood) and Mt. Desert (Dr. H. C. Chapman), Maine; Gloucester (U.S.N. M.), Mass.; Cape May (H. W. Hand), N. J.; Italy (Bonaparte, No. 246).

Squalus blainville (Risso).

Ifead $5 \frac{1}{2}$; lepth S to 9 言; wilth of head $1 \frac{2}{5}$ to $1 \frac{1}{2}$ in its length; depth of head at first gill-opening 15 to $2 \frac{1}{6}$; shome $2 \frac{1}{2}$ to $2 \frac{5}{6}$, measured from front of mouth; age 33_{6}^{3} to $4 \frac{1}{5}$; wilth of mouth $2 \frac{1}{8}$ to $2_{10}^{3 \prime}$; interorbital spare 26 to $2 \frac{2}{3}$; first dowal pine 2 等 1024 ? ; second dorsal spine $2 \frac{2}{7}$ to

[^18]$2 \frac{2}{3}$; least depth of caudal peduncle 7 to $8 \frac{1}{6}$; pectoral $1 \frac{1}{1} \frac{1}{2}$ to $1 \frac{1}{7}$; ventral 14 to $1 \frac{7}{8}$; teeth in 26 series in jaw; length $18 \frac{5}{5}$ to 26 inches. Italy (Bonaparte, No. 249). Three examples.

Entoxychirus uyato (Rafinesque).
Head $4 \frac{4}{7}$; depth S ; width of head 1_{3}^{3} in its length ; snout 2_{4}^{3}; eye 3^{2}; width of mouth $2 \frac{7}{5}$; interorbital space 2_{3}^{2}; first dorsal spine 25 ; second dorsal spine 3_{5}^{2}; least depth of caulal peduncle $5_{5}^{\frac{t}{3}}$; pectoral $1 \frac{2}{3}$; rentral 2 ; teeth about $\frac{4}{3}$; length $20 \frac{1}{8}$ inches. Italy (Bonaparte, No. 241).

Centrophorus granulosus (Schneider).
Head about $5 \frac{1}{4}$; depth about $7 \frac{2}{5}$; width of head about $1 \frac{7}{5}$ in its length: snout 3 ; eyc-cavity 4 ; snout to front of mouth about $2 \frac{1}{8}$; width of mouth 3 ; interorhital space $2 \frac{1}{5}$; first dowal spine 4 ; second dorsal spine $4 \frac{1}{6}$; least depth of caudal peluncle 6 ; pectoral 2 along front margin: length of ventral $2 \frac{1}{4}$; teeth $\frac{4}{3}$; length, dried, about $33 \frac{1}{4}$ inches. Italy? (Bonaparte, No. 42).

Also another example, dried, without data, probably same as above?
Dr. Doderlein included Squalus uyato Rafinesque ${ }^{17}$ as a symonym of this species. From the latter's very rude figure, ${ }^{18}$ though of course of little value, one would be obliged to retain it under Squalus.

Etmopterus spinax (Linnæus).
Heal $5 \frac{1}{10}$ to 5_{6}^{5}; depth about $6 \frac{1}{2}$ to $9!?$? width of head $1 \frac{4}{5}$ to $1 \frac{1}{5}$ in its
 between tip of snout and front margin of upper jaw 1 坴 to $1 \frac{9}{1 \pi}$; interorbital space $2 \frac{1}{5}$ to $2 \frac{2}{3}$; least depth of caudal peduncle $5 \frac{2}{3}$ to $6 \frac{1}{2}$: height of
 $\frac{30}{80}$; length $11 \frac{1}{2}$ to $16 \frac{3}{8}$ inches. Italy (Bonaparte, No. 243). Three examples.

Centroscyllium fabricii (Reinhardt).
George's Bank (U. S. N. M.). A young example.

DALATID.

Dalatias licha (Bonnaterre).
Head $6 \frac{1}{2}$; dlepth S_{3}^{3} to 9 ; wilth of head $1 \frac{3}{5}$ to 17 ; depth of head about $1 \frac{2}{3}$ to $2 \frac{2}{7}$; snout $4 \frac{3}{3}$ to $4 \frac{1}{2}$; eye, to edge of iris, $6 \frac{1}{3}$ to 7 ; space between tip of snout and front margin of upper jaw $3 \frac{2}{5}$; width of mouth 23 to $3 \frac{2}{5}$; interorbital space 2 点 to 3 ; length of finst donsal $1 \frac{1}{2}$ to 13 ; length of second

[^19]dorsal $1 \frac{3}{5}$ to $1 \frac{7}{3}$; least depth of caudal peduncle 6 to $6 \frac{1}{2}$; height of lower caudal lobe $2 \frac{2}{5}$ to ${ }^{2} \frac{3}{5}$: pectoral $1 \frac{1}{3}$; ventral, without clasper, $1 \frac{1}{10}$; length $32 \frac{1}{2}$ to $33 \frac{3}{3}$ inches. Italy (Bonaparte, No. 240). Two examples.

SQUATINID正.

Squatina squatina (Linnxus).
Three from Italy (Bonaparte, No. 238); one from Bay of Naples (Dr. H. C. Chapman); large example without data.

Also three dried skins, without data.

description of a new species of squaloid siank from japan.

BY' CHIYOMATSU ISHIKAWA, PH.D.

Squalus japonicus Ishibawa, new specles.
Acanthias rulgaris Schlegel, Fauna Japonica, Poisson, p. 304, Pl. 135, 1850; Acanthias vulgaris, Ishikawa, Prelim. Cat., p. 61, 1897. Not of Risso.
Body elongate, slender, tail moderately tapering behind. Head rather narrow; snout produced, pointed, upper surface flattened; nostrils nearer mouth than tip of snout, nearly midway between angle of mouth and tip of soout. Nasal flaps normally formed.

Eyes large, lateral, situated nearer first gill-opening than end of snout. I.ength of eyelid a little less than half distance from its anterior angle to tip of snout. Spiracles large, closely posterior to and little above eye, vertical diameter of spiracle slightly over one-third length of eye. Spiracular valve not very fleshy. Narrow groove between posterior angle of eye and lower border of spiracle.

Mouth moderate, slightly curved, situated at about three-fifths distance from tip of snout to level of first gill-opening. Upper lip well developed, lower closely attached to teeth within. Oral groove nearly straight, deep.

Teeth of upper jaw smaller than those of lower, and somewhat more erect. Gill-openings in front of base of pectoral, and slightly abowe, fourth and fifth gill-slits somewhat nearer together than preceding ones.

First dorsal nearer to pectoral than to ventral, its origin somewhat in advance of inner posterior angle of pectoral, midway between tip of snout and origin of second dorsal; first donal spine slightly less than height of fin; posterior border somewhat emarginate and slightly ponducel. Second donsal about midway between ventral and caudal, smaller, posterior margin rather deeply emarginate, lower tobe moderatoly produced; spine as long as fin and longer than that of fist. Both spines triangular, without any lateral grower, hut himber margin slightly hollowed ont. Peeforals large, but shomer than heal, reachine beyond origin of finst domal, its himder margin monderately emarginate. Tentrals midway between first and seeond domsals; candal howes well developent. Tperer candal growe triamglar and very di-tinet ; lower rather inconspicuous.

Arales very minute, closely set ; each with a median keed which ends
in a point and with smaller ones on each side. Scales at extreme end of snout granular, and without any keel. Lateral line distinct.

Male copulatory organ large, with a hook-like appendage near extreme end on inner side, and with another hook on outer side proximally to the former.

Three specimens were examined, two males bought at the Tokyo market, and said to have been caught in the Sagami Bay, and a single female from Kagoshima. They are in the Imperial Mruseum of Tokyo.

The proportional lengths of different parts in a male specimen are as follows:

Genoral Comsiderations.- Julking from the very scanty literature we have, I am indined to consiler the present iperies to come nearest to

Acanthias blainvillii of Risso, from which it differs only in the position of the first dorsal, the origin of which Günther gives as being placed "conspicuously in advance of the inner posterior angle of the pectoral" (Günther, Catalogue of Fishes, Vol. VIII, p. 419, 1870), otherwise it accords well with the description given by Müller and Henle to this species (Müller and Henle, Plagiostomen, 1841, pp. 84-85), so that I was rather inclined to regard our specimen to be the same species. Since, however, the descriptions of these authors are very short, making the identification of the species difficult, I have allowed myself to propose a new name for our Japanese form.

A fact of some interest regarding this species, however, is the presence of two hooks attached to the copulatory organ in our forms: whereas Müller and Henle give it to be the generic character of Acanthias that the "Männchen haben an der äussern Seite des Endes der Anhänge einen beweglichen, am Ende wenig gekrümmen Dorn oder Stachel." Whether the second spine we find in our specimen does exist in the specimens of these authors, or whether it was overlooked by them, which fact is, judging from the otherwise very careful and accurate descriptions of the German authors, very improbable, I am at loss to form any definite opinions. In case, however, the first alternative proves to be the fact, then the specific distinction of our forms is beyond any doubt.

This species is well distinguished from the more common Japanese species of this genus, squalus mitsukurii of Jordan and snyder.

ANIMAL NAMES AND ANATOMICAL TERMS OF THE GOSHUTE INDIANS.

BI RALPH V. CHAMBERLIN.

The Indians commonly known as Goshutes represent a tribe of the great shoshone family, now much reducel in numbers. At this time the remnant of the tribe is gathered principally in two colonies, one located in skull Valley, L'tah, and the other arros the desert in Deep Creek (Ibapah), near the Utah-Nevada border. Permanent camps existerl in these same places long before the advent of white settlers. The Indians of these two colonies had a single tribal organization, the last recognizet chief of which, Ta'li by name. died a number of years ago.

The Indians that formerly held poseession of the region from Salt Lake Valley to Weber Valley were close in language and customs to the Goshutes proper; but they had a distinct tribal organization. Their last chief, named Goship, is said to have been buried south of Salt Lake City, near the present site of the state Prison. According to the statement of survivors of this band, in the days of Goship's prime, when he seems to have been renowned as a war-chief, his follower: numbered some thousands. Begrinniner with the adrent of the Mormon pioneers, however, a rapid decrease in this band occurred, so much so that in a surprisingly few years it was practically extinct. The prineipal agency in this decimation was cortain diveases, brought by the whites, to whel the natives had neverbefore hernexpesed, and to which, ats a conserguence, they hat acyuired nosperial resistanere. Theydied off, it is said, by the hundreds. Almost overnight an entire camp would be swept free of every living soul. In 1815 , for example, an epidemic of measles broke out among them. Ignorant of the proper treatment of the disease, and not knowing whence it came, many assembled at the
 these waters. 'They' died off in large numbers, as many' as forty being heaped in a single grave. The few individuals that now survive from a once proud tribe have taken up their abote with neighboring tribes and bands. 'The Goshutes proper, in the valleys to the west, also suffered strong reduction.

The languages of the Goshutes and of the Goships, as we may con-

of the two chieftaincies above mentioned, are very close to that of the Shoshones proper, much closer than to that of Ctahs, notwithstanding some widespread statements to the contrary. Between the dialect used by the Goships and that of the more western bands the differences are largely phonetic, certain sounds in one replacing certain ones in the other with great regularity: Thus, y at the beginning of syllables in Goshute words commonly becomes n in the Goship. For example, y̌ín"üp, Goshute for sternum, becomes nh̄̃'ŭp in Goship; and, similarly, pai'ya, Goshute for wasp, becomes pai'na. The names for less common animals or other objects were occasionally quite different. Even between the Indians of the Skull Valley and Deep Creek bands, between which there has been continual intercourse and migration, certain phonetic differences in language are found. Thus, the sound of z in the Skull Talley dialect commonly changes to the sound of $t h$ in the Deep Creek; e.g., ma dzi'ka, to cut, and madza'tua, to close, in the former, become respectively ma dthi'ka and ma dtha'tu a in the latter.

In the present paper I give a list of animal names and anatomical terms used by these Indians. Where differences between the terminology of the Goshutes and that of the Goships are known to exist the different forms are given. Where no such difference is indicated the termgiven is to be regarded as common to both in most cases. Many of the names of animals are imitative, as is true of a larger number in our own tongue than we commonly realize; a large number are deseriptive of feature or habit; while fewer have some legendary reference. No effort is made in this place to present such philosophy as this people had or has concerning the animal word, their animal legends, or their many ohservations upon the habits and characteristics of the different forms. Where the significance of a name is sufficiently clear the analysis is inticated. some of the names, beramse of are seem to have undergone changes, rendering analysis no longer possible.

Certain emfines and significant syllables oferring fremently may be noted with advantage.

1. The nominal ending -nŭmp or -ŭmp is aflixed to verbs to indicate the means or instrument by which the actions represented by the verlbs are performed. For example:
ha'vi nŭmp, bed ; from ha'vi do, to lie down, and -nŭmp.
Ǐ'tsi a nŭmp, table-fork; from ti'tsi, to stick into, and -nümp.
Less commonly it is used in the same sense as -üp or -p as indicated under 2.
2. The ending - $-\mathrm{u} p$ or $-p$ is used.
(a) As a nominal ending indicating the object, substance or material produced or involved. For example:
$t t k^{\prime}{ }^{\prime}{ }^{\prime} p$, food ; from di'ka rro, to eat, and -up. $p a^{\prime} g{ }^{\prime} n \breve{n} p$, cloud; from $p a^{\prime} g \check{n} n$, to produce water, and - $\breve{p} p$.
(b) As an adjective ending. For example:
wi'do ŭp, leaky; from wi'do un, to leak, and -ŭp.
3. The particle na, used both as prefix and affix, designates a support, instrument or means. For example:
$n a^{\prime} d z i$ ta, walking cane; from $n a$, and dzi'ta, a stick or rod.
$n a^{\prime} t z e ~ y a, ~ h a n d l e$; from na and ma tze'ya, to carry.
4. The particle do or rro is common
(a) As an ending in verbs, particularly in those indicating personal action. For example:
ka'rri do, to sit down.
guts'huai do, to chew.
(b) As a nominal emting, devignating the thing as the agent performing or the thing concerned in some action or object. For example:
$m a ' s i d o$, finger-nail; from ma, the hand (in compounds), si, indicating extension in plate-like form, and $d o$.
5. ma, a particle indicating the hand or relation to the hand. For example:
$m a^{\prime} s o ~ g i$, finger.
mam'bi shu gu, to rub the hands together.
6. du, a particle similarly indicating the foot or relation to it. For example:
da'so gi, toes.
da'pi shu gu, to rub or scrape with the font.
7. tso, a particle often used as referring to or meaning the head. For example:
tso'ť gi nŭmp, pillow; from (so, ma tt'gi, to place, and -nŭmp.
tso'go trn, to bump the head; from tso and go'ten, to strike.
s. bi, a particle widely used to indicate life or part of a living body. For example:
$b i^{\prime} a$ or $b i$, the heart.
-b̌̌tc, an affix frequent in animal names; as mom'bytc, owl, and tu'kobytc, wildcat.
pam'bi, head; from pam ($p a$, top, $-m$, adj. ending) and $b i$.
trm' $p i$, mouth.
This particle was, it seems, formerly the ending in the names of some parts of the body now designated by different terms, in some of which the particle no longer occurs. Thus for head there was a more ancient term, tso'pi, the first syllable of which is now alone used as indicated under 7. Font, now designated by namp, seems to have had another name, da'pi; and similarly with hand, for which the present term $m o q$ was apparently preceded by $m a^{\prime} b i$ or $m a m^{\prime} b i$. The first syllables in these are used in similar way to $t s o$, as indicated under 5 and 6 .
8. wa as a verbal particle means to bend, to turn aside, to wriggle. Probably secondarily it means to produce, etc. Hence in some Shoshone dialects, used alone, it means infant, young. It is frequent in names of animals, where its primary use would seem to be to indicate a young animal, or an animal so regarded.
ai'wa, a fawn.
wa'bi, a worm.
9. $T, s, t s, t c, t c i$, and k are noun endings, the exact force of which need not be here discussed.
10. N or m added to a noun converts the latter into an adjective. For example:
$p a$, water; pam, aquatic.
ni'wa, liver; ni'wam, hepatic.
When a merely phonetic difference exists between words as used in Skull Valley and Deep Creek, the pronunciation of the former is followed, that of the latter being readily derivable from it. The values of the different letters as used in the present paper are indicated below.
a, e, i and o when ummarked are given their usual long sound in European tongues.
\mathfrak{a} is sounded like a in fat.
\check{c} is sounded like e in met.
I is sounded like i in pit.
n is sounded like u in butter.
ii is sounded like iu in German miade or as u in the lirench lune.
11 is sounded like oo in boot.
ai is sounded like ai in German Kaiser or i in bite.
oi is sounded like oi in boil.
q is sounded like ch in German lachen, Dach, etc.
sh is sounded as in shell.
te is sounded like ch in English chance, or like c in It alian cicerone.
rr is sounded with a roll as in the Spanish perro.
\tilde{n} is sounded like ng in the English words sing, gong, etc.
Other consonants have their usual foree in English.

English-Goshute.

A.

abdomen; belly :
sap.
bo'tsi (Dcep Creek, in addition to sap).
after-birth :
ga'rrǐp.
animal:
mi'a gwain.
ant (general term):
$a^{\prime} n i$.
ant, red (Pogonomyrmex occidentalis, var.):
$a^{\prime} n i$ gwi tchŭk.
a'rran gotsabi (Goshute, D. C.).
ant, black (Camponotus pernsylvanicus, etc.):
a'ni.
a^{\prime} rra si wrte (Goshute).
This ant and related forms is said to have been eaten formerly by the western Goshutes during times of searcity. The red ant, because of its strong taste, was not eaten. The ants were gathered by being allowed to cover thickly a hide spread over their nest, and were then brushed off into a suitable receptacle
or bag. They were cooked by being placed in hot ashes in a wicker or other vessel.
ant, velvet (Mutilla, etc.):
ga'go (Goshute, D. C.).
This name means "grandmother."
antelope (Antilocapra americana):
(a) female: kwa'ri.
(b) male: pi'ŭ wants.
antenna (as of locust):
ap.
[a, process, horn, etc. $+p$.]
gwa'shi bŭ hŭ (this term was applied to the long antenne of the crayfish).
[gua shi, tail or tail-like object + bŭhǔu.]
anus:
gwi'tǔts.
[gwi (kwi), a root meaning to shoot forth, expel, etc. + tüts, the latter likely composed of to, designating a tube-like object $+t s$, nominal ending.]
aorta:
Bi'a moko.
[bi'a, heart + mo'ko.]
arm:
bu'i do; bü'rro.
avocet (Recurvirestris americana): pa^{\prime} rro gots; pa'do gots.
[pa, water + rro or do (vid. supra) + gots.]
axilla; arm-pit: a'na.
axolotl (larva of Amblystoma):
pa'bo go tci.
$[p a$, water $+b o(p o)+g o$ tci.]
B.
back:
gwai'ŭmp; gwai'ŭm.
back-bone; vertebral column:
gwai'o rra.
[guai'ŭmp, back + o'rra, trunk, stalk, etc.]
badger (T'axidea americana):
u'na.
bangs; front hair:
mo'pi bañ ga sa (mo pai bañ ga sa).
[Prob. mo'bi, nose $+b a n^{\prime} y a-$ $s a$, general term for pendent hair or locks, q. vid.]
bat (general term):
o'na bitc.
beak; bill (of bird):
mr'tcu ga; mY'tcŭg.
bear, general term:
wu'da.
bear, black (Ursus americanus):
(a) black: tu'wuda.
[tu, from tu'o but, black + wu'da.]
tu'mŭ su i; tu'mŭsh.
[tu, black + mŭ'su i.]
(b) brown: óa wuda.
[σ^{\prime} a from $o^{\prime} a$ btt, yellow or brown + wu'da.]
o'a mŭ sui; o'a mŭsh.
[$0^{\prime} a$, brown $+m u{ }^{\prime}$ 'sui.]
oi'ya rro.
bear, grizzly (Ursus horribilis):
a'shi wuda.
[a'shi, from a shi bit, gray + wu'da.]
to'sa wu da.
[to'sa, from to'sibyt, white, gray + wu'da.]
beaver (Aplodontia rufa):
ha'ni; a'ni.
$p a^{\prime} o$ ŭnts; pa'o ŭnts a ni.
[pa'o, referring to water + -unts.]
bee, bumble (Bombus, various species):
r'bi mŭ.
pi't bi mŭ.
[$p i^{\prime}{ }^{\prime} \breve{ } \quad$ p, big $+r^{\prime} b i m u ̈$.]
bee, honey (Apis mellifica):
tai'bo pai na (Goship).
$\left[t a i^{\prime} b o\right.$, white man + pai'na, wasp, bee.]
tai'bo pai ya (Goshute).
beetle (general term):
Y'sha gǔ; Y'sha gi a.
[i'sha, wolf $+g$ ŭ, probably from gi'a, to bite, to eat, etc.]
Beetles are called "wolf's food," because said to be eaten at times by the coyote and wolf.
beetle, wood-borer, larwn of:
a^{\prime} rrŭts (Goship).
u'o a bi (Goshute).
beetle, dung (Aphodius, ete.): kwi'tŭ bui.
[kwi'i'up, manure + bu'i.]
beetle, lady-bird (Coccinella, etc.): ?a'ka na bun.
[a'ka, branch, etc. $+n a+$ bun, thing resting or living upon, etc.]
beetle, tumble-bug:
wo'tsa wan dy tei.
[wo'tsa wan, to roll + brytci.]
The name of these beetles is given in reference to their well-known habit of forming balls of manure which they roll often long distances before depositing their eggs in them.
beetle, water-scavenger (Hydrophilus):
tu'ban disip.
[tu from tu'o btt, black + pa, water $+n$, adjective ending + (prob.) di'si, signifying, from its composition, to stick or press into, press through, pass through, etc. $+p$, nominal ending.]
The latter part of this name, ban di sip, is a somewhat general term applied to various aquatic forms, both animal and plant.
bile:
ni'uam bui.
[$n i$ wa, liver $+m$, adjective ending + bu i.]
bile-luct:
si'gwa na di wok.
[si'gucu + na'di wok, indicating a connecting tube or eord, ete.]
bird (general term): oi'tcu; hoi'tcu.
bison (B. americanus):
(a) cow: tsa'kwYtc u;sa'kwYtc-u. ty'br tci gwitc.
$\left[t t^{\prime} b r\right.$ tci, true $+k w t c h$, from kwitcen, a word now commonly applied to the domestic cow (Bos).]
(b) bull: po'i jin.
bittern, American (Botaurus lentiginosus):
mo'pŭñ gwi.
This name is imitative of the Spring song or "booming" of this bird, which is well represented by the repetition of these syllables six or seven times, with the accent strongest upon the second syllable and the last one sounded least distinctly:
black-bird (general term):
pa'gŭn sŭk.
black-bird, red-winged (Agelaus phœniceus):
puñ'go pa gŭn sŭk.
[$p u ̆ n^{\prime} g o$, horse $\left.+p a^{\prime} g u ̆ n ~ s u ̆ k.\right] ~$
The name of "horse-blackbird" is given to this species, because observed frequently to follow after horses in fields in order to work over the droppings.
black-bird, yellow-headed (Xanthocephalus icterocephalus): sai'pa gŭn sǔk.
[saip, bulrush + pa'gŭn sŭk, blackbird.]
bladder, urinary:
sip.
[sip in strictness means the
urine (q. vid.), but is also applied to the urinary sac.] si'mo gŭts.
[sip, urine + mo gŭts, pouch or sac.]
blood:
bu'ŭp; bwap.
blood-vessel (vein or artery):
bai'bŭp; bai ŭ bi; bai.
[bai, to fill or swell $+b u^{\prime} \check{u} p$, blood.]
blue-bird, Rocky Mountain (Sialia arctica):
ho'ka du i; wo'kwa du i.
bob-white (Colinus virginianus):
tai'bo hu itcu.
[tai'bo, white man $+h u^{\prime} i t c u$, bird.]
? wu'pa mu gi; wu'pa mu gi gaha (Goship).
[wu'pa, probably from $m a-$ wu'pain, to beat + woo'gi, with or without $g a^{\prime} h a$.]
Not a native of but early introduced into Utah. Thus the first name.
bone:
dzónyp.
brain:
ku'blsh.
tso'ku blsh.
[tso, pertaining to the head + ku brsh.]
bug, stink (Pentatomid):
$a^{\prime} k a$ na buñ.
[$a^{\prime} k a$, branch of tree, etc. + $n a+b u n$, that which lies or rests upon, etc.]
kwi'tŭ pl shu Ynt.
$\left[k w i t^{\prime} u ̆ p+\right.$ manure $+p$ s shu$\mathrm{r} n+$ t.]

This term, obtained from a Deep Creek Indian, is not in general use.
priñŭts.
Of these three terms the first is the standard.
bug, giant, water (Belostoma):
ban'di sip.
[$p a$, water $+n$, adjective ending + prob. d 'tsi, to thrust into, pass through, etc. + p.]
butcher-bird (Lanius borealis): ťn'tso na.
butterfly (general):
hai'po rrŭñ.
buttocks:
by'ta go.

C.

caddis-worm:
pa'si wŭt.
[pa, water.]
calf :
kwitce'en du a.
[kwttcočn, cow + én du'a. young one, etc.]
calf (of leg):
witc.
caribou (Rangijer) :
?tu'pa rri a (Goship).
See Moose.
carp (Cyprinus carpio): tai'bo pãin whte. [tai'bo, white man \div păñ wrte, fish.]
Called by this name because introduced into the region by white men.
carpus; carpal bone:
pi'a ma tso ni.
[$i^{\prime}{ }^{\prime}$ üp, large $+m a$, pertain-
ing to the hand + tso'ni, tso' n Yp, bone.]
cartilage:
si'no wi.
caterpillar (of Samia, Archippus, etc.):
pi'a ga.
caterpillar (various hairy forms):
pu'i wa bit.
[pu'i $+w a^{\prime} b i$, worm. $]$
cedar-bird (Ampelis cedrorum):
wa'wI tco go bltc.
centipede (Scolopendra; also Lithobius, etc.):
trm'pin to go a.
[t'm'pi, stone, etc. $+n$, adjective ending $+t 0^{\prime}$ go a, rattlesnake.]
cerebellum:
te'e ku bish.
$\left[t e^{\prime} e\right.$, small $+k u^{\prime} b$ ssh, brain, nerve material.]
cerebrum:
pi'a ku brsh.
[$p i^{\prime} \breve{u} p$, large $+k u^{\prime} b$ rsh $^{\prime}$.]
chickadee, black-capped (Parus atricapillus):
r'jŭ gi.
[Imitative.]
chickadee, mountain (Parus montanus):
a'ni ki.

[Imitative.]

The call of this bird is represented by the Goshutes as $a^{\prime} n i k i, k \check{\prime}, k i$, etc.
cheek:
sob.
chin:
gł’piñ go.
[gřpiñ, pertaining to mouth $+g o$, bending round, angle, etc.]
chipmonk (Tamias lateralis):
hoi.
chub (Leuciscus):
wi'tca pãũ gwĭtc.
cicada, two-year, or dog-day harvest fly (Cicada tibicen):
gi'a; gŭ.
The cicada and its larve were formerly used as food when abundant. They were placed in holes lined with hot stones, covered, and allowed to remain thus until cooked.
cicada, seventeen-year (Cicada septendecim): ta'bi da.
clam, fresh-water (Anodonta):
wa'go ŭn du rua.
[wa'go, frog $+\breve{u} n$, article + du ru a, child.]
wa'go (short for that above).
clam-shell:
wa'go ŭn kar ni.
[wa'go, short for clam $+\check{\iota} n$, article $+k a r^{\prime} n i$, house, enclosure, etc.]
clavicle:
o'ko.
tso'ni wok.
claw. See finger-nail.
coccyx:
gwa'shi tso nrp.
[guca'shi, tail + tso'nYp, bone.]
colt:
pŭñ'go ĕn du a.
[рй $\tilde{n}^{\prime} g o$, horse $+\check{n}$ or $\check{\text { un }}+$ $d u a$, young one.]
comb:
anñ'ka go si ŭp.
[ẵ'̃'ka brt, red + go siŭp.]
cow (Bos):
kwYte'ĕn.
cow-bird (Molothrus ater):
pa'su ŭm pa gŭn sŭk.
[$p a^{\prime} s u$ ŭmp, sand + $p a^{\prime} g u ̆ n-$ sŭh, black-bird.]
coyote (Canis latrans):
i'jŭ pa.
crane, blue. See blue heron.
crane, northern brown (Grus canadensis):
ko'rra.
[Imitative.]
crane-fly (T'ipula, etc.):
i'jŭ pa mo po.
[i'jŭ pa, coyote + mo'po, mosquito.]
This name, "Coyote mosquito," is legendary.
pi'a mo po (not approved)
[$\mathrm{i}^{\prime} \mathrm{a}$, big + mo po, mosquito.]
cray-fish:
pa'to go bi.
$\left[p a^{\prime} t o+g o^{\prime} b i\right.$, face. $]$
cricket, black (Anabrus simplex):
mă'so.
These crickets, in particular, were formerly regularly eaten when abundant, being roasted in pits lincel with hot stones and eovered (rid. under C'icula). Sometimes they were eaten without previous cooking.

During certain seasons this form occurred in vast swarms or "armies," at such times furnishing an easily obtainable, abundant and relished food-supply. It is likened by the Goshutes to the shrimp, which, indeed, they term the "fish-cricket" (mă sopainurtc). This cricket and the Cicada, which occurred in similar abundance, were apparently the most important sources of Arthropod food.
cricket, common (Gryllus):
tsu'rru pinte (Goship).
tsu'du kŭm byte (Goshute).
tsin'a printe (Goshute).
ti'da kŭm.
crow (Corvus americanus):
hai.
curlew (Murenius longirostris):
ko'hwi (Goship).
ko'ki (Goshute).
[lmitative.]
1).
deer, black-tailed or mule:
(a) general term: so'ko rid.
(b) mate: so'ko rri ŭn grı ŭm pa.
[so'korri + ŭn, article + !uüm pu, male, mate.]
deer, white-tailed or V'irginia (O)doconleus virginianus:) : jo'gwi.
deerskin:
so'ko rua čm bur.
[sonkorri, heor + čm bur, hide.]
dew-claw:
ma'bin tea.
[ma'brn, pertaining to the hand, etc. + tca.]
diaphragm:
a'bo.
dipper or water ouzel (Cinclus mexicanus):
pau'wi tcu; pau'oi tcu.
[pa, water + oitcu $^{\prime}$, bird.]
During times of drought, the Goships claim, rain may be brought by grinding up the flesh of one of these birds, casting the same overhead and pronouncing certain sentences.
dog (Canis famliaris):
sa'detí; sa'rritc ; sa'rri.
dove, mourning (Zenaidura carolinensis):
ai'wi.
dragon-fly (general term): pa'ga mu tu nats.
[See humming-bird.]
duck (general term):
bu'i.
duck, black-head (Fulix affinis):
tu'pam pi bui.
$[t u$, black + pam'bi, head + bu'i.]
duck, golden-eyed (Glaucionetta clangula americana):
ko ${ }^{\prime} \mathrm{ka}$ pr grn.
[Reference to whistle or whirr produced by wings.]
duck, mallard (Anas boscas):
pi'a bui.

$$
\left[p^{\prime} \breve{u} p, \text { big }+b u^{\prime} i .\right]
$$

duck, red-head (Fiuligula ferina americana):
añ̌'ka pam pi bu i.
[ă $\tilde{n}^{\prime} k a$, from ă $\tilde{n}^{\prime} k a b \not b t$, red + pam'pi, head $+b u^{\prime} i$.]
duck, pin-tail (Dafila acuta):
wo'viñ gwa shi bu i.
[wo'v̌̌n, pole, sprout, etc. + gwa'shi, tail + bu'i.]
duck, spoonbill or shoveller (Spatula clypeata):
so'a bu i.
duck, teal (gencral term):
so'ko bu i.
[so'kuйp, ground $+b u^{\prime} i$.]
The name, "ground duck," refers to the habit of these ducks of nesting upon the ground rather than among rushes in water.
trisa bu i.
[ť'sa, small $\left.+b u^{\prime} i.\right]$
duck, teal, blue-winged (Querquedula cyanoptera):
añ̃'ka so ko bui.
añoka tir sa bui.
[ă $n^{\prime} k a b \check{k}$, red + so'ko bu i or tr'sa bu i, teal duck.]
The name refers to the cin-namon-colored breast.
duck, wood (Aix sponsa):
o'brĩ bu i.
[o'bin, pertaining to wood $+b u^{\prime}$.]
dura mater:
dzo'po a.
[dzo, pertaining to the head or brain(? $? ~+b o^{\prime} a$, skin, etc.]
E.
eagle (general term) :
gwi'na.
eagle, bald (Halictus leucoceph- eye, humor of: alus):
pa'si a.
eagle, golden (Aquila chrysatos):
pi'a gwi ná.
[$i^{\prime}{ }^{\prime} и ̆ \quad$ p, big $\left.+g w i^{\prime} n a.\right]$
ear:
năñ'kŭs; năñk.
ear-hole:
năñ'kǐn dain.
[$n a ̆ a \tilde{u}^{\prime} k \check{\prime} n$, pertaining to the ear + dain, hole.]
ear, lobule of :
nañ'kin dua.
[năũ'krn, pertaining to the ear + du'a.]
earth-worm (Lumbricus, etc.) :
so'ko wa bi (Goshute).
$p a^{\prime} u$ wa bi ; pa'u hwŭp (Goship). [The first term consists of so'kŭp, earth + wa'bi, worm; the second of $p a^{\prime} u$, pertaining to water + wa'bi (cf. German Regenwurm).]
egg:
noi'ya.
elbow:
gip.
elk (Cervus canadensis):
(a) general term: pa'rra hi.
(b) male: pa rri ěn gu ŭm pa.
[pa'rri + gu'ŭm pa, male, mate.]
esophagus:
drñ'gi ok.
cye:
bu'i; bu.
cye-brow:
gai'ba.
bu'i pa.
[bu'i, eye $+p a$, water.]
eye, lens of:
bu'i rrin du ga.
eye-lash:
bu'rro sip.
$\left[b u^{\prime} i\right.$, eye + rro $+\operatorname{sip}$, that which protrudes in plateor leaf-like form, etc.j
eye-lid:
bu'i bo ŭmp.
$\left[b u^{\prime} i\right.$, eye $+b o$, cover, etc. + йmp.]
epiglottis:
ai'go bi shi a.
$\left[a i^{\prime} g o\right.$, tongue $\left.+b i+\operatorname{sh} i^{\prime} a_{\text {. }}\right]$

F.

face:
go'bi ; gob.
fat:
yuq.
[so'yo hobui ; so'yo ho bwi.]
fawn, young of deer:
ai'wa.
[Probably ai, to spring or leap, etc. $+w a$.]
feather:
shi'ŭp.
ga'sa gŭnt; ga'sa (applied commonly to long wing feathers. Cf. wing).
ferret, black-footed:
kwi'pu ka (Goship).
[Said to be imitative, the cry being represented as kwrp, kwip, kurp.]
The identification was from figure and description of habits.
fetlock:
ma'pŭ.
[ma, hand, paw, etc. + pŭ.]
fetus:
du's tei.
[du'a, child, young $+t c i$, $t s i$, diminutive.]
fin (of fish):
pa'wu gi.
[pa, water + wu'gi, flail, etc.]
finch, Allen's rosy (Leucosticte australis):
kai'ma.
pi'a kai ma.
[pi'üp, large + kai'ma.]
finch, crimson (Carpodoeus purpurea):
kai'ma.
finger (general term):
ma'sur ki.
ma'so gi.
[ma , hand, pertaining to the hand $+s u^{\prime} i k i$ or so'gi, indicating things repeated or of the same kind.]
finger:
(a) index: ma'tsi tsuk.
(b) little: ma'tu a.
(c) middle or second: ma'ti bia ka.
(d) third: tu'i ma tsi tsuk.
finger-nail; claw:
ma^{\prime} si do.
[ma, hand, pertaining to hand + side, to 2 protrude in plate-like form, plate-like object protruding.]
flesh, meat:
du’ku; tu'kwa.
fly, horse (Tabemus):
pi'pria.
fly, horse, banded (Chrysopa):
on'ti ya kwa.
[on'ti, probably from on ti gait, brown $+y a^{\prime} k w a$.]
fly, house (Musca):
a'ni bo.
fly-catcher, yellow-bellied (Empidonax flaviventris):
pǐn'ji rrŭ.
fly-catcher, yellow-bellied striped (Myodinastea luteiventris):
añ'i ta; wañ'i ta.
[añ' go, timber, etc. + ita (cf meadow-lark.)]
foot:
namp.
[Apparently na, support, that which is beneath and supports, ete. + ump, nominal ending (vid. ante).]
forehead:
ga;.gai.
foreskin:
pa'skǐn Yp.
fowl, domestic:
(a) general: tai'bo ka ŭm buñ. $\left[t^{\prime} i^{\prime} b o\right.$, white man $+k a \breve{u}$ buñ.]
ka ŭm buĩ ŭm gum pa.
(b) cock.
[ka'ưm bun + gum'pa, male mate, etc.]
fowl, guinea (Numidu meleagris):
wi'jŭn gwi na.
[wi'ja, sage-hen + gweina.]
Socalled because thought to resemble in some ways the sage-hen.
fox, general term:
wa'ni.
fox:
(a) gray: to'sa wa ni.
[to'sa, from to'sib̌t, white or gray $+w a^{\prime} n i$.]
(b) kit or burrowing: y y ba.
(c) red: wai'am brtc. on'ti wa ni.
[$o n^{\prime} t i$, from on'ti gait, reddish brown, etc. + wa'ni.]
(d) silver or black: tu'wa ni.
[tu, from tu'ob̌t, black + wa'ni.]

G.

gall-bladder:
ni'wam bu i.
ni wam buitsuk.
[ni'wa, liver $+m+b u^{\prime} i$, blood, fluid, etc. Tsuk, when not added, is to be understood. It means sack or pouch. (Cf. bile.)]
gill (of fish):
pa'so na.
[pa, water + su'na. Cf. lung.]
giraffe:
pai'wa.
This name was applied by these Indians to certain mythical creatures with long necks which were supposed to live in the Warm Spring Lake north of Salt Lake City, in which they were supposed to have holes. When the giraffe was first seen by them at circuses exhibiting at Salt Lake, they immediately identified it with the crea-
ture they claimed formerly dwelt in the lake before mentioned.
gizzard:
bi'bonts.
goat, Rocky Mountain (Oreamnos montanus):
ka'ni ru ŭnts; $k a^{\prime} n i$ runts.
goat-sucker (Chordeiles virginianus):
ho'i dǔk.
glans penis:
wu'Im pam bi.
$\left[u u\right.$, penis $+m+$ pam'p $^{\prime}$, head.]
goldfinch, Arkansas (Astragalinus psaltria):
tu'kai yam pa.
["Bird that calls at dark," is the effect of this compound.]
goose, Canada (Branta canadensis):
nu'gŭn ta.
goshawk, Western (Accipiter atricapillus):
sk'na kwi na.
[sč̌na + gwi'na, general term for certain large-sized bird, cagle, etc.]
gopher, pocket (Geomys):
i'a bitc.
grasshopper, long-horned (Orchelimum, etc.):
a'ma tsu byte (Goship).
a'wa tu bi (Goshute, D. C.).
grebe, Western (Eomophorus occidentalis):
ti'i dyts a pam buñ.
ti'i dits a pam buñ añ ka bu i.
$\left[t i^{\prime} i\right.$ dYts, small + pam'bun, $^{\prime}$ swimmer, etc. + with or without ăn ka bui, red eye, in reference to this wellknown feature of the bird.]
grebe, American eared, or Helldiver (Auritus californicus) noi'ya wu ta.
[noi'ya, egg + wa'to, two, changed to wu'ta for euphony.]
grosbeck, black-headed rosy (Zamelodia melanocephala): móbi os.
[Name refers to the conspicuous beak or nose ($m o^{\prime} b i$).]
grouse, pine (Canice obscura):
wañ'go ha; añ'go go ha.
[uañ'go, timber $+g a^{\prime} h a$, general term for this type of bird.]
grouse, Canada (Canace canadensis):
ko'go.
My informants claim that this grouse was formerly fairly common in Weber Valley. The identification was from figure, no specimen being available.
ground-squirrel (Spermophilus, various species):
$\mathrm{krm}^{\prime} \mathrm{ba}$.
gull, California (Larus californicus):
pa'ua.
$\left[p a\right.$, water $+u^{\prime} a$, possibly, from composition, to move or glide above.]

H.

hair (general term):
(b) of head: wu.
pam'pi wu.
[pam'pi, head + wu.]
(c) front locks ("bangs"): mo'pai bañ ga sa.
(d) hind locks: bañ'ga sa.
[Probably ban, top, pertaining to head, etc. + $g a^{\prime} s a$, wing or similar object.]
(e) of pubic region: su'ŭp.
hair-snake (Gordius) :
pan'du rra; ban'du rrai.

$$
\left[p a n \text {, aquatic }+d u^{\prime} r r a .\right]
$$

hand:
(a) general term; right: moq; mok.
(b) left: kwi'ba.
hand, heel of :
ma'piñ go.
[ma^{\prime} bin, pertaining or belonging to the hand $+g o$, angle, bend, etc.]
hawk, chicken (Accipiter cooperi): pan'dza ya.
hawk, duck (Falco peregrinus anatinus):
pa'gi ni.
hawk, fish (Pandion haliætus):
$p a^{\prime}$ nŭñ ka. [pan, aquatic $+u n+k a$.]
hawk, marsh (Circus cyaneus hudsomius):
ki'ni.
hawk, rough-legged (Archibutio lagopus sancti-johannis):
năn'du ga.
hawk, rough-legged, ferruginous (Archibuteo ferrugineous):
năn'doi.
hawk, pigeon (Falco columbarius):
ko'na gi dr ka.
hawk, sharp-shinned (Accipiter velox):
o'a da.
hawk, sparrow (Falco sparverius): gy'di dr ki.
[Imitative, the call being represented as $g v^{\prime} d i$, $g \imath^{\prime} d i$, g l'd $^{\prime}$, etc.]
hawk, red-shouldered (Buteo lineatus):
ash'i um a da.
ash'i u a da.
[a'shi btt, gray, grizzly, etc. + $o^{\prime} a_{\text {d }}$ da.]
hawk, Swainson's (Butco swainsoni):
nañ'gai.
head:
pam'bi; pam'pi.
$[b a, p a$, top, etc. $+m$, adjective ending $+b i$, life, part of living body, etc.]
heart:
bi'a; bi; bi'hi.
[bi, life, living thing or part, etc.]
heart, auricular and ventricular cavities of :
bi'am bai hyu.
heart, valves of (tricuspid and mitral):
bi'am nam ba.
heel of foot:
da'prĩ go.
[da'pin, pertaining to the foot + go, angle, etc.]
heron, black-crowned night (Nycticorax nycticorax neralis):
to'sa ko kwa jo.
[to'sa, from to'si but, white + ko'kwa jo, crest, etc.]
heron, great blue (Ardea herodias):
ko'kwa jo.
[The name means a crest, the reference being to the long crest at the back of the head of this bird.]
hip:
dzi'ŭmp.
hip-bone (os innominatum):
dzi'ŭñ ŭp.
[dzi'ŭn, from dzi'ŭmp, hip + $\breve{u} p$.]
honey:
pai'yam pi na.
[pai yam, pertaining to bee or wasp + pi'na, sweet.]
hoof:
ta'si do.
[ta, referring to the foot + si'do, leaf- or plate-like object. Cf. finger-nail or claw.]
horn:
a; ha.
horn or antlers, new, in velvet:
I'gi a saĩ gŭn.
horn-tail:
o'pi tu Its.
o'bln bi duts.
[o'brn, pertaining to wood + tu'tts, apparently borer. hole-maker (ef. muddauber).]
horned toad (Phrynosoma douglasii, etc.):
ma'ki jŭñ ŭk.
horse:
pŭñ'go.
humerus:
dzo'ŭp.
humming-bird (general term): mu'tu nats (Goship).
pa'ga mu tu nats; ti'bi tci pa ga mu tu nats (Goshute).
[mu tunats, straight nose or beak; pa'ga, probably arrow, in reference to swift flight. Tibitci is prefixed to distinguish from dragon-fly, q. vid.]
hypochondriac region: i'pŭmp.

I.

instep:
dau'wo.
[da, pertaining or belonging to the foot (the a sound changing to $a u$ before w as always) + wo, bow, arch.]
interdigital space or croutch:
man'na si ga.
intestines:
go'ha.
iris of eye:
grñ'wai bi.

J.

jay, Rocky Mountain (Perisoreus canadensis var. capitalis): yu'rro gots.
[yuq, fat + rro'gots.]
The name refers to the fondness of birds for fat, which
they boldly approach camps to obtain.
jay, long-crested (Cyanocetta macrolopha):
hañ'go tsai bitc.
[hañgo refers to crown or crest $+t$ saibutc.]
jay, woodhouse (Aphelocoma floridana woodhousi):
tsai'bitc.
K.
katydid (general term):
u'bi a gŭn.
kidney:
da'ki po.
killdeer (Egialites vociferus):
tn'di (Goship).
pan'di (Goshute).
[pan, aquatic.]
kingfisher (Ceryle alcyon) :
păñ'gwi tsa rra pĭnte.
[p ॅañ $^{\prime} \mathrm{gw}$ ̌̌tc, fish + tsa'rra + pintc.]
kite, swallow-tailed (Elanoides forficatus):
trm'bai wa ga. [wa'ga, from wa'gasaga, forked, is applied to several birds with forked tails (cf. tern).
knee:
dañ'ŭp.
knuckle:
ma'pon dza.
[ma, belonging to the hand etc. $+p o n^{\prime} d z a$, eminence protuberance, etc.]
L.
labia majora:
gwa'bi nu.
larynx:
wai'a thin.
leech (general term): pa'na wi tcŭt.
leg: móa; mo.
ligament, transverse of foot (L. trans. cruris and cruciatum cruris):
dau'win tea.
[da, pertaining to foot + winn'tca.]
ligamentum nuchx; also muscles of back of neck in man, etc. mư'ta.
linnet, pine (Chrysometris pinus): i'jŭ pa oi tcu aip.
[i^{\prime} јйра, coyote + oi $t c u$, bird + aip, that which is made.] This name is given because this is supposed to be one of the birds made by the coyote.
liver: ni'wa.
lizard (Sceloporus, etc.) :
po'ka ji.
lizard (Crotaphytus wesleyenus, and several other large forms resembling it):
sa'bi yats.
lizard, Gila monster (Heloderma): trn'hua.
lizard (large form mentioned by Indians, but not yet identified by me):
mu'kwi ta.
locust, short-horned (general term):

locust, black-winged (Dissosteira carolina):
ti'ba tsa rra kŭm bytc.
$\left[t t^{\prime} b a\right.$, pine-nuts $+t s a^{\prime} r r a+$ $k \breve{u} m+b \check{t} c$.]
The Goshutes say that this locust shrills particularly at the season when pinenuts are ripe, when it continually calls $t i^{\prime} b a, ~ t i^{\prime} b a$, $t i^{\prime} b a$. Hence the name.
locust (several one-striped species of Schistocerca): ba'ny sha.
locust, spotted form (species of Hippiscus):
so'ni a tŭñ.
locust, dusky:
tu'a tuñ.
[tu, from tu'o byt, black + $\left.a^{\prime} t u ̆ и ̆.\right] ~$
loon (C'olymbus torquatus):
pam buñ'.
[Vid. water-strider.]
louse, head or body (general term):
po'sia.
lung:

M.

magpic (Pice rustica hudsonica): kwi'to wo ya.
malar bone:
sóba dr ja rrŭũ.
matman:
hr'ji.
malleolus (internal and external): dápon dza. [der, pertaining to the foot + pon'dza, protuherance. ete.]
mandible:
a^{\prime} rrŭ pa; a'rrŭp.
mantis, proving:
u'na dzi ta.
[u, probably wood $+n a^{\prime} d z i-$ ta, cane, etc.]
marrow:
du'hu.
marten (Mustela americana):
añ'go sau wa ; añ'go sau.
[añ'go, timber + sau'wa. Cf. mink.]
mastoid process or region:
năñ'go sa.
meadow lark (Sturnella neglecta): i'ta.
merganser (Mergus merganser) : păn'gwi dy ka.
[pă̈ígui, from pan gw̌tc, fish $+d y^{\prime} k a$, eater, etc.]
pañ'gwi di ka ko kwa jo.
[păñ'gwidika, as above + ko'kua jo, crest, head appendage, etc.]
mesentery:
sa'si ga (Goship).
o'sa ni pwŭp (Goshute).
milk:
br'ji.
millipede (juloid forms):
trm'pin wu a bi.
[lim'prn, pertaining to rocks, etc. $+w^{\prime} u^{\prime} a b i$, worm; thus, rock-worm.]
mink (l'utorius vison):
pa'sau wa.
minnow:
saip păñ gwltc.
[sai, probably from saip, bulrush + păй'guйtc, fish.]
mosquito (var. kinds):
mo'po.
mole:
ta'kŭm go ŭm bitc (Goship). $\left[t a^{\prime} k a\right.$, snow $+m+g o^{\prime}$ üm. possibly cutting or burrowing about + butc; hence. snow-burrowing animal.]
ta'ka mu di wants (Goshute).
ta'ka mo di bo ŭn (Goshute).
[ta'ka in each, snow, as in the Goship.]
moose (Alces americana):
kwi'pa rri a (Goship).
[kwi, probably from root of kwi'ümp, lazy, slow + pa'rri a, elk, etc.]
The name is given in reference to the animal's lack of great speed. tu'parri a (Goshute).
[tu', black + pa'rri a, elk.]
moth, gencral term (as Samia, etc.):
r'pai bi.
moth, pupa of :
r'pai bi ŭñ kar ni.
[i'paibi, moth $+\breve{u} \tilde{n}+k a r^{\prime} n i$.
house, nest.]
mons pubis:
ga'rri.
mountain sheep (Oris montana):
(a) female: muts'ĕm bi a.
(b) male: du'ku.
mourning dove (Zenaidura carolinensis): ai'wi.
moth, sphinx (Deilephilo): $a^{\prime} k a$ mosoruYte.
mouse and rat kind in general (Muride, etc.):
to'rmp.
mouse (Mus):
po'nai.
mouse, field:
krm'ba bo nai.
[krm'ba, spermophile + po'nai, mouse.]
mouse, kangaroo:
bai'a.
moustache:
mo'tso; muts.
mouth :
tim'pi; timp.
tym’br tci.
mucus, from nose:
mo'bi ship.
[mo'bi, nose + (bi'ship?).]
mud-hen (Rallus):
sai'a;sai.
muscle, general term:
rrok.
muscle, adductor hallucis, etc.:
da'ti ba na rrok.
[da'tibana, sole of foot + rrok, muscle.]
muscle, biceps :
mau'wrnte (Goship).
bañ'gwi (Goshute).
muscle, deltoid:
dzo'a rrok
[dzo'ŭp, shoulder, + rrok, muscle.]
muscles of forearm:
ma'tsi dau (Goship).
mau'wnte (Goshute).
muscle, gastrocnemius, etc.:
wi'tea rrok.
[witc, calf of leg + rrok, muscle.]
muscle, frontalis:
gai'bo rro ŭn.
[gai'ba, eyebrow + rro'ün.]
muscle, masseter:
a^{\prime} rrŭm y̌̆m a głn.
[$a^{\prime} r r u ̆ m$, from $a^{\prime} r r u ̆ p a$, lower jaw + y̌m, apparently raising $+g$ m n . $^{\text {] }}$
muscle, orbicularis oris:
? dr'ga tso kai.
muscle, pectoral:
n' na rrok (Goship).
y In^{\prime} ga rrok (Goshute).
 (Goshute), sternum + rrok, muscle.]
muscle, rectus abdominis, etc.:
wo'a rra (Goship).

N.

nares:
mo'brn dain.
[mo'brn, pertaining to the nose + dain, hole.]
nasal bone:
mo'bIn dzo nyp (Goship). $\left[{ }^{\prime} o^{\prime} b{ }^{\prime} n\right.$, nasal $+d z o^{\prime} n Y p$, bone.] mu'tcŭk (Goshute).
[mu, from mo'bi, nose + tcŭk.]
navel:
si'go.
neck:
do'i ŭmp.
neek, lower lateral region of:
an'di wi a.
nerve:
du'hu.
nest, bird:
no'tso ni.
[no, from noi'ya, egg + tso'ni, enclosure, something surrounding, etc.]
night-hawk (Chordediles popetue henryi):
wai'bŭn ta.
nose:
mo'bi.
nose, ala of:
mo'bi pa nI ginn.
[mo'bi, nose + pa'nigin.]
nutcracker, Clarke's (Picicorvus columbianus):
to'a gŭts.
nuthatch (Sittu):
jo'gi.

O.

occiput:
ga'ŭm bit.
orbit of eye:
bu'i ko ikrn.
[bu'i, eye $\left.+k o^{\prime} i k{ }^{\prime} m.\right]$
oriole, Baltimore (Icterus galbula): mo'bi os.
[$m o^{\prime} b i$, nose, in reference to conspicuous beak.]
The same name is applied to
the grosbeck.
otter (Lutra canadensis):
pan'tsuk.
[pan, aquatic + tsuk.]
ovary:
bai'hyu.
oviduct:
bai'na di wok.
[bai, from bai hyu, ovary + na di wok, tube, cord.]
oyster:
ăt (Goship).
Origin uncertain.
wa'go (Goshute).
[Same as clam, wa'go ŭndurua in full, or $w a^{\prime} g o$ for short.]
P.
palate, soft; uvula:
ai'gwan dua.
[ai gwan, adj. form, meaning protruding (cf. tongue) + du'a.]
palate, hard:
a^{\prime} ta ko (Goship).
mi'ta ko (Goshute).
palm of hand:
ma'ti ba na.
[ma, pertaining to the hand, ti'ba na.]
pancreas:
ni'wan da ka wh̆nte.
[ni'uan, hepatic $+d a^{\prime} k a$ winte, term used approximately as our word "sweetbread."]
parrot, poll:
tai'bo de gwa gwi na.
[tai'bo, white man + de'gwa, talk + gwi'na, bird, eagle; "white man's talking eagle."]
patella:
dañ'gŭt a mŭ.
[dañ'ŭp, knee.]
pelican (I'elecanus trachyrhynchus):
tu'ku.
penis:
wu.
pericardium:
bi'am bo a.
$\left[b i^{\prime} a m\right.$, cardiac $+b o^{\prime} \alpha$, skin. envelope.]
peritoneum:
sa'pa go na (Goship).
[sap, belly + go'na.]
phalanx of finger, first:
ma'tso ni.
[ma, hand $+t s o^{\prime} n i$, bone, probably bone adjacent to hand.]
phalanx of finger, those beyond first (together):
na'ta wi a.
phalangid, harvestman (general term):
an'ga so gŭnts (Goship).
pa'rri a (Goshute).
[$p a^{\prime} r r i a$, elk.]
The reference in the second name is to the long legs, "elk legs."
phalarope, Wilson's (Steganopus wilsoni):
pa'na da komp.
pan'tsi kwŭt (female).
placenta:
du'i noib.
[du'i, from $d u^{\prime} i$ tci, young one + noib.]
planarian (general term):
pan'di sip a.
[General term for various aquatic invertebrates. Cf. Hydrophilus.]
plover:
u^{\prime} ŭn gwi wr ta.
[Imitative.] See snipe.
plover, ring-necked (Agiatitis impalmatis) :
tu'pan dzo no.
poreupine (E'rethizon epixanthus):

potato worm: $t^{\prime}{ }^{\prime}$ gŭ.
pubic region:
bu'i sip.
puma (Felis concolor):
to'ga rro ka.
toi'rrok.
kwi'ni a rro ko bytc.
to'kwŭ tsi.
pupa of Phlegethonotus, etc.:
bi'ji ma ku ints.
[bi'ji, milk $+_{\llcorner }{ }^{\prime} k u^{\prime} i$ ints.]
pupil of eye: du'u.
Q.
quill of feather: ga'sa o rra.
[ga'sa, wing, large feather + o'rra, stalk.]
quill, porcupine:
yun'a ai gwo bi.
[y̆̆n, porcupine + ai'guo bi, to prick, that which pricks, etc.]
R.
rabbit, jack (Lepus callotis): kŭm.

This hare was formerly a chief dependence of the Goshutes for their animal food and for clothing. The skins were, and to some extent still are, cut into strips, which were so rolled intoropes that only fur was exposed. These were then bound into blankets (kiumur !(u), or mate intu clothes which are warm and very
serviceable. It was the custom to hold a grand hunt every year in November when great numbers of hares were killed. In these hunts the Goshutes were often joined by Pahutes and Pahvants. Cedar Valley was a favorite resort for these hunts.
rabbit, cotton-tail (Lepus sylraticus):
ta'bo; ta'bo kŭm.
i'wa ta bo.
raccoon (Procyon lotor):
na'tsa ko rra (Goship).
[Name borrowed from the Bannock.]
rat, Rocky Mountain (Neatoma cinerea):
ka.
rattle, of rattlesnake:
to'go se ya gi nŭmp.
[to'go, a rattlesnake + se yagi nŭmp, instrument for making noise, etc.]
rib:
a'ma tǔmp (Goship).
pi'a ma tŭmp (Goship).
dzu'ni ma hau wa tŭmp.
$\left[d z u^{\prime} n\right.$ そ̌ p, bone $+m a+h a u$ uа tŭmp.]
robin (Turdus migratorius):
su'i ku ko.
[Imitative.]

S.

sacrum.
bi'wo sa (Goship).
sage-hen (Centrocercus urophasianus):
wi'ja.
salamander (Amblystoma tigrinum, etc.):
pa'bo go na (Goship). pa'bo go tci (Goshute).
$[p a$, water $+b o+$ either go'na or go'tci.]
salmon:
tsa'păñ'gwitc.
[tsa, to pull? + păñ'gwuttc, fish.] a'gai.
[In this sense borrowed from Bannock. See whale for usual significance in Goshute.]
sand-piper (Tringoides macularius):
pa'na da kump; pa'na da kum.
$\left[p a\right.$, water $+n a^{\prime} d a$, to run, etc. $+k o$, probably with force of around or about + ŭmp.]
sand-piper (Tringa):
pa'na ni wa.
scale, fish:
pãn'wltc ŭn da si a.
[păñ'gwttc, fish $+d a^{\prime} s i a$, scale.]
scab, sheep, (Psoroptes):
ship'ŭn da si a.
[ship, sheep $+d a^{\prime} s i a$, scale, flake, etc.]
scalp:
pam'pi bu.

$$
\left[p a m^{\prime} p i, \text { head }+b u\right. \text {, skin.] }
$$

scapula:
si'kwo tŭmp.
scar or cicatrix:
? go'ŭn.
scorpion (general term):
nY'na gwi pǔts.
seal:
pi'a pan tsuk.
[$p i^{\prime} \breve{u} p$, big + pan'tsuk, otter.]
Known to the Indians from narrative and seen by some. septum naris:
mo'bi sok.
[mo'bi, nose + sok, probably a shortened form.]
mo'bi sañ ko.
[$m o^{\prime} b i$, nose $+s a n ̃{ }^{\prime} k o$, extension, partition.]
sheep:
ship.
[From the English sheep.]
shell, in general:
bo'a.
[$p o$, enclose, cover.]
shell, of egg:
dzu'ni bo a.
[dzu ni, from $d z u^{\prime} n Y p$, bone + $b^{\prime} a$, shell, integument, etc.]
shiner:
pu'i wa.
[$p u^{\prime} i$, ?duck + ua.]
shore-lark (Eremophila alpestris): tsi'do bi.
shoulder:
gi'tci tea grn.
shrew (Sorex):
so'gwai wa.
[sókŭp, ground + ai'ua, fawn, etc.]
shrimp, various kinds (as Gammarus):
ma'sŭ păñ'gwłte.
 fish.]
skin:
bu'a; bu.
skull:
pam'pi dzu nịp.
[pam'pi, head $+d z u^{\prime} n \nmid p$, bone.]
skunk, great basin (Chincha occidentalis major):
po'ni ŭts.
[$p o^{\prime} n i$, stripe $+\breve{u} t s$.]
pi'a ka bo ni ŭts.
[$p i^{\prime} \breve{u} p$, big + $k a^{\prime}$ bo ni ưts; vid. infra.]
skunk, small spotted:
ka'bo ni ŭts.
$\left[k a^{\prime}+p o^{\prime} n i u ̆ t s\right.$, skunk; vid. supra.]
snail, various kinds:
tats' in kwi tŭp.
[ta'tsi ŭmp, stars + kwit'ŭ p, excrement.]
Meteorites in this connection are fancied as excreta falling from the stars, and appearing upon the earth as snail-shells. It may be noted that throughout the Goshute and Goship territory snail-shells are abundant in deposits from old Lake Bonneville and over the hills, etc., as well as in ponds and streams.
snake, blow (Bascanion constrictor):
ko'ka.
snake, blue-racer:
trn'ti wa rra.
snake (Ophibolus pyrrhamelus):
kógo; ko' yo a.
snake, rattle- (Crotalus, var. species):
to'go a.
snake, water- (Eutcmia sirtalis):
pa'oing go a.
[pa'o ${ }^{\prime} n$, apparently pertaining to water, floating, swimming + go'a, snake, etc.]
snake, water- (Eutcria elegans and macroteniatum):
pa'siñ ko go.
[pa's'ñ, penetrating or passing through water $+k o^{\prime} g o$.]
snake, general term (especially in compounds):
go'a; go.
[The root go has here its force of winding or bending, moving in curving path, etc.]
snipe, American (Gallinago delicata):
wu'Ingwi wr ta.
[Imitative.]
i'jŭ pa ba wo nŭp.
[i^{\prime} јй ${ }^{2}$ a, coyote + ba'wo na, seemingly to cry, call out, etc. $+\breve{u} p$.]
The reference in the name is to the calling out at dusk or in night, like the coyote.
snow-hird, Mexican (Junco cincreus):
kai'ma.
ti'sa kai'ma.
$\left[t i{ }^{\prime} s a\right.$, small $+k a i^{\prime} m a$. See .]
snow-bird Oregon (Junco hiemalis oregonus):
ta'ka mu tu nants.
$\left[t u^{\prime} k a\right.$, snow $+m u^{\prime} u$ nants, a general term. See under humming-bird.]
The black patch over the
head of this bird, square cut behind and suggesting a head of black hair, is accounted for by these Indians in a myth which represents the bird as hav-ing descended on one side from an Indian woman, whose descendants were changed into this form by the coyote deity.
sole of foot:
da'ty ba na.
[da, pertaining to the foot + ti'ba na. Cf. palm.]
sparrow, Western song (Melospiza melodia, var. fallax) :
sparrow, yellow-winged (Coturniculus passerinus, var. perpallidus):
an'da wite.
sparrow, white-browed crown (Zonotrichia leucophrys):
yu'rra ba.
solpugid:
to'sa mŭsh.
$\left[t o^{\prime} s a\right.$, white $+m u ̆ s h$, probably from $m a^{\prime}$ su i.]
sow-bug (Oniscus, etc.):
mi'ta mŭts.
spermophile (var. species of Spermophilus):
krm'ba.
spermophile, thirtcen-lined:
ai'wa dzip.
[ai'ua, fawn + dzip.]
spider (general term):
a^{\prime} ni su ŭnts.
spider, grass (Agalena):
? a'sañ gots.
spider-web:
a^{\prime} ni su ŭnts a wa na.
[$a^{\prime} n i$ su ŭnts, spider + ua'na, trap, etc.]
spleen:
so'no (Goship).
wai'gwi (Goshute).
spur, of cock, etc.:
dau'wi yu.
[da, pertaining to the foot + wi'yu, needle, etc.]
squirrel, flying (Volucella):
pa^{\prime} ko Yn .
squirrel, ground:
See spermophile.
squirrel, gray (Sciurus):
tsi'kwits.
squirrel, brown pine:
añ'go wa tsi rrl gi (Goship).
[añ'go, timber $+w^{\prime}$ tsi rri gi,
referring to springing, leaping, etc.; "pine or timber leaper" is the effect of the compound.]
sternum:
añ'go sai wi (Goshute).
ňn'ŭp (Goship).
y ${ }^{\prime \prime}$ nüp (Goshute).
stink-bug, gray form, found on pine (species?):
ti'ba mu gu ru Yte.
[ti'ba, pine-nut + mu'gurǔ̌tc.]
stomach:
se'gwa bi.
stone-fly:
kwa'tsa wu pu rulte.
kwa'tsa i puruyte.
styloid process of ulna :
mápon dza.
[ma, hand + pon'dza. See malleolus.]
sucker:
tu'kŭm pañ w̌te.
[tu'kŭm + păñ' w̌̌tc, fish.]
superciliary ridge:
bu'i tyin go.
[$b u^{\prime} i$ tron, pertaining to the eye + go, ridge, angle, etc.].
swallow, or martin, bank and barn:
pa'sa gom bi.
swallow, wood:
wo'vım pa sa gom bi.
[wo'vrm, pertaining to wood

+ pa'sa gom bi.]
swan (Cygnus):
ni'wa dam pa.
swim-sac of fish:
pa'su a.
T.
tadpole:
pau'wi to ga.
pa'na wi tcŭt.
tail:
gwa'shi.
[gza, to extend out from, etc. + shi.]
tanager, Cooper's or Western summer red-bird (Pyranga astiva cooperi):
añ'ka hui teu.
[ăñ'ka, from dä'ka byt, red + hu'i tcu, bird.]
tanager, crimson-headed (P_{y} ranga ludoviciana):
wu'tsi kr gi.
It is said by Goshutes that the young of this bird are easily rearet, and that the Indians formerly reared them and kept them caged as pets.
tape-worm (Tania, etc.):
si'wa.
tarantula (Eurypelma hentzii):
pi'a na su ŭnta.
[$p^{\prime}{ }^{\prime} \breve{u} p$, big + a'na su ŭnts, spider.]
hau'wi tu go byte.
tear (from eye) :
to'paip.
teeth (in general) :
damp.
teeth, of upper jaw:
mo'tsin dam pa.
[mo'tsinn, apparently pertain-
ing to the upper jaw (cf.
mo'tso, moustache) +
dam'pa, damp, teeth.]
teeth, of lower jaw:
a'rron ko dam pa.
[a^{\prime} rron, from arrup, lower jaw + ko + dom'pa, teeth.]
tendo-achilles:
wi'tea rrŭmp (Goship).
$[$ witc, calf of leg + rro + ümp.]
da'pin dam (Goshute).
[da'p̌n, pertaining to the foot + dam, tendon.]
tendon (general term):
da'ma;dam.
tendons (extensors digitorum of foot):
dau'wi a ta.
[da, pertaining to the foot + wi'a ta.]
tendons of muscles of front of forearm (as of brachio-radialis, flexor carpi radialis, etc.):
mau'win dam.
[$m a$, the hand $+w$ rn, probably to raise up + dam, tendon.]
tent-caterpillar:
pu'hi wa bi.
[$p u^{\prime} h i+w a^{\prime} b i$, worm.]
tern, common (Sterna hirundo):
pi'wa ga (Goship).
pu'i wa ga (Goshute).
[waga, from wa'gasaga,forked, refers to the forked tail. $P u^{\prime} i$, in second term, duck (probably); pi, abbreviated form.]
testes:
noi'ya.
dau'wi.
thigh :
bŭñ'ŭp.
throat:
go'Tts.
thumb:
ma'to ga.
[ma, hand + to'ga.]
thymus:
bi'hYn da ka binte.
[bihhn, cardiac $+d a k a$ prntc. See spleen.]
thyroid:
a^{\prime} rrŭn da kam by̌nte.
[a'rrŭn, tracheal + da'kampinte, "sweetbread."]
tibia; $\operatorname{shin}=$:
gots'tr na.
go'tsi an.
o^{\prime} ts'ecm bi a.
tick, wood:
mi'tats.
toad (Bufo columbianus, etc.):
saĩ'ko wa go.
[sañ́ko, wart $+w a^{\prime} g o$, frog.]
toad-fish :
pa^{\prime} tsoñ.

$$
[p a, \text { water }+ \text { tson. }]
$$

toe:
dan'kwo.
do'kwo.
da'so gi.
[da, pertaining to the foot + kwo, or so'gi.]
toe, great (hallux):
pi'a rro to ga.
[$\boldsymbol{p i}^{\prime}$ й \mathbf{p}, big + rro'to ga.]
toe, great, basal joint of :
do'nai.
tonsil, pharyngeal:
ai'go yěm brt.
[ai'go, tongue, that which protrudes $+y_{\text {ém'brt. }}$]
tongue:
ai'go.
[ai, to bring forth, shoot or spring out, etc. + go.]
tooth. See teeth.
trachea:
oi'rrŭñ.
trout (Salmo virginalis, etc.):
toi'ya pañ gwitc.
[toi'ya, from toi'yabi, mountain $+p a ̆ \ddot{n}^{\prime} w \check{t} t c$, fish.]
tsa păñ wrte.
$[t s a$, to pull + păñwťtc, fish. See salmon.]
turkey (Meleagris gallipazo):
ku'i nrt (Goship).
ku'yi na (Goshute).
turkey buzzard (Cathortes aura) :
we'gom brtc.
tympanum of ear:
nañ'ka qa.
U.
umbilical cord :
si'go na di wok.
[si'go, navel + na'diwok, cord, tube.]
ureter:
da'ki po na di wok.
[da'kipo, kidney + na'di wok.]
urethra:
si'na di wok.
[si, from sip or si mo gŭts, urinary bladder $+n a^{\prime} d i-$ wok, cord or tube.]
urethra, part of in penis:
wu'rm na di wok.
[wu'zm, pertaining to the penis + na'diwok, tube, cord.]
urethra, external orifice of in male:
wu'm bai shu.
urethra, external orifice of in female:
wuñ'gi.
urine:
sip.
uterus:
no'rb.

V.

vagina; vulva:
o'a tai.
varina, external orifice of
dai'dain.
[Probably dui, from o'atai, vagina + dain, orifice, hole.]
vas leferens:
noi'ya na di wok.
[noi'yne, testis + ma'di uok, corl.]
vertebra:
tso'ni gwai ŭmp.
[tso'ntp, bone + guai'ŭmp, back.]
vertebral column:
gwai'o rra.
[guai, from guai' ŭmp, back + o'rra, trunk, stalk, etc.]

W.

wasp (general term): pai'ya.
wasp, thread-waisted; muddauber:
so'go bi tuts.
[so'kŭp, earth + bi'tuts. Cf. horn-tail.]
wasp-nest:
pai'yam na kar ni.
[pai'ya, wasp $+m+k$ rar $^{\prime} n i$, house.]
water-ouzel. See dipper.
water-strider (Hygrotrcchus):
pam buñ'.
[pam, aquatic + bun, the root of which means here to float.]
wattles, of fowl:
añ'ka gi ŭp.
[ăă'ka, from ăñka but, red + $g i^{\prime}$ üp, pertaining to the mouth or throat.]
weasel (Putorius longicuuda): pa'bi tci.
wart:
dzi'a.
wart on hand:
mn'tzi a.
[ma, hand $+1 z i^{\prime} a$.]
wart on face:
go'bi tzi a.
$\left[g o^{\prime} b i\right.$, face $+t z i^{\prime} a$.]
whale:
a'gai. (Cf. Bannock a'gai, salmon.)
The Goshutes and Goships more particularly identify the whale with certain great aquatic animals said by them to have lived formerly in Utah Lake. They have stories concerning numerous adventures with this creature, and tell of the loss of many Indians caught afloat and swallowed by the a'gai. In one tale the victim cuts through wall of stomach and body and escapes with his life.
white of eye:
to'sa kiñ wai bi.
[to'sa, from to'sa brt, white + kin waibi.]
widgeon, American, or bald-pate (Anas americana): pa'o ŭm bui.
[$p a^{\prime} o \mathrm{Im}$, aquatic, frequenting water + bu'i, duck.]
wildcat (Lynx rufus) :
tu'ku brtc.
wing:
ga'sa gŭnt ; ga'sa.
wolverine (Gulo borealis):
wo'ni.
woodchuck (Arctomys monax):
ya'ha.
woodcock (I'hilohela minor):
i'ju pa mo na pa.
[i'jupa, coyote + mo'napa.]

The name is given from a myth according to which these birds are descended from the coyote deity's daughter.
woodpecker, ivory-billed :
o'pi do na.
[o ${ }^{\prime} p i$, wood $+d o^{\prime} n a$. to stab, to peck.]
woodpecker, red-shafted, or flicker (Colaptes mexicanus):
ko'rra wats.
ko'rri mats.
worm, general term:
wa'bi; wu'a bi.
wolf, gray (Canis lupus):
Y'sha.
(Identified in a way with the
ancestral deity of the Goshutes and Goships.)
wren, Bewick's (Thryothorus bewicki):
trm'pi tam pi a wa.
wren, Western house (Troglodytes domesticus parkmanni):
tu'1̌m pin tci rrlte (Goship).
tu' Im p m tci rră (Goshute).
wrist:
mau'wi to gan. [ma, hand + wi to gan.]

X.

xiphoid or xiphisternum:
yIn'gi po nŭmp.
[y̌n'gi, referring to the sternum $+p_{0}+n u ̆ m p$.]

ON THE CLASSIFICATION OF SCALPELLIFORM BARNACLES.

BY HENRY A. PILSBRY.

The genus scalpellum as at present limited is more numerous in species than any other genus of Cirripedes, comprising about 170. Since nearly all of them live in rather deep water, and only small areas of the sea bottom beyond the 100 -fathom line have been thoroughly explored, we have reason to believe that their number will be vastly augmented by future investigation.

The species now known are very unequally related. Up to the year 1907 not much progress had been made towards a natural classification, although the "key" constructed by Dr. P. P. C. Hoek for the arrangement of the Challenger species was a stride in that direction. In 1907 two attempts were made to group the species more naturally, and to indicate their phylogenetic relations. Dr. Hoek ${ }^{-1}$ and the present writer ${ }^{2}$ independently and almost simultaneously proposed to split Scalpellum into a number of subgeneric groups. The two essays were based upon antiporlal material, Dr. Hoek's upon East Indian, my own upon American forms. Some divergence in the view taken of the comparative value of characters would be expected; yet the points of agreement are so numerous that one may entertain the idea of attaining an approximately natural arrangement by uniting the best features of the two classifications.

Hoek's studies have illuminel the more primitive groups so richly represented in the East-forms inadequately represented in the collections I had studied. On the other hand, the material before me demonstrated, I think, that the form of the carina has little value in rlassification. (iromps based upon the structure of this plate I believe to be heterogeneous. I was first led to this conclusion by an examination of the sferies compusing the group of scolpullum strocmii, as assembled in my report on the barnacles of the National Museum. Ther forms agrer so completely in the total strume that it is quite impossible to doubt their close relationship, yet the carina varies

[^20]by insensible derrees from simply arched with apical umbor to angular with the umbo remote from the apex.

In the group of Scalpellum scalpellum and the group of S. dicerotum there is similar variation in the carina, yet one cannot doubt that thew are natural groups. These and other like instances show that, to rank the shape of the carina, whether simply bowed or angular, ta a character of the first importance, is to oppose it to the evidence of all the rest of the organism. In Scalpellum stearnsi I find that the umbo of the carina is very close to the apex in quite young individuals, becoming more remote with age ; hence the angular shape of the carina.

Fig. 1.-Types of the scalpelliform genera: a, b, Calantica rillosa; c, d, smilium
 lum (Arcoscalpellum) velutimum. Epper line males (very much (enlarged): Iower line hermaphrodites or females. The figures aro somewhat diagrammatic; crarinal side of all towards the right. s.c., subcarina; c.l., carinal latus.
being a feature acquired late in the ontogeny of the individual, has probably been assumed only recently in the cerolution of the groups.

These considerations teach, I think, that an angular carima has been independently accuired by umelated species of many phyla. It cannot be considered a criterion of relationship.

Another character which has not receised due weight in taxommy is the morphology of the complementary males. Fomer cla-ifieations have been based soldy upon the hermaphrowite or femate form, which has been far less divenely monlified than the mate. When we
drop as misleading the arrangement of species according to the shape of the carina, it appears at once that the structure of the little males is wonderfully correlated with certain features of the hermaphrodites, empecially the development of a subearina. The least specialized males belong to hermaphrodite forms which are known by morphological and palæontological evidence to be old generalized types. The most monlified males are those of the highly evolved hermaphrodite or female forms. A classification fully supported by both sexes surely rests upon a broader base than one ignoring the males.

Classification of Scalpelliform Baraacles.

I. Male having six jointed cirri and a mouth, 3 to 6 valves, and a more or less distinct peduncle. Female or hermaphrodite aluays having a subcarina. Unpaired valves never fewer than 3.
a. Male with 6 well-developed valves, and distinctly divided into
capitulum and peduncle. Female or hermaphrodite with 13 valves (sometimes 14 by addition of a subrostrum, or 15 when another pair of latera is added).
b. No plate interposed below the tergum between scutum and carina, Genus Calantica Gray.
b^{\prime}. An upper lateral plate interposed between scutum and carina, Genus Smilium Gray. a^{\prime}. Male with 3 valves and an oblong capitulum hardly differentiated from the peduncle. Female and hermaphrodite with 15 valves, three pairs of lower latera and an upper latus,

Genus Euscalpelluar Hoek.
II. Male oval or sack-like, without mouth or peduncle, the alimentary system and cirri being vestigeal; plates wanting, or very small scuta and terga may be present. Female or hermaphrodite never having a subcarina. Plates 14 , or 13 by suppression of the rostrum, there being a pair of upper latera and three pairs of lower latera. Never more than 2 unpaired plates, Gemus Scalpellum Leach.

Genus CALANTICA Gray.
P'utantica Gray; Amals of Philosophy, n. ser., X, 1525̄, p. 101, for Scalpellum villosum Leach. Pilsbry, Bull. 60, U. S. Nat. Mus., 1907, p. S.
In Coluntion there are but three pains of latera, all basal. All the plates have apical umbones, as in Mitclla. There are therefore 13 valves, or sometimes 14 by addition of a subrostrum. The complemental male has a distinct capitulum with 6 large valves. Type S. villosum Leach (fig. 1, a, b). There are two groups of species.

Oriental Group-Calantical s. str.
C. rillosu (Leach). East Indies?

C' trispinosa (Hock). Sulu Sea, $82-102$ fathoms.
C. cos (Pilsbry). Japan, 71 fathoms.

North Atlantic Group-Scillcelepas Seguenza:
Besides a few living. species, this group includes numerous tertiary and mesozoic forms from European horizons, mostly described as Pollicipes. It was evidently a group developed in the mesozoic North Atlantic basin, at that time cut off from the Southern Ocean.
C. calyculus ((Aurivillius). Azores, $850-900$ meters.
C. falcata (Aurivillius). Azores, 454 meters.
C. gemma (Aurivillius). Greenland, 1800 meters.
((superbe (Pilshy). Southeastern Cnited staten, 352-440 fathoms.
C. grimaldi (Aurivillius). Azores, 845-1,230 meters.

Genus SMILIUM Gray.

Smilium Gray, Annals of Philosophy, n. ser., X̌, 1825, p. 100, for S. peronii, Pilsbry, Bull. 60, U. S. Nat. Mus., p. 13, exclusive of division aa. Protoscalpellum Hoek, siboga-Expeditie, Cirripedia, 1907, p. 5 (for S. pollicipedoides, S. aries, S. acutum).
In this group a med lian pair of latera lies betreen the scutum and carina. There are 3 or 4 pairs of latera in all, 13 or 15 plates. Otherwise both sexes are similar to Calantica. In a few species (peronii, uncus) the carina is angular, but in others it has an apical umbo. Most of the known species are Indo-Pacific. Type S. peronii Gray (fig. 1, c, d).

Dr. Hoek's group Protoscalpellum, of which I take S. pollicipedoides to be the type, differs from simitium chicfly hey having an additional pair of latera in the type species. S. pollicipectoides is interesting from its tendency toward multiplication of basal latera, which Dr. Hoek has discussed with his accustomed insight.

Smilium and Calantica might without great violence be united as subgenera of a single more comprehensive genus, yet I think the elevation of a pair of latera above the basal whon to the position of "upper latera" is a morphological advance worthy of being signalized by generic distinction. In other characters the two groups are almost identical. The complemental males are alike.
S. peronii Gray.
S. uncus (Hoek).
S. pollicipedoides (Hoek).
s. aries (Hock).
S. sexcornutum (Pilis)ry.)
S. scorpio (Aurivillius).
s. acutum (Hoek).
s. Iongirnstrum (Gruvel).

Genu* EUSCALPELLUM luoch.
Eiuscalpallum Hoek, in part, Siboga-Dixpeditio, ('irsignedia, 1shö, p. 59), for Scalpellum rostratum, jeroni, uncus and starnsi.
This genus differs from those preceling chiefly by the more aldgenerate males, which are rather sack-like, not distinctly divided into
capitulum and peduncle, and have only three valves, the scuta being larger than in Scalpellum. A subcarina is always present. The inframedian latera have a peculiar square shape, and are quite large. There are \pm pairs of latera in all, therefore 15 valves (a number never reached in Scalpellum, which has no subcarina). The rostrum is very large and prominent. The carina has a submedian umbo in the first two species, apical in the others. Type S. rostratum Darwin (fig. 1, e, f). Species four or five.

Dr. Hoek selected no type for his group Euscalpellum, and I have therefore taken his first species as typical. The characters and limits of the group are also much modified, since I place no weight upon the shape of the carina, but emphasize the structure of the male, the presence of a subcarina, etc.
E. rostrutum (Darwin). Malay archipelago.
E. renei (Gruvel). St. Paul de Loanda.
E. bengalense (Annandale). Bay of Bengal, 98-102 fathoms.
E. stratum (Aurivillius). Antilles.
E.(?) squamuliferum (Weltner). Indian Ocean, 3200 meters.
Genus SCALPELLUM Leach.
Scalpellum Leach, Journal de Physique, etc., LAXXV. 1817, p. 68.
The males are very degenerate, sack-like, without a peduncle or mouth, the cirri vestigeal, valves absent or extremely small. The female or hermaphrolite has no subearina (thew differing from all the preceding genera); upper latera are always present, and three pairs of lower latera; rostrum is comparatively small or absent. The position of the umbo of the carina varies from submedian to apical. Plates 14, or when the rostrum is absent $13 .^{3}$ Type S. scalpellum L . (fig. 1, g, h).

Scalpellum is morphologically the highest or most modified member of its family, both be the profoumdlydegenerate mates and the advanced type of armor of the hermaphrodites of females. Primarily the genus divides into two subgeneric groups, as follow:
a. Inframedian latus large, pentagonal (or with the angles rounded), wide throughout, the umbo varying from submedian to basal, or on the rostral border, never apical. Subgenus Scalpellums.str. a^{\prime}. Inframedian latus kencrally smaller than theother latera, triangular, hour-glass-shaped or irregular. Subgemus Arcoscalpellum Hock.

[^21]The restricted subgenus Scalpellum is undoubtedly a natural group, well characterized by the development of a large inframedian pair of latera. The umbones of the carina and scutum are frequently removed from the apices of those plates, but this is a variable character. Two species, S. inerme Annandale and S. patagonicum Gruvel, have the plates imperfectly calcified. The following species belong here:

Group of S. scalpellum:
S. stearnsi Pilsbry.
S. inerme Annandale.
S. calcaratum Aurivillius.
S. hamatum Sars.
S. scalpellum (Linné).
S. patagonicum Gruvel.
S. gibbum Pilsbry.
S. gibberum Aurivillius.
S. ornatum (Gray).
S. salartice Gruvel.

Group of S. californicum:
S. californicum Pilsbry.
S. osseum Pilsbry.

Group of S. stroemii:
S. stroemii Sars.
S. s. obesum Aurivillius.
S. s. luridum Aurivilius.
S. s. aduncum Aurivillius.
S. s. septentrionale Aurivillius.
S. s. substroemii Pilsbry.
S. s. latirostrum Pilsbry.
S. pressum Pilsbry.
S. groenlandicum Aurivillius.
S. angustum Sars.
S. nymphocola Hoek.
S. cornutum Sars.

All of the other species described as Scalpollum form a group systematically equivalent to the restricted subgenus Scalpellum, but the great number of species, including several phyla with derenerate, partly chitinous plates, may make it expedient (1) recornize several seetions by name.

Arcoscalpellum Hoek, ${ }^{4}$ type S. velutinum Hoek (fig. 1, i, j), includes all of the speries of Nections IV and V of my paper on National Musemm Barnacles, pp. 25 to 6 s , and all of those included in Arooscolpellum in Hoek's sitooge report, pp. 85 to 120, besides various other allied forms, previously known, which need not be enumerated here.

There is a distinct tendency in certain forms of Arcoscolpellum towards the evolution of a phylum which will have only eleven plates, by elimination of the inframedian latera. In barnacles of the group of

[^22]Scalpellum aurivillii these latera are very much reduced, and in some cases are displaced. lying free over the adjacent rostral latus, which actually comes in contact with the carinal latus. ${ }^{5}$ The considerable number of species showing this reducting of the inframedian latera gives ground for the belief that an 11-valved type of Scalpellum will eventually be evolved, if indeed it does not already exist.
The following groups with partially calcified valves have been derived from the Arcoscalpellum stock.

The section Mesoscalpellum Hoek, type S. jaranicum Hoek, consists of partially calcified barnacles which are shown by their ontogeny, now known pretty fully in a ferw forms, to be descended from fully calcified forms of Arcoscalpellum, like S. idioplax or S. carinatum. The evidence at hand indicates the existence of several collateral lines, probably derived from as many normal species, so that the group is a polyphyletic one. The early post-larval stages in at least two species, which I have worked out and figured (S. larrale and S. japonicum), are indistinguishable from Arcoscalpellum.

Mesoscalpellum will include, for the present, besides the forms described in Hoek's Siboga report, the group of S. intermedium (S. intermedium, S. nipponense, S. laccadivicum), the group of S. japonicum, the group of S. larvale, and that of S.gruveli (S. gruveli, S. imperfectum, S. sanctabarbares).

The section Neoscalpellum Pilsbry, type S. dicheloplax, contains the most modified of the imperfectly calcified forms,-bizarre, skeletonlike creatures with all the paired plates reduced to narrow, diverging rami.

The early stages are not known, but half-grown individuals show an approximation to the condition of adults of the S. japonicum group, so that a common origin is probable, and it may be found superfluous to retain Neoscalpellum, as a separate section. The species are widely scattered geographically, and all inhabit abysmal depths.
S. edwardsi Gruvel. Azores, 4,255 meters.
S. dicholoplax Pilshry (Off Eatern Cnited States, 1525-1544 fathoms. S. phantasma Pilsbry: Off California, 2196 fathoms.
S. marginatum Hoek. Off New Guinea, 5640 fathoms.

The nearly simultaneous publication of some 32 new species of Scalpellum by Dr. Hoek and :3s hy myself, in 1907, has resulted in

[^23]several homonyms. Two species require new names. Both belong to the subgenus Arcoscalpellum.

Scalpellum chiliense n. n.

Scalpellum gracile Pilsbry, Bull. 60, Ǔ. S. Nat. Mus., p. 60, fig. 23 (November 9, 1907). Not S. gracile Hoek, Siboga-Expeditie, Cirripedia Pedunculata, p. 105, Pl. 8, fig. 8 (October, 1907).

Scalpellum bellum n. n.

Scalpellum formosum Pilsbry, Bull. 60, U. S. Nat. Mus., p. 58, fig. 22 (November 9, 1907). Not S. formosum Hoek, Siboga-Expeditie, Cirripedia Pedunculata, p. 110, Pl. 8, figs. 11, $11 a$ (October, 1907).

GENERIC TYPES OF NEARCTIC REPTILIA AND AMPHIBIA.

BI゙ ARTHUR ERWIN BROWN.
Bre the atoption of the new Article 30 of the International Zoological Code at the Boston meeting of the seventh Congress in August, 1907, the methods of nomenclature are brought measurably nearer to uniformity; perhaps as near as is possible under any set of rules, for it must always be true of inelastic rules-and fortunate that it is sothat they cannot excuse the individual from the exercise of independent judgment in cases such as those where diverging opinions may fairly be held as to their application. Absolute agreement is not likely to be reached until, in respect of the past, names themselves are formally adopted by general accord, instead of rules.

So completely representative a body as the International Zoological Congress having unanimously adopted the new Article, the way is made easy for the minority of zoologists who are dissenters as to some of its provisions, for they may now be willing to yield their practice to so great a preponderance of opinion in matters which are those only of convention.

For this reason the Colle is here followed in all essential details, even to the acceptance of undefined genera, such as those of liitzinger in the System Reptitium, in place of others which in the author's own opinion have a better claim to be preferred. But it is not now profitable to discuss the question.

For most of the genera here included types have been ascertained from time to time as necessity required, but the whole list has now been revised in accorlance with the present rule.

No full synonymy of the genera has been attempted, the names cited as equivalents being only those that have been in recent use for the whole or a part of the contents of the one adopted.

REPTILIA.

The name was first used by Lamment (176s) for his three divisions, (I) Silliontin, (II) Giralientin, (III) Sirpontes, ant included all reptiles and amphinians. The correct limits of the class were first laid down by Gray (Annals of Philosophy, (2), 10, p. 194, 1825).

CROCODILINI.

First separated as a distinct order, under this name, by Oppel (Ord. and Fam. Rept., p. 19, 1811). By Linnæus they were placed in his genus Lacerta. By Laurenti in Grationtia with lizards and tailed amphibians. By most other early authors under "sauriens" or saurii, usually with lizarks. "Emydosauriens" was used by Latreille (1801) and Blainville (1816). This was Latinized into Emydosouria by Gray ($182 \mathbf{2}$). Loricutu Merrem (1820) was used twenty-eight years earlier for a subdivision of edentate mammals by Vieq. d'Azyr (S゙yst. Anat. des Anim., 1792).

Crocodilus Laur. (Syst. Re;t., p. 53, 1768).
Type by tautonomy Crocodilus niloticus Laur. (= Lacerta crocodilus Linn. part.).
Alligator Cuvier (Ann, du Musée, X, p, 63, 1807).
Type by elimination Crocodilus lucius Cuv. ($=$ Crocodilus mississippiensis Daudin).

TESTUDINATA.

Oppel (Ord. and Fam. Rept., p. 3, 1S11). Turtles were placed in the genus T'estudo by Linnæus. They were not mentioned by Laurenti. According to Dr. Stejneger they were named Testudines by Batsch (1788). They were called "cheloniens" by Brongniart, Daudin and Cuvier. Chelonii by Latreille (Hist. Nat. des Salamandres de France, etc., p. xi, 1800) and Duméril (1806). C'ataphracta Link (1807). Dr. Stejneger properly objects to the use of the mere plural of the eneneric terms T'estudo and Chelonit, and accepts Oppel's name rather than resurrect the obscure Cataphracto Link, four years earlier.

ATHEC.E.

DERMOOHELID®.

Dermochelys Blain. (Bull. Soc. Philom., 1s16, p, 111).
This genus was based upon the "tortue a cuir" (= 'Testudo coriacea Linn.).
= Sphargis Merrem (1520), same type.
THECOPHORA.

CHELYDRID用.

Cholydra Schweig. (Prond. 15. 23, 181.1).
Monotype Testulo serpentina Linn.

- Chelonura Fleming (1522). Same type.

Maoroolemmys Giray（Cat．Sh．IRepti，I，p，48，1855）．
Monotype Chelonura temminckii Holb．
$=$ Mucrochelys Gray（1856）．Same type．

CINOSTERNID届。

Cinosternum spix（Spec．Nos，Test．．p．17，1824）．
Founded upon Kinosternon longicuudatum and K ．brevicaudatum． Both being synonyms of Testudo scorpioides Linn．，the genus is mono－ typic．
\geq Thyrostermum Agass．（1857）．Type Cinosternum pennsylvanicum．
$>$ Platythyra Igass．（1857）．Type Cinosternum flavescens．
Sternothœrus Gray（Ann．of Philos，1825，p．193）．
Type by elimination S ．odoratus Daudin．Also by designation of Fitzinger（Syst．Rept．，p．29，184：3）．

Sternothorus as cited by Gray from Bell＇s manuscript contained S ． odorata and S ．pennsyliamica．The last belonging strictly to Cino－ sternum Spix，odorata becomes the type．This use of the name ante－ detes by a short time Sternotherus Bell（Zool．Jour．，11，305，1S25）． Aromochelys Gray（1555）also has odorata for type．

TESTUDINID平．

Chrysemys Gray（Cat．Tort．．1．27，1841）．
Founded on E＇mys picte Schweig．and E．belli Gray．Gray retained picta as the type（Proc．Zool．Soc．Lond．，1869，p．191）．
\geq Pseudemys Gray（1855）．Type Pseudemys concinna．
$>$ Plychemys Agass．（1557）．Type Plychemys concinna．
$>$ Trachemys Agass．（1857）．Type Trachemys scabra．
$>$ Deirochelys Agass．（1857）．Type Deirochelys reticulata．
$>$ Callichelys Gray（1863）．Type L＇mys ornata．
Malaooolemmys ${ }^{1}$ Gray（Cat．Tort．，D．27，1844）．
Monotype Testulo concentrica Shaw（＝Testudo terrapin Schoepff）．
$>$ Giraplemys Agass．（185̃7）．Type Graptemys gengraphica．
Clemmys Ritgen（Nova Acta Acal，Leop，Car．，XIV，pt．1，272，182s）．
Type by elimination E＇mys punctutu（＝Testudo guttata Schn．）．
$=$ Chelopus Rafin．（18：32），Fance type．
$=$ Nanemys Λ gass．（1857）．Sume iype．
$>$ C＇alemys Agass．（1557）．Type C＇alemys muhlenbergi．
$>$（ilyplemys Agass．（1857）．＇Type Glyplemys insculptus．
$>$ Actincmys Agiss．（18i57）．Iype Actinemys marmorata．
Emys Opmel（Ord．Fam．Iept．，p，11，1s11）：＂
Oppel cited three species：

[^24]＂Sterno antice mobile－E．lutaria．＂

＂Sterno cruciforme $\left\{\begin{array}{l}\text { serpentina＂}=\text { Chelydra Schw．，} 1814 . \\ \text { longicollis＂}<\text { Chelodina Fitz．，} 1 \mathbf{S} 26 .\end{array}\right.$
Emys lutaria was also designated as the type by Fitzinger in 1843， under the name of Emys europac Schw．
＝Emydoidea Gray（ 1 Si0）．Type Emys Blandingii．
Torrapene Merrem（Tent．Syst．Amph．，p．27，1520）．
Type T．clausa Merr．（ $=$ T cstudo carolina Linn．）．Bỳ designation of Gray（Ann．of Philos．，X，1825，p．192）．
Cistudo Fleming（Phil．Zool．，II，p．270，1822），often used for these turtles，is wanting in definition and in any case is an exact synonym of Terrapene Merrem，two years its senior both being founded on Cuvier＇s＂tortues a boite．＂

Didicle Rafin．（Atl．Journal．1832．p．64）has T．clousa for type and is also a synonym．

Testado Linn．（Syst．Nat．，Ed．X．p．197，175s）．
Type Testudo gracca Linn．By designation of Fitzinger（Syst． Rept．，29，1813）．
$>$ Gopherus Rafin．（1532）．Type T estudn polyphemus．
$>$ Nerobutes Agass．（15．57）．Type Testudo berlandieri．

CHELONID尼．

Cholonia Latreille（Hist．Nat．Kept．，1，p．22，1502）．
Type Testudo mydas Linn．By original designation．This genus is often attributel to Brongniart（Bull．Soc．Philum．．11．p．S9．1S00）． In that place，however，it rests upon these worls only，＂G．Chelone－ Chelonia（ce sont les tortues de mer），＂and is a nomen mudum．
Caretta Rafin．（Speccio Sci．（Palermo），11，66，1814）．
Monotype C．nasula Raf．（ $=$ T．caretta Linn．）．
Rafinesque＇s words are＂Caretta nasuta Raf．．Testudn caretta Linn．＂
$=$ Thalassochelys Fitz．（1835）．Same type．
Eretmoohelys Fitz．（Syst．Repr．，p．30，1543）．
Type Chelonia imbricata Cuv．By original designation．

TRIONYOHID风．

Platypeltis Fitz．（Ann．Wien Sfus．，1，pp．120，127，1535）．
Type Platypeltis ferox Schweig．
The two species named by Fitzinger．Triomys liromminrtii shaw．and T．jernx Schw．are identical，and the genus is therefomemmepic．The same species was designatel by Fitzinger（ぶyst．Roft．．．30，1－\＆3）．

[^25]
SQUAMATA.

Correctly outlined by Merrem (Tent. Syst. Amph., p. 39, 1820) with groups (I) Gradientia, (II) Repentia, (III) Serpentia.

Oppel used Squamata in 1811 with groups (I) saurii, (II) ophidii, but he included crocodiles in saurii.

LACERTILIA.

Authnes previous to Owen either included with lizards the crocodiles, or omitted serpentiform lizards, under the names Gradientia, "sauriens," or saurii. They were first correctly delimited under the name Lacertilia by Owen (Rep. Br. Ass. Adv. of Sc., 1841, p. 162).

GECKONIDA.

Phyllodactylus Gray (Spicilegia Zoologica, p. 3, 1830).
Monotype Phyllodactylus pulcher Gray.
Sphærodsotylus Wagl. (Syst. Amph., p. 143, 1830).
Type Spharodactylus sputator Sparr. By designation of Fitzinger (Syst. Rept., 18, 1843). It was also the only one of Wagler's species retained in the genus by Gray (1831) and Duméril and Bibron (1836).

EUBLEPHARIDA.

Coleonix Gray (Ann. Mag. Nat. Hist., 1845, 162).
Type Coleonyx elegans Gray. By designation of Boulenger (Cat. Liz. Br. Mus., 1, p. 234, 1885).

IGUANID压.

Anolis Daurlin (Hist. Nat. Rept., IV, p, 50, 1803).
According to I)r. Stejneger (Herp. of Porto Rico, 625,1904) the type of Anolis is A. bulluris. But the pertinency of this name to any known species is far from certain. Lacerta bullaris Linn. rests on Catesby's plate 666, "Lacerth viridis jamaicensis," whose recognition is chiefly an act of faith. No other of the early authors added exactness to its use. A. bulleris Daud. (l.c., p. 69) is based on L. bullaris Linn., adding theretn, Cate-hy's plate 65, "Lacertu rividis carolinensis." and another unassignable Linnean name, L. strumosa. Duméril and Bibron (Vol. 4, pp. 117, 120) divide A. bullaris Daud. into A. chloro-cyanus and A. curolinensis, considering the first of these species to be questionably L. bullaris Limm. As A. carolinensis D. and B. rests on a firm basis in Caterhy, it would seem that this name should not be disturbed, and that bullaris of authors should be permitted to remain in obscurity.

Ctenosaura Wiegman (Isis, 182S, p. 371).
Monotype C'tenosaura cychuroides Wieg. (= Lacerta acanthura shaw).
Dipsosaurus Hallowell (Proc. Acad. Nat. Sci. Phila., 1854, 92).
Monotype Crotaphytus dorsalis B. and G.
Crotaphytus Holbrook (No. Am. Herp., II , p. 79, 1842).
Monotype Agama collaris Say.
Sauromalus Duméril (Arch. du Mus., VIII, 535̃, 1856).
Monotype Sauromalus ater Dum.
Callisaurus Blainville (Nouv, Ann. du Mus., IV, 286, 1835).
Type Callisaurus draconoides Blain. By original designation.
Uma Baird (Proc. Acad. Nat. Sci. Phila., 1858, p. 253).
Monotype Uma notata Bd.
Holbrookia Girard (Proc. A. A. A. Science, IV, 201, 1851).
Monotype Holbrookia maculata Gir.
Uta Baird and Girard (Stans. Exp). Gr. Salt Lake, 344, 1852).
Type Uta stansburiana B. and G. By original designation.
Soeloporus Wiegman (Isis, 1828, p. 369).
Type Sceloporus torquatus Wieg. By designation of Fitzinger (Syst. Rept., p. 17, 1843).

Phrynosoma Wiegman (Isis, 182s, p, 367).
Subgenus Phrynosoma Wieg. Type Lacerta orbiculare, Linn. By designation of Wiegman (Herp. Mex., 1S, 1S34).
subgenus Anota Hallowell (Proc. Acat. N'at. Áci. Phila., 1852, p. 182). Monotype Anota Mccallii Hallow.

HELODERMATID平.

Heloderma Wiegman (Isis, 1829, p, 627).
Monotype Ieloderma horridum Wieg.

ANGUID平.

Ophisaurus Daudin (11ist. Rept., VII, 346, 1803).
Monotype Anguis ventralis Limn.
Diploglossus Wiegrunn (Herp), Mex., 36, 183.4).
Type Tiliqua fasciata Ciray. By designation of Dum. and Bib. (Erp.Gen., V, 5ss, 1839). ${ }^{3}$

Subgenus Celestus Ciray (Amm. May. Noth. Mist., 1839, p. 2SS). Monotype C'elestus striatus (iray.

[^26]Gerrhonotus Wiegman (Isis, 182S, p. 379).
Subgenus Gerrhonotus Wieg. Type Gerrhonotus tessellatus Wieg. ($=$ G. liocephalus Wieg.). By designation of Fitzinger (Syst. Rept., 21, 1843).

Subgenus Barissia Gray (.1mm. Mag. Nat. Hist., 1s:38, p. 390). Type Barissia imbricata Gray. By designation of Stejneger (Proc. U. S. Nat. Mus., NIII, 183, 1890).

XANTUSIID雨.

Xartusia Baird (Proc. Acad. Nat. Sci. Phila., 185s, p. 255).
Monotype Xantusia vigilis Bd.
Zablepsis Cope (Amer, Naturalist, 1895, p. 758).
Type Xantusia henshawi Stej. By original designation.
Amœbopsis Cope (Amer. Naturalist, 1895, p. 758).
Type Xantusia gilberti Van Den. By original designation.

TEIID 㞑.

Cnemidophorus Wagler (Syst. Amph., 154, 1830).
Subgenus Cnemidophorus Wagl. Type Seps murinus Laur. By designation of Fitzinger (s'yst. Rept., 20, 1843). Dr. H. Gadow, in an interesting analysis of this genus (P. Z. S. London, 1906, 1, p. 288), makes reference to C. sexlincatus as being the type. But in no way could this be, for it is not one of the species enumerated by Wagler.
Subgenus Verticaria Cope (Proc. Am. Phil. Soc., 1869, p. 158). Type C'nemidophorus hyperythrus Cope. By original designation.

SOINCIDÆ.

Lygosoma Gray (Zool. Journal, 111, 1827, p. 228).
Monotype Lacerta serpens Bloch ($=$ L. chalcides Limn.)
Subgenus Liolepisma Dum. and Bib. (Erp. Gen., V, 742, 1839). Monotype Scincus telfairi Desj.
= Oligosoma Girard (1857). Type Mocoa zelandica.
Plostiodon Dum, and Bib. (Erp. Gen., V, 697, 1839).
Type Lacerta quinquelineata Linn. By designation of Fitzinger (S'yst. Rept., p. 22, 1843).

Eumrets Wiegman (Horp. Mrx, p. 36, 1s34) (an mot be used for this genus. Wiegman included in it three species:

1. Scincus pavimentutus Geoff. < Plestiodon D. and 13., 1839.
2. Scincus rufescens. Merrem = type of Eumeces Fïtz., 1843.
3. Scincus punctatus Schn. = type of Eumeces D. and B., 1839. The selection of S. punctatus Schn. (not Riopa punctala Gray, 1839)
as type by Duméril and Bibron（Tol．V＇，p．f．30）ties：Eumects to a sec－ tion of skinks with unseparated pteryoils．．The available name for the present genus seems to be Plestiodon．

ANELYTROPID压．

Anelytropsis Cope（Proc．Am．Phila．Soc．，1855，p．350）．
Monotype Anelytropsis papillosus Cope．

ANNIELLID．E．

Anniella Gray（Ann．Mag．Nat．Hist．，1852，p． 440 ）．
Monotype Anniella pulchra Gray．

EUCHIROTIDE

Enchirotes Cope（Amer．Naturalist，1594，p．436）．
Monotype Euchirotes biporus Cope．

AMPHISB $\nrightarrow N I D$ 庣

Rhineura Cope（Proc．Acal．Nat．Sci．Phila．，1691，p． 75 ）．
Type Lepidosternum floridena Bd ．By original designation．

OPHIDIA．

Serpentes Linn．included snakes，amphisbænians and crecilians，as also did Serpentic Laur．（176S）and Ophillii I audin（1503）．Serpentes Dumeril（1s0f）included raecilians．Ophitio（oppel（1811）and ser－ pentia Merrem（1820）included amphisharnians．The serpents were first cleared of unrelated forms by Gray，using the name Ophidii （Ann．of Philns．，1S25，p．20．4）．

LEPTOTYPHLOPID雨

Leptotyphlops Fitzinger（Syst．Kept．，p．24，1813）．
Type Typhlops nigricans Schlegel．By original designation
＝Glauconia Gray（1845）．Type Typhlops niaricans．

$>$ Siegonodon Peters（1s81）．TYpe＇Typhlops septemstrietus Echn．

BOID天．

Liohanura Cope（1＇roc，Acall．Nat．Sci。 Philn．，1s61，i，301）．
Monotype Lichanura trivirgata C＇ope．
Charina（iray（Cne．Sn，Br，\＄144，p），113，1819），
Monotype Tortrix botte Blain．

COLUBRID压.

Tropidonotus Boic (Isis, 1826, 1, p. 204).
Type Coluber natrix Linn. By designation of Boié (Isis, 1827, p. 51S).
$=$. Vatrix Laur. (Cope, 1858). Not Cope, 1862.
\geq Verodia B. and G. (1a.53). Type Coluber sipedon Linn.
$>$ Regina B. and G. (1853). Type Coluber leberis Linn.
$>$ Clonophis Cope (18ss). Type Regina kirtlandii Kenn.
The use of Vatrix Laur. for this genus does not appear to me obligatory or excusable. The rule under which types of undefined genera are accepted does not constrain or even imply that, in the case of an originally defined genus, a species must be accepted as type having characters contrary to the definition. If it did so, the only consistent course would be to admit that the Code does not consider definitions at all. It was pointed out by me (Science, July 6,1907 , p. 117) that of the fourteen recognizable species cited by Laurenti under Natrix, now distributed among eight genera, the two belonging to the present genus are the only ones at diametric variance with "Truncus glaber nitidus," which is the sole character of diagnostic value in the definition.

Because Fleming (Philos. of Zool., II, p. 291. 1822) chose to select an unconforming type for Natrix in T. torquata ($=$ Coluber natrix Linn.), or because the rule of "type by tautonomy" could be applied to the case, it does not follow that we are compelled to use Natrix. It is still open to rejection for any group as a meaningless conglomerate. It is also questionable whether Fleming's citation of a species after some of the genera given by him constitutes selection of a type in accordance with paragraph 11g of Article 30.

As first published in a posthumous letter from Kuhl (Isis, 1822, p. 473) Tropidonotus is a nomen nudum. But four years later it was well definel be Boie (Isis, 1N26, I, 20t), who credited it to Kiuhl, and named under it Coluber nutrix Limn. and viperimus Daudin. The following year he definitely fixed natrix as the type.
Thamnophis Fitzinger (synt. Rept., 1, 26, 1st3),
Type Tropidonotus sturitus schl. By original designation.
$=$ Eutenia B. and G. (1sin3). Same type.
$>$ Atrmarchus Cope (iss.3). Type Almimarchns multimaculatus Cope.
$>$ St!pюсетия Cope (1875). Type Stypместия тиfopmetatus Cope, by substitution for Chilopoma Cone, preoceuped.
Tropidoclonium Cope (Proc. Acasl. Nat. Sci. Phila., 1stio, 3, TG).
Type Mierops linentum Hallow. By̌ origimal designation.
Beminatrix (ofme (Amer, Naturaliat, Ing.5, b, bäs).
Type Seminutrix pmgutus Cope. Byy original designation.

Helicops Wagler (Syst. Amph., 170, 1830).
Type Helicops carinicaudatus Wagl. By designation of Fitzinger (Syst. Rept., 25, 1843).
$>$ Liodytes Cope (1885). Type Helicops alleni Garm.
Amphiardis Cope (Proc. C. S. Nat. Mus., 1888, p. 391).
Type Virginia inornata Garm. By original designation.
Haldea B. and G. (Cat. No. Am. Serp., 122, 1853).
Type Coluber striatula Linn. By original designation.
Storeria B. and G. (Cat. No. Am. Serp., 135, 1853).
Type Tropidonotus dekayi Holb. By original designation.
$=$ Ischnognathus Dum. and Bib. (1853). Same type.
Drymarchon Fitzinger (Syst Rept., 26, 1843).
Type Coluber corais Daudin. By original designation.
< Spilotes Wagler (1830). Type S. pullatus.
= Compsosoma Cope (1895). No type. = Compsosoma Dum. and Bib. part.
$=$ Georgia B. and G. (1853). Type Coluber couperi Holb.
Drymobius Fitzinger (Syst. Rept., 26, 1843).
Type Herpetodryas margaritiferus Schl. By original designation.
Callopeltis (Fitz.) Bonap. (Icon. Fauna Ital., Vol. II, andl Mém. Acad. Torino (2), 11, 401, 1840).
Type Coluber leopardinus. By original designation of Fitzinger.
= Coluber auctores.
$>$ Scotophis B. and G. (1853). Type Coluber allegheniensis Holb.
$=$ Natrix Laur. (Cope, 1862). Not Cope, 1858.
Arizona Kenn. (L. S. Mex. Bound. Surv., 18, 1859).
Monotype Arizona elegans Kenn.
<Rhinchis Micah. (1833). Type Rhinechis scalaris.
Pityophis Holbrook (No. Am. Herp), IV, 7, 1842).
Monotype Coluber melanoleucus Daudin.
Coluber Linn (Syst. Nat. Ed., X, 216, 175s).
Type Coluber constrictor Limn. By designation of Fitzinger (Syst. Rept., 26, 1843).
$=$ Zamenis Wagler (1s30). Type Satrix yemonensis Laur.
$>$ Bescanium IB. and G. (1853). Type Coluber constrictor Limn.
$>$ Mrasticophis B3, and G. (1553). Type Coluber flagellum Shaw.
Under the new Rule 30 we are no longer bound to Iamenti's notion, as first reviser, of the limits of Coluber and are therefore freed from the consideration of Dr. Stejneger's proposal (Herp). of Japan, pp. 307, 443,1907) to transfer the name to the genus otherwise known as Vipera Latur-a change which would have been serious in view of all the comnotations of the word "coluber." The present shifting of the torm in replace Bascanium, following litzanger's setection of a type,
long antedates Collett's designation of Vipera ferus and has the good fortune to preserve both the long established family names Colubride and Viparide.
Salvadora B. and G. (Cat. No. Am. Serp., 104, 1853).
Type Salvadora Grahamia B. and G. By original designation.
$=$ Phimothyra Cope (1560). Same type.
Phyllorhynchas Stejneger (Proc. U. S. Nat. Mus., 1890, p. 151).
Type Phyllorhynchus browni Stej. By original designation.
Opheodrys Fitzinger (Syst. Rept., 26, 1S43).
Type Herpetodryas estivus Schl. By original designation.
\leq Leptophis Bell (1826). Type Leptophis ahatulla.
$<$ Cyclophis Gunther (155S). Type Herpetodryas tricolor.
Liopeltis Fitzinger (Syst. Rept., 26, 1843).
Type Herpetodryas tricolor Schl. By original designation.
$>$ Chlorosoma B. and G. (1853). Type Coluber vernalis DeKay.
Contia B. and G. (Cat. No. Am. Serp., 110. 1853).
Type Contia mitis Bd . By original designation.
Pseudoficimia Bocourt (Miss. Sci. au Mex., 572, 1853)
Monotype Pseudoficimia pulchra Boc.
Conopsis Günther (Cat. Sn. Br. Mus., G, 1855)
Monotype Conopsis nasus Gunth.
Tolaca Kennicott (L. S. and Mex. Bound. Surs., 23, 1859).
Monotype Toluca lineata Kenn.
Diadophis B. and G. (Cat. No. Am. Serp., 112, 1853).
Type Coluber punctatus Linn. By original designation.
Lampropeltis Fitzinger (Syst. Rept., 25, 1843).
Type Herpetodryas getulus schl. By original designation.
$=$ Ophibolus B. and G. (1853). Type Coronella sayi Holb.
$>$ Osceola I3. and G. (1853). Type Calamaria elapsoidea Holls.
Stilosoma A. Bromen (Proc. Acad. Nat. Sci. Phila., 199, 1890).
Monotype Stilosome cxtenuatum A. Brown.
Carphophis Gervais (Dict, Hist, Nat, JOrbigny, III, 191, 1813).
Monotype Coluber ammenus Say.
$>$ Carphophiops (iervais (1s1:3). Type C. vermiformis.
$=$ Celulre B. and G. (18533). Type C'oluber amanus Say.

- Brachyorros IIolbrook (1542). Same type. Sot of Boie (1527).

Faranoia (iray (\%on), Minc., s). 65, 1812).
Monotype Farancia Drummondi Gray ($=$ Coluber abacurus Holb.).
Abastor (iray (Cat. Sin. Br. Mun. p. is, 1819).
Monotype Helicops crythrogrammus Wagter.

Virginia B. and G. (Cat. No. Am. Serp., p. 127, 1853).
Type Virginia Valcrice B. and G. By original designation.
Ficimia Gray (Cat. Sn. Br. Mus., p. S0, 1S49).
Monotype Ficimia olivacea Gray.
Chilomeniscus Cope (Proc. Acad. Nat. Sci. Phila., 1860, p. 339).
Monotype Chilomeniscus stramineus Cope.
Cemophora Cope (Proc. Acad. Nat. Sci. Phila., 1860, p. 244).
Type Coluber coccineus Blum. By original designation.
Rhinochilus B. and G. (Cat. No. Am. Serp., p. 120, 1S53).
Type Rhinochilus Lecontei B. and G. By original designation.
Hypsiglena Cope (Proc. Acad. Nat. Sci. Phila., 1860, p. 246).
Type Iypsiglena ochrorhyncha Cope. By original designation.
Rhadinea Cope (Proc. Acad. Nat. Sci. Phila., 1863, p. 10).
Type Teniophis vermiculaticeps Cope. By original designation.
Prof. Cope subsequently (Proc. Acad. Nat. Sci. Phila., 186S, 132)
named R. melunocephale D. and B. as the type, and again (Rop. C.S. Nat. Mus., 1898, p. 75t) he says the type is R. obtusa Cope. The genus was, however, distinctly founded upon T. vermiculatict ps on its first publication in 1863.
Heterodon Latreille (Hist. Nat. des Rept., IV, p. 32, 1800).
Monotype Heterodon platyrhinus Latr.
Trimorphodon Cope (Proc. Acad. Nat. Sci. Phila., 1861, p. 297).
Type Trimorphodon lyrophanes Cope. By original designation.
Leptodira Fitzinger (Syst. 1ept., p. 27, 1843).
Type Dipsas annulatus Schl. By original designation. Sibon Fiitz. (Neue Class Rept., 1826, p. 29) can not be used for this genus uf upisthuglyph snakes. It has, by tautonomy, for type Coluber nebulutus Linn. (=Coluber sibon Linn.), which is the type of Petalognathus Dum. and Bib.
Manolepis Cope (Proc. Am, Philos. Soc., 1855, p). 7 (i).
'Iype Tomodon nasutus Cope. By original designation.
Conophis Peters (Monats. Berl. Acad., 1860, 8, 510).
Monotype Conophis viltalus Peters.
Erythrolampras Boié (lnin, 1826, p. 951).
Monotype Coluber venustissimus I'r. Max.

- Coniophunes Hallow. (1560). Type C. fissidens.

Scolecophis l'itzinger (Synt, Rept., p. 25, 1513).
T'ype Calamaria alrocincta Scht. By original designation.

Tantills 13. and G. (Cat. No. Am. Serp., p. 131, 18.33).
Type Tantilla coronata B. and G. By original designation.
$=$ Homalocranium Dum. and Bib. (Erp. Gen., VII, 855, 1854). Type H. planiceps (not of Dum. and Bib., Mém. Acad. Sci., 1853, p. 490. Type Calamaria brachyorros Hallow.).

Elaps Schneider (Hist. Amph., II, p. 289, 1801).
Type Elaps lemniscatus Linn. By designation of Gray (Ann. of Philos., 1525, p. 206).

Fleming (Philos. Zool., II, p. 295. 1822) mentions Elaps lacteus, but it does not appear that in this work types are selected as required by the present rule.

VIPERIDA.

Ancistrodon Beauvois (Trans. Am. Philos. Soc., IV, p. 351, 1799).
Monotype Agkistrodon mokasen Beau. ($=$ Boa contortrix Linn.).
Beaurois says (p. 381) under Agkistrodon, "In this last division should be arranged the mokasen," which on p. 370 he refers to as Agkistrodon mokasen.

Sistrarus Garman (No. Am. Rept., p. 110, 1883).
Type C'rotalus miliarius Linn. By substitution.
Crotalus Linn. (Syst. Nat., Ed. X. p. 214, 1758;
Type Crotalus horridus Linn. By designation of Gray (Ann. of Philos., 1825, p. 205).

AMPHIBIA.

According to Dr. Stejneger Batrachia was used for the first time by Batsch (17SS) as an exact synonym of Salientia Laurenti (176S), for which reason he thinks it should not be used for a division of wider scope. Brongniart (1800) had very nearly an exact conception of the contents of this class, for he even suspected that the crecilians belong to it, but he used only the vernacular "batraciens." All other authors mitted carcilians down to 1811, when Oppel used Nudu for the class, with orders (I) Aporla, (II) Ecauduta, (III) Caudata. Merrem (1820) weth Batrachia with (I) A poda, (II) Salientia, (III) Gradientia.

Amphitrin Limn. included reptiles and amphibians, but was never used in exact form until Gray correctly applied it (Ann. of Philos. (n.s.), 10, p. 213, 1525).

By strict priority the name would be Nuda Oppel, but fortunately it is not necessary to replace a well-known class name by one so absecure.

SALIENTIA．

Salientia Laurenti（Syn．Rept．，p．24，1768）contained the genera Ranu，Pipa，Hyla and Bufo，as well as Proteus，which seems to have been founded on a tadpole of Runc．It is therefore equivalent to and much older than Ecaudata Duméril（1806）．Anura，attributed by Cope to Duméril，has no standing，as that author used only＂anoures．＂

RANID届。

Rana Linn．（Syst．Nat．，Ed．X．p．35t，175s）．
Type Rana temporaria Linn．By designation of Gray（Ann．of Philos．，1825，p．214）．

ENGYSTOMATIDA．

Engystoma Fitzinger（Neue Class Rept．，p．65，1526）．
Romu oralis schneder is the only one of Fitzinger＇s species retained in Engystoma by Duméril and Bibron（Erp．Gen．，s，p．741，1st1）and is consequently the type．
Hypopachas Kerferstein（Göttingen Nachrichten，1567，p．352）．
Monotype Hypopachus Scebachii Fierf．（＝H．variolosum Cope）．

CYSTIGNATEIDE．

Lithodytes Fitzinger（Syst．Rept．，p．31，1543）．
Type Hylodes lineatus D．and B．By original designation．
Syrrophus Cope（Amer．Naturalist，1878，p．253）．
Monotype Syrrhophus marnochii Cope．

HYLID圧．

Chorophilus Baird（Proc．Acad．Nat．Sci．Phila．，1854，p．60）．
Monotype C＇ystignathus nigritus Holb．
Acris Dum，and Bib．（Erp．Gen．，8，p）54\％，18：11）．
Type IIylodes gryllus DeKiay．By designation of Baird（I＇roc．Acad． Nat．Sci．Phila．，185t，p．59）．
Hyla Laurenti（Syst．Rente．p．32，178s）．
Type H yla ciridis（ $=\|$ ．arborea Linn．）fide sitejneger．
Smilisea Cope（Proc．Acad．Sat．Sci．Phila．，1sij5，p，194）．
Monotype Similisca daulinu Cope（ $=$ Hyla bundinii I）um，and Bib．）．

BUFONID．

Bufo inurenti（Syme．Hepe，p），25，175s）．
Type by tautonomy Bufo vulyaris Laur．（ $=$ Runa lufo Limn．）．

PELOBATID. .

Scaphiopus Holbrook (No. Am. Herp., I, p. 85, 1836).
Monotype Scaphiopus solitarius Holb.
Spea-Cope (Jour. Acad. Nat. Sci. Phila., (2), Vi, p. S1, 1866).
TypeTScaphiopus bombifrons Cope ($=$ S. hammondi Baird). By original designation.

CAUDATA

Duméril (Zoologie Analytique, 94, 1806), "les batraciens urodèles (caudati)." The following year (Nour. Bull. des Sc., 1S07, p. 36) he, definitely says "order Caudati." Urodele is often based upon this reference, but Dumeril used neither it nor Anura in Latin form.

PLEURODELID雨.

Diemyctylus Rafinesque (Ann. of Nature, 1820, No. 22. p. 5)
Type Triturus viridescens. By original designation.

DESMOGNATHIDA.

Desmognathus Baird (Jour. Acad. Nat. Sci. Phila., (2), 1, pp. 282, 285, 1850).
Type Triturus fuscus Rafin.

Artoday Boulenger (Ann. Mag. Nat. Hist., 1587, p. 67).
Type - Anaides lugubris Baird. , By substitution for Anaides Baird (1S49), preoccupied.
Gyrinophilus Cope (Proc. Acad. Nat. Sci. Phila., 1869, p. 108).
Monotype Salamandra porphyriticus Green.
Spelerpes Kafinesque (Atlantic Joumal, I, p. 22, 1832).
Type sipulomes lucifuga Rafin. (= Salamandra lompicauda Green). By original designation.
Manculus Cope (Proc. Acad. Nat. Sci. Phila., 1S69, pp. 95. 101).
Monotype Salamandra quadridigitata Holb.
Stereochilas Copre ('Proc. Acad. Nat. Sci. Phila., 1869, p. 100).
Monotype Pseudotriton marginatum Hollow:
Plethodon Tpehudi (3tern. Soc. Neuchatel, 1838, pr, 59, 92).
Type Sillumandra !lutinosn (ireen. By designation of Bomaparte (Fauna Ital., II, 131).

Hemidactyliam Tnchudi (Mem. Soc. Neuchatel, 1835, pr. 59, 94).
Type Salamandra scutata Schl. By original designation.

Batrachoseps Bonaparte（Fauna Ital．，II，131）．
Type Salamandra attenuata Esch．By original designation．

AMBYSTOMID压。

Dicamptodon Strauch（Mém．Acad．Sci．St．Pétérs．，（7），NVI，No．t，p．©s，1Sī0）．
Monotype Triton ensatus Esch．
Ambystoma Techudi（Mém．Suc．Neuchatel，183s，pp．57，92）．
＇Iype Ambystoma subviolacea I＇sch．（ $=$ Lacerte punctata Linn．）．By original designation．
$>$ Linguelapsus Cope（1857）．Type L．lepturus Cope．
Chondrotus Cope（Arner．Naturalist，18s7，p．SS）．
Type Chondrotus tenebrosus．By original designation．

CRYPTOBRANCHID※．

Cryptobranchus Leuckart（Isis，1821，Litt．Anz．，p．260）．
Monotype Salamandra gigantea Barton（ $=$ Ciyptobranchus alle－ gheniensis）．

AMPHIUMID压．

Amphiuma Garden（Smith＇s Corres．of Linnaus，I，599）．
＇Type Amphiuma means Gard．By original designation．

PROTEID里。

Necturus itafinesque（Jour．de Phys．，Vol．88，p．418，1810）．
Monotype Necturus maculatus．
Rafinesque gave the names of six species under Necturus，of which muculatus is the only one recognizable，leaving the genus practically monotypic．

SIRENID压．

[^27]
METHODS OF RECORDING AND UTILIZING BIRD-MIGRATION DATA.

BY WITMER STONE.

The custom of recording the dates of arrival of migrant birds has been practised for a great many years in various countries, and more recently attempts have been made to encourage the keeping of such records on a uniform plan and to gather them together for the purpose of study and comparison.

In America this work was begun in 1884 under the direction of the American Ornithologists' Union, and since 185.5 has been conducted by the Division of Biological Survey (formerly Ornithology and Mammalogy) of the U. S. Department of Agriculture.

All the published records with which I am familiar represent the work of one individual at each station, and until very recently there has been no attempt made to compare the recorts of several observers at practically the same locality.

The meagerness of the data that it is possible for one individual to gather on bird migration, compared with the magnitule of the phenomenon, must be apparent to all, and yet we are constantly attempting all sorts of estimates-as to the rapility of flight, the relation of fluctuation of migration to temperature variation, ete.-basel for the most part upon the records of individual observers.

In 1901 the Delaware Valley ()rnithological (lub) of Philatelphia organized a corps of observers for the study of bird migration in this vicinity. This corps now numbers sixty-three, of which thirty-five are located within ten miles of the center of Philadelphia.

The study and comparison of the yearly records of these observers throws sonm interesting light upon the accuracy of individual records and suggests some methods by which a more correct index of the progress of migration may be obtained.

Many of the records are presented in detail each year in Cassinia the annmal publication of the Delaware Valley Omithological Club, and to these, as well as to the original schedules returned by the observers, I am indehted for the data discussed in the present paper.

In a paper read before the American Ornithologists' Union in New York City in November, 1905, and later published in The Condor, I
first called attention to the possibilities of combining a number of individual records, and later Prof. W. W. Cooke of the U'. S. Department of Agriculture discussed the same question in a short paper in The Auk for July, 1907, p. 346. These are, I believe, the only papers dealing with this phase of the question. The well-known work of Mr. Otto Herman in Hungary, while probably based upon the most extensive series of data ever collected, does not, so far as I am aware, touch upon the comparison of individual records, at a single locality.

Individual and Pulk Arrivals.

One of the most important points for consideration in a bird-migration record is an understanding of just what our date of arrival indicates. A migrating species is not a definite mass, like a railroad train, but a scattered host of individuals requiring weeks or even months to pass a given point and moving intermittently; consequently there may be a great many dates of arrival at that point, according to what part of the moving procession we are considering.

In the schedules furnished by the [.N. Department of Agriculture the date of "first arrival" is called for, and in addition the date when the species was next seen and when it became common. The object being to differentiate between the arrival of the main flight or "bulk" of the species and that of individual early stragglers.

With the exception of these schedules, nearly all the American migration records with which I am familiar deal only with the date of "first arrival," and in the publications that have been based upon the records of the C.S. Department of Agriculture, only one date is usually given, presumably the date of first arrival.

This would seem to indicate the unsatisfactory nature of the records of buik arrival, as estimated by an individual observer, a fact which has impressed itself upon me after twenty-five years' experience in recording and tabulating bird migration data. It seems altogether too variable a quantity to be of practical value in making any sort of comparisons except in special instances.

Different species of birds vary in the way in which they become abundant at any point; some may come in considerable numbers on the very first day upon which they are seen or a day or so after the "first arrival," while others gradually drift in, a few each day, until all the usual haunts are populated, though it is imposible to say upon just which day they became common. In other cases lange flocks may be seen passing overhead some time before any individuals establish themselves in their local summer hamats. It seems, too, that certain
species vary in their manner of arrival in different years, being concentrated one season and scattered in another.

The proper study of fluctuations in the numbers of each species at any point, such as would warrant an estimate of bulk arrival, requires, except in a few cases, far more time than the majority of observers can possibly give to the work-if indeed the task is possible for one indi-vidual-and consequently where such an estimate has been attempted the personal equation enters to such an extent as to render the results of little value.

It would seem that, with the comparatively small amount of time at the disposal of most observers, it would be better to suggest the recording of such occasional "bulk arrivals" as are so marked a feature of the migration as to become obvious, rather than to ask for a record of this sort for each species, which must from the nature of the case be in the vast majority of instances an estimate.

At the same time, however, the date of the first arrival, often an early straggler, loes not in itself give us a proper record of the migration of the species, and it is here that the combination of a number of local records proves invaluable and furnishes a far more accurate résumé of the flight of the species than can possibly be obtained by any individual observer.

For instance take the arrival of the Wood Thrush in the ten-mile circle about Philadelphia in the Spring of 1906. Thirty-one observers recorded it as follows: One on April 25, two on April 2S, ten on April 29, five on April 30, eight on May 1, and one each on May 2, 3, 4, 10 and 12. This record obviously warrants us in saying that for this area pioneer migrants arrived on April 25 and 28 , while the bulk of the migration occurred from April 29 to May 1, after which date it was imposible, on account of the presence of the bird at almost all points, to julge how much further transient migration was in progress. The dates upon which the "first arrivals" are massed are obviously the dates upon which the "bulk" arrived. The late dates are to some extent due to failure on the part of the observer to be in the field on the day on which the epecese first arrived, but in part they represent actual athernere of the suecres from these particular localities, as it is a matter of record that on several occasions a species has been seen regularly for some lays at one lowality before a single individual has appeared at another atation marbs, in spite of careful seareh at the later place.

The aet hal progress of the arrival of the Wowl Thrush in 1906 within the Philadelphia tem-mile cercle may be shown more graphically in the accompanying diagrams.

Fig. 1.

Fig. 2.

Firs. 3.

Up to April 25 (fig. 1) the species had been observed at but three stations, two of these being to the north and northeast of the city and the other to the southwest. On April 29 (fig. 2) it was present at thirteen stations, and by May 1 (fig. 3) had been reported by all but three of our observers.

Mr. Otto Herman's paper in Proc. Fourth Internat. Ornith. Congress, p. 163 , was not received until after my diagrams had been prepared. In it he adopts practically the same plan in illustrating the migration of the Swallow in Hungary, and as his maps are based upon 5900 returns, it is needless to say they are far more convincing than mine.

Comparison of Records.

As already stated most migration records so far obtained are the work of one individual at each locality. Now when we come to compare the time of arrival of birds at two points or their arrival at the same point on successive years, it becomes very important for us to consider the extent to which such recorls reflect the actual progress of migration. The discussion on determining dates of bulk movements in the vicinity of Philadelphia has already shown that while a date of "first arrival" may be perfectly accurate for the limited area covered by an observer, it would differ very materially from the earliest date of arrival for the species in a circle of five or ten miles around that observer's station.

The work of the Delaware Valley Ornithological Club for the past seven years has shown that within the Philadelphia ten-mile circle, covering an area with but little variation in altitude, we can detect no constant difference in the time of arrival of a species at any two points dependent upon their geographic position.

The earlicst record is just as likely to come from the northern portion of the circle as from the southern portion. At one time the records seemed to show a slightly carlier date of arrival immediately along the Delaware river, a compared with stations a few miles back on slightly higher ground, but further data showed this difference to be purely fortuitons. Therefore we can take the records of any one station within this circle as representing the progress of migration at Philadelphia, just as well as those of any other station within the same radins, and presumably the average dates of arrival of a species for a number of years at several stations within the circle will be the same.

For certain species which are very comppicuous and which usually arrive in force on the first day of their appearance this is true, but in the majority of seceies it is by no means so.

Selecting three localities within the ten-mile circle, at each of which the Club has had several accurate observers for the past seven years, we have the following dates of first arrival. $I=$ Moorestown, N. J.; II = Media and Swarthmore, Pa.; III = Haverford and Ardmore, Pa.

Chætura pelagioa (Chimney Swift).

I.

1901.. 27

1903 " 10
1904 .. " 24
1905.............................. " 21

1906 . " 14
1907. " 23

Average..........................April 21
Toxostoma rafum (Brown Thrasher).
1901................................April 22
1902.............................. " 22

1903 . " 5
$1904 . ~ " ~ 17$
1905............................... 22

1906 . ." 21
1907.............................. " 28

Average............................ April 19
Piranga erythromelas (Scarlet Tanager).

1901.	May	5
1902.	'6	2
1903.	"	1.5
1904.	"	6
1905.	\cdots	5
1906.	"	10
1907.	"	12
Average.	May	8

Sayornis phobe (Phabe).
1901
1902
1903
Mar. 30
1904.

April
1905
1909
1907.

Average.
Mar. 26
April \&
Mar. 17
Mar. 27
II.

April 27
" 22

- 19
" 24
" 20
" 12
" 25
April 21

April 28
" 22
April 24
" 20
" 23
" 14
" 16
" 26
April 21

May	12	May	12
$"$	1	$"$	4
$"$	2	$"$	10
$"$	6	$"$	5
$"$	2	$"$	4
$"$	1	$"$	1
$"$	2	$"$	10
$M a y$	4		May
	7		

Mar. 11
Mar. 17

- 23
" 23
" \quad i
" 15
" 20 - 19
$\begin{array}{llll}\text { " } & 16 & & 19\end{array}$
. 12 April 1
- 15 Mar. 16

Mar. 15
Mar. 20

Or, tabulating the averages obtained as above for eleven species, we have:

We have:			II.		No. of days
difference.					

This demonstrates conclusively that the average date of arrival for a number of years, based upon the observations of a single individual, varies materially from the average date obtained by another equally accurate observer stationed but a few miles distant. The amount of difference in the case of individual observers is even greater than that shown above, as in these cases the record given for each of the three stations is the result of the combined work of several observers.

I called attention to the percentage of error in the records of individual observers in a paper read before the American Ornithologists' Union at New York in November, 1905, and during the Spring of 1907 Prof. W. W. Cooke made some experiments along the same line, and his results showed that, compared with the combined work of twentythree other observers, in the immerliate vicinity of Washington, D. C., in this single season his dates of arrival averaged one and threetenths of a day late, and this in spite of the fact that he spent more time in the field and covered a greater varicty of country. In my summary given above a single station averages one and nine-tenths of a day later than the earliest average date recorled for the species.
'This information, however, does not help us in using the record of a single observer for comparative sturly, either as between different years or different stations, and we are forced to the conclusion that results based upon such individual records are really of but little value for comparative work, so great is the possibility of error.

For instance, quoting from Prof. W. W. Cooke's papers on the Mieration of Warblers and Thrushes, as vecomed in the seherdules of
 arrival of the following species at Germantown, Pa., a suburb of Philadelphia, and at Washington, D. C. :

[^28]| | Germantown. | | Washington. |
| :--- | :--- | :---: | :---: | Difference.

These dates being the averages of a number of years, would seem to be sufficiently accurate for the purpose of estimating the time of flight of the species mentioned between Washington and Philadelphia, and by comparing them we find that it is respectively five days, four days, eight days and eight days. The Germantown records quoted from Prof. Cooke's papers are based upon schedules which I filled out for the Department of Agriculture from 1883 to 1890. I now find that my dates vary from those obtained by other observers in the neighborhood of Philadelphia from 1901 to 1907, just as the latter have been shown to vary from each other.

Had any of the other records from the vicinity of Philadelphia been used in place of the Germantown series, as would have been perfectly justifiable, a very different result would have been obtained; and there is no doubt but that the dates of several individual observers in the vicinity of Washington would show just as much diversity as is shown in our Philatelphia series, which would still further vary the results.

In a number of instances moreover the difference betreen the average date of arrival at Washington and Philarlelphia, as given in Prof. Cooke's papers, is no greater than that between two stations well within the Philadelphia ten-mile circle.

In comparing the dates of arrival of species for several consecutive years we also find a considerable variation in the records of nearby stations which we should expect to show uniformity.

For instance, taking the eleven species given in the table on page 134, and computing the average dates of arrival for the six years 1901 to 1906 at each of the three stations, and then comparing these with the dates of arrival at each of the stations in 1907, we find that at station No. I the 1907 dates averaged three days late, while at station No. If they averaged one day late and at station So. III they averaged exactly normal, and yot each one of these stations was represented by several accurate observers, and there is nothing in their relative geographic position to warrant any difference.

Combination of Indiyidual Rhcords.

After disereceliting the value of individual records, one tmant natur-

ally suggest some method of recording migration by which results sufficiently accurate for comparative work are to be obtained. This, I think, is to be found by securing a large number of observers in a limited area and by combining their results, as has been done by the Delaware Valley Ornithological Club in the vicinity of Philadelphia. If we had seven-year records kept by thirty-five individuals within ten miles of Washington, and a similar series within ten miles of Boston for comparison with the Philadelphia series, then I think we should be able to estimate with some degree of accuracy the progress of migration between these points.

In a composite record of this kind it is especially worthy of note that more or less fragmentary records are of great value, as an observer who only records a limited number of species may note some of them earlier than any other observer, while species which he fails to record are noted by others.

The way in which a number of indvidual records from one vicinity are to be combined in order to get the most reliable results is quite a problem.

Take, for example, the Ovenbird, Seiurus aurocapillus, for the years 1905, 1906 and 1907, as recorded within ten miles of Philadelphia by respectively thirty, thirty-two and thirty-four observers-the number of the observation corps varying somewhat from year to year.

We find that in 1905 it arrived at one station on April 25; at another on April 28 ; at eight stations on the 29 th, ten on the 30 th, etc., i.e.:

$$
\begin{aligned}
& \text { 1905-April } 25,28,29(8), 30(10), \text { May } 2,3,4,6,7(2), 8,12(2) \text {. } \\
& 1906 \text {-April } 28(2), 29(7), 30(4), \text { May } 1(5), 2(3), 3(4), 4(2), 5(3) \text {, } \\
& \text { 8, 12. } \\
& 1907 \text {-April } 26(2), 27,28(4), 29(5) \text {, } 30(2), \text { May } 1(5), 2(2), 5(4), 6,8, \\
& 11(4), 12,13,15 .
\end{aligned}
$$

If we select the earliest date for each year as the basis of our comparison, we shall say that 1905 was the earliest season and 1906 the latest. The objection to this is that it considers only the carliest stragelers, whos movements may or may not reflect those of the bulk of the species.

If we select the average of all the dates for each year we shall have for 1905 May 2. 1906 May 2, 1907 May 3, or 1905 earliest and 1907 latest. The objection in this case is that some at least of the late dates of arrival represent errors of olservation-i.e., failures to detect the -perementil it had been present forsumedas-while others are for stations which are not congenial haunts of the species under consideration and at which it is only oceasionally seen, and by including these in our computation we obviously make the resultant date too late.

After consideratinr many methods it seems that the best date to select is that upon waich the species had arrived at half of the stations, leaving out of consideration entirely the last quarter of the stations that recorded the species, in order to eliminate the probably erroneous or misleading dates.

Dropping the last quarter of the stations in the case of the Ovenbird: we shall have left for consideration in the three years twenty-three, twenty-four and twenty-six records respectively, i.e. :
1905-April 25, 28, 29 (S), 30 (10), May 2, 3, 4.
1906-April 28 (2), 29 (7), 30 (4), May 1 (5), 2 (3), 3 (3).
1907-April 26 (2), 27, 2S (4), 29 (5), 30 (2), May 1 (5), 2 (2), 5 (4), 6.
The dates by which the species had reached half these stations will then be 1905 April 30,1906 April 30.1907 April 30. This is perhaps a poor example as the Ovenbird is such a regular migrant. Indeed a mere glance at the records will show that the bulk of arrivals occurred in 1905 on April 29 and 30, in 1906 on the same days and in 1907 on April 28 and 29, which represents almost the same thing. ${ }^{3}$

In other cases, however, the massing of arrivals upon a few days is by no means so evident, and some such method as the above is absolutely necessary. For example:
Pipilo erythrophthalmus (Towhee).
1905-March 24, April 11 (2), 12 (2), 14 (3), 1s, 19, 20, 21 (2), 22 (2), $23(3), 24,25$ (3), 26 (2), 29, 30.
1906-March 6, April 7, 12, 15 (3), 16, 17, 19 (4), 20, 21 (5), 22 (3), 23, 24,25 (2), 27 (2), 30 (2), May 8.
1907-March 23, 30 (2), April 3, 4, 6, 14, 16, 20, 24, 26 (5), 27 (3), 28, May $1,4,5,6$.
Rejecting the last quarter of the records in each year and selecting the middle one of those remaining, as before, we get:
1905 April 19,1906 April 19, and 1907 April 20.
Hirundo erythrogastra (Barn swallow)
1905 -April $7,20(3), 21,23(3), 24,25(3), 27,29,30(4)$, May $6,7,9$. 1906 - April $11,12,14,17,19,21(2), 22(3), 25(4), 26,24(2), 30$, May $3,6,19$.
1907-March 27, April 6, 20, 21, 22 (2), 24 (3), 26 (2), 27, 24 (3), 30. May 1, 2, 1, 5 (3), S (2), 10, 11, 12, 14.
1905 April 23, 1906 April 22, 1907 April 26 .
Toxostoma rufum (Brown Theraher).
1905 -April $9,13,14(2), 16,15(2), 19(2), 21(2), 22(6), 23(3), 24(4)$, $25(2), 26,29,30$, , Мау 3.

[^29]1906-March 9, April 10, 16. 17 (2), 19 (3), 20, 21 (4), 22 (3), 24 (2), 25 (2), 26, 27, 28 (2), 30, May 1 (2), 5. 6.
1907-March 13, 17, April 20. 23, 25, 26 (6), 27 (7), 28 (2), 29 (2), 30 (2), May 1 (3), 2, 3, 4 (2), 5, S, 11 (2).

1905 April 22, 1906 April 21, 1907 April 27.
The above plan gives us a definite date for all sorts of comparisons and one which is independent of the personal equation. The term "became common" may mean a different thing to each individual, but the date upon which a species reached half of the stations at which it was observed represents a definite point in the increase of its abundance, and is a matter of record and not of opinion.

As so little has been attempted in the way of combining local migration records, I find it difficult to discuss the comparative value of different methods. Some casual allusions by Prof. Cooke to the methods employed by him form indeed the only contribution to the subject with which I am familiar. He recognizes the danger of including the latest dates of arrival in computing averages and rejects them, just as I have adrocated above, but in deciding how many to reject his method seems to lack definiteness and to involve the personal equation. He says (Auk. 1907, p. 347), "When using migration records for the calculation of average dates of arrival, I usually discard dates that are more than six days later than the probable normal date of arrival." This would seem to imply an arbitrary selection of "the probable normal" date befme any averaging is done, which seems to be a dangerous methot. Again, in referring to the combination of the observations of twenty-three observers at Washington. D. C., in the Spring of 1907, he says. " Many of the notes were duplicates or of no ralue, but after all these had been eliminated," etc. [Italics mine]. This is exactly the reverse of my method, instead of rejecting "duplicate" records, these seem to me to be of the utmost value as pointing to the dates upon which the greatest migration took place. It must, however, be borne in mind that Prof. Cooke in this instance is ascertaining the earliest date-not the date of bulk arrival which, as just explained, -rims th the a more reliable basis for comparison of migration between two distant points, but one which, as 1 have also explained, is practically impe-ible in the absence of a large conts of observers at each point.

Giraphic Representation of Migration.

In the Auk for 1889 ($\mathrm{p}, 139$) and 1891 (p. 194) I published some pater- on the Craphic Repreeentation of Bird Migration, based in part upen reeonds of the Delaware Valley ()rnithohugieal Club for 1890 .
The attempt was made at this time to record the actual number of indivilual or the relative abundane of certain speries, ats noted each
day by five observers, and by plotting the daily totals a chart was obtained representing the fluctuations of the migration, which was shown to correspond to rises and falls in the curve of temperature variation for the same period. In my Birds of Eastern Pennsyluania and New Jersey, 1894 (p. 28), a like method was employed.

Similar and probably much more accurate results may be obtained by plotting a curve based upon the total "first arrivals" within the tenmile circle as reported by our Philadelphia migration corps for each day of the Spring.

In the following diagrams such curves are shown for the years 1902 to 1907 , accompanied by curves of temperature variation based upon the mean daily temperature at Philadelphia as recorded by the United States Weather Bureau, tngether with an indication of the days upon which rain or snow fell. For this meteorological data I am under obligations to Mr. T. F. Townsent, Director of the Pemusylvania Section, U. S. Weather Bureau.

In the early part of the season it will be noticed that "waves" of migration follow closely after marked rises in temperature, but later on at the height of the May migration the great "waves" or "rushes" often occur without any corresponding temperature increase.

It is well known that birds do not start to migrate on a rainy night, so that it is natural to expect sudden drops in the migration curves to be correlated with spells of rainy weather, and such is often the case. Inasmuch as birds are sometimes overtaken by rainstorms after starting on a clear evening, they uften arrive at a locality simultaneously with the rain, and as it is not possible to indicate in the diagrams the exact time and extent of the daily precipitation allowances must be made for some apparent discrepancies in this respect.

In the following diagrams the vertical lines represent the days from February 15 to May is. while the horizontal lines denote five denteres difference in the temperature curve and ten units difference in the migration curve; a unit in the latter curve being a "first arrival" record at some one of the stations within ten miles of Philadelphia. Thus if the migration curve reaches ten on a certain day it means ten first arrivals, i. e., one species recorded for the first time at ten stations, two species at five stations each, or ten different species each recorded at a single station as the case may be. Perionds of rainy weather are indicated by the broken lime inmediately bedow the diamem, marked "rain." Each migration is divided into two sections placed opposite to each other, so that the curves run across both pages, with the comments below. In each chart the upper curve represents temperature variation, the lower migration.

In 1902 the temperature rose steadily from February 19 to March 1, and a marked migration occurred February 27 to March 1, consisting mainly of the bulk movement of Purple Grackles and Robins.

The mean temperature during March was 46°, six degrees above the normal ; the highest figures being on March 1, 12, 16, 23 and 29. Marked migratory movements occurred on March 10-11, March 23, and March

In the ceason of 190% there was an almost mboreken rise in temperature from Fobluary 19 to Fobluary 2 S , most rapid foom the 25 th to the and of the month. The bulk movement of Rohins and lapple Grackles took place on the 27 th, aceompanied this year he a consirlerable migradion of F゙ox Namons.

The mean temperature durines Mareh was 49° - mmsually high and

29, the Fox Sparrow being a characteristic species of the first movement, the Chipping Sparrow and Pheebe of the other two. April was but little above the normal temperature, the marked increase being on the 11th, 23 d and 30th, with corresponding migration on April 12, 13, 21-22, 26, and May 1. The May movement continued until the 4th, broken on the 3al by rain.

The early warm wave in 1904 occurred February $22-24$, but brought only the first arrival of Rob ons, with no evilence of migration in other species. The rain which prevailed at the time no doubt checked any general movement. The weather during March was normal and the rises in temperature, which culminated on March 3, 7, 13, 20 and 26,

1905

In 1905 there was no Fehruary migration. The rise in temperature on March 8 brought the first migratory movement which was cheeked by rain, but resumed again on March 11. High temperature Mareh 16-19 brought two migratory movements. Rain in April at the time of sudden rises in temperature seems to have broken up the regularity of the migration or held it in check, and perhaps had something to do

were followed by migrating movements on March 5, s, 13, 20 and 27 In April the principal movements on the 10 th and 25 th corresponded to marked increases in temperature, while the great May waves occurred on the 1st and 6th.

with the proportions of the wave of April 30, which followeel the last spell of rainy weather and was the most extensive April movement that our records show. The May waves occurred on the 3 dand 7 th.

The correspondence in the migration curves for 1904 and 1905 is remarkable, the movements being about the same in mumber and extent and nearly the same in time of occurrence.

1906

In 1906 the steady rise in temperature February 15 to 21 caused one of the most extensive February migrations of which we have record. In March, on the contrary, there was no movement of consequence, notwithstanding two considerable temperature increases culminating on the 4 th and 26 th.

The explanation of this is to be found in the fact that birds that usually form the early March waves had already advanced with the

In 1907 there was mo Fehmary migration whatever. March was rather warmer than usmal, and the five well-marked waves correspond With umbsial exactness to temperature increases. The phenomenal cold of early April brought migration to a standstill, followed by marked waves on April 21, April 26 and May 1, following increases in temperature culminating on April 26 and 30 . The eontinued eold weather of May delayed the great migratory movements of that month until May 11-12 when the birds went through in a great throng, irrespective
1908.]

great February movement, and there were nu speries ready to respond to the favorable conditions in March.

High temperature on April 5 was accompanied by rain and migration was not apparent until April 6 to S when there was an extensive movement. Another occurred on the 13th, while the high temperature of April 21 was followed by a wave on the 22d, which was resumed on April 25 after a cold rain. The greatest movements were April 29-May 1, May '3 and May 5.

of falling temperature with frost on the morning of May 12. The last May wave did not occur until the 19 th.

In this seaton we have an example of the difficulty of characterizing an entire migration as early or late. The hegiming of the movement was late, while most of the March dates of arrival were remarkably early; early April migrants were late, but the great movements at the close of the month brought conditions nearly to the normal. while the May migrants were phenomenally late.

Wates and Their Components.

Accepting the fact that the migratory movement advances by "waves" or "rushes."-that is to say that the bulk of the migration at each locality occurs on certain nights or series of nights,-the /question naturally arises: To what extent are the several "waves" in successive years composed of the same species?

A study of the migration curves will show that there are from eleven to fourteen prominent waves during the spring, taking into consideration only those which show ten or more arrivals ${ }^{4}$ in February and March, fifteen to twenty in April, and thirty to one hundred in May. These seem to me to be the only movements worthy to be styled waves, although some have used the term to indicate far less marked movements, while others use it only for the most extensive migratory flights. ${ }^{5}$

Selecting forty-seven common species for which we have the fullest data, and noting such migratory activity ${ }^{6}$ as is indicated by each on the wave-days for the years $190 \pm$ to 1907 , we find a remarkable correspondence in the species which make up each wave. And the same "wave" may be recognized through a number of years by its component species, though its date may vary considerably. Sometimes a movement may be interrupted by unsuitable weather and be resumed again later, making two apparent waves in one year which correspond to one in other years. Or when conditions are exceptionally favorable early in the season, the species which usually compose Wave II, for instance, may push forwarl and form part of Wave I; and although conditions at the normal time of occurrence of Wave II may be favorable there will be no movement, simply becanse all the species usually migrating at that time have passed on.

It seems then that certain species migrate together, advance stragplers of some accompanyiug the bulk movements of others, and that rachopecies is realy for migration at approximately the same time each year, the exact date depending upon a favorable combination of meteorological conditions.

The following tables will show which of the forty-seven selected species composed the various waves for the four years for which we

[^30]have the fullest data. Many other less common species arrived on the various "wave-days," but their inclusion in the tables would only tend to confusion and would obscure the point that I wish to demonstrate. Where a species has been omitted in any year it is because it failed to arrive on one of the wave movements, or because the bulk movement was scattered and not concentrated on a "wave-day.". The scarcity of such omissions, however, illustrates to what an extent the migration is concentrated on a comparatively small number of days.
"First arrival" in these tables denotes the first individual to be reported anywhere within the ten-mile circle.

Purple（irackle．
Robin．

Red-winged Black-
bird.
Purple Grackle.

Black－
Purd.
Purple Grackle.
Robin.
Fox Sparrow.
Phobe.

1906.
[Combincd with
WaveI this year.]
1906.
[Combincd with
WaveI this year.]
にox Mrarow.
Hermit 1 hrush.
Red-winged

WAVEII.
Mato5.
Mox Suarmow.
$\begin{aligned} & \text { Red-winged Black- } \\ & \text { bird. }\end{aligned}$
$\begin{aligned} & \text { Purple Grackle. } \\ & \text { Robin. }\end{aligned}$

Purple (irackle.
Robin.
lorple (irackle.
Robin.
loiral 1 |rimals
Bulk Movement.
1904
March $8-10$.
Fטボがatow (21).
Black-

Wave II．
March 10－12．
Fox Kıarrow． bird．
Purple Grackle．
Robin．
WAVEI bind． lomple（irackir．
Roblin． l゙ins！ 1 ｜rimuls

Bulk Movement．
－
1907.
$[$ Combincd with
WaveII this year.]
1907.
March $23-24$.
Chipping Sparrow.
'Yowhee.
Phocbe.
Vesper Sparrow.
March 29-80.
Mawhee $(2 \mathrm{l})$.
Tow (2d).
Hermit 'Ihrush
Ruby-crown Kinglet.
Yellow Palm Warb-
ler.
Barn Swallow.
Phoble.
Vesper Sparrow.
Chipping S'parrow.
March 12.
Phobe.
Fox siparrow.
1906 .
March 25.
Chipping siparrow.
$\begin{aligned} & \text { Red-winged Black- } \\ & \text { bird. }\end{aligned}$

$$
1906 .
$$

April 6-8.
Towhee (2d).
Myrtle Warbler.
Hermit 'Marush.
Ruby-erown Kinglet.
Yellow I'alm Warb-
ler.
Brown Thrasher(2d).
Homse Wren.
Thoebe.
Vesper Sparrow.
Chipping Sparrow.

Phocbe.
Vesper Sparrow.
('hipping sparyow.

1904.
March 19-20.
Vesper sparmow.
('hiphing sparmow.
Mherbe.
$\begin{aligned} & \text { Rerl-winged Black- } \\ & \text { bird. }\end{aligned}$

Phorbe.
Vesper Sparrow.
Chipginer Abatrow
Bulk Morement.
loirst Arrimals.
Bulk: Worement.

$$
\begin{aligned}
& \text { Wave: V1. } \\
& \text { 1905. } \\
& \text { Amil } 1 . \\
& \text { Hermit Thrush. } \\
& \text { Ruhy-('mwn Kinglet. } \\
& \text { Myrile Wamber. }
\end{aligned}
$$

Ruby-crown Kinglet.

$$
\begin{aligned}
& \qquad 1906 . \\
& \begin{array}{c}
\text { [ncluded in Wave } \\
\text { V.] }
\end{array}
\end{aligned}
$$

\[

\]

$$
\begin{gathered}
1906 . \\
\text { April } 13 . \\
\text { Bam Swallow. } \\
\text { Chimmey Swift. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Hermit Thrush. } \\
& \text { Yellow Palm W }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yellow Palm Warb- } \\
& \text { ler. } \\
& \text { Ruby-crown Kinglet. }
\end{aligned}
$$

$\begin{aligned} & 1904 \\ & \text { April } 2 . \end{aligned}$	$\begin{aligned} & 1905 . \\ & \text { April } 1 . \end{aligned}$	1900. [Included in Wave	$1!07 .$ [Included in Wave
Hemmit Thrush.	Hermit 'Thrush.	V.]	V.]
Rulyrerown Kinurlet.	Ruhy-c'own Kingret.		
Vellow Pahm Warbler.	Myrile Wanbler.		
Chipping Sparow.	Ruby-crown Kinglet.		
	WAVE VII.		
1901.	1905.	1906.	1967.
A pril 10	April 9-11	April 13.	April 20-22.
+ Amil $1 \gamma^{\circ}$.	+ Amril 16.		
Barn swallow. Chimmey swift. Brown Thrasher. BI ack-and-White Wamber.	Barn swallow.	Batn Swallow. ('himmev swift.	Bam swallow. Chimmey kwift. Black-and-White Warbler. Catbird. Water Thrush.
	(himmey swift.		
	Brown Thrasher.		
	Gathind.		
	Vellow Warbler.		
Maryand Yellowthroat.	Yellow Palm Warbler.		
Hermit Thrush.	Hermit Thrush.	Hermit Thrush.	Hermit Thrush.
Yellow Palm Warbler. Ruby-crown Kinglet. Myrtle Warbler.	Yellow Palm Warbler.	Yellow Palm Warbler.	Yellow Palm Warbler.
	Towhee.	Ruby-crown Kinglet.	Ruby-crown Kingret.
			Myrile Warbler.

$$
\begin{aligned}
& \qquad 1607 . \\
& \text { April } 20-22 . \\
& \text { Bamn swallow. } \\
& \text { Chimmey Swift. } \\
& \text { Black-and-White } \\
& \text { Warbler. } \\
& \text { Cathirl. } \\
& \text { Water'Thrush. } \\
& \text { Hermit Thrush. } \\
& \text { Vellow Palm Warb- } \\
& \text { ler. } \\
& \text { Ruby-crown Kinglet. } \\
& \text { Myrte Warbler. }
\end{aligned}
$$

Wate VIII.
1904. 1905. $1906 . \quad 1907$. April 23-26. : April 22-25. April 21-25. April 26-28. First Arrivals-Nine species have arrived on this wave in at least three of the four years, i.e., Scarlet Tanager, Yellow Warbler, Black-throated Green Warbler, Ovenbird, Water Thrush. House Wren, Catbird, Wilson's Thrush and Wood Thrush. Five others arrived in two out of the four seasons, i.e., Rose-breasted Grosbeak, White-eyed Vireo, Redstart, Maryland Yellow-throat and Yellowbreasted Chat.
Bulk Morement-The bulk of this wave comprised the same seven species in each of the four years, i.e., Chimney Swift, Barn swallow, Black-and-White Warbler, Myrtle Warbler, Maryland Yellowthroat, Brown Thrasher and House Wren. To these are to be addel the Yellow Warbler in 1904 and the Ovenbird in 1907.

Wave IX.

1904.	1905.	1906.	1907.
April 29-May 1	April 29-30.	April 29-May 1. May $1 \cdots$.	

First Arrivals-six species arrived on this wave each year, i.e., Baltimore Oriole, Kinghird, Red-eyed Vireo, Blue-winged Warbler, Magnolia Warbler, Parula Warbler, and in three of the four years Great Crested Flycatcher, Indigo-bird, Yellow-throated Yireo, Blackthroated Blue Warbler.
Bulk Morement-seven species were abundant during this wave in each of the four years, i.e., Black-throated Green Warbler, Redstart, Water Thrush, Ovenbird, Catbird, Wilson's Thrush and Wood Thrush, and in three of the four the Yellow Warbler and Scarlet Tanager.

Wave X.

$$
1904.1905 .1906 .
$$

May 5-8. May s + 7. May 5-6. May \mathcal{S} + 10-12.
First Arrivals-sipecies usually arriving on this wave Chentnut-ided Warbler, Blackburnian Warbler, Canada Warbler, Black-poll Warbler, Wood Pewee, Hummingbird, Yellow-billed Cuckoo.
Bulk Movement-In all four years Baltimore Oriole, Wookl Prowe, Great Crested Flycatcher, Indigo-hird, Rose-hera-ted (irombak, scarlet Tanager, Red-egeal Vireo, White-eyed Vireo. Sellow-hrea-ted

Chat, Chestnut-sided Warbler. In three of the four years Bluewinged Warbler, Black-throated Green Warbler, Black-throated Blue Warbler, Magnolia Warbler, Black-poll Warbler, Kingbird.

> Waye XI.
1904. 1905. 1906.

May 10-11. May $12 . \quad$ May 12-13. May 19.
Bulk Morement in all four years-Yellow-billed Cuckoo, Hummingbird, Woonl Pewee, Magnolia Warbler, Blackburnian Warbler, Black-poll Warbler and Canada Warbler.

Six Years Records at Philadelphia.

The following tables present a summary of the arrival dates of the ninety species which are printed upon the schedules of the Delaware Valley Ornithological Club for the years 1902 to 1907, based upon the records of from twenty-five to thirty-five observers for each year, all located within ten miles of the center of Philadelphia.

Lnder "first arrival" is given the average date of the first observation reported by any of the observers, and also the earliest and latest first arrival for the six years under consideration. Under "bulk arrival" is given the date for each year when the species had been reported at half the stations, computed as explained on page 137, and also the average of these six dates. In some cases the data were too meager to warrant this computation, in which instances the dates are onitted and only first arrivals given. In a ferw species, marked by an asterisk, clates which obviously referred to winter residents have been rejected, while in the case of the Long-billed Marsh Wren, Pine Warbler and perhaps a few others the data are probably not sufficient to give accurate results, the species being rare or local.
FHHAT גHKIVAL.

May 5.

Arthur Erwin Browx, Sc.D., Vice-President, in the Chair.
Thirty-four persons present.
On the nomination of the Council, Profs. Henry F. Osborn, Amos P. Brown, Richard A. F. Penrose, Jr., Frederick Prime and the President of the Academy were appointed on the Hayden Memorial Committee.

The death of Henry B. Meellicott, a Correspondent, April 6, 1905, was reported.

Dr. Spencer Trotter made a communication on points in the anatomy of the Apes, special attention being given to divergencies in the musculature. (No abstract.)

May 19.
Arthur Erwin Brows, Sc. D., Vice-President, in the Chair.
Thirty persons present.
John W. Harshberger, Ph.D., made a communication on the peotgraphical study of bud opening in comertion with isothermal lines. (No abstract.)

REVISION OF NORTH AMERICAN SPIDERS OF THE FAMILY LYCOSIDE.

13Y RALPH V. CHAMBERLIN.

Table of Contents.
PAGE
Introduction 158
Lists of described North American Lycosidx 163
The Family Lycosidx. 165
Levto Genera. 169
The Genus Pardosa:
Definition. 170
Ker to species 172
Description of species 174
The Genus hehizocosa
210
210
Definition
Definition
212
212
Key to species.
Key to species. 212
The Genus Lycosa:

1) fefinition... 220
K゙eytosperies 223
Description of species 226
The Genus Allocosa:
Definition 284
Key to species 285
Description of species. 285
The Genus cosippus:
Definition 292
Desaription of species. 293
The Genus Trabea:
|n-fintion... 295
Description of species 296
The (imus Mosilaus:
295
295
1).finition
1).finition 298
The Gonus Pirata:
1).efinition 299
Key to species 301
Description of species. 301
Explanation of Plates. 316

INTRODUCTION.

The Lycoside form one of the most successful of all families of spiders. Their common names of wolf and rumning spiders indicate their dominant traits. All live close to the earth, roaming freely and bobdly, and with rare exceptions capturing their prey by the chase rather than by means of webs or other strategy. 'They are among the most familiar and widely distributed of spiders. The Piratas and
most of the small and excessively active Pardosas keep close to the water, when alarmed running out freely over the surface, in adaptation to which action their tarsi are specially modified in the arrangement of haiss and bristles. The larger Lycosas may mingle their colors with those of the dried leaves and twigs of the woods, lurk beneath the stones of roadside and field, wander in the open or burrow in the sand of the seashore or the soil of the plain. Everywhere they are familiar; not because of large number of species, nor because of their bold open habits, but especially because of the excessive abundance of individuals resulting from successful adaptation to conditions widely available.

All true spiders depend upon living animals, mostly insects, for food. Since they ingest only the body juices of their prey, what seems at first an amazing quantity of insects is required to satisfy their nutritive needs. Most spiders have met this requirement through the development of instinct and skill, accompanied of course by those structural modifications necessary for their effective exercise, in the construction of webs. The line of divergence of the Lycosider, however' has been in the direction of capacity for taking prey by the chase. The high arched cephalothorax and the long stout legs plainly bespeak strength and speed. But strength and speed alone would be quite ineffective without the simultaneous development of the sensory system, to enable the spiders to detect and with some certainty to follow their prey. Such development has affected strongly the sight ; other senses, excepting touch, being seemingly but feebly developed. This is manifest in the differentiations in size and arrangement of the eyes. It has been shown that the arrangement of the eyes is such as to make the animal aware of movements within its limit of vision in front, at the sides and through a considerable are behind, the are directly forward being covered particularly well. The eyes fall very clearly in three rows. The first row, situated across the lower part of the face, is composed of four small eyes placed in different planes; the second of two eyes, large in size and directed antero-laterally; the thind of two medium-sized cyes situated farther back on the pars cephalica and directed laterocandally. This arrangement of the eyes is apparently assoriated with the characteristic elevation of the pars eephalica. The high dossally narmwed rephatothorax and the placement of the eres in three distinet rows as described are features hey which the Lemensidu are usually to be detecterl at a glanee. Other chatacters serving with those mentioned to distinguish members of this family are the three claws of the tarsi, the notching of the trochanters at the outer end
beneath, and the exeavation of the posterior piece of the superior lorum of the abdominal pedicel.

Mnst of the wolf spiders build no webs of any kind for ensnaring their prey. A few forms (Sosippus, Hippasa), however, construct sheet webs over stones and low bushes with central. funnel-like retreats, much like those of some Agelenide. In these web-constructing forms there is a strong development of the superior spinnerets, similar to that in the latter family.

The females without exception enclose their eggs in cocoons, which they carry about attached to their spinnerets until the young hatch. After hatching the young are carried about on the back of the parent until able to shift for themselves with some degree of safety. In making these cocoons the spiders first spin upon the ground a circular disk, which they enlarge usually until its diameter is about equal to the length of their bodies. A suitable scaffolding of threads is constructed preliminary to the spinning of the disk. After the basal disk is completed the spider presses out from the genital ducts upon the center of the disk a drop of viscid fluid, into which the eggs are allowed to fall. she then spins over the eggs a covering sheet, fastening its edges to the hasal disk. The cocoon is then cut lonse from its attachments by means of the chelicerx, the ragged edges are neatly taken up and fastened to the wall of the cocoon, and over the whole fresh threads are spun while the cocoon, held beneath the cephalothorax by means of the third legs, is rotated by chelicere and palps. The result is a neat egy-sac, lenticular in form and showing a distinct seam (Pardosa), or spherical in form and either with a less distinct seam at equator (Pirala) or without a seam evident (Lycosa).
As a rule the Lycosids born during any season pass the succeeding winter in the half-grown condition, not reaching maturity until the following summer or late spring. The smaller members of the family live but a single vear, and during this time build no retreats for themselves. The larger Lycosas, however, are known to live for several years. Many of these build burrows, which they close upon the appreach of winter by means of plugs or lids. These burrows may be mere shallow, nest-like excavations loosely lined with silk or may be derper, more skilfully exeruted tumels. In some cases a rampart or turret is built up about the opening of the burrow, apparently to prevent the drifting in of debtris, cte. This rampart may be compored of particles of sand or carth, or of pieces of straw, grass or sticks, superposed and bound together by means of silk. The same burrow may be oecupied by a spider for several seasons, the occupant remodel-
ling the burrow if injured by accident, or enlarging it if outgrown (see L. fatifera, etc.).

The number of species and genera of Lycoside is very much smaller than would at first thought seem probable. These bold wanderers, with their strong. long legs. the black spines upon which standing out threateningly during excitement suggest their aggressiveness, spread out persistently in every direction. Isolation of any part of a species for a long time would be expected to be rare, and the establishment of distinct forms, therefore, so far as dependent upon this factor, infrequent. There are comparatively few species of wide distribution, rather than a large number of limited range. This wide range of species is accompanied naturally by a great deal of fluctuating variability in many of their features. A result has been a surprisingly large number of synonyms, consequent upon examinations of limited number of specimens from widely separated localities. For example, species that range from New England to the West and far South become lighter and lighter in coloration. In several species the brightly colored individuals that prevail in Texas would appeal to one at first as surely specifically distinct from the darker forms of the North. But all gradations are found when sufficient material is studied, expecially in that from intermediate regions, while apparently no sirnificant differences at all appear in less variable structural features. Important variations are discussed in detail in the present work under the respective species.

In this connection a main source of difficulty has been, indeed. the placing of toogreat reliance upon purely relative characters that undergo greater variation than has been recornized. Even in the treatment of genera this purely relative nature of the characters commonly used has left much room for diversity in opinion and usagre. It is not, therefore, really surprising to find that genera accepted without question hy one student are unhesitatingly denied by others. Some genera that have from time to time been proposed are clearly atificial, having, it woml seem, been erected with a view to convenience rather than in an efiort to express genetic relationship.

All of the characters that have been commonly used in separating, c.g. Pardosa and Lycosa, somewhere become uncertain, the result having been many incorrect references of species. And so, also, is it with other gemera. My own studies of the Leycoside lomg ago eomsinced me that the clearest and most definite characters for limitiner mot only the speries but the genera of the Leycosider as well, are those preented in the copulatury organs. In the promen contribution mach reliance
is placed upon these characters as indices of relationship. They have not previously been used in the definition of genera. It has been necessary to introduce a provisional terminology, perhaps sufficient for present descriptive purposes, for parts of the copulatory organs. Careful comparative studies on the morphology of the palpal organs of male spiders are much needed to give us a consistent general terminology.

As here considered the portion of the family Lycoside in the fauna of America north of Mexico includes eight genera: Allocosa, Pardosa, Şchizocosa, Lycosa, Trabea.Sosippus,Sosilaus and Pirata. Lycosa is more comprehensive than the other genera and its species fall into a number of natural but mostly intergrading groups. Of these groups one in part corresponding to Trochosa of some authors is most divergent and compact. (Wee further under Lycosa.) Altogether, in the neighborhood of one hundred and fifty specific names have been erected for the forms under these genera; but of these not more than half are really "good." The species that I have been able to regard as distinct and recognizable are distributed among the genera as follows: Trabea, Sosippus and s'osilaus, each with one; Allocosa, five; Schizocosa, three; Pirata, nine; Pardosa, seventeen; Lycosa, thirty.

Of the material studied mention should be made first of the section of Lycoside in the rich collection of Arancer at Cormell Cniversity, for the privilege of using which and for other unfailing courtesies I am deeply obliged to Prof. J. H. Comstock. The Cornell collection includes not only species from New York State and other parts of the North, but also a good representation of forms from the South and a number of species from the West. My own collection consists of specimens collected in California, Utah and New York by myself, and of a large number from many different localities ohtained through others. Among those to whom it is a pleasure to make acknowledgments for specimens are the following: M. Simon, France (specimens from Florida) ; Rev. F. O. P. Cambridge, England; Mr. B. H. Guilbeaux, Louisiana; Miss Annie Jones, Georgia; Mr. A. M. Bean, lowa; Mr. C. (). Crosby, New York; Mr. T. H. Scheffer, Kansas; Mr. G. W. Peekham, Wisconsin; Irr, O. M. Howard, Ltah; J'sof. 'T. H. Montgomery, Texas. For the loan of specimens and collections for study I owe my thanks to Mr. J. H. Emerton, Boston; Mr. Samuel Henshaw, of the Museum of Comparative Zoology, Boston; Prof. C. M. Weed, New Hampshire; Prof. John Banlow, Rhode Istand ; Mr. Charles Fuehs, of the Califormia Academy of Sciences; Prof. M. T. Cook, Indiana; and Dr. W. M. Wheder, of the American Museum of Natural History, New York.

For the privilege of studying the Marx collection in the Ľ. .. National Museum and various types in his own private collection, I am much indebted to the courtesy of Mr. Nathan Banks.

List of Described North Americaio Licoside.

Gienera.

Allocosa Bks.	Pikata Sund.
Arclosa C. Koch $=$ Lycosa Latı.	Scaptocosa Banks = Geolycosu
Aulonia Emerton (aurantiaca) =	Mlg.
Trabea Simon.	Schizocosa Chamb.
Geolycosa Mtg. = Lycosa Latr.	Sosilaus simon.
Leimonia C. Koch $=$ Pardosa C .	Sosippus Simon.
Koch.	Trabea simon.
Lx $\cos _{\text {a Latr. }}$	Trochosa C. Koch = Lycosa.

degesta Chamberlin. eragata, sp. nov.
? exalbidu Becker.
funerea (Hentz).
species of Aldocosa. nigra $($ Stone $)=$ rugosa (Keys.). parva (Banks). rugosa (Keyserling).
sublata (Montgomery) $=$ funerea (Hentz).
specirs of Lseosa.
albohastata Em.
antelucana Mtg. = apicala Bks.
apicata l3ks.
arenicola sc.
aspersa Hentz.
avara Keys.
babingtonii $\mathrm{Bl} .=$ helluo W .
baltimoriana Keys. (var.)
beanii Em.
brunneiventris 13ks. = kochii Keys.
carolinensis H.
cinerea lab.
coloradensis 13 ks .
crudelis 13ks. $=$ helluo W .
commumis Em. = erratica H .
epig!mata Mt tr. $=$ gulosa W.
erratica H .
exitiosu 13ks. = aspersa.
fatifera H.
floridana 13 ks .
floridiana Bks.
frondicola Em.
fumosa Em.
grandis 13 ks .
gulosa W.
helluo W.
helvipes lieys. $=$ helluo W .
inhonesta (Ǩeys.) = asperset 11 .
insopita Mtg. $=$ gulosa W .
immaculata 13 k :. = aspersa H .
kochii Keys.
latifrons (Mtg.$)=$ fatiferu H .

lenta 11.

lepidarieys. = arratica 11 .
littoralis $\mathrm{H} .=$ cinera liab).
maritime $\mathrm{H} .=$ cincrea loab).
milberti $\mathrm{W} .=$? carolinensis W . missouriensis 13 ks . = fatifern 11.

modesta Kicys.

modesta'Th. = fromdicola Lim.
nidicola Em. $=$ helluo W .
nidifex Mx. = arenicola Le.
nigrorentris Eim. $=$ frondicoln lim.
ab!onga Bks. = aspersa H . perdita.
permunda Chamb.
pilei $\mathrm{Mx} .=$ arenicola se.
pudens Mx . = frondicola Em.
pictilis Em.
pilosa Cir. = carolinensis W . philadelphiana W., invalid.
polita Em. = rubicunda Keys.
pratensis Em.
pulchra (Keys.). = gulosa W .
purcelli Mtg. = gulosa W .
propinqua $\mathrm{Bl} .=$ erratica H .
punctulata H .
quinaria Em.
riparia Hentz.
rubicunda Keys.
rufiventris Bks. = avara Keys.
ruricola $\mathrm{H} .=$ lenta H .
sepulchralis Mtg. = modesta Keys.
sagittata $\mathrm{H} .=$ erratica H .
scalaris Th. = erratica H .
scutulata Htz.
sayi W. = ? helluo W.
similis Bks = helluo W .
texana Mtg. = carolinensis W. (var.)
tigrina McC. = aspersa H .
vafra C. K. = ? helluo Walck.
vulpina $\mathrm{Em} .=$ aspersa H .

Whlckenaer's Names of Species of Licosa of the Abbott and Bosc Manuscripts.

> (Described in Ins. Apt., Vol. 1.)
animosa.
avida.
discolor.
encarpata.
grossipes.
geargiana.
! georgicola.
impavida.
infesta.
mordax.
suspecta.
triton.
vehemeris.

Theer nanne are all invalid, the descriptions having been based on the umpublished drawings of Abbott and Bose.

Sipecies of Pardos.
albomaculata Em. = !!ranlendica floridana Bks. = banksi Chamb.,
Th.
ammulata Bks. $=$ saxatilis 131 .
atra fiks.
banksi (hamb).
brumnen Em. = var, of modica Bl.
californica Keys.
cunudensis $\mathrm{I} 3 \mathrm{I}=$ milvina H .
coloradensis Bks. = sternalis 'Ih. (Jrs.).
distincta 131 .
dorsalis Bks. = mackenziana Ḱeys. dromoera'Th. = granlandica 'Th.
emertoni (hamb).
flaripes K eys $=$ milvinu H tz.
var.
puscula Th. = modica Bl.
furcifera Th. = modica Bl .
glacialis Th. = modica Bl.
groulandica Th.
impavida'Th. = xerampelina Keys. indigatrix Th. = gronlandica Th. intrepida Marx = granlandica 'Th. iracunda Th. = granlandica Th.
labradorensis 'Th.
lapidicina Em.
Iongispinata Tullg.
luteola $\mathrm{Em} .=$ distincta Bl.
littoralis 13ks. = banksii Chamb.
mackenziana Keys.
mercurialis IItg. = lapidicina Em.
milvina Htz.
minima Keys. = saxatilis H .
modica Bl.
mesta Bks.
montana Em. = xerampelina Keys. nigropalpis Em. = milvina H . pallide Emı = emertoni Chamb. parvula Bks . = saxatilis H . (var.) pauxilla Mtg.
saxatilis Htz.
scila Mtg. = milvina.
sinistra Th. = grenlandica Th .
sternalis Th.
tachypoda Th. = xerampelina Keys.
texana Bks. = lapidicina Em. tristis Th. = grœnlandica Th.
uncata Th. = mackenziana Keys. venusta Bks. = lapidicina (Jrs.).
xerampelina Keys.

Species of Pirata.

rugitis Bks. = montanus Em.
aspirans Chamb.
bilobata (Tullg.).
elegans Stone $=$ montanus Em.
exigua Bks. = minuta.
febriculosa Becker.
humicolus Montg.
insularis Em.
liber Montg. = insularis Em.
marxi Stone.
minuta Em.
montana Em.
montanoides Bks, = insularis Em. nigromaculatus Montg. = montanus Em.
prodigiosa Keys.
piratica (Cl.) var. utahensis, new. sedentarius Mtg. = febriculosa Beck.
wacondana Schef. = febriculosa (Beck.)

Species of Sohizocosa.
bilineta (Emerton).
charonoides Mtg. = saltatrix H.
pracilis $($ Banks $)=$ saltatrix H .
humilis $($ Banks $)=$ saltatrix H .
ocreata (Hentz).
nereata pulchre (Montg.) $=$ bilincuta.

```
                                    relucens (Montg.) = venustula
```

 (Hentz).
 rufa Keys. = ocreata Hentz (\%) .
saltatrix
stonei Montg. = ocreala Hentz.
venustula $($ Hentz $)=$ saltatrix H .
verisimilis $($ Montg. $)=$ saltatrix H .

Spectes of Sosidates.
spiniger Simon.

> Species of Sosippus.
floridanus Simon.
Species of Trabbia.
aurantiaca (L'merton).

The Faminy Lecosid.e.

C'phonlohmorax elongated, much longer than wide, attemated anteriorly. The pars thoracica high and sulpri-matic, narmas abme and on al
in outline. with the posterior border truncate and concave at the middle; a distinct fine median sulcus which is rather long always present, as are also more or less distinctly impressed radiating strix. Pars cephalica elevated and arched, distinctly separated from the pars thoracica by cervical furrows which unite at an angle at the median dorsal line, these more rarely indistinct above; pars cephalica with front truncated or more or less obtusely rounded. The face high, trapeziform or, less commonly, with the sides subparallel; in profile vertical, or at least very steep.

Eyes all of the diurnal type; always distinctly arranged in three rows, of which the first is composed of four eyes and is located upon the lower part of the face, the second composed of two eyes at the upper part of the face or semidorsal in position, and the third, also composed of two eyes, in a strictly dorsal position; cyes of the first row small and comparatively close together, in a straight, procurved or rarely recurved row, the lateral eyes on more or less evident tubercles and with their visual axes directed antero-ventrally; eyes of second row very large, occupying a transverse space, in most cases wider than that of the first row, less commonly of the same length or shorter, their visual axes directed antero-laterally; eyes of third row large, almost always more widely separated than those of the second row. with which they thus outline a trapeziform area (quadrangle of posterior cyes), their visual axes directed more or less caudo-laterally. C'lypeus comparatively narrow, always narrower than the width of the area outlinet by the first and second rows of eyes (quadrangle of anterior eyes).
(hulierer long and robust, always vertical in position in both sexes; at base a well-markel and rather large lateral condyle; both upper and lower margins of furrow armed, the upper with two or, more commonly, with three teeth, of which the median is much the largest, and the lower margin with from two to four stout conical teeth; posterior fare always marked with a distinct ohlique stria, along the inner side of which, especially in the middle region, is a well-developed, often dense. pilose band; upper margin of furrow bordered with a subdense pilose band or fringe.

Labium free; the ventral surface flat or, much more commonly, consex ; more or less attenuated anteriorly, with front margin truncate or ohtue; from longer than wide to wider than long; much shorter than the endites. Endites longer than wide, more or less excavated within and fitting over the sides of the labium, externally rounded and never much narrowed at base; erect, never obliquely inclined; dorsal surface flat or a little concave; distally the supra-external border with
a fine serrulate line or serrula; supero-internal border with a dense pilose band or scopula.

Sternum longer than wide; large, subcordiform, being truncaterl in front, rounded at the sides and attenuate to a point caudally.

Legs long or moderately long, the fourth longest, then the first, the third shortest in the great majority of cases; but there are exceptions in which the third legs are longer than the second, and others in which the second are longer than the first. The femora, tibis and metatarsi and usually also some or all of the patellæ armed with spines; the anterior tibix with three pairs of spines beneath, less commonly with two (Pirata), and sometimes with as many as five (Sosilaus); these and other spines of the anterior legs often much reduced and sometimes absent.

In some small species the tarsi are beneath, all simply and rather sparsely setose, but in most they are at least in part more or less provided with scopula composed uniformly of fine, flat lanceolate and slenderly pointed hairs, never of distally enlarged hais: in the smaller species these scopule may be present only along the sides of the ventral faces of the anterior tarsi; but in the larger species (Sosippus and most Lycosas) the entire ventral surface of the anterior tarsi is densely scopulate, and the metatarsi are usually similarly or less densely scopulate, and the tibie are also sometimes scopulate distally; in these larger forms the posterior tarsi are seopulate, but have their scopulat divided by a median line or band of setar; never with dense fascicule at base of claws. Tarsi bearing three claws, of which the superior are strong and broad basally, and bear a series of teeth from five to seven, rarely more, in number, there being mostly confined to the basal half of the claws; the unpaired claw small, bent abrupty downward, almost always naked, rarely with a single tooth. Trochanters invariably notched or excavated at distal end beneath.

Superior lorum of the perlicel of the abdomen composed of two principal, very unegual pieces, of which the smaller posterior one is truncated or somewhat concave behind, and in front is notchent or excavated for the reception of the angularly or roundy attematenf pmiterior part of the longer anterior piece; at each side of the primipal phates is a slender, anteriorly attenuated piece.

Spinnerets six in number; the anterior ones short and relatively stout, contiguous or subeontiguons the pesterior more or lese apparated from each other, mostly more slender than the anterion and either of the same length or longer, compoeed of two articles, of which the second is short and rounded and usually subject to retraction within
the first. ar len commonly longer and conical (Sosippas); median pair slender, of moderate length.

Body clothert with simple hair, or more rarely with some of plumose type intermixed (Sossipus and some Pardosas).
(ienital plate or emingmum of the female mostly simple; either a simple unturowed plate or a plate depressed or furrowed longitudinally and with the depresed area divided by a ridge-like elevation (guide), which in the large majority of cases extends laterally on each side at its posterior end. The transverse portion of the guide often (Lycosa sens. str.) distinctly more elevate than the septal portion immediately in front of it and extending on each side to behind the openings of the spermathecte; median piece of guide posteriorly and the transverse piecer on anterior side with the upper free edges mostly more or less extended horizontally in plate-like expansions, which are usually narrow but may be wide (lateral plates or alo of guide).

P'alpus of the male long, differing uniformly from that of the most nearly related families (e.g.. Pisauridex and Agelenides) in never having femur, patella. or tibia armed with any manner of process or apophysis. Tarsus or cymbinm comparatively simple, boat-shaped; completely fowering the bulb, the alveolus occupying usually not more than twothirds of the ventral area; terminal part of the tarsus acuminate and beariner one, two, or rarely three mostly stout, always untoothed spines (transformed claws), occasionally unarmed. Bulb comparatively simple and compact; embolus only rarely exerted, in most lyingr upon a special fold (lcetus) at front of the larger basal lobe or division, this fold in many with a lobe (auricula) extending forward in front of its exterior end ; lobe of the conductor bearing one to several chitinous processes (tenacula); either an erect and conspicuous apo-phy-i- (J'mota! transierse, and appressed ; basal division of bulb bearin土 - tronaly (htitnizel fold or apophysis (scopus) in at median (Pardosa) or exterior position (Iyycosa), or with such fold or apophysis absent or 1,:3t weakly drewhered (I'imbta), its absence or weak development being convelated with the absence of furrow and gride in the epigynum of the fomale; a chitinous plate or area (lunate area) at base of bulb fwntablly always exponed, the areatheing of varying size in the different genera, but of quite constant relative extent and position in each.

The most simple and generalized condition is shown in Pirata.

[^31]1850. Lycosides C. Koch (ad. max. part.), Uhersicht d. Arachn. Syst.
1852. Venatores Dolesch. (ad. max. part.), Syst. Verz. Oesten. Sp., p. . .
1869. Lycosoide Thorell (ad. max. part.), On European Spiders, p. 1ss.
1876. Lycosida Simon (excl. Dolomedes and Ocyale), Arachn. France, 3, p. 223.

Lycosoidx Keyserling (excl. Dolomedes and Ocyale), Verh. z. b. (ier. Wien, p. 610.
1877. Lycosoidx Thorell, Bull. U. S. G. S. Ters., 3, p. 504.
1885. Lycoside Em. (excl. Dolomedes, Oxyopes and Ocyale), Trans. Comn. Acad. Sci., 6, p. 481.
1890 Lycoside Marx (excl. Dolomedes and Ocyale), Proc. C. S. N. M., 12. p. 560 .
1892. Lycoside Banks (excl. Pisauridx), Can. Entomologist, xxiv, p. 97.
1898. Lycoside Simon, Hist. Nat. Araign, 2, p. 317.
1903. Lycoside Comstock, Classif. of N. A. Spiders.
1905. Lycoside Banks, American Nat., p. 300, 318.

Key to North America Genera of Lycoside.

1. Anterior tibiae armed beneath with five pais of very long spines; anterior eyes subcontiguous, in a recurved row clearly longer than the second, Sosilačs.
Anterior tibize armed beneath with less than five pairs of spines; anterior row of eyes straight or procurved,
2. Lower margin of furrow of chelicera armed with four stout comical teeth,

Sosippers.
Lower margin of furrow of chelicera armed with two or three teeth, never with four,
3. Anterior row of eyes very strongly procurved, the median eres much farther from the lateral than from each other, Tranes.
Anterior row of eyes not strongly procurved, the median eyes little or mostly not at all farther from the lateral than from each other,
4. Cephalothorax glabrous or very nearly so, smooth and shininer. dark in color and without definite light markings, 'Absouい-
Cephalothorax not glabrous, when but sparsely pubescent havine a distinct light colored median stripe,
5. Distal pair of ventral spines of anterior tibia never apical in pr-ition; cephalothorax with a median pale band enclosing in its anterior portion a dark V-shaped mark. (Epigynal plate unfurrowed, i.e., without a guide; true scopus absent or but faintly indicated in male palpus),

Pirati.
Distal pair of ventral spines of anterior tibise apical in po-ition: median pale band of cephatothorax when preecnt mot comboning anteriorly adark V-shaped mark. (Ejpigynum with a di-minet guide; scopus well developed),
6. Soopus median in prsition and more or less ereet : ghile of epie? num weakly or not at all devoloped anterionly, the -permathera opening into comparatively deep, open, basin-like fowar. which when continued forwarl as furrows are distimety less depressed anteriorly; labium wider than long with hasal exesvations short,

Bambora.

anteriorly; labium longer than wide with the basal excavations
long. 7.
7. Transverse arms of guide divided from the distal end more or less mesally; auricula of lectus very long, reaching or nearly reaching the anterior margin of alveolus; the embolus distinctly elbowed at base of auricula ; conductor conspicuously elevate and usually more or less produced into a horn-like process extending beyond front margin of alveolus, . Schizocosa.
Transerse arms of gruide not divided from apex mesally; auricula of moderate size or small, not attaining front of alveolus; embolus evenly curving, not elbowed at base of auricula; conductor not conspicuously elevate or produced above into a horn-like process extending beyond front margin of alveolus,

Iycosa.
PARDOSA C. Koch, 1848.
(Subgenus sub LYCOSA, Die Arachn., Vol. 14, p. 100.)
Entire body densely clothed with pubescence. Anterior tibix armed beneath with three pairs of spines, of which the basal and median pairs are very long, much longer than the diameter of the joint, the third pair apical in position and reduced in size. Anterior row of fyes always shorter than the second and procurved ; eyes small and subequal or with the median a little larger; median eyes nearly always a little farther from each other than from the lateral; clypeus high. twice as wide as the diameter of an anterior lateral eye; eyes of the second row large and divergent, situated at the outer angles of the face above, their diameter or more apart; quadrangle of posterior eves trapeziform, wider behind than in front. Labium at least as wide as kurg. usually wider; basal excavation short, only yery rarely more than one-fourth of the total length of labium. Spinnerets short, the posterior pair a little longer than the anterior, the apical segment being short and rounded. Epigynum with a distinct guide which is but weakly or not at all developed anteriorly; the openings of the spratatherat potected: the spermathecum on each side opening into a relatively large and deep fovea or pit, the furrows becoming narrones and shallower anterionly: I'osterior tobe of male pulpus bearing a scopulus in a median position; scopus more or less erect, free except at base where it has a spur or process on the exterior side; scopal fold low; when a true lectal fold is indicated never showing an auricle or forwarlly diered tobe; lower formow of conductor relatively extensive, bearing at its inferior margin a variously formed and often lobed or dentate tomaculum.

Syn-1s(91. Lyrosn latraille (nd. part.), Nuov. Dict. Hist. Nat., 24, p. 135. 1532. Leycove Hlent\% (add part), sill. J. Sci. Arts, 21, p. 106.
1842. Lycosa Hentz (ad. part.), J. Bost. Soc. N. H., 4, p. 22s.
1848. Lycosa subg. Leimonia C. Koch, Die Arach., 14, p. 99.
-_. Lycosa subg. Pardosa (nom. preoce.), ibid., p. 100.
1875. I.ycosa Hentz. (ad. part.), Sp. U. S., pp. 11 and 21.
1876. Pardosa Simon, Arachn. Fr., Vol. 3.
1876. Lycosa Keyserling (ad. part.), Verh. z. b. Ges. Wien., p. 610.
1877. Lycosa Thorell, Bull. U. S. G. S. Terr., 3, p. 504 et seq.
1885. Pardosa Emerton, Tr. Conn. Ac. Sci., 6, p. 494.
1895. Pardosa Simon, Hist. Nat. Araign., 2.
1902. Pardosa Montgomery (ad. part. max.), Proc. Ac. Sci., Phila., p. 536.
1903. Pardosa Comstock, Classif. of N. A. Spiders.
1904. Pardosa Chamberlin, Can. Ent., sxxvi, p. 176.

Pars cephalica moderately narrow, the sides steep, gently declined anteriorly; face elevated, its sides straight and very steep, subvertical. Quadrangle of posterior eyes one-fourth or more the length of the cephalothorax. Seen from above the posterior eyes are at most but very little more than their diameter removed from the margins of pars cephalica (Pl. VIII, fig. 2). Chelicerer in the great majority of cases with but two teeth on the upper margin of the furrow, the lower margin with three, of which the third is usually much reduced (Pl. VIII, fig. 1). Legs long and expecially the metatarsi and tarsi slender. Anterior tarsi scopulate, laterally the median ventral face occupied by a setose band (Pl. VIII, fig. 7), posterior tarsi simply setose; metatarsus of fourth leg relatively long, most commonly longer than the tibia + patella (especially so in che $^{\text {) }}$, more rarely of same length or a little shorter; tibia + patella of fourth legs always longer than the cephalothorax. The color markings frequently due in large part to the arrangement of the pubescence in spots and streaks without corresponding marks in the tegument, such markings, of couse. being evident only in the living or dry specimens. The cephalothorax in this gemus has always a more or less evident light median stripe of a characteristic dagger form. In nearly all species, although the markings may be much obscured in some, there is on the dorsum of the abdomen a pale basal mark which runs to a point near the middle, each side of the apex and also nsually each side of the midtle of which is an angular pale spot, having a dark dot at its center; posteriorly a series of such ocellate spots more or less united at the midtle line into cherrons.
spiders of small or less commonly of methim size, all chatacterizent by excessive agility. The males are commonly smaller than the females; but do not differ much in coloration. As in Lycosa and other Henera, however, the anterion lews of the mate are often distingui-bend by some peculiar development of color structure.

Pardosas build oo retyeat, wandering about during the cocooning
season as well as at other times. The cocoon is more or less lenticular in form, and shows a distinct seam about the equator, along which the break is made when the spiderlings issue to mount the parent. The cocoon is typically greenish-yellow or greenish-black, but only very rarely white. The individuals of this genus rarely live more than one year.

Key to Species of Pardosa.

Females.

1. Epigynal plate or area widest at anterior end, distinctly narrowing posteriorly; guide wider anteriorly than toward apex (Pl. XIV, fig. 3),
xerampelina (Keys.).
Not as above, 2.
2. Epigynum presenting each side of the guide posteriorly a sharply delimited, relatively small fovea as long as wide, the anterior region of epigynum scarcely depressed,
3.

Not as above, 4.
3. Posterior foveæ angular in outline; posterior ends of lateral ridges separated by a distance much greater than their width; guide behind with transverse arms (Pl. XIII, fig. 5), . sternalis Th.
Posterior fovere smoothly rounded in outline; posterior ends of lateral ridges not farther apart than theirdiameter; guide without transverse arms (Pl. XIII, fig. 8),
atra Bks.
4. Lateral furrows with the shallow anterior fosse short and narrow, behind these deepening and abruptly widely expanding, becoming widest near middle of epigynum; septum of guide elevate, its more depressed tranverse arms extending into excavations in the inner face of the lateral ridges,
Not as above, 7.
5. Transselse arms of guide bending backwards, septum of guide widest at posterior end, becoming gradually narrower toward the anterior end, its sides substraight or but little curving (Pl. XIV, fig. 6),
grenlandica Th.

Not so,

6.
7. Transverse arms of guide bending more or less forward ; septum abruptly widest immerliately behind region of anterior fosse, from there narrowing to end (Pl. XV , fig.3), modica var. brunnea Em. Tranceese arms bending more strongly forward; septum widest behind the middle of its length, typically expanded into a broad plate-like form over the origins of transere arms which it usually. in large part covers (Pl. XV, fig. 1), modica Bl. (type form).
8. Face of exptum of guide abrupty expanded behind into a lage nearly circular plate, the diameter of which is clearly greater than the length of the part of epigymum in front of it (P'I. XIN, fig. 1), emertoni Chamb. Not so 8.
9. Epigynal area wider than long, 9.
Not so, 10.
10. Distinct lateral ridges enclosing posterior portion of guide both at sides and also behind except for short median space between ends of ridges (PI. XV, fig. 8), distincta BI. No enclosing ridges at sides or behind, guide extemding completely over margins of plate of epigynum posteriorly (P1. XI), fig. 5),
californica (Keys.).
11. Over anterior and median portion of epigynum a narrow and very shallow fossa passing behind into a large transversely elliptical depression which is completely occupied by the expanded guide, the lateral ends of which lie in excavations in the side ridges (Pl. XV, fig. 5), mackenziana (Keys.).
Not so,
12.
13. Transverse arms of guide narrowest mesally, widening toward their outer ends (Pl. XIV, fig. 7), lapidicina Em. Not so, 12.
14. Lateral plates extending along guide for much of total length of epigynum, gradually narrowing in width anteriorly, . . 13.
Not so, the lateral plates mostly confined to transverse arms, abruptly narrowing and extending forward but a short distance on septal piece,
15. Guide becoming very narrow toward its anterior end; outer margin of epigynum presenting a small abrupt shoulder on each side just below middle (PI. XIII, fig. 9), . . pauxilla MItg.
Guide of moderate width at its anterior end, being much wider than the fossa at each side; outer margin of epigynum presenting no shoulder below middle (Pl. NIII, fig. 7), banksi Chamb.
16. Posterior fovex clearly wider than long; septum of guide very narrow over middle region, at front end strongly expanding in fan-like form; front margin of anterior depression straight and moderately wide (Pl. XIN, fig. 9), moestu l3ks.
Not so, 16.
17. Sides of epigynum protruding into an angle in front of midlle: no distinctly defined lateral ridges in middle region of sides. the sides gradually converly rounding from middle to outer margin (PI. XIII, fig. 1), suxatilis (H.).
Sides of epigynum not angulate in fromt of midile: more or lace distinct lateral ridges along middle region (III. S.II, fig. 3), miltinu (H.).

The key to females above does not include P. Iongispinuten (Tulles.) and labradorensis (Th.), of which sperimens have not been examimel by the author.

> Malos.

1. Scopus short and stout, not at all or but slighty longer than broad,
Scopus several times longer than hroad. i
2. Anterior depressed lobe of bulb separated into two furrows by an elevated narrow fold extending from above obliquely downward and outward, externally from its lower end being two uncate tenacula and at the corner opposite its upper end a lamellate, inflexed chitinous angle (Pl. XIV, fig. 8), . . lapidicina Em. Not so, 3.
3. Anterior division of bulb presenting a large, trilobed thickening transversely across its upper border from base of embolus outward, the ends of lobes recurved over the furrow posteriorly from them (Pl. XIV, fig. 4), californica (Keys.). Not so, 4.
4. Embolus extending across bulb almost to outer side of alveolus (Pl. XV, fig. 4, var. brunnea; Pl. XV, fig. 2, type form),
modica (Bl.).
Apex of embolus scarcely extending beyond scopus,
grenlandica Th.
5. Scopus extending obliquely forward and outward quite to or some distance beyond margin of alveolus,
6.

Not so,
10.
8. scopus curving forward with convexity external and apex directed forward, emertoni Chamb. Not so, 9.
9. Embolus strongly bent into an S ' shape; scopal spur turned forward at apex (Pl. XIII, fig. 6), sternalis (Th.). Embolus but little curved, extending nearly straight transversely; scopal spur turned backward at apex (Pl. XIII, fig. 2), saxatilis (H.).
10. Foopus above bent outward and then strongly backward, becoming nearly parallel with basal part (Pl. XV, fig. 9), distincta Bl. Notso. 11.
11. ricoppis dentate at apex ; the spur nearly straight, subeonical (Pl. IV, figs. 6 and 7), mackenziana (Keys.). Scopus not dentate at apex, 12.
12. Spur short and stout, abruptly turned posteriorly at apex into an acute hook (Pl. XIII, fig. 4), milvina (H.).
Spur cylindrical, longer, pauxilla Mtg.
Males of the following species are either unknown or are too imperfectly known to the author to be included in the foregoing key: atra, banksi, labradorensis, longispinata, moesta, xerampelina.

Pardosa saxatilis (Hentz), 1844.
(J. Bost. Soc. N゙. Hist., p. 392, 1'1. XVIII, figs. 9, 10.)

Female.-Sides of cephalothorax deep brown to black crossed with liehter radiating lines; a median reddish yellow band which anterionly sends a short narrow process between eyes of the third row, behind Which it abruphly widens, constricted midway between the eyes and the dor-al ertome. bohind which it is strmaly natrowed, sides of band
it region of median groove dentate; on each side a yellow supramarginal stripe usually divided by two or three dark cross-lines and limited below by a narrow black marginal stripe which is more or less broken into spots; clypeus yellow, with a triangular black spot below each anterior lateral eye, the apex of the spot being at the eye and the base on the front margin of the clypeus; the light part of cephalothorax in life clothed with dense white hair, that of the supramarginal stripes extending also over the black marginal lines, the light side stripes consequently appearing wider in live than in alcoholic specimens. Chelicerce yellow, with some dusky markings. Labium and endites and coxce of legs beneath yellow. Sternum black, usually with a narrow median pale line in front; often with a row of black dots along each lateral margin, and a central black stripe narrowed behind and anteriorly geminated by a pale line, elsewhere being yellow. Legs yellow with black annuli on all joints excepting the tarsi, the dark annuli of the femora wide and predominating over the yellow, those of the tibix of same width as the yellow bands, while those of the metatarsi are distinctly narrower. Abdomen blackish to dark gray above, sometimes of a greenish tinge; a yellow to brown lanceolate stripe at base having at each side of its apex a similarly colored angular spot with minute black dot at its center; on posterior portion of dorsum a series of light cross-marks, each formed by the lateral confluence of from two to four spots similar to those at sides of apex of basal stripe; dorsum elsewhere with many minute light dots; sides like lateral portions of dorsum but with the light dots larger; venter yellow to light reddish brown, with a row of irregular dark and partly confluent marks along each side and a short median row of similar marks behind the epigynum; in life the abdomen is densely clothed with gray and brown hair. Spinnerets light brown. Epigymum light brown, the posterior foveæ appearing as darker blackish spots.

Cephalothorax relatively higher in front than usual, highest at third eye row, from there slanting downward to the posterion declivity, concave at the dorsal groove, plane of quadrangle of poiterior eyes not much declined. Face as high as the length of the chelicerae or slightly higher, protruding above over its lower portion: sides slightly convex or straight, subvertical.

Anterior row of eyes of the usual length and curvature; anterior metian cyes three-fourths their diameter apart, hatf as far from the lateral eyes, their diameter from cyes of second row : anterior lateral eyes three-fourths or more as large as the median, more than twice their diameter from the front margin of clypens and than their diam-
eter from eyes of sceond row; eyes of second row their diameter or a little more apart; quadrangle of posterior eyes more than one-fourth the length of the cephalothorax.

Labium wider than long ($4.25: 4$); basal excavation one-fourth the total length; strongly attenuated anteriorly, the sides for most of length convexly rounded, becoming straight toward anterior angles; front margin slightly convexly rounded.

Legs with the metatarsus of the fourth pair clearly longer than the tibia + patella; tibia + patella of the first pair of the same length as the cephalothorax; first two pairs of spines of the anterior tibiæ very long and overlapping as usual; lateral scopulæ of anterior tarsi very thin.

Epigynum without distinctly defined lateral ridges in the median region; sides strongly angulate in front of middle ; guide usually pointed just in front of posterior foveæ, between the anterior portions of which it is not concavely depressed as it is in flavipes, descending from the higher transverse ridge in a more nearly straight line than in the latter species. (Pl. XIII, fig. 1.)

Total length, 5 mm . Length of cephalothorax, 2.4 mm . ; width, 1.8 mm .

Length of leg I, $7.3 \mathrm{~mm} . ;$ tib. + pat., $2.4 \mathrm{~mm} . ;$ met., 1.5 mm .
Length of leg II, 7 mm .
Length of leg III, 7 mm .
Length of leg IV, 10.5 mm . ; tib. + pat., 3 mm .; met., 3.5 mm .
Male.-Darker than female and the light and dark markings more strongly contrasting; entire eye region black; supramarginal light stripes of cephalothorax often obscure; femora of first legs entirely black, those of second pair pale over most of ventral surface, the black of dorval surface more or less interrupted with yellow ; posterior femora with dark rings which are more broken or interrupted than in female; distal joints of all lexs yellow, without any dark ammuli. Palpi entively black except the pateller and the tips of the tarsi which are yellow or, in life, bright white.

Tibia of palpus a little longer than the patella, becoming thicker distally, tarsus as long as the two preceding joints together. Scopus reambling that of milrim, but reathing to or beyond the exterior side of the alveolus; lower border of the inferior furrow of anterior lobe developed at the exterior side into a dorsally concave, boat-shaped structure which at the exterior end is keeled and bears below a short roundeal flap, the upper matrin of the furow with a strongly chitinzed triangular furoces or tenacmbun directed catadally toward the process of the inferior markin as in miluint. (Pl. XIII, fig. 2.)

Total length， 4.6 mm ．Length of cephalothorax， 2.3 mm ．；width， 1.9 mm ．

Length of leg I， $7.1 \mathrm{~mm} . ;$ tib．＋pat．， 2.5 mm ．；met．， 1.8 mm ．
Length of leg II， 6.6 mm ．
Length of leg III， 6.5 mm ．
Length of leg IV， $10.3 \mathrm{~mm} . ;$ tib．＋pat．， 3.1 mm ．；met．， 3.2 mm ．
Syn．－1876．Lycosa minima，Keyserling，Verh．z．b．Ges．Wien， 262 p． 614.
1545．Pardosa albopatella Emerton，Trans．Conn．Oc．Sci．，6，p．497，Pl．94， figs． 2 to $2 b$ ．
1590．Lycosa minima，Marx，Proc．Ľ．S．N．M．，12，p． 562.
－．Pardosa albopatella，Marx，ibid．，p． 565.
1590．Pardosa albopatella，stone，Proc．Acad．Mat．sci．Phila．，42，p． 431.
1891．Pardosa minima，Banks，Ent．News， 2.
1ヶ92．Pardosa albopatella，Marx，Proc．Ent．Sor．Wت゙．，2，p． 161.
1ヶ92．Pardosa albopatella．Banks，Proc．L゙．心．N．M．，H．p． 70.
－－Pardosa annulata，Banks，ibid．，p．6S，Pl．1，fig． 41.
1595．Pardosa minimu，Banks，J．N．Y．Ent．Soc．，3，p． 91.
1900．Pardosa minima，Banks，Proc．Acad．Nat．sci．Phila．，p． 539.
1902．Pardosa albopatella，Emerton，Common Sp．of U．S．，p．83，figs． 205－207．
1902．Pardosa minima，Montgomery，Proc．Acad．Nat．Sci．Phila．，p．571， Pl．30，figs．35， 36.

Type locality．－Alabama．

Knour localities．－Illinois！，Massachusetts，Connecticut，Rhode Island！，New Hampshire！，District of Columbia！，Pennsylvania， New Jersey！，Alabama，Kansas！，Indiana．

While the males are easily distinguishable，the females of this species and of milvina are much alike both in general appearance and in the structure of the epigyna．Aside from the differences in the epigyna，which are difficult to state，the cephalothorax of saxutillis is relatively higher in front and shopes more decidedly caulally and the face protrudes above more strongly．There are constant differences in the proportions of the legs．The markings of saxatilis are finer．

Pardosa milvina（Hentz）， 1844.

（Sub）Leycost，J．Bost．S．N．H．，Vol．IN，p．392，I＇I．SVIH，fig．s．）
Sides of cephatothorax deep bown to black：eve rexion deep hack， a yellow to bown median band beginning as at rather natow process
 and then again constricted in front of middle，expamding ahout dorsal groose and then narmowing again down posterior derlivity；on each side a submarginal light hand wheh in some is obsente anterionly， but is usually distinct to clypent in front ；clyents yedlow or brown with a triangular black spot below each anterior lateral eye：sides of rephatothorax with brown pubescenee．the light stripes with yellow，
the clypeus with yellow and some white. Chelicera yellow to brown each with a short black median mark at base, clothed with whitish pubescence and sparse long brown bristles. Endites, labium and coxe of legs yellow to brown.

Sternum usually black, often with a lighter median line in front, clothed with yellow or yellowish-white pubescence; sometimes lighter, dark brown or even yellow with or without dark spots. Legs yellow with dark rings on all joints except the tarsi, clothed with whitish and some short darker pubescence. Abdomen above at base with a yellow to reddish-brown stripe ending in front of middle; opposite apex of basal mark an angular pale spot with dark dot in center, and behind a series of transverse rows of similar spots more or less confluent transversely as usual; often a yellow line close to and parallel with the margin of the basal mark on each side; dorsum laterally black with numerous small yellow dots; dorsum clothed with brown and white pubescence, the white in part in angular spots at sides and in transverse lines between the pale marks of tegument; sides yellow with many spots and mottlings of brown or above of black, in life covered with pubescence in intermixed spots and streaks of white and brown; venter pale, rarely dark, densely clothed with light gray pubescence.

Spinnerets yellow or light brown.
Epigynum brown, darker, reddish at margins.
Face relatively high, nearly of same height as length of cheliceræ; sides nearly straight, subvertical. Cephalothorax high, the posterior declivity very steep, in profile nearly level from third eye row to posterior declivity, slightly depressed at median furrow, sides steep.

Anterior row of eyes much shorter than the second, only slightly procurved; anterior median eyes nearly three-fourths their diameter apart, evidently closer to the lateral eyes; anterior lateral eyes visibly smaller than the median, of usual distance from eyes of second row and from the front margin of clypeus; eyes of second row not quite once and a half their diameter apart. Quadrangle of posterior eyes more than one-fourth the length of the cephalothorax.

Luthium a little wider than long ($6.25: 6$); basal excavation more than one-fourth the total length of labium; sides substraight, strongly converging anteriorly; front margin slightly convex.

Legs slemerer; metatarsus of fourth pair of same length as tibix and patella together ; spines of anterior tibiee as usual; anterior tarsi with but very sparse scopulew at sides, posterior tarei setose and spinulose as usual.

Epigynum with more or less evident lateral ridges, margins usually not angulate in front of middle; septal piece of guide not printed at front of foveæ, more depressed between fover than in saxatilis. See Pl. XIII, fig. 3.

Total length, 6 mm . Length of cephalothorax, 2.4 mm .: width, 2 mm .

Length of leg I, $9 \mathrm{~mm} . ;$ tib. + pat., 2.3 mm .; met., 1.7 mm .
Length of leg II, 6.9 mm .
Length of leg III, 6.8 mm .
Length of leg IV, 10.3 ; tib. + pat., 3 mm .; met., 3 mm .
Male.-Darker in color than female, the cephalothorax often nearly entirely black, especially anteriorly, with the side stripes obscured and the median light mark not extending forward beyond front end of dorsal furrow. Abdomen often entirely black above, with light markings absent or but faintly indicated. Tarsus of palpus always black, the other joints often so, and always darkened by black pubescence.

Tibie of the palpus longer than the patella and distinctly broader, broadest anteriorly. Scopus long, bent outward above but not reaching margin of alveolus; basal spur short, bent down at apex, not covered; margin of inferior furrow of anterior lobe with a single short and stout tenaculum. (Pl. XIII, fig. 4.)

Total length, 5.2 mm . Length of cephalnthorax. 2.8 smm . wilth. 2.1 mm .

Length of leg I, 9.9 mm .; tib. + pat., $3.2 \mathrm{~mm} . ;$ met., 2.4 mm .
Length of leg II, 9.4 mm .
Length of leg III, 8.9 mm .
Length of leg IV, 12.9 mm . ; tib. + pat., $3.8 \mathrm{~mm} . ;$ met., 4.2 mm .
Syn-1871. Lycosa canadensis, Blackwall, Ann. Nat. Hist., Vol. VII1, pp. 430, 431.
1876. Lycosa flavipes Keyserling, Verh. z. b. Ges. Wien, 26, p. filf, M. 7 , fig. 4.
1585. Pardosa nigropalpis Emerton, Trans. Conn. Acad., 6, p. 497, 1'l. 48, fig. 3 to $3 b$.
1890. Pardosa nigropalpis, Marx, Proc, U. S. N.. M., 12.
——Pardosa nigropalpis, Stone, Proc. Acad. Nat. Sci. Phila, 422, p. 430.
1592. Pardosa nigropalpis, Banks, Trans, Acad. Nat. Sci, Phila, 44, p, 70,

- Pardosa pillida, Manks (ad. part. in Coll. in l'niv. Cornill., idad. p. ins.
-. Pardosa nigropalpis, Marx, Proc. Ent. Soc. W., p. 161.

1893. Pardosa favipes, Banks, J. N. Y. Ent. Soc., 1, p. 125.
1894. Pardosa flaripes, Banks, op. cit., 3, p. 91.

1و00. Pardosa milvina, Banks (ad. part, max), Proc. Acad. Nat. Sci, Phila, 1. 5339.
1002. Pardosa nigropalpis, Montgomery; Proc. Acad. Xat. Sci. Phila., p. 560, PI, 30, figy, 32-34.
——. Pardosa scita Montgomery, ibid., p. 573, P1. 34, figs. 37, 38.
Pardosa nigropalpis Emerton Common sp, of 1.S., p. s3, lign 20:5-207.

T'ype locality-Alabama.
Fnom localities.-Maryland!, Illinois!, Massachusetts, Connecticut. Rhode Island!. New York!. District of Columbia!, Pennsylvania, Tirginia, North Carolina!, Georgia!, Alabama!, Louisiana!, Mississippi!, Kansas!, Indiana!.
()ne of the commonest and most widely distributed of North Ameri(an Pardosas. Specimens from the South are lighter than those from the North, the sternum being frequently yellow or white without marks. and at other times being covered in varying degrees with black dots, the dots in some covering entire sternum, except for the anterior median light stripe. and in others found only in a single row along each margin. In the same locality all gradations may be found between dark, typically colored individuals and the pale forms.

Pardosa pauxilla Mtg.

Female.-Sides of cephalothorax blackish brown or deep chocolate color; a rather wide yellow or pale brown band along each lateral margin extending forward to the clypeus which is of the same light color; eye region black; back of eyes a median dagger-shaped light brown stripe of usual character. Chelicerce yellow. Labium, endites and coxe of legs beneath yellow or yellowish brown. Sternum yellowish brown, blackish toward margins and with scattered black spots over the middle portion. Legs also yellow or yellowish brown with numerom dark annuli which are deep and distinct on the femora and tilise. but are less strong or sometimes indistinct on the metatarsi; of these annuli there are four on each femur and tibia and three on each metatarsi-; each patella has a median amnulus with indications in some of darkened ends. Abdomen with dorsum black to deep brown minutely dotted with yellow; at base a yellow lanceolate stripe with an angular spot each side of apex as usual, followed behind by a series of wide chevron-marks of the ordinary character; because of the extent of the yellow markings in some the dorsum appears to be orrmind wer it: midtle region from base to spimerets by a yellowish band which marrow: caddally and encloses rather indistinct dark matkines: - idfor of abdomen dark like the lateral portions of dorsum, but the yellow dots larger, becoming more and more extended and ronfluent ventrally, finally pasing into the immaculate yellow or yrllowith white venter. Spinnerets pale brown. Epigynum reddish brown.

Anterior row of eyes of the usual relative length and curvature; antwor median cyes fully their diameter apart, much closer to the smaller lateral eves, their diameter or a little more from the eyes of
second row ; anterior lateral eyes twice their diameter or a little more from the front margin of elypeus, their diameter from eyes of second row; eyes of second row one and one-fourth times their diameter apart; quadrangle of posterior eyes longer behind than in front in ratio of $9: 7$, considerably more than one-fourth as long as the cephalothorax ($1: 3.5$).

Spines of tibiæ of legs and clothing of tarsi as usual.
Epigynum in shape roughly like a very wide-necked decanter, though more angular in outline; posterior foves not sharply limited, the lateral furrows gradually narrowing cephalad to a mere line at the anterior end, the sides bulging in correspondingly on each side; guide somewhat anchor-shaped with the transverse pieces relatively short and stout, the median piece with lateral plates along entire length. these continuously narrowing cephalad until the septum at its anterior end is very narrow. (Pl. XIII, fig. 9 .)

Total length, 5 mm . Length of cephalothorax, 2.5 mm .; width, 1.8 mm .

Length of leg I, $7.2 \mathrm{~mm} . ;$ tib. + pat., 2.6 mm .; met., 1.5 mm .
Length of leg II, 7 mm .
Length of leg III, 6.9 mm .
Length of leg IV, $10.6 \mathrm{~mm} . ;$ tib. + pat., $3.2 \mathrm{~mm} . ;$ met., 3.3 mm .
Male.-Considerably smaller than female. Legs yellow, entirely without rings or markings excepting the femora of the first two pairs which are black on the basal half, the black more or less interrupted by yellow laterally and below. Palpi entirely black, elothed with dense black hair. Median stripe of cephalothorax obseure. Abdomen entirely black without light markings in the tegument, but in life with a row of white spots formed of bunches of hair on each side behind, with narrow transverse lines of white hair extending between the spots; venter yellow with a dark median mark more or less dilated in front of the spinnerets, clothed with white hair. Chelicero back carept along disto-mesal side, clothed with deep brown pubserence exeept distally where it is gray and longer.

Bulb of palpal organ very convex, protruding conspicuously from alveolus; scopus similar in form to that of milvinu, but the hasal spur eylindrical and relatively longer than in that species ; there are considerable differences in the conductors of these two species.

Total tength, 4.1 mm . Length of cephalothorax, 2.1 mm .; width, 1.3 mm .

Length of leg I, 5.2 mm .
Length of leg II, 5 mm .

Length of leg III, 5 mm .
Length of leg IV, 7.7 mm .; tib. + pat., 2.3 mm .; met., 2.6 mm .
Locality.-Austin, Texas!.

Pardosa banksi Chamberlin, 1904.
(Canadian Entomologist, Vol. AXXYI, p. 175.)
Female.-Eye region and sides of cephalothorax black or brownish black; on each side a distinct supramarginal yellow band which reaches to the clypeus in front; a less clearly marked median daggershaped band of brown along dorsum from posterior margin to the third eye row, this band but little wider than the lateral bands except at its expanded anterior end, where, however, its lateral portions are obscure; clypeus yellow, marked below each anterior lateral eye with a triangular black spot, the apex of which is at the eye, and the base upon the front margin of clypeus. Chelicerce smoky yellow, with a dark line running down near the inner side and bending obliquely outward across the front face distally, there becoming indistinct; a black line along each margin of the lateral condyle. Sternum light brown with a black median lanceolate stripe which is divided anteriorly by a short yellow line. Legs clear yellow or pale brown of a greenish hue, or with faint traces of rings on the posterior ones, otherwise entirely without markings. Abdomen above black with a reddish yellow lanceolate stripe at base, with a similarly colored quadrate spot with black dot at center each side of apex, and a series of transverse yellow marks behind formed of similar spots united in pairs; an indistinct light mark joining the basal lanceolate stripe on each side near its base and another one joining it near the middle on each side, these marks formed of rows of small dots; sides of abdomen black like the dorsum except for a yellow spot or stripe in front below each anterolateral angle; venter yellow with a brown spot enclosing spinnerets and a median dark line extending from this spot forward to the epigymum. Anterior spinnerets brown, the pusterior ones more yellow. Epigynum light reddish brown.

Fuce as high as the length of the chelicerae or very nearly so; sides straight and subvertical. Cephalothorax highest a little behind third eye row, from where in profile the donsal line is straight to the posterior declivity.

Anterior row of cyes shorter than the second, of the usual relative length, gently procurved; anterior median eyes fully three-fourths their diameter apart, closer to the lateral eyes, a little more than their diameter from eyes of second row; anterior lateral eyes about three-
fourths as large in diameter as the median, twice their diameter from front margin of clypeus, once and a third their diameter from eyes of second row; eves of second row their diameter apart; quadrangle of posterior eyes a little wider in front than long, fully one-fourth the length of the cephalothorax.

Lower margin of furrow of chelicerce with three teeth, of which the third is but little shorter than the first two; upper margin with three teeth of the relative proportions more common in the genus Lycosa.

Tibia + patella of fourth legs of same length as the metatarsus; tibia + patella of the first pair of legs shorter than the cephalothorax; spines of the anterior tibie of usual arrangement and proportions: all tarsi setose and spinulose, the anterior ones but thinly scopulate laterally.

Transverse piece of guide of epigynum of molerate length; septal piece evident forward to the anterior end of the epigynum. with welldeveloped lateral plates along its entire length, these being behind as wide as the transverse piece of guide and gradually and continumuly narrowing anteriorly. (Pl. XIII, fig. 7.)

Total length, 5.5 mm . Length of cephalothorax, 2.7 mm . : wilth, 2.1 mm .

Length of leg I, 7 mm .; tib. + pat., $2.4 \mathrm{~mm} . ;$ met., 1.5 mm .
Length of leg II, 6.8 mm .
Length of leg III, 6.7 mm .
Length of leg IV, $9.6 \mathrm{~mm} . ;$ tib. + pat., $3 \mathrm{~mm} . ;$ met., 3 mm .
Male.-"The male palpus from the side shows three hack. roumberl projections, the lower one the smallest." (Banks.)

Length, 5 mm .
Syn.-1896. Pardosa littoralis Banks, J. N. Y. Ent. soc., 4, p. 192. (Nom. preoce.)

T'ype locality.-Long Island, N. Y. (Mill Neek).
Habitat.-Iong I:land (Mill Neck!, Sheepshead Bay!), IJorida!.
Found in salt marshes. The type specimens were found in the marshes near Mill Neek in June. The deseription ahowe is lamen! nol two females from theepsheal Bay, taken in Alyn-t. 19世木; ($6:$. R. Crosby).

Pardosa moesta Basks, 1892.
(1'roc. Acad. Nat. Sci. Phila., 44, p. 70, Pl. 3, fig. 4. .)
F'emale.-Cephatothorax dark reddish brown with radiating lines of black, a pale median band which becomes darker and more nlwoure anteriorly ; entire eye region black; in some scarcely paler atowe lateral
margins, in others (southern specimens) with a marginal pale stripe more or less evident on each side. Clypeus reddish yellow, the yellow area higher on each side. Chelicere reddish yellow; a blackish line bordering the condyle on each side, the two lines uniting at its lower end and extending down the front of the chelicere. Endites yellow. Luthium dark brown, paler distally. Coxce of legs beneath yellow. Sternum black. Legs reddish yellow; the femora marked with dark rings which are mostly incomplete below, above often more or less diffusel. the amnuli thus often more or less confluent dorso-laterally, especially on the front femora; patellæ and tibix also marked with incomplete dark rings, the first tibix darker than others, almost wholly black. Abdomen above black, densely minutely punctate with redlish yellow; dorsum with a faint basal spear-shaped stripe of a dusky reldish yellow color; sides of abdomen like the dorsum, but the light dots larger and more elongate; venter light reddish brown; a narrow, irregularly edged stripe or line of black on each side, the two converging caudad, and a similar stripe along median line behind the epigynum, this stripe running to a point posteriorly. Epigynum brown of a light reddish tinge.

Face with its sides straight and nearly vertical, the cheliceræ in length about one and one-fourth times longer than its height; face protruling above the eyes of the second row being borne at the ends of a bulging transverse ridge. ('ephalothorax highest at the third everow, in profile the dorsal line slopes gradually to the posterior declivity, but is gentiy concave at the dorsal groove.

First row of eyes much shorter than the second, not fully extending from center to center of eyes of second row, procurved in usual degree; anterior median eye fully three-fourths their diameter apart, half as far from the lateral eyes, a little more than their diameter from eyes of feernul row ; anterior lateral eyes three-fourths or more as large as the median eys, twice their diameter from front margin of clypeus, one and one-third times their diameter from eyes of second row; eyes of second row their diameter apart; quadrangle of posterior eyes as wide in front as long, half as wide again behind as in front or nearly so, the eephalothorax only 3.5 times as long.
L., wer margin of the furrow of the chelicere with three teeth, of which the fir-t two atre stout and sulberqual but the third much reduced; the upper margin of the furrew with two teeth of the usual proportions.

Loms with the metatarins of the fourth pair longer than the tibia + patella: tihia + patella of the first pair of the same length as the ephatothorax; spines of anterior tibise of common form, the two first
pairs very long and overlapping; tarsi with seopulx on sides of anterior ones, the posterior simply setose and spinulose. Labium longer. wider than long, strongly attenuated anteriorly, the front margin subtruncate.

Epigynum with transverse piece of guide rather wide, the guide plates along its front side with the free margin wavy; the posterior fover wide and conspicuous; septal piece of guide low and narrow for most of length, extending to the anterior depression where it expands fan shape. (Pl. XIV, fig. 9.)

Total length, 5.7 mm . Length of the cephalothorax, 3 mm .; width, 2.2 mm .

Length of ley I, 8.8 mm .; tib. + pat., 3 mm .; met., 2.2 mm .
Length of leg II, 8 mm .
Length of leg III, 8 mm .
Length of leg IV, 13.1 mm .; tib. + pat., 4 mm .; met., 4.2 mm .
Male.-Unknown.
Type locality.-New York (Ithaca).
Knoun localities.-New York (Ithaca!, Lake Keuka!), District of Columbia!.

Specimens I have seen from Washington, D. C., are paler throughout than indicated in the description above, which is based on individuals from Ithaca and Penn Yan, N. Y., including one of the types. The species is in some respects much like saxatilis.

Pardosa sternalis (Thorell), 1877.
(Sub) Lycosa, Bull. U. S. Geol. Surv. Terr., 3, p. 504.)
Female.-Sides of the cephatothorax and the dorsal eye area blatk: a median band of brown color of reddish caste beginning back of eyes and passing posteriorly over dorsal groove and narrowing down the posterior declivity to a line; the median band at its anterior emb is nearly always bifurcate, the two slender divergent processes embracing between them a similarly colored spot, with which they are conneeted each by a narrow line; a light brown band along each lateral bowder. limited below posteriorly by a black marginal line and weminated for its entire length by a seond back line; the lateral bands ane comtinnous and attain the elypens in front which is of the same color; merian light stripe with some white pubeseence, but with hewn hair predomimating for most of it length; sides with bown pubescence: mancinal light stripes elothel ahowe and below the gemination dark line with white pubescence, the dark lines with sparser brown hair. Chelicere redtish yellow or light bown, mormally with a blarki-h lime along the
antern-mesal line of each chelicera, this line distally turning obliquely. outward and reaching the outer side; clothed mostly with white hair except distally where brown hair and bristles are intermixed. Labium and endites light brown, paler at tips. Coxa of legs beneath light brown. Sternum with ground color brown, mostly with a row of black spots along each lateral margin, and occupied over the middle region by a large black area divided by a median light line; sometimes the black area is much reduced and the yellow or brown color then predominates, but usually the black covers all but a rather narrow stripe toward each side and the mesal light line; subdensely clothed with long white or light gray hairs. Legs light brown, all joints except tarsi marked with black annuli whichare close together on the proximal joints, which in consequence often appear very dark; the metatarsus has three well-separated dark annuli and appears paler like the tarsi; black rings of femora more or less broken ventrally. Abdomen above blackish; a very distinct yellow or pale brown lanceolate median stripe at base. with an obliquely placed yellow angular spot of usual type each side of apex, and behind a series of four or five similar and obliquely placed pairs of spots, the pairs more or less confluent mesally, into anteriorly pointed chevron-shaped cross-bands; a yellow mark each side of bave of the median lanceolate stripe; dorsum for the most part coverel with brown pubescence, but each side of lanceolate mark a row of spots formed by bunches of white hair, and behind but more widely separated two similar rows of lateral white spots with sometimes a meetian row of similarly formed white marks; sides below yellow or pale brown clothed with brown pubescence intermixed in spots and -treaks with white, which becomes more abundant below and entirely clothes the venter; tegument of venter yellowish, sometimes with four rows of small brown dots which converge posteriorly. Spinnerets brown. Epigynum light reddish brown, darker marginally.
sides of face steep, but little rounded and slanting outward below; monderate in height, the chelicerar once and a half as long as its height or nearly so. Dorsal line of cephatothorax nearly straight and level to the posterior declivity.

Anterior row of eyes considerably shorter than the second, reaching but lit the beyond centers of eyes of the latter, slightly procurved ; anterior mewian eyes fully their diameter apart, half so far from the but slightly smaller lateral eyes, their diameter or slightly less from eyes of second row ; anterion lateral cyes not fully twice their diameter from front margin of clypens, rather more than their diameter from eyes of second row; ;-vo of seroml row their diameter apart ; quadrangle of posterior eyes one-fourth the length of the cephalothorax.

Upper margin of furrow of chelicerce with three teeth as in Lycosa: lower margin with three teeth, of which the median one is stoutest and some longest, the first well separated from it but the third contiguous with it at base, the latter tooth reduced but not so much as in most Pardosas. Labium clearly wider than long ($6.5: 6$); basal excavation one-fourth the total length; strongly attenuated anteriorly, the sides straight or toward the middle weakly concave, anterior margin truncated or very slightly convex.

Legs with tibia + patella of fourth pair of same length as the metatarsus; tibia + patella of the first legs of same length or a little shorter than the cephalothorax; tarsi clothed as usual ; spines of anterior tibiæ as usua. (Pl. VIII, figs. 7 and 9.)

Epigynum pentagonal in form, its anterior portion triangular; posterior foveæ relatively small, abruptly depressed, each roughly pentagonal in shape with the longest side along the septal piece of guide; lateral ridges behind narrow, converging but rather widely separated behind, not bent abruptly inward toward each other as in atra. (Pl. XIII, fig. 5.)
Total length, 7 mm . Length of cephalothorax, 3 mm .; width, 2.3 mm .
Length of leg I, $8.1 \mathrm{~mm} . ;$ tib. + pat., 2.8 mm .; met., 1.9 mm .
Length of leg II, 8.1 mm .
Length of leg III, 9 mm .
Length of leg IV, 12.1 mm .; tib. + pat., 3.7 mm . ; met., 3.7 mm .
Male.-Cephalothorax darker than in the female, the median band obscure and usually not at all evident except caudally and about the dorsal furrow; lateral pale bands narrower and more obscure and the marginal dark tine or stripe wider. Chelicere black or brownish black except distally and along the mesal surface. Sternum entirely black. Abdomen above entirely black, showing no markings; venter dusky brown to gray black; pubescence, as also of cephalothorax, as in femate. Legs with femora above black or nearly so except distal, also usually paler beneath ; more distal joints of two anterior pairs of legs pale, with faint annuli or entirely unmarked, the corresponding joints on the posterior legs darker but also with markings faint. Palpi entirely hack except the patelle which are light brown.

Tibia of palpus a little longer than the patella and stometer distally: Scopus very long, curving obliquely forwat and outward quite aerons the bulb. (Pl. XIII, fig. 6.)

Total length, 5.5 mm . Length of cephalothorax, 3 mm .; width, 2.1 mm .

Length of leg I, 8.7 mm .; tib. + pat., 3 mm .; met., 2.2 mm .

Length of leg II, 8.3 mm .
Length of leg III, 8.3 mm .
Length of leg IV, 11.4 mm .; tib. + pat., 3.5 mm .; met., 3.5 mm .
Syn-1890. Lycosa sternalis, Marx, Proc. U. S. N. M., 12, p. 563.
1894. Pardosa sternalis, Banks, J. N. Y. Y. Ent. Soc., 2, p. 51.
1894. Pardosa coloradensis Banks (at least ad. part. magn.), J. N. Y. Ent. Soc., 2, p. 51.
1895. Pardosa coloradensis Banks, Ann. N. Y. Acad. Sci., S, p. 429 (Jrs.).
1895. Pardosa luteola, Banks, but not Emerton, loc. cit.
1904. Pardosa sternalis, Chamberlin, Can. Ent., pp. 147 and 175.

Type locality.-Colorado.
Kinoun localities.-Colorado!, Utah!, Idaho!, Kansas!, Iowa!.
A strongly marked species very common in the West.
Specimens of coloradensis Bks. in Mr. Banks' collection, which he kindly permitted me to study, are the not fully mature individuals of the species above described.

Pardosa atra Banks, 1894.
(J. N. Y. Ent. Soc., Vol. 2, p. 52.)

Female.-Cephalothorax brownish black, lighter brown along the middle. and with a few indistinct paler marks at borders especially behind, not rarely a pale transverse stripe entirely across the posterior margin: eye region deep black; median light band constricted in front of dorsal groove, becoming anteriorly very dark or obscure. Cephatothorax with median band and side marks in life clothed with whitish or light gray pubescence, the hair elsewhere dark brown; the entire rye region with numerous long dark bristles which project forward. ('helicere blackish, reddish brown distally. Labium and endites deep brown to blackish. Sternum black. Coxe of legs beneath brown suffused with blackish. Legs blackish, paler distally; the femora with a few mottlings of reddish brown, the other joints indistinctly or whesurely anmulate with the same color; legs densely pubescent and with mumerous long erect black bristles. Dorsum of abdomen black; a paler realdish-brown spear-shaped mark at base; the basal stripe contignoms at its apex with a large pale spot on each side, these spots with the characteristic black dot at center; posteriory two rows of similar spots which are confluent at the mesal line in pairs, thus forming a series of wide chevron-formed marks; dorsum at sides with rather latere emblish brown dots or spots, the entire domsum often appearing renlith hrown cosered over with an irrernlar network of black; sides Similar to lateral putions of dorsum but light color more abundant wenter of ablobmen brown except along sides where are some irregular black marks. Eipigynum and spinnerets fuscous.

Face of average height and shape.
First row of eyes but slightly procurved, much shorter than the second; anterior median eyes about their diameter apart, only half $\%$ far from the lateral eyes, of usual distance from eyes of second row: anterior lateral eyes situated as usual; eyes of the second row more than their diameter apart, half as far again from the eves of the much wider third row; quadrangle of posterior eyes not entirely unefourth as long as the cephalothorax.

Labium much wider than long ($8.25: 6.5$); basal excavation very short, scarcely more than one-sixth the length of the labium; labinm anteriorly strongly attenuated, sides rounded just above basal notch. but above nearly straight for most of length; antero-lateral angles: widely rounded; front margin gently widely incurved!! (Pl. Vlli, fig. 3.)

Leys with the tibia + patella of the fourth pair of the same length as the metatarsus; tibia + patella of the first pair clearly shorter than the length of the cephalothorax; spines of anterior tibise of usual form and arrangement; tasi of anterior paiss with thin seopulas at sides.

Epigynum a strongly chitinized suboval area which is truncate behind ; the posterior fovee relatively small, circular, deep and abruptly delimited; lateral ridges bent inward toward each other behind, the space between their ends occupied by the posterior end of the short clavate guide which separates the fovere; the anterior and greater area of the epigynum scarcely depressed earh side of the median line. (Pl. XIII, fig. 8.)

Total length, 9 mm . Jength of the cephalothorax, 3.5 mm .; width, 2.9 mm .

Length of leg I, 9.8 mm ., tib. + pat., $3.3 \mathrm{~mm} . ;$ met., 2 mm .
Length of leg II, 9.7 mm .
Length of leg III, 9.6 mm .
Length of leg IV, 13.4 mm .; tib. + pat., 4 mm . ; met., 4 mm .
Type locality.-Colorado.
Known localities.-Colorado!, Utah!.
In some respects this species is like grantembien. The ewphatuhneras is smaller with the head narrower and more elevated. It is also darker and its markings are less distinct. The epigynum seems constant in its form and is casily di-tinguished from that if grandmention. The median piece of guide at times is similaty somewhat elevated anteriorly.

Pardosa emertoni Chamberlin, 1904.
(Can. Entomologist, Vol. NXXVI, p. 175.)
Cephatothorax with a deep brown longitudinal band enclosing the eves of each side and extending to the posterior end of cephalothorax, the two leaving between them and also along each border a yellow bamd, the two dark bands and the three yellow bands being of approximately the same width ; each marginal band is bisected posteriorly by a dark supramarginal line; the median band often of a reddish tinge; the lateral dark bands united in front across the face, enclosing the eyes of the first and second rows, the median pale band narrowing and ending in a point between the second and third eye rows; marginal bands continuous in front with the yellow clypeus; in life the yellow bants covered with white pubescence, which extends also from median banl forward between cyes to clypeus; sides of cephalothorax covered with brown pubescence. Chelicerce yellow, with sparse white hair and long dark brown bristles. Labium brown. Endites and coxa fif leq: beneath yellow. Sternum yellow, with four rows of black spots which converge posteriorly, the two inner rows uniting posteriorly into a single line; clothed with white hair. Legs yellow to brown; the femora above dark, blackish, or with blackish streaks, but pale beneath; tihis and tarsi of posterior pairs sometimes darkened; clothed with white pubescence and some sparser dark hairs. Abdomen with a black band across the anterior face which extends backward on each sile arros the antero-lateral angle as a narrow stripe which reaches to the spimerets, the two black stripes leaving a wide reddish yellow median band which is widest in front ; in the basal portion of the dorsal yellow band are two black lines or rows of black dots which meet in a punt at the midulte forming thus a spear-shaped outline; behind the dorsal band is more or less indistinctly divided by narrow transverse line into semments which contain each two minute black dots; sides of af) Jomen pale yedow with mumerous small black spots which are more scattered ventrally and which are absent from a spot beneath each antero-lateral angle; venter pale or whitish yellow with two rows of back spots converging from the genital furow to the spinnerets; ab, lomen with the dark bands amd epots clothed with brown hair, elseWhere densely clothed with white hair which gives its color to the abtomen in life or when dry. Spinnerets yellow. E'pigynum yellow, darker marginally.

Cephatothorax highest between cyes of second and third rows, concave betweon eyes of third row and the posterior declivity. Face high, at high as the length of the cheliceree which are small and narrowed distally.

First row of eyes much shorter than the second, hardly or not quite extending from center to center of the eyes of the latter row, a little procurved; anterior median eyes three-fourths their diameter apart, somewhat closer to the smaller lateral cyes; anterior lateral eyes twice their diameter from front margin of clypeus, once and a half their diameter from eyes of second row; anterior median eyes more than their diameter from eyes of second row; eyes of second row some less than once and a half their diameter apart; quadrangle of posterior eyes rather more than one-fourth the length of the cephalothorax.

Labium evidently wider than long ($5.75: 5$); basal excavation about one-fifth the total length of labium; labium in front of excavations broadly cordate, the sides converging to a rounded point in front (Pl. VIII, fig. 6), in middle region substraight but above convexly curving to the middle point.

Legs slender, metatarsus longer than tibia + patella of the fourth pair; the two latter joints together clearly longer than the cephalothorax; tibia + patella of first legs of nearly same length as the cephalothorax; spines and scopulx of usual character.

Septal piece of the guide of the epigynum in front rather narrow with sides subparallel, but posteriorly abruptly and widely expanded into a circular lobe which covers over most of the caudal portion of the epigynum. (Pl. XIV, fig. 1.)

Total length, 6.3 mm . Length of cephalothorax, 2.9 mm .; width, 2.1 mm .

Length of leg I, $8.8 \mathrm{~mm} . ;$ tib. + pat., $3 \mathrm{~mm} . ;$ met., 2 mm .
Length of leg II, 8.6 mm .
Length of leg III, 8.2 mm .
Length of leg IV, 12.4 mm .; tib. + pat., 3.8 mm .; met., 4 mm .
Male.-Male palpi black distally ; front legs and head darker than in the female, but otherwise there is not much difference between them.

The scopus of the palpal organ is very long and wide and curved obliquely outward across the bulb.

[^32]T'ype locality.-New Hampshire.
Knoun localities.-New Hampshire!, Massachusetts, (omnecticut, New lork!, District of Columbia!, Ontario!, Manitoba!.

Pardosa distincta (Blackwall), 1846.
(Amn. and Mag. Nat. Hist., Vol. XVII, pp. 32, 33.)
Female 6 mm . long; light yellow with brown markings.
The cephalothorax has two wide brown longitudinal stripes united at the front of the head where they are nearly black, and a fine dark line each side next the legs. The sides of the abdomen are brown, with a very distinet light spot over the dorsal vessel, and a row of transverse light spots behind. The sternum is brown with a light spot in the middle. The abdomen is light beneath with a narrow brown stripe half its length on each side. The epigynum is bright orange brown, and the front pair of spinnerets are black. The legs are spotted with brown, the spots sometimes grouped in rings; the tibiæ are the darkest parts of the legs.

The epigynum has the guide short and wide, but this part is transparent and the overlapping sides are not easily seen, so that it appears narrow. (Pl. XV, fig. 8.)

In the male the cephalothorax and abdomen are darker, and the legs lighter except at the base, where the upper sides of the coxæ and part of the femora are darker than in the female. The head and palpi are black, with the patella and tibia a little lighter on top and probably having some light hairs when alive.
The male palpi are large, the tarsus being about as long as tibia and patella. The palpal organ is dark colored and projects a little from the bowl of the tarsus. The basal hook is rounded in the middle and curves in a hook toward the base. (Pl. XV, fig. 9.)

This species is about the same size and color as P. pallida Emerton of New England. The sternum is dark with a light median stripe on its front half, while in pallida the sternum is light with four dark lines or rows of spots converging behind. In the males the palpi, mandibles and maxille are darker than in pallida. The epigynum resembles that of pallida, but is shorter and wider. The male palpi have the scopus short and turned down at the point, while in pallida it is long and slender, and extends across the whole width of palpus. (Emerton.)

Syn-1894. Pardosa lutcola Emerton, Trans. Conn. Acad., Vol. 9, p. 427, Pl. 3, fig. 7.
Iosorlity.-Canada.
Pardosa californica Keyserling. 1807.
(Verh. z. b. Ges. Wien, 37, p. 483, P1. 6, (fig. 44.)
Female (type). -Sides of erphatoh horax dark brown, the eye region bark; a median light yellowish brown band of the nsual dageer shape,
produced anteriorly as a tongue-like process between the eyes of the third row, this process divided by a median black line produced backward from in front; behind the third eye row the median band is abruptly extended laterally on each side, the widened region being nearly though not fully as wide as the third eye row, the band then again abruptly narrowed until but half so wide, continuing of this width about the dorsal furrow, then passing down the posterior declivity and narrowing to an acute point near the posterior margin; on each side a marginal light band which extends for the entire length and attains the clypeus in front, the band interrupted and sometimes obscured by brown spots; clypeus pale, but with a triangular black spot below each anterior lateral eye, the apex of the spot, as usual, being upward and contiguous with the black surrounding the eyes.

Chelicerce light reddish yellow; each at base with a black mark or line which passes obliquely outward and distally, and with a larger mark parallel with the first beginning at the inner side near the middle and running obliquely outward and distally. Labium and endites with yellow background, which in each case is nearly covered over by a central black area. Sternum yellow with a large black spot on each side extending from the middle to the front margin, leaving the median area yellow; behind with numerous minute dark dots. Coxe of legs beneath smoky yellow. Legs reddish yellow, all joints except the tarsi with rather heavy black rings, these rings being incomplete on the femora along the postero-inferior face except at the distal end. Palpi colored like legs, but annuli less heavy. Abdomen above and on the sides black with numerous minute reddish yellow dots; dorsum at base with a reddish-yellow spear-shaped stripe reaching caudad to the middle; near each lateral margin of the basal stripe toward the front is a row of two or three black spots, and each side of its apex is an obliquely plared angular light spot enclosing a central black spot; on the posterior portion of dossum a series of several cherron-marks, each seemingly formed by the coalescence at the mesal line of two black centered, angular light spots such as found each side of apex of the basal mark; venter yellow, darker about the sides and caulad and with a median dark stripe as wide as epigynum in front, but narrowing to a truncate end behind and not reaching to the spimerets. Epigynum light reddish brown.

Sides of face nearly straight, steep but not vertical, in height considerably shorter than the length of the chelicere.

Anterior row of eyes much shorter than the second, not extending more than between the centers of eyes of the latter, gently procurved;
anterior median eyes more than three-fourths their diameter apart, about two-thirds as far from the scarcely smaller lateral eyes, fully their diameter from eyes of second row; anterior lateral eyes trice their diameter from front margin of clypeus, slightly more than their diameter from eyes of second row; eyes of second row their diameter apart; quadrangle of posterior eyes as wide in front as long, wider behind than in front in the ratio of $4: 3$, some more than one-fourth as long as the cephalothorax.

Chelicerce with furrows armed below as usual with three teeth, of which the middle is a little longest, the third not very much reduced; the upper margin with three teeth of which the first is minute.

Tibia + patella of fourth legs of same length as the metatarsus; tibia + patella of first pair of same length as the cephalothorax; legs of fourth pair four times as long as the cephalothorax; tarsi as usual in the genus, those of the first two pairs of legs being scopulate laterally, those of the posterior pairs simply setose; tibiæ of first and second pairs of legs with three pairs of spines below as is normal, the two first pairs of these very long and overlapping; all tarsi straight or nearly so.

Epigynum presenting no distinct lateral ridges posteriorly; lateral plates of the guide very wide, extending laterally to or nearly to the ends of the transverse piece and nearly as wide in front as behind, covering over nearly completely the posterior half of the epigynal area. (P1. XIV, fig. 5.)

Total length, 6.8 mm . Length of cephalothorax, 2.9 mm .; width, 2.1 mm .

Length of leg I, $8.4 \mathrm{~mm} . ;$ tib. + pat., 2.9 mm .; met., 1.9 mm .
Length of leg II, 8 mm .
Length of leg III, 8 mm .
Length of leg IV, 12.1 mm .; tib. + pat., 3.6 mm .; met., 3.6 mm .
Male (type)--Cephalothorax in color drab brown, with the head region black; a narrow and short, inconspicuous median stripe over the dorial groove but not distinguishable in front of it, narrowing behind as in female, not reachin\& prsterior maryin; marginal pale bands nearly as in the female but obscured anteriorly. Clypeus not pale, black like head region. Lathium and endites blackish, pale distally. Sternum nearly as in female. Palpientirely black. Legs yellow, the femora with inconepirums black marks above, other joints with dark circular lines about bases of the spines but otherwise ummarked. Abdomen much as in fermale but with the markings much obscured.

Scopus of palpal organ short and blunt, much as in lapidicina; anterior margin of conductor much thickened, presenting three fleshy lobes with apices projecting backward over the furrow.

Syn-1890. Pardosa californica, Marx, Proc. U. S. N. M., 12. 1904. Pardosa californica, Chamberlin, Canadian Ent., p. 146.

Type locality.-California.

Known localities.-California!, Utah!.
This is a common Pardosa on the Pacific Coast. Specimens from Utah are lighter colored than those which I have seen from California (including Keyserling's types, described above, which have of course darkened in the alcohol). In the Utah specimens the lateral yellow stripes are wide, with the upper margin sinuous and with a black line along the lower, a somewhat indistinct and irregular black line dividing the stripes longitudinally; endites yellow; labium and sternum brown. the latter usually not showing the black markings as described above for the type; chevron-marks of dorsum containing each from two to four black dots, as if formed by the confluence of as many light, blackcentered dots; sides gray black with numerous minute brown dots; venter immaculate light gray or with a few small dark dots back of epigynum and at each side; spinnerets pale yellow. Cephalothorax in life clothed with light gray and brown hair, the sides with brown, the median band especially posteriorly with gray, and the lateral stripes with gray except along the geminating dark line, the median stripe in front with brown and gray pubescence intermised. Chelicere with light gray hair and long brown bristles. Sternum and legs with light gray hair, the latter with longer brown bristles. Abdomen clothed above with chiefly light brown hair, light gray or white hair in spots on each side and forming some transverse lines posteriorly, scattered longer dark brown bristles; sides of abdomen with brown and eray pubescence intermixed in streaks and spots; venter with hair ummixed gray.

Pardosa lapidicina Emerton, 1885.
(Trans, Conn. Acad., 6, p. 494, Pl. 48, figs. 5 to \%ic.)
Female.-Sides of the cephatothorax black; a lirhter, thomgh -untotimes indistinct or even obscure median band of dark rendish hown color which begins as a narrow process between the preterion eye. behind the third eye row abmptly widens and is constricted in front of dorsal furrow, at the caudal end of which it is strongly narowed. its margin more or less dentate; on each side, at least proterinty, a wow of supramarginal light spots which are sometimes olfentel. hut in whers are long and distinct; eyes surrounded with back; lubium Wack, sor paler than sides of cephatothorax; sides of rephatothorax chotherl densely with rather long gray or brownish gray to hackinh pubereonee,
which quite ennceals the light markings of the tegument and gives the rephatothorax a uniform grayish black appearance. Chelicerce reddish brown to reddish yellow, usually with a black median mark at base, cluthen den-ely with white pubescence. with sparse longer dark brown bristles. Endites yellow or light brown, paler apically, often dusky. Labium deeper colored than endites, dark brown to black. Sternum Wack. clothenl subatensely with short whitish or light gray pubescence. Ifors yellow to brown; on all joints except the tarsi with black annuli which are trowlen proximally, being on the femora often confluent behw and laterally: leaving light spots only above; the legs have usually a bui-h or greenish-gray hue proximally, especially on ventral surface. . 1 hutomen with tegument above and over sides bluish black, a blackmaryined lanceolate mark at base above, followed on each side behind by a row of irregular pale spots; the median region behind, in some with. but in others without, irregular light chevron-marks, enclosing the characteristic dark spots, in some pale specimens entire dorsum and sides with many light spots, irregularly connected above into a network; venter light brown, of bluish to greenish gray cast, rarely Hack. in some a dark median band behind spinnerets; dorsum and sides covered with brown and grayish pubescence, the venter with grayish.

Fuce monderately high, the sides substraight and very steep, nearly vertical.

Finst row of eyes much shorter than the second, but little procurved; anterior mentian eves fully three-fourths their diameter apart, evidently rloser to the lateral eyes, than which they are slightly larger; anterior lateral ere an unal, twice their diameter from front margin of clypeus, their diameter from eyes of second row; eyes of second row about once and a quarter their diameter apart; quadrangle of posterior eyes onefourth as lone as the cephalothorax, a little wider in front than long. Chelicere armed as typical for the genus, having two teeth above and three below with the third reducen. Latbium wider than long in ratio of about 9:5.25; basal excavation one-fourth total length, strongly attmated anterionly; the front margin nearly straight, slightly incurved mesally.
L. H lone and Fember: metatansis of fourth pair longer than tibia + patilla of mane pair; spine below on anterior tibie as usual; scopule of typical form.
lipingnum with the guide inversely T-shaped, the median piece pointed anteriorly and not extemding into front portion of depression, which is thon- undivilent: transierse arms widest distally; lateral plates of guide very narrow. (Pl. XIN, fig. 7.)

Total lenerth. 9.3 mm . Length of cephalothorax, 3.7 mm . ; width, 3 mm .

Length of $\operatorname{leg} I .13 .1 \mathrm{~mm} . ;$ tib. + pat., $4.8 \mathrm{~mm} . ;$ met., 3.5 mm .
Length of leg II, 12.5 mm .
Length of leg III, 12.8 mm .
Length of leg IV, 7.3 mm .; tib. + pat., 5.3 mm .; met., 5.5 mm .
Male.-Color much as in female but darker and the markings more obscure; the legs often almost entirely black, showing no annulations except distally or none at all. Tarsus of palpus black, as also the femur and often the tibia, the patella lighter. Smaller than female.

Tibia of palpus with sides substraight, enlarging from base to apex, clearly narrower than the tarsus. Scopus very short, about as broad as long. distally rounded and a little uncate at exterior side; spur usually in front concealed by fold ; embolus short, extending but little beyond middle ; conductor divided into two open furrows by a narrow chitinous ridge extending obliquely downward and outward, the posterior margin of the exterior furrow with two short, uncate tenacula close together or in part overlapping. (Pl. XIV, fig. S.)

Total length, 6 mm . Length of cephalothorax, 3 mm . ; width, 2.3 mm .
Length of leg I, 10.1 mm .; tib. + pat., 3.3 mm .; met., 2.9 mm .
Length of leg II, 10.2 mm .
Length of leg III, 10.4 mm .
Length of leg IV, $13.6 \mathrm{~mm} . ;$ tib. + pat., $4.3 \mathrm{~mm} . ;$ met., 4.4 mm .

```
Syn.-1592. Pardosa lapidicina, Marx, Proc. Ent. Soc. W., 2, p. 161.
-. Pardosa lapuldicina, Banks, Proc. Aced. Nat. Sci. Phila., p. is.
-. Pardosa obsolcta Banks, ibid., p. 71, Pl. 3, fig. 45.
150. Pardosa remusla Banks, ibid., p. 69, P1. 1, figs. 42, 42a.
1s94. Pardown lapidicina Emerton, Trans. Conn. Acad.'sci., 9, p. 42ヶ.
1902. Pardosa hapidicina Emarton, Common sp. V'.N., p, 7&, figs. 150, 1s7,
        1Ns.
1903. Pardosa lapidicina, Montgomery, Proce. Acad. Nat. sci. Phila, p.
        652, P1. 29, ligs. 6, 9.
100&. Pardosh merouralis Montgonmery, Proc. Amad. Nat. Sci. Phila, p.
    270, P1. NLN, figs. 20, 21.
    --. Pardosa texana Manks, J. N. Y. Ent. Soc., p. 115, P!. V, fig. &.
```

Typre locality.-Massachusetts and Connecticut.
Irabilat.-Massachusetts, Connecticut, Rhode Island!, C'anada, New Lork!, New Jersey!, District of Columbia!, Pemn-ylvania, Imdiana!, Iowa!, Kansas!, Arkansas!, 'Texas!.

A very familiar species in the Northern states, fouml among stones along streams and also to some extent remote from water in dry phaces. Its generaldark gray color blends well with the color of the stones amoner which it lives. Specimens from the West and south arecommonls much lighter than specimens from the Northeast, and in them the marginal
[May,
spots on the cephalothorax form a band except for narrow dark cros-lines; the legs are more conspicuously annulate, the light rings contrasting more strongly with the dark. As other species having the same range as lapidicina undergo similar changes in brightness of color, and especially since the light form of lapidicina and all intermediate forms are not rare in the North, the Western specimens of this Pardosa ought not to be granted rank as separate species or variety. Type specimens of venusta Bks. that I have seen are not fully alult, and agree perfectly with immature specimens of lapidicina.

Pardosa xerampelina (heyserling), 1876.
(Sub Lycosa, Verh. z. b. Ges. Wien, 26, p. 622, Pl. 7, fig. 8.)
Female.-Sides of cephalothorax and eye region black or deep brown; clypeus light brown; no distinct lateral light stripes, but sometimes a few obscure light spots above margin on each side posteriorly; a median reddish brown band which is widest about the dorsal groove, behind which it is strongly and more or less abruptly narrowed, the light median band mostly dull and inconspicuous; in life the cephalothorax is clothed along sides and on head and over median band behind by whitish pubescence, the other parts clothed with brown and black hair. Chelicere rewdish brown, each with a short longitudinal yellowish stripe above or at middle. Labium and endites brown, paler at tip. Sternum dark reddish brown to blackish brown, an obscure median pale line anteriorly; clothed with light gray pubescence. Coxe of legs beneath brown. Legs yellow to brown; all joints excepting the tarsi ringed with black; the femora dorsally are distinctly darker than the other joints; clothed with brown and light gray pubescence, the gray over the light parts, the brown over the darker. Abdomen above black or nearly so; a lanceolate basal mark of brown; basal stripe joined at two points on each side near its apex by the ends of a V-shaped mark the apex of which is directed laterally; posteriorly a series of light transvere more or less chevron-shaped markings; all markings of dorium more or less faint; siles of ablomen and part of the venter about the spimerets black, the venter elsewhere being light brown; abdomen clothed above with brown pubescence with a row of small spots of whitish hair along cach side; venter of abdomen clothed with light gray pubescence. Spinnerets brown. Epigynum brown, with the deprestion showing as a distinctly darker V'shaped figure with apex caudal.

Face high, the chelicere but little longer than its height: sides of face substraight, steep but a little slanting outward from above downward.

Dorsal line of cephalothorax in profile straight in front of the doreal furrow, at which it is but slightly depressed.

Anterior row of eyes shorter than the second in the usual degree, only slightly procurved; anterior median eyes four-fifths their diameter apart, much closer to the but slightly smaller lateral eyes, their diameter from eyes of second row; anterior lateral eyes fully twice their diameter from front margin of clypeus, once and a half their diameter from eyes of second row; quadrangle of posterior eyes one-fourth as long as the cephalothorax.

Margins of furrow of chelicerce armed as usual. Labium wider than long, strongly attenuated, anteriorly truncated or a little concave.

Legs with tibia + patella of the fourth pair shorter than the metatarsus; tibia + patella of the first pair shorter than the cephalothorax; spines of anterior tibix as usual, the first two pairs long and overlapping; tarsi clothed in the common manner.

Epigynum clearly wider in front than posterionly; guide wilest anteriorly narrowing caudally, the transverse arms of guide short, the guide plates extending to their ends; lateral ridges but weakly elevated. (Pl. XIV, fig. 3.)

Total length, 8 mm . Length of cephalothorax, 3.7 mm .; width. 2.6 mm .

Length of leg I, 10.2 mm .; tib. + pat., 3.3 mm .; met., 2.3 mm .
Length of leg II, 9.5 mm .
Length of leg III, 9.3 mm .
Length of leg IV, 14 mm .; tib. + pat., $4 \mathrm{~mm} . ;$ met., 4.3 mm .
Male.-Smaller than the female but differing but little in coloration. "The male palpi are long and the joints scarcely enlarged." (1 'l. XIV, fig. 4.)

Small specimens are 5 mm . long.
Syn.-1877. Lycosa impavida Thorell, Bull. U. S. Geol. Sur. Terr., Vol. 3, p. 513.
1878. Lycosu fachypoda Thorell, Am. Nat., June, 1878.
1885. P'ardosa montana Emerton, Trans. Conn, Acad. -ci., i, p. 4!9, I1. 49, figs. 5, 5 a
1590. Lycosa xcrampelina, Marx, Proc. U. S. N. M., 12.
--. Lycnsa impavida, Marx, ibid..

- Lyycosa tuchypoda, Marx, ibid.

 figs. 6, 6 a

1895. Pardosa impacida, Banks, Am, N. I'. Acad. Si.., Val. S, p. 4301.
 81, figs. 193 to 196.
1896. Pirata procursus Montgomery, Proc. Acad. Nat. Sci. Phila., p. 5s3, PI. 30, fig. 18.

Type locality．－Illinois．
K゙nnon Incalities．－New Hampshire！，Massachusetts，Illinois，Color－ ado！．U＇tah！．New York？，Pennsylvania，Canada．

E－centially a Vorthern and mountain species．It is not uncommon in Canarla and in the White Mountains of New England，but does not necur commonly more suthward．It also ranges south from Canada along the Rocky Mountains，and is common in Colorarlo and Ctah．

Pardosa grœalandica（Thorell）， 1872.
（Sub Lycosa，Ofvers．af．Vet．Akad．Forh．，29．）
Femalr．－C＇ephalothorax black or nearly so；a lighter，brown median band becinning only a little in front of dorsal furrow，passing over the latter and then narrowing to a line on the posterior declivity；from the front of the median band a horn－shaped yellow mark extends out－ warl and forward on each side toward the corresponding eye of the third row，which，however，it does not reach；more rarely these horn－ like marks are obscure or quite absent ；a row of three or less commonly four curved light marks above the margin of each side；hair of cephalothorax long，brown and light gray or whitish intermixed，the whitish hair more or less unmixed with brown on the clypeus，the light supramarginal marks and on the median light area behind．Chelicerce reddish－yellow or brown above and black distally，the lighter color often revlucel to）a few spots；clothed with short light gray hair and longer hrown bristles．Labium and endites brown，lighter at tips． Stermum hark．clothed with gray hair．Coxe of legs beneath brown． Legs bewn movely of a revdish hue；all joints，excepting tarsi，with distinet bark ammlations；clothed with brown and whitish hair， rhiefly がor the dark and light parts respectively．Palpi brown； fenora ringel with hack；patelle unmarked；tibix black at proximal end and the tarei black at tips．Abdomen above black or blackish brown．the tegument either entirely without light markings or with a lanceolate baval mark of redtish－brown color；each side of this mark at it－ins－r．may be a spot of the same color，as also an obscure smaller spot each side of apex behind；more rarely there may be distinguishable po－terionly a number of ohscure light spots more or less confluent in pair－；abdomen covered above with brown hair，with bunches of white hair forming a row of white spots along each side；sides of abdomen above like the dorsum，below light brown with numerous darker．remdish－hrown or rust－colored spots usually connected into a continumbs network；sides covered with brown and white hair inter－ mixal in streaks and spots and quite concealing the tegument and its
markings; venter brown, with in most a median and on each side a lateral stripe of reddish-brown or rust color behind genital furrow, these stripes formed by a close network; venter clothed with white hair. Spinnercts brown, the anterior ones frequently darker or even blackish. Epigynum reddish brown.

Chelicere rather long for a Pardosa, once and a fourth or more times as long as the height of the face; sides of face nearly straight, steep.
Anterior row of eyes much shorter than the second, slightly procurved; anterior median eyes their diameter apart or nearly so, rather less than half as far from the lateral eyes, their diameter from eyes of second row ; anterior lateral eyes but slightly smaller than the median, twice their diameter from front margin of elypeus and their diameter from eyes of second row; eyes of second row a little more than their diameter apart; quadrangle of posterior eyes one-fourth the length of the cephalothorax.

Chelicerce with the lower margin armed with three teeth of usual proportions, the upper with two. Labium as wide as long or slightJy wider ($8: 7.8$); basal excavation about one-fourth or slightly more the length of the labium; strongly attenuated anteriorly; the sides rounded below but straight or substraight above; front margin straight or very slightly incurved.

Legs with the metatarsus of the fourth pair longer than the tibia + patella; tibia + patella of the first pair of the same length as the cephalothorax; spines of tibie as usual; tarsi clothed as common in the genus.

Epigynum somewhat flask- or decanter-shaped, being narrow in front but widely rounded behind; lateral furrows narrow and shallow in front, widely expanded behind; septum high, narrow in front and more or less clavately widening caudally, higher than the transverse arms, which are dark in color, more or less rounded above and bent backward distally, their ends fitting into excavations in the lateral ridges. (Pl. XIV, fig. 6.)

Total length, 10.5 mm . Length of cephalothorax, 4.2 mm.; width. 3.7 mm .

Length of leg I, 13 mm .; tib. + pat., $4.2 \mathrm{~mm} . ;$ met., 3 mm .
Length of leg II, 12.5 mm .
Length of leg III, 12.8 mm .
Length of leg IV, 17.6 mm .; tib. + pat., 5.4 mm .; met., 5.8 mm .
Mate.-Color ingeneral as in the female though rather darker: $z^{\text {molf }}$ i entirely black and black-haired or with the patella paler abowe: lins darker than in female, the light markings being more sembeed. The
cophin! othornx is a little longer than the tibia + patella of the first legs. Legs a little longer relatively than in the female.

Palpi thick and short ; patella as long as the tibia which is gradually dilated distally; tarsus as long as the two preceding joints taken together. The scopus is short and blunt, its basal spur straight.

Total length. 9.5 mm . Length of cephalothorax. 4.5 mm ; width. 3.5 mm .

Length of leg I, 13 mm .
Length of leg II, 13 mm .
Length of III, 13.5 mm .
Length of leg IV, 17.75 mm .; tib. + pat., 5 mm .

Pardosa modica (Blackwall), 1846.

(Ann. and Mag. Nat. Hist., Vol. XVII, p. 33.)
Fomale.- C'ophathothox leep brown or black marked by two lateral and a median longitudinal pale stripe; eye region deep black; median stripe rewlish brown, widest just behind thidd eye row, narrowed and conitrieted at the front end of the dorsal groove and again immediately behind it, erminated in front of the groove by a median black line; latoral palo stripes suphamarginal, narrow, reaching to the elypeus in front which is likewise pale; pale stripes rothed with white hair, the
dark parts with brown. Chelicerce yellowish to brown over front face, darker at tips and along a narrow stripe extending down the mesal face and turning obliquely outward below; also a dark line along exterior face. Labium and endites brown, usually darker toward base. Coxic of legs beneath brown. Sternum brown, with a black stripe or row of black spots eaeh side of the median line and a narrower black line or row of small spots along each lateral margin; sometimes entirely black; clothed with grayish white hair. Legs brown; femora marked above and beneath with several longitudinal black lines or narrow stripes and with cross-marks on the sides; tibiæ above with a transverse black band at the proximal end, and with a median longitudinal black line extending from this to the distal end, and also with a similar black line along each lateral face; the basal black band on posterior tibiæ usually half as wide as the length of the joint, narrow on anterior ones; at least the posterior patellæ with a median longitudinal black line above and a similar one at each side; metatarsi especially of the posterior pairs with a more indistinct median dorsal line, the posterior ones also usually annulate with dark ; the femora appear evidently darker than the more distal joints and the posterior legs darker than the anterior. Abdomen above brownish black; a basal lanceolate stripe of reddish-brown color; a series of transverse lines behind of same color, usually more indistinct, these marks formed of two rows of converging spots as is usual; sides of abdomen reddish brown mostly spotted with black; venter light brown, often with two dark lines close together along the median line and gradually converging caudad; sometimes a similar dark line at each side; at other times the venter is brown without markings or with dark spots at the sides; in life the abdomen is clothed above over the dark parts with dark brown hair, the light lanceolate basal mark covered with whitish hair, and a number of transverse lines of similar light hair behind with or without a row of small white spots along each side of them. Epigynum dark brown. Spinnerets dark brown to black.

Cephalothorax of moderate height or rather low; in profile highest at the third eye row, the dorsal line from there to the posterior declivity nearly straight, gradually slanting, depressed each side of the dorsal groove. Chelicere about once and a fourth as long as the face is high; sides of face nearly straight, slightly slanting from the vertical.

Anterior row of eyes of the usual relative length and curvature; anterior median eyes their diameter apart or nearly so, much closer to the lateral eyes; anterior lateral eyes smaller than the median, a little more than their diameter from eyes of second row, twice their
diameter from front margin of clypeus; eyes of second row their diameter apart; quadrangle of posterior eyes one-fourth the length of the cephalothorax, as wide in front as long.

Teeth of the margins of the furrow of the chelicera of the typical arrangement and form. Labium of the same width as length or nearly so; labium about four and a half times longer than its basal excavation; attenuated as usual; sides above straight; front margin straight.

Legs with the tibia + patella of the fourth pair a little longer than the metatarsus or sometimes of the same length; tibia + patella of the first legs evidently shorter than the cephalothorax; spines of tibiæ and clothing of tarsi as usual.

The epigynum in its general form resembles that of grœenlandica; the septal piece of guide is more abruptly depressed anteriorly, usually widened into a quadrangular form at front of the wide foveæ and then clavately widening caudally; transverse arms of guide more conspicuous, strongly bent forward at their ends; posterior ends of lateral ridges more widely separated. (Pl. XV, figs. 1 and 3.)

Total length, 9 mm . Length of cephalothorax, 4 mm . ; width, 3 mm .
Length of leg I, 9.5 mm .; tib. + pat., 3.3 mm .; met., 1.7 mm .
Length of leg II, 9.2 mm .
Length of leg III, 9.2 mm .
Length of leg IV, 13.7 mm .; tib. + pat., $4.2 \mathrm{~mm} . ;$ met., 4 mm .
Male.-Coloration similar to that in female but darker; the median band of cephalothorax obscured in front of the dorsal groove; lateral light stripes narrow and indistinct or obscured ; light markings of the abdomen indistinct.

Tibia of palpus of about the same length as the patella but evidently stouter, enlarged distad; sides of patella, seen from above, parallel; tarsus very broad, one and three-fourth times as broad as the tibia, ovate, acutely pointed. Palpal organ very similar to that of granlandica, but the embolus is relatively longer and there are differences in the conductor, etc. (P1. XV, figs. 2 and 4.)

Total length, 8 mm . Length of cephalothorax, 4 mm .; width, 3.2 mm .
length of leg $I, 10.4 \mathrm{~mm}$; tib. + pat., 3.6 mm . ; met., 2.1 mm .
Length of leg II, 10.5 mm .
Length of leg III, 10.1 mm .
Length of leg IV, 12 mm .; tib. + pat., 4.2 mm . ; met., 43 mm .
-_. Lycosa fuscula Thorell, ibıd., p. 501
1877. Lycosa concinna Thorell, Bull. L.S. S. Surs. Terr., 3, p. 506
1878. Lycosa glacialis Thorell, Am. Nat., June.
1885. Pardosa brunnea Emerton, Trans. Conn. Acad. Sci., 6, p. 495, Pl. 48, figs. 4 to $4 b$ (variety).
1890. Lycosa glacialis, concinna, fuscula and furcifcra, Marx, Proc. U. S. N. M., 12.
-. Pardosa brunnea, Marx,' ibid., p. 565.
1892. Pardosa brunnea, Banks, Proc. Acad. Nat. Sci. Phik., 4i, p. 70.
1894. Pardosa glacialis, Emerton, Trans. Conn. Acad. Sci., 9, p. 424, Pl. 4, figs. 2 to $2 i$.
-. Pardosa brunnea Emerton, ibid., p. 425, Pl. 4, figs. 2g, 2h.

- Parlosa concinna, Banks, J. N. Y. Ent. Soc., 2, p. 51.

1895. Pardosa concinna, Banks, Ann. N. Y. Acad. Sci., 8, p. 429.
1896. ? Pardosa brunnea, Banks, J. N. Y. Ent. Soc., 4, p. 192.
1897. Pardosa glacialis, or brunnea, Emerton, Common Sp. U. S.

Type locality.-Canada.

Knoun localities.-Greenland!, Canada!, Colorado, E'tah!, Idaho, Oregon, Massachusetts, Connecticut, New Hampshire!.

Var. brunnea.-Emerton now believes his brunnea to be a synonym of modica (glacialis). All the specimens I have had the opportunity of examining from New England, however, present small differences both in epigynum and in the male palpus from specimens of modicu from Greenland and Canada. But the species is subject to much variation ; and it is uncertain whether the New England forms can be maintained more than tentatively as a distinct variety. (11. XVV, figs. 3 and 4.)

This species is abundant in Creenland, Canada, Colorado and Ctah.

Pardosa labradorensis (Thorell), 1875.

(Sub Lycosa, Proc. Bost. Soc. Nat. Hist., 17, p. 502.)
Female.-Cephalothorax brownish back with three rather narrow longitudinal bands covered with whitish hair, the middle one reaching to the pars cephalica, truncated and geminated anteriody. narrowing backwards, the lateral bands supramarginal, continuous, rather uneven in the upper margin. Chelicere dull yellowish or ferruginous brown. Labium blackish, with pale apex. Endites dark yellowish brown, their palpi of the same color, the femoral joint with blackish longitudinal streaks and spots. Sternum black. Legs of a dark and dull yollowish brown, the femora with dark streaks and spots above and on the sides, limiting above two large oblong pale spots divided longitudinally by a fine black line; the patella and tibis have each three hackish longitudinal lines. Abdomen brownish, with traces of a short white band at the anterior margin of the dossum. Epig!mum fermginons. Spinnerets blackish.

Cephatothorax rather long and narrow, with the sides of the pars cephalica almost perpendicular.

The anterior row of eyes but very slightly, scarcely perceptibly, curved forwards, its central cyes of the same size as (at least not greater than) the laterals, and somewhat more distant from each other than from the lateral eyes; eyes of the second series separated by an interval not much (about one-fourth) greater than their diameter.

Chelicere narrow, but slightly convex longitudinally; their length is greater than the height of the face and the length of the patella. Labium with slightly rounded apex.

Seen from the under side the anterior tibice show four pairs of spines, the third pair belonging to the sides of the joint.

The epigynum forms no deep fovea, as in P. fuscula, ex.gr., the elevated area shows, when the hair is rubbed off, a system of short furrows and impressions rather difficult to describe, and forming a large oblong figure, rather narrow in its anterior half, then dilated gradually with rounded sides. and truncated behind; the anterior part, which is divided from the posterior by a large but not deep transverse depression, shows two longitudinal parallel furrows, the anterior apices of which are rounded; the narrow interval between these furrows is pointed anteriorly, and has in the middle a very fine longitudinal furrow; the posterior broad part of the epigynum shows on each side a deep, oblique, incurved, crescent-formed fovea; the space between these fover is triangular, with the apex directed backward, and divided by a deep middle longitudinal furrow.

Total length, 6.5 mm . Length of cephalothorax, 3.25 mm . ; width, 2.25 mm .

Length of leg I, 8.75 mm .
Length of leg II, 8 mm .
Length of leg IV, 13 mm .; tib. + pat., 3.75 mm .
Male.-A male thought to belong to this species differs by the cephalothorax being of a purer black, with the lateral bands less distinct. The legs, which have the same markings as in the female, are of a clearer yellowish-brown color than in that sex, but darker at the base; the coxte are black above and blackish beneath, the thighs also blackish on the under side towards the base; the tasi are yellowish brown scarcely black at the extreme apex (as in the female). The palpi are very dark yellowish brown (the tibial joint almost black) with black lines, and the tamal joint quite black; the tibial joint is thickly clotherl with black hair; also the other joints are black-haired. The abdomon has a very distinct narrow hand at base covered with whitish hair; venter blackish.

The patella of the pulpus is somewhat longer than broad, celindrical:
tibia scarcely longer than the patella but broader, being slightly and gradually dilated toward the apex; the tarsus is as long as the two preceding joints together, almost pear-shaped. The genital bulb is very high at the base on the under side, this elevated part being obliquely truncated and emarginate on the outer side; it shows in front a large fovea, from which issues a very short and coarse obtuse tonth directerd obliquely forward and outward, and bearing at its base a longer and narrower pointel black tooth directed outward and curved backward and downward: this latter tooth lies almost concealed in the fovea: in the middle of the outer margin of the bulb a strong, pointed. downwardly directed black tooth is visible; close to the anteriow side of its posterior elevated portion is a transverse spine-like costa (embolus); the anterior lower part of the bulb shows on the outer side two pale appendages or narrow lobes.

Total length, 6.5 mm . Length of cephalothorax, 3.25 mm .; width, 2.25 mm .

Length of leg I, 8.75 mm .
Length of leg II, 5.5 mm .
Length of leg IV, 11.75 mm . ; tib. + pat., 3.25 mm .
(From Thorell.)
Habitat.--strawherry Harbor (3) and śquare Island ()) Labrador.
The female was captured July 28; the male also in July. "This species greatly resembles P. fusculu; but it is smaller, with the sides of the head more perpendicular, the interval between the two largest eyes is smaller, and the form of the vulva is quite different. P. labradorensis is a Pardosa C. Koch, while fuscula (and furcifera) appear to belong to Leimonia C. Koch." ('Thorell.)

In general coloration, proportions and structure, and expecially in the structure of the of palpus, this form is certainly very close to modica, and it may prove not to be anything different. It is possible that the differences in the epigynum, which Thorell thinks con-itherable, may be due to the type of labradorensis being not entirely adult, the epigynum of immature specimens of modice which I haverewn eeming largely to agree with the description of that of lubrudorensis given as above by Thorell.

Pardosa maokenziana (Keyeerling), 1876. (Sub) Lycosa, Verl. z. b. Ges. Wien, 26, p. 621, P1. 7, fig. 7.) 1
Female.-C'ephatothorax with a light median reddish-hrown land as broad anterionly as the eye area or nearly so, usually hoken a little way back of its anterior and by a transwerse dark stripe, behind
which the band continues of a uniform width over the median groove and then narrows down the posterior declivity, sometimes sending off a process from each side just in front of the posterior margin; sides of cephalothorax black, with or without an indistinct short light colored supramarginal stripe posteriorly, with sometimes one or two light spots anteriorly; this marginal band when present conspicuous; eye region entirely black; clypeus brown. Chelicera bluish brown, a wide black stripe crossing the face of each obliquely from the inner face outward, leaving a paler tip and a paler portion above it. Labium and endids brown, with the tips paler. Stermum black, an obscurely lighter metian line in front, such as occurs in milrina. Coxx of legs beneath light brown. Legs strongly marked with deep brown or black annulations alternating with rings of yellow or light brown, the latter rings much narrower on femora and tibix, of the same width as the black ones on the metatarsus; the tarsi clear yellow or light brown or the anterior ones sometimes also obscurely annulate. Abdomen above black, with a lanceolate mark of red-brown at base and a series of transverse light marks behind, each of the latter being comprosed of mostly four confluent black-centred spots of same color; the transverse marks frequently obscure; sides of abdomen black, minutely spotted with brown, the spots large below; venter brown to gray. Spinnerets brown. Epigynum brown, of same hue as venter inconspicuous.

Face but little lower than the length of the cheliceræ; sides straight and vertical or nearly so.

First row of eyes much shorter than the second, procurved; anterior median eyes their diameter or more apart, closer to lateral eyes which are of equal size; anterior lateral eyes twice their diameter from front margins of clypeus, their diameter or a little more from eyes of second row ; anterior melian eyes their diameter from eyes of second row; eyes of second row about their diameter apart; quadrangle of posterior eyes rather more than one-fourth the length of the cephalothorax.

Margins of furrow of chelicert armed as usual. Labium of same width as length or very nearly so ($1: 1$ to $7.25: 7$); basal excavation longer and shallower than usual, but less than one-third the length of labium; sides widely rounded below, straight above, front or anterior margin truncate or slightly indented at middle.

All tarsi spinulose beneath, the spinules arranged on all in two rows; the lateral scopule of anterior pairs very sparse or searcely evident.

Depressed area of epigynum anteriorly very narrow; the posterior area wide, almost completely filleal hy the expandel guide which
presents lateral plates along transverse arms in front and externally; the ends of arms extending into excavations in side walls. ($\mathrm{Pl} . \mathrm{XV}$, fig. 5.)

Total length, 6.5 mm . Length of cephalothorax, 3 mm ; width, 2 mm .

Length of leg I, 9.2 mm .; tib. ' + pat., $3.1 \mathrm{~mm} . ;$ met., 2 mm .
Length of leg II, 8.7 mm .
Length of leg III, 8.6 mm .
Length of leg IV, 12.2 mm . ; tib. + pat., 4 mm. ; met., 3.7 mm .
Male.-Color of cephalothorax and abdomen as in female. Mandiblet blackish with dusky brownish-yellow streaks. Labium and endites also blackish. The female joint of the palpi is brownish yellow with black spots and streaks especially toward the base; patella joint yellowish brown, the tibie black on sides and pale brownish above, covered with black hair; tarsal joint black and black-haired, pale at apex. Leys brownish yellow, the thighs black bencath, except at apex, and with distinct blackish rings above; the following joints less distinctly ringed. (Thorell.)

The tibial joint is a little broader and, at least when seen from the side, slightly longer than the patellar joint, gradually but very slightly thickened toward the apex; the tarsal joint is fully as lone as the two preceling joints together, about double as broad as the tibial joint, nearly ovate, but strongly narrowing toward apex, very convex. For structure of bulb see Pl. XV, figs. 6 and 7.

Total length, 6 mm . Length of cephalothorax, 3 mm ; width, 2.5 mm. (nearly).

Length of legr $1,10 \mathrm{~mm}$.
Length of legr $11,9.5 \mathrm{~mm}$.
Length of leg $111,9.5 \mathrm{~mm}$.
L.ength of leg $1 V, 14 \mathrm{~mm}$. ; tib. + pat., 3.5 mm .

$$
\text { Syn.-1877. Lycosa uncala Thorell, Bull. U. S. G. S. of Terr., 3, p. } 50 \mathrm{~s} \text {. }
$$

1594. Pardosa dorsalis Banks, J. N. Y. Ent. Soc., 2, p. 51.
1595. Pardosa uncata, Emerton, Trans. Conn. Acad. Sci., 9, p. 425, Pl. 3, figs. 8 to 8 !

Type locality.-Mackenzie River.
Known localities.-Colorado!, Utah!, Idaho, Canada.
Pardosa longispinata Tullgren, 1901.
(Bih. till sv. Vet.-Akad. Handl., Band 27 ; Ofd. IV, No. 1, p. 23.)
Female.-Cephatothorax dark brown, clothed with short adpresed abd loug back upturned bristly hairs, with a white midelle-hamel.
squarish in the cephalic part and as broad as the area of eyes, on the pars thoraica narrow; the eye area nearly black; at the margins broad white bands; the margin black. Chelicere clothed with long bristly hairs. Endites and labium light yellow brown. Sternum light brown with long light hairs. Legs pale brown with dark rings. Abdomen brown, chothed with black and white short hairs without distinct markings; the venter light grayish.

Cephatothorax a little shorter than the length of tibia + patella of fourth leas and the breadth shorter than the length of tibia of the fourth pair of legs. Front row of eyes distinctly procurved, the central eyes largest and the interspace between the central eyes about equal to their diameter and longer than the space between the lateral eyes. The distance from the lateral eyes to the margin of the clypeus and to the eves in the middle row about thrice their diameter. The eyes of the middle row very large and the interspace between them longer than their diameter. The interspace between the middle and the posterior eyes broader than the diameter of the middle eyes. Chelicere a little longer than the face, very tapering at the apex and clothed with long bristly hairs, a little narrower than the femur of first pair. Tibia of first pair of legs below with 2, 2, 2 spines; these and other spines very long.

Total length, 4.2 mm . Length of cephalothorax, 2.5 mm . ; width, 1.8 mm .
l.ength of leig $1,7.3 \mathrm{~mm}$.

Length of leg $\mathrm{IV}, 10 \mathrm{~mm}$.
(Deseription rearranged from the original.)
Locality.-Vlorida. One single adult female from Lake Leonore in Orange County.

This tiny P'ardosa is not known to me at first hand. It is certainly a very unusual form, if it be true that the "distance from the lateral eyes to the margin of the clypeus and to the eyes in the middle row is about thrice their diameter," a statement much to be questioned.
> (icuu* SCHIZOCOSA Chamberlin, 190.4.
> (Canadian Entomologist, Vol. XXXVI, p. 177.)

Dintire body densely clothed with pubescence; the cephalothorax with a light median hand as whe anterionly as the cye area and either with or without submarginal pale bands. Spines of anterior tibix in mumber and arrangement like those of I'ardose and Leycosa, in length varying between those of these two genera. Anterior row of eyes rom-iderably hortor than the seeond, clearly prowned, more strongly
than usual in Pardosa or Lycosa; anterior median eyes larger than the lateral, of nearly same distance from each other as from the lateral eyes; clypeus narrow, the anterior lateral eyes at most their diameter or but little more from the front margin of clypeus, the same distance or considerably farther from the eyes of second row; eyes of second row large, less than their diameter apart; quadrangle of posterior eyes evidently wiler behind than in front. Cheliceræ as in Lycosa, the third tooth of the inferior margin of the furrow usually reduced. Labium distinctly lomger than broad, the basal notch one-third its total length. Posterior simerets short, searcely or not at all longer than the anterior. Epirynum with a distinct guide which is elevate and well developeel anteriorly as in Lycosa; the transverse arms of guide double, being dividetl from their exterior ends mesally to a varying distance; lateral furrows not widening anteriorly. (See figs. of Pl. XVI.) Male palpus with a scopus exterior in position presenting two processes as in Lycosa; exposed area of lunate plate small; combuctor conspicuously produced above, usually into a horn-like elevation of varying size; superior margin of inferior furrow presenting, more or less externally from its middle, a short and pointed, basally wide, plate-like tenaculum which is curved downard distally; a secom, shorter tenaculum farther externally and anteriorly; auricula of lectus bery long, extending forward along conductor and attaining or nearly attaining front margin of alveolus; embolus distinctly and more or less angularly elbowed at base of auricula. (See figs. of Pl. XVI.)

```
Syn-1S42. Lycosa, Hentz (ad. part. ocreata and venustula), J. Bost. S. N.
    H., IV , p. 228.
1575. Lycosa, Hentz (ad. part. cit.), Sp. of U. S., p. 24.
1576. Lyycosa, keyserling (ad. part. ocreata and rufa), Verh. z. G. Wien,
    p. 610 .
1s4.5. P'ardosa, Emerton (ad. part. bilineata), Trans. Conn. Acad. Sei., VI, p.
    491.
1s!2. P'urdosa, Banks (ad. part. gracilis), Proc. Acad. Nat. Sci. Phila, p. 70.
1902. Lycosa, Montgomery (ad. part. ocreata pulchra, relucens and veri-
    similis, Proce, Acad. Nat. Sci. Phila., p. 536.
- Pardosa, Montgomery (ad. part. solieaga), loc, cil.
1904. Lycosa, Montgomery (ad. part.), Proc. Aead. Nat. Sci. Phila., p. 276.
```

Pars cephalica truncated in front, its sides moderately rounded and sloping, the face rather high, its sides slanting in varying degrees, sometimes approaching the P'ardosa type more and sometimes the Lycosa. The quadrangle of posterior cyes in length averaging one-fourth the length of the cephalothorax, being thus longer than in Lycosa. The legs are long and moderately stout, inclining to be slemeder distally; the anterior tarsi scopulate, at least laterally, the posterior tani setose
below; the tibia and patella of the fourth legs taken together are always considerably longer than the cephalothorax. The median light band of the cephalothorax widens uniformly from behind forward to the eyes; it is constricted in front of dorsal groove, but otherwise its margins are nearly straight. The abdomen in all is marked above by a broad light band which is nearly or fully as wide as the dorsum and which extends over its entire length from base to spinnerets; this band enclosing at base a lanceolate outline, and behind in some also a series of transverse angular lines of varying degrees of distinctness; sides of abdomen dark in color, black at least across anterior lateral angles; venter pale.

Spiders of medium or small size. The males are but little different in size from the females, but are sometimes characterized by having the tihise of the front pair of legs darkened in color and densely clothed with long black hair which stands out in brush-like form.

The cocoon is spherical, without any seam at equator, and is white in color.

Key to Species.
 Females.

1. Sternum yellow, with two dark lines or rows of dark spots converging posteriorly, bilineata (Emerton). Sternum dark, not marked as in bilineata, 2.
2. Septal piece of guide very broad immediately in front of transverse arms, narrowing anteriorly where it is not sinuous or bent; the median piece between anterior and posterior divisions of arms very narrow, much narrower than the septum in front of arms (Pl. XVI, fig. 1); sternum usually black except marginally, ocreata (Hentz).
Septal picce of guide sinuous or bent near anterior end ; median piece between anterior and posterior divisions of arms wide, wider than septum in front of transverse arms (Pl. XVI, fig. 4); sternum hisually redlish brown. . . . saltatrix (Hentz).

Males.

1. First tibiat clothed with denee black hair standing out in brushlike form,
2. Legs yellow, without dark anmuli or markings, bilineata (Emerton). Legs anmulate with dark, ocreata (Hentz).

Schizocosa ocreata (Hentz) 1844.
(Sub). Lyycosa, J. Bost. Soc, Nat. Hist., IV, p. 391, P1. XVIII, fig. 5.)
Fomale. - Sides of the cephututhorax brownish black; median band
reddish yellow, anteriorly passing forward broadly between eyes of third row and nearly reaching second, more or less divided at front end by a black median line or pointed process; eyes surrounded with black; on each side considerably above margin a narrow, wary light line which does not extend forward upon the pars cephalica, this line often obscure : clypeus reddish yellow, crossed beneath each anterior lateral cye by a black mark or spot which is often confluent with its fellow across the middle, thus leaving the elypeus pale only laterally; light bands of cephalothorax in life clothed densely with white or light gray pubescence. Chelicere reddish brown, often dusky, except at distal ends, and marked by black lines. Enditcs brown, the labium darker, usually blackish except at tip. Sternum usually black or nearly so, paler along borders, especially raudo-laterally; sometimes paler reddish brown. C'oxe of legs beneath light brown. Legs reddish brown, paler distally, all joints exeept the tarsi with dark ammutions, the amnulations of the femora broaler and decper, commonly more or less confluent, especially the anterior pairs. the anmulations of the other joints often indistinct. Sides of abdomen above dark, a black band passing from the front face backward acros: each antero-lateral angle and breaking up behind into numerous streaks and spots; the dorsum covered for entire length by a broad light brown band of often reddish tinge, the band usually constricted in front of middle; within the light band at base a lanceolate outline Which bifurcates at its apex and is followed behind by a series of chevronlines; lower part of sibles of abdomen light brown, marked with small black spots; the venter light brown, either immaculate or with a melian, and at each side a lateral, row of dark spots behind the furmw of the lung slits. Epigynum and spinnerets brown. Face moderately high, two-thirds as high as the length of the chelicorar, its sides moderately steep. First row of eyes considerably shorter than the second, distinctly procurved, the metian three-fourths their diancter apart, nearly the same distance from the three-fourths as later lateral (eyes anterion lateral eyo their diameter, or slighty more, from front margin of clypeus, very little farther from eyes of second row, eyes of second row not fully their diameter apart; quadrangle of posterior eyes about one-fourth the length of the cephalothorax. Chelicera armod as usual. Labium longer than wide, the hasal notrh very lones. more than one-third the total length of labhum; siles abowe statight and strongly convereing, the front marein staight, ant at all courvel. Legs long, the distal joints rather semere thbia + patedat of first lowof same lengeth as the erehatothorax ; anterior thbise armed bemeath as usual, the first two pairs of spines loner, marly as in l'atolosa, the fir-t

Werlapping the second ; anterior tarsi with scopulx at sides; a median ventral setose band, the posterior tarsi not at all scopulate being simply setose.
septal part of guide of epigynum very broad, occupying much of epigynal depression, narrowest at anterior end; the transverse arms deeply divided, the median piece very narrow. (Pl. XVI, fig. 1.)

Total length of small female, 7.4 mm . Length of cephalothorax, 4.3 mm . ; greatest width, 3.2 mm .

Length of leg I, 11.3 mm .; tib. + pat., 4.3 mm .; met., 2.1 mm .
Length of leg II, 10.7 mm .
Length of leg III, 10.3 mm .
Length of leg IV, 15 mm .; tib. + pat., 4.6 mm ., met., $4.4 \mathrm{~m} . \mathrm{m}$.
Male.-Coloration in general as in female. The tibix of first legs very densely clothed for entire length with long black hairs which stand out straight from joint; often of a greenish tinge. Legs longer than in female; tibia + patella of first legs longer than cephalothorax; spine of anterior tibia shorter than in female.

Tibia of pelpus fully as wide as long, sides convex, widest at middle, much wiler than the patella which is little shorter and widens from base distally, its sides straight; tarsus wider than the tibia, of same length as tibia and patella taken together. Lunate area very small, basal in position, its convexity external; horn of conductor very long, extending much beyond front margin of alveolus, bent at an angle below its middle; principal tenaculum situated at middle, unequally bidentate; lesser tenaculum bent upward at distal end, situated below antero-exterior angle; auricle gradually attenuated apically. (Pl. XVI, fig. 5.)

Length of large specimen, 8.6 mm . I.ength of cephalothorax, 4.6 mm .; width, 3.9 mm .

Length of leg I, 14.2 mm .; tib. + pat., 5 mm .; met., 3.3 mm .
Length of leg II, 13.3 mm .
Length of leg III, 13.1 mm .
Length of leg IV, 1.8 mm .; tib. + pat., 5.5 mm .; met., 5.3 mm .

```
Syn-1875. Lygcosu ocreata Hentz, Spid, of U.S., P. 33, Pl. 4 , fig. 5.
1.56. Lygrosu vercata, Kieyserling, Virh. \%. b. Gee. Wien, Vol. SXVI, p. 611,
    Tab, VII, fig. 5 (male).
-. Laycosa rufa Keyserling, ibid., p. 613, Tab. VII, fig. 2 (female).
```



```
    Xlvill, figy. 6, (sx, 66.
189\%. Lygrosa octata Hentz, Marx, Proe. U. S. N. M., XII, p. 562.
-. Lycosa rufa Keyserling, Marx, ibid, p. 563.
- Lycosa ocreata, Stone, P'roc. Acad. Nat. Sci. Phila., Vol. 42, p. 427.
\(1592 . \quad\) L.yrawa mereata, Banks, up, cil., Vol. 4. p. 6it.
    Lyensar orenta, Marx, Proc. Ent. Soc. W. II p. 160.
```


--. Lycosa ocreata, Fox, ibid., p. 269

1893. Lycosa ocreata, Banks, J. N. Y. Ent. Soc., I, p. 125.
1894. Ly,cosa ocreata, Banks, op. cit., IV, p. 192.

189s. Lygosa ocreata, Simon, Hist. Nat. Araign., II, p. 330.
1900. Lycosa ocreata, Banks, Proc. Acad. Nat. Sci. Phila., p. E 3 S .
1902. Lycosa ocreata, Emerton, Common Sp. of U. S.

Pardosa solivaga Montgomery, Proc. Acad. Nat. sci. Phila., p. 57.t,
PI. XXX, fig. 39.
-. Lycosa stonei Montgomery, ibid., p. 546, PI. XXIX, figs. 9 and 10.
1904. Nchizocosa orreata, Chamberlin, Can. Ent., XXXYI, p. 176.

- Lycosa ocreata, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 2Ss.

Type locality.-North Carolina.

Knoun localities.-North Carolina!, Virginia, District of Columbia!, Alabama, Iouisiana, Ohio, Illinois, Kansas!, Connecticut, New York!.

Hent\%, in speaking of the occurrence of this species in North Carolina, says that it "is not rare in meadows near water." It is found in similar locations in New York State. Emerton states that in New Haven, Comn., it is "common in open woods among dead leaves. Adult about June 1."

Schizocosa saltatrix (Hentz), 1844.
(Sub) Lycosa, J. Bost. Soc. Nat. Hist., IV, p. 387, PI. XVII, fig. 7.)
Females.-sides of cephatothorax deep brown, in life densely clothed with black intermixed with brown pubescence, a wide median band of usual form which is of reddish tinge anteriorly, extending forward between eyes of third row and there geminated by a fine dark line which extends back over pars cephalica towards dowal groowe; a supramarginal lisht line on each side which sometimes attains and sometimes does not attain the elypeus in front, the border below these lateral stripes more or less broken by transverse light lines; median and lateral lisht stripes densely clothed with white intermixed with yollowish pubesence. Chelicere dark brown clothed with short yellowish gray pubeseence, which is not dense, and longer black bristles; the fringe of the superior margin of the furow grayish. Endites yellowish brown, lighter at tips. Labiam brown, darker than endites. Stormum benoath boown or reddish brown, the former often showing a lighter median line or stripe, clothed in life with gray or whitish intermixed with bark pubescenee. (oxar light brown to yellow, always paler than the stormum. Leels yellow to light reddish-hrown, with mumerous narrow thongh often indistinet dark rings (oceasionally quite absent), Which beremme fewer and often wider distally, the annuli of femora not so heavy and not confluent as in ocreata. Nearly entite dorsum of ablomen pale brown, often of a pale redilish in life. krayish from the pulseronere which is light brown intermixel with spots of gray. line
at base a dark lanceolate outline, forked at apex and followed by a series of chevron-lines as in ocreata; these in life broadened behind by lines of white hair, a black spot over each anterior lateral angle extending a short distance condad, and usually a triangular black spot more or less constricting the median band towards the middle, the sides elsewhere with many dark spots, in life streaked and spotted with patches of white pubescence; venter pale brown to greenish yellow, in life densely clothed with white pubescence, the tegument often markiel along each side with a row of small black dotscurved convexly outward and converging posteriorly, a double median dark stripe sometimes present behind epigynum. Epigynum and spinnerets light brown.

Face moderate in height, less than two-thirds as high as the length of the chelicerx, the sides moderately rounded and standing outward below, more so than in ocreata.

Anterior row of eyes shorter than second by twice the diameter of a lateral eye, well procurved. Anterior lateral eyes their diameter from front margin of clypeus, slightly farther from eves of second row less than their diameter apart; cephalothorax 4.5 times longer than quadrangle of posterior eyes.

Chelicerce armed as usual, the middle tonth of inferior margin longest, the third considerably reduced. Labium longer than broad (not quite s.7) basal notch one-third the length of labium; sides of labium below but slightly convex, subparallel, above straight or nearly so, distinctlyand considerably converging; anterior margin moderately wide, concurved at middle; gently convexly rounded at sides.

Legs long and rather stout; the metatarsi of the fourth legs moderately slender; two first pair of spines of anterior tibite of moderate length, rather shorter than in ocreata. Anterior tarsi and also except basally being divided by a wide median setose band.
septal piece of guide of epigynum of but moderate width, a little or sometimes considerably wider anteriorly than posteriorly, the transverse arms divided normally but little more than half way to their mesal ends, the incisions connected by a furrow; posterior diyisions of transvere arms depressed, on each side with distal end bent sharply forward. (Pl. XVI, fig. 4.)

Total length, 9 mm . Length of cephalothorax, 4.7 mm .; width, 3.8 mm .

Length of leg I, 12.5 mm .; tib. + pat., 4.5 mm .; met., 2.3 mm .
Length of leg II, 11.7 mm .
Length of leg III, 11.5 mm .

Length of leg IV, 15.8 mm .; tib. + pat., 5 mm .; met., 4.5 mm .
Male.-Colored like female, the anterior legs not specially modified, chelicere clothed with yellow and greenish pubescence. Leers considerably longer than in female, tibix + patella of first pair clearly longer than the cephalothorax.'

Tibix of palpus a little longer and much thicker than the patella, nearly as wide as tarsus, sides more straight than in ocreata; tarsus as long as two preceding joints together. Exposed part of lunate area very small, situated at base and with convexity external; horn of conluctor broad at base, conical; principal tenaculum external from middle, the lesser tenaculum at antero-exterior angle of conductor. small, bent a little downward apically; auricle of lectal fold bluntly and abruptly rounded apically. For other features see Pl. XVI, fig. 2.

Total length, 8.8 mm . Length of cephabothorax, $4.7 \mathrm{~mm} .:$ width, 3.9 mm .

Length of leg I, 16 mm . ; tib. + pat., 5.4 mm . ; met., 3.5 mm .
Length of leg II, 13.7 mm .
Length of leg III, 13.4 mm .
Length of leg IV, 19 mm .; tib. + pat., 5.8 mm . ; met., 5.8 mm .

> Syn.-1844. Lycosa venustula Hentz, J. Bost. Soc. Nat. Hist., IV, p. 392, PI. XVIII, figs. 6 and 7.
> 1875. Lycosa sallatrix Hentz, Sp. of U.S. (Burgess Ed.), p. 28, Pl. 3, fig. 7.
> --. Lycosa remustula Hentz, Sp. of C..S., p. 33, Pl. 4, figs. 6i, 7.
> 1592. Lycosa humilis Banks, Proc. Acad. Nat. Sci. Phila., Vol. 44, p. 65, Pl. III, fig. 36.
> Pardosa gracilis Banks, Proc. Acad. Nat. Sci. Phila., Vol. 44, p. 70, Pl. 1, fig. 50.
> 1902. Ly, rosa relucens Montgomery, Proc. Acad. Nat. Sci. Phila., p. 542, Pl. 29 figs. 5, 6.
> - Lycosa charanoides Montgomery, Proc. Acad. Nat. Sci. Phila., p. 544.
> ——. Lycosa verisimilis Montgomery, ibid., p. 548, Pl. 29, figs. 11, 12.
> 1903. Lycosa charanoides Montgomery, Proc. Acad. Nat. Sci. Phila., p. 616, PI. XXIX, fig. 7.
> - Lycosa verisimilis Montgomery, ibid., p. 647.
> 1904. Schizocosa venustula (Hentz), Chamberlin, Can. Ent., XXXVI, p, 176. ——. Lycosa charanoides Montgomery, Proc. Acad. Nat. Sci. Phila., p. 256.
> -_ Lycosa relucens Montgomery, Proc. Acad. Nat. Sci. Phila., p. 292.

Type localily.-Alabama.
K゙noun localities.-Alabama, North Carolina!, Georgia!, Iouisiana!, Mississippi!, Texas!, Distriet of Columbia!, Pennsylvania, Kansas!, New York!

Hentz states that males of this species were common in Alabama in April, but that he did not find females. So also, it may be noted, all but a few of the specimens of rather extensive collections of this species, male at several places in the South in the early spring of 1903, which I have examined are males. The marking of the venter of the abdomen
figured by Hentz is strongly developed in some individuals, obscure or absent in others. In size and general coloration this species is much like ocreata, except as to the first legs of the males; and it has also approximately the same geographical range.

Schizocosa bilineata (Emerton), 1885.
(Sub Pardosa, Trans. Conn. Acad. Sci., VI, p. 496, P1. 49, figs. 3 to 3b.)
F'emale.-Sides of cephalothorax dark reddish brown clothed with deep brown pubescence. A wide median yellow stripe of the usual form, darker, more reddish, in front of dorsal groove, extending between eyes of third row as usual ; not geminated or only so for very little distance at front, usually a darker reddish line extending backward from inner side of each eye of third row, the two uniting in front of median groove; the band clothed in gray and light brown pubescence which is darker anteriorly; a narrow supramarginal stripe each side reaching to clypeus in front, the dark band below this stripe often more or less broken into spots by light cross-lines; some light radiating cross-lines from median stripe; eyes surrounded with black, the black extending across clypeus below each anterior lateral eye. Chelicere brown, a gray-brown pubescence and longer black bristles. Endites yellow or light brown. Labium darler, brown to blackish. Sternum light brown or yellow, a row of dark spots each side of the middle, the two converging and meeting posteriorly, the margins also sometimes darker, clothed with grayish pubescence. Coxe of legs yellow. Legs yellow, somewhat darkened distally, entirely without dark annuli or other markings. Abdomen above light brown, enclosing at base a dark lanceolate outline ending at middle, and with behind on each side a row of several black spots, which are connected in pairs by narrow and often indistinct dark transwerse lines; the domsum densely clothed with light brown or graybrown pubescence; a deep brown or black spot over each anterior lateral angle, the siles elsewhere ako dark from the many dark spots which are often more or less arranged in rows, covered with brown pubsecence, intermixed with gray in spots and streaks; venter yellow, cowerel with gray pubescenee, with normally four dark longitudinal linew, all converging from furrow of lung slits toward the spinnerets. S゙pinurets yellowish or pate brown. E'pug!mem pale brown with darker margins.

Face mokerately high, a little more than two-thirds as high as the length of the chelicere; sides scarcely convex, very steep, much as in l'ardose.

First row of eyes much shorter than the second, considerably procurved; anterior median eyes hardly their radius apart, about same distance from the lateral or but slightly farther; anterior lateral eyes as large as median or very nearly so, rather less than their diameter from front margin of clypeus, a little more than their diameter from eyes of sceond row; eyes of second row not their diameter apart, quadrangle of posterior eyes one-fourth as long as the cephalothorax; posterior eyes seen from above close to lateral margin of pars cephalica as in Pardosa.

Labium longer than wide in ratio of $4.6: 4$: basal notch onc-third as long as labium; sides rounded below, straight and moderately converging above; anterior margin truncate, not at all curved. Legs of moderate length, short, not very slender distally ; metatarsus of fourth leas ac long as cephalothorax; tibia + patellat of first legr shorter than cephalothorax; spines of anterior tibise moderately long and slender. the first pair a little overlapping the seeond; anterior tarsi with well developed seopulte which are seareely or but imperfectly divided, the posterior tarsi not at all scopulate, simply setose.

Septal piece of guide of epigynum broad, narrowest adjacent to transverse arms, distinctly widening anteriorly; the anterior branch of transverse arms of each side conspicuously enlarged distally, making the total width of the transverse arms conspicuously less adjacent to septum than extad. (Pl. XVI, fig. 3.)

Total length, 7.2 mm . Length of cephalothorax, 3.3 mm ; width 2.4 mm .

Length of leg I, $8.6 \mathrm{~mm} . ;$ tib. + pat., $3 \mathrm{~mm} . ;$ met., 1.7 mm .
Length of leg II, 8.2 mm .
Length of leg III, 8.2 mm .
Length of leg IV, 11.6 mm . ; tib. + pat., 3 mm .; met., 1.7 mm .
Male.-General coloration like that of female; tibise of first legs: densely elothel for entire length with a brush of long black hair at in ocreata. Anterior lateral eyes but about half their diameter from front margin of clypeus, smaller than median; eyes of second row searely more than three-fourths their diameter apart.

Tibia of pelpus longer and broader than the patella, of nearly same. breadth from base to apex; tibia + patella a little longer than tansus : the latter clearly wider than the tibia (3.25) : 2.5) ; the alveolls relatively large, the sides low and the bulb protruding ; conductor high and roundeal above at the exterior end, but nodistinet horn-shaped process: principal tenaculum rather small, bluntly romoterd apically; auriole of loctus very long, attaining or extending beyond front magin of alveolus.

Total length, 5.3 mm . Length of cephalothorax, 3 mm .; width, 2.3 mm .

Length of leg I, 8.7 mm .; tib. + pat., 3.2 mm .; met., 2 mm .
Length of leg II, 7.8 mm .
Length of leg ILI,
Length of leg IV', 10.6 ; tib. + pat., 3.4 mm .; met., 3.2 mm .

```
Syn-1890. Lycosa ocreata Stone, but nee Hentz, Proc. Acad. Nat. Sci.
    Phila., Vol. 42, p. 427.
1592. Pardosa bilineata, Marx, Proc. Ent. Soc. W., Vol. 2, p. 161
1895. Pardosa bilineata, Banks, J. N. Y. Ent. Soc., Vol. 3, p. 91.
1902. Ly, osa ocreata pulchra Montgomery, Proc. Acad. Nat. Sci. Phila.,
    p. 540, Pl. 29 , figs. 3, 4.
1901. Schizucosa bilineuta (Hentz), Chamberlin, INXVI, p. 176.
    Lycosa bilineata Montgomery, Proc. Acad. Nat. Sci. Phila., p. 290.
```

Type locality.-Comnecticut.
Known localities.-Connecticut, New York!, New Jersey, Pennsylvania, District of Columbia!, Illinois, Kansas!.

The Genus LYCOSA Latreille, 1804 .
(Nouv. Dict. Hist. Nat., 24, p. 135.)
Entire body densely clothed with pubescence. Anterior tibix armed beneath with three pairs of spines which are shorter than the diameter of the joint or at most but little longer, the third pair apical in position and smaller (Pl. LX, fig. S). Anterior eyes in a row shorter than, of same length as or longer than the second, either procurved or straight, or rarely a little recurved, eyes equidistant or with the metian a little farther from each other than from the lateral, the lateral usually a little smaller than the median; anterior lateral eyes mostly their diameter or hut little more from front margin of clypeus, only rarely once and a half their diameter and never more, the same distance or farther from eyes of second row; eyes of second row large, les- than their diameter apart : quadrangle of posterior eyes trapeziform, avidently wider bechim than in front. Labium longer than wide, or at leat never wider than long: wither attemuated anteriorly or, less commomly, with sides sulparalled; hasal excavation long, in most fully one-third or more the total length (PI. LX, figs. 7 and 9). Spinnerets short, the posterior ones not longer than the anterior, their apical sogment indistinct. Epigymum in typical forms with a strongly developerd guide, of which the septal pieere is distinct and well formed anteriorly, its transverse arms not divided; openings of the spermatheca protected, leading into narrowed chamels, the lateral furrows from therewidening anteriorly, and at the front usually conspicuously wider
than behind (see, e.g., figs. of Pl. XVII) ; in some the foveolx subcircular, not thus elongate and widening conspicuously anteriorly (group Trochosa). Bulb of male palpus bearing at front of basal lobe a strongly chitinized special fold or scopus which is essentially exterior in position; scopus presenting two processes; viewed directly from below the imner of these appears usually as a more or less retronse, barb-like process, but in some (group Trochosa) longer and strongly salient, the hasal portion mostly more or less concealed by a basal fold which leaves only the apical, exterior portion visible in ventral aspect; median rim of conductor bearing one, or sometimes two, mostly slender and simple tenacula; a lectal fold well developed, an auricle of varying size. but always smaller than in Schizocosa. See, e.g., figs. of Pl. XIII.

```
1832. Lycosa Hentz (ad. part. max.), Sill. J. Sci. and Arts, 21, p. }106
1842. Lycosa Hentz (ad. part. max.), J. Bost. Soc. N. H., 4. p. 22S.
1848. Lycosa (ad. part.), Arctosa and Trochosa, C. Koch, Die Arachniden.
    14, pp. 94-98.
1869-70. Tarentula and Trochosa Thorell, On European Spiders; p. 192.
1875. Lycosa Hentz (ad. part. max.), Sp. U.S., pp. }11\mathrm{ and 24.
1S76. Lycosa Simon (ad. part. max.), Arcaln. Fr., 3, p. 233.
-.Tarentula and Trochosa Keyserling, Verh. z. b. Ges. Wien, p. 610.
1877. Tarentula Thorell, Bull. U. S. G.S. Terr., 3, p. 520.
1885. Lycosa Emerton, Trans. Conn. Acad. Sci., 6, p. 482.
1890. Tarentula, Trochosa and ad. part. Lycoso Marx, Proc. U.S. N. M., 12.
1898. Lycosa Simon (ad. part. max.), Hist. Nat. Araigm., 2.
1902. Lycosa (ad. part. max.), Proc. Acad. Nat. sci. Phila., p. isti.
1903. Lyycosa Comstock, Classif. of N. A. Spiders.
1904. Lycosa Chamberlin, Can. Entomologist, Vol. NXXVI, p. }176
-. Lycosa (ad. part.),Montgomery, Proc. Acad. Nat. Sci. Plila., p. 276.
-.Trochosa, Montgomery (ad. part), ibid., p. 300.
```

Pars cephalica moderately elevated; in front truncate to more on less obtuse; its lateral margins either a little converging anteriorly or parallel; sides rounded outward below; face moderately high, trajoziform, evidently widening downward; in profile either vertical or sloping forward from top to the base of chelicere (I'I. IX, fig. i). Quadrangle of posterior eyes in most but one-fifth or less the length of the cephalothorax. Seen from above, the eyes of second and thitd rows are much more than their diameter from lateral margins of the pars cephalica (I'1. IX, fig. 2). (helicere long and robust. in length at least one and one-half times the height of the face: uppere margin with three teeth of the usual proportions, or the finst one rarely absent; lower margin with three stont teeth which are -ubeynal, or with the third sometimes rerluced, or clse with twa-tont eypal worh (PI. IX, figs. 1 and 3).

Legs robust, the distal joints usually not slender as in l'ordusen. Turs and usually also metatasi of anterion legs - -0,
scopuls undivided (PI. IN, fig. 4), the posterior tarsi scopulate at sides, being divided along the median ventral face by a setose or setose and spinulose band (Pl, IX, fig. 6). Metatarsus of fourth legs shorter than tibia + patella of same pair in most cases, rarely the metatarsus the longer more especially in males. Tibia + patella of last legs sometimes a little longer than and sometimes of same length acoras in the great majority of cases, shorter than the cephalothorax.
spiters of large or medium size, including the largest forms of the family. There is much variation in coloration, although in the several (rioups of species the same system or pattern of markings is more or less evilent. Monst of the larger North American species show a decided tembenes to have the ventral surface of the body black in whole or in comsiderable part, such seeming indeed to be the tendency in large Lychsidn everywhere. The body of the males is in most cases smaller than that of the females, with the legs proportionately much longer and with their several joints of proportionately different lengths.
lycosas make a white spherical cocoon which only exceptionally shows a seam about its equator, the tissue being normally smooth and homogeneous. The smaller species carry the cocoons about as do the Pardows, which they resemble also in building no retreats. The larger species, however, during the cocooning season are sedentary. Practically all of these larger species make nests or burrows of some kind, these varying greatly in form and depth. Some of the burrows are deep and have the openings surrounded by a rampart or turret formed of sticks and leaves or of bits of dirt cemented together with silk (e.g.. fatifera, arenicola, carolinensis). Other species excavate only shallower pits or nests beneath stones or logs, and surround these excavations with a low rampart of earth or sticks, etc., and which they may occupy only during the cocooning season (e.g., helluo).

The genns Lycosu as here considered is divisible into a number of groups; but for the most part these are found more or less closely to interveale when a sufficient mumber of species are taken into consideration. The most aberrant and distinct of these groups, so far as concerns the American species, is that containing many of the forms referred to Trochosa C. K. (avara Keys, gosiuta new, cinerea Fab., rubicunda Keys., ete.). The material representing this group that I have been
 and complete to enable me to determine fully the characteristics and value of the group, and therefore the propriety or advantageousness of its separation generically: The forms studied differ from typical byerosas among other features in having the epigyna as wide as or
wider than long with the guide more or less strongly arched at middle, and with the lateral depression, relatively wide and short, tending to subcircular; the lateral ridges commonly low at middle (Pl . AX, fig. 2, avara; PI. XX, fig. 6, cinerea). In the male palpal organ the proximal limb of scopus is more strongly developed, being more or less elongate and bent out vertically as a conspicuously salient process ($\mathrm{Pl} . \mathrm{XX}$, fig. 1, avara). Some but not all species in the group have the stout spine, normally present above at proximal end of the tibie of the third and fourth legs in Lycosa, replaced by a very elongate, basally stout bristle clearly stouter at base than surrounding hairs, spine-like, but distally gradually extending into a long fine awn. Through some forms of this group a close approach is made to Allocosa, which may ultimately have to be withdrawn into the present genus.

hey to Species of Licosa.

1. Venter of abdomen black in front of genital furrow and in a spot at base of spinnerets, elsewhere pale brown, . coloradensis Bks.
Not so,
2. Lower margin of furrow of chelicera armed with but two teeth, . 3 .

Lower margin of furrow armed with three teeth, 4.
3. Anterior lateral eyes their diameter from front margin of clypeus, kochiö (Kieys.).
Anterior lateral eyes once and one-half their diameter from front margin of clypeus, beanii Em.
4. No spine at all above on tibise of legs III and II: 5.

Spine at middle or both at middle and at proximal end on tibiar of legs III and IV,
6.
5. Dossum of abdomen with a distinct median dark band along its entire length; light median band on cephalothorax, aremicolu ses.
Dorsum of abdomen without such a dark band; cephalothorax without distinct markings, fatifera Htz.
6. No true stout spine at base above on tibie of legs III and IV, replaced by a basally stout, apically slender and pointed, elongate bristle, 7. A true robust spine at base above on tibise of legs III and IV. 10.
7. Tibia + patella of legs IV less than 3 mm . Long, floridian (13ks).

Tibia + patella of legs IV near 4 mm . long or longer, . . . 9.
9. Eyes upon a black patch; legs not marked with dark anmuli. cincreal Fab.
Fyes not upon a black patch; legs marked with dark amuli,
rubicunda.
10. Cephalothorax with a light median Iongitudinal otripe which is very narrow or line-like anteriorly and which extends forward to or between eyes of second row,
11.

Cephatothorax either without a merlian hand or with a band which is as wide or nearly as wide as the third eve row. . . 18.
11. Legs strongly banded with black, or if, annulations are indistinct, legs entirely black,
Legs yellow or light brown, not at all ammate or with a few dark - markings on femora, 13.
12. Anterior row of eves as wile as or a little wider than the second, aspersa H .
Anterior row of eyes shorter than the second, . . . riparia H .
13. Males, 14.

Females, 18.
14. Cephalothorax near 10 mm . in length (leg IV not more than 3.25 times as long as cephalothorax), permunda Chamb. ('ephalothorax under 7.5 mm . in length (leg IV 3.7 or more times as long as cephalothorax), 15.
15. Tibia + patella I longer than tibia + patella IV, . grandis Bks. Tibia + patella I shorter than tibia + patella IV, helluo W.
16. J. ${ }^{(1)}$ I less than three times the length of cephalothorax, permunda Chamb.
Leg IV more than three times the length of cephalothorax, . 17.
17. Abdomen beneath and the sternum immaculate pale yellow, clothed with yellow hair, grandis Bks.
Stermm mostly black or nearly so and clothed largely with black hair; abdomen beneath mostly with numerous dark dots and sometimes nearly black,
helluo W.
18. Dorsum of abdomen marked along its entire length by a distinct median dark band,
19.

Abdomen not so marked, 20.
19. Stermum yellow or light brown; dorsal dark band of abdomen, Hisually with margins behind dentate or else enclosing along each side a series of small oblique light spots, . . scutulata H .
Sternum black; dorsal band of abdomen with margins always straight and not dentate or enclosing light spots behind,
punctulata H .
20. Cephalothorax entirely without light bands or spots either at middle or along sides,
21.

Cephalothorax with at least a median lighter band or spot, 22.
21. Sternum and coxie of legs and usually entire venter of abdomen black; both ends of tibie of legs beneath black, . carolinensis W.
stermum light to reddish brown, not black; venter of abdomen not black either in whole or in part, quinaria.
22. 'Tibiar of fourth lows bark at both cods bencath, other tibiae and lege dewhere mamarked exerphing faint brown (ross-bas on femora (sternum and venter of abdomen entirely black),
apicata Bks.
Not so, 23.
2:3. lac fate brown and entirely whomt darke markings; venter behind genital furow black, rarely a pale central spot, lenta H. Leegs similar, but patelle and often distal end of tibiae black bencath; anterior femoma above and posterionly with tine longitudinal dark lines, posterion femora with faint dark spots; venter as for preceding,. . . Ienta var. baltimoriana (K.).

Not as for lenta or its variety, 24. at distal end ; large, the cephalothorax 10 mm . or more in length. carolinensis W.
Tibise and femora not banded thus at ends only beneath ; cephalo-
25. Females, 26

Males, 34
26. Lateral depressed areas of epigynum wide. subcircular. not elongate in the usual way, 27.
Epigynum not so, 28
27. Guide bearing a short blunt median process posteriorly; ends of transverse arms not extending forwards freely to or beyond middle of lateral depression or fovea (Pl. MIN, fig. 2),
avara (Keys.).

No such short median process posteriorly on guide; ends of transverse arms of guide extending forward uncovered to beyond middle of depressed fovea (Pl. XIX, fig. 4),
avara var. gosiuta new.
28. Guide of epigynum inversely T-shaped. the transverse arms relatively slender, 29.
Guide enlarged at posterior end, but not inversely T-shaped or anchor-shaped,
29. Septum of guide strongly widening from base of transverse arms to anterior end, where it extends entirely or nearly across the median depression, 30 .
Not so, 31.
30. Confining walls of epigynum very wide anteriorly ($\mathrm{Pl} . \mathrm{XXI}$, fig, 3), pratensis Em.
Not so, the epigynum much like that of helluo (Pl. XVII, fig. 1), floridana Bks.
31. Transverse piece of guide extending entirely across or almost entirely across epigynum behind, some longer than median piece, scarcely confined by side ridges at ends (Pl. XVIII, fig. 4), frondicola Em.
Transere piece of guide not solonge distinetly confined ber ridge: at ends, 32.
32. Feptum widest at its anterior emb; lateral walls thick; epigymum as a whole rather wider than long. mondeste Kieys.
Not so, septum widest toward midde part of its lemeth, transverse arms usually excavated at ends above; epigynum as a whole roughly triangular, being much narrowed antorionly (P). XVII, fig. 3), erratice H.
33. Finlargel end portion of guide ronghly triangular in shape with the apex behind (PI. XIX, fig. 8). pictilis I:m.
Expandede end of guide not so shapeel, wideal behime where it is truncate (Pl. X.XI, fig. 7) gulusit W
34. Anterior row of cyes shorter than the second. 35.

Anterior row of eyes as long as or longer than the second. . 40.
35. Median pale band of cephalothorax strongly widening anteriorly, passing each side of the eyes and reaching to the clypeus, the full width of which it embraces, albohastata Em. Median pale band of cephalothorax not thus in front wider than and enclosing eye area,
36.
36. Embolus curving out ventralwards and forward, resting only its apical part ohliquely across the auricle (Pl. XXI, fig. 4).
gulosa W.
Not so, 37.
37. Median pale stripe strongly bulging between third eve row and anterior end of dorsal groove, being much wider than third eye row; at front of furrow abruptly narrowed to the width of third eye row, its sides then subparallel to posterior declivity, pictilis Em. Median pale band of cephalothorax not so formed, . . 38 .
38. D)nsm of abdomen with a median light band extending to spinnerets behind, where it ends in a point, enclosing at base a dark lanceolate mark, or with the latter sometimes absent, crratica H . No such distinctly limited light band on dorsum of abdomen, 39. 32. Venter mostly black, modesta (K.).
Venter brown to yellowish, avara (K.). 40. Venter with a wide irregularly elged black band extending from epigynum to spimerets and sometimes embracing entire width of abdomen,
frondicola Em.
Venter with no such broad black band, pratensis Em.
Lycosa helluo Walckenaer, 1837.
(Insect. Apt., I, p. 337.)
Female.-C'phatothorax deep brown, a narrow light colored median pale stripe which anteriorly beeomes line-like and extends forward between the eyes, this median stripe in life covered with light brown pubeseence which contimus as a median line between the eyes and to the front margin of the elypeus; in most a short curved light line behind each eye of third row and close to the median line; a wider -imilarly colored and chothey light supramaminal stripe on each side, this stripe nsually not distinguishable in front of third eye row ; eyes enclesed in hack; dark part- of cephalothorax clothed with brown and back hair intermixed, the back most abmolant over, and giving its deeper color to, the upper parts of the sides along the borders of the median pale stripe and the area about the cyes. Chelicera black or brown-h back, the lateral condyles red at hase and black below; (enthed with a short yellowish pubescence with some longer, grayWack brithes intermixed, the later being more numerons distally and forming the dense fringe along the superion margin of the furrow. Labium and ondites black, brown at distal ends. Sternum and coxre
of legs beneath black or brownish black, subdensely clothed with blackish hair, the longer ones of which appear lighter distally. Legs yellow or light brown, of usually a distinctly greenish tinge, becoming darker with age; femora paler beneath; in adults in most cases entirely without any dark annuli or other markings or with some narrow, mostly faint darker-cross marks on the femora above (for young specimens vid. note infra.); clothed with short appressed fine hairs of yellow, and longer black hairs; scopule black. Abdomen dark brown; abowe with a black median basal mark which widens from its base to its midelle, where it projects on each side in a pointed angle or line, and then narrows to its apex which bifurcates, sending a narrow pointed line caudo-laterally on each side, the margins of the stripe deeper colored than central portion; a short distance back of the apex of the basal mark is a black angular or cherron-shaped transverse mark; and following this behind over the posterior part of dorsum is a series of light brown or yellow chevron-lines, each of which terminates at each of its ends in a circular spot of the same color; each light chevron-line bordered in front by a black line of similar form; lateral part of dossum mixed black and brown, a large black spot over each antero-lateral angle; sides mostly dark brown with many small spots of yellow and of black; lower parts of sides and the venter brown to yellow with numerous small dots of black, less commonly immaculate, and at other times almost entirely black; abdomen densely clothed with black and yellow hair intermixed, the one predominating on the dark markings, the other on the light. Spimerets brown. Epigynum dark reddish brown.

Face rather low, its sides convex and strongly oblique; pars cephalica not elevated above pars thoracica, the dorsal line but little sloping from the third eye row to the posterior declivity, not depressed at middle.

Anterior row of cyes nearly as long as the second, a little procurved; anterior median eyes distinctly larger than the lateral, less than their radius apart, about an equal distance from the lateral eyes; anterior lateral eyes separated from the front margin of the clypens by once and a third their diameter, or little more, the same distance from eses of second row; cyes of second row three-fourths their diameter apart : cephalothorax 5.5 to 6 times as long as the quadrangle of porterion eyes.

Chelicere with margins of furrow armed as usimal, the fint tow th of the inferior margin often with its lower part conceated by a margimal keel extending from base of claw. Labium longer than wide ($9.5: 5.75$); basal excavations one-third the total length; sides rommerl below, above nearly straight, converging to the front margin which is wielely
truncate or slightly incurved mesally. Legs long and stout, tibia + patella of fourth legs distinctly longer than the cephalothorax, the latter heine a little longer than tibia + patella of first legs; tarsi of first luen a little curved. those of second legs more slightly so; patella of fist legs unarmed; patella of second legs with a single spine on anterior side : spines of anterior tibie as usual ; both tarsi and metatarsi of three anterior pair of legs scopulate; scopule of third and fourth pairs dividerl.

Epigymum sumewhat oval in outline, with posterior end truncate; Enide invereely T-shapel, the septal part enlarging at or above its midlle: guide plates widest on transverse arms, narrowing and fading ont at midtle of septum; furrows broad anteriorly, narrowed strongly Wehinul by the abrupt bulging in of the lateral tubercles. (Pl. XVII, fig. 1.)

Total length, 19.5 mm . Length of cephalothorax, 8.2 mm .; width, 6.8 mm .

Length of leg I, 22.8 mm .; tib. + pat., $8 \mathrm{~mm} . ;$ met., 4.5 mm .
Length of leg II, 20.2 mm .
Length of leg III, 19.3 mm .
Length of leg IV, 27.8 mm .; tib. + pat., 9 mm .; met., 7.8 mm .
Molt.- Much smaller than the female with relatively longer legs. F'phlntothormabave and legs nearly as in the female or lighter. Stermun u-nally more brownish, often divided by a median light line; dentheil with long light gray hair. Coxe of legs beneath light brown like the wher juint- of lers. Abdomen colored above as in the female; lower portion of sides and the venter lighter yellow or grayish brown, immaculate or nearly so. Palpi yellowish brown, the tarsus darker.
\iewed from above, the tibia is searcely longer than the patella and is of the same thickness; the tarsus equalling the length of the two precerting joints together; apical portion of tarsus long, seen from below very gradually attenuated, not acute apically. Tenaculum long and - fonurn. punjertine eeto-listally, a smaller but similar secondary tenacuLum mu-ally from this anl commonly in part or whole concealed. For further structure of bulb see P'l. XVII, fig. 2.

Total length. 11.2 mm . Length of eephalothorax, 5.7 mm .; width, 4.2 mm .

Length of leg I, 17.8 mm ; tib. + pat., 6.1 mm . ; met., 4.1 mm .
Lengeth of leg II. 15.8 mm .
Length of leg III, 13.9 mm .
l.ength of leg IV, 21.2 mm .; tib. + pat., $6.6 \mathrm{~mm} . ;$ met., 6.1 mm .

[^33]1S48. ?Lycosa rafra (C. Koch), Die Arachn., 14, p. 135, Pl. 490 , fig. 1365.
1576. Trochosa helvipes Keyserling, Verh. z. b. Ges. Wien, 26, Pl. 7, figs. 35, 36, and Pl. 8, fig. 37.
1S85. Lycosa nidicola Emerton, Tr. Conn. Acad. Sci., 6, p. 4S2, Pl. 46, figs. 1 to $1 d$.
1S90. Lycosa babingtoni, Marx, Proc. U. S. N. M., 12, p. 561.
——. Lycosa helluo, Marx, ibid., p. 562.
-. Lycosa nidicola, Marx, ibid., p. 562.
--. Lycosa nidicola, Stone, Proc. Acad. Nat. Sci. Phila., 42, p. 424.
1591. Lycosa babingtoni, Banks, Ent. News, 2, p. 193.
1592. Lycosa nidicola. Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 64.

- Lycosa similis Banks, ibid., p. 64, Pl. II, fig. 30.
--. Lycosa crudelis Banks, ibid., p. 66, P1. 3, fig. 37.
-- Lycosa nidicola, Marx, Proc. Ent. Soc. W., 2, p. 160.
--. Lycosa nidicola, Fox, ibid., p. 269.

1595. Lycosa babingtoni, Banks, J. N. Y. Ent. Soc., 3, p. 91.
-. Lycosa babingioni, Banks, Ent. News, 6, p. 205.
1s95. Lycosn babingtoni, Banks, Proc. Cal. Acad. Sci., p. 268.
1596. Lycosa babingtoni, Banks, Proc. Acad. Nat. Sci. Phila., p. 538.
1597. Lycosa helluo, Banks, Proc. Acad. Nat. Sci. Phila., p. 586.

Lyrosa nidicola Emerton, Common Sp. C. S., p. 69, figs. 166, 167.
Lycosa nidicola. Montgomery, Proc. Acad. Nat. Sci. Phila., p. 559, PI. 29, figs. 23, 24.
Type locality.-New York.
Known localities.-Massachusetts, Connecticut, Rhode Island!, New Hampshire!, New York!, Pennsylvania, New Jersey, Maryland, District of Columbia!, Alabama, North Carolina, Georgia, Louisiana, Texas!, Mississippi, Ohio, Indiana!, Illinois!, Iowa!, Kansas!, Colorado, Utah!.

One of the commonest and most widely distributed species, which is subject to much variation in size and in depth of coloration. Because of the abundance of this species it will be well to indicate the color differences presented by partly grown individuals. These have the stermum yellow with a narmw black stripe each side of middle line. the two converging and uniting in front of posterior margin, and also a row of small black dots along each lateral margin; the legs with numerous annulations which are present on all joints except tarsi, with sometimes indications of a median one on these; cephalothomad and abomen above nearly as in adults; venter yellow with bark dots minute.

The femate L. midicole builds a shatlow excavation or nest umber logs and stones along roadsides and in the woods. She lines the nest with silk aml often surtounds it with a low rampart of earth or of sticks and leaves. They are frequently met with in these nests with their cocoons in early summer.

Lycona grandis Banks, 1891.
(J. N. Y. Ent. Soc., p. 49.)

Female. -Coluration and pattern of markings as in helluo, but lighter
throughout. Median pale stripe of cephalothorax clothed with golden brown pubescence with some gray behind and brown at middle part intermixed: sides clothed with brown and golden brown pubescence intermixel: lateral pale stripes with mostly light gray pubescence, less of brown. Legs clear yellowish, the two first pairs of legs darker, more reddish brown distally. Stermum and coxs of legs beneath yellowish brown, like legs, clothed, like the legs also, with grayish yellow intermixed with longer black hairs. Abdomen much lighter than in typical Eastern form of helluo; dorsum with the typical markings, but these paler and less distinct; the venter pale yellow without markings of any kind, clothed with yellow pubescence. Epigynum reddish black. Spinnerets pale brown.
structure and proportions and the relations of the cycs as in helluo. Epriq!mum agreeing in detail with that of helluo (Pl. XVII, fig. 1). A specimen from Baja California gave the following measurements:

Total length, 24 mm . Length of cephalothorax, 10.2 mm .; width, S mm.

Length of leg $I, 25.9 \mathrm{~mm}$. ; tib. + pat., 9.8 mm . ; met., 5 mm .
Length of leg II, 24 mm .
Length of leg III, 23.7 mm .
Length of leg $I V, 33.8 \mathrm{~mm}$. ; tib. + pat., 11 mm .; met., 9.6 mm .
Male.-Lighter than the female. Chelicere pale yellow with light gray or whitish pubescence which is moderately long. Palpi pale yellow, the tarsus not darker; tarsus clothed with dense white hair, Which ocerus also less densely upon the tibia; the patella and femm clothed with yellow hair with some white more sparsely intermixed. Stornum and coxa of legs pale yellow, these and the leys clothed with light yellow gray pubescence with some black hairs intermixed. Abdomurn with hasal dark mark as usual; middle region of domsum yellowish, clotherl with gray-yollow and brown pubescence intermixed, with on rath side behind a row of about six spots of white hair; venter yellow with light gray pubescence.

Tibia + patella of first legs longer than tibia + patella of fourth cons. Tansus of palpus shorter than the two preceding joints together. Nitucture of palpal organ agrecing in dotail with that of helluo (Pl. XVII, fig. 2).

A male from Iower California gave the following measurements:
Total length, 14.2 mm . Length of cephalothorax, 7.6 mm . ; width, 6.1 mm .
l.ength of leg $1,27.2 \mathrm{~mm} . ;$ tib. + pat., $9.8!$ mm. ; met., 6.3 mm .

Length of leg II, 22.9 mm .

Length of leg ILI, 22.2 mm .
Length of leg IV, 30.3 mm .; tib. + pat., $9.2!\mathrm{mm}$. ; met., 8.8 mm .

Syn.-1895. Lycosa grandis l3anks, Amn. N. Y. Acad. Sci., 8.

1898. Lycosa grandis Banks, Proc. Cal. Acad. Sci.

Type locality.-Colorado.
Known localities.-Colorado; Baja California!.
So far as I have determined, tibia + patella of fourth legs of the male in Lastern specimens of helluo js longer than thbia + patella of first pair or sometimes, in large specimens, of the same length, whereas the reverse is seen to be true in grandis. But as the relative lengths of these two pairs of joints varies in helluo and apparently with the size of the individual, the increased relative length of tibia - patella of the first pair, and in fact of the entire finst ler, maty not he of much significance. The agreement between hellua and gromelis is thns cloee excenting in color and size, and it might therefore be more proper to place the latter as a variety under the former.

Lycosa floridana banks.

(Trans, Am. Ent. Noc., XX11I, p. 72.)
Female-Cephalothorax with a median light colored longitudinal band which anteriorly is geminated and is nearly as wide as the eve area, with on each side a narrow supramarginal light brown stripe which is discontinuous, being broken into four or more parts. C'helicera dark reddish brown. Stermum brown, with a black mark alongr middle. Legs brown, with the distal joints darker, blackish brown; femora above with some rather obscure black marks. Coxe brown, all with a black, very distinct line along front face. Abdomen above black; sides and lateral part of venter blackish over a yellow yround, mixed yellow and black; venter yellow.

Cephatothorax low, its dorsal line straight and but sightly - Aanting from the third eye row to the posterior declivity, which is short and steep. Face in height more than half the length of the chelicerie, sides slanting moderately outward from above downward.

Anterior row of eyes shorter than the second, rather strongly procurved.

Chelicere ammed as usual.
Epigynum relatively small, 8 or . 9 mm . long; in form and structure very similar to that of helluo, but the septum of guide broader and more strongly expanded anterionly, where it almon extent- acmo the cntire depressed area.
I.ength. 14.2 mm . Length of cephalothorax, 6 mm . ; width, 4.3 mm .

Length of leg 1.13 mm .; tib. t- pat.. 6 mm .; tarsus, 2.1 mm .
Length of leg II, 11.7 mm .
I.ength of leg III, 11 mm .

Length of leg IV, 15.6 mm ; tib. + pat., 7 mm .; tarsus, 3 mm .
Locality.-Florida!.

Iycosa apicata Banks, 190 \&
(Journ. S. Y. Ent. Soc., p. 114, Pl. V, fig. 13.)
Female. - ('ephalothorax brown, marked with a median paler band as wide anteriorly as the third eye row, between the eyes of which it extend- in a tongue-like process forward, this narrower process in life clothed with white hair; the median band constricted at the dorsal growe and extending from there down the posterior declivity as narmwer stripe; on each side beginning mesally from the eye of the third row a dark line extends posteriorly through the median pale band to the point of its constriction where it unites with the dark of the sides; a narrow, anteriorly interrupted, supramarginal pale stripe with dentate margin. Chelicera deep chestnut or reddish black. Labium and endites reddish black, the former a little paler apically. Stermum and coxe of legs beneath black. Legs light brown; the femora with darker markings which are more distinct on the posterior pair-: tibier of fourth legs black at each end beneath, the metatarsi sometimes also darkened distally; legs elsewhere without evident markings. Abdomen above light brown or yellowish; a dark, blackedged, spear-shaped mark which is laterally dentate and blunt or forked at its posterion end ; the spear-mark followed posteriorly with a series of dark chevron-shaped transverse marks, which may be separated by corresponding transverse marks of white hair, the chevrons commonly confluent lateratly with dark mottlings at the sides and thereby with each other, in other cases confluent mesally with each other and with the basal mark; sides of abdomen above with spots and streaks of brown, pale below; venter entirely black.

C'ephalothorax highest at the third eye row, the dorsal line as seen in profite from there a little sloping and nearly straight to the posterior derlivity: Fare relatively low. its sides monderately slanting outward from above below.

Anterior row of eyes clearly shorter than the second, a little prorarioul : antorion merlian reves less than their radius apart, about the -atne di-tance from the lateral cyes, which are smaller than the median. Eygrs of the second row less than their diameter apart.

Patelle of first and second pairs of leys armed in front with a short spine. Tibia + patella of first legs about equalling the cephalothorax in length; tibia + patella of fourth legs. clearly longer than the cephalothorax and also longer than the metatarsus of same legs.

Chelicerce armed as usual, the three teeth of lower margin stout.
The epigynum having the general form and structure of that of L. helluo (Pl. XTII, fig. 1); septum widest anteriorly, its sides nearly straight; transverse arms rather thick.

Total length, 13.5 mm . Length of cephalothorax, 6.3 mm .; wilth, 4.8 mm .

Length of leg I, 19.3 mm .; tib. + pat., 6.2 mm .; met., 3.8 mm .
Length of leg II, 16.2 mm .
Length of leg III, 16.2 mm .
Length of leg IV, 23.5 mm .; tib. + pat., 7 mm .; met., 6.7 mm .
Male. - Coloration as for the female; but the markings more distinct.
Palpal organ of the general type of that of L. helluo (Pl. XVII, fig. 2). The auricula conspicuous, more strongly chitinized than usual, dark in color, turned outward apically. Principal tenaculum relatively shorter, and more outwardly directed than in helluo.

Total length, 13 mm . Length of cephalothorax, 6.8 mm .; wilth. 5 mm .

Length of leg I, 20.7 mm .; tib. + pat., 7 mm .; met., 4.8 mm .
Length of leg II, 19.1 mm .
Length of leg III, 19.1 mm .
Length of leg IV, 25.4 mm .; tib. + pat., 7.8 mm .; met., 7.6 mm .
Syn. 1904. Lycosa antelucana Montgomery, Proce. Acad. Mat. Sci. Phila.
p. 282, P1. XVIII, figs. 5 and 6 .
Type localities.-Arizona and Texas.
Known localities.-Arizona!, Texas!, New Mexico.
The descriptions above are from type specimens.
Lyoosa permanda Chamberlin, 1004.
(Cam. Entomologist, p. 2S6.)
Female.-Cephalothorax dark brown; a pale narrow median line extending backwad from first eye row, widening abmptly in from of dowal growe, and then gradually narmwing to a point at fontorior margin; a broad light-colored marginal stripe on cath -ide mot extenting forward farther than the third cye row, its upper margin coasely dentate, the lower border torken by a few dark dot-, but not limiten below by a continuons dark line or stripe at marein. Whelicora hack. Labium and ondites dark brown. Stormum dark hown, with a yellow
median line. Legs brown, darker distally; beneath unmarked, but having a number of dark cros-bars above on femora and posterior tibix. - Lbdomen above dark, having the usual lanceolate mark at base, followed by a ceries of light colored, chevron-formed transverse lines, each ending on each sirle in a light dot; sides yellowish brown, densely spotted with black: venter ako yellowish brown, more sparsely covered with smaller black dots, much as in helluo.

Length. 22 mm . Length of cephalothorax, 10.7 mm . ; width, 8 mm . Length of leg $\mathrm{I}^{\circ}, 30.3 \mathrm{~mm}$.

Mule.-Colored nearly like the female, but paler throughout. Marginal stripes of cephalothorax not interrupted below by dark spots. Lets clear brown, without any cross-marking on any joints. Palpi yellowish brown excepting tarsus, which is black.
I.ength, 20 mm . Length of cephalothorax, 10 mm . ; width, 7.5 mm .
I.ength of leg IV, 32.4 mm .

Locality.-Kansas!.
In qeneral appearance the female resembles helluo, but is easily separated by structure of epigynum and by various other characters. The mate is conspicuously different in its palpal organ and in size, proportion and structure from those of related species.

Lycosa riparia Hentz, 1844.
(J. Bost. Soc. N.. H., IV, p. 289.)

Female.-Cephalothorax with a narrow median light band, widest at dorsal groove, narrowing anteriorly and continuing as a distinct line between eves to the elypeus; median band formed of grayish-yellow pubescence; terument of cephalothorax elsewhere deep brown or reddish brown, black over eye area, clothed with black pubescence, intermisal with fewer yellowish or brownish-gray hairs which are more abundant below but form no distinct band; rufous hairs about the eves and on the face. Chelicere black with rufous pubescence over "phere half and black pubesence below. Labium and endites black, brown at tips. Sternum and coxe of legs beneath black with longer abl stiff black hais and some short gray pubsecence. (iround color of tergment of legs dark reddish brown; the tami and metatarsi darker, all joints except these two with distinct light and dark rings, the laptor beine broader, chothed respertively with grayish-brown and Warl: phlerebore tasi and metatarsi appearing entirely black because of hark -ropmare and blark pubescence, the shorter brown hais being few. Abdomen above grayish brown, with scattered minute spots of black pubsecence; a number of black chevron-marks behind and in
front an indistinct outline of a lanceolate mark behind a cherron which is commonly divided mesally into two triangular marks; near the middle of lanceolate outline on each side, the dark line more strongly impressed as a black triangular mark with apex forward; a light spot laterally from upper part of basal mark; behind on each side a series of light spots which may be indistinct; front face of abdomen and anterolateral angles black; sides dark above, having black pubescence intermixed with brown in fine spots and streaks; in middle the sides are lighter, the brown pubescence being in larger spots. The venter and commonly the lower part of sides black, but, especially at sides, with spots of brown; often brown pubescence in four narrow lines on venter, converging from lung slits to spinnerets, divide the black of venter into three contiguous bands, much as in aspersa. Spinnerets brown. Epigymum black or reddish black.

Face moderate in height, hardly one-half the length of the massive chelicerc. C'ephalothorax above nearly straight and horizontal or but little convex between third row of eyes and posterior declivity; the posterior declivity short, only posterior end of dorsal groove being upon it; sides rather strongly bulging behind; sides of face convex and strongly slanting.

First row of eyes straight or very nearly so, shorter than second row; anterior median eyes distinctly larger than the lateral, less than their radius apart, closer to the lateral eyes; anterior lateral eyes removed from front margin of clypeus and from eyes of second row by about once and a half their diameter; anterior median eyes less than their diameter from eyes of second row; eyes of second row less than their diameter apart (about three-fourths); quadrangle of posterior eyes about one-fifth as long as the cephalothorax.

Leys long; tibia + patella of fourth legs a little longer than cephalothorax and also longer than metatarsus of same legs; tibia + patella of first pair of same length as cephalothorax; patella of first legs unarmen, patella of second armed anteriorly with a single spine; tibia and metatarsus armed as usual ; seopule on anterior tarsi and metatansi as usual ; scopule of posterior tarsi divided by setose bands as usual.

For form epigynum see Pl. XVII, fig. 5.
Total length. 18.5 mm . Length of cephalothorax, 9 mm .; width, 6.9 mm .
L.ength of leg 1, $24.5 \mathrm{~mm} . ;$ tib. + pat., $9 \mathrm{~mm} . ;$ met., 8.5 mm .

Length of leg II, 22.8 mm .
Length of leg III, 21.4 mm .
length of leg IV, 29.6 mm .; tib. + pat., 9.3 mm ; ; met., 8.5 mm .
Male.-For structure of palpal organ see Pl. NVII, fig. 6.

Syn.-1S75. Lycosa ripario Hentz, Sp. Ľ. S., p. 31, Pl. 3, figs. 13, 15. - Lycosa riparia, Cragin, Contrib, to Knowl. Arachn., Kansas Bull., Washburn, Coll. 1, No. 4, p. 146.
1890. Lycosa riparia, Marx, Proc. Li.S. N. M., 12, p. 563.
1900. Lycosa riparia, Banks, Proc. Acad. Nat. Sci. Plila., p. 539.

Type localities.-North Carolina, Alabama.
Habitat.-North Carolina!, South Carolina, Alabama!, Georgia!, Lonisiana!, Mississippi. Virginia, West Virginia, District of Columbia!, Kansas, Texas.
"This common spider is aquatic in its habits, always found near or on water, and diving with ease under the surface when threatened or pursued" (Hentz).

Lycosa aspersa Hentz, 1844.
(Bost. Journ. Nat. Hist., IV, p. 389, Pl. XVII, figs. 11, 12.)
Female.-Cephalothorax dark reddish brown, blackish about the eye; a lighter uneven-edged marginal band on each side, and a similarly colored narrow median stripe more or less distinct; sides of cephalothorax densely clothed with black pubescence with more scattered haiss of yellowish intermixed; the narrow median stripe clothed with yellowish or golden-brown hair, which forms a bright stripe which contimes fowsard as a line between the eyes and reaches the anterior row, the stripe expanding posteriorly about the dowal groove and then again narrowing down the posterior declivity to the posterior margin; the middle stripe of pubescence sometimes obscure in middle region, but alway: bright at anterior and posterior portions; along each side similar rellowish hair forms a narrow marginal stripe which is narrower than the broader supramarginal stripe of tegument ; front margin of elypeus at middle with a fringe of yellowish hair. Chelicere, including claws, black, elotherl with moxlerately long black pubssence without any short paler hairs. Endites and labium brown-hlack, lighter at tips. stormum black, a narrow light colored median line anteriorly; clothed with black hair. C'oxu of legrs beneath hack, lighter, yellowish brown, laterally, at base bemeath a similarly colered light spot which is mostly
 bereming dark reddish howw with age deeper colored distally; all joints exeepting the tassi and the metatarei with light cross-hands wheh are
 light ringes much more distinct in yome - peremens than in ohd, and in the latter on the posterior pairs of leys than on the anterior; legs den-rly chothed with long thack hairs intermixel with shorter yellowish pularenere, the latter moxtly emfineal th the lighto bands in tergment.

Abdomen above very dark; a basal black mark with end behind forked and followed by a series of cherron-marks, all the marks usually indistinct in older specimens, in which the entire donsum is black or nearly so; dorsum clothed in life with black and grayish-brown pubescence, the lighter pubescence more concentrated anteriorly and anterolaterally, and also forming some mostly obscure transverse chevronmarks behind; in dark specimens the sides are dark or black-streaked and spotted below with yellow pubescence, with the yellow sometimes predominating over the black; venter with numerous spots and streaks of yellow pubescence usually arranged mostly in four lines or stripes converging to the spinnerets, and thus dividing the dark into three bands similarly converging caudally. Spinnerets brown. Epigymum reddish brown.

Face rather low, not fully half as high as the chelicerse are long, the latter long and massive, considerably longer than the face is wide in front. C'ephalothorax not high, dowal line highest at third eye row, from there being nearly straight to the posterior declivity.

Anterior row of eyes as wide as or slightly wider than the second, nearly straight; anterior median eyes less than their radius apart, about as far from lateral eyes; anterior lateral eyes a little more than two-thirds as large in diameter as the median, once and one-half their diameter from front margin of clypens, closer to cyes of second row; eyes of second row a little less than their diameter apart; eyes of third row three-fourths as large as the secomb, twice as far from earh other as from the second; cephalothorax 6.5 times the length of the guadrangle of posterior eyes.

Chelicere armed as usual. Labium Ionger than wile ($8.5: 8$): basal excavation as usual; sides strongly convexly bulging, the curvature less above than below; front margin wide, concave for nearly entire width (PI. IX, fig. 9). Leges stout ; tibia + patella IN shorter than the eephalothorax; metatarsus IV of nearly same length as the wilth of the cephalothorax; tansi I and II slightly curved, III and IV straight: tari scopulate as usual, the seopular on legs I and 11 extemding alon over metatarsi and ower all but basal portion of thinar: :pines of tihtie as usual.

For structure of epigynum see Pl. XVIl, fig. 7.
Total length, 23 mm . Length of cephalothorax, 10.6 mm .; width, 8.2 mm .

Length of leg I, 25.6 mm . ; til) + pat., 9.3 mm ; met., 5.1 mm .
L.ength of leg II, 23.2 mm .

Length of leg III, 21.5 mm .

Length of leg IV, 30.1 mm . ; tib. + pat., 9.5 mm .; met., 8.3 mm .
Mule.-Much lighter in color than the female, but the color patterns are nearly the same. The lighter pubescence is much more abundant on cephulothornx than in the female, much predominating over that of blackish cobor. Legs much lighter with the yellow pubescence dense, while the longer black hairs are comparatively sparse; femora with transerse dark hants above, but these indistinct or absent at sides and ventrally: distinct dark rings on tibis. Labium and endites sometimes colored as in female but often much lighter, almost yellow. (oxiv of leqs beneath with black on ventral surface, often reduced to a few spots at distal end, the coxx being elsewhere yellow. On the ahtumen also the yellow and brown pubescence predominates over the Wack, the latter appearing over the black basal band (which is distinct, wilest toward posterior end and pointed anteriorly), over the anterolateral angles and in variously formed spots and streaks laterally, most of the dorsum being thus in life of a golden brown color; venter usually yellow with some spots of black, less often as in the female.

The chelicere clothed on basal half with long golden yellow hairs, distally with black hairs.

Tibia + patella IV゙ longer than the cephalothorax, of same length as the metatarsus; patellx I and II armed in front and behind.

For structure of palpal organ see Pl. XVII, fig. S.
Total length, 15 mm . I.ength of cephalothorax, 9.1 mm . ; greatest width. 7.2 mm .

Length of leg I, 30.1 mm ; tib. + pat., $10 \mathrm{~mm} . ;$ met., 7.4 mm .
Length of lecr $11,27.8 \mathrm{~mm}$.
Length of leg III, 26.2 mm .
L.ength of leg IV, 35 mm ; ; tib) + pat., 10.5 mm .; met., 10.5 mm .

```
        Syn.-1s76. Tarentula inhonesta Keyserling, Verh. z. b. Ges. Wien, 26, p.
```

 634, Pl. 7, fig. 17.
 - 1858. Tarendula tigrina Mecook.

1855. Lycosa culpina Emerton, Tr. Conn. Acad. Sci., 6, p. 487, Pl. 47, fig. 2.
1856. Tarentula inhonesta, Marx, Proc. U. S. N. M., 12.

- Dycosa dulpina, Marx, ithid.

1590. Lycosa tigrina, Stone, Proc. Acad. Nat. Sci. Phila., 42, p. 423.
1591. Lyycoses vulpina, Banks, op, cit., 41, p. 67, Pl. I, fig. 39.

- Lycosn tigrina, Marx, Proc. Ent. Soc. W., 2, p. 160.
-- Lycose ligrina, Fox, ibid. p. 538.
1s95. Lycosa ligrina, Simon, Mist, Nat. Araign., 2.

1900. Lyycosn fatifera, Bamks, Proc. Acad. Nat. Sci., Phila., p. 538.

 PI. X゙X, fixs. 39, 39.
T'ype loculily.-"Sorth America."
Kinown localities.-Massachusetts, Rhode Island, New York!, New

Jersey, Pennsylvania, District of Columbia, Alabama, Cieorgia!, Indiana, Kansas!.

A well-known species of burrowing habits.

Lycosa arenicola Scudder, 1877.

(Psyche, 2, p. 2.)
Female.-Tegument of cephalothorax dark reddish brown to blackish, scarcely lighter above; a median lighter band a little wider than third eye row in front, strongly narrowed anteriorly to dorsal groove and usually expanding again back of groove; the band chiefly produced by a finer gray or white pubescence intermixed with coarser brown, the tegument beneath being usually but little lighter than on sides; sides of cephalothorax covered with brown pubescence, gray hairs scattered but showing more abundantly below, especially posteriorly. Chelicere dark reddish brown to nearly black, elothed with a dense coat of rusty brown colored pubescence, fringe along furrow of chelicere brighter, reddish or coffee colored. Labium and endites dark reddish brown, paler distally. Sternum dark reddish brown to nearly black. Anterior coxe of legs dark brown to nearly black, posterior coxie lighter. Legs reddish brown, the anterior pairs darker than the posterior; the femora, patelle and tibise of the first and second legs nearly black beneath; distal ends of posterior tarsi and metatarsi usually darker; legs elothed with dense coat of mixed gray and brown pubescence and longer dark brown bristles, seopule brown. Abdomen densely pubescent ; a dark brown median band on dorsum reaching to the spinnerets behind, which just in front of middle has on each side a broad indentation, and which has behind the middle a series of narrow paired indentations; the band covered or largely formed by dark brown pubescence. Sides of dorsum grayish brown, the pubsesence being brown and gray intermixed, the brown more abondant above; a dark brown band of same color as median one crossing eath anterolateral angle and rumning obliquely backward and downward, meeting the venter back of middle. Venter brown to dark brown, usually a darker band from genital furrow to spimerets. Epigynum dark reddish brown. Spinnerets brown.

Cephatothorax wide in front ; in profile second eye sem th lo. lower down on face than usual, highest at third eye row ; pare cephalicaconvex; posterior deelivity begiming on pars cephatien a mon-iderable distance in front of thoracic furrow, making the declivity wery long and the posterior pertion of eephahothorax very low and exausatatig apparent height of front part. Foce moderate in height, wot fully half the
length of the chelicere, protruding above over base; sides convex, slanting below.

Anterior row of cyes almost as wide as second, a little procurved; anterior median eyes larger than the lateral, not fully their radius apart, about as close as to lateral eyes; anterior lateral eyes their diameter from eyes of second row, twice their diameter from front margin of clypens: eyes of second row their diameter or slightly more than their diameter apart, not fully half as far again from eyes of thirl row. Quadrangle of posterior eyes hardly one-fifth the length of the cephalothorax.

Lower margin of furrow of chelicerce with three equal teeth, the upper marvin with three as usual ; the smaller teeth above more than usually stout.

Lergs distinctly increasing in thickness from the fourth to the first, the first conspicuously stoutest; tarsi and metatarsi I and II densely :copulate: tarsus III with scopula divided by a median setose band; tarsus: IV with scopule much reduced, the scopular hairs being sparse along cach sile, the setose band occupying most of ventral surface; tihise I and II and metatarsi I and II armed as usual, the spines of tibix usiually slenter and easily rubbed off or overlooked; patelle I and II each armed in front with a spine; tibix III and IV without true spines above; femora I and II bent forward, IV backward, less so; III nearly straight. Tibia + patella IV shorter than cephalothorax; metatarsus IV much shorter than tibia + patella, but longer than tibia, less than width of cephalothorax.

For structure of epigynum see Pl. XX, fig. 9 .
Total length, 20.2 mm . Length of cephalothorax, 10.1 mm .; width, 7.3 mm .

Length of leg I, $23 \mathrm{~mm} . ;$ tib. + pat., $8.1 \mathrm{~mm} . ;$ met., 4.9 mm .
Length of leg II, 20.5 mm .
Length of leg HI, 19.9 mm .
Length of leg IV, 26.3 mm .; tib. + pat., 9 mm .; met., 6.9 mm .

[^34]1902. Lycosa arenicola Scudder, Montgomery, Proc. Acad. Nat. Si. Phila, p. $550, \mathrm{Pl} . \mathrm{XXLX}$, fig. 13.
1904. Geolycosa arenicola, Montgomery, Proc. Acad. Nat. Sici. Phila., p. 299.

Kinoun localities.-Massachusetts, Rhode Island!, Connecticut!, New York (Long Island!), New Jersey, District of Columbia, Pemisylvania, Maryland, Virginia, Indiana.

This species is our best known turret builder. Its burrows are commonly from 10 to 12 inches deep, often one-half inch wide, and are surmounted by turrets usually one and one-half inches in height.

Lyoosa fatifera Hentz, 1842.

(Bost. J. N. Hist., IV, p. 229, Pl. 2, fig. S.)
Female.-Cephalothorax with dark red-brown tegument, often blackish about eyes; clothed with tawny colored or rufous pubescence and showing no markings. Chelicere dark reldish brown, with brown or grayish-brown pubescence, rufous distally along furrow. Labium and endites reddish brown, lighter at tips. Sternum and coxce of leg beneath light or yellowish brown, clothed with gray pubescence. Lells reddish brown; the femora beneath much lighter, yellowish; the tibies, tarsi and metatarsi commonly much darker, especially in anterior pairs clothed with grayish pubescence; scopulse brown. Abdomen above dark brown, clothed with dense brown or tawny pubescence; venter with light, sometimes gravish-brown pubescence. Spinnerets brown. Epigynum dark reddish brown.
('ephatothsrax very wide in front, nearly five-sixths as wide as behind, the sides but little bulging. In profile the eephatothorax is seen to have pars cephalica large and convex; highest between eyes of thind row and dorsal groove; posterior declivity long, the median furrow being upon its upper portion. Fuce appearine rather high, but only - lighty, if at all, more than half the length of the massive chelicera; sides convex and slanting as usual. First row of cyes as long as second, a little procurvel; anterior median eyes more than their radins apart. as far from the anterior lateral cyes which are maller: anterior lateral eyes more than their diameter from eyes of the secont row. more than once and a half their diameter from front margin of dypens; anterior merlian eyes their diameter from cyes of secome row, of nearly su; eyes of second row their diameter apart; quadrangle of !usterior eye about one-sixth the length of the eephalothoras. Legs rather short and stont ; the fourth pair two and one-half times the lousth of the cephalothorax ; the serond pair twice as long as the emphatothmax: tibia t. patella IV shomer than the cephalothorax, san:e hongth as thbia +
patella I: metatarsus IV shorter than tibia + patella IV by one-third of its own length ; first and second tarsi and metatarsi and distal end of tibie scopulate; tarsi III and IV with scopule divided by a median setose band: patella I and III armed in front (within) with a single spine.

The cpigynum of Lycosa fatifera is very much like that of Lycosa lenta, but is smaller, being not more than half as long, also the septal piece of the gride in lenta is more than two and one-fourth times as long as the cross-piece, whereas it is less than twice as long in fatifera; the cros-piece is also somewhat differently shaped in the two (Pl. - X., fig. S.)

Total length, 17.5 mm . I.ength of cephalothorax, 9.3 mm . ; width, 6.5 mm .

Length of leg I, 20.5 mm .; tib. + pat., 8 mm .; met., 4.4 mm .
Length of leg II, 18.7 mm .
Length of leg III, 16.4 mm .
Length of leg IV, $23.5 \mathrm{~mm} . ;$ tib. + pat., 8 mm .; met., 6.1 mm .
Type locality.-Alabama.
Knou'n localities.-Alabama!, Georgia!, Texas, Missouri!, Kansas!, Illinois, Utah!.

> Syn.-1832. Lycosa fatifera Sill, J. Sc. and Arts (ad. part.), pp. 106-107.
> 1875. Lycosa fatifera Hentz, Spiders of U. S. (Burgess), p. 26, Pl. 2, fig. 8.
> 1895. Lycosa missouriensis Banks, Ent. News., Vol. IV, p. 206.
> 1599. Lycosa domifex Hancock, Ent. News, Vol. X, p. 26.
> 1904. Ciculycosn latijrums Montgomery, Proc. Acad. Nat. Sci. Phila., p. 295, PI. XIN, figs. 15-18.

It seems very probable that Hentz, in his notes on habits, has confounded two sperem umber the name fatifera; but the description and the figure which he gives can hardly be applicable to any other species than the one under consileration. The description and figure indicate a form without distinct markings, and his statement that a "piceous variety is found in Alahama, with the two first joints of the legs pectus and abdomen yedlowish underneath, or lighter in color," applies perfectly to some specimens of the form above described which I have from this same locality, aml which is very common there and must have been well known to Hent \%. This form fits only his description of fotijera amongr all treated hy him. The species which Hentz ohserved livine in holes in Massachusetts, and which he says is common there, may have been L. aspersu (inhonesta), as has been suggested by l3anks, but far more likely it was arenicola, the eommon turret buidder of that region. Hentz says: "Cheliceres covered with rufous hairs," which is not so in most specimens of aspersa. The strong markings of aspersa
would not have been passed over. However, Hentz would seem to have written his description after he had been in the south and away from Massachusetts for many years, and doubtless had before him only the Southern form, which he erroneously supposed to be the same as the turret builder he recalled as common in Massachusetts. Old and rubbed specimens of arenicola might appear similar, as the markings in this form are due to color of the hair. Whatever Northern form it was the habits of which Hentz had in mind, it was long ago separated under another name, and this common and widespread Southern form which Hentz undoubtedly described as and called fatifera must logically continue to bear this name.

The species has been found abundant in the "sandy waters bordering the lower end of Lake Michigan" by Mr. J. C. Hancock ('99) who says: "Patches of high grass, sedges and ragweeds made the open lay of ground a paradise of rumning spiders. Here it was the castle-building species [termed by him domifex] seemed perfectly at home, showing its varied accomplishments to best advantage. The artfully-hidden castle is not apparent to the uninitiated while walking over the ground, as it is commonly secreted in a recess of overhanging dried grass. When one remembers the average size of the adult castle. only fiveeighths of an inch high and a little over one-half inch in diameter. it is obvious that close inspection is quite essential. U'sually the spider's tube is constructed vertically in the ground, unless ohstructions canse some deviations. Old spiders live in their burrows for more than a season and often remodel them after being injured by storms. Younger specimens re-dig outgrown burrows, enlarging them as occasion requires. Materials used in the construction of the turrets were green and dried grass leaves, dried fine sedges, leaves of foxtail grass, fibrous roots, ete. Young specimens not infrequently build a perfect little tower, almost entirely of stones, and one I have in mind had nine such particles made into a compact edifiee five millimeters high. The masonry was exquisitely put up, every stone hearing out true proportions about the central opening of four millimetems diameter. Silk used as cement held the whole together securely."

The author has found the burrows of this species abundant over grassy stretches on the foothills near salt Lake (ity. In the cate of some burrows no turrets are present; but in most cases turete of dried sticks, grass or earth are found.

Lycosa lonta Hentz, 184.4 .
(J. Bost. Nat. Hist., IV, p. 3s6.)

Female.--Tegument of ephatothorax redilish brown as asual, lighter
brown in a metlian hand which may be very indistinct anteriorly, also lighter along margins, with radiating light lines connecting middle and side bands; clothed principally with light gray pubescence, which is densest in a rather wide marginal band each side and in a middle band, wilening from eyes until as wide as eye area at point between eyes and dorsal groove amb then suddenly narrowed to only about half as wide, and from there very gradually narrowing caudad; the median band and lateral band of sray on each side connected by radiating lines of same color: on the siles a dark brown pubescence intermixed with the line of Eray and more abundant above, below the median gray band. Chelicerce hack, the lateral condyles red, clothed with a dense light gray or yellowish gray pubescence. Labium and endites black or dark brownhack, lighter distally. Sternum and coxce of legs beneath black or dark brown-black, clothed with gray and longer, stiffer dark brown or blackish pubescence. Leys brown to yellowish, clothed with light gray to hrown-gray pubescence; scopulæ brown; legs without rings or markings above. Abdomen gray-brown from gray and brown pubescence intermixet. usually in fine streaks and dots; a lanceolate outline or more rarely solid mark at base which is truncated or bifurcated behind; on posterior half a few more indistinct chevron-marks, each bordered behind hy a light line, ending in a light spot each side; a row of triansular dark spots on each side behind but connected by the light cern-lins. suls of abdomen light gray, immaculate or with a few spots of brown. Venter in front of lung-slits brown or gray, often black aloner thr middle; behind lung-slits solid black or sometimes with a light central spot surrounded with black. Spinnerets brown, Epigynum dark reddish brown.

Cephatothorax high, highest a little behind third eye row, line of dorsum a little convex; dorsal groove partly above and partly on po-terion declivity. Fine hardly above half the length of the long and massive chelicerse, the sides convex and slanting about as usual.

Anterior mw of eys: a little shorter than the second, nearly straight; anterion median cers di-tinctly larger than the lateral (3:2), less than their radius apart and about the same distance from the lateral; anterior lateral cers a lit the mone than their diameter from front margin of clypens, searely clozer to cere of serond row; anterior median eyes le.. than their diameter from eyes of seeond row ; eyes of second row 1... than threr-fonths their diameter apart; quadrangle of posterior eyes not fully one-fifth the length of the eephalothorax.

Lefls mowdrately long and stout; the postorion tarsi rather slender; pibia - patrlla IV shortor than cephahothorax; patella I and II armed
in front with a spine; tibix and metatarsi I and II armed below as usual, the spines small and weak; tarsi and metatarsi I and II scopulate as usual; the scopuke of tarsi III and IV divided by rather narrow median setose bands.

For structure of epigynum see Pl. XVIII, fig. S.
Total length, 22 mm . Length of cephalothorax, 11 mm .; width, 7.8 mm .

Length of leg I, 28.1 mm. ; tib. + pat., 10 mm .; met., 6 mm .
Length of leg II, 25.4 mm .
Length of leg III, 25 mm .
Length of leg IV, 32.1 mm .; tib. + pat., 10 mm .; met., 9.2 mm .
Male.-Coloration nearly as in female.
Chelicere above with light yellow-gray pubescence; pubescence on distal portion dark, but fringe along furrow light gray.

Patella I and II armed both in front and behind; spines on tibix and metatarsi I and II comparatively long, not reduced as in female. l'atella and tibia about equal in length and stoutness, together as long as the tarsus which is distinctly thicker.

For structure of palpal organ see Pl. XVIII, fig. 8.
Total length, 20.5 mm . Length of cephalothorax, 10.5 mm .; width, 8 mm .

Length of leg I, 35.7 mm .; tib. + pat., 12.2 mm .; met., 8.8 mm .
Length of leg II, 33 mm .
Length of leg III, 30.4 mm .
Length of leg IV, $40 \mathrm{~mm} . ;$ tib. + pat., 12.5 mm .; met., 11.6 mm .
Syn.-1844. Lycosa ruricola Hentz, J. Bost. Nat. Hist., p. 387.
1875. Lycosa lenta Hentz, Sp. of U.S., p. 27, Pl. 3, figs. 1, 2, 3, 4.
--. Lycosa ruricola Hentz, ivid., p. 28, 11. 3, figa. 5, 6.
1890. Lycosa lenta, Marx, Proc. U. S. N. M., 12.
1592. Lycosa ruricole Hentz, Mars, Proc. Ent. Soc. W., II, p. 160.

1sas. Lycost lema Hentz, Simon, Mist. Nat. des. Araign, II, p. 333.
1900. Lycosa lenta Hentz, Banks, Proc. Acad. Nat. Sci. Phila., p. 533.

Locality.-Pennsylvania, North and South Carolina.
Known localities.-Pennsylvania, North Carolina!, South Carolina, Alabama!, Georgia, Florida.

It would seem probable that Hentz did not in all cases distinguish this form from his erratica, and that his accoment applies partly to the latter species. What he regarded as the typical form, however, was a burrow-making species, although, like corolinensis, etc., found wandering about and hiding under stones, for in his disenssions of erratica he says: "This species I formerly supposed to be a variety of L. lenta, but it was always found wandering and never in holes. I therefore
consider it as perfectly distinct, having been often seen running in the grass." Concerning lenta he remarks: "This common and powerful species is found wandering in fiekls, attacking and subduing very large insects. The female carries her young on her back, which gives her a horrible appearance. If caught or wounded the little ones escape rapidly in all directions; but the mother is faithful to her duties and defends her progeny while life endures. It hides under stones, logs, etc."

Var, baltimoriana (Ǩeyserling), 1876.
(Sub Tarentula, Verh. z. b. Ges. Wien, 26, p. 632.)
l'atellee and distal ends of tibix black beneath; femora of the first and second legs with a dark line along posterior side and one or two -imilar ones above, these replaced with corresponding rows of dots on posterior femora. Otherwise agreeing with type form.

```
Syn.-1890. Tarentula baltimoriana, Marx, Proc. U. S. N. M., 12, p. 563.
1902. Lycosa baltimoriana, Montgomery, Proc. Acad. Nat. Sci. Phila., p.
    561, Pl. 29, fig. 25.
1904. Lycosa baltimoriana, Banks, J. N. Y. Ent. Soc., NII, p. 114.
- Geolycosa baltimoriana, Montgomery, Proc. Acad. Nat. Sci. Phila.,
    p. 297.
```

Type locality.-Baltimore, Md.
K゙uoun loculitics.-Mhode Island, Pennsylyania, Maryland, District of Columbia, Virginia, Texas.

I have seen ton few specimens of this form to be able to determine satisfactorily the validity of its rank as a variety. It is maintained here as such tentatively. Females showing the variant colors are not known to me personally, nor have such been reported.

Lycosa carolinensis Wialckenaer, 1537.
(Insect. Apt., p. 285).
Female.-'egument of cephatothorax uniformly dark reddish brown covered with a dense coat of brown and gray hair making it more or las monse-colonel, thowing in fully grown individuals commonly no di-tinct markinge ; in sonm at eray -upmatrginal band on each side and a similar modian ome alone thedoramo, wilening frombehind anteriorly.
 sparee Jong brown bristles; the denee fringe along furrow reddish brown or rust colored. Labium and endites black, brown at tips. sternum and coxer of lege beotath hark, cowered with brown hairs. 'Iegument of legs reddich brown, darker di-sally, paler on ventral turface of femora; on ventral surface at di-tal end of femur and at
both ends of tibia black, these dark bands covered with dark brown hair; the scopulx of same brown color, but legs elsewhere clothed with much lighter hair which is light brownish gray to whitish. Abdomen with the tegument light brown; at base a dark or blackish median stripe which bifurcates at its caudal end and sends out from its sides several pairs of pointed lines directed caudo-laterally; behind the basal stripe a series of chevron-shaped laterally and anteriorly acutely pointed dark cross-marks, often a series of light dots along each side; dorsum densely covered above with long brown to grayish-brown pubescence, except over the dark marks which are clothed and made more distinct by black hair; sides of abdomen above dark with brown and black pubescence intermixed in spots and streaks, the sides below becoming paler, yellow to gray or almost white with larger but more sparse black spots; venter nearly always deep brown or black, due largely to the pubescence being very dense and of the latter color; sometimes a light mark or spot within the light area on each side of middle line, leaving three black stripes converging and miting in front of the spinnerets and united by a cross-bar behind the genital furrow, while in other rarer cases the reduction of the black may be carried even farther. Spinnercts brown. Epigynum reddish black.

Face in height moderate, more than half the length of the chelicerse: sides strongly convex and moderately slanting outward helow, not so steep as in scutulata.

Anterior row of eyes nearly as long as the second, but little procurved; anterior median eyes not fully their.radius apart, a little farther from the lateral eyes which are a little smaller; clypeus wide, the anterior lateral eyes more than one and one-half times their diameter, or rather nearer twice from its front margin, closer to eyes of second row ; eye of second row not proportionately large, not much les than their diameter apart; eyes of third row twice as far apart as from those of second row; quadrangle of posterior eyes relatively shont, being mot fully one-sixth the length of the cephalothorax.

Chelicere long and very robust, the margins of its furmos armed in typical manner. Lebium a little longer than wide ($12.5: 11.75$); basal exeavation one-third or a little more the total lengrti ; lahium above excavations broadly rectangular, as wide above as below, the sides nearly parallel and scareely curved, antero-lateral angles roumbed; front margin widely truncate. Legs long and molnet; tibia + patella IV shorter than the cephalothorax, of same length or nearly so as tibia + patella I; spines of anterior tibis beneath as usuab patella I and II each armed on the anterior side with a single spine; anterior tani
and metatari heneath with dense scopular pads which extend also orer tihnee except at hasal third or half ; scopule of posterior legs not extending upon tibix, divided as usual.

Epigymum oblong, rounded anteriorly; guide inversely T-shaped with the transwerse arm shorter and stouter; lateral furrows narrow and of same width throughout. (Pl. XXI, fig. 1.)
'lotal length, 34.5 mm . Length of cephalothorax, 14 mm . ; width, $11 . \mathrm{mm}$.

Length of leg I, 35.7 mm . ; tib. + pat., $13.2 \mathrm{~mm} . ;$ met., 8 mm .
Length of leg II, 35 mm .
Length of leg III, 31.7 mm .
Length of leg IV, $42 \mathrm{~mm} . ;$ tib. + pat., 13.2 mm .; met., 10.8 mm .
Male-Rather lighter in color than the female. Chelicera very denistly covered with grayish-yellow hair, the heavy fringe of the furrow rufous.

Patelle of legs I and II armed both in front and behind.
I'atella and tibia of polpus of nearly same length and thickness, the tihia enlargine listally; tansus a little shorter than the two preceding joints together. For structure of tarsal organ see Pl. XXI, fig. 2.

Total length. 21 mm . Length of cephalothorax, 11.1. mm.; width 8.6 mm .

Length of leg $I, 35.7 \mathrm{~mm} . ;$ tib. + pat., 12.2 mm. ; met., 8.3 mm .
Length of lear II. 32.3 mm .
Length of ley III, 28.7 mm .
Lengeth of leg IN; $40.2 \mathrm{~mm} . ;$ tib. + pat., 12.3 mm . ; met., 11.5 mm .
Syn.-1s.42. Lyensa carolinensis?, Bose MSS., Hentz, J. B. Soc. N. H., 4, p. 2319.
1552. Ly/(1):a prilosa Girard, Marcy's Expl. Red R. of La., p. 252, Pl. 16, figs. 4 and 5 .
1575. Leycusa carolinensis?, Bose MSS., Hentz, Sp. of U.S., p. 27, PI. 2, fig. 9.

15 $\mathbf{5} 5$. Lycosu carolinensis Hentz, Emerton, Tr. Conn. Acad. Sci., 6, p. 486, Pl. 47 figs. 1 to 1 lb.
1890. Lycom carolinensis, Marx, Proc. U. S. N. M., 12, p. 561.

Lyç-2 carolimen in, -tone, Proce Icad. Nat. Sci. Phila., 42, p. 423.
1592. Lyensa carolinensis, Marx Proc. Ent. Soc. W., 2, p. 16i0.

1891. Lycosa carolinensis, Banks, J. N. Y. Ent. Soc., 2, p. 50.
1695. Lyeosa carolinensis, Banks, Ann. N. Y. Acad. Sci., 8, p. 429.
-- L.ycosa carolinensis, Banks, Ent. Xews, 6, p. 205.

Shs. Lyman curolimnas, cimon, Hi-t Nat, Araign., 2, pp. 332 and 347.

- Lycosu carolinensis, Montgomery, 1'roc, Acad. Nat. Sci. Phila., 556.

I'I. XVIII, figy. 13, 14 (color var.).
Gicolycoss carolinensis, Montgomery, ibid., p. 299.

Type locality.-"Carolina."

Knoun localities.-New Hampshire!, Massachusetts, Rhode Island!, Connecticut, New York!, New Jersey, Pennsylvania, District of Columbia!, North Carolina!, Georgia, Alabama, Florida, Louisiana. Mississippi!, Texas!, Kansas!, Indiana, Colorado, Utah!.

Our largest Lycosa, much resembling in its large size and in coloration the famous Tarentula of southern Europe and its close allies. Specimens from the Southwest often differ from the typical form in having the venter in part pale as above described.
"This spider has the same habits as L. fatijera, making deep excavations in the ground. It is frequently found under stones, and possibly it is in such places, nearer the surface, that the eggs are hatched. The female carries her young on her back, presenting a hideous aspect, being then apparently covered with animated warts. The little monsters have the instinct, if the mother is much disturbet, to escape and seatter in all directions. The male, not unfrequently of an enormous size, is often found wandering in October and November in Alabama, and sometimes enters houses" (Hentz). Concerning its habits in New England, Emerton says: "This species digs a hole six or eight inches deep, but is often found under stones or rumning in fields and occasionally in houses all over New England."

This species is common in Utah, where the males are frequently seen wandering in the open or hiding under stones. The females dig deep burrows which are sometimes surmounted with turrets, but not so commonly so as in the case of fatifera.

Lycosa coloradensis Banks, 1894.

(J. N. Y. Ent. Soc., p. 50.)

Female.-Tegument of cephalothorax reddish brown, densely clothed with pubescence which nearly completely masks the ground color. A median light band as wide anteriorly as the eye area, but abruptly narrowed at dorsal groove to only half that width or less; this meelian band formed of brown-gray pubescence, often mixed anteriorly with darker pubescence which obscures the distinetness of the band. Sidee of cephatlothorax clothed with dark, brownish to grayish black pubescence, mixed with gray like that of median band, the gray predominating, primeipally. arranged in wide radiating bands and becoming more abmolant below. where it forms on each side a marginal band which is wideot anterionly where it nearly touches rye area. Chelicere with tognment hacki=h on reddish back, completely maskel on upper half whth hener pulseremere of rusty brown color, that of lower half dark and very -parse, paler
along furrow of chelicerce. Labium and endites black or nearly so, lighter at tips. Sternum and coxre of legs beneath black or nearly so. Femora of legs beneath light gray, the tibix and more especially the tani and metatasi darker brown because of scopulx, the ends of femora and of last four tibix black; above the femora a little darker than below, brown, but distal joints no darker, no bands at end of any joints showing above. Legs densely clothed with pubescence which give the colons as above, the tegument itself being reddish brown above and much paler. yellowish, beneath except at ends of femora and last two pairs of tibie which are black. Abdomen with middle of dorsum light brown or grayish brown, a dark brown basal lanceolate mark with its margins deeper, its points behind terminating in the apex of a dark chevron-mark, which is followed behind by several other chevrons. The lanceolate mark giving off laterally most commonly two pairs of lines running latero-caudally on each side; side of dorsum dark brown or blackish with numerous small light dots and enclosing on each side a series of large light spots along sides of chevrons, and at outer ends of the lines from basal mark an ocellate light spot contiguous with each side of basal spear-mark near its middle. Upper portion of sides dark brown to black with numerous light spots and darker, below the sides are gray with dark brown or black spots. Venter in front of lung-slits and in a smaller spot at base of spinnerets black, elsewhere gray, with or without small dots of black. Spinnerets dark brown. Epigynum black or reddish black.
('rphututhornx behind rather low; in profile highest at third eye row (r, a little behimt it. a little depressed or notehed at donal groove. Face low. one-half in height the length of the chelicerx.

Front row of eyes shorter than second ; eyes of first row very nearly equal in size: cyes of second row three-fourths their diameter apart; anterior lateral eyse their diameter from eyes of second row, closer still to front margin of clyperis; quadrangle of posterior eyes one-fifth the length of the cephalothorax.

Lus IV hess than three times the length of the cephalothorax; tibia + patella 11° shorter than eephalothorax, longer than metatarsus; metatarsus IV nearly of same length tib. + pat. I; metatarsi and tarsi I and II scopulate; tarsi 111 and IV with wide setose bands dividines soppuler. Tibise I and II armed as mswal. Patella II armed in front with a single spine.

For structure of epigymum see Pl. XVIHI, fig. 6.
Total length, 18 mm . Length of cephalothorax, 8 mm .; width, 6 mm .

Length of leg I, 18.4 mm .; tib. + pat., 5.9 mm .; met., 4 mm .
Length of leg II, 17.8 mm .
Length of leg III, 17.3 mm .
Length of leg IV, 22.5 mm .; tib. + pat., 7.2 mm .; met., 6 mm .
Male-Coloration similar to female; pattern on abdomen rather more distinct and spots on sides fewer.

Patella I and II armed both in front and behind. Tibia and patella of palpus subequal in length and thickness, together as long as tarsus; tarsus much thicker than preceding joints.

For structure of palpal organ see PI. XVIII, fig. 7.
Total length, 13.3 mm . Length of cephalothorax, 6.7 mm .; width, 5 mm .

Length of leg II, 21.8 mm .
Length of leg III, 19.3 mm .
Length of leg IV, 26.3 mm .; tib. + pat., 8.1 mm .; met., 7.6 mm .
Type locality.-Colorado.
Known localities.-Colorado!, Arizona!, New Mexico, Kansas!.
Lycosa erratica Hentz, 1812.
Lf (Journ. Bost. Soc. Nat. Hist., 4, p. 3s8.)
Female.-Sides of cephalothorax blackish brown, less commonly paler; a reddish yellow or reddish brown median band, narrowest behind, which widens distinctly at posterior end of pars cephalica and becomes as wide as third eye row, from which point it contracts to a narrow stripe or line which continues forward to the finst eye row; along each lateral margin a light band similarly colored to the median one, the lateral bands bisected by a dark line at least anteriorly; the median pale band clothed with light gray or brownish-white pubescence which between the eyes becomes yellowish, the lateral bands similarly clothen; sides of cephalothorax clothed with similar hair intermixed with much black which is most abumbant along each side of the median band, but becomes more and more sparse below toward the margins. Chelicere dark reddish brown, chothel with short yellowish pubescence and with intermixed longer black bristles, a fringe of long dark gray hair along the margin of furrow. Labium and codites reddish bown. Stermum blackish, with nsually a paler median stripe; chothen with grayish brown and more scattered blackish haits. Leyss and pelpi brown cowered with a short brownish gray pubescence with the usual longer blackish hais intermixed ; all femora with lark eross-hands of annulat tions which are present also at the embls and in the midulle of the tansi
and metatari and at the middle of the patelle of the posterior paiss. but which are not present on these joints of the anterior pairs; the dark amnuli on the femora mostly incomplete below; the anterior and posterior face of each femur commonly with a longitudinal black line or stripe. Abdomen with a wide pale hand over the dorsum, narrowing usually to a point at the spinnerets; within the pale band at base a dark, black-edred. lanceolate mark which extends to or often much beyond the middle, ending usually in a forked apex and followed behind usually by a triangular mark and several dark cross-lines; at other times the basal stripe ends acutely; less commonly it is entirely absent; sides of donsum laterad of light band dark brown enclosing a series of large angular hack spots; sides above brown becoming lighter below, usually marked with numerous small black spots; venter whitish or light yellow, without spots, but in the great majority of cases marked by a black [-shaped stripe, each arm of which has its end behind a lung-slit, the bent middle part being at the spinnerets, the arm of the U-shaped band often connected by a cross-band behind the genital furrow; sometimes the venter is entirely pale without any markings. Epigynum reddish brown. Spinnerets smoky brown to black.

Fine monlerate in height, the chelicere about one and three-fourths times as long; sides convex and moderately divergent below. Anterior row of eyes moxlerately procurved, shorter than the second by twice the diameter of a lateral eve; anterior median eyes their radius apart, closer to the smaller lateral eyes; anterior lateral eyes their diameter from eyes of second row, a little farther from margin of clypeus; eyes of second row their diameter apart, not much farther from the threefourths as large eyes of the third row; cyes of third row twice as far from each other as from eyes of second row; cephalothorax rather less than five times the length of the rephalothorax. Chelicere armed as usual, the third tooth of lower margin of furrow a little reduced. Labium much longer than wide ($16: 12.5$); basal excavation of usual length; biles evenly convexly curveel from excavations to anterior angles; front margin truncate. Lefls lomg, the distal joints slender, especially so the posterior metatani; tibia + patella IV longer than cephalothorax which is longer than tibia + patellat I; anterion tibiae with spines as untual; seopular of tari as usual, those of anterior paiss extending also upon metatarsi except at base; patella 11 armed within.

Euds of transverse arms of guide of 'pigymum almost always char-acteri-tically excavated on anterion side of emels (11). XVII, fig. 3).

Total length, 14 mm . Length of cephalothorax, 5.4 mm .; width, 4 mm .

Length of leg I, 14.6 mm .; tib. + pat., 5 mm .; met., 2.9 mm .
Length of leg II, 13.9 mm .
Length of leg III, 13.2 mm .
Length of leg IV, 19.3 mm .; tib. + pat., 5.9 mm .; met., 4.9 mm .
Male.-Coloration as in female but rather brighter.
For structure of palpal organ see Pl. XVII, fig. 4.
Syn.-1844. Lycosa sagittata Hentz.
1846. Lycosa propinqua Blackwall, 1846 (Ann. and Mag. Nat. Hist., Vol. XVII pp. 31, 32).
1875. Lycosa erratica Hentz, Sp. U. S. (Burgess), p. 29, PI: 3, fig. 8.
1876. Tarentula lepida Keyserling, Verh. z. b. Ges. Wien, 26, p. 631, Pl. 7, fig. 15.
1877. Tarentula scalaris, Thorell, Bull. U. S. Geol. Surv. Terr., III, No. 2, p. 520 .
1885. Lycosa communis Emerton, Trans. Conn. Acad. Sci., 6, p. 489.
1890. Lycosa erratica, Marx, Proc. U. S. N. M., 12, p. 561.
-. Lycosa communis, Marx, loc, cit.
1891. Lycosa erratica, Banks, Ent. News, 2, p. 86.
1892. Lycosa communis, Marx, Proc. Ent. Soc. W., 2, p. 160.
—— Lycosa communis, Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 64.
-- Lycosa communis, Fox, Proc. Ent. Soc. W., 2, p. 269.
1895. Lycosa erratica, Banks, J. N. Y. Ent. Soc., Vol. 3, p. 91.

Lycosa crratica, Banks, Ent. News, 6, p. 205.
1898. Lyycosa erratica, Simon, Hist. Nat. Araign., 2, p. 331.
1900. Lyycosa erratica, Banks, Proc. Acad. Nat. Sci. Phila., p. 538.
1902. Lycosa communis, Emerton, Common Sp. of U. S., p. 75, figs. 181, 182.
-. Lycosa lepida, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 562, Pl. 29, figs. 26, 27.
1904. Lycosa lepida, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 287.

Type locality.-Massachusetts and Alabama.

Known localities.-Massachusetts!, Comnecticut, Rhode Island!, New Hampshire!, New York!, Pennsylvania, New Jersey, District of Columbia!, Alabama, Louisiana!, Texas, Georgia!, Nopth Carolina!, Ohio, Illinois, Iowa!, Kansas!, Colorado!, Arizona!, L'tah!, Montana!.

I do not think there is room for doubt that the species above described is the real erratica of Hentz, when one considers the abotominal markings shown in his figure, in connection with his remments on habits and the localities where he found it common.

Hentz says concerning this species that it "was always found wandering and never in holes; ... it was often seen, generally running in the grass." This is a very common and widely distributed species, found under stones and logs in the wools and especially in grassy meadows. It is subject to much variation in size, though its characteristic markings are rarely missel.

Lyoosa soutulata Hentz, 18 s2.
(Journ. Bost. Soc. Nat. Hist., IV, p. 390.)
Female.-Cephalothorax with a dark chocolate-colored hand each 17
side of the middle line which is widest behind and narrowing forward is prolonged ower the eves of the corresponding side to the front margin of the clypeus, and in young specimens continues down the chelicere of the same side to near its distal end ; these bands are covered with a blackish pubescence with intermixed lighter yellowish hairs; between these dark hands is a narrower yellowish-brown median band which is much constricted between the last two rows of eyes, but expands again upon the fate before reaching the margin of clypeus, this band clothed with yellowish-gray pubescence, clear yellow in front; the sides of cephalothorax below dark bands colored and clothed similarly to metlian band with below a chocolate-colored submarginal line. Cheliceter reddish brown covered with yellowish or grayish-yellow pubescence at the distal end, within along the femora a fringe of longer hair of somewhat rusty tinge. Labium reddish brown, clothed with a grayish or tawny pubescence with intermixed longer, stiffer black hair. Sternum, endites and coxce of legs beneath light brown. Legs and palpi light brown, the tarsi and metatarsi mostly darker, as also the tibir at distal ends; the femora with some rather faint longitudinal darker lines clotheel with tawny pubescence with intermixed hair of blackish color, the longer ones of the latter pale on distal halves. Abdomen with a broad hlackish median band extending the entire length narrowed from near middle towards each end, this band covered with intermixed dark trown and blackish pubescence, the band indentated with a brownish-yellow notch on each side in front of middle and behind cither with a series of similar indentations of yellow or enclosing corresponding pairs of sulmarginal spots; each side of median band a narrow brownish hand appearing yellow because covered by a dense coat of yellowish puhnespence; sides with tegument brown, sheathed with lines of Wackish-brown and yellowish pubescence above, paler yellow with back spots hetow. Tegment of venter brown, densely clothed with yellow puberence and with small spots of black pubescence, mostly arranged over one or two pais of darker lines converging toward the epinnerets. S'pinnerets rather dark brown. Epigynum blackish.

Smaller specimens are paler, and the venter may be without spots and unmarked exeept for faint indications of the posterionly converging lines.

Cephatothorax highest at third row of eres, dorsal line in profile a little depressact at fromt of median groove. Fioce high, two-thirds as high ats cheliceras are longe, in profile slightly comvex and protrudes a little above. Anterior row of cyes promeneel, shonter than the second
by twice their diameter; eyes subequal in size and nearly equidistant, being separated from each other by a space rather less than their radius; anterior lateral eyes more than their diameter from the front margin of clypeus, closer to the eyes of second row; eyes of second row large, less than their diameter apart; eyes of third row two-thirds as large as those of the second, nearly twice as far from each other as from eyes of second row; cephalothorax five times as long as quadrangle of posterior eyes. Margins of furrow of the chelicere armed as usual, the third tonth of the lower margin a little reduced. Labium much longer than wide ($19: 16$); basal excavation one-third the total length or rather longer; sides below straight and subparallel to middle, then straight and converging to angles in front; front margin very gently convex laterally and indented at middle. Legs long and slender; the posterior tarsi slender and nearly as long as tibia + patella; all tarsi densely scopulate, the scopule clearly divided on posterior pains by a narrow median setose band, on the anterior pairs the scopule extend also upon the metatarsi entirely to the base and even upon the tibise distally.

For structure of epigynum see Pl. XVII, fig. 9.
Total length, 21.5 mm . Length of cephalothorax, 10 mm .; width, 7.6 mm .

Length of leg I, 32.6 mm .; tib. + pat., 10.8 mm .; met., 7.8 mm .
Length of leg II, 28.4 mm .
Length of leg III, 21.7 mm .
Length of leg IV, $38.8 \mathrm{~mm} . ;$ tib. + pat., 12.2 mm .; met., 11.8 mm .
Male.-Front pair of legs dark reddish brown to black, excepting tarsus and proximal end of femur, above which are lighter; other legs light brown. Anterior half of median dossal stripe of abdomen black and distinctly darker than posterior half. Venter gray, immaculate. Chelicere brown with yellow pubescence.

Patella I and II armed in front and behind.
For structure of palpus see Pl. XVIII, fig. 1.
Total length, 11 mm . Length of cephalothorax, 6 mm ; width, 4.7 mm .

Length of leg I, 21.6 mm .; tib. + pat., 7.2 mm .; met., 5.6 mm .
Length of leg II, 20.5 mm . ,
Length of leg III, 17.8 mm .
Length of leg IV, 25.8 mm .; tib. + pat., 7.7 mm .; met., 8.1 mm .
1875. Lycosa scutulata.
1890. Lycosa scutulata Marx, Proc. U. S. N. M., XII, p. 563.

```
    1590. Ly/cosa scutulata Hentz, Stone, Proc. Acad. Nat. Sci. Phila., p. 427.
    1s92. Lycosa scululata Hentz, Banks, Proc. Acad. Nat. Sci. Phila., 1892,
        p. 66.
    -- Ly/rost scutulata Marx, Mentz, Proc. Ent. Soe. Wash., II, p. 160.
    1895. Liycosa scutuluta Hentz, Banks, J. N. Y. Ent. Loc., Vol. III, p. 91.
    --. Lycosa scutulata Hentz, Banks, Ent. News, IV, p. 205.
    1s97. ILycown scutulatu Hentz, Banks, Proc. Ent, Soc. Wash., Vol. IV, p. 189.
    1s95. Lycest scululuta Hentz, Banks, Proc. Col. Aead. Sci., 3d ser., Zool.,
        Vol. I, p. 268.
        - Ly,cosa scutulata Hentz, Simon, Hist. Nat. Araign., Vol. II, pp. 329,
        330, 346.
    1900. Lycosa scutulata Hentz, Banks, Proc. Acad. Nat. Sci. Phila., p. 538.
    19012. I.!eesm scutulata Hentz, Emerton, Common Sp. of U. S., p. 76.
        Ly/usu scutulata Hentz, Montgomery, Proc. Acad. Nat. Sci. Phila.,
        p. 553.
    1904. Lycosa scutulata Montgomery, Proc. Acad. Nat. Sci. Phila., p. 289.
```

 Type location.-Alabama.
 Knoun low'ities.-Alabama, North Carolina!, Georgia!, Florida,
 Louisiana!, Misissippi, Texas, Connecticut, New York!, Pennsylvania,
New Jersey, District of Columbia, Ohio, Indiana!, Illinois, Iowa!,
Kansas!.

Hentz remarks as follows concerning Lycosa scutulata after his original decription: "This common and very distinct species attains a very large stature. It is most commonly found wandering in quest of prey.... The cocoon is very large, spherical and whitish, containing from 150 to 200 eggs, which hatch before the cocoon is opened. The yellow spots on the abdomen seem to be wanting in the young." (S'p.U.S., p. 32).

Lyoosa panctulata Hentz, 1842.

(J. Bost. Soc. N. Hist., 4, p. 390 .)

Cephatuthorax light brown, with each side of the middle a blackishbrown stripe which rums forward over eyes of the corresponding side and reaches the front margin of the clypeus as a much narrower line, also on each side a very marrow marginal and a wider submarginal backish line; the median light hand is narrower than the dark bands enclosing it ; between the eyes of the third and second row it is narrowed to a line but widens again above eyes of first row; the dark hands of cephatothorax are clothed with lark somewhat smoky-brown pubescence, the light recrions eovered with a grayish-brown pubescence about the eyes are longer. ('helicere black, clothed with short light yellowish pubescence and some mostly very long blackish bristles; at the distal end within along the furrow a fringe of long yellow or rusty $\mathrm{y}^{\text {ellow }}$ hairs. Labium and endites dark reddish brown; light distally. Stormum black, clothed with grayish-brown pubescence. C'oxe dark reddish brown. Legs elsewhere brown; the distal ends of
the tibire and metatarsi of the last legs usually darker, legs otherwise without markings; covered with a very stout pale pubescence and with longer straight blackish bristles which are denser than in scutulata; the longer bristles appear paler distally as in scutulata. Tegument in general brown, blackish brown along a wide median band extending the entire length of the abdomen, the band widest in middle, covered by intermixed black and deep brown pubescence with longer black bristles; margin of middle black band smooth, not broken by indentations or enclosed lighter spots; the black pubescence more dense at borders of its melian band, the brown over its middle; each side of middle band a grayish-brown stripe; exterior to gray stripes the sides are colored with brown and grayish brown intermingled in spots and streaks, the brown often solid at the antero-lateral angles; sides below and the venter gray with very small spots of black, the venter with a variable number of larger black spots, sometimes also with one or more continuous dark patches. Epigynum dark reddish brown to black. Spinnerets brown.

Cephalothorax narrow, highest behind second row of eyes; sides rather weakly rounded, high, with the sides steep. Face high, rather more than two-thirds as high as the chelicere are long, the sides steep and but moderately convex. Anterior row of eyes moderately strongly procurvel, shorter than second row by about twice the diameter of an anterior eye; anterior median eyes their radius apart, farther from the slightly smaller lateral eyes; anterior lateral eyes scarcely their diameter from the front margin of the elypens, much farther from the eyes of the second row; eyes of the second row less than their diameter apart; cyes of third row about two-thirds as large as those of the second; quadrangle of posterior eyes one-fifth as long as cephalothorax. Chelicere armed as usual.

Legs long and moderately slender, the last tarsi slemder but not proportionately long; all femora conspicuously fattened laterally, each of the two posterior ones on each side concavated behimb and bent conspicuonsly backward, the two anterior ones concavated in front side and bent forward; anterior tibise and metatarsi armend bencath as usual, all tarsi densely scopulate beneath, the posterior ones clearly bisected by a narrow median setose band ; the anterior medatans also scopulate for most of the entire distance to their hases, but the posterior metatarsi not at all scopulate.

For structure of epigynum see Pl. XVIII, fig. 2.
Total length, 16.4 mm . Length of cephalothoras, 7 mm .; wilth, 5 mm .

Length of leg I, 20 mm .; tib. + pat., 7.4 mm .; met., 4 mm .
Length of leg II, 17.9 mm .
Length of leg III, 16.6 mm .
I.ength of leg IV, 22.6 mm .; tib. + pat., 7.5 mm .; met., 6.6 mm .

Male.-Chelicere black, covered, but not densely, with black pubescence; fringe along furrow pale rufous. Legs yellowish or pale brown, the joints beyond patella of anterior pairs darker, reddish brown; distal ends of tibia and metatarsus of leg IV darker blackish. The hair of middle stripe of dorsum of abdomen, except black margins, is rufous or nearly so, the light stripes bounding it are made by goldenyellow hair. Yenter with a wide median black band, which is widest at its anterior end where it spreads out back of lung-slits.

Patella I and II armed both in front and behind.
For structure of palpal organ see Pl. XVIII, fig. 3.
Tutal length, 15 mm . Length of cephalothorax, 7.3 mm .; width, 5.5 mm .

Length of leg I, 23.2 mm .; tib. + pat., 8.4 mm .; met., 5 mm .
Length of leg II, 21.9 mm .
Length of leg III, 18.6 mm .
Length of leg IV, 29 mm .; tib. + pat., 9 mm .; met., 9 mm .
Syn.-1842. Lycosa punctulata Hentz, J. Bost. Soc. Nat. Hist., p. 390.
1875. Lycosa punctulata Hentz, Spiders of U. S., p. 31, Pl. 3, figs. 16, 17.
1885. Lycosa punctulata, Emerton, Trans. Conn. Ac., IV, P. 490.
1890. Lycosa punctulata, Marx, Proc. U. S. N. M., 12, p. 563.

Xon.-syn.- Lycost punctulata Hentz, Stone, Proc. Acad. Nat. Sci. Phila.
1892. Lycosa punctulata, Banks, Proc. Acad. Nat. Sci. Phila.

- Lycosa punctulata, Hentz, Fox, Proc. Ent. Soc. W., 2, p. 269.
- Lycosa punctulata, Marx, Proc. Ent. Soc. Wash., II, p. 160.
149.7. Leycosa munctulata, Manks, J. N. Y. Ent. Soc., 3, p. 91.

1\%0. Lycosa panctulata, Banks, Proc. Acad. Nat. Sci. Phila., p. 538.
1902. Lycosa menctulata, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 552.
1904. Lycosa punctulata, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 288.

Type location.-Pennsylvania.
Knornlocalitics.-P'ennsylvania, Aorth Carolina!, Georgia!, Alabama, Fhorida, Louisiana!, Mississippi!, Massachusetts, Comecticut, Rhode Island!, Indiana!, Ohio.

Lyoosa frondicola Emerton, 1885.
(I'rans, Conn. Acad. Sci., 6, p. 484, Pl. 46, figs. 3 to 3b.)
Female.-Sides of cephatothorax dark brown above, lighter toward margin; a median light brown band which is widest just behind the eye area, where it is wider than the third row; from there it very gradually narrows caudally and anteriorly passes broadly between the eyes of the third row to those of the second; the median band in life
densely clothed with light gray pubescence; sides of cephalothorax clothed with mixed black and gray pubescence, the gray predominating, increasing in abundance from above below and finally forming a narrow marginal light gray stripe in which the hair is unmixed with any black. Chelicere black, clothed over basal portion with light brown pubescence, distally with black. Labium and endites dark reddish or blackish brown, lighter at tips. Sternum and coxe of legs beneath dark reddish-brown to black, the coxæ somewhat paler basally; clothed with black hair. Legs brown or reddish brown with some dark annulations on the femora, which may be indistinct and which are commonly incomplete above and below; the patella, tibix and metatarsi of the posterior pairs of legs also normally annulate with dark, the patellæ showing one ring, the tibiæ two and the metatarsi three; the anterior legs not marked beyond the femora; legs densely clothed with gray pubescence, longer black hairs sparse. Abdomen above grayish brown, the pubescence being mixed gray and brown, the gray sometimes arranged over entire dorsum in minute spots and streaks; black pubescence over two angular spots close together in front of middle, these spots forming the angular lateral portion of an elsewhere faint basal lanceolate outline which bifurcates at its posterior end; a number of less distinct dark transverse chevron-lines behind; a black band or spot crossing over each antero-lateral angle caudally, with pubescence of same color, this band dissolving in the gray and brown pubescence behind; sides of abdomen light brown, densely covered with gray and brown pubescence, these sometimes uniformly mingled but more commonly intermixed in numerous small spots and streaks; venter with a wide median band of black back of spinnerets, the edges of which are uneven, this band frequently occupying the entire venter; at times the dark band is entirely absent. Epig!mum reddish brown. Spinnerets brown.

Face low and wide, in height less than half the length of the chelicere, sides rounded and strongly slanting. Dorsal line of cephalothorax highest between third eye row and dowal groove, being convex between eyes and the posterior declivity.

Anterior row of eyes but slightly procurved, nearly or quite as wide as the second; anterior median eyes their radius apart, closer to the somewhat smaller lateral eyes; anterior lateral eyes one and one-half times their diameter from the front margin of clypeus, less than their diameter from eyes of second row; eyes of second row considerably less than their diameter apart ; eyes of third row more than twice as far from each other as from cyes of second row; quadrangle of posterior cyes a little more than one-sixth as long as the cephalothorax.

Chelicere massive; margins of furrow armed as usual. Labium a little longer than wide ($16: 15$); basal excavation as usual; attenuated anteriorly, the sides below well rounded convexly, straight above; front margin incurved or concave for its entire length. Legs strong, moderately slender distally; tibia + patella IV evidently shorter than the cephalothorax, the metatarsus a little longer than or nearly of the same length as the width of the cephalothorax; tarsi and metatarsi I and II scopulate beneath, tarsi ILI and IV as usual ; spines of anterior tibiæ as usual ; patella II armed anteriorly.
side ridges and furrows of the epigynum are of the usual form; the guide is of the inversely T-shaped form, the septal piece is enlarged or widened at its middle, being thus more or less fusiform, being narrow adjacent to the transverse arms; transverse piece as long as or a little longer than the median, its arms passing well out laterally behind the lateral tubercles and being scarcely confined at the ends; guide plates along front of tranverse arms narrow, even more so upon posterior end of septum where they fade out (Pl. XVIII, fig. 4).

Total length, 13 mm . Length of cephalothorax, 6.5 mm . ; width, 4.7 mm .

Length of leg I, 14.6 mm .; tib. + pat., 5.3 mm .; met., 3.1 mm .
Length of leg II, 13.9 mm .
Length of leg III, 12.6 mm .
Length of leg IV, 18.5 mm . ; tib. + pat., 5.8 mm .; met., 5 mm .
Male- C'ephatothorax in color nearly as in the female. Legs lighter. Abdomen with the black bands over the antero-lateral angles more distinctly continuing caudally as a dark band along sides of dorsum, this band behind frequently breaking up into oblique lines and spots; abdomen otherwise as in the female.

Patella I and II armed both in front and behind.
Apical portion of tarsus of palpus evidently shorter than the bulb, acute; auricle large and broal, the terminal part of embolus lying in it clearly exposed; tenaculum at base horizontal and rather stout, then bent forward rather abruptly and becoming very slender. (1’. XVIII, fig. 5.)

Total length, 10 mm . Jength of cephatothorax, 5.2 mm . width, 4 mm .

Length of leg $I, 14.1 \mathrm{~mm}$; tib. + pat., $4.9 \mathrm{~mm} . ;$ met., 3.2 mm .
Length of leg II, 12.6 mm .
Length of leg III, 11.5 mm .
Length of leg $1 V, 15.7 \mathrm{~mm}$; tib. + pat., 5 mm .; met., 4.8 mm .

Syn.-1877. Tarentula modesta Thorell, Bull. U. S. G. S. Terr., 3, No. 2, p. 520 (name preoccupied by modesta Keys.).
1885. Lycosa nigroventris Emerton, Tr. Conn. Acad. Sci., 6, p. 485, P1. 47, figs. 5 to $5 b$.
1890. Tarentula pudens Marx, Proc. U. S. N. M., 12, p. 564.
——. Lycosa frondicola, Marx, ibid., p. 561.
-. Lycosa frondicola, Stone, Proc. Acad. Nat. Sci. Phila., 42, p. 426.
1892. Lycosa fronlicola, Marx, Proc. Ent. Soc. W., 2, p. 160. Lycosa frondicola, Fox, op. cit., p. 269.
-. Lycosa frondicola, Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 64.
1894. Lycosa modesta, Banks, J. N. Y. E. Soc., 2, p. 50.
1895. Lycosa modesta, Banks, Ann. N. Y. Ac. Sci., 8, p. 429.
-. Lycosa frondicola, Banks, J. N. Y. Ent. Soc., 3, p. 91:
1902. Lycose frondicola, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 561, Pl. 30, figs. 28, 29.
1904. Trochosa frondicola, Montgomery, ibid., p. 306.

Type locality.-Massachusetts.
Known loca'ities.-Massachusetts!, New Hampshire!, Connecticut, Rhode Island!, New lork, New Jersey, Pennsylvania, District of Columbia!, Ohio, Indiana, Illinois, Iowa!, Kansas!, Montana!, Utah!, Colorado!, Arizona!.

From a study of specimens from various places in the West, I am convinced that the species described by Thorell from Colorado as T'arentula modesta is the same as the Lastern L. frondicola, and Thorell's name would have to be used except that it is preoccupied by Ficyserling's species. In 1890 Marx proposed the name pudens to take the place of modesta; but as the species had been described by Emerton in 1885 as frondicola, the latter name must stand. A study of the male specimen upon which L. nigroventris was based convinces me that it is the same as frondicola.
L. frondicola is a widely distributed species, eommon expecially in the central, northern and mountainous parts of the United states. It is found most frequently in and at the edges of wools, among fallen leaves and sticks. Specimens from the dryer parts of the West, as with various other species, show a tendency to lose the dark coloration, especially that of the venter. Some specimens have the venter entirely pale.

Iyoosa pratensis Emerton, 1885.
(Trans. Conn. Acad., VI, p. 483, Pl. XLVI, fips. 4, \&a, 4b.)
Female.-A wide median light hand, widest between thind ege row and donsal groose, and from there narrowing backwad to end of cephatothorax, commonly constricted or indentes at frowere, also narrowing and passing forward between cyes of thisd row and reaching those of seeond row. 'Tegument of middle hand light reddish brown clothe I with yellowish or brownish-gray pubescence, usually two dark
longitudinal lines in wide part in front of dorsal groove; on each side, at a distance above margin greater than its own width, a narrow light band colored like the median one; elsewhere the tegument deep brown, clothed mostly with dark to blackish-brown pubescence, with grayish intermixed. Chelicerce dark reddish brown with grayish-brown pubescence. Labium and endites dark brown, inclined to be lighter at tips. Sternum reddish brown, sparsely clothed with a few short hairs of light color and more numerous long bristles of black. Coxe of legs beneath brown, grayish-yellow pubescence much more abundant than on sternum. Legs brown, darker distally, at least femora with rather faint darker rings, which on the two anterior pairs are most distinct on the meso-caudal aspect and on the two posterior pairs on the meso-cephalic aspect; clothed with shorter grayish-yellow pubescence and longer blackish or blackish-brown hair. Abdomen in general color reddish brown, lighter beneath; above with a complicated pattern of black lines, in part as follows: at base a lanceolate outline, giving off on each side near apical third a line running caudo-laterally to dark area at sides, its tip at middle touching apex of a chevron-mark which is followed caudally by a number of similar marks; each chevron-mark commonly double or paired, i.e., consisting of two parallel chevrons separated by a light line, except sometimes at ends; on each side of chevrons irregular darker spots and blotches. The tegument of the sides with spots of black, but that of venter unmarked. The pubescence of the abdomen is yellowish-gray and brown in life, or in dry specimens, the pubescence largely concealing the complicated markings of the tegument and so arranged as to produce above two rows of light spots more or less connected by transverse light lines. Sides with light and dark pubescence, more or less in streaks and spots, but venter without markings. Spinnerets brown. Epigynum dark reddish brown.
Face low, less than half the length of the chelicerae ($1: 2.4$), sides convex, widely slanting, about as wide at base as length of chelicerex, high and narrow; in profile dorsal line rather strongly convex. Anterior part of head rounded, the space between third and second rows of "yes sloping rather strongly; the first row of eyes projecting forward so as to be seen clearly from above.

Front row of eyes straight or slightly recurved. slightly longer than the second; anterior median eyes their radius apart, closer to the but little smaller side eyes; anterior lateral cyes about their diameter from the front margin of clypens, closer to eyes of second row; eyes of second row not more than two-thirds their diameter apart; eyes of third row searcely smaller than of second, their dianeter from latter, more than
twice as far from each other; quadrangle of posterior eyes about onefifth as long as the cephalothorax.

Lower margin of furrow of the chelicerce armed with three equidistant conical teeth, these equal in size, the third no smaller than the first. The upper margin with three teeth, the middle, as usual, much largest, the first and third about equal, both usually contiguous with base of second, or the third slightly removed.

Leys short and moderately slender; tibia + patella of fourth legs shorter than the cephalothorax; metatarsus of fourth legs much shorter than tibia + patella; anterior tarsi slightly curved, others straight; two anterior pair of femora slightly bent forward, last pair slightly bent backward; first and second tarsi scopulate; third and fourth tarsi not truly scopulate, subdensely setulose; tibiæ and metatarsi of first and second legs armed beneath as usual, patella of these legs inarmed.

Epigynum as figured (Pl. XXI, fig. 3).
Total length, 13 mm . Length of cephalothorax, 5.1 mm .; width, 3.8 mm .

Length of leg I, 10.9 mm .; tib. + pat., 4.1 mm. ; met., 2.1 mm .
Length of leg II, 10.6 mm .
Length of leg III, 9.2 mm .
Length of leg IV, 14 mm .; tib. + pat., 4.8 mm .; met., 3.3 mm .
Syn.-1890. Lycosa pratensis; Marx, Proc. U. S. N. M., 12.
1892. Lycosa pratensis, Banks, Proc. Phil. Acad. Nat. Sci., 44, p. 64.
1894. Lycosa pratensis Emerton, Trans. Conn. Acad. Sci., IX, p. 422, PI. III, fig. IV.
1895. Lycosa pratensis Emerton, Banks, J. N. Y. Ent. Soc., III, p. 91.
1902. Lycosa pratensis Emerton, Common Sp. U. S., p. 69, figs. 16S, 169, 170.
1904. Trochosa pratensis, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 303.

Type locality.-Massachusetts, Connecticut, New Hampshire.
Known localities.-Massachusetts, Connecticut, New Hampshire!, New York!, Long Island!, Canada (mountains near Lagan, Lake of Woods, Gaspé, Anticosti, Byron I., Port Hawkesbury).

According to Emerton, in New England "this is the most common species, under stones and under leaves in winter." Also: "This does not seem to be a very active spider, and is commonly found under stones."

Its habits in New York I have found similar.
Lyoosa kochil (Koyserling), 1870.
(Sub Tarentula, Verh. z. b. Ges. Wien, 26, p. 636, P1. 7, fig. 18.)
Female.-Cephatothorax with a pale stripe as wide as third eye row,
becoming abruptly a little narrower near posterior end of pars cephalica and then gradually narrowing posteriorly. Tegument of median stripe reddish brown, but quadrangle of posterior eyes often black; mellian stripe clothed with gray-brown pubescence. Sides of cephalothorax darker above and becoming lighter below; clothed with graybrown pubescence, like that of dorsal stripe, mixed with dark blackish pubescence, the brown hair becoming gradually more abundant from above below but forming no distinct marginal bands. Chelicere dark red-brown with short light brown pubescence basally and darker longer hairs on distal part. Endites reddish brown, light at tips. Labium darker, blackish, also lighter distally. Sternum dark brown, marked by a faint paler median line, clothed with brownish-gray pubescence and longer black bristles. Coxe of legs beneath a little lighter than sternum. Legs clear brown, entirely ummarked or, more rarely, with indistinct annular markings on femora. Palpi similarly colored. Abdomen with brown-gray, brown and black hair; venter pale, immaculate; sides above finely streaked and spotted with the darker pubescence among the paler. Anterior face of abdomen with a black transverse band extending over each antero-lateral angle. At base a lanceolate outline, sometimes absent, which behind gives off a number of lines on each caudo-laterally, and is followed behind by a series of chevronformed lines; in most on each side of dorsum a row of dark angular marks in which the ends of the chevron-lines terminate. Spinnerets brown, densely pubescent. Epigynum dark reddish brown.

Cephuthothorax highest at posterior eyes, moderately low behind, a little concavated at dorsal groove. Face in height less than half the length of the chelicera, its sides convex and widely slanting.

Anterior row of eyes as long as second, gently procurved; anterior median eyes more than their radius apart, about half as far from the smaller lateral eyes; anterior lateral eyes about their diancter from front margin of clypeus, farther from eyes of second row. Eyes of second row separated by three-fourths their diameter or a little more. Eyes of the thirl row once and a half again as far from each other as from the eyes of the second row. ()uadrangle of posterior eyes about one-fifth the length of the cephatothorax.

Lower mangin of furow of chelicere armed with two equal stout teeth, thre upuer batgin with three as usuat. Labium as wide as long; basal excavation lose than one-third the total length (1:3.6) ; rather strongly atternaterl in front with sides above straight or slightly concave below angles ; anterior margin indented at midnle but sides a little convex.

Tihia + patella of fourth legs shorter than the cophatothorax; tarsi I
and II and metatarsi of same legs except at base scopulate; tarsi of third and fourth legs clothed beneath with bristles. Patellæ of first and second legs unarmed.

Epigynum as figured (Pl. XXI, fig. 5).
Total length, 11.4 mm .; length of cephalothorax, 4.5 mm .; width, 3.4 mm .

Length of leg I, 10.5 mm .; tib. + pat., 3.9 mm .; met., 2.1 mm .
Length of leg II, 10.5 mm .
Length of leg III, 10.2 mm .
Length of leg IV, 14.5 mm .; tib. + pat., 4.8 mm .; met., 4 mm .
Male-Colored like female but lighter; femora of legs lighter and clearer brown, tibia and more distal joints darker, reddish brown.

Patella of second legs with a spine in front.
Tibia and patella of palpus of same length and thickness, together about equalling the length of the tarsus. For structure of palpal organ see P'l. XNI, fig. 4.

Total length, 9.2 mm . Length of cephalothorax, 4.2 mm .; width, 3.2 mm .

Length of leg I, 10.7 mm .; tib. + pat., 3.9 nm .; met., 2.4 mm .
Length of leg II, 9.6 mm .
Length of leg III, 8.8 mm .
Length of leg IV, 11 mm .; tib. + pat., 3.9 mm .; met., 2.6 mm .
Type locality.-"North America."
Knour loculities.-Colorado!, Utah!, Oregon, Arizona!, California!.
Lycosa gulosa Walckenaer, 1837.
(Ins. Apt., 1, p. 33s.)
Female.- Cephalothorax dark reddish brown crossed by harkish radiating lines; a wide median light stripe which is constricted between thoracic groove and third eye row and again behind the groove, wident in front of the first comstriction, extending to the second eye row in front; the median light brown hand elothed with light gray pubescenef ; on each side a supramarginal irregular edged band of same color and pubescence as the merlian one; cephalothorax except on light stripes clothed with dark brown pubescence. Chelicere back, paler distally, clothed for most of length with yellowish pubescence, distally with longer dark brown hairs; the fringe along furrow rust colored. Labium and endites deep brown, paler at tips. Sternum deep reddish brown or, more rarely, black, elothed with short grayish-brown and longer dark brown pubescence. Coxe of legs beneath brown to reddishbrown, lighter than sternum. Leys reeldish brown, all joints except
the tarsi with black annulations which are usually more distinct proximally and deeper above on femora than ventrally; clothed with brown hair which is also the color of the scopulx. Abdomen above grayish-brown, the pubescence consisting of gray and brown intermised; at base a dark, deeper margined, sublanceolate stripe ending obtusely or bifurcating at the middle, but this basal mark frequently inconspicuous and sometimes absent; posterior portion of dorsum rarely with some dark chevron-shaped cross-lines; a black spot over each antero-lateral angle which is usually followed caudad by a row of dark angular spots and marks along the sides; sides and venter yellowish or grayish brown, the pubescence, as on dorsum, being light and dark often intermixed in fine spots and streaks; the tegument of venter often showing two pairs of dark lines or stripes converging toward the spinnerets; entire animal darkening with age, the venter then showing usually a broald dark brown to black band over its length from genital furrow to the spinnerets. Spinnerets brown. Epigynum dark red-dish-brown to black.

Face about half as high as the length of the cheliceræ, sides rounded and slanting; width at base less than the length of the chelicere. Dorsal line of cephalothorax highest at third cye row, somewhat concavated at median furrow.

Anterior row of cyes considerably shorter than the second (by twice the diameter of a lateral eye or more), moderately procurved; anterior median eyes less than their radius apart; anterior lateral eves about two-thirds as large as the median, a little less than their diameter from eyes of second row and a little more than their diameter from front margin of clypeus; eyes of second row large, about three-fifths their diameter apart; eyes of third row but little smaller than those of secona (ad. $5: 6$), more than twice as far from each other as from eyes of second row; quadrangle of posterior eyes between one-fifth and one-sixth the length of the cephalothorax.

Chelicere with furrows armed as usual. Labium nearly as wide as lons, not much attenuated; front margin concavated. Legs with tibia + patella IV of same length as cephalothorax or a very little longer; metatarsus IV longer than the cephalothorax is wide; anterior thisw and patella armed as usual; tarsi and metatarsi I and II scopulate; tarsi III and IV as usual.

Epigynum broadly ovate with posterior end widely truncate; side ridpes relatively very thick; septal piece of guide in front of enlarged posterior end with sides parallel or nearly so, the femur at its side narrow and not much differing in width from anterior end back to the caudal enlargement of guide (Pl. XXI, fig. 7).

Total length, 14 mm . Length of cephalothorax, 7.7 mm .; wilth, 6 mm .

Length of leg I, $19.7 \mathrm{~mm} . ;$ tib. + pat., 7.4 mm .; met., 4.1 mm .
Length of leg II, 19.4 mm .
L.ength of leg III, 18.6 mm .

Length of leg IV, 24.1 mm .; tib. + pat., 7.8 mm .; met., 6.7 mm .
Male.-Colored nearly as in the female. Legs dark brown or blackish distally, showing mostly no rings or marks except on femora. Palpi reddish yellow with énds of joints dark and some dark marks on femora.

Patclla of palpus as long as the tibia, these two joints torether of about the same length as the tansus; terminal portion of palpus a little shorter than the bulb.

Embolus bending outward and somewhat distally from base, resting upon the lectus only across the auricle, the greater part of its length being supported only by its much elongated basal flap (P'I. X.XI, fig. 6).
Total length, 11.2 mm . Length of cephalothorax, 5.5 mm .; width, 4.8 mm .

Length of leg I, 19.7 mm .; tib. + pat., 7.1 mm .; met., 4.6 mm .
Length of leg II, 18.5 mm .
Length of leg III, 17.3 mm .
Length of leg IV, 22.8 mm .; tib. + pat., 7 mm .; met., 6.7 mm .
Syn.-1876. Tarentula pulchra Keyserling, Verh. z. b. Ges. Wien, 26, p. 62s, Pl. 7, figs. 13, 14.
1885. Lyycosa kochii Emerton (nec Keyserling), Trans. Conn. Acad. Sci., 6, p. 485, Pl. 46 . figs. 6 to $6 c$.
1890. Lycosa kochii Stone, Proc. Acad. Nat. Sci. Phila., 42, p. 426.
1892. Lycosa kochii Marx, Proc. Ent. Soc. W., 2, p. 160.

- Lycosa kochii Banks, Proe, Acad, Nat. Ber. Phila., p. 64.

1902. Lycosa kochii Emerton, Common Sp. U, A., p. 7., figs. 179, 1son.

- Ly Lycosa purcelli Montgomery, Proc. Acad. Nat. Sci. Phita., 1. 566, Pl. 30, figs. 30, 31.

1904. Lycosa pulchra (Keys.),Chamberlin, Canad. Ent., p. 147. Lycosa cuepigynata, Montgomery, Proc. Acad. Nat. Sci. Mhila., p. 279, PI. XVIII, figs. $1,2$.
--. Lycosa insopita, Montgomery, ibid., p. 2s0, II. XVVIII, figs. 3, 4.
——. Trochosa purcelli, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 305.
T'ype locality.-"North America."
Knuzn localities.-Comnecticut, Massachusetts, Rhonle Island!, New Hampshire!, New York!, Pemnsylvania, New Jessey, District of Columbia!, Virginia North Carolina!, Alabama!, Miswisippi!! Texas!, Kansas!, Indiana, Utah!

Types in collection of Dr. Koch.
A strongly marked and widely distributed speries which, as might be expected, is suljeet to some variations in size and coloration. The
episyom and the peculiar palpus of the male are constant in essential features and at once reveal the species beneath more superficial differences. The pattern of the markings on the legs, the cephalothorax and of the dorsum of abdomen remain pretty nearly the same always except as to depth and distinctness of the colors. The venter of the abdomen becomes dark or even black with age, the entire animal also then taking on a darker color.

Lycosa modesta (Keyserling), 1876.
(Sub T'arentula, Verh. z. b. Ges. Wien, p. 626, Pl. VII, figs. 11, 12.)
Female-Cephalothorax with a light median band as wide as space between eyes of third row; sides of median band nearly straight or sightly corved comvexly, converging gradually caudally, in front reaching eyes of second row but there commonly darker; median band with tegument light reddish brown, darker between eyes, clothed with browngray pubescence; on each side a narrow marginal and a narrow supramarginal line of gray pubescence like that upon middle band, the two matrimallinesoften indistinctly separated. Sides of eephalothorax deep brown or nearly black, clothed with mixed dark brown and brownishgray puberence, the gray arranged in radiating streaks, more abundant below. Chelicere dark red-brown, lighter distally, clothed with dark brown hairs except below and along furrow, where they are lighter and clearer. Labium and endites dark brown, light at tips. Sternum shining reddish black or deep brown, sparsely provided with dark hairs about borders. Coxe beneath dark brown, paler at bases. Legs brown, darker distally, especially the tibia and metatarsus, the tarsus being lighter on anterior pairs; annuli above, which are more obseure beneath, clothed with shorter gray and more sparse longer and stiffer hairs. Seopulse grizzly brown. Abdomen having the tegument brown mottled with lisht and dark; a black lanceolate outline at base which on each side posteriorly gives off a number of lines caudolaterally, the hasal mark sometimes absent; lanceolate mark followed behind by a serics of black transverse chevron-lines; in most on each side of the dorsum behind a row of white spots in which the ends of the dart: chevron-lines terminate, these spots formed of bunches of white hair; a black mark over each antero-lateral angle; sides brown with darker mottling and streaks and spotson gray or whitish hair. Venter black with some light spots at sides. Pubescence of ahbomm n is light graty or white and a darker color, dark smoky gray to Wark, the latter foumd mmmixed on venter, the former predominating abose. S'pinnares brown. Epigymam reddish brown and figured.

Cephalothorax moderately high and steep sided, relatively wide in front. In profile line of dorsum highest behind third eye row, concavated at front of dorsal furrow. Face low, in height hardly half the length of the chelicere. Face at base about wide as length of chelicere, sides more than usually widely slanting, more convex below.

Anterior row of eyes a little shorter than the second, procurved; anterior median about their radius apart, twice as large in diameter as the lateral eyes; anterior lateral eyes nearly their diameter from the front margin of the clypeus, more than their diameter from eyes of second row; anterior median cyes less than half their diameter from eyes of second row and nearly as close to front margin of clypeus; eyes of second row scarcely more than half their diameter apart, two-thirds their diameter from eyes of third row which are two-thirds or a little more as large; eyes of third row twice as far from each other as from eyes of second row. Cephalothorax 5.5 times as long as the quadrangle of posterior eyes.

Legs short, the fourth pair less than three times the length of the cephalothorax; tibia + patella IV shorter than the cephalothorax; metatarsus IV shorter than tibia + patella; tarsi and metatarsi I and II scopulate, the scopule not dense; tarsi III and IV with very thin scopule at sides, the ventral surface mostly occupied by a broad band of long seter; tibia + metatarsus I and II armed as usual beneath; patella I and II unarmed.

Total length, 11.2 mm . Length of ecphalothorax, 4.9 mm .; width, $3.7 . \mathrm{mm}$.

Length of leg, I, 9.8 mm. ; tib. + pat., 3.7 mm . ; met., 1.8 mm .
Length of leg II, 9.3 mm .
Length of leg III, 9.1 mm .
I.ength of leg IV, 12.6 mm .; tib. + pat., 4 mm.; met., 3.5 mm .

Male.-Cephalothorax relatively narrower in front than in femate and more depressed. Patella I and II unarmed. Tibia + patella IV shorter than cephalothorax.

Patella as long as tibia, the latter thick distally. Femur laterally compressed above with $1,1,3$ spines.

Total length, 8.4 mm . Length of cephalothorax, 4.6 mm.; width, 3.4 mm .

Length of leg I, 11.9 mm .; tib. + pat., 4.3 mm. ; met., 2.7 mm .
Length of leg II, 10.2 mm .
Length of leg IHI, 10 mm .
Length of leg IV, 13.4 mm .; tib. + pat., 4.4 mm.; met., 2.7 mm .

Syn.-1890. Tarcntula modesta, Marx, P. U. S. N. M., p. 564.
1902. Lycosa sepulchralis Montgomery, Proc. Acad. Nat. Sci. Phila., p. 543, Pl. SXIX, fig. 7.
1903. Lycosa sepulchralis Montgomery, ibid., p. 645, Pl. 29, fig. 7.
1904. Trochosa sepulchralis, Montgomery, ibid., p. 307.

Type locality.-Maryland (Baltimore).
Habitat.-Maryland, District of Columbia, Pennsylvania!, Texas!.
Lycosa piotilis Emerton, 1885.
(Tr. Conn. Acad. Sci., 6, p. 455, Pl. 46, figs. 5 to 5b.)
Female.- C'ephalothorax with a median grayish band (of pubescence) which, beginning at the second eye row, passes between the eyes of third row and then abruptly bulges on each side, being much wider than eye area midway between eyes and dorsal groove, then narrowing to dorsal groove where it is about same width as eye area; parallel sided to posterior declivity and then narrowing down the declivity; the median band, while chiefly of gray hair, has intermixed brown hair which is more abundant anteriorly between eyes; in wide area back of eyes an intramarginal line on each side is formed of brown hair, these lines being parallel to the sides and merging together in the brown between the eves. Sides of cephalothorax chocolate brown, clothed with brown pubeseence ; a narrow marginal and a similar supramarginal line of grayish hair on each side. Chelicere reddish black. Labium with gray pubescence. Sternum blackish brown. Coxe of legs beneath paler brown like other joints of legs. Legs dark brown; femora lighter beneath on basal half, apically on most femora two interrupted light rings and a few light, transverse marks above elsewhere. Tibia with several light rings, which on the anterior pair may be confluent beneath; other joints unmarked. Abdomen beneath at sides dusky brown, having a blackish-brown tegument covered with brown hair, rather darker on sides above; a black spot on each anterolateral angle which encloses a light spot, the latter nearly breaking through lower margin of spot: mesally from the black spot is a large light spot on each side; along the inner posterior margin of each of these orange spots being a short oblique black line, the two lines not meeting in the middle; posterionly is a series of median black chevron-marks, the first divided or nearly so at middle; at the outer end of 'ach of the cherrons is a light spot enclosed by black, the light epots thus forming a lateral series on each side; in front of each half of each chevron is a light colored spot; these spots in front of the posterior chevrons confluent. The series of light spots on each sillo in life eoverel with grayish or gray pubescence; the large
light spots in front covered with orange-colored or with rusty-brown hair and connected at middle with gray hair; light transverse marks in front of posterior chevrons covered with gray hair; middle of dorsum in front covered with mostly gray and with fewer brown hairs. Epigynum and spinnerets black-brown. Legs over the light spots with partly gray pubescence; pubescence elsewhere brown.

Median dorsal line of cephalothorax straight, not depressed at dorsal furrow. Sides of face convex and widely slanting.

Anterior row of eyes procurved, but little shorter than the second row; anterior lateral eves their diameter or a little farther from front margin of the clypeus, a little farther from eyes of second row; anterior median eyes less than their diameter apart (four-sevenths), closer to the smaller lateral eyes ($1: 1.7$); eyes of second row fully their diameter apart; anterior median eyes about their diameter from eyes of second row; quadrangle of posterior cyes as wide in front as long, about one-fifth as long as the cephalothorax.

For structure of epigynum see Pl. XLX, fig. S.
Total length, 11.5 mm . Length of cephalothorax, 5 mm .; width, 3.6 mm .

Length of $\operatorname{leg} \mathrm{I}, 13.1 \mathrm{~mm}$.; tib. + pat., 4 mm .; met., 2.3 mm .
Length of leg II, 11 mm .
Length of leg III, 10.5 mm .
Length of leg IV, 14.9 mm .; tib. + pat., 4.6 mm .; met., 4.1 mm .
Male--Coloration of cephalothorax and legs nearly as in female. Abdomen with nearly same markings but black spot over front angles circular, not enclosing a light spot; venter with gray pubescence; gray pubescence of dorsum much more abundant than in female, the rusty colored pubescence largely replaced by it.

Tarsus of palpus some ($11: 13$) shorter than the tibia + patella; patella and tibia of about same thickness, the former slightly longer; tibia but slightly thickened distally; tarsus clearly wider than tibia (5:4).

For structure of palpal organ see PI. XIX, fig. 6.
Total length, 9.3 mm . Length of ecphalothorax, 5.3 mm .; wilth, 3.9 mm .

Length of leg I, 13.4 mm .; tib. + pat., 4.5 mm .; met., 3.3 mm .
Length of leg II, 12.4 mm .
Length of leg III, 12.3 mm .
Length of leg IV, 16.8 mm .; tib. + pat., 5 mm .; met., 4.7 mm .

[^35]Locality.-New Hampshire!.
"This very distinct species is abundant among the moss and low shrubs on the upper part of Mt. Washington, New Hampshire, and the neighboring mountains."

The descriptions above are based upon the type specimens.

Lycosa fumosa Emerton, 1894.
(Tr. Conn. Acad. Sci., 9, p. 421, Pl. 3, figs. 1, 1a.)
Female.-Cephalothorax nearly black, of a reddish tinge. Chelicera the same color as cephalothorax. Labium and endites lighter in color than cephalothorax, pale distally. Sternum similar to cephalothorax but lighter. Coxre of legs beneath brown, clearly paler than sternum. Legs a little lighter and more reddish than cephalothorax, the femora slightly darker than other joints, all joints unmarked or the femora with a few faint light spots. Palpi like legs. Cephalothorax, sternum and legs clothed with gray-brown pubescence, being probably bleached in the alcohol. Abdomen entirely black, slightly paler beneath especially in front of lung-slits, clothed with brown pubescence; pubescence of entire body and legs rather dense.

Cephalothorax comparatively low, angularly depressed in profile at dorsal groove. Face one-half as high as the length of the chelicere. Anterior row of cyes of the same length as the second or very nearly so, nearly straight, the center of lateral eyes being but slightly lower; anterior melian eyes slightly smaller than the lateral; the tubercles of the lateral eyes increase their apparent size; anterior median eyes their full diameter apart, same distance from the lateral eyes, more than their diameter from eyes of second row; anterior lateral eyes more than their diameter from eyes of second row (nearly one and one-third), closer, but little more than diameter, from front margin of clypeus; eyes of second row not fully their diameter apart; eyes of third row three-fourths as large as those of second; quadrangle of posterior eyes a little wider in front than long ($11.5: 10$) unusually wide behind, being there nearly twice as wide as long ($19: 10$), the pars cephalica being wider than usual and the third eyes set well out laterally; the qualrangle of posterior eyes between one-fifth and one-sixth as long as the cephalothorax (about 1:5.6).

Lower margin of the furrow of the chelicere with three stout teeth, the third being a little stonter than the others; the first two with posterior face more curved than the anterior and so appearing bent forward; upper margin with three teeth, the first minute, the middle stout and acute as usual, the third as long as median but more slender.

Legs with the anterior tibix armed beneath with three pair of spines, these short as usual, the apical pair reduced; anterior patella armed behind; tibix II armed in front and behind; tibia + patella IV a little longer than cephalothorax, shorter than tibia + patella I.

Total length, 16 mm . Length of cephalothorax, 7 mm .; width, 5.8 mm .

For structure of epigynum see Pl. XIX, fig. 2.
Length of leg I, 21.6 mm .; tib. + pat., 8.2 mm .; met., 5 mm .
Length of leg II, 21.6 mm .
Length of leg III, 18.9 mm .
Length of leg IV, 23.7 mm .; tib. + pat., 8 mm .; met., 7 mm .
Male.-Cephalothorax, chelicerce and sternum blackish. Labium, cndites and coxce of legs beneath dark brown, as in female. Pubescence throughout brown, dense.

For structure of palpal organ see Pl. XIX, fig. 3.
Total length, 11 mm . Length of cephalothorax, 6 mm .; width, 5 mm .

Length of leg I, 23.6 mm .; tib. + pat., 8 mm .; met., 6.8 mm .
Length of leg II, 2.3 mm .
Length of leg III, 21.6 mm .
Length of leg IV, 24.4 mm.; tib. + pat., 7.7 mm .; met., 7.7 mm .
Locality.-Canada!.
The description above was taken from the types.
Lycosa beanii Emerton, 1894.
(Tr. Conn. Acad. Sci., 19, p. 421, P1. 3, figs. 2 to 2b.)
Female.-Sides of cephalothorax and eye region hackish brown; back of eyes a lighter reddish brown median stripe as wide as the eye area; the median stripe narrowing distinctly to posterior declivity, constricted in front of dorsal groove, widening out again at pesterior margin. No light colored lateral stripes. Chelicere blackish or blackish brown. Labium and endites reddish brown. Sternum deep brown, faintly paler along middle. Coxe of legs beneath distinetly lighter than sternum, brown. Leys brown, paler than sides of eephahothoma, entirely unmarked below but femora above and on sides, especially on posterior pairs, with rather indistinct closely arranged dark and light transverse markings. Abdomen brown down midelle, hackish bown across front declivity and in a band passing over each antero-lateral angle and down the side of dorsum. A dark basal lancenlate mark evident reaching the middle of dorsum behind. Posteriorly a series of dark angular bars crossing from side to side, leaving light colored chevrons
between, farther forward, at and just behind the middle, the sides of the dark lateral bands simply dentate, the teeth not connected across middle. Sides becoming lighter from above below, the lower portion and the venter rather light brown, the venter appearing to have been somewhat darker down its middle behind lung-slits in life. Spinnerets brown. Epigynum dark reddish brown.

Ciphulathorax highest as usual at third eye only slightly descending pusterion? : the dorsal line nearly horizontal, a little depressed at dorsal growse. Fine with sides sloping moderately, in height about half the length of the chelicera. Anterior row of eyes clearly shorter than the second. procurved ; diameter of anterior median eyes is to diameter of eve of second row as $1: 2.2$; anterior lateral eyes once and a half their diameter from margin of clypeus, a little closer to eyes of second row; anterior median eyes their diameter from eyes of second row, and one-half their diameter apart, scarcely closer to lateral eyes (which are scarcely smaller) ; eves of second row a little more than three-fourths their diameter apart ; posterior quadrangle of same length and breadth, wider behind than in front in ratio of nearly $9.25: 7$, and about onefifth as long as cephalothorax.

Lower margin of the furrow of the chelicere with two stout and equal teeth; upper margin of the furrow with three teeth, the first of these is buw but wide and bluntly rounded, the second as usual much largest, conical and acute, the third of intermediate size, shaped like the second.

Tarsi of legs not curved, all straight; first two pairs of femora bent forward; thinl femora nearly straight, scarcely bent backward; fourth femora a little bent barkward. Scopule distributed about as usual but rather sparse, divider by setose band on all tarsi!.

Epigymum 1 mm . wide and about same length (i.e., shorter than any of cox:e, the third of which is 1.6 mm . long) (PI. XIX, fig. 5).

Total length, 12 mm . Length of cephaiothorax, 5.3 mm .; width, 3.8 mm .

Length of leg I, 11.6 mm .; tib. + pat., 6.4 mm .; met., 2.4 mm .
Length of leg II, 10.9 mm .
Length of leg III, 10.4 mm .
Length of leg IV, 14.2 mm .; tib) + pat., 4.2 mm .; met., 4.2 mm .
Matr. - Cobloration very nearly the same as in female. Legs not at all marked, the first and secoml femora darker than posterior ones, first tithia alon darker. Palpi darker than in the female, the tarsi a little darker than other joints. Inner margins of dark lateral bands of doremm dentate and serrate, but mot with any connecting angular or chevron-shapel marks across middle.

For structure of palpal organ see Pl. XLX, fig. 4.
Total length, 8.8 mm . Length of cephalothorax, 4.5 mm .; width. 3.3 mm .

Length of $\operatorname{leg} \mathrm{I}, 10.4 \mathrm{~mm}$.; tib.. + pat., 3.7 mm .; met., 2 mm .
Length of leg II, 9.8 mm .
Length of ley III, 9.6 mm .
Length of leg IV, 12.8 mm .; tib. + pat., $4 \mathrm{~mm} . ;$ met., 3.6 mm .
Locality.-Canada!.
The descriptions above are from the types.

Lycosa albohastata Emerton, 1894.
(Tr. Conn. Acad. Sci., 9, p. 423, Pl. 3, figs. 3 to 3b.)
Male.-C'ephalothorax with a wide median band of reddish-brown color extending to clypeus anteriorly; in front this band is as wide as the clypens and wider than the eye area, narrowing gradually and constantly backward to a point at posterior margin, the sides nearly straight ; this band appears to have been clothed in life with light gray pubescence. Sides of cephalothorax dark brown, presenting a reddishbrown background covered with radiating blackish lines which are more or less confluent above and below. Chelicere reddish brown. Labium and endites brown, paler distally. Sternum black or very nearly so. Coxe beneath brown. Legs brown of orange hue; all joints except tarsi with black ammali, these annuli incomplete beneath exeept on femora where they are most distinct. Abdomen with a light basal mark, the sides of which are nearly parallel to its middle, then narrowed to a truncate point at middle of abdomen; this basal mark is densely clothed with white hais and is margined at sides and behind by black, mostly broken into irregularly dongated spots, from the sides of this black extend somewhat broken lines of bark more or less oblicquedy outward and backward, the last two lines extending from the angles of the truncate apex of basal mark; behind in the midhle is a seriew of transwerse black lines, and atong each side a number of back dots; on each side of donsum behind a row of light spots chothed with whitish hairs; the barkground of abdomen abowe orange-hwow ; sides of abdomen orange-brown mottled with numeroms irvegular back dots and marks; wenter with clear orange-hrown, darkened in from of lung-slits and along a narrow horder laterally and pesterionly. I'ulpi with the femora black, not distinctly ringel, the patella and thia orange, the tarsus darker, blackish. P'ubescence on entire body except where stated otherwise orange-brown.

Fice as compared with chelicera low and relatively wide, the length
of the chelicerse being about two and one-half times as great as the height of the face; sides sloping and rounded as usual. Anterior row of cyes slightly procurved, nearly as long as the second; anterior median eves three-fourths their diameter apart; anterior lateral eyes threefourths as large as the median, clower to the median than the latter are to each other (2:3); anterior lateral eyes their diameter from front margin of clypeus and the same distance from eyes of second row; anterior melian eyes scaredy more than one-half their diameter from eyes uf second row; eyes of second row slightly more than twice as large in diameter as the anterior median eyes ($9: 4$); quadrangle of posterior eyes as wide in front as long; wider behind than in front in ratio of $6.3: 4.6$; between one-fourth and one-fifth as long as cephalothorax.

Lower margin of the furrow of the chelicere with three teeth which are stont and conical, the third a little reduced; upper margin with three teeth as usual, the first minute. Labium of usual shape, slightly curved for entire width. Legs with tibia + patella IV of same length as the cephalothorax; metatarsus distinctly longer than the width of the cephalothorax; both the posterior and the anterior tarsi with the secopule divided by a median setose band, the anterior metatarsi with only sparse scopular hairs.

Tibia of poulpus of same length as patella and of same thickness proximally, the tilia widening moderately distally; tibia and patella together a little longer than the tarsus.

For structure of palpal organ see PI. XIX, fig. 1.
Total length, 6 mm . Length of cephalothorax, 3 mm .; width, 2.2 mm .

Length of leg I, $8.2 \mathrm{~mm} . ;$ tib. + pat., 2.8 mm .; met., 2 mm .
Length of leg II, 7.7 mm .
Length of leg III, 7.3 mm .
Length of leg IV, 9.6 mm .; tib. + pat., 3 mm .; met., 2.7 mm .
Female. - Coloration of the female is nearly same throughout as male. Eye arrangenent and pemeral itructure as for the male. Leys with tibia + patella shorter than the length of the cephalothorax; metatarsus IV very little longer than cephalothorax is wide.

The epigynum of specimen studied (type) is not entirely adult.
'Total length, 7.2 mm . Length of cephalothorax, 3.7 mm .; width, 2.8 mm .

Length of leg I, 8 mm .; tib. + pat., 2.9 mm .; met., 1.8 mm .
Length of leg $11,7.9 \mathrm{~mm}$.
Length of leg III, 7 mm .
Length of leg 1V, $11.1 \mathrm{~mm} . ;$ tib. + pat., 3.2 mm . ; met., 2.9 mm .

Locality.-Laggan, Canada!.

The description above was taken from the types. Two males from the valley near Laggan and young females from the neighboring mountains 6,000 to 7,000 feet high.

Lycosa quinaria Emerton, 1894. (Tr. Conn. Acad. Sci., 9, p. 422, Pl. 3, figs. 5, 5a.)
Female.-Cephalothorax dark reddish brown without markings. Chelicere reddish black. Labium and endites colored like cephalothorax, the enditesseareely palerdistally, the labium not palerdistally. Sternum like cephalothorax. Coxe beneath lighter than sternum. Legs reddish brown, paler beneath, unmarked except for a few fine and inconspicuous longitudinal black lines, which are most distinct on femora, on each of which there is one on the dorsal surface. Abdomen dark brownish or gray, faintly paler along the middle, with a series of inconspicuous black marks each side. Epigynum reddish brown. Spinnerets concolorous with abdomen.

C'ephelothorax shaper about as usual. Face with sides rounded and widely sloping, in height about half the length of the cheliceras.

Anterior row of eyes well procurvel, a line passing through the center of the merlian eyes being tangent to the posterior margins of the lateral eyes; anterior metian eyes less than their diameter apart (five-sevenths) some closer to the subequal lateral eyes; anterior lateral eyes their diameter from front margin of clypeus, a little farther from cyes of secoud row; anterior median eyes their diameter from eyes of second row; eyes of second row four-fifths their diameter apart; quadrangle of posterior eyes a little wider in front than long (9.75: 6.75) ; between onefifth and one-sixth the length of the cephalothorax (nearly $5.5: 1$).

Lower margin of furrow of chelicere with three teeth equal in size or, if any different, the third largest, moderately stout and aroute; upper margin with three teeth of usual proportions.

Legs stout ; tans all straight, not at all curved; third femoras: traight; fourth femora a little bent backward, not excavated behind: second and first femora bent forward and their anterior sides moderately exeavated near middle; tansi and metatarsi of legs I and II scombute; tarsi of legs III and IV divided by a median setose band as usual.

Total length, 10 mm . Length of eephalothorax, 5.2 mm . width, 4 mm .

For structure of epigynum see PI. XIX, fig. 7.
Length of $\operatorname{leg} \mathrm{I}, 12 \mathrm{~mm}$.; tib. + pat., 4.4 mm .; met., 2.6 mm .
Length of leg II, 11.6 mm .

Length of leg III, 11.4 mm .
Length of leg $1 V, 15.8 \mathrm{~mm}$.; tib. + pat., 4.9 mm . ; met., 4.6 mm .
Locality.-Canada (Alberta)!.
The types are two females collected by J. B. Tyrrell in 1886, and from these the description above was made.

Lycosa rubicanda (Keys.), 1876.

lemale.-Cephalothorax with a light brown median band which expands anteriorly so as to enclose the eye area, than which it is much wider anteriorly: reaching front margin of clypeus; behind eyes it narrows lapidly, running almost to a point at dorsal groove, here u*ually sombing out a narrow branch on each side and behind continuing as a narrow line to end of cephalothorax. Pubescence of median band light or yellowish brown, rather sparse. sides of cephalothorax dark retulish brown, pubescence sparse; a marginal light band each side, of same color and pubescence as median band. Sometimes uniform in color, without distinct markings. Cephalothorax appearing polished even when not rubbed because of sparseness of pubescence. Chelicere dark reddish brown clothed with moderately long brown pubescence. Labium and endites brown, light distally. Sternum and coxes of legs beneath brown. Legs brown, paler beneath, usually with dark ammuli which are obscure or absent beneath but distinct above. Abhomm with yellowish-brown and black pubescence; at base a lanceolate outlince reaching tomidde, from each side giving off latero-caudally a series of dark lines and followed behind by a series of chevon-marks; sides of dorsum with mumerous dark dots and dashes; venter grayish brown with some dark spots and a narrow dark median line extending from spinneret-forwarl and widening in front to enclose the epigynum ath sometimes also wideming about spimerets. Spinnerets yellowish. Epig!!num reddish brown.

C'ephatothorax high, with the sides steep; rather narrow, the sides hehind not strongly hulging. P'ars cephatica long; in profile line of donsum conspicuously arched, rounded in front, the highest point behind eyes of third row. Fow low, in height considerably less than hatf the lengeth of the chelicerar; siles of fare convex, widely slanting.
foirst eye row clearly longer than second, slightly recurved; anterior modian eyes less than their radius apart, half as far from the smatler lateral cera; anterior lateral reyes their diameter from front margin of clypeus, leas than their diameter from cyes of second row; eyes of -renmb wh about half their diameter apart, a little farther from the but litfle smatler cyes of third row, which are fully four times as far
from each other; third row twice the diameter of one of its eyes, wider than second row; quadrangle of posterior eyes much wider than long; cephalothorax six and a half times the length of the quadrangle of posterior eyes.

Teeth of margins of furrow of chelicerce as usual.
Legs short and moderately stout, the fourth pair less than three times the length of cephalothorax; tibia + patella of fourth legs shorter than cephalothorax, metatarsus of fourth legs clearly shorter than tibia + patellaz tarsi I and II and distal part of metatarsi I and II scopulate, scopule not dense. Tarsi III and IV with sparse scopular hatis laterally elsewhere clothed with long bristles.

Tibise and metatarsi I and II armed beneath as usual, the spines rather small and slender. Patellee I and II each armed in front with a single spine.

Epigynum as figured (Pl. NIX, fig. 9).
Total length, 9.6 mm . Length of cephalothorax, 4.5 mm ; wilth. 3.3 mm .

Length of leg I, $9.7 \mathrm{~mm} . ;$ tib. + pat., 3.6 mm .; met., 1.9 mm .
Length of leg $L, 9.4 \mathrm{~mm}$.
Length of leg III, 8.8 mm .
Length of leg IV, 12.1 mm .; tib. + pat., $4 \mathrm{~mm} . ;$ met., 3.2 mm .
Syn.-1885. Lycosa polita Emerton, Trans. Conn. Acad. Sci., 6, p. 484, Pl. 46, figs. 2, 2a, 2b, 2c.
1S\%). İycosa polita, Marx, Proc. U.S. N. M., 12, p. 563.
-- Trochosa rubicunda, Marx, ibid., p. 564.
1892. Lyycosa polila, Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 66.
-. Lycosa polita, Marx, Proc. Ent. Soc. W., 2, p. 160.
-. Lycosa polita, Fox Proc. Ent. Soc. W., 2, p. 267.
1893. Lycosar rubicunda keyserling, Banks, J. N. Y'. Ent. Soc., I, p. 12.-.
1894. Lycosa polita Emerton, Trans. Comn Acad., 9, p. 42?.
1902. Lycosa polita Emerton, Common Spiders of U.S., p. 70, fig. 171.
190.4. Trochosa rubicunda, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 307, PI. XIX, fig. 30.

Type locality-Dastern Massachusetts; Albany, New lork; New Haven, Connecticut.

K゙noun localities.-Massachusetts, Comnerteut!, Rhode Island!, New York!, Indiana, District of Columbia.
" Conder stones in summer and under leaves in wintor. Vigrs in June and July."

Lycosa avara (Keymerling), 1870.
(Sub Trochosa, Verh. z. b. Ges. Wien, 26, p. 661, Pl. VIII, figs. 38, 39.)
Fromale.-C'phatothorax with a light median hand widest between thided eves and domal groove where it is as wide as thid eye row;
somewhat abruptly contracted at front of groove and then gradually narrowing to posterior end of cephalothorax, reaching second eye row in front; tegument of median band light brown clothed with yellow or brown-gray pubescence; on each side a narrow marginal and a wider supramarginal band of same color and pubescence as the median one; sides of cephalothorax elsewhere with dark reddish brown tegument, the pubescence over which is mixed light brown and blackish. Region about eyes usually blackish. Chelicere dark red-brown, the lateral condyles red, the claw also reddish. Labium and endites dark reddish brown, paler at tips. Sternum lighter reddish brown, with shorter brown gray pubescence and longer black bristles. Coxe of legs beneath brown. Legs brown with indistinct darker annuli, clothed with shorter and more dense gray pubescence and longer dark brown or blackish bristles. Tegument of abdomen above reddish brown, lighter beneath; pubescence above intermixed gray and brown and with black forming a mostly obscure lanceolate outline at base and scattered spots; sides and venter also with small darker streaks and spots in the pubescence; pubescence beneath lighter than above. Spimnerets brown. Epigymum reddish brown.

Sides of face convex, slanting outward, a little less than half as high as the chelicere are long, at base nearly as wide as length of cheliceræ; in profile line of dorsum highest at third eyes, convex between third eyes and posterior declivity.

Anterior row of cyes slightly procurved, scarcely shorter than the second; anterior median eyes less than their radius apart, as far from the smaller lateral eyes; anterior lateral eyes not fully one-half their diameter from front margin of clypeus and about their diameter from cyes of second row; eyes of second row, considerably less than their diameter apart, scarcely farther from eyes of thirl row, which as usual are more than twice as far from each other; eyes of third row smaller than those of second nearly in ratio of $2.5: 3$. Quadrangle of posterior cyes one-fifth the length of cephalothorax.

Three equal and equidistant conical teeth along lower margin of furrow of chelicere; upper margin of furrow with three teeth as usual, the first and third nearly equal, the third more removed from second.

Legs slender; tibia + patella IV shorter than eephatothorax; metatarsus IV scarcely shorter than thia + patella; posterior femora (IV) bent backward, second anterior pair of femora a little curvel forward; tarsi I and II a little curved, tasi III and IV with seopula divided by incrlan setose bands; both tarsi and metatasi I and II seopulate for entire length; tibite and metatarsi I and II armed as usual ; patella I and II not armed.

For epigynum see Pl. XX, fig. 2.
Total length, 13 mm . Length of cephalothorax, 5 mm .; width, 3.7 mm .

Length of leg I, 10.8 mm .; tib. + pat., 3.9 mm .; met., 2.1 mm .
Length of leg II, 10.4 mm .
Length of leg III, 10.1 mm .
Length of leg IV, 13.7 mm .; tib. + pat., 4.1 mm .; met., 4 mm .
Malc.-For structure of palpus see Pl. XX, figs. 1, 3.
Total length, 8 mm . Length of cephalothorax, 3.9 mm .; width, 3 mm .

Length of leg I, $10.6 \mathrm{~mm} . ;$ tib. + pat., 3.9 mm .; met., 2.3 mm .
Length of leg II, 10.2 mm .
Length of leg III, 9.9 mm .
Length of leg IV, 11.3 mm .; tib. + pat., 4.3 mm .; met., 2.3 mm .

```
Syn.-1892. Lycosa rufiventris Banks, Proc. Acad. Nat. Sci. Phila., p. 65, Pl. 3, fig. 35.
1595. Lycosa rufiventris Banks, J. N. Y. E. Soc., 3, p. 91.
1903. Lycosa avara, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 650, Pl. XXIX, fig. 2.
1904. Trochosa avara, Montgomery, ibid., p. 304, P1. XX, fig. 42.
```

Knownlocalitics.—Massachusetts, New York!, Texas!, Kansas!, Iowa !.

```
Var. gosiuta, new.
```

Females from Utah thus far seen differ a little from the type form in the shape of the epigynum. The blunt process at distal end of guide in avara proper is absent in this variety, and the lateral ends of the transverse arms extend forward beyond the middle of the fover (Pl . XX, fig. 4).

Locality.-Utah!.
Lycosa oineroa (Fab.), 1793.
(Sub Arancus, Ent. Syst., II, p. 423.)
Female.-Cephalothorax with the tegument marked with a broad metian band which is wider than the eye area and covers elypeus in front; this band constricted back of eye area and again, more strongly, at posterior limit of pars cephalica, back of which its edges are irregular or toothed, and widening triangularly down the posterior declivity, across the lower border of which it is united with the broad lateral bands of the same color; the pale lateral bands extending forward only to the pars cephalica, with upper margin toothed except for these light bands the eephalothorax is dark chocolate-brown; in life the cephalothorax is densely covered with white and gray hair intermixed in spots and streaks, ra liating more or less from the dorsum laterally. Chelicere
black, clothed with gray or grayish-brown hair. Legs with clear brown tegument which is itself faintly annulate, the clothing of white hair making the annulation much more distinct. The abdomen having on dorum a median gray band which is margined on each side anteriorly with a black stripe, continued posteriorly by a row of black dots which in life are ocellate with central patches of white hair; the median light band enclosing anteriorly a hastate outline which is open anteriorly and is bifureate behind: sides of abdomen white spotted with black; venter white in life. but the tegument denuded of hair commonly shows a smoky band from genital furrow to spinnerets. Spinnerets brown. Coxe and sternum brown, the latter dusky marginally. Labium brownish black. Endites brown. The general color effect of this species in life is that of a dusky-white body marked with small spots and streaks of gray and black.

C'phatothorrx highest at middle of pars cephalica some distance back of third eye row. The third eyes upon a plane strongly sloped anteroventrally, the face more strongly slanting. First eye row of about same length as the second.

For structure of epigynum see Pl. XX, fig. 6.
Total length, 11.5 mm . Length of cephalothorax, 6.2 mm . ; width, 4.8 mm .

Length of leg I, $13.8 \mathrm{~mm} . ;$ tib. + pat., $4.8 \mathrm{~mm} . ;$ met., 3 mm .
Length of leg II, 12.7 mm .
Length of leg III, 12 mm .
Length of leg IV, 17 mm . ; tib. + pat., 5.5 mm .; met., 4.2 mm .
Male.-Coloration as in female or nearly so. For structure of palpal organ see Pl. XX, fig. 5. A specimen gave the following measurements:

Total length, 9.8 mm . Length of cephalothorax, 5.1 mm .; width, 4 mm .

Length of leg I, 12.5 mm . ; tib. + pat., 4 mm .; met., 3 mm .
I.ength of leg II, 11.4 mm .

Iength of leg III, 11 mm .
L.ength of leg IV, 14.7 mm .; tib. + pat., $4.8 \mathrm{~mm} . ;$ met., 4 mm .

[^36]1902. Lycosa cinerea Emerton, Common Sp. U. S.
_Lycosa cinerca Montgomery, Proc. Acad. Nat. Sci. Plila., p. 555, Pl. XXIX, figs. 17, 18.
1904. Trochosa cinerea, Montgomery, ibid., p. 305, Pl. XX, fig. 43.

Type locality.-Europe.
Knoun localities.-Massachusetts, Connecticut, Indiana, New Jersey, New York (Long Island!), South Carolina, Utah!, Arizona, New Mexico, Texas.

A common form along the Atlantic seashore. Its color of dirty white finely marked with streaks and spots of gray and black harmonizes with that of the sand over which it runs.

Lycosa floridiana (Banks).

(Sub Trochosa, Tr. Am. Ent. Soc., Vol. XXIII, p. 72.)
Female.-Cephalothorax with a broad median yellow stripe wider than the eye area in front, and narrowing gradually caudally; eye region black, the clypeus either entirely black or paler across margin; sides of cephalothorax brown. Chelicere yellow to dark brown. Labium black. Endites brown. Stermum and coxr of legs beneath light brown or yellow. Legs light brown or yellow proximally, with a tendency to become darker, smoky or blackish, distally. Abdomen pale mesally above from anterior end to spinnerets, a faint lanceolate outline in basal part; a black spot over each antero-lateral angle, followed or not with a number of other dark spots so as to form a dark border each side of dorsum; venter and lower portion of sides immaculate.

Face low, strongly slanting outward, evenly convexly rounded laterally.

First row of eyes a little shorter than the second, weakly procurved, anterior median eyes larger than the lateral, considerably closer to the lateral than to each other.

Epig!num wider than long; septum wide anteriorly, evenly arehed ventrally; fovese oval, obliquely and well caudally placed, suggesting an approach to the Allocosa type.

Total length, 7 mm . I.ength of cephalothorax, 3.2 mm ; width, 2.2 mm .
I.ength of leg I, 6.8 mm . ; tib. + pat., 2.5 mm ; tarsus, 1 mm .
l.ength of leg II, 6.4 mm .

Length of leg III, 6.2 mm .
T.ength of leg IV, 7.8 mm . ; tib. + pat., 3 mm . ; tarsus, 1.2 mm .

Locality.-Mlorida.

The genus ALLOCOSA Banks, 1900.
(Proc. Acad. Nat. Sci. Phila., p. 537.)
Cephalothorax slabrous or nearly so to sparsely pubescent. Anterior tibite armed beneath with three pais of spincs, of which the third pair is apical in position and all of which are moderate to minute in size, either armed or unarmed laterally. Anterior row of eyes straight to a little procurved, from longer to shorter than the second row; anterior median eyes larger than the lateral, more or less; clypeus narrow, at most as wille as the diameter of an anterior lateral eye; eyes of second row of moderate size, much less than their diameter apart; quadrangle uf pwiterior eves trapeziform, wider behind than in front. Labium longer than wide, well attenuated anteriorly; basal excavation short, about onc-fourth the total length. Spinnerets very short, anterior and mosterior pairs subequal in length. Epigynum simple, presenting no true quile, or but weakly furrowed, the spermatheca opening free posterionly. Bulb of male palpus bearing a scopus which is exterior in position.

```
18.12. Lyycosa Hentz (ad. part. funerca), J. Bost. Soc. Nat. Hist., 4, p. 228-
    299.
1875. Lyycosa Hentz (ad. part. funerea), Sp. U. S., p. 24.
1876. J.ycosa Keyserling (ad. part. rugosa), Verh. z. b. Ges. Wien. pp. 610-
    624.
188S. ? Tricca Simon, Ann. Ent. Soc. Fre, p. 250.
1890. Lycosa Marx (ad. part. funerea and rugosa), Proc. U. S. N. M., p. 12.
1890. Pardosa Stone (ad. part. nigra), Proc. Acad. Nat. Sci. Phila., 42,
    p. 432.
1894. Trochosa, Banks (ad. part. parra), J. N. Y. E. Soc., p. 52.
1898. Lycosa Simon (ad. part.), Hist. Nat. Araign., 2.
-. Aulonia(?) Banks, Proc. Cal. Acad. Sci., p. 273.
1904. Allocosa Banks, Journ. N. Y. Ent. Soc., p. 113.
```

('ephalothoraxarched consexly behind, strongly attenuated anteriorly; pars rephalica narrow and inclined anteriorly, rather low; face with sides convex and sloping outward from above below; posterior eyes sorn from above well removed from sides of pars cephalica. General appearance of erphatothorax moch like that of a brassid. In the known speries the cephalothorax is entirely without distinct pale stripes, or with a median paler band weakly contrasting.

Chelicrer rather wak ; low or margin of furrow armed with three tereth, the superior with two. Jefgs short ; posterior tarsi simply setose, and the anterior either entirely setose or with sparse lines of scopular hairs at the sides.

Fexepting as to curvature of the anterior row of eyes, this genus is much like most spereies of Simon's old genus Tricca, now withdrawn by its author into Lacose. It has the same form of cephalothorax
and shows the same tendency toward excessive reduction of the spines of the anterior legs, these spines in some species of Tricca being entirely absent from the tibiæ (cf. degesta, infra). In Tricca the anterior row of eyes is always more or less recurved, while in Allocosa it is at most straight. This difference may prove not to hold good. It may become impossible ultimately to maintain this group separate from Lycosa, the American species of which it closely approaches through the T'rochosa group.

Key to Species of Allocosa.

1. All joints of legs except femora clear yellow, without any darker annulations or markings except at ends of tibise IV,
rugosa (Keys.).
Legs beyond femora more or less distinctly anmulate with dark, 2.
2. Anterior row of eyes longer than the second; anterior median eyes not more than one-fifth their diameter apart; anterior tibiæ armed neither in front nor behind, and the ventral spines minute, degesta Chamb.
Anterior row of eyes shorter than the second; anterior median eyes their radius or nearly so apart; anterior tibix armed in front and behind and the ventral spines longer, 3.
3. Femora of first legs solid black above, a sub-basal brown band on the others,
funerea (Hentz).
Femora of first legs not solid black, marked with three black rings, .
4.
5. First pair of ventral spines of anterior tibiex reaching the bases of the median pair, the basal spines in length equalling the diameter of the joint; upper margin of furrow of chelicera with three teeth, parva (Bks.).
First pair of ventral spines of anterior tibise not reaching bases of median pair; and none of the spines in length equalling the diameter of the joint; upper margin of furrow of chelicera with two teeth,
evagata, sp. n.
Allocosa rugosa (Koyserling), 1876.
(Verh. z. b. Ges. Wien, 26, p. 624, Pl. 7, figs. 9, 10.)
Female.-Cephalothorax shining black with obscure brown lines radiating from above; sometimes with a brownish luster; clypeus a little paler, brownish. Chelicere black. Labium, endites and coxe of legs beneath brown. Sternum brownish black. Legs with all femora black, all other joints vellow or pale brown, except the posterior tibis which have a dark ring at each end. Abdomen with front declivity and the sides blackish with some minute lighter dots; dosum obscure brown, black lines outlining a lanceolate mark at base which is continued behind as a fine black median line with a row of black dots
on each side of it ; outside these more median marks is on each side a straight row of black spots which are in part confluent; sides of dorsum with obscure irregular dark markings; venter brown. Spinnerets and epigynum brown.

Chelicerce one and one-third times as long as the face is high; sides of face convex and bulging outward below. Cephalothorax with its dorsal line in profile convex, not much descending posteriorly and not concavated at middle.

Anterior row of eyes shorter than the second, distinctly procurved; anterior median eyes, oval and diverging, their radius apart, hardly half so far from the lateral eyes which are a little smaller, about half their diameter from eyes of second row; anterior lateral eyes less than their diameter (about two-thirds) from front margin of clypeus, a little farther from eyes of second row; eyes of second row comparatively low on face, a little more than half their diameter apart; cephalothorax about 4.5 times as long as the quadrangle of posterior eyes.

Epigynum nearly as in the next species (funerca), but the median part or lobe more convex.

Total length, 5.6 mm . Length of cephalothorax, 2.6 mm .; width, 1.9 mm .

Length of leg I, 5.5 mm .; tib. + pat., 1.9 mm .; met., 1.2 mm .
Length of leg II, 4.9 mm .
Length of leg III, 4.9 mm .
Length of leg IV, 7.8 mm .; tib. + pat., 2.4 mm .; met., 2.3 mm
Male.-Coloration as in female excepting palpi which are entirely black.

Patella of polpi as long as or a little longer than the tibia which thickens distally and, seen from above, is some thicker than the preceding joint; tasus relatively narrow; not much broader than the tibia, its apical part bent ventrad. For palpal organ see Pl. XXIII, fig. 3.

Total length, 4.5 mm . Length of cephalothorax, 2.4 mm .; width, 1.8 mm .

Length of leg I, 5.2 mm .; tib. + pat., 2 mm .; met., 1 mm .
Length of leg II, 4.7 mm .
Length of leg III, 4.5 mm .
Length of leg IV, 7.5 mm .; tib. + pat., 2.7 mm .; met., 2 mm .
Syn-1890, Pardosa nigra Stone, Proc. Acad. Nat. Sci. Phila., Vol. 42, p. 432, Pl. XV, figy 4, 4a.
Non. syn.-1891. Lyycosa funcrea Banks, Ent. News.
Syn-1902. Lycosa nigra, Montgomery, op, cit, p. 538, PI. 29, fig. 1.
1904. Lycosa nigra, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 285, Pl.

- XX, figs. 40, 41. -

Type locality.-Maryland (Baltimore).
Knoun localities.-Maryland, Pennsylvania, District of Columbia!.

Allooosa funerea (Hentz), 1842.
(Sub Lycosa, Proc. Bost. Soc. Nat. Hist., 4, p. 393.)
Femalc.-C'cphalothorax shining reddish black becoming a little paler above, the marginal lines deep black; clypeus pale. Cheliceræ deep reddish brown. Labium and endites brown. Sternum dark brown, blackish at borders. Coxe of legs yellowish brown. Legs with ground color brown of reddish tinge; femora of first pair of legs black, the succeeding femora similar but pale beneath and with the black divided above the proximal end by a brownish cross-band, this annulus becoming more distinction the posterior legs, and the extreme distal end of all femora pale; all tibie with a subbasal and a subapical ring of black; metatarsi less distinctly annulate, there being a median annulus, often more or less diffused, and on posterior pairs also a subbasal and a subapical band. Abdomen appearing black above and at sides, minutely dotted with yellow; the dorsum in front paler, reddish yellow, the paler area enclosing a lanceolate black-margined outline, and followed behind by a row of light spots with black dots at center on each side, these being connected in pairs by black angular cross-lines the angles of which are directed backward ; opposed to the black cross-lines is a series of light chevron-lines with angles forward; venter pale brown, immaculate or sometimes with a few short transverse marks along each side.

Form of cephalothorax and face much as in rugosa.
Anterior row of cyes a little shorter than the second, gently procurved; anterior median eyes their radius or a little more apart, closer to the lateral eyes which are but slightly smaller, less than their radius from eyes of second row; anterior lateral eyes less than their diameter from eyes of second row; eyes of second row their radius apart, rather less than more; quadrangle of posterior eyes as wide in front as long, the cephatothorax 5.5 times longer; eyes of third row unusually small. Labium longer than wide (5.3 : 4.8) ; basal exeavation one-fourth total length; sides slightly convex, strongly converging distally ; front margin convexly rounded, more rarely straight.

For spines of anterior tibix see Pl. \mathcal{X}, fig. 3 .
The epigynum nearly identical in form with that of A. degesta (I'l. XXIII, fig. 5).

Total length, 5.2 mm . Length of cephalothorax, 2.7 mm ; width, 2 mm .

Length of leg I, 6 mm .; tib. + pat., 2 mm .; met., 1.2 mm .
Length of leg II, 5.7 mm .
Length of leg III, 5.3 mm .
Length of leg IV, 8.25 mm .; tib. + pat., 2.5 mm .; met., 2.4 mm .

```
Syn.-1875. Lycosa funerea Hentz, J. Bost. Soc. Nat. Hist., 4, p. 393.
1890. Lycosa funerca, Marx, Proc. U. S. N. M., 12.
1597. Lycosa funerea, Banks, Proc. Ent. Soc. W., 4.
1902. I.ycosa sublata Montgomery, Proc. Acad. Nat. Sci. Phila., 539.
1904. Trochosa sublata, Montgomery, ibid., p. 308.
```

Type locality.-Alabama.
Known localities.-Alabama, Georgia!, Louisiana!.
"This species abounds on the ground. It has the habits of a Herpyllus, and runs with great rapidity " (Hentz).

Allocosa degesta Chamberlin, 1904.
(Can. Entomologist, p. 287.)
Femalc.-Cephalothorax shining black of reddish luster. Chelicera the same. Labium and endites brown. Legs nearly as in funerea, but light marks on femora more obscure and less contrast on other joints between the light and dark rings. Sternum reddish brown, dark about margins, lighter, more yellowish, over middle area. Abdomen above nearly as in funcrea; venter yellow with a few faint dark dots at sides. Spinnerets yellow. Epigynum brown, weakly reddish at borders.

Chelicere nearly twice as long as the face is high. Anterior row of eyes a little longer than the second, nearly straight, anterior median eyes much larger than the lateral (at least $3: 2$), at most one-fifth their diameter apart, still cluser to the lateral eyes, not fully one-third their diameter from eyes of second row; anterior lateral eyes not fully their diameter from fromt margin of elypeus, some closer to eyes of second row; anterior median eyes three-fourths as large as those of second row (Pl . X , fig. 2); eyes of second row about their radius apart; quadrangle of posterior eyes as wide in front as long, only one-sixth as long as cephalothoras. Spines of anterior tibiae greatly reduced, minute, none at all on either anterior or posterior side of joint (Pl. X, fig. 1).

Lpigynum nearly the sane as that of funerca (I'l. XXIII, fig. 5).
Total length, 6.6 mm . Length of eephatothorax, 3.2 mm .; width, 2.25 mm .

Length of leg $1,7.2 \mathrm{~mm}$.; tib. + pat., 2.5 mm .; met., 1.6 mm .
Length of leg II, 6.3 mm .

Length of leg III, 6.3 mm .
Length of leg IV, 9.4 mm .; tib. + pat., 3 mm .; met., 2.8 mm .
Syn.-1904. ?Trochosa noctuabunda, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 301.

Locality,-Louisiana.

One mature and one immature female collected at Baton Rouge by Mr. B. H. Guilbeaux.

Allocosa parva (Banks), 1894.

(Sub Trochosa, J. N. Y. Ent. Soc., II, p. 52.)
Male-Cephalothorax with a wide paler median band, anteriorly wider than eye area; eye region blackish; sides deep brown to shining black; a row of indistinct dots on each side; the paler band clothed with sparse gray pubescence, especially anteriorly; dark parts with sparse gray and brown hairs intermixed ; tending to be glabrous except about eyes and face. Chelicerce reddish brown. Labium and cndites brown. Sternum blackish, brown at middle and along sides clothed with gray pubescence and long blackish bristles. C'oxe of legs beneath yellow. Legs yellow with distinct black rings on all joints except tarsi. Abdomen above grayish or yellowish gray, being clothed with light gray and some yellow hair; dorsum at base with a black lanceolate outline and behind with a number of black chevron-shaped marks and also laterally with some dark spots; venter gray, immaculate. spinnerets brown. Palpi brown, not ringed, the tarsi darker than other joints.

Cephatothorax wile behind and much narrowed anterionly, being only about one-half as wide across eyes as behind. Face with sides convex and slanting, in height one-half the length of the chelicerar; in profile dorsal line is seen to be highest near third eye row, and gently convex between eyes and posterior declivity:

Anterior row of eyes slightly procurved, as long as the second row; anterior median eyes clearly larger than the lateral, more than their radius apart, close to lateral eyes; anterior lateral eyes the dir diameter from front margin of clypeus and from eyes of secomet row : eyes of second row not large, nearly their diameter apart ; quadrangle of poteriou eyes one-fifth the length of cephalothorax.

Tarsi and metatarsi of the first and second pairs of legs sompulate as usual; tans of the third and fourth pains setose , not at all seopulate; patella of second legs armed in front with a single eppine; tibia - patella of fourth legs a little shorter than erphathonas, longer than metatarsi of fourth leg; patella of thirl legr of ahout the same length as the
tibia; metatarsus of first leg longer than tibia of first; femur of fourth leg about same length as width of cephalothorax.

Patella of palpus clearly longer than the tibia; tarsus not fully as long as the tibia + patella.

For structure of palpal organ see PI. NX, fig. 7 .
Total length, 6 mm . length of cephalothorax, 3 mm ; width, 2.1 mm .
L.ength of leg I. 6.5 mm ; tib. + pat., $2.1 \mathrm{~mm} . ;$ met., 1.4 mm .

Length of leg II. 5.5 mm .
Length of leg III, 6.1 mm .
Length of leg IV, $8.4 \mathrm{~mm} . ;$ tib. + pat., $2.8 \mathrm{~mm} . ;$ met., 2.3 mm .
Female.-Coloration similar to that of male.
Epiggmum of general type of that of funerea, but epigynal plate more elongate and more strongly narrowed at posterior end; with posterior margin concave or indented mesally, not bowed caudally.

Total length, 8.5 mm . Length of cephalothorax, 3.4 mm .; width, 2.7 mm .

Length of leg IV, $9.7 \mathrm{~mm} . ;$ tib. + pat., 3.1 mm . ; met., 2.8 mm .
1895. Trochosa paria Banks, Ann. N. Y. Acad. Sci., Vol. VIII, p. 430.
1901. Trochosa parca, Banks, Proc. Acad. Nat. Sci. Phila., p. 587.
1902. Trochosa parra, Banks, Proc. U. S. N. M., p. 217.

Type locality.-Colorado.
Known localities.-Colorado!, Arizona, New Mexico!, Utah!.
Allocosa evagata sp nov.
F'emale.-C'ephulothorax blackish brown; rather paler above; on each side a marginal line of clear black; in front of dorsal furrow a faint polygonat figure outlined in black, with an angle in middle of front margin proluced toward eye region as a line and a similar one on rach side probured whipuely along side of pars cephatica; the cephalothorax rather paler in front of this figure than elsewhere; color deeper about eyes. Chelicere reddish brown, an indistinct blackish mark arcosis middle which mesally fontinues obliquely upward on inner face. Leys yedlow with distinct dark rings of which there are three on the fernora, the apical one being about twice as broad as the others; thewe rines incomplete abowe but continuous laterally and ventrally. Thre second and third rings on femora IV are confluent along the antero-dor-al sille. The tibite carh with two lark ringrs, of which at least the di-tal ofre is intermpted above. The metatarsi with three indistinct rings. Labium, endites, coxe and stermum yellow, the labinm and stornum dusky. Front part of domum of abdomen obseure reddish
yellow, this area embracing some small, ill-lefined dark dots. l'osteriorly are pairs of ocellate light spots which are united transersely by inverse chevron-lines, between which are indicated pale chevronlines with the apices directed forward. The dorsum elsewhere and the sides covered with a dense netionk of black over the obscure yellow backerounl, i.e., appearing black marked with numerous small dots of yellow. Venter yellow with some short transverse marks of dark color toward the sides. Epigynum reddish vellow. Spinnerels yellow.

First row of eyes evidently shorter than the second. Anterior melian eyes larger than the lateral ($4: 3$), at most their radius apart, half is far from the lateral cyes. Anterior lateral eyes a little less than their diameter from front margin of clypeus, two-thirds their diameter from cyes of second row. Eyes of second row two-thirds their diameter apart. Dorsal eye area of same length as the width in front which is but little less than that behind, the area being subpuadrate. Dorsal eye area one-fourth as long as the cephalothorax.

Legs of but moderate length. Tibia + patella IV shorter than the cephalothorax, longer than the metatarsus. Metatarsus IV some longer than tibia + patella of leg I. Spines of anterior tibiæ rather short, slender and prone. None of the tarsi truly scopulate, sparsely clothed with bristles of ordinary form.

Lower margin of furrow of chelicere with three teeth as in Lycosa, the teeth conical and well spaced, the median one being largest. The upper margin with but two tecth which are stout and conical, the first being larger than the second and also larger than those of the lower margin which are of about same size as the second one above.

Labium attenuated anteriorly, its front margin concave.
For structure of epigymum see PI. XXILI, fig. 4.
Total length, 5.2 mm . Length of cephalothorax, 2.8 mm ; width, 2 mm .

Length of leg I, 6.1 mm .; tib. + pat., 2 mm .; met., 1.3 mm .
Length of leg If, 5.8 mm .
Length of leg IHI, 5.5 mm .
Length of leg IV, $7.5 \mathrm{~mm} . ;$ til). + pat., 2.5 mm . ; met., 2.2 mm .

$$
\text { Syn.-1598. Autunia(?) funerect Banks, Proc. Cal. Acaad. sci., p. } 273 .
$$

Locality, -Baja California.
 and bearing label by laanks of Aulonia(?) funerea 11tz.

While not yet reported actually from within our borders, the form will doubtless be found to occur in the sonthwest and is therefore included.
(() Allocosa oxalbida L. Becker, 1881.
(Loc. sup. cit., figs. 3, 3a, 3b.)
Only figures were published. A pale species about 11 mm . long, with very long legs. The figure of the eyes would seem certainly to prove this species not to be a Lycosa. The epigynum is not that either of Lycosa or a Pardosa, heing like that of some Piratas and much like that of Allocosa (funerea).

The eyes also resemble those of this latter genus, but this form is placed here with much doubt.

Locality.-New Orleans.

The genus SOSIPPUS E. Simon, 1888.
(Ann. Ent. Soc. Fr., p. 205.)
Entire body densely clothed with rather long pubescence. Anterior tibice armed beneath with three pairs of spines which are basal, median or submedian, and apical in position respectively; these spines long and apically slender and aculeate, much longer than the diameter of the joint (Pl. XI, fig. 4). Anterior cyes well separated, equidistant or very nearly so; the lateral ones on protruding tubercles, as large as or (as in ours) larger than the median; the anterior row longer than the second (Pl. XI, fig. 2); clypeus as wide as the diameter of an anterior lateral eye; eyes of second row considerably less than their diameter apart; quadrangle of posterior eyes trapeziform, distinctly broaler behind than in front. Cheliceres armed below with four stont conical teeth. Labium longer than wide, the basal excavation (in ours) one-third the total length. Posterior spinnerets distinctly and con-iderably longer than the anterior, the second joint of the former being long and conical (Pl. XI, fig. 5). Epigynum with a guide which in the known species is subclavately enlarged distally (Pl. XXIII, fig. 2). Alveolar area of male palpus comparatively small; a simple (in our:) process from basal lobe present in an exterior pusition, extemding ditally and free except at base; no pit or fold at base of process (Pl. NXIII, fig. 1).

Syn-1898. Sosippus Simon, 1List. Nat. Araign., 2, p. 326.
1902. Sosippus Cambridge, Boil. Cent. Amer., pp. 315-332.
1903. Comstock, Classif. of N. A. Spiders.

Cephatothorax long and rather low, the pars cephalica not elevated. Face rounded forward to the front cege row, the clypens from above below more or less retro-obligue, its sides convex and slanting out: ard (Pl . XI, fiy. 4). (2nadrangle of posterior eyes one-fifth as long as
the cephalothorax. Chelicere long and robust, the upper margin armed as usual with three teeth of which the median one is much stoutest; in the armature of the lower margin of the furrow with four stout teeth the genus resembles Dolomedes; the statement made by Simon that the two middle teeth of the lower margin are longer than the others does not hold for S. floridanus, in which the fourth tooth is distinctly longest; in immature specimens sometimes but three teeth are present on the lower margin. Legs with the tarsi and metatarsi densely and widely scopulate for their entire lengths from base to apex, the scopule long; the scopule of the posterior pairs divided by a median narrow line of bristles; distal joints of legs with long aculeate bristles.

Spiders of large size, in general appearance similar to Lycosa. In the character of the mouth parts they suggest some of the Pisaurider. In the structure of the spinnerets and in the color markings of the abdomen and especially in habits they show close affinities with the Agelenide. The habits of the species of this genus so far as observed are very similar to those of IIppasa and Porrima, the two most closely related genera. The three genera are all composed of species which are sedentary in habit, building large webs of fine silk with a central funnelshaped tubular retreat, precisely as do the Agelenas and other Agelenider. In rushing out to seize their entangled prey they run upon the lower surface of the web. Like other Lycosidx, however, they suspend their cocoons to the spinnerets where they are maintained constantly, never depositing them upon the web. They do not desert their webs during the cocooning season. According to Cambridge, the movements of a Sosippus which he observed upon the Amazon were exceedingly quick, like those of Agelena.

Sosippus is known only from the Americas, having been foum in Florida, Lower California, Mexico, Central America and Brazil. But one species occurs within our limits.

Sosippus floridanus Simon.
Female.-Cephatothorax deep reddish brown or reddish black without distinct light markings in the tegument; behind the eye region a median stripe of yellow hair and on each side a wider marginal hand of white hair intermised anteriorly with some of yellow color, these marginal bands extending forward to the elypens but not joining aeross it; pubescence elsewhere dark. Chelicere shining black spansely clothed above with blackish hair and densely clothed below with gray-ish-brown hair of which there is a fringe along the furrow. Labium and endites rather dark reddish brown, pater distally: sternum red-
dish-brown, the cora of legs a little paler and less reddish, clothed with cinereous hair intermixed with longer brown bristles. Legs fuscous, varied with some reddish-brown lines and marks, the femora darker than the other joints clothed with brown and cinereous pubescence. Abdomen blackish above, the venter brown; on each side of dorsum a row of spots of white hair and the median part of dorsum behind crossed by narrow white lines similarly formed by pubescence; outer part of dorsum and sides densely covered with minute spots and streaks of white hair; venter densely clothed with brown and cinereous hair, two darker lines converging from the epigynum backward and uniting before attaining the spinnerets, these lines being covered with the dark hair unmixed.

Face with the sides convex and widely slanting, in height only about half as great as the length of the chelicere.

Anterior row of cyes clearly longer than the second, rather strongly procurved; anterior median eyes some less than their diameter apart, and les: than their diameter from eyes of second row; anterior lateral eyes a little larger than the median, their tubercles prominent, their diameter from front margin of clypeus, fully one and one-third their diameter from eyes of second row; eyes of second row large, two-thirds their diameter apart; quadrangle of posterior eyes half again as wide behind as in front, a little more than one-fifth the length of the cephalothorax $(4.8: 1)$. Lower nargin of furrow of chelicere with the teeth nearly equidistant, the fourth evidently largest. Labium but slightly longer than broad ($13: 12.4$) ; hasal exavation one-third length of labium; sides below hardly converging, but above strongly rounding and converging; front margin very slightly widely concavate to straight (Pl. XI, fig. 1). Legs with tibiax armed as described under the genus, the two basal paiss lomig and ilmber, apically bristle-like, the apical pair stout and abruptly pointed (PI. XI, fig. 4); tarsi, metatarsi and distal part of thise I and II demedy somplate, the posterior ones differing as usual. For spimnerets see Pll XI, fig. 5.

For the structure of the epigymum see Pl. XXIII, fig. 2.
Total length, 14.2 mm . Length of cephalothorax, 7 mm .; width, 5 mm .

Length of leg I, $17.8 \mathrm{~mm} . ;$ tib) + pat., 6.1 mm .; met., 4 mm .
Length of leg $11,16 \mathrm{~mm}$.
length of leg III, 15.5 mm .
L.ength of leg $1 \mathrm{~V}, 22.9 \mathrm{~mm}$. ; til). + pat., 7 mm .; met., 6.2 mm .

Male.-Coloration as in the femate, or a little lighter; palpus elothed with fulvo-cinereous pubescence.

Tibia of palpus longer than the patella, the tarsus nearly equalling the combined length of the two preceding joints; tarsus much wider than the tibia (3:2). For structure of the palpal organ see Pl. XXIII, fig. 1.

Total length, 11.2 mm . Length of cephalothorax, 6 mm .; width, 4.2 mm .

Length of leg I, $18: 5 \mathrm{~mm}$.; tib. + pat., 6.3 mm .; met., 4 mm .
Length of leg II, 18 mm .
Length of leg III, 17.8 mm .
Length of leg IV, 23.7 mm .; tib. + pat., 7.1 mm .; met., 7 mm .
Locality.-Florida!.
The female described above is one of the type specimens.
The genus TRABEA Simon, 1876 .
(Arachn. Fr., 3, p. 356.)
Anterior tibie and metatassi armed beneath with very long spines which are much longer than the diameter of the joint ; of these spines there are on the tibie three or four pairs (PI. NII, fig. 2). Anterior eyes in a very strongly procurved row which is shorter than the second; anterior median eyes much closer to each other than to the lateral which are but little or sometimes not at all smaller; clypeus narrow, the anterior lateral eyes being separated from its front margin by their diameter or but little more, always farther from the eyes of second row; eyes of second row at upper exterior angles of face, strongly convex and protruding, less than their diameter apart; eyes of third row likewise strongly convex, divergent, facing outward and hackward, quadrangle of posterior eyes but little wider behind than in front. Labium wide, attenuated anteriorly, the basal excavation short. Posterior spinnerels (at least in ous:) evidently longer than the anterior, the second joint distinct though not long. Epigynum with a guide; in ours, strongly chitinized only on each side about the speranathecal openinge, elswhere less dense, clothed with hair as tegument elsewhere. Male palpus bearing a scopus in a median position; basal spur extremely large, much longer than the erect branch (in ours).

[^37]Pars ecphatica long, but little inclined anteriorly. Sides of jace straight and vertical or nearly so; face protruling abowe over its basal portion (Pl. XII, fig. 1). (Guadrangle of posterion cyes relatively
long. Posterior eyes seen from above touching or protruding beyond the lateral margins of pars cephalica (Pl. XI, fig. 8). Chelicerce with the lower margin armed either with two or with three teeth, the upper with three. Leys rather long; tarsi either very sparsely scopulate on anterior pairs or the scopulæ quite absent.
spiders of small size, readily distinguished by the extreme convexity of the eves of the second and third rows and by the strongly procurved first row with its median eyes closer to each other than to the lateral. The very long straight spines of the anterior legs form a prominent feature. The quadrangle of posterior eyes is relatively much longer than in any other known North American Lycoside.

Trabea aurantiaca (Emerton), 1885.
(Trans. Conn. Acad. Sci., 6, p. 499, Pl. 49, figs. 6 to 6b.)
Female.-Sides of cephalothorax black or blackish brown; a bright yellow supramarginal band on each side extending forward to the clypeus and touching the inferior edges of eyes of second and third rows; a yellow median band nearly as wide as third eye row just behind the latter, extending broadly between the third eyes nearly to those of second row, posteriorly rapidly narrowing to a point at the dorsal groove over which it is obscure or absent, becoming again visible on the poiterior declivity on which it begins above at a point and widens clavately downward to the posterior margin; eyes surroundel by hack; clypens yellow. Chelicere smoky brown or blackish above, yellowish distally. Labium and endites brown, often dusky, pale distally. Sternum and coxec of legs yellow to brown. Legs with background yellow; femur I black; femur II like I, but with the black more or less broken by yollow, especially so above; the posterior femora more largely yellow, the black marks often faint; patellæ dark or black distally; thine with a basal and an apical dark ring, and the metatarsi more or less darkened at proximal end; the markings of all these joints becoming more indistinct or disappearing on the posterior pairs, the lant pair being often clear bright yellow. Abdomen orangebrown, the sides markeyl he a series of parallel hack hars which pass obliguely downward and candad, the most anterior of which on each side bends forward arross the corroponding antero-lateral angle; these Dack bars connected at upper omls on each side by narrow angular lines with angles directed mesad; thesingles, excepting the first, are comeeted into pairs by back cherron-lines across dorsum; anterior area of dorsum showing more indistinetly a lancelate figure outlined by a fine black line; venter umarked exept for a narrow inwardly
bending dark line each side of middle, the two of which are united by a cross-bar just at base of spinnerets. Spinnerets dusky orange. Epigynum reddish brown about spermathecal openings, elsewhere concolorous with the venter.

Pars cephalica long and high, highest anteriorly and visibly descending caudad to the pars thoracica. Chelicere a little longer than height of jace. Anterior row of eyes as described for genus; anterior median eyes two-thirds their diameter apart, fully their diameter from the lateral eyes which are about two-thirds as large, their diameter from eyes of second row; anterior lateral eyes their diameter or some less from front margin of clypeus, one and one-half times their diameter from eyes of second row; quadrangle of posterior eyes one-third or more the length of the cephalothorax (Pl. NI, fig. S). Lower margin of the furrow of cheliccres armed with two stout conical teeth which are subequal; upper margin with three teeth of usual character. Labium clearly wider than long ($5: 4$); the basal excavation little or not at all more than one-fifth the total length; sides strongly converging anteriorly; front margin truncate or slightly convexly rounded. Legs having tarsi bent or curved down at distal end but not at base as in male; tarsi sparsely setose and scopule entirely absent. Posterior spinnerets widely separated; distinetly longer than the anterior, but in alcohol often bent toward each other and then inconspicuous; the second joint distinct but short, bluntly pointed.

For form of epigynum see Pl. XII, fig. 2.
Total length, 3.4 mm . Length of cephalothorax, 1.6 mm ; width, 1 mm .

Length of leg I, 4 mm .; tib. + pat., 1.4 mm .; met., .95 mm .
Length of leg II, 3.8 mm .
Length of leg III, 3.8 mm .
Length of leg IV, $5.5 \mathrm{~mm} . ;$ tib. + pat., 1.7 mm .; met., 1.5 mm .
Male.-Lighter than female, markings of legs (excepting the anterior femora) and of abdomen less distinct or absent. P'ulpi black; the tip of tarsus yellow, in life clothed, like legs, with white hair

All tansi of legs distinctly curved downward distally, the anterior ones strongly so, those of the third and fourth pains also bent at proximal end. Polpus with the sides of tibise parallel, not at all enlarged distally; tibia longer than patella by one-fourth its length; tarsus of about same length as tibia + patella, much wider than the tibia (4:2.5).

For palpal organ (drawn out from alveolus) see Pl. XII, fig. 3.
Total length, 2.6 mm . Length of cephaluthorax, 1.5 mm .; width, 1 mm .

Length of leg I, $3.6 \mathrm{~mm} . ;$ tib. + pat., 1.3 mm .; met., 9 mm .
Length of leg II, 3.4 mm .
Length of leg 111, 3.3 mm .
Length of $\operatorname{leg} \mathrm{N}, 4.8 \mathrm{~mm} . ;$ tib. + pat., 1.5 mm .; met., 1.5 mm .
Syn.-1890. Aulonia aitrantiaca, Marx, Proc. U. S. N. M., 12.
1892. Aulonia aurantiaca, Marx, Proc. Ent. Soc. W., 2.
1892. Aulonia aurantiaca, Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 73.
1898. Trabea aurantiaca, Simon, Hist. Nat. Araigñ., 2.

Type locality.-Massachusetts and Connecticut.
Knoun localities.-Massachusetts!, Connecticut, New York, District of Columbia!.

The genus SOSILAUS Simon, 1898.
(Hist. Nat. d. Araign., Vol. 2, p. 350.)
"Cephalothorax convex behind, in front long slanting and attenuated, the face rather narrow, oblique and obtuse. Four anterior eyes subcontiguous, in a gently recurved row, the median at least twice at large as the lateral. Eyes of the second row moderate, approximate, occupying a transverse space much narrower than the anterior eye row (Pl. XII, figs. 5, 6). Cheliceræ rather weak, the inferior margin of the furrow tridentate. Labium longer than wide, attenuated and obtuse. Legs rather long; the metatarsi and tarsi slender and long, not scopulate; anterior tibise armed beneath with 5-5 prone spines and the metatani with $3-3$ similar ones, there being smaller lateral spines" (Simon).

In the character of cephalothorax and eyes this genus is very similar to Trica and similarly much suggests Allocosa, from which it differs most conspicuously in the armature of the anterior tibix. The posterior eyes are sitnated upon a very oblique plane. The eyes of the second row are relatively small.

But one speries of this gemis is known and that by a single specimen (S. spinger E. S.).

Syn-1903. Sosilaus Comstock, Classification of North American Spiders.
Sosilaus spiniger Simon, 1808.

> (Hist. Nat. Araign., 2, p. 350.)
"Length of male 3.7 mm.-('rphatothorax fulvo-rufous, smooth and sub, 品abrous, a narow marginal fuscons line and the pars thoracica marked irrogularly with short radiating stripes. Absomen fuscotestaceons, paler in front and below. J.egs lurid, tarsi infuscated. Palpi lurid, the tarsus infuscated, sides parallel, setose with long
bristles below; tibia a little longer than the patella, terete, gently curved; tarsus shorter than the tibia with patella, narrowly ovate, acuminate; bulb simple."

Locality.-Louisiana.
I have not found in collections from Louisiana and neighboring States any specimens referable to this species, which remains known only from M. Simon's diagnosis and comments.

> The genus PIRATA Sundevall, 1833.
> (Subgenus sub Lycosa, Consp. Arachn. p. 24.)

Body clothed sparsely with short hais, in life never cloaking and concealing the tegument as is commonly the case in Pardosa and Lycosa. Anterior tibiee in the female armed beneath with two pairs of spines, respectively basal and submedian in position, never with an apical pair; these spines very long and overlapping, much longer than the diameter of the article; rarely with three pairs bencath, the thist pair midway between the median pair and the distal end of the joint ; tibise in the male with the long spines as in the female, but in addition with an apical pair (Pl. X, fig. 7). Anterior row of eyes as long as or but little shorter than the second, a little procurved or straight, the eyes subequal or with the median a little larger than the lateral; clypeus rather narrow, the anterior lateral eyes separated from its: front margin at most by their diameter, a little farther from eyes of second row; eyes of the second row large, less than their diameter apart; dorsal eye area trapeziform, wider behind than in front. Labium longer than wide, attenuated anteriorly in varying degrees; basal excavation short, nearly always but one-fourth or less the lengt! of the labium, only rarely longer. Posterior spinnerets much longer than the anterior, their second joint distinet and conical. Epiq!ymum presenting no true guide, usually consisting behim of two strongly chitinized lobes or tubercles upon which are the openings, of the spermatheen. Bulb of male palpus with no true scopal fold or one but slightly indicated; conductor as a conspicuous erect apophysis or process, in a mostly medio-apical position, and its primipal hranch reaching to or extending beyond the front margin of the alveolns; a basal spur or branch of considerable size always present on conductor; the embolus small, short, nearly conceated usually; lunate phate very large, one-third as long as the bulb.

Syn-1848. Lyycosa subgen. Potamia C. Koch, Die Arachn., 14, p. 95.
1876. Pirata Simon, Arachn. Irr.
1876. Pirata Keyserling, Verh. z. 1. Ges. Wien, 26, p. 610.
1885. Pirala Emerton, Trans, Comn. Acad. Sci., 6, p. 192.
1890. Pirata Marx, Proc. U. S. N. M., 12, p. 564.
1895. Lycosa Simon (ad. part), Hist. Nat. Araign., 2, p. 345.
1902. Pirata Montg., Proc. Acad. Nat. Sci. Phila., p. 536.
1903. Lycosa Comstock (ad. part.), Class. N. A. Spiders, p. 51.
1904. Pirata Chamberlin, Can. Ent., p. 177.
1904. Aulonia, Montgomery, Proc. Acad. Nat. Sci. Plila., p. 265.

Cephalothorax moderately low; the pars cephalica not elevated being nearly level with the dorsal line of the pars thoracica, in front broadly obtusely rounded, the sides rounded and considerably sloping. Face mostly low, much shorter than the length of the cheliceræ, trapeziform, the sides in most convexly rounded and widely sloping, rarely substraight and very steep or nearly vertical, the eyes of second row more or less distant from its upper exterior angles. Except in the few species with the siles of the face very steep, the posterior eyes when viewed from above are removed from the lateral margins of the pars cephalica by more than their diameter as is the case in Lycosa (Pl. X, fig. 5). Quadrangle of posterior eyes one-fourth, or usually less, the length of the cephalothorax, rarely longer. Chelicere robust, the lower margin with three teeth similar to those of Lycosa, but with the third often conspicuously reduced as in Pardosa; upper margin with three teeth of the usual character; fringe of hair of upper margin more spare than in Lycosa; posterior line with long but sparse hairs. Legs robust ; tarsi in most cases simply setose on all pairs, very rarely with the anterior ones with thin lateral scopular lines as in Pardosa, the bristles, however, being often serried (Pl. X, fig. 7); tibia + patella of leg IV sometimes longer than, at others shorter than, the cephalothorax, longer than the metatarsus or more rarely of the same length. The cephalothorax always presents a median pale stripe, which begins on the posterior deelivity as a narrow line and then continuously widens to the third eye row, there more abruptly widening, passing below the posterior eyes of each side and attaining the clypeus; the eyes are mostly upon black; the median stripe encloses in its anterior half a lifureate or 1 -shaped dark mark, the undivided median part being at the anterior cind of the dorsal furrow and sending an arm forward to the imner margin of the third eye on each side (Pl. X, fig. 5); marginal light stripes may or may not be present; many species are marked on the abolomen with lines and spots of bright white hair.

The Piratas are spiders of small or of medium size. The males are in most cases as large as or larger than the females.

In habits they are much like the l'isauridue. They occur in damp meadows or more especially at the margins of streams, ponds and other berlies of water, upon which they run with great ease. Many
forms in case of danger dive readily beneath the surface of the water and hide under stones, leaves, etc., at the bottom. The cocoon is carried about attached to the spinnerets, though when the females are at rest it is commonly held in the chelicere. The cocoons are clear white in color and spherical in shape, marked at the equator by a seam less strong than that on the cocoons of Pardosa. The female constructs a temporary retreat under stones and other suitable places, spinning a small irregular web of very delicate texture. The greater length of the superior spinnerets would seem to be associated with this web-spinning habit.

Key to Species of Pirata.

1. Lower margin of the furrow of the chelicere armed with but two teeth,
Lower margin of furrow armed with three teeth, 3.
2. Cephalothorax less than 2 mm . long, minutus Em.

Cephalothorax 3 mm . or more long, marxi Stone.
3. Cephalothorax with no submarginal light stripes, . moutemus Em.

Cephalothorax with submarginal light stripes,
4.
4. Cephalothorax less than 2 mm . long, or at most not longer, . 5.

Cephalothorax much more than 2 mm . long,
6.
5. All joints of legs except tarsi distinctly ringed with black (female), aspirans Chamb.
Femora dark at distal ends, other joints of legs light, not at all marked with dark, humicolus Mtg.
6. Cephalothorax in life or when dry showing on each side a marginal stripe of bright white hair,
Cephalothorax showing no such stripe. insularis Em.
7. A black marginal stripe below each pale lateral stripe, piratica utahensis, new var. No such black marginal line, felriculosa (Beck.).

The key above does not include prodigiosa Kieys. or hilobatus Tullg.
Pirata minutus Emerton, 1885.
(Trans. Comn. Acad. Sci., 6, p. 493, Pl. 48, figs. 10-10c.)
Female.-Sides of cephalothorax dark brown to gray-hrown; a sellow median stripe of more or less greenish hue which bexins caudally as a narrow line, but expands continuously forward to the eye region, continuing as a narrow stripe on each side below eyes to the clypeus as usual; within the median light band are two dark lines or narrow stripes extending backward from eyes of third row and miting together into one line at the dorsal groove, forming thus the typical V-shaped mark; a marginal light stripe on each side with uneven upper border,
not extending forward beyond third eye row; in life a marginal line of white hair much narrower than light stripe of the tegument with which it is coextensive in length. Chelicere black-brown, yellow distally; subsparsely clothed with rather long light gray hairs. Labium and endites dark brown, paler distally. Sternum deep brown to blackish, in most cases with a yellow median line and a number of yellow spots along each lateral margin; clothed with comparatively long light gray hairs. Coxe of legs beneath yellow. Leys light brown or yellow, all joints excepting the tarsi amulate with black; the femora have usually a submedian ring and a broader ring at distal end, the latter sometimes partially divided by light; the tibie and metatarsi have a wide annulus at each end, leaving especially on the tibix a relatively narrow yellow ring at the middle; tibix sometimes entirely black. Abdomen above black, sometimes with and sometimes without narrow lanceolate yellow mark at base; dorsum clothed with sparse light brown or grayish hair, with a series of five or six spots of white hair along each side for the entire length, and posteriorly with narrow cros--lines of similar white hair, these lines sometimes indistinct; sides a little paler than the dorsum, with some streaks and dots of white pubescence; venter dark gray, more densely clothed with hair than the sides and dorsum, the hair being gray. Epigymum reddish brown, usually nearly on 'fuite concealed hy long gray hairs. Spinnerets dark brown.

Face but little more than two-thirds as high as the chelicere are long, sides substraight and nearly vertical as in Pardosa.

Anterior mow of eyes nearly as long as the second, more strongly procurved than is usual in this genus; anterior median eyes about their radius apart, a little larger than the lateral; anterior lateral eyes rather less than their thameter from front margin of elypeus, farther from eyes of the second row; quadrangle of posterior cyes one-fourth the length of the cephalothorax.

Lower margin of furrow of chelicere with but two teeth which are relatively long and slemder, the seond one a little smaller than the first, the latter evidently representing the seeond of the three typically present in the Lycoside.

Legs with tibia + patella of the fourth pair a little longer than the cephalothorax, which is of the same length as the metatarsus of the same legro thbiat of first logs armed wentrally with a basal and a submedian pair of spines which are very long, overlapping as usual.

For structure of epigynum see I'l. XXII, fig. 7.
Total length, 3.3 mm . Length of erphatothorax, 1.8 mm .; width, 1.3 mm .

Length of leg I, 4.5 mm .; tib. + pat., 1.6 mm .; met., 1 mm .
Length of leg II, 4.4 mm .
Length of leg III, 3.8 mm .
Length of leg IV, 6.3 mm .; tib. + pat., $2 \mathrm{~mm} . ;$ met., 1.8 mm .
Male.-Femora of first tro pairs of legs black, others dusky yellow; all other joints clear yellow, without indications of any dark marks; palpi entirely black, except the patelle which often are paler above; coloration otherwise nearly as in female, but in general darker.

Tibia of palpus considerably longer than patella, and narrower than tarsus; main process of apophysis of conductor with its upper half bent outward at right angles to lower half at or a little in front of front margin of alveolus; basal spur ending apically in an acute point (Pl. XXI, fig. 9).

Total length, 2.9 mm . Length of cephalothorax, 1.6 mm .; width, 1 mm . Length of leg I, 4.4 mm .

Syn.-1890. Pirata minuta Em., Banks, Proc. Acad. Nat. Aci. Phila., 44, p. 72.
-Pirata exigua Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 72, Pl. 1, fig. 48.
1890. Pirata minuta Em., Marx, Proc. V. S. N. M., 12, p. 564.

Non-syn.-1892. Pirata minuta Em., Fox, Proc. Ent. Noc. WV.
Syn.-189s. Pirala minutus Em., Simon, Hist. Nat. Araign., II, p. 335.
Type locality.-Massachusetts and Comnecticut.
Known localities.-Massachusetts!, Connecticut, New Fork (Ithaca!).
I have found females of this species with egg-saces fairly common in certain damp meadows about Ithaca, New York, late in the summer. A few were taken at the margins of ponds. The male above described, from Massachusetts, was kindly loaned me by Mr. J. II. Emerton.

Pirata aspirans Chamberlin, 1904.

(Can. Ent., Vol. XXXVI, p. 286.)

Female.-Sides of cephalothorax dark brown crossed by radiating lines of black; a pale median band begiming at posterior margin narrows to candal end of thoracic furrow, then widens gradually to eyes of third row where it more or less abruptly widens and cmeloses the eye area, below which on each side it attains the elypens as usual; within the median pale band a median line at front of furrow hifureates, sending a branch to eyes of each side as usual ; cyes sumbomden by back; clypeus yellow; a marginal band of yellow on each side, limited below by a line of black, these side stripes extembing forwarl only to opposite the third eyes. Chelicere reddish yellow, smoky over midde region and with branching lines of black over basal areab. Lathium yollow. E'adites yellow above, and darker, dusky-hwown below.

Sternum and coxce of legs beneath immaculate yellow. Legs yellow; all joints except the tarsi more or less distinctly banded with black rings; these dark rings on femora of first legs confluent and also semiconfluent on other joints; femora with four rings, of which the apical one may be indistinct. Dorsum of abdomen black, at sides minutely punctate with yellow; at base a lanceolate yellow mark, on each side of which just behind middle is a small ovate yellow spot with black dot at center, and each side of apex a larger triangular yellow spot; behind is a series of yellow transverse bowet or chevron-shaped transverse marks which become successively shorter caudad, the last few being diamond shaped and contiguous by their apices; sides of abdomen above like sides of dorsum, but below becoming more and more yellow, the black being first reduced to spots and then quite disappearing at venter; venter yellow, dusky in front of the genital furrow and also with a dusky interrupted median band extending back from epigynum twothirds the distance to the spinnerets, and on each side of venter a narrow irregularly edged black line which does not extend all the way to the spinnerets behind. Spinnerets yellow. Epigynum reddish yellow.

Sides of face of moderate steepness; face a little more than half as high as the chelicere are long. Seen in profile, the dorsal line of the cephalothorax is straight and horizontal or nearly so between the eyes and the posterior declivity, the pars cephalica not being elevated at all above the pars thoracica. Lower margin of furrow of chelicere with three teeth, of which the middle one is much stoutest and longest, the first one clearly the smallest; the upper margin with three teeth of the usual proportions. Labium slightly longer than broad ($5: 4.8$), four and five-tenths times longer than its basal exeavation strongly converging anteriorly; anterior margin indented mesally with its side parts convexly rounded. Leys with tibia + patella of the fourth pair much longer than the cephalothorax, which is of the same length as the tibia + patella of the first pair; spines of anterior tibie very long, those of the first pair to or a little beyond the middle of the joint.

Anterior row of eyes but slightly procurved, shorter than the second; anterior median cyes about $t w-$-hirds their diameter apart, closer to the lateral eyes which are two-thirds as large, hardly two-thirds their diameter from eyes of second row ; anterior lateral eyes three-fourths their diameter from front margin of clypens, their diameter or slightly more from eyes of second row; cyes of second row two-thirds their diameter apart; quadrangle of posterion eyes slightly wider in front than long, longer behind than in front in ratio of $9: 7$ (nearly), onefourth as long as the cephalothorax.

Epigynum with the lateral tubercles widely rounded behind, being mesally shallowly angularly excavate (Pl. XXII, fig. 6).

Total length, 4 mm . Length of cephalothorax, 1.9 mm .; width, 1.4 mm .

Length of leg I, 5.4 mm .; tib. to pat., 1.9 mm .; met., 1.2 mm .
Length of leg II, 5.1 mm .
Length of leg III, 4.7 mm .
Length of leg IV, 7.3 mm .; tib. + pat., 2.3 mm .; met., 2 mm .
Male.-For structure of palpal organ see PI. XXII, fig. 5.
Syn.-1890. Pirata minula Fox (at least ad. part.), Proc. Ent. Soc. W.
Locality.-Washington, D. C.!.

Pirata hamioolus Montgomery, 1902.

(Proc. Acad. Nat. Sci. Phila., p. 575, Pl. 30, figs. 40, 41.)
F'emale.-Sides of the cephalothorax brown to black with lighter radiating lines; a yellow median band widening from behind, where it is a mere line, forwatd and enclo:ing the usual dark bifureate mark in its front half; on each side a yellow supramarginal stripe which does not exteme upon the pans cephalica and which is limited below by a black marginal line; in life there is a marginal line of white hair. Chelicere, labium and endites dark reddish brown. Sternum dark brown, paler along midtle and darker at lateral margins. Leys brown, often of greenish hue, the coxm beneath paler, yellow. Palpi like the legs, paler at the base. Dorsum of abdomen brown of greenish tinge; a basal lanceolate median stripe; two rows of light spots clothed with white pubescence on each side of the basal stripes and extending to the spimerets behiml, the outer line often evilently only caulally, the spots of the inner lines largest anterionly comected by some thin cross-lines of white hair; sides of abdomen yellowish brown tinged with green; venter clear yellow, sometimes a few small blark dots in front of spinnerets. Epigymum reddish brown. Spinnerets yellow.

Chelicere one and one-third times the height of the face, the sides of which are subvertical as in Pardosu. Anterior row of eyes a little shorter than the secomb, a little prowerved; eyes of second row nearly their diameter apart ; quadrangle of positerion cyes one-fifth as long as the eephalothorax. Lower margin of the furrow of the che licere armed below with three teeth.

Total length, 4 mm . Length of cephalothorax, 1.8 mm .
L.ength of $\operatorname{leg} I, 4.8 \mathrm{~mm}$.

Length of leg II, 4.3 mm .

Length of leg III, 4.2 mm .
Length of leg IV, 6.1 mm .
Male.-Coloration darker than in the female. Cephatothorax nearly black. Abdomen nearly as in female but the venter darker. Chelicerex black. Legs yellow except the femora of the first two pairs which are black. Femur of palpi black, the other joints paler.

Total length, 2.9 mm . Length of cephalothorax, 1.7 mm .
Syn.-1903. Pirata humicolus Montgomery, Proc. Acad. Nat. Sci. Phila., p. 654.
1904. Aulonia humicola, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 265, Pl. XX , fig. 33.

Locality.-Pennsylvania.
Known localities.-Pennsylvania!, New Jersey.
Pirata montanus Emerton, 1885.
(Tr. Conn. Acad. Sci., p. 493, Pl. 48, fig. 9.)
Femalc.-Sides of cephalothorax deep brown or blackish with no lighter marginal stripes ; a yellow or reddish-yellow median stripe beginning at the clypeus enclosing the dorsal eyes and then narrowing caudad, ending as a pointed line on the posterior declivity; median band enclosing in front of dorsal groove a darkstripe which bifureates, sending one of its branches forward to and along the inner margins of the eyes of each side; eyes enclosed with black; in life on each side a marginal line of white hair. Chelicerce dark brown, paler distally, the tips of claws reldish. Labium and endites brown, lighter distally as usual. Sternum brown, a dark line or row of dark spots on each side, the two converging caudad. Legs yellow, without markings excepting sometimes faint annuli on femora. Abdomen above black; a reddish-brown median lancerlate stripe at base extending to middle; each side of apex of this stripe a reddish spot and behind a number of chevron-shapeel transweme marks; all these marks may be indistinct and sometimes the hasal stripe alone is distinguishable; in life there is on each side a serics of about six spots of light yellow hair; sides colored like the dowsum but in life more densely pubescent; a short line of yellow hair passing bark across each antero-lateral angle, the sides elsewhere being clothed with hack hairs with more seattered ones of ycllow; venter brown, wothed with yellowish gray pubescence. Spinnerets brown. Epigynum reddish black.

Sides of face steep, but evidently diverging outward below.
First row of eyes nearly as long as the second, a little procurved; anterior median eyes more than half their dameter apart (nearly threc-fourths),
nearly the same distance from the smaller lateral eyes (about $3: 4$); anterior lateral eyes their diameter or rather a little less from the front margin of clypeus, more than their diameter from eyes of second row; eyes of second row less than their diameter apart; quadrangle of posterior eyes more than one-fifth the length of the cephalothorax ($1: 4.5$).
Lower margin of the furrow of chelicere with three teeth, of which the middle one is usually a little longest.

Legs with tibia + patella IV longer than the eephalothorax, which latter is longer than tibia + patella I; anterior tibic beneath with three pairs of very long overlapping spines, the third pair being between the middle pair and the distal end of the joint and truly ventral in position (PI. X, fig. 9); patella II armed in front.

Epigynum with the posterior margin nearly straight; not excavated mesally; the bulbs of the spermathece contiguous mesally. (Pl.XXII, fig. 9.)

Total length, 2.4 mm . Length of cephalothorax, 5 mm .
Length of leg I, 6.5 mm .; tib. + pat., 2.2 mm .; met., 1.5 mm .
Length of leg II, 6.2 mm .
Length of leg III, 6.1 mm .
Length of leg IV, 9.4 mm .; tib. + pat., 3 mm .; met., 2.8 mm .
Syn.-1890. Pirata elegans Stone, Proc, Acad. Nat. Sci. Phila., 42.

- Pirala montanus, Marx, Proc. U. S. N. M., 12, p. 564.

1892. Pirata agilis Banks (ad. part), Proc. Acad. Nat. Sci. Phila., 44, p. 72, PI. I, fig. 47.
1893. Pirata clegans, Montg., op. cit., p. 551, P1. XXX, fig. 36.

- ?Pirata nigromaculatus Montg., ibid., p. 579, PI. 30, figs. 44, 45.

1904. Pirata elegans, Montgomery, ibid., p. 310.
-. ?Pirata nigromaculatus, ibid., p. 310.
Type locality.-New Hampshire (White Mountains) and New lork (Adirondack Mountains at Long Lake).
Known localities.-New York!, New Hampshire, Pennsylvania, I'tah!.
Pirata marxi Stone, 1800.
(Proc. Acad. Nat. Sci. Phila., 42.)
Female. -Sides of cephalothorax in fresh specimens ohseure lrown to gray-black, crossed by many radiating lines of black; a yollow median band of the typical form enclosing the usual bifureate mark in front of the dorsal groove, the mark coalescing on each side just in front of the groove with the dark area of the sides; there is thus hetween the arms of the V-mark a narrow metian yellow stripe or line which extends forward to the serond eye row, and on each side of pars cepphatica also a narrow line which extends forward beneath the eyes to the clypens, but which is diseonnected with the median stripe behind; on each side a
supramarginal yeliow stripe with uneven upper margin, and limited below by a black marginal line; no marginal stripe of white hair. Chelicerer reddis! brown. Endites brown, pale distally, the labium in most darker, dusky-brown to blackish. Sternum brown. Coxa of legs beneath yellow. Legs clear yellow, darker distally, entirely. without dark rings or markings. Abdomen yellow with markings in black as follows: at baze above a lanceolate outline; along each side of dorsum a wavy or zigzag stripe, the two converging to spinnerets, each united with lanceolate basal mark at its base and again at its midile; the outwardly directed angles of these dark stripes often more or less extended down the sides as narrow lines; along the median line of d,rsum behind several short black marks, sides of abdomen anteroventrally with a dark area composed of a close network of black lines, and postero-dorsally with a number of isolated dark areas formed of similar reticulations, leaving thus in most a clear yellow stripe of varying width curving from the dorso-anterior angle obliquely downwawl and hackward between the two darkened areas described; a row of spots of yellow hair on each side of dorsum behind; venter with some scattered minute black dots. a few usually just behind the epigynum and more muneront: ones in front of spinnerets, the latter usually forming two show lines elose together which may extend forward to middle or even to the spots behind epigynum, sides and venter clothed with yellow hair. Spinnerets yellow. Epigynum pale brown, reddish marginally, darker caudad.

Face rather low and wide, sides well rounded and slanting. Cephalothorax high; highest at third eye row, from there convexly rounded to the dorsal groove; posterior declivity steep.
Anterior row of eyes as wide as the second, nearly straight, the centers of the lateral eyes beine but little lower than those of the median; anterior metlian eyes a little lareer than the lateral, searely one-third their diameter apart, their radins from eyes of second row; anterior lateral eyes fonr-fifthe thoir tiameter from front margin of elypeus, the same distance from cyes of second row; cyes of second row less than their radius apart ($2: 5$) ; quadrangle of posterior eyes less than onefifth as lone as cephalothorax ($1: 5.5$), wider in front than long, very wide behind, being wider than in front in ratio of S.4:5.6.

Lower margin of furrow of chelicere with but two teeth. Labiam fonere than wide, the hasal exeavation lomere than is common; front margin subsitraight, or but slightly comsex. Legs with the tibia + patella of the fourth pair longer than the eephatothorax ; the corresponding joint- of the first pair slighty shomer than the eephatothorax; anterior
tibier armed below with two pairs of spines in the usual position, shorter than usual in this genus, those of the first pair not overlapping the bases of the second, to which they usually do not fully extend; all tarsi subsparsely setose.

The epigynum is a large quadrangular area which is somewhat wider in front than behind, the lateral margins being substraight and a little converging caudad; the posterior border is angularly excavated at the middle and the spermatheca open on each side caudad directly into the excavation, their terminal portions often showing darkly through the chitinous wall. (Pl. XXII, fig. 8.)

Total length, 7.2 mm . Length of cephalothorax, 3.2 mm .; width, 2.2 mm .

Length of leg I, $8.7 \mathrm{~mm} . ;$ tib. + pat., 3.1 mm .; met., 2 mm .
Length of leg II, 8.1 mm .
Length of leg III, 7.9 mm .
Length of leg IV, $10.6 \mathrm{~mm} . ;$ tib. + pat., 3.5 mm .; met., 3 mm .
Mate.-Coloration as in the female.
Tibia of the palpus longer than the patella, of the same thickness (seen from above) ; tarsus much broader than the tibia. Principal branch of apophysis of conductor long, curving outward above; basal branch relatively large; base of apophysis farther caudad than usual. (Pl. KXI, fig. 8.)

Total length, 5.6 mm . Length of cephalothorax, 3 mm .; width, 2.3 mm .

Length of leg I, 8.5 mm .; tib. + pat., 3.1 mm .; met., 2.1 mm .
Length of leg II, 7.9 mm .
Length of leg III, 7.3 mm .
Length of leg IV, 10.4 mm .; tib. + pat., 3.2 mm .; met., 3 mm .
Syn-1885. Pirata piratica Emerton (non Cl.), Tr. C. Acad. Sci., 6, p. 492, Pl. 4s, figs. 7 to 76.
1890. Pirata piratica Marx, Proc. U. S. N. M. 12, p. 564.
1591. Pirata piratica Marx, Proc. Ent. Soc, W., p. 161.
1592. Pirata piratica Manks, Proc. Acad. Nat. Sci. Phila., 44.
1902. Pirata piratica Emerton, Com. Sp. U. S., p. 84, figs. 208, 209.
1902. Pirate marxi, Montgomery, Proc. Acad. Nat. Sci. Phila., D. 582, Pl. SXX, fig. 47.
1901. Pirata marxi, Montgomery, ibid., p. 309, PI. XIX, fig. 27.

I'ype localily.-Pennsylvania (York County).
Ǩuoun Iocelitics.-Massachusetts!, Connecticut, Rhoulo Isknd!, New York!, District of Columbia.

Pirata insularis Fimerton, 1885.
(Tr. Conn. Acad. Sci., 6, p. 402, 11. 48, fige. 8, Sa.)
Female.- Sides of erphatothorax brown eroses by radiating lines of
black; a median reddish-yellow band of the usual form enclosing the V-shaped mark in front; on each side also a yellowish supramarginal stripe with uneven upper edge and limited below by a narrow dark marginal stripe, this stripe not extending forward beyond the cervical furrow; cephalothorax with sparse, short dark hairs, no marginal lines of white pubescence. Chelicerce reddish yellow, clothed sparsely with light gray hair. Labium and endites reddish yellow, paler distally. Sternum and coxe of legs beneath reddish yellow, sparsely provided with mostly stiff blackish hairs, the former often blackish along sides and pale mesally. Legs brownish yellow, all joints excepting the tarsi with more or less distinct dark annulations, or these sometimes very indistinct on or absent from the metatarsi. Abdomen above blackish; at base above a yellow lanceolate median stripe extending caudally to the middle; each side of the apex of the lanceolate stripe is a yellow spot and behind is a number of transverse yellow marks, each of which has in most cases the shape of an open angle with the apex directed forward, but more rarely the marks are nearly straight; each side of the median markings of the dorsum above described is in life a series of white spots formed of bunches of white hair, the dorsum elsewhere being sparsely clothed with short yellowish hairs and more seattered long dark bristles ; a narrow yellow stripe or row of yellow spots passing over each antero-lateral angle caudally, breaking up over the side into more scatterel yellow dashes; this yellow stripe on front of sides often partly masked by white hair, but this hair never forming a very distinct or extensive line or stripe; venter pale yellow to grayish, a darker median line behind epigynum, hair of entire venter yellow. Spinnerets light brown.

Seen in profile the donsal line of the cephalothorax is nearly horizontal, notched at dorsal groove. The cheliceres about one and one-fourth times the height of the face.

First row of eyes nearly as long as the second, nearly straight; anterior median eyes less than their radius apart, closer to the evidently smaller lateral eyes: anterior lateral eyes less than their diameter from front margin of elypens, some more than their diameter from cyes of second row; quadrangle of posterior eyes one-fifth as long as the cephalothorax.

Latium longer than wide ($7: 6$) ; hasal excavation a little more than one-fourth as long as the labium; sides below straight and but slightly converging, more strongly converging and more rounded above; front margin substraight, being very slightly bowed forward. Leys with the tibia + patella of the fourth pair clearly longer than the cephalothorax,
the corresponding joints of the first legs being also a little longer; anterior tibiee armed beneath as usual; patella of leg I unarmed, that of leg II with a spine in front; tarsi setose.

Epigynum presenting two more or less divergent tubercles caudad, upon the ventral face of which the spermatheca open; these tubercles, at first angular, may become more rounded with age. (Pl. XXII, fig. 4.)

Total length, 6.5 mm . Length of cephalothorax, 3.1 mm. ; width, 2.2 mm .

Length of leg I, 9.2 mm .; tib. + pat., 3.3 mm .; met., 2.2 mm
Length of leg II, 8.4 mm .
Length of leg III, 7.7 mm .
Length of leg IV, $11.6 \mathrm{~mm} . ;$ tib. + pat., 3.7 mm .; met., 3.6 mm .
Male.-Coloration nearly as in female except that the femora and tibise are indistinctly annulate and the other joints clear yellow; the palpi are brown of reldish tinge.

For structure of palpus see Pl. XXII, fig. 3.
Total lenyth, 4.5 mm . Length of cephalothorax, 2.2 mm .

> Syn.-1890. Pirata insularis, Marx, Proc. U. S. N. M., 12, p. 564.
> $1892 . \quad$ Pirata insularis, Banks, Proc. Acad. Nat. Sci. Phila., 44, p. 71.
> 1902. Pirata liber Montgomery, op. cit., p. 57 s , Pl. 30, figs. 42,43 .
> 1904. Pirata liber, ibid., p. 311.

Type locality.-Long Lake, Adirondack Mountains, New York.
Known localities, -Rhode Island!, New York!, Pennsylvania!.
This is a common species which is subject to considerable variation, both in some of its structural characters and, more noticeably, in depth of coloration. In some the annulations are very deep and distinct and the body parts are correspondingly dark, while in others the annulations may be very indistinct.

Pirata febriculosa (Beck), 1881.
(Ann. Soc. Ent. Belg., 25, PI. 3, figs. 2, 2a.)
Female.-Sides of cephatothorax dark brown to backish of usually greenish tinge; a reddish yellow median band marrow caudally and widening anteriorly to the eye region, where it expands and passes below the eyes of each side and attains the elypens; in front of domal furrow a median black line which bifureates sending a branch forward to inner side of third eye of each side in the usial manner; on cach side a moxlerately wide yellow or reddish-yellow marginal band which extends forward as far as the cervical furrow; clypens yellow; eye region back; along each lateral margin in life a distinct line of white
hair much narrower than the light band in tegument; the sides of the cephalothorax are sparsely clothed with short black hairs. Chelicerce yellowish brown, distally reddish yellow, clothed subsparsely with long light gray hair. Labium pale brown, lighter distally. Sternum and corer of leas beneath yellow, clothed sparsely with blackish hairs. Legs greenish yellow, more reddish distally, sometimes without evident markings, but in the great majority with faint dark annulations showing mist distinctly on the femora and tibie of the posterior pairs; these annuli usually broken above. Abdomen above black or blackish brown; at base is a narrow lanceolate reddish-yellow stripe which ends at millle and is margined with a line of black, outside and parallel with the back edge being in life a line of white hair, the two white lines meeting at a truncate angle on posterior portion of dorsum, these lines sometimes each reduced to a row of spots or less commonly entirely absent ; a narrow stripe of white hair passing caudad over each anterolateral angle and spreading out usually in streaks over the upper part of sile and connecting behind with the white of opposite side above spin-neret-: Lower portion of sides brown and, like most of dorsum, clothed with brown hair; venter brown to gray, paler in front of genital furrow. Tubercles of epigynum reldish. Spinnerets pale brown.

Face a little more than half as high as the length of the chelicerie.
Anterior row of eyes nearly as long as second, slightly procurved; anterior median cyes their radius apart ; much closer to the lateral eyes; anterior lateral eyes considerably smaller than the median, their diameter or nearly so from the front margin of clypeus, more than their diameter from eyes of second row; eyes of second row considerably les than thrir diancter apart; quadrangle of posterior eyes less than one-fifth as long as the cephalothorax ($1: 5.5$).

Chelicere armed as usual. Labium longer than wider ($10.5: 10$); basal excavation short, scarcely more than one-fifth as long as labium; lower part of sides nearly straight, only slightly converging, but for upper third more strongly rounded and converging; front margin truncate. Legs with the tibia + patella of the fourth pair longer than the cephalothorax; the corresponding joints of the first pair shorter than the emphatothorax: tarsi of first two pars of legs scopulate laterally, those of the posterior paiss simply setoze; anterior tibiae below with the usual hatal and submedian pairs of leos which are long, the first well overlapping the secoml ; patella of first legs unarmed, those of second with a spine on anterior face.

Epinymum preanting behind two angular tubereles, the inner or tue-al faces of which are nearly paralled and are more than usually
close together leaving the excavation between them narrow; their outer faces clearly more strongly diverging than the inner. (Pl. XXII, fig. 2.)
Total length, 7.2 mm . Length of cephalothorax, 3.3 mm .; width, 2.6 mm .

Length of leg I, 8.5 mm .; tib. + pat., 3 mm .; met., 2 mm .
Length of leg II, 7.6 mm .
Length of leg III, 7.3 mm .
Length of leg IV, 11.2 mm .; tib. + pat., 3.6 mm .; met., 3.2 mm .
Male.-For structure of palpal organ see Pl. XXII, fig. 1.
Syn-1904. Lycosa wacondana Scheffer, The Industrialist, Kansas, p. 13, Pl. I, fig. 7.
1904. Pirata sedentarius, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 312.

Type locality.-Kansas.
Known localities.-New York!, Kansas!, Iowa!, Texas!.
Apparently this species is close to L. piratica. The palpal organs are similar, but in folriculosa the superior horn of the apophysis is at once seen to be longer and straighter and more outwardly directed.

Pirata piratica (Clerck) var, utahensis, new.
Male.-Palpal organ agreeing in detail with that of the European species or nearly so.

Cephalothorax with the median pale stripe and dark V-shaped enclosure as usual, the arms of the latter parallel anteriorly back to posterior third, then converging to a point. Laterial pale stripes reaching pars cephalica, each bordered below with a dark maryinal stripe. A marginal line of bright white hair showing in life or in dry specimen as in febriculosa and piratica of type form. Femora of all legs with dark annuli, these most distinct on second and third pains, showing clearly on the ventral surface of the latter; other joints unmarked, distal ones some darker. Sternum and coxe beneath pale. Abdomen black above, the usual pale mark at base; a white stripe of hair over each antero-lateral angle; a narrower line of white hair each side of hasal mark, followed behind by a row of white soots similarly formed; venter pale, with three narrow stripes of brown converging caudally.

Length, 6.2 mm . Length of cephalothorax, 3.4 mm . ; width, 2.5 mm . Locality.—Utah!.
Likely to be found throughout the Pacific States.
Pirata prodigiosa lioynerling, 1876.
(Verl. z. b. Ges. Wien, 26, p. 669, Pl. 8, fig. 44.)
Female.-('cpholothorax brown with a marrow back line along each
lateral margin, above which is an uneven edged, wavy yellow stripe; a similarly colored median hand, which beginning narrow behind widens cephalad, is constricted a little behind the eyes and then again widens to encluse the eyes as usual, embracing in its anterior half two dark elongate marks which begiming at the two posterior eyes converse amd unite at the front end of the median furrow; eyes enclosed in hack. ('helicere reddish yellow. Labium brownish yellow with paler tip. Stermum blackish with a yellow median stripe and on each side three similarly colored elongate spots. Legs yellow, a little darker distally, with faint indications of light rings. Palpi yellow, distal joints brown. Abdomen above dark gray; anteriorly with a yellow stripe. near this two small spots, and behind this and extending to the spinnerets a number of paired successively smaller and smaller spots of the same yellow color; siles marked with small streaks and dots of yellow; venter smoky white with three brown longitudinal stripes and several similarly colored?streaks at the sides of these. Epigynum clear reddish hrown. Spinnerets brownish yellow. In a second specimen the sternum has two dark, indistinct, parallel longitudinal lines over its middle region.

C'epletuthorux shorter than the tibia + patella of the fourth pair of legr, as wide as the metatarsus of the same legrs, not highly arched, the entire bark apparently of similar height, toward the lateral margins flat and toward the nearly straight caudal margin rather steeply sloping; cephalic furrows indistinct, the head in front low and sloping flatly at the sides.

Anterior row of eyes straight, somewhat shorter than the second, separated from the latter and from the margin of the elypens by not fully the diametor of one of the somewhat larger median eyes; eyes of the second row nearly their diameter apart, more than this from the two-thirds as large eyes of the third, distinctly wider row; entire eye area wider behime than in front. Chelicere somewhat enlarged in front, not entirely twice as wide as the labium, which is somewhat longer than wide and is anteriorly somewhat excavated. Sternum somewhat lonere than homen, monderately arched and clothed with a fow Wack haistles. Leys monderately slemeler, the fourth pair somewhat more than three and one-half times as lone as the eephalothorax and athent wion the length of its tansus loneer than the first ; tibia + patella If comewhat lonere than metatarsis which is longer than the femur; prinejpal claw of tarsi with of 7 teeth, the midule one with none; only a thin uropula on tarsi of the two finst pairs, none on the posterior; spinces of femur I above 1, 1, 1, within 1, without none, of patella I
none. of tibia I below 2, 2, 2, within 1 ; spines of second legs the same as for I. Posterior spimerets twice as long as the anterior and distinctly two-jointed; the middle pair very slender but as long as the anterior.

Total length, 6.2 mm . Length of cephalothorax, 2.8 mm .; width, 2.2 mm .

Length of leg I, 7.9 mm .; tib. + pat., 2.8 mm .; met., 1.7 mm .
Length of leg II, 7.3 mm .
Length of leg III, 6.8 mm .
Length of leg IV, 10.1 mm .; tib. + pat., 3.3 mm .; met., 3 mm .
Syn-1890. Pirata prodigiosa Marx, Proc. U. S. N. M., 12, p. 64.
Locality.-Illinois (Peoria).
Types in collection of Dr. Kinch.

Pirata bilobata (Tullgren), 1901.
(Bih. till sv. Vet.-Akad. Handl., B. 27, Abd. 4, No. 1, p. 22, Plate, fig. 12.)
F'emale.-Cephalothorax light brown, clothed with short dark adpressed hairs and strewed with long dark upturned bristly hairs; the pars cephalica with three lighter bands and at the margins of pars thoraciea a broad light band. Chelicere light brown and strewed with long bristly hairs. Endites yellow and clothed by long bristly hairs. Sternum light brown, clothed by long hack bristly hairs. Legs pale brown. Abdomen above dark brown with a lighter middle hand and three pairs of very small white spots; the venter light yellowish brown. Epigynum dark corneous.

Cephalothorax with a long and distinct central furrow on pars thoracica; in length a little shorter than the length of tibia and patella and the breadth shorter than the length of tibia of the fourth pair of legs. Front row of eyes distinctly procurved ; the intervals about equal ; the central eyes nearly twice as large as the lateral eyes; the interspace between the central eyes and the margin of the clypens ass long as the diameter of the cyes; eyes of the middle row separated from each other by an interspace about as broad as their dianeter and separated from the central anterior eyes by an interspace about as long as the diameter of these eyes; the distance from the posterior eyes a little longer than the diameter of the middle eyes. Chelicere about twice as long as the face, tapering at the apex. E'ndites about twice as long as labium.

The epigynum bilobate, the lobes rounded.
Total length, 3.8 mm . Length of ecphahothorax, 2.5 mm .; width, 1.5 mm .

Length of leg $I, 6.5 \mathrm{~mm}$.
Length of leg IV, 8.6 mm .
Localit!.-Florida. 'Two adult females from Lake I.eonore in Orange County.

Although this species was described as a Pardosa, it seems very clear from the structure of the epigynum, as shown in the figure accompanying the original description, taken in connection with several points in the description, that it is a Pirata. The statement that the pars cephalica is marked with "three lighter bands" indicates the presence of the peculiar Pirata marking of the cephalothorax.

Explanation of Plates VIII-XXIII.

Plate Vili.-General Characteristics of the Genus Pardosa.
Fig. 1.-Right chelicera of P. sternalis.
Fig. 2.-Dorsal view of the cephalothorax of P. lapidicina.
Fig. 3.-Right chelicera of P. atra.
Fig. 4.-Labium of P. lapidicina.
Fig. 5.-Face of same.
Fig. 6.-Labium of P. emertoni.
Fig. 7.-Ventral view of tarsus of first leg of P. sternalis.
Fig. 8.-Labium of P.atra.
Fig. 9.-Tibia of first leg of P. sternalis seen from behind and slightly below.
Plate IN.-General Characteristics of the Genus Lycosa.
Fig. 1.-Right chelicera of L. gulosa.
Fig. 2.-Dorsal view of cephalothorax of I. helluo.
lig. 3.-Right chelicera of L. kochii.
Fig. 4.-Tibia of first leg of same viewed from behind and a little below.
Fig. 5 .-Face of L. helluo.
Fig. 6.-Tarsus of fourth leg of same seen from the side.
Fig. 7.-Side view of tarsus of first leg of L. helluo showing scopula.
Fig. s.-Labium of L. erratica.
Fig. 9.-Labium of L.aspersa.
Plate X.-Genebar Characteristics of the Genera Allocosa and Pirata.
Fig. 1.-Tibia of first leg of A. degesta viewed from the side and a little below.
Fig. 2.-Face of same.
Fig. 3.-Tibia of first leg of A. funerea seen from the side and a little below.
Fig. d.-Labium of same.
Fig. 5.-Dorsal view of cephalothorax of P. montanus.
lig. 6.-Labium of same.
Fig. 7.-Tibia of first leg of same viewed from the side and a little below.
Fig. 8. Spinnerets of same viewed from the side.
Fig. 9.-Tarsus of first leg of P. montanus viewed from the side.
Plate, NI.-Genfiral ('hamacteristics of the Genera Sosippus and Trabea.
Fig. 1.-Labium of S. floridanus.
Fig. 2.-Face of same.
Fig. 3.- Right chelicera of same.
Fig. 4.-Tibia of first teg of same viewed from in front and a little below.
lig. .5.-Spinnerets of same.
Fig. 6.-Tarsus and part of metatarsus of first leg of same viewed from the side.
Fig. 7.-Hight chelicern of T, aurantiard.
Fig. 8.-Dorsal view of cephalothorax of T. aurantiaca.
Fig. 9.-Labium of ' T ', aurantiaca.

Plate XII.-General Characteristics of the Genus Trabea (continued) and Sosilaus.
Fig. 1.-Face of T. aurantiaca.
Fig. 2.-Epigynum of T. aurantiaca.
Fig. 3.-Male palpal organ of T. aurantiaca drawn out from the alveolus.
Fig. 4.-Tibia of first leg of T. aurantiaca viewed from the side and below.
Fig. 5.-Dorsal view of front part bf pars cephalica of S.spiniger.
Fig. 6.-Face of S. spiniger.
Plate Xili.-Copulatory Organs of Species of Pardosa.
Fig. 1.-Epigynum of P. saxatilis.
Fig. 2.-Palpus of same.
Fig. 3.-Epigynum of P. milvina.
Fig. 4.-Palpus of same.
Fig. 5.-Epigynum of P. sternalis.
Fig. 6.-Palpus of same.
Fig. 7.-Epigynum of P. banksi.
Fig. 8.-Epigynum of P. atra.
Fig. 9.-Epigynum of P. pauxilla.
Plate NIV.-Copulatony Organs of Species of Pardosa (continued).
Fig. 1.-Epigynum of Pardosa emertoni.
Fig. 2.-Epigynum of P. sternalis, immature ($P=$ coloradensis Bks.).
Fig. 3.-Epigynum of P. xcrampelina.
Fig. 4.-Palpus of same.
Fig. 5.-Epigynum of P. californica.
Fig. 6.-Epigynum of P. gronlandica.
Fig. 7.-Epigynum of P. lapidicina.
Fig. 8.-Palpus of same.
Fig. 9.-Epigynum of P. moesta.
Plate. XV.-Copulatory Organs of Species of Pardosa (continted).
Fig. 1.-Epigynum of P. modica, typical form.
Fig. 2.-Palpus of id., typical form (after Emerton).
Fig. 3.-Epigynum of P. modica var. brunnea.
Fig. 4.-Palpus of same.
Fig. 5.-Epigynum of P. mackenziana.
Fig. 6.-Palpus of same, front view (after Emerton).
Fig. 7.-Id., side view (after Emerton).
Fig. 8.-Epigynum of P. distincta (after Emerton).
Fig. 9.-Palpus of same (after Emerton).
Plate XVi.-The Genus Schizocosa.
Fig. 1.-Epigynum of S. ocreata.
Fig. 2.-Palpus of S. saltatrix.
Fig. 3.-Epigynum of S. bilineata.
Fig, 4.-Epigynum of S. saltatrix.
Fig. 5.-Palpus of S. ocrcata.
Plate XVII.-Copulatory Organg of Species of Licosa.
Fig. 1.-Epigynum of L. helluo.
Fig. 2.-Palpus of same.
Fig. 3.-Epigynum of L. erratica.
Fig. 4.-Palpus of same.
Fig. 5.-Fpigynum of L. riparia.
Fig. 6.-Palpus of same.
Fig. 7.-Epigynum of L. aspersa.
Fig. 8.-Palpus of same.
Fig. 9.-Epigynum of L. scutulata.
Plate XVIII- Copulatomy Ongans of Species of Liscosa (continurd).
Fig. 1.-Palpus of L. scutulata.
Fig. 2.-Epigynum of L. punctulata.

Fig. 3.-Palpus of same.
Fig. 4.-Epigynum of L. frondicola.
Fig. 5.-Palpus of same.
Fig. 6.-Epigynum of L. coloradensis.
Fig. 7.-Palpus of same.
Fig. 8.-Epigynum of L. lenta.
Fig. 9.-Palpus of same.
Plate XLX.-Copulatory Organs of Species of Lycosa (continued).
Fig. 1.-Palpus of L. albohastata (type).
Fig. 2.-Epigynum of L. fumosa (type).
Fig. 3.-Palpus of same (type).
Fig. 4.-Palpus of L. beani (type).
Fig. 5.-Epigynum of same (type).
Fig. 6.--Palpus of L. pictilis (type).
Fig. 7.-Epigynum of L. quinaria (type).
Fig. 8.-Epigynum of L. pictilis (type).
Fig. 9.-Epigynum of L. rubicunda.
Plate NX.-Copulatory Organs of Species of Licosa (continued).
Fig. 1.-Palpus of L. avara, side view.
Fig. 2.-Epigynum of same.
Fig. 3.-Palpus of same, ventral view.
Fig. 4.-Epigynum of L. avara var. gosiuta.
Fig. 5.-Palpus of L. cinerea.
Fig. 6.-Epigynum of same.
Fig. 7.-Palpus of Allocosa parva.
Fig. 8.-Epigynum of L. fatifera.
Fig. 9.-Epigynum of L. arenicola.
Plate XXI.-Copulatory Organs of Species of Lycosa (continued) and of Species of Pirata.
Fig. 1.-Epigynum of L. carolinensis.
Fig. 2.-Palpus of same.
Fig. 3.-Epigynum of L. pratensis.
Fig. 4.-Palpus of L. kochii.
Fig. 5.-Epigynum of same.
Fig. 6.-Palpus of L. gulosa.
Fig. 7.-Epigynum of same.
Fig. 8.-Palpus of P_{P} marxi.
Fig. 9.-Palpus of P. minutus.
Plate XXiI.-Copulatory Ongans of Species of Pirata (continued).
Fig. 1.-Palpus of P. febriculosa.
Fig. 2.-Epigynum of same.
Fig. 3.-Palpus of P. insularis.
Fig. 4.-Epigynum of same.
Fig. 5.-Palpus of P^{\prime}. aspirans.
Fig. 6.-Epigynum of same.
Fig. 7.-Epigynum of P. minutus.
Fig. 8.-Epigynum of P. marxi.
Fig. 9.-Epigynum of P^{\prime}. montanus.
Phate XXili.-Copulatomy Omans of Spectes of Sosippus and Aldocosa.
Fig. 1.-Palpus of S. fleridanus.
Fig. 2.-Epigynum of same.
Fig. 3.-Palpus of A. rugosa.
Fig. 4.-Wpigynum of A. cragata.
Fig. 5.-Epigynum of A. degesta (that of funerea similar). (See also PI. XX, fig. 7.)

DESCRIPTION OF TRACHYPTERUS SELENIRIS, A NEW SPECIES OF RIBBON. FISH FROM MONTEREY BAY, CALIFORNIA.

BY JOHN OTTERIBEIN SNYDER.
Early in June of last year a large Ribbon-fish was found almost strandeat on the beach at Monterey, California. It was secured he Mr. Frederick A. Woodworth, of Pacific Grove, and through his kindly interest sent to Stanford University for identification. Its close resemblance to Trochypterus ishikam ${ }^{1}$ of Japan was at once apparent, but a detailel examination was imposible at that time on aceonent of the derater condition of the sperimen, the delicate silwery skin leaving the buly at a touch of the finger, and the muscles almost parting from the bones. After a long immersion in a mixture of strong alcohol and formalin, it may now be handled without further injury.

When the Monterey specimen is eompared with the type of Truchypterus ishitanre, eertain differenees appear which indieate that we have to deal with two distinct species, one of which, being unknown, is here described as 'rachypterus seleniris. 'The latter differs from T'. ishikuwee, the most nearly allied form, in having a more slender body, a smaller head, a smaller eye, and a weaker armature of the body. The chief differences may be tabulated thus:

Trachypterus seleniris n. kp.
Head, 98 in the length; depth, $9 \frac{1}{3}$; eye, $3 \frac{1}{2}$ in head; dorsal rays, 168 ; pectoral, 9.

Length of head greater than its depth, about equal to depth of booly in region of pectoral; snont 3 in head; width of interorbital space 2 in diameter of eye; lower jaw projecting slightly beyond the upper ;

[^38]process of maxillary extending to a vertical through posterior border of eve; maxillary with a leaf-like flap a fourth of its length longer than diameter of (ree, and with branched striations radiating from its point of attachment; opercular bones conspicuously striated. Teeth weak; loosely attached ones on vomer, a row of 4 on maxillary, and 4 on each side of symphysis of lower jaw, the posterior of which is 2 times the length of the anterior. Gill-rakers on first arch $5+10$, provided with twoth-like setie on the inner side; filaments of pseudobranchiæ equal in length to those of gills.
()rigin of dorsal above upper edge of gill-opening, the rays highest near beginning of posterior third of body where they are about $1 \frac{3}{4}$ times the diameter of eye; anterior rays not separated from the posterior ones nor lengthened. Length of pectoral slightly more than diameter of orbit. Ventral fins absent, or possibly represented by a mere filament, the place of insertion indicated by a spot on the breast below base of pectoral, where the skin, colored and sculptured, looks much like a pair of folded fins. Caudal projecting upwards; short fragmentary filaments present; several small spines projecting downWarts and backwarts from the broadened end of the caudal peduncle.

Hearl naked; scales of body in the form of minute pads or plates containing a varying amount of bony matter; those on median ventral surface pointed, hard and white like enamel, covering a narrow ridge ant lying in a single row near extremity of tail; among those on dorsal part of boty, some are enlarged and arranged in vertical rows parallel with the interneurals. Lateral line with small, quill-like tubes; beriming at upher edre of gill-opening, bending rather abruptly downwards and extending along body somewhat below the median line; not armed at any point.

Color bright silvery.
Type No. 13,0s0 Stanford University collection.
Called seleniris on account of a fancied resemblance of the long, flat, silvery body to the colorless lunar rainbow.

SOME POLYCHETOUS ANNELIDS OF THE NORTHERN PACIFIC COAST OF NORTH AMERICA.

B1: J. PERCY MOORE.

This paper is a final report embodying the results of a study of all of the Polychseta submitted to me by the U. S. Bureau of Fisheries from the collections made by the steamer Albatros during the summer of 1903. From June 19 to August 24 of that year, while in the service of a special Commision appointer by the Prevident to invertigate the salmon fisheries of Alaka, the Alhatros crused nothwarl along the coast from Port 'lownsend and Vancouver on the south, through part of the labyrinth of straits and passares whoh separate the islands of southeastern Alaska, as far as Shelekof Strait nn the north and west, occupying meanwhile 112 dredging stations and a number of additional hydrographic and towing stations. Some little shore collecting was also conducted.

During the cruise the vessel was under the command of the late Lieut. Franklin Swift, U.S.N., to whose skill in handling her must. be largely credited the large number of successful hauls made with trawl and dredge. The extent of the collection and the generally excellent preservation of the annelids similaly attest the energy and ability which Prof. Harold Heath devoted to eollecting the invertebrates, placed under his immediate charge.

In all 107 species of Polycheta are represented. ()f this mmmber \& 1 species are considered to be previously undeseribed. The deseriptions of only two of these, however, appear for the first time in this paper, the remaining 39 having been published, with the courteous applowal of the Commissioner, Hon. (ieorge M. Bowers, in these l'rocectin!s for 1905, pp. 525-569, S $46-860$, and for $1906, \mathrm{pp}$. $217-260$, torether with plates illustrating important diagnostic features.

Supplementing the results of the study of the Albatross collections are added some notes on a few polvehates in the collection of this

[^39]Alaska; by Mr. A. E. McIlhenny at Point Barrow, Alaska, and by Mr. George Dawson at Admiralty Inlet, Washington. From this source are added 7 species not otherwise represented, 2 of them having been described as new in these Proceedings for 1906, pp. 352-355. The total number of species considered is, therefore, 114.

After deducting the 43 new species, the 71 remaining may be classified from the point of view of geographical distribution as follows: 16, so far as known, are confined to the region under consideration, having been reported from some part of it, but not elsewhere, by previous writers ; 12 occur to the southward along the coast of California, though most of them have already been recorded from Puget Sound or the Gulf of Georgia by Johnson and others; 8 have been described as occurring off the coast of Japan, and probably all of the latter have, as several are known to have, a wide distribution throughout the North Pacific; 4 are scattering; and the remaining 31 are well-known inhabitants of northern Europe, Greenland and the Arctic regions generally: Many of the latter are established circumpolar forms and have been already reported by Marenzeller or Wiren as belonging to the fauna of Bering Sea, or by others as occurring in the North Pacific.

In not a few cases it is evident that the individuals referred to such species differ in certain respects from their European representatives. In a few species like Terebellides stromii individuals of almost every colony present certain characteristic differences. In the belief that the future will show that such wide-ranging species split up into many geographical subspecies just as land animals do, and that such subspecies cannot be satisfactorily discriminated until our knowledge of the distribution and variation of annelids shall have been very greatly augmenten, it has been thought best to merely mention such differences, without giving to them nomenclatorial importance.

In this report it has been thought sufficient to the purpose to record only the general location of the stations, together with the depth of water and the character of the bottom. The full data relating to each station, including its exact location, have been earefully compiled by Mr. Henry C Fasett and published in the Report of the U. S. Fish Commission for 1903, pp. 123 to 138.

- Except in the two or three cases where it is stated otherwise, all types have been forwarded to the I°. S. National Museum. Cotypes, whenever such exist, are deponitend at the Academy of Natural Sciences of Philadmphia. The references given under each species are either tw its orginal description or to later aceounts furnished with good figures and synonymies.

SYLLIDAE.

Syllis armillaris (Müller) Malmgren.

Nereis armillaris Müller, Zoologix danicæ prodromus, 1776, p. 217.
Syllis armillaris, Malmgren, Annulata Polychæta, 1867, p. 42, Tab. V'II, fig. 46.

Syllis borcalis Malmgren, ibid., p. 42 , Tab. VI, fig. 42.
Typosyllis armillaris, Marenzeller, Ann. K. K.. Vaturh. Hofmuseums, V (1590), p. 3 .

Two small and immature examples 11 mm . long agree well with the descriptions cited above and bear out fully Marenzeller's conclusions concerning the synonymy of the species and confirm his record of its oceurrence in Bering Sea. One specimen is beautifully marked with dainty transverse lines of dark brown or black pigment; there being two lines across each segment as far as IV and beyond that point one line to the middle of the body. The accessory tooth at the tip of the setex, which was overluoked by Malmgren, is almost always present. The median tentacle has 15 joints, the paired tentacles 11 to 14 joints, the dorsal and ventral peristomial cirri 15 and 10 respectively, the first dorsal cirrus (somite II) 18 joints, the middle dorsal cirri 9 to 14 joints, with the greatest diameter at the 4 th or 5 th, and the caudal cirri 14 joints. In one specimen the gizzard extends from somite XIII to XXII.

Stations 4261, Dundas Bay, Icy Strait, Alaska, July 2\&, St-10 fathoms, green mud and rocks; 42s9, Uyak Bay, Karliak Island, Alaska, 74-80 fathoms, gray mud.
Syllis alternata new species.
The type and largest example (from station 4228) is 30 mm . long with 160 segments, the posterior $2 S$ of which are filled with eggs, without, however, exhibiting any sign of stolonization. (ther examples are from 16 to 20 mm . long with from 116 to 125 segments. The form is slender and the diamoter nearly uniform, the body slightly widened to about XX , strongly arched above and flatenow below. The segments are all sharply defined and very short, usually fif to s times as wide as long.
The prostomium (a) is abont $1 \frac{1}{2}$ times as wide as lone, ats shown in the figure of a cotype, but may be partly conseated bemeath a fold of the peristomium. Slight anterior and posterior contractions give the effect of prominently bulging siles. The palpi are ahont twice the length of the prostomium, project prominently straight forward and are narrow distally: Of the two paiss of small rembish-thown eyes, the anterior are larger, decidedly farther apart and cresentic or beanshaped as seen from above. In the type specinem the two pains of eyes are closer together but not larger than in the smaller specimens.

All of the appendages are strongly moniliform. The tentacles are rather stout but gently tapered. The median arises between the eyes, is nearly twice the length of prostomium and palpi and consists of 22 to 30 joints. The lateral tentacles arise from the antero-lateral face of the prostomium, are $1 \frac{1}{2}$ times as long as the latter plus the palps and consist of about 20 joints. The peristomial cirri are quite similar in form, the dorsal consisting of about 20 to 25 joints and equalling the median tentacle and the ventral consisting of 15 joints and equalling

Syllis altrrnala $-a$, cephalic region from above, $\times 24 ; b$, parapodium $\mathbf{X}, \times 32$; c, parapodium $I, I, \times 32 ; d$, a moderately long-bladed seta from the dorsal part of parapodium $X, \times 600 ; c$, a short-bladed seta from the ventral part of the same, $\times 600 ; f$, ends of two acicula, $\times 600$.
the lateral tentacle in length. The first dorsal cirrus is very long, especially on the type, in which it has about 35 joints.

The parapolia (1 , and $)^{\text {) }}$ are rather stout and short, blunt and broadly roundeel distally. Ventral cirri are slember, unjointed, little tapered and reach beyond the end of the neuropodium. The dorsal cirri, on the other hand, are all very strongly moniliform and gently tapered thronghont. They are longest and nearly uniform on the anterior 15 segments, on which they nearly equal the diameter of the body. Farther back they are alternately long and short, but never equal to the anterior ones. From about 25 and 18 respectively in this region the number of joints becomes reduced at the caudal end quite rapidly
until on the last but one remains. In the several specimens the caudal cirri have from 16 to 25 joints.

No notopodial aciculum is present, but there are usually 3 neuropodials (f) with knobbed ends of various forms. The neuropodial setæ usually number about 10 , disposed in 3 or 4 ranks. They are colorless, homugeneous, and rather milky vitreous in appearance. The rather stout stems have 4 or 5 minute teeth on the convexity of the enlarged ends (d and e) which are strongly oblique and possess a well-developed socket. The arpended blades of the dorsalmost sete (d) are quite long, some of those of the anterior segments exceeding by $\frac{1}{4}$ the one figured. The ventral and posterior ones are shorter ($($), and some of the shortest are claw-like and little exceed the obliquity of the end of the shaft in length. The end is strongly hookel, the accessory tooth well develope i. and the marginal fringe very fine.

In one specimen the protruded proboscis is a short and nearly cylindrical cup bearing 10 prominent soft marginal papille. In another the gizzard lies in somites IX to XXI, in still another in XIX to AXXIII. The cuticle of this species is noticeably thick. No trace whatever of color remains.

Station 422 s (type), vicinity of Naha Bay, Behm Canal, southeastern Alaska, 41-134 fathoms, gravel and sponges; 4235, vicinity of Yes Bay, Behm Canal, 130-193 fathoms, gray mud; 4261, Dundas Bay, Iey Strait, Alaska, 8 $\frac{1}{2}-10$ fathoms, gray mud and rocks.
Syllis (Chætosyllis) quaternaria Moore.
Syllis quaternaria Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 35̃2-354 (text fig.).
This epitokous form of the type for which Malmgren established his genus Chutosyllis is probably a true syllis, though it camon be correlated with any known non-sexual form. The type and about a seore of other specimens are No. 1091 of the Academy's collection. They were taken by A. E. Mellhenny at the "surface in a lead four miles from shore" at Point Barrow, Alaska.
Pionosyllis magnifica Moore.
Pionosyllis magnifica Moore, Proc, Acad. Nat. Sci. Phila., 1906, pp. 223-225, PI, X, figs. 9-11.
This large and handsome syllid is represented by two perimens, one (the type) coming from sitation [219, Admiralty Inlet, viefity of P'ort Townsend, Washington, $16-26$ fathoms, green mul, sand and loroken shells; the other from Station 424, Kasaan Bay, Prince of Wales Island, southeastern Alaska, $50-51$ fathoms, green mul.

Pionosyllis gigantea new apecier.

Three fragments of the antorion end, the lagent momprising but 40
segments, represent a species much larger than P. magnifica, from which it is distinguished by numerous characters. The type, consisting of 40 segments, is 16 mm . long, 4 mm . in width of body and 7 mm . between the tips of the sete. The prostomium is nearly quadrate but slightly wider antericrly, where the angles are rounded; it is quite deeply cut into two lobes by a median cleft posteriorly. The palpi are broad, flattened, broally rounded at the ends and slightly exceed the prostomium in length; at the base they are coalesced but diverge widely and curve ventrad distally. The eyes of both pairs are reddish brown, small and round, the anterior very little larger than the posterior and directly in front of them or but little farther apart. The dorsal cephalic appendages are imperfect on all of the specimens, but are evidently slender, tapering, smooth and flagelliform. The middle tentacle is apparently about 3 ? times and the lateral tentacles about twice the length of the prostomium and palpi. The former arises

Pionnsyllis gigranten-h, paripodium XXV without setar, $\times 2 f ; b$, parapodium I , without setar, $\therefore 2 f ; c$, aseta with hlade of avorage length, from $\mathbf{X X V}, \times 360$.
from the center of the prostomium, the latter from the anterior lateral margins. The very short, slightly flaring proboscis bears 9 or 10 marginal papille and apparently is unprovided with a strongly cuticular region.

The pristomium is extremely short above, where it is represented chicefly by a fold of integument which comereals the posterior lobes of the prostomium. At the sides it is better developed and ventrally is crowdel forward with the next two segments leneath the prostomium. It temtacular cirri are similar to the prostomial appendages, the dorsal
about 5 times the length of the head and the ventral only about twice that length. Remaining somites are very short anteriorly, but from the twentieth onward are only 6 or 7 times as wide as long. Dorsally they are strongly arched, ventrally flattened. The intersegmental furrows are well marked, perhaps exaggerated by contraction of the longitudinal muscles.

All of the parapodia (a and b) are prominent and spring from the lowest level of the sides of the body. Notopodia are entirely wanting, even the acicula appearing to be absent. The neuropodia, on the other hand, are stout, thoie at the anterior end being nearly truncated, while the more posterior ones are bevelled from the dorsal or acicular angle. All, however, possess slender and prominent presetal papillæ at this angle. Ventral cirri are remarkably large and swollen on the anterior parapodia and end bluntly, but farther back they become reduced in size and more slender and an annular constriction may separate the pointed end as a separate piece.

The most striking characteristic of the species is the great length of the anterior donsal cirri which form a tangled mass at the sides of the body; they are so easily detached that few of them remain. They arise from rather stout but short cirrophores (a) which are not sharply distinguished from the silles of the somites. The styles are smooth, tapering and very slender toward the end, like whiplashes. On one of the smaller specimens, which has 29 serments measuring 8 mm . long, and a maximum body width of 3 mm ., the dorsal cirrus of somite IV measures no less than 14 mm . long. The eirri are alternately longer and shorter, and after about the first ten those borne on the even numbered somites are regularly 2 to $2 \frac{1}{2}$ times the boly width, while those on the odd numbered somites little exceed the bolly width.

Neuropodia are supported by 5 or 6 acicula which taper gradually almost to the end, where they are slightly curved and end abruptly in short conical points. The seter (c) project rather pominently in usually 5 subacicular ranks of 3 or 4 each. In any one parapodium they are remarkably uniform in length of blale, etce., but the blales beeome gradually shorter and wider and the shafts stouter from before backwards. The shaft (c) exhibits but a slight distal mhargement, but is conspicuously and very merqually hifich, the larem and honger process ending quite acutely and being provided along the front with 4 or 5 obscure teeth. The blades or appendages are rather long, strongly hooked and bifid at the end, and especially noteworthy for the coarseness of their marginal serrations.

With the exception of the prostomium and the dorsal cirri these
annelids are much pigmented both above and below with chocolate brown.

Stations 4199, Queen Charlotte Sound, off Fort Rupert, Vancouver Island. 13 . (.. . 6410 fathoms, soft green mud and voleanic sand; 4228 (type), vicinity of Naha Bay, Behm Canal, southeastern Alaska, 41-13t fathoms. gravel and sponges; 4300 , off Shakan, sumner strait, southeastern Alaska, 185-218 fathoms, rocks and mud.

Trypanosyllis gemmipara Johnson.
Trypanosyllis gcmmipara Johnson, Proc. Bos. Soc. Nat. Hist., NXIX, 1901, pp. 405, 406.
This species is represented in the collection by two specimens. As one of them permits the verification of Johnson's very interesting discovery of collateral budding in this genus, it is unfortunate that the preservation is altogether too imperfect to enable me to describe the conditions fully. The buds are all quite young and occur in several close tufts arranged in a transverse row about 35 segments anterior to the anus, and all on the ventral surface, where the integuments are split open at their place of origin. Collateral budding of a type similar to that described by Johnson in T. gemmipara and T. nigens has recently been found by Izuka in a Japanese species, 'T'. misakiensis, also.

Taken only at Station 4197, Gulf of Georgia, Halibut Bank, 31-90 fathoms, sticky green mud and fine sand.

PHYLLODOCID压.

Phyllodoce citrina Malmgren.

Phyllodore citrina Malmgren, Ofvers, Kigl. Vet.-Akad. Förh., 1865, p. 95.
Two poorly preserved specimens which agree closely with the descriptions of this species were taken at Afognak Island. The eyes are much laterer than shown in Mahoren's firures and both specimens are filled with egrgs. Marenzeller reports this species from Bering Sea.

Stations 4271, Afognak Bay, Afornak Lsland, 112-20 fathoms, hard gray sand and rocks; 4272, the same, 12-17 fathoms, sticky mud.
Phyllodoce mucosa Oernted.
Phyllodoce mucosa, Oersted, Asn. Dan. Consp., P. 31.
A single much relaxed specimen of this species, 75 mm . long, includ-
 tions of this speceies, but possesses a greater mumber of sete than is usually attributed to it.

This example is No. 281, Coll. Aead. Nat. Sei. Phila., collected by Dr. Benjamin Sharpat Ley Cape, Alaska.

Eulalia longicornata Moore.
Eulalia longicornuta Moore, Proc. Acad. Nat. Sci. Plila., 1906, pp. 222, 223, Pl. X, figs. 7, 8.
Two specimens found among serpulid tubes taken at the Quarantine Station dock near Port Townsend, Washington, on June 27, 190:3. The type is filled with egres. In both' the color has faded to a nearly uniform olive with brown striations on the dorsal cirri.

Eulalia quadrioculata Moore.
Eulalia quadrioculata Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 220, 221, PI, X, figs. 4-6.
The two specimens, one of them a female filled with large eggs, were taken at Quarantine Rock, Port Townsend, Washington, on June 27, 1903.
Notophyllum imbricatum Moore.
Notophyllum imbricatum Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 217219, P1. 工, figs. 1-3.
The type comes from station 42se, Uyak Bay, Kadiak Island, Ti-80 fathoms, gray mud ; the cotype from Station 4269), Afognak Bay, 14-19 fathoms, hard gray sand and rocks.

POLYNOID圧

Hololepida magna Moore.

Hololepida magna Moore, Proc. Acad. Nat. Sci. Plila., 1905, pp. 541-544, Pl. XXV , figs. 24-29.
A single example of this very large and remarkable speries was taken at Station 4247 (not 4198 as erroneously recorded in the original description), Kasaan bay, Prince of Wales Island, southeastern Ala-ka, $95-114$ fathoms, green mud, fine sand and broken shells.

It was taken from the interior of a large vase-shaped sponge, and according to the label the color during life was "creamy white chansing to pinkish along dorsal surface." Dr. Heath tells me that on the living worm the elytra were very easily detached and not coherent as after preservation; though of gelatinous consistency they were verg brittle.
Halosydna pulchra (Johnsm).
Polynoë pulchra Johnson, Proc. Cal. Acad. Sci. (3), I, (1597), p. 177.
Single specimens of this interesting species were taken at several Alaskan localities. A fow motopodial setar nisually werur on most of the parapodia. 'The specimens vary much in color, some being colorless, others with the elytra more or less comple . Jy spedked with hown and one, found living commensally on a holothurian, is recorder on the label as having hern poppes red on the dorsal surface, lighter hemeath.

The cephalic appendages may possess a filamentous distal part. An incomplete example filled with eggss, and taken at Station 4215, has the median tentacle twice as long as the lateral and is referred doubtfully to this species.

Stations 4219, Admiralty Inlet, vicinity of Port Townsend, Washington, 16 fathoms, soft green mud, from starfish; 4222, same region, 39 fathoms, gray sand and broken shells, from holothurian (Stichopus calijornica) ; 4223, Boca de Quadra, southeastern Alaska, 48-57 fathoms, soft green mud, young; 4272, Afognak Bay, Afognak Island, 12-17 fathoms, sticky mud, one very beautiful specimen and one smaller and colorless one, both from the ten-armed starfish (Solaster decemradiata).

Halosydna lordi Baird.
Halosydna lordi Baird, Journ. Linn. Soc. London, VIII, (1865), p. 190.
A single imperfect specimen without elytra represents this species. In the same bottle is an arm of a starfish (Luidia columbice Gray), upon which it was presumably commensal. Nanaimo Bay, Vancouver Island, B. C., 12 fathoms, on fish line.

Halosydna insignis Baird.

Halosydna insignis Baird, Journ. Linn. Soc. London, VIII, (1865), p. 188.
Johnson in his paper on the Polychæta of Puget Sound has already noted the occurrence of this species as far north as Kadiak Island. Johnson also describes in the Proc. Cal. Acad. Sci. for 1897 some most interesting variations in relation to habitat.

Of the several specimens in this collection scarcely two are alike in color, and they also differ in the extent to which the back is covered by the elytra, the tuberculation of the elytra and the shape of the end of the donal cirri-whether abruptly terminating in a short filament or not. None of the specimens is recorded as commensal.

Union Bay, Vancouver Island, B. C.; Port Townsend, Washington, at (Quarantine Iock; Stations 4209, Almiralty Inlet, Port Townsend, Washington, 24-25 fathoms, rocks, coasse sand and shells; 4253, Stephens Passage, Alaska, 131-185 fathoms, rocks and broken shells.

Lepidonotus robustas Moore.

Lepidonatus roluestus Moore, Proe. Acad. Nat. Sci. Phila., 1905, pp. 544-546, P. XXXVI, figs. 32-35.

The only known specimen of this noteworthy species was taken from the shell of a hermit crab at Station 4291 , Shelikof Strait, 48 to 65 fathoms, bottom of blue mud, sand and gravel.

Lepidonotus oæloris Moore.

Lepidonotus caloris Moore, Proc. Acad. Nat. Sci. Phila., 1903, pp. 412-414, Pl. XIIII, fig. 12.
This species, originally described from specimens dredged off the coast of Japan, proves to be one of the most abundant and generally distributed species of Polychreta throughout the region covered by these explorations. It represents in the North Pacific the willely spread L. squamatus of the Atlantic, but is quite distinct from that species. The detached submarginal tuft of cilia that is so conspicuous and constant a feature on the elytra of the latter species is quite absent in the former, in which, also, the marginal flask-shaped sense organs are very much fewer and smaller. The outer surface of the elytra is less hairy and bears more numerous and rather smoother papillae. Much variation is evident in the size, mumber, arrangement and sculpturingr of the papille and in the color of the elytra, some specimens being nearly black, others reddish brown, and still others orange or yellow. The neuropodial set:e are quite distinct from those of L. squematus, being more slender, less strongly hooked, more extensively ctenate and in a greater number of rows.

All of these differences are most apparent in the alults, eipecially when individuals of equal size are compared. The young of L. culoris much more closely resemble the Athantic species, esperially in the greater hairiness of the elytra, and it seems mot improbable that the small specimens of L. squamatus reeorded by Johnson from I'uret soumd and California and by Marenzeller from Japan may be of this spereies. It is also not improbable that intermediate forms may be found to connect the two in the Arctic regions, in which case $L_{\text {. celoris would }}$ become a well-marked subspecies.

Represented in the collections by a greater mumber of intiviluals: than any other species, Lepidonolus culoris was foum at many phints between Vancouver and Kadiak Islands, at depths ranminer from is to 313 fathoms and on most kinds of bottom, though maturally mont when on mud. It was most abundant on muddy bottoms in the Giulf of (ieorgia, on a gravelly botom with sponges at statim t2es, near Naha Bay in the Behm Canal, and on a bottom of rock amb broken shells at Station 4253 in Stephens Passage, Alaska.

The stations at which Lepplonolus caloris was lakom aro $11!2.4193$, $4197,4195,4297,4225,4234,4235,4239,4255,4253,4254$ and 4274.
Polynoe tuta Grube.
Polynnę tula Grube, Arch. f. Naturges., XXI, 1855, Bd. I. p. Se.
Harmothoé tuta Johason, Proc. Bos. Lóc. Nat. Hist., NXIX (1901), pp. 394, 6.
Of the three examples of this species in the collection, the one from

Fort Rupert agrees exactly with the description given by Johnson; the other two have the cephalic appentages and the dorsal cirri longer and more slender, the eyes farther back, and the neuropodial setæ more slemter. All of them exhibit marked asymmetry in the arrangement of the elytra.

Fort Rupert, shore of Union Bay, Vancouver Island, B. C., and Station* +193. Halibut Bank, Gulf of Georgia, B. C., 18-23 fathoms, green mud and fine sand; 4197, same locality, 31-90 fathoms, sticky green mud and fine sand.

Polynoe fragilis (Baird) Johnson.
Lepidonotus fragilis Baird, Proc. Zool. Soc. Lon., 1863, p. 108.
Polynoë fragilis, Johnson, Proc. Cal. Acad., Vol. I, Zoology, pp. 179-181.
Three complete examples from near Port Townsend alone represent this most interesting commensalistie species. The margins of the elytra are frequently more complexly folded than is indicated by Johnson. Dr. Heath's label states that the color in life is "entire sufface of boly light yellow, the elytra allowing the color of the body to show through." It is stated that the specimens were taken from Asterius sp. The resemblance of these worms to the arms of the starfish is most remarkable and is a subject well worth careful and detailed study by someone on the ground.
station 422, Almiralty Inlet, vicinity of Port Townsend, Washington, 39 fathoms, gray sand and broken shells.

Hermadion truncata Moore.

Harmuthoé uncatu Moore, Proc. Acad. Nat. Sci. Phila., 1902, pp. 272-274, P'. XIV, figs. 21-28.
This species was originally deseribed from the anterior end of a specimen in the collection of the Academy of Natural Sciences of Philatdphia, at that time supposed to have been collected in Greenlamd, but now believed to have been taken by Dr. Benjamin Sharp at Icy Cape, Alaska. It is well represented in this collection from the more southern stations. The completeness of some of the examples permits the addition of the following notes to the origimal description. Alousth of somm, is attainel, the posterior region of the body being slender and tapering. There are 63 semments with 15 pairs of elytra, borne on segments II, N, V, VII, IN, XI, XIII, XV, XVII, XIX, XXI, XXII, XXVI, XXXX and XXXII, and leaving the posterior part of the body umprotectel except by the bristling sete. The erphatir peaks are rumbentary, being coalesed with the bases of the lateral tontaclos, and the anterior cyes are farther forward than in the type. The style of the median tentacle is slender, about twice the
length of the prostomium and has a scarcely perceptible subterminal enlargement. The lateral tentacles are very short, the short, conical styles with their terminal filaments scarcely exceeding the ceratophores. The extended palpi taper regularly to the end, are slender and 7-8 times the prostomial length. Anterior elytra are circular, the others broadly elliptical, with weak attachment laterad of the center. Their texture is soft and flexible, the surface smooth and punctate and entirely lacking cilia or papille of any sort, but with the margin slightly thickened and upturned. The inner half is brown, the outer white in agreement with the color of the body. Dorsal cirri are rather stout with prominent cirrophores and the styles reach beyond the tips of the parapodia. They taper regularly to a subterminal enlargement, beyond which is a short filament. Posterior cirri are longer and more slender and the anal cirri are stouter and very long, equalling the last 9 somites. Usually but one anal cirrus is fully developed. A broad rich brown stripe marks the dorsum, being more or less broken in the middle of the body and spreading over the entire back posteriorly where a median white line sometimes divides it. Dorsal cephalic appendages and dorsal cirri chiefly brown with subterminal and terminal white rings All other parts, including entire venter, white.
Stations 4193, Halibut Bank, Gulf of Georgia, B. C., 1S-23 fathoms, green mud and fine sand; 4197, same region, 31-90 fathoms, sticky green mud and fine sand; 4199, Queen Charlotte Sound, off Fort Rupert, Vancouver Island, B. C., 68-107 fathoms, sticky green mud and volcanic sand; 4208, Admiralty Inlet, vicinity of Port Townsend, Washington, 83-99 fathoms, rocky; 4216, same region, 79-101 fathoms, rocky; 4227, vicinity of Naha Bay, Belm Canal, Alaska, 62-65 fathoms, dark green mud and fine sand.

Eanoe depressa Moore.

Eunoë depressa Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 536-538, Ils. XXXIV, figs. 17, 18; XXXV, figs. 19, 20.
Besides a fragment labelled Union Bay, B. C., 6-22-'03, this species is represented by specimens from Stations 4261 (type), Dundas Bay, Icy Strait, 8t-10 fathoms, green mud and rocks; 4270, Afognak Bay, Afognak Island, Alaska, 14-19 fathoms, hard gray sand and rock. The latter is labelled "Hermit crab, messmate," and many" of the papillse on the elytra bear 2 or 3 spines.

I also refer provisionally to this species under the name of var. mammillata a specimen which may represent a distinct but related species. It measures 20 mm . long and has a form similar to but somewhat less broad and depressed than typical depressa. The papi are
barely twice the length of the prostomium, but the other cephalic appendages are longer and much more slender than in the typical form. The median tentacle is about $3 \frac{1}{2}$ times and the lateral tentacles nearly $1_{3}^{\frac{2}{3}}$ times the length of the prostomium. The cirrophores of the dorsal cirri reach to the end of the notopodia and the slender styles pusisess long filiform tips which reach to the tips of the longest seta. The elytra are thinner and more membranous and their shape more ovate-reniform. They also have larger, firmer, and more mammiliform papill:e. But the chief distinction is a strong fringe of cilia along the outer margin of each of the elytra. The general color is reddish brown and the elytra bluish pearl with the larger papille orange brown.

The label states that this specimen was taken from the branchial chamber of an 11-pound crab. Station 4276, Alitak Bay, Kadiak Island, Alaska, 22-25 fathoms, fine sand and mud.

Harmothoe imbricata (Linn.) Malmgren.

Harmothoë imbricata, McIntosh, Monograph of British Annelids, Part II, 1900, pp. 314-327.
All of the specimens of this ubiquitous species, which is already well known from the North Pacific, are of small size, the largest being 30 mm. long and most of them much smaller. They present the usual color varieties seen in Atlantic Coast specimens, some being more or less strongly mottled, others having a median light or dark brown band of greater or less brealth. The marginal papillie on the elytra may be numerous or nearly absent. The two specimens from Kilisut Harbor have the smooth tips of the notopodial sete longer than usual.

Kilisut Ilarbor, near P'ort Townsend, Washington; and Stations 4269, Afognak Bay, Afognak Island, Alaska, $14 \frac{1}{2}-19$ fathoms, hard gray sand and rocks; 4271, same region, $11 \frac{1}{2}-20$ fathoms, hard gray sand and rocks ; 4275, Alitak Bay, Kadiak Island, Alaska, 35-36 fathoms, green mud and fine sand ; 4289, Uyak Bay, Kadiak Island, 74-80 fathoms, gray mud.

Harmothoe hirsuta Johnson.
Harmothoë hirsuta Jolnson, Proc. Cal. Acad. Sci., (3), I (Zoology), pp, 182, 183.

Three examples reforred to this species indicate that it is subject to consillerable variation. The examination of an extensive series of the Harmothoës from this region will be necessary to establish the exact statas of these variants.

Stations 4205, Almiralty Inlet, Port Townsend, Alaska, 15-26 fathoms, rocks and shells, a single specimen which agrees with Johnson's description and figures accurately except that the elytra, although
bearing large papillæ, lack distinct marginal areas; 4260 , Dundas Bay, Icy Strait, Sl-21 fathoms, coarse sand and rocks, one similar to the last but more distinctly colored; 4259, same region, 21-78 fathoms, gray sand, broken shells and rocks, a small example with well-marked marginal areas on the elytra but' few large papillte and with the intersections of the ridges between the areas sometimes producel into large, coarse cilia.

Lagisca maltisetosa Moore.

Lagiscr multisetosa Moore, Proc. Acad. Nat. Sci. Phila., 1902, pp. 267-269, Pl. NIV, figs. 29-36.
This is another species which was originally ineorrectly attributed to Greenland, the type locality being almost certainly Ier Cape, Alaska. Like Hermadion truncata it is rather plentiful in the collections from the Gulf of Ceorgia to Behm Canal, being represented, mostly by fragmentary specimens, in the collections from the following:

Stations 4193, Halibut Bank, Gulf of Georgia, B. C'.. 15-23 fathoms, green mud and fine sand ; 4194, same region, 111-170 fathoms, soft green mud; 4197, same region, $31-90$ fathoms, sticky green mud and fine sand ; 4199, Queen Charlotte Sound, off Fort Rupert, Vancouver Island, I3. C., 6S-107 fathoms, soft green mud and voleanic sand; 4223, Boca de Quadra, southeastern Alaska, 4S-57 fathoms, soft green mud; 4228, vicinity of Naha Bay, Behm Canal, southeastern Alaska, 41-13.t fathoms, gravel and sponges.

The species appears to be especially common at the last enumerated station and several fragments taken here depart quite widely from the typical form in the character of the elytra. These are designated as varicty papillata, characterized as follows: The elytra bear more numcrous, larger and differently shaped soft papillie and very much fewer and smaller hard conical papille; and instead of the mumerous longr cilia on the exposed surface and near the outer margin of the elytra of the typical form, these bear only a few very much shorter cilia with thickened ends.

Lagisca rarispina (Sars) Malmgren.
Lagisca rarispina (Sars) Malmgren, Ofvers. Kgl. Vet.-Akad. Förh., 1865, p. 65.

Occurring quite plentifully in the eollections from the more northerly points in the Alaskan Gulf, where it apparently laterly replaces L. multisctosa, this species is representerl hy two varioties which are, however, connected by intermeliates and apharmt! ocour indiscriminately together at the same stations.

The difference is in the presence or absenee of the soft marginal
papille on the elytra. On some examples these are very numerous, especially on anterior elytra, and have exactly the elongated form and the arrangement exhibited by typical representatives of the species from Greenland and other North Atlantic localities. Others have perfectly smooth elytra, altogether lacking these appendages. Between these two extreme categories, into which most of the specimens fall, are some inclividuals intermediate in either the number or size of the appendages or in both. Some have the papillie very short and present on many elytra and others very few papillæ of normal or reduced size. ()ne bears a single papillie on one elytron and another half a dozen papillse distributed among three elytra.

Stations 4193, Gulf of Georgia, B. C., 18-23 fathoms, green mud and fine sand; 4198 , Halibut Bank, Gulf of Georgia, B. C., 157-230 fathoms, soft green mud ; 4219, Admiralty Inlet, Port Townsend, Washington, 16-26 fathoms, green mud, sand, broken shells; 4225, Boca de Quadra, southeastern Alaska, 149-181 fathoms, dark green mud-a single example from each of these stations; 4235 , vicinity of Yes Bay, Behm Canal, 130-193 fathoms, gray mud; 4253, stephens Passage, Alaska, 131-1ss fathom: rocks and broken shells; 4258 , vicinity of Funter Bay, Lym Canal, 300-313 fathoms, mud-plentiful at the last two station $\div 426 ; 3$. Dumla Bay, Icy Strait, $6 \frac{1}{2}-9$ fathoms, coarse sand and rowks; 42s9, Lyak Bay, Kadiak Island, $74-80$ fathoms, gray mud.
Antinoe macrolepida Mone.
Antinue murrulepidn Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 538-541, Pl. XXXV , figs. 21-23.
Antinoe mucrolepide is plentiful at the more northerly stations, but occurs as far south as the Gulf of Georgia. It is represented in the collections from the following stations: 4192 , off Nanaimo, Vancouver Island, 13. C., 89-97 fathoms, green mud and fine sand; 4193, Halibut Bank. Gulf of Georqia, B. C., 18-23 fathoms, green mud and fine samd ; 419: s, sume rewion, 111-170 fathoms, soft green mud; 4230, vicinity of Naha Bay, Bohm Canal, southeastern Alaska, 108-240 fathoms, rocky; 4236, vicinity of Yes Bay, Behm Canal, 147-205 fathoms, rock amy wars sam! : 1237, same region, 194-198 fathoms, green muld; 426! (1 yp and several other specimens), off Freshwater Bay, (hathan stait, 252 293; fathoms, green mul; 4299, of Shakan, sumer strait, sontheatern . Alatat, 153-218 fathoms, sand and rocks.

Gattyana amozdseni (Malmgren).

Nychio amondseni Malmgren, Annulata Polycheta, etc., 1867, pp. 5 and 0.
Three specimens taken at mothern stations agree very elosely with Malmuren's deecription and figures of this speces. The neuropodial
setx are rather more slender and the bifid papilla on the elytra rather more deeply cleft.

Stations 4253, Stephens Passage, Alaska, 131-188 fathoms, rocks and broken shells; 4272, Afognak Bay, Afognak Island, 12-17 fathoms, sticky mud; 4274, Alitak Bay, Kadiak Island, 35-36 fathoms, green mud and fine sand.

Gattyana ciliata Moore.

Gattyana ciliata Moore, Proc. Acad. Nat. Sci. Phila., 1902, pp. 263-266, Pl. XIII, figs. 14-19.
The type (No. 28, Coll. Acarl. Nat. Seri. Phila.) was taken at Icy Cape, and a single example in this collection comes from station 4289 , Uyak Bay, Kadiak Island, 74-80 fathoms, gray mud.
Gattyana cirrosa (Pallas) McIntoah.
Gattyana cirrosa McIntosh, Monograph of British Annelids, Part II, (1900), pp. 285-291.
The only example taken is from station 4272, Afonnak Bay, Afognak Island, 12-17 fathoms, sticky mud.
Gattyana senta Moore.
Gattyana senta Moore, Proc. Acad. Nat. Sci. Phila., 1902, pp. 259-263, Pl. NHII, figs. 1-13.
This species, the type of which came from Icy Cape and is in the collection of the Academy of Natural Sobences, appears to be quite plentiful on the muddy bottoms of the (iulf of (ieorgia and equally so on a gravelly bottom at Station 4228 in Behm Canal. Most of the examples have lost most of the elytratad are otherwise motilaterl, but one specimen permits the description of the posterion elytra which were lacking on the type. They are nearly circular in outline and of smatler size and sof ter texture than the anterior elyta, but the most striking difference is in the very ereat length of the termanal bamehes of the dendritie spines of the posterior margin, the mumber of forkines of which is, however less than on anterior seales.

Stations 4191, Gulf of Georgia, off Nanamo, Vancouver Island, B. C., 5t so fathoms, fine dark sand, mul and mocks; 119%, Halibut Bank,
 lorality, 31-90 fathoms, sticky green mud and fine saml: \&19s, same Locality, 157-230 fathoms, soft green mud ; f2es, vicinity of Nahal Bay, Behm Canal, sontheastern Alaska. 11 - 134 fathoms. eranel and sponere.
Melanis loveni Malenkren.
Melanis Loveni Malmgren, Ofvers. Kong. Vet-Akad. J'orh., 156i), pp. 75, 79.
Three examples collected by br. Benjamin thatp at ley Cape, Alaska, are in the collection of the Philudedphia Acadreny, No. 279.

SIGALEONID雨.

Pholoe minuta (Fabricius) Oersted.
Pholoë minuta (Fabricius), McIntosh, Monograph of British Annelids, Part II, (1900), pp. $437-442$.
A perfect example nearly an inch in length was taken at Station 4272, at Afognak Bay, Afugnak Ifland, Alaska, in 12-17 fathoms, on a bottom of sticky mud; and a few fragments of a very small individiual probably of this species from a bottle containing a Halosydna insignis from Port Townsend, Washington.

Peisidice aspera Johnson.
Peisidice aspera Johnson, Proc. Cal. Acad. Sri., (3), (Zool.), Vol. I, pp. 184, 185.
Single examples of this curious little polychæte occur at three rather widely separated stations. The elytra are very stiff and rigid, apparently due to a hard brownish secretion which is deposited in layers, thus giving the appearance of concentric lines of growth. Sand grains adhere to and become imbedded in this substance, especially along the ridge of the scale. This same secretion renders the body brittle, but no sand grains are borne on this region of these specimens. The hairs of the marginal fringes are very unequal, the longest being as much as $\frac{1}{3}$ of the long diameter of the scale. Many of the elytra are marked with dark brown central spots.

Stations 422S, vicinity of Naha Bay, Behm Canal, southeastern Alaka. $41-134$ fathoms, gravel and sponge; 4235 , vicinity of les Bay, 130-193 fathoms, gray mud ; 4253, Stephens Passage, 131-18S fathoms, rock and broken shells.

APHRODITID在.

Aphrodita japonica Marenzeller.
A phrodita japonica Marenzeller, Denks. K. Akad. Wissenseh., Wien, XLI, (1879), pp.111, 112.

From the (inlf of (ierorgia to the head of Behm Canal this species is common and especially so wherever muddy bottoms occur. These specimens differ in mo ropert from thase taken in the Albatross dredginge off the coat of Japmin in 190). The neuropodial sete are unusually prominent and slender and when young their tips are incased in a densely hairy sheath, which later wears away, leaving the point suooth. The notopodial setse are completely imbededed in the felt and are seldom visible. 'Ihey are slender, soft, curved, pale brown, roughened toward the end and have the tip hooked. Generally the color is very dark-almost black-and the felt is dull, probably the result of
 are white. The specimens vary in length from 14 to 80 mm .

Stations 419.t, Halibut Bank, Gulf of Georgia, B. C., 111-170 fathoms, soft green mud; 4197, same region, 31-90 fathoms, sticky green mud and fine sand ; 4198, same region, 157-230 fathoms, soft green mud; 4224, Boca de Quadra, southeastern Alaska, 156-166 fathoms, dark green mud; 4225; same region, 149-181 fathoms, dark green mud; 4230, vicinity of Naha Bay, Behm Canal, southeastern Alaska, 108-240 fathoms, rocky; 4231, same region, S2-113 fathoms, green mud and fragments of slate; 4235, vicinity of Yes Bay, Behm Canal, 130-193 fathoms, gray mud; 4236, same region, 147-205 fathoms, rock and coarse sand; 4237, same region, 192-198 fathoms, green mud ; 1238, same region, 229-231 fathoms, mud and rocks.

Aphrodita negligens Moore.

A phrodita negligens Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 526-529, Pl. EXXIV , figs. 1,$2 ; \mathrm{NXXV}$, fig. 31.
A single large example 60 mm . long, agreeing exactly with the type, was taken at Station 4205, off Port Townsend, Washington, in 15-26 fathoms, on a bottom of rock and shells. The body cavity is filled with egg-strings.

Aphrodita parva Moore.

A phrodita parca Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 529-532, Pl. XLXIV, figs. 3-7.
This small and very distinct species is known only from two specimens taken at Station 4194, in the Ciulf of Ceorgia, in 111 to 170 fathoms, on a bottom of soft green mud.

EUPHROSYNIDA.

Eaphrosyne bioirrata Moore.

Euphrosyne bicirrata Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 532-534, Pl. XXXIV, figs. 8-12.
This species, which belongs to the group including E. borealis Oersted and E. longisctosa Horst, was taken from the Gulf of Georgia to Behm Canal, in depths ranging from 18 to 188 fathoms. It oceurs in the collections from the following stations: 4193 (type). Halibut Bank, Gulf of Georgia, 18-2:3 fathoms, green mud and fine sund; 4197, same region, 31-90 fathoms, sticky green mud and fine sand; 422s, vicinity of Naha Bay, Bohm Canal, southeastern Alaska, 41-134 fathoms, gravel and sponge; 4253, stephens lassare, Alaska, 131-188 fathoms, rock and broken shells.

Euphrosyne hortensis Moore.
Euphrosyne hortensis Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 53.4-536, PI. XXXIV, figs. 13-16.
Much less common than the last, this species was taken at itations
4272. Afognak Bay, Afognak Island, 12-17 fathoms, sticky mud; and 4274, Alitak Bay, Kadiak Island, 35-41 fathoms, green mud and fine sand. The latter is the type locality.

Euphrosyne arctica Johnson.
Euphrosyne arctica Johason, Proc. Cal. Acad. Sci., (3), Zoology, Vol. I, p. 159.
A small individual 10 mm . long is believed to represent this species, the original description of which was based upon a probably imperfect and much contracted specimen. There are, however, some points of difference between the two specimens, as the following brief description indicates.

The form is strongly depressed, about equally rounded auteriorly and posteriorly, the somites numbering 21, strongly marked and well developed throughout. The subanal lobes or cirri are large, thick and fleshy. The dorsal smooth field is about $\frac{1}{5}$ the entire width and not subdivided into areas. A black spot or group of spots occurs on the posterior part of each segment behind the second gill.

The caruncle is short and broad, reaching from the anterior margin of II to the posterior margin of IV, and consists entirely of a rather high, thick crest, little free behind. The median tentacle equals the caruncle in length and the stout basal article, which furnishes $\frac{3}{3}$ of its length, nearly equals the caruncle in thickness. The terminal piece is filamentous. The donal eyes are very large, elongated and black. The ventral eyes are coalesced and the ventral paired tentacles minute.

The dorsal cirri are very long, much exceeding the length of the caruncle, Alender and tapered. The median cirrus arises between the seeond and third gills and, like the ventral cirrus, is stouter than the donsal cirrus and equally long. Five pairs of gills oceur on the middle region. They are arbusculate and spreading, with some 30 or more slender, lanceolate terminal twigs formel by as many as 5 or 6 irregular dichotomous divisions. The sete agree exactly with Johnson's figures.

Station 4234, vicinity of Jes Bay, Behn Canal, Alaska, 45 fathoms, gray mud and rocks.

ALCIOPID平.

Callizona angelini (Kinberg) Apstein.
C'allizonat Anyelini (Kimberg) Apstein, Die Alciopiden und Tomopteriden der Plankton Expedition, Kiel, 1900, pp. 18, 19.
The addition of this species to the list of Alaskan polychetes becomes possible through the starly of the contents of salmon stomachs submitted by Jr. H. M. Smith. The salmon were taken at Yes Bay, Alaska, on July 27 and 28,1905 , and contaned a large number of
remains．Many of the worms were already completely disintegrated， but the anterior ends of some were sufficiently intact to remove any reasonable doubt of the correctness of this identification．The only respect in which they differ from the published descriptions is in the presence of as many as t stout setre in the first parapodium（somite IV）．A noteworthy characteristic of the species is the considerable length of the cirriform appendage of the parapodia．

Anteriorly the dorsum is a diluted chocolate brown，the surface of the eye cups，the prostomium and a transverse band across each segment being still darker．A brown spot at the base of each dorsal cirrus appears to continue for the entire length of the body．The large numbers in which these worms occur in the salmon stomachs and the evidences that they were filled with sperm and ova indicates that at sexual maturity they must swim in great shoals at the surface．

Originally described by Kinberg from the China sea，this species has since been twice taken in the Atlantic（）cean，but until now has not been reported from the Pacific．

HESIONID无．

Polarke pugettensis Johnson．

Podarke pugetlensis Johnson，Proc．Bos．Soc．Nat．Hist．，XXIX゙，1901，pp． 397， 398.
This species was taken only in the region of the type locality and probably does not extend much farther northward．

Nanaimo Bay，Vancouser Island，B．C．，taken from a starfish（＇Tuidia） brought up on a fish line；Quarantine Rock，near Port Townsend， Washington；station 4218，Admiralty Inlet，near Port Townsend， Washington， 16 fathoms，soft green mud，on starfish（Tuidia）．

NEPHTHYDID庼．

Nephthys ceca（Fabricius）Oersted．
Nephthys caca，Ehlers，Die Borstenwürmer，1868，pp．585－617．
The presence of this circumpolar species throughout atrat extent of both sides of the North Pacinic is already well known．Typical examples oceur in the collections from the following stations：f230， vioinity of Naha Bay，Behm Camal，southeastern Alaka，Ios 2f0 fathoms，rocky；4236，vicinity of Les Bay，Behm（＇anal， 116 205 fathoms，rocks and coarse sand ； 12 k 0 ，junction of Clarence stratit and Behm Camal，248－256 fathoms，coral．
Nophthys ciliata（Moller）IRatlike．
Nephthys ciliata，Malugren，Ofvers．Kigh．Vet．－Akad．F＇örh．，186is，p．10．f．
Whether or not Wiren was comeet in considering this and the pre－
ceding to be variants of the same species, the considerable amount of material which I have examined exhibits no evidence of intergradation and the two forms are therefore listed separately. It is noteworthy that they were taken on bottoms of quite different character.
stations 4194, Halibut Bank, Gulf of Georria, 111-170 fathoms, soft green mud; 4197, same region, 31-90 fathoms, sticky green mud and fine sand ; 424. Kasaan Bay, Prince of Wales Island, southeastern Alaika, 50-5t fathoms, green mud; 425S, vicinity of Funter Bay, Lymn Canal, 300-313 fathoms, mud; 4256, Chinak Bay, Alaska, 57-63 fathoms, green mud and rock.

Nephthys malmgreni Theel.
Nephthys longisetosa Malmgren, Kigl. Vet.-Akad. Förh., 1865, p. 106; non Oersted.
Nephthys malmgreni Theel, Kgl. Sv. Vet. Akad. Handl., 1879, No. 3, p. 26.
Although recorded at various points in the North Atlantic and Arctic Occans this species has not previously been taken in the Pacific. It occurs in the collections from the vicinity of les Bay, Behm Canal, only, at stations $4236,147-205$ fathoms, rock and coarse sand, and 4238, 229-231 fathoms, rocks and mud.
Nephthys assimilis Malmgren.
Nephthys assimilis Malmgren, Kgl. Vet.-Akad. Förh., 1865, p. 105.
No representatives of N. assimilis occur among the material dredged hy the Albatross, but the collection of the Academy of Natural Sciences of Philadelphia contains several examples which agree exactly with the deeriptions given by Malmgren and Theel, and which were collected by Dr. Benjamin Sharp in 5 fathoms at Icy Cape, Alaska.

NEREID雨。

Nereis pelagica Linnaus.
Nereis pelagica Linntrus, Sys. Nat., Ed. X, p. 654.
Although quite common and represented from nearly the entire rearion covereal by there collections, the individuals are of smaller size than occur on the Atlantic side of the eontinent.

Stations 419%, Halibut Bank, Gulf of Georgia, B. C., $18-23$ fathoms, areon mul and fine sand ; 1209, Admiralty Inlet, vieinity of Port Town-
 eastern Alaska, 89-114 fathoms, green mud, fine sand and broken
 horken :hrells; 4271, Alitak Bay, Kimliak lalaml, 35-41 fathoms, green mud and fine sand. At l'ort McArthur, on August 23, two small beteroncreds were taken at the surface. Also collection of Acad. Nat. Sci. Phila, several collected at Unalaska by Dr. Sharp.

Nereis procera Ehlers.

Nereis procera Ehlers, Die Borstenwürmer, 1868, p. 557.
This little known species is represented by a single incomplete specimen taken at the type locality in the Gulf of Georgia. Station 4193. Halibut Bank, Gulf of Georgia, 18-23 fathoms, green mud and fine sancl.

Nereis paucidentata Moore.

Vereis purcidentata Moore, Proc. Acad. Nat. Ści. Phila., 1903, pp. 130, 431, Pl. AXIV, figs. 28-30.
Originally described from specimens dredged in Bering sea, the present collections show that this species is rather widely distributed along the northern portions of the east side of the P'acific also. At the same time they permit of the verification of the characters originally attributed to the species. several specimens with the probosces protruled exhibit pararnaths exactly like those of the type, except that groups III an! IV vary somewhat, being provided with 3 to 5 denticles arrangel in various patterns. One had 5 teeth arranged in a perfect quincunx. The basal ring of one specimen bears 4 cones at VII.

Stations 119 s , Halibut Bank, Gulf of Georgia, B. C., 157-230 fathoms, soft irren mul; 422S, vicinity of Naha Bay, Behm Canal, southeatern Alaska, 41 -13t fathom*, gravel and sponge: 42?9, junction of Clarence Strait and Brhm Canal, $206-2+5$ fathoms, coarse sand and rocki: one specimen from this station is a large female bursting with eregs. so mm. long and having 120 secrmonts; 4253, Ntephens Pascage, Aaska, 1:311SS fathoms, rocks and broken Shells; 4300, off Shakan, summer stratt, southeastern Alaska, 185-218 fathoms, rock and mud.
Nereis cyclurus liarrington.
Nereis cyclurus Harrington, Trans, N. V. Acad. Sci., XVI, 1897, p. 214.
This remarkable and intereting species should probably bereparated generically from the above. In only one case is it stated that the specimens were taken from a hermit crab (E. upargurus armatus), in the shell of which this annelid usually lives as a commensal. The finding of a male heteronereis is of interest, especially as it was taken on the shell of a hermit crab. After an claborate study of this species Har-
 are strictly pelaric in habit.

Stations 4201, Queen Charlotte Sound, off Fort Rupert, Vancouver

 of mucus attached to sponge"; 4218, Admiralty Inlet, vicinity of Port. Townsend, Washington, 16 fathoms, suft greem musl, 1 ordinary form
and 1 heteroneres (male) from shell of hermit crab; 4220 , same region 16-31 fathoms, green mud, sand and broken shells.

Nereis (Alitta) vexillosa Grube.
Vereis rexillosa Grube in Middendorff, Reise in Siberiens, etc., II, 1851, p. 4. Nereis rexillosa, Johnson, Proc. Bos. Soc. Nat. Hist., XXIX, p. 399.
On the Pacific this species represents the Nereis limbata, so abundant along much of the Atlantic coast of North America. It, however, reaches a larger size. As but little shore collecting was done it is not represented in the collection from many points.

Taylor Bay, Gabriola Island, Gulf of Georgia; Quarantine Rock, Port Townsend, and the beach near Shakan, Sumner Strait, southeastern Alaska; collection Acarl. Nat. Sci. Phila., Admiralty Inlet, Puget Sound, Washington, by George Dawson.

Nereis (Alitta) virens Sars.

Nercis rirens, Johnson, Proc. Bos. Soc. Nat. Hist., XXLX, p. 398.
I have not given very close attention to the specific likeness or distinction of the Atlantic N. virens and the Pacific N. brandti, but so far as comparisons have been made they appear to confirm Johnson's view that the two are ildentical. Being chiefly a shore lover like the last it is not well represented in this collection.

Tayhr Bay, Gabriola Island, B. C., 11 specimens varying from 9 to 1s inches long. Many are in regeneration posteriorly and the number of sermente appear to exceed the average attained by Atlantic specimens. Union Bay, Alaska, a splended example unfortunately incomplete, but which in life must have exceeded 2 feet in length. The tentacular cirri are very short and thick. Also one in the Academy of Natural sicience, collecten by Gempe Dawson at Admiralty Inlet, Washington.

Platynereis agassizi (Ehlers),
Vereis agassizi Ehlers, Die Borstenwürmer, 1868, p. 542.
It seems probable that the Japanese specimens referred to N dumerilio by Marenzeller belong to this dowely related but perfectly distinct species. A small hetermered resembling that of the Atlantic r '. mogulopps was taken at Quarantine Rock, near P'ort Townsend, on June 27.

Kilisut Harbor and Quarantine Rock, near Port Townsend, Washington. Stations 4219, Amiralty Inlet, near Port Townsend, Washington, 16 -26 fathoms, green mud, sand and broken shells; 4223, Boca de (Quadra, sontheastern Alaska, $48-57$ fathoms, soft green mud.

EUNICID里。

Eunice kobiensis McIntosh．

Eunice kobiensis McIntosh，Challenger Reports，Zool．，Vol．XII，pp．27S－250．
Several specimens of Eumice exhibiting considerable variation inter se，but presenting a mean very close to this species originally taken off the coast of Japan，were collected in Alaskan waters．The largest individual is 90 mm ．long and 5 mm ．wide，being therefore larger than those described by MeIntosh．The maximum number of branchial pinne exhibited by different specimens varies from 5 to＇ 8 according to the size，and the gills begin on V or VI and end at from NLV to LJIII， The characters of the sete and acicula are very constant and differ in no respect from those assigned to Eunice kobiensis．On the other hand the jaws vary considerably and the large paired plates may exhibit a number of teeth either greater or less than is shown in MeIntosh＇s figure．The cephalic appendages generally average shorter and the peristomium longer than on the Japanese specimens，and the ventral cirri are larger than is usual in this genus．

Stations 4235，vicinity of Yes Bay，Behm Canal，southeastern Alaska， 130－193 fathoms，gray mud； 4253 ，Stephens Passage，Alaska，131－188 fathoms，rock and broken shells；1272，Afornak Bay゙，Afognak Island， 12－17 fathoms，sticky mud；427t，Alitak Bay，Kadiak Island，35－41 fathoms，erreen mul and fine sand；4289，Lyak Bay，Kadiak Ishand， $7 t-80$ fathoms，gray mud．The last recorded specimen is stated to have come from a＂tube 11 inches long，formed of small stones and attached to a slab of slate．＂

ONUPHID

Nothria iridescens Johnaon．
Nothria iridescens Johnson，Proc．Bos．Soc．Nat．Hist．，XXIIX，p． 40 s.
This species was originally described by Johnson from a single specimen lacking the catud end which was dredged her Prof．Herd－ man at Victoria，13．C．It proves to be abundant on mudely bottoms in the Gulf of Georgia and much less common northwamd to Prine of Wales．Island，southeastern Alaska．＇The presenee of a posterion and permits the completion of Johnson＇s description．After gradual reduction in length the branchite are totally wantine from the lat 30 somites．The pegidium is provided with a thickened cirematan！welt， from the ventral side of which arise 4 cirri in a close tuft．The 2 median are about $\frac{1}{3}$ longor than the lateral pair and conrespondingly stouter．Besides hoobleal erochets（of which Johbson＇s figure shows one foreshortened）and capillary setar，postrion semments contain a
tuft of the usual expanded pectinate seta. All three kinds continue to the last setigerous segment.

A large number of tubes differ from the one described by Johnson. They are 5 to 6 inches long and about 4 mm . in diameter, composed of a tough, membranous, mucoid lining covered with a thick coating of silt, often arranged in two distinct layers of quite different composition.

Stations 4192, Gulf of Georgia, off Nanaimo, Vancouver Island, B. C., S9-97 fathoms, green mud and fine sand ; 4193, Halibut Bank, Gulf of Georgia, 18-23 fathoms, green mud and fine sand; 4194, same region, 111-170 fathoms, soft green mud, a great many tubes; 4197, same region, $31-90$ fathoms, sticky green mud and fine sand; 4198, same region, $157-230$ fathoms, soft green mud; 4223, Boca de Quadra, southeastern Alaska, 48-57 fathoms, soft green mud; 4244, Kasaan Bay, Prince of Wales Island, $50-5 t$ fathoms, green mud; 426 , same region, 101-123 fathoms, gray-green mud, coarse sund and shells.

Nothria geophiliformis Moore.

Nothria geophiliformis Moore, Proc. Acad. Nat. Sci. Phila., 1903, pp. 445448.

A single example from Station 4244, Kasaan Bay, Prince of Wales Island, 50-5 4 fathoms, green mud.

LUMBRINERID屈.

Lumbrineris heteropoda Marenzeller.
Lumbriconercis heteropoda Marenzeller, Denks. Kaiserl. Akad. Wissensch. Wien, 1879, Abth. 2, pp. 138, 139.
A species of Lumbrineris widely and generally distributed over the fied cowered hy these explorations is assigned with much hesitation as above. The variability of the jaws and the form of the prostomium in species of this genus, taken with the fact that the exact region from which the parapontia dewribed or figured for many species have been sodected is often mot imdicated, renders identification of representatives of this gemus very difficult. The smatler examples resemble L. heteroprede in every repeet, hat the larerer ones have the prostominm shorter and more broadly rounded; the jaws vary in respect to the form and mumber of tocth on the individual plates and probably in a greater diverence of the dobes of the posterior parapodia. The presence of a tuft of very long slender winged setse in the lower part of the supraaricular tuft of the midule paraturlia of some sperimens is atso a noteworthy character which may indicate specific separation from L. hetropurtu. ()ne fine example from station 1251 is 380 mm, long, 7 mum. Wifle, amd has 355 segments. It is fillen with nealy mature eggs.

Stations 4201，Queen Charlotte Sound，off Fort Rupert，Vancouver Island，B．C．，138－145 fathoms，soft green mud，sand and broken shells， 4227，vicinity of Naha Bay，Behm Canal，southeastern Alaska，62－65 fathoms，dark green mud and fine sand；4235，vicinity of Y＇es Bay， Behm Canal，130－193 fathoms，gray mud；4236，same region，147－205 fathoms，rocks and coarse sand；4237，same region，192－198 fathoms， green mul ；4240，junction of Clarence Strait and Behm Canal，248－256 fathoms，coral ；4241，same region，245－238 fathoms，green mud ； 4251，Stephens＇Passage，Alaska， 198 fathoms，rocky；4252，same region，198－201 fathoms，gray mud；4274，Alitak Bay，Kadiak Island， 35－41 fathoms，green mud and fine sand．Also a doubtful specimen in the Academy of Natural Sciences，collected by Dr．Benjamin Sharp at Iey Cape，Alaska．

Ninoe simpla Moore．

Ninoé simpla Moore，Proc．Acad．Nat．Sci．Phila．，1905，pp．547－549，Pl． XXXV，fig．30；NXXVI，figs．39－44．
This very distinct species resembles N ．nigripes Vorrill in general appearance，but differs widely from that and other species in having the gills simple instead of palmate and in the presence of a small median tubercle on the prostomium．

It was taken at Stations 4235， 4236 and 4238，in the vicinity of Yes Bay，Behm Canal，Alaska，in 130－231 fathoms，on muddy bottoms．

STAURONEREID疋．

Stauronereis annulatus Moore．

Stauronereis annulatus Moore，Proc．Acad．Nat．Sci．Phila．，1906，pp．225－227， Pl．X，figs．12，13；XI，figs．18－22．
Taken only at Quarantine Rock，Port Townsend，Wahingtom，June 27， 1903.

GLYCERID压．

Glycera nana Johnson．

Glycera nana Johnson，Proc．Bos．Soc．Nat．Hist．，XXIN゙，p．\＆11．
Although most of the specimens of this species were taken not far from the type locality in I＇uget Sound，two were found on the Alaskan beaches．

Stations 4193，Malibut Bank，Culf of Georgia，B．C．，1s－23 fathoms， green mud and fine sand；4197，same region，31－90）fathoms，sticky Lreen murd and fine sand ；4223，Boca de（Quadra，southeastern Ahaka， 4S－57 fathoms，soft green mud；also beach at Port Ellis and near Shakan，Sumner Strait，southeastern Alaska．

Glycera tesselata Grube.

Glycera tesselata Grube, Arch. f. Naturges., 1863, I, p. 41.
Two small and one large specimens (the latter a fragment measuring 5 mm . across) of this genus are believed to belong to this species, which has not hitherto been recorded at attaining so great a size.
station 4197 . Halibut Bank, Gulf of Georgia, B. C., 31-90 fathoms, sticky green mud and fine sand.

GONIADID屈.

Glycinde wireni Arwidsson.
Glycinde wireni Arwidsson, Bergens Museums Aarbog, 1899, No. 11, pp. 53, 54.

This species, taken cluring the royage of the Vega at various points in the Arctic Ocean and Bering Sea, ranges as far south as the Gulf of Georgia.

Stations 4192, Gulf of Georgia, off Nanaimo, Vancouver Island, B. C., S9-97 fathoms, green mud and fine sand ; 4194, Gulf of Georgia, Halibut Bank, 111-170 fathoms, sticky green mud; 4197, same region, $31-90$ fathoms, sticky green mud and fine sand; 4223, Boca de Quadra, southeastern Alaska, 48-57 fathoms, soft green mud; 4231, vicinity of Maha Bay, Behm Canal, southeastern Alaska, 82-113 fathoms, green mud and slate fragments ; 4235 , vicinity of Ies Bay, Behm Canal, 130-193 fathoms, gray mud. The last specimen is a ripe male, distended with sperm.
Goniada annulata Moore.
Goniada annulata Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 549-553, Pl. XXXVI, figs. 45-48.
Most of the specimens are mature and have the posterior region distencled with erges or sperm. There is a distinct tendency to increase in size in correpondence with the location of the station from south morthward. The species is quite common from Halibut Bank, in the Ginlf of Georgia, northward to C'hatham Strait. Stations 4197, Halibut Bank, Ciulf of Cieroria, B. C.. 31-90 fathoms, sticky green mud and finc sand ; 4198, same reqion, 157-230 fathoms, soft green mud; 4235, vicinity of Yes Bay, Bchm ('anal, 130-193 fathoms, gray mud; 4237, satue rearion, 192-19 bathons, sreen mud; 4238, same region, 229-231 fathoms, mul and rocks; 425S, vicinity of lunter Bay, Lymn Canal, :300-:31:3 fathoms, mul ; 426:1, off Frehwater Bay, Chatham Strait, 282-293 fathoms, green mud.

AMPHARETID压.

Ampharete arctioa Mnimgren.
Ampharcle arclica Malmgren, Kigh. Vet.-Akad. Förh., 1805, p. 364.
Wiren has alrealy recorded this species from Bering Sea. Other-
wise it is unknown from the Pacific region. Fxcept that their paleoli have more produced points than Malmgren figures, these specimens agree exactly with his account. A portion of a tube is 6.5 mm . in diameter, with a lumen of 4 mm . and very fragile walls of fine silt.

Stations 4225, Boca de Quadra, southeastern Alaska, 149-181 fathoms, dark green mud; 4258, vicinity of Funter Bay, Iynn Canal, 300-313 fathoms, mud.

Amphicteis alaskensis Monre.

Amphicteis alaskensis Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. S.6-S49, Pl. NLIV, figs. 1-4.
Taken at Stations 4274 , Alitak Bay, at a depth of $35-41$ fathoms on a bottom of green mud with some fine sand, and t223, Boca de Quadra, southeastern Alaska, 48-57 fathoms, soft green muk.

Amphioteis glabra Moore.

Amphicteis glabra Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 849-851, Pl. XLIV, figs. 5-8.
A small portion of a tube is peculiarly elastic and springy and is covered with a layer of brownish floceulent sediment.
Station 4227, Behm Canal, in the vicinity of Naha Bay, 62 fathoms, bottom of dark green mud and fine sand.

Amphicteis scaphobranchiata Moore.
Amphicteis scaphobranchiata Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 255-257, Pl. XII, figs. 54-61.
Taken at the type locality only, Station 4201, of Fort Rupert, Vancouver, in Queen Charlotte Sound, 138-1.45 fathoms, soft green mud, sand and broken shells.

Melinna denticulata Moore.
Mclinna denticulata Moore, Proc. Acad. Nat. Sci. Phila., 1905, p. 859, P1. XLIV, figs. 9 and 10.
Melinna cristata Moore, id., pp. S51-853.
The original description of this species was inadvertently placed under the name of M. cristata, which, as is well known, has already been employed by sars. The name denticulata was, however, correctly used in the description of the figures on page 857.

The type and only specimen was taken at station foss. in the vicinity of Funter Bay, Lynn Canal, on a bottom of mud. :300-313 fathoms.

Melinna oristata (Sars) Malmgren.
Melinna cristata Malmgren, Ofvers. Kigl.-Vet. Akad. Förh., 1865, p. 371.
Two well-preserved specimens in their thick-walleyl mud tubes represent this species. They were both dredged at Boea de Quadra,
southeastern Alaska, at Stations 4224 and 4225, 149-1SS fathoms. dark green mud.
Samytha bioculata Moore.
Samytha bioculata Moore, Proc. Acad. Nat. Sci. Phila., 1906. pp. 253-255, Pl. MLIV, figs. 11-13.
The upper, thickened portion of the mud tube is strengthened by large numbers of siliceous sponge spicules.

Two specimens were taken at Station 4197, Gulf of Georgia, 31-90 fathoms, sticky green mud and fine sand.

TEREBELLID \nrightarrow.

Amphitrite robusta Johnson.
Amphitrite robusta Johnson, Proc. Bos. Soc. Nat. Hist., XXIX, pp. 425, 426.
'This species appears to be quite abundant in the Gulf of Georgia and as far north as Naha Bay, Behm Canal. It reaches a larger size than is indicated by Johnson, sometimes exceeding 140 mm . in length and 18 mm . in diameter, the greatest number of segments being 83 . The divisions of the branchix are often longer than figured by Johnson, whose figure of the uncinus also is somewhat foreshortened. The number of setigerous somites is constantly 17, as stated by Johnson. some of the specimens bear short cirri or papillæ beneath the setæ of some of the anterior segments. This is probably a secondary sex character, but this could not be ascertained with certainty.

Stations 4193, Halibut Bank, Gulf of Georgia, B. C., 18-23 fathoms, green mul and fine sand; 4194 , same region, 111-170 fathoms, soft green muld ; 4197 , same region, $31-90$ fathoms, sticky green mud and fine sant ; 4195, 157-250 fathoms, soft green mud; 422S, vicinity of Naha Bay Behm Canal, 41-134 fathoms, gravel and sponge.
Amphitrite radiata nom. nov.
Amphitrite palmata Moore, Proc. Acad. Nat. Sci. Plila., 1905, pp. 858, 859, Pl. XLIV, figs. 19-22; not A. palmata Malmgren, 1865.
Stations 4227 , Naha Bay, Behm Canal, $62-65$ fathoms, dark green mud and fine sand; 小2 5 (type locelity), Kasaan Bay, Prince of Wales Islant, 95-9s fathoms, hark greon mad with fragments of shell, rock and sand ; 425:3, Nophens F'asaree, 1:31-188 fathoms, rock and broken shells.
Lanice heterobranchia Johnmen.
Janice helcrobranchic Johnson, Proc. Bos. Soc. Nat. Hist., XXIX, p. 427.
Ther original description is based upon a single specimen which was stated to have no reyes. All of seremal seecimens in the present collection poseses very mumerous deep brown eyes arranged in a compact
narrow band on each side, with a dorsal interval equal to the interbranchial space and a longer ventral interval. These eyes are ordinarily concealet by the inrolled margin of the prostomial fold. The inequality of the gills seems to be a constant character and the number of setigerous segments is $\mathbf{1 7}$, as stated by Johnson. Part of a tube is covered with small pebbles, sea-urchin spines, bits of eel grass, ete.

None of the specimens was found near the type locality in Puget Sound, but all in Alaskan waters at the following stations: 4228, vicinity of Naha Bay, Behm Canal, southeastern Alaska, 41-134 fathoms, gravel and sponge; 4259, Dundas Bay, Icy Strait, 21-78 fathoms, gray sand, broken shell and rock: 4283 Chignik Bay, 30-41 fathoms, black sand and brown sponge; 4289, Lyak Bay, Kadiak Island, 74-80 fathoms, gray mud.
Pista cristata (Maller) Malmgren.
Pista crislata Malngren, Ofvers. Kongl. Vet.-Akad. Förh., 1865, pp. 382, 383.
The single example of Pista referred to this species agrees with those dredred by the Albatross off the coast of Japan, and differs from P. cristata as described by Luropean authors in having the upper free angle of the lateral subbranchial membrane of IV much more produced and prominent, quite equalling that of III. Otherwise they agree, so far as can be ascertained, in all features. The handles of the uncini on V are longer than the others, but there is no other difference.

Station 4225, Boca de Quadra, southeastern Alaska, 140-181 fathons, dark green mud.
PPista fasciata (Grube) Marenzeller.
Pista fasciata Marenzeller, Denks. Kais. Akad. Wissenseh., 1885, Abth. 2, pp. 202-20.4.
Concerning the reference of the fine species of Pista found at several stations in southeastern Alaska to the above named, I am in much doubt. Grube's description of Tercbella fasciaten is not sufficiently: precise for certain determination, but the excellent accounts and figures given by Marenzeller and McIntosh seem to me to refer to different species. In any event the figure of the branchise given by the latter would not answer for these specimens, as the teminal twigs are much more spreading and uneven. About 3 or 4 main branches spring from the trunk, and these immediately branch and rebranch asymmetrically for or 10 times, the main stem being always recognizable, but bending at each point of branching and tapering contimomsly to the end. Cismally 3 gills are well developeel, and 1 is either very small and entirely without branches or may be altogether wanting. Which are well developed appeas to be quite aceidental. They may
be the two of a pair, or the two of one side, or the left of one and right of the other pair.

All of the specimens exhibit the great flaring wings so well shown in McIntosh's figure, and there is a distinct postbranchial fold across the dorsum of IV. The cirri above and behind the setæ bundles of VI and VII are well developed. In respect to most of their characters the uncini resemble McIntosh's figure closer than those given by Marenzeller, but the former fails to show the guard.

Although none of the specimens is complete, uprards of 100 segments are present, and even incomplete examples measure 160 mm . long and 6 mm . wide across the thorax, being therefore much larger than Marenzeller's specimen. The tube has a thick wall composed of fine silt. The one from Station 4246 is filled with eggs.

Stations 4225, Boca de Quadra, southeastern Alaska, 149-181 fathoms, dark green mud; 4229, vicinity of Naha Bay, Behm Canal, 198-256 fathoms, soft gray mud ; 4230, same region, 108-240 fathoms, rocky; 4237, vicinity of Yes Bay, Behm Canal, 192-198 fathoms, green mud; 4246, Kasaan Bay, Prince of Wales Island, 101-123 fathoms, gray-green mud, coarse sand and shells.
Læna nuda Moore.
Lana nuda Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 855, 856, Pl. XLIV, figs. 14, 15.
Known only from the type specimen, a female filled with eggs and presersed in a soft mucous tube coated with a thin layer of foreign materials. It was taken at Station 4279, Kadiak Island, 29 fathoms, dark gray mud.

Thelepus hamatus Moore.

Thelepus hamatus Monre, Proc. Acad. Nat. Sci. Phila., 1905, pp. 856-858, Pl. XLIV, figs. 16-18.
The type comes from station 4235, Yes Bay, Behm Canal, 130-193 fathoms, green mud, and a second poorly preserved specimen from Station 4227, Naha Bay, Behm Canal, 62-65 fathoms, dark green mud and fine sand.

Atacama conifera Moore.

Atacama conifera Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 853-855, 1'l. XLIV, fics. 11-13.
Type from Station 4194, Gulf of Georgia, 111-170 fathoms, bottom of soft green mud. A second specimen comes from an unknown station.
Terebellidos stromi sarn.
Terebellides stramii Sars, 13eskrivelser og Iagthagelser, etc., 1835, p. 48.
The proper discrimination of the species of Terebellides is still a
desideratum. While in their more obvious characters the species are very constant, in respect to others they vary greatly. The representatives of the genus found in this collection are in most respects indistinguishable from the widely distributed T. stromii as described by European writers. On the other hand the transitional setie of somite VIII and the abdominal uncini present slight but quite obvious differences at nearly every station. It seems probable that this species as usually recognized includes a large number of subspecies.

The bent setæ of VIII vary in the length and shape of the bent limb. The uncini usually have 5 teeth in the series above and surrounding the beak; surmounting these is a second row of 3 smaller teeth, and crowning all a single still smaller median tooth. The latter varies in size and in distinctness from the median tooth of the row below, with which it is more or less coalesced; it may even be wanting entirely. The most distinct form occurs on a large example from Station 4247, in which all of the abdominal uncini examined have the median teeth of the second and third rows completely coalesced and that of the first row altogether absent, leaving a gap. The result is that the beak and one nearly equally large tooth occupy the middle line and a large tooth flanked by a smaller one lies on each side of the gap. Most of the specimens are filled with eggs or sperm.

Stations 4223, Boca de Quadra, southeastern Alaska, 48-57 fathoms, soft green mud; 4244, Kasaan Bay, Prince of Wales Island, 50-54 fathoms, green muld ; 4247, same region, 89-114 fathoms, green mud, fine sand, broken shells; 4281, Chignik Bay, 42-43 fathoms, green mud.

Polyoirrus sp.

An undetermined species of Polycirrus was taken at Kilisut Harbur.

AMPHICTENID压.

Peotinaria auricoma (Maller).
Amphictene auricoma Malmgren, Ofvers. Kiongl. Vet:-Akad. Förh., 1566, pp. 357, 358.
All of the Amphictenide in the collection belong to one species which is elearly distinct from any of those hitherto recorded in the Pacific. While closely resembling P^{\prime}. auricoma in nearly every respect, there are some points of distinction between these and European examples Which may require their eventual specific or subspecific separation. The margin of the cephalic membrane is more obscourely and much more irregularly dentate; the uncini usually have 5 large teeth, and the series of fine teeth on the inferior process is not continued on to the upper part of the process beneath the lower large tooth; the scapha
hooks are never as completely circular at the end as figured for European specimens. The paleoli are always 12 . In the smaller specimens they have rather long slender tips which wear away, leaving the ends blunt or, in the case of the lateral ones, somewhat pointed.

Stations 4192 , Gulf of Georgia, of Canamo, Vancouver, B. C., 89-97 fathoms. green mud and fine sand; 4235, vicinity of Yes Bay, Behm Canal, southeastern Alaska, 130-193 fathoms, gray mud; 4244, Kasaan Bay. Prince of Wales Island, 50-54 fathoms, green mud; 4286, Chignik Bay, 57-633 fathoms, green mud and rocks.

CAPITELLID里.

Notomastus giganteus Moore.
Notomastus giganteus Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 227, 228, Pl. 今, figs, 24, 25.
The type locality is Station 4264, off Freshwater Bay, in Chatham Strait. 2s?-293 fathoms, green mud; a larger but incomplete cotype was taken at Station 4197 , (iulf of Cienrgia, 31-90 fathoms, sticky green mud and fine sand.

OPHELIIDA.

Ammotrypane aulogaster Rathke.
Ammotrypane aulogaster Rathke, Nov. Act. Acad. Cæs. Leop.-Car. Nat. Cur., (1843), XX, pp. 188-190.
A single individual 27 mm . long and consisting of 49 segments was taken at Station 4235, vicinity of Yes Bay, Behm Canal, 130-193 fathoms, gray mud.

Ammotrypane brevis Moore.

Ammotrypane brevis Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 354, 355 , text fig.
The single example on which this species is based is distinguished from the preceding by haviner the prostomium somewhat depressed dorio-ventrally insteml of compresed laterally, by the small number (29) of setierous somitus, atm by having the large spoon-shaped anal bove represented by a foublop process only. The type, a femate filled with eggs, is No. 281 of the collection of the Academy of Natural scoiences of Philatelphiat, athl was collected by Dr. Benjamin Sharp at Icy Cape, Alaska.

Travisia forbesii Johnaton.

Travisin forbesii Johnston, Ann. Nat. Hist., IV, (18.10), p. 373.
Abrady recomed from Beringe La by both Wiren and Marenzeller, this speries would be expeeted to "ereur on the coast of Alaska. While bone were taken lyy the Alhatrose maturalists, there are six specimens in
the collection of the Academy of Natural Sciences, taken by Dr. Sharp at Iey Cape. They vary from 25 to 40 mm . in length and one has the posterior end regenerating. This species is easily distinguished from the next by having smooth sete, whereas in T. pupa they are hispid and also somewhat stouter.

Travisia pupa Moore.

Travisia pupa Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 22s-231, Pl. XI, fig. 23.
This is an abundant worm, conspicuous from its large size and widespread on muddy bottoms. Specimens were taken at the following stations: 4192, Gulf of Georgia, 18-23 fathoms, green mud and fine sand; 4194, Gulf of Georgia (type locality), 111-170 fathoms, soft green mud; 4197 , Gulf of Georgia, 31-90 fathoms, sticky green mud and fine sand ; 4230, Behm Canal, 10S-240 fathoms, rocky; 4235, Behm Canal, 130-193 fathoms, gray mud; 4233, Behm Canal, 192 fathoms, green mud; 42.16 Fasaan Bay, Prince of Wales Island, 101-123 fathoms, gray and green mud, coarse sand and shells.

MALDANID雨。

Maldane sarsi Malmgren.
Maldane Sarsi Malıngren, Ofvers. Kigl. Vet.-Akad. Förh., 1865, p. 185.
MeIntush and the writer have already recorded this species as occurring in the Pacific off Japan and Wiren in Bering Sea. The posterior capillary sete have the hairs arranged not in opposite pairs, but spirally.

Stations 4224, Boca de Quadra, southeastern Alaska, 156-166 fathoms, dark green mud ; 4264, off Freshwater Bay, Chatham Strait, 2s2-293 fathoms, green mud; 42s6, Chignik Bay, 57-63 fathoms, green mud and rocks. The specimen last listed is a piece of the posterion end, including the pygidium, of a very large individual 3 mm . in diameter.
Maldane similis Moore.
Maldane similis Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 233-236, P1. XI, ligs. 26-30.
The type and one other specimen were taken at station t264, off Freshwater Bay, Chathan strait, 252-2993 fathoms, green mad.
Maldanella robusta Moore.
Maldanella robusta Moore, Proc. Acad. Nat. Sci. Phila., 1900, 236-239, P1. XI, figs. 31, 32.
Snecemens of M. roluste were taken at itations 4197, (iulf of (ieorgia, 31-90) fathons, sticky green mul and fine samd; t230, Behm Canal, 108-240 fathoms, rorky battom; and 4246 (type locality), 101-123 fathoms, green mud with coarse sand and shell fragments.

Lambriclymene pacifica Moore.
Lumbriclymene pacifica Moore, Proc. Acad. Nat. Sci. Phila., pp. 246-248, Pl. XII, figs. 40-12.
Two complete worms and a fragment, together with four or five tubes, were taken at Station 4264, off Freshwater Bay, Chatham Strait, 282293 fathoms, green mudi; and a caudal end at Station 4199, Queen Charlotte Sound, off Fort Rupert, Vancouver, B. C., 68-107 fathoms, soft green mud and volcanic sand.

Clymenella tentaculata Moore.
Clymenella tentaculata Moore, Proc. Acad. Nat. Sci. Phila., pp. 239-242, Pl. XI, figs. 33-35.
Known only from two fragments taken at Station 4264, off Freshwater Bay, Chatham Strait, July 25, 282-293 fathoms, green mud.

Nioomache carinata Moore.

Nicomache carinata Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 242-246, Pls. NI, figs. 36-39; XII, figs. 43, 44.
Fragments of this species occur in the collections from the Gulf of Georgia, Station 4197, 31-100 fathoms, sticky green mud and fine sand; and Station 4198, 157-230 fathoms, soft green mud. The type locality is Station 4227, in the vicinity of Naha Bay, Behm Canal, 62-65 fathoms, dark green mud and fine sand.

SCALIBREGMID.

Scalibregma inflatum Rathke.
Scalibregma inflatum Rathke, Nov. Act. Acad. Cxs. Leop.-Car. Nat. Cur., XX, (1843), p. 184.
Two specimens, each about 32 mm . long and having 57 segments, seem to be quite typical in every respect.

Stations 4223, Boca de Quadra, 48-57 fathoms, soft green mud, and 4272, Afognak Bay, Afognak Island, Alaska, 12-17 fathoms, sticky mud.

CHLORH 廆MID.

Trophonia papillata Johnson.
Trophonia papillata Johnson, Proc. Bos. Soc. Nat. Hist., XXIX, p. 416.
Silt has adhered to the bases of the cutaneous papillx to such an extent that they appear mammilliform, and until they were examined under the microscope it was supposed that an entirely new species was in hand.

Stations 4192, Gulf of Georgia, off Nanaimo, Vancouver Island, B. C., 89-97 fathoms, green mud and fine sand; 4272, Afognak Bay, Afognak Island, Alaska, 12-17 fathoms, sticky mud.

Brada villosa (Rathke) Malmgren.

Siphonostoma villosum Rathke, Nov. Act. Acad. Cæs. Leop.-Car. Nat. Cur., N゙ (1843), p. 218.
No gnod figures of the setre of this species have been found and the identification is based on the characters of the papille, tentacles, etc. Most of the specimens have the head extended. The number of segments is usually about 30, thus exceeding the number shown in Rathke's figure. The surface is coated with mucous, which becomes hard and to which sand grains adthere, producing a gritty surface, especially on the bases of the papillx. Marenzeller records the occurrence of this species in Bering Sea.

Stations 4223, Boca de Quadra, 48-57 fathoms, soft green mul: 4272, Afognak Bay, Afognak Island, 12-17 fathoms, sticky mud.

Brada pilosa Moore.
Brada pilosa Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 231-233, P1. A, figs. 14-17.

This is a rather common species northward. Examples occur in the collections from Stations 4194, Halibut Bank, Gulf of Georgia, 111-170 fathoms; 4198 , same regrion, 157-230 fathoms, soft green mud; 4251 (type locality), Stephens Pasage, 194 fathoms, rocky bottom; 4235 , Yes Bay, Behm ('anal, 130-19:') fathoms, gray mud; 4252, stephens Passage, 198-201 fathoms, gray mul, and 1258 , Iymn Canal, 300-313 fathoms, mud.

STERNASPID疋.

Sternaspis scutata (Ranzani) Otto.
Sternuspis sculata, Marenzeller, Amn. K. K. Nat. Hofmuseums Wien, V, (1890), p. 6.

These specimens agree exactly with those taken ly the Albatross off Japan. Compared with typical examples of the species from the Mediterranean, they appear to have both the cephalic and candal sote more slender, and the shorter seter of the latter rembon much less hatre. This appears to be due to the hairs having heen rubhed ofit, but may possibly be a normal and constant difforemere. The form of the watal plate and branchial area agrees with Marenzeller's figures.

Stations 4235 , vicinity of les Bay, Behm ('anal, Alaska, 130-19:3
 coaree sand; 4251, oftephons 1'assage, 19s fathoms, rovki; 4252. sante region, 198-201 fathoms, gray mut; 425j. Taysa lulet, lofnn ('anal, 247-259 fathoms, rocky.
?Sternaspis fossor Stimpson.
? Sternaspis fossor, Marenzeller, Ann. K. K. Hofmuseums Wien, V, (1890), pp. 5-s.
A. Johnom remarks, the sternaspis from the neighborhood of Vancouver Ifland agrees in all respects with specimens from the Atlantic ('rast. Stimpson's S'. afjemis from Puget sound is with little doubt to be comsileret a syonym. It is noticeable that the lateral angles of the shiell plate become more prominent on examples from the more southern stations. As represented in this collection this species attains a considerably larger size than the last, some of the specimens being 25 mm . long and 9 mm . in diameter.

Stations 4192, Gulf of Georgia, off Nanaimo, Vancouver, B. C., S(9)-97 fathoms, green mud and fine sand ; 4194, Halibut Bank, Gulf of (ieorgia, 111-170 fathoms, soft green mud; 4201, Queen Charlotte Sound, off Fort Rupert, Vancouver Island, B. C., 138-145 fathoms, soft green mud, sand, broken shells; 4218, Admiralty Inlet, vicinity of Port Townsend, Washington, 16 fathoms, soft green mud; 4223, Buea de (Quadra, southeastern Alaska, 48-57 fathoms, soft green mud; 423:3, vicinity of les Bay, Behm Canal, 39-45 fathoms, soft gray mud and rorks: 424. Kasaan Bay, Prince of Wales Island, 50-54 fathoms, green mul ; 12 17 , same region, S9-114 fathoms, green mud, sand and broken shells.

HERMELLID. F^{2}.

Sabellaria comentarium Moore.

Sabellaria cementarium Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 248253, P1. ClI, figs. 45-51.
This fine species is probably rather common and may possibly be identical with ". culifornica lewkes, thongh the description of the latter fails in several respects to apply to this species. This point I hope to clear up later. The tubes, formel of agglutinated sand grains, are remarkable for their etremsth and hardness, and are found singly or in stmall clumps attached to stones.

Specimens were taken at the following stations: 4220 (type), Ahmiralty Inlet, near Port Townernd, Washington, 16-31 fathoms, green mal, sand and lwoken shells; t2ti, Prince of Wales 1sland, 89114 fathoms, green mud with sand and broken shells; 4274, Kadiak Island, $35-11$ fathoms, green mud and fine sand; 4288, Uyak Bay, Kadiak Island, 67 -69 fathoms, gray mud.

SABELLID平.

Sabella formosa Bush.

Sabella formosa Bush, T'ubicolons Annelids from the Pacific Ocean, Harriman Alaska Lexpedition Reports, 1905, ppo 196, 197.
'Theee examples agree woll with Miss Bush's description, but differ
in having 7, 8 and 9 setigerous thoracic somites respectively. Only one is well preserved and this has nearly the entire branchix wine brown, deepest on the radioles and marked with white blotches. The body is 41 mm ., the branchire 30 mm . long, the former much contracted, the latter extended.

Station 4198, Halibut Bank, Gulf of Georgia, 157-230 fathoms, soft green mud.
Sabella elegans Bush.
Sabella elegans Bush, Tubicolous Annelids from the Pacific Ocean, Harriman Alaska Expedition Reports, 1905, pp. 194, 195.
A fine individual 50 mm . long with 19 pairs of branchix has 4 rows of very regular, deep purplish brown spots which occupy the radioles and extend more faintly on to the pinnse of each branchia. A second smaller one has but 3 sets of spots, and a third still smaller one has them irregularly arranged.
Stations 4297 , vicinity of Naha Bay, Behm Canal, southeastern Alarka, 62-65 fathoms, dark green mud and fine sand; 4260, Dundas Bay, Icy strait, $8 \frac{1}{2}-21$ fathoms, coarse sand and rocks.
Pseudopotamilla anoculata Moore:
Pseudopotamilla anoculata Moore, Proc. Aead. Nat. Sci. Phila., 1905, pp. 566568, P1. XXXVII, figs. 28-33.
Known from the type only, taken at station 4230 in the vicinity of Naha Bay, Behm Canal, 108-240 fathoms, rocky bottom.

Pseudopotamilla splendida Moore.

Pseudopotemille splendide Moore, Proc. Acad. Nat. Si. Phiła., 1905, pp. 56 t-566, II. XXXVII, figs. 23-27.

Two specimens were taken at Station 4245 , Kasaan Bay, Prince of Wales Island, June 11, 1903, 95-98 fathoms, dark green mul and sand mixed with shell and rock fragments.

Pseudopotamilla intermedia Moore.
Pseulopotamilla intermedia Moore, Proc. Aead. Nat. Sci. Phila., 1905, pp. $562-564$, P1. XCIVII, fiss. 15-22.
The type only is known originally recorded emroneonsly as coming from station 4267, but really from sitation 4269, Afognak Bay, Afognak Island, 14-19 fathoms, hard gray sand and rocks.

Psendopotamilla reniformis (Leuckart) Bush.
Potamilla reniformis Malmgren, Ofvers, Kgl. Vet.-Akad. Förl., 1867, p. 114.
Two specimens are each about 35 mm . long with 16 pairs of branchise 6 mm . long. Both have 10 setigerous thoracic segments. The branchis are colorless exept for a brownish zone covering the basal $\frac{1}{3}$, in which all of the eyes, never more than 1 or 2 on
each radiole, are aggregated. Several regenerating radioles bear no eyes. The dorsal branchial wing is well developed and there is a slight ventral inflection of the branchial base. The collar has well developed dorsal lohes near the median line, separated by a pair of very deep wide noteces from the lateral lobes, which rise abruptly above the collar sette. There is a little pigment on the dorsum of segments II to IV. The tube is rather soft and flexible and covered with rather coarse sand grains.
Stations 4269, Afognak Bay, Afognak Island, Alaska, 141-19 fathoms, hard gray sand and rocks; 4271 , same region, $11 \frac{1}{2}-20$ fathoms, hard gray sand and rock.
Pseudopotamilla brevibranohiata Moore.
Pseudopolamilla brevibranchiata Moore, Proc. Acad. Nat. Sci. Phila., 1905, pp. 555-559, Pl. XXXVII, figs. 1-7.
Type and cotype taken at Station 4247, Kasaan Bay, Prince of Wales Island, 95-114 fathoms, mixed mud, sand and broken shells.
Pseudopotamilla occelata Moore.
Pseudopotamilla occelala Moore, Proc. Acad. Nat. Sci. Phila., 1905, 559-562, Pl. XIXVII, fig. 8-14.
This speries occurs at the following stations: 4202, off Fort Rupert, Vancouver Island, 25-36 fathoms, gray sand; 4261, Jey Strait, 10 fathoms, mud and rock; 4269 and 4270, 14-19 fathoms, hard sand and rock. The largest specimens, among them the type, are yielded by the last station listed.

Pseudopotamilla debilis Bush.

Pseudopotamilhe debilis Bush, Tubicolous Annelids of the Pacific Occan, Harriman Naska Expedition Reports, 1905, p. 204.
A single specimen lacking the posterior part represents this species. There are 16 pains of gills 14 mm . long. Eyes appear to be totally wanting and the gills are marked by a pale brown zone near the base and another about midway of their length. The collar is remarkable for its prominent domal lobes. The tube is long, slender, flexible, and sparely covered with sand grains and an occasional small pebble.

Station 4197, Gulf of (ieorgia, Halibut Bank, 31-90 fathoms, sticky green mud and fine sand.

Chone gracilis Moore.

Chone gracilis Moore, Proc. Acad. Nat. Sci. Phila., 1906, pp. 257-259, PI. XII, figs. 62-66.
Known through the type, which comes from Station 4274, Alitak Bay, Kadiak Island, 35-41 fathoms, green mud and fine sand; and a smaller specimen taken at station 4253, stephens Passage, 131-188 fathoms, rocks and broken shells.

SERPULID用.

Apomatas geniculata Moore.

Protula geniculata Moore, Proc. Acad. Nat. Sci. Phila., 1904, pp. 168, 169, Pls. XI, figs. 17, 18; XII, fig. 38.
A small complete specimen bears 18 pairs of gills, the left dorsalmost one of which is enlarged and flattened and supports only two or three barbs. In the bottle, which contains no other specimens, is a detached operculum which exactly fits the modified radiole and without doubt belongs to this annelid, placing it therefore in the genus A pomatus. The operculum has the form shown in the figure, being broadly obovate or egg-shaped and quite smooth, soft and membranous. In all other respects the specimen agrees with the type. Some fragments of tubes indicate that two are sometimes coherent side by side.

Station 4197, Malibut Bank, Gulf of Georgia,

A poinatus geniculataThe operculum and part of its stalk in outline, \times about 25 . 31-90 fathoms, soft green mud and fine sand.

Serpula columbiana Johnson.

Serpula columbiana Johnson, Proc. Bos. Soc. Nat. Hist., XNIX, pp. 432, 433.
Johnson describes the operculum as having about 100 ribs and marginal denticulations. In these specimens the number is always much greater and varies from 140 to 160. Miss Bush also has noted a larger number on her specimens. The functional operculum is developed sometimes on the right, sometimes on the left side. The accessory operculum is simply clavate. Varying with the size of the specimen the branchise number from 36 to 55 pairs. The setie of the collar have from 2 to 4 large, blunt teeth at the base of the long, slenter, curved tip, and the uncini are usually 5-or 6-toothed. 'Tubes forminer a large mass coherent side by side are much thinner and more fragide than tubes found singly.

Port 'Townsend, on the dock at the Quarantine Station, also Station 4205, Admiralty Inlet, vicinity of Port Townsend, Washington, 15-26 fathoms, rock and shells.

Crucigera formosa Bush.

Crucigera formosa Bush, Tuhicolous Annelids of the lacific Ocean, Harriman Alaska Expedition Reports, 1905, pp. 233, 234.
'This species seems very doubtfully distinct from ('. z!!!ophora (Johnson). The operculum is usually 26 or 27 -rayed, but one specimen has 29 and another 32 rays. The tubes are thick and solid and generally
much coiled and coherent in clumps. One isolated tube is much coiled at the attached base, with an erect free end.
Stations 4209, Admiralty Inlet, vicinity of Port Townsend, Washington, $24-25$ fathoms, rocks, coarse sand and shells; 4261, Dundas Bay. Icy strait, Alaska, S1-10 fathoms, green mud and rocks; 4263, same region, 6 ! -9 fathoms, coarse sand and rocks; 4271, Afognak Bay, Afognak Island, $11 \frac{1}{2}$ to 20 fathoms, hard gray sand and rock; 4283, Chignik Bay, $30-41$ fathoms, black sand and brown sponge. Empty tubes, apparently of this species, were found at Stations 4202, 4204 and 4289.

Hyalopomatopsis occidentalis Bush.

Hyalopomatopsis occidentalis Bush, Tubicolous Annelids of the Tribes Sabellides and Serpulides from the Pacific Ocean, Harriman Alaska Expedition Reports, 1905, p. 229.
One was found attached to a tube of Serpula columbiana from Station 4205 , and another to a tube of Crucigera formosa from Station 4283.

Spirorbis quadrangularis Stimpson.
Spirorbis quadrangularis Stimpson, Bush, Tubicolous Annelids of the Tribes Sabellides and Serpulides from the Pacific Ocean, Harriman Alaska Expedition Reports, 1905, p. 241.
Found on tubes of Crucigera formosa at Stations 4271 and 4289 .
Spirorbis spirillum Linn.
Spirorbis spirillum Linn., Bush, id., p. 243.
Numerous specimens attached to a piece of giant kelp from Station 4262, Dundas Bay, Icy strait, 9 fathoms, coarse sand and rocks; also a number in the collection of the Academy of Natural sciences of Philadelphia (No. 1090), collected by Mr. E. A. Mcllhenny at Point Barrow, Alaska.
Spirorbis tridentats Levinsen.
Spirorbis grumuluta var. tridentata Ievinsen, Viden. Medd. Naturh. Foren., Kopenhaven, 1852, p. 350 ; not S. tridentata Bush.
The tubes of this very characteristic species agree so closely with Levinsen's figure that I refer them thereto, in preference to giving a new name foumdeal upon the peculiarities of the worm, though it may be that the animal which occupies the tubes figured by Levinsen will prove to be quite different.

The figures of the tube given hy Levinsen would serve equally well for these. They are close, sinistral, discoid coils without any true central opening, the first coils being in contact in the center. As the tubes grow older the outer turns tend to overlap and pile upon the inner, leaving a deep central depression bounded by nearly vertical
sides. At the same time the tube, which is perfectly smooth in the early stages, becomes roughened by growth lines, and its walls beeome very thick, solid and stony, and are ornamented by three thick and stout ridges rounded on the free side and covering most of the outer surface of the shell. Here and there the depressions between them are crossed by transverse spurs and rods. At the aperture of the tube these ridges project as three very strong and prominent teeth. Fully developed tubes are usually 3.5 mm . in diameter and composed of 4 to $4 \geq$ turns. The carinæ begin at the end of the third turn and Levinsen's figure very accurately represents one in a half-grown condition. in which the ridged whorl is just begimning to turn in upon the inner coils. One more turn, with the ridge characters exaggerated, would

Spirorbis tridentatus-a, an operculum in side view, filled with embryos and showing the imperfect four-tiered calcareons plug, $\times 24 ; 6$, one of the calcareous plates detached and seen from the inner surface, $\times 2.4 ; ~, ~$ a collar seta, the fin at the base may be somewhat too long, $\times 6(500 ; 1$, the two setie of an abdominal bundle, $\times 600$.
result in a condition exactly like my full-grown tubes, in which the inner coils are completely concealed from above and the exposerd parts bear massive ridges, Where free to grow without restraint the tubes are strietly disernid and the lower surface of all of the emil-is in intmate contact with the alga to which they are attached, but when the individuals are crowded the coils are heaped up in various irregular and often angulated forms.

In general form the opereulum (a) agrees well with that of s. granulatus, being a slemeler eone containing a broal punch filleal with ombryos and tapering regularly into a long but rather stout stalk. 'The cal-
careous part, however, is remarkable, being built up of 3 or even 4 (a) calcareous disks of complex form (b). Each has a somewhat grooved rim with thin projecting flanges whose margins appear to be entire when perfect, but are usually jagged as a result of wear. It is very seldom that more than the basal disk and the one next beyond are found entire. An excentric opening prolonged into a tube on the proximal side perforates each disk obliquely dorsal to the center and accommodates the siphuncular ligament, binding all together. The number of branchix is about 11, but could not be definitely ascertained, owing to their being so closely matted together.

There are 3 thoracic and about 24 setigerous abdominal segments, the latter region being very short. The winged collar setæ have the form shown at c, the basal fin being very long, uniformly serrated and overlapping the base of the blade without an interval. The blade is very finely serrated, long, acute, and tapering. The remaining thoracic setæ are partly limbate capillary and partly serrate and sickle-shaped. Each fascicle of abdominal setæ contains but two, one being a minute aciculum with the end bent, the other having a broadly expanded end much like those of S. spirillum (d). Nothing distinctive can be detected about the uncinial plates.

The type is No. s0, collection Academy of Natural Sciences of Philadelphia, and was taken along with several cotypes at Dutch Harbor, Unalaska, by Dr. Benjamin Sharp. Attached to a tough alga frond.

AN ORTYOPTEROLOGICAL RECONNOISSANCE OF THE SOUTHWESTERN UNITED STATES. PART I: ARIZONA.

BY JAMES A. G. REHN AND MORGAN HEBARD.

During the summer of 1907 Orthopterological field work was carried on by the authors at a number of stations extending from El Paso, Texas, and Albuquerque, New Mexico, to southern and north-central California, the material and notes secured being very extensive and of great value. In this paper we present the results of our work in Arizona, giving first an idea of the environment of the various localities visited.

A trip to the little known Baboquivari range in southern Pima County was interrupted and of necessity abandoned on account of the flooded condition of the country to be traversed. Much good material, however, was taken before our party was compelled to return to Tucson.

Mr. (Otho Poling, the well-known Lepidopterist of Quincy, Illinois, aceompanied us through southern Arizona and assisted in collecting much of the material, while all securel in northern Arizona was taken by the junior author. The number of specimens examined was nine hundred and serenty-three, while the species numbered sixty-three.

Several specimens collected at Nogales and Grand Canyon by Dr. P. P. Calvert in 1906 and a small series taken in or near the Huachuca Mountains by Mr. H. A. Kacber in the summer of 1907 have also been studied and inserted in this paper, but these are not included in the count of species and specimens.

The types of all the new forms are in the Hebard Collection.
Tucson, Pime County, Arizona.-Elevation about 2,400 feet. July 23 and 26. The immediate vicinity of Tueson is a nearly level desert plain, extending from the santa Catalina to the Turson Monatains, drained by the santa Cruz River and other less constant and smaller streams and washes. A considerable portion of this phain is covered with st retches of greasewood (Corilleut tridenteta) and seatereed grow ths of various cacti. In the vicinity of the water courses and washes mesquite (I'rosopis sp.) is the predominating vemetation, attaining a height of twenty feet or more in favorable localities, esperially along the santa Cruz River. The most sureessful collecting was found in and about a vacant lot on the edge of the eity, in the central part of which was a smatl pool of water, the outlet of a city drain. About
this pool were high cat-tails and other thick growths of plants, in which situation Orthopters were found to be very plentiful, and likerwise among a nearby dense thicket of wild sunflowers and bushes. In these situations the following species were taken: Parateltix toltecus, Syrbula jusco-vittata, Scyllina calida, Encoptolophus texensis, Trepidulus rosaceus, Conozoa carinata, Anconia integra, Schistocerca vaga, Eoloplus tenuipennis, Melanoplus brownii, M. atlanis and Ecanthus quadripunctatus. In the irrigated fields near the river some specimens were found, although by no means as many as might have been expected in a locality apparently so favorable. On the typical desert greasewood plain forms peculiar to a like environment, such as Heliastus aridus, Ligurotettix kunzei, Derotmema laticinctum and Psoloessa texana, were taken. In the city at night about the are lights thousands of Gryllids swarmed and could be easily captured in great numbers.

Sonora Road Canyon, Tucson Mountains, Pima County, Arizona.Altitude about 3,000 feet. July 25. The old Sonora trail after leaving Tucson winds around the southeast base of the rather low Tucson Mountains, then turns sharply and crosses the range by following up an arroyo or torrent bed and traversing a very low pass in a shallow canyon with sloping sides. The canyon is very rough and much of the rock exposure is dull reddish in color. The vegetation is composed in large part of desert foothill types, the most noticeable of which are numerous sahuaro (Cereus giganteus), palo verde (Cercidium torreyanum), cholla (Opuntia sp.) and the peculiar Kocberlinia spinosa. Orthoptera were few in number, but the species found were of very great interest and differed noticeably from those of the surrounding plains. These included a new mantis Yersinia sophronica, a new Truxalid Horesidotes papagensis, Agencotettix australis, Aulocara rufum, Arphia teporata and Phrynotettix magnus. The majority of the specimens taken showed considerable adaptation of their coloring to the reddish exposures.

Sahuaro Slope, Southucst Side of the Tucson Mountains, Pima County, Arizona.-July 25. After crossing the Tucson range the Sonora trail descends the extensive and gentle southwestern slope of the mountains through a numerous growth of sahuaro or giant cactus (Cereus giganteus), with attendant greasewood (Covillea tridentata) bushes growing thickly and often to a height of over six feet. Many other plants flourish, the intervening ground between them being usually quite hare, as is often the case in this desert country. On the greasewood in this situation Ligurolettix was very plentiful and its faint stridulation was to be heard on every side. Most of the collecting was done at an elevation of about 2,500 feet.

Near Sonora Road, Southwest of the Tucson Mountains, Pima County, Arizona.-July 25. Several miles from the Tucson Mountains collecting was carried on for a short time in a grassy area with occasional bunches of rabbit-weed. In this locality Orthoptera were found to be far more plentiful than on the surrounding more truly desert plain. Among the species taken were Psoloessa tcxana, Encoptolophus subgracilis, Tomonotus aztecus, Trepidulus rosaceus, Trepidulus melleolus, Derotmema laticinctum and Hesperotettix festivus.

Roeble's Ranch, near Coyote Springs, Pima County, Arizona.-July 24 and 25 . This locality is in the lower level of a plain stretching from the Tucson to the Comobabi range, near a large arroyo known as Rocble's Wash. It is in a uniform mesquite and rabbit-weed region, with no striking difference in conditions for a number of miles to the northeast. Two specimens of Trepidulus melleolus were the most interesting forms taken.

Yuma, Yuma County, Arizona.-Elevation about 150 feet. July 27 and 25 . To the east of Yuma the desert stretches, broken by occasional low volcanic hills, where it is too hot for even the greasewood to thrive and desert Orthoptera are almost wholly absent. Along the Colorado River, however, is a wide strip of willows, and back of these ground heavily overgrown with arrow-wood (Pluchea sericea) and other reeds where collecting was more productive. These, although so near the river, were nevertheless parched with the heat. To the east along the Gila River a great expanse of high weeds was found, but so dry that many fell to pieces when touched and insect life was extremely scarce. In the irrigated tract below Yuma Orphulella compta was very abundant. In the town at night Gryllider and thousands of beetles and other insects swarmed around the are lights. All of these Gryllids flew rapidly about, and would have been diflicult to capture had they not come to the light dazed and confused.

Williams, Coconino County, Arizona.-Altitude, 6,7ts feet. September 13. The little collecting done here was accomplished near the station in a field of short weeds and grass, and also near the pine "glades" as they may be calleel. The whole country about Williams is on nearly the same plane but gently rolling. Over this area pines were thickly scattered, underneath which was practically no underbrush but very green grasses, this vegetation imparting to the whole country a park-like appearance. In the vacant field, where the weeds were more abundant than elsewhere, Orthoptera were found more plentiful than we had expected to find them at this servation.

Anita, Coconino County, Arizona.-Altitude about (6.50) feet. Sipptember 11. At this small station, between Williams and the Girand

Canyon, but very little time was allowed for collecting. It is in the midst of the pine "glades," and, no town being located there, the few specimens taken are typical of the park-like country on the top of the Coconino plateau. The country was in general the same as that outside the town of Williams.
Grand Canyon of the Colorado, Coconino County, Arizona. Rim of the Canyon at Bright Angel and Vicinity.-Elevation, 6,800-7,000 feet. september 11. Back from the edge of the canyon the country is rolling and covered with a forest of pines, under which in most places there is practically no vegetation or soil on the sheet of rock forming the top layer of the plateau.

In this country collecting was almost utterly without result, but along the edge of the canyon, and for a short distance back from it, better results were obtained. An area to the southeast of the hotel was also found where there was some low vegetation under the pines and in this situation Ageneotettix curtipennis and Amphitornus nanus were taken.

The Bright Angel Trail.-Altitudes, 6,866-2,436 feet. September 12. For some distance on this trail the collecting proved to be much as at the edge of the canyon, but farther down at about 5,850 feet the canyon side became more open, a few junipers appeared and the open places were fillerl with thickets and grasses. It was here ($5,800-4,900$ feet (devation) that Mclanoplus canonicus and Syrbula modesta were not uncommon, but more or less difficult to capture owing to the extreme steepness of the location. Farther down (elevation 4,350-3,900 feet) in the grassy valley above the Indian Garden spring, it was surprising to note that, in spite of the difference of three thousand feet in elevation and the more grassy country, practically the same forms as those occurring at the top of the canyon were found. In the garden of the Indian Spring House one Paratettix toltecus was taken. Diligent search failecl to diselose more than two specimens of Orthoptera on the wide canyon mesa ($3,7(0)-3,5(0)$ feet) which was covered with a sage and occasional paiches of prickly pear. The Trimerotropis vinculata was among sage, while the Peropromala perpallida was captured on the very brink of the canyon precipice (elevation 3,750 feet) in a seant bunch of a sort of wire-grass.

BLATTID雨。
 PERIPLANETA Burmeister.

Periplaneta americana (Linneus).
A female of this speries wat taken at Tueson, July 23 , and a male at Yuma, July 27, attracted to light in both cases.

This widely distributed species has previously been recorded from Arizona at Yuma, Nogales, Florence and Phœnix.

HOMEOGAMIA Burmeister.

Homœogamia erratica Rehn.

A single male of this species was attracted to light at Yuma, July 27.

MANTID雨

YERSINIA Saussure.

Yersinia sophronica ${ }^{1}$ n. sp.

Type: f; Sonora Road Canyon, Tucson Mountains, Pima County, Arizona, altitude 3,000 feet. July 25, 1907. Collected by Hebard and Rehn.
This very peculiar species differs from Y. solitaria seudder from the eastern slope and foothills of the Rocky Mountains, western Nebraska and southeastern Arizona in the smaller size, the more compressed head with strongly acute mammiform eyes which are hardly at all divergent and in the shorter cephalic limbs. In the form of the head and eyes this species suggests the structure found in the African and Indian genera Episcopus and Parepiscopus.

Size small ; form very slender; surface smooth. Head strongly compressed ; occiput strongly concave, rounded; interantennal region with a pair of median parallel longitudinal carine which terminate dorsad in short sharp points before reaching the dorsal line of the head; anteme filiform, not quite equal to the pronotum in length; eyes very elongate, not divergent, subparallel, strongly produced mammiform. Pronotum rather short, subequal in width without any marked supra-coxal dilation, the width contained nearly three times in the length; cephalic margin rounded, caudal margin truncate; median carima distinet throughout, but very delicate on the collar. Mesonotum and metanotum little expanded, with distinct median carina, no vestiges of tegmina or wings. Abdomen subfusiform, a fincly marked median carina present throughout its length, distal third quite narrow; supra-anal plate

Fig. 1.-Y'ersinia sophronica n. sp. Dorsal view of type. ($\times 5$.) trigonal ; subgenital plate romedel with a merlian incisiondividing it into

[^40]two lones; cerei damaged. Cephalic coxe about two-thirds the length of the pronotum and not extending caudad of the same; cephalic femora slightly longer than the coxæ, quite robust, external margin armet with six short irregularly placed spines, internal margin with eleven spines, the majority of alternating sizes, largest

Fig. 2. - Yersinia sophronica n.sp. Front view of head. (×10.) discoidal spines quite robust; cephalic tibiæ very slightly less than half the length of the femora, armed on the external margin with eight spines, internal margin with about seven spines, terminal claw large; cephalic metatarsi about as long as the tibir, slender, remaining tarsal joints about equal to the metatarsi in length. Median limbs rather short, femora very slightly expanded proximad. Caudal limbs moderately slender; femora reaching to the apex of the fifth abdominal segment, distinctly but slightly inflated in the proximal tro-thirds; tibix equal to the femora in length, very slender; caudal tarsi short.

General color cinnamon-rufous, darkened on the dorsum of the head and the median area of the pronotum; median line of the abdomen vandlye brown. Face burnt umber except antenne and mouth parts which are pale ochraceous. Apex of abdomen washed with broccoli brown, the tips of the terminal plates ochraceous. Limbs ochraceous, tending to orhraceous-rufous on the median and caudal femora and dorsal edge of cephalic femora.

Measurements.

The unique type was found running actively about among the stones of a bare hillside.

LITANEUTRIA Sausure.

Litancutria skinnerí Rehs.
A male sperimen from the (irand Canyon, altitude 7,000 feet, September 11, 19:17, belongs to this speeves, while another male, not quite mature, from Tueson, July 26, is referred to it with some little doubt. The Grand Canyon male has the tegmina slightly shorter than the typical individuals of that sex, while the blackish tegminal maculation of the type is absent.

PSEUDOSERMYLE Caudell.
Pseudosermyle trancata Caudell.
Two male specimens of this species taken at Palmerlee, Huachuca Mountains, Cochise County, July 9 and 16, by Mr. H. Kaeber have been examined. The species is now known to range from the Grand Canyon region south at least to the southern boundary of the Territory and west to southern California. The localities from which it has been recorded are Dos Cabezos, Bright Angel, San Bernardino Ranch and the Huachuca and Santa Rita Mountains.

ACRIDID雨.

PARATETTIX Bolivar.
Paratettix toltecus (Saussure).
At Tueson two females of this species were taken on July 26, and a single female was collected by Hebard at 3876 feet elevation on the Bright Angel Trail, Grand Canyon, September 12. These individuals were taken on damp ground near water. All three specimens have the apex of the pronotum failing to reach the tips of the caudal femora.

MERMIRIA Stål.
Mermiria texana Bruner.
A female specimen of this species taken at lalmerlee, Huachuca Mountains, Cochise County, July 6, by Mr. H. Kacber has been examined.

PAROPOMALA Scudder.
Paropomala acris n. sp.
Type: $0^{\text {º }}$; Railroad Pass, Cochise County, Arizona, altitude 4,386 feet. July 23, 1907. (Hebard and Rehn.)

This species differs from the previously known species of the genus in the following particulars: from cylindrica and calamus in the much shorter subgenital plate and longer tegmina; from pallida in the slenderer form and more acute fastigium; from dissimilis and virgata in the more produced head, the more acute fastigium and the more elliptical eyes.

Size rather small; form elongate, very slender. Ifead with the dorsum slightly longer than the dossum of the promotum, occiput hardly elevated, very slightly arched, fastigium and interocular region horizontal; interooular region slightly narrower than the greatest width of the fastigium; fastigium longer than broal, distinetly acuteangulate in shape with the immediate apex well rounded, surface of the fastigium with a circular impression covering about two-thirds the circumference of a circle; eye clongate-ovate; angle of face considerably retreating, the interantennal region with the angle less acute and

Fig. 3.-Paropomala acris n. sp. Lateral view of type. ($\times 4$.)
joining the fastigium in a distinctly but not greatly acute angle, frontal costa narrow, gradually and slightly but rather irregularly expanding caudarl, strongly sulcate from the fastigial angle to the rlypeus; lateral foveolæ broad linear, slightly arcuate, distinctly impresel; antenne exceeding the head and pronotum by about the length of the fastigium, distinctly ensiform, tips very slender. Pronotum very slightly constricted mesad, the caudal width of the disk containet about twice in the length; cephatic margin of the disk irregularly arcuate, caudal margin of the disk regularly arcuate; median carina distinct throughout its length,

Fis 4.-P'aropomala arik n. sp. Dorsal wutline of head. (. 4 .) not high; prozona nearly half again as long as the metazona, metazona deeply punctate, lateral lobes distinctly longer than deep, ventral margin nearly straight, cephatic margin straight oblique, metazona of the lateral lobes punctate. Tegmina exceeding the tips of the caudal femora by very slightly more than the length of the fastigium and falling very little short of the tip of the subgenital plate, in shape very narrow with the apex narrowly rounded. Prosternum with a low blunt process. Interspace between the mesosternal lobes very narrow and apparently divided mesad by the lobes which are subcontiguous at that point; metasternal lobes contiguous. Supra-anal plate arme--trimonal, arched transversely, slightly flattemed domsad; cerci simple, styliform, very slightly arcuate ventrad, reaching nearly to the apex of the supra-anal phate; submental plate moderately compressed
acute-angulate in outline when viewed from the side, apex well rounded, the dorsum of the plate with a median longitudinal lamellate carina. Cephalic and median limbs very short. Caudal femora half again as long as the head and pronotum together, compressed, moderately slender; tibiæ very slightly shorter than the femora, armed on the external margin with fourteen spines.

General color dorsad and ventrad salmon, a chalk-white bar on each side extending from the caudal and ventral margin of the cye over the entire genæ, ventral half of the lateral lobes of the pronotum, pleura and lateral face of the caudal femora. This white bar is bordered dorsad by one of chocolate which is very narrow at the eye but gradually expands to the middle of the pronotum, whence it as gradually contracts until it is lost dorsad of the articulation of the caudal limbs. Another narrow whitish line is present on each side of the head and prozona between the chocolate bar and the general color and a pair of lunate bars of vinaceous-rufous are present on the occiput. Eyes tawny olive; antennæ and face raw umber. Tegmina buff, humeral vein seal brown.

Measurements.

Length of body,	21	mm
Length of pronotum,							
Length of tegmen,	3
Length of caudal femur,	14

The type is the only specimen of the species examined and was taken on the desert summit of the Pass, among mesquite bushes and dry grass.
Paropomala perpallida n. sp.
Type: 0^{7}; near Bright Angel Trail, elevation 3,750 feet, Grand Canyon of the Colorado, Coconino County, Arizona. September 12, 1907. Collected by M. Hebard.

This species is closely related to P. pallida Bruner from the Salton Basin, California and southwestern Arizona, differing in the considerably smaller size.

Size small; form moderately slender (for the genus). Head very slightly longer than the donsum of the pronotum; neciput and interocular region regularly but not strongly arcuate from the pronotum to about the middle of the fastigium; interocular region very slightly narrower than the greatest fastigial width: fastigium slightly longer than broad, lateral margins acute-angulate but with the apex very broadly rounded, impressed pattern on the disk of the fastigium semicircular; face very considerably retreating, interantemal region with the angle much less acute and very narrowly rounding into the fastigium, frontal costa subequal in width to below the median ocellus whence it

Fig. 5.-Paropomala perpallida n. sp. Lateral view of type. $(\times 5$.)
regularly but not greatly expands to the clypeal suture, sulcate throughout its length; eyes narrow-ovate, moderately prominent when viewed from the dorsum; lateral foveole sublanceolate, slightly arcuate, deeply impressed; antennæ about three times the length of the pronotum, slightly depressed and expanded proximad, tips very slender. Promotum with the caulal width of the disk contained slightly less than twice in the length of the disk; cephalic margin of the disk subtruncate, caudal margin arcuate with the median portion some-

Fig. 6. - Paropomata perpullida n. sp Morsal outline of head. (× 5.) what flattened; median carina distinct but low, prozonat slightly more than half again the length of the metazona, the latter on the dorsum and lateral lobes thickly but shallowly punctate; lateral lobes slightly longer than deep, sentral and cephalic margins obliquely sublinear. Tegmina reaching to the apex of the subgenital plate, narrow, apex truncatorotundate. Mesosternal lobes separated by a very narrow space; metasternal lobes attingent. Subgenital plate slightly compressed, apex very slightly rostrate. Cephalic and median limbs very short. Caudal femora failing to reach the tips of the tegmina by more than half the length of the pronotum, moderately shomere, compresend; caudal tibise slightly shorter than the femora, external margin armed with thirteen spines.

General color cream-buff with a barely appreciable greenish tinge. Dark lateral hars vandyke brown, gradually expanding
on the head, continued over the lateral lobes and pleura, suffusing the base of the costal field of the tegmina and coloring the proximal half of the discoidal and humeral veins of the same and the dorsal half of the proximal abdominal segments. White lateral bars as in P. acris, but not present on the caudal femora. Eyes clay color marbled with bistre; face and mouth parts sprinkled with small spots of brown; antenne tawny, darker proximad. Caudal femora of the general color with the dorsal half of the lateral face pale vinaceous bordered ventrad by a line of dots of brownish.

Measurements.

Length of body, 16.2 mm .
Length of pronotum, 11
Length of tegmen,
Length of caudal femur,

The type specimen is the only one examined by the authors. It was taken on the extreme edge of the canyon plateau and was found clinging to a wisp of dry grass, the only vegetation along the extreme edge of the platean above the trail.

SYRBULA Stâl.

Syrbula fuscovittata Thomas.

At Tucson on July 26 two males and three females of this species were taken from high weeds growing in damp soil surrounding a pool. An immature female was also taken in Sonora Road Canyon, Tueson Mountains, July 25.

One of the males is in a condition similar to that of the specimen of the same sex recorded by Rehn. ${ }^{2}$ Two of the females are in the green phase and the other in the brown phase, with, however, much very pale green on the face and sides of the head, lateral lobes of the pronotum, tegmina and caudal femora. The males are smaller than the average of a series of eight from the Huachuca Mountains.

Syrbula modesta Bruner.

This rather diminutive species was taken at elevations ranging from 4,900 to 5,500 feet in the Grand Canyon, three males and two females being included in the series. Apparently this species has two colur phases, as all the specimens seen are in a brown phate of coloration, while Bruner's original deseription shows that his specimens had green or greenish the predominating color.

Proc. Acad. Nat. Sci. Phila., 1907, p. 32.

As far as known this species is found only in the Grand Canyon region. The males of this form, instead of flying straight from one place to another, rise usually very swiftly in a curve which, on account of their size and coloration, makes them very hard to follow. The femake rely almost altogether on their powerful saltatorial ability. Often in alighting the males would select the terminal twigs of a juniper as resting places. In distribution it appeared to be very local.

B0OTETTIX Bruner.

Boötettix argentatus Bruner.

This very interesting species was taken at several localities and always on its favorite shrub, the greasewood (Covillea tridentata). At Yuma on July 27 it was found to be numerous and seven males were taken; an immature individual was collected at Sentinel, July 27. An alult male and an immature specimen were taken on the Sahuaro slope southwest of the Tucson Mountains, July 25.

All the specimens collected lack decided spots on the sutural margin of the tegmina, and even traces are present in only one individual.

AMPHITORNUS McNeill.

Amphitornus nanus n. sp.

Type: ¿; (irand Canyon of the Colorado, Coconino County, Arizona, altitule 7.000 feet, in conifer forest. September 11, 1907. Collected by Morgan Hebard.

Closely relatel to A. ornatus MeNeill, but differing in the very small sizo (length of borly 14.5 mm .) and the shorter tegmina which hardly surpass the tips of the caudal femora.

Size quite small; form as usual in the genus. Head very slightly shorter than the dorsum of the pronotum, occiput and interocular region regularly but -lighty ascending to the fastigium; interocular region but little narrower than the greatest fastigial width; fastigium slightly acute-angulate, the immediate apex narrowly rounded, median carina distinct on oferput, interocular region and fastigium, very low exept on the fastigium; face considerably retreating, interantenal region rounding to the subrectangulate junction with the fastigium; frontal costa monlerately horad and subequal to a very short distance wentrad of the oredlus, considerably broader and subequal thence to the clypeal suture, for its entire length depressed within its margins and punctate; eym subacute-ovate, hardly prominent when wiewed from the dorsum; lateral foserlar distinct, impressed candad; antenne about equal to the head and pronotum in length, rather robust, slightly depressed proximad, tips bluntly acuminate. Pro-
notum with the disk about half again as long as the greatest caudal width of the same; cephalic margin of the disk subtruncate, caudal margin very obtuse-angulate; median carina moderately elevated, accessory carinæ distinct and parallel with but weaker than the median one; lateral lobes slightly longer than deep. Tegmina exceeding the abdomen by slightly less than the length of the eye and very slightly surpassing the tips of the caudal femora; apices of tegmina rounded; intercalary vein absent. Interspace between the mesosternal lobes subquadrate, but little narrower than one of the lobes; metasternal lobes subattingent caudad. Subgenital plate blunt, somewhat compressed dorsad. Caudal femora slightly more than three times the length of the pronotum, of medium build ; caudal tibix considerably

Fig. 7.-Amphitornus nanus n. sp. Lateral view of type. $(\times 5$.
shorter than the femora, armed on the lateral margin with eleven to twelve spines.

General colors vandyke brown, seal brown and pinkish white. A narrow line of white extends from the caudal margin of the eye oblicquely ventro-caudad to the pronotal margin, thence transversely across the lateral lobe, curving somewhat ventrad at the caudal margin. Another whitish line extends from the base of each antema as a narrow line bordering the ventro-cephalic and ventral border of the eye, broadening and extending diagonally across the gena to the ventrocaudal angle of the same, reappearing again as a moderately wide white ventral border to the lateral lobe, separated from the one dorsad of it by a wider bar of seal brown, and vanishing donsad of the insertion of the median limbs. Head with the donsal surface, sides and face seal brown, aside from the white bars mentioned above and a bar of
mars brown extending from the dorso-caudal margin of the eye to the caudal margin of the pronotum, margining the disk on the latter; eyes and antenne walnut brown. Pronotum with the disk seal brown, except for the area between the supplementary carine which is chocolate. ${ }^{3}$ Tegmina vandyke brown, seal brown proximad in the region of the humeral and discoidal veins; area between the mediastine and humeral veins proximad with a bar of whitish. Venter and abdomen naples yellow, stippled on the sides and apex of the abdomen with brownish. Cephalic and median limbs thickly sprinkled with walnut brown on a paler ground. Caudal femora with the dorsal half with ccru drab as a base color, ventral half straw yellow, genicular region seal brown, bar at a third the length from the tips seal brown, distinct and solid dorsad, weak ventrad; dorsal face with the proximal half washed with seal brown and the dorsal half of the lateral face clouded with one extensive proximal maculation and a smaller median one. Caudal tibix glaucous blue, blackish at the genicular region and pale between this and the glaucous portion, spines with their distal halves black.

Measurements.

The inique type was found on ground devoid of vegetation but covered with needles in the dense piñon and juniper forest. No other Orthoptera were noticed in this locality.

ORPHULELLA Giglio-Tos.
Orphulella compta Scudder.
This species was exceedingly abundant at Yuma, on irrigated ground along the Colorado River south of the town. On July 28 a series of twenty-six males, sixteen females and two nymphs was taken.

Of this series about half is in the green phase, while the remainder is divided between a full brown phase and one possessing both green and brown in its make-up-a mixed phase. Only one, a female, shows any tendency toward purplish on the tegmina, and in this case it is not strongly markerl. There is a considerable amount of variation in size in both sexes, and also in the form of the angle and depth and extent of the excavation of the fastigium.

[^41]The records of this species show its main range to be over the lower part of the Colorado Valley and adjacent salton Basin, while the occurrence of it at San Bernardino Ranch, Cochise County, in southeastern Arizona, in all probability, is due to the species following up the Yaqui Valley from the Gulf of California section of Mexico.

HORESIDOTES Scudder.

Horesidotes papagensis n. sp.

Type: \quad; Sonora Road Canyon, Tucson Mountains, Pima County, Arizona, altitude about 3,000 feet. July 25,1907 . Hebard and Rehn.

Closely allied to H. cinereus Scudder, with topotypes of which it has been compared, but differing in the somewhat smaller size, blunter fastigium, greater interspace between the eyes, less apparent lateral foveole, quite distinct and continuous intercalary vein and more

Fig. 8.-Moresidotes papagensis n. sp. Lateral view of type. (\times 4.)
robust and inflated and proportionately somewhat shorter caudal femora.

Size moderate; form distinctly compressed. Head slightly shorter than the dorsal length of the pronotum, ascending on the oneciput to the vertex which is interocular, fastigium well rounded into the facial outline; interocular region subequal to the width of the fastigium, the occiput and interocular region with a weak median and pair of elosely placed supplementary carina; fastigium slightly broader than long,
slightly acute-angulate with the apex blunt, surface but slightly depressel in the form of a crescent; lateral foveole entirely visible from the donsum, sublinear, slightly arcuate, not deeply impressed; face moderately retreating; frontal costa regularly expanding ventrad, suleate and impressed for a distance ventrad of the ocellus, punctate dorsad; eyes somewhat acute-ovate, not very prominent when viewed from the dorsum; antenne about as long as the head and pronotum, depresed and slightly expanded proximad. Pronotum somewhat

Fig. 9.- Horesidotes pкрадеиліs n. sp. Dorsal view of head and pronotum. ($\times 4$.) constricted mesad ; cephalic margin of disk slightly arcuate, caudal margin obtuse-angulate; median carina distinct and well elevated, severed by the transverse sulcus slightly caudad of the middle, lateral carinæ slightly less elevated than the median, arcuate convergent on the cephalic third of the disk, at a third the length from the cephalic margin they are separated by a space but little more than half that separating them at the cephalic margin, from which point of greatest proximity they diverge in straight line to the caudal margin where they are slightly more distant than cephalad; lateral lobes as deep as long, ventral margin obtuse-angulate. Tegmina exceeding the apex of the abdomen by about the dorsal length of the head, narrow, tips rounded; intercalary vein distinct and continuous, at least distad; lobe on the costal margin small. Interspace between the mesosternal lobes subquadrate, narrower than the width of one of the lobes; metasternal lobes subeontiguous caudad. Cephalic and median limbs of medium build. Caudal femora three times the length of the pronotum, rather robust; caudal tibiee slightly shorter than the femora, armed on the external margin with ten spines, internal spurs subequal.

General dorsal color pront's brown, olscurely sprinkled and mottled with vandyke brown; general ventral color ochraceous-buff becoming very pale yellowish on the abrlomen. Hearl with the face and ventral half of gene ochraceons-buff sprinkled with vandyke brown, mouthparts rufous; cyes clay color mottled with vandyke brown; antennæ rufons becoming olive-buff distad. Pronotum with the disk slightly paler than the dorsal half of the lateral lobes, line between dorsal and ventral color slightly below the middle of the lateral lobes, sinuate, sharply defined; an isolated bar of the ventral color is present dorsad
of the insertion of the caudal limbs. Tegmina of the dorsal color. Cephalic and median limbs tawny, obscurely and imperfectly annulate and marbled with darker. Caudal femora vinaceous-cinnamon, marbled and washed with vandyke brown; caudal tibiæ very pale glaucous, becoming ochraceous proximad, entirely overlaid with fine purplish-red mottlings, spines and spurs with their apical halves black.

Measurements.

The male specimen from Yuma County, Arizona, recorded by the senior author ${ }^{4}$ as Horesidotes cinereus? is seen on re-examination and comparison with the recently acquired material to be nearer papagensis, to which we tentatively refer it.

The type of papagensis was taken among leaves under bushes on the canyon bottom, and showed no inclination to leave the ground.

SCYLLINA Stå1.

Scyllina calida Bruner.
One female specimen of this species was taken at Tucson, July 26, in short grass growing about the end of a drain. Its movements were quite awkward.

The previous records of this species in the United states are from San Bernardino Ranch, Cochise County, and Baboquivari Mountains, Pima County, Arizona.

PSOLOESSA Scudder.

Psoloessa texana Scudiler.

The series of specimens of the genus Psolocssa taken in Arizona in the summer of 1907 numbers one hundred and six. After considerable study of this and other material, the authors are under the neeessity of considering the four nominal species of this genus (trxtunn, ferruginea. maculipennis and buddiana) as one, for which they select the name texana as it has page priority over ferraginea and meculipenmis. buddiana being of much later date.

To some this may appear unwarranted as characters, such as the angle of the face, proportions of the lateral fovenle of the head and the width of the fastigium, as well as the color pattern, have been used in

[^42]keys to separate the "species." To present the reasons for creating the synonymy clearly, it would be best to explain the methods used in reaching the conclusions. The original descriptions of ferruginea, maculipennis, texana and buddiana were tabulated in parallel columns, and from the mass of material specimens which agreed as nearly as possible with these descriptions were selected. The condensed diagnostic characters of the four "species" are as follows:

Typical buddiana. Whole dorsum uniform pale pinkish brown. Lateral bars solid and well marked. Caudal femora with but a faint indication of the dorsal bar at the terminal third.

Typical ferruginea. Whole dorsum ochraceous with the usual markings on the dorsum of the metazona. Lateral bars broken. Caudal femora with distinct bar at the terminal third.

Typical maculipennis. Dorsum of the closed tegmina and pronotum sprinkled with blackish quadrate or subquadrate spots. Lateral bar with the remains less sharply defined than in ferruginea.
Typical texana. Dorsum suffused with blackish. Tegmina blackish with the veins dark. Caudal femora with the dorsum of the genicular portion black.

The number of specimens of the total of one hundred and six which appeared to be typical of these forms were: buddiana, three; ferruginea, ten; maculipennis, nine; texana, three, while eighty-one or over seventy-five per cent. were typical of none. Of this remaining series twelve share characters of buddiana, ferruginea and maculipennis, sixtysix characters of ferruginea and maculipennis and three characters of maculipennis and texana.

When compared with three Shovel Mount, Texas, females the Arizona females differ uniformly in the narrower fastigium, which is usually more deeply excavated or at least appears to be so. When the Arizona series of both sexes is examined there is seen to be considerable variation in both sexes in the width of the fastigium, irrespective of locality or color phase, and in the degree of constriction of the lateral carine of the pronotum. Careful examination of the selected typical females fails to show any difference in the facial angle, and the shape of the lateral foveole is of such variability that no reliance can be placed on this character. The long type of foveolæ, supposed to be peculiar to the texama form, can be duplicated in specimens picked haphazard from the series of the other three types, and moreover the dark texana has as much variability in the few specimens available of the form as one needs to convince them of the variability of this character.

From this evidence there appears but one conclusion to be drawn, and that is to consider the different types forms of one species, as the presence of a seventy-five per cent. intermediate series leaves open to us only this solution or the most arbitrary allotment of this "mixed" body. The latter course has nothing in its favor, as the definition of the "species" would be a practical impossibility.

The localities represented in the series at hand are Tucson, July 26, four © ${ }^{\circ}$, twelve ? ; Somora Road Canyon, Tucson Mountains, July 25, one \bigcirc; near Sonora Road, southwest of Tueson Mountains, July 25, seven $0^{`}$, five ? ; Roeble's Ranch near Coyote Springs, July 24 and 25, twenty-eight c^{7}, forty-eight $?$. Typical buddiana was taken at Tucson, near Sonora Road and Roeble's Ranch, ferruginec at Tucson and Roeble's Ranch, maculipennis at 'Tucson and Roeble's Ranch and texana at Tueson and near Sonora Road.

This insect appears to be the most difficult to capture of almost any of the desert species encountered, this being due to its remarkable protective coloration and to its great swiftness in springing into the air and taking flight. It was by all odds the most plentiful and widely distributed desert species collected.

AGENEOTETTIX McNeill.

Ageneotettix australis Bruner.
An adult mate of this species was taken in Sonora Road Canyon, July 25 , and an immature female at Roeble's Ranch, the same date. The mature specimen was captured on the rocky canyon side.

Ageneotettix ourtipenais Bruner.
A female specimen from Bright Angel, altitule 7,000 feet, September 11 , is referred to this species. The tegmina are very short, not more than one-third the length of the abdomen, and the candal tibias have the proximal third ochraceous clouded and sprinkled with fuscous. The original locality for this species was simply "southern Colorado," and in conserquence this is the first definite remod for the species.

The specimen was found on stony ground, among low plants in a forest of piñon and juniper, where Amphitornus numus was the only other species of Orthoptera seen.

AULOCARA Sculder.

Aulooara rufum Scudder.
A single male of this species was taken in somora Rond Canyon, Tucson Mountains, July 25.

LIGUROTETTIX McNeill.

Ligurotettix kunzei Caudell.
This extremely interesting and peculiar species is represented by a series of forty-five specimens taken at Tucson, July 26 (three 0^{7}, two -), Sunora Road near Tucson Mountains, July 25 (twelve 0^{7}, five adult \mp, one immature \circ), Roeble's Ranch, July 24 and 25 (eight 0^{77}, one adult $\mathcal{?}$, one immature \circ), Sentinel, Maricopa County, July 27 (one σ^{7}), and Yuma, July 27 (three σ^{7}, eight \circ).

The Luma specimens are as large as Tucson individuals and do not seem to approach the smaller Californian L. coquilletti. In size the whole series is fairly uniform, some slight individual variation being noticed in both sexes. Average specimens from the localities represented in the collection measure as follows:

	Length of body.	Length of tegmina.	Length of caudal femora.
Tucson, .	18 mm .	16.8 mm .	9.7 mm .
Near Sonora Road,	16.4 "	15.2 "	9 "
Roeble's Ranch,	16.5	16.1 "	9 "
Sentinel,	16	15.2 "	9.5 "
Yuma,	17.5 "	16.7 "	10.2 "
¢			
Tueson,	24.2 mm .	22.4 mm .	12.5 mm .
Near Sonora Road,	23.5 "	21.7 "	12 "
Roeble's Ranch,	22	20.8 "	11.7 "
Iuma,	24.5	22 "	12.8 "

In color there is a considerable amount of variation, all, however, in conformity with the subdued color pattern of the insect. The most peculiar variation is in the presence of blackish brown on the cephalic half or more of the lateral lobes of the pronotum, and also on the pleura accompanied by a suffusion of the gene. In its complete form this fhate is preent in but one female from luma, in which the contrast with, the pate dorsum and candal portion of the lateral lobes is very -triking, atthough sugerestel more or less strongly by a few, chiefly mates, from Tusson, somomat Rod and Rocble's Ranch. There is a com-iderable amount of variation in the sprinkling and lining of the doriun of the promotum and head and the tegmina with blackish brown, this beine, however, more notiopable in the females than in the males. The Yuma specimens as a series and the sentinel individual are paler and fore athy than those from the vicinity of Tucson and the Papago
country, which may possibly be due to the increased aridity and greater sunlight of southwestern Arizona when compared with the Tucson region. The usual position of specimens on the main branches of Covillea would allow reflected light to play a very important part in color bleaching.

At Roeble's Ranch and along the Sonora Road this species was found chiefly on mesquite, where the insects clung tightly to the twigs and trusted so far to their protective coloration that those taken were cautiously approached with the hands and suddenly seized. If not captured they sprang with agility to some other part of the bush and often escaped completely. They stridulated frequently, a faint sikk, sikk, sik-sik-sik. At Yuma the species was found on greasewood (Covillea) and was extremely active and wary in spite of the frightful heat.

ARPHIA Stâl.

Arphia teporata Scudder.
Three males and a female taken on rocky desert hillside in Sonora Road Canyon, Tueson Mountains, July 25, belong to this species. They are more thickly speckled and variegated with dark brown than a series from Alamogrordo, New Mexico, and all are faintly washed with reddish brown.

ENCOPTOLOPHUS Scudder.

Encoptolophas texensis Bruner.
At Tucson along the Santa Cruz River on irrigated land this species was found July 26 in moderate numbers. Eight males and six females were taken, three of the females being in a green phase of coloration, as previously noted in a Phomix specimen, ${ }^{5}$ the green being on the head, pronotum, dorsal face of caudal femora and to a certain extent on the pleura, while another of the same sex is weakly greenish on the same areas. The series exhibits an appreciable amount of variation in size, particularly in the male sex.

Encoptolophus subgraoilis Caudell.
A single female with rather short termina and wings, taken July 25 in mesquite and rabbit-weed surroundings near the sonora Road southwest of the Tueson Mountains, is apparently reforable to this species. The wings, however, are faintly yellowish proximad, in this respect resembling texensis. The measurements of this speeimen are as follows:

[^43]

HIPPISCUS Saussure.
Hippiscus corallipes (Haldeman).
A single female of this species, taken at the east base of the Huachuca Mountains, July 6, by H. A. Kaeber, has been examined. The species has previously been recorded from that range by the senior author. ${ }^{6}$

DISSOSTEIRA Scudder.

Dissosteira osrolina (Linnæus).
Three males and two females of this widely distributed species were taken at Williams, september 13 , while a single female was taken September 11 at Bright Angel, Grand Canyon, elevation of 6,850 feet.

TOMONOTUS Saussure.

Tomonotus ferruginosus Bruner.
A pair of this species from P'almerlee, Huachuca Mountains, Cochise County, Arizona, taken July 5 and 15 by H. Kaeber, has been examined. The range of this form includes localities from Southern California to Fort Grant and the Huachuca Mountains, southeastern Arizona, and from Phœenix, Arizona, to Uruapan, Michoacan, Mexico.
Tomonotus aztecus (Saussure).
A series of seven males and two females of this species were taken July 25 near the sonora Road, southwest of the Tlucson Mountains, on a flat covered with very low weeds with many bare spaces between. A single male was also taken the same day at Roeble's Ranch.

METATOR McNeill.

Metator pardalinum (Saussure).
A single female of this percies, taken at Williams, September 13, is the first Arizona record of the grenus and species. The specimen has the disk of the wings scarlet and is inseparable from Colorado individuals. It was taken in an open place thickly overgrown with rabbit-weed and other equally low vegretation.

MESTOBREGMA Scudder.

Meatobregma obliterata Bruncr.

A series of six males and ten fomahe was taken at Williams, Septemlor 13. There is considerable variation in the length of the tegmina

[^44]and wings in the females, while the same is true of the caudal femora. The disk of the wings is lemon yellow in all the specimens and the transverse bar is not distinctly marked. The caudal margin of the disk and lateral lobes of the pronotum are distinctly colored with yellowish in a few specimens, while the angle of the tegmina is lined with the same in three specimens and with whitish in two others.

This species was found in the same situation as Metator pardalinum.

TREPIDULUS McNeill.

Trepidulas rosaceas (Scudder).
This very interesting species is represented by a series of twenty-nine males and twelve females. The localities at which it was taken are
 Roeble's Ranch, July 25 ($3 \sigma^{\top}, 2 \bigcirc$), and Yuma, July $2 S\left(10^{\top}\right)$. In size the series exhibits an appreciable amount of variation, while the coloration shows all conditions of ashy washes and blackish speckling and blotching, particularly on the dorsal aspect of the closed tegmina, while the base color ranges in spots from ochre to seal brown. The pale ventral portion of the lateral lobes of the pronotum is, however, sharply defined in every individual, and the two dorsal blotehes on the caudal femora are distinct in all but one female specimen. Attention should be called to the fact that the Yuma individual is uniformly more grayish than specimens from the Tucson region, the maculations being sub-obsolete.

This species was found in the same restricted locality along the Sonora Road as Tomonotus aztccus and Trepidulus melleolus, where it was moderately plentiful; at Yuma the single specimen encountered was taken on a broad flat of high weeds which had been completely dried by the extreme heat. It was found common anong desert growth at Tueson, on the outskirts of the Mexican section of the town.

Trepidulus melleolus (Scudder).
Two males from the vicinity of the sonora Road, July 25 , and two males and a female from Rochle's Ranch, July 25. represent this interesting species. It appears from the material in hand, five males and two females, that there is a great amount of individual variation in size in both sexes; the two females before 11s, one from Roeble's Ranch, the other from san Bernardino Ranch, Corchise County, having a considerable difference in size. The coloration is fairly constant in character.

This species enjoys a range from northeastern New Mexico (La Trementina) to Pima County, Arizona.

This striking form was taken on the desert plain in the two above localities where it was extremely scarce.

DEROTMEMA Scudder.

Derotmema laticiactum Scudder.
On the desert plains of the Papago country this species was collected in numbers, a series of seventy-one males and thirty-three females being before us. It was usually found on exposed areas of adobe soil and associatel with Psoloessa texana. The series is distributed as follows: Tucson, July 26, twenty-seven males, eleven females (one immature); Sahuaro slope, southwestern side of Tucson Mountains, July 24, one male; near sonora Road, southwest of Tucson Mountains, July 25, eighteen males, fifteen females (two immature); Roeble's Ranch, July 24 and 25, treenty-five males (one immature), seven females (two immature).

This series is quite variable in the depth of coloration and in the character of the maculations on the anal area of the tegmina. Some specimens have three or four comparatively large blotches on this portion of the tegmina, while others have the same region more or less thickly sprinkled with small quadrate blotches. The fuscous bar on the wing varies in intensity and considerably in extent. One specimen from Tucson has the bar very weak and of little extent.
Thespecimens from the Baboquivari Mountains previously recorded by the senior author as Derotmema delicatulum, ${ }^{7}$ prove on second examination and comparison with typical specimens of delicatulum to be this species. The range of the species is now known to extend from the west slope of the Urgan Mountains of central southern New Mexico to Phœnix, Maricopa County, and the Baboquivari region, Pima County, Arizona.

Derotmema delicatulum Scudder.

This rather remarkable species is represented by four specimens, two of each sex, taken at sentinel, Maricopa County, July 27. The very prominent eyes, very pale, in fact almost colorless, disk of the wing and much reduced but conspicuous and well-defined transserse blotch on the wing are sufficient to enable one to readily recognize the species. The coloration is very pale, with the darker pattern well defined and comparatively regular.

The habitat of this form is the Mohave and Yuma deserts, ranging from the western elge of the Mohave at Mohave and Lancaster, California, to at least Sentinel, Maricopa County, Arizona. The specimens

[^45]listed above were collected during a train stop in a most arid and desolate location.

Derotmema haydeni (Thomas).

A series of five males and four females was taken at Williams, September 13 (two \circ^{7}, two \circ) , and Anita, September 11 (two 0^{7}, three \circ). The disk of the wing is red in five specimens and yellow in four, regardless of locality. The series from Williams is more blackish than usual in the species, while the Anita individuals are quite reddish. The species has previously been recorded from Flagstaff.

At Anita the species was common on reddish soil in an open field, while at Williams it was taken in an open place heavily overgrown with low vegetation.

CONOZOA Saussure.

Conozoa carinata Rehn.

A series of five males and one female taken at Tucson, July 26, represent this species. These specimens are somewhat paler than the types, while the males have the fastigium very slightly narrower than in the female type. The female specimen has the metazona of the pronotum abnormally humped, probably as the result of an injury.

This species is now known to range from the Huachuca Mountains to the Baboquivari range, north to Tucson.
Conozoa sulcifrons (Scudder).
At Yuma this species was taken in numbers on July 26 and 27 , a series of twenty-one males and twenty-three females being secured. When compared with a series from Grand Junction, Colorado, the Yuma specimens are seen to average considerably larger. The luma series is as a whole more warm brown in color, with the dorsal aspect of the head, pronotum and anal field of the tegmina paler and more uniform.

The specimens from Florence and Phenix, Arizona, referreel to C'. acuminata with a query by the senior author ${ }^{8}$ belong to this species. In size they are slightly smaller than liuma individuals of the same sex.

This was the most plentiful species found on the dry earth of the river bed and along its banks. Although an active flyer no great difficulty was experienced in capturing specimens.

TRIMEROTRORIS STA.

Trimerotropis fascioula McNeill.
A single female of this species was collected at light at Nogales, August 13, 1906, by Dr. Calvert.

[^46]The specimens recorded by Snow ${ }^{0}$ from Oak Creek Canyon and Humphreys Peak. Coconino County, Arizona, as this species prove, on examination of individuals forwarded by Prof. Snow, to be T. alliciens scudder. The two forms, however, are very closely related.

Trimerotropis modesta Bruner.

A female of this form taken on the rim of the Grand Canyon, near Bright Angel. September 11, and a male taken at Williams, September 13. are in the collection. The specific validity of this form appears to he rather questionable, as its relationship to T. citrina is so close that it may be nothing more than a race of that species.

Trimerotropis strenua McNeill.
Two specimens of this species were taken at Tucson, July 26, at light. When compared with Salt Lake Valley specimens they are seen to be inseparable. snow has recorded this species from San Bernardino Ranch, Cochise County, Arizona.
Trimerotropis inconspioua Bruner.
Three males of this species taken at Bright Angel, Grand Canyon, 6,880 feet to 7,000 feet, are before us. Two were taken July 29 to Augn:t 2. 1906, hy Calvert, and one on September 11, 1907, by Hebard. Two epecimens are ilentical in coloration with the tegminal bars decidedly. hacki-h and strongly contrasting with the pale ochraceous base colner, while the other specimen is decidedly reddish, both bars and base color.

This species was described by Bruner from material taken at a number of localities in the Grand River region of western Colorado, this being the first reecord of the speeies from any locality outside of that state.

The eferimen taken on september 11 was the only individual of the speries noticell and was captured in the forest of piñon and juniper.
Trimerotropis vinculata scudder.
This wide rangine speries is represented by eighty-three specimens taken as follows: Turson, July 26, 27 , 18 子 ; Sonora Road Canyon, July 25, $48^{\text {re }}$; Sonora Road near Tueson Mountains, July 25, 2 우; Rumble's Ranch, July 21 and 25, 13: 4 ; Nogrates, August 13 (at light, (alvert), 1 ; Yumat, July 2S, 1 ; Williams, September 13, 10°; Bright Ausel Trail, (iraml ('anyon, elevation 3,000-7,000 feet, July 29August 2 (Calvert), September 11 and 12 (Hebard), $3 \delta^{7}, 9$ क.

The epecimens of the series present a considerable amount of varia-

[^47]tion in size and the usual modifications of width and characters of tegminal bars, as well as differences in the general light base color. As the variability of this species is almost endless, it is hardly necessary to call attention to any types except one which is suffused with ochraceousrufous, represented by all the Sonora Road Canyon specimens and faintly approached by one from Tucson, and a very dull type, represented by several from Bright Angel rim (7,000 feet) and the single individual from Williams. Other specimens, however, from the rim of the Grand Canyon at Bright Angel are of normal contrast, and one is extremely contrasted with quite pale base color.

Trimerotropis cyaneipennis Bruner.

A series of sixteen males and seven females of this species was taken at elevations ranging from 3,500 to 7,000 feet on and in the vicinity of the Bright Angel Trail, Grand Canyon, September 11 and 12. The majority of the specimens are strongly washed with reddish, the greater portion of these reddish specimens being from elevations not exceeding 5,000 feet, this being evidently due to a protective color modification influenced by the reddish exposure of that portion of the canyon walls. A few individuals possess a more strongly contrasted coloration; the pale color being unsuffused and the bar groups darker. These specimens are from 5,000 and 7,000 feet. On comparing this series with that in the Academy collection I find that specimens from the northern portion of Arizona, south at least as far as Prescott, have the disk of the wings campanula blue in color, while individuals from the ranges of southeastern Arizona (Huachucas, etc.) have the same area glateous blue. The difference is quite noticeable when the two types are compared. This species makes at will a clatter similar to that of Circotettix verruculatus. Especially when alarmed its flight is extremely swift and erratic. It was not plentiful along the canyon edge, but lower on the Bright Angel Trail it was found almost everywhere, most plentiful, however, about bare places near precipices.

CIRCOTETTIX Scudder.

Circotettix undulatus (Thomas).

A series of seven males and nine females taken near the rim of the Grand Canyon at Bright Angel represents this speceies. Two males ami three females were taken July 29 to August 2, 1906, by Calvert, and the remainder September 11, 1907, by Hebard.

The sexes are of practically the same size, and the amount of individual variation of the same character is slight in a series of thirty-six specimens before us. The general color varies from a decidedly blackish type to one distinetly dull reddish brown in gencral tone.

The previous Arizona records of this species were from Oak Creek Canyon and base of Humphrey's Peak, Coconino County.

This form was not uncommon in the open yellow pine groves near the hotel, while in other places it was very scarce. Individuals of this species seem to be unable to fly without clattering. In the afternoons it was not on the wing.

HADROTETTIX Scudder.

Hadrotettix trifasciatus (Say).

A single male of this species, collected by H. A. Kaeber, July 6, 1907, on the plains at the mouth of Ramsay Canyon, Huachuca Mountains, has been examined.

Anconia integra Scudder.

At both Tueson and Yuma this species was encountered, five males and two females having been taken at the former locality on July 26 and twenty males and two females at the latter on July 27 and 28. In size there is an appreciable amount of variation in the male sex, the four females being quite uniform. All the females and four of the Tucson males are green; all the Luma males and one Tucson male are hoary white or pale ochraceous more or less thickly overlaid with maculations of olive. several of the brownish specimens are very pale and hut faintly maculate, while five are strongly marked, having the pronotal decusate markings pronounced. The other brownish males are more or less intermediate between the two extreme types.

Tucson is the most eastern record for this species, the previously publishel Arizona records being from I'hoenix and Bill William's Fork.

At Tueson this species was taken among high weeds both in damp and dry locations. They were very wary and alert and when missed flew for some considerable distance. A preference to alighting on the ground when pursued rather than on weeds and bushes was observerl, though invariably first discovered among vegetation. At Yuma it was found on the greasewood covered sand flats.

HELIASTUS Saussure.

Heliastus aridus (Bruncr).

This extremely variable sperios is represented by specimens taken at Tucson (July 26, 3 \&), Sonora Road Canyon (July 25, 2 of, 1 ㅇ, 1 nymph), sonora Road near Tuseon Momatans (July 25, 1 .) and Rowhle's Ranch (July $24,1,1$ i). There is a great divensity in the size of the Tueson females, while the colonation is of the usual vari-
ability. The three individuals from the Sonora Road Canyon are distinctly suffused with reddish, the males very strongly so, while the Tucson and Roeble's Ranch specimens have hoary white their most conspicuous color tone. The Sonora Road specimen has as its general tint the peculiar blue gray offen seen in this species.

This form was found to be a typical desert species, not noticed anywhere in numbers.

PHRYNOTETTIX Ühler.

Phrynotettix magnus (Thomas).
A pair of this species taken July 6 by H. A. Kaeber at Palmerlee and an immature male taken in sonora Road Canyon, Tueson Mountains, July 25, have been examined.

The Palmerlee male is labelled "Found under manure." The Sonora Road Canyon specimen was found on a rocky hillside.

SCHISTOCERCA Stål.
Sohistocerca vaga (Sculder).
At 'Tueson four males and two females of this species were collected July 26. One female is quite dark in color with strongly contrasted pattern; the other of the same sex shows little contrast and is pale dull brownish. The specimens were found among wild sunflowers and other high plants. In this situation individuals were taken with far greater ease than others previously seen on the desert.
Schistocerca venusta Scudder.
A male and two females taken at luma, July 27 and $2 s$, and a male taken at Winslow, Navajo County, September 13, represent this species. The Winstow pecimen is more olive and less greenish than the Yuma individuals.

At Yuma a few specimens were seen in the dry stand of arrow-wood on the banks of the Gila River. The species was very plentiful at Winslow, in tall weeds about a water tank.

CONALCEA Scudder.

Conalora huachuoana Relin.

A female of this eperime collected at Pabmerlee July 6 by Kacher, has been examined.

HESPEROTETTIX Scudder.

Hesperotettix festivus Sculder.
A series of twenty-two males, twelve females and one nymph represents this species. The localities are: 'Tueson, July 26, 1 ō, 1 \& ;

Rearl near Tucson Mountains, July $25.13 \sim, 9 f, 1$ nymph; Roeble's Ranch, July 25, $1 \not \subset$; Williams, September $13,10^{\circ}, 1 \not \subset$.

In size but little variation is noticeable; the tegmina of the two Williams specimens, however, do not exceed the tips of the caudal femora. Five specimens from sonora Road are decidedly brownish, one strongly so, while all the others are shades of green, in a few eases with a faint bluish tinge to the tegmina. Reddish pregenicular annuli are indicated more or less strongly on the caudal femora of all but three specimens, which latter are either in or approach the brownish phase. The pale medio-longitudinal line on the pronotum is narrower in the Williams specimens than in a number of individuals from southern Arizona.

This insect was one of the few species which was invariably found on or near rabbit-weed. In the rabbit-weed tracts a number of specimens were often found in one small clump of the weed. Relying on its protective coloration the insect of ten sought shelter in the center of the clump, but when frightened out of its retreat flew very swiftly on almost all occasions to another bunch of the same plant.

EOLOPLUS Scudder.

Eoloplus tenaipennis Scudder.

At Tucson this species was found in weeds growing along an irrigating ditch and a series of six males and three females was taken on July 26, while at Yuma a single male was collected on July 27. While agreeing with the original description in all essential points the Tueson individuals are decidedly larger than the type. The extremes of the series measure as follows:

In color there is an appreciable amount of variation in the depth of the bars and maculations, the specimens with the base color dull ochre having the pattern more marked, while those with the same more yellowish have the pattorn weaker. The pink of the proximal twothirds of the caudal tibite varies greatly in depth of color, being very delicate shell pink in some sperimens and solferino in others with intermerliates of various shades.

This species was deseribed from Fort (irant, Graham County, Arizona, and has since been recorded from Bill William's Fork, western Arizona.

A single female in the Academy Collection was taken at Phœnix (October 4, 1900; Kiunzé).

Etoloplus arizonensis Scudder.

In the vicinity of liuma this species was not uncommon, a series of seven males, fifteen females and one nymph being taken July 27 and 28 . Among the high dry weeds on the flood plain of the Gila River fourteen specimens were taken and a number of others seen; one specimen was captured on the summit of a desert hill, one in cultivated alfalfa and seven were taken at night under are lights.

There is a perceptible amount of variation in size, the length of the tegmina being quite variable; no specimens, however, having these members shorter than the type measurements, while the greater majority have them much longer. The remarks made under Eoloplus temuipennis regarding color variation apply as well to this species, though the paler specimens have the termina distinctly light grayish, while in one specimen the pale color on the head and pronotum is almost whitish.

This species has been recordel from Fort Whipple, Mavapai County, Arizona, and the Mohave Desert.

MELANOPLUS Star.

Melanoplus flabellifer Scudder.

A series of six males and seven females of this species was taken at Williams, heptember 13. All are typieal of flubellifer, showing little or no tendency toward occidentulis or concutus. The coloration is quite dark, the pattern much subdued. There is some variation in the depth of the glaucous color of the caudal tibix. This is the first record of the species from Arizona.

All of these specimens were taken in a field of low vegetation. The insects were inactive as the dew was yet on the ground. The condition of a number of the specimens shows that their season was well advanced.
Melanoplus herbaceus flavescens Scudder.
Two males of this form were taken at Iuma on July 28, one on cultivated ground, the other on desert growth.

The only previons record of this form from Arizona was from Bill Willian's Fork, Mohato-luna Comaty, specimens from I'hamix beiner intermedinte between herbaceus and flavescens.
Melanoplus brownll Cablell.
This species was abundant locally at 'Tucson, where a series of twede makes amb nincteen femakes were taken on July 26 . In size
there is an appreciable amount of individual variation, the extremes of the series measuring as follows:

	σ^{7}	σ^{7}	우	웅
Length of body, .	18.6 mm.	21.5 mm .	24.2 mm .	28.4 mm
Length of tegmen,	18	20 "	20	24.2
Length of caudal femur,	10.8	12.5	12.2	14.8

The coloration is quite uniform, only a few specimens being more richly colored than the others, the caudal femora, however, being some shade of glaucous in all the series instead of "yellowish brown" as originally described.

The female specimen recorded by Rehn as M. canonicus? from Florence, Arizona, ${ }^{10}$ and those of the same sex from the Huachuca range recorded by him as M. flavidus ${ }^{11}$ are referable to this species. The absence of accompanying males was responsible for the erroneous identifications. The Florence individual has since been compared with the types of brownii.

The range of this species now extends from Yuma up the Gila Valley to l'henix and Florence, southward to Tucson, the Baboquivari and Huachuca Mountains.

The species was found at Tucson, frequenting high weeds near water and cultivated areas.
Melanoplas atlanis (Riles).
A male and two females represent this widely distributed species, the localities being Williams, September 13 (C^{7}), Tueson, July 26 (우) , and somora Road near Tueson Mountains, July 25 (\%). These specimens are distinctly larger than eastern individuals of the species, a fact previously noted by Rehn ${ }^{12}$ in regard to Florence and Phळnix, Arizona, representatives. The ronora Road specimen has the coloration strongly contrasted.
Melanoplus aridus (Scudter).
A very interesting series of this species was taken at localities in northern Arizona, a regiom from which it was previously not reported. Nine specimens from Williams, ieptember 13, five males, four females, atwrage about equal in ize to individuals from Florence, Arizona, and are distinctly smaller than scodder's measurements. Three males and one female taken at Anita, beptember 11, show a further reduction in size, whik series of fourteen males and cleven females from

[^48]the rim of the Grand Canyon at Bright Angel, September 11, are very decidedly smaller than scudder's measurements, some specimens being hardly more than half the size given ly him. The senior author recently called attention ${ }^{13}$ to the size variability of this species, citing Huachuca Mountain individuals larger than the original measurements.

The coloration of the Cirand Canyon series shows little yellowish, having grays and gray-hrowns predminating, white the Anita and Williams specimens are somewhat brighter, though hy no means as strikingly colored as Florence, Arizona, individuals. The yellow of the ventral surface is pure in some specimens and much soiled and washed with red brown in others.

At Williams and Anita this species was extremely common in the grassy open glades of the pine forest, while at (irand Canyon it was the most abundant species of ()rthoptera and was found everywhere in the undergrowth of the heavier pine woods. It was noted to be a very swift jumper, but a series was easily taken on acoount of its abundance.
Melanoplus femur-nigrum Scudder.
This little known species is represented by a series of two males and three females taken september 11 at the rim of the Crand Canyon at Bright Angel. Here it was taken on an open hillside heavily overgrown with a plant resembling rabbit-weed.

The only previous record of this species is the original one from San Franciseo Mountains, July 30 , but its range is more extensive as witnessed by a female in the Academy Collection labelled "Allumquerque, N. Mex., July 13, Oslar." It is quite probable that this specimen was taken in the momains near Albuquerque, as it is hardly likely to occur in the distinctly Sonoran vicinity of the city.
Melanoplus femar-rubrum (DeGeer).
A male of this species was taken at Winslow, Navajo County, 4,S45 feet elevation, September 13 .
Melanoplus oanonious Scudder.
A series of two males and seven females, taken september 12 alongr or near the Bright Angel Trail, (irand Canyon, represent this eperese These specimens were taken at attondes ranging from 4.s.50 to 6.solo
 The sperefos was foumd only in scattered growths of piñon and junijer. exhibitine a preforenere for the lattor tree speremens were format on the ground, in bushes and clinging to the twigs of juniper.

```
'13 Proc. Acad. Nat. Sci, Phila., 1907, p, 51.
```

In size there is considerable variation in the series, all being smaller than Scudder's original measurements. The extremes of the series in hand are as follows:

	0	σ^{7}	0^{7}	웅	우
Length of body, .	17	mm .	20.2 mm	22.5 mm .	27 mm .
Length of tegmen,	15	"	13.8 "	15.8 "	18.2
Length of caudal femur,	10.5	"	9.8 "	11.5 "	13.4

The distal portion of the furcula varies in the two males, being rather slender in one and comparatively thick in the other.

The majority of the specimens are strongly overcast with brownish, sometimes with a decided olivaceous tinge, only one specimen being "luteo-testaceous" as originally described.

In addition to the original record from the Grand Canyon, this species has been recorded from Bill William's Fork by Rehn and from Tucson by Snow.

DACTYLOTUM Charpentier.
Dactylotum variegatum Scudder.
A male and two females of this species, taken July 6 on the plains at the east base of the Huachuca Mountains by H. Kaeber, have been examined.

TETTIGONID雨.

ARETHEA Stal.
Arethæa sellata Rehn.
A male of this species, taken at Palmerlee, Huachuca Mountains, July 15, by H. A. Kaeber, has been examined.

SCUDDERIA Stal.
Scudderia furcifera Sculder.
This species is representel by a male taken at Palmerlee, Huachuca Mountains, July 6, by H. A. Kaeber.

MICROCENTRUM ${ }^{15}$ Scudder.

Microcentrum rhombifolia ${ }^{10}$ (Saussuro).
A single female of this speeies wat taken at lirht at Nogales, August 13, 1906, by Calvert.
"Abnormally distended.
is Kirby (Synon. Catal. Orth., II, pp. 455, 450) has transferred this generic name to the genus usually known as Stitpnochlora stâl, and in its place for Micracentrum of authors uses Orophus Saussure, 1859. For the type of the latter hre seleots retinoricis Burnaister (salicifolia naussure), disregarding the fact that Rehn (Prom. Acad. N'at. Sci. Dhilu., 1905, p. S0s, March, 1906) some months previonsly had selected mexicanus as the type of Orophus. In selecting a type

GRYLLID尼。
NEMOBIUS Serville.

Nemobins neomexicanus Scudder.

This species was taken at light at Tucson (July 23, 1 ㅇ) and Yuma (July 27 and $28,3 \circ$) and was decidedly scarce wherever it was encountered. The Tucson specimen is appreciably larger than the Yuma individuals.

Gryllus personatus thler.

GRYLLUS Linnæus.
At Tucson this species came to light in great numbers the evenings of July 23 and 26 , a series of twenty males and eighteen females being collected.

Size as usual exhibits a considerable range of variation, while several males are of a strongly megacephalic type.

As the proportions of the caulal femora and ovipositors and the measurements of the tegmina may prove of use to future workers, they are tabled below.

Proportions of caudal femur and mipositor in cighteen females from Tucson.
Ovipositor.

C'audab femur.	$\begin{gathered} 12 \\ \mathrm{~mm} . \end{gathered}$	12.3 mm.	$\begin{aligned} & 12.5 \\ & \mathrm{~mm} . \end{aligned}$	13 $\mathrm{mm} \text {. }$	$\begin{aligned} & 13.2 \\ & \mathrm{mm.} \end{aligned}$	13.5 1111.	$\begin{aligned} & 13.8 \\ & \mathrm{~mm} . \end{aligned}$	$\begin{gathered} 14 \\ \mathrm{~mm} . \end{gathered}$	$\begin{aligned} & 14.5 \\ & \mathrm{~mm} . \end{aligned}$	$\begin{gathered} 15 \\ \mathrm{~mm} . \end{gathered}$
10.7 mm .	1			1						
11 "				1						
11.3 "		1	1	1						
11.50										
11.7 "				1		1				
$12 \quad 4$			1	1	1					
12.2 "						1	1	1	1	
12.5 "							1			
13%										2

for Mirrocentrum scudder, Kirhy has been confused ly the synonymy of the species and selected Stcirodon thoracicus Serville as thie type, which was not included in Microcentrum by Scudder; the latter's Microcentrum tharacioum having been proposed independently, not being the same as themerirus cerville or thoracica Burmeister. This is shown by Kirby in his arrangement of the synonymy; but in selecting his type he has overlooked it. In consequence it is necessary to select as the type of Microcentrum a species originally included in the genis and affiliatum scudder (- rhombifolias Saussure) is so selected. This is in accordance with Article 30 of the Revised International Code of Nomenclature.
${ }^{10}$ This name must be used in place of laurifolium of authors; laurifolium of Jinnaus, as shown by Kirby (Synon. Catal. Orth., 11, p. 456), being a Stilpmochlora.

Measurements of caudal femur, tegmen and ovipositor.

Females (eighteen specimens).

Caudal jemur.

Ovipositor.

12	mm	.(1)
12.3	(1)	(1)
12.5	$"$	(2)
13	$"$	(5)
13.2	$"$	(1)
13.5	$"$	(2)
13.5	$"$	(2)
14	$"$	(1)
14.5	$"$	(1)
15	$"$	(2)

Males (twenty specimens).

Caudal fernur.		Tegmen.	
10.5	mm. (1)		mm. (1)
11	" (1)	12.3	" (2)
11.2	" (2)	12.5	" (1)
11.5	" (1)	12.8	" (1)
11.7	" (6)	13	" (2)
12	" (3)	13.2	" (1)
12.2	" (1)	13.5	" (4)
12.5	" (2)	13.8	" (5)
12.7	" (1)	14	" (1)
13.8	" (2)	15	" (1)
		15.3	" (1)

The entire series of thirty-eight specimens is macropterous.
There is considerable variation in the depth of the coloration, some individuals having the head so much suffused with blackish that the usual pale occipital lines are not visible.

Gryllus armatus Scudder.

This species came to light abmulantly at lima on the evenings of Jaly 27 and 28 , a series of nine males and forty-five females being rolleremb. A pair werreats taken at Theson, July 26, under the same conditions. All the specimens collected are macropterous.

Tor ascist future workers in this difficult genus measurements taken from the Yuma series are here given.

Proportions of caudal femur and oripositor in forty-five Yuma females.
Ovipositor.
 femur. $\mathrm{mm} . \mathrm{mm} .

While the head is blackish in all the specimens, the pronotum is frequently quite reddish, in some individuals entirely so, which latter type is connected with that having the pronotum solid blackish by a considerable number of intermediates.

It was astonishing to note the numbers in which this species came to the are lights, hundreds of them running about on the ground beneath the lights or flying swiftly around in circles.

MIOGRYLLUS Saussuro.

Miogryllus piotus Scuddor.

At Yuma on the evenings of July 27 and 28 this species frequented the vicinity of the electric lights in considerable numbers. A series of
fourteen males and sixteen adult and one immature female was taken. There is an appreciable but not very great variation in the size of individuals of this species, while the coloration varies only in the suffusion of the pronotal markings; some specimens having them distinct and others having them clouded with a wash of the darker color. The males without exception have the pronotum dark and the pattern not apparent.

This species was more agile than Gryllus armatus, with which it was associated.
ecanthus Serville.
Ecanthus niveus (DeGeer).
A single male of this species was taken near Bright Angel Trail, Grand Canyon, at an elevation of about 4,900 feet, September 12. It was taken from a weed resembling rabbit-weed in the piñon zone.

©canthus nigricornis Walker.

A single male from the rim of the Grand Canyon at Bright Angel, September 11, is referred tentatively to this species. The antennal markings are not as complex as usual in the species, but the proportions and general coloration are nearly typical. The individual was captured stridulating at night on the species of weed referred to under E. niveus.

Ecanthus quadripunotatus Beutenmüller.

Four specimens taken at Tucson, July 23-26, are referred to this species, one male, a female, attracted to light, and two immature individuals.

NOTES ON THE DISTRIBUTION OF COLORADO MAMMALS, WITH A DESCRIPTION OF A NEW SPECIES OF BAT (EPTESICUS PALLIDUS) FKOM BOULDER.

BY ROBERT T. YOUNG.

In the following article I propose (1) to discuss briefly the distribution of the mammals of the mountains of northern central Colorado in their relation to the life zones of that region; (2) to point out the apparent movement of some species relative to their centers of dispersal and to give a few facts regarding the little known distribution of certain forms in this state, and (3) to describe a new species of bat from Boulder.
(1) Distribution of mammals relative to the life zones of northern central Colorado.

In two recent papers by Ramaley ${ }^{2}$ and myself ${ }^{3}$ the life zones of the Rocky Mountains in this region, as determined by the flora, have been mapped out. Does the mammalian fauna of the mountains show the same zonation as does the flora?

The zones as outlined by Ramaley are as follows:

1. Plains Zone, below 5,800 feet.
2. Foothill Zone, from 5,800 to $\mathrm{S}, 000$ feet.
3. Montane Zone, from 8,000 to 10,000 feet.
4. Sub-alpine Zone, from 10,000 to 11,500 feet.
5. Alpine Zone, from 11,500 to 14,000 feet.

The first of these not being a mountain zone may be omitted from our discussion. The last four correspond to the zones which I, in accordance with the terminology of Merriam' and others, have specified as Transition 1,650-2,400 m., ('anadian 2,400-2,850 m., Hudsonian $2,850-3,300 \mathrm{~m}$. and Alpine $3,300-3,450 \mathrm{~m}$. ${ }^{6}$

[^49]While it is well known that an absolute delimitation of zonal areas in mountain regions is impossible, whether plants or animals are chosen as characteristics, still the zones as outlined above are fairly well defined by their plant inhabitants.

Of the mountain mammals of northern Colorado many range widely from timber line to the plains, and, with a few exceptions, there are none whose range is closely coincident with any one of the zones mentioned above. These exceptions are the following: Sciurus aberti concolor, Citellus variegatus grammurus, Citellus elegans, Cynomys leiucurus, Peromyscus truei nasutus, Neotoma fallax, and Spilogale tenuis in the Transition zone; and Lepus americanus bairdi, Ochotona saxatilis and Phenacomys preblei in the Hudsonian zone.

The Canadian zone possesses no characteristic mammals. Species ranging through both Hudsonian and Canadian zones, but mainly restricted to them, are the following: Evotomys gapperi galei, Microtus nanus, Gulo luscus, Mustela americana, Putorius streatori leptus and Putorius arizonensis.

Boreal species which include the Transition zone within their range are as follows: Cervus canadensis, Ovis canadensis, Sciurus fremonti, Eutamias amrnus operarius, Eutamias minimus consobrinus, ${ }^{7}$ Callospermophilus lateralis, Marmota flaviventer, Neotoma orolestes, Microtus mordax, Thomomys fossor, Thomomys clusius fuscus, Zapus princeps, Erethizon epixanthus, Sylvilagus pinetis, ${ }^{8}$ Fclis hippolestes, Lynx uinta, Ursus americanus, Sorex obscurus, Sorex personatus, and Neosorex pulustris nacigator. Vulpes macrourus should probably be included in this list, but as to its altitudinal limits I have no definite information. Sonoran species extending into the Transition zone are the following: Odocoileus macrourus, Antilocapra americanu, Mephitis mesomelas varians and Putorius longicauda.

Of general distribution through both sonoran and Boreal regions may be mentioned the following speries: Odocoileus hemionus, Bison bison, ${ }^{9}$ E:ntamins quadrivittatus, ('itellus tridecemlincetus pallidus, Castor canadinsis fondator, I'eromyserus nubracensis, P'eromyscus rufinus, Microtus pennsylvanicus modestus, Lerpus campestris, Lepus tomensendi, Canis sp., ${ }^{10}$ T'uxiden taxus, Lutreole lutreocephatu cnergumenos and Putorius nigripes. Buth the will cat aud timber wolf ought probably to be included under

- Fixtends into the Sonoran.
- Also fonoran to some extent. I have taken it 12 km . east of Boulder on the hot barren plains.
- Vow practically extinct.
${ }^{1 "}$ The diseribution of the different formis of coyotes through the mountains is soo yet known.
this last heading. I have omitted them, however, because I have no information as to the species of each, and but little as to their distribution.

Thus we find the Alpine zone with no characteristic mammals, the Hudsonian with three, the'Canadian with none and the Transition with seven, while there are six Boreal species (Cervus occidentalis, Eutamais m. consobrinus, Thomomys clusius fuscus, Thomomys fossor, Sylvilagus pinetis and Neosorex palustris navigator) and one Sonoran-Borcal form (Eutamias quadrivittatus) which probably do not extend much above the Canadian zone, and six which seldom if ever extend below it. In addition to the seven species characteristic of the Transition zone, we find this zone forming the lower limit of eighteen Boreal species and the upper limit of four Sonoran forms.

While the Alpine zone possessies many characteristic plants, on the mammalian side it is characterized chiefly by the paucity of its fauna, possessing not a single characteristic species. The Hudsonian and Canadian zones have most of their mammals in common, while of the three species characteristic of the former zone, Ochotona saxatilis ${ }^{11}$ invades the latter to some extent, while on the other hand it occurs in the Alpine zone in suitable places.

These facts bring out very clearly, I believe, the distinctness of Bureal and Sonoran regions in northern Colorado, as based on the distribution of the mammals in this territory. The Transition zone is, as its name implies, a meeting ground of these two great regions, common to, and yet distinct from each. They show further the intimate relation between Hudsonian and Canadian zones. Using the mammals only as a criterion, I hardly believe we should be justified in separating these zones from each other; their characteristics are relatively much fewer than among the plants.
(2) The movement of some species relative to their centers of dispersal and notes on the little known distribution of certain forms.

The occurrence of a species outside its proper hahitat does not necessarily prove a migration on the part of that species from such habitat. It may, on the contrary, mean that the species formerly had a more widespread distribution than at present, becoming secondarily restricted to its present habitat, with the exception of a few straggles remaining in the territory formerly occupied by it. This is a question which cannot, in most cases, be settled with our present lack

[^50]of data regarding the former abundance of the species in the region in question. Where, however, a typical plains form, as Putorius nigripes or Citellus tridecemlineatus pallidus, is found in the higher mountains, I believe we are justified in concluding that they have migrated outside of their proper habitat.

Sciurus ludovioianus.

This species is now quite common in the neighborhood of Greeley, where I understand it has been introduced from Omaha. It is also present in Denver.

Citellus trideoemlineatas pallidus.

The presence of this spermophile at Divide, ${ }^{12}$ altitude $3,000 \mathrm{~m}$., and elsewhere in the mountains, ${ }^{13}$ indicates a westward and upward movement of this species from its center in the Great Plains, probably dependent upon the presence of its physical habitat, the grass-sagebrush plains in some parts of the mountains, rather than upon temperature.

Peromyscus nebracensis.

This is another plains form of Upper Sonoran and Transition zones which appears to be invading the mountains, judging by its occurrence at an altitude of $3,508 \mathrm{~m} .^{14}$ and elsewhere through the mountains.

Phenacomys preblei.

The only record hitherto of this species is that given by Merriam ${ }^{15}$ from Long's Peak. I have taken a single specimen on North Boulder Creek at about $2,900 \mathrm{~m}$. altitude. This is the only specimen I have secured in spite of careful trapping in several places.

Spilogale tenuis.

I have taken a few of this species at Boulder, hitherto known only from Arkins and Estes Park.

Patorius nigripes.

The occurrence of the black-footed ferret at an altitude of $3,124 \mathrm{~m} .{ }^{16}$ indicates a probable migration on its part from its habitat on the plains into the mountains.

[^51]
Putorius longicanda.

This weasel invades the mountains also to some extent, as I have observed it in Boulder Canyon several miles above its mouth.

Sorex personatus.

The occurrence of this shrew in the Rocky Mountains as far south as Colorado extends considerably southward in these mountains the range of this northern and eastern form. Its presence in the meadows about Boulder brings this Boreal species down to the edge of the Upper Sonoran zone.

Sorex personatus haydeni.

Warren ${ }^{17}$ records a specimen of this shrew taken by him at Lake Moraine and identified by Merriam. Inasmuch as haydeni is a North Dakota plains form its occurrence in the Hudsonian zone on Pike's Peak is certainly interesting. Have we here a marked case of migration, a case of polygenesis, or is haydeni, as Elliott ${ }^{18}$ believes, a synonym for personatus?

Sorex vagrans dobsoni.

This is another interesting record given by Warren ${ }^{10}$ and based on an identification by Merriam. In N. A. Fauna, No. 10, p. 68, the latter gives the distribution of this shrew as parts of Idaho, Montana, Wyoming and Utah. He says further in the same place: "The interrelations of dobsoni and obscurus are intricate and perplexing. The two animals resemble one another very closely, but no intergrades have been found, and each has, so far as known, an independent distribution." This record extends the range of dobsoni considerably southward, making it coincident, at this point at least, with that of obscurus.

Sorex obsouras.

Merriam ${ }^{20}$ gives the distribution of this speries as "Restricted to Boreal Zone." specimens collected by me at Boukder extend its range through the Transition zone.

Corynorhinus maorotis pallescens.

I have a specimen taken in Boulder Canyon at an approximate altitude of $2,300 \mathrm{~m}$., which shows an occasional invasion of the Transition zone by this supposedly Sonoran species.

[^52]
Myotis lacifagas longicrus.

The only Colorado record of this bat which I have found is one hy Miller ${ }^{21}$ for Grand Junction. I have taken it at Steamboat Springs, and have a badly mutilated skin from Eldora which is probably one of this species.

Myotis evotis.

The only Colorado record I have seen is one by Miller ${ }^{22}$ from Loveland. I have a specimen taken in the Yellow Jacket Mountains 21 km . east of Steamboat Springs at an approximate altitude of $2,140 \mathrm{~m}$.
(3) Description of a new species of bat from Boulder.

Eptesicus pallidus sp. n.

Type No. 142,526 \odot ad., collection of U. S. Nat. Mus. Collected by R. T. loung at Boulder, Colorado, July 22, 1903.

Distribution.-Known from type locality only.
Diagnosis.-Skull identical with that of Eptesicus fuscus. Size largest of American species of the genus. (Average total length of four specimens, all females, 124.$)^{23}$

Color palest of American species of the genus, distinctly lighter than that of E. fuscus.

Color.-Above brownish ashy, the basal half of hairs fuscous; below pale silvery gray, the basal half of hairs fuscous, with a narrow transition zone of brownish ashy between the inner and outer parts. Doreally and rentrally along the line of attachment, and on the surfaces of the membranes, the basal fuscous zone of the hairs disappears.

Measurements of Type.-Total length, 127; tail, 50; hind foot, 12. Skull, occipito-ntasal length, 19; interorbital constriction, 4; zygomatic breadth, 1:3; uper tooth row, S.5; palato-basi-occipital length, 15 ; mandible (from condyle to symphysis), 14 ; lower tooth row, 9 .

Mcasurements (average of four females).-Total length, 124; tail, 49 ; hind foot, 12. ${ }^{24}$ Average of two females in alcohol: Ear from crown, 13.5; tibia, 20.5; foream, 49 ; thumb, 8 ; longest "finger," 80.5 , ${ }^{25}$ wilth of ear, 11.5 ; tragus (from posterior angle), S. Sikull (average of three specimens), ${ }^{20} 18.5,4,12.5,{ }^{27} \mathrm{~S}, 14.5,13.5,9$.

Remarks.-While conclusions based on so small a number of specimons as I posess are neresarily uncertain, still I believe that, since

[^53]specimens of Eptesicus fuscus from this region ${ }^{29}$ have the color and size typical of the species, the new form must be considered as a distinct species and not merely a geographical race of fuscus.

The probable origin of this species is a matter of some interest. Occurring in the same territory and occupying the same habitat as its near relative fuscus, neither the geographic isolation nor selection theory seem to offer a satisfactory explanation. Neither the mutation nor orthogenesis theory finds any difficulty in these facts. Morcover we have here an apparent exception to Jordan's law of geminate species.

Further information as to the distribution of this species is very desirable. ${ }^{20}$

In conclusion I wish to thank the authorities of the Field Museum, the Academy of Natural Sciences of Philadelphia and the E.S. National Museum for the identification of much of my material ; and the latter institution especially for its loan of valuable material.

[^54]SOME EFFECTS OF ENVIRONMENT ON THE GROWTH OF LYMN EA COLUMELLA Say. ${ }^{1}$
13Y HAROLD SELLERS COLTON.
Table of Contents.
I. Introduction -10
II. Historical 411
III. Materials 412
Natural History 413
Description of Dwarfs 414
IV. Methods 415
Prectautions 416
Measurements 417
Description of Tables 418
Analysis of Experiments. 418
V. Experiments on Growth of Lxmnaca 420

1. Food: Water Plants 420
Effert of Sediment. 423
Effect of Freces 425
Other Effects of the Water Plants. 425
2. Arration 425
De Varigny's Experiment 426
Willan' Exneriment 426
Effect of Surface Aeration 426
Effect of Artificial Aeration 428
3. Composition of the Water 430
Effect of Accumulation of Excreted Matter 430
Effect of shell silts 434
Effect of Number of Jndividuals 434
4. Temperature 435
5. Lient 437
6. Area 438
7. Volume 440
S. Altarmation of Conditions $4+1$
8. Experiments on Tadpoles 441
VI. Efreet of Divernal Condition= on the number of egrs laid. $41: 3$
9. Sediment 443
10. Number of Individuals 44
11. Jight 4.4
12. Other Effects and Observations 445
VII. Summary and Conclusions 446
VIII. Literature. $1 / 7$

I. Intronuction.

It is a widely recognized fact that animals raised in confinement differ in various ways from those in the wild state. The differences
${ }^{1}$ The writer takes great pleasure in thanking Dr. J. Percy Moore and Dr. E. G. Conklin in particular for many helpful suggestions and criticisms in carrying out the work.
that are most easily observed are those of relative rate of growth and of relative fertility. Although naturalists for many years have recorded cases of this sort, few have undertaken an experimental study of the factors concerned.

External conditions modifying one structure of an organism have usually been found to be correlated with similar modifications in other organs, yet few correlations between dissimilar physiological processes have ever been observed, although most naturalists hold them to be present.

In studying the effect of confinement on organisms, nearly all investigators have chosen the Pond Snail as an animal admirably adapted to their purpose. Perhaps it is largely due to the abundance, to the hardiness, to the rapidity of growth and above all to the extreme sensibility of Pond Snails to any slight change in environment that they have been so universally chosen.

II. Historical.

Jebez IIogg ('54) discovered that Lymnoa confined in small aquaria were much smaller than their brothers of the same egrg case raised in a large one. The latter were full grown and had produced young which were as large as the former at the end of six months. Hogg attempted to explain this phenomenon by saying that the snail had the power of "adapting itself to the necessities of its existence."

Carl Semper ('79) did not consider this as an explanation. He believed that there was a definite factor that would cause dwarfing. This led him to perform a series of experiments with various sizel containers. The conclusion that he arrived at was as follows: that there was a chemical in the water (he had the water analyzed, but nothing was discovered) that stimulates growth without actually contributing to it, but yet is essential, "like oil to a steam engine."

The next investigator to enter this field was E. liung ('-s, 's5). He proceeded to raise tadpoles from the egg in various sized and shaped containers. IHe found that those with the greatest area exposed to the air held the largest tadpoles after a certain length of time. The obvious conclusion was that the dwarfing was caused by lack of aeration.

Stimulated by the experiments of Semper and Vung, De Varigny ('0.4) made an attempt to solve the problem by returning to Lefmmaca. After a humbed or more very careful experiments, he did not dare senture any very definite conclusion, but thought that the dwarfing of these Pond Snails was caused by lack of exercise.

Both Semper and De Varigny, on \dot{a} priori grounds, assumed that the manner of respiration in the fresh water pulmonates was entirely performed by the so-called lung. This caused them to overlook the factor of the acration of the water.

Willem ("96) called attention to this fact and conducted a series of experiments with this particular end in view. Various authors had already noticed that Lymneca in deep lakes never came to the surface, and that under certain conditions they could be made to visit the surface very seldom. Acting on these suggestions, he performed his experiments by running a stream of air bubbles through the water, using De Varigny's experiments as a basis. By this means he was able to explain all of De Varigny's results as due to the simple factor of aeration of the water.

Parallel to the experiments of De Varigny ('94) and Willem ('96), Vernon ('95) experimented at Naples on the growth of Echinoderm larve. His conclusions were that dwarfing in confined spaces was due to the concentration of excretory secretions in the medium. Aeration seemed not to be a factor in the growth of Echinoderm larva, except for the fact that aration would tend to oxidize the waste products of metabolism.

Warren ('00), as a result of experiments with Daphnia in confined spaces, reported that the individuals were dwarfed by the accumulation of their own excretory secretions. This was specific and did not affect the growth and abundance of other crustaceans.

It will be seen that five factors have been advanced to explain dwarfing in confinel spaces. These are lack of oxygen, presence of secretions, lack of exercise, presence of unknown chemical, and the adaption to the necessities of existence.

In commenting on these explanations Davenport ('99) writes, "'There is, however, much reason for believing that Hogg's conclusion is the one which with our fuller knowledge we can hardly improve upon." In the mind of the author Hogr's explanation is not an explanation but a statement of the fact that confined spaces do affect growth. It does not help us to understand how and why animals adapt themselves to their surroundings.

III. Materials.

After a few preliminary experiments with Lymmaca, Physa and I'anorbis, it was soon found that the former was by far the best form for experiments in the laboratory. There are several reasons for this. Lymmen is abumdant in the ponds and streams about Philadel-
phia. It is not quite as abundant, perhaps, as is Physa; yet, except when the ponds are frozen in the winter, is easily procured. A fact of the greatest importance is that eggs are laid throughout the winter, and that these egrs orlinarily develop with slight mortality. The Lymnare on which the following experiments were performed was identified by Dr. H. A. Pilsbry as Lymneat columella Say. This is the most common Lymnea in the neighborhond of Philadelphia. The specimens were procured in certain ponds in Fairmount Park, in a stream near Bryn Mawr, and in the Vivarium of the University of Pennsylvania; the latter had come from an unknown source.

The number of eggs laid at one time by Lymmea columella may vary between one egg and ninety. The egg is, as in the case of other Basiommatophora, imbedded in an albuminous food material, all of which is enclosed by a membrane. This membrane is in turn imbedded in a slimy jelly in which lie the other egrs, laid at the same time. This slimy jelly is again surrounded by an outer layer of jelly, which is quite tough when compared to that matrix which holds the egrs. This tough jelly is thick on the free side. but thin where it cements the ergs to the substratum. In the act of hatching the young snail, which crawls around inside of the membrane, finds its way into the soft jelly mass. After spending a day or two cating this substance, it finally ruptures the wall of tough jelly and escapes. In this jelly mass the eggs are usually placed in three rows. Although the number of eggs may vary greatly, yet in the winter time the average number is about twenty. When adult snails, as soon as the ice is off the ponds in the spring, are brought into the laboratory, they lay the largest number of eggs in a capsule. This fact will be discussed later.

To shed some light on the behavior of the snail after hatching, an egg case contaning four young was placed in a dish of water and the positions of the snails after hatching plottel at intervals of five minutes for a period of forty-four hours. From the data gathered in this manner the following generalizations were made:-

1. Although on hatching the lung contained no air, yet 95 minutes, 50 minutes, 110 minutes and 60 minutes respectively were consumed by the different snails in reaching the surface of the water. One snail captured an air bubble before it left the egg case.
2. The movements of snails, previous to their reaching the surface. were more or less at random, and they paid very little attention the the direction of the diffused light in which the experiment was started. However, on first reaching the ealge of the dish they, in every case, crawled up to the surface. The snail that captured the air bubble
wanderel for 110 minutes after leaving the capsule and then reached the surface by a different method. Letting go from its substratum this snail flowed up and proceeded to crawl on the surface film, precisely like an adult snail.
3. In this experiment the snails without exception rested at night. The lack of activity may be due to slightly cooler water, yet the dish wa: kept in a warm room all of the time. Although these snails had no experience of the oustide world, yet they acted, as far as this experiment indicates, exactly as adults.

Walter ('06) has given us the most complete account of the bionomics of Lymneca. Using his work as a basis it is necessary to call to mind certain activities of the animal. Lymnca has four methods of locomotion, which may be roughly described as gliding, hunching, dangling and dropping. The last two methods are rare and it is not necessary to consider them in this place. The first method is the most common. It consists in the cilia of the foot beating on a path of mucus secreted by the animal and attached to the substratum. When the snail is out of water, when its supply of mucus is inadequate and when certain stimuli are applied the snail resorts to the hunching method, which consists of muscular movements of the foot which bring the snail forward. This is something like the movements of a measuring worm. Whatever method the snail uses it is attached to some substratum, whether it be the sides of the aquarium or the surface film of the water, or suspended by a string of mucus from the surface film or anchored by a string of mucus from the bottom. In these ways the snail can browse on water plants, on the sides of the aquarium, and gather the algæ floating on the surface (Plankton fishing of Brockmeier, '98) ; but cannot gather any amount of food suspended in the water.

We have seen by the experiments of Hogg, semper and De Varigny that certain external conditions will inhibit growth in Lymnea. It is interesting to know just what structural differences exist between the full-grown snail, the dwarf and a normal growing snail the size of the dwarf. Hogg ('5t) noticed that the dwarfed snail had many characteristics of the newly hatched individual.
A comparison of the structure of a dwarf with a young snail of equal size that wat being raisent under favorable eomditions, and a comparison of the structure of a dwarf with a snail of the same age that had spent its growing period under favorable conditions and therefore much larger, will show certain relations. These relations are as follows:

1. Of snails the same size but mot the same age the number of whorls of the shell are the same.
2. The same relation holds true with regard to the arrangement of the viscera, i.e., lobes of the liver, stomach and intestines.
3. Cytologically, however, the tissues of the young snail are quite different from the older ones. As an instance of this the liver of the young snail contains large cells laden with yolk, all of which has been completely absorbed in the dwarf.

In a pond near Geneva Brot² found that Lymncea had a malformation on the columella that seemed to be correlated with the presence of Hydra viridis. If a snail be long dwarfed and later be put under favorable conditions, the shell is often strangely distorted. The pond near Geneva may have nearly dried up and suddenly filled up again. All the snails in the pond would be under unfavorable conditions and dwarfed. The pond filling up would offer ideal conditions and the snails would grow.

Dr. Pilsbry informed the writer that he has noted cases of this sort.
A question of great interest is, will a dwarf put under favorable conditions "grow up". In Lymnea many experiments seem to show that a dwarf does not cease to grow, but rather ceases to grow fast. If, however, the snail is put under favorable conditions it starts at once to grow faster and may "grow up." However, they seem "delicate" and it is with difficulty that they are raised.

In this section the writer has attempted to outline some of the points that have certain bearings on the experiments to come.

IV. Methods.

In the brief review of the experiments of various authors that has been given, certain controllable factors were shown that would affect in certain ways the growth of animals. Every author on a priori grounds has assumed that (1) fool supply will influence growth. It was found by Hogg ('54) and by semper ('74) that (2) the volume of water affected growth. Semper showed that (3) temperature also was a factor that could not be neglected, and that ($-t$) the number of individuals reacted in some manner on one another. Willem ('96) proved that (5) acration of the water affected the growth of Lymnaa, even as liung ('79) had previously observed for tadpoles. De Varigny considered that a large (6) area on which a snail could crawl was beneficial to growth. The effect of (7) light was recognizel by Higgenbottom ('50) and by Yung ('so). Vernon ('95-99) completey this list by adding to it a factor, (8) the chemical composition of the water.

[^55]There are eight rariable factors that have been considered to affect the growth processes of aquatic animals. Each factor, however, is not wi equal weight, but should be held in mind and controlled, if possible, in an experimental study. Using the topics named above as a basis for stuly the general plan of the experiments that follow in the subsequent section will be to keep every other factor constant and vary one alone.

Precautions.-The experiments were carried out principally in battery jars. The size used in the majority of the experiments was \pm inches in diameter by 5 inches high. Other vessels used were 5×6 battery jars, 8×10 battery jars and 12-inch dishes.

In order to save repetition we will consider here the methods employed in every case. Where this order has been deviated from, it will be mentioned in its place.
(1) Before each experiment the jars were washed out and wiped clean. In the later experiments the jars were washed with oxidizing solution (potassium bichromate in concentrated sulphuric acid) as an extra precaution.
(2) The water used in the experiments was taken from a large aquarium in the University Vivarium which contained fish. This was done to introduce algæ, etc., without the danger of adding young snails with it.
(3) In any one experiment the jars used were similar, the water was taken from the same source, and the same amount of water was used unless stated otherwise. These conditions being fulfilled, the composition of the water, the algse for food, and the temperature must vary in the same way.
(\ddagger) In a given experiment the jars were placed near together and care was taken so that each received an equal amount of light.
(5) Over each was placed a glass plate to prevent evaporation and the escape of the snails. This latter apparently suicidal behavior, as described by Walter, was found often occurring. In many of the rases that have come under observation, this was caused by the vapor condensing on the glass sides of the jar above the water. Up this wet glas: the snail crawls, until temperature changes occur that dry the glass. The snail is then dried and killed. Other cases are not so easy to explain.
(6) Just before an egge case was ready to hatch, with a section lifter it was rarefully remosed from its substratum and isolated in a jar of water. If the egges are freshly laid it is usually fatal to the embryos to remove them. In some of the carlier experiments, after the young -nail hat broken through the egg membrane, the jelly mass was divided
up so that each piece contained an equal number of snails and placed at once under the conditions of the experiment. As there was less mortality by letting the young snails escape from the case normally, they were not placed under the conditions of the experiment until a day after they escaped from the egg case.
(7) In those jars in which I have placed water plant I have tried to add pieces of water plant of equal length and foliage.
(8) Where sediment was needed approximately the same amount was added to each jar.

Meusurements.-To measure growth several methods have been used. It is possible to measure volume, weight, a lineal dimension of some part, or the number of successively arising homodynamous structures. In the case of the pond snail the lineal dimension of the length of the shell at once suggests itself. To measure this the following apparatus was atranged. A is a compound microscope with about a 7 -inch working distance magnifying the object about three times (fig. 1). O is a snail on a thin glass slide that was placed over a piece of paper ruled in millimeters. The snail was placed with the aperture flat on the glass and the shell would be projected on the ruled lines. Millimeters were then read off on the

Fig. 1. paper and tenths cstmated. This is sufficiently accurate where the work is purely qualitative. A Vernier caliper could not be used on account of the delicacy of the shell.

In some cases the weight is given. This is not always satisfactory. As growth is a three dimensional phenomenon weight more nearly
represents growth. However, the writer found that the snails, large and small, are mathematically similar. That is, the weights are proportional to the cubes of the length.

In determining the average weight all the snails from a given experiment were placed on a microscopic slide of known weight and all excess water wiped away with a clean handkerchief or with lens paper. They were then let dry for three or four minutes and weighed. Dividing the weight found for the snails by the number gives the average.

Tables.-The results of experiments are placed in tabular form. Each experiment consists of two parts; the second member of the pair is in every case the control or the condition most nearly normal. The variable factor precedes it.

A detailed description of the vertical columns of the tables will now be considered. Cf. tables, pp. 421 et seq.

Column 1.-The serial number of the experiment.
Column 2.-The number of days the experiment was carried on.
Column 3.-The number of snails placed in a jar at the beginning of the experiment.

Column 4 .-The number of snails alive at the time the measurements were taken.

Column 5.-The condition that varied in each pair of experiments.
Column 6.-Certain constant conditions. These constants are in some cases interesting to know. In this column certain abbreviations are used. W P equals Water Plant, i.e., Myriophyllum, Ceratophyllum, Elodea or Spirogyra. N indicates no water plant. cc. equals cubic centimeters present in each jar.

Column 7.-Average size. If the number is expressed in ten thousandths, grams are to be implied; if expressed in units and tenths, millimeters.

Column 8.-The differences between pairs are placed opposite the largest number of the pair.

Column 9.-The quantity in this column is the per cent. of the difference to the largest average of the pair. To be able to compare the per cent. difference of the weights with those of lengths the following formula was used, being based on the fact that the snails are similar.
a and b are two members of a pair expressed in grams and $a>b$. Since the shells are similar mathematically, then

$$
\frac{r_{a}^{2}}{r_{a}^{2}-r_{b}}=\frac{100}{\times \%} \text { or } \times \%=100 \frac{\left(r_{a}^{2}-r^{2} b\right)}{r^{2} a}
$$

Aunlysis of Experiments.-To bring the mass of experiments into a
form in which they may be more easily considered, a subsidiary table has been compiled from the primary ones. This table consists of four columns (p. 420a).

Column 1 contains the number of the primary table for reference.
Column 2 gives the number of experiments in the primary tables that are favorable to the presence of a factor.

Column 3 gives the number of experiments in the primary tables that are favorable to the absence of a factor.

Column 4 shows the number of experiments that are indeterminate. To determine whether an experiment is indeterminate or not certain rules are followed :

1. If there has been a large mortality among the snails which were the larger at the end of the experiment the difference was considered indeterminate. The fact that they were the larger could be explained by the fact that they were the fewer. If, however, the opposite was true, i.e., the mortality was among the smaller snails, then the probability is that they are fewer because the conditions have been the more severe.
2. An experiment has been considered indeterminate if there was a large mortality on both sides of the experiment, notwithstanding the fact that the remaining numbers are nearly equal. The reason for this is the probability that an uncontrolled factor has been acting.
3. When a known factor has acted on one portion of the experiment and not on the other, the difference has been considered indeterminate.

4 . Those experiments where the difference is under 10 per cent. of the greatest average has been believed to be indeterminate. This purely arbitrary criterion has been devised to allow for two uncontrollable errors-individual variation and errors in measurement. The obvious way to correct these errons would be to make use of large numbers of individuals in single experiments. As the number of eggs in a case is small, and when the snails are crowded the mortality is large, it has been found impossible to deal with large numbers. A limi of error must be made that will be large enough to cover most unknown errors (see next page).

Secondary Table.
For description see page 419.

V. Experiments.

1. Effect of Food.-Various authors (Semper, Ullyet, ${ }^{4}$ Cockerall, ${ }^{4}$ W゙alter, etc.) have shown that Lymnea will eat animal as well as vegetable fool. However, the latter furnishes the normal diet. This con-si-t- of diatomes, desmids, unicellular and filamentous algæ, the leaves of witor plants, and dead leaves of trees. If a snail after hatching is placed in a clean battery jar with 500 cc . of clear pond water that snail will grow, the necessary amount of food being supplied by the mirmocopice algere introluced with the water which will increase faster than the -nail (an eat up). If the temperature is favorable, in the course of two months the snail will reach 7 mm . or 8 mm . in altitude and berome sexually mature. The fact that the supply of food keeps ahoral of the demand is interesting and led to a series of experiments

[^56]with Myriophyllum and Elodea, to see the effect of these water plants and to discover whether or not their presence is beneficial. A priori one would consider that the effect of these larger water plants as Elodea or Myriophyllum would be beneficial. My experiments seemed in indicate that their effect was the opposite. I at once started a great number of experiments in this line. Some experiments, as can be seen in Table I and Table II, went decidedly one way and some went decidedly the other. The results were chaotic and no generalizations were possible.

A study of the gross anatomy of Lymnoza reveals the fact that the anterior portion of the stomach is highly muscular. This muscular sac was originally described by Martin Lister ${ }^{5}$ and compared to the stomach of a mullet. Cuvier ('17) more happily compared it to the gizzard of a granivorous bird. It was compared much later by the geologist Whitfield ('S2), independently of Cuvier, to the gizzard of a fowl. Whitfield showed that this organ like the gizzard is normally filled with sand in Lymnea megasoma.

Table I-Effect of Elodea.

Ex.	Days.	No. beg.	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
2.1	52	4	3	Elodea.	500 cc.	3.2	-	-
13		4	4	None.		4.0	. 8	16\%
3.	52	4	2	Elodea.	500 cc .	1.0	-	-
B		4	2	Nouc.		1.6	. 6	37%
41	52	4	4	Elodea.	500 ce.	4.5	-	-
B		4	1	None.		5.0	. 5	10\%
5.1	54	6	5	Elodeu.	500 ce.	. 0032	-	-
13		6	4	None.		. 0220	. 0188	50%
6.1	$5 \pm$	${ }_{6}$	4	Elodea.	500 ce.	. 0005	-	
13		6	1	None.		. 0010	. 0005	20\%
71	54	6	5	Elodea.	500 cc.	. 0010	-	-
13		6	5	Fone.		.0012	. 0002	5%
8.1		6	6	Elodea.	500 cc.	. 0010	-	,
13		6	5	None.		. 0032	. 0022	32%
9 A		6	5	Elodea.	500 cc.	.0010	. 0005	20\%
13		6	$\underline{2}$	None.		. 0005	. 0005	-
10.1		6	3	Elodea.	500 cc.	. 0016	. 0008	23\%
13		6	3	Sone.	500 c.	. 000 S	,	*
11 A	57	6	6	Elodea.	500 се.	. 0052	-	-
13		6	6	None.		.0077	.0025	12\%
12 A	57	${ }^{6}$	5	Eloders.	500 ce.	. 0039	-	-
13		6	6	None.		. 0039	-	-

[^57]
Table II-Effect of Myriophyllum.

Ex.	Days.	No. beg.	No. end.	Variable.	Constant.	Av. Size.	Dif.	Per cent.
$\begin{array}{r} 13.1 \\ B \end{array}$	28	$\frac{2}{2}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Myrio.	200 cc.	$\begin{aligned} & 5.0 \\ & 5.2 \end{aligned}$	-2	3.8\%
$\begin{array}{r} 14 \mathrm{~A} \\ \mathrm{~B} \end{array}$	50	$\frac{2}{2}$	$\frac{2}{2}$	Myrio. None.	400 cc.	9.0 9.5	. 5	5.1%
$\begin{array}{r} 15 . \mathrm{A} \\ \hline \end{array}$	27	1	1	Myrio. None.	500 ce.	4.4 3.5	- 9	20\%
$\begin{array}{r} 16 A \\ B \end{array}$	27	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Myrio. None.	500 се.	6.5 5.0	1.5	23\%
$\begin{array}{r} 17 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	6	Myrio. -	460 cc.	3.7 4.3	-. 6	14\%
$\begin{array}{r} 18.1 \\ B \end{array}$	45	${ }_{6}^{6}$	${ }_{5}^{6}$	Myrio. None.	680 ce.	3.2 3.3	- 1	- $\%$
19A	48	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	6 6	Myrio. None.		1.3 2.2	- 9	- 11%
$\begin{array}{r} 20 \mathrm{~A} \\ 13 \end{array}$	69	7	9 3	Myrio. None.	400 ce.	3.4 2.8	. 6	18\%
$\underset{\mathrm{B}}{21 \mathrm{~A}}$	69	7	3 4	Myrio. None.	680 cc.	5.5 3.5	2.0	-
$\begin{array}{r} 22 \mathrm{~B} \\ \hline \end{array}$	28	$\stackrel{2}{2}$	$\stackrel{2}{2}$	Myrio None.	466 cc.	$\begin{aligned} & 4.4 \\ & 3.2 \end{aligned}$	1.2	27\%
$\underset{\mathrm{B}}{23 \mathrm{~A}}$	29	$\stackrel{2}{2}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Myrio. None.	650 cc.	$\frac{4.1}{5.1}$	1.0	-20\%
$\begin{array}{r} 24 A \\ B \end{array}$	29	$\frac{2}{2}$	1	Myrio. None.	2000 cc.	1.7 2.4	-- 7	- 28%
$\underset{B}{25 A}$	29	$\stackrel{2}{2}$	1	Myrio. Sone.	2000 cc.	6.5	-	二
$122 \mathrm{~A}$	37	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\stackrel{2}{2}$	Myrio Xone.	500 cc.	4.9 1.7	3.2	6 6
$\begin{array}{r} 193 \mathrm{~A} \\ \text { B } \end{array}$	35	4	3	Myrio. Agise.	500 ce.	3.9 1.9	$\stackrel{2.0}{-}$	51\%
$\begin{array}{r} 191 \mathrm{~A} \\ \hline 13 \end{array}$	38	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4	Myrio. Algae.	500 cc.	$\begin{aligned} & 5.9 \\ & 2.1 \end{aligned}$	3.8	68\%
$\begin{array}{r} 195 \mathrm{~A} \\ \mathrm{~B} \end{array}$	38	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Myio. Alges.	500 ce.	$\begin{aligned} & 8.0 \\ & 3.4 \end{aligned}$	4.6	57\%

Effert of Sediment.-The gizzard of Lymmen columella, like the latter, is nsually filled with fine sand. However, in dissecting a number of imlividnals of L !!mmort columella that had been raised in clean battery jars: I fomm mosign of sand. In a fow individuals I found some grains, when a diligent search of the jar failed to reveal any more. It seems that this individual had in ite rowp the conly grains of sedment that the jar contained.

Table III-Effect of Sediment.

Ex.	Days.	No. Beg.	No. End.	Variable.	Constant.	$\begin{aligned} & \text { Av. } \\ & \text { Size. } \end{aligned}$	Dif.	Per cent.
$85 .$		$\frac{2}{2}$	$\frac{2}{2}$	Sediment. None.	N. 500 cc .	5.1	1.9	37%
86.1		2	1	Sediment.	W. P. 500 ce.	4.1	-	-
B		2	2	Vone.	W. P. 500 ce.	4.4	. 3	6\%
87A		2	2	Sediment.	W. P. 500 cc.	5.0	. 5	10\%
B		2	1	Sone.		4.5	-	-
88A	60	2	2	Sediment.	W. P. 500 cc.	3.6	-	-
B		2	2	None.		4.6	1.0	22\%
89.1		2	2	Sediment.	S. 200 ć.	6.5	4.1	$63 \%_{0}^{\circ}$
B		2	2	Sone.		2.4	-	
90A		1	1	sediment.	W. P. 200 cc.	6.5	4.4	67\%
B		1	1	None.		1.7	-	
118.		3	1	Sediment.	N. 500 ec.	8.0	4.4	55%
B		3	3	Sone.		3.6	-	
119.	60	2	1	Sediment.	大. 500 cc.	7.9	5.7	72\%
I3		2	2	Sone.	.	2.2	5.7	-\%
120.A	60	2	2	Serliment.	-. 500 cc .	7.4	2.0	27%
I		2	2	Sone.	-	5.4	2.0	-
121A	60	2	2	Sediment.	- 500 cc .	8.1	3.1	38%
B		2	2	Sone.	-	5.0	,	--
124.4	43	4	4	Sediment.	N. 500 cc .	1.8	-	-
B		4	4	None.	"	1.9	. 1	5%
125A	43	4	4	sediment.	N. 500 cc .	2.3	1.0	43%
13		4	4	None.		1.3	-	
126.	51	4	41	Sand.	S. 500 cc .	3.4	8	23%
B		4	4	None.	,	2.6	-	,
127.	51	4	4	sediment.	S. 500 cr .	2.1	-	-
13		4	4	None.	-	2.6	. 5	19\%
12SA	37	3	3	Myrio.	500 cc.	9.0	3.7	41%
13		3	3	Myrio (washed).	"	5.3	-	,
129 A	47	4	1	Ignited sediment.	S. 500 rc .	2.	-	-
13		4	4	None.	-	2.9	.9	31%
130 A	47	4	4	sand.	S. 500 cc .	3.5	. 6	17%
B		1	4	Cone.		2.9	-	,
131.1	77	3	3	vediment.	S.500 ec.	1.7	-	-
13		3	3	None.	"	3.5	1.8	51%
132.	77	3	3	sind.	S. sto ce.	4.7	1.2	23\%
B		3	3	Sone.	'6	3.5	-	
133A	77	3	2	Gravel	S. 500 ce.	6.0	2.5	41%
13		3	3	Sone.	.	3.5	-	,
123.1	38	4	1	sediment.	S. 500 ec.	2.1	. 3	14%
13		4	4	None.	"	1.8	-	
196.	38	4	4	sediment.	W. I', 50, ce.	5.9	2.0	34%
B		4	3	None.		3.9	2.0	-

Another point of importance in these experiments was the fact that in no cases was the water plant attacked when sediment was not present. On the other hand, in jars with sediment present the normal thing was to have the leaves of the water plant cut to pieces.

To determine whether the presence or absence of sediment would affect the growth processes of the snail a number of experiments were undertaken. The sediment used in Experiments 85, S6, S7 and S8, was mud from the pond in the Botanic Gardens. This was washed and that which settled in from 1 to 5 minutes kept for experimental purposes. Because this mud would probably introduce food into the jars. soil from the garden bed was taken, boiled and that which settled in from 1 to 5 minutes used in Experiments 89 and 90. In Experiments $11 \mathrm{~s}-121$ the sediment was boiled in concentrated nitric acid, evaporated to dryness, and ignited. This would surely destroy all organic matter; yet the results of these experiments continued to show the benefit of the sediment. Quartz sand and quartz pebbles washed with nitric acid gave beneficial results also. If the Myriophyllum was wathel in running water the snails did not grow as large as if it was used with the particles of sediment still clinging to the leaves.

In conchusion it seems probable that (1) the muscular gizzard filled with sand is necessary to break up the plant cells that have been torn off by the radula. (2) The absence of sand seems to have the effect of ("an-ing the snails not to rasp off cells from the tissues of water plant. (3) If there is enough small alge present, Myriophyllum will have little or no effect on the growth. (4) An examination of the stomach of smatl shails under 5 mm . shows that such plant tissue as Myriophyllum is not caten. With snails 5 to 12 mm . however, great gashes are torn in thio foitict, and the stomach is filled with the crushed cells. (5) The disondant resultis of Tables I and II are no doubt due to the presence or absence of sediment.

Fions.-The amount of faces produced by Lymmeat is enormous and Waltor ('Ofi) reports that Lymmer clodes forms cylinders of fecal matter fourteen times its own length every twenty-four hours. This collects at the bottom of the aquaria in great tangled masses.

De Varigny ('94) investigated the effect of this material on the growing suail. The rexult of his experiments was the stunting of the snails in the jar with the fiecal masses. In repeating these experiments of Jof Vargny the writer gathered ferees from a jar in which a smail had been living for a month or two. This matter in some cases was washed in a filter and in others by decanting. This washed material wat adfed to jars of smails. The rewt indicated in Table IV
was the opposite from that found by De Varigny. However, the latter did not wash the frecal material, and so introduced into the water a large amount of soluble excreted material that he himself found so harmful to the growing snail.

Table IV-Effect of Feces.

Ex.	Days.	No. Beg.	No. End.	Variable.	Constant.	$\begin{aligned} & \text { Av. } \\ & \text { Size. } \end{aligned}$	Dif.	Per cent.
45A	40	1	1	Fieces. None.	N.	3.0 1.8	1.2	40\%
46.4	60	8	8	Freces.	N.	3.6	-	-
B		8	6	None.		4.0	. 4	10\%
47A	5.4	5	4	Freces.	N.	7.0	1.0	59\%
B		5	3	None.		3.0		-

1. Rathay's ('98) observations on Helix hortensis and Young's ('S8) observations on Helix pomatia and on Arion show that these pulmonates eat a great mass of food, very little of which appears to be assimilated or even digested.

Observations of the fæcal matter of Lymnea shows the same thing true for these pond snails. Although the writer did not perform any special tests on the cells found in freces, as did Rathay ('98), yet the appearance of the Pleurococcus and desmids in those masses was so nearly normal that there is very little doubt that there was any change.

Other Effects of Water Plants.-Warren ('00) discovered that Daphnia in a vessel filled with Vallisneria became less and less productive. If, however, the bulk of the water plant was removed, the crustaceans soon regained their normal number. As green light was found to be unfavorable to the fertility of Daphnia, Warren concluded that the mass of green plant caused the light to be green and the Daphnia infertile in consequence.

It can be imagined from what has been said that the effect of water plant on the physiological processes of organisms is not simple and it is not easy at once to discover just how it acts.
2. Acration.-This section should be treated under the head of the composition of the water, but as Semper, De Varigny, Willem and Walter have each considered it separately, it was thought best to follow them and make it an independent topic.

On a priori grounds Semper ('79) and De Varigny ('94) both decided that the only means of respiration in Lymneaa was by the specially
differmtiated so-called lung; therefore these mollusks must come to the surface for air. However, the observations of v. Siebold ${ }^{6}$ ('59), Pauly ${ }^{6}$ ('76). Forel ('69, '74, '04), Andre ${ }^{6}$ ('01), Walker ('00) and the experi-ment- of Willem (96) show that the respiration of the animal is in a large part carried on by the outer surface of the body.

De V'arigny's Experiment.-De Varigny noticed that dishes with the largest area contained the largest snails. This at once suggested aeration. To determine whether this was the true explanation, he half immersed a small glass cylinder with the bottom covered with muslin in a large vessel of water. To insure the mixture of the water in both versels, he lifted the small vessel out of the large one daily and allowed it to empty and fill, when he replaced it again. In each vessel he introduced a snail of equal size and age; and at the end of the experiment the one that had a large place in which to roam was the larger. As the water in both compartments was in communication, the amount of oxygen in both vessels must be identical. Therefore, the snail having the greatest area to roam about, on his exercise theory, became the larger.

Willem's Experiment.-Semper ('79) found that to carry air bubbles through a vessel containing young snails created such a disturbance that the small snails were washed from their substratum. Willem (' 96) devised an apparatus for conducting air bubbles through a liquid without disturbing the water. It consisted of a glass tube (fig. 2) (a) immerserl in the jar to be experimented on. Below the surface was blown a hole (o). Tube (c), turned upon the end, conducted bubbles of air into tube (a). The bubbles escaped into the water and travelled up tube (a), the water carried up by the bubble escaping by the hole (o), and the air bubble continued up the tube and escaped.

Willem repeated the experiment of De Varigny, but introduced his aerating apparatus into the small jar (fig. 3). The water, kept constantly interchanging in the large and small vessel, caused the snails to be of equal size.

Vernon ('0:3) explained the results of this experiment not by lack of arration, but by the increase of excretory products which did not pass freely through the muslin.
siurjuef derution.-The experiments undertaken by the writer are considered under two heads-surface aeration and artificial aeration. Thereffert of surface areration was determined by the use of flat dishes and a batery jar for control. 'Tomake the inside area of the jar equal (6) the inside area of t. 0 dish, on at to have egual areas inside the jar

[^58]

Fig. 2. (After Willem.)

Fig. 3. (After Willem.)
for alge to grow upon and for the snail to "exercise" upon, a structure of mieroseopic slises of calculated area was introducel. Table V gives the result: of these experiments. These results are seen to have little

Table V-Flat Dish asd Jar Abea Increased by Slides.

Ex.	Disys.	No. Beg.	No. End.	V Vriable.	Constant.	Av. Size.	Dif.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
$\begin{array}{r} 29.1 \\ 13 \end{array}$	4 S	$\begin{aligned} & 6 \\ & \mathbf{i} \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	L.arge sur. area. Small sur, area.	S. 500 cc .	$\frac{2.2}{3.2}$	1.0	$\overline{30} c$
$\begin{array}{r} 301 \\ 13 \end{array}$	45	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	6	Large sur, area. small sur, area.	W. P. 500 cc.	$\begin{array}{r} 1.3 \\ 3.9 \end{array}$	$\overline{1.6}$	$\overline{40}{ }_{c}$
$\begin{array}{r} 31 A \\ 13 \end{array}$	25	2	$\frac{2}{1}$	Large sur. area. sumall sur, area.	IV. P. 500 ce.	$\begin{aligned} & 4.6 \\ & 4.5 \end{aligned}$	$\begin{gathered} 1 \\ - \end{gathered}$	20\%
$\begin{array}{r} 32.1 \\ 13 \end{array}$	25	2	$\frac{2}{2}$	L.arge sur. area. small sur. area.	W. P. 500 cc .	$\begin{aligned} & 3.6 \\ & i . \end{aligned}$	1.1	25°
911	5.5	$\frac{2}{2}$	$\frac{2}{2}$	l.arge sur. area. suall sur, area.	$\mathbf{~} .500 \text { се. }$	$\begin{aligned} & 5.7 \\ & 1.7 \end{aligned}$	1.0	$1 \mathrm{~S}_{\mathrm{C}}$
$\begin{array}{r} 9.51 \\ 13 \end{array}$	54	$\frac{2}{2}$	$\frac{1}{2}$	largesur, area. suall sur. area.	$1 \times .500 \text { ec. }$	$\begin{aligned} & 6.5 \\ & 1.4 \end{aligned}$	2.1	$32 c i$
	51	3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	largesur. area. sthall sur, area.	$8.500 \text { ce. }$	4.3	- 3	-6ici
971	35)	$\frac{2}{2}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	L.arke sur, area. cinall sur. area.	$\text { N. } 500 \mathrm{ce}$	$\begin{aligned} & 7.2 \\ & 4.2 \end{aligned}$	3.0	$\cdot 11$

Fig. 4.
significance. In some, however, no slides were used (Table VI). Out of seven experiments but one difference was significant, and that one indicated that the larger surface was beneficial.

However, these experiments seem to indicate that the effect of surface aeration is not very striking, yet increased aeration by the surface of the water nodoubt is of slight advantage to the growth of the snail.

Arificial Acration.-In a number of experiments streams of air bubbles were conducted through jars of water. The apparatus used was a modification of that of Willem ('96) (see fig. 4). In Experiments :374:3 (Table VII) the air was passed through night and day, in the remaining experiments for but eight hours a day. The results confirm Willen's conclusion that cuticular respiration is a large factor in the growth of Lymmeer.

Table VI-Flat Dish and Battery Jar.

Ex.	Days.	No. Bey.	No. End.	Variable.	Constant.	Av. Size.	Dif.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
$\begin{array}{r} 33 \mathrm{~A} \\ \mathrm{~B} \end{array}$	28	${ }_{2}^{2}$	$\stackrel{2}{2}$	Large sur. area. Small sur. area.	W. P. 500 cc.	$\begin{aligned} & 4.6 \\ & 4.4 \end{aligned}$		4%
$\begin{array}{r} 34 \mathrm{~A} \\ 1 \end{array}$	28	$\stackrel{2}{2}$	$\stackrel{2}{1}$	Large sur. area. Small sur. area.	W. P. 500 cc ,	3.6 4.1	5.	2%
$\begin{array}{r} 98 \mathrm{~A} \\ \mathrm{~B} \end{array}$	58	2	$\stackrel{2}{2}$	Large sur. area. Small sur area.	S. 500 cc .	$\begin{aligned} & 5.7 \\ & 4.5 \end{aligned}$	1.2	21\%
$\begin{array}{r} 99 \mathrm{~A} \\ \mathrm{~B} \end{array}$	58	$\stackrel{2}{2}$	1	Large sur. area. Small sur, area.	N゙. 500 cc .	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$		$\overline{18} \%$
$\begin{array}{r} 100 \mathrm{~A} \\ \mathrm{~B} \end{array}$	54	4	3	Large sur. area. Small sur. area.	N. 500 cc	3.9 4.2	- 3	7%
$\begin{array}{r} 101 \mathrm{~A} \\ \mathrm{~B} \end{array}$	51	$\begin{aligned} & 1 \\ & 3 \\ & 3 \end{aligned}$	3	Large sur. area. Small sur. area.	N. 500 cc .	4.2 4.0	. 2	4\%
$\begin{array}{r} 102 \mathrm{~A} \\ \mathrm{~B} \end{array}$	35	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		Large sur. area. Small sur. area.	ㅈ. 500 сс.	$\begin{aligned} & 7.2 \\ & 4.7 \end{aligned}$	2.5	34%

Table Vii-Artificlal Aeration.

Ex.	Days.	No. Beg.	No. End.	Variable.	Constant.	$\begin{aligned} & \text { Av. } \\ & \text { Sizc. } \end{aligned}$	Dif.	Per cent.
371	27	1	1	Air bubbles.	S. 500 cc .	3.8	1.0	26\%
I3		1	1	Sone.		2.8		
38.1	42		1	dir bubbles.	W. P. 500 cc .	8.8	2.4	27\%
B		1	1	Sone.		6.4	-	
39.1	42	1	1	tir bubbles.	W. P. 500 cc .	S. 2	. 2	2\%
13		1	1	Sone.		8.0	-	-
40.1	12	1	1	Lir bubbles.	N. 500 cc .	7.0	2.5	36%
I3		1	1	Sone.		4.5	-	
41 A	52	1	1	- lir bubbles.	W. P. 750 cc .	6.2	2.2	36%
I3		1	1	Fone.	, ${ }^{\text {c }}$	4.	-	,
42.1	52		15	Air bubbles.	W. P. 750 cc .	2.	-	-
13			14	Sone.		2.8	. S	29\%
134.	26	1	4	Air bubbles.	W. P. 500 cc.	4.9	-	-
B		1	4	Sone.		5.9	1.0	17\%
1351	26	1	3	Air bubbles.	W. P. 500 cc .	3.1	. 2	6\%
I 3		4	2	Sone.		2.9	-	-
197 A		4	1	Air hubbles.	W. P. 500 cc.	5.8	-	-
13		1	4	Sone.		7.0	1.2	17\%
198 A		1	4	dir bubbles.	W. P. 500 cc.	6.8	3.	44\%
B		4	4	None.	"	3.8	-	-

Walter's ('06) experiments show that Lymmea will live in boiled water, but come to the surface more often. If imprisoned below the surface of aerated water they die.

In consideration of the above the writer believes the following statement of Willem not altogether supported by the facts. Willem ('96) writes, p. 567: "Ces expériences,, prouvent que chez les Basommatophores la respiration cutanée est plus importante que la respiration pulmonaire et qu'à elle seule, elle peut suffire à la vie de ces animaux."
3. The Composition of the IV ater.-The present study considers those conditions alone in which the composition of the water might affect the growth of pond snails under natural conditions.

Efject of Accumulation of Excreted Matter.-De Varigny ('94) grew snails in water in which a snail had been living for months, with the result that the snails were dwarfed. Vernon ('95) performed similar experiments with Echinoderm larvæ with the same result. The writer har conducted experiments of this sort on Lymnaca. Table IX expresses the results of eight experiments. These results are as follows: (1) That weak solutions of the waste products of metabolism are of benefit to the snail. (2) That concentrated solutions are harmful. (3) In Experiments 136 and 199 the water was aerated so the factor of the aeration of the water would be constant. In Experiment 143 the water was boiled, yet in these two cases the results were similar. Later the experiments of Table I were repeated with different dilutions of urea with similar results. As these were similar to those found by Vernon ('95), who used also uric acid on Echinoderm larve, it was not thought necessary to continue the experiments further.

Analyses of the water. A year before Vernon's ('99) paper was called to the attention of the writer, a series of analyses were made of the water in a number of jars. Although not nearly so extensive as those of Vernon, yet the results were nearly parallel.

By the methods of water analysis (Clowes and Coleman, '03), the water in the jars of several experiments was analyzed for chlorides, nitrates athd particularly for free and for albuminoid ammonia. The free ammonia consists largely of the inorganic salts of ammonia. Albuminoid ammonia on the other hand is made up of organic compunts from which the ammonia radicle is not detached by boiling with sodium carbonate.

Fxperiment - 20日 and 201, Table VIII, were conducted in the following manner: Six jars with 500 cc , of water, which was analyzed before the experiment, were taken. 'Two were used without water plant or snail at control. The other jars contained snails and water plant as follows: one without water plant but with one full-grown gnail, one without water plant but with five snails, one with water

Table VIII.
Experiment 200.

$\begin{gathered} \text { Analysis } \\ \text { for } \end{gathered}$	Water beginning of experiment. Grams in 1000 cc .	Water at end of experiment. Grams in 1000 cc	Water at end of experiment. Grams in 1000 cc 1 suail.	Water at end of experiment Grans in 1000 ce 5 snails.
Free NH_{3}	. 0003	. 0012	0120	. 0300
Alb. NH_{3}	. 0020	. 0010	. 0012	. 0080
Calcium.	. 0100	. 0090	. 0090	. 0100
Chloride	. 0080	. 0018	. 0018	. 0020

Experiment 201.

Analysis for	Water beginning of experiment. Grams in 1000 cc.	Water at end of experiment. Grams in 1000 cc.	Water at end of experiment. Grams in 1000 cc. Mgriophyllum.	Water at end of experiment. Myriophyllum. 2 snails.
Free NH_{3}	. 0008	. 0012	. 00025	No trace.
Alb. NH_{3}	. 0020	. 0010	. 00018	. 0080
Calcium.	. 0100	. 0080	. 01000	. 0100
Chloride	. 0080	. 0016	. 00160	. 0020

Experiment 202.

Size of Smail.	Free NH_{3}. Grms. per 1000 cc.	Alb. NH Grms. per 1000 cc.
Control, no saail present.	.025	.018
2.8 mm.	.015	
10 mm.	.075	
11.5 mm.	.155	.025
15.5 mm.	.030	

plant and no snail, and one with water plant together with two snails. After ten days the water was analyzed. The following facts seem to be illustrated by these experiments: (1) Calcium and chlorides in the water do not seem to be affected by the excretions of the snail. (2) In the jar that contained no snails yet contained Myriophyllum nearly all the free ammonia was taken up by the water plant. This is a phenomenon well known to botanists (Sachs, '75; Bessy, '92). Vernon ('99) found that the presence of U/va decreased the free ammonia, but increased the albuminoid ammonia.

Table IX－Effect of Excretions．

Ex．	Days．	No． beg．		Variable．	Coustant．	$A r$ Size．	Dif．	Per cent．
$\begin{array}{r} 1 \cdot 42 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \end{array}$	40	1			N． 100 ce．pond w．	$\begin{aligned} & 1.8 \\ & 2.7 \\ & 2.4 \\ & 1.5 \end{aligned}$	二	－
		$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \\ & 9 \\ & 7 \\ & 9 \end{aligned}$	Boiled Boiled pond wat．old wat．	＋ 100 cc pond ${ }_{\text {w }}$	2.6	－	
143A	44			$500 \mathrm{cc} .+0 \mathrm{cc}$ ．				－
B				$450 \mathrm{cc} .+50 \mathrm{cc}$.		3.4	－	－
C				$400 \mathrm{cc} .+100 \mathrm{cc}$.	＂	3.1	－	－
D				200 cc．+300 cc．	＂	3.3	－	－
E				$0+500 \mathrm{cc}$	＂	3.3	－	
144 A		4	3	Dilute old water．	300 cc ．	3.4	1.3	40\％
B		4	3	Control．	300 cc ．	2.1	－	－
145．	44		2	Dilute old water．	300 cc．	3.6	1.6	44%
B		4	2	Control．	300 cc ．	2.0	－	－
146 A	26	，	2	Old water．	500 cc ．	2.9	－	
B		4	4	Control．	500 cc ．	5.9	3.0	50\％
200 A		4	4	Old water．	$500 \mathrm{cc} . \mathrm{W} . \mathrm{P}$.	3.8	－	－
B		4	4	Control．	500 cc.	7.0	3.2	46%
136A	26	4	3	Old water．	W．P． 500 ce．	3.1	－	－
B		4	4	Control．	A drated．	4.9	1.8	36%
199．	26	4	4	Dilute old water．	W．P． 500 cc ．			14\％
B		4	4	Control．	Aerated．	5.8	－	

Table X－Effect of Urea．

Ex．	Days．	$\begin{aligned} & \text { No. } \\ & \text { beg. } \end{aligned}$	No． end．	Variable．	Constant．	Av．size．
137 A	22	1	D	No．urea．	500 cc．	Dead．
13		1	1			2.0
C		1	1	2300 N．urea．	＂	2.6
D		1	1	yotor N，urea．	＂	2.5
E		1	1	ठ效N．urea．	＂	2.8
F		1	1）	${ }_{3} 50 \times$ ，urea．	＇،	Dead．
1384	27	1	1	¢о N゙．urea．	500 cc．	2.8
13		1	1	Control．		3.5
139 A	27	1	1	¢ ¢ $_{\text {N．}}$ urea．	500 cc．	3.8
13		1	1	Control．		5.0
1.40 .1	37	1	3	Control．	500 cc.	1.7
13		1	1	8 боб ㅅ．．иrea．		1.9
（		1	3	डto N ．urea．	＂	1.5
1）		1	1		＂	Dead．

Table MI-Effect of Numbers.

Ex.	Days.	$\begin{aligned} & \text { No. } \\ & \text { beg. } \end{aligned}$	No. end.	Variable.	Constant.	$\begin{aligned} & \text { Ar. } \\ & \text { Size. } \end{aligned}$	Dif.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
60. ${ }^{\text {B }}$	52	17	15	The number.	W. P.	4. 2.8	1.2	30\%
$\begin{array}{r} 61 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	17	1	The number.	W. P.	3.2	. 5	16\%
$\begin{array}{r} 62 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	17	14	The number.	W. P.	$\begin{aligned} & 6.2 \\ & 2 . \end{aligned}$	4.2	70\%
203A		40	32	1 in a jar.	W. P. 500 cc .	7.9	-	-
B		40	26	2 in a jar.	W.P.500	7.2	-	-
C		40	38	3 in a jar.	"	6.1	-	-
D		40	16	4 in a jar.	"	5.2	-	-
E		20	14	20 in a jar.	"	3.2	-	-
F		20	17	20 in a jar.	،	2.7	-	-

Experiment 202 shows but one fact, i.e., that the amount of excretion is roughly proportional to the size of the snail.

Table XiI-Effect of Shell Salts.

Ex.	Days.	$\begin{aligned} & \text { No, } \\ & \text { beg. } \end{aligned}$	No. end.	Variable.	Constant.	$\underset{\text { size }}{\mathrm{A}}$
55.1	45	6	7	Control.	W. P. 500 cc .	3.3
13		6	5	Powdered CaCO_{3}.		3.9
C		6	5	Powdered Cas().		4.2
D		6	5	Powdered $\left.\mathrm{Ca}_{5}\left(\mathrm{P}^{\text {O }}\right)^{\prime}\right)_{2}$.		3.0
56 A	86	7	5	Control.		6.10
13		7	5	CaCO_{3}		5.7
C		7	6	Caso.		6.8
D		7	7			$1 . .5$
201.	43	4	4	Control.	N. clean jar.	1.9
${ }^{1}$		4	3	Sediment.		1.8
C		4	4	Caso.		$\because .0$
1		4	2	CaCO_{3}		1.6
2024	13	4	4	Control.	S. clean jar.	1.3
13		'	4	sediment.		$\because 3$
\%		4	4	CaCO.		32
$1)$		4	4	CaCO_{3}		2.
20,34	35	4	4	Control.	N. Started	1.9
13		4	1	sodiment.	with 3 weeks	$\because .1$
1		4	4	Crushed shells.	growth of alga.	3.4
2011	35	4	$?$	Control.	W. ${ }^{\text {P }}$.	3.9
''		4	1	sidiment.		8.9
${ }^{\prime}$		4	3	Crushed athells.		s.0

Eifect of Shell Salts.-If it were possible to measure some other physiological process of the snail than growth, another method might be instituted to attack the study of the effect of environment. As it is possible to measure the activity of a certain tissue in the pond snail by the amount of its secretions, a series of experiments were conducted. The tissue referred to is the mantle which secretes the shell. With this in mind a few experiments with calcium carbonate, calcium sulphate, and calcium phosphate. Snails that had been raised in saturated solutions of these salts, which are but slightly soluble in water, were measured; the results are expressed in Table XII. The salts were supplied as the pure chemical or as ground-up Lymncea shell. The results show that calcium sulphate is most beneficial and that the presence of shell salts are favorable to snail growth. Experiments $55-56$ did not consider that the sediment of the ground mineral might introduce another factor. Experiments 201-204 consider this factor. The fact that each chemical seems to favor a separate flora introduces another factor which makes these experiments most unsatisfactory.

Number of Individuals.-Semper ('74) and De Varigny ('94) both reported that in two similar jars, one containing one snail and one containing many, the single one grew the larger in every case. This fact was one of Semper's strongest arguments in favor of the presence of an unknown chemical. De Varigny could not explain this result on his exercise theory, so he advanced a psychological theory based on the fact that two snails might annoy each other. He writes: "Mais que peut être cette influence morale dans le monde des Lymnées? Le problème est embarrassant, et je n'ose décide si la présence de deux Lymnées gêne ou ne gêne pas le pérégrinations de la troisième, etc." (p. 187).

The result of the experiments reported in Table VI of the present work confirm the results of the authors who have investigated this factor. Discarding both Semper's and De Varigny's explanation, we must turn to a consideration of those of the later authors. Willem ('96) explained the result as due to aeration, but it seems rather that Vernon's ('03) explanation is more nearly true. Vernon considers that the toxic influence of accumulations of the waste products of metabolism is the cause of the dwarfing, yet increased aeration will insure more rapid oxidation of those waste products and so remove their harmfulness.

From what has been said it will be seen that the chemical composition of the water is a very important factor in the rate of growth of Lymneca. The composition of the water may exert a toxic or a bene-
ficial effect on the growing snail. This has been explained in the case of effect of numbers in various ways, but most reasonably by lack of aeration and of composition of the water. It is probable that those two factors work together.
4. Temperature.-Semper ('79) reported that snails chilled were retarded in growth and that growth ceased at $13^{\circ} \mathrm{C}$. Walter ('06) found that they became more active in warm water than in cold water. The experiments of Walter ('06) were repeated in the following way: Four large snails 9 mm . and four small snails 1.5 mm . were placed in a glass dish with about 20 cc . of water. Under the dish a piece of crosssection paper was laid, and on another piece of cross-section paper the position of each snail was plotted every five minutes for a period of three hours.

For the first hour the dish was in a cold room and the temperature fell from $12 \frac{1}{2}^{\circ}$ to $6 \frac{1}{2}^{\circ} \mathrm{C}$. The dish was then packed around with ice for half an hour until the temperature fell from $6 \frac{1}{2}^{\circ}$ to $3 \frac{1}{2}^{\circ} \mathrm{C}$. The dish was then placed in a warm room for one hour, the temperature rising from $3 \frac{2}{2}^{\circ}$ to $17^{\circ} \mathrm{C}$. For the next twenty minutes it was placed near a radiator, and the last ten minutes the dish was placed above the radiator, the temperature rising from 17° to $26^{\circ} \mathrm{C}$. Fig. 5 shows how the snails were affected. tt represents the temperature curve; the heavy black line the distance in millimeters that the small snails travelled in periods of five minutes; the dotted line indicates the same thing for the large snails.

Table XIII.

Temperature.	Speed.		Remarks.
	Large Snails.	Small Suails	
$122^{\circ}-87^{\circ}$	Increase.	Increase.	In cold room.
$85^{\circ}-64^{\circ}$	Decrease.	Decrease.	" " "
$62^{\circ}-31^{\circ}$	Increase.	Constant.	Packed with snow.
$3{ }^{3}-10^{\circ}$	Decrease.	Sl. decrease.	In warm rooms.
${ }^{10^{\circ}-17^{\circ}} 1{ }^{\circ}-22^{\circ}$	Increase.	Increase.	"' " ${ }^{\text {Near madiator }}$
$22^{\circ}-23^{\circ}$	Decrense.	Decrease.	Near radiator.
$23^{\circ}-25^{\circ}$	lncrease.	Increase.	Un radiator.

The average speed for the small snails closely follows that for the large ones. The table shows sevoral things: (1) that cold appliest
rather suddenly stimulates the snail to become active so as to escape from the cold. The same reaction is noticed when heat above the untinum is applied. (2) When the water continued cold the activities decreased.

Fig. 5.-Temperature and velocity curve of large and small Lymnse. [Line $t \mathrm{t}$ represents temperature in centigrade during three hours. Dotted line represents distance traveled in $\mathrm{m} . \mathrm{m}$. in five-minute intervals by the large snails. The solid line shows the same thing for the small ones.]

The experiments on growth eonducted by semper did not take into account the effect of cold on the water plant. To eliminate this factor the writer alternated the jars with the water plant from the warm to the cold at stated intervals, but transferred the snails from one jar to the other, so that certain snails remained in the warm and certain snails remained in the cold all the time, yet the jars that contabat thom were the same, and therefore the amount and condition of the food was similar.

The manner that cold acts on the growth of L mpman may be twofold. ('wh, at is en well known, retarls the rate of chemical combinations and so retards physiological processes. As growth is a physiological process it is retarded, and as the activities of the animal are physioluzical pererese they are aton maded. (imowh depents largely on the presence of food, yet the fook of Lymmea is acquired only through contant motion, - it might asily beromodwarfal, with abomdance of ford about it, if conditions should make the snail sluggish. In Lymmaa we have seen that both these factors may be at work, reduced physiological processes acting directly on growth, or reduced activities may actually cause dwarfing by lack of food.

Table XIV-Effect of Heat and Cold.

Ex.	Days.	No. beg.	No. end.	- Variable.	Constant.	Size.	Dif.	Per cent.
$\begin{array}{r} 26 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	Warm. Cold.	N. 500 ce.	.0055 .0008	. 0047	- ${ }^{-}$
$\begin{array}{r} 27 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	Warm. Cold.	W. P. 500 cc.	. 0035	. 0030	-
$\begin{array}{r} 28 \mathrm{~A} \\ \mathrm{~B} \end{array}$	61	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} \mathrm{S} \\ 10 \end{array}$	Warm. Cold.	W. P. 500 cc .	$\begin{aligned} & .0079 \\ & .0050 \end{aligned}$	$. \overline{0001}$	0\%
$\begin{array}{r} 91 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	$\stackrel{2}{2}$	$\frac{2}{2}$	Warm. Refrigerator.	N. 500 cc .	4.5 1.6	2.9	64\%
$\begin{array}{r} 92 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	$\stackrel{2}{2}$	$\stackrel{2}{2}$	Warm. Refrigerator.	N. 500 cc.	$\begin{aligned} & 5.6 \\ & 1.7 \end{aligned}$	3.9	70\%
$\begin{array}{r} 93 \mathrm{~A} \end{array}$	45	1	1	Warm. Refrigerator.	N. 500 cc.	8.2 2.2	6.0	73\%
$\begin{array}{r} 147 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\frac{2}{2}$	Warm. Cold.	N. 500 cc .	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	3.5	54\%
$\begin{array}{r} 148 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\stackrel{2}{2}$	$\stackrel{2}{2}$	Warm. Cold.	N. 500 cc .	$\begin{aligned} & 5.2 \\ & 2.6 \end{aligned}$	2.6	50\%
$\begin{array}{r} 205 \mathrm{~A} \\ \hline \end{array}$	42	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\frac{2}{2}$	Warm. Cold.	W. P. 750 cc.	$\begin{aligned} & 4.8 \\ & 3.6 \end{aligned}$	1.2	25\%
$\begin{array}{r} 206 \mathrm{~A} \\ \mathrm{~B} \end{array}$	42	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	Warm. Cold.	W. P. 750 cc .7	$\begin{aligned} & 7.2 \\ & 2.3 \end{aligned}$	4.9	68\%
$\begin{array}{r} 207 \mathrm{~A} \\ \mathrm{~B} \end{array}$	4.	5	4	Warm. Cold.	W. P. 750 ce. 7	$\begin{array}{r} 7.6 \\ 3.0 \end{array}$	4.6	60\%
$\begin{array}{r} 208 \mathrm{~A} \\ \mathrm{~B} \end{array}$	44	5	4	Warm. Cold.	W. P. 750 cc.	$\begin{array}{r} 8.0 \\ 2.6 \end{array}$	5.4	67\%

5. Light.-Beginning with Higgenbottom ('50), various writers have conducted experiments on the effect of light on the growth of animals. The work of these authors, including Yung ('78, '50 and '92), Vernon ('95), Warren ('00) and Beclard ('58), deals largely with the effect of colored light on the development of different animals. The present work considers the effect of light and darkness alone. Although experiments were attempted with colored lights, yet the many difficulties in the shape of uncontrollable factors made the results so unreliable that space will not be taken in discussing them. Even in the experiments on light and darkness the factor of food was with difficulty controllerl. It was only by resorting to similar means as in the experiments on temperature that this factor was controlled at all. However, this did not remove all the uncontrolled factors present. There was also the chance of there being a different temperature of the water between the two jans; this difference at times amometing to $2^{\circ} \mathrm{C}$.

Although the experiments of Walter ('06) and some of the writers seem to indicate that Lymnea is slightly negatively phototactic, yet darkness is prejudicial to growth (Table NV).

> Table XV-Effect of Light and Dark.

Ex.	Days.	$\begin{aligned} & \text { No. } \\ & \text { beg. } \end{aligned}$	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
$\begin{array}{r} 57 \mathrm{~A} \\ \mathrm{~B} \end{array}$	54	6	4	Light. Dark.	N. 500 cc .	4.9 1.7	3.2	65\%
$\begin{array}{r} 55 \mathrm{~A} \\ \mathrm{~B} \end{array}$	54	6	5 4	Light. Dark.	W. P. 500 cc.	3.0 1.2	1.8	60\%
59A	42	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	5	Light. Dark.	W. P. ${ }_{\text {c }} 500 \mathrm{cc}$.	8.5 6.4	2.1	25\%
$\begin{array}{r} 103 \mathrm{~A} \\ \mathrm{~B} \end{array}$	47	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	3 1	Light. Dark.	N. 750 cc .	3.0 1.2	1.8	60\%
$104 \mathrm{~A}$	45	5	1	Light.	N. 750 cc .	12.5	1.0	40\%
$\begin{array}{r} 105 \mathrm{~A} \\ \mathrm{~B} \end{array}$	45	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	Light. Dark.	N. 750 cc .	2.5 1.7	. 8	32%

This factor of light is of less importance than the other external conditions affecting growth, and is one that the snail can directly control to some extent through its behavior, and is also one that can be easily regulated in the laboratory. It is almost impossible to devise experiments on the effect of light on animals whose food consists of green plants, and experiments so conducted can have little significance.
6. Area.-Accorling to De Varigny's exercise theory, dwarfing of Lymnera was caused by too little area for the snail to crawl upon. To test the truth of this hypothesis, structures of various shapes were constructed out of microscopic slides and introduced into one of two similar jars containing snails. As some of the structures were cemented with sealing wax, sealing wax was added to the other jar of the experiment, so that there was no difference between the jars, except the fact that one had a larger surface exposed on which the snail could crawl than did the other. The results (Table NVI) were contrary to what might have been expected from De Varigny's hypothesis. It can hardly be that the slides hindered the snails from wandering around; on the contrary the great area exposed would form a surface on which much more algex would grow.

Table MVI.

Ex.	Days.	No. beg.	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
$\begin{array}{r} 65 \mathrm{~A} \\ \mathrm{~B} \end{array}$	28	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Area }=125 \text { sq. } \mathrm{c} . \\ & \text { Area }=40 \text { sq. } \mathrm{c} . \end{aligned}$	N. 200 cc .	$\frac{2 .}{4.3}$	$\overline{2.3}$	53\%
$\begin{gathered} 66 A \\ B \end{gathered}$	28	1	1	Area $=125$ sq. c. Area	N. 200 cc .	4.	$\overline{2.0}$	33\%
$\begin{array}{r} 67 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	1	1	$\begin{aligned} & \text { Area }=165 \text { sq. } \mathrm{c} \\ & \text { Area }=80 \text { sq. } \end{aligned}$	N. 400 cc .	$\begin{aligned} & 9 .{ }_{2} \\ & 9.5 \end{aligned}$	- 5	5\%
$\begin{array}{r} 68 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Area }=165 \text { sq. c. } \\ & \text { Area }=80 \text { sq. } . \end{aligned}$	N. 400 cc .	$\begin{aligned} & 9 . \\ & 9.5 \end{aligned}$	$-.$	5\%
$\begin{array}{r} 69 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Area }=455 \text { sq. c. } \\ & \text { Area }=285 \text { sq. } . \end{aligned}$	N. 500 ce.	$\begin{aligned} & 3.2 \\ & 4.3 \end{aligned}$	$\overline{1.1}$	-25\%
$\begin{array}{r} 70 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Area }=455 \text { sq. c. } \\ & \text { Area }=285 \text { sq. } . \end{aligned}$	W. P. 500 cc .	$\begin{aligned} & 3.9 \\ & 3.7 \end{aligned}$. 2	5\%
$\begin{array}{r} 71 \mathrm{~A} \\ \mathrm{~B} \end{array}$	28	$\stackrel{2}{2}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Area }=455 \text { sq. } \mathrm{c} \\ & \text { Area }=285 \text { sq. } \end{aligned}$	W. P. 500 cc.	$\begin{aligned} & 4.5 \\ & 4.4 \end{aligned}$	- 1	2\%
$\begin{array}{r} 72 \mathrm{~A} \\ \mathrm{~B} \end{array}$	28	$\stackrel{2}{2}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Area }=455 \text { sq. c. } \\ & \text { Arta }=285 \text { sq. } . \end{aligned}$	W. P. 500 cc .	4.1	. 9	18\%
$\begin{array}{r} 73 \mathrm{~A} \\ \mathrm{~B} \end{array}$	69	7	$\frac{7}{7}$	$\begin{aligned} & \text { Area }=\text { large } \\ & \text { Area }=\text { small } . \end{aligned}$	N.	3.3 4.6	1.3	- 30%
$\begin{array}{r} 74 \mathrm{~A} \\ \mathrm{~B} \end{array}$	69	$\frac{7}{7}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Area }=\text { large } \\ & \text { Area }=\text { small } . \end{aligned}$	W. P.	$\begin{aligned} & 2.8 \\ & 4.1 \end{aligned}$	$\overline{1.3}$	- 31%
$\begin{array}{r} 75 \mathrm{~A} \\ \mathrm{~B} \end{array}$	29	$\frac{2}{2}$	1	$\begin{aligned} & \text { Area }=\text { large. } \\ & \text { Area }=\text { small. } \end{aligned}$	W. P.	$\frac{4 .}{4.7}$	- 7	15\%
$\begin{array}{r} 106 \mathrm{~A} \\ \mathrm{~B} \end{array}$	58	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & \text { Area }=314 \mathrm{sq} . \mathrm{c} . \\ & \text { Aroa }=42 \mathrm{sq} . \mathrm{c} \end{aligned}$	N. 500 cc.	4.7 4.5	. 2	4%
$\begin{array}{r} 107 \mathrm{~A} \\ \mathrm{~B} \end{array}$	58	$\stackrel{2}{2}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Area }=144 \mathrm{sq} . \mathrm{c} \\ & \text { Area }=42 \mathrm{sq} . \mathrm{c} . \end{aligned}$	N. 500 cc.	$\begin{aligned} & 4.4 \\ & 8 . \end{aligned}$	$\overline{3.6}$	45\%
$\begin{array}{r} 108 \mathrm{~A} \\ \mathrm{~B} \end{array}$	51	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Area }=144 \mathrm{sq} . \mathrm{c} \\ & \text { Area }=42 \text { sq. } \mathrm{c} . \end{aligned}$	N. 500 cc.	$\begin{aligned} & 4.5 \\ & 4.1 \end{aligned}$. 4	8\%
$\begin{array}{r} 109 \mathrm{~A} \\ \mathrm{~B} \end{array}$	50	2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Area large. Area small.	N. 500 cc .	$\begin{aligned} & 2.0 \\ & 4.6 \end{aligned}$	2.6	56\%
$\begin{array}{r} 110 \mathrm{~A} \\ \mathrm{~B} \end{array}$	50	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	Area large. Area small.	N. 500 cc.	$\begin{gathered} 2.8 \\ 5.0 \end{gathered}$	$\overline{2.2}$	-4\%
$\begin{array}{r} 111 \mathrm{~A} \\ \mathrm{~B} \end{array}$	35	$\stackrel{2}{2}$	${ }_{2}^{2}$	Area large. Area small.	N. 500 cc.	$\begin{aligned} & 4.2 \\ & 4.7 \end{aligned}$	5	10\%
$\begin{array}{r} 112 \mathrm{~A} \\ \mathrm{~B} \end{array}$	35	2	$\stackrel{2}{2}$	Area large. Areasmall.	N. 500 cc.	$\begin{aligned} & 1.7 \\ & 2.9 \end{aligned}$	$\overline{1.2}$	41%

This experiment suggests some results reported by Dandino ('0-4) on the effect of toxic solutions on germinating peas and corn. In toxic solutions (dilute acids) the addition of guartz sand (washeel in HCl and distilled water) was 32 times as toxic as that without the sand. The author explains this fact as the result of surface action. In the present work experiments with quarte sand and even with pebbles cansed an increase in the rate of growth. This is an effect
opposite to that found by Dandino, yet it throws very little light on the bad effects caused by the presence of microscopic slides.

As De Varigny used flat dishes in contrast to spherical flasks, his cases of dwarfing by rearing in a small area can be referred with very little doubt to lack of aeration.
7. Volume.-Before the preceding series of experiments were completed, so before the bad effect of the presence of microscopic slides was known in experiments with volume, the inside area of the two similar jars was made equal by a structure of slides of calculated area. The amount of water in the two jars was not the same, the smaller volume of water containing the structure of slides. Experiments without the structure were later tried, but all the experiments led to the same result (Table XYII): the snails in the smaller volume were the smaller.

Table XViI-Effect of Volume.

Ex.	Days.	No. beg.	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
$\begin{array}{r} 76 \mathrm{~A} \\ \mathrm{~B} \end{array}$	57	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	Volume small. Volume large.	N.	3.2 4.3	$\overline{1.1}$	$\overline{28} \%$
$77 \mathrm{~A}$	57	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Volume small. Volume large.	W. P.	3.3 3.7	- 4	-17\%
$\begin{array}{r} 78 \mathrm{~A} \\ \hline \end{array}$	53	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Volume small. Volume large.		5.0 6.5	$\overline{1.5}$	-23\%
79A	42	1	1	Volume small.		5.2 7.0	$\overline{1.8}$	-26\%
804	42	$\frac{1}{1}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Volume small. Volume large.		6.0 6.0	-	二
$\begin{array}{r} 81.4 \\ B \end{array}$	69	7	3	Volume small. Volume large.	N.	2.8 3.5	- 7	- ${ }^{0} \%$
$\begin{array}{r} 52 \mathrm{~A} \\ \mathrm{~B} \end{array}$	69	7	9 3	Volume small. Volume large.	W.P.	3.4 5.5	$\overline{2.1}$	- 3 \%
113.1	58	2	$\frac{2}{2}$	$\begin{aligned} & 220 \mathrm{cc} . \\ & 500 \mathrm{cc} . \end{aligned}$	N.	3.0 4.5	$\overline{1.5}$	-33\%
1141	38	2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 220 \mathrm{cc} . \\ & 500 \mathrm{cc} . \end{aligned}$	N.	3.8 8.0	- 4.2	52\%
$\begin{array}{r} 1151 \\ 13 \end{array}$	51	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 220 \text { сс. } \\ & 500 \text { сс. } \end{aligned}$	N.	3.2 4.1	- 9	-22\%
1101	50		3	$\begin{aligned} & 220 \text { се. } \\ & 200 \text { сс. } \end{aligned}$	N.	2.8	1.8	\checkmark
1171	35	$\stackrel{2}{2}$	2	$\begin{aligned} & 220 \text { сс } \\ & 500 \text { сс } \end{aligned}$		1.7	$\overline{3.0}$	-63\%

Dandino, reforred to above, fomm that in toxic solutions, i.e., weak aril-, the radiele of peas and corn grew longer in a small volume than
in a larger volume. This could be explained by assuming that there is but a definite amount of toxin present to act on the seed. With the snail, however, the case is reversed. The toxin, which we have shown in the preceding sections to be present, is ever being increased in quantity by the secretions of the animal. In the case of the seedling the solution becomes weaker and weaker.

Pearl and Dunbar ('05) found that Paramecium in small vessels were divarfed. This is due most likely to the accumulation of excreted matter. In fact almost every case of this kind among aquatic animals can be so explained.
S. Alternation of Conditions.-In connection with some of the experiments on heat and cold, a jar was moved from the warm to the cold, and vice rersa, at two weekly intervals for a period of two months, with the very striking result that the alternated snails were larger at the end of that time than those kept in the warm all of the time. This result was accomplished notwithstanding the fact that, when in the cold, the water in the alternate jars was sometimes frozen. This experiment led to a series of experiments in the same line, and although many were as striking as the first, yet the larger snails were those, as a general rule, that had been in the warm room all the time. This control in the warm room was every two weeks transferred to a jar from the cold conditions, while at the same time the jar in which they had been living was placed in the cold and snails that had lived in the cold all the time added. This process of changing the snails was performed every two weeks or every week. The interval of alternation is given in the tables. See Tables VIII-XX. Not only were alternate conditions of heat and cold considered, but also alternating conditions of starving and feeding and light and dark. The latter experiments are not of particular interest, as the alternated snails are purely intermediate in size between those under favorable and those under unfavorable conditions. The starving and feeding experiments, however, closely approximated those of heat and cold. Some were larger and some were smaller than the control. These results must mean that the change from an unfavorable to a favorable condition causes the snail to grow faster than if it were continually in the favorable condition.
9. Experiments on Tadpoles.-As Yung ('85) performed some experiments on the effect of external conditions on tadpoles, arriving at the same conclusion as did Willem ('96), i.e., that dwarfing was caused by lack of aeration, the writer, using the methods described in the preceding pages, repeated these experiments with tadpoles of Rama in the spring of 1907.

Table XVili-Altervate Heat and Cold.

Ex.	Days.	$\begin{aligned} & \text { No. } \\ & \text { beg. } \end{aligned}$	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
$149 \mathrm{~A}$	52	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	Alt. 2 weeks. Warm.	N. 500 cc.	$.0110$. 0055	23%
$\begin{gathered} 150 \mathrm{~A} \\ \hline \end{gathered}$	52	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	Alt. 2 weeks. Warm.	W. P. 500 cc.	$\begin{array}{r} .007 \mathrm{~S} \\ .0035 \end{array}$. 0043	23\%
$\begin{array}{r} 151 \mathrm{~A} \\ \mathrm{~B} \end{array}$	61	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 10 \\ 7 \end{array}$	Alt. 2 weeks. Warm.	W. P. 500 cc .	$\begin{array}{r} .0086 \\ .0062 \end{array}$	$\text { . } 0024$	10\%
$\begin{array}{r} 1524 \\ \text { B } \end{array}$	52	$\frac{2}{2}$	$\frac{2}{2}$	Alt. 1 week. Warm.	N. 500 cc .	$\begin{aligned} & 4.4 \\ & 4.5 \end{aligned}$. 1	$. \overline{02} \%$
$\begin{array}{r} 153 \mathrm{~A} \\ \text { B } \end{array}$	52	$\stackrel{2}{2}$	$\frac{2}{2}$	Alt. 1 week. Warm.	N. 500 ce.	$\begin{aligned} & 4.9 \\ & 5.9 \end{aligned}$. 7	-12\%
$\begin{array}{r} 154 \mathrm{~A} \\ \hline \end{array}$	45	1	1	Alt. 1 week. Warm.	N. 500 cc .	$\begin{aligned} & 6.0 \\ & \text { S.5 } \end{aligned}$	2.5	-29\%
$\begin{array}{r} 155 \mathrm{~A} \\ \mathrm{~B} \end{array}$	42	8	$\frac{5}{7}$	Alt. 1 week. Warm.	W. P. 750 cc .	$\begin{array}{\|c} 5.0 \\ 5.9 \\ 5.9 \end{array}$. 9	-15\%
$\begin{array}{r} 156 \mathrm{~A} \\ 13 \end{array}$	42	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Alt. 2 weeks. Warm.	W. P. 750 cc.	$\begin{array}{r} 5.6 \\ 6.5 \end{array}$. 9	-14\%
$\begin{array}{r} 157 \mathrm{~A} \\ \hline 13 \end{array}$	42	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	8	Alt. 2 weeks. Warm.	W. P. 750 cc.	$\begin{array}{r} 3.5 \\ 3.1 \end{array}$. 4	11\%
$\begin{array}{r} 158 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\frac{2}{2}$	Alt. 1 week. Warm.	S. 500 cc.	$\begin{aligned} & 3.0 \\ & 6.5 \end{aligned}$	3.5	54\%
$\begin{array}{r} 159 \mathrm{~A} \\ \mathrm{~B} \end{array}$	48	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\frac{2}{2}$	Alt. 1 week. Warm.	N. 500 cc.	$\begin{array}{r} 3.1 \\ 5.2 \end{array}$	2.1	- 40%
$\begin{array}{r} 209.1 \\ \hline 13 \end{array}$	42	3 3	3 2	Alt, 1 week. Warm.	W. P. 750 cc.	$\begin{aligned} & 10.2 \\ & 4.4 \end{aligned}$	5.8	57\%
$210 \mathrm{~A}$	42		4	Alt. 2 weeks. Warm.	W. P. 750 ce.	6.3 7.2	. 9	$\overline{12} \%$
$\begin{array}{r} 211 A \\ B \\ C \end{array}$	44	5 5	5 5 4	Alt. 2 weeks. Alt. 2 weeks. Heat.	W. P. 750 cc.	$\begin{aligned} & 6.1 \\ & 4.2 \\ & 7.6 \end{aligned}$	2.5	- 3 \%
$\begin{array}{r} 212 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \end{array}$	44	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	5 5 4	Alt. 1 week. Alt 1 week. Heat.	W. P. 750 cc.	$\begin{aligned} & 6.6 \\ & 6.7 \\ & 8.0 \end{aligned}$	1.4	$\frac{-}{18 \%}$

Table XIX-Altervate Light and Dark.

Ex.	D:ays.	$\begin{aligned} & \text { No. } \\ & \text { beg. } \end{aligned}$	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
$\begin{array}{r} 1 \mathrm{~N} 2 \mathrm{~A} \\ 13 \end{array}$	54	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	Alternate. light.	N. 500 cc .	1.7 4.9	3.2	65\%
$\begin{array}{r} 183 \mathrm{~A} \\ 13 \end{array}$	54	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Nternate. Light.	W. P. 500 cc.	1.7 3.0	$\overline{1.3}$	- 43%
1841	47		$\frac{2}{3}$	Alternate. Light.	N. 750 cc .	1.4 3.0	$\overline{1.6}$	53\%
$\begin{array}{r} 185 \mathrm{~A} \\ 18 \end{array}$	45	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\frac{2}{3}$	Alternate. J.ight.	入. 750 cc .	1.9 2.5	-. 6	-24\%
1868	45	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	Alternate. I.ight.	S. 750 cc .	1.8 2.5	- 7	- 2%

Table IX-Alternate Starving and Feeding.

Ex.	Days.	No beg.	No. end.	Variable.	Constant.	Size.	Dif.	Per cent.
$\begin{array}{r} 160 \mathrm{~A} \\ \mathrm{~B} \end{array}$	52	$\stackrel{2}{2}$	$\frac{2}{2}$	Alt. 1 week. Control.	N. 500 cc .	$\begin{aligned} & 4.7 \\ & 4.5 \end{aligned}$. 2	4%
$\begin{array}{r} 161 A \\ B \end{array}$	59	$\frac{2}{2}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Alt. 1 week. Control.	N. 500 cc .	5.8 5.7	- 1	2%
$\begin{array}{r} 187 \mathrm{~A} \\ \mathrm{~B} \end{array}$	35	5	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Alt. 2 weeks. Control.	N. 500 cc .	2.6 3.3	. 7	21\%
$\begin{array}{r} 188 \mathrm{~A} \end{array}$	38	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	1	Alt. 2 weeks. Control.	N. 500 cc .	$\begin{aligned} & 3.8 \\ & 4.0 \end{aligned}$	-. 2	5\%
$\begin{array}{r} 189 \mathrm{~A} \\ \mathrm{~B} \end{array}$	34	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Alt 2 weeks. Control.	N. 500 cc .	$\begin{aligned} & 2.7 \\ & 5.0 \end{aligned}$	$\overline{2.3}$	- 46%
$\begin{array}{r} 190 \mathrm{~A} \\ \mathrm{~B} \end{array}$	34	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	Alt. 2 weeks. Control.	N. 500 cc .	2.8 4.3	- 1.5	-35\%
$\begin{array}{r} 191 \mathrm{~A} \end{array}$	31	4 4	3	Alt. 2 weeks. Control.	W. P. 500 cc.	3.3 4.2	-. 9	-21\%
$\begin{array}{r} 192 \mathrm{~A} \\ \mathrm{~B} \end{array}$	31	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Alt. 2 weeks. Control.	W. P. 500 cc .	$\begin{aligned} & 2.9 \\ & 6.4 \end{aligned}$	$\overline{3.5}$	55\%

The results-which may be classed as follows: effect of artificial aeration, of surface aeration, of volume, of number of individuals-were exactly the same as those found for Lymnea.

VI. Effect of Exterxal Conditions on the Number of EgGs Laid.

Tosupplement the experiments on the effect of external conditions on growth, and to observe the effect of external conditions on some physiological process rather different from growth, the following series of experiments was arranged. When adult Lymnaa is brought into the warm laboratory in the late winter or early spring it lays an immense number of fertile eggs. This fact was made the basis of some experiments. suails gathered at such a time were placed under varions conditions and the number of eggs laid during a given time recorded. Conditions that one would not consider to have any effect whatever on fertility were quite effective in their results.

1. Sediment.-As we have seen on p. 424 , the presence of seliment is beneficial to snail growth, yet the presence of sediment is also of advantage in increasing the fertility of the snail.

Four adult suails were isolated in four jars with a small amount of seliment, and four jars were similarly treatel without the sediment. At the end of some days the eggs in each jar were counted. See Table NXI.

Table XXI.

Ex.	No begin.	No. end.	Variable.	No. of eggs laid.
A	1	1	Sediment.	39
B	1	1		48
C	1	1	"	13
1).	1	1	"	63
E	1	1	None.	10
F	1	1	"	15
1	1	I	"	15
H.	1	1	"	18

The total of 162 in favor of the sediment is quite striking, against the total of 58 eggs without sediment, yet the small number of snails in the experiment must not be overlooked. As the writer did not have a chance to repeat this experiment its value is only suggestive.
2. Number of Individuals.-In each of seven jars with Ceratophyllum was placed a single snail. In seven other jars similarly arranged were placed two snails each. In ten days the seven snails in seven jars laid 1,149 eggs. The fourteen snails in seven jars laid 1,277 eggs.

The result of this experiment is similar to the growth experiment. In other words two snails in a jar together do not lay twice as many eggs as a single individual, but each snail lays only half as many egrgs as when it is alone in the jar. Thus again is illustrated the bad effect of the presence of the waste products of metabolism in the water.
3. Effect of Light.-In each of twelve similar jars one snail was placed and C'eiatophyllum was added to each jar. Six jars were placed

Table XXII.

- \% ¢ ¢ + Mail	Iı Light.		In Dark.		
	$\begin{gathered} \therefore \text { of } \begin{array}{c} \text { ox' } \\ \text { caters. } \end{array} \end{gathered}$	No. of chos ladd in 8 dhys.	Size of smail.	No ot ext capisules.	$\begin{aligned} & \text { No of eggs } \\ & \text { lald in } 8 \text { days. } \end{aligned}$
	7	117		4	61
	6	17.3		8	114
	7	184		4	$5!$
	5	140		2	56
	6	136		4	155
	-	8110		-10	415
	31	810		22	415

in diffused daylight and six in the dark. During the daytime the jar in the light had the temperature about two degrees higher than those in the dark. As the snails were of slightly different sizes, all the jars were placed in a row with the snails in series from the largest to the smallest. Every other jar was then put in the dark. The experiment ran 8 days. In the following table the number of egg capsules laid and the total number of eggs per individual is indicated. One snail died in the dark and one died in the light. Both are left out of account in the table.

It will be seen that those in the light laid nearly twice as many eggs as in the dark.
5. Other Effects and Observations.-Snails brought into the laboratory from the ponds lay at first a great number of eggs in a single egg case, and the masses laid subsequently contain fewer and fewer eggs. (See Table XXIII.) Placing two individuals together does not have an effect of revivifying the fertility of the snail, but has the opposite effect.

Table XXIII.

Experi-mint.			Egg Case.													
					3 l	4th	5th	6 th	7th	8th	Oth 10tn		11th	12 l	13th	14 h
A	1	10	36	28	20	29	31	16	25	19						
13			83	38	16	25	33	9	1							
O			8.5	38	20											
D			43	39	15	${ }^{5}$										
1			89	38	25	25	13	12	10	7	23					
F			48	34	28	26	16	17								
(37	36	19	3	17									
A	1	11	40	16	12	8	5									
13			52	38	16	15	13	19	20	12	14	17	8			
C			40	16	8	4	3	6								
J)			52	29	19	11	9									
E			29	27	19	18	13	9	5	5						
F			88	37	21	22	13	12	9	9	9	14	7	15	8	16
G			T2	18	11	8	16	14	9	5	10					
II			45	10	15	3	12									

Table showing the number of eggs in successively laid egg cases after the smail is brought into a warm room from out of doors in the winter time.

The last eggs laid by these snails are sometimes quite abnormal. sometimes the eggs are fused, sometimes there is a capsule or a number of small capsules without a single egg.

Gome snaik prefer to lay their eggs on the water plant, others always lay their egrgs on the glass jar, while still others show no preference at all.

VII. Summary of the Conclusions.

1. The effect of Myriophyllum and of Elodea on the growth of Lym$n \pi a$ is quite complex. That it is not a simple factor that is being dealt with is indicated by the inconstancy of the results of the experiments. Notwithstanding the fact that one factor has been isolated, yet it is probable that there are other factors besides. This determined factor is the presence or absence of sand in the so-called "gizzard." In the latter case plant tissue, although ingested cannot be assimilated, so that the snail is smaller because it actually lacks food. On the other hand it is possible that the products of plant metabolism may have a harmful effect on the growing snail.
2. The accumulations of fæcal matter of Lymncea, instead of having the harmful effect on growth as described by De Varigny ('94), when washed and filtered, have a beneficial effect. These tangled masses of unassimilated food form a great harbor for algre, and so increase the food supply of the snail.
3. The "original planting" of the aquarium, i.c., algæ accidentally introduced with the water, causes great variation in the size of the snails.
4. Experiments on artificial aeration confirm the conclusions of Yung and Willem; yet experiments on surface aeration do not seem so clear.
5. Vernon reported that Eehinoderm larver raised in solutions in which other larve had been raised were dwarfed. De Varigny found the same thing true for Lymmer,. Experiments on Lymnaa columella confirm the results of the two authors referred to. Weak solutions were found beneficial and concentrated solutions harmful. Experiments using urea gave the same result. Why dilute solutions of excreted matter and urea are beneficial and concentrated solutions are harmful may be explained in the following way. The presence of the excretions. which contain plant food may cause more alges, snail food, to grow; on the other hand the solutions are harmful to snail growth. In dilute solutions, howerer, the quantity of toxie substance may be so little harmful that an increase of food will overbalance the harmful effect. However, this explanation is not very satisfactory as the Dehbinoberm larva experimented on by Vernon had no mouth and so dis! not eat.
6. As Semper and I e Varigny showed, the number of individuals in
a jar affect the rate of growth. The cause is probably due to increased secretions and perhaps to diminished aeration.
7. Calcium salts in the water seem on the whole beneficial to growth -calcium sulphate particularly so.
8. Growth of Lymnea is inhibited by cold, as Semper reported. This factor may act in two ways-directly on the physiological processes of the animal and indirectly through the inability to procure food, the snail becoming too sluggish to search for it.
9. Area. The cause that De Varigny advanced to explain dwarfing was lack of exercise on the part of the snail. The greater the place to crawl, the greater the snail. However, when aeration was kept constant, which De Varigny failed to do, the results were not significant.
10. Volume. That the volume of the medium affects the growth of Lymnea is certain. Willem explains the fact on the ground of aeration. The author accepts this view, but considers that the more concentrated excretions in smaller volumes must play an equal part.
11. Alternate Conditions. Snails under unfavorable conditions when placed under favorable ones grow faster than if they were continuously in favorable conditions. It would seem that the change from unfavorable to favorable conditions of life acts as a stimulant for growth. However, this does not always mean that it surpasses the control size. It rarely does that.
12. Not only does the environment affect growth, but it affects the number of eges laid in a given time. This fact is very important, because it shows that the environment probably affects all the physiological processes and not one alone.
13. This study reveals the fact that confinement influences the growth of aquatic animals in three ways-through the amount of foonl, through the amount of oxygen and through the accumulations of the waste products of metabolism. The phenmenon is not a simple one and each factor plays its own part.

Literature Referbed to.

Bessex, C. E. 1892. Botany, 7 thedition.
Brocksemar, H. 180S. Süswasserschnecken als Planktonfiseher. Foreh-Ber. Biol. sta. Plon., Th. VI, p. 165.
('bowes, Fo, and Comban, J. B. 19M3. (Dantitative Chemical Analysis, p. 320 Cookr, A. 11. 1595. Cambridge Natural Ilistory, Mollusks, pp. 94-95.
Cuvier. 1817. Mémoire ant le Limnée et le Planorbe.
Dandiso, J. B. 1904. Relation of Mass Action and Physical Affinity to Toxicity, with Jocidental Discussions as to how far Lederemptir Diesociation may be livolved. Am. Jour Sci., Vol. XVII, fth serics, p, 437.
Davenpont, C. B. 1890. Fiperimental Morphology, Vol, 11, pp. 173-17s.

Forfl. 187t. Materiaux pour servir à l'étude de la faune profonde du lac Léman. Bull. Soc. Vaud. Sci. Nat., t. NII, p. 72.
--. 1904. La Léman, p. 103.
Hyatt, A. 1880. Changes in the Shell of Iymnea megasoma produced by Confinement. Am. Nat., Vol. NIV, p. 51.
Hogg, J. 1854. Observations on the Development and Growth of the Water Snail Lymnepus stagnalis. Quar. Jour, Mic. Sci., Vol. II, p. 91.
Moquin-Taidon. 1855. Histoire Naturelle des Mollusques terrestres et fluviatiles de France, Paris, t. I, p. S1.
Pearl, R., and Duxbar, F. J. Some Results of a Study of Variation in Para mecium. Mich. Acad. of Sci., 7 th Ann. Rep.
Rathar, E. 189S. Ueber den Frass von Helix hortensis auf Baumrinden. Zeit f. Planzenkr., Bd. VIII, p. 129.

Sachs, J. 1875. A 'Text-book of Botany, Oxiord, Eng. trans., p. 621.
semper, C. 1874. Ueber die Wachsthums-Bedingungen des Lymnteus stagnalis. Arb. Zool.-Zoot. Inst., Wurzburg, Bd. I, pp. 138-167.

- - 1579. Animal Life. International Scientific Series, pp. 160-167.
stemei, V. 1895. Food of the Limmeidx. Nautilus, Vol. V, p. 94.
de V'argax, H. 1892. Experimental Evolution. Nature Series, pp. 79-88.
- 1894. Recherches sur le nanisme expérimental. Contribution a l'étude de l'influence du milicu sur les organismes. Jour. Anat. et Phys., Paris, t. $1 \times 2 \times$, pp. $147-188$.
- 1895. Note sur le period de croissance chez Iymnea stagnalis. Bull. Mus. Hist. Nat., Paris, t. I, pp, 131-132.
Vervox, H. M. 1S95. Effects of Enviromment on the Development of Echinoderm Larvie. Phil. Tras. Roy. Soc. London, Vol. CLXXXVI, pp. 577632.

1899. The Relations between Animal and Vegetable Life. Mitth. aus der Zool. Sta. zu Neapel, Bd. NIII, p. 334.

- 1903. Variation in Animals and Plants. Int. Nat. Sci. Serics.

Walter, H. E. 1906. Behavior of the Pond Snail Lymnreus elodes. Cold spring Harbor Monographs, VI.
Whrhes. 1900 . Changes in Environment of Daphnia. Quar. Jour. of Mic. sci., Vol. XLIII, p. 212.
Whitfield. 1852. Description of Lymnara megasoma Say, with an Account of Changes produced in the Offspring ly Unfavorable Conditions of Life. Bull. Am. Mus. Nat. Hist., Vol I, p. 29.
Wirmex, V. 1s96. Observations sur la recpiration cutance des Lymnées et son influence sur leur croissance. Bull. de l'Acad. Roy. des Sci. Brussels, t. XLIII, p. 566.

Y゙row, E. 18\%s. Contributions à lhistoire de l'influence des milieux physiques sur les etres vivants. Areh. Zool. Exper. et Gen., t. VII, pp. 251-282.
-- 1850. De l'influence des lumicres colorées sur le developpement des amimatux. Mitth. at. d. Zool. Stat. zu Neapel, Bd. II, pp. 233-237.

- 1ssín. De binflunce des variations du milieu physico-chemique sur le deredoppement des aminatux. Arch. des Sci. Phys. et Nat., t. XIV, pp. 502-52"2.
-- 185s. Contributions à l'histoire physiologique de l'escargot (Helix pomatiat. Mem. Cour., t. X'LJX, p. 119.
——. 1892. Comp. Rend., CXV, pp. 620, (621, October 24.

THE DIRECTIVE INFLUENCE OF LIGHT ON THE GROWTH OF FOREST PLANTS.

BY JOHN W. HARSHBERGER, PH.D.

It is a well-known fact that light exercises a directive influence upon plants. This directive influence is called heliotropism, or phototropism. When a plant is grown in the window of a room, so that it is unequally illuminated, thet is, more powerfully through the window, its leaves and even its stem are turned toward the incident rays of light. This is known as positive heliotropism. If the common English ivy, Hedera helix, be grown in pots by a north window, so as to emphasize better the difference in light intensities, in about four weeks it will be apparent that the growing sprouts are bending toward the inner part of the room, away from the stronger light. This reaction is negative heliotropism.

The growth of forest plants is largely a puestion of light relationship. Foresters recognize this fact and group trees into those intolerant of the shade and those that are tolerant. The herbaceous plants, likewise, are influenced by the light which filters through the crown of leaves above. The herbaceous spring flora of the forest requires more light than the relatively few plants which flower in the antumn require, when the trees are covered with foliage. These facts, although they can be proved experimentally, are not always demonstrable to the uninitiated. One of the best illustrations that the writer has seen is the dieretive influene of light upon the leaves, or fronds, of the hayscented fern, Dicksomia pilosiuscula ($=$ Dennstocltia punctilobula), Which is widely distributed on open hillsides from New Ibrunswiek and Ontario to Indiana and Minnesota, south to Alabama and Tennessee, ascending to 1680 m . in Virginia. 'The stipes of this fern are pate green and chaffless, covered with fine hairs, and the leaves (10 dm . long, $12-20 \mathrm{~cm}$. wide) are ovate-lanceolate, acute or acuminate, frequently long attenuate, usually tri-pimmatifid, thin and delicate in the wowls, tomather, more indolled amblmereet in the sum; rachis and under surface of blades glandular pubescent. The observations which the writer wishes to record on the directive influence of light upon the position of the fromds were made at Poeono lines. Monroe County, Pennsylvania, where this fern is one of the most abundant sperees. As the photograph will show (II. XXIV), the upher surfares
of the leaves are turned toward the light, if the illumination is onesidet. If the illumination is from all sides of the fern clump, then there is no particular direction in which the leaf-blades face. The one-sided illumination is obtained when the ferns grow along the edge of the woods, composed in the Pocono region of white pines, white birches, black spruces, beeches and maples, which on account of their dense crown cut off much of the light from behind and above, so that such woods can be called appropriately dark woods. The photograph shows how all the leaves of a single patch are turned outward toward the open field adjoining the woods, in obedience to the directive influence of the light, so that the leaves stand, row after row, all facing in one direction.
The second and more striking example of the directive influence of light is illustrated by the hobble-hush, Viburnum lantanoides $(=V$. alnifolium), a shrub which ranges from New Brunswick to North Carolina, western New York and Michigan, but which does not occur in the woods near the City of Philadelphia. In the dark pine woods on the Pocono plateau this shrub is extremely abundant, and where the woods are the densest, not only are all of the branches and the leaves directed by the incident rays of light, but they show permanent structural changes which are induced by the directive light influence. It is known that light has a most notable influence in the determination of the external form of a large number of plants. The development of certain tissues or organs on one side of the axis of a shoot, and their suppression on other parts of the plant body, may be regulated experimentally by means of the character of the illumination. This development of tissues on one side of the axis is illustrated finely in the branches of adult forest-grown specimens of the hobble-bush. If we examine young shrubs of this plant, illustrated in Pl. NXV, fig. 7 , we see that the branching system follows the method of a dichasium. The leaves in such young bushes stand perfectly horizontal, st as to reeceive the incident rays of light on the upper surface of the bate, and so as to present their profile to the ohserver standing in front of the plant. As fig. 6 shows, they arrange themselves, when viewed from above, in the pattern of a leaf mosaie, so that none of the leaves overshadow the others. Such plants merely show the directive influence of the light on the leaves, without showing any characteristic growth differences. The same influence of light is manifested in the stoloniferous branches which strike root, and which give the common names hoble-bush or trip-toe to the plant (fig. S). These plagiotropons shoots are only formed in the shade. The diminished light
can be better used by such branches, to which the moist soil offers at the same time an opportuntity to root. Such plagiotropous stolons with elongated internodes show, however, orthotropous branches, and we, therefore, have on the same shrub branches which react differently to the light, some that are stoloniferous and plagiotropic, others that are leaf-bearing and orthotropic. After a time, however, the bushes assume a different habit by a suppression of parts, so that the older stems show two horizontally directed branches (plagiotropic), which separate from the common stem in a dichotomous manner. Now if we examine figs. 1 and 2 of PI. XXV, we see that all of the lateral spurs that are formed from such a plagiotropic branch are placed on the upper side (orthotropous), where their leaves receive to the best advantage the light which filters down through the leafy canopy above. Each segment of such a branch represents a sympodium, where there are a series of phytons placed one after the other in serial order. By this method of sympodial branching, each new branch with the suppression of a bud on the other side and torsion of the axis, terminates in a leafy extremity, and the elongation of the branch according to this arrangement depends on a lateral bud (fig. 3). In this case clearly, as all of the leaves are directed dorsiventrally by light relationship, the permanent branching system is determined largely by the influence which the light has had in producing a one-sided growth of the lateral dichotomous branches of the adult plants. The fruit stands vertically above the broad, cordate leaves, as shown in figs. 4 and 5. Attention might be directed in closing to the color change which takes place in the leaves with the approach of autumn. The leaves become bronzed to a greater or less extent. Sometimes the bronze is in the form of blotches. In other leaves one side is bronzed, the other side is green, and in many examples the whole leaf rapidly bronzes. What induces the bronzing of one side of the leaf first, while the other side remains of a bright green color? Is it a light reaction? The photograph in Pl. XXIV was taken by Mrs. Harshberger; the drawings reproduced in Pl. XXV were made from rough drawings and data furnished Mr. Louis Schmidt by the writer.

A COMPARISON OF THE LAND.SNAIL FAUNA OF KOREA WITH THE FAUNAS OF JAPAN AND CHINA.

BY HENRI A. PILSERY.

The compilation of a list of Liorean land mollusks gives occasion for a comparison of that fauna with the faumas of China and Japan. In the list of Kiorean land snails published by Dr. O. von Moellendorff in $1 \mathrm{SS} 7,{ }^{1}$ some 26 species are catalogued; of this number, 7 are stated to be common to Japan, 3 to China, and 2 (omitting the doubtful Helix ciliosa) to both countries.
'The fruitful researches conducted by Mr. Y. Hirase have increased the roll of known Korean forms to 58 . This number is no doubt a mere fragment of the total fauna; yet it is enough to show the dominance of Japanese over Chinese forms in Korea. This preponderance can only be explained by the theory that the submergence of the straits between Kyushu and Korea is a geologically recent event. From the large proportion of Japanese species existing in Korea, this submergence may probably have taken place not earlier than the Pliocene.

Twenty-one Japanese species occur in Iiorea and Quelpart. Seven Chinese species occur in Korea and Quelpart. Four of these species are common to Japan and China. The great preponderance of characteristically Japanese over Chinese species is thus evident. Thirtytwo species and subspecies, out of a total of fifty-eight, are peculiar to Korea including Quelpart.

So much for the numerical relations of the species. The faunas may also be compared qualitatively. All of the genera and subgenera of the Korean fauna occur in Japan. In the Clausilitdo all the species of (burpart and Korea belong to Eiupharlusu, a group of minor importance in Japan, but extemding farther north on the Asiatic mainland than any other group of Clausilise. The genus Ganesella, well represented in Japan, seems to be absent in Korea, unless the species
 Which serms improbable. The absence of (omeselle and of Clausiliado, wther than E'uphrdusu, are the most conspicuons diserepancies between

[^59]the faunx of Quelpart and Tsushima. By the prevalence of Hemiphocdusa, Ganesella and Plectotropis, Tsushima is wholly Japanese in its snail fauna, while Quelpart is as unequivocally Korean. The political boundaries of Japan and Korea coincide therefore with the faunal limits. The largely deforested condition of Quelpart and Korea is probably responsible for its rather poor land shell fauna.

In the following table, the "Korea" column is compiled from Dr. von Moellendorff's paper and the collections of Mr. Hirase, determinel by the author. The column "Korean Archipelago" contains a few species reported with that indefinite locality by Pfeiffer and A. Adams. The "Quelpart" column contains species collected by Mr. Kuroda, part of them identified by the writer, the others quoted irom Mr. Kuroda's list.2 The "Matsushima" (Dagelet Island) species were recorderl by Arthur Adams, who sisited that island when surgeon on boam H. M. S. "Actæon." In the calumn of "Remarbs" sundry notes on the affinities of the species find place.

[^60]

October 6.

Mr. Frank J. Keeley in the Chair.

Twelve persons present.
The Secretaries, Librarian and Curators reported on the work accomplished during the summer vacation.

The Publication Committee reported that papers under the following titles had been presented for publication since the last meeting:
"Description of Trachypterus seleniris, a New Species of Ribbon Fich from Monterey Bay, California," by John Otterbein Snyder (May 30).
"some Polychatous Annelids from the Northern Pacific Coast of North America," by J. Percy Moore (June 16).
"An Orthopterological Reconnaissance of the Southwestern United States: Part II, Arizona," by James A. G. Rehn and Morgan Hebard (June 26).
"Notes on the Distribution of Colorado Mammals, with a Description of a New species of Bat (Eptesicus pallidus)," by Robert T. Young (July 16).
"some Effects of Environment on the Growth of Lymnæa columella Say," by Harold Sellers Colton (July 25).
"The Directive Influence of Light on the Growth of Forest Plants," by John W. Harshberger, Ph.D. (August 9).
"A Comparison of the Land-Snail Fauna of Forea with the Faunas of Japan and China," by Henry A. Pilsbry (September 5).
"The Composition and Ecological Relations of the Odonate Fauna of Mexier aml Central America," by Philip P'. Calvert (September 17).

The deaths of the following members were announced: Samuel (i. Posenषarten, May 15, 1908; Stephen Greene, May 21, 190S; Benjamin Bullock, March 4, 1908; Elizabeth S. Bladen, August 19, 1908; Jambl F. Holt, August 3, 1908, and William G. Freedly, October 3, 1908.

In anmoneing the leath of Whlams. Viuxi, Jr., which occurred July 23, 190s, the seceretary remarkel that it inflicted a loss of which the Academy is immediately conscious. He was bom April 1, 1siz, and continued the traditions of his family by manifesting an artive interest in the work and well-being of the Academy. He contributed to the I'roccedings, in conjunction with his brother, important
reports on glacier movements in the Canadian Rockies. He served as Curator since January, 1905, and gave special attention, valuable because of his ability as an architect, to the plans for the alteration and extension of the premises made possible by the recent appropriation of $\$ 150,000$ by the Legislature of Pennsylvania. His singularly engaging personality and amiable disposition endeared him to his associates, and the Academy deeply sympathizes with the loss his family has sustained in his untimely death.

The deaths of the following Correspondents were also announced: Spiridione Brusina, May 21. 190S, and Gustav Mayer, July 1t, 1908.

10 CTOBER 20.

Arthur Erwin Browa, Sc.D., Vice-President, in the Chair.
Eighteen persons present.
The Publication Committee reported the reception of a paper entitled "A Review of the Genus Piaya Lesson," ly Witmer Stone (October 14).

Recont Additions to Our Knouldge of the Flora of Southern New Jersey.-Mr. Witmer stone based his remarks on the work of the Philadelphia Botanical (lub), especially during the past few years.
Taking Dr. Britton's C'utalogue of the Flora of Neu' Jersey, published in 1859. he stated that twenty-six phenerogans and pteridophytes had been added by the Club since that date, exclusive of the numerous subdivisions that have been made of older species or closely allied species not recognized as distinct by Dr. Britton. Of the latter he had listed fifty-five not in Dr. Britton's Catalogne and doubtless there are others. Introduced or maturalized phants were not considered in either entumeration. The twenty-six species were as follows, the nomenclature following Britton's Manual:

Ophoglossum arenarium.-Originally discovered by Mrs. E. G. Britton, July 3, 1897, at Holly Beach, and later exterminated by a Imidding operation. This species was rediscovered duriner the present yoar by Mr. Joweph ('rawford at Longport, and by Mr. Bayard Long at Spray Beach.

Dryopteris simulatu.-Discovered several years ago at Clementon by Mr. Stewardeon Brown; later found at Sicklerville, Cedar Brook, Double Trouble, and Forked River.

Isoetes dodyei.-Collected at rish House, on the Delaware, by Mr. W. A. Poyser.

Alisma lenellum.-Discovered in August, 1907, on the border of a pond a short distance above Delanco by Messrs, Brown, Van l'elt and stonce. In the same pond grew scirpus torreyi, new to the state,
and Elcochutris robbinsii, which had not before been found out of the pine barrens, while on the swampy margin occurred Eleocharis melanocarpa, a species not before detected by the Club. It was found to be rooting at the tips of the leaves like E. rostellata. The occurrence of so many new or rare species in one spot was remarkable.

Manisuris rugosa.-Discovered in southwestern Cape May County, by Mr. O. H. Brown, August, 190 S.

Paspalum glabratum.-Found in September, 1891, at Cape May be several members of the Club; since discovered at Cold Spring.

P'onicum condensum Nash.-Collected at Piermont, September 1,1902, by the speaker, and by Mr. S. S. Van Pelt at Holly Beach; since found at Cold spring ($=$ 'Bruchiuria digitarioides' Stone, Torreya, 1907, p. 39).

Chectochloa magna.-Collected near Cape May Point in August, 1891, by the speaker.

Saccolepis gibba.-Found on the shores of Lily Lake, Cape May Point, by Mr. C. S. Williamson, September, 1905.

Aristida lanosa.-Found at Medford, N. J., by Messrs. W. Stone and S. Brown, September 15, 1901.

Sporobolus longifolius.-Discovered September, 190S, at Cape May by Mr. O. H. Brown.

Gymmopogon brevifolius.-Found by Mr. C. D. Lippincott at Swedesboro, S'eptember 2, 1894, and later at Cape May, by Mr. O. H. Brown. Agrosis coarctata.-Discovered by the late L'. C. Smith at Anglesea, July 4, 1907.

Cyperus pseudnegetus.-Found by Mr. C. D. Lippincott at Riddleton. Sentember 16, 1894, and still plentiful at the same spot.

Eleocharis interstincta.-Discovered by the late Dr. J. B. Brinton at Repaupo, July 15, 1892.

Eleocharis ochreata.-Found at Cape May Point, September, 1905, by Mr. S. S. Van Pelt.
Scirpus torreyi.-Detected by the speaker at Delanco as stated above.
Rynchosporn oligunthe.-Fomend at Aueedwell, in the heart of the pine barrens, by Mr. S. S. Van Pelt, July, 1906.

Rynchospora rariflara.-Diseovered by the speaker west of Bennett, Cape May County, August 4, 1907.

Juncus setaceus.-First'collected by Mr. Joseph Crawford in Cape May County, July 15, 1892, and later found to be rather plentiful in that section.

Gymnendeniopsis niven.-Found by Mr. Bayard Long near Bennett, Cape May County, July 24, 1907. It was later found to be plentiful over a limited area.

Quercus michanxi.-Found by Messrs. Stewardson Brown and Edward Harris at Moorestown, October, 1902.

Rumex hastatulus.-Discovered at Longport by Messrs. Joseph Crawford and Stewardson Brown, June 23, 1907.

Bradburyat virginica.-Diseovered by the late J. B. Brinton, M.D., at Holly Beach, July 24, 1892.

Bollonis asteroides.-Found by Mr. Long growing with Gymnandeniopsis nivea; known before from New Jersey only as an introduced species.

Senecio crawfordii.-Originally discovered at Tullytown, Pa., this species has recently been found at several points on the New Jersey side of the river.

Among rare species marked in Dr. Britton's Catalogue as not recently collected several have been rediscovered:

Triglochin maritima was found at Point Pleasant by Mr. Stewardson Brown, July 22, 1902.

Tofieldia racemosa, collected by Mr. C. F. Saunders between Atsion and Tuckerton on July 4, 1899, and later found in abundance at several places near Speedwell and at High Bridge by the speaker.
Lilcopsis lineata.-Perhaps the most interesting discovery of the present year was the finding by Mr. Van Pelt and the speaker of this obscure little plant about a mile below Palermo, where a fresh spring bubbles up out of the salt marsh, making a hard sandy bottom which was literally covered with Lilcopsis. The plant has been unknown from the state since its discovery by Thomas Nuttall, nearly one hundred years ago, "in a salt marsh near Egg Harbor." As the present spot is only a few miles from the shore of Egg Harbor it is quite possible that it is Nuttall's original locality

The following was ordered to be printed:

THE COMPOSITION AND ECOLOGICAL RELATIONS OF THE ODONATE FAUNA OF MEXICO AND CENTRAL AMERICA.

BY PHILIP P. CALVERT.
Contents.
General Conditions determining Odonate Distribution.
The Chief Odonatological Features of Mexico and Central America.
Relations of the Mexican-Central American Odonate Fauna to those of other Areas.
Distribution of the Odonata within limited portions of Mexico and Central America.
Relations of the Odonate Fauna of Mexico and Central America to Temperature, Rainfall, Vegetation Areas and Altitude.

The preparation of an extended account ${ }^{1}$ of the Odonata of Mexico and Central America has induced me to study the relations of these insects to various factors of their environment, with the results here set forth. The facts on which this study is based, in so far as the Odonata are concerned, are contained in the Biologia volume, to which reference must be made for further details. Since the completion of that work, I have received, through the kindness of Mr. H. T. Van Ostrand, specimens of Enallagma prozarum, Oplonceschna armala and Sympetrum illotum virgulum, taken at or near Real del Monte, Hidalgo, Mexico, which add to our knowledge of the distribution of these three species as given in the Biologia. The first and third are labeelled as having been captured at 9,000 feet elevation, or the highest altitude yet recorled for Odonata in Mexico or Central America. These additional data are included in the following pages.

Genfral Conditions Determining Odonate Distributiox.
The actual distribution of the Odonata is determined by the conditions under which their aquatic larve are able to exist. The diswibution of the larvar. so far as the present region is concerned, is almost entirely unknown. Our present information refers to the appearance of the inagres in eretain toralities, and the smmary herewith presented

[^61]rests on the unproven assumption that the adults do not wander far from the waters in which they have passed their carlier stages or in which their offspring are capable of surviving. This assumption is one of the weaknesses in the following attempted generalizations; another is the real scantiness of our knowledge of the distribution of even the winged individuals. How scanty this is may be seen by a glance over the list of localities in Honduras, Nicaragua, etc., in Table A and in the columns for these countries in Table B of the Introduction to the Biologia volume quoted and a study of Tables 6-8 of the present paper.

It must be distinctly understood, therefore, that all which follorss is subject to future correction in these two important particulars. In spite of these disadvantages, however, some generalization has been deliberately attempted, in the belief that by so doing progress in investigation will be hastened much more than if no such summary were ventured.

The Chief Odonatological Features of Mexico and Central America.

These are: the practical absence of the subfamily Cordulinæ, ${ }^{2}$ some species of which have been recorded from corresponding latitudes in the Old World.

Absence of the following genera, conspicuous or well developed in other parts of America: (a) in Northern America, ${ }^{3}$ Ophiogomphus, Gomphus, Dromogomphus, Octogomphus, Celithemis, Leucorhinia; (b) in South America, Lais, Thore, Euthore, Microstigma, Telagrion, Leptagrion, Diastatops, Potamothemis; (c) in the West Indies, Scapanea.

The small number of genera, seven out of seventy-one, which are restricted to this area. They are Pseudostigma, Thaumatoneura, Paraphlebia, Hesperagrion, Anisagrion, Oploneschna and Pscudoleon. Three of these (Hesperagrion, Oploncschna, Pseudoleon) embrace only one species each. Oploneschna and Pseudoleon should be good fliers and, therefore, one would not expect their limited distribution.

The unity of the district, in that only one genus (Hesperagrion) is restricted to Mexico north of the Isthmus of Tehuantepec, none to the

[^62]area between the latter and the Isthmus of Nicaragua and only one (Thaumatoneura) to the Costa Rican-Panaman section.

The predominant Calopterygine genus is IIetcrina with 17 species out of 23 for the subfamily. Several species (H. americana, tricolor, titia, macropus, capitalis) show a marked tendency to reduction in size of the pterostigma in some of the western portions of their ranges, but the geographical areas in which this reduction is strongly marked for one species (e.g., macropus in Guatemala) are not necessarily those in which it is displayed by another (e.g., americana). Amphipteryx is interesting as presenting some features intermediate between those of this subfamily and the Agrioninæ. Only one Old World genus (Calopteryx) is represented and its existence here rests on a single specimen.

Lestinc. Six of the 7 species belong to the cosmopolitan Lestes.
Agrioninc. Of 24 genera, 3 only (Argia, Enallagma, Ischnura) have been recorded from the Old World. Five of the 7 endemic Odonate genera belong here. Of the 112 species, 48 belong to Argia; next follow Protoneura with 7 species and Telebasis with 6. Six species (of 3 genera) are of the exclusively Neotropical Pseudostigmatina, including some of the linearly largest known Odonata of the world.

Gomphinc. None of the genera are extra-American. Erpetogomphus is the predominant genus of the subfamily in the northern part of our district, Epigomphus in the southern.

Cordulegasterince. The single genus of our area, Cordulegaster, is Holarctic.

Eshnine. Three (Anax, Eshna, Gynacantha) of the six genera are also found in the Old World, but none of the species extends thither. One of the seven endemic genera belongs here (Oplonaschna). Esina has the largest number of species.

Cordulinc. The single record for this subfamily, from near the northern limit of our district, is of the Holaretic and Palaotropical Macromia.

Libellutinc. Of 2 S genera, one (I'scudoloon) is endemic, five (Libellula, Tholymis, Tramea, P'antala, Sympetrum) are regarded as also oceurring in the Gdd World. The only Odonate species common to our area and to the (H) World-P'antala flareseons (and sympetrum corruptum?)-are of this subfamily. Predominant genera are Libetlula, Micralhyria, Orthemis, Erythrodiplax, Brechmorhaya, Tramea, Perithemis and Erythomis.

Relations of the Mexican-Central American Odoxate Fauna to those of other Areas.

The study of the species of Odonata found over large parts of Mexico has shown that, to the northward, many of them occupy also considerable portions of Texas, New Mexico, Arizona, and California (in the last named possibly to San Francisco), although their northern boundary line has not been determined in any of these States. ${ }^{4}$ Therefore, all species, subspecies or varieties found in Mexico and Central America and which may extend also into these four States of the United States, but not beyond them, nor into the West Indies nor South America, have been considered as endemic. With this explanation, which applies to all the tables in this paper, the general relations of the Odonate fauna may be learned from an inspection of Table 1.

A further analysis of the relations of the fauna is given in Table 2, wherein, passing from north to south and, in Mexico, from plateau to lowlands, the decrease in the northern element and the increase in the southern element is clearly shown. Even on the Mexican plateau, excluding its highest portion, ${ }^{5}$ as the most northern and most elevated section of the present faunal district, the southern element, measured by the number of the "exclusively South American" species, is almost as strong as the northern, represented by the "exclusively Northern American" species ${ }^{-}$- a striking fact when the narrow land connection with South America is contrasted with the very much wider union with the United States, and the geological history of the plateau is borne in mind. It is of further interest to note that while 15 exclusively Northern American species are found on the plateau, 14 Northern American species are found in Mexico exclusive of the platean, the corresponding figures for the exclusively South American species being 14 and 50 . These differences are in agreement with Gadow's

[^63]Chmb: 1.-Dtatmmetron my sumpamhes of the Odonata of Mexico and Centmal America. ("spp)", includes species, subspecies and varieties.)

[^64]Tabin: 2.-I)hathmetion of the: Obonata of ('ehtan Pabts of Mexico and ('entral America. ("Spp." = as in Table 1.)

					Exel	asive-		strib	ution	in A	neri	a els	wher	re tha	an M	xico	and	Cent.	Ame	
Area.	Tota		Endem the nam	nic in area ned.		ther is of Mex.Amer. rict.	$\begin{gathered} \text { Excly } \mathrm{x} \text { y } \\ \text { ly } \\ \text { ern } \end{gathered}$	usive-orthAm.	$\begin{aligned} & \text { Excly } \\ & \begin{array}{c} \text { ly } \\ \text { ern } \\ \text { W. } \end{array} \end{aligned}$	asive-orthand Ind.	$\begin{gathered} \mathrm{Excl} \\ \substack{\text { lyN } \\ \text { ern } \\ \mathrm{S} .} \end{gathered}$	sive-orthand Amer.	$\begin{gathered} \text { Nort } \\ \text { S. } \\ \text { and } \\ \text { Ind } \end{gathered}$	hern, Amer. West ies.		axive- Vest es.	$\begin{gathered} \text { Exel } \\ \text { ly } \\ \text { Ind } \\ \text { S. } \end{gathered}$	asiveNest and Amer.	$\begin{gathered} \text { Excly } \\ \text { ly } \\ \text { Ame } \end{gathered}$	usiveSouth er.
	gen.	spp.	gen	spp.																
Mexican plateau (as shown on map)	35	81	0	1	1	25		15	0	3	2	3	15	4	0	3	11	13?	1	
Mexico exclusive of plateau	61	$\begin{gathered} 212 \\ (215) \end{gathered}$	1	51	5	44	5	14	0	4	2	5	15	6	1		20	30 (31)	12	
Mexico (as in Table 5)	62	$\begin{gathered} 219 \\ (221) \end{gathered}$	1	$51 ?$	5	45		$: 9$ (20)	0	4	2	5	15	6	1	8 (9)	20	31	12	50
	(i2)	161							0	0 (2)	2	(5)	15	5 (6)				26 (32)	15 (16)	49 (61)
Guatemal:	(11)	101				${ }_{26}$		5 ?					11	1	0	10 3		14	9	
(insta Rica	(61)	(16.5)	0	15)	3	(33)	2	1	0		2		(15)	(6)	(1)	(5)		(32)	(18)	(65)

result: in Reptiles and Batrachia: "The plateau seems to be a much more effective barrier to the southerners than is the descent into the hot lowlands to the northern creatures." ${ }^{\text {s }}$

The West Indies lie within the same parallels of latitude as do Mexico and Central America. The total number of species of Odonata found in those islands is about $91 ; 56$ of these, or 61.5%, also occur in our present district. The number of species common to both is likely to be increased by future explorations, especially as the Odonate fauna of Yucatan and British Honduras, the continental areas lying nearest to the West Indies, is very imperfectly known. But, making use of the present figures, it is rather surprising that only 61.5% of the West Indian Odonata are found in Mexico and Central America, seeing that the prevalent winds on the east coast of the mainland are easterly (i.e., northeast, east and southeast). ${ }^{10}$ With such insects as the Odonata one might expect the winds to play an important part as means of dispersal. ${ }^{11}$ The West Indian species not yet found in Mexico or Central America include a number of fair-sized and probably fair-flying species, c.g., Aphylla producta, Progomphus integer and sercnus, Dythemis rufinervis, Scapanca frontalis, Macrothemis celeno, Celithemis eponina, etc.

The extent to which species common to the West Indies are found in some parts of Mexico and Central America is shown in Table 3.

The Entemic Gicnera and Species are summarized in Table 4, p. 468.
Of the genera listed in Table 4 as occurring in both Northern and South America, Itctcrina, Argia, Progomphus, Erythrodiplax, and perhaps Dythemis, are represented by a greater number of species in South America than in Northern America, and these genera are entirely,

[^65]Table 3.-The Relative Strength of the West Indian and Souti American Elements in Different Parts of the Odonate Fauna of Mexico and Central America.

Area.	Total number of species, etc.	Number of species, etc. found also in the West Indies, and their percentage equivalents.	Number of species, etc. found also (outside of Mexico and Cent. Amer.) exclusively in S. Amer. and their percentage and their ${ }^{\text {p }}$.
Mexican plateau.	81	$23=28.4 \%$	$14=17.3 \%$
Mexico (asin Table5)	219 (221)	$49(50)=22.4(22.6)$	$50=22.8$ (22.6)
Yucatan and British Honduras...............	35 ?	$18 ?=51.4$	$8=22.8$
Guatemala and Honduras.	161 (186)	$41(50)=25.5(26.9)$	$49(61)=30.4$ (32.8)
Costa Rica.................	101 (165)	$19(45)=18.8(27.3)$	$37(65)=36.6$ (39.4)

(The parentheses have the same meaning as in Table 2, q. v.)
or almost entirely (Argia), confined to the Americas. Lestes, Enallagma, Ischnura, EEshna, Libellula and Sympetrum are almost or quite cosmopolitan, but are more abundant in the northern than in the southern hemisphere.

Of the seven endemic genera, Pseudostigma, Thaumatoneura and Paraphlebia are South American in their affinities; the other four are not so clear.

Adding together the 9 species of these three genera, the 56 endemic species of genera also occurring in South America but not in Northern America (Table 4), and the 70 non-endemic species found elsewhere exclusively in South America (Table 1), we have a total of 135 species, or 46% of the fauna, as being of distinctly southern relationships. Similarly, adding the 12 endemic species of genera also occurring in Northern America, but not in South America (Table 4), to the 21 non-endemic species found elsewhere exclusively in Northern America (Table 1) we have a total of 33 species, or 11% of the fauna, as being of distinctly northern affiliations.

In the endemic as well as in the non-endemic species, therefore, the South American element ${ }^{12}$ is much the strongest in Mexico and Central America as a whole.

[^66]Tamle: 1.-Distrinution of the Endemic Species, etc., by Genena.

Arranging the subfamilies in the order of their percentages of endemic species, the series obtained is Cordulegasterinæ (two species only) 100%, Gomphinæ 85.7%, Agrioninæ 72.2_{c}^{c}, Calopteryginx 47.8_{i}°, Lestine 42.8%, Libellulinx 16%, Eshninæ 13%. The Cordulegasterinx, many Gomphinx, most Libellulinx and Lshninx have welldeveloped powers of flight. Perhaps the great majority of the other three subfamilies are feebly-flying insects, yet some of their species appearing in the present faunal district are very widely distributed, e.g., Enallagma civile, Ischnura ramburi, Anomalagrion hastatum. It is consequently impossible to account for the relative endemicity of the subfamilies by such general considerations.

If the relative endemicity of these groups is not always inversely proportional to the powers of flight, as these figures seem to indicate, and if nearly 40% of the West Indian Odonata are not to be found in Mexico and Central America in spite of favoring winds, the explanation of the present distribution of this group of insects may perhaps be found in the past distribution of land and water ${ }^{13}$ in these regions.

Distribution of the Odonata within Limited Portions of Mexico and Central America.

Table 2 and the remarks on the fauna of the Mexican platean (page 463) have already illustrated this topic to some degree. Table 5 gives the number of endemic species and of those common to the three countries whose Odonate fauna is best known.

Accepting the areas of Mexico (exclusive of Campeche, lucatan and Baja California), of Guatemala and of Costa Rica as approximately $655,000,{ }^{14} 63,000,{ }^{15}$ and 21,000 square miles $(1,700,000,164,040$ and 54,000 square kilometres) respectively, it follows that, in proportion to its area, Costa Rica is much the richest country of the three, both in its total number of species and its number of endemic species.

Tables 6-s give the number of species and the number of loealities at which they were collected in each of the states or Departments of

[^67] brobnia; (b) Guatemala and extheme northwestern Hondubas, and (c) Costa Rica.

"Spp." and the parentheses have the same meaning here as in Table 2.
Table: G.-Ncmber of sircies, ktc., Recunded from the States, etc., of Mexico, and of the
Localities at which they were Collected.
(See explanation in the text.)

(Common to Atlantic and Pacific slopes of Mexico, 83 spp., subspp. et varr.)

Mexico, Guatemala and Costa Rica, respectively. In each table the States or Departments are arranged in vertical columns corresponding to their position on the Atlantic or Pacific slopes, and in the case of Mexico also on the Central Plateau. In each vertical column the names stand in order from north to south, and the States or Departments whose names are on the same horizontal line, in reading across these tables, are, in part at least, in the same latitude. These three tables exhibit the scantiness of our knowledge, however, rather than actual differences in the faunas. ${ }^{16}$

Table 7.-Number of Species, etc., of Odonata Recorded from the Departments of Guatemala, and of the Localities at which they were Collected. (See explanation in the text.)

Pacific (Western) Slope.			Atlantic (Eastern) Slope.		
Department.	Localities.	Species, etc.	Department.	Localities.	Species, etc.
			Alta Vera Paz. Izabal	14 9 6	46 64 51
San Marcos.....	1	14	Baja Vera Paz.	6 2	51 40
Retalhuleu.....	3	22	Guatemala.	3	16
Suchitepequez	1	16	Jalapa...		13
solola.	1	2			
Sacatepequez.	1	9			
Amatitlan.....	2	15			
Facuintla Santa Rosa		17 2			
Totals (after deducting					
duplications)................	20	fis	duplications)	35	139

Common to Atlantic and Pacific slopes 56 species, ete. Subtracting 56 from 6 f +139 gives 151 species from definite localities in Guatemala, or 10 less than the total (161) credited to that country in Tables 2 and 5 . For these ten species definite localities are not known and hence they could not be included in Table 7. A similar difference exists between 'Tables 8,5 and 2.

[^68]Table 8.-Number of Species, etc., of Odonata Recorded from the Departaents of Costa Rica, and of the Localities at which they were Collected. (See the explanation in the text.)

Department.	Localities.		Species, etc.
	Pacific slope	Atlantic slope	
Guanacaste	1	9
Alajuela.....	3	1.	33
San José.	8	3	46
Cartago.......		6	46
Puntarenas..	9	29
Totals (after deducting duplications)	21	10	101

Total number of species, etc., Pacific slope. 67
Total number of species, etc., Atlantic slope. 59
Total number of species, etc., common to Pacific and Atlantic slopes 28

Although writers on other groups in the Biologia have distinguished between a "North" and a "South Mexico," the division line being near the Tropic of Cancer, the data at hand for the Odonata do not seem to indicate any such distinction.

Relations of the Odonate Fauna to Temperature. ${ }^{17}$

In Plate CXII we have given a map of the distribution of mean annual temperatures in Mexico and Central America. ${ }^{18}$ The topography, presenting a high paramesial axis rumning northwest and southeast through the greater part of the district, has brought about the existence of parallel zones of temperature, decreasing in mean ammual intensity from each coast line to the axis. As a result the temperatures are not distributed latitudimally, but a high cool tract extends far

[^69]to the south of Mexico, thence contimued as a chain of "islands" in the midst of lower and hotter lands. Considering the zones of mean ammual temperature in order, from the hottest to the coldest:

Zone I (more than $30^{\circ} \mathrm{C}=\$ 6^{\circ} \mathrm{F}$.) is doubtful, as stated in the explanation of the map; no species of Odonata are known to be restricted to the area supposed to constitute it.

Zone II ($30^{\circ}-25^{\circ} \mathrm{C}$., $86^{\circ}-77^{\circ} \mathrm{F}$.) is continuous on the Atlantic, and also on the Pacific slope, for the entire length of its extent, from about 20° north latitude on the eastern, or 25° north on the western, coast of Mexico to South America. The Atlantic and Pacific belts of this zone are connected at the Nicaraguan lakes and at the Isthmus of Panama. This zone therefore offers a pathway for the extension, northward or southward, of species which find in it temperature conditions similar to those which prevail over large areas of South America. ${ }^{19}$ It actually possesses a larger number (91) of species also found in South America than any other zone, although Zone III has 90 such species. Zones II and III have respectively 48 and 47 species also found in the West Indies, larger numbers than for the other zones. Peculiarities of Zone II are Perilestes (Costa Rica), Argiallagma (Guatemala), Telchasis 4 species, Mctaleptobasis, Neoneura, Protoneura 5 species, Nephepeltia and Rholopygia, all genera found in South America and the West Indies. Iucatan, Campeche and most of British Honduras lie within this zone, and these three have no endemic species.

Zone III ($25^{\circ}-20^{\circ} \mathrm{C}$., $77^{\circ}-68^{\circ} \mathrm{F}$.), the Mexican Tierra Caliente of IIam, ${ }^{20}$ extends continuously southward from the Gulf States on the east, and from Arizona and California on the west, to southern Nicaragua, where it is interrupted by Zone II. The Atlantic and Pacific belts are emfluent from the southern part of the state of Puebla to the western part of Chiapas, and again for the southern part of Honduras and most of Nicaragua. After its interruption in southern Nicaragna, this zone reappears in northwestern Costa Rica and extends almost to the Isthmus of Panama. Zones III and IV possess an equal number (27) of species also foumd in Northern America, a larger number than for the other zones. Characteristic for this zone are Philo!frniz (not morth of ('osta Rica), Palamnema, Progomphus 3 species, Epigomphus \& species, gencra chiefly south American in their distribution.

[^70]Zone IV ($20^{\circ}-15^{\circ} \mathrm{C} ., 68^{\circ}-59^{\circ} \mathrm{F}$.), the Mexican Tierra Templada of Hann, embracing a large part of the United States, nowhere touches the coasts in Mexico or Central America, as Zones II and III do, but occupies a central position. It consists in these countries of a Mexican portion, of rather greater area than that of the central plateau, and reaching to southern P'uebla; a mostly elongated and narrow strip in Guerrero and Oaxaca, some of the western parts of Chiapas, Guatemala and Honduras, with an arm into western Salvador; a number of small seattered areas in Honduras and a larger one in northern Nicaragua; finally, an elongated strip in Costa Rica and Panama. Representatives of Zone IV are Cordulegaster godmani, EEshna dugesi, Plathemis subornata, Libellula comanche, foliata, nodisticta and luctuosa, members of chiefly northern, or (Eshna) cosmopolitan, genera.

Zone V ($15^{\circ}-10^{\circ} \mathrm{C}$., $59^{\circ}-50^{\circ} \mathrm{F}$.), the Mexican Tierra Fria of Hann, occurs in seattered areas in Sonora, Chihuahua, Durango, Zacatecas, and one of greater extent in the States of Hidalgo, Puebla, Tlascala and Mexico; in western Guatemala and on some of the peaks of Costa Rica. No Odonata are peculiar to this zone.

Zone VI (less than $10^{\circ} \mathrm{C} .=50^{\circ} \mathrm{F}$.) occurs only on the higher peaks of Mexico, Guatemala and Costa Rica; no Odonata have been reported as yet at or above the elevations corresponding to its lower limit in these countries.

Zones III, IV', V and VI may be compared to continents or islands, lying within a sea of Zone II, and each enclosed by a girdle of zones of lower numbers than itself.

Table 9 gives the distribution of the Odonata within these zones.
From Table 9 it results that the number of species confined to one zone only is 104 , extending through two zones 99 , extending through three zones 71 , and through four zones 8 . Of all the zones, III contains the greatest number of species, subspecies and varicties, viz: 222 as compared with 165 in II, 143 in IV, and 10 in V ; it is also the richest in zonal endemic species, viz.: 46 , as compared with 40 in II and is in II'; and the richest in endemie Mexican and Central Ameriran forms, viz: 106, as compared with 60 in IN, 56 in II, 4 in V°, and 3 in I.

The species, ete., which, outside of Mexico and Central America, are found exclusively in Northern America appear in the temperature zones of our district in the following number: IV 15 , HI 13 , II 5. V4. As our map (Plate NXVI) shows, zones IV and II are contimusus from the Lnited states into Mexico, so that they offer a pathway for the extension of species whose living conditions are

those of these zones. The Northern American species found in zones II and V are, in all cases, also found in III or IV, and hence can conceivably have descended or ascended from one or the other of the latter two.

Considering all the Mexican and Central American species, etc., occurring also (a) in South America, or (b) exclusively in South America and the West Indies, or (c) exclusively in South America, the order (according to the number of species) of the temperature zones in which they appear is always the same, viz.: II, III, IV, I, I', the numbers of species being respectively: (a) $91,90,60,4,1$; (b) $29,29,18,0,0$; (c) $52,51,33,4,0$. Zone II as a pathway for the extension of the "South American element" has already been considered on page 474.

Some Anomalies in the Zonal Distribution.-Since Zone II is the only zone continuously extending northward from South America, it is of importance to notice, as Table 9 shows, that of the 70 Mexican and Central American forms occurring elsewhere exclusively in South America, 16, or 23%, have not been detected in zone II in our faunal region.

Of the 131 species, etc., common to Mexico, Guatemala and Costa Rica, the great majority have been found in zone II at some point (and hence presumably occur in it at other points), although they may also inhabit other zones, but there are 28 exceptions.

Sixteen of the species, etc., of zones III and IV of Costa Rica are not found farther north, but 17 other species of the same zones and country do so extend, although the Costa Rican areas of these zones are discontinuous.

In spite of the isolation of zone IV in Guatemala, no species of Odonata are known to be restricted thereto, and species found there and not known to occur in any other zone than IV, such as Cordulegaster godmani and Libelluda foliuta, are also found in Mexico and in Costa Rica.

Sixty-two and 27 species, ete., of zones higher tham 11 foum in Mexico and Guatemala are not and are, respertively, found farther south, a discontinuity of zones III-V existing south of Guatemala.

Nine and 4 species, ete., of zones IN-V (but not lower) found in Mexico are not and are, respectively, found farther south.

Some conceivable explanations of these anomalies (sugrested for future investigation) are: incompleteness of data on the present distribution; that temperature does not limit the inhabitable area of the species concerned, or that, limiting it, the species found in discontinuous parts of the same zone may at times, past or present,
have made their way from one separated area to another by their own powers of flight, perhaps aided by favorable winds; that zones III and IV may have been more continuous throughout the length of Mreseo and Central America in Tertiary times, when higher elevations with consequent cooler temperatures prevailed over areas now low and hot, as a result of previous greater voleanic activity or orogenic revolution, ${ }^{21}$ some of which latter causes have been invoked by botanists ${ }^{22}$ to account for the distribution of the plants of this district.

That temperature is not the only factor in determining the distribution of the Odonata is shown by the fact that each of the zones II-IV, even when continuous over large areas, contains species of quite limited habitat within that zone. Such are Perilestes fragilis, Argia wilsoni, gaumeri, popoluca, and cupraurea, Argiallagma minutum and species of Protoneura in zone II; Heterina rudis, Argia percellulata, calida, barretti, rhoadsi and pocomana and Palcmnema desiderata in zone III; Hetcerina tolteca and Argia herberti in zone IV.

Relations of the Odonate Fauna to Rainfall.

The existence of pools, lakes, or watercourses of sufficient constancy for the development of the aquatic larve of the Odonata is dependent on the water supply (ultimately traceable to the precipitation) and on the factors which tend to prevent its loss by evaporation or by sinking into the soil. These latter factors probably include frequency of winds and of clouds, sheltering vegetation and the relative porosity of the soil and underlying rocks. The supply and conservation of the water of a given area have not only the direct effects of furnishing the necessary living medium for the Odonate larva, but also, in a more indirect manner, must influence the supply of food for brith larvex and adults through the existence of vegetation and through it of herbivorous insects and other animals.

The influence of these environmental conditions on the Odonate fauna has not yet been thoroughly investigated even in those parts of the earth for which the physical data have been accumulated. For Mexion and Central America, where the collection of these data has been very limited (except at a few well-known localities), it is hardly prossible at this time to attempt to correlate the facts of Odonate distribution even with those of precipitation. The existing measure-

[^71]ments of rainfall show a much greater annual variation ${ }^{23}$ than in the case of temperature, and a much longer series of observations is, therefore, needed to determine the approximate average rainfall than to ascertain the approximate mean annual temperature. Since such series exist for very few places ${ }^{24}$ and the rainfall differs so much at nearby localities (as the data gathered by the authors quoted show), the endeavor to correlate the occurrence of certain species of Odonata with rainfall differences appears to be premature, ${ }^{25}$ although it may be that precipitation has a more important influence on the distribution of these insects than has temperature. ${ }^{28}$ The annual variation in rainfall, however, may bring about an annual variation in the local Odonate fauna-a possibility which suggests that a proper understanding of the insect fauna may be obtainable only from the same methods of accumulation of data as are practised by the meteorologists.

Mr. E. B. Williamson, as a result of his observations made while collecting in Guatemala, has suggested in correspondence that "The species [of Odonata] occurring at any location during the dry season are those species of widest distribution, or, in other words, local species are to be found in the height of the season." In testing this suggestion, the difficulty at once arises that we have no complete records of the Odonata occurring both in the wet and dry seasons at the same locality. An absolute essential for the study of this and other problems connected with the seasonal distribution of these insects in our district is a series of continuous observations for at least twelve consecutive months in the same limited area. Under the present conditions the best that can be done is to compare wet season captures at one point with dry season collections at the nearest similar station. Thus both Santa Lucia and Zapote lie on the Pacific slope of Guatemala,

[^72]have a mean annual temperature of $25^{\circ}-20^{\circ} \mathrm{C}$. and a yearly rainfall of more than $3000 \mathrm{~mm} .{ }^{27}$ the former, however, at an altitude of 335 metres as against 720 for Zapote. They have yielded respectively 26 dry season species and 17 wet season species; each has 6 endemic species (i.e., restricted to Mexico and Central America), one of which, with 7 non-endemic species, is found at both localities.

The single locality in all Mexico and Central America which has furnished the greatest number of species of Odonata is Atoyac, in Vera Cruz-68. At least 59 of these were taken in April and May (the specimens of the other 9 are undated), and of these 59,17 are endemic in Mexico and Central America. If we may judge from the rainfall figure- published for the nearest point, Cordoba, ${ }^{28}$ April and May, while not a part of the wet season in its stricter sense, may have a precipitation of $29-101 \mathrm{~mm}$. and $7 \pi-233 \mathrm{~mm}$. respectively, the total for the year being $2600-3200 \mathrm{~mm}$. On investigating the seasonal records for the 17 endemic species at other localities, it appears that they are by no means always confined to one limited portion of the year.

Gualan, Guatemala, lies in the rainfall zone of less than $1000 \mathrm{~m} .{ }^{23}$ The only rainfall records from anywhere in the vicinity appear to be those of Teculutan, Department of Zacapa, the monthly figures for 1902, from January to December respectively, being 1, 0, 1, 95, 70, 361, ?, 38, S3, 164, 17 and $2 \mathrm{~mm} .{ }^{30}$ Mr. Williamson collected 39 species at Gualan in January, 1905, 7 of which are restricted to Mexico and Central America. At Los Amates, lying in the rainfall zone of $1000-$ 2000 mm ., in the same month and the following February, 35 species were obtained, 6 being endemic in our district. At Puerto Barries, whose measured precipitation for three years, $189-6$, is 3096 mm ., with no month below $50 \mathrm{~mm} .,^{31} 33$ species were procured in December, 1904, and Fehruary and March, 1905, 7 of these being confined to Mexico and Central America. Gualan has a well-marked dry season, which is much less distinct at Los Amates and absolutely, but not relatively, absent at Puerto Barrios. Of the endemic species, three taken at Gualan (Aryiu tezpi, A. pipilu, Psendoleon superbus), three at Los Amates (Nemenera remelia, Protoneura remissa, Orthemis biolleyi), and four at P'uerto Barrios (Ifeterina miniata, Argiu gaumeri, Neonsurn payne, I'rotonenra ("mul(oria) were not taken at either of the other

[^73]two localities. Of the remaining endemic species taken at Gualan, two (Argia frequentula, Telebasis digiticollis) were taken also at both the other places, one (Telebasis salva) also at Los Amates, one (Argia indicatrix) also at Puerto Barrios.

Some other data are presented in Table 10 (see pp. 482, 483).
To illustrate the seasonal distribution more fully, the following lists of the species taken at three different localities are appended: - the number before each specific name is the same as that employed in the list of species, Table B, of the Introduction, Bio!. Cent.-. Imer . Neurop.; names printed in heavy face type in this and other lists are those of species endemic in Mexico and Central America.

IIstrito Fedeiril, Mexico. No. 3. Helarina vulnerata, 25. Lestes alacer, 53. Hyponeura funcki, 101. Argia agrioides nahuana, 10S. Enallagma civile, 109. E. prevarum, 123. Ischnura ramburi and 124. var. credula, 125. 1. denticollis, 126. I. demorsu, 160. Erpetogomphus crotalinus, 171. Cordulegaster diadema, 175. Anax junius, 179. Eshna mullicolor, 204. Libellula nodisticta, 221. Orthemis ferruginea, 267. Tramea cophysa, 280. Sympetrum illotum virgulum, 281. S. corruptum, 256. Erythemis simplicicollis collocata, 293. Pachydiplax longipennis.

April, 179; May, 25, 109, 125, 175, 179, 221, 280, 281, 286, 293; June, 53, $108,109,123,124,125,126,160,179,280,281,286,293 ;$ July, 25, 101, 109, 123, 124, 125, 204, 267, 250, 2s1, 2s6, 293; Dugnst, 2x1, 2N6, 293; september, 3, 25, $101,108,109,125,126,179,250,281,293 ;$ October, 3, 25, 109, 124, 125, 171, 280; November, 240; December, 281.

Cuernabaca, Mohelos, Mexico. 3. Melerina vulnerata, 4. II. americana. 21. Archilestes gromdis, 25. Lestes alacer, 43. Paraphlebia hyalina, 52. Hyponeura lugens, 53. W. funcki, 78. Argia enea, S4. A. lacrymans, S5. A. tonto, S6. A. fisse, 88. A. tarascana, 92. A. extrunea, 93. A. vivida, 94. A. vivida plana, 103. Hesperagrion heterodoxum, 107. Anisagrion lais, 119. Telebasis salva, 125. Ischnura denticollis, 127. Anomalagrion hastatum, 157. Erpetogomphus elaps, 159. E. cophias, 160. E. crotalinus, 162. E. sipedon, 171. Cordulegaster diadema, 175. Eshme cornigera, 179. E. mullicolor, 181. A. williamsoniana, 183. EE. luteipennis, 194. Oplonaschna armata, 202, Libellula saturato, 203. L. s. croceipennis. 206. Pseudolcon superbus, 221. Orthemis ferruginea, 239. Erythrodiplax connata var. b^{\prime} and 241 . var. $d^{\prime} ; 251$. Brechmorhoga tepeaca, 25\%. B. pertinax, 261. Paltothemis lineatipes, 272. 'Tramen onusta, 275. Perithemis domitia intensa, 2s0. Sympetrum illotum virgulum, 2s1. S. corruptum.

January: Sos. $1,24,92,93 ;$ May: $^{2} 3$, 4, $52,78,869294,107,119,202$; June: $3,24,84,92,94,103,107,159,160,175,183,202,206,221,239,261 ;$ July: 3, $24,53,92,93,127,157,159,162,151,202,203,221,253 ;$ August: $4,24,55,88$, 157; September: 3, 24, 103, 107, 119, 127, 160, 179, 275, 281; October: 3, 1, $24,25,84,86,85,92,93,103,107,119,127,160,171,194,202,221,239,241,251$, 272, 280; November: 171.
sas Josfe, Costa Rıca. No. 2. Helerina cruentate, 24. Archilestes grandis, 67. Aryin matata, sti. 1. fissm, 12. 1. astranen, 101. Anisagrion allopterum and 105. var.? rubicundum. 113. Acanthagrion gracile, 157. Erpetogomphus claps, 183. Sishne huteipennis, 203. Libelluln salurata croceipennis, 221. Orthemis ferrugimen, 2:37. Pirythroliphar romnata var. e, 21s. Brechmorhoga vivax, 254. B3. rapax. 261. Pallothemis lineatipes, 273. Pantala flatescens, 2s0. Sympetrum illotum virgulum.

March: 203, 221, 248, 254, 273; May: 2, 67, 86, 92, 104, 105, 113, 157, 250; July: 24, 104; August: 24, 92, 153, 203, 221, 237, 261; September: 2; October: 2,248.

From Table 10 and these three lists it is evident that the observations for different months in the same locality are quite whequal
（＇uernavaea，Morelos，Mexieo．Jahapa，Vera Cruz，Mexioo．

＊2061－9681	
＇ssuax El	Hol？
－E！！！！วə」d	पEOハ
$\because 061$	
－C6SI＇sicen el	
วைiltedodura	UとJが

$6^{\circ} 19 \mathrm{FL}-2$

\div
Orizaba, Vera Cruz, Mexico.

The climatic data quoted in this table have been obtained from the following sources. Those for Ixtacomitan, Chiapas, 2lo im. alt., as the nearest point to Teapa, from Meteorol. Zeitschr. for 1895, p. 387; for Tepic from Liscobar, Mem. Soc. Cien., "Antonio Alzate, 1. PP. 40-1, 1903; for Cuernavaca from July 1, 1873, to June 30, 1874, from Reyes, Bolet. Soc. Geog. Estadist. Rep.
 of the Observito Central de Mexico. The data for ()rizaba are from Moreno y Anda and Gomez, El Clima de la Republica Mexicana. Anos I and II, Mexico, 1899 and 1900. The data for san Josie, (osta Rica, are from Bolelin Instit. Fisico-Gcog. Costa Ricu, III, 1903 ; for the Federal District, Mexico, from the "observatorio Meteorologico Contral de Mexico," a summary of 12 pages and 2 tables issued by the Secretaria de Fomento, Mexico, 1892, and dedicated to the American Public Health Association.
and fall far short of giving a complete picture of the Odonate fauna. It is also clear, especially from the Cuernavaca list, where the same species appear at frequent intervals throughout the year, that a number of different, perhaps overlapping, broods must exist, as there is no reason for supposing that the life of an individual imago is prolonged for many months.

Rainfall and Odonata on the Atlantic and Pacific Slopes.-Various authors ${ }^{32}$ have remarked the greater abundance of species of animals, including insects, on the Atlantic than on the Pacific slope of Mexico and much of Central America. Sumichrast (l.c., p. 5) has attributed the relative poverty of the Pacific slope of Tehuantepec and adjoining areas in birds to "the extreme dryness of the soil; to the scarcity of regetation and of insect life; and to the duration of the winds from the northeast and southwest which there prevail with great violence." Harrington ${ }^{33}$ has concluded that for Central America, "The rainfall is greater on the Atlantic than on the Pacific side as two or three to one." Table 11 gives the distribution of the Odonata on these sides and on the Mexican plateau for the whole of our district, from which it appears that the total number of Atlantic slope species is 235 against 181 for the Pacific, a proportion of nearly 4 to 3 . Tables $6-8$ (pages 471-473) give the proportions for Mexico, Guatemala and Costa Rica respectively as, approximately, 4 to 3,4 to 2,4 to $4 \frac{1}{2}$.

Neither the rainfall nor the Odonate fauna can be summarized so briefly, however, as local conditions may cause both of these to vary. Sot only the map of Puga, but also the publications of Sappers ${ }^{35}$ and of Lottrmoser ${ }^{33}$ show as heary a rainfall on parts of the Pacific slope of Mexico and Guatemala as on the Atlantic side. The Odonate fanna of Altamira and Tampico, in Tamaulipas, numbers 40 speciesthat of Tepic 42 ; for Jalapa, Vera Cruz, we know 24 species, for Guada; lajara 50 ; for the vicinity of the city of Vera Cruz, including Medellin,

[^74]Table 11.-Distribution of the Species, etc., of Odonata of Mexico and Central America by Slopes and (in Mexico) the Central Plateau. ($\mathrm{A}=$ Atlantic, $\mathrm{P}=$ Pacific, slope ${ }^{37} \mathrm{C}=$ Central Mexican plateau.)

Subfamily.	Exact distribution unknown	Restricted to			Common to				
		A	C	P	A C	A P	C P	ACP	
Calopteryginx ...	1	13	0	3	0	3	0	3	23
Lestinx....		3	0	1	0	1	0	2	${ }^{7}$
Agrionine	4	39	0	14	2	32	5	16	112
Gomphinx...	2?	9	1	7	1	2	3	3	28 ?
Cordulegasterinze	4	5	1	1	0	1		1	2
Corduline		1					1	5	23
Libelluline.		17	2	4	7	39	4	24	97
	11	87	4	30	10	S4	13	54	293
Endemic species, etc.	4	59	1	22	2	30	10	13	141
Occur also in Northern	3	2	3	1	6	6	2	14	37
Occuralso in S. Amer....	3	22	0	S	3	48	2	30	115
Occur also in W. Indies.	2	11	0	1	3	19	1	19	56

11 species are now recorded, for Acapulco 19. In Pacific Guatemala the highest number recorded for one locality is 26 at santa Lucia, which is exceeded at various stations on the Atlantic slope, but this latter has received much more attention from the collectors whose material is accessible.

Generally we may conclude that the hot moist areas of Mexico and Central America are tenanted by the greatest number of forms of Olonata, present information pointing to the richest areas as lying in temperature zone III and the higher parts of zone II, on the Atlantic slope, from the centre of the state of Vera Cruz southward, these areas having a heavy annual rainfall.

In this connection may be mentioned the suggestion of a possible

[^75]correlation between paleness of wing-veins and dryness of climate, ${ }^{38}$ which seems to receive some support from Argia mesta ${ }^{39}$ and Enallagma cirile; ${ }^{40}$ but, on the other hand, appears to be negatived by specimens of Enallagma pravarum from many of the same localities which furnish E. civile. ${ }^{41}$

Whatever of a more exact character we learn in the future of the dependence of these insects on climatic conditions, we must conceive of the latter as operating in a manner which may be compared to the beating of the waves upon a shore. A higher temperature and a more copious rainfall, together or singly, advance upward to a greater elevation or northward to a higher latitude, making possible the existence of certain species in the larval state where they were previously unknown. The next year, or after several years, these favorable conditions retreat down the mountain slopes or southward along the cuastal plains, and the species whose existence they permitted disappear from certain localities for a longer or shorter period of time until the necessary conditions are again established. ${ }^{12}$ To demonstrate the correctness of this view such continuous observations at a number of stations as were mentioned above (page 479) are essential.

Relations of the Odonate Fauna to Vegetation Areas.

Dr. Charles C. Adams, whose recent researches have been directed chiefly to the detection of the relations of faume to their physiographic surroundings, has suggested to me to endeavor to correlate the distribution of these insects, with that of vegetation areas, the latter to serve as indices of the general physical features of the country. In this attempt I have employed Dr. Karl Sapper's vegetation maps of Central America, ${ }^{13}$ locating the various places at which the Odonata have been collected in his zones and tabulating the distribution of the species accordingly. The results, save in a few instances to be mentioned shortly, have been unsatisfactory, as the great majority of species appear in several columns of the tabulation. Thus of 133

[^76]species so tabulated, six (Hetcerina crucntata, Argia fissa, A. extranea, Acanthugrion gracile, Ischnura rumburi var. credulu, P'erithemis domitia iris) occur in all of the four zones in which these insects have been collected, viz. (names as given in sapper's, 1 s 95 , map for (inatemala) : 1. Savannas and stretches of primeval forest alternating (wet), 2. Tropical and subtropical rainy forests, 3 . Oak and pine forests of the hot and temperate elimates, 4. Grass- and bush-steppes and dry forests. Twenty-four species (Hetcrina tricolor, H. macropus, Argia pulla, A. indicatrix, A. œпеа, Enallagma cœcum nove-hispanic, Telebasis salva, Leptolasis racillans, Lracis imbuta, Orthemis forruginea, O. levis, Erythrodiplax funerea, E. umbrata, E. ochracea, E. connata var. d, Dythemis velox, D. cannacrioides, Brechmorhoga precox, B. incquiunguis, Macrothemis pseudimitans, Paltothemis lincatipes. Sympetrum illotum virgulum, Erythemis verbenata, Lepthemis resiculosa) appear in three zones. More than thirty species (incluling such endenic forms as Cora marina, Heteragrion tricellulare, Argia frequentula, Telebasis digiticollis, Neoneura amelia, Erpetogomphus viperinus, Brechmorhoga pertinax) are common to zones 2 and 4 , but not to others.

This does not necessarily mean that a correlation of Odonate species with vegetation formations does not exist. It may be that slight local differencen of too small an areat to be shown on the maps employed, or that our data based solely on the imagos, not on the larva, are responsible for its apparent absence.4

The few instances, above referred to, in which some correlation seems to exist are those of certain Ulonata occurring in the tropical and subtropical rainy forest areas, as the species of Protoncure, Paraphebia, Argiallagma, Ephidatiot and Nephepeltia, and, less certainly, of other genera of the legions I'oxdagrion and Protoneura. From the notes of collectors which have been quoted under the respective speciests it would also appear that members of the legion P'seudostigma are dwellers in forests, ${ }^{40}$ although not necessarily wet forests.

[^77]
Relations of the Odonite Fauna to Altitude．

Tahble 9 ，page 476 ，in connection with the map（Plate NXVI），may be used as indicating not only temperature zones，but also the elevated or non－elevated character of the country in which Odonata have been found，the higher zone numbers corresponding to higher altitudes． Zone II in Central America and in Mexico south of $20^{\circ} \mathrm{N}$ ．Lat．$\left(25^{\circ}\right.$ N．Lat．on the Pacific side）embraces all the low coast lands．The highest point on the Atlantic slope of Mexico to which it attains appears to be Actopan，${ }^{47}$ in Vera Cruz（ $311 \mathrm{~m} .^{48}$ ），whence it descends to sea－level south of Tuxpan，while on the Pacific slope it reaches 487 m．at the city of Colima ${ }^{49}$ and sea－level north of Culiacan．Its upper limit in Central America is about 270 m ．

North of zone II the coasts of Mexico fall in zone III，which， with the higher parts of zone II，includes everywhere the gradually ascending slopes of the central plateaus and mountain ranges to an elevation of about $1,160 \mathrm{~m}$ ．in Central America， $1,560 \mathrm{~m}$ ．at Oaxaca City， $1,000 \mathrm{~m}$ ．at Mirador，Vera Cruz， 700 m ．in Nuevo Leon and higher than this last in Sonora．

In zones IV and V the larger rivers arise，to descend（except in some parts of northern Mexico）through zones III and II to the sea．Zone IV extends to an elevation of $2,050 \mathrm{~m}$ ．in Central America， $2,200 \mathrm{~m}$ ． in the southern part of the Mexican plateau，but to not above $1,200-$ $1,300 \mathrm{~m}$ ．in places in New Mexico．

The only species which appear to be exclusively confined to the actual sea－coast are Aishna brevifrons，Erythrodiplax berenice neva and Tramea longicauda var．Libellula auripennis is chiefly a sea－coast species，but in Mexico，as in the United States，has been found elsewhere． A larger number $(16)^{50}$ of forms are not known to descend below the lower limits of zone IV and are，in our district，markedly highland ＂ferio．such are Hetarina tolteca，H．maxima，Cora skinneri， L．stes hrmshumi，Argia terira，herberti，chelata and tonto，Iro－ ！f，וи plus whscurus boralis，Cordulegaster godmani，Eshna dugesi， I＇luthrmis sulormetn，Lilullulu comenche，foliata，nodistich and luctuosu． The remaining 27.4 forms have an intermediate or a more varied habitat，

[^78]in some cases restricted apparently to a single locality (Hetærina rudis), in others having a wide range of elevation, as from the seacoast to the central plateau (Anomalagrion hustatum, Ceratura capreola). Where the same species of Ischnura has been found at quite different altitudes, a slight increase in body size and in the number of postcubitals has heen detected in specimens from the higher stations. ${ }^{51}$

In concluding this discussion of the relations of the Odonata to various factors of their environment, lists of the forms recorded from a few localities of decidedly different physical character are appended. See also the lists given for the Distrito Federal, Cuernavaca and san José on page 481.

Gczman; Chihuahua (desert of Northern Mexican plateau, mean annual temperature probably near $18^{\circ} \mathrm{C}$. or 64 F .; altitude 1,341 metres or 4,400 feet), all the following species were seen or taken Aug. 6 and 7, 1906: Argia moesta, Enallagma civile, Ischnura ramburi var. credula, Anax (junius?), Plathemis subornata. Orthemis ferruginea, Tramea sp., Pantala flavescens, Sympetrum corruptum, Erythemis simplicicollis or its subspecies collocata.

Mazatlan (Pacific sea-coast, mean annual temp. 1880-1902, 24.9 ${ }^{\circ} \mathrm{C}$. or 76.8° F.; mean ann. rainfall 1880-1901, 806 mm . or 32.25 inches): Mecistogaster ornatus, Argia malla, Enallagma cocum nore-hispanix, Leptobasis vacillans, Ischnura ramburi and var. credula, Pseudoleon superbus, Orthemis ferruginca, Erythrodiplax funerea, Brechmorhoga postlobata, Macrothemis inucuta, Minthyrin marcella, Tramea longicauda var., T'. onusta, Pantata flavescens, P. hymenaa, Perithemis domitia intensa, Cannacria batesii, Erythemis verbenala, Lepthemis vesiculosa.

Atorac, Vera Cruz (moist Atlantic slope of Mexico, ef. page 480, antea; mean
 cruentata, II. titio, İ. mucropus, H. infecta, Cora marina, Archilestes grandis, Lestes tenuatus, Meguloprepus cervlatus, Pscudostigma aberrans, Mecistoguster ornatu: and modestus, I/etertgrion chrysops, M!/fwneura funchi, Argia percellulata, trans-leta, frequentula, ulmeca, oculata, cuprea, ence, fissa and extremen, Anisagrion lais, Enallagma cacum nore-hispemiex, Acanhhayrion gracile, Leptobasis vacillans, Palemnema paulina athl angelina, Protoneura aurantiaca, Gomphoides suasa, Erpetogomphus viperinus and ophibolus, Cyanogomphus (?) tumens, .Eshm cornigera, virens and perrensi, Giynacanthu trifida and tibiata, Libellula herculea, Pseudoleon superbus, Thelymis cilrina, Micrathyria didyma, dissocians and ocelleta, Orthemis jerraginea and levis, Cannaphila ribex, Anatya guttata, Erythrodiplax funerea, umbruth, ochraceu, comnatu vars, " and e, Dythemis velox, Brechmorhoga vivax, precor, pertinax, and inequiunguis, Macrothemis pseudimitens and hemichlorn, Miuthyriu simplex, Tauriphila azteca, P'erithemis domilin iris and d. mooma, Erythemis peruriana, attata and verbenata, Lepthemis vesiculesa.

Pubato babuos (Athantice const of (inatomala, see page fso; mean amn, temp. for 1s96, $26.5^{\circ} \mathrm{C}$. or $80.3^{\circ} \mathrm{K}$.): Hetterinu tricolor, litia and miniata, Heteragrion chrysops, Aryia Iranslata, gaumeri, frequentula und indicatrix, Acanthagrion aracile, Telebasis digiticollis, A nomaluyrion hustutum, Ceratura caproole, Neoneura paya, Protoncura amatoria, Lephidutin longipes cubensis, Uracis imbuth, Mierrsthyria dehilis and eximia, Nephepeltin phryne, Anatya normalis, Ery/hrodiphax
 '̈̈'uuriphita aryo, Tramea insularis, P'antalas flavescens, Perithemis domilis iris, Dirythemis rerbenath, Lepthemis resiculosa.
sas (iamosimo (dry, clevated central (iuatemaba; mean ann. temp. probably $20^{\circ}-21^{\circ} \mathrm{C}$ or $6 \mathrm{~s}^{\circ}-69.5^{\circ} \mathrm{F}$.; mean am, rainfall hess than $1,000 \mathrm{~mm}$ or 40 inches: alt. 900 m. or $2,950 \mathrm{ft}$.): Hetarima crucntatu, capitatis and rudis, Amphipteryx

[^79]agrioides, Cora marina, Archilestes grandis, Heteragrion tricellulare, IIyponeura funcki, Argia jissa, A centhagrion gracile, Telebasis salva, A nomalagrion hastatum, Progomphus p!gmaxus, Erpetogomphus viperinus and elaps, Anax amazili, Eshna multicolor and luteipernis, Gymacantha septima, Orthemis ferruginca, Cannaphila vibex, Erythrodiplax funerea, umbrata and connata var. d, Dythemis velox and maya, Brechmorhoga pertinax, rapax and inequiunguis, Macrothemis pseudimitans, Paltothemis lincatipes, Tramea abdominalis, Pantala flavescens, Lepthemis resimulasa.

Cisui, Costa Rica (moist Atlantic slope; mean amn. temp. probably about $20.6^{\circ} \mathrm{C}$. or $69^{\circ} \mathrm{F}$; mean ann. rainfall $1902-04,2,200 \mathrm{~mm}$. or 86.78 inches; alt. $1,020 \mathrm{~m}$. or $3,345 \mathrm{ft}$): Hetcrina cruentata, macropus, capifalis and majuscula, Archilestes grandis, Megaloprepus cœrulatus, Mecistogaster modestus, Heteragrion chrysops and erythrogastrum, Argia frequentula, rogersi, fissa, variabilis, and aetranca, Anisagrion allopterum and var. rubicundum, Enallagma cocoum nove-hispanice, Epigomphus tumefactus and subobtusus, Inax amazili, Eshna luteipennis, Gymacantha trifida, Libellula herculea, Orthemis ferruginea, Cannaphila vibex, Erythrodiplax funerea and connata var. d, Brechmorhoga vivax, pertinax and rapax, Paltothemis lineatipes, Pantala flarescens.
surubres, Costa lica (Pacific slope, drier; mean ann. temp. probably about $25^{\circ} \mathrm{C}$. or $77^{\circ} \mathrm{F} . ;$ alt. q bout 250 m . or 820 ft.$\left.\right)$: Hetærina fuscoguttata, cruentata and macropus, Mecistogaster ornatus, Heteragrion erythrogastrum, Perilestes fragilis, Argia translata, tezpi, mella, frequentula, adamsi, difficilis, cupraurea and anea, Acanthagrion gracile, C'cratura capreola, L'racis imbuta and fastigiata, Orthemis ferruginea, Erythrodiplax funerea and connata vars. c and e, Dythemis velox, Brechmorhoga vivax, Macrothemis hemichlora.

Explanation of Plate NXVI.

Map showing the distribution of actual mean temperatures in Mexico and Central America.

This map was especially prepared by the writer for the Biologia CentraliAmericana, volume Veuroptera. Acknowledgment is due to Dr. F. D. Godman, colitor of that work, for permiscion to reproduce it here. It is based on data from the following sources:

For the Uniled States: Prof. A. J. Henry's "The Climatology of the United states" (Bulletin Q, U.S. Weather Bureau, Washington, D. C., 1906, 4to).

For Mexico: 1. A map, $97 \times 71.5 \mathrm{~cm}$., in the library of the Academy of Natural sciences of Philadelphia, inscribed merely "Carta Climatologica. Sebastian Reyes. P. I. Senties. A. Donamette Imp. Escala de 1: 3,000,000. Gravée chez Monrocg fr. Paris." Thanks to the Secretaria de Estado y del Despacho de Fonento Colonizacion e Industria of Mexico, 1 am informed, under date of July 30, 1907, "que dicha Carta fué publicada en 1889 por disposicion de esta Secretaria, haciendo los trabajos relativos los Sres. Pedro J. Senties, que era Director de la Líruela Nacional de Igricultura y (omisionado de México en la Exposicion de Paris del mismo año y Sebastian Reyes que fué Profesor del Plantel antes mencionado." This map was reproduced without alteration, but on a reduced scafe ($1: 6,000,000$), in 'tome LII, Anales del Ministerio de Fomento de la República Mexicana, Mexico, 189 s.
2. Amap entitled "Reparticion de la Temperatura en la República Mexicans" for the "Año Meteorologico de 1902," published as Plancha 16, Boletin Mensuel, Observatorio Metcorológico-Magnetico Central de Mixico, Noviembre, 1902. Señor Don Manuel E. P'astrana, Director of the Observatorio, has kindly informed me: (Sopt. 6, 1907) that the maps for later years have not been published.
3. A number of temperature data for 70 stations in the State of Vera Cruz nad 49 in other parts of ll oxico, gathered from all accessible sources and published by the wriler in the Monthly Heather Review, Vol. XXXVI, No. 4, pages 93-97, Wishington, D. C., April, 1908. Issucd June 16, 1908.
4. The topograpliy of the country as given in the map issued by the Bureau of American Republics, Washington, D.C., 1900. The limits of the central plateau are taken from the map published in the Boletin Mensucl, Observat. Mcteor.-Mag. Cent. Mex, for July, 1901.

It should be added that the existence of zone I, with a mean annual temperature of more than $30^{\circ} \mathrm{C}$., rests solely on the authority of the map of Senties and Reyes, that it is doubted by Señor Pastrana, and that I have not succeeded in finding any records of temperature observations in the valley of the Rio de las Balsas for a period of more than two months.

For Ceniral America, the temperature records quoted in the paper in the Monthly Weather Review, above mentioned, indicate that in Guatemala and Costa Rica the annual isotherms of $25^{\circ}, 20^{\circ}, 15^{\circ}, 10^{\circ}$ and $5^{\circ} \mathrm{C}$. are situated approximately at elevations of $270,1,160,2,050,2,950$ and 3,840 metres respectively. The present map, so far as Central America is concerned, has been made from the topographical maps of Dr. Sapper (Petermann's Mittheilungen, L, 1904, and Erganzungsbünder XXVII and XXXII, 1899 and 1905; and Mittelamerikanische Reisen und Studien, Braunschweig, 1902) and of the Bureau of American Republics for Guatemala (1902), Nicaragua (1903) and Costa Rica (1903), by using these equivalents.

A Review of the genus piaya Lesson.

BY WITMER STONE.

While rearranging the Cuckoos in the collection of the Academy of Natural Sciences my attention was attracted to the type specimen of Piaya macroura Gambel. The apparent omission of this species from Dr. Bowdler sharpe's Hand List of Birds led me to make a critical study of the genus, the results of which are embodied in the present paper.

I am under obligations to the United States National Museum through Dr. Charles W. Richmond, and to the American Museum of Satural History through Mr. Frank M. Chapman, for the loan of large series of specimens of the genus, without which my investigation would not have been possible. The material loaned by these institutions, twether with that in the Academy's Museum, numbers 259 specimens distributed as follows: Mexico, 64; Central America, 59; Panama, 13; Colombia, 26; Venezuela, 18; Ecuador, S; Brazil, 32; Guiana, 6; Bolivia, 2 ; Peru, 4 ; Paraguay, 2; Trinidad, 8.

The genus Piaya includes two very well-marked species, P. melanogastra and P. rutilus, and a number of allied geographic races which have generally been combined under the name P. cayana.

The first two offer but few difficulties, and it is the cayana group that has caused confusion in the nomenclature of the genus. The forms of Pialat calfana may be roughly divided into three groups according to the color of the upper surface. In group (1) it is bright ferruginous; ${ }^{1}$ (2) bay inclining to chestnut; (3) walnut brown tinged with chestnut. beginning at the northern part of the range of the genus, we have in Western Mexico a large form of the ferruginous group (mexicana), while in eastern Mexico, extending throughout Central America and Panama, is a totally different form of the chestnut-backed group (mehleri). The indiviluals are quite uniform over this large area, with the exception of the size of the bill, which is smaller in Mexican and Yucatan birds than in those from Nicaragua and Costa Rica.

In the Canca river valley of Colombia is a slightly different form (rouece), in which the flanks as well as the crissum are black, this

[^80]color encroaching farther upon the gray abdomen than in any other form. In northeastern Colombia (Santa Marta to Bogota) and the western portion of Venezuela is a light bird of the "ferruginous" group (columbiana), practically identical with the form of western Mexico except for its much larger bill. Farther east, from the Orinoco valley throughout Guiana, is another of the chestnut-backed forms (cayana), similar to that from Central America, while to the southwest is still another (nigricrissa), ranging over eastern Colombia through Ecuador and Peru. Both of these differ from the Central American bird in dimensions and in the almost total lack of brown on the under surface and the tail which is uniform black, while the Guiana form differs further in having gray under-tail coverts instead of dull black. On the island of Trinidad is a diminutive ferruginous-backed bird (insulana), otherwise similar to the Central American form. In southern Brazil, from Bahia and Matto Grosso, is a larger very pale bird (pallescens) of the ferruginous type.

In Paraguay, and doubtless in parts of Argentina and southern Brazil, occurs the largest form of all (macroura), with a different coloration from any of the more northern races, the back being walnut brown tinged with chestnut. In Bolivia and southern Peru is a smaller race of this same style of bird (boliviana), differing further in its gray instead of black under-tail coverts.

Three of the races of Piaya cayana seem to have been described by early non-binomial authors. Hernanlez's (quapactotl being in all probability the east Mexican bird, while Brisson's Cuculus cayenensis is undoubtedly the form from Cayenne and Azara's Tingazu the very large dark bird of Paraguay.

Linnerus established Brisson's bird in binomial nomenclature as Coccyzus ctyganus and Gimelin gave the name Coccyzus ridibundus to the Quapactotl of Hernandez, quoting the original more or less indefinite description, as was done also by Ray, Buffon and Latham, the last of whom designated it as the Laughing Bird. Later Stephens inadvertently changed Gmelin's name to rubicundus, but added nothing to the original diagnosis. This-viz.: "C. fulvus, gula, jugulo, et peetore cinereis, abdomine, femoribus et tectricibns cander inferioribus nigris. L. 16 ins. Tail half the length of the body. Hab., Nova Hispana" -sems not clearly identifiable, although it is atded to the symonymy of Piague cayma by Capt. Shelly without question in Vol. XIX of the British Museum Catalogue of Birds, where all these forms are lumped ander the above name.

Vieillot, in 1817, gave the name macrocercus collectively to the 32
P. cayana of Linnæus and allied forms, seteral of which were described but not named.

Swainson, 1827, named the light-colored western Mexican bird mexicana, and 1837 modified Linnæus' name cayamus into cayennensis, which was the form in which it had been used by Brisson.

Gambel, 1849, described the large Paraguay bird as Piaya macroura, but erroneously credited his specimen to Surinam, as pointed out by Cabanis (Mus. Hein., IV, p. S7). Dr. J. A. Allen (Bull. Amer. Mus. Nat. Hist., V, p. 137, 1893) correctly states that Gambel regarded P. cayana L. and P. mexicana as identical, but his description of macroura could never apply to cayana as Dr. Allen claims. Gambel states that the crissum is black and the length of tail is 15 inches, while P. cayana has a gray crissum and a tail only 9.50 inches in length (Dr. Allen's measurement)!

Bonaparte, 1850, also describes the large Paraguay bird as P. circe from a specimen erroneously recorded as from Colombia (error in locality also pointed out by Cabanis, l.c.) and describes as new another bird, P. mehleri, from Bogota. This name has caused much trouble to subsequent authors. For a time it was used for the small form occurring from southeastern Colombia to Ecuador and Peru. Then Dr. Sclater examined the type in the Paris Museum and stated (P. Z. S., 1860, p. 285) that it was identical with the east Mexican and Central American bird, claiming that the type locality must have been wrong. Subsequently Dr. Allen and also Mr. Hartert (Nov. Zool., V, 499) have used the name again for the Ecuador bird, and it so stands in Sharpe's Hand List.

The examination of the type ought to settle a question of this kind,' and I can see no reason why Dr. Sclater's statement should be ignored.

Cabanis' review of the genus (Mus. Hein., IV, p. 82, 1862) is a remarkably accurate piece of work. He describes as new the well-marked forms pullescens, guianensis and columbianus, and clearly diagnoses as distinct mexicanus Swainson, macrourus Gambel, nigricrissa Sclater, cayana Linn. and mehleri Bon. His new species mesurus, however, seems not separable from his columbianus.

In Dr. J. A. Allen's brief review of the genus (Bull. Amcr. Mus. Nut. Hist., V, p. 136, 1593) he falls into several errors, largely through lack of material, having no specimens of the light colored bird of northern Colombia and Venezuela, nor of the very large dark form from Paraguay.

He ignored Cabanis' exlpanation of the true nature of Gambel's macroura, making it a synonym of cayana in spite of the discrepancies
in size and color; and then identified the macroura of Cabanis with his new race cabanisi, a pale bird differing only slightly in measurements from pallescens Cab., from which it does not seem separable.

As a matter of fact macroura and "cabenisi" differ more in color than do mexicana and mehleri, which Dr. Allen regarded as the most distinct of any of the races.

Dr. Allen used Bonaparte's name mehleri for the Ecuador bird, apparently overlooking Sclater's statement, but he rightly surmised that the Bolivian birds were separable, though he allied them to the Ecuador form instead of to macroura, to which they are closely related. P. circe Bon., correctly referred to macroura by Cabanis, is doubtfully referred to mehleri by Dr. Allen.

Hellmayr (Nov. Zool., XIII, p. 43) describes as new the Trinidad bird, calling it insulana, and gives a good résumé of the several forms recognized by him. He here distinguishes guianensis from cayana, although he later regards them as not separable; he also adopts Dr. Allen's cabinisii for the big dark colored macroura, apparently overlooking the fact that Dr. Allen's bird, which "differs little in color from pallescens," could hardly have the "crissum black."

Von Ihring (Revista Museo Paulista, 1904. p. 448) recognizes Allen's error in writing P. macroura and P. cabanisi and again renames the former var. yuarania.

Key to the Species and Subspecies.
Plicum gray sharply contrasted with the rest of the upper parts, melanogastra.

Pileum uniform with the upper parts or very nearly so.

Size very small; wing 4.12 in.; throat cimnamon rufous, . minuta.
Size medium or large, wing 5.50-6.50; throat vinaccous. ferruginous above.
large, tail 11.30-12.70.
tail strongly rufous below, black subterminal bands strongly defined.
bill large, columbiana.
bill small, mexicana. tail dull blackish brown below, black subterminal bands not clearly defined, pallescens.
small, tail 9.30, insulana. bay above.
tail uniform dull black beneath, no trace of subterminal bands. crissum gray, cayana. crissum black, nigrocrissa.
tail helow with rusty on the outer webs at least.
thighs gray, tail $10.50-11, ~ . ~ . ~ . ~ . ~ . ~ . ~ m e h l e r i . ~$ thighs black, tail 12, caucc.
walnut brown above, tail uniform dull black beneath. tail 15.10 , crissum black, macroura. tail 11.25 , crissum gray, boliviana

Piaya melanogastra (Vieillot).
Cuculus melanogaster Vieillot, Nov. Dict., VIII, p. 236, 1823 ['Java,' loc. err. = South America].
Piaya brachyptera Lesson, Traité, p. 140, 1831 [Cayenne].
Melias corallirhynchus Lesson, Rev. Zool., 1840, p. 1 [Hab. ?].
Length of wing, 5.46 inches; tail, 8.55.
Above ferruginous, tail and wings glossed with wine purple, entire pileum, nape and eye region ashy gray, rectrices with white tips and black subterminal loands, remiges with dusky tips, throat and breast cinnamon rufous, rest of under surface dull black; specimens examined from Cayenne; Demarara; Napo River, Ecuador; Amazonia.

The nomenclature of this species is considered under P. rutila.
Piaga rutila (Illiger).
Cuculus rutilus Illiger, Abhl. Berl. Akad. Wiss., 1812, p. 224 [Cayenne]
Coccyzus minutus Vieillot, Nov. Dict., VIII, p. 275, 1817 [Cayenne].
Macropus caixana Spix, Av. Bras., I, p. 54, 1824 [Brazil].
Соссусиа monachus Lesson, Traité, 1831, p. 142 [Cayenne].
Length of wing, 4.12; tail, 6.15 .
Above ferruginous chestnut, tail and wings glossed with wine purple, rectrices with white tips and black subterminal bars, remiges dusky at their tips, throat, breast and cheeks cinnamon rufous, rest of under parts gray, tinged with buff on abdomen and flanks.

Specimens examined from Panama, Colombia, Orinoco, Cayenne, headwaters Huallaga River, Guyaquil.

This bird was first described by Brisson as Cuculus cayanensis minor, and is entered by Linnæus and Gmelin as var. ß under Cuculus cayanus. Gmelin also adds a description of a var. γ, which from its 'capite cinereo' must be Piaya melanogaster.

Illiger (1s12) regarded these as sexes of the same species and gave them the name C'uculus rutilus, while Spix (1824) did the same thing, ralling them Murropus crixana. The firure and description of his female $(=$ melanogaster $)$ is defeetive in that he does not give the abdomen as Dark; furthermore he showed by a query that he was not sure whether this was the same species as the smaller bird, therefore his name tmast unguestionably be restricted to the latter. Illiger's name could be allotted to either hirel, but as the smaller one, var. a, stands first, and as it was not subserguently named mimutus until after the name melanoguster was proposed for var. γ, I think rutilus should be used for 'var. a,' currently known as P'iaye minuta.

Piaya cayana.

Common characters. Above some shade of ferruginous, bay or walnut brown, rectrices and remiges with more or less wine purple gloss, tips of remiges dusky, rectrices tipped with white with a subterminal black bar above; central pair usually rusty beneath, others varying from rusty to black in the various races, the white tips always distinct, the subterminal band present or absent, lower surface of body pale gray, thighs sometimes and crissum always darker, throat and breast vinaceous cinnamon.

The races vary in the color of the upper parts and of the lower side of the tail, as well as in the color of the crissum; the latter, however, is not always constant. There is also marked difference in size, and in the proportions of the bill.

The extremes of coloration are seen in fresh specimens of P. columbiana, nigricrissa and macroura, which on the upper surface are respectively ferruginous, bay and walnut brown of Ridgway's Nomenclature of Colors.

The relationship of the other forms, so far as the color of the upper parts is concerned, is shown below:
P. c. columbiana, ferruginous.
P. c. mexicana, ferruginous.
P. c. pallescens, ferruginous, a trifle paler.
P. c. insulana, ferruginous, a trifle darker.
P. c. nigricrissa, bay.
P. c. mehleri, chestnut tinged with bay.
P. c. cayana, chestnut tinged with bay.
P. c. caucce, similar to the last but more ferruginous.
P. c. macroura, walnut brown.

I'. c. boliviana, walnut brown.
Piaya cayana cayana Linn.
Cuculus caymus Linnsus, syst. Nat., I, p. 170, 1760 [Cayemne].
Coccyzus macrocercus Vicillot, Nov. Dict., VIII, p. 275, is17 [Cayenne].
Cocryzus commonsis swainson, (lass. Bels, II, p. 323, 1s.37 [C:1yemme].
Pyrrhocorax guianensis Cabanis and Heine, IN, p. 85, 1862 [British Guiana].
Length of wing, 5.65 ; tail, 11.10.
Above chestnut strongly tingel with bay, grayer on the hearl, wings and tail glossed with wine purple, flanks smoke gray, crissum mouse gray, under side of rectrices dull black except for the white tips, no trace of subterminal bands.

Some bird have the eriwumpaler than others. Mr. Hartert at one time (Nor. Zool., XIII, p. 43) regarded this as a distinctive character separating the hird of French (iuiana from that ranging from

Dutch Guiana through the Orinoco ralley (P. c. guanensis), but later (.XI', p. 35) he considers the difference not constant, in which opinion I heartily agree.

Specimens examined from Guiana-Cayenne, Annai, Surinam; Venezuela-Maupa, Suapure, Lourde 1700 m .

Piaya cayana columbiana (Cab.).
Pyrrhocorax columbianus Cabanis, Jour. f. Orn., 1862, p. 170 [Cartagena, Colombia].
Pyrrhocorax mesurus Cabanis and Heine, Mus. Hein., IV, 1862, p. 83 [Bogota].
Length of wing, 5.65 ; tail, 11.85 ; length of culmen, 33 mm .; height, 12.5 mm .

Above ferruginous, slightly paler on the head, tail and ends of wings, with a gloss of wine purple in certain lights, flanks and crissum as in cayana; under side of retrices rusty, more or less minutely flecked or watered with black on the inner webs, broad, well-defined subterminal black bands and white tips.

This bird is indistinguishable from mexicana above, and differs below only in the greater amount of black shading on the rectrices ; the greatest difference is found in the much larger bill. Bogota specimens have a still greater amount of black on the under side of the rectrices.

Specimens examined from Colombia-Santa Marta, Bonda, Bogota; Venezuela-Cumanacoa, El Pilar, Valencia, Macuto, Santo Domingo, $2,000 \mathrm{~m}$.

Piaya cayana insulana Hellmayr.
Piaya cayana insulana Hellmayr, Nov. Zool., XIII, p. 40 [Trinidad].
Length of wing, 5.58; tail, 9.30.
Above ferruginous with a slight chestnut tint, closer in color to columbiamus and mexicanus than to cayana, tail rather darker with a purplish glose, thighs and crissum as in cayana. Under side of rectrices dull black, the outermost one rusty on outer vane near the quill for two-thirds of its length, the others largely rusty on the outer vane except for a subterminal black area, some of them rusty, in certain lights at least, on parts of the imner web, which helps to bring out an obscure ill-defined subterminal band.
Specimens examined from Trinidad.

Piaya cayana mexicana (Swains.).

C'uculus mexicanus Swainson, Philos. Mag., I, p. 440, 1527 [Tableland of Temascaltepec].
Length of wing, 5.90 ; tail, 12.65. Length of culmen, 30 mm .; height, 10 mm .

Above formginons: with wine purple reflections on the tail and ends
of the wings, below like colombianus except that crissum is paler and the rectrices are uniform rusty brown or pale ferruginous, except for the subterminal black band and white tips; some of the feathers have the black flecking near the base, but it is not apparent unless the tail is fully spread.

Specimens examined from Mexico-Esquinapa, Mazatlan, Juanacatlan, Barranca, Ibarra, Calete, Tupila River, Arroyo de Lemones.

Piaya cayana mehleri (Bonap.).
Piaya mehleri Bonaparte, Conspct. Avium, I, p. 110, 1850 [Santa Fé de Bogota-loc. err. fide Sclater, P. Z. S., 1860 , p. $285=$ Cent. Amer.].
Piaya thermophila Sclater, P. Z. S., 1859, p. 368 [Mexico and Guatemala]. ? Cuculus ridibundus Gmelin, Syst. Nat., I, p. 414, 1788 [New Spain].
? Cuculus rubicundus Stephens, Shaw's Gen. Zool., IX, p. 109, 1815 [Mexico].
Length of wing, 5.80 ; tail, 10.90 .
Above like cayana, below darker, crissum dull black, thighs dark gray; under side of rectrices dull black, outermost feather usually uniform, the others with the outer vane more or less rusty, except for a subterminal black area. Mexican birds average less rusty than those from farther south. Occasional specimens have a slight watering of

- rusty on some of the inner webs; the subterminal band is never defined. The coloration of the tail below is practically intermediate between cayana and insulana.

Mexican and Yucatan birls have the bill distinctly smaller than those from Nicaragua and Panama. Mexican birds average larger than those from the Central American countries and Yucatan specimens average smaller, but these differences do not seem sufficiently marked to deserve recognition in nomenclature.

Specimens examined from Mexico-San Tan, Jalapa, Tampico, Tehuantepec, Tabaseo, Vera Cruz, (rizaha, Potrecro, Vucatan; Guatemala; Honduras-C'eiba, Truxillo, san P'elro Sula, Varuca, Segovia River; Salvador; Nicaragua-Managua, Chimnudeza, Escondido; Costa Rict-san José, Guayabo, Pigres, Volcan de Irazu, Bonilla, Talamanca, San Iomingo de San Mateo; I'anama-Boco del Toro, Chiriqui David, Boquete.

Piaya cayana caucre subsp, nov.
Length of wing, 5.60 ; tail, 12.
Above bay strongly tinged with chostnut or dull forruginous, wings and tail with a wine purple gloss. Bolow similar to ni!pucrissa, but the thighs ats well as the erisisum aro deqp hack and the lower part of the abdomen, so that this color enomaches mon the gray area more than in any other rater ; mater sibe of reefriere almost exactly as in insulana,
the rusty tint being mainly restricted to the outer vanes of the feathers and the black subterminal bands scarcely perceptible.

This race is the brightest of the 'bay-backed' series and approaches insulana, the dullest of the 'ferruginous-backed' series, in the color of the upper parts.

Type No. 71,581, Amer. Mus. Nat. Hist. Rio Cauca, Colombia, May 27, 1898. ठ'. J. H. Batty. Wing, 5.55 ins.; tail, 12.10 ins.

Piaya cayana nigricrissa (Sclater).
Piaya nigricrissa Sclater, P. Z. S., 1860, p. 285 and 297 [New Grenada and Peru].
Length of wing, 5.45 ; tail, 10.20 .
Above bay with a strong wine purple gloss on wings and tail, thighs dark gray, crissum blacker, less sooty than in mehleri; under side of rectrices as in cayana, uniform dull black with the exception of the white tips.

Specimens examined from Colombia-Bogota; Ecuador-Napo River, Archidona, Guayaquil; Peru-headwaters of the Huallaga River, Pebas.

Piaya cayana pallescens (Cab, and Heine).
Pyrrhocorax pallescens Cabanis and Heine, Mus. Hein., IV,'p. S6, 1862 [North Brazil].
Piaya cayana cabanisi Allen, Bull. Amer. Mus. Nat. Hist., V, p. 136, 1893 [Chapada, Matta Grosso, Brazil].
Length of wing, 5.95; tail, 11.75.
Upper parts similar to columbiana but paler, the bright ferruginous modified by a tone of ochre; crissum and thighs paler than in colombiana, and abdomen paler than in any other race, under side of rectrices nearly uniform rusty brown except for the white tips; the pale rusty tint usually pervades the whole dark area instead of forming definite patches, in some lights, however, the dusky subterminal bands are clearly discernible.

I have sturied Dr. Allen's series of cabanisi from Chapada, Matto Grosso, and camot find sufficient difference between them and birds from more northern Brazilian localities to warrant separation from pallescrns. Five specimens of the latter give average length of wing 5.90 and tail 11.30, while ten Matto Grosso birds give wing 6, tail 12. These differences are less than those shown by series of mehleri from different parts of its range and since, as Dr. Allen admits, there are practically no color differences, there seems to be no ground for reengnizing cabanisi as distinct.

Dr. Allen was misled by the general recognition accorded to the more
southern macroura, to which he thought his bird must be referred, and which he thought required a new name.
Specimens examined from Chapada, Matto Grosso, Corumba, Matto Grosso, Bahia, Para and Rio Janeiro.

The Para specimen approaches cayana, while those from Rio Janeiro are darker, showing a possible tendency toward macroura.
Piaya cayana macroura (Gambel).
Piaya macroura Gambel, Journ. Acad. Nat. Sci. Phila., 1849, p. 215 ['Surinam' loc. err. fide Cabanis and Heine, Mus. Hein., IV', p. $87=$ Paraguay].
Piaya circe Bonaparte, Consp. Avium, I, p. 110, 1850 ['Colombia,' loc. err. fide Cabanis and Heine $=$ Paraguay].
P.c. var. guaurania von Ihring, Rev. Mus. Paulista, 1904, 44S [S. Brazil].

Length of wing, 6.75; tail, 15.10.
Above walnut brown sometimes tinged with burnt umber, wings tinged with chestnut and tail with bay, slightly glossed with wine purple, head distinctly gray; thighs dark gray, crissum nearly black; under side of rectrices dull black excepting the white tips, no trace of a subterminal band.

Specimens examined from Paraguay; Brazil-Rio Grande do Sul.
Piaya cayana boliviana subsp. nov.
Length of wing, 5.85 ; tail, 11.50.
Above walnut brown, wings and rump tinged with chestnut, tail tinged with bay, both glossed with wine purple; flanks dark gray, crissum slightly darker; under side of rectrices dull black with tips white, no trace of a subterminal band.

This race is exactly like macroura except for the gray crissum and much smaller size.

Type No. 30,550, Amer. Mus. Nat. Hist. Yungas, Bolivia. Dr. H. H. Rusby. $6,000 \mathrm{ft}$. 1885. Wing, 5.90; tail, 11.60.

Specimens examined from Bolivia-Yungas, La P'az; Peru-Inca Mine.

Noyember 3.

Arthur Erwin Brown, Sc.D., Vice-President, in the Chair.
Twenty-five persons present.
The Committee on the Hayden Memorial Award reported as follows:
The Cominttee on the Hayden Memorial Geological Award reports in favor of conferring the medal this year on John Mason Clarke, State Geologist of New York, in recognition of the value of his work in geology and especially of his memoir, Early Devonic History of New York and Eastern North America. In the opinion of the Committee he ranks with the others who have received the recognition.

(Signed)	Henry Fairfield Osborn,
R.A. F. Penrose, Jr.,	
	Amos P. Brown,
	Frederick Prime,
	Samuel G. Dixon,

John Mason Clarke was born at Canandaigua, N. Y., April 15, 1557. His early education was received in the Canandaigua Academy, of which his father was principal. In 1877 he graduated from Amherst College and stulied in the University of Göttingen from 1882 to 1884. For a perionl he taught at the Canandaigua Academy and the Utica Academy and in 1879 was instructor in geology at Amherst. From 1850 to 1852 he was professor of geology and zoology at Smith College, an! in 1585 lecturer on geology at the Massachusetts Agricultural Colloge. In 1856 he was appointed assistant in paleontology under Prof. James Hall, State geologist of New York; in 1892 assistant State eroblogist and paleontologist; in 1898 state palcontologist; in 1904 state geologist and paleontologist, director of the state Museum and the seience division of the Elucation department ; in 1594 he was made profesor of geology and mineralogy in the Rensselaer Polytechnic Institute. In 1908 the Iroquois Nation received him into their membership as keeper of their historic archises with the ancient title of this wfice. His scientific publications, chiefly on geology and paleontology, and extenting over a perion of thirty years, are somewhat voluminous, and, though largely relating to the state of New York, include also parts of Canada, Maine, South America and Germany. His most com-
prehensive treatises are The North American Deronian Crustacca (1888), Introduction to the Study of the Genera of the Paleozoic Brachiopoda (1892 and 1894), and The Paleozoic Reticulate Sponges (1898), all published in titular conjunction with James Hall; The Naples Fauna (1899 and 1904), The Early Deronic of New York and Eastern North America (1908). In addition to numerous other papers on problems in geology he has also written on ceramics.

He received the degrees of A.M. and Ph.D. (honoris causa) from the University of Marburg in 1898; LL.D. from Amherst, 1902.

November 17.

The President, Dr. Samuel G. Dixor, in the Chair.
Thirty-nine persons present.
The Chair announced the death of Alfred Whelen, November 18, 1907; William Potts, July 29, 1908, members, and of William K. Brooks, a correspondent, November 12, 1908.

In association with the Biological and Mieroseopical Section, Mr. Charles S. Boyer made a communication on the synonymy and relationships of Surirella and described a new species of diatom from the miocene deposits of Barbadoes, for which he proposed the name Cymatopleura Shulzi.

Dr. Thomas s. stewart spoke of the bacillus of syphilis and suggested methods of staining.

Mr. Frank J. Keeley exhibited slides illustrating secondary erystallization of early limestome and showing the Brownian motion of smoke particles on dark-ground illumination.

Dr. Hewry A. P'ilibry spoke of the geographical distribution of Strobilops.

The following papers on the report of the Publication Committee were accepted for publication:
"On the Cicimedinar of Angola." By. F. Creighton Wellman, M.D., and Walther Horn, M.D. (September 26).
"Remarks on Prof. Chamberlin's Revision of North American Lycosidx." By Thomas H. Montgomery (October 27).
sydney L. Wright, Jr., was elected a member.
The following were ordered to be printed:

ON THE CICINDELINE OF ANGOLA.

by f. CREIGHTON WELLMAN, M.D., F.E.S., AND WALTHER HORN, M.D.

Very little has been known until now about the Cieindeline of Angola. Most of the species described are represented by uniques or a few specimens, excepting, of course, those occurring in other parts of Africa. The discovery of the "typical" Angolan forms is almost entirely connected with the names of four collectors, namely: Friedrich Welwitsch, the distinguished Austrian botanist who collected for the Museum of Lisbon;.A. v. Hohmeyer and Dr. P. Pogge, whose collections now belong to the Royal Zoological Museum of Berlin, and Major von Mechow, whose specimens are at present in the collection of Réné Oberthür. These last were described by Quedenfeldt, Sr., Harold worked up the material for the Berlin Museum, and Putzeys published concerning the Portuguese collections.

Beyond these only a few species, mostly based on single specimens and some without exact localities, have from time to time been sent to Europe, most of them described by one of the authors of the present paper (IV. H.).

While not less than six genera in thirty-five species ${ }^{1}$ are known from this so highly interesting part of Africa, yet this is the first time that large material with exact bionomical notes has become available -material which permits of a distinct advance in our knowledge of this interesting family: It seems, therefore, a suitable opportunity to present our notes on the habits and relations of the species occurring in Angola, and we have mark the list complete by including the species reported by other observers as well as ourselves. One very peculiar and interesting new form is described.

In taking up a famistic study of this kind it is always interesting to note the gencral features of the climate, soil and flora of the region discussed, as these must always have a bearing on the habits and distribution of its animal life. For the purposes of this paper our district may be divided into three regions: lowlands, mountainous slopes, and

[^81]plateau. The first of these extends from the sea to a point 30 to 100 miles inland, according to the configuration of the country, and its most typical plant may be said to be the cocoanut palm, which will grow wherever moisture enough is obtainable. The soil is over parts of this belt strongly calcareous, being of recent geological formation, abounding in various fossils such as ammonites and trilobites. Other parts are the result of silt being carried down by erosion of the older interior mountains. The rainfall in this part is very scanty, as the storms come from the east and are intercepted by the highlands and mountains, only the heaviest and most general rains for a small portion of the year reaching the lowlands to the west. The vegetation is in consequence sparse, consisting of a few shrubs and thorny or fleshy trees. The grass grows in little discrete clumps and dries up and almost disappears during the greater part of the year. In this region only five species of Cicindelinæ were encountered: Cicindela brevicollis intermedia Klug, C. melancholica F., C. nitidula Dej., C. cabinda Bat. and Eurymorpha cyanipes moufleti Fairm., the last three of which occur on the seashore.

The second region may be said to extend inland from the first region to a point marked by the limits of the occurrence of the baobab tree (Adansonia digitata). The basis of this is a vast primary system, consisting of various metamorphic rocks, chiefly granite and sandstone. The soil is a sandy loam alternating with red clays. Of course, there is a great mixture of soils in the lower levels and valleys of this region. Huge granite mountains and boulders abound. The vegetation is very dense in canons and valleys and along rivers; and in the rainy season the grass is often long, coasse and dense, forming a sort of jungle. Many large trees (Anonacest, Anacardaces, Guttifere, etc.) abound in the jungles near streams. The most inland valleys of this region have a flora approaching that of the highland region yet to be described, and it was here that most of the species discussed in this paper were taken, our specimens including C'icindela Mechowi Qued., C. Lutaria W. Horn, C. saraliensis Guér., ('. uncivittata Qued., C'. infuscata (qued., C. Putzeysi W. Horn, C. angusticollis Boh., C. villosa Putz, C. flavipes P'utz., C'. Wellmani W. Horn, C. reticostata n. sp., Odontochila erythropygu Putz., C'asmema I'ellmami W. Horn, C. marginepanctutu W. Horn, C , arropunctuta (Qued., ete. The climate of this region is intermediate between that of the foregoing and that of the region about to be deseribed, being cooler and moister than the lowlands, without equalling in these respects the highlands.

The third region is the high plateau forming the Bihe and parts of
the Bailundo and Andulo countries. This is part of the alpine region of Africa, and is to be classed with Abyssinia, Ruenzori and the NyassaTanganyika highlands. The soils are about as in the middle region and the country is, geologically speaking, very old, being entirely underlaid with archaean metamorphic rocks. The grass is comparatively short and thickly set together, quite covering the ground. The bulk of the trees are Leguminose and are as a rule not large, forming what is known as "bush." One of the Rosaceæ (Paranarium mobola) is the largest and most striking tree. Many Malvaceæ and Ampelidæ add to the smaller aspects of the landscape. The climate is moist and cool and is essentially subtropical and not tropical. The species found in the center of this last region are Cicindela suturalis P'utz., C. Mechowi Qued., Ophryodera rufomarginata Boh., and Mantichora congoensis" P'ér. At the western border of this region, almost at a point where it joins the second region (vide suprà) were taken several other species, namely: Cicindela angusticollis Boh., C. uncivittata Qued., C.infuscata Qued., C. Puzeysi W. Horn, C. flavipes Putz., C. villosa Putz. and Cosmema auropunctata Qued.

Following is a list of all recorded species ${ }^{2}$ from Angola, including our own material, much of which is here reported for the first time, together with our notes on the habits of the beetles and the description of a new species.

CICINDELIN゙E.

CICINDELINI.
Odontochilina.

1. Odontochila erythropyga Putz., Jorn. Sci. Lisb., 1880, p. 24.
= variventris Qued., Berl. Ent. Zeitschr., 1883, p. 245.
Without exact locality (Welwitsch); Malange (Mechow); Ekekete Mountain, two hours south of Ekuiva River, November, 1907 (Wellman). The specimens were taken in thin grass near a large swarm of Meloid beetles (Lytta amethystina) which at some distance they distinctly resembled.

Cicindelina.

2. Cicindela aulioa Dej., Spec. V, 1831, p. 250.

Without exact locality (Welwitsch). An intermeliate form between the typical aulica and the subsp. polysita Guer. occurs in Loanda.
3. Cícindola asperula Duf., Ann. So. P'hys., VH1, 1821, p. 359, pl, 130, f, 1.

Kuango (Mechow).

[^82]4. Cicindela nitidula Dej., Spec. I, 1825, p. 120.

- Without exact locality (Welwitsch); Landana, Lanco (I. More) ; Lobitn Bay, April. 1905 (Wellman). Taken on the beach (that part which is kept more or less wet by the tides), and by its coloring the beetle is rendered inconspicuous as it sits on the sand, and is usually noticcable only when flying.

5. Cioindela cabinda Bat., Cist. Ent. II, 1878, p. 331.

Landana, Loango (U. More); Lobito Bay, April, 190 (Wellman). Habitc exartly like C'. nitidula, with which it was fouml in company.
6. Cioindela brevicollis clathrata ${ }^{3}$ Dej., Spec. I, 1S25, j), 115.

Mossametes.
trevicollis neglecta ${ }^{4}$ Dej., Spec. I, 1S25, p. 114
Malance (Mechow); without exact locality (Welwitsch). There occurs near Mossamedes an intermediate form between this last and the - var. demaral l'ér.
brericollis discoidalis Dej., spec. I, 1825, p. 114.
Kuango.
brevicollis intermediet Klug, Monatschr. Berl. Acad., 1853, p. 245.
Quanza (Homeyer), Loanda.
7. Cicindela uncivittata ${ }^{3}$ Qued., Berl. Ent. Zeitschr., 1583, p, 242.

Malange (Mechow); north bank of Ekuiva River, November, 1907 (Wellman). Found on the path, dark soil.

```
    exigua}\mp@subsup{}{}{\circ}\mathrm{ Kolbe, Ent. Vachr., 18S5, p. 50.
```

South hank of Likuiva River, November, 1907 (Wellman), clayey soil.
S. Cicindela obtusidentata 1’utz., Jorn. Sci, Lisb., 18s0, p. 22. Bocatgei Chrl. in litt., Cat. Coll. Cic., p). 2S.
Without exacet locality (Welwitsch).
9. Cicindela wellmani W. Hurn, Denstreh. Eint. Zeitachr., 1007, 1). A21.

Chiyaka, November, $190(3$, and November, 1908 (Wellman). In paths or on other bare places, clayey soil, on which the coloring of the beetle makes it hand to see. Very ant-like in its movements.

[^83]10 Cicindela mechowi ${ }^{7}$ Qued., Berl. Ent. Zeitschr., 1883, p. 248, pl. 3, f. 3.
Malange (Mechow), Huilla (Welwitsch), Kakonda, Duque de Bragança, Bihé, Chiyaka, Ekuiva River (Wellman). Several forms occur, with and without white sutural stripe, both brownish and green. These beetles appeared to be very scarce until a large artificial bare place was prepared, when mechowi and several other species appeared in great numbers. The brownish form usually appears on clayey soil. When alive they have a strong verbena-like smell. They are strong flyers and very pugnacious. A specimen kept over night in a cage with some other beetles was found next morning chewing the thorax of a Meloid beetle (Eletica rufa F.).
11. Cicindela grandis W. Horn, Ent. Nachr., 1897, p. 240.

Without exact locality, one single \circ.
12. Cioindela prodotiformis W. Horn, Deutsch. Ent. Zeitschr., 1892, p. 88; 1894, pl. 3, f. 7.

Without exact locality, one single \odot.
13. Cicindela leucopicta Qued., Berl. Ent. Zeitschr., 1888, p. 157.

Lunda kingdom (between Kuango and Loango), 1 우 (Mueller), $10, \mathrm{~L}, 1884$, on open places of the savannas.
14. Cicindela interrupta Fabr., Syst. Ent., 1775, p. 225.
graphica Bat., Cist. Ent., II, 1878, p. 330.
Kuango (Mechow); without exact locality (Rogers); common.
15. Cicindela saraliensis Guér., Rév. Zool., 1849, p. 80.
flammulata Qued., Berl. Ent. Zeitschr., 1883, p. 241, pl. 3, f. 1.
This last is nothing but a form with more yellow spots on the elytra. Malange (Mechow); Chiyaka, Mt. Llende, November, 1906; Ekuiva River, November, 1907 (Wellman). Our specimens are the flammulata form, and were found on dark soil. The beetle does not fly, and is oftern foum in the edge of woods near certain Cosmeme, but not with them. On one occasion a living specimen was taken with an ant (Pheidole punctulata Mayr.) hanging to its leg.
16. Cicindela angusticollis Boh., Ins. Caffr., I, 1848, p. 15.

Mowameles, Chiyaka, November, 1906; Ekuiva River, November, 1907 (Wellman). Does not fly, a very rapid runner; common.
17. Cicindela muara Har., Mitheil. Münch. Lint. Ver., 1878, p. 99.

Malange (Mechow); interior (possibly Congo Free State), without exact locality (Pogge).

[^84]18. Cicindela (Ophryodera) rufomarginata ${ }^{8}$ bohemani Pér., Ann. Mag. Nat. Hist., 1888, p. 220.

Huilla. There also occur individuals with less broadly confluent pattern.
rufomarginata poggei Har., Mittheil. Münch. Ent. Ver., 1878, p. 99; Col. Hefte, 1879, p. 11, pl. 1, f. 1.
Interior (perhaps Congo Free State) without exact locality (Pogge). rufomarginata distanti Heath, Entomol., 1905, p. 97.
Duque de Bragança, Bihé, Kuango (Mechow). Lunda (Buchner), Chipeyo, November 18, 1906 (Wellman). Found on white sand. Flies rather heavily.
rufomarginata richterib W. Horn, Deutsch. Ent. Zeitschr., 1892, p. 72; 1894, pl. 3, f. 9; 1906, pl. 1, f. 16.
Malange (Mechow).
19. Cicindela reticostata nov. spec.

Cicindele quadricostatce W. Horn of affinis, differt statura minore; labro medio non producto, parte centrali dentes 3 ferente a lobis lateralibus incisura majore separata; prothoracis parte media globosiore, lateribus ad strangulationem basalem magis curvatis (ita ut pars basalis distinctior appareat), disco sulcum basalem versus evidenter magis declivi, superficie æqualiter grosse sed irregularius rugata atraque: elytris fere parallelis, solummodo in medio levissime ampliatis, humeris latioribus quam in illa specie, apice (conjunctim) brevius rotundato, signatura nulla, sculptura æqualiter subtili, sed punctis reticularibus fere ubique variis in directionibus (aut transversaliter, aut longitudinaliter, aut oblique aut in lineis distincte curvatis) confluentibus: rugis hoc modo formatis non quam cetera sculptura grossioribus; "striis" 2 vix elevatis basi incipientibus fere longitudinalibus (perparum suturam versus postice vergentibus) indistinctis in utroque elytro visibilibus (irregularius confluenter quam partibus adjacentibus sculptis), altera prope suturam ultra medium, altera in disco centrali fere ad medium ducta, postice sensim evanescentibus; 3^{a} etiam leviore indistinetioreque in disco laterali ante medium ommino disparente solummoto visu obliquo percipienda; depressionibus ("sulcis," ut ita dicam) inter has 3 "strias" (que vix costule possunt nominari) et spatio juxtasuturali modice cuprascentibus; antennis non foliaceis, articulis $5^{\circ}-5^{\circ}$ solum-

[^85]modo paullo dilatatis; palpis (articulo ultimo nigro) flavis; capite elytrisque nigricantibus opacis, vix hine inde perparum ænescentibus; corpore subtus modice nitente nigricante; .. genis anticis, meta-episternis cum parte adjacente metasterni, elytrorum epipleuris cyanescentibus; petlibus, coxis, trochanteribus nigricantibus, hinc inde perparum viridi aut æneo-variegatis; totis pectoris partibus (metasterni parte discoidali et postico-centrali nuda), abdominis et coxarum posticarum lateribus late modice dense breviter pilosis; fronte nuda, solummodo prope antennarum insertionem setis 2 ornatis, pronoto in specimine unico nudo (semper?); 2 primis antennarum articulis nudis, 3° et 4° supra breviter modice sparsim setosis. Long. 17 mm . (sine labro).

A single σ^{\top} from the Enyalanganja or great plains, 3 hours south of the Ekuiva River, November, 1907 (Wellman).

It is one of the most peculiar species of the whole genus, belonging to the interesting laeta-quadristriata group, reported only from the tropics of Africa. The labrum is black with a testaceous patch in the middle, the 3 middle teeth are just a little less prominent than the lateral tooth. Front and pronotum are roughly and deeply wrinkled. The sutural angle of the elytra is rectangular without a developed spine. All tarsi, as in Cicindela quadristriata, sulcated. The 1st, 3d and 4th articles of the antennæ are on their upper part slightly carinate.

The size, color and sculpture of this species, and especially its movements, lend it when alive the appearance of a Carabid. It did not atternpt to fly when pursued, although it was in bright sunshine.
20. Cicindela villosa Putz., Jorn. Sci. Lisb., 1880, p. 22.
= semicuprea Qued., Berl. Ent. Zeitschr., 1883, p. 244.
Malange (Mechow); Huilla (Lobo d'Avila); Chipeyo, November, 1906; Chivaka, Ekuiva River, November, 1907 (Wellman). Taken on dark woil, often in short grass. It has a good cryptic coloring and is hard to see.
21. Cicindela flavipes Putz., Jorn. Sci. Lisb., 1880, p. 23.
= nubifera Qued., Berl. Ent. Zeitschr., 1883, p. 243, pl. 3, f. 2.
Malange (Mechow) ; Duque de Bragança; Chipeyo, November, 1906; (hiyaka, Ekuiva River, Kasenya Mines, November, 1907 (Wellman). This speries oecurs almost entirely on feldspathic soil, against which it ~ indi-tinct light-colored markings make it almost impossible to see, except when it is in motion. It was only taken once or twice on red or dark soil, but one could count on finding it in abundance as soon as a bit of whitish soil rich in kaolin was reached.
$2 \cdot$ Cicindela suturalis l'urz., Jorn. Sci. Lisb., 1880, p. 25.
Huilla (Lobo d'Avila), Bihé, December, 1906 (Wellman). Taken in short grass, after most Cicindelide had disappeared.
23. Cioindela Putzeysi W. Horn, Deutsch. Ent. Zeitschr., 1900, p. 20 .

Kakonda; Chiyaka, November, 1906; Ekuiva River, 1907 (Wellman). This reddish species almost always occurred on clayey soil, and usually together with C. mechowi (vide suprà) In Chiyaka it was taken on the artificial bare place made for the purpose of attracting Cicindelidæ. A peculiar point noted is that this beetle jumps and flies like a small grasshopper which is always found with it. On one occasion a large Asilid fly was observed to catch a specimen of C. putzeysi.
24. Cicindela infuscata Qued., Berl. Ent. Zeitschr., 1883, p. 245.

Malange (Mechow); Chipeyo, November, 1906; Chiyaka, Ekuiva River, November, 1907 (Wellman). Three forms occur: coppery, green and blackish. It was noted that the coppery form occurred in the valleys on clayey soil, together with Cicindela mechowi and C. putzeysi, while the green form was taken on the mountain sides among moss, etc., in company with Odontochila erythropyga (vide suprà).
25. Cicindela melancholica Fabr., Ent. Syst., Suppl., 1798, p. 63.

Malange (Mechow); Chincoxo, without exact locality (Welwitsch); Loanda (Hohmeyer); Benguella, edges of city, April, 190 (Wellman). This species was taken on mud from partially dried-up pools; very common. In the same places (on the dry sand around the pools) occurred great numbers of a Carabid beetle (Graphipterus sp.).
26. Cicindela vicina Dej., Spec. V, 1831, p. 244.

Without exact locality (Welwitsch).
27. Cicindela lutaria Guér., Rev. Mag. Zool., 1849, p. 118; Mag. Zool., 1845, pl. 161, figs. 5, 6.

Ekuiva River, November, 1907 (Wellman). This species was found at the edge of the river, in a place which had been previously overflowed. The habits seem to be identical with those of Cicindele melancholica.
28. Cicindela octoguttata Fabr., Mant., I, 17s7, p. 18\%.
29. Earymorpha oyanipes mouffleti Fairm., Ann Soc. Fr., 1856. p. 05.

Cape Negro, Mossamedes.

Dromicina.

30. Diomica tricostata W. Horn, Ent, Nachr., 1897, p. 237.

Without exact locality; a single \circ
31. Dromioa (Cosmema) auropunotata Qued., Berl. Ent. Zeitschr., 18s3, p, 240, pl, 3, f. I.

Malange (Mechow); Chiyaka, Chipeyo, November, 1900 (Wellman). This species may be found in rather thick bush, and when pusued will hide under dry leaves like ants, which inserts it greatly resembles in its movements.
32. Dromica (Cosmema) marginepunctata W. Horn, Notes Leyd. Mus., 1908, p. 32.

Chiyaka, Ekuiva River, November, 1907 (Wellman). Is even more shade-loving than the preceling (which is often found in the open) and occurs in enormous numbers in the bush. Its habits are like auropunctata.
33. Dromica (Cosmema) wellmani W. Horn, Notes Leyd. Mus., 1908, p. 31.

Ciyaka, Ekuiva River, November, 1907 (Wellman). Habits just like the preceding species, which it so closely resembles that it is impossible to distinguish them in the field and in company with which it usually occurs.

MEGACEPHALINI.

Megacephelina.

34. Megacephala regalis Boh. Ins. Caffr., I, 1848, p. 2.

Cuissange, $1 \sigma^{\text {² }}$; near Impulu River, November, 1899, $1 \delta^{7}$. Both of more elongate elytra than the typical form.

MANTICHORINI.

35. Mantiohora congoensis Pér., Ann. Nat. Hist., 1888, p. 219.
$=$ Livingstonei Har., Col. Hefte, 16, 1879, p. 9.
Bihé; interior without exact locality, possibly Congo Free State (Pogge).

In conclusion: there are still two species of Cicindela known in tropical Africa, and very common to the north, east and south of Angola, which almost surely occur in Angola itself, although not yet found there, namely, C'icindela nilotica Dej. and C. dongalensis imperatrix Srnka. It is also probable that the common C'icindela regalis Dej., which is widespread in the regions to the north, east and southeast of the district here discussed, will be one day reported from Angola. Cicindela cincta Fabr., the common species reported from the mouth of the Senegal to Bahr-al-Ghazal and the Kassai, may likewise touch the boundaries of Angola somewhere.

REMARKS ON PROF. CHAMBERLIN'S REVISION OF NORTH AMERICAN LYCOSIDE.

BY THOMAS H. MONTGOMERY, JR.

In Part II of Volume L工i of the Proceedings of the Academy of Natural Sciences of Philadelphia, 1908, Prof. R. V. Chamberlin has a memoir entitled a "Revision of North American Spiders of the Family Lycosidæ." This paper is one of decided importance in introducing generic characters based upon the structure of the copulatory organs, and in presenting detailed descriptions of the species. But it is only fair to my antecedent studies on the same group that I should make certain brief criticisms, lest later students might consider Prof. Chamberlin's paper as finally conclusive and authoritative.

In my "Description of North American Araneæ of the Families Lyensidse and Pisauride" (Proc. Acad. Nat. Sci. Phila., 1904) I recognized among other valid species twenty that had been deseribed and named by me, whereby I relegated to the synonymy certain few species that I had described as new in two preceding papers. Of these twenty species of which I an the author Prof. Chamberlin regards only two worthy of recognition under the names I had given them, to which treatment I would enter the following partial criticism:
(1) Prof. Chamberlin fails to mention at all two of my species, Lycosa mecooki and Trochosa contestata.
(2) He places my Trochosa noctuabundu as a questionable synonym of his Allocosa degesta; but if these speries are identical my name should have the priority.
(3) He makes my Lycosa antelucana a symonym of L. apicatu Banks; but my description was published in March, and that of Banks not until June, 190t, hence the name antelucana has the priority.
(4) He enters five of my species as synonyms of four of those of Hentz, by resuscitating Hentz's Lycosensultulrix, fatimen, milvinu and funcrea. For each of the first two of these species Hentz gave a fourline description, for milrinu a five-line, and for jumern only three lines, and his figures are latking in all meecessary details. In 190.4 I had writeon: "At the present time it is practically impossible to identify most of the speceies of Walckenaer, Blackwall, Itentz and some others,
hecause some of their species are so insufficiently described that a particular description applies equally well to a number of species." Thus Prof. Chamberlin makes, it seems to me, and I take no unusual stand, a grave mistake in resuscitating these and certain other names of Hentz, for the descriptions are practically valueless, the figures in many cases of little more importance, and nothing but uncertainty is to be gained by replacing names based upon detailed descriptions with ones founded upon inadequate diagnoses unsupported by type specimens. Then Prof. Chamberlin places my Lycosa relucens and L. charonoides as synonyms' of saltatrix Hentz, though these species of mine differ in important structural characters; and similarly he classes my Pardosa scita, that is clearly separable from P. nigropalpis Emerton, with the latter as synonyms of Lycosa milvina Hentz.
(5) Prof. Chamberlin subjugates my Pardosa mercurialis to lapidiana Emerton, though these differ in proportion of the legs and in the genital armature. Then he places my Geolycosa texana under Lycosa carolinensis Hentz, though these exhibit a marked difference in the eyes of the anterior row. Further, he brings my Lycosa euepigynata, L. insopita and Trochosa purcelli all under Lycosa gulosa Walckenaer, though Walckenaer in his brief seven-line description states only the color and a few details concerning the eyes, and though I had shown that Lycosa insopita "comes closest to L. euepigynata, but differs from it in slightly shorter relative length of the legs, in greater relative width of the cephalothorax (in insopita less than onequarter longer than broad, in euepigynata decidedly more than onequarter), in the dark coloration of the venter, and in the structure of the genitalia. It differs also from L. purcelli, the epigynum of which is very similar, in the slightly greater relative length of the legs, in greater size, and markedly in the coloration."
(6) Prof. Chamberlin has also withdrawn Geolycosa mihi (of which Sicaptocosa Banks is a synonym) into Lycosa Latreille. Yet Geolycosa differs markedly from any true Lycosa in the size and length of the first legs and in their possession of thick scopulx.

Had I the time to do so, I believe I could satisfactorily re-establish all of my species that Prof. Chamberlin has tried to disestablish. He has not seen any of the type specimens in my private collection, though I would gladly have given him access to them had I known he was preparing a revision. His revision needs a considerable amount of crurnlation. What we should all of us do in such matters is not to work apart but in co-operation, and this is almost essential for progress in systematic studies. When the time has eome for a taxonomic
revision of any group, those who have contributed most to the subject should bring their collections together in one place, and there they should institute their comparisons conjointly. Istated in my memoir of 1904: "This paper is by no means a comprehensive monograph, but is intended to be a help to the one who comes later with sufficient material at his disposal to make the monograph." The main deficiency in Prof. Chamberlin's revision seems to have been insufficient type material.

Vecember 1.

Arthur Erwin Brown, Vice-President, in the Chair.
Ninety-seven persons present.
The Publication Committee reported that papers under the following titles had been presented for publication:
"Synopsis of the Cyprinide of Pennsylvania." By Henry W. Fowler (November 30).
"On the Meloidæ of Angola." By F. Creighton Wellman, M.D. (December 1).
"On a New Species of Diatom of the Genus Cymatopleura." By Charles S. Boyer (December 1).

Dr. F. Creighton Wellman made a communication on the natural history of West Africa. (No abstract.)

December 15.

The President, Samuel G. Difon, M.D., in the Chair.
Thirty-two persons present.
The reception of papers under the following titles was announced by the Publication Committee:
"Notes on Polinices didyma, with Description of a new Australian Species." By H. A. Pilsbry and E. G. Vanatta (December 5).
"On the 'Teeth of Hawaiian Species of Helicina." By H. A. Pilsbry and C. Montague Cooke (December 5).
"(lansiliitse of the Japanese Empire, XII." By Henry A. Pilsbry (December 10).
"New Land Mollusca of the Japanese Empire." By H. A. Pilsbry and G. Hirase (December 11).

The following were ordered to be printed:

A SYNOPSIS OF THE CYPRINIDE OF PENNSYLVANIA.

BY HENRY W. FOWLER.

Though my studies on our local fishes began in 1897 and have since continued, I have not paid especial attention to the Cyprinide till recently. The more or less complete collections made in that time, in the southeastern portion of the State at least, have made it possible for me to give some study to the individual variation of certain characters in detail and to local distribution. The results are introduced in the present paper, together with notes and redescriptions of typical specimens of species described from within the prescribed limits. The examination of the mass of material, which in the cases of the common forms usually consists of large series of hundreds of specimers, has enabled me to present a fairly accurate summary.

As so many of our western streams are polluted, or becoming so, the fish-fauma will probably soon be largely, if not wholly, exterminated, especially in the larger basins. I have found this condition to exist in a number of streams of lesser size. This is all the more unfortunate for our present purpose, as the greater variety of forms is found in these larger streams, or about them, the mountain-brooks usually being noteworthy for their paucity of species.

The first complete account of our Cyprinide was Cope's elaborate memoir published many years ago. ${ }^{1}$ 'Though exhaustive so far as his material and observations would permit at the time, the work is very incomplete, besides being encumbered hy various notes, deseriptions and discussions more or less irrelevant. It is, however, of great value, not only in making known a number of new forms and as a contribution to systematic ichthyology, but in discussing the distribution and to some extent the habits of the various species. Previous to this work all the accounts or records of the Cyprinidae of Pennsylvania were to be found in a few scattered papers. Later, in Copes account of the fish-fanmat of the itate. ${ }^{2}$ a work intemberd mone as

[^86]a semi-popular descriptive catalogue, the Cyprinidæ are again treated as a whole. Bean then gives ${ }^{3}$ a largely compiled account of the same nature, introlucing also several hypothetical species. These latter I have placed in foot-notes in the present paper. The contribution by Evermann and Bollman ${ }^{1}$ on the Monongahela fishes is especially valuable in furnishing us with an account of a basin which is now much polluted. Finally, in a recent paper, ${ }^{5}$ I have mentioned a number of localities where much of my own material was obtained, and thus mapped out the local distribution of some species.

I have not recorded any examinations of the stomachs of some of the species, leaving the details to be incorporated in future work. Little attention is, therefore, given here to the food of the different forms.

The introduced species, such as the carp and gold fish, are not treated in this paper.

In explanation of the squamation formulas it may be said that the median lateral longitudinal count of scales is in the lateral line, when present, to the base of the caudal fin, and that the few on the latter to be added are signified by the interpolated plus mark. Above the lateral line the scales are counted obliquely down from the origin of the dorsal fin posteriorly, and below obliquely up from the origin of the anal fin forward.

Acknowledgment is here made to those who have so kindly assisted me in securing material used in this work, their names being mentioned elsewhere in my local works.

All of the specimens used in the preparation of this paper are now contained in the Academy's collections.
Campostoma anomalum (Rafinesque).
Head $3 \frac{1}{2}$ to $4 \frac{1}{3}$; depth $3 \frac{7}{6}$ to 5 ; D. iii, 7 , I, rarely iii, 8 , I; A. iii, 6. I; scales 43 to $55+2$ to 4 , usually 2 or 3 ; usually 7 scales above 1. 1., uecasionally s: usually 6 scales below l. l., occasionally $7 ; 13$ to 16 scales transversely from dorsal in young with incomplete 1. 1.; 18 to 25 predorsal scales; snout $2 \frac{2}{5}$ to $3 \frac{2}{3}$ in head ; eye $3 \frac{1}{4}$ to $6 \frac{1}{2}$; maxillary 3 to $4 \frac{1}{2}$; interorbital $2 \frac{1}{5}$ to $3 \frac{1}{3}$; teeth 4-4. Body stout, moderately compressed, predorsal gibbous in adult. Snout moderately convex. Sicales crowded anteriorly. Color brownish, tinted olive or green

[^87]above. Scales somewhat mottled. Dusky vertical bar behind opercle. Dusky cross-bar on dorsal and anal, other fins bright red in spring-males, olive in females. Nearly entire upper surface of springmales tuberculous, and iris golden. Very variable, young differ in appearance from adults. Length $1 \frac{5}{8}$ to $6 \frac{1}{4}$ inches. Many examples from Beaver and Kiskiminitas Rivers, Port Allegany (McKean Co.), and Newcastle (Lawrence Co.).

Found in the more quiet waters of our streams, frequently in small runs and the deeper pools. It feeds on the bottom, frequently associated with other small fishes, and is rather sluggish, though active if disturbed. I have not found it in the small colder mountain brooks. In the spring it ascends small brooks to spawn. I have found it sometimes infested with a fungus, appearing as a white fluffy growth, in which cases the fish appears sickly or stupid. Not being very hardy it is of little use as bait. It reaches a length of S inches and is little valued as a pan fish. In our limits it is distributed only west of the Alleghanies.
Chrosomus erythrogaster (Rafinesque).
Head $37 \frac{7}{8}$; depth $4 \frac{1}{4} ;$ D. iii, 7,1 ; A. iii, 7,1 ; scales about $88+4$; 28 scales transversely from dorsal to ventral origin; 40 predorsal scales; snout $3 \frac{3}{7}$ in head; eye $3 \frac{1}{6}$; maxillary 3_{5}^{2}; interorbital 3. Body compressed, fusiform, deepest medianly. Head compressed, rather tapering. Eye rounded, about first third in head. Mouth moderate, oblique, terminal. Jaws about equal. Maxillary to eye. Rakers about $2+7$ short stumps. L. l. short, scarcely beyond middle of pectoral. Dorsal origin about midway between front eye margin and caudal base. Anal little behind dorsal base. Caudal emarginate, lobes equal. Pectoral almost to ventral, latter inserted little before dorsal, reaches vent. Color olive-brown, often with blackish spots, and dusky dorsal line. Sides silvery between 2 black lateral bands, upper straight from upper opercle angle to caudal, sometimes broken up behind, and broader lower one curved down little to end in caudal black spot. Belly silvery. Length $1 \frac{7}{5}$ inches. Kiskiminitas River.

This fish is only found west of the Alleghanies. It reaches 3 inches in length, and is a beautiful little mimow, the spring males having the sides between the black bands, belly and bases of the vertical fins scarlet, the other fins orange, and the body everywhere minutely tuberculate. The females are plainly colored, and usually with little if any red. It is said to be very hardy and therefore attractive in the aquarium, as well as desirable bait for bass and yellow pereh. It is also said to occur in clear cold brooks formed about spring-heads,
be very active. and not very abundant anywhere. The above example, obtained by Cope, is the only one I have from our limits.

Chrosomus erythrogaster eos (Cope).
C. cos Cope, Proc. Acad. Nat. Sci. Phila., 1861, p. 523. Meshoppen Creek, Susquehanna Co.
Head 3 子 ${ }^{3}$; depth $4 \frac{2}{3}$; D. iii, 7, I; A. iii, 7, I; P. i, 15?; V. i, 8 ; scales 50 ? +5 ?; 24? scales transversely from dorsal to middle of belly; 51 ?" predorsal scales; head width 2 its length; head depth $1 \frac{3}{3}$; mandible $2 \frac{3}{5}$; first hranched dorsal ray $1 \frac{3}{5}$; anal ray $1 \frac{2}{3}$; upper caudal lobe $1 \frac{1}{6}$; least depth of caudal peduncle $2 \frac{3}{5}$; pectoral $1 \frac{1}{5}$; ventral $1 \frac{9}{10}$; snout $4 \frac{1}{4}$ in head measured from upper jaw tip; eye $3 \frac{1}{3}$; maxillary $3 \frac{2}{5}$; interorbital 3.

Budy elongate, compressed, edges convex, profiles apparently about evenly fusiform, deepest midway in length. Caudal peduncle compressed, least depth about $1 \frac{1}{2}$ its length.

Hearl moderate, robust, compressed, above rather broadly convex, lower profile more inclined convexly. Snout surface broadly convex, length about $\frac{2}{3}$ wilth. Eye large, circular, about first $\frac{2}{5}$ in head. Mouth well inclined, oblique, gape curved, closed mandible slightly protruding. Maxillary narrow, mostly concealed by preorbital, exprosed end almost to eye. Mouth moderately small, jaw edges rather blunt and not especially hard. Lips thin. Tongue thick, fleshy, romuled, scarcely free. Nostrils together on snout above, about last third its length, posterior larger, anterior with cutaneous rim. Interorbital broad, slightly evenly convex. Preorbital width about $\frac{z}{3}$ its length, latter $1 \frac{1}{2}$ in eye, lower margin convex. Lower posterior preopercle corner rather evenly convex.
Gill-opening last $\frac{z}{8}$ of head. Rakers reduced, short small fleshy prints. Filaments about $\frac{4}{7}$ of eye. P'seudobranchix little shorter than filaments. 'Teeth $5-5$, elongate, compressed, tips hooked, grinding-surfaces narrow.

Scales small, cyclond, in nearly even horizontal series, considerably smaller along domal and ventral body edges. Scales on caudal base little reduced. L. I. incomplete, on first few scales, curving down little bratow middle of side. Tubees simple, persisting to each scale edge.

Dorsal origin about midway between himd eye margin and caudal bare, first brancheed raty highest, last about $\frac{3}{3}$ of first. Anal inserted about midway between peetoral medianly and caudal base just behind doral hase, firat hramehed ray highest, fin rommed like donal. Caudal enarginate, pointed lobes about equal. Pectoral pointed, upper rays lonemet. f to wentral. Ventral inserted little before dorsal origin or
about midway between front eye margin and candal base, reaching vent close before anal.

Color in alcohol faded dull or pale brownish, belly and below slightly silvery-white. Faint trace of dark streak from eye to candal base, another from upper side of head back to upper caulal peduncle surface hardly evident, fading out behind though possibly joining lower? Fins all faded pale whitish. Iris leaden-white.

Length about 2 inches (caudal slightly damaged).
No. 22,116, A. N. S. P., cotype (type) of C.eos Cope. Meshoppen Creek, Susquehanna Co. (Cope).

Also Nos. 22, 117 and 22, 118, same data, showing: Head 37 ; depth $4 \frac{3}{5}$ to 44_{5}^{2}; D. iii, $7, \mathbf{1}$; A. iii, $7, \mathbf{1}$; scales 76 to $82+5 ; 26$ scales transversely; snout $3 \frac{1}{2}$ to 4 in head; cye 3 to $3 \frac{2}{2}$; maxillary $3 \frac{1}{4}$ to $3 \frac{1}{2}$; interorbital $3 \frac{1}{8}$ to $3 \frac{1}{3}$; teeth $5-5$; length $1 \frac{3}{4}$ to $1 \frac{1}{1} \frac{3}{6}$ inches.

This fish is only known to me from the above examples, though Cope mentions 4, all of which were taken in September of 1861 . Nothing is known of the species, aside from Cope's short description.

Hybognethus nuchalis Agassiz.

Recorded by Cope. Occurs west of the Alleghanies. I have no examples.
Hybognathus nuchalis argyritis (Girard).
H. nuchalis Fowler, Am. Nat., XLI, 1907, p. 8. Kiskiminitas R. (Not of Ag.)
Head $3 \frac{3}{4}$ to $4 \frac{1}{8}$; depth 4 to $4 \frac{1}{2}$; D. iii, 7 , I; A. iii, 6, I; scales 37 to $42+2 ; 7$ scales above 1. 1.; 4 or 5 scales below 1. 1.;23 predorsal scales; snout $3 \frac{1}{2}$ to $3 \frac{2}{3}$ in head; eye 2 墨 to $3 \frac{1}{3}$; maxillary $3 \frac{1}{2}$ to $3 \frac{3}{4}$; interorbital $2 f$ to 3 ; teeth 4-1. Bory moderately compressed, somewhat fusiform. Head rather short. Snout broadly convex. Eye little elongate, rather large. Mouth rather wille. Maxillary to eye. Preorbital broad, width ${ }_{3}$ its length. Rakers $2+7$? short weak points. L. 1. median. Dorsal origin about midway between front nostril and caulal base. Anal behind dorsal base. (amdal apparently little emarginated. Pectoral about $\frac{3}{5}$ to ventral, latter inserted trifle before donsal reaching of to vent. Color largely silvery. Iength $1 \frac{1}{2}$ to 2 inches. Four examples from the Kiskiminitas R. (Cope).

This fish is closely related to $I /$. nuchalis, with which I recently confused it, but differs apparently in the much larger maxillary. It occurs west of the Alleghanies and is satid to attain a length of 4 inches.
Hybognathus nuohalis regius (Girard).
Head 4 to 44 ; depth 37 to 47 ; D. iii, 7, I; A. iii, 7, 1, rarely iii,
6. 1 ; scales 34 to 40 , usually 36 to 39 + usually 2 , occasionally 3 , rarely 1 ; 6 scales above l. l.; usually 4 scales, occasionally 5 , below 1. 1.; 14 to 18 predorsal scales; snout $3 \frac{1}{8}$ to 4 in head; eye 3 to 4 ; maxillary $3 \frac{1}{4}$ to $4 \frac{1}{2}$; interorbital $2 \frac{2}{5}$ to 3 ; teeth 44 . Body compressed, somewhat slender. Head short, blunt. Snout blunt, broad, convex. Eye small. Mouth small. Maxillary not quite to eye. Preorbital molerate, width about 2 its length. Rakers $4+7$? short weak points, tips sometimes bifurcate. L. 1. median. Dorsal origin little nearer snout tip than caudal base. Caudal rather broad, forked, lobes pointed. I'ectoral about $\frac{3}{5}$ to ventral, latter inserted about opposite dorsal origin and $\frac{z}{3}$ to anal. Color largely silvery, pale olive above. Fins pale. Iris silvery. Length $2 \frac{1}{16}$ to $4 \frac{3}{4}$ inches. Many examples from the Delaware R. at Holmesburg (Philadelphia Co.), Bristol and Hulmeville (Bucks Co.).

This handsome fish is very abundant in the lower or tidal region of the Delaware and its larger tributaries. I have not yet found it in the Susquehanna. Though usually brilliant silvery-white in life, brassytinted individuals are often met with. It attains a larger size than any of the related forms, and is said to reach 9 inches in length. It may be of some use as a pan fish, frequently varying the luck of perch fishermen, as it readily takes the hook. It seems to prefer the still tidal waters of our open rivers and creeks, and is frequently found in shoals about sand bars, and in little bays or guts, frequently associated with killies or other small fishes. The sexes are alike, and without tubercles or brilliant variegated pigment.
Pimephales promelas Rafinesque.
Hearl $3 \frac{7}{8}$; depth $3 \frac{3}{5}$; D. iii, 7, I; A. iii, 7 , ; scales $42+2(12$ thbos forming l. l., then skipping 3 scales, then tube, then skipping 2 scales, and tube at caudal base); 9 scales above l. 1.; 5 scales below 1. 1.; 23 predorsal scales; snout $3 \frac{1}{5}$ in head; eye 4 ; maxillary $4 \frac{3}{5}$; interorbital $2 \frac{1}{5}$; teeth 4-4. Body deep, well compressed, rather short. Head robust, convex. Snout broad. Eye circular. Mouth small, low. Maxillary to front nostril, oblique. Rakers $4+11$ short weak puinte, some ents dittle bifurcaten. Seales rather narrowly imbricated. Dorsal origin midway between front eye margin and caudal base, serond simple ray detached from third. Anal little behind dorsal hase. Caudal emarginate, equal lobes rounded. Pectoral $\frac{3}{5}$ to ventral, latter little before dorsal and reaching vent. Color olive-brown, sicale edges dusky. Head dusky-black, opercle edge creamy-brown. Iris gray-white. Dorsal gray, second simple ray pale, others medianly largely dusky-gray, anterior ones backish. Caudal and pectoral
grayish, other fins whitish. Several large tubercles on muzzle. Length $2 \frac{9}{10}$ inches. One example from Port Allegany (McKean Co.) on June 2d, 1906 (Keim and Fowler).

The above is the only example I have secured from our limits. This fish prefers sluggish brooks or pools and varies greatly with season, age or sex. The head is almost globular in adult males. It is interesting in the aquarium. It feeds on green algre and mud, and is sometimes met with in muddy pools. Only reaching a length of 3 inches it is of no use as a pan fish. Found west of the Alleghanies.

Pimephales notatus (Rafinesque).

Head $3 \frac{7}{5}$ to $4 \frac{3}{4}$; depth 4 to 5 ; D. iii, 7, I; A. iii, 6, I; scales 37 to 45 + usually 2 , seldom 3 , rarely 1 ; usually 7 scales, sometimes 6 , above l. l.; usually 4 or 5 scales, rarely 3 , below l. l.; 20 to 30 predorsal scales, usually 22 to 26 ; snout 3 to $3 \frac{2}{3}$ in head; eye $2 \frac{1}{2}$ to $4 \frac{1}{4}$; interorbital 2 to 3 ; teeth 4-1. Body somewhat elongate, moderately compressed. Head robust, convex. Snout blunt, convex. Eye circular. Mouth small, low. Maxillary to hind nostril. Rakers about $4+7$ short weak points. Scales narrowly imbricated. L. 1. complete in adult. Dorsal origin midway between snout tip and caudal base, second simple ray detached from third. Anal behind dorsal base. Caudal forked, lobes rounded. Pectoral $\frac{2}{3}$ to ventral, latter inserted abont opposite dorsal origin and reaching first branched anal ray hase. Color olivaceous. Head blackish, gill-opening edged buff, in spring males, otherwise buff. Iris black and bronze. Pale dusky lateral diffuse band. Dorsal brownish, elge whitish, hase blackish. Caurlal dull olive, other fins paler. Large tubereles on muzzle of spring males. Length $1_{1}^{3}{ }^{3}$ to $3_{1}^{\frac{3}{6}}$ inches. Many examples: from the Kikiminitas R.; Cole Grove and Port Allegany (MeKican Co.); York Furnace (York Co.) ; Foxburg (Clarion Co.) ; Erie (Erie Co.).

Closely resembling the preceding, especially when young, but distinguished by its more inferior mouth, rather more slender body, and slightly protruding blunt snout. The 1. 1. is variable, though absent in the young of both species it soon appears in the present. It is found in mot of our westorn streams, though extembing into the susquehama and thus farther east than the last. I have not found it in the Delaware. It prefers quict streams and pools, often when muddy, and associates with other small fishes. It is variable in color, spring males being strikingly colored, though otherwise both sexes are pale olive with a dark blackish lateral band ending in ablack caudal spot. A good bait minnow, as it is active and tenacious, reaching 4 inches in length.

Semotilus bullaris (Rafinesque).
Squalius hyalope Cope, Proc. Acad. Nat. Sci. Phila., 1864, p. 280. Conestoga Creek, Lancaster Co.

Head $3 \frac{3}{4}$; depth $4 \frac{1}{2}$; D. iii, 7,1 ; A. iii, 7,1 ; scales $44+3 ; 7$ scales above 1. 1.; 6 scales below 1. 1.; 20 predorsal scales; snout $3 \frac{x}{5}$ in head; eye $3 \frac{5}{5}$; maxillary 3 ; interorbital $2 \frac{2}{5}$; pectoral $1 \frac{5}{7}$; ventral $1 \frac{7}{8}$; least depth caudal peduncle 21 ; teeth 2, 5-4, 2. Body little elongate, compressed. Head large, rather conic, compressed. Snout convex, length about हु. its width, slightly protruding. Eye little ellipsoid, high, trifle anterior. Maxillary to eye. No barbel. Interorbital broad, nearly flat. Rakers $3+5$ short weak obsolete denticles. Scates striate, predorsal but little smaller. L. 1. complete, slightly decurved. Dorsal inserted nearer caudal base than snout tip. Anal inserted about midway between pectoral tip and caudal base. Pectoral about $\frac{2}{3}$ to ventral, latter inserted about opposite dorsal origin, reaches vent close before anal. Color in alcohol dull brownish, sides and below paler to whitish with silvery traces. Iris brassy. Length $3 \frac{1}{2}$ inches. No. 4,882, A. N. S. I...entype (type) of S. hyalope Cope. Conestoga Creek, Lancaster Co. (Stauffer). From Cope. Nos. 4,883 to 4,886, same data.

Head $3 \frac{1}{4}$ to $4 \frac{1}{10}$; depth $3 \frac{2}{3}$ to 5 ; D. iii, 7 , I; A. iii, 7, I; scales 40 to 49, usually 41 to $47+2$ or 3 ; usually 8 , occasionally 7 , seldom 9 , scales above l. l.; usually 6 scales, frequently 5 , rarely 4 or 7 , below 1. 1.; usually 21 predorsal scales, frequently 20 or 22 , often 19 or 23 , seldom 24 , and rarely 18 or 25 ; snout $2 \frac{3}{5}$ to $3 \frac{3}{5}$ in head; eye $2 \frac{3}{5}$ to $6 \frac{4}{5}$; maxillary $2 \frac{1}{3}$ to $3 \frac{1}{2}$; teeth $2,5-1,2$, occasionally $2,4-4,2$, rarely 2 , $5-5,2$ or $2,5-3,2$ or $1,5-4,2$. Body robust, compressed. Head compressed, convex. Snout convex, about broad as long. Eye round, high. Mouth large, nearly horizontal. Mandible included. Jaws heavy. Maxillary nearly to eye, with short barbel above near end, latter absent in most young. Rakers $3+4$ short weak denticles. Scales large, well exposed. Dorsal origin little nearer caudal base than snout tip. Anal behind dorsal base. Caudal forked. Pectoral about ${ }_{4}$ to ventral, latter inserted little before domal, reaches about ${ }_{3}^{3}$ to anal. Color largely silvery-white below, bluish and olive on back. Spring males brilliant vermilion on sides of head and body, lower fins and lorsal base iris orange and front of head tuberculate. Length 1 g to 15 inches. A very large series of all ages: from the Delaware R. basin at Fromett Square, Willistown Barrens, Crum Creek 2 miles east of White Hos:re, Ring's Rum (Chester Co.) ; Markam, near Wawa, Collar loromk (Delaware ('o.) ; Holmoshure, Torresdale (I'hiladelphia

(Monroe Co.); Dingmann's Ferry (Pike Co.): Susquehanna R. basin in the Conestoga Creek (Lancaster Co.); Emporium (Cameron Co.).

This is the largest and gamiest member of the family in our limits. It occurs only east of the Alleghanies or in our Atlantic basin, seemingly more abundant in the Delaware than in the Susquehanna. It is a vigorous fish, reaching about 18 inches in length. It often occurs about rapids and falls, from which it has earned the name of fall fish. The large ones occur in the rivers or other large bodies of water, though small ones are mature when only a fer inches long and found living in small brooks. It is a very variable species, especially as to age, sex or season. Small adults resemble the young of large adults, being silvery with a dark lateral stripe, the latter fading out with age. It is omnivorous, and is often abundant about mouths of sewers, with suckers. It will take most bait, also the fly, and may be taken by trolling. It is usually angled in the summer, though often bites well in the fall. One often sees Thoreau quoted that "the chub is a soft fish and tastes like brown paper salted," which is not altogether true, as it is often a very acceptable pan fish and, perhaps not possessing the qualities of flavor of some of our other fishes, is not always to be compared to salted brown paper. It must be eaten when fresh and is then very good. It is said to spawn in the spring in quiet shallow places, accumulating large patches of gravel or pebbles, the so-called "nests."

Semotilus atromaculatus (3itchill).

Head $3 \frac{1}{5}$ to 4 ; depth $3 \frac{4}{7}$? to $5 \frac{1}{4}$? D. iii, 7 , I, rarely iii, 8, I; A, iii, 7 , I, rarely iii, 8 , I ; scales 49 to 61 , usually 50 to $58+2$ to 4 , usually 3 ; 9 to 12 scales above l. 1., usually 10 , frequently 11 , otherwise rarely; 5 to 8 seales below 1. 1., usually 6 , frequently 7 , otherwise rarely; 27 to 38 predorsal scales, usually 30 to 34 ; snout 3 to 38 in head; cye $3 \frac{1}{4}$ to $7_{7}^{\frac{3}{7}}$; maxillary $2 \frac{2}{7}$ to $3 \frac{1}{6}$; teeth $2,5-4,2$, occasionally $2,4-4,2$, rarely $2,6-6,2$ or $2,5-5,2$ or $2,3,2-5,2$ or $2,5-3,4,5$ or $2,5,3-4$, 3, 2 or 3, 4-4, 2. Body robust forward, compressed. Head robust, broad, obtusely conic, heavy. Snout broad, convex, length $\frac{3}{3}$ its width. Eye round, rather high. Mouth broad, rather large, little inclined. Mandible included. Jaws heavy. Maxillary about to eye, with short barbel above near end, latter absent in young. Rakers $2+6$ short weak points. Scales small, crowded and smaller anteriorly. Dorsal origin about midway between front pupil margin and caudal base. Anal behind dorsal base. Caudal forked. Pectoral about $\frac{5}{8}$ to ventral, latter inserted little before dorsal and reaching about $\frac{3}{3}$ to anal. Color dusky-olive above. Dull diffuse band of same laterally, usually ending
in blackish spot at caudal base, especially in young. Below silverywhite, rosy-red in spring males. Dusky bar behind opercle. Iris orange and yellow. Black spot at dorsal base in front margined orange-ret. Dorsal and caudal pale olive, other fins with vermilion in spring males. Several large tubercles on snout and front of spring males. Length $1 \frac{3}{8}$ to S_{i}^{3} inches. A very large series: from the Delaware R. basin in the Schuylkill R.; Cobb's Creek, Collar Brook, Fawkes Run, first brook above Whetstone Run (Delaware Co.); Philadelphia: Susquehanna R. basin at Emporium (Cameron Co.); Muncy (Lycoming Co.); Octoraro Creek at Nottingham (Chester Co.); near Ephrata, Denver and Swamp Bridge (Lancaster Co.): Genesee R. basin at Gold and Raymonds (Potter Co.): Youghiogheny R., Meadow Run(Fayette Co.): Kiskiminitas R. : Beaver R. : Allegheny R. basin at Warren (Warren Co.); Port Allegany (McKean Co.).

This chub is found everywhere in our limits more or less abundantly, not only in the larger streams but very often in the small clear mountain brooks, where it often associates with Rhinichthys atronasus. It is very voracious, and will eagerly take a hook with most baits, or even a fly. Reaching a length of about 10 inches, it is said to be a fair pan fish. It is also used as bait. The young differ considerably from the adult in the blackish lateral band. I have found this fish especially abundant in cold rapid trout streams, such as those in the upper Allegheny valley. It is said to spawn in the spring or early summer, constructing the "nests" about riffles or coarse gravel bars.
Leucisous vandoisulus Valenciennes.
Head 3_{5}^{2} to 4 ; depth 33 to 4 ; D. iii, 7, r, rarely iii, 8, I; A. iii, 8 , i, occasionally iii, $7, \mathrm{I}$; scales 44 to 52 , usually about $48+2$ or 3 , usually 2 ; usually 10 scales, seldom 9 or 11 , above 1. 1.; usually 6 scales, frequently 5 , below 1. 1.; 21 to 28 , usually about 24 , predorsal scales; snout $3 \frac{1}{8}$ to $3 \frac{7}{2}$ in head ; cye 27 to $3 \frac{1}{2}$; maxillary 2 to $2 \frac{1}{3}$; teeth 2, 5-4, 2. Body compressed, deep. Head compressed. Snout convex. Lye round, high. Mouth large, well inclined, mandible protruding.' Maxillary to pupil. Rakers $2+5$ short denticles. Scales well exposed. L. 1. well decurved, complete. Dorsal origin midway between front eye margin and caudal base. Anal inserted below last dorsal ray. Caudal deeply forked, lobes pointed. Pectoral reaching little beyond wentral, latter inserted well before dorsal origin and reaches anal. Color olivaceous above, each seale margined dusky and sides findy punctate with dusky. Leaden streak from shout and shoulder back opposite ventral, bounded below on trunk by streak of bright orange-red. Below white. Donal and caudal
dull olivaceous, other fins pale. Iris brownish with golden ring. Head above minutely tuberculate. Young nearly plain-colored and females usually without tubercles. Length $1 \frac{3}{4}$ to $3_{16}^{\frac{3}{6}}$ inches. Many examples from the Susquehanna R. basin in tributaries of the Octoraro Creek and the head-waters' of the North East Creek, North East R. basin, near Nottingham (Chester Co.).

This little minnow is found in small streams of clear water, usually about pools, and often associated with other small fishes. It is said to reach 5 inches in length. The males are very gatidy in spring dress, which some attain when half grown. It occurs only in our Atlantic basin and, though I found it in the lower Susquehama valley, have not yet met with it in the Delaware, where, however, it has been recorded by Cope.
Leuoisous elongatus (Kirtland).
Head $3 \frac{1}{5}$ to 4 ; depth $4 \frac{1}{6}$ to $5 \frac{1}{3}$; D. iii, 7, ; A. iii, S, 1 , seldom iii, $\mathbf{7}$, 1 , rarely iii, 9 , i; scales 60 to 75 , usually about 60 to $69+$ usually 2 , frequently 3 , rarely 4 ; usually 13 scales, frequently 12 , seldom 11_{5} rarely 14 , above 1 . 1 .; usually 7 scales, frequently S, below l. 1 ; 25 to 35 , usually 28 to 35 , predonsal scales; snout $3 \frac{2}{5}$ to $3 \frac{3}{4}$ in head ; eye 23 to $4 \frac{1}{8}$; maxillary $2_{1}{ }^{1}$ - to $2 \frac{4}{7}$; teeth $2,5-4,2$, frequently $2,4-4,2$. Body compressed, elongate. Head compressed, rather pointerl. Snout convex. Eye round, high. Mouth large, well inclined, mandible protruding. Maxillary trifle beyond pupil front. Rakers about $2+5$ short points. Scales small, about uniform. L. l. little decurved, complete in adult, incomplete or absent in young. Dorsal origin little nearer caudal base than snout tip. Anal little behind dorsal base. Caudal emarginate. Pectoral $\frac{7}{5}$ to ventral, latter inserted little before dossal origin and fin to anal. Color olivaceous above, scales mottled darker. Lateral band of blackish, first half bright red in spring males. Below silvery-white. Lower fins reddened in spring males. Dark median dorsal streak. Iris silvery, dark lateral band passing through. Length $1 \frac{1}{2}$ to 33 inches. Many examples from the Allegheny R . basin at Cole Cirove and Iort Allegany (MeFean Co.).

Resembles the preceding. Found only in the clear monntain streams west of the Alleghanies, usually assoriated with other small fishes. Said to reach 5 inches and be a good bait minnow.
Loucisous margarita (Cope).
C'linostomus margarita (ope, Truns. Im. Mhises. Soc. Phila., (2) XIII, 1s69, p. 370, fige (teeth), M1. 13, fig. 1. The Conestoga, near Lancanter.

Head 4; depth 4 ; 1). evidently iii,? 7, 1 (damaged) ; A. iii, ? 7?
(damaged); P. i, 10?; scales about 58 to caudal base; 1. 1. formed of about 35 distinct tubes anteriorly; 11 scales above 1. 1.; 7 scales beluw 1. 1.; 31 predorsal scales; head width $1 \frac{7}{5}$ its length; head depth at oceiput $1 \frac{1}{2}$; mandible about $2 \frac{7}{5}$; dorsal base about 2 ; least depth caudal peduncle $2 \frac{1}{5}$; snout 4 in head, measured from upper jaw tip; eye $3 \frac{1}{3}$; interorbital $2 \frac{3}{5}$; maxillary $3 \frac{1}{10}$.

Body moderately elongate, well compressed, edges rounded, deepest near dorsal origin and upper profile apparently more evenly convex anteriorly than lower. Caudal compressed, rather deep, least depth about $1 \frac{3}{5}$ its length.

Head moderately small, robust, compressed, little broad above and becoming slightly constricted below. Profiles similarly inclined, upper little more convex anteriorly than lower. Snout convex, length about $\frac{3}{4}$ its width. Eye circular, large, high, placed about first $\frac{3}{7}$ in head. Mouth small, well inclined, gape nearly straight in profile. Mandible protruding, rather shallowly convex, rami well elevated inside mouth. Maxillary mostly concealed, robust, well inclined, end past eye front, not quite to pupil. Jaw edges firm. Lips thin, evidently little developed. Tongue rather thick, fleshy, not free. Nostrils lateral on snout above, near eye, anterior with cutaneous margin, posterior larger, in crescent. Interorbital rather broadly convex. Preorbital large, trapezoidal, width about $\frac{4}{5}$ its length, latter about $1 \frac{1}{\frac{1}{2}}$ in eye. Other suborbitals narrow. Preopercle margin inclined forward, angle rather broadly convex.

Gill-opening about to middle of head. Rakers $2+4$? short weak points, about 4 in filaments, latter $\frac{3}{4}$ of eye. Pseudobranchiæ rather large. Teeth 2, 5-4, 2, hooked, slender, compressed, without evident grinding surfaces.

Scales rather small, adherent, mostly uniform, in series parallel with 1. 1. Predorsal seales small, little crowded. Breast seales still smaller. L. l. apparently complete, first slightly decurved, ascending median caudal perluncle side. Tubes simple, well exposed, though posterior rather indistinct.

Dorsal origin about midway between front eye margin and caudal base, fin moderately high, first branched (damaged) rays longest. Anal origin about opposite last dorsal ray base or about midway between caudal base and depressed pectoral tip. Caudal damaged. Vent close before anal.

Color in alcohol above dull brownish generally, sides and below pale , whitish with shining mercury tints. Sides uniform in color, and sprinkled all over with minute brownish dots or speeks. Fins plain or pale brownish. Iris brassy.

Length $1 \frac{3}{4}$ inches (caudal nearly absent).
No. 5,320, A. N. S. P., cotype of C. margarita Cope. A tributary of the Conestoga, near Lancaster (Cope).
Also No. 5,321, same data. Though this example is larger it is broken in pieces and mostly macerated. As it agrees in having the last few tubes in the scales of the 1.1. discontinued before the caudal base it was probably largely the basis of the original description.

I only have the above material of Cope. He says it is bright crimson below during midsummer and that it was found in a stream inhabited by Rhinichthys and Semotilus. It has not yet been taken out of the Susquehanna basin in our limits.
Abramis orysoleucas (Mitchill).
Head $3 \frac{3}{7}$ to $4 \frac{2}{3}$; depth $2 \frac{1}{2}$ to $4 \frac{4}{\frac{4}{4}}$; D. iii, 7, I, rarely iii, 6 , 1 or iii, 8, I, once abnormally iii, $7-4$; A. usually iii, 12 , or iii, 13 , I, occasionally iii, 14 , r, rarely iii, 10 , I or 11 , i, or iii, 15 , I, once abnormally iii, S-2; scales usually 40 to 45 , mostly 41 to 43 , often 38,39 or 46 , seldom 47 , rarely 48 or $50+$ usually 2 or 3 , rarely 1 or 4 ; usually 11 scales, often 10 , frequently 12 , rarely 9 or 13 , above 1 . 1 .; usually 4 scales, frequently 5 , rarely 3 , below 1. l.; usually 15 scales, frequently 14 or 16, rarely 17 , transversely from dorsal origin, in young; usually 23 , frequently 21 to 25 , often 20,27 or 28 , seldom 29 , and rarely 16,17 , 18,19 or 30 , predorsal scales; snout $3 \frac{1}{3}$ to $4 \frac{1}{2}$ in head ; eye $2 \frac{3}{3}$ to $4 \frac{1}{3}$; maxillary 3 to $4 \frac{1}{5}$; interorbital $2 \frac{1}{5}$ to 3 ; teeth $5-5$, occasionally $5-4$, rarely $4-5$ or $7-5$ or $6-5$ or $5-5,2$ or $1,44,2$. Body well compressed, postventral trenchant. Head compressed, upper profile slightly concave. Snout broadly convex, length $\frac{1}{2}$ its width. Eye circular. Mouth small, oblique, mandible scarcely protruding. Maxillary not quite to eye. Rakers about $5+11$ firm compressed points. Scales narrowly imbricated. L. l. greatly decurved, complete in adult, incomplete in young. Donsal origin midway between hind eye margin and caudal base. Anal triffe behind dorsal base. Caudal widely forked, lobes pointet. Pectoral \& to ventral, latter inserted well before dorsal, fin I to anal. Color bluish-olive above, whitish below. Sides often with bright deep bluish or golden reflections. Doval and caudal like back, lower fins yellowish-vermilion in spring males. Iris silvery. Length 13 to $5!$ inches. Very many examples: from the Delaware R. basin at Kennett square, Ring's Run and Willistown Barrens (Chester Co.) ; Chadd's Ford, Itunter's Run, Collingdate (Delaware Co.); Holmesburg, Bustleton (Philadelphia Co.); Cornwells, Hulmeville, near Langhorne, Neshaminy Falls, Bristol, Emilie, Tullytown, Scott's Creek, lardley (Bucks Co.); Hatboro (Montgomery Co.); Dingman's

Ferry (Pike Co.): Susquehanna R. basin, at York Furnace (York Co.); Nottingham (Chester Co.); near Denver and Witmer's Mills (Lancaster Co.); Lopez (Sullivan Co.): Lake Erie at Erie (Erie Co.).

This is one of our most abundant species. It occurs in all our waters and is sometimes found in large schools of thousands of individuals in the Delaware tide-water. It is especially characteristic of pools, ponds, cut-offs, in shallow or weedy places, and in still water. It readily takes the hook, and though sometimes reaching a foot in length is not considered much of a game fish. As a pan fish it is fair. It is not much in demand for bait as it is not very hardy, though its bright color is an advantage as a lure. Variation is quite noticeable, and in color often extremes of bluish and golden are found. It is very gregarious, and the large schools of shiners one so often sees along the shores of our creeks and quiet streams are frequently made up of this fish, though it often associates with other species. The young are quite different in color from the adult, having a black lateral band, which disappears after they have grown several inches.

Ceratichthys vigilax Baird and Girard.

Known to me only from Evermann and Bollman's record from the Monongahela River.

Notropis bifrenatus (Cope).

Head $3 \frac{1}{2}$ to $4 \frac{1}{8}$; depth $3 \frac{2}{5}$ to $5 \frac{3}{3}$; D. iii, 7, r, rarely iii, $6, \mathrm{I}$; A. iii, 6 , i, rarely iii, 7, i ; seales usually 33 , frequently 32 or 34 , often 30,31 or 35 , seldom 29 and rarely $36+$ usually 2 , often 3 , seldom 1 ; usually 11 scales transversely from dorsal origin to ventral, frequently 12 , selfom 10 , rarely 13 ; usually 6 seales above l. 1., frequently 5 ; usually 4 scales below l. 1., rarely 5 ; usually 12 , frequently 13 , often 11 and 14 , seldom 10 , rarely 15 , predorsal scales; snout $3 \frac{1}{8}$ to $4 \frac{1}{2}$ in head; eye $2 \frac{1}{3}$ to $3 \frac{3}{5}$; maxillary $3 \frac{1}{8}$ to $4 \frac{1}{8}$; interorbital 2 to 3 ; teeth $4-4$, rarely $4-3$. Bonly rather compact, caulal peluncle little constricted. Head moderate. Muzzle obtuse. Eye circular, high. Mouth oblique. Jaws even. Rakers $2+5$ weak points. Scales well exposed. L. 1. incomplete, usually only of about 11 tubes anteriorly. Dorsal origin nearer snout tip than caudal base. Anal just behind dorsal base. Caudal long, forked, lobes rather pointed. Pectoral not to ventral. Ventral in-reped about oppositedorsal origin and reaching trifle beyond anal. Coblor pale straw-hrown, seales on back brown-elted. Shining black band with bluish tiuse, from shout to caudal base, including mandible edge. Orange band above this on snout in spring males. Below silvery. lïns pale. Length $1_{1_{5}^{\prime}}^{1}$ to $2_{T^{5}}{ }^{5}$ inches. Many examples: from

Ring's Run and Black Horse Run (Chester Co.) ; Collingdale (Delaware Co.) ; Holmesburg and Torresdale (Philadelphia Co.) ; Hatboro (Montgomery Co.) ; Cornwells, Hulmeville, Neshaminy Falls, Little Neshaminy Creek, Bristol, Emilie, near Langhorne, Scott's Creek (Bucks Co.): Susquehanna R. at York Furnace (York Co.).

This pretty little minnow may best be known from the other members of the genus by its incomplete lateral line. It closely resembles N. procne, but may be distinguished by this character. It is usually found in clear and rather still water, in schools of moderate size, and associated with other small fishes, such as killies and roach. They occur both in tide-water and above, in the small creeks and runs, and I have found them in the open rivers, though along shore. The sexes are colored alike, though during the spawning season, in May and June, the gravid females are much deeper-bodied. The young do not differ much from the adults. Altogether it is a weak little fish, but quite attractive, and said to be of use as bait. I have met with it only in the lower Delaware and Susquehanna basins. Cope's types of this species (Hybopsis bifrenatus) seem to be lost.
Notropis deliciosus (Girard)
Recorded from the Monongahela R. as N. d. stramineus by Evermann and Bollman. I have not seen any examples.
Notropis procne (Cope).
IIybognathus procne Cope, Proc. Acad. Nat. Sci. Phila., 1864, p. 283. The Conestoga.
Head 33; depth 4 ? D. iii, 6, I; A. iii, 6, I; P. i, 13; V. i, 7; scales $32+2 ; 5$ scales above 1. 1.; 4 scales below 1. 1.; 12 predorsal scales; head width 17 its length; head depth at occiput $1 \frac{4}{7}$; snout $3 \frac{1}{2}$; eye $2 \frac{1}{5}$; maxillary $8 \frac{1}{3}$; interorbital 23 ; dorsal base 18 ; anal bave $2 \frac{1}{2}$; least depth caudal perluncle $2 \frac{1}{3}$; pectoral $1 \frac{1}{3}$; ventral $1 \frac{1}{5}$.

Body elongate, well compresisel, profiles similarly fusiform or upper only slightly more convex, deepest at domal origin, edges convexly romud. Candal perhmele compresed, least depth about $2 \frac{1}{5}$ its length.

Head moderate, robust, wider than trunk, profiles about similar. Snout obtuse, convex, length $\frac{2}{3}$ its width. Lye large, high, little longer than derp, renter near finst $\frac{2}{3}$ in head. Month moderate, inferiorly terminal. Mandible slighty includent, rather shallowly depressed, rami slightly elevated inside mouth. Lips thin. Premaxillaries protractile down. Maxillary very shghtly beyond front eye margin. Jaw edges rather firm, trenchant. 'Jongue thick, fleshy, adnate. Nostrils large, together, on smont abowe near eve, cresentie posterior larger. Interomital broad, flat. Preorhital widthabout 13 its length,
latter 11 in eye. Infraorbital broadest of other narrow suborbitals. l'usterion preopercle margin nearly straight, but slightly inclined formard.

Gill-opening to hind pupil margin, isthmus width at this point 2 ? in eye. Rakers $2+4$ short weak points, much shorter than filaments, latter 2 in eye. Pseudobranchix large, less than filaments. Isthmus rather broadly depressed. Teeth lost.

Scales moderately large, serics parallel with l. l., mostly uniform except smaller ones on caudal base, with fine radiating striæ. L. l. continuous, first decurved slightly, then about midway along caudal peduncle side. Tubes simple, each about $\frac{3}{5}$ exposed scalc.

Dorsal origin midway between caudal base and snout tip, fin graduated down from first branched ray (damaged) and longest? Caudal (damaged) emarginate, lobes equal? Pectoral $\frac{2}{3}$ to ventral, upper rays longest. Ventral inserted little before dorsal origin, not quite to vent. Vent close to anal.

Color in alcohol faded mostly dull or pale brownish, not darker above. Edges of back scales slightly darker than ground-color. Head above brownish, below paler or translucent, sides washed silvery-white. Entire side of body bright silvery-white with underlaid median lateral streak from shoulder to caudal base medianly. From snout tip, back over underlaid leaden streak, dull brown band, inconspicuous and narrower than vertical eye. Iris pale silvery, leaden lateral streak passing through. Fins pale or plain dull brownish.

Length $1 \frac{13}{16}$ inches (caudal damaged).
No. 3,152, A. N. S. P., cotype (type) of H. procne Cope. Conestoga, tributary of the Susquehanna (Stauffer). Also Nos. 3,153 to 3,162 , same data.

Head $3 \frac{1}{3}$ to $4 \frac{1}{4}$; depth $3 \frac{3}{5}$ to $5 \frac{1}{2}$; D. iii, 7, I, rarely iii, 6, I; A. iii, 6 , $\mathbf{1}$, rarely iii, 7 , I or iii, 5 , ; scales usually 33 , frequently 32 , often 3., occasionally 35 , seldom 31 , rarely $36+$ usually 2 , occasionally 3 ; usually 6 scales, occasionally 5 , above 1. 1.; 4 scales below l. l.; 13 predorsal scales usually, often 12 or 14 , seldom 15 , rarely 16 ; suont $3 \frac{1}{5}$ to 4 in head ; eye $2 \frac{3}{7}$ to $3 \frac{1}{4}$; maxillary 3 to 33 ; interorbital 2f to $3 \frac{1}{2}$; teeth $4-1$, rarely $5-1$. Body elongate, compressed, rather 4ender, caudal perluncle longr, constricted. Head moderate. Muzzle short. Eye circular, little high. Mouth oblique. Jaws even. Rakers $2+5$ short wak points. Scales well exposed. I. l. complete, little decurved at firot. Donsal origin midway between snout tip and crablal base. Anat inserted well behind domal base. Caudal long, forberl, bobes pointeal. Pertoral $\$$ to ventral, latter inserted little
before dorsal origin, reaches vent. Color above pale brownish. Dark lateral band overlaid with grayish. Median dark streak down back. Sides and below silvered. Fins pale brownish. Iris silvery, crossed by dark lateral band. Length $1 \frac{1}{3}$? to $2 \frac{1}{16}$ inches. Many examples, including the above cotypes: from the North East Creek headwaters near Nottingham (Chester Co.): Susquehanna R. basin in the Pequea Creek at Paradise and in the Cocalico Creek at Swamp Bridge, Witmer's Mills and run near Blainsport (Lancaster Co.): Delaware R. basin in Darby C'reek at Collingdale (Delaware Co.) ; Schuylkill R.; Holmesburg (Philadelphia Co.); Hulmeville, above Newtown, Neshaminy Falls (Bucks Co.) ; Abrams (Montgomery Co.).

This species is closely related to N. bifrenatus, differing in the complete lateral line, even in young an inch long. It is found in clear streams or creeks, not too rapid, and usually about gravel bars, where it associates in shoals with other species. It prefers the more upland streams, and I have not yet found it in tide-water. The adult is a beautiful little fish, averaging about $2 \frac{1}{2}$ inches in length. It is subject to some variation. Though hardly brilliant in color, it is handsome, in certain lights the dark lateral band gleaming violet, blue or greenish. It probably spawns in late spring and early summer. It is said to be excellent bait, and good in the aquarium. I have met with it only in the Susquehanna and Delaware basins.
Notropis keimi sp, nov. Plate XXVII.
N. cayuga Fowler, Am. Nat., XLI, 1906, p. 595. Allegheny R. above Port Allegany, McKean Co. (Not of Meek.)-Fowler, l.c., XLI, 1907, p. 10, copied.

Head 3 点; depth 47 ; D. iii, 6, 1; A. iii, 7, 1; l. i, 11; V. i, 7; scales $37+$ about $3 ; 5$ scales above 1.1.; 3 scales below 1. $1 . ; 15$ predorsal scales; head width $1 \frac{\pi}{6}$ its length; head depth as occiput $1 \frac{13}{5}$; snout 3 f eye $3 \frac{2}{3}$; maxillary 3 ; mandible $2 \frac{1}{5}$; interorbital $3 \frac{1}{3}$; first branched dorsal ray $1 \frac{1}{5}$; first branched anal ray $1 \frac{3}{3}$; least depth caudal pertuncle $3_{10}{ }^{1}$; lower candal lobe trifle longer than head, about space equal to pupil diameter; pectoral $1 \frac{2}{5}$; ventral $1 \frac{1}{3}$.

Body elongate, slender, compressed, edges rather broally convex, profiles similarly tapering from greatest depthat donsal origin. Candal peduncle slender, compressed, least depth 23 its length.

Head rather large, clongate, compressed, rather flattened sibles not convergent below, upper profile little more inclined than lower. Muzale obtuse. Suout obtuse, surface and profile convex, length about 3 its width. Lye large, close to upper profile, trifle before midhle heal length, rather ellipsoid or trifle longer than deep. Month inferior,
rather large, jaws about even. Maxillary large, rather exposed, to front eve margin, scarcely beyond. Premaxillaries protractile. Mandible rather broad, depressed, rami well elevated inside mouth. Lips rather firm, little fleshy, rather narrow. No barbel. Jaw edges tough, rather firm, though not especially trenchant. Tongue small, thick, fleshy, not free in mouth. Nostrils large, together, superolateral on snont to upper front pupil margin, posterior exposed in crescent, much larger. Interorbital broad, flattened, scarcely elevated convexly over eve. Preorbital elongate, greatest width about $\frac{2}{3}$ its length, latter $1 \frac{2}{\%}$ in horizontal eye. Other suborbitals all narrow. Posterior preopercle margin straight, slightly inclined posteriorly.

Gill-opening forward about opposite posterior preopercle margin. Rakers iii, $2+2$ short weak blunt stumps, much shorter than filaments. Latter about half of horizontal eye. Pseudobranchix large, little shorter than filaments. Isthmus broad, level, least width about $1 \frac{1}{2}$ in horizontal eye. Teeth 1, 4-4, 1, rather conic, hooked, with grinding surfaces.
scales large, cycloid, disposed in longitudinal series parallel with 1. l., rather broadly exposed or coloration producing vertical rhombs, each with many very minute obsolete radiating strix, of about uniform size, and a few small ones crowded on caudal base. Small rounded adnate scaly flap in rentral axil, about $\frac{1}{5}$ of fin. L. l. continuous, little decurved anteriorly, and ascending behind dorsal midway along caudal perluncle side. Tubes simple, each well exposed, or after first 5 extending all way to each scale edge.

Domal origin midway between snout tip and caudal base, graduated down from highest or first branched ray, depressed fin about $\frac{3}{7}$ to caudal base. Anal origin inserted just after dorsal base, graduated down from first branched or longest ray, fin base $1 \frac{1}{5}$ its depressed length. Caudal long, deeply forked, lobes rather long, pointed, lower much longer. Pectoral rounded, uppermost rays longest, fin about $\frac{8}{10}$ to ventral. latter inserted trifle before dorsal origin, reaches anal. Vont close to anal.

Color in alcohol faded but little from that deseribed below, when frosh.

Color when freth rather clear dull olivaceous-brown above, margin of each seale dusky till low as 1. 1. at least, and producing a network of diamonds or rhombs in appearance. Head dusky-brown above, and this forming into a median dusky dorsal line. Side of body more or loxs silvered. Lower surface of head and body mostly translucent whitish. Iris bright silvery, slightly dusky above. Jaws pale or trans-
lucent, upper slightly brownish. Costal region silvery, merging into plumbeous or grayish longitudinal streak along caudal peduncle side. Each scale of 1. 1. with a number of dusky-brown points along tubes. Dorsal and caudal pale transparent grayish-dusky, other fins paler.

Length $2 \frac{9}{16}$ inches.
Type, No. 31,126, A. N. S. P. Tributary of the Allegheny River above (south of) Port Allegany, McKean County. August of 1904. T. D. Keim and H. W. Fowler.

Head $3 \frac{2}{3}$ to $3 \frac{7}{8}$; depth $4 \frac{1}{3}$ to 5 ; D. usually iii, 6 , r, rarely iii, 7 , ; A. usually iii, 7 , I, rarely iii, 6 , I; scales 33 to 37 , usually about $33+$ 2 ; scales above 1. 1. usually 6 , rarely 5 ; scales below 1. 1. 4; predorsal scales usually 16 , sometimes 15 ; snout $3 \frac{1}{3}$ to $3 \frac{3}{3}$ in head ; eye 3 to $3_{1 \frac{1}{10}}$; maxillary $3_{1}^{1} \frac{1}{10}$ to $3 \frac{1}{5}$; interorbital 23 to 27 ; teeth $1,4+1$, Length $1 \frac{1}{16}$ to $1 \frac{1}{18}$ inches. Tributary of the Allegheny R. at Cole Grove, McKean Co. July 23, 1899. S. P. G. Lindsay and H. W. Fowler. Nos. 24,045 to 24,047, A. N. S. P., paratypes.

This species seems to be most closely related to N. hudsonius, but differs in the larger and more slender caudal pethencle, different physiognomy, and coloration. It differs from N. deliciosus and N. boops in the same characters, besides others, such as the eye and fin rays. It differs from N. ariommus, N. scubriceps, N. jejunus and allied species, in the fewer pharyngeal teeth, and other characters in combination, when the proper extent of variation is allowed. It may, therefore, be considered a member of the subgenus IIudsonius.

Only the type was obtained at Port Allegany. At the type locality the stream was of clear cold water, flowing rather rapitly over a shallow place of considerable extent, and with a bottom of small stones and pebbles. The fish was rather shy, and though several others were seen at the same time, the one secured was rather difficult to capture. They all seemed to lurk about the banks, under large stones, or in the deeper places, and were quite agile in their movements. Cottus gracilis and semotilus atromaculatus were found in the same places, the latter especially abundant.

At Cole Grove several small examples were taken some years previonsly. They were all found in pools, associaterl with Exoglossum maxillingua and Lenciscus clomgutus. In coloration they did not seem to differ much from the tyre, their caudal lowes being about equal.
(Named for my friend, Mr. 'Thomas D. Keim, who assisted me in procurimg the type, besides many interesting local collections of fishes for the Academy.)

Notropis hudsonius (Clinton).
Head $4 \frac{7}{7}$; depth $4 \frac{7}{5}$; D. iii, 7,$1 ;$ A. iii, 7 , I; scales $37+1$; scales above 1. 1. 5 ; scales below 1. 1. 5 ; predorsal scales 15 ; snout $3 \frac{1}{8}$ in head; eye $3 \frac{1}{5}$; interorbital $3 \frac{1}{6}$; tecth 2, 4-4, 1? Body compressed. Head small, compressed. Snout broadly convex, length $\frac{3}{4}$ its width. Eye high. Mouth large, well inclined. Maxillary to eye. Mandible includel. Interorbital depressed. Rakers $3+5$ short firm points. Scales well exposed. L. l. almost straight, slightly decurved, complete. Donsal origin about midway between posterior nostril and caudal base. Anal rather close behind dorsal base. Caudal forked, lobes pointed, equal. Pectoral $\frac{4}{5}$ to ventral, latter inserted little before dorsal origin, 3 to anal. Color pale brownish above, below white. Broad silvery band along side. Black spot at caudal base. Iris silvery-white. Length $2 \frac{3}{4}$ inches. Lake Erie at Erie (Erie Co.).

This fish, closely related to the next, occurs only west of the Alleghanies. It is characterized chiefly by the ever present jet-black caudal spot. It is said to reach 10 inches in length, and not frequent small streams. Desirable as a bait minnow.
Notropis hudsonius amarus (Girard).
Head $3 \frac{2}{3}$ to $4 \frac{3}{7}$; depth 3_{6}^{5} to 5 ; D. iii, 7 , I, rarely iii, S, I; A. iii, 7 , , rarely iii, $8, \mathrm{I}$; scales usually 35 or 36 , frequently 34 or 37 , occasionally 33,38 or 39 , rarely 31,40 or $42+$ usually 2 , rarely 1 or 3 ; usually 6 scales, seldom 5 , rarely 7 , above l. l.; usually 5 scales, seldom 4 , rarely 6 , below l. l.; usually 15 , frequently 14 , often 16 , seldom 13 , rarely 17 or 22 , predorsal scales; snout 3 to $3 \frac{1}{5}$ in head ; eye 23 to $3 \frac{3}{4}$; maxillary 2_{3}^{3} to 3^{3}; interorbital $2 \frac{1}{4}$ to $3_{1}^{1} \frac{1}{2}$; teeth usually $1,4-4, .1$, frequently $2,4-4,2$ or $2,4-4,1$ or $1,4-4,2$, rarely $0,4-4,1$ or $2,4-4$, 0 or $2,4-3,0$ or $1,4-4,0$ or $0,4-4,0$. Borly compressed, rather robust. Head rather broad, compressed. Snout convex, length $\frac{3}{4}$ its width. Eye little elongate, rounded. Mouth somewhat oblique. Jaws about even. Maxillary to hind nostril. Interorbital convex, middle flattened. Rakers $2+5$ short weak points. Scales well exposed. L. I. complete, little decurved, nidway along caudal peduncle side. Dorsal inserted little nearer snout tip than caudal base. Anal inserted little behind dorzal base. Caudal forked, lobes pointed. Pectoral about ${ }^{3}$ to wentral, latter inserted slightly before or opposite dowal origin, reaches $\frac{2}{3}$ to amal. Color pale olivacous-brown largely. Scale edges on back dusted darker. Broad silvery-white lateral band from eye to caudal, margin above on trumk behind leaden. Candal spot faint or absent. Iris silvery-white. Jength 2_{1}^{1} ' to $5 \frac{1}{4}$ inches. Many example: from the Jolaware R. hasin, in Black IIorse Run and
first tributary below Mill Run, Ring's Run (Chester Co.); Holmesburg, Torresdale (Philadelphia Co.); Hulmeville, Neshaminy Falls, Bristol (Bucks Co.); Dingman's Ferry (Pike Co.): Susquehanna R. basin, Pequea Creek at Paradise, Cocalico Creek near Denver and at Witmer's Mills (Lancaster Co.).'

A very abundant minnow in the lower Delaware and Susquehanna basins. It is usually found in the larger creeks and rivers, and readily takes a hook. It is good as bait and though said to reach S inches in length, it is seldom that examples are met with over 4 or 5 inches, thus being too small as a rule to use as pan fish. I have never seen any over 6 inches. It is distinguished from the preceding chiefly by the very faint or pale caudal spot, though in the young it is always somewhat in evidence. Young examples also have the lateral line incomplete, only as a few tubes at the beginning of its course. It usually occurs in schools and while more a feature of open rivers, both at the head of tide and above, it does occur, contrary to the statements of some writers, in our smaller streams or runs. It is also subject to considerable variation in structure, though the coloration remains about the same throughout the season, there evidently being no gaudy nuptial-dress.

Notropis whipplii (Girard).

Head 3 等 to $4 \frac{1}{4}$; depth 3 to to 4 ; D. iii, $7, \mathrm{r}$; A. iii, 7, r, rarely iii, 8, i; scales usually 38 , sometimes 36,37 or 39 , rarely $35+$ usually 2 , frequently 3 ; usually 7 scales, frequently 6 , above 1 . 1 .; usually 4 scales, frequently 5 below 1. 1.; predorsal scales usually 17 , frequently 16 , rarely 15 , 18 or 19 ; snout 3 to $3 \frac{4}{\frac{4}{2}}$ in head; eye $3 \frac{1}{2}$ to $4 \frac{3}{3}$; maxillary 3 to $3 \frac{2}{3}$; interorbital $2 \frac{1}{5}$ to $2 \frac{7}{6}$; teeth 1, 44, 1 . Body moderately slender, compressed, profiles similar. Head pointed, compressed. Snout convex, length $\frac{3}{3}$ its width. Eye small, little longer than deep, rather high. Maxillary not quite to eye. Mouth moderate, inclined. Mandible included. Interorbital broadly convex. Rakers $3+8$, slender, pointel, short. Scales narrowly imbricated. L. I. complete, decurved, little low along caudal peduncle side. Dorsal origin trifle nearer front nostril than caudal base. Anal origin slightly behind donsal base. Caudal well forked, slender lobes pointed, equal. Pectoral about $\&$ to ventral, latter inserted well before dorsal, reaches vent. Color olivaceous on back, each scale dusky-edged. Iris silverywhite. Siles bluish silvery-white, below white. Satin-white ends to fins of spring males. Black spot on dorsal behind middle above, equals eye, variable, less conspicuous in female and young. Front and head minutely tuberculate in spring males. Length 23
to :31 inches. Many examples, from Kiskiminitas and Voughiogheny Rivers, and Erie (Erie Co.).

Found in the clear waters of the Ohio valley and Lake Erie. It is a beautiful little fish, reaching 4 inches in length. At all times it is largely bluish-silvery in general color. A good bait minnow. It greatly resembles its eastern relative.
Notropis whipplii analostanus (Girard).
Head $3 \frac{1}{3}$ to $4 \frac{1}{5}$; depth $3 \frac{1}{8}$ to $4 \frac{3}{3}$; D. iii, 7, I ; A. usually iii, 8, I, occasionally iii, 7 , I, seldom iii, 9 , I, rarely iii, 6, I; scales usually 34 , frequently 32 or 33 , often 35,31 or 30 , occasionally 36 , seldom 37 or 39 , rarely 38 , 28 or $27+$ usually 2 , often 3 ; usually 6 scales, seldom 5 or 7 , above l. 1.; usually 4 scales, rarely 5 , below l. l.; predorsal scales usually 14 or 15 , frequently 13 or 16 , seldom 17 , rarely 12 or 11 ; snout 3 to 4 in head ; eye $2 \frac{1}{3}$ to $4 \frac{1}{3}$; maxillary $2 \frac{2}{5}$ to $4 \frac{1}{5}$; interorbital $2 \frac{1}{3}$ to 3 ; teeth 1,44 , 1 . Body moderately slender, usually rather deep in adult males, compressed, profiles similar. Head pointerl, compressed. Snout conic, about long as wide. Eye small, little longer than deep, rather high. Mouth moderate, inclined. Mandible included. Interorbital broadly convex. Rakers $2+7$ short points. Scales narrowly imbricated. L. l. complete, decurved, low along caudal peduncle side. Dorsal origin midway between eye front and caudal base. Anal inserted just behind dorsal base. Caudal forked, lobes equal. Pectoral $\frac{1}{5}$ to ventral, latter inserted trifle before dorsal origin, fin reaches anal. Color olivaceous on back, scale edges dusky. Iris silver-white. Sides bluish-white. below white, all silvery. Fins in spring males with satin-white borders. Black dorsal spot behind middle of fin above equals cye, variable, less evident in female and young. Head above, muzzle and predorsal region finely tuberculate in spring males. Length $1 \frac{1}{8}$ to $3 \ddagger$ inches. A very large series: from the Jelaware R. basin at Kemett square, Ring's Run (Chester (o.) ; Brandywine summit, Concordville, Markam, Collingdale (Delaware Co.); Barren Hill, Abrams (Montgomery Co.); Holmesburg, Torreatale (Philadelphia (oo.) ; Comwells, Hulmeville, Little Neshaminy ('reek, Neshaniny Valls, near Langhome, Bristol, Emilic (Bucks Co.) ; Dingman's Ferry (Pike Co.): Susquehanna R. basin at Paradiee, Conestogat Creek, Trout and Akron Runs at Ephrata, Cocalico Creek near Denver, Swamp Bridge, Witmer's Mills and run near Blainsport (Lancaster Co.); York Furnace (York Co.).
The silver fin is the most abundant of its genus in the Delaware, contrary to the impression of some writers. It prefers clear water. and usually the smaller streams and creeks, though often found in
tide-water if not brackish. During the late spring and on through the early summer the males assume high coloration. Brilliant pigment of satin-white color is found about the ents of all their fins, the rays of which become somewhat enlarged or swollen, ant thus earning for the fish the very appropriate name of silver fin. Tubercles of small size also appear on the upper surface of the body, though disappearing by late summer, along with the brilliant coloring. The females are but rarely tuberculous, and never so brilliant as the males. The young are not brilliantly colored, but are usually to be distinguished by their reticulated scale pattern being made up of narrowly imbricated scales, though the lateral line is complete. The silver fin sometimes collects in large shoals of possibly a thousand or more individuals, and associates sometimes with other small fish. They are equally active throughout the year, in certain localities, and may sometimes be found under the ice. They will usually bite at a small worm or other bait on a small minnow-hook, though of no use as food on account of their small size, the largest I know of not exceeding tinches. They are good bait and live well in the aquarium. Only found in the Delaware and susquehanna basins. Closely related to N. u'hipplii, and differing in the deeper body and larger scales.
Notropis cornutus (Mitchill).
Head $3 \frac{1}{4}$ to 5 ; depth 3 to $4 \frac{1}{5}$; D. usually iii, 7 , 1 , rarely iii, S, I or iii, 6, I; A. usually iii, S, I, seldom iii, 9, I, rarely iii, 7, i; seales usually about 30 , frequently $31,32,33,34,35$ and 36 , often 37 to 40 and 27 to 29 , rarely $25,26,41$ or $44+$ usually 3 , frequently 2 , rarely 4 ; scales above l.]. usually \& frequently 7 , occasionally 9 , rarely 6 or 7 ; scales below l. 1. usually 5 , seldom 4 or 6 , rarely 7 ; predorsal scales usually 17 or 1 S , frequently $15,16,19$ or ${ }^{2} 0$, occasionally 14 , sometimes 21 or 22 , sedfom 23 to 25, rarely $12,13,26$ or 27 ; snout $2 \frac{1}{2}$ to 4 in head; eye $2!$ to $4!$; maxillary $2 \frac{2}{3}$ to 4 ; interorhital $2 \frac{1}{5}$ to $3 \frac{1}{3}$; tecth $2,4-4,2$ usually, rarely 2, 4-1, 1. Body compressed, rather deep, predosal swollen, form more elongate in young. Head compressed, heavy. Muzale obtuse. Snont convex, length about हf its wilth. Eye small, lage in young, circular, rather high. Month moderate, little inclined. Jaws about equal. Maxillary to eye in adult. Interorbital well convex. Rakers $2+8$ short firm points. Predorsal scales usually small and crowded and narowly imbricated, or elongated vertically, on costal region. I. l. complete, well decurved, about midway along camdal pedunclo side. Dossal origin about midway between front nostril and cambal base. Anal origin trifle behind dorsal hase. Caudal forked. l'ectoral about ; to ventral. V'entral inserterl little before
donsal, reaches anal. Color above dark bluish-olive, scale edges and bases dusky. Sides and below silvery-white, tinged rosy in spring males. Golden streak along upper side or back, most conspicuous as seen from above when fish swims in the water. Dusky streak behind gill-opening. Dorsal dusky, other fins plain, all edged broadly bright vermilion in spring males. Red on fins pale or absent in females or young. Muzzle and head above in spring males tuberculous. Iris silvery, golden in spring males. Length $1 \frac{3}{16}$ to $5 \frac{3}{16}$ inches. Very many examples: from the Delaware R. basin at Kennett Square, Ring's Run, Black Horse Run and first tributary below, Mill Run, Willistown Barrens (Chester Co.); Collar Brook, Whetstone Run, Langford's Run, Trout Run, Lewis's Run, Markam, Wawa (Delaware Co.) ; Schuylkill R.; Abrams (Montgomery Co.); Holmesburg, Bustleton. Torresdale (Philadelphia Co.); Cornwells, Hulmeville, Neshaminy Falls, Little Neshaminy Creek, Newtown, Bristol, near Langhorne (Bucks Co.); Dingman's Ferry (Pike Co.): Susquehanna R. basin at Emporium (Cameron Co.); Muncy (Lycoming Co.); Carlisle (Cumberland Co.); Paradise, near Denver, Swamp Bridge, Trout Run near Ephrata (Lancaster Co.); Meshoppen (Elk Co.): Port Allegany and Cole Grove (McKean Co.): Neweastle (Lawrence Co.): Kiskiminitas R .

Like the silver fin this is a most abundant species. It often associates with this, its smaller relative, especially when young. The breeting-dress of the spring male is very gorgeous, and is much more brichtly colored than that of the silver fin. The head above, and predorsal region, are much more coarsely tuberculate, and the former, together with most of the fin-rays, becomes adipose-like or with a swollen appearance. The red fin has an interesting habit of resorting tw clear shallows in the spawning season, which occurs about Philadelphia from late April to early summer. Schools of probably several huntren of the brilliantly-colored males may be found, closely packed therether as a mass of crimson and purple, in these places. The females did mot seem to take part in these gatherings, or at least I was unable thidentify any in the several schools captured. From this it appears that they precede the males to the spawning grounds. Sometimes the males are herded in elear riffles, but usually where there is a sandy or clear pebble bottom. The females, besides being paler in color, lack the tubercles usually. The young are without any red, though generally with pale bluish or violet reflections on their sides, and only in the very young is the lateral line incomplete. The largest examples ramined were $7 \frac{1}{2}$ inches long, and I doubt if they seldom exceed 8
inches. The red fin is frequently found in rock pools about cascades, and seems perfectly at home in turbulent foamy water. They are frequently angled on a small hook, and though palatable as a pan fish are usually too small to be of any value. As bait they are excellent. It occurs usually in the smaller streams, being entirely distributed over our region. I have not yet taken it in tide-water.
Notropis chalybæus (Cope). ${ }^{6}$
Head $3 \frac{2}{5}$ to 4 ; depth $3 \frac{1}{2}$ to $4 \frac{3}{4}$; D. iii, 7,$1 ;$ A. iii, 7,1 , rarely iii, S. I; scales usually 30 , frequently 31 , often $29,32,33,34,35$, rarely $2 \mathrm{~S}, 36$ or $39+$ usually 2 , seldom 3 , rarely 1 ; scales above l. 1. usually 6 , occasionally 7 , rarely 5 ; scales below l. l. usually 4 , seldom 3 , rarely 5 ; predorsal scales usually 15 , frequently 14,16 or 17 , rarely 13 or 18 ; snout 3 to $4 \frac{1}{8}$ in head ; eye $2 \frac{1}{4}$ to $3 \frac{1}{2}$; maxillary $2 \frac{4}{5}$ to $3 \frac{1}{5}$; interorbital $2 \frac{2}{1}$ to 3 ; teeth 2, 44, 2. Body well compressed, heavy forward. Caudal peduncle slender. Head compressed. Snout convex, length ${ }_{4}^{3}$ its width. Eye rounded, high. Mouth inclined, mandible slightly protruding. Maxillary to eye. Interorbital broadly convex. Rakers $3+6$ short slender points. Scales well exposed. Predorsal scales slightly smaller. L. l. complete in adults, incomplete in young. Dorsal origin about midway between front nostril and caudal base. Anal inserted little behind dorsal base. Caudal forked. Pectoral ξ to ventral, latter inserted trifle before dorsal origin, fin reaches vent. Color dark brown, scales dark-edged on back. Black lateral band from snout to caudal base, purple, blue or green in some lights, and ending in black caudal blotch. Just over this a light brownish streak and within none of seales dark-edged like back above. Below whitish. Jength $1 \frac{1}{4}$ to 23_{6}^{3} inches. Many examples from the Delaware R. basin in Mill Creek at Bristol and the Neshaminy Creek at Neshaminy Falls (Bucks Co.).

This is a very brilliant little fish in full breedingrelress, the lower surface of the borly and pale area of brown adjoining the black lateral hand being rich orange. This is only the case with the male, which is also covered with minute tubercles rather sparsely over the upper -urface of the head, though much larger on preorbital and mandible. All of predowal scales edged rather coarsely with corrugations or tubereles. The females lack the tubereles, and may easily be known at this time by their swollen abdomens, due to being gravid with owa. They all associate with other small fishes in rather still or quiet water, Hsually in large schools of several humded individuals, and are largely

[^88]33\%
preyed on by the common pike (Esox americanus). When a school is found in such a place the individuals are invariably all headed in one direction, and moving as if by one impulse when disturbed. Sometimes, however, they flash a little of their silvery sides as they move abrout. When greatly agitatal they do not seem to swim far, but soon form into another school further on. I have only met with them in the lower Delaware valley.
Notropis jejunus (Forbes).
Recorled from the Monongahela by Evermann and Boliman. I have no material.

Notropis atherinoides Rafinesque.
Head $4 \frac{1}{8}$ to $4 \frac{1}{4}$; depth $5 \frac{1}{5}$ to $5 \frac{1}{2}$; D. iii, 7, I; A. usually iii, 9, I, occavionally iii, 10 , i; seales usually about 40 , sometimes 38 or $34+$ usually 2 , sometimes 3 ; scales above l. 1. usually 6 , occasionally 7 ; scales below 1. 1. 4; predorsal scales 16 to 19 ; snout $3 \frac{1}{5}$ to 33_{4} in head; eye 3 ; maxillary $2 \frac{9}{10}$ to $3 \frac{3}{7}$; interorbital $2 \frac{1}{3}$ to $3 \frac{1}{5}$; teeth $2,4-4,2$. Body compressed, elongate, slender. Head compressed, blunt. Snout conic, length $\frac{7}{3}$ its width. Eye rounded. Mouth rather small, inclined, jaws about even. Maxillary not quite to cye. Interorbital evenly convex. Rakers $2+7$ rather weak points. Scales rather narrowly imbricated along middle of side. L. I. decurved, complete. Dorsal origin about midway between eye center and caudal base. Anal origin trifle behind dorsal base. Caudal forked. Pectoral $\frac{3}{5}$ to ventral. Ventral inserted well before dorsal. Color transparent greenish above. I ark streak down hark medianly. Sides bright silvery-white. Spring males with rosy snout. Length $2 \frac{1}{2}$ to 4 inches. Two examples from the Beaver R. and 2 from Lake Erie at Erie (Erie Co.).
This handsome species is said to reach 6 inches in length. It occurs in rivers and lakes west of the Alleghanies, usually in schools, and in still water.

Notropis rubrifrons (Cope).
Alburnus rubrifrons Cope, Proc. Acad. Nat. Sci. Phila., 1865, p. 85. Kiskiminitas River.
Head 3z; depth 4\% D. iii, 7, 1; A. iii, 8, 1; P. i, 13?; V. i, 7 ; scales $36+3$; seales above 1. 1. 7 ; seates below 1. 1. 4; predorsal seales 1s; head width $2{ }_{2}^{1}$, its length; head depth at oeciput $1 \frac{3}{3}$; mandible 27 ; depreased dowal length $1 \frac{1}{3}$; anal length 1 है ; least depth caudal peduncle 22_{10}^{6}; peromal $1 \frac{1}{6}$; wentral 1_{16}^{6}; shout $3 \frac{1}{3}$ in head from upper jaw tip; eye 33^{3}; maxillary 22 ; interorbital $3 \mathbf{T}^{1} \sigma$.

Bondy drngate, compressenl, deepest at ventral origin, profiles simi-
larly convex, edges rounded. Caudal peduncle compressed, rather slender, least depth $2 \frac{1}{3}$ its length.

Head compressed, rather pointed, flattened sides rather convergent below, profiles similar, lower little more evenly and convexly inclined. Snout rather conic, surface convex, length about equals its width. Eye rounded, little high, near first $\frac{3}{7}$ in head. Mouth moderate, little inclined, jaw edges rather firm. Premaxillaries protractile. Maxillary slender, to eye front. Lips rather thin. Mandible depressed, rami not elevated inside mouth. Tongue depressed, fleshy, not free. Nostrils together on side of snout, crescentic posterior larger. Interorbital broadly convex. Preorbital little ovoid, width about $\}_{\text {? }}$ its length, latter $1 \frac{1}{5}$ in eye. Preorbital width about equals pupil. Posterior preopercle margin nearly vertical.

Gill-opening forward little before hind eye margin, not quite to pupil. Rakers about $2+6$? short weak points, longest $\frac{1}{\ddagger}$ of filaments, latter ${ }^{13}$ in eye. Pseudobranchis large, little smaller than filaments. Isthmus width at front $1 \frac{1}{4}$ in pupil.
scales in series parallel with 1. 1., all mostly broadly exposed, smalleron breast and preventral, each with several strix. Ventral axil with pointed scaly flap, 5 in depressed fin. L. l. complete, decurved at greatest depth to lowest third. Tubes simple, each well over exposed scale not quite to edge.

Dorsal origin midway between hind eye margin and caudal base, fin highest anteriorly, depressed $1 \nmid$ to caudal base. Anal origin just behind dorsal base, fin highest anteriorly, depressed 2 to candal base. Caudal damaged. P'ectoral rather long, upper rays longest, fin to ventral. Ventral inserted little before dorsal, depressed $\frac{1}{5}$ to anal. Vent close before anal.

Color in alcohol dull brownish generally, back but little darker than rest of general color. Sides and below silvery to whitish. Fins pale brownish. Iris silvery.

Length $2 f$ inches (caudal damaged).
No. 4,035, A. N. S. P., cotype (type) of A. rubrifrons Cope. Kiskiminitas River (Cope).

Also Nos. 4,036 to 4,039, same data, in poor preservation, showing: Head 4 to $4 \frac{1}{6}$; depth $4 \frac{3}{}$ to $4 \frac{1}{5}$; D. iii, 7,1 ; A. iii, 9,1 or iii, 10,1 ; scales 30 to $37+2$; scales above 1.1 . 6 or 7 ; spales below 1.1. 4; predorsal seales 17 to 20 ; snout $3 \mathrm{r}^{\frac{1}{0}}$ to 3 t in head; eye 31_{10}^{1} to $3 \frac{1}{2}$; maxillary $2 \frac{6}{6}$ to 22 ; interorbital 22 to 3 ; teeth $2,4-4,2$; length $2 \frac{3}{18}$ to 24 inches.

Found in clear streams west of the Alleghanies. In life this fish is
olivaceous in color, sides and lower surface silvery-white. Spring males have the forehead, side of head and dorsal base rosy-red, and the snout tuberculous. Along base of anal row of dark specks, and dark streak down middle of back. Said to reach 23 inches.

Notropis photogenis (Cope).
Squalius photogenis Cope, Proc. Acad. Nat. Sci. Phila., 1864, p. 280. Youghiogheny River, Pennsylvania.
Head 4; depth about 5 (emaciated); D. iii, 7, I; A. iii., 8?; P. i, 12?; V. i, 7 ; scales about 30 ? (squamation injured) +2 ; scales above 1. 1. 6 : scales below 1. 1. 4; predorsal scales 16 ; head width $1 \frac{9}{\mathrm{~T} 0}$. its length; head depth at occiput $1 \frac{1}{7}$; snout $3 \frac{1}{\frac{1}{2}}$; eye $3 \frac{1}{5}$; maxillary $3 \frac{1}{8}$; interorbital 3: first branched dorsal ray $1 \frac{2}{7}$; anal ray $1 \frac{1}{2}$; least depth of caudal peduncle 3 ; upper caudal lobe 1 ; pectoral $1 \frac{1}{4}$; ventral $1 \frac{2}{3}$.

Body elongated, compressed, edges apparently rounded, profiles similar, deepest at dorsal origin. Caudal peduncle compressed, least lepth $2 \frac{1}{2}$ its length.

Heal compressed, flattened sides convergent below, profiles similar. Snout convex, length $\frac{7}{8}$ its width. Eye large, little longer than deep, high. near first $\frac{3}{7}$ in head. Mouth inclined, moderate, jaw edges firm. Premaxillaries protractile. Maxillary slender, to eye front. Mandible depressed, rami well elevated inside mouth, symphysis slightly protruding in front when mouth closes. Lips rather thin. Tongue fledhy, depressed, rather far back. Nostrils together on snout side above near cye, posterior larger. Interorbital broadly convex. Preorbital width about $\frac{3}{}$ its length, latter $1 \frac{1}{2}$ in eye. Postorbital width equals pupil, other suborbitals narrow.

Gill-opening forward to last third in head. Rakers $2+7$ weak points, longest about 4 in filaments, latter $2 \frac{1}{3}$ in eye. Pseudobranchis little shorter than filaments. Isthmus width about $1 \frac{1}{6}$ in pupil, surface flattened. Teeth 2, 4-4, 2, hooked, with slight grinding-surface.
scales about uniform, in longitudinal series parallel with I. 1., little smaller on breast. No evident axillary ventral scale. L. 1. continu-on-, well decurved, ascembing rather low along caudal peduncle side. Tubes simple, well over scales, though not quite to margins.

Doral origin midway between front nostril and caudal base, gradnatend down from first branched ray or longest, depressed $\frac{3}{7}$ to caudal ha-r. Anal origin trifle behind dowal hase, finst branched ray highest deprewerd $\frac{3}{3}$ to cambal hase. (andal well forked, pointed lobes about equal. Pectoral 4 to ventral, upper rays longest. Ventral inserted little before dorsal, reaching anal?

Condor in alcohol plain pale trownish generally, of miform tint. Iris with slight silvery tinge.

Length $1 \frac{7}{8}$ inches.
No. 22,280, A. N. S. P., cotype (type) of S. photogenis Cope. Youghiogheny River (Cope), Pa.

Also No. 22,281, same data, showing: Head $3 \frac{t}{5}$; depth 5; D. iii, 7 , I; A. iii, 8 ?; scales 33 ? +3 ?; scales above l. l. 6 ; scales below l. 1. 4 ; predorsal scales 14 ?; snout $3 \frac{1}{2}$ in head; eye 23 ; maxillary $3 \frac{1}{3}$; interorbital 3 ; length $1 \frac{11}{10}$ inches. Both examples in poor preservation.

Found in streams west of the Alleghanies and said to reach 3 inches in length.

Notropis photogenis amcenus (Abbott) ${ }^{7}$

Head $3 \frac{3}{5}$ to 47 ; depth $4 \frac{3}{4}$ to $5 \frac{3}{4}$; D. usually iii, 7 , I, rarely iii, S, I; A. usually iii, 10 , I, occasionally iii, 9 , I, rarely iii, 11 , ; scales usually about 38 , though ranging from 31 to $40+$ usually 2 , frequently 3 , rarely 1 ; scales above l. 1. usually 7 , seldom 6 or 8 ; scales below 1. 1. 4 ; predorsal scales usually 18 to 21 , seldom $17,22,23$ or 24 ; snout 3 to $3 \frac{1}{5}$ in head; eye $2 \frac{3}{4}$ to $3 \frac{1}{3}$; maxillary $2 \frac{1}{5}$ to $3 \frac{1}{5}$; interorbital $2 \frac{3}{3}$ to $3_{\frac{1}{0} \tilde{0}}^{1}$; teeth 2, 4-1,2. Body compressed, slender. Head compressed. Snout convex, length $\frac{7}{8}$ its width. Eye rounded, rather high. Mouth well inclined, moderate, mandible included evenly. Maxillary to eye. Interorbital broadly convex. Rakers $2+6$ short weak points. Scales rather broadly exposed, crowded on predonsal region. L. I. complete, decurved about lowest third. Dorsal origin midway between cye and caudal base. Anal origin below last dorsal ray base. Caudal long, deeply forked. Pectoral $\frac{5}{6}$ to ventral. Ventral inserted little before dosal, fin to anal. Color translucent olive on back, sides and below silvery-white. Leaden streak along side sometimes, offsetting color of back and belly, extending from eye to catdal, where little darker. Iris silvery-white. Length $1 \frac{1}{8}$ to $3 \frac{1}{8}$ inches. Many examples: from the Delaware R. basin at Holmesburg (Philadelphia Co.) ; Neshaminy Falls, Hulmeville, Bristol, Emilie (Bucks Co.); Dingman's Ferry (Pike Co.): Susquehanna R. basin at Paradise and swamp Bridge near Denver (Lancaster Co.).

Found only in the lower Delaware and Susquehama basins by me. It was especially abundant in the Neshaminy Creek and also oceus rather frequently in the Delaware tide-water. It is a beautiful bright silvery little minnow, and is said to reach 3 inches. It seems to differ from N. photogenis chiefly in the smaller predorsal scales. I have usually found it associated with large schools of other minnows or small fishes.

[^89]Ericymba buccata Copes.
Proc. Acad. Nat. Sci. Phila., 1865, p. S8. Kiskiminitas River.
Head $3 \frac{1}{2}$; depth 5; D. iii, 7, I; A. iii, 7, i; P. i, 14; V. i, 7; scales $34+2$; scales above 1. 1. 5 ; scales below l. 1. 4; predorsal scales 17 ; head width '2 in its length; head depth at occiput $1 \frac{3}{4}$; snout 3 ; eye $3 \frac{1}{\text { : }}$: maxillary 4 ; interorbital $3 \frac{1}{5}$; first branched dorsal ray $1 \frac{1}{3}$; anal ray 13 ; least depth caudal peduncle $2 \frac{7}{8}$; upper caudal lobe trifle over 1 ; pectoral $1 \frac{1}{2}$; ventral 2.

Body compressed, elongate, slender, back not elevated though upper profile little more convex than lower, deepest at dorsal origin, edges mostly rounded and only upper and lower caudal peduncle surfaces with traces of median low obsolete keel. Caudal peduncle rather long, compressed, least depth about $2 \frac{1}{3}$ its length.

Head elongate, moderately compressed, somewhat flattened sides slightly convergent above with lower surface slightly broader than upper, upper profile somewhat evenly convex, more inclined than straight lower one. Snout convex, slightly protruding, long as wide. Eve large, ellipsoid, near upper profile, center trifle before head center. Mouth small, inferior, scarcely inclined, obtuse edges not firm. Premaxillaries protractile down in front. Maxillary rather concealed, to front nostril. Jips fleshy. Mandible depressed, small, rami little elevated inside mouth. Tongue thick, fleshy, depressed, rather far back. Nostrils together, on snout side above, frenum last fourth in snout, anterior circular, posterior crescentic. Interorbital broad, slightly evenly convex. Preorbital about $1 \frac{1}{2}$ in cye, width about $1 \frac{3}{4}$. Other suborbitals all much narrower, postorbitals scarcely evident. Posterior margin of preopercle concave to curve posteriorly below. Extornal conspicuons mucous chambers along each side of head below eyor and along mandible surface below. Upper series about 7 cells and mandibular series about 9 , on each side of head.
(iill-opening forward to upper hind preopercle margin, about last third in head. Rakers $1+4$ short firm robust processes, thick set, about 4 in filaments, latter $1 \frac{1}{2}$ in eye. Pseudobranchise small, less than half of filaments. Least isthmus width $1 \frac{1}{2}$ in eye, lower surface hroadly depressed. 'Teeth 1, 4-4, 1, hooked strongly at tips, without grinding surfaces but edges entire.
rates in ceries parallel with l. 1., montly miform exeept little smaller (on herat and mexlian domal and vontral boty-odges, striae radiating, all rather broadly exposed. Caudal base scales not smaller than

[^90]others. Ventral axil without scaly flap, though broad scaly flap between bases of fins, its hind edge free. L. l. complete, only decurved at first till midway along body side and caudal peduncle. Tubes simple, well exposed over each scale nearly to edge.

Dorsal origin about midway between snout tip and caudal base, third simple ray highest though first branched subequal, fin $2 \frac{1}{5}$ to caudal base. Anal origin trifle after dorsal base, third simple ray longest though first branched subequal, fin 2 to caudal base. Caudal deeply forked, lobes pointed, equal. Pectoral rather broad, upper rays longest, $\mathrm{J}^{9} 0$ to ventral. Ventral inserted trifle before dorsal, broadly expanded, reaches vent close before anal.

Color in alcohol dull brownish, lower surface scarcely paler, side of head and streak down middle of side of trunk dull leaden-silvery. Fins plain pale brownish. Iris dull brassy-brown.

Length 2_{10}^{7} inches.
No. 6,003, A. N.S. P., cotype (type) of E. buccata Cope. Kiskiminitas River, western Pennsylvania (Cope).

Also No. 6,004, saine data, showing: Head $3 \frac{1}{2}$; depth $4 \frac{3}{3}$; D. iii, $\overline{7}, \mathrm{I} ;$ A. iii, $\mathbf{7}, \mathbf{1} ;$ scales $31+2$; scales above l. 1. 5 ; scales below l. 1. 4 ; predorsal scales 14 ; snout 3 in head; eye 3 ; maxillary $3 \frac{3}{7}$; interorbital $3 \frac{1}{3}$; third simple dorsal ray $1 \frac{1}{5}$; anal ray $1 \frac{3}{7}$; caudal 1 ; least depth caudal perluncle 3 ; pectoral 1 ; ventral $1 \frac{7}{8}$; teeth 1 , $4-4$, 1 ; length $1 \frac{3}{4}$ inches.

Cope says " a narrow space from vent to opposite middle of pectorals scaleless," which is not true in the above examples.

This little fish is said to reach 5 inches in length, and occurs in clear streams and ponds west of the Alleghanies. Its color is olivaceous above with silvery sides, and spring males are said to be without tubercles or bright colors. There is a dark line down the middle of the back and a streak of dusky dots along the side.
Rhiniohthys oataracteo (Valenciennes).
Head $3 \frac{1}{3}$ to 4 ; depth 4 to $5 \frac{1}{3}$; D. iii, 7,1 ; A. iii, 6, r ; scales variable, 41 to 65 , mostly from 53 to $66+$ usually 3 , occasionally 4 , rarely 2 ; scales above 1. 1. usually 13 , frequently 12 or 14 , often 15 , sometimes 11 ; scales below 1. 1. usually 11 , frequently 10 , often 9 , seldom 12 , ravely 8 ; predorsal scales usually 27 to 31 , occasionally 24 to 26 and 32 to 35 , raroly 22,36 or 37 ; snout $2+1031_{0}^{1}$ in head; eye $3+$ to $5 \frac{1}{2}$; maxillary 2$\}$ to 33 ; interorbital $2 \frac{3}{7}$ to 43 ; teeth $2,4-4$, 2. Body monlerately slemer, compressed, rather robust forward. Head elongate, rather conic. suout long as broad, convex, protruding beyond mandible about 1 eye-diameter. Lye small in adult, lage in young,
high, midway in head. Mouth small, broad. Maxillary to hind nostril, small barbel at end. Slightly convex interorbital broad. Rakers $2+5$ robust firm short points. Scales smaller anteriorly on trunk. L. l. complete, slightly decurved, nearly midway. Dorsal origin about midway between front nostril and caudal base. Anal inserted little behind dorsal base. Caudal forked, lobes about equal. Pectoral $\frac{4}{5}$ to ventral, latter inserted little before dorsal, fin to vent. Color olivaceous above, sometimes nearly blackish with mottled appearance. No distinct dusky lateral shade in adult, more evident in young. Lower surface whitish. Sometimes blackish opercle blotch. Lips, cheeks and lower fins in spring males rosy-red. Iris silvery. -pring males also with entire upper head, pectoral fin and trunk finely tuberculate, jaws smooth. Length $1 \frac{11}{16}$ to $3_{\frac{7}{6}}^{7}$ inches. Many examples from the Delaware R. basin at Kennett Square, Mendenhall and Mill Run (Chester Co.), the Susquehanna R. basin at Paradise (Lancaster Co.) and Meadow Run in the Youghiogheny R. basin near Ohio Pyle (Fayette Co.).

This dace occurs in clear swift streams, usually about rapids and leep pools, in all the upland waters of the State. It is said to reach 5 inches in length and be good bait for bass, though rather difficult to secure. I have usually found it associated with R. atronasus, though it appears to be more active.
Rhiniohthys atronasus (Mitchill).
Head 3 to 48 ; depth 3 尔 to 57 ; D. iii, 7 , r, rarely iii, 6 , I or iii, 8, r; A. usually iii, 6 , I, rarely iii, 7 , I ; scales usually 50 to 60 , varying frequently 43 to 49 and 61 to 64 , rarely varying 39 to 42 and 65 to $67+$ usually 3 , occasionally 2 or 4 ; scales above 1. l. usually 12 , frequently 11 or 13 , seldom 10 , rarely 14 ; scales below 1 . l. usually 8 , frequently 9 , sedfom 7 or 10 , rarely 11 ; predorsal scales usually 30 to 33 , frequently 28,29 or 34 to 38 , seldom 25 to 27 , rarely 23 and 39 to 42 ; snout $2 \frac{1}{2}$ to $3 \frac{1}{2}$ in head; eye 3 to $5 \frac{1}{6}$; maxillary 3 to 4 ; interorbital $2 \frac{1}{5}$ to $3 \frac{3}{5}$; teeth $2,44,2$ usually, rarely $2,5-4,2$ or $2,4,1-4,2$ or $2,4-3,2$ or 1 , $3-4,2$. Body compressed, moderately long. Head moderate, robust, broad. Snout convex, depresed, length $\frac{7}{8}$ its width. Eye small in adult, large in young, circular, high, slightly anterior. Mouth small, inferior, snout projecting about $\frac{1}{3}$ of cye beyond mandible. Maxillary litter inclineal, to front mostril, ending in short barbel. Interorbital herably depresed. Rakens $3+4$ short firm points. S'eales small, well rexposed. L. 1. eomplete in adult, absent in young. Dowal origin milway betwern hind eye margin and caulal base. Anal origin just after donal base. (atudal forked, lobes romoded. Pectoral $\frac{3}{}$ to ven-
tral, latter inserted little before dorsal origin, fin to anal. Color very variable, usually olivaceous-brown above mottled with dusky. Black lateral band from snout to caudal, always pronounced in young. Below white. Lower fins whitish to pale yellowish. In spring makes sometimes whole body blushed crimson or golden, lateral blackish band vermilion or orange, also lower fins. Later in season dark lateral band turns blackish. Spring males also with head above behind nostrils minutely tuberculate. Length $1 \frac{1}{4}$ to $3 \frac{1}{2}$ inches. Very many examples: from the Delaware R. basin at Iiennett square, Mendenhall, Black Horse Run, second tributary below latter, run near stock Grange, Willistown Barrens (Chester Co.); Chadd's Ford, Wawa, Whetstone Run, north branch of Langford's Run, Lewis's Run, Hunter's Run, Collar Brook, Collingdale (Delaware Co.); Wissahickon Creek, Holmesburg, Torresdale (Philadelphia Co.); Abrams, Hatboro (Montgomery Co.) ; Cornwells, Neshaminy Falls, Little Neshaminy Creek, Newtown, near Langhorne, Tullytown (Bucks Co.) ; Dingman's Ferry (Pike Co.): Susquehanna R. basin at Brooklyn (Potter Co.); Loyalsock C'reek near Lopez (Sullivan Co.); Octoraro Creek at Nottingham (('hester Co.) ; Paradise, Akron and Trout Runs near Ephrata, Witmer's Mills and rum near Blainsport (Lancaster Co.): Allegheny R., Port Allegany and Cole Grove (McKean Co.); Warren (Warren Co.) ; loughiogheny R. and Meadow Run near Ohio Pyle (Fayette Co.); Beaver R. ${ }^{\text {; }}$ Kiskiminitas R.: Genesee R. at Gold and Raymonds (Potter Co.): Potomac R. basin in Cove Creek (Fulton Co.).

This beautiful little fish is very abundant in most all clear swift cold brooks in the State, especially in the mountainous regions. It is variable in the extreme, and many quite striking sarieties may be fomend, even in the same brook. The so-called brown-nosed dace, from our western streams, does not appear to differ in having a paler color and deeper body, so far as I have examined. In fact many western examples are very dark or dusky. The snout is also variable. The fish is often found greatly parasitized with tape-worms, the abolomen then being greatly swollen. It is said to be good as bait. It spawns in the late spring and early summer, though bright-colored examples are found throughout the latter season.

Hybopsis dissimilis (kirtland). ${ }^{10}$
Head 37 to 4 ; depth 5 to 63 ; D. iii, 7,1 ; A. iii, 6,1 ; scales usually about 47 , varying 32 to $50+3$; scales above 1. 1. usually 6 , rarely 7 ;

[^91]scales below 1. 1. usually 5 , rarely 6 ; predorsal seales usually 19 or 20 , rarely 17,1 S, 21 or 23 ; snout $2 \frac{1}{2}$ to 3 in head; eye $2 \frac{3}{9}$ to $3 \frac{1}{3}$; maxillary $3 \frac{1}{5}$ to $3 \frac{1}{2}$; interorbital 3 to 4 ; teeth $4-4$. Body elongate, slender, compressed. Caudal peduncle long, slender. Head long, robust, little deeper than broad. Snout convex, long as broad. Eye large, high. midway in head. Mouth small, inferior, upper jaw protruding slightly. Maxillary well short of eye, ending in short barbel. Interorbital flattened. Rakers $2+5$ short points. Scales smaller on predorsal, well exposed. L. l. complete, nearly straight. Dorsal origin midway between snout tip and caudal base. Anal origin little behind depressed dorsal tip. Caudal forked. Pectoral $\frac{5}{6}$ to ventral, latter inserted little behind dorsal origin, fin $\frac{3}{4}$ to anal. Color olivaceous, back rather mottled, below white. Sides bright silvery-white. Fins pale, plain. Lateral bluish stripe around snout, overlaid with several dusky spots. Length $2 \frac{9}{16}$ to 4 inches. Twelve examples from the Youghiogheny R .

Found in the channels of the larger streams, creeks and lakes, west of the Alleghanies. It does not appear to enter the small brooks. Said to reach 6 inches in length, and though a good biter most too small as food. Taken largely for bait.
Hybopsis storerianus (Kirtland).
Recorderl by Evermann and Bollman from the Monongahela R.
Hybopsis kentuckiensis (Rafinesque).
Ceratichthys micropogon Cope, Proc. Acad. Nat. Sci. Phila., 1864, p. 277. Conestoga Creek in Lancaster County.
Hear 33 ; depth 4 ; D. iii, 7 , I; A. iii, 6 , I; scales $34+3$; scales above 1. 1. 6 ; scales below 1. 1. 5 ; predorsal scales 18 ; head width 2 its length; head depth at occiput $1 \frac{2}{5}$; snout $3 \frac{1}{8}$; eye 3 ; maxillary 3 ; interonhtal $3 \frac{1}{4}$; first bramehed donsal ray 1 ; anal ray $1 \frac{1}{2}$; least depth caudal peluncle 2娄; lower caudal lobe 1 ; pectoral $1 \frac{2}{7}$; ventral $1 \frac{1}{5}$. Body moderately lome, compreseed, profiles similar, deepest at dorsal origin. Camdal perdmele compressed, least depth 13 its length. Head compresend, profiles similarly convex, flattened sides not convergent below. Snout convex, width $\frac{3}{3}$ its length. Eye elongate, rounded, high, center about first $\frac{t}{1}$ in head. Mouth low, nearly horizontal, large, Jaws even. Premaxillaries protractile down. Maxillary little inclined, trifle beyond eye front, not quite to pupil. Lips thin, little fleshy. Small barbel at lower maxillary corner distally. Jaw edges rather thin, trenchant. Mandible heavy, convex, rami little elevated inside mouth. Tongue thick, fleshy, admate. Nostrils together, posterior larger, near eye front. Interorbital broadly depressed. Pre-
orbital broad, width $\frac{2}{3}$ its length, latter $1 \frac{1}{4}$ in eye. Other suborbitals narrow. Gill-opening last $\frac{2}{5}$ in head, nearly to hind eye margin. Rakers $2+5$ points, about 3 in filaments, latter 1_{4}^{3} in eye. Pseudobranchise large, little less than filaments. Isthmus level, hast width nearly 2 in eye. Teeth 1?, 4-4, 1?, hooked, compressed, grinding surfaces narrow. Scales rather large, crowded on pretorsal and breast. more exposed along sides medianly. Pointed sealy axillaty ventral flap 5 in fin. L. l. complete, first decurved till about midway along side. Tubes simple, over first $\frac{2}{3}$ of exposed scales. Dorsal origin midway between eye front and caudal base, first branched ray longest, fin 2 to caudal base. Anal origin little behind dorsal base, first branched ray longest, fin $1 \frac{2}{5}$ to caudal base. Caudal forked, lobes pointed. tips (damaged) about equal. Pectoral pointed, upper rays longest, fin ${ }_{5}^{f}$ to ventral. Latter inserted about opposite dorsal origin, reaches anal. Vent close before anal. Color in alcohol dull brownish, below paler. Head and trunk below with pale silvery reflections. Iris pale silvery. Fins pale brownish. Length $3 \frac{1}{4}$ inches (caudal damaged). No. 5.061, A. N. S. P., type of C. micropogon Cope. Conestoga Creek in I ancaster County (Stauffer).

Head $3 \frac{1}{3}$ to 4 ; depth $3 \frac{1}{5}$ to $4 \frac{3}{4}$; D. iii, 7, I; A. iii, 6, I usually, rarely iii, 7,1 ; scales usually 35 to 40 , sometimes 33 or 34 , rarely 32 or $41+$ usually 3 , rarely 2 ; scales above 1. 1. usually 7 , frequently 6 ; scales below 1. 1. usually 5 , frequently 6 , rarely 4 ; predorsal scales usually 16 to 19 , occasionally 20 , rarely 14 or 24 ; snout $2_{1}^{1} 0$ to 3 in head; eye $3 \frac{1}{3}$ to 7 ; maxillary $2 \frac{1}{2}$ to $3 \frac{1}{3}$; interorbital $2 \frac{1}{4}$ to $3 \frac{1}{3}$; teeth usually $0,4-4$. 0 , occasionally $1,44,0$ or $1,44,1$, rarely $1,4-1,2$. Body compressed, robust. IIead large, broadly rounded above, snout convex, blunt, rather long. Lye small, high, round, larger in young. Mouth large, little inclinet, mandible slightly shoter. Maxillary not quite forye, ending in harbel. Interorbital broally convex. Rakers $2+5$ short bony points. Scales well exposed. I. l. complete, little decurved. Dorsal origin midway between snout tip and caudal base. Anal inserted behind donsal base. Caudal emarginate, broud lobes roumded. Pectoral $1 \frac{1}{2}$ to ventral, latter inserted opposite dossal origin, reaches vent. Color olivaceous above with bluish tints. Sides with pale greenish on white and silvery. Below white. lins pale orange. Spring males with head and belly bhashed rosy, crimson spot on side of former, high adipose-like crest on forehead, and snont with large fubereles. Silvery iris, then orange and greenish. Voung olivaceons above, silvery below, and dusky hand along side medianly. Leongth $1_{1}{ }^{9}$ to 9 ginches. Many examples: from the susquehanna R. basin in

Elk (reek (Chester Co.); Conestoga Creek and near Denver (Lancaster ('o.); Emporium (Cameron Co.): Youghiogheny R. and Meadow Run near Ohio lyle (Fayette Co.); Beaver R.; Kiskiminitas R.; Newcastle (Lawrence Co.) ; Allegheny R. basin (Warren Co.).

This beautiful fish occurs in all streams west of the Alleghanies, and I have only met with it in the Susquehanna, in the Atlantic basin of our limits. It is said to reach 10 inches in length and be a fair table fish. Mort frequently it is found in the larger creeks and rivers, seldom occurring in small brooks. It will take the hook readily and is a goonl bait as it is hardy. It shows considerable variation, the young being quite unlike the adult, and the latter also differing in the spawning season, which takes place in late spring and early summer.

Exoglossum maxillingaa (Le Sueur).
Head $3_{\frac{3}{3}}$ to $4 \frac{2}{5}$; depth $3_{\frac{3}{4}}$ to $4 \frac{1}{5}$; D. usually iii, 7 , I, rarely iii, 8 , 1 ; A. usually iii, $6, \mathrm{I}$, rarely iii, 7 , I ; scales usually about 48 to 51 , ravely $39,43,44,45,47,52,53,54,56,57+$ usually 3 , frequently 2 , rarely 4 ; scales above l. l. usually 10 , frequently 9 , seldom 11 , rarely 12 ; scales below l. l. usually 6 , frequently 7 ; predorsal scales usually 25 to 28 , sometimes 29 , rarely 30 ; snout $2 \frac{2}{5}$ to $3 \frac{1}{2}$ in head; eye $2 \frac{2}{3}$ to $4 \frac{3}{4}$; maxillary $2 \frac{3}{4}$ to $3 \frac{3}{4}$; interorbital $2 \frac{1}{10}$ to $3 \frac{1}{4}$; teeth usually $2,4-4,2$, rarely 1, 44, 2 or $0,44,2$. Body compressed, robust. Head compressed, broad. Snout convex, width $\frac{3}{4}$ its length. Eye small in adult, large in young, high. Mouth small. Maxillary to eye. Upper jaw projecting. Mandible small, dentaries closely wedged together, incurved, producing trilobed appearance. Interorbital broadly flattened. Rakers $1+3$ small rounded tubercles. Scales crowded anteriorly on trunk. L. l. continuous in adult, midway along side, incomplete or absent in young. Dorsal origin midway between front pupil margin and caudal base. Anal inserted just behind dorsal base. Caukal marginate. l'ectoral $\frac{5}{7}$ to ventral, latter inserted trifle before domal origin, reaches vent. Color olivaceous above, below whitish. Diffuce dusky blotch at caulal base, most distinct in young. Fins otherwise plain. Iris whitish. Length $1 \frac{3}{5}$ to $4 \frac{7}{8}$ inches. Many examples: from the Delaware R. basin at Mendenhall, Black Horse Rum and first tributary below, Mill Run (Chester Co.): Susquehama P. Wasin at lork Furnace (York Co.) ; Paradise, near Denver and Witmor's Mills (Lancastre Co.) Fimporium ('ameron Co.): Allogheny R. basin at Cole Grove (McKean Co.).

This prouliar and strikimgly characterized species occurs in all our river hatins. lut erems to be most abundant in the Susquehanna. It
is, ${ }^{\text {r }}$ however, by no means rare in the Delaware. It reaches a length of 6 inches and though rather small is sometimes said to be used as a pan fish. It is usually to be found in clear running water with other small fishes, and readily takes a hook.

Plate XXViI-Notropis keim Fowler.

A NEW SPECIES OF CYMATOPLEURA.

HE CHARLES S. BOYER.

since the publication of Greville's papers on the Diatomacex but few new forms from the deposit of Barbadoes have been described with the exception of those named by the late Prof. J. Brun in the last number of Le Diatomiste. The deposit, however, is very rich, and Mr. John A. Shulze, of Philadelphia, has not only prepared and mounted the greater number of Greville's rare species, but has discovered several new ones. Among these may be mentioned a Cymatopleura the diagnosis of which follows:

Cymatopleura shulze: n. sp.

Valve elliptical-lanceolate, with produced, subcapitate ends; border with moniliform markings. Surface with ten quite definite undulations; strix punctate in quincunx. L. of V. 170μ, puncta 14 in 10μ.

Barbadoes deposit. Rare. Coll. J. A. Shulze.
I take pleasure in naming this species after Mr. John A. Shulze, whose preparations of selected diatoms is unexcelled. Cymatopleura is a well-defined genus, but limited in the number of species. Those known as clliptica, solea, regula, hibernica, angulata, cochlea and the three new ones of Pantocsek, kinkeri, gigantea and gracilis, resemble each other in outline, more or less. Lewis' small form, C. marina, differs chicfly in its lanceolate outline. The present species is distinguished by its produced ends and by the fact that it is the only one of the genus thus far found in the miocene deposits (Plate XXVIII).

I am indebted to I)r. T. s. sitewart for the photographs from which the figures were taken.

Explanation of Plate NXVili.
Fig. 1. -Valve view. $\times 650$.
fig. 2.-same $\times 350$.
Fig. 3.-honal view, somewhat inclined, showing moniliform markings and the undulations. $\times 460$.

NOTES ON POLINICES DIDYMA, WITH DESCRIPTION OF A NEW AUSTRALIAN SPECIES.

BY H. A. PILSBRY AND E. G. VANATTA.

An Indo-Pacific group of species or forms of the Naticoid genus Polinices is characterized by having a transverse sulcus dividing the convex surface of the dark-brown umbilical callous lobe. Numerous supposed species were based on shells of this character, but motern authors have united all under one species, called Natica ampla by Tryon (Mamual of Conchology, VIII, 1856) and Natica didyma hy Watson and E. A. Smith (Challenger Report, XV, (iastropola, 1ssib, p. 450), and by Pritchard and Gatliff (Proc. Roy. Soc. V'ictoriu, XII, 1900, p. 191).

The names which have been applied to the forms in question follow in chronological order.
1798. Albula didymu Bolten, Museum Boltenianum, p. 20. Based upon Veritu umbilicatu lividu (hemnitz. Systematisches Conchylien Cabinet, V, p. 246, pl. 186, figs. 1856-57 (Tranquebar).
1845. Natica papyracea "Busch," Philippi, Abbildungen und Beschreibungen neuer oder wenig bekannter Conchylien, Vol. II (October), p. 45, pl. 2, fig. 12 (Hab.——?); Conchylien Cabinct. p. 87, pl. 13, fig. 4; p. 43, pl. 5, fig. 4.

184S. Vatica ampla Philippi, Zaitschrift für Malakozoolorie, p. 156, spec. 16 (Hab. --?); Conchylien Cabinet (Natica), p. 41, pl. 6, fig. 2.
1S4s. Vatica bicolor Philippi, Zaitschrift für Malakozomborie. p. 156, species 17 (China Sea); Conchylien Cabinet, p. 43, pl. 6, fig. 4.
1815. Vetica resicalis Philippi, Zonterhrift für Malakozoologie, p. 159 (China); Conchylien Cabinet, p. 40, pl. 6, fig. 1.
1816 1s.5s. Vaticalumarckii Rowhz, in Chemu, llhatrations Conchyliologiques, Vol. 111, pl. 2, figs. 1-1.
1816-185S. Natica petiveriana Recluz, in Chenu, Illustrations Conchyliologiques, Vol. 11I, pl. 2, figs. 5-9; Reeve, Conchologia Iconica, 1Х, 1855, pl. 5, fig. 17.
1846-1855. Natica intermedia Recluz, in Chenu, Illustrations Conchyliologiques, Vol. 1II, pl. 2, fig. 10; pl. 3, figs. 1, 2, 3 (not of Philippi, 18:36).

1546-1555. Natica chemnitzii Recluz, in Chenu, Illustrations Conchyliologiques, Vol. III, pl. 3, fig. 4. Reeve, Conchologia Iconica, IX, 1855, pl. 2, fig. 7 (not of Pfeiffer, 1840).
1552. Vatica incisa "Dunker," Philippi, Conchylien Cabinet, Natica, p. S1, pl. 12, fig. S (China).
1852. Natica papyracea Busch, var. major Philippi, Conchylien Cabinet, p. 157 , pl. 5 , fig. 4.
1855. Natica lamarckiana "Recluz," Reeve, Conchologia Iconica, IX, pl. 2, fig. 6.
1855. Natica problematica Reeve, Conchologia Iconica, IX, pl. 6, fig. 21.
1860. Natica robusta Dunker, Malakozoologische Blätter, Vol. VI, p. 232; Mollusca Japonica, 1861, pl. 2, fig. 24 (Deshima).
1576. Natica tasmanica Tenison-Woods, Papers and Proceedings and Report of the Royal Society of Tasmania, 1875 (1876), pp. 148, 149; 1877 (1878), p. 32; 1890 (1891), p. 134, species 173. Proceedings Royal Society of Victoria, Vol. XII, 1900, p. 192. Polinices tasmanica T. Woods, Tate and May, Proceedings Linnean Society of New South Wales, Vol. XXVI, No. 103, 1901, p. 375, pl. 25, fig. 49.

The study of a series of 53 specimens in 23 lots, from localities in Japan, China, India, the East Indies and Australia, shows that several species and races can be distinguished, as follows:

Polinices didyma Bolten. PI. XXIX, fig. 9.
Size rather large, up to 59 mm . diam. Coloration as in didyma ampla Phil.. from which it differs by the subtriangular shape of the umbilical callus, which has a long ardnate upper border and less projecting outer edge than P. didyma ampla Phil.

Type locality, Tranquebar. Bolten's species was based on Chemnitz's figures. We have seen no examples from 'Tranquebar, but the figures seem to show no tangible difference between didyma and the common Japanese species described as N. robusta Dkr., which we rensilter a synonym, pending the comparison of topotypes. We have ruhtustu from Tashima, Awaji (Hirase), and Hayama, near Kamakura, Sagarni (Miss Hartshorne). It seems to be confined to Japan and India.

Fig. 9 of plate XXIX represents a Japanese shell.
Polinices didyma ampla thil. Pl. X゙XIX, fig. 8.
A large form, ordinarily attaining the diameter of 63 mm . The untilion- is very ample, the exatation mot half eovered by the callus,
which projects as a free lobe, the middle or lower part projecting beyond the adnate upper border; hence the general outline of the callus is semicircular. The lower lobe of the callus is ordinarily larger than the upper. The inner part of the umbilical excavation is covered with yellowish cuticle except in old or worn shells, as it is in all the related forms; and while there may be two or three narrow radial purplish streaks, the umbilicus is mainly white within. The exterior is more or less deeply tinted with chestnut or livid brown above, paler or white on the base; the early whorls are dull blue with a pale subsutural band, apex dark red. The inside of the aperture is chestnut above, white at the base.

Most of the specimens before us are from China. One lot is labelled Madras. The type locality was not known. Absolute synonyms of this form are Natica lamarckii Recluz, and N. lamarckiana "Recluz," Rve.
Polinices didyma bicolor (Phil.). Pl. XXIX, figs. 4, 5.
A form of didyma which may perhaps be segregated, as a subspecies was described as N. bicolor Philippi. It is smaller than P. didyma ampla, the maximum diameter 35 to 39 mm . Umbilicus and umbilical callus similar, but the lobes of the latter are often more convex, and darker, very dark chestnut or chocolate colored. Upper surface darker than in didyma or didyma ampla, generally bluish or somewhat plum colored, with darker and paler streaks; base and interior of umbilicus pale or pure white. Interior of the aperture very dark chestnut or chocolate with a white area at the base.

This form differs from didyma and didyma ampla chiefly by the more strongly contrasted colors and smaller size. While not strongly differentiated, it seems to be recognizable, and not uncommon.

Type locality China Sea. Specimens are before us from "China," Singapore and Queensland.

Natica peliveriana Recluz is identical with bicolor.
Polinices didyma vesicalis (P hil.). PI. XXNX, figs. 6.7.
Similar to l^{\prime}. didyma, but the base and interior of the umbiliens are generally conspicunsly streaked radially with brown; upper surface light brownish, as in didyma; there is a more or less definite white band or paler area between the basal and the upper tinted tracts. This band is usually more distinct inside. Cpper adnate edge of the callous lohe generally longer than in P^{\prime}. didyma ampla Phil .. more as in didyma, but the callus is smaller. The whole parietal wall and adjacent root of the callous lobe are covered with a heavy pure white callus. whereas in didyma ampla l hil. this white area is much less
extended. General form is generally rather more elevated than didyma ampla. The largest example in the Acadeny's collection has a diameter of 47 mm .

Type locality, China. Specimens from three sources before us are from China, with one tray labelled Madras.
. Vetica intermedia Reclus (not of Philippi, 1836), N. problematica Reeve and N. incisa Dkr. are identical with vesicalis.

Polinices papyracea ("Busch," Philippi).
Whe have not seen this form, which according to Philippi differs from didyma by its depressed shape and very thin shell. It was known to Philippi by one specimen measuring about $18 \times 20 \mathrm{~mm}$. Natica papyracea major Philippi is a larger form or specimen.

Polinices aulacoglossa n. sp. P1. XXIX, figs. 1, 2, 3.
Shell globose, the contour higher and less broad than in P. didyma and its varieties, solid; light brown or slightly bluish, with an illdefined white band at the base. Umbilicus much smaller than in P. didyma, very narrow within, half or more covered by the callus, which is dark brown, divided by a submedian transverse sulcus, subtriangular in shape, the upper margin adnate to the end, which projects farther than the free edge of the lobe. Parietal callus heavy, white. Other characters substantially as in P. didyma.

Alt. $30 \frac{1}{2}$, diam. 31 mm .
Type locality, Altona Bay, Williamstown, near Melbourne, Victoria. Types No. 94229 A. N. S P., collected by Mr. F. H. Baker.

Some specimens received from Dr. J. C. Cox are larger, alt. $41 \frac{1}{2}$, diam. 42 mm ., otherwise similar. This is apparently the form listed by Messrs. Pritchard and Gatliff as Natica didyma Chemn. It is certainly distinct specifically from P. didyma, or any of its subspecies.

Natica chemnitzii Recluz (not N. chemnitzii Pfr., 1840) seems to be identical with this species, though if so it attains a larger size than any examples we have seen. In any case the name is a homonym and cannot stand.

Natica tasmanica Tenison-Woods has been placed in the synonymy of P. didyma by Messrs. Pritchard and Gatliff, but Tate and May in their C'ensus of Marine Mollusca of Tasmania (1901) have r tained it distinct, a decision supported by the figure published by them. It is a far smaller species than P^{\prime}. aulacoglossa, alt. 13 , diam. 16 mm .; and as Temison-Woods mentions seeing a number of examples in soveral conlections, it is not likely that he was dealing with young
specimens. See also the remarks by Tenison-Woods in Proceedings of the Royal Society of Tasmania, 1877, p. 32 (1878).

Natica secunda Mab. et Rocheb., as figured and described by Ortmann, ${ }^{1}$ is evidently closely related to P. aulacoglossa and its allies. It is not surprising to find that the nearest relatives of N. secunda are austral forms.

Explanation of Plate XXIX.
The figures are slightly reduced in size.
Figs. 1, 2, 3-Polinices aulacoglossa Pils. and Van., n. sp. No. 94229_A. N. S. P. Figs. 4, 5-Polinices didyma bicolor Phil., No. 59200 A. N. S. P. Figs. 6, 7-Polinices didyma vesicalis Phil., No. 59190 A. N. S. P. Fig. 8-Polinices didyma ampla Phil., No. 59198 A. N. S. P.
Fig. 9-Polinices didyma Bolt. (robusta Dkr.), No. 80440 A. N. S. P.
${ }^{1}$ Rep. Princeton Unir. Exped. to Patagonia, IV, p. 188, pl. 33, fig. 3a, b.

on the teeth of hawailan species of helicina.

by henry a. pilsbry and c. montague cooke.

The dentition has been examined in four Hawaiian species of Helicina: H. baldwini Anc., H. uberta Gld., H. laciniosa Migh. and H. rotelloidea Migh. The chief divergence is in the denticulation of the fourth or major lateral tooth, which is armed with several large and small denticles in some species, and with more numerous equal denticles in others.

Fig. 1.-Helicina balduini.

Fig. 2.--Helicina laciniosa.

In all the species, the central tooth has a very short smooth cusp or ledge at its summit.

In H. baldwini (fig. 1) the denticle formula of the laterals is $6,5,4$, 5,0 ; that is, the innermost lateral tooth has 6 points or denticles on its recurved cusp, the next tooth has 5 , and so on. The inner uncini have three or four rather large denticles. Lateral iv has very unequal conic denticles, two of them much larger than the others:
H. wherta is like baldwini, except that the inner lateral has only 4 denticles.
II. luciniosa (fig. 2) has the denticle formula 5, 6, 4, 7, 0. The major lateral (iv) has an even series of subequal denticles. The inner uncini have about 7 very minute, subequal denticles.

The radula of H. rotelloidea resembles that of H. laciniosa, the major lateral having 6 subeequal denticles, but the imer uncini are more like the $I I$. buldwini type, having about 4 large denticles. What sy-tomatic value attaches to the differenees observed is uncertain until man:" more species can be examined ; but it would seem that two groups arr :ndiatell, characterized by the mode of denticulation of the cusp of the fourth lateral tooth.
'line fizures represent the central (c) and lateral treth ($i-r$ '), with a single uncinus (u).

CLAUSILIID压 OF THE JAPANESE EMPIRE, XII.

BY HENRY A. PILSBRI.

Clausilias discovered by Mr. Y. Hirase, his correspondents and assistants, during the last year or two are described below. Unusual interest attaches to certain Euphædusoid species (C. echo, C. nakadx) showing stages in a degeneration series leading to Reinia. Further minor phyla of the Zaptychoid series have also been found.

Section EUPH \not EDUSA Bocttger.
I have elsewhere given reasons for including the group Reinia in Euphucdusu. C. castlakcana, C. echo and C. nakada are connecting links between the typical members of these groups.

Clausilia eastlakeana vaga s. Bubsp.
The shell is like C. eastlakeana Mlldff. The clausilium is slightly wider, and distinctly more curved.
$\left.\begin{array}{cccccc}\text { Length } & 12.0 \text {, diam. } 3.0 \mathrm{~mm} \text {.; whorls } & 7 \\ \text { "" } & 10.3, & \text { " } & 3.0 & \text { " } & \text { " } \\ 6 \frac{1}{2}\end{array}\right\}$ Nakanoshima.

Nakanoshima, Ösumi. Types No. 95691 A. N. S. P. from No. 1513 uf Mr. Hirase's collection; also Akusekijima, Osumi.

In general appearance this shell resembles C. raricgata A. Ad., from which it differs in having a clansilium and two palatal plice. It is profusely streaked with buff-white on a corneous-brown ground, the lighter tint usually predominating. The peristome is incomplete, the aporture being shaped like that of Ena (Buliminus). The short superior lamella curves toward the left termination of the lip, and is spparated from the thin, low spiral lamella. The inferior lamella fome a high plate within the back. The subeolumeller lamella is very downy immersed. The principal plica is rather short and lateral, and there are two short palatal plicar, one above, the other near the base.

Clausiliz castlubeana Mordlemdurff was deseriber from Fit-chow, on the Hand Nan-tai, provine liu-l-hien, in southern China. So far as
the shell is concerned, a comparison of specimens shows scarcely any difference from the variety defined above from the northeastern Ryukyu Islands, but the clausilium is perceptibly different. It must be admitted that such small differences as exist would not be thought of much significance were it not for the wide geographic separation. Clausilia echo n. sp. Pl. XXX, fig. 7.

The shell is very small, thin, yellow or corneous, sometimes with a few yellow flecks; fincly striate, becoming more coarsely so on the back of the last whorl, and under a lens showing

Fig. 1. faint spiral striæ. Penultimate whorl widest, those above tapering to the small, slightly obtuse apex. Whorls $6 \frac{1}{2}$ to 7 , convex, the last compressed laterally, convex below. Aperture squarish ovate. Peristome continuous, expanded and reflexed, the upper margin notched over the superior lamella; sinulus retracted. The superior lamella is thin, marginal, separated from the spiral lamella, which is short and lateral. The inferior lamella is deeply placed, forming a prominent fold deep in the throat, strongly gyrate within the last whorl, penetrating as deep as the spiral lamella. The subcolumellar lamella is very deeply immersed. The principal plica is very short, lateral. There are small upper and lower palatal plicæ.

Length 7 to 8 , diam. 2 mm .
The clausilium is rather broad, oval, tapering toward both ends, and very strongly curved.

Akusekijima, Osumi, Types No. 95688 A. N. S. P., from No. 1585 of Mr. Hirase's collection.

Clausilia echo is a connecting link between Reinia and Euphodusa. It resembles C. eastlakcana except in having the peristome complete, the aperture being shaped much as in C. cuholostoma Pils., but that species has no superior lamella. C'. echo is a less evolved form than C. castlakeana, in the same phylum.

Clausilia variegata (A. Adams).
Pilsbry, Proc. A. N. S. Phila., 1901, p. 473, pl. 25, figs. 11, 12.
The type locality for this species is Tago, Izu (not in westem Shikoku, a^{4} stated in a former communication). Other localities are Tokyo anl its cowirons, Takasaki, Kiozuke; Kashima, near 'Tanabe, Kii, and Hirado, Ilizen. Speeimens have been received also from Chichijimas, (gasawara. They belong to the typical form of the species, not to the variety nesiolica.

The presence of this species in the Bonin Islands may perhaps be due to accidental introduction, with plants or otherwise. There has doubtless been abundant opportunity and time for such introduction since 1593, the date of first discovery of the Bonins, and occupation by the Daimio Ogasawara Sadayori.
Clauailia nakadæ Pilsbry. Pl. XXX, fig. 10.
Clausilia variegata var. nakadai Pils., Proc. A. N. S. Phila., 1902, p. 328.
The shell is rimate, fusiform, thin, dark brown, uniform or marked with buff on the upper whorls; upper half tapering and attenuate; lower two whorls subequal in width. Surface glossy finely and closely striate, the striation coarser on the latter part of the last whorl. Whorls $6 \frac{1}{2}$, convex, the last somewhat tapering downward, rather full and convex basally. The aperture is ovate; peristome thin, reflexed, the ends separated, joined across the parietal wall by a rather thin, transparent callus. Superior lamella very thin, subvertical, not continuous with the lateral and dorsal spiral lamella. Inferior iamella prominent, subhorizontal, ascending in a broad spiral within. Subcolumellar lamella very deeply immersed. Principal plica short, dorsal, penetrating to a lateral position. There are no other palatal plicæ (Fig. 2).

Length 7 to 7.3 , diam. 2 mm .

Fig. 2.

The clausilium is very strongly curved, so that the distal part is at a right angle with the upper part. It is rather wide, parallel-sided, the end obtuse, slightly angular. The columellar side is only very slightly excised near the filament.

Hachijo-jima, Izu. Types No. 83299, topotypes No. 96984 A. N. S. P., from No. 942 of Mr. Hirase's collection, collected by Mr. Nakada.

This form was finst described from two specimens, neither of which contained the clausilium. On subsequent examination Mr. Hirase discovered that it has a well-leveloped clausilium, and sent additional examples, one of which is described above, and illustrated on the plate.

Compared with C. varicgate A. Ad., this species is much smaller and much more attenuate above; it is less variegated or uniform brown; and finally it has a clausilium. C. ccho, of Akusekijima, Osumi, in the northeastern Ryukyu chain, is perhaps the most closely related species, but it differs from C. nakade by having the peristome continued as a raised cord across the parietal margin, and by possessing two small palatal plicer, whereas C. nakade has only the principal pliea. C'. nakader is a perfect connecting link between C. eastlakeana and echo and C. vericguta.

Group of Clausilia aculus.

Clausilia tripleuroptyx n. sp. Pl. XXXI, figs. 1, 2.
The shell is fusiform, the lower three whorls rather large, those above tapering to the attenuate summit; brown or chocolate colored, moderately glossy, the last 3 or 4 whorls sharply, finely striate, the

Fig. 3.-Clausilia tripleuroptyx, a, b, two views of clausilium; c, last whorl and aperture; d, e, diagrams of palatal armature of two individuals.
striæ a little coarser on the back of the last whorl. Whorls about 9 , convex, the last flattened laterally, tapering downward. The aperture is squarish-ovate; peristome pale, well reflexed, continuous. Superior lamella marginal, of moderate size, compressed, continuous with the spiral lamella, penetrating to the middle of the ventral side. The inferior lamella approaches the superior, ascends in a broad spiral curve, and penetrates as deeply as the spiral lamella. The subcolumellar lamella is deeply immersed. The principal plica is rather short, lateral. There are usually three palatal plicæ below the principal, the upper well developed, a very short plica below it. There is no lunella, but a lower palatal plica about as long as the upper is present (fig. 3d).

Length 14.5 , diam. 3.4 mm .

$$
\text { " } 13.8, \text { " } 3.0 \text { " }
$$

The clausilium is strongly curved, oblique and subangular at the apex, a little excised at the columellar side of the filament (fig. $3 a, b$).

Kuroshima, Satsuma. Types No. 95710 A. N. S. P., from No. 1589 of Mr. Hirase's collection.

This species is related to C'. digonoptyx Btter., but differs by its palatal pliea and the more curvel, differently shaped clausilium. It differs from C'. subaculus by the hetter developed superior lamella and the different palatablarmature. (\therefore. aculus Bens. of China and Forea is
the most closely related species, but it differs in sculpture; it has not the fine, thread-like striation of C. tripleuroptyx, being more glossy, paler colored and less opaque.

As in C. aculus, the palatal armature varies. In most examples seen there are three palatal plicæ below the principal plica, the second either pliciform or punctiform (as in fig. 3d). Sometimes there are six plices, the 3d, 4th and 5th very small, scarcely visible inside by reflected light (fig. 3e).

Section STEREOPHADUSA Boettger.

Clausilia japonica Crosse.

The typical form of this species is found around Tokyo. The exact locality of the types was not known, but the Tokyo shells agree so fully with them that this place may be considered the type locality.

The shells are coarsely rib-striate, the striæ simple (not split), and on the last whorl there are about five strix in one millimeter. The spiral lamella penetrates inward to the middle of the ventral side; the inferior lamella is much longer. There are two palatal plice, an upper and lower, below the principal, and in some examples there is the weak rudiment of a lunella near the lower palatal plica, and a second low nodule or plica just below the upper palatal plica. The size of Tokyo specimens is rather variable.

Length 29.0 , diam. 6.5 mm .; whorls $11 \frac{1}{2}$.

"	25.5,	$"$	6.5	6	$"$	11.
"	26.5,	$"$	6.2	$"$	$"$	11.

The forms I described as var. perstritata and var. perobscura are close to typical japonica in sculpture. It is hard to decide what forms of so variable a species call for special names. Besides those now recognized, there seem to be several races, which may for the present remain undescribed.
The largest form of C. japonica I have seen was sent from Yakuenji, Izumo, by Mr. Hirase (No. 1594). The shell is rich chestnut colored when unworn, about as finely striate as C. j. nipponensis, and, like that, it has upper and lower palatal plicae only, the lower one quite small. The spiral lamella runs inward to the middle of the wentral side, the inferior lamella being longer. Except in having no sutural plica, this form agrees with C. hilgendorfi Martens. No other sitercophuedusa is known to have a sutural plica. so that it is possible that its recorded presence in C C. hilgendorfi may be an abnormal development, in which case, this form is evidently. C. hilgendorfi. Specimens from lakuenji, Izumo, measure:

Length 42.5 , diam. 9 mm .; whorls $12 \frac{1}{2}$.
" 40.0 , " 9 " " 11.
This Clausilia is surpassed in size only by certain forms of C. martensi.
Clausilia japonica kobensis (Smith).
Clausilia kobensis E. A. Smith, Quart. Journ. of Conch., I, No. 8, p. 122 (Feb., 1876).
Clausilia nipponensis Kóobelt, Jahrb. D. M. Ges., III, 1876, p. 275, pl. 8, figs. 3, 4.
Clausilia loxospira Martens in coll., Kobelt, l.c., p. 277.
Clausilia japonica var. nipponensis Kiob., Bttg. Jahrb. D. M. Ges., V, 1878, p. 50 (Clausilium).

In western Hondo there is a rather weakly defined race described as kobensis Smith and nipponensis Kobelt, these two names being synonymous, and based on specimens from Kobe, Setsu. The striation is noticeably finer than in typical C. japonica. The last whorl is frequently much compressed, and the preceding whorl bulges, giving a peculiar contour to the shell in dorsal view; but this feature is variable. There are always two palatal plice below the principal one, an upper and a lower. There is often a whorl more than in typical C. japonica.

Clausilia japonica vespertina n. subsp. Pl. XXX, figs. 11, 12.
The shell is glossy, chestnut colored, large, swollen in the lower half, attenuated as usual above, finely striate, the strix often split or interrupted near the suture; penultimate whorl inflated, the last whorl compressed, tapering downward. The superior lamella is usually small, short, not reaching to the margin of the peristome, and generally separated from the spiral lamella. Palatal plice two, upper and lower: principal plica usually shorter than in japonica.

$$
\left.\begin{array}{ccccccc}
\text { Length } & 33.0 \text {, diam. } & 7.7 & \mathrm{~mm} \text {; } & \text { whorls } & 11 \frac{1}{2} \\
\text { " } & 31.2, & \text { " } & 7.7 & \text { " } & \text { " } & 10 \frac{1}{2}
\end{array}\right\} \text { Takuhisan. }
$$

Nishinsshma, Oki, at Takazakiyama (type loc.) and Takuhisan. Types No. 95711 A. N. s' 1', from No. $198 b$ of Mr. Hirase's collection.

This race differs from C. j. interplicata by the absence of intermerliate palatal plicae between the upper and lower; but it should be noted that some individuals of interplicata from Takeya, Izumo, alco lack the intermediate plicap, and then seareely differ from this insular race from Oki. It is also related to var. kobensis.
Claunilia japonion ultima n. subsp. Mi. XXX, Siks. $8,9$.
The shell is much more slender and lengthened than C'. japonica, rho-thut colored, palar just below the suture, very glossy, finely and
regularly rib-striate, about four strix in one mm . on the last whorl, the interstices of the strix minutely, finely striate transversely. Three or four early whorls are of about equal diameter; the penultimate whorl is largest, the last whorl compressed and tapering downward. The spiral and inferior lamelle are very long, extending inward past the front to the left side; other lamellæ as in japonica; two pratat plice, an upper and a lower, below the principal plica.

Length 29.3 , diam. 5.5 mm . ; whorls $13 \frac{1}{2}$.

$$
\begin{array}{lllllll}
\text { " } & 27, & \text { " } & 5.2 & \text { " } & \text { " } & 13 .
\end{array}
$$

Nakamura, Oki. Types No. 95714 A. N. S. P., from No. 1566 of Mr. Hirase's collection.

This is a very distinct race, quite unlike any of the many forms of C. japonica known from the main island and Shikoku. Like the preceding subspecies it is probably confined to the Oki Islands.

Clausilia hiokonis "Kobelt" Btte. ©
Clausilia hirkonis Kobelt, Boettger, Jahrb. d. D. Malak. Ges., V, 1s7s, p. $55, \mathrm{pl} .3$, fig. 7 ; with var. binodifera Bttg., l.c., fig. 76 (interior of Nippon). C. hiclionis Fobelt, Fauna Japonica, p. S6.

C'lausilia suljeponica Pilsbry, Proc. A. N. S. Phila., 1900, p. 679 (Jan. 2S, 1901) (Ibuki, Omi).

Clausilia fultoni subsp. clavula von Moellendorff, Nachrbl. d. D. Malak. Ges., April, 1901, p. 41 (Ibuki, Omi).
This fine Steropherduse has some resemblance to C. (Megalopheduse) vasta. It is now known from Hakusan, Kaga; Kurozu and Tomisato, Kiii: Ibuki, ()mi ; and on Shikoku from Nagaomura, Sanuki.

The variety C'. hichonis saucia Pils. differs chiefly by its much coarser strition. It was described from sodayama, Tosa, and smaller examples have been taken at Naarimura, Tosa, No. 1010 of Mr. Hirase's collection, S3901 A. N. S. P.

Clausilia jacobiana jacobiella n. subsp 11, XXXI, figs. 3, 4, 5, 6.

The shell is more slender than ('. jucobionu; and the last half of the last whorl is less coarsely striate. There are short upper and lower palatal plice, but no lunella (pl. NXXI, figs, 3, 4, 5).
length 14.5 , diam. 3.0 mm . ; whorls 9 s .

6	13.0	$"$	3.0	$"$	$"$	9.
$"$	12.7,	$"$	2.9	$"$	$"$	53.

Akusckijima, Osumi. Types No. 95682 A. N. S. P., from No. 1547 of Mr. Hirase's eollertion. Also Nakanoshima aml Suwanosejimat.

Specimens from Nakano-shima are a little larger:
Length 15.2 , diam. 3.4 mm ., whorls 9 .

$$
\begin{array}{lllll}
" & 14.9, & " & 3.6 & " \\
& 14.3, & " & 3.25 & "
\end{array}
$$

Shells from suwanosejima are much smaller:
Length 12, diam. 2.9 to 3 mm ; whorls $8 \frac{1}{2}$ (pl. XXXI, fig. 6). Clausilia nishinoshimana n. sp. Pl. XXXI, fig. 7.

A Stereophadusa of the group of C.brevior. The shell is fusiform, tapering from the penultimate whorl, considerably attenuated near the apex; dull dark brown; rather finely and

Fig. 4. sharply striate except the earlier whorls, which are worn. Whorls $11 \frac{1}{2}$, moderately convex, the second, third and fourth of about equal diameter, the last compressed and tapering downward. Aperture ovate, the sinulus a little retracted. Peristome brown tinted, rather broadly reflexed, recurved at the edge, thick. Superior lamella a little oblique, marginal, continuous with the spiral lamella, which is high and lamellar in the middle, low toward both ends, and penetrates inward to a point above the outer lip. The inferior lamella forms a rather strong fold in the throat, and ascends in a broad spiral curve in the back, where it is very wide. It penetrates as deeply as the spiral lamella. The subcolumellar lamella emerges to the lip edge. The principal plica is weak, short and lateral. There are short upper and lower palatal plice, but no limella (fig. 4).

Length 18 , diam. 3.9 mm .
The clausilium is strongly curved, somewhat angular at the apex, a little excised on the eolumellar side of the filament. It is similar to the clausilium of C. brevior. ${ }^{1}$

Nishinoshima, Oki. Types No. 95659 A. N. S. P., from No. 1576 of Mr. Hirase's collection.

This species is closely related to C'. brevior, differing in the following respects: There are but two palatal plice below the principal one, which is muth shorter than in C. brevior: the spire tapers for a longer distance, and it is composed of more whorls.

Some individuals lose the early whorls, closing the breach with a convex phis, as in some Lirocoptids. The number of whorls retained may be rednced tosix. Among some hundreds of C^{\prime}. brevior seen from six localities, none were similarly truncate. It is a rather unusual condition in Japanese Clausiliode.

[^92]Section LUCHUPR $\neq D U S A$ Pilsbry:

Clausilia degenerata Pils.

Clausilia nakadai degenerata Pils., Proc. A. N. S. Phila., 1904, p. S18, pl. 52, fig. $12 ;$ pl. 53 , fig. 22.
The inarlvertent use of Mr. Nakada's name twice in C'lousilia makes it necessary to modify the later application as above. The former subspecific name will become the name of the species, while what was formerly described as typical C. nakadai requires a new name, which, being later, becomes subspecific. I am indebted to Mr. Hirase for calling my attention to the duplication.

The type of C. degenerata is No. 87593 A. N. S. P., from No. 1205 of Mr. Hirase's collection.
C. degenerata nakadiana n. n.

Clausilia nakadai Pils., Proc. A. N. S. Phila., 1904, p. S18, pl. 52, figs. 9. 10 , 11; pl. 53, figs. 18, 19. Not C. variegata var. nakadai Pils., Proc. A. N. S. Phila., 1902, p. 328.
The type of C. d. nakadiana is No. S7594 A. N. S. P., from No. 1205 a of Hirase's catalogue.

Section FORMOSANA Bttg.

This section has much affinity with Hemiphadusa and the closely related Megalophedusa, having the same long and narrow type of clausilium, which, however, is slightly thickened at the end. The palatal structure is primitive-a series of well-developed, subequal plice.

Three Formosan species known may be distinguished as follow: :
a. -Whell rather obesely fusiform, the diameter contained $3 \frac{1}{2}$ to $4 \frac{1}{4}$ times in the length; whorls 9 to 11, the later ones closely and fincly striate.
b.-Whorls convex; later whorls with waved strix; southern formosa.
c.-Color pale yellowish or very pale brownish (pl. XXXI. figs. 4, 8, 9); C. formosensis A. Ad. c^{1} - Color dark reddish or purplish brown (pl. NXXII, figs. 1,2,3), C.f.hotawana Pils.
b. -Whorls flattened; striat fine, close and straight; dark colored, northern Formosa (pl. XXXII, figs. 7, 10, 11),
C. swinhoci H. Ad.
n^{1}.-Shell long and narrow, the diam, contained 5 or 6 times in the length; whords 11 to 14, the later ones flattened, with interrupted strixe (pl. XXXII, figs. 5, 6), . . C. taiucanica Pils.
Clausilia formosensis M. Act. PI, XXXIt, fign f, 8, 9.
This speries belongs to southern Formosa, while C. swinhori has been found only in the northern end of the island. In color it varies from
pale vellow to a pale reddish-brown tint. Schmacker and Boettger have already described the close, peculiarly waved or "vermiculate" striation of the later whorls. Figs. 8, 9 are from Hotawa examples; fig. t is a smaller, eroded form from Arikawa.

C. formosensis hotawana subsp. nov. Pl. XXXII, figs. 1, 2, 3.

The shell resembles C. formosensis in its rather obesely fusiform thape, convex whorls, close and sharp wavy striation, and in the characters of aperture and interior; but it differs by being dark reddishbrown or purplish-brown in color, the apical whorls yellowish-white, lip white, interior of the mouth purple-brown. Old examples usually lose the apical whorls.

Length 28.0 , diam. 7.8 mm .; whorls $8 \frac{1}{2}$ (apex entire). " 29.7, " 7.5 " " 8 remaining (decollate).
Hotawa, Formosa. Types No. 90032 A. N. S P., from No. 1397 of Mr. Hirase's collection.

The locality Hotawa, given by us for C'. swinhoei (Proc. A. N. S. Phila., 1905 , p. 738), should be cancelled. The record was based upon the specimens described above as C.f. hotawana. So far as we know, the true C. suinhoei has not been found at that place, but only in the extreme north of the island.
Clausilia taiwanioa n. sp. Pl. XXXII, figs. 5, 6.
The shell is cylindric-turrite, very long and slender, dark purplebrown, very glossy; sculpture of rather fine, low oblique strix, cut into long granules by spiral

Fig. 5. impressions which cut the strix only, and are noticeable only on the later 3 or 4 whorls; striation not coarser on the back of the last whorl. Whorls 11 to 14 , the earlier ones convex, more or less worn in adult shells; the last 3 or 4 whorls less convex, last whorl compressed, narrower than the preceding, nearly straight-sided, rounded basally. The aperture is ovate, vertical, very dark insilfo; peristome pure white, broadly reflexed. Superior lamella high, wry obligue, marginal, continuous within with the spiral lamella, which pernetrates to a point above the upper angle of the aperture.

Inferior lamella forming a moderately prominent fold on the columella, straightened and obliquely ascending in the back, and as long within as the superior lamella. Subcolumellar lamella barely emerging, not extending upon the lip. Principal plica about a half whorl long. Palatal plice 6, the lower five nearly equal, lateral, showing as a whitish streak outside (fig. 5).

Length 36.2 , diam. 6.0 mm .; length of aperture 7.5 mm .
Clausilium narrow with nearly parallel sides, the lower end rounded and somewhat thickened.

Taiwan (Formosa), at Taitō (or Hinan). Types No. 94756 A. N. S. P. from No. 1492 of Mr. Hirase's collection.

This species has the dark color of C. swinhoei, and agrees with that in the general structure of the aperture and internal plice, but it differs from that species by its long, narrow shape, greater number of whorls, and the much more obsolete striation, that of C. swinhoci being comparatively close, fine and sharp, and not interrupted into long granules, as it is in C. taiwanica.

Section HEMIPH EDUSA Bocttger.

The type of this group is Clausilia pluviatilis Bens. of China, a form closely related to species of the Japanese group of C^{\prime}. platyauchen. An arrangement of the Japanese species was given in these Proceedings for 1901, p. 623, and pp. 648-651. Subsequent studies have added many species and caused the removal of some originally included in Hemiphadusa to form new sections-Nesiophedusa, Luchuphaxdusa and Zaply.r. Moreover, it appears that the species with several palatal plice are not separable from those with an I-shaped lunella (cf. C. tosana, etc.). A new classification of the species is therefore in order:

Groups of Japanese Hemiphadusa.

a.-Lunclla well developed, curving inward above, and below united to the middle of a straight or arched lower palatal plica. Clausilium scarcely or not excised at the palatal side of the filament, Group of C. platyauchen.
a^{1}.-Clausilium deeply excised at the palatal side of the filament. A lower palatal plica present, or represented by an inward curve of the lower end of the lunella.
b.-Lunella well developei, J-shaperl, the lower palatal plica represented only by the inward curve of its lower end. Apical end of clausilium simple.
c.-P'rincipal plica very small or wanting; no upper palatal plica.
.Group of C. hyperolia.
c^{1}.-Principal plica well developed ; a short upper palatal plica, or the lunella bent inward in its place,

Group of C. awajiensis.
b^{1}.-Lunella, etc., as in the group of C. awajiensis, but there is a lower palatal nodule at its lower end; clausilium in apical view appearing deeply notched, . Group of C. aulacopoma.
b^{2}.-Iunella either I-shaped, or replaced by a series of palatal plicx, Group of C. validiuscula. a^{2}. -A short, straight, or nodule-like, or rudimentary lunella, not curving inward at the lower end, below one or two palatal plice; no lower palatal plica. Clausilium not excised at the palatal side of the filament, . . . Group of C. sublunellata.

Clausilia tosana Pils. Pl. XXXI, figs. 14-20.
Proc. A. N. S Phila., 1900, p. 6S0, pl. 25, figs. 22-25, 41.
This species is now before us from five localities, all on Shikoku Island. It shows remarkable variation. All have the last whorl

Fig. 6.-Ctausilia tosana. a, typical form from Ushirohawa, Tosa; b, variety from Shimohanyama, Tosa; c, variety from Irazuyama, Tosa.
built forward, Cylindrella-like, with a furrow outside above the principal plica, and the subeolumellar lamella is always very deeply immersed. Internally the spiral and subcolumellar lamelle are usually of equal length, reaching inward to the middle of the ventral side, and the inferior lamella between them is shorter.

1. The types from Ushirokawa, Tosa (pl. 31, figs. 16, 17), have several palatal pliese standing upon a ridge (fig. $6 a$) and measure:
I.ength 12.2, diam. 2.6 mm .; whorls 10 s.

16	11.0	6	2.5	6	0	91
$"$	11.0	6	2.3	0	$"$	$9 \frac{1}{2}$.
$"$	10.5	6	2.5	6		

2. A lot from Shimohanyama, 'Tosa (pl. 31, figs. 18, 19), also have
several tubercular plicæ on a distinct, curved ridge (fig. 6b), but are larger:

Length 15.0, diam. 3.5 mm .; whorls $9 \frac{1}{2}$.

$$
\text { " } 12.3, \quad \text { " } 3.0 \text {," " } 9 \frac{1}{3} \text {. }
$$

3. Those from Irazuyama, Tosa (pl.31, fig. 20), have a well developed arcuate lunella between the upper and lower palatal plicæ, but hardly joined to either (fig. 6c), specimens measure:

Length 13.8, diam. 3 mm .; whorls $10 \frac{1}{4}$.

$$
\text { " } 14.0, \quad \text { " } 3 \text { " " } 10 \text {. }
$$

4. A lot from Nametoko, Iyo (pl. 31, figs. 14, 15), has a similar curved lunella, and consists of specimens of two sizes, obviously from two diverse stations. The larger shells are more or less worn, the cuticle mainly lost, and measure 11.8 to 13.2 mm . long. The smaller shells are glossy with the cuticle perfect, the lip is narrower, and the subcolumellar lamella is not so long inside as the spiral. They measure:

Length 9.4 , diam. 2.2 mm .; whorls 8 3.
" 8.9, " 2.1 " " $8 \frac{1}{2}$.
5. At Kotsuzan, Awa, the curved lunella is also perfect, as in (3) and (4). The lip is better developed than in the smaller specimens from Nametoko, Iyo. Specimens measure:

Length 10 , diam. 2.3 mm .; whorls $9 \frac{1}{2}$.
" 9 , " 2.0 " " St…

These lots show that multifarious differentiation with consequent formation of local races is in progress; but in the present condition of our knowledge it would probably be inexpedient to recognize these races by name.

Clausilia pigra Pils.

Proc. A. N. S. Phila., 1902, p. 368 (Kashima, Harima).
Specimens received from Nagami, Iwami and Yakuenji, Izumo, differ slightly from the types. The aperture is built forward a little less, and the lunella differs somewhat, being shaped more as in the group of (C. platyauchen, there being a very short lower palatal plica, and the upper palatal plica is represented only by an inward bend of the lunella, whereas in the types of pigra the upper plica stands almost free of the lunella, and the whole structure is somewhat Jshaped (rather than I-shaped, as originally described).

Clausilia ikionsis tsushimana n, subsp. PI. XXXI, figs, 8, $0,10$.

Shell somewhat larger and more robust than C. ikiensis, the subcolumellar lamella wholly immersed ; outer end of the lower palatal plica joining the lunella.

Length 14.5, diam. 3.2 mm .; whorls 11.)

"	13.5,	"	3.5	"	"	9.
"	12.2,	"	3.0	"		

Length 15.0 , diam. 3.4 mm .; whorls 10 .
$\left.\begin{array}{ccccccc}" & 15.0, & \text { " } & 3.4 & \text { " } & \text { " } & 11 . \\ \text { " } & 12.7, & \text { " } & 3.25 & \text { " } & \text { Tsutsu. } & 9 .\end{array}\right\}$

Izuhara, Tsushima. Types No. 95701 A. N. S. P., from No. 1550 of Mr. Hirase's collection. Also Tsutsu and Kashitake, Tsushima.

The specimens vary remarkably in contour. Three examples from Tsutsu are figured.

Clausilia hemileuca n. sp. Pl. XXX, fig, 6; Pl. XXXI, fig. 11.

The shell is long and rather slender, the upper half tapering and attenuate; glossy; finely and distinctly striate, the earliest whorls worn; lower half of each whorl dark reddish-brown, upper half white, the base of the last whorl and a streak over the lunella also white. Whorls about $10 \frac{1}{2}$, moderately convex, the second, third and fourth of about equal diameter, last whorl flattened laterally. Aperture

Fig. 7, Clausilia hemileuca.
ovate, the sinulus slightly retracted. Peristome expanded and reflexed, thick, white, notched over the superior lamella, which is compressed, vertical and marginal, continuous with the spiral lamella, which is rather high and penetrates inward to a point above the outer lip. The inferior lamella recedes deeply, but in oblique view is visible as a foll! within the throat; in the back it ascends obliquely, being slightly sigmoid, and it is thickened below. It penetrates less deeply than the superior lamella. The subcolumellar lamella is deeply immersed, not visible in the mouth. The principal plica is about a half whorl long, approaching the aperture. Upper palatal plica short and curved, not connected with the oblique, curved lunella (fig. 7b).

Length 18.5 , diam. 3.7 mm .
" 17.0 , " 3.8 "
The clausilium (figs. $7 a, c$) is narrow and tapers rather strongly toward the rounded apex, the palatal margin being decidedly convex. It is excised on the columellar side of the filament, and is rather strongly curved throughout.

Octakayama, Iwami. Types No. 95705 A. N. S. P., from No. 1600 of Mr. Hirase's collection.

Only six specimens of this handsome Hemiphedusa were taken. In coloration it resembles C. holotrema. No other Japanese Hemipheedusa is similarly colored. The separation of the upper palatal plica from the lunella and the shape of the clausilium are further distinguishing features.

Section HEMIZAPTYX Pilsbry.

Clausilia ptychooyma Pils.
In specimens from Kuroshima the subcolumellar lamella emerges on the lip but is rather weak, and the spiral and inferior lamelle are longer than in the types, running inward to a point above the termination of the outer lip. They measure 11.2 to 12.5 mm .

Clausilia agna spicata n. subsp. Pl, XXXI, figs. 12, 13.
The shell resembles C. agna in its smooth surface and translucent texture, and in having the subcolumellar lamella weakly emerging, or at least visible in an oblique view in the mouth; but it differs by being longer and more slender, similar in shape to C. purissima. It may be either clear greenish-corneous (like C. purissima), chestnut brown, or very pale brown. C. agna spicata differs from C. purissima by its emerging subcolumellar lamella. The shell is also stronger when adult.

Length 12.0 , diam. 2.3 mm . ; whorls 91
$\left.\begin{array}{rrrrlll}\text { " } & 12.2, & " & 2.7 & " & " & 9 \frac{1}{2} \\ \text { " } & 10.7, & " & 2.2 & " & " & 8 \frac{1}{2} \\ \text { " } & 9.7, & " & 2.0 & " & " & 8 \frac{1}{2}\end{array}\right\}$ Akuseki.

Akusekijima, Ósumi. Types No. 95709 A . N. S. P', from No. $663 e$ of Mr. Hirase's collection. Also taken at Kuchinocrabushima, Osumi, No. 90023 A. N. S. P', from No. 663d of Mr. Hirase's collection.

This race stands between C. agna, described from laku-shima, and C. purissima, from Miyake-jima, Izu, and shows that these two specie: widely separated geographically, are in reality very closely relatec' The Miyake-jima form has a very deeply immersed subcolumellar
lamella, but otherwise hardly differs from pale, long specimens of C. a. spicata.

In C. agna the lunella only weakly joins the upper palatal plica. This is not well shown in the original figure.

Section HETEROZAPTYX Pils.
Clansilia oxypomatios Pils.
Specimens received from Ogachi, Oshima, are smoother than the type of this species, the striation rather indistinct except on the last whorl, and the clausilium is quite perceptibly broader.
Length 12 , diam. 2.8 mm .; whorls $9 \frac{1}{2}$.
" 11, " 2.6 " " 6.

Section ZAPTYX Pilsbry.
In this section we group numerous closely related forms distributed throughout the Ryukyu chain, from the Southwestern Group to Kagoshima Bay.

Key to Species of Zaptyx, s. str.
a.-Upper palatal plica very long; spiral lamella reduced to a short lamella in the region of the lunella.
b. -10.5 to 12.5 mm . long, with $9 \frac{1}{2}$ to 10 whorls; striatulate.

Ryukyu, C. dolichoptyx.
$b^{1} .-8.5$ to 9.5 mm . long, with 8 to $8 \frac{1}{2}$ whorls; last half whorl sharply
and finely striate. Ryukyu, C. d. micra.
2^{1}. -Upper palatal plica moderate or short, much shorter than the lunella.
b.-Subcolumellar lamelia wholly immersed; whorls quite convex, smoothish, but finely and sharply striate behind the lip.
c. -9 to 10 mm . long, 2.2 to 2.3 wide. Okinoerabushima, C. sarissa.
c^{1}. -8 to 9 mm . long, 2 to 2.1 wide; last two whorls less convex.
Nakanoshima, C. nakanoshimana.
b^{1}.-Subcolumellar lamella emerging; whorls less convex.
c.-Upper palatal plica very short; inferior lamella not continuous within with the lamella inserta.
d.-Last 3 or 4 whorls finely and sharply striate; superior and spiral lamellæ weakly continuous. Yaeyama, C. yaeyamensis.
dl.-Smoothish throughout, or only the last whorl striate; superior and spiral lamella widely separated. c.-Smoothish, carly whorls not attenuate. Satsuma, C. hirasei. e^{1}.-Back of last whorl striate; spire attenuate above, Kikai, Tokuno, C. kikaiensis. c^{\prime}.--rpper palatal plica moderate; inferior lamella continuous with the lamella inserta, penetrating inward as far as the spiral lamella; fulcrum and parallel lamella well developod, apex larger than the preceding species.

> d.-Shell smoothish, last whorl more or less striate. Ryukyu, Yoronjima, \dot{C}. hyperoptyx. d^{1}-Last 3 or 4 whorls sharply striate. Sezokojima, Ryukyu.

Clausilia nakanoshimana n. sp. M. XXX. fig. 2.
The shell is small and slender, the lower half cylindric, upper half tapering slowly to the rather large and obtuse apex; pale brown, somewhat transparent, thin, glossy, faintly striatulate, becoming distinctly striate behind the outer lip. Whorls $7 \frac{1}{2}$ to $7 \frac{3}{4}$, the earlier ones quite convex, the last two much less so; last whorl convex below but not saccate. The aperture is broadly oval ; peristome white, reflexed and rather thick, continuous. The superior lamella is marginal, subvertical, not continuous with the spiral lamella. Spiral lamella is very low and threadlike, and extends inward only slightly beyond the

Fig. 8. lateral line. The inferior lamella recedes deeply, being visible as a prominent fold in an oblique view in the aperture; inside it ascends nearly vertically, is very broad and a little curved, rather abruptly terminating above, not continued on the parietal wall, but reappearing as a minute lamella near the inner end of the spiral lamella. The subcolumellar lamella is rather deeply immersed. The principal plica is dowal and lateral. Epper palatal plica short, connected to the oblique, nearly straight lunella. There are two delicate sutural plica, and a minute parallel lamella (fig. S).

Length 9, diam. 2.1 mm .; whorls 7 ?

"	S,	"	2.0	"	"	$7 \frac{3}{1}$.
	S,	$"$	2.0	"	"	$7 \frac{1}{2}$.

The clausilium is narrow, rather long, rounded at the apex, rather straight except near the filament where it bends abruptly. It is deeply excised at the columellar side of the filament, and broadly dilated at the palatal side.

Nakanoshima, Osumi. Types No. 95687 A. N. S. P., from No. 1517 of Mr. Hirase's collection.

This species is elosely related to ('. sarissa l'ils, of Okinoerabushima. It differs by the more slender shell with the last two whorls less convex, and the clansilinm a little more slender and slightly twisted near the apex.
Clausilia yaeyamonsis lile.
Pilsbry, Proc. A. N. S. Mhila, 190., p. 831.
l'reviously reported from Yaeyama, now sent from Yonakuni-jima
the westernmost of the Sakishima or Southwestern Group of islands, and the nearest one to Formosa. The specimens measure 8.5 to 9.7 mm .

While very clovely related to C. hypcroptyx sezokoensis of Sezokojima, Kunchan (Loochoo), this form is separable by the inferior lamella which is short inside, its inner end being separated as a lamella inserta, while in C. huperoptyx the inferior lamella is continued within parallel to the spiral lamella. This rather minute distinction is constant in the specimens I have openel, and, in connection with the geographic isolation, may be held of specific significance.
Clausilia hyperoptyx sezokoensis n. subsp.
The shell differs from C. hyperoptyx by having the last 4 or 5 whorls densely striate, as in C. yaeyamensis. Internally it is like C. hyperoptyx, the inferior lamella being continued inward parallel with the spiral lamella.

Sezokojima, an islet on the west side of Kunchan, Loochoo. Types No. 89854 A. N. S. P., from No. 457 d of Mr. Hirase's collection. Sezokojima or Sesokojima is similar to the adjacent peninsula of Okinawa geologically, being formed of raised reefs around a center of palæozoic limestone.

Section STEREOZAPTYX Pilsbry.

Clausilia exodonta n. sp. Figs. 9, 10.
The shell is slender, fusiform, solid and strong, dull yellow, smoothish, the last thirl of the last whorl strongly striate. Whorls 8 , moderately convex, the last compressed at the

Hiz! 9 sides, tapering toward the base, built forward free of the preceding whorl. Apex rather acute. Aperture oblique, small, piriform, the peristome broadly expanded and reflexed. Sinulus slightly retracted, oval, nearly separated from the aperture by a strong conical tooth within the outer lip, which approaches the lower end of the superior lamella. Superior lamella

Fig. 10. oblique, high, but not penetrating far inward, separated from the spiral lamella, which is a low plate in a lateral position, penetrating inward to a point above the columellar lip. Inferior lamella receding, visible as a strong fold in the aperture, strong, high and strongly spiral within the back, much shorter within than the spiral lamella. Subcolumellar lamella
very deeply immersed. Principal plica very short, weak and lateral. Lunella low above, becoming very strong toward its lower end, which is thickened and curves inward (fig. 10). There is a short, tubercular fulcrum, but no sutural plicæ.

Length 9.8, diam. 2 mm .
The clausilium is broad above, tapering to the apex, which projects somewhat. It is strongly curved throughout, V-shaped in section near the apical end, dilated on the palatal side near both ends, and deeply excised on the columellar side of the filament, as usual.

Sumiyohō, Ōshima, Ösumi. Types No. 95690 A. N. S. P., from No. 1504 of Mr. Hirase's collection.

This very distinct little species is more slender than C. entospira or C. exulans, and differs from all known Japanese species by having a conical tooth at the upper third of the outer lip, forming, with the superior lamella, an oval sinulus.

Section PARAZAPTYX Pils.

Clausilia thaumatopoma Pils.

Originally described from Kumejima, this species has also been found on the island of Kerama (Keramajima). in several places-Tokashiki, Zamami and Tokashikijima. Most of the specimens from this island are more slender than the types, with more whorls; yet some agree with typical thaumatopoma in these respects, so that a subspecific separation seems impracticable.

The measurements of several specimens follow:
Length 11.0 , diam. 2.4 mm .; whorls 9 " 9 " Kumejima.
$\left.\begin{array}{lrlllll}\text { " } & 10.5, & \text { " } & 2.3 & \text { " } & \text { " } & 8 \frac{1}{2}\end{array}\right\}$ Kumejima.

The sculpture and the internal structure seem to be practically the same throughout the series of 23 examples examined.

Section METAZAPTYX Pilsbry.
The shell is similar to Zaptyx in having sutural plica, fulcum and parallel hamella. The inferior lamella is very broad within, ascends
spirally, and is visible in oblique view in the mouth as a strong fold approaching the superior lamella. Spiral lamella very low throughout. Base of the shell conspicuously full and sack-like, the latter part of the last whorl sharply striate. Clausilium broad throughout, rounded at the apex, strongly bent near the middle. Type C. pattalus.

This group differs from Zaptyx by the shape of the inferior lamella and the saccate base of the shell, and by the shape of the clausilium, which is strongly bent near the middle, while in Zaptyx it is nearly flat except close to the filament. It differs from Stereozaptyx by the shape of the clausilium, which is broad at the distal or lower end in Metazaptyx, tapering in Stereozaptyx. Also by the base of the shell, which is not saccate in Stereozaptyx.

The inferior lamella sometimes continues on the base of the penultimate whorl as a slender thread parallel to the spiral lamella, occasionally penetrating deeper than the latter, but this thread-like continuation may be absent or interrupted. The spiral lamella is remarkably low throughout. As in Zaptyx, the species are closely related and rather difficult. The shape of the clausilium is often characteristic. Both Zaptyx and Metazaptyx are widely ranging groups in the islands between Kyushu and Formosa.

The following species belong to Metazaptyx:
Southwestern Group of the Ryukyu Islands.
C. pattalus Pils. Tarama-jima.
C. p. miyakoensis Pils. Miyako-jima.

$$
\bar{O}_{\text {shima }} \operatorname{Group}(\bar{O} \text { sumi). }
$$

C. dcemonorum Pils. Kikaiga-shima.
C. d. vira Pils. Tokuno-shima.

> Tokara Group (Ōsumi).
C. tokarana Pils. Suwanose-jima to Tokara-jima.
C. t. saccatibasis Pils. Nakano-shima, Kuchino-shima.

Izushichito-jima (Izu).
C. hachijoonsis Pils. Hachijo-jima and Nii-jima.

Clausilia tokarana n. op. Pl. XXX, fig. 3.
The shell is cylindric below, above tapering to the small but obtuse afex; light brown; weakly striatulate, nearly smooth, the last third
of the last whorl finely and rather sharply striate. Whorls $7 \frac{1}{2}$ to 9 , slightly convex, the last flattened at the sides, very convex and somewhat sacklike at the base. The aperture is rhombic, peristome thin. very narrowly reflexed, continuous. Superior lamella is small, thin and vertical, continuous with the spiral lamella, which is low and thread-like throughout, and continues inward to a point above the columella. The inferior lamella recedes deeply, and is visible as a prominent fold in an oblique view in the mouth. Inside it is broad

Fig. 11.-a, b, C. tokarana; c, C. t. saccatibasis, short form. and ascends in a spiral curve; it is continued low and thread-like parallel to the spiral lamella, and penetrates more deeply than that. The subcolumellar lamella emerges weakly. The principal plica is short, dorso-lateral. The very short or subobsolete upper palatal plica joins the very oblique, slightly curved lunella. Sutural plicæ, fulcrum and parallel plica are well developed (fig. 11,a).

Length 11, diam. 2.8 mm .; whorls 8 ?

$$
9 \text {, " } 2.25 \text { " " 712. }
$$

The clausilium (fig. $11, b$) is broad, parallel-sided, rounded at the apex, strongly curved in the middle, dilated on the palatal side of the filament.

Suwanose-jima, Osumi. Types No. 95678 A. N. S. P., from No. $1592 a$ of Mr. Hirase's collection. Also Tokara-jima, No. 1592 of Mr. Hirase's collection, and Akuseki-jima, No. 1548 of Mr. Hirase's collection.

This species is related to C. ℓ. saccatibasis, but the apical whorls are smaller, the penultimate whorl is much less swollen, in a dorsal view; the shell is less distinctly striate, and is paler. The principal plica is shorter in C. tokarana.

In the specimens from Tokara-jima the superior and spiral lamelle are separated, and the inward continuation of the inferior lamella
parallel to the spiral lamella, is only very weakly developed, scarcely noticeable. 'They constitute a weakly differentiated race.

In those from the intermediate island Akuseki-jima, the superior and spiral lamellæ are weakly continuous-being, therefore, intermediate in structure, as well as in geographic position, between the forms from Suwanose and Tokara islands. Several specimens measure as follows:

Length 11.9 , diam. 2.8 mm ; whorls $8 \frac{1}{2}$.

"	10.0,	"	2.9	"	"	S.
"	11.0,	"	2.5	"	"	9.

Clausilia tokarana and its variety saccatibasis were taken in some profusion, and probably inhabit the whole "Tokara group" of islets, being known from Iuchino-shima, Nakano-shima, Suwanose-jima, Akuseki-jima, and Tokara-jima. All of these islands are of volcanic origin, the country rock being andesite. Nakano and Suwanose have active volcanoes, while the others have extinct craters or traces of them.
Clausilia tokarana saccatibasis n. subsp. Pl, XXX, figs. $4,5$.
The shell is somewhat fusiform, the upper half tapering and attenuate, the last two whorls of about equal diameter, strong and solid, glosis, rich purplish-brown with a paler or light band along the suture, imlistinct in some specimens, but especially conspicuous in the earlier whorls, which are corneous with a median dark band. Whorls 9 to $9 \frac{1}{2}$, quite convex, the second disproportionately large, the penultimate whorl swollen (in a view from the back), the last very convex below, sack-like, its last half much compressed laterally. Aperture ovate. l'eristome white, reflexed, more or less thickened, continuous, the upper margin notched over the superior lamella. The superior lamella is small, compressed and vertical, continuous with the spiral lamella, which is very low throughout and penetrates inward but little past a lateral position. The inferior lamella is deeply immersed, but visible (in an oblique view in the mouth) as a high lamella. It is a strongly spiral wide plate within the back of the last whorl, but derretse suddenly above where it joins the parietal wall, then becoming a low cord parallel to the spiral lamella, and of the same length inside. The subcolumellar lamella emerges to the lip-edge. It does not extend upon the parictal wall inside. The principal plica is short, mainly dorsal, extending to the lateral line. The upper palatal plica is very short, connected with the lateral lumella, which is strong, long, its lower and curving far inward. There are two small sutural plice. a morlerately long parallel lamella and a short fulerum.

Length 12.5 to 13.5 , diam. 3.0 mm .
" 11, " 2.9 "
The clausilium is quite broad, rounded at the apex, deeply exeised on the columellar side of the filament. Its curvature is cliefly in the part near the filament.

Nakanoshima, Ósumi. Types No. 95679 A. N.s. P., from No. 1515 of Mr. Hirase's collection. Also Kuchinoshima.

The type lot consists of very handsome, glossy, dark colored shells, but there are some gray, corroded specimens among them, apparently from a different situation. The smallest measures, length 11.5, diam. 3 mm ., and has the penultimate whorl strongly swollen, the last whorl compressed (fig. 11,c).

This form is closely related to C. tokarana, but differs by its darker color, swollen penultimate whorl, etc. It also resembles C. pattalus of Tarama-jima and Miyako-shima, but it differs by having the penultimate whorl more swollen, the principal plica shorter, and the subcolumellar lamella emerges. In both species the second whorl appears disproportionately large.

Examples from Kuchinoshima are corroded and dull, and have the superior lamella separated rather broadly from the spiral lamella; otherwise they do not differ from the types.

The subspecies saccatibasis is confined to the two northern islands of the Tokara group.

Section IDIOZAPTYX n. sect.

The shell is Zaptychoid externally. Superior lamella small, separated from the much reduced spiral lamella. Inferior lamella receding, massive, almost straightly ascending within. Lepper palatal plica long, the lunella descending from near its inner end, and joining the inner end of the lower palatal plica; fulcrum and parallel lamella short but distinct; sutural plice developed. Clausilium excised and bent near the filament, parallel-sided, rounded at the apex. Type C. idioptyx.

This section is related to Diceratoptyx, ${ }^{2}$ but it differs in having a welldeveloped lunella, joining the lower palatal plica, in the straightly ascending inferior lamella, and the very different clausilium, which is like that of Zaptyx.

[^93]Clausilia idioptyx n. sp. P1. NXX, fig. 1.
The shell is quite small, fusiform, brownish-yellow, somewhat translucent; surface glossy, weakly striatulate, nearly smooth, becoming strongly and coarsely striate behind the outer lip.

Fig. 12. The spire tapers regularly from the penultimate whorl to the obtuse apex. Whorls $8 \frac{1}{3}$ to $8 \frac{1}{2}$, convex, the last one compressed, tapering to the base. Aperture ovate, with distinct, somewhat retracted sinulus. Peristome reflexed, continuous. Superior lamella very low, obtuse, short, very widely separated from the spiral lamella, which is minute, and lateral in position. Inferior lamella deeply receding, its base visible as a low fold in an oblique view in the aperture. Within the back it is straight, massive, and ascends obliquely, terminating abruptly on reaching the parietal partition. The subcolumellar lamella emerges very weakly, and in a lateral position it forms an ascending angle, visible by transparence from the outside. Fulcrum and parallel lamella are visible as two equal, short white folds about as far inward as the lunella. The principal plica runs from near the mouth to a little beyond the lateral line. The upper palatal plica is long, diverging forwardly from the principal plica, its lower end visible in the aperture. The lower palatal plica

Fig. 13.-Clausilium of C. idiopty. .
is short, parallel to the upper. Its inner end abuts against the lunella, which joins the upper palatal pliea near its inner end. There are two distinct sutural plice and a very weak one between them, as usual (fig. 12).

```
Length 9.0 , diam. 1.9 mm .
" 7.8, " 1.8 "
```

The clausilium (fig. 13) is bent rather abruptly near the filament; parallel-sided, the apex rounded; the external face is somewhat swollen, inside concave. It is excised on the columellar side near the filament.

Nase, Óshima (Osumi). Types No. 95681 A. N. S. P., from No. 1505 of Mr. Hirase's collection.

With a general resemblanoe to Clausilia cladoptyx, this species is entirely distinct from all known forms in the structure of the closing apparatus.

Explanation of Plates XXX, MXXI, XXXif.

Plate XXX-Fig. 1-Clausilia idioplyx Pils.
Fig. 2-Clausilia nakanoshimana Pils.
Fig. 3- " tokarana Pils.
Figs. 4, 5- " tokarana saccatibasis Pils.
Fig. 6- " hemileuca Pils.
Fig. 7- " echo Pils.
Figs, 8, 9- " japonica ultima Pils.
Fig. 10- " nakadæ Pils.
Figs, 11, 12-" japonica vespertina Pils.
Plate XXXI-Figs. 1, 2-Clausilia tripleuroplyx Pils.
Figs. 3-5-Clausilia jacobiana jacobiella Pils. Akusekijima.
Fig. 6- " " Pils. Suwanosejima.
Fig. 7- " nishinoshimana Pils.
Figs. 8-10- " ikiensis tsushimana Pils.
Fig. 11 -
Figs. 12, 13hemileuca Pils.

Figs, 14, 15agna spicata Pils. tosana Pils. Nametoko; Iyo.
Figs, 16,17- " " " Ushirohawa, T'osa.
Figs, 18, 19- " " " Shimohanyama, Tosa.
Fig. 20- " " " Irazuyama, Tosa.
Plate NXXII-Figs. 1, 2, 3-Clausilia formosensis hotawana Pils.
Fig. 4-Clausilia formosensis H. Ad. Arikawa.
Figs, 5, 6- " taiwanica Pils.
Fig. 7- " swinhoei H. Ad. Kiirun.
Figs. 8, 9- " formosensis H. Ad. Hotawa.
Figs. 10, 11-" swinhoei H. Ad. Suganiikei.

NEW LAND MOLLUSCA OF THE JAPANESE EMPIRE.

by h. A. pilsibry and y. hirase.

The present contribution includes species from the main island of Japan, the Bonin Islands, Ryukyu Islands and Formosa. Recent explorations in the Tokara Group (small volcanic islets between \bar{O} shima and Yakushima) have filled a gap in our knowledge of the land snails of the northeastern islands of the Ryukyu Curve, the Clausiliidoc and operculate shells being especially interesting.

Spiropoma japonicum tsushimanum n. subsp.

The spire is slightly higher than in japonicum and the last whorl descends more to the aperture. The cuticle is extremely fincly and densely striate, duller and darker than in japonicum; finally, the columellar margin of the peristome is retracted more.
Alt. 8, diam. 14.2 mm .
" 6.1, " 11.7 "
Izuhara, Tsushima. Types No. 95762 A. N. S. P., from No. $1447 a$ of Mr. Hirase's collection.

The several species and local forms of Spiropoma are only very slightly differentiated, and while the races of Tsushima, Quelpart, etc., have a certain individuality appreciable to the eye, their differences are of no great importance. The generic type seems to be very conservative and inflexible.

Alycæus tsushimanus n. sp.

The shell is quite depressed, otherwise shaped as usual in the subgenus Chamalycous; very pale reldish-brown or whitish. Spire low, convex, the apex projecting a little, brown. Whorls $3 \frac{1}{2}$, the first $1 \frac{1}{2}$ smooth, the rest sculptured with extremely delicate, close threadstriar ; just before the constriction of the neek the striation is distinctly stronger, and on the neek it is more or less obsolete. Later part of the last whorl is moderately swollen, then contracted. Beyond the contraction the neck is swollen in the middle, then descends a little to the aperture. The sutural "tube" is rather long, and very closely appressend, as if partially melted into the suture. The aperture is very oblicque, circular. The peristome is strongly expanded and reflexed,
its face thickened and convex, the outer edge somewhat recurved. It is appressed for a short distance to the preceding whorl. The rather wide umbilicus is elliptical.

Alt. 3, diam. 5.8 mm .
The operculum is somewhat concave externally, and its whorls bear elevated cuticular appendages or raised cord-like spirals, wanting in the depressed central part, which is generally filled with dirt.

Tsutsu, Tsushima. Types No. 95737 A. N. S. P., from No. 1553 of Mr. Hirase's collection.

This is larger than other known Japanese species, with a more broadly expanded peristome. It is related to the Korean A. cyclophoroides Pils. and Hir., but differs by having a distinct swelling in the middle of the neck and in some minor details of sculpture and shape. By the characters of the operculum it belongs to the subgenus Metalyceus.

In a race of the same species found at Sasuna, Tsushima, the shell is smaller, the diameter varying from \pm to 5 mm . This small form is No. 95738 A. N. S. P., No. $1553 a$ of Mr. Hirase's collection.
Alycæus tokunoshimanus principialis n. subsp.
The shell is much larger than A. tokunoshimanus, more or less deeply reddish-yellow tinted above, nearly white beneath, the embryonic whorls golden. Whorls 3 ? , the last half of the last whorl very much inflated, then contracted into a rather small neck, beyond which the whorl is strongly deflexed. Very closely and finely thread-striate, more closely so on the inflated portion. Neck strongly bent downward. Peristome strongly reflexed, thickened and bevelled on the face; columellar border much narrower, its outer edge more or less straightened. Alt. 3.3 , diam. 5 mm .

Orachi, Oshima (Osumi). Types No. 95830 A. N. S. P., from No. $1330 b$ of Mr. Hirase's collection.

This is the finest development of the tokunoshimanus series. That species was originally deseribed from the smallest of the several forms now known.
Alyewus tokunoshimanus mediocris n, subsp.
The shell is decidedly larger than A. tokunoshimanus, with the neek bent downward more, and more coarsely striate in front of the contraction. The sculpture of the neck is also coarser than A. t. principralis. Alt. 2.9 , diam. 4.5 mm .

Yorojima (Ōsumi). Types No. 89926 A. N. s. P', from No. 1330 of Mr. Mirase's collection. Also found on Ikejijima (No. 59927 A . N. S. P., and 1330 a coll. Hirase).

Alycreus lævis n. sp
A Chamalycaus resembling A. tokunoshimanus in general form; openly umbilicate; spire low, conoidal, the first whorl projecting. Whorls By, regularly increasing to the middle of the last whorl, where it rapidly enlarges, becoming much inflated. The inflation is terminated by a moderately contracted neek which curves down to the aperture. There is a prominent swelling around the neck in the middle. The "tube" is rather long and pressed into the suture. The surface is smooth, lightly marked with growth-lines, but on the inflation there are distinct fine and close strix. The neck is smooth and glossy. The aperture is very oblique; peristome expanded, usually dilated to form a short lobe at the posterior angle. In fully mature individuals an inner rim is built out shortly beyond the expansion. Alt. 3, diam. 4 mm .

Nakanoshima (Ósumi). Types No. 95831 A. N. S. P., from No. 1514 of Mr. Hirase's collection. It occurs also on Suwanosejima.

In having a smooth surface, marked with slight growth-lines only, becoming striate on the inflation, this species is very distinct from other Japanese and Ryukyuan forms. The rounded swelling on the neck is a further distinguishing character.
Diplommatina paxillus ultima n. subsp.
The shell is somewhat more robust than D. paxillus from Shanghai or Cheju, Quelpart. The peristome is less angular at the foot of the columella,-only very indistinctly so. The peristome is doubled, or there is a wrinkle or two behind the outer lip. Adults vary from reddish-brown to nearly white.

Kashitake, Tsushima. Types No. 95662 A. N. S. P., from No. $1554 a$ of Mr. Hirase's collection. Also taken at Kojeto (Island of Koje), K゙orea, No. 95660 A. N. S. P., from No. 1531 of Mr. Hirase's collection.
D. puxillus (Gredler) is a very widely distributed species, ranging from Hunan to the Korean Archipelago, with closely related forms in Formosa and Tsushima. In the present state of our collections it is not easy to define subspecies. A form from Mokpo, Forea (No. 1531 a of Mr. Hirase's collection), is similar to the shells from Koje Island, exerept that there is a distinct angle at the foot of the columella. The form from (guelpart is very close to typical Chinese D. paxillus. Diplommatina yonakunijimana n. ap.

The shell is narrow, the pemultimate whorl much the largest, those above tapering in a rather long cone with straght sides; pale brown; sculphure of Aelicate Whead-like strise, wanting in the region of the rent trixtion and on the last half or more of the last whorl. There are

8 whorls, the first $5 \frac{1}{2}$ convex, regularly and slowly increasing; the next enlarges more rapidly and is the widest, most convex whorl. It contracts suddenly to the constriction, which lies one-fourth of a whorl back of the peristome. The front of the last whorl has very widely spaced striæ when unworn, but the last half is smooth and glossy. It ascends very little. The palatal plica is short. It is faintly visible above the suture in the thinnest shells, but most adults are too opaque to show it externally. The aperture is subcircular, somewhat oblique. Parietal callus thin, its edge scarcely thickenel, ascending about half way to the suture. Columellar lamella thin and small, its spiral continuation inward being thin and rather low.

Length 3.1, diam. 1.4 mm .
Yonakunijima, Osumi. Types No. 95675 A. N. S. P., from No. 1510 of Mr. Hirase's collection.

In this species the last fourth of the penultimate whorl, in front of the constriction, is very narrow. It is related to D. kumejimana P. and H., but differs by its far more widely spaced riblets.

Diplommatina okiensis tsushimans n. subsp.

The shell is like D. collarifera S . and B. in shape, but differs as follows: The delicate thread-like strise of the last two whorls are more widely spacel, and on the next earlier two whorls they are still more spaced. The palatal plica is very short and lies under the parietal callus. The spiral columellar lamella within the last whorl is thin and much lower than in collarifera. D. okiensis is very similar, but tsushimana differs by having the strie more widely spaced throughout. The shell is pale brown, and resmbles okiensis in the aperture and collar.

Length 3.9, diam. 1.9 mm . ; whorls 6 t.
Tsutsu, Tsushima. Types No. 95664 A. N. S. P., from No. 1554 of Mr. Hirase's collection.

Diplommatina nesiotica n. sp.

A species of the subgenus Sinica. The lower two whorls form a cylindric portion, those abowe taper rapidly in a straight-sided cone about one-third the total length of the shell. It is pale red or grayishwhite, with seulpture of very delieate hair-like strise, which are rather closely placed on the last two whorls, more spaced on the two preceding. Whorls slightly exceding 6, quite convex, regularly and slowly widening to the penultimate, which enlarges rapidly and is more swollen. It contracts rather strongly to the constriction, which varies in position from submedian in front to nearly over the imer edge of the columella.

The last whon ascends moderately to the lip, and is usually worn nearly smooth. The palatal plica is short, and either wholly to the left of the parictal callus, or its inner half may be under the callus. The aperture is rounded, a little longer than wide. Peristome thin, rather narrowly reflexed, sometimes very indistinctly subangular at the base of the columella. The parietal callus spreads rather extensively upward, and has a thin, raised edge. The columellar tooth is so deeply immersed that it is not visible in a front view.

Length 3, diam. 1.8 mm .
Suranosejima, Osumi. Types No. 95668 A. N. S. P., from No. 1557 of Mr. Hirase's collection. Also found on the adjacent islands Akusekijima and Nakanoshima, of the Tokara group.
This species is related to D. saginata of Oshima and D. tanegashimer of Tanegashima, both of them much smaller species. D. tanegashime is also more slender. D. saginata is a common and characteristic species of Oshima. It is very similar to D. nesiotica but always much smaller, so far as present collections show.

Specimens from Akusekijima and Nakanoshima are a trifle smaller than the types from the intermediate island Suwanosejima, measuring 2.5 to 2.8 mm . long. The palatal plica is slightly longer, and in some specimens the columellar tooth is visible in a front view.

Diplommatina hirasei Pilsbry n. sp.

The shell is large for a Sinica; the last two whorls, form more than half the total length, are cylindric, upper portion conic with straight sides. Whorls fully $6 \frac{1}{2}$, moderately convex, the last strongly ascending in front, having a very strong, narrow ridge or collar a short distance behind the lip, the back of the collar opaque whitish. Constriction very slight, median in front. Color dull red. Sculpture of very delicate hair-like strix, eloser and finer on the last two whorls than on the preceding two, and usually worn from fully adult shells. The aperture is circular, orange colored within; peristome reflexed and somewhat thickened, contimed in a raised ledge across the parietal wall, rearhing to or almost to the suture. Palatal plica rather long and wholly covered by the parictal callus. Columellar tooth strong, the lamella within moderately high but thin. Internal parietal lamella low.

Length 4.75 , diam. 2.5 mm .
Gakuenji, Izumo. Types No. 95670 A. N. S. P., from No. 1506 of Mr. Hirase's collection. Also Makuragisan, Izumo, No. 95669 A. N. S. P.

This largest of the Japanese Diplommatinas is in every way more
robust than D. collarifera S . and B . or D. okiensis I . and H. It further differs by having the parietal callus extended nearly to the suture, and the palatal plica lies wholly or almost wholly under the parietal callus.

Eulota (Euhadra) contraria n, ep.
The shell is depressed, biconvex, umbilicate, angular at the periphery, thin, greenish-yellow with a narrow dark red-brown band on the peripheral angle and narrowly visible above the suture on the last $1 \frac{1}{3}$ whorls; inner whorls suffused with reddish-brown. Surface but slightly shining. First $1 \frac{3}{3}$ whorls, forming the embryonic shell, are convex, with a close sculpture of low granules arranged in obliquely descending series. The next $1 \frac{1}{2}$ whorls have weak growth-lines and minute, rather closely arranged papillæ scarcely noticeable in some specimens. The last two whorls have irregular growth-lines, and some shallow, irregular spiral sulci, most obvious on the base; there are also minute papille visible in places. Whorls $5 \frac{1}{2}$, the first $1 \frac{1}{2}$ convex, the rest convex below the suture, then flattened. The last whorl scarcely descends in front, and is convex below. The aperture is oblique, wide. lunate. Peristome white the upper margin expanded, the outer and basal margins rather narrowly reflexel. The parietal callus is extremely thin.

Alt. 15. diam. 26 mm .
" 14.3, " 25 "
Kōshun, South Formosa. Types No. 95838 A. N. S. P., from No. 1581 of Mr. Hirase's collection.

This is a species of the E. succincta group. E. formosensis differs by being more elevated, with the lip sinuous above and in having very minute spiral striation on the last whorl. E. succincta is more compact, with the last whorl narrower (viewed from above), and the umbilicus is much smaller. The sentpture also differs in various details.

A specimen of E. contraria a little less mature than the type has the last whorl reddish-brown, the spire paler. It is banded like the type specimen. Only 10 examples of this fine snail were taken.

Eulota (Euhadra) picta n. sp.

The shell is rather narrowly umbilicate, somewhat depressed, with conic spire; rather solid; pale yellow, with two broad dark reddishbrown bands, the upper band extending from just below the periphery half way to the suture, and ascending the spire above the suture, the last 2 or $2 \frac{1}{2}$ whorls are therefore bicolored above; on earlier whorls the
band becomes light reddish-brown and spreads over the surface of the whorls. The basal band is wider than the other, fading out on its inner edge. There is also a small umbilical patch of the same dark color. The surface is somewhat glossy, the first 4 whorls having a microscopic sculpture of minute raised points, regularly arranged (as in Chloritis); last whorl marked with growth-lines, not punctate. Whorls $5 \frac{1}{2}$, moderately convex, very slowly widening, the last rounded peripherally but showing the faint trace of a peripheral angle; not descending in front; base somerrhat flattened. The aperture is but little oblique, wide, banded inside. Peristome narrowly reflexed, colored by the bands, dilated at the columellar insertion, half concealing the umbilicus.

Alt. 22, diam. 30.2 mm .

$$
\text { " 20.7, " } 29.0 \text { " }
$$

I'onakuni-jima, Ryukyu. Cotypes No. 95837 A. N. S. P., from No. 1507 of Mr. Hirase's collection.

A very handsome species of the caliginosa group, closely resembling E. okinoerabuensis in shape, but the last whorl, viewed from above, is narrower, and the minute sculpture of the spire is different. The somewhat flattened base and the shape of the basal lip are features like E. caliginosa.

Eulota luhuana latispira n. subsp.

The shell is large, bright greenish-yellow, with three brown bands, coarsely striate, with the usual fine spiral lines. The spire is very wide, whorls more slowly and more regularly increasing than in luhuana or senckenbergiana, the last whorl narrower. Umbilicus ample, regularly tapering within.

Alt. 30, diam. 48 mm .; whorls $6 \frac{1}{2}$.
Hakusan, Kaga. Types No. 83913 A. N. S. P., from No. $562 a$ of Mr. Hirase's collection.

The spiral bands may be dark and conspicuous or very pale. The lip is flesh colored, varying in shade in different shells.

Eulota (Egista) porangulata n. sp.

The shell is umbilicate (width of umbilicus contained $4 \frac{1}{2}$ times in the dianeter of the shell), conic above, convex below, strongly angular at the periphery; light brown, dull, finely striate, sometimes with some wry delicate, short, thread-like cuticular appendages on some of the stris in places. Under the cuticle there are very fine spiral lines, wisihle just in front of the parietal callus. Whorls $6 \frac{1}{4}$, moderately convex. slowly increasing, the last strongly angular peripherally, the
angle disappearing immediately behind the peristome. The whorl scarcely descends in front, not angular around the umbilicus. The aperture is rounded-lunate; peristome thin, forming three-fourths of a circle; the upper margin is slightly expanded, outer and basal margins reflexed. Parietal callus merely a thin film.

Alt. 8.5, diam. 13.7 mm .
" 9, " 13 "

Izuhara, Tsushima. Cotypes No. 95859 A. N. S. P., from No. 1551 of Mr. Hirase's collection.

This is a strongly angular species of the E. aperta group. The peristome is like that of E. aperta tumida. Neither E. aperta or E. mimula is known from the island of Kyushu.

Trishoplita cretacea hypozona n. subsp.

The shell is conic, white with a broad purplish-brown or rich reddishbrown zone on the base. The surface is rather finely striate, the strixe elegantly granulose, especially on the base.
Alt. 14 , diam. 17.8 mm .; whorls $6 \frac{1}{1}$.

$$
\text { " } 12, \text { " } 16.8 \text { " " } 6 .
$$

Mikuriya, Hoki. Types No. 95862 A. N. S. P., from No. $387 a$ of Mr. Hirase's collection. It also occurs at Mihonoseki and Gakuenji, Izumo, and at Itsukushima, Aki.

The shell is generally in large part denuded of cuticle, as in T. crelacea. The granules on the strix of the base are irregular, not arranged in spiral lines. Some specimens from Izumo are smaller:

Alt. 12.2, diam. 16 mm .; whorls $6 \frac{1}{4}$.

$$
\text { " } 10 \text {, " } 14.5 \text { " " } 6 \text {. }
$$

A single example seen from the province Aki resembles hypozona in shape and color, but differs in minute sculpture, the strixe being superficially cut by fine spiral lines, chiefly evident on the base, in place of the irregular granulation of typical hypozona. This form (No. 87678 A. N. S. P., No. 1190 of Mr. Hirase's collection) may be found separable from hypozona, yet we prefer to refer it to that race until more material can be brought together.
T. c. hypozona inhabits the provinces along the northern shore of the western end of the main island of Japan.

Ganesella albida mollioula n. subsp.

The shell is larger than G. albida, thinner, more transparent, bluishmilky above the keel, transparent yellowish below, sculptured quite distinctly with close microscopic spiral lines; base decidedly more convex than in albida, the mouth and columella being longer; whorls more numerous.
L.ength 21, diam. 14.5 mm . ; whorls $6 \frac{1}{2}$.

T'ishun, South Cape of Formosa. Type No. 95753 A. N. S. P., from No. 15St of Mr. Hirase's collection.

The typical measurements of G. albida (H. Ad.) are alt. 15, diam. If mm. An example of the typical form from Sammaipo before us measures, alt. 14.5 , diam. 12 mm ., whorls $5 \frac{1}{2}$. Only three examples of G. a. mollicula were taken.
Ennea iwakawa yonakunijimana n. subsp.
Closely related to E. i. miyakojimana P. and H., but the aperture is more contracted by the large teeth, and the spire tapers more, being widest below the middle, at the penultimate whorl. Whorls $6 \frac{3}{4}$ to 7.
!ength 4 , diam. 1.9 mm .
Yonakunijima, Loochoo. Types No. 95715 A. N. S. P., from No. 1511 of Mr. Hirase's collection.
Petalochlamys rejecta (Pfr.).
Helix rejecta Pfr., P. Z. S., 1859, p. 25, No. 9, pl. 43, fig. 1; Monographia Hel. Viv., V 142.
Microcystis? rejecta Mlldff., Jahrb. D. M. Ges., X, p. 365.
Hyalina mamillaris Heude, Moll. Terr. Fleuve Bleu, 1882, p. 15, pl. 19, fig. 8.
This species was described from a specimen taken by Robert Fortune in "northern China." Dr. von Moellendorff has pointed out that most of the shells discovered hy Fortune are from places inland from Shanghai, fowarl the tea district of Wu-yuan in the Province An-hui. Hangchow, where several of Fortune's species occur, such as Plectotropis brevibarbis, is between Shanghai and Wu-yuan. A Petalochlamys from Hangchow, taken by Mr. Nakada, agrees with Pfeiffer's description of H. rejecta.

Pig. 1.-P. rejecta P'r., Hangchow, Chima.
The shell is strongly depressed, with very low-conic spire; of the usual thin substance and of a greenish-yellow color above, subtransparent, the base pereeptibly paler. The umbilicus is extremely narrow, its width contained about 12 times in that of the shell. The -urfare is polishoal, and shows under a compound microscope very
close, engraved spiral lines, chiefly below the suture, wanting on the first whorl, and becoming weak on the last whorl and the base. Large specimens have just 5 whorls; these increase rather slowly to the last which is very wide-wider than in related species. Seen from above the spire is small, its diameter hardly 46 per cent. of the total diameter of the shell. The last whorl is equally rounded at the periphery. The aperture is, broadly lunate.

Alt. 7, greater diam. 13.5, lesser 11.3 mm .
The specimens described and figured are from Hangchow, Chekiang Province, China; No. 95800 A. N. S. P., from No. 1476 of Mr. Hirase's collection.
P. rejecta is related to P. planula and P. planata of Heude, but riewed from above the last whorl is wider than in either of these species, both of which moreover are smaller. Dr. O. von Moellendorf found rejecta in Lü-shan, near Kiukiang. P. Fuchs collected it in southern Hunan and northern Guanglung, and Father Heude deseribed specimens from the former locality as I. mamillaris, a species which von Moellendorff referred to rejecta as a synonym. The first published record of rejecta, after the original reference, was by A. Adams, who identified it from Tsushima (Annals and Magazine of Natural History, 4th series, I, 1868, p. 467). Among difficult and rritical species an identification by Adams has slight value. Von Martens, Reimhardt and Kobelt have repeated Adams' record, but without further confirmation. I do not know the locality of the specimen figured by Dr. Reinhardt. Kobelt has copied these figures. On the whole, it seems hazardous to admit P. rejecta to the fauna of Japan or Korea without better evidence than we now have. It will probably prove to be peculiar to China, especially in the district below the mouth of the Yangtze, in An-hui and Chekiang Provinces. At all events, the somewhat similar Petalochlamys known to us from Tsushima is certainly a species distinct from P '. rejecta.

Potalochlamys subrejeota n. sp.
Mactochlamys rejecta Pfr., Hirase, The Conch. Magazine, II, p. 5, pl. 13, fig. 13, not Helix rejecta Pfr.
Marochlamys sulirrjecta Pils, and Hir.,Conch. Mag., II, p. 76 (nodescription).
Shell depressed, very narrowly umbilicate, very thin and fragile, glossy, of a pale brown tint, or very pale greenish-yellow. The surface is weakly marked with growth-lines, and under the compound microseope shows very fine, close, superficial spiral stris, wanting on the finst whorl, becoming weak on the last whorl. The spire is lowcomoidal, wide; its diameter, viewed from above, is is per cent. the
total diameter of the shell. Whorls $5 \frac{3}{4}$, slowly increasing, the last much wider, rounded at the periphery. The suture is narrowly trans-parent-marqined. Lmbilicus very small. its diameter contained about 20 times in that of the shell. Aperture lunate.

Alt. 7.6 , greater diam. 13.2 , lesser 12 mm .
Sasuna, Tsushima. Types No. 95802 A. N. S. P., from No. $1549 a$ of Mr. Hirase's collection. Also found at Fusan, Korea.

Fig. 2.-P. subrejecta.
Compared with the Chinese P. rejecta, this species is less depressed and has, viewed from above, a much wider spire and narrower last whorl. The aperture is consequently higher and less dilated laterally. The epiral sculpture is unt quite so deeply engraved, and the umbilicus is wider than in P. rejecta, though still very narrow. P. subrejecta is probably the shell A. Adams reported from Tsushima as Macrochlamys rejecta Pfr.

Petalochlamys serenus n. sp.
The shell is depressed, very narrowly umbilicate, amber colored, subtransparent, very fragile. The surface has delicate, close microscopic engraved spirals both above and below. Spire slightly convex; whorls 4 , but slightly convex, slowly increasing to the last, which is much wider, rounded peripherally. The suture is narrowly trans-parmot-mancimed. Aposture lumate, columellar lip triangularly dilated at the insertion, thin; columella vertical.

Alt. 2.8, greater diam. 4.7, lesser 4 mm .
Kaminoyama, Kunchan, Okinawa. Types No. 95509 A. N. S. P., from No. 1441 of Mr. Hirase's collection.

This small, very fragile shell is related to P. doenitzi (Reinh.), but the last whorl is wider in a view from above, and is somewhat more ample.

Petalochlamys perfragilis sakui subsp.n.
The shell is more depressed than P. perfragilis and P. p. shiliokuensis, and is a little more openly umbilicate. Surface brilliantly polisherl, almost smonth, but under a compound microscope very
faint traces of spiral striæ may be seen in some places, and on the base of the last whorl these incised spirals sometimes become distinct. The suture is white-edged.

Alt. 8.7, greater diam. 15, lesser 13.2 mm .
Yaku-shima (Ősumi), types No. 85729 A. N. S. P., from No. 1081 of Mr. Hirase's collection. It also occurs on Kuchinoerabu-shima (Osumi).

Kaliella gudei mutsuensis n. subsp.
The shell is perforate, conic, having an acute peripheral keel, visible on the spire as a thread in the suture; irregularly striatulate and glossy. Whorls $4 \frac{3}{4}$ to 5 , convex. Aperture lunate, truncate at the ends. Columellar margin vertical, slightly thickened, reflexed at the insertion.

Alt. 3.3, diam. 4.7 mm .
Osoreyama, Mutsu. Types No. 96178 A. N. S. P., from No. 1445 of Mr. Hirase's collection.

This form differs from K. gudei by the number of whorls and much smaller size. The whorls are more convex than in K. ceratodes (Gude), and the columella is less calloused. In K. koshinoshimana the whorls are more closely coiled. K. g. mutsuensis differs from K. sororcule by its vertical columella, that of K. sororcula being oblique to the shellaxis.

Kaliella suberenulata satsumaua n. subsp. Fig. 3.
A form decidedly larger than K. subcrenulata. Under the compound microscope there are seen to be fine thread-like vertical strise on the upper surface and on a band below the periphery. The rest of the base is glossy, but shows a few fine spiral lines.

Alt. 2.3, diam, 3.25 mm .

Fig. 3. Yamakawa, Satsuma. Types No. 96176 A. N. S. P', from No. 1593 of Mr. Hirase's collection.

Kaliella longissiman. ap. Fig. 4.
The shell is minutely perforate, conic-turrite, with nearly straight lateral outlines and obtuse summit; pale yellowish, subtransparent. Surface glossy, almost smooth. Whorls 92, very slowly increasing, moderately convex, the last rounded peripherally, though there is a very delicate thread-like keel. Base convex. Aperture semihunar. the columella vertical, with reflexed edge.

Alt. 4.25, diam. 2.3 mm .
sasuna, Tsushima. Types No. 96177 A. N. S. P., from No. 1556 of Mr. Hirase's collection.

This is the most lengthened Japanese Kaliella

Fig. 4. known to us, being much longer than K. praalta. The Indian K. elongata G.-A. has about the same proportions, but differs by its strongly keeled last whorl, the convex outlines of the spire, etc.

Kaliolla boninensis n. sp.

The shell is perforate, depressed, the spire convexly conoidal, with obtuse, rounded summit, base convex, the periphery angular; brown. Surface rather dull above, more glossy beneath; first half whorl smooth, next whorl sharply striate and decussated with fine spiral lines; following whorls are densely, finely and sharply striate, with very faint traces of spiral lines in places; the base is smoothish, but not much polished; showing faint traces of spiral lines in places. Whorls 3曷, moderately convex.

Alt. 1.75 , diam. 2.66 mm .
Anijima, ()gasawara (Bonin Islands). Types No. 95867 A. N. S. P., from No. 1500 of Mr. Hirase's collection.

This small species is not closely related to any known Ogasawaran or Japanese form. Whether it really belongs to Kaliclla is perhaps doubtful.

Sitala ultime n. sp.

The shell is perforate, conic, with the last whorl large; very fragile, amber colored, rather shining, with a silky luster above, more glossy below. Sculpture of excessively fine, close vertical strix decussated ly wery delicate spirals, the base having engraved spiral lines. The spire is straightly conic. Whorls $4 \frac{1}{2}$, convex, the last angular at the priphery in front, becoming inflated and rounded in the last half. Base rather convex.

Alt. 2.3, diam. 2.9 mm .
Ǩaminoyama, Uzen. Types No. 95908 A. N. S. P., from No. 1443 of Mr. Hirase's collection.

This delicate snail is smaller than the related s. reinhardti, and has much more distinct microseopie seulpture. It lives farther north than any other known Sitala.
Ena luchuana nesiotica n. subsp,
The shell is rimate, very thin, purplish-brown, more or less flecked with yellow on the upper whorls, by incipient disintegration of the
cuticle. The spire tapers regularly to the small but obtuse apex. Whorls $i \frac{1}{3}$. The earliest whorls are worn but seem to be smonth. On the third whorl very fine, close spiral strix appear, and by the decussation of growth-lines the surface becomes minutely granular. The last whorl or two are more coarsely closely granulose. The aperture is slightly oblique, dark inside; peristome expanded, slightly thickened within, white. Columella dilated and forked above. Parietal callus very thin and transparent.

Length 17, diam. 7.0 mm .
" 17.2, " 6.9 "
" 16, " 7.0 "
Kuroshima, Osumi. Types No. 95768 A. N. S. P., from No. $1546 a$ of Mr. Hirase's collection. Also Yakushima, No. 1546 of Mr. Hirase's collection, 95769 A. N. S. P.

This form differs from Ena luchuana and E. l. oshimana by the dark coloration, without light streaks, and the more pronounced granulation. The specimens from Yakushima seem to be identical in all respects with those from Kuroshima.

ON THE MELOID压 OF ANGOLA.

BY F. CREIGHTON WELLMAN, M.D.

While determining a collection of Angolan specimens of Coleoptera of the family Meloidse recently collected by myself, I have had occasion to go somewhat thoroughly into the literature of the subject and also torompare the material in the British Museum, the Hope Department of ()xford University, the Königliches and the National Museums in Berlin, the National Museum at Washington, and several private collections; so it seems that the results, together with my collecting notes, may be of sufficient interest to publish along with the descriptions of the new forms that have come to light.

Our present knowledge of the Meloïdx of Angola, it may be said, is due principally to three collections, viz., the schönlein-Grossbendtner collection described by Erichson, the Welwitsch collection, the Meloid material of which was described by Marscul, and the collection made by von Hohmeyer and Pogge and described by Harold. My own collection-described in the present paper-is now added. Besides these there are a few single descriptions by various authors, which will be found in their places in the present list. It is possible that some of the more recent records have escaped my attention. Of the four collertions named above, by far the most complete is that of Welwitseh, which, like all the collections of this gifted naturalist, is of the highest scientific value.

I have recently, in collaboration with Dr. Walther Horn of Berlin, publisherl a memoir containing a short description of the region under consideration and some account of its zoogeographical features and Hall content myself with referring to that paper, ${ }^{1}$ only observing here that, with the exception of two new species, vi\%., Mylabris (Actenodia) deserticola Wellman (from the littoral region) and Mylabris chisamhensis Widhman (from the hioh imban platean), all the Angolan Meloidat collected by me are from the mountain slopes intermediate between the interior alpine region and the low-lying coastlands.
some of the habits of the beetles are most interesting. I shall not

[^94]speak here of the remarkable illustrations of mimicry and warning colors afforded by the Angolan species, as I have already in preparation a paper on these questions, in collaboration with Prof. E. B. P'oulton, F.R.S., of Oxford University, England. I may perhaps with advantage, however, refer at this time to the most important food plant of the Angolan Meloidx. This is a small Roseaceous annual which Prof. Engler kindly informed me in Berlin last summer was a species of Tribulus (T.zegheri) which is widely distributed in tropical Africa. Throughout the desert belt of Angola (which extends from the sea to a point 30 to 100 miles inland according to the configuration of the country) this plant occurs in enormous masses and is the most important and indeed almost the only food supply of the Meloidæ of the region. Most of the genera represented eat it-Mylabris (Ceroctis, Actenodia, Coryna, Decapotoma), Lytta, ete. There are great patches of the yellow blooms and these reveal thousands of beetles; sometimes almost every plant has one or more beetles. Some of the more common species like Mylabris dentata Olivier, Mylabris (Actenodia) chrysomelina Erichson, Mylabris pluvialis Wellman, Mylabris (Decapotoma) regis Thomas and Mylabris (Coryna) 12-punctata Chevrolat can be oltained in almost enfless numbers, and the yellow frees of the beetles may be seen over the ground like numerous small dots. It is interesting to note that insects like these, which are during their larvee stages all parasitic on other insects, should have such an intimate relation in their imaginal stage to certain plants. Lyttini in their early stages feed on the eggs of Orthoptera and Mylabrini on the young of the same order of insects. In Angola these beetles occur shortly before or about the time when the young Locustidee and Acridide become numerous, the first rains doubtless having something to do with the hatching of them all. The appearance of the adult Meloiles is almost exactly synchronous with the flowering of the Tribulus, which lasts only a few weeks, and should the beetles be too early or tow late in their appearance they (being flower feeders) must inevitably perish from want of food in this desert region where only this one speries of Tribulus ${ }^{2}$ (which is apparently fertilized by the beetles themselves) is abundant enough to support such vast numbers of insects. We see here another illustration of how in the economy of mature the interdependence of several organisms may be very close

[^95]and the adjustment of life to environment very delicate．Other notes on the habits of the various species need not be discussed here，but will be found with the mention of the various species．

Following is a list of the species occurring in Angola，so far as I have heen able to verify the records．When I have had occasion to compare material with original types I have usually indicated where such types are to be found．It may be mentioned that in the records and syn－ onymy all names from Dejean＇s Catalogue have been ignored，as have Ms．names，since the recognition of such serves only to perpetuate confusion．A set of cotypes（with the exception of three uniques） of the new forms described in this paper has been deposited in the collection of the United States National Museum．Probably a few of the species now included under Mylabris（sens．str．），and of which I have been unable to trace the types，will later have to be distributed among the various subgenera which I have recognized．

Fam．MELOÏD雨 Subfam．LYTTIN゙E．
Tribe MYLABRINI．

Genus MYLABRIS Fabr．，Syst．Ent．，1775，p． 261.
Sulgenus 1．ACTENODIA C＇ast．，Hist．des Ins．，II，1840，p． 268. sinn．Actenoda Erichs．，Wiegm．Arch．，IL，3，1s43，p． 257 （？ex error）． G゙ッn．Arithmema Chevr．，Ic．Régn．anim．，III，p． 384.

Subrenus 2．CORYNA Billb．，Mon．Mylabr．，1813，p．73，nota．
Syn．Hycleus Latr．，Régn．anim．，Ed．I．，1S17，p． 314.
Subgenus 3．DECAPOTOMA Voigts，Wien．Ent．Zeit．，XXI，p． 17%. Syn．Decatoma Cast．，Hist．des Ins．，II，1840，p． 268 （nee Spinola）．

Subgenus 4．MYLABRIS Fabr．，Syst．Ent．，1775，p． 261 （sens，strict．）．
Subgenus 5．CEROCTIS Mars，，Abeille，VII，2，1870，p． 168.
Sym．Mimesthes Mars．，Mcm．Soc．Sci．Liège，1S72，p． 566.
Subgenus 6．LYDOCERAS Mars，Abeille，VII，2， 1870, p． 12.
The following artificial table based on the antennal characters may be useful in separating these subgenera of Mylabris：

A．－Antenne with from eight to eleven joints，last joints inflated into a club－shaped mass．
f．－Antennte moniliform．
Antenne eight－jointed，．．．．．．Actenodia．
Antenne nine－jointed，．．．．．．．Coryna．
Antennte ten－jointed，．．．．．．Decapotoma．
Antenne eleven－jointed，．．．．MYlabris（s．str．）．
（afr．－Antenne serrate．
Antenne eleven－jointed，．．．．．．．Ceroctis．
1．1．Antranar with eleven joints，last joints mot inflated．
Antennar somewhat flattened．
I．jodoceras

Subgenus ACTENODIA Cast.

1. Mylabris (A.) chrysomelina Erichs. Wiegm. Arch. f. Naturg., 1843, p. 258.

Angola (Erichson), Loanda, Bengo (Welwitsch), Mossameles (Acchieta), Gamba, March, 190S, 341 specimens (Wiblamas). All the specimens were taken on the flowers of Tribulus zegheri. Type in Berlin Königliches Museum, marked on locality" label "Angola, Schönh."
2. Mylabris (A.) deserticola Wellm. spec. nov.

Nigra, elongata, pallido-pubescens; elytris nigris, punctulatis, pone basin et humerale fluro-maculatis undulatimque bijuseintis, juscin unteriore flava, posteriore fulva; prothorace et capite fortiter punctatis, illo medio breviter foveolato; antennarum articulis 1, 2, 6, 7, 8 migris, 3, 4, 5 testaceis; pedes testacei, geniculis tarisque nigris.

Long. corp. S mm.
Lat. elytr. $3 \frac{1}{4} \mathrm{~mm}$.
IIab. Benguella (Africa) ab auctorc collecta.
Typ. in coll. mea.
small, graceful species; head black, rather strongly punctured and with a fow seattered mimute pale hairs; labrum emareinate, rather hairy : mandibles fuscous, maxillary palpi with apical joint obliquely truncate and nearly twice as long as penultimate, labial palpi short, eyes larere. entenme with first two joints black, $2 d$ to 5 th testaccous, 6 th to Sth back, rather sparely covered with short fine white hairs and a few larger blark ones, the last joint more closely cosered with short fine white hairs: thomax black rather sparicely and strongly punctured, clothed with pallial hairs, in the center at the basal third is an clongate fovea about $\frac{1}{5}$ the lenoth of the thorax ; scutcllum small, with a few short pallid hais: elytra black irregularly punctulate, pallilly villose, with a large yellow on pale orampespot at the base of each elytron, and two transwerse irregular bants, one of a yellow color a little in front of the midille and theother of an orange red color about half way between the midhle band and the apex of the elytron; at the humeral margin of the elytron is a spot smaller and narrower than the basal spot, this is connected by a namow manginal band to the middle transwere fascia; legs testaceons with a rather broad apical back band to the femora, a much narrower. oreasionally nearly obsolete black apical band on the tibite amd tars. the last tamis bring sometimes almost entirely black; the umber sibe of the body is black.

Type in my collection: cotype (paratype) Cat. No. 12119, U. S. N. . I.
Five specimens of this pretty little species were taken in the desert just outside of the rity of Bengurlla in March, 190s. They were all on a leafless shrub and their forel phant is unkown. It sement por-
hematical what they could find to feed on in that dried-up region. There is a series of specimens without name in the Königliches Museum in Berlin.
3. Mylabris (A.) jncunda Erichs., Wiegm., Arch. f. Naturg., I, 1843, p. 257.

Angola (Erichson), Angola, Benguella (Marseul).
Tỵpe in Berlin, Königliches Museum, marked "Angola, Schönh."
Subgenus CORYNA Billb.

1. Mylabris (C.) ambigua Gerst., Wiegm. Arch. f. Naturg., XXXVII, p. 68.

Gamba, March, 1908, 2 specimens (Wellman).
This species was originally described from Zanzibar and placed by
its author as a Mylabris.
Type in Berlin, Königliches Museum.
5. Mylabris (C.) chevrolati Beaur., Les Ins. Vés., 1890, p. 523.

Hyclous duodecimpunctata Chevr., Guér. Ic. règn. anim., p. 132, tab. 35, fig. 3 (nee Oliv.).
Hycleus decimguttatus Cast., Hist. Nat. des Ins., II, p. 268.
Gamba, March, 1908, 72 specimens (Wellman).
Originally described from Senegal.
6. Mylabris (C.) hermanniæ Fabr., Ent. Syst., I, 2, p. 89. Mylabris affinis Oliv., Ent., MI, 47, p. 8, tab. 2, fig. 16.
Angola-"aus dem inneren"-(Pogge).
Described from Guinea.
7. Mylabris (C.) mylabroides Cast., Hist. Nat. des Ins., II, p. 208. Mylabris lanuginosa Gerst., Monatsb. Berl. Acad., 1854, p. 695.
Angola (Marseul).
The type of lanuginosa is in Berlin, Königliches Museum.
\&. Mylabris (C.) posthuma Mars., Mem. Soc. roy. Sci. Liége, 1872, p. 603. Pl. VI, fig. 6.
Angola, Bengale $=$? Bangala (Marseul), Loanda, Bengo (Welwitscu), Humbe, Huilla (Anchiets), Gamba, March, 1908, 308 specimens (Wellman).

On the flowers of Tribulus zegheri.
It is possible that mixta Mars. from "Caffraria" is a variety of posthuma.
9. Mylabris (C.) tergemina Mars., Mem. Soc. roy. Sci, Liége, 1872, p. 613.

Angola (Marseul).
Subgenus DECAPOTOMA Voigts.
11). Mylabris (D.) decorata Erichs., Wiegm. Arch. f. Naturg., 1813, 1). 256.

Angola (Emenson), Benguella (Marsifut), Loanda (Wblatitsch), lonada (Hommeyer), Huilla (Avcheta).

Type in Berlin, Königliches Museun.
11. Mylabris (D.) chiyakensis Wellm. spec. nov.

Vigra, argenteo-villosa, caput et thorax obscure viridi-corulescentia, subtiliter punctata, pallido-villosa; elytra miyra, argenteo-villosa; viltis duabus (altera dorsali, altera marginali; illa medium attingente ad "phietm ralde dilatata, hae medium subattingente minus dilatata) maculisque duabus (altera dorsali, altera marginali) inter medium et apicem positis: corpus infre pedesque' nigra (femora pallido-hirsutu, tibie fleroscriceac) pedes postici elongati.

Long. corp. 12 mm .
Lat. elytr. 4 mm .
IIab. Chiyaka, Angola (Africa) ab auctore collecta.
Typ. in coll. mea.
Medium sized species; head and thorax dark greenish-blue, finely punctured and clothed with long pale hairs; eyes large, very convex; antormer with first two joints shining, the rest dull; scutcllum almost somicircular; clytra black, finely punctured, clothed with pale, silvery hais; on each elytron a dorsal and marginal broad yellow line, both dilated at the posterior termination, the former reaching past the midde of the elytron and strongly dilated into a large transwerse spot ; the latter not reaching to the middle of the elytron and less strongly dilated. In some specimens the dorsal vitta is interrupted, the terminal dilatation then beroming an isolated spot and the vita remaining shorter than the marginal one. Half way between the terminal inflation of the dorsal vitta and the apex of the elytra a large, somewhat transverse spot; a smaller transverse spot opposte it at the margin. The legs and abdomen are clothed with rather long, pale hais, the thbise being closely covered with shorter and yellower hais. 'The hind legs are very long.

Type in my collection; cotype Cat. No. 12120, U. S. N. M.
There also oceus a variety of this species which may be briefly characterized as follows:
Mylabris (D.) chiyakensis var. tekama Wellm, var. now
V'ittis dorsulibus mullis maculisque minoribus.
l'!pr. in coll. mea.
The very striking reduction of the yellow markings gives at fist glance the impression of a different species. The name is a local Bantu word referring to the dull color.

Bighty-one specimens of this interesting species were taken in February, 1908 , chiefly on flowers of Compositar. In life the antenme are hedf farther forward than in most Myblerini, wiving the insert a -ombwhat peculiar aspect.
12. Mylabris (D.) elendensis Wellm. spec. nov.

Nigra, elongata, argentoo-subpubescens, capite prothoraceque crebre punctatis, hoc subimpresso; antennis nigris; elytra nigra, vittis duabus flavis (vitta dorsali ad apicem subiter, vitta marginali non, dilatata) maculisque 2 posticis, oblique positis, ornatis; pedes nigri, argenteosericei; abdomen nigrum.

Long. corp. 12 mm .
Lat. elytr. $3 \frac{1}{4} \mathrm{~mm}$.
Hab. Chiyaka (Mt. Elende), Angola, Africa; ab auctore collecta.
Typ. in coll. mea.
Slender species; head (including antennæ and mouth parts) black, closely punctured with pale villosity, eyes large, hemispherical; antenne black, thorax black, punctured like head, pubescence pale, feebly impressed in the median line at its posterior third; scutcllum large; elytra black, more coarsely punctured than the head and thorax, palely villose, with yellow markings disposed as follows: two dorsal vittæ, one on each elytron, not reaching to the posterior third of elytron; here it is angularly deflexed externally, forming the vitta into an obtuse angled hook; midway between this hook-like deflexion and the apex of the elytron is a large blotch longer than wide and lying at the same angle as the bent end of the vitta; a marginal vitta on each elytron distinctly shorter than the dorsal, and a small marginal spot just opposite the ante apical dorsal blotch; legs and under side of body black both clothed with pale hairs, the former closely beset with shorter hairs, the latter more sparsely set with long hairs.

Two specimens taken at Mt. Elende, Chiyaka, November, 1907, in a large orchid.
13. Mylabris (D.) omega Mars., Mém. Soc. roy. Sci. Liége, 1872, p. 585, pl. Vi, fig. 11.

Loanda (Welwitsch), Huilla (Anchieta).
14. Mylabris (D.) regis Thos., Ann. Mag. Nat. Hist., 6, XIX, 1897, p. 1897.

Angrola (Welwitsch), Gamba, March, 1908,102 specimens (WeldMAN).

On the flowers of Tribulus zegheri.
Type in London, British Museum.
15. Mylabris (D.) temporalis Wellm. npec. nov.

Nigra, clomgata subeylindrica, pilis argenteis hirla; capite mothoraerque nigris subtiliter penstulatis, argenteo-villosis, illo luto (tempora inflata et rotundata), hoc medio fortiter foveolato; antennis articulis 2 primis nigris, reliquis obscure brunneis; clylris nigris, forliter punctulatis aryrntao-villosis; vilta lata dorsati medium subatingente, allera
marginali angusta medium attingente, macula media dorsali et fascia irregulare inter medium et apicem (suturam et marginem attingens); corpus infra et pedes nigra, nigro-sericea.

Long. corp. 15 mm .
Lat. elytr. $4 \frac{1}{3} \mathrm{~mm}$.
Hab. Chiyaka, Angola (Africa); ab auctore collecta.
Typ. in coll. mea.
Medium-sized species, black, rather densely clothed with longish silvery hairs, which are longer on the head and thorax than on the elytra. The head is very wide, being much wider than the thorax, and in some specimens as wide as the elytra at their base, and with the tempora much inflated making the head above the eyes as wide as it is across the eyes themselves. Eyes not prominent. The head and thorax are finely punctulate, the latter with a median fovea situate somewhat in front of its posterior third. Antennee with first two joints black, the remainder being a very dark brown. Scutellum long and narrow. Elytra black with yellow markings arranged as follows: on each elytron a broad dorsal vitta (one-fourth as wide as the elytron) not reaching to the mildle of the elytron; another narrower marginal vitta reaching fully to, or rather beyond, the middle; behind the apex of the dorsal vitta and occasionally coalescing with it a large dorsal spot, irregular in outline but always transverse; behind this spot, midway between it and the apex of the elytron, an irregular yellow band. The legs and abdomen are densely clothed with long silvery hairs which are more abundant on the femora and tibix.

Type in my collection; cotype Cat. No. 12121, U. S. N. M.
One hundred and two specimens taken in January, 1907 on Malvacee (Hibiscus and Malache spp.). The pattern of this species is wonderfully stable showing almost no variation.

Subgenus MYLABIIIS Fabr. (sens, atrict.).
16. Mylabris (M.) andongoana Har., Col. Hefte, XVI, 1879, p. 138.

Pungo Andongo, July (Hohmeyer).
Type in Berlin, Königlisches Museum. The pubsescence of the lews is in the type somewhat different from ordinary specimens.

Loanda (Welwitsch), Huilla (Lobo d'Avila).
18. Mylabris (M.) benguelana Mars., ibid., p. 57.

Angola (Welwitsch), Benguella (Anchieta).
19. Mylabris (M.) bicincta Mara., Mém. Soc, roy: Sci, Liége, 1872, b, 161, w. V, fig. 60.

Loanda (Welwitsch).
This species was described from Lake N'gami.
20. Mylabris (M.) bifurcata Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII. No. XXV., 1879, p. 48. Capangombe (Anchieta).
21. Mylabrls (M.) bilineata Mars., ibid., p. 56.

Angola (Welwitsch).
22. Mylabris (M.) bissexguttata Mars., ibid., p. 50.

Humbe (Anchieta).
23. Mylabris (M.) carinifrons Mars., ibid., p. 47.

Angola (Welwitsch).
24. Mylabris (M.) chisambensis Wellm., spec. nov.

Nigra, magna, elongata, convexa, nigro-villosula; capite, prothoraceque crebre punctulatis; antennis nigris; elytris nigris, punctulatis, macula magna juxiascutellare et altera minore humerali testaceis; medio undulatim latcque testaceo-bifasciatis; corpus infra et pedes intermedii posticique nigro-pubescentes; pedes antici dense argenteo-sericei.

Long. corp. 24 mm .
Lat. elytr. $10 \frac{1}{2} \mathrm{~mm}$.
Hab. Chisamba, Bihé, Angola (Africa); a Doctore L. Cammack collecta.

Typ. in coll. mea.
Large species; head black, finely punctured, clothed with fine black hain which are fewer on the vertex; labrum emarginate, the margin provirled with a thick fringe of coarse testaceous hairs, its basal third smooth, the apical two-thirds very closely, finely and regularly punctured; eyes slightly reniform; antenna black, with a tuft of coarse black hairs on the anterior surface of the basal joint and a few scattered black hairs on the next three joints; maxillary palpi large with apical joint inflated and squarely truncate, both maxillary and labial palpi with long black hairs on them; thorax with punctuation and pubescence like that of head, posterior margin elevated, two feeble impressions, one just in front of the posterior margin, and the other just in front of the posterior third of the thorax, both in the median line; scutellum small, triangular with the posterior angle truncate; clytra black, with a large juxta-scutellar straw-colored spot, not quite reaching the sutural margin, on each elytron; nearly opposite to this, but rather more in front, a smaller spot on the humeral margin; two wide, wavy bints of the same color dividing the elytra into three nearly equal parts, Hut phaced nearer together than from the basal or apical borders of the elytra; logs black, densely elothed with short black hairs and somo longer ones, the front legs very closely eovered on their internal surface with short pale hairs and in the males provided with very long
black hairs at the apex of the tibix and sides of the tarsi; under surface of body black with longish black pubescence.

Type in my collection; cotype Cat. No. 12122, U. S. N. M.
Eight specimens sent by Dr. Cammack, taken on "foliage." One of the individuals is a monstrosity, having the secondary bifurcation of the inner front claws reduced to a tiny spur.

This species in its coloration and facies presents a startling resemblance to an oriental species (M. cichorii Limn.), but the striking differences in the mouth parts readily separate it.
25. Mylabris (M.) dentata Oliv., Encyc. méth., VIII, p. 97.

Mylabris tortuosa Erichs., Wiegm. Arch. Naturg., I, 1843, p. 256.
Angola (Erichsos), Loanda, Benguella (Marsele), Icolo, Loanda (Welwitsch), Loanda (Hohmeyer), Humbe, Cabinda (Ancheta). Gamba, March, 1908, 84 specimens (Wellahe).

This species was first described from Sierra Leone.
26. Mylabris (M.) dicinota Bert., Nov. Act. Bonon., X., 1849, p. 419.

Mylabris bizonata Gerst., Monatsb. Berl. Acad., 1854, p. 694.
Mylubris dicincta var. Buqueti Mars., Mém. Soc. roy. Lci. Liege, 1872, p. 408.
Zonabris dicincta var. occidentalis Har., Col. Hefte, XVI, 1S79, p. 135.
Benguella (Marsedl), Angola (Welwitsch), Capangombe (AnChieta), Gamba, 60 spccimens, on flowers of Tribulus zegheri, March, 1908 (Wellman).

The typical form was first described from Mozambique. The Angolan form with juxta-soutellar and humero-marginal elytral spots seems to be a distanctively western race and is probably a true subspecies. In all my specimens the last three joints of the palpi are yellow.

A specimen of dicincte probably named by Bertolini and designated as a "type" is in Berlin, Königliches Museum.
 Loanda (WELWIT~CH).
28. Mylabris (M.) dispar Marm, Móm. Suc. ruy. Sci. Lićge, 1872, 1, 435, pl. IV, fig. 22a.

Ambri\% (MArsEUL).
29. Mylabris (M.) orichsoni Gemm., Col, Hefte, V1, 1870, 5, 123.

Mylabris duodecimgultatu Erichs., Wiegm. Arch. Naturg., I, 1843, p. 250 (nee (icrmar).
Angola (Enichsos).
30. Mylabris (M.) flavoguttata lkeiche, Galin. Voys. Abyms., 18.50, 12, 360, tab, 23, tig. ei. Angola (Welwitsch).
A species described from Abyssinia.
 Humbe (ANcHIETA).
Describel from lake N'gami.
32. Mylabris (M.) holosericea Klug, E:m. Reise, 1835, p. 41.

Loanda (Welwitsch).
Described from Guinea. It is suggested by Mr. Champion (Mém. Soc. Ent. Belg., 1899, p. 165) that villosa Fåhr. (Ofv. Vet.-Ak. Forh., LXVII, p. 345) from "Caffraria" is a variety of this species.
33. Mylabris (M.) hybrida Mars., Mém. Soc. roy. Sci. Liége, 1872, p. 418, pl. IV. fig 12. Capangombe (Anchieta).
Described from Port Natal.
34. Mylabris (M.) jacob Mars., Jorn. Sci. Math. Phys. Nat. Lisb., V, No. XXV, 1879 p. 53.

Loanda (Welivitsch), Capangombe (Anchieta).
35. Mylabris (M.) lactimala Mars., ibid., p. 44.

Humbe (Lobo d'Avila).
36. Mylabris (M.) lanigera Mars., ibid., p. 49.

Angola (Welwitsch).
37. Mylabris (M.) liquida Erichs., Wiegm. Arch. Naturg., I, 1843, p. 255.

Angola (Erichsox). Loanda, Pungo Andongo (Hohmeyer), Cabinda (Axchieta), Angola (Welivitsch), Gamba, March, 1908, 7 specimens (Wellman).

On the flowers of Tribulus zegheri.
My specimens differ from typical examples in that the basal fascia of the elytra is not humerally subinterrupted.
38. Mylabris (M.) muata Har., Mitth. Munch. Ent. Ver., 1878, p. 109.

Angola-"aus dem inneren"-(PogGe).
This species was first described, probably from Kabébé, now in the Conso Free State, as a Bruchus, but was subsequently (Col. Hefte, 155!. p. 136) removed by its author from that genus and placed in Mylubris, where it conflicts with Mylabris muata Har., Mitth. Munch. Ent. Ver., 1878, p. 109. I accordingly propose for this last species, which is not mentioned by Mr. Champion in his "List of the Cantharider Supplementary to the 'Munich' Catalogue" (Mém. Soc. Ent. Belg., 1899, pp. 154-206), the following designation:
Mylabris (M.) haroldi Wellm, nom. nov.
The trpe of muata in the Berlin, Königliches Museum, has "Regn. Lunda" on the locality label.
39. Mylabris (M.) myops Chevr., Guêr. Ic. régn, nnim., p. 133, tab. 35, fig. 4.

Cabo Negro (Welwitsch).
Described from the Cape of Good Hope.
Among my specimens (not collected by myself, but undoubtedly from Angelat and also among those of Welwitach in the British Musenm I find some individuals which differ considerably from the type, as
was first pointed out by Marseul (Jorn. Sci. Math. Phys. Nat. Lisb., $1879, ~ p .45)$ and which may be briefly described as follows:
Mylabris (M.) myops var. welwitschi Wellm. var. nov.
Macula flava basali elytrorum nulla. Typ. in coll. mea.
There are some other points of difference, among which may be mentioned the rather coarser and more irregular punctuation of the head and thorax in the case of the 우 우, and the greater comparative length of the third joint of the antennæ.
40. Mylabris (M.) oculata Thunb., Diss. Nov. Ins. Spec., VI, 1791, p. 114.

Cantharis bifasciata Degeer., Ins., VII, p. 647, tab. 48, fig. 13.
Angola (Welwitsch), Humbe (Anchieta).
First described from the Cape.
Mylabris (M.) oculata var. moufleti Mars., Mém. Soc. roy. Sci. Liége, 1872, p. 404.
Benguella (Marseul), Huilla (Lobo d’Avila), Caconda (Anchieta), Bihé (Capello and Ivens).
Mylabris (M.) oculata var. ophthalmica Mars., ibid., p. 404.
Angola (Welvitsci), Benguella, Capangombe, Humbe (Anchieta). Chiy̧aka, January, 190S, one specimen, Gamba, March, 1908, 3 specimens (Wellain).

Described from the Cape.
41. Mylabris (M.) opacula Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. XXV, 1879, p. 45. Duque de Bragança (Marseul), Bihé (Capello and Ivens).
42. Mylabris (M.) palliata Mars., Mém. Soc. roy. Sci. Liége, 1872, p. 432, pl. IV, fig. 21 a.

Inmbe (ANCHETA).
Described from "Caffraria."
43. Mylabris (M.) paulinoi Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. XXV, 1879, p. 48. Angola (Welwitsch).
44. Mylabris (M.) phelopsis Mars, ibid.. p. 48.

Angola (WELWITSCH).
45. Mylabris (M.) pluvialis Welim. spec. nov.

Vigra, oblongo-ovata, postice paulo latior, parum convexa, nigrovillosula; capite prothoraceque ercbre punctulatis; antennis flavis, articulis duobus primis nigris; elytris nigris, munctulatis, macula magna justrescutellare et altera paria humerali flavis; medio undulatim flavofasroutis, postico !utlis duhbus aurantiacis; corpus infra et pedes nigris.

Long. corp. 18 mm .
Lat. clytr. 8 mm .
IIab. (iamba, Angola (Africa); ab auctore collecta.

- Typ. in coll. mea.

Modimm-sized speries: houd hack, rather elosely punctured with
shallow punctures, sparsely clothed with small black hairs; eyes large, almost hemispherical; antennce with first two joints black, 3d to 11th light orange; thorax black, closely punctured, clothed with a few black hairs; scutellum very small, hardly visible, with a few fine black hairs; elytra black, punctured throughout not very closely with small, rather deep punctures; there are also some small, fine black hairs over the whole elytra which are marked with a median, yellow, transverse band and also spots anterior anci posterior to it, these markings arranged as follows: on each elytron near the base is a large, almost circular bright yellow spot; behind this is the irregular, rather wide, median transverse yellow band which would lie in front of a transverse line which might be drawn to divide the elytron into two halves; about midway between this band and the posterior margin of the elytron are two orange-red spots, nearly round; the larger of these, which is smaller than the basal spots above mentioned, is near the sutural margin of the elytron, almost on a line with the basal spot; the other (hardly half as large) lies opposite at the outer margin of the elytron; basally at the extreme humeral margin of the elytron is a yellow spot, longer than wide, reaching to the margin of the elytron and narrowly connected with the median yellow band; legs black, blackly hairy, the front femora and tibiæ covered with short yellowish silky hairs on their inner surface.

Type in my collection; cotype Cat. No. 12123, U. S. N. M.
In some specimens the basal spots (both juxta-scutellar and humeral) show a tendency to become confluent with the median fascia.

This species is very prolific and appears in great numbers during the rains. In March, 190S, at Gamba, Angola, I collected 194 specimens in a few hours. Its principal food plant is Tribulus zegheri.
46. Mylabris (M.) rufitarsis Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VH1, No. XXV, 1879, p. 52. Loanda (Welwitsch), Huilla (Anchieta).
17. Mylabris (M.) senegalensis Voigts, Wien. Ent. Zeit., XXI, p. 178. Mylabris bifasciala Oliv'., Ent., III, 47, p. 5, tab. 1, fig. 10 (nee Degeer).
Angrola (Webwitsci), Angola-"aus clem inneren"-(PoGGE).
I)escriberl from Senegal, also a variety (var. conjuncta Voigts, Wien. Eint. Zeit., XS, p. 217) from Dar-es-Salaam.
48. Mylabris (M.) sibylæ Wellm. spec. nov.

Nigra, statura matgna sat robusta, nigro-pubescens; capite (antenna trliculis 1, 2 nigris, 2, '3 fulvis, reliquis flavis; palpis brunneis) prothornceque nigris subtiliter punctulatis, nigro-villosis, hoc longitudine puulo lalior, medio leviter bi-impresso; elytris nigris, dense subtiliter
punctatis, maculis 2 (juxta-scutellare et humerali) obscure aurantiacis, fascisque 2 (prima anteriore ad medium integra, secunda inter medium et apicem interrupta) obscure rufo-aurantiacis ornatis. Corpus infra et pedes nigra, nigro-pubescentia.

Long. corp. 24 mm .
Lat. elytr. 13 mm .
Hab. Gamba, Angola (Africa); ab auctore collecta.
Typ. in coll. mea.
Large black species, rather robust, clothed with very short black pubescence, which is longer on the head, thorax and abdomen. The head and thorax are feebly punctulate, the latter doubly though feebly impressed. Eyes large, not very convex. Antenne with the first two joints black, the second and third fulvous and the remainder light orange-yellow. The palpi are brownish. Scutellum very small, triangular. Elytro closely and fincly punctate, each elytron with two spots, juxta-scotellar and humeral, and two fascier, the first in front of the middle, the second about midway between the median band and the apex of the elytron. The two spots and the median band are dark orange, the posterior band (which is sometimes interrupted) dark orange-red. Leg.s and body black, clothed with black hairs, the internal surface of the front legs covered with short pale silky hairs.

Type in my collection; cotype Cat. No. 12124, U. S. N. M.
Twenty-four specimens taken in March, 1908, on the flowers of Tribulus zegheri.
49. Mylabris (M.) tincta V:richs., Wiegn, Arch. Naturg., 1843, 1, p. 2.56.

Angola (Erichson), Angola (Marseul), Angola (Welwitsch).
Type in Berlin, Königliches Museum.
50. Mylabris (M.) tindila Wellm. apec. nov.

Nigra, paria, nigro-pubescens; caput dense puntulatum, nigro-villosum, antennis flavis, articulis duobus primis nigris; thorax parrus, dense punctulatus, nigro-villosus, latitudine longior, postice longitudinaliter foveolatus; clytra dense subtiliter punctata, liniis dorsalibus 3 distinctis, nigro-pubescentia; fasciis tribus undulatis flavis suturam attingentibus; corpus infra et petes migra.

Long. corp. 12 mm .
Lat. clytr. 5 mm .
Mab. (Gamba, Angola (Africa); ab auctore collecta.
Typ. in coll. mea.
A rathor small species; head densely punctubate, batekly pubesent with a longish vertical smooth boss between the eyes. Eyyes promi-
nent. Antenne with first two joints black, the next three dark yellow, the remainder light yellow. The palpi are black, hairy. Thorax small, narrow, longer than wide, conical in front, densely punctulate, with a small longitudinal median fovea at its posterior third. Scutellum small. Elytra black, finely and closely punctured, with three Prllow bands placed much as in M. liquida Erichs. except that the basal faccia has no tendency to become interrupted. The three longitudinal veins or lines on the elytra are very distinct. Legs and under side of body black, blackly pubescent.

Type in my collection; cotype Cat. No. 12125, U. S. N. M.
Two specimens taken March, 1908, on the flowers of Tribulus zegheri. The specific name is a Bantu word meaning rare.

51 Mylabris (M.) tricolor Gerst., Peter's Reis. n. Mozamb., (1862), p. 297, pl. 17, fig. 11.
Humbe (Avchieta).
Described from Mozambique.
Type in Berlin, Königliches Museum.
52. Mylabris (M.) trispila Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. XXV, p. 55, 1879.

Loanda (Welivitsch), Huilla (Anchieta).
53. Mylabris (M.) tristigma Gerst., Monatsb. Berl. Acad., 1854, p. 694.

Described from Mozambique. The Angolan examples may be regarded as at least representing a distinct western geographical race which may be described as follows:
Mylabris (M.) tristigma tribuli Wellm. subsp. nov.
Nigra, angusta, valde elongata; capite crebre punctato, nigro-villoso; antennis articulis primis duobus fulvis, reliquis flavis. Labrum fulvum; palpis inflatis, truncatis, flavis; thorace crebre punctato, longitudine latiore medio impresso, postice elerato. Elytra flava, fortiter punctata, nigropubssentia; margine basuli maculis rluabus antemedium (altera pone sulurtm. altert majore laterali) fascia submediana apiceque nigris. Corpus infra et pedes (tarsi primi postici excepti) nigra, nigro-pubescentia.

Long. corp. 20 mm .
Lat. clytr. 5 mm .
Hab. Gamba, Angola (Africa); ab auctore collectu.
'lyp. in coll. mea.
This insect, which quite possibly represents a new species, is described fon the present as a sulsperies of tristigma Gerst., from which it differs inter alia by the longer and narrower borly, the shape of the head and eyes, the much larger black spots on the anterior part of the elytra, the different marking of the prsterior portion, which shows a complete yellow band instead of the two yellow spots on a broad black apical hand, ete.

Type in my collection; cotype Cat. No. 12126, U. S. N. M.
Three specimens taken at Gamba, on flowers of Tribulus zegheri, March, 1908.

The type of tristigma is in Berlin, Königliches Museum.
54. Mylabris (M.) tristriguttata Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. XXV, 1879, p. 55.
Mylabris "ristriguttata" Mars., Champion, Soc. Ent. Belg. Ann., XLIII, 1899, p. 165 (ex error).
Loanda (Welwitsch).
Subgenus CEROCTIS Mars.
55. Mylabris (C.) amphibia Mars., Mém. Soc. roy. Sci. Liége, 1872, p. 559, pl. V, fig. 70 a Angola (Marseul).
56. Mylabris (C.) angolensis Gemm., Col. Hefte, VI, 1870, p. 123.

Mylabris phalerata Erichs., Wiegm. Arch. Naturg., I, 1S43, p. 256.
Angrola (Erichson), Angola (Welwitsch).
Type in Berlin, Königliches Museum, marked "Angola Schönh."
57. Mylabris (C.) bohemanni Mars., Mém. Suc. roy. Sci. Liége, 1872, p. 198, pl. V, fig. 69.

Capangombe (Anchieta).
Described from "Caffraria."
58. Mylabris (C.) exclamationis Mars., ibid., p. 562, pl. V, fig. $72 a$.
"Amberix" (= ? Ambriz) (Marseul), Bengo (Welwitsch), Gamba, March, 1908, on flowers of Tribulus zegheri, 16 specimens (Whllman).
59. Mylabris (C.) interna Har., Mitth. Münch. Ent. Ver., 1878, p. 108.

Angrola (Welwitscif) (a specimen in the British Museum labeled as ('urgna lata Reiche), Angola (Mechow), Pungo Andongo, end of July (Porige and Ifommeren), Chiyaka, 1 specimen on grass December, 1906, 1 specimen on Geigeria wellmani September, 1907, 20 other specimens on Compositie chiefly ('eigerin and Othonnaspp. (Weldan).

Described from the interior of "Guinea" and placed by its author in the genus Bruchus. C. vespina Thos. (Ann. Mag. Nat. Hist., 6, XLI, p. 501) from east Africa has been sunk as a synonym of the speries under discussion, but a series of 40 specimens from the Congo, now in the United States National Museum, together with my own examples, show that respina, the type of which is in the British Museum, should be retained as a distinct and stable variety of interne, the front brown fascia of the latter being quite constantly reduced to two dots in the former. In the lescription vespina is not compared with intorme but with yeromergi (iahan. from which it differs not especially (as is stated by Thomas) in the elytat handiner, but in the color and structure of the antenne (the type of respind has no antenne) which are very different.

The type of interna is in Berlin, Königliches Museum, and has "Regn. Lunda" on the locality label.
60. Mylabris (C.) serricornis Gerst., Peter's Reis., 1862, p. 300, pl. 18, fig. 1.

Loanda, Huilla (Welititsch), Humbe (Anchieta).
This fine species was first described from Mozambique. In the type (in Ber'in, Königliches Museum, marked "Mozamb. Peters") the legs are rather less hairy than in ordinary specimens.
©i Mylabris (C.) trifurca Gerst.. Monatsb. Berl. Acad., 1854, p. 694.
Chiyaka, 1 specimen taken digging in native path, 1 specimen in laree orehid, October, 1907, 2 other specimens, one on flowers of Faroa wellmani and one flying, December, 1907 (Wellain).

Described from Mozambique.
Type in Berlin, Königliches Museum marked "Sena, Peters."
Genus ELETICA Lacord., Gen. Col., V, p. 672.
62. Eletica colorata Mar., Mith. Munch. Ent, Ver., 1878, p. 108.

Angola-"aus dem inneren"-(Pogge), Chiyaka, November', 1907, taken flying in bright sunshine after a rain, 2 specimens (Wellman).

Described from the interior of Guinea. Kolbe (Col. aus Afrika, I, p. 17 Sf .) considers bicolor Champ. (Proc. Zool. Soc. Lond., 1890, p. 645, tab. 56, fig. S) from Central Africa as a synonym of this species.

The type of colorata is in Berlin, Königliches Museum.
f33. Eletica læviceps Kolbe, Ent. Nachr. XII, p. 299.
Chiyaka, November, 1907 (Weldman). A single specimen which lit on my hat in bright sunshine.

Described from the Congo. This species is very near rufa F ., if inkeed it can be separated from it.

The type of laviceps is in Berlin, Königliches Museum.
64. Eletica ornatipennis Luc., Bull. Soc. Ent. Fr., 1887, p. XXVII.

Huilla (CAMPANA).
65. Eletica rufa Fabr., Syst, E1., 11, p. 78.

Lolla bipustulata Fabr., loc. cit., p. 78. Életica cardinalis Pér., Trans. S. Afr. Phil. Soc., IV. p. 136.
Angola (Wehwitsch), Angola (Monteno), Angola (Axchieta), Chiyaka, January, 1908, twelve specimens (Weldmax). Always taken about 9-11 A.M., flying, or rarely crawling, in bright sunshine aftor a rain. One specimen also lit on my hat.
first described from senegal. This is an extraordinarily variable speceic, ranging from light red to coal black, some individuals even having the elytra pale yellow with black tips. I suspect that some of
the black forms described under other names are nothing but variations of rufa, but as yet have been unable to examine the types.
66. Eletica stuhlmanni Kolbe, Stett. Ent, Zeit., LV, D. 183.

Chiyaka, November, 1907, three specimens (Wellmax). Brought to me by my servant.

Described from Lake Albert Nyanza. It is probable that my specimens represent a new form, very closely allied to stuhlmanmi, but the specimens are in such bad condition that I cannot separate them from Kolbe's species, without further material.

The type of stuhlmanni, is in Berlin, Königliches Museum.

'ribe LYTTINI.
Genus LYTTA Fabr., Syst. Ent., p. 260.

Canhlaris Linn., Aet. Ups., 1736, p. 19 (pars).
Lagorina Muls, et Rey., Ins. Canth., 185 s , p. 150.
67. Lytta amethystina Mikl., Act. Soc. Sci. Fenn., 1875. p. 602.

Chiyaka, running about on ground in company with L. signifrons Fithr., 56 specimens (Whilain).

Described from Senegal.
©s. Lytta atrocœrulea Har., Mitth. Minch. Ent. Ver., 1878, p. 108.
Anrola-"aus dem inneren"-(PogGE).
Described from the interior of Gininea.
Type in Berlin, Königliches Museum.
69. Lytta buqueti Miakl., Act. Soc. Sci. Fern., 1575, p. 602.

Humbe (Anchnets).
Described from senegal.
70. Lytta chalybea Ericha., Wiegm. Arch. Naturg., I, 18:13, b, 255.

Cantharis seminitens Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. ХХV, 1879, р. 60.
Angola (Ebichsos), Angola (Welwitsch), Loanda (Honmeybr), Anerola (MoNTEImo), (iamba, March, 190S, on flowers of Tribulus Eegheri, 146 specimens (WELLMAN).

A comparison of the material in Berlin and london with my series shows that Erichson's and Maseul's species are the same.

The type of chalybea is in Merlin, Königliches Museum.
71. Lytta cinotifrons Mara, loc. cif., 1. 61.

Humbe (ANchiETA).
72. Lytta opiscopalis Har., Mith. Munch. Vime. Ver., 1sïs, 1. 10 (1s

Angola-" "ans dem innoren"-(1'ogGE).
I) ecribed from the interior of Gininea.
'Typo in Berlis, Königliches Musemm.
73. Lytta hemicrania Mars, Jorn. Sci. Math. Phys. Nat. Lisb., VII, No, XXV. 1879. 1p. 61. Angola (Welwitsch).
74. Lytta laminicornis Fairm., Notes Leyd. Mus., X, p. 270.

Humpata (Kellen).
75. Lytta maculifrons Mäkl., Act. Soc. Sci. Fenn., 1878, p. 608.

Angola (Welwitsch), Angola (Monteiro), Humbe (Aschieta).
i0. Lytta melanocephala Fabr., Syst. El., II, p. 77.
Lylta melanocephala var. bilineata Haag-Rut., Deutsch. Ent. Zeit., 1880, p. 68.
Angola (Welwitsch).
Described from Guinea. Hoag-Rutenberg's Lytta bilineata from Senegal is here treated as only a variation of melanocephala Fabr., but it is probable that the examination of more material wouk show it to be a constant and distinct geographical subspecies.
77. Lytta metasternalis Fairm., Notes Leyd. Mus., X, p. 269.

Humpata (Kellen).
is. Iytta myrmido Fairm., Pet. Nouv. Ent., II, p. 93.
Angola (FAirmaire).
79. Lytta notifrons Mars., Jorn. Sci, Math. Phys. Nat. Lisb., VII, No. XXV, 1879, 1, 59. Humbe (Anchieta).
S0. Lytta pectoralis Gerst., Monatsb. Berl. Acad., 1854, p. 695.
Gamba, March, 1908, 56 specimens (Wellman); never seen feeding Dut always running about restlessly on the ground like Carabidse.

The type of pectoralis Gerst. is in Berlin, Königliches Museum.
Described from Mozambique. Fairmaire (Faun. et Flor. Comal., ('ol., 1882, p. 84) has described another insect under the same name. For this last species I would propose
Lytta rubropectus Wellm, nom. nov.
81. Lytta signifrons Fåhr., Ofv. Vet.-Ak. Fōrh., XXVII, p. 352.

Lylla Calestina Haag-Rut., Deutsch. Ent. Zeit., 1880, p. 61.
Angola (Welwitsch), Chiyaka, December, 1908, rumning on ground in company with L. amethystina Mäkl., 28 specimens (Weddman).

Described from "Caffraria."
s2. Lytta strigida Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. XXXV, 1879, b. 61. Angola (Welwitsch).
43. Lytta subrugalosa Mikl., Act. Soc. Sci. Fenn., X, p. 60t.

Humbe (Anchivta).
41. Lytta thoracica Erichm., Wiegm. Arch. Naturg., 1, 1843, p. 258.

Angola (Erichson), Gamba, March, 1908, on flowers of T'ribulus. zrgheri, 10 specimens (Wrilaman).

My examples show that the puncturing of the thorax is variable and not always so reduced in the $0^{2} \sigma^{2}$ as Erichson thought.
85. Lytta vellioata Erichs., ibid., p. 258.

Angola (Erichson).
Type in Berlin, Königliches Museum.
Genus EPICAUTA Redt. Faun. Aust., I, D. 631.
Isopentra Reitt., Wien. Ent. Zeit., MXXIV, p. 195.
S6. Epicauta canescens Klug, Erman. Reis., 1835, p. 42.
Angola (Welwitsch).
Described from Guinea.
8\%. Epicauta prolifioa Wellm. spec. nov.
Nigra (caput rufum) lata, oblonga, pube densa depressa alla vestitu; coput magnum, subpunctulatum, anterna filiformes; thorax quadratus longitudine latior, medio leriter sulcatus, crebre munctatus; elytre crebre penctuta, albo-maryinata, modio lineaque dorsuli longitudinali albis: corpus infra pedesque dense albo-vestita; pedes postici valde elongati.

Long. corp. 12 mm .
Lat. elytr. 6 mm .
Mab. Chiyaka, Angola (Africa); ab auctore collecta.
I'yp. in coll. mea.
A very short robust species; black, clothed with a dense covering of cloedy lying white hairs, giving the insect a gray appearance. Heod large, red (a frontal spot, the mouth parts and antennte are black), feebly punctulate, clothed with short white hais (very small and sparse on the vertex) ; eyes long, narrow and oblique; antemue filiform, first joint long, secomd joint constricted before the base, third joint twice as Jong as seeond and much longer than fourth. Thorox quadrate, wider than long, with a very faint median longitudinal groove, closely and fincly punctured. Scutellum small, triangular. Elytre also closely and finely punctured, with a white dorsal vitta (formed by a thicker arrangement of the hairs of the elytron) reaching from the hase to almost the apex of the clytron; a white margin to the elytron fomed in the same way. The logs and under surface of the boly are closely covered with fine white hairs. There is a concave sericous spot on the inner surface of the front femora and thbis. The himd legs are very long.

Type in my collection; cotype Cat. No. 12127, U. S. N. M.
An interesting variety also oceurs which may be briefly indicaterd as follows:

Epicauta canescens var. elunda Wellm. var. nov.
V"itte dorsali clytrorum nulla.
Typ. in coll. mea.
The absence of the most prominent marking gives the insect a strikinty different aspect. The name is a local word referring to the place in which the type of the variety was found.

Seventy-eight specimens of this species taken in November, 1907, abd February, 190 S . It is usually found wandering aimlessly about on the ground, but I have taken it eating potato tops and also bean leaves. It is often mentioned by the natives as destroying their crops. I wher foumd them eating the young tender sprouts of a coarse branching arass (Eragrostis sp.).

Genus שNAS Latr., Hist. Nat. Crust. Ins., III, 1802, p. 186.
ss. Enas bicolor Cast., Hist. Nat. Ins., II, p. 271.
Angola (Bitta).
s9. Enas melanura Erichs., Wiegm. Arch. Naturg., I, 1813, p. 259.
Angola (Erichson).
Genus SYBARIS Steph., Ill. Brit. Ent., V', 1832, p. 70.
Prionotus Koll. et Redt., Hüg. Kasch., IV, p. 356.
Lacordaire (Gen. Col., V, p. 683) suggests regarding the type (said to have been found in England) of this genus that it "pourrait bien etre d'origine exotique." I have examined the insect (S. immunis siteph.) in the British Museum and believe that this must certainly have been the case.
90. Sybaris flaveola Mars., Jorn. Sci. Math. Phys. Nat. Lisb., VII, No. XXV, 1879, p. 62.

Angola (Welwitsch).
91. Sybaris picta Mars., ibid., P. 62.

Humbe (Anchieta).
Cienus SITARIS Latr., Hist. Nat. Crust. Ins., III, 1802, p. 187.
Necydalis Fabr.
Criolis Muls.
Stenoria Muls.
02. Sitaris hilaris Mara. Jorn. Sci. Math. Phys. Nat. Lish, VII, No. XXV, 1s79, p. 64.

Angola (Whlwitsch).
(icnus ZONITIS Fabr., Syst. Ent., 1775, 8, 126.
A puelus Oliv., Encyc. meth., I, p. 165.
Mogatrachelus Moisch., Bull. Mosc., 1845 p.
S゙enodere Lashsch., Móm. Acad. Imp. Sci. Pet., VI, 1818, p. 469.
Konitides Abeelle de l'er., Bull. Soc, Toul., XIV, 18s0, p. 25:3.
Tmesulera Westw., Guir., Mag. Zool. Ins., 1841, tab, 85 (pars).
E:uzonitis むetn. Hor, suc. Ent. Ross., XXVII, 1893, p. 276.

Subgenus 1. ZONITIS Fabr., loc. cit., p. 126 (sens. str.).
Subgenus 2. Nemognatha Illig. Mag. Ins., VI, 1807, p. 333.
Leptopalpus Guér., Icon. Ins., p. 136.
Subgenus 3. GNATHIUM Kirby, Trans. Linn. Soc. Lond., XII, p. 425.
I propose to follow Casey (Ann. N. Y. Acad. Sci., VI, 1S91, p. 170) in treating Nemognatha and Gnathium under Zonitis. This will necessitate changes in synonymy (principally of the American species) which need not be entered into at this time. The elongated outer lobe of the maxille is the only real character separating the two first mentioned groups from Zonitis proper, and this character fails in several American species and also in the new species of Nemognatha described in the present paper. The differences between Nemognatha and Gnathium are even slighter, the antennal and thoracic characters often leaving one in doubt as to which group an insect should go. Nevertheless the divisions are useful to a certain extent and I do not follow Casey in sinking the names entirely, but suggest that they both be considered as subspecies of Zonitis.

The following artificial table shows how the main characters run through the three groups of the genus:
A.-Palpi not elongated.

Antenna not thickened at tips, . . Zonitis (sens. str.). A.A.-Palpi elongated, the maxillary palpi often forming a sucking proboscis.
a.-Antenne not thickened at tips, . . . Nemognatha.
aa.-Antenne thickened at tips, Gnathium.

Subgenus ZONITIS F'abr. (sens. str.).
93. Zonitis (Z.) antennalis Wellm. spec. nov.
(iracilis, lutea; antemme, pectus et pedes (tibiis exceptis) nigra; capite prothoraceque valde elongatis, angustis, subtiliter punctulatis, hoe triimpresso (impressionibus haud profundis); antennis fortiter serratis; palpis migris, apice oblique truncatis. Elytra dense subtiliter punctata, suhmedio nigro-fasciata. P'ectus, pedes et abdomen pallido-sericea.

Long. corp. 12 mm .
Lat. clytr. $4 \frac{1}{2} \mathrm{~mm}$.
Hab. Chiyaka, Angola (Africa); ab auctore collccta.
Typ. in coll. mea.
A striking species both from its form and coloration. L Luteous except the mouth parts, antenner, breast and legs which are back, the thise having the upper portion also luteons. Head and thorax long and
narrow, finely punctulate, the latter with three shallow impressions. Labrum luteous provided with a fringe of strong yellow hairs. The antenne are strongly serrate. Eyes strongly reniform. Palpi black with apices obliquely truncate. Elytra closely and finely punctured and ornamented with a broad black band somewhat in front of their middles. Breast, legs and abdomen with pale silky hairs.

One specimen, November, 1907.
94. Zonitis (Z.) prionocera Wellm. spec. nov.

Caput, prothorax, scutellum ct abdomen lutea; antenne, elytra, pectus ct pedes nigra; capite prothoraceque elongatis, angustis, sparsim punctulatis; antennis nigris, serratis; articulis 1, 2 nitidis; elytris dense subtiliter punctatis, albo-subpubescentibus. Pedes nigri; tibiis parte superiore luteis. Pedes et abdomen pallido-sericea.

Long. corp. 10 mm .
Lat. elytr. 5 mm .
Hab. Chiyaka, Angola (Africa); ab auctore collecta.
Typ. in coll. mea.
Graceful species; head, thorax, scutellum and abdomen luteous; antenns, elytra, breast and legs (except the upper portion of the tibiæ) black. Head and thorax long, narrow, rather finely punctured. Eyes strongly reniform, antennce serrate, first 2 joints very shining, sparsely punctulate, rest dull and clothed with microscopic hairs; $3 d$ joint shorter than 4 th ; scutellum very finely punctulate and with microscopic hairs. Elytra shining, irregularly and rather finely punctured. Legs black, closely punctulate, upper $\frac{2}{3}$ of tibiæ luteous. Breast and abdomen punctulate, sparsely covered with microscopic hairs.

One specimen taken in November, 1907.
Subgenus NEMOGNATHA Illig.
95. Zonitis (N.) angolensis Har., Col. Heft, XVI, 1879, p. 142.
"Wahrecheinlich von Loanda oder von Pungo Andongo (Нонmeyer)." (Harold.)

Type in Berlin, Königliches Muscum.
96. Zonitis (N.) annulioornis Mars., Jorn. Sci, Math. Phys, Nat. Lisb., VII, No. XXV, p. 65. Angola (Welwitsch).
97. Zonitis (N.) cioonia Marss, ibid., p. 66.

Mossamedes (Ancmets).
98. Zonitis (N.) posoka Wellm. spec. nov.

Parva; caput, pectus, scutellum et pedes nigra; thorax et abdomen lutca; elytra viridi-ccerulea; capite subtiliter punctulato; antennis fili-
formibus; palpis plus minusie clongatis (sed palpis maxillaribus proboscidem non formantibus) totis nigris, albo-pubescentibus; labro albovilloso; thorace luteo, lato, sparsim punctulato; clytris dense punctulatis; nigro-subpubescentibus. Pectus et pubes nigra, albo-sericea; pedes postici valde elongati.

Long. corp. 9 mm .
Lat. elytr. 4 mm .
Hab. Chiyaka, Angola (Africa); ab auctore collecta.
Typ. in coll. mea.
Small, elegant species; head and thorax broad, rather coarsely and sparsely punctured, with pale microscopic hairs. Antenne filiform, first three joints of about equal length. Scutellum very finely punctulate. Elytra more finely and closely punctured than head and thorax. Breast and abdomen very feebly punctulate, covered with short fine, pale hairs; femora with similar hairs; tibie and tarsi with coarse short black hairs, thickly set.

One specimen taken in November, 1907. The specific name is a local Bantu word meaning beautiful.
99. Zonitis (N.) scapularis Mars, Jorn. Sci, Math, Phys, Nat. Lisb, V1I, No. XXV, 1879, p, 67. Angola (Welwitsch).

Genus DERIDEA Westw., Trans, Ent, Soc. Lond., 1875, p. 226.
? Iselma Haag.-Rut., Deutsch. Ent. Zeit., XXIII, 2, 1879, p. 401.
Westwood in founding this genus referred it with an interrogation to the Helopidse, remarking in his diagnosis " unguibus-simplicibus." Fairmaire aloo (. 1 nn . Soc. Ent. F'r., 1891, p. 265) says of "Doridea (sic) Westw." that while it "rappelle au premier bord, certaines especes du genre Vemogmatha," still "il en differe par les crochets des tanees simples." Thomas (Amn. Mag. Vat. Hist., 1897, p. 359) has pointert out that the claws are divided. The only properly generic character given by Haag-Rutenberg for his genus Iselma is that the claws are non-pectinated, and this character is shared by Deridea. The diarnoses of both gencra come very near to Zonitis, with the exception of this important character, and I am inclinest at present to sink Iselma as a synonym of Deridet, which (I am convinced by an examination of the type at Oxford aml a series of specimens in the British Museum) should be regarded as a good gemus belonging by virtue of most of its characters to the Zonitis group, but aberrant by reason of its nonpectinated claws.
100. Deridea ourculionides Westw., Trans. Ent. Soc. Lond., 1875, p. 226

Angola (Rogers).
Type in Oxford, Hope Department.
SUBFAM. HORIINAE.
Genus HORIA Fabr., Mant. Ins., I, 1787, p. 164.
Cissiles Latr., Gen. Crust. et Ins., II, 1807, p. 211.
Gahan has recently worked out the vexed synonymy of this genus in a valuable paper which I have read, by the kindness of the author, in manuscript. ${ }^{3}$ I here adopt his synonymy (which is the same as that of Aurivillius ubi infra) of the species reported from Angola.

```
101. Horia africana Auriv., Ent. Tidskr., XI, 1890, p. 203.
```

? Horia senegalensis ㅇ (nec ठ`) Cast., Hist. Nat. Ins., II, 1840, p. 280.
? Horia (Cissites) testacea Fab., De Borre, Ann. Soc. Ent. Belg. C.R., 1883, p. 136.

Angola (Welwitsch).
Described from the Congo and referred to the genus Cissites.

[^96]The following reports were ordered to be printed:

REPORT OF THE RECORDING SECRETARY.

Since the last report of the Recording secretary the meetings of the Academy have been held, as provided by the By-Laws, on the first and third Tuesdays of each month from December 3, 1907, to May 19, 1908, and from October 6 to November 17, 1908, with an average attendance of forty-eight. Verbal communications, most of them illustrated with lantern views, were made at these meetings by the late William S. Vaux, Jr., George Vaux, Jr., Stewardson Brown, Casey A. Woorl, Witmer stone, John W. Harshberger, Philip P. Calvert, Henry skinner, Edwin G. Conklin, Henry W. Cattell, Harold sellers Coulton, Spencer Trotter, Miss Walter, Charles S. Boyer, Thomas S. Stewart, Frank J. Keeley and Henry A. Pilsbry.

Thirty-one papers have been presented for publication by the following authors: Henry A. Fowler, 4; Henry A. Pilsbry, 3; Henry A. Pilsbry and Y. Hirase, 2; Witmer Stone, 2; Ralph V. Chamberlin, 2; Harold Sellers Coulton, 2; E. P. Van Duzee, 1; Frank M. Surface, 1; William s. Vaux, Jr., 1; Freterick W. True, 1; Chiyomatsu Ishikawas, 1; Arthur Erwin Brown, 1; Clarence B. Moore, 1; John Otterbein Snyder, 1; J. Percy Moore, 1 ; James A. G. Rehn and Morgan Hebard, 1; Robert T. Young, 1; John W. Harshberger, 1; Philip P. Calvert, 1; Thomas II. Montemery, 1; F. Creighton Wellman and Walther Itom, 1; James A. G. Rehn, 1. Of these twenty-eight have been accepted for publication in the Proceedings and are now mostly in type; one was withdrawn by the author; one remains to be acted on, and one, by Clarence B. Moore, forms the fourth and conchuding number of the thirteenth volume of the Jourval. It is illustrated with fine text figures and eight plates beautifully printed in colors. As usual we are indebted to the author for the entire cost of publication.

The issues of the various publications of the Academy during the year have amounted to 1939 pages and 133 plates, as follows: Pro-
 plates; Journal, Vol. XLIII, Pl. 4, 132 pages and 8 plates; Extomodobical News, 500 pages and 25 plates; Transactions of the
 Acallemy), 375 pages and 25 phates; The Masent me (oxcmobog

329 pares and 41 plates. This is 217 pages and 29 plates more than the issue of the preceding year. The statisties of distribution remain the same as for the last two or three years.

Four members have been elected, the deaths of eleven members and six correspondents have been announced, and Caroline A. Burgin, Hammalı streeter and Morris Earle have resigned their memberships.

The Hayden Medal for 1905 was presented to Dr. Walcott at the meeting held January 7, advantage being taken of the occasion to invite the members of the Academy and their friends to meet the distinguished recipient of the award. The address of presentation was made by Dr. Persifor Frazer and responded to by Dr. Walcott. The delay in presentation was due to the preparation of a new and greatly improved design for the medal. Under the terms of the amendell deed of trust providing for the making of the awards once in three years, the Hayden Memorial Committee unanimously recommended the grant for 1908 be made to Prof. John Mason Clarke, in recognition of the value of his brilliant work as State Geologist of New York.

The Council has authorized the Publication Committee to prepare an index to the entire series of the publications of the Academy, to include the issues to the end of 1910, and to be published in connection with the celebration of the centenary of the Academy in 1912. Such an index has been long desired by students of natural history, who have felt the need of a key to the wealth of the contributions to knowledge, many of them of the first importance, issued under the auspices of the Acalemy by many of the leading naturalists of America. Of the 83 volumes which will have been published by the Academy at the close of 1910 , the manuscript index to the first eight volumes of the octavo Jourval and the first 19 volumes of the Proceedings has been completerl. It is divided into two sections: Authors and subject, and genera and species.

Dr. Henry Skinner was appointed a delegate to the International Congress on Tuberculosis, held at Washington last September.

Resolutions were adopted and duly forwarded endorsing the action of the President of the L'nited States in calling a comference to consider plans for the conservation of the forestry, agricultural, mineral and other natural resources of the Conited States, and in support of bills for the purchase and preservation of the forest areas of the Southern Appalachians and of the White Mountains as National Forest Reservations.

Edward J. Nolan, Recording Sccretary.

REPORT OF THE CORRESPONDING SECRETARY.

With regret the Corresponding Secretary records the death during the past year of the following named correspondents of the Academy: Henry Benedict Medlicott, Lord Kelvin, Henry Clifton Sorby, Prof. Spiridion Brusina, Prof. Gustav Mayr and Prof. William Kieth Brooks. No corresponding members were elected. During the year a few additional photographs and biographical sketches of correspondents were received and have been added to our files.

Invitations to the Academy to participate in the following notable events were received: The Third International Botanical Congress and the First Congress of Administrative Sciences, both to be held in Brussels in 1910; the Prehistoric Congress of France, the Centenary Jubilee of the Physico-Medical Society of Erlangen, the Inauguration of Dr. Albert R. Hill as President of the University of Missouri, the opening of the new Hall of the Physical Institute of Frankfort a. M., and the University of Cambridge celebration of the centenary of the birth of Charles Darwin and the fiftieth anniversary of the publication of the Origin of Species. Suitable letters of acknowledgment or congratulation were in each case forwarded, and as the Academy's representative to the last named Dr. Arthur Erwin Brown has been appointed. In this comection it may interest the members of the Academy to know that Darwin was elected a correspondent on March 27, 1860, within four months of the publication of the Oriyin of Species, and that this Academy was therefore probably the first society to place its official stamp of approval upon this epoch-making work.
An invitation from the Section of Geology and Mineralogy of the New York Academy of Sciences to join in organizing a series of general geological meetings for the eastern United States was referred to the Geological and Mineralogical Section of the Academy. A letter of thanks for the use of the Academy's Hall for its session of 1907 was received from the American Ornithologists' Union. Notices of the death of seven scientific men of distinction were received and acknowledged by letters of sympathy.

Copies of resolutions approving of the movement to establish White Mountain and Southern Appalachian forest reserves and commending the purpose of the conference to consider the conservation of natural resources were forwarded to members of Congress and other persons concerned and brought numerous favorable responses.

Pursuant to instructions of the Council the Corresponding Secretary
received from several members subscriptions aggregating fifty dollars, which sum was forwarded as a contribution from the Academy to the fund for erecting in Paris a monument to Lamarek.

The numbers of letters requesting information received and answered continues to increase.

The statistics of the correspondence for the year follow:
Comiunications Received.
Acknowledging receipt of the Academy's publications, 217
Transmitting publications, 65
Requesting exchanges or the supply of deficiencies, 4
Invitations to learned gatherings, 7
Notices of death of scientific men, 8
Circulars concerning the administration of scientific institutions, etc., 16
Biographies and photographs of correspondents, 4
Miscellaneous letters, 88
Total received, 409
Communications Formarded.
Acknowledging gifts to the Library, 1073
Acknowledging gifts to the Museum, 56
Acknowledging photographs and biographies, 3
Requesting the supply of deficiencies in journals, 84
Letters of sympathy or congratulation, 9
Miscellaneous letters, 101
Annual Reports sent to correspondents, 221
Circular letters, 90
Total forwarded, 1637

Respectfully submitted,

> J. Percy Moore, Corresponding Secretary.

REPORT OF THE LIBRARIAN.

The growth of the Library during the past year has been satisfactory, notwithstanding the incomsenience due to the alteration of the premises reguired by the plans adopted by the Council. The accessions since the first of last I fecember mumber 7070 , an increase on those received last year. There were 50% pamphets and parts of periodicals, 973 volumes, 192 maps, photographs and plates.

They were received from the following sources:

Socicties, Museums, etc 2,505 Geological Survey of Georgia 5
I. V. Williamson Fund 2,014 Ministry of Works, Mexico. 5
General Appropriation. 677
Editors 530
United States Department ofAgriculture336
United States Department of the Interior 187
Authors 148
James Aitken Meigs Fund 139
Geological Survey of Canada 47
Geological Survey of Russia. 42
Estate of Angelo Heilprin. 40
Wilson Fund 30
Geological Survey of Japan 22
United States Department of Commerce and Labor. 20
Pennsylvania State Department of Agriculture 18
North Carolina Geological Sur- ver: 17
Department of Agriculture of Netherland India 17
Trustees of British Museum 15
Department of the Interior of the Philippines.

\qquad 14
Geological Survey of Sweden. 13
Ministry of Public Works, France 12
United States Public Health andMarine Hospital Service
International Bureau of Ameri-can Republics.
Illinois state Geological survey. 11
Department of Agriculture inIndia
Ministry of Colonization, Bolivia. 9
United States War Department.Commission de la Belgica.
University of Texas MineralsurweyChited States Treasury Depart-ment
Inited States Burean of Fish-стіes
Edward J. Nolan
Geological Survey of India.111110
9 Danish Govermment. 27 Department of Agriculture,
Wisconsin Geological and Natu- ral History Survey 5
Victoria Department of Mines... 5
Department of Mines, etc., New South Wales 5
H. A. Pilsbry 4
Publication Committee, Acad- emy. 4
Department of Agriculture, Jamaica. 4
Western Australia Geological Survey: 4
New Jersey Geological Survey: 4
William J. Fox 4
Corps of Mining Engineers of Peru. 4
Cape of Good Hope, Department of Agriculture. 4
Bureau of American Ethnology.. 3
Superintendent of Documents, Washington 3
Rev. A. Boutlou 3
Department of the Interior, Canada 3
Geological Commission, Cape of Good Hope. 3
Geological Institute of Mexico 3
Geological Survey of Virginia. 3
United States Coast and Geodetic Survey: 2
Library of Congress 2
Ministry of Agriculture, Buenos Aires 2
2
Bentham Trustees, Kew Gardens
Canada. 27 New Zaaland Geological Survey:2
Willam B. Davis. 2
7 Botanical Survey of India. 2
Agricultural and Veterinary
Faculty of La Plata
Faculty of La Plata 2 2
5 Observatoire Central Nicolas 2
5. Iowa Geological Survey. 2
M. le Due de Loubat 2 Maryland Geological Survey 1
H. Miller, Hanover2 State Geological Survey of North
Dakota 1
Commissioners of Fisheries andGame, Massachusetts
\qquad2 Nova Scotia Department ofDr. Henry Tucker2
Florida State Geological Survey....Central Bureau voor de KennisProvincie, Groningen.Genaro Garcia.Mines.1
2 Kommission zur Wissensch.Untersuch. der Deutschen
Marshall H. saville and George Africa. 1G. Heye.e.........
I. KreischerDr. H. C. Chapman.
\qquad
\qquad
Meere in Kiel 1
1 Geodetic Survey of South
1 Government of India. 1
1 Estate of William Ziegler. 1
1 Stewardson Brown 1
William H. Welker.1 Department of Geology, etc.,
Ministry of Works, Peru.1 Indiana.1
Dr. Joseph Leidy.
Geological Commission of Fin- South Wales 11 Department of Fisheries, New
land.1 Hawaii Promotion Committee1
I. Schützberger. 1 Trustees Indian Museum 1
They were distributed to the several departments of the library as follows:
Journals 5,183 Ichthyology. 28
Geology: 414 Mammalogy 23
Agriculture 365 Mineralogy 22
Botany: 231 Helminthology. 21
Voyages and Travels 150 Medicine. 21
Geography: 145 Physical Science 21
General Natural History 99 Bibliography 10
Anatomy and Physiology 74 Herpetology 6
Ornithology: 73 Encyclopedias. 2
Entomology. 68 Mathematics 1
Conchology 47 (hemistry 1
Anthropology. 42 Unclassified 19

Eleven hundred and fifty-three volumes have been bound.
Fourteen volumes and 548 pamphlets dealing with subjects not Lermane to the dijects of the Academy were sent to the Free Library of Plilatdphia and, in compliance with the law, 8 duplicate volumes anil it pamphets were returned to the Govermment Printing Office.

It the beginming of the building operations it was necessary to trmperarily arrange a part of the library on a section of the entresol flwer to make room fow the extension of the hall entered from Race Street, as required by the adopted plan of alteration. This change, of rourse, entaiked disadvantages which, it is hoped, will be remedied When the cutire library is arranged in the new building on the southern
portion of the lot. With the exception of works of reference (encyclopedias, etc.), and possibly those on general natural history, the entire library is to be arranged in tiers of steel stacks. At present five such tiers are provided for, extending from the ground to near the roof of the rear section of the new building, thus securing increased room which is sadly needed and, it is hoped, safety from fire.

Mrs. James Woods, of Camden, Alabama, has thoughtfully presented to the Academy a collection of seventeen letters written by Isaac Lea, Timothy A. Conrad, Samuel G. Morton, Benjamin Silliman, William Hall and John Finch, from 1829 to 1835, to Judge Charles Tait, of Claiborne. Monroe Co., Alabama, who was the first to develop, with his correspondents, the Claiborne beds, of so much interest in American geology as furnishing the most noted deposits of Eocene shells. The letters contain several items of personal interest and indicate especially the zeal and enthusiasm of a former President of the Academy, Isaac Lea.

Acknowlelgment is due William J. Fox, for his efficient assistance to the Librarian and the Publication Committee.

Edward J. Nolan,
Librarian.

REPORT OF THE CURATORS.

The erection of the new library, stack, lecture hall and study rooms and the alteration of the old building were begun early in the spring. At the present time the alterations are practically completed, while the new building is nearly ready for the roof.

A handsome entrance hall has been constructed at the Logan Square front, which has been carried through the old lecture room, making a direct communication with the first floor of the Museum. The stairways which formerly connected the floors of the Museum have been removed to the vestibule, and all the rooms have been shut off both from the vestibule and from each other by regulation fire-doors, which greatly increase the safety of the collections.

A fire-proof room has been constructed in the lower part of the old lecture hall, which wiil be fitted up for the accommodation of the aleoholic collections, where they will be shut off from all other parts of the Museum.

Heat and gas pipes and electric light wires have been installed in the vestibules and entrance hall and a new boiler placed in the engine house.

During the early part of the year much time was spent in moving case's and rearranging exhibits preparatory to the alterations, and since July 5 the Museum has been closed to the public, the cases being covered up and many specimens removed for safety.

During the past month the cases on the first and second floors have been rearranged preparatory to reopening the Museum, and the work of reconstructing some of the bird cases is well under way.

Many shifts of position among the exhibition cases have been made necessary by the changes in doors and stairways and the walling off of the vestibule.

The final cleansing of the halls will be undertaken as soon as the painting of the walls and fire-proofing of the columns are completed.

Early in the year the work of labelling the mounted birds was completed with the exception of the song birds, and the exhibition collection of Mollusca was entirely rearranged. Many of the articulated skeletons have also been cleansed and remounted.

Owing to the condition of the Museum, however, most of the work of the staff has been devoted to the study collections.

The old rooms of the Ornithological department having been largely torn away, the entire series of bird and mammal skins has been remosed to the top floor of the Museum, where far more desirable quarters have been provided.

Thirty-eight moth-proof metal cases and ten large white pine cabinets have been provided for plants, insects and birds, as well as 200 standard insect boxes.

Mr. Clarence B. Moore has presented another plate glass and mahogany case for the valuable additions to his collection of Indian antiquities obtained in the Southern States and Arkansas. Dr. Pilsbry and Mr. Rehn each visited North Carolina for a few weeks during the year and made collections respectively of Mollusks and ()rthoptera.

Through the liberality of Mrs. Charles Schäffer, Mr. Stewardson Brown was enabled to spend the entire summer in little known parts of British Columbia, where he secured a valuable collection of plants largely new to the herbarium. He also visited Bermuda in February, with the aid of the Esther Hermanm Research Fund of the New York Acalomy of berences, where another important collection was made.

Dr. J. P. Moore spent the summer at Woods Hole, where some marine material was collected and mumerous local collecting trips were mate by other members of the Museum staff.

Among the important accessions of the year may be mentioned the

Henry Skinner collection of Lepidoptera, the Vanderpol collection of East Indian birds, the Quadras collection of Philippine Mollusks, all oltained by purchase. Also the Herbst collection of Fungi, presented by Mr. Herbst's estate, and a valuable collection of Central American Coleoptera, presented by Mr. F. D. Godman. A number of interesting mammals were received from the Zoological society of Philadelphia, including the fine Indian elephant "Bolivar," nearly ten feet in height, which is now being mounted in the taxidermical department.

Details of work in several departments will be found in the special reports, in addition to which Mr. H. W. Fowler has continued his care of the fishes, and Dr. J. P. Moore of the Annelids, while Miss H. N. Wardle has been engaged upon the arrangement and cataloguing of the ethnological collections.

The Curators are also indebted to Mr. S. S. Van Pelt for valuable assistance in the herbarium, and to Dr. P. P. Calvert and Mr. E. T. Cresson, Jr., in the Entomological department.

Many specialists bave made use of the collections during the year and specimens have been loaned to Dr. C. Hart Merriam, Dr. Charles H. Eigenmann, Samuel N. Rhoads, W. I. W. Miller and Robert Ridgway.

An idea of the extent of the Academy's collections at the present time may be gained from the following summary, although some of the figures are necessarily approximate.
()f Mammals there are 12,416 specimens, of which 2,500 are osteological or alcoholic preparations, 500 are mounted and the rest skins with skulls prepared separately. The more important individual collections are the S. N. Rhoads collection of North American Mammals and the H. H. Smith collection from southern Brazil.

The Birds number 59,579 specimens, of which about 9,000 are mounted and 1,075 are osteological preparations. There are also about 2,500 nests and sets of eggs. The notable collections comprise that of Massena, Iuke of Rivoli; the John (iould Anstralian collection; the Boys collection of Indian hirds; Canon Tristram's collection; the Josiah Hoopes eollection of North American hirds; the Harrison and Hiller collection from sumatra; the (ieorge L. Harrison collection from British Last Afriea (on deposit) and the Delaware Valley Ornithological Club local collection. There are about 600 types, mainly of Cassin, Gould, Townsend, Gambel and Audubon.
The Reptiles and Batrachians amount to 18,000 specimens, the great majority being alcoholic; they comprise among others the E. D. Cope collertion and the Arthur Eerwin Brown collection and include many types, mainly of Cope and Hallowell.

The collection of Fishes consists of about 40,000 specimens, and contains the historic Bonaparte collection, the Cope collection and also those of Hauxwell, Orton, H. H. Smith, Harrison and Hiller, Rijgersma and others. There are many types of Cope, Abbott and Fowler, as well as cotypes of Girard's Mexican boundary fishes.

The Insects number about 369.000 pimed specimens divided as follows:

The most notable special collections are the Horn and Wilt collections of Coleoptera; the Martindale and Skinner collections of Lepidoptera; the Calvert collection of Neuroptera (on deposit); the Ostensaken cotypes of Diptera; the Cresson and Bassett collections of Hymenoptera and the Henry C. McCook collection of Insect Architecture.

The collection of Mollusks numbers over 100,000 trays and more than $1,500,000$ specimens. Of this number 40,000 trays have been catalogued and numbered as nerw accessions since 1893 . The older collection consists of the original collection of the Academy, begun about 1817 by Thomas Say ; the Robert swift collection of West Indian shells, about 10,000 specimens; the A. D. Brown collection of land shells, bequeathed to the Academy in 1887, 5,400 trays. About 10,000 trays of these collections have been catalogued and numbered.
The alcoholic collection of Mollusks consists of about 6,000 lots, probably over 75,000 individual specimens. The number of types of Say, Conrad, Tryon and others is not known, but since the year 1901. 925 types have been described from the new material received.

Other invertebrates number about 11,500 specimens, of which 4,000 are (rustacea and 2,800 worms. The most important collections are the (iuerin collection of Crustacea, the II. C. Chapman collection of Marine Invertebrates from Naples and the Edward Potts collection of fresh-water sponges.

The Herbarium contains about 584,000 specimens of flowering plants :anl ferns, comprising among others the collections of Muhlenberg
(on deposit), Pursh, de Schweinitz, Nuttall, Short, and Charles E. smith. The Fungi, Mosses, Lichens and Alga number about 50,000 specimens and include the collections of Sullivant, de Schweinitz, Eckfeldt, Ashmead, Martin, Ellis and Everhart, Herbst and Rex. Both departments of the Herbarium are rich in types.
There is also a local Herbarium presented by the Philadelphia Botanical Club, which contains about 20,000 specimens.
The Palæontological collections comprise some 5,000 specimen: of Vertebrates and 45,000 Invertebrates, of which 3,000 belong to the collection of the Pennsylvania Geological Survey (on deposit) and 7,500 to the Isaac Lea collection; also 1,500 fossil plants. There are many types of Leidy and Cope among the vertebrates and of Lea. Conrad, Gabb and Heilprin among the invertebrates.

The general collection of minerals consists of 8.500 specimens, while the William S. Vaux collection contains about 7,500 additional. Of rock specimens there are over 10,000 in the Pemsylvania Geological Survey collection and about 3,000 additional.

The general Archæological and Ethnological department contains about 14,000 specimens, including the Samuel G. Morton collection of human crania; the Peale Hawaiian collection, the Haldeman American Indian collection and the Poinsett Mexican collection (on deposit).

The Clarence B. Moore collection of Indian antiquities from mounds of the Southern States includes some 5,000 specimens, the basis of Mr. Moore's papers in the Journat of the Academy. The William S. Vaux collection contains 2.500 specimens, largely from North America and Europe.

Summary.

Report of the Department of Mollusca.

The rearrangement of the general collection in exhibition cases has heen almost completed, table-cases of gastropods having been worked over during the year. Considerable time has been given by Mr. Janatta to the determination and description of Hawaiian mollusks sent hy Mr. D. Thaanum, of Hilo, Hawaii, and to the work of picking wit and assorting upwards of 500 trays of shells from material gathered by the Curator last year in the Florida Keys. Large quantities of leaves and forest débris, gathered by Mr. C. B. Moore, have also been picked over, and much valuable material, especially of very small mollusks, obtained.

Mr. l. Hirase has continued to send Japanese and Formosan material; his latest sendings contain Korean mollusks, which hitherto have been almost unknown. About 100 new species have been described from this source during the year.

Other valuable accessions are a series of marine shells from the Great Barrier Reef, Australia, including cotypes of 19 new species, from Charles Hedley. A collection from northeastern Mexico, from A. A. Hinkley. A series of Irish slugs from Dr. R. F. Scharff, and many smaller accessions from numerous donors. A large part of this material has been worked up, and papers published thereon. The time of the special Curator has been largely occupied in the preparation of the Manual of Conchology, in which the families Oleacinidex and Ferussacide have been described.

> H. A. Pilsbry,

Special Curator, Dept. of Mollusca.

REPORTS OF THE SECTIONS.

The Biological and Microscopical Section.

The membership of the siection has changed but little during the year. Nine regular and several informal meetings have been held. () M March 30, the fiftieth amiversary of the founding of the Biological and Microscopical Section was observed by a banquet held in the siection Rown, at which were present regular and former members and the officers of the Academy. The Director, Dr. J. Cheston Morris, presided, and addresses were made by Dr. Samuel G. Dixon, Dr. (ienke A. Piamol, I)r. Arthur É. Brown, Mr. Witmer Stone, Dr. Henry Skimmer, I r. James Tyson, Dr. Henry A. Pilsbry, Mr. F'. J. Keeley and Mr. C. S. Boyer.

The communications made during the year may be briefly summarized as follows: Uses of the microscope in testing chemical preparations, by Dr. D. E. Owen; Leucocythemia, the Tsetze Fly and various contagious diseases, by Dr. T. S. Stewart; opaque illumination and numerous other subjects, by Mr. F. J. Keeley; miscellaneous objects exhibited and described by Mr. William B. Davis; new and rare forms of diatomacex, by Mr. C. S. Boyer; rare forms of diatoms from Barbadoes, by Mr. J. A. Shulze; the organisms contained in various infusions, by Mr. John G. Rothermel; other communications, by Mr. T. C. Palmer, Mr. W. H. Van Sickel and Mr. Hugo Bilgram.

The officers elected for the year 1909 are as follows:

Entomological Section.

During the present year ten meetings of the Entomological section have been held with an average attendance of ten persons. As usual the large number of additions to the cabinet has necessitated the greatest amount of work in the department. The large collection of American butterflies made by Ir. Henry skinner, numbering over 10,000 specimens, was purchased by the Academy. Dr. F. D. Goolman has presented 3,529 Coleoptera, representing 1,140 speries, from the Biologia r'entrali-Americana collection, a most valuable aldition. One hundred and righty-four insects from Burma were purchased from W. Crumb. Dr. Henry Skinner presented 56 Lepidoptera from various parts of the United States. Seven hundred Orthoptera were collected by the Academy experlition to Virginia and Sorth Carolina, conducted by Mr. J. A. G. Rehn. About five hundred Orthoptera were presented by Witmer Stone, Morgan Mebard and J. A. (i. Rehn, from Pennsylvania and New Jersey. One hundred and fifty-four Brazilian Orthoptera were purchased from C. F. Baker. 'Two hundred Diptera from British Guiana were received from Charles T. (ireene. In all over 16,000 specimens of insects were added to the collection. Two hundred Schmitt boxes and four Brock tin cases were purchased.

The large collection of North American Hymenoptera has been rearranged and some work done preparatory to the rearrangement of the Micro-lepidoptera. All the determined Diptera, except a few of the family Muscidæ, have been arranged in Schmitt boxes and many genera and species new to the collection were determined. All of Osten-Sacken's types of 'Tipulidæ and Tabanadæ were marked and numbered. In the order Orthoptera, reports were completed on the specimens collected in Arizona in 1907 by Rehn and Hebard. Considerable rearrangement has been done in the study series. Dr. P. P. Calvert has continued his important work on the collection of Odonata and has finished his contribution to the pages of the Biologia CentraliAmericana. A large number of Coleoptera has been incorporated into the collection, including some interesting material from Fort Wingate, New Mexico. The Journal of the Section, Entomological News, has been continued and volume nineteen completed with 500 pages and 25 plates. Two Associates were elected and one member died.

The following were elected to serve as officers for the year 1909:
Director,
Philip Laurent.
Vice-Director, H. W. Wenzel.
Treasurer, E. T. Cresson.
Recorder, Henry Skinner.
Secretary, E. T. Cresson, Jr.
Conservator, Henry Skinner.
Publication Committec, E. T. Cresson,
E. T. Cresson, Jr.

> Respectfully submitted, Henry Skinner, M.D.

Botanical Section.

' Iuring the year further progress has been made in placing the specimens in species covers, and it is hoped to complete this important work at an early date.

The additions to the Herbarium consist of the Herbst collection of Fumgi, numbering more than 5,000 specimens, being the life-work of I)r. William Herbst, of Trexlertown, Pa., and presented to the Acadray ley Mr. Iferbst a collection of Pennsylvania Flowering Plants :and ferns mumbering about 2.0 o() specimens, presented by Inr. II. D. Heller, of Hellertown, Pa.; presentations from various members Hиमb wher amd Betula, purehased hy the feetion from Mr. W. H. Jlanchard. and a collection of 930 specinens of Balkan Plants, purchased by the Acalromy.

The Conservator spent about a month in the Bermudas during February and March of the present year, by the aid of a grant from the Esther Hermann Research Fund of the New York Academy of Sciences, when collections of over 800 herbarium specimens were made. During the summer, through the liberality of Mrs. Charles Schäffer and Miss Mary W. Adams, he was enabled to make further studies of the flora of the Canadian Rocky Mountains, ten weeks being spent in the region about the headwaters of the Saskatcherwan and Athabasca Rivers, when collections of more than 3,000 herbarium specimens were made, including a number of probably new species. Owing to the pressure of other duties it has not been possible to yet. give this collection critical study.
The activity manifested in previous years by the members of the Philadelphia Botanical Club has been maintained during the past season, more than 2,000 specimens being added to the local herbarium, including a number of species not previously recorded as occurring. in the region. Mr. Samuel S. Van Pelt has continued his valuable services during the year as Curator of this important and rapidlygrowing section of the herbarium.

At the annual meeting of the Section, the following officers were elected for the year:

Director,
Vicc-Director,
Recorder,
Treasurer and Conservator,

> Benjamin H. Smith. Joseph Crawford. Charles S. Williamson. stewardson Brown.

Respectfully submitted, Stewardson Brown, Conservator. Mineralogical and Geological، Section.

The Section has this year held eight meetings (hesides the December meeting yet to come), with an average attendance of about ten. Communications were made by Prof. Amos P'. Brown, on ripple marks. tracks and trails; by Mr. Edgar T. Wherry, on two new antholite dikes in Philadelphia County, and on the geology of the neighborhood of Jacksonwald, Berks County; by Dr. W. J. Sinclair, on the geology of a portion of the Grand Canyon of the Colorado River; hy Prof. B. I. Miller, on the geology of the Allentown quadrangle, compared with the Philadelphia region; by Mr. (iilbert Van Ingen, on the geology of the area drained by the upper susquehama River; by Mr. J. F. Vanart-
dalen. on silicified wood in the Norristown shales of Bucks County; by Prof. O. C. S. Carter, on tubular concretions, sheets and plates of Pensauken gravel, cemented with iron hydroxide; by Col. Joseph Willcox, on the geology and mineralogy of St. Lawrence County, New York; and there were a number of shorter communications and various discussions.

There were ten field excursions, with an average attendance of $\mathbf{2 5}$. The excursions visited: (1) The copper deposits of Lpper Salford and Frederick Townships in Montgomery County; (2) The crystalline schists and limestones between Alton and Glen Hall, in Chester County ; (3) the New Red traps and shales between Quakertown and Perkasie, in Bucks County; (4) the region of Bethlehem, in Northampton and Lehigh Counties; (5) the New Red traps and shales in northern Bucks County; (6) the silicified wood of the New Red and the minerals of the crystalline rocks between Woodbourne and Neshaminy Falls, in Bucks County; (7) the Cretaceous and Pleistocene formations near Pensauken Creek, in Camden and Burlington Counties, New Jersey; (8) the trap at Aldham, Chester County, and the Cambrian Sandstone thence to Valley Forge; (9) the crystalline rocks and their minerals near Lansdowne and up Darby Creek, Delaware County; (10) the cross-section of the Chester Valley, from Devault to Malvern, Chester County.

Three associate members have been added to the Section.
The following officers of the Section have been elected for the coming year:

Director,
Vice-Director,
Recorder and Secretary,
Treasurer,
Conservator,

Benjamin Smith Lyman. George Vaux, Jr. Silas L. Schumo. Miss Emma Walter. Frank J. Keeley.
Respectfully submitted, Benjamin Smith Liman, Director.

Ornithological Section.

Since the last ammal report the Ornithological Department of the Acarlemy has been removed from its old quarters to the top floor of the Musemm buidding - a far more desirable location, well lighted and with ample space for the growth of the collections.

New racks have been erected to hold the cases and the latter have
been arranged in systematic order. Many cases of large birds formerly stored elsewhere have been placed in their proper position, so that the entire study series of birds is now for the first time brought together where it is readily accessible.

Mr. Rehn finished the cataloguing and relabelling of the Tristram collection during the year, and this material, numbering 6,180 skins, together with several smaller collections, has been distributed in the general series.

Ten large wooden cabinets were secured for the accommodation of the Anatide and other large birds formerly arranged in temporary cases.

The labelling of the mounted birds was resumed early in the year, and all the specimens, with the exception of the song birds, are now labelled with technical and vernacular names and locality. Owing to the alterations to the building some of the exhibition cases had to be taken down or altered, so that the collection has been temporarily disarranged, but the erection of new cases will soon permit of their proper display. Many specimens of interest were secured during the year, the most important being the Van der Pol collection of East Indian birds, comprising 1.070 specimens, representing many species not heretofore in the Academy's collection.

The Delaware Valley Ornithological Club and the Pennsylvania Audubon Society have continued to hold their meetings in the building and have done much to maintain activity in this department. In December, 1907, the American Ornithologists' Union held its twentyfifth annual meeting at the Academy, which in point of attendance and interest was the most successful ever held.

The officers of the Section for the ensuing year are:

Dircctor,
Vice-Director,
Secretary,
Recorder,
I'reasurer and Conservator.

Spencer Trotter, M.D. George Spencer Morris. William A. Shryock. Stewardson Brown. Witmer Stone.
Witmer Stone, Conservator:

The annual election of Officers, Councillors and Members of the Committee on Accounts to serve during 1909 was held, with the following result :

President, . . Samuel G. Dixon, MI.D.
Vice-Presidexts, . . . Arthur Erwin Brown, Sc.D.,
Edwin G. Conklin, Ph.D.
Recording Secretary, . Edward J. Nolan, M.D.
Corresponding Secretary, . J. Percy Moore, Ph.D.
Treasurer,
George Vaux, Jr.
Librarlan,
Edward J. Nolan, M.D.
Curators, . . . Arthur Erwin Brown, Sc.D.,
Samuel G. Dixon, M.D., Henry A. Pilsbry, Sc.D., Witmer Stone.
Couxcillors to serve three years, Charles B. Pemrose, M.D., Charles Morris, Henry Tucker, M.D., Spencer Trotter, M.D.
Comimtee on Accounts, . Charles Morris,
Samuel N. Rhoads,
Dr. C. Newlin Peirce.
John G. Rothermel, Howard Crawley, Ph.D.

COUNCII FOR 1909.

Ex-officio.-Samuel G. Dixon, M.D., Edwin G. Conklin, Ph.D., Arthur E. Brown, Sc.D., Edward J. Nolan, M.D., J. Perey Moore, Ph.D., George Vaux, Jr., Henry A. Pilsbry, Sc.D., Witmer Stone.

To serve Three Years.-Charles 13. Penrose, M.D., Charles Morris, Henry 'Tucker, M.D., Spencer 'Trotter, M.D.

T'o scrve 'Two Years.-Thomas II. I'enton, M.D., John Cadwalader, Edwin S. Dixon, Henry Skinner, M.D.

T'o serve One Year.-Dr. C. Newlin Peirce, Philip P. Calvert, Ph.D., Thomas Biddle, M.D., and F'rederick lrime.

Curator of Mollusca,	Henry A. Pilsbry, Sc.D.
Assistant Librarian,	William J. Fox.
Assistants to Curators,	Henry Skinner, M.D.,
	Stewardson Brown, J. Percy Moore, Ph.D.,
	Edward G. Vanatta,
	Henry W. Fowler,
	J. A. G. Rehn.
Assistant,	H. Newell Wardle.
Taxidermist,	David N. McCadden.
Jessup Fund Students,	H. Newell Wardle,
	Ezra T. Cresson, Jr.
Janitors,	Charles Clappier
	Daniel Heckler
	James Tague,
	Jacob Aebley.

ELECTIONS DURING 1908.

members.

January 21.-William J. Sinclair.
February 18.-Burton Chance, M.D.
April 21.-Henry H. Donaldson, M.D.
November 17.-Sydney L. Wright, Jr.

ADDITIONS TO THE MUSEUM.

Abstract

Mammals. (iemere Bassett. Red Bat (Lasiurus borealis). Otto Behr. Skeleton of Red Fox (Vulpes fulvus), Sullivan County, Pa, James Chatwin. Mounted Gray Fox ((Urocyon cinereo-argenteus). Benjamin Chew. Six heads of African Antelope. Mrs. U. P. Crumbs. Skull of Man-eating Tiger (Felis tigris), Tongoo, Burma. II. H. Firth. Mounted Porcupine (Erethizon dorsatum). E. M. Fryer. Whale vertebra, South Carolina.

Dr. Joseph Grinnell. Forty-two skins and skulls of California mammals. J. W. Holmax. Red Squirrel (Sciurus hudsonicus loquax), Ocean County, N. J. (alcoholic).

David McCadden. Skulls of Sumatran Pig (Sus vittatus), Mexican Puma (Felis oregonensis aztecus), Mexican Lynx (Lynx baileyi), Wolf (Canis mexicanus) (2), Canada Lynx (Lynx canadensis) and (2) Black Bear (Ursus americanus).

Stephen Milstead. Jumping Mouse (Zapus hudsonius americanus), Atlantic County, N. J.

Mrs. T. R. Owen. Mummified cat. Purchased. Skeleton of Black Fish (Globiocephalus sp.), Cape May County, N. J.; skin and skull of Orang-utan (Simia satyrus); skin and skull of Gray Fox (Urocyon cinereo-argenteus), Bucks County, Pa. J. A. G. Rehn. Jumping Mouse (Zapus hudsonius americanus), Rhoads' Red-backed Mouse (Evotomys gapperi rhoadsi), and Deer Mouse (Peromyscus leucopus), Ocean County, N. J. S. N. Rhoads. Two mice, Adirondacks, N. Y.

Dr. R. W. Shufeldt. Axis and atlas of Bear. Zoological Society of Philadelphia. Mounted: Springbok (Antidorcas cuchore).

Skins and skulls: Two Slender Loris (Loris gracilis); Clouded Leopard (Felis nebulosa); Serval (Felis serial); Eyra Cat (Felis eyra); Pine Marten. (Mustela martes); Bandicoot (Pcragale sp.) [some to be mounted].

Skins and skeletons: Iong-armed Baboon (Papio langheldi); Indian Elephant "Bolivar" (Elephas maximus) [now being mounted]; East African Eland (Taurotragus oryx livingstonci) [to be mounted].

Skins: Six skunks, female and young (Mephitis mesomelas), from Oklahoma; Himalayan Tahr (Hemitragus jemlacus); Robust Kangaroo (Macropus robustus).

Skull: Brazilian Tapir (T'apirus terrestris).

Brims.

Chambes Beck. Purple Gallinule (Ionornis martinica) from New Jersey (mounted).

Exchange (with H. K. Coale). Two Califomia Black Rail (Creciscus coturniculus).

Purchased. Van der Pol Collection of East Indian Birds (1,150 specimens).
Joseph sipp. European Starling (Sturnus rulgaris), Ocean County, N. J.
Dr. R. W. Shufeldt. Two bird crania.
R. R. Tafel. Eggs of Arctic Birds.

Miss Anva J. Valentine. Nest of Cassique (Cassicus sp.).
Zoological Societr Philadelpha. Skins of White-eyebrowed Guan (Penelope superciliaris).

Crested Guinea Fowl (Guttera cristata) and Parson Bird (Prosthemadera notazealandice).

Skull and sternum of Guira Cuckoo (Guira guira).

Reptiles and Amphibians.

O. H. Brown. One Salamander, Cape May, N. J.
C. H. Conner. House Snake (Lampropeltis doliatus clericus), Montgomery County, Pa.; Hog-nosed Snake (Heterodon platyrhinus).
H. W. Fowler and 13. W. Griffith. Small collection of Amphibians from Cecil County, Md.
J. W. Holman. Anderson's Tree Toad (Hyla andersoni), Ocean County, ㄱ. J. Red-bellied Snake (Storeria occipitomaculata), Ocean County, N. J.
C. J. Huxt. Several Amphibians and Terrapin (Pseudemys) from New Jersey. J. P. Moone. Bufo fouleri, Martha's Vineyard, Mass.

Joserh Parker. Anderson's Tree Toad (Hyla andersoni), Ocean County, N. J.
Purchased. Twelve species of Lizards, Orlando, Fla.
S. N. Rhoads. Two Salamanders, Adirondacks, N. Y.
W. Stone. House Snake (Lampropeltis doliatus), Sullivan County, Pa.
E. G. Vasatra. Queen sinake (Regina leberis), Chester County, Pa.; two Frogs, Chester County, Pa.

Fishes.

C. C. Anbott. One ('hab) (Semotilus bullaris), New Jersey.

Charles Admas. Cush (Lota maculosa), Somerset County, Me.
Chamles A. Bastian. Wall-eyed Pike (Stizostedion vilreum).
James Boyce. One Make (Merluccius bilinearis) from Isbury Park.
W. G. Camothens, Several Fishes, Cape May County, N. J.
1)n. (\%, H. Eififinans. Small serios of Cuban and south American Fishes.
J. B. Finf: Genitalia of Hermaplirodite Shad.
W. J. Fox. Puffer (IAgocephalus lavigahus) ; Selene romer and sua Cat (Felicthys), Cape May County, X. J.
H. W. Fowlza, Small collection of F̈shes, Cape May County, N゙. J.; two climbing Perch (Ambas scamdens); small collection of Fishes, Florence, N. J.; small collection of Fishes from Bucks County, Pa.
H. W. Fowserz and 13. W. (inurbtu, Small collection of Fishes from Cecil County, Md.; manll collection of Fixhes, Delaware County, Pa.
H. IV. Fowbelt and 1', H. HE:HT\%og. Small collection of Fishes, Lancaster County, Pra.
H. II. Fowtern and C. I. Hext. Several collections of Fishes from Cape May Comery, N. J.
H. W. Fowlen and T. D. Kerm. Collections of Fishes from Burlington County, N. J., and Newbold Island, Delaware River.
H. W. Fowler and David McCadden. Collection of Fishes, Ocean City; N. J.
H. W. Havd. File-fish (Ilutera sp.), Cape May, N. J.

Jozeph Henderson. Gar (Tylosurtes marinus).
Miss Agnes F. Kexyon. Eel, Australia.
D. McCiddex:. Seriola zonata, Ocean City, N. J.; Hake (Merluccius bilineatus), Cape May County, N. J.
R. F. Miller. Collection of Fishes and Reptiles.

Penisilinia Depaitment of Health. Micropterus dolomieu.
Dr. R. J. Phillips. Collection of Fishes, Cape May, N. J.
H. A. Pilsbry, small collection of Fishes from North Carolina.
E. G. Visitta. Trout, Chester County, Pa.

Lifit. Hegh Whlolghby. Barrel of Fishes, Florida.

Insects.

C. F. Baker. One hundred and fifty-four Orthoptera, Brazil (purchased).

Willim Beutevmiller. One Lepidoptera, Manitoba.
Brooklyy Institcte of Arts and Sciences. Four Orthoptera, Venezuela (for determination).
P. P. Calvert. Eighteen insects, Pennsylvania.
D. M. Castle. Two Coleoptera, Pennsylvania.
E. R. Cheney. One Orthoptera, New Jersey.

Connecticut Agricultural Experiment Station. Seventeen Orthoptera, Connecticut.
E. T. Cresson; Jr. Thirty-four Diptera, United States.
U. P. Cremb. One hundred and eighty-four Insects, Burma (purchased).
s. G. Drxos. One Orthoptera, Pennsylvania.
L. A. Duhmisg. Six Orthoptera, Algeria.
H. T. Ferxald. Sixteen Hymenoptera, United States.
W. G. Freedley, Jr. Eight Lepidoptera, India.
F. D. Godman. Three thousand, five hundred and twenty-nine Coleoptera, Central America.
C. T. Grees. Two hundred Diptera, British Guiana.
F. Gmnnell, Jr. Ninety-six Orthoptera, California.
F. Hambach. Four Heterocera, United States.
M. Hemard and J. A. G. Rehn. Sixty-six Insects, Arizona.
M. Hrand. One hundred and eighty-eight Orthoptera, five Lepidoptera, Pemsolvania.
C. It, 'Twenty-five Blown Larva, Pennsylvania.
F. M. Jones. Two Heterocera, south Carolina.
H. H. Lamas. Three Hetorocera, Camada (exchange).
J. M. Mac户ahland. Three Heterocera, Alabama.
A. H. Maske, Thirteen Insects, North Carolina (exchange).
J. H. Mattuews. Elesen Lepidoptera, Cuba; thirty-five, India (exchange).
J. A. (;. Rriss. Onv hundred and forty-four Orthoptera, New Jersey; seven hundred ()rthoptera, Virginia and North Carolina (Academy Expedition).
II. Shinser. Ninety Lepidoptera, United States.
H. Sinnser. Ten thousand Lepidoptera (purchased).
T. Spalding. One hundred and twenty-nine Insects, Utah.
W. Stone. One hundred and ninety-six Orthoptera, Pennsylvania.
E. S. Titus. One hundred and forty-seven Hymenoptera, United States (exclange).
M. Tomura. Six Butterflies, Celebes.
J. F. Tristax. Seventeen Orthoptera, Costa Rica.
H. T. Van Ostrand. Twenty-five Lepidoptera, Mexico.
H. L. Vieneck. Three Hymenoptera, United States.
H. W. Wexzel. Eight Coleoptera, New Jersey.
G. B. Wood. One Myriapod, Texas.
J. Woodgate. One hundred and thirty-one Insects, New Mexico.

Total specimens, 16,200 .

Recent Mollusca.

Jacob Aebly. Vallonia pulchella Müll. from Philadelphia, Pat.
John A. Allen. Thirty-one trays of shells from Maine and Ohio.
Joshua Baily, Jr. Arion ater ruja L. from Neuen Ahr, Germany.
Dr. Charles Baum. Helix muralis L. from Paestum, Italy.
Bernice Pauahi Bishor Museum. Fifteen species of Helicina from the Hawaiian Islands.
S. S. Berry. Eleven trays of freshwater and land shells from California.
E. Bethel. Seven trays of Oreohelix from Colorado.

Dr. Samuel A. Binion. Cyprea cervus Lam. and Liguus fasciatus Muill.from Key Largo, Florida.

Stewardson Brown. Fourteen trays of shells from Bermuda and British Columbia.

Horace F. Cabpexter. Polygyra apressa sculptior Chadw. from Crystal Cave, Bermuda.

George H. Clapp. Three species of land shells from Arizona and Jamaica.
T. D. A. Cockerell. Nine species of shells from Jamaica.

Charles Conner. Spharium striatinum Lam., Jonestown, Pennsylvania.
Prof. W. H. Dall. Gonidea angulata haroldiana Dall, from near San José, California; also Milax gagates Drap. from Easter Island.
C. Abbott Davis. Two species of Pleurodonte from Jamaica.

Dr. Samuel G. Dinon. Polygyra albolabris Say, from near Mt, Alto, Frankin County, Pennsylvania.
M. J. Elhod. Seven trays of land shells from Montana.
J. H. Femmss. Four species of land shells from Arizona.

Rev. W. H. Fluck, Five species of shells from south Africa and Central America.
II. W. Fowler and B. W. Gimfithe. Two trays of shells from Pennsylvania.
IV. J. Fox. Crepidula fornicala L. from Sea Isle City, New Jersey:
W. J. Ghechast. Micrarionta desertorum P. and F. from near Parker, Arizona.
A. DiConta Gomez. Incillaria tankervillei S. from Venezuela.

Geonge M. Gnefnr. Four species of land and freshwater shells from New Jersey.
G. Dadma Hanna, Lighteen species of shells from Lawrence, Kansas.

Dr. J. W. Habshberger. Mya arenaria L., from Long Branch, New Jersey.
Miss A. C. Hartshorne. Three species of Japancse land shells.
Charles Hedley. Thirty-four species of marine shells from Masthead Island, Queensland.
J. B. Hexdersox, Jr. Twenty-three trays of land shells from Eastern United States and West Indies.
A. A. Hinkley. Fifty trays of Mexican shells.

Wilmer Hinkley. Planorbis trivolvis Say, from Boisé, Idaho.
V. Hirase. Three hundred trays of Japanese shells.
P. C. Jarvis. Eight trays of Jamaican land shells.
S. W. Lermoxd. Ten species of land shells from Maine.
D. N. McCadden. Polygyra albolabris maritima Pils. from Ocean City, N. J.

Clarence B. Moore. Sixty-seven trays of land and freshwater shells from Arkansas and Florida.
H. B. Oakley. Fifty-five species of shells from Barbadoes.
H. A. Pilsbry. One hundred and eighty-four trays of shells.

John Poxsonby. Two land shells from Africa and Bermuda.
Purchased. Two hundred and forty-two trays of shells from the LoweWollaston Collection and twelve hundred and eighty-eight trays of Philippine Island shells from the J. Quadras Collection.
J. A. G. Rehy. Venus mercenaria L. from Tuckerton, New Jersey.
\therefore N. Rhoads. Cochlicopa from Hampshire, England.
S. Raymond Roberts. Four trays of shells from Massachusetts and Jamaica.

Paul Rowland. Cochlicopa lubrica Müll. from near Sapporo; Yesso, Japan.
Mrs. Mary T. Schaeffer. Two freshwater shells from British Columbia.
Dr. R. F. Scharff. Seventeen jars of slugs from Ireland.
Dr. B. Sharp. Pleurodonte bornii Pfr. and Drymeus elongatus Bolt. from San Juan, Porto Rico.

Burnett Smith. Fifteen species of land and freshwater shells from Skaneateles Lake, New York.

George W. Soelner. Verligo pygmea Drap.
R. E. C. Stearas. Three species of freshwater shells from California.

Witmer Stoxe. Polygyra albolabris maritima Pils. from Piermont, N. J.
D. Thannum. Sixty-one trays of Hawaiian shells.

Dr. Hexry Tucker. Ostrea virginica L. from the Eastern Shore of Virginia.
E. G. Vanatra. Nine trays of shells from Maryland and Pennsylvania.
H. L. Viereck. Pyramidula perspectiva Say, from near Harrisburg, Pennsylvania.

Bhyant Walker. Twelve species of freshwater shells from Alabama and Michigan.

Walten F. Webbr. Light species of land shells from Tangulandang and Cuba.
Dr. H. E. Wetherill. One hundred and twelve species of shells from the Philippine Islands.
J. Renton White. Seven species of land shells from Paestum, Italy.

Joseph Whacox. Five species of land shells from New York.
Helen Winchester. Two species of land shells from Canadensis, Pennsylvania.
11. W. Wisklex. Cecum juhnsomi W. from Woods Hole, Massachusetts.

Other Invertebrates.

Stewardson Brows. One tray of Julus from Bermuda.
W. B. Davis. One jar of surface towings, Woods Hole, Massachusetts.
E. Denholtz. One Mygale heinzi.
W. J. Fox. One sponge and sea cucumber from Cape May, New Jersey.
J. B. Hendersos, Jr. One tray of Cypris from near Amarillo, Texas.

Mrs. A. Kenyon. Four jars of invertebrates from Australia.
H. B. Oakley. Seven trays of invertebrates from Barbadoes.
H. A. Phsbry. Two jars of Crustacea from Florida and North Carolina.
S. N. Rhoads. One jar of Cambarus from Hamilton County, New York
B. Frank Teal. One king erab from Cedar Beach, New Jersey:

Dr. Henry Tucker. Astrangia danice Ag. from the Eastern Shore of Virginia.
U. S. Fish Commission. Seventeen jars of Barnacles.
E. G. Vanatta. One jar of Pseudoscorpion from near New Garden, Pennsylvania.
H. L. Viereck. Gelasimus from St. Augustine, Florida.

Dr. H. E. Wetherill. Tetraclita porosa Gmel. from the City of Panama, Panama.

Invertebrate Fossils.

Stewandson Brows. Eight fossils from Aberta.
C. P. Candwell (through Dr. Henry Tucker). Several Miocene fossils from Virginia.

Dr. Samuel G. Dixon. One tray of fossil bivalves from York County, Pennsylvania.

Exchange. Twenty-four trays fossils from Missouri.
E. M. Fryer. Two fossils, South Carolina.

Mongan Hebard. Three trays of fossils from Florida and Michigan.
Estate of Angelo Hellpins. Several fossils.
Mr. Gabhisox. Two trays of fossils from Santo Domingo.
George Lucas. One fossil tree stump from Santiago, Cuba.
II. A. Pusbmy. Rhynchonclla concinna from Wiltshire, England, and Meckella occidentalis Newb, from the Chiricahua Mountains, Arizona.
G. Roumans. One Ostren from Haiti.
R. L. Shivers. One Placenticaras phacenta Dek. from a well in Camden Comnty, New Jersey.

Miss A. Stove. Portlandin glacialis Wood, from Drinkwater Point, Casco Bay, Maine.
W. W. Webster, seven trays of fossils from Haiti.

Joseph Whbcox. sixty trays of fossils from Virginia.
Phants.

Acabrmi Expbotross. Bermuda, Stewardson Brown collector, soo specimens; Canadian loochies, stewardson Brown collector, 3,000 specimens.

Miss Mangemta Athisan. Macroculyx nyetelia.
Chantas (․ Bachmas. Comioselinum chinense and Jamburgio thypsiflora.

Enwis 13. l3anthim. Three hundred and sixty-three specimens from various places in the New England and Middle States.

Botanical Sectios. Collection of one hundred and forty-three specimens of Rubus, Amelanchier and Betula purchased from William H. Blanchard.

Mis. Willinm Herisst. Dr. Herbst's collection of Fungi, numbering about 5,000 specimens.

Bayamd Loxg. Seventy-nine specimens from Delaware.
Philaderphat Botanical Club. Twenty-five hundred specimens of local plants, received from various members.
E. G. Vinitta. Eleven sperimens from Chestertown, Md.
\therefore S. Van Pelt. Forty-six specimens from Delaware.
C. S. Williasos. Two hundred and ninety-four specimens from Delaware.

Fossil Plants.

Perchased. Fossil stump, Santiago de Cuba.
Minerals.
H. A. Grefa. Several minerals from Tryon, N. C.

Estate of Angelo Heilprin. Specimens of ores.
Estate of Sophie F. Riley. Collection of Transvaal minerals and set of Centennial medals.

Williams. Vaux Collection. Twenty-nine specimens purchased.

Archeology, Ethnology.
Clafence B. Moore. Numerous specimens from Indian mounds of the Southern States for the Clarence B. Moore Collection.

Mrs. IV. P. Douglas. Canadian Indian Canoe.

INDEX TO (iENERA. sPECIES. ETC.. I)EC(RIBED ANI) REFERRED TO IN THE PROCEEDIN(is FOR 1908.

Species described as new are indicated by heary-faced; synonyms by italic mumerals.

Abastor.	
Abramis crysoleuca	529
Acanthagrion gracile, 4s1, 457,489,490	
Acanthias	73
blainvillii	73
vulgaris	$\gamma 1$
Acridium.	20
Acris.	125
Acrydium longipens	16
Actenoda.	602
Artenodia	(i)1-603
Actinemys.	114
marmorata	11.4
Actitis macularia	153
Adansonia digitat	505
Acgista	34.41
Eoloplus ariz	395
tenuipennis.............. 30	366, 394, 395
Eshna.....................16*, 4	i2, 467, 468, 475
brevifrous	485
corniger	481, 189
dugesi.	475, 485
luteipers	481, 490
multicolor	481, 490
perrensi	489
virens.	459
willinmsoniana	181
Ashninse, 162 , 16.4 , $16 \mathrm{~s}-4$	(6)-470, 476, 185
Agama collaris	117
Agelaius phomicius	153, 154
Agelena.	293
Agelenida.	160, 168
Ageneotettix	366,383
curtipennis.	$36 \mathrm{s}$,
Agkistrodon.	124
moliasen.	124
Agrioninse, 460 , 16.6 , 16s, $169,170,176$,	
Agrostis coarcta	454
Altula didyma.	55
Allurnus rubrifrons	542.543
Alciopidse.	3.40
Alismatencllum.	457
Alligator....	113

Allocosa, 162, 163, 169, 284, 284, 285.
298
degesta................163, 2S5. 288, 513
evagata......................163, 285, 990
? exalbida..............................163, 292
funerea.................163. 255, 257, 292
nigr: .. 165)
parva......................163, 285, 289
rugosia... 163, 2か.
sublata... 168
Alopia vulpes..........
Alopiidse... 54
Alyceus crelophoroides.............454,557
kurodai....................................... 45t
levis... Dss
tokunoshimanus...............587,558
t. mediocris. 5 \%̈
t. principialis.......................58. 587
tsushimanus
Ambystoma 127
subviolacea.................................. 127
Ambystomidat.................................... 127
Ammotrypane brevis....................... 354
Amubopsis.. 118
Ampelis cedrorum............................. 154
Ampharete arctica............................... 34S
Ampharetidat...................................... 3. 38
Amphiardis... 121
Amphibia... 124
Amphictene auricoma....................... 858
Amphicteis ataskensis....................... 349
Llabra....................................... $3 \cdot 49$
seaphobranchiata. 319
Amphictenidar.................................... 3.53
Amphiptervx................................ 162
agrioides........................... 1 \&)
Amphisbarnidac................... 119
Amphitornis namus.......365, :375, 34:3
ornatus.............. 870
Amphitrite palmata......................... Sion
racliata
rolusta350
Amphimma 127

Brachiaria digitarioides 458
Brachyorros 122
Brada pilosa 357
villosa 357
Bradburya virginica 458
Branta canadensis 153
Brechmorhoga. 462,468
inequiunguis 487, 489, 490
pertinax. 481, 487, 489 490
postlobata 489
procox 4S7, 489
rapax 481,490
tepeaca 481
vivas 481, 490
Bruchus 610,615
Bufo. 125
vulgaris 125
Bufonidae 125
Butorides virescens 153
Calamaria atrocincta 123
brachyorros 124
elapsoidea 122
Calantica 106,107
calyculus 107
eos. 106
falcata 107
gemma 107
grimaldi 107
superba 107
trispinosa 106
villosa 106
Calemys 114
muhlenbergi. 114
Callicholys 114
Callisaurus draconoides 117
Callizona angelini. 310
Callopeltis. 121
Callospermophilus lateralis 404
Calopteryginte...464, 468-170, 476, 485
Calopteryx 460^{2}
Campostoma anomalum. 518
('anis sp. 10.1
Cammacria hatera 159
C:annaphila vibex. 189, 490
Cantharis. 617bifasciata.seminitens.
('apitellidar 3.51
Carcharias (i2
cllinti. 0.1
littoralis 54
taturus. (i)
(archarida i)
Carcharinus. 1i2. 63
brohssempatiic:arulcols-
commmersonii
(年) 62
Chilomeniscus st ratmineus.
cormubicus:
clatucusheterobrabshlialisbetaroden
611
(i17(i)(i2
53(i2
Carcharinus lamia 62, 63
lividus 62
megalops 62
monensis 62
ustus 62
verus 62
vulpes 62
Carcharodon 63
Caretta 115
nasuta 115
Carphophiops 122
vermiformis 122
Carphophis 122
Carychium noduliferum 455
Castor canadensis fondator 404
Cataphracta 113
Cathartes aura. 153
Catulus 53
edwardii 53
stellaris. 53
Caudata 124, 126
Celestus. 117
striatus. 117
Celithemis 461
eponina 466
Celuta 122
Cemophora 123
Centrophorus granulosus 69
Centroseyllium fabricii 69
Ceratichthys micropogon.............2000, 551
vigilax 530
Ceratophyllum. 11.
Ceratura capreola. 489. 490
Cercidium torreyanum. 366
Cereus giganteus 366
Ceroctis 601, 602,615
vespina. 615
Cervus canadensis 40.
occidentalis. 405
Chatochloa magnat. 458
(hatosyllis 325
Chaetura pelagica 133,153
(eryle aleyon 1is)
Cetorhinider. 55
Cetorhimus maximus. 55
Chamalycseus 586, 5s
(harin: 119
Chelonia 113,115
imbric:st: 115
Chelonidso 11.5
('heloniii $11:$
Chelomura 113
temminckis. 111
Chelopess 114
helvidra 113Chelydride.
(hilomemiscus $1 \because:$
62

1908．］
Clausilia i．tsushimana 573
jacobiana 567
j．jacobiella 367
japonica 51i5－567
j．interplicat： 566
j．kobensis 566
j．nipponensis 565， 566
j．var．perobscura 565
j．var．perstriata． 565
j．ultima 566
j．vespertina 566
kikaiensis 576
kobensis 566
loxospira 566
martensi． 566
nakads 561，563
nakadat ธ69
n．degenerata 569
nakanoshimana 576,57
nesiotica． 56
nipponensis 566，566
nithinoshimana． 5 sis
oxypomatica 576
pattalu－ （M）
p．miyakoensis $5 \mathrm{~S}(1)$
pigra． 573
platyauchen．．．．．．．．．．．．．．．．．．．．．．．．61，573
pty．foryma 571 3.5
purissima． 3.5

sarissa．

sarissa． 576,574 576,574
subaculus 56
subjaponica 567
sublunellata 572
swinhori 569－571
taiwanca． $569,350,571$
tall． 455
thammatopoma． 579
tokarana …．．．．．．．．．．580，is0，551， 583t．satceatihasis．．．．5s0，581，552， 583
tosana 572
tripleuroptys 364,565
validiuscula．
validiuscula． 572 572
rarictsata ．nit 26.3
r．var makadai 56s， 56 ？
（Mrgalophadusa）vasta． 567
yatyamensis 576－575
Clausiliida 152， 546
Clemmys 114
Clinostomus margarita
（＇Ivmenella tentaculata $3: 4$
（＇s．midephora－ 114
hyp．rythru－ 115
$\because \cdot \backslash$ linatall 11.
Cocerans cayanomis． 497
cayamus． 193
avemonems． $19 \cdot 1$
erythrophthalmus 153
matrocercels 193． 697
minutиs． 49\％，49\％
 ：
Coceyzus ridibundus 493
rubicundus 493
Colaptes auratus luteus． 153
Coleonix 116
elegans 116
Coluber 121， 121
abacurus 122
allegheniensis． 121
amernus 122
coccineus 123
constrictor 121
corais 121
couperi 121
flagellum 121
leberis 120
leopardinus 121
melanoleucus 121
natrix 120， 120
nehulatus $1: 3$
punctatus 122
sibon 123
sipeden 121
st riatula 121
venustissimus． 123
vernalis 122
，ip－rinu－ 121
Colubride 120，122
Compsisemat $1!1$
Compsothlypis americana 155
Connlcea huachucana． 393
Coniophanes 123
fissidens． 123
Conophis 123
vittatus 123
Conopsis natsu： 122
Conozon acuminata． 34：9
carinata
sulcifrons． 349
Contin 122
mitis 122
（impongs virem－ 1%
Cora Hiv
marina $487.449,190$
skinmeri 小レ
Cordulegaster． 462， 16 S 151dindema
godimani 175． 177.485
Cordulegasterinar． $162,464,46 \mathrm{~s}-170$.176， 455
Cordulina $462,464,465,170,476,185$
Coronella savi 129
Coryma （i） $1-6,1 ?^{3}$
lata 615
Corymorhinus macrotis palleseens． 107
Cosmemataropunctata 505，inlt
marginepunctata 515
wellmani 5115
（＇ottus gracilis 53：
Coturniculus paserimus savama－ rum 1．11
(Brille:a 355
tridentata
tridentata 366,376 366,376
Criolis 620
Crocodilini 113
Crocodilus 113
lu'ins 113
mississippiensi 113
miloticus. 113
Crotalus 124
horriduz 124
miliarius 124
(rotophytus 117
dorsalis 117
(rimiferaiormuzat 361, 36°
zygophora 361
Cryptobranchidse 127
Cryptobranchus 127
allegheniensis 127
Ctenostara 117
creluroides 117
Cuculus cay゙anensis minor 496
cayanus 196, 497
cavenensis 493
mexicantus 498
melanogaster 496
ridibundu: 499
rutilus 496, 496
rubicundus. 499
Cursores 168
Cyanngomphus 468
tumens 489
Cyathopoma micron 454
Cyclophis 122
Cyclophorun formosaensis 31

1. interioris 31
friesianll 31
herklotsi 451
turgidus 31
(velotus c:ampanulatus. 31, 32, 454
minluth: 45
In. quelpartarnis 454
stenomphailus 32
tanegashimatno. 31
Cymatopleura ammulata 554
ran)l-a 5.) 1
dliptica 554
geigantoan 551
gratcilis 551
 5.) 1
\therefore inl $_{1}+\mathrm{ri}$ 5: 1
-arin:
-arin: 5. 1 5. 1
regula
regula 55.4 55.4
chulzai 503,551
('vnaiy carsis 5.5
 10.1
 1.5
! . 1tat: 1 la 217 9.9
(ystignathidas125
(B-rignat? 11 s nigritus. 125
() ine ylotum variogatum
Dalatias licha 69
Dalatiidse 69
Daphinia 412, 125
Decapotoma $601,602,604$
Decatoma 602
Deirochelys 114
reticulata 114
Delphinidx. 29
Dendroica sestiva 155
blackburnix 155
cxrulescens. 155
coronata 1.5
discolor. 155
palmarum hypochryssa 155
maculosa 155
pensylvanica. 155
striata 155
vigorsii 155
virens 155
Dennstodtia punctilobula 449
Deridea 623
curculionides 624
Dermochelidr 113
Dermocheiys 113
Derotmema delicatulum. 388
haydeni 389
laticinctum 388
Desmognathidre 126
Desmognathus 126
Diadophis 122
Diastatops 461
Dicomptodon 127
Diceratoptyx 583
Dichroplus 22
brasiliensis 22
Dicksonia pilosiuscula 449
Didjcla. 115
Diemyctylus 126
Diploglossus 117
Diplommatina cassa 32
collarifera 589,590
gotoensis 32, 33
hangchowensis 37, 38
hirasei. 590
hungerfordiana 35
kumejimana 589
kyushuensis 33
nesiotica. 589, 590
nippontasis 33
whentis.
whentis. 549, 590 549, 590
o. tonshimana ISt
paxillus 38, 454, 585
b. ultima 454, 585 454, 585
saginata. 590
schmackeri 38
tancershimat 590
vonahomijimana. 54
Diphommatimida 37
Dipsas annulatus 123
Dipsosaurus 117
Dinsosteira carolina 356

Dolichonyx oryzivorus...
Dolomedes
Dromica (Cosmema) auropunctata 511 (Cosmema) marginepunctata.. 512
tricostata................................... 511
(Cosmema) wellmani................. 512
Dromicina-....................................... 511
Dromogomphus................................ 461
Drymarchon...................................... 121
Drymobius 121
Dryopteris simulata......................... 457
Dythemis....................................466, 46S
cannacriodes............................. 457
maya.. 490
rufinervis.................................. 466
velox ….......................... 15 $\bar{i}-490$
Ecaudata......................................124, 125
Elseochlora.. 13
arcuata... 13
humihs 13
picticollis................................... 13
pulchella.................................. 13
trilineata................................ 13
viridicata.................................. 13
Elaps.................... 124
lacteus .. 12.4
lemniscatus................................ 124
Eleocharis interstincta..................... 458
melanocarpa.............................. 458
ochreata....................................... 458
robbinsii 458
rostellata
Eletica... 616
bicolor.. 616
cardinalis................................. 616
colorata... 6
laviceps 616
ornatipennis.............................. 616
rufa507, 616, 617
stuhlmani................................ 617
Elodea.......................................21,446
Empidonax minimus...................... 153
viresems 153
Emydoidea.................................... 115
Emydosauria 113
Emys... 114
belli.. 114
handingii 11:\%
еигоряяя................................... 115
Iongicollis.................................... 115
Iutaria..................................... 115
ornata................................ 114
picta 114
punctata................................. 11 .
serpentins 115

corcalat 4in
luchuana...................... 59 x

1. ояhimина................................. 59
r"іпіаи опіспкін.................. 34

Ena r. ugoensis 34
r. vasta... 34

Enallagma........................462, 467,46S
cecum nove-hispanis, 487, 459,
490
civile.....................469, 481, 486, 489
prevarum...................460, 481, 486
Encoptolophus subgracilis.........367, 385
texensis................................366, 385
Engystoma....................................... 125
Engystomatidae................................ 125
Ennea cava... 55
iwakawa...................................... 455
i. yonakunijimana..................... $\mathbf{5 9 4}$

Ensis... 5
Entoxychirus uyato......................... 69
Ephidatia 487
longipes cubensis...................... 489
Epicauta.. 619
canescens.................................. 619
prolifica..................................... 619
p. var. elunda............................. 619

Epigomphus..................................46S, 474
subobtusus................................ 490
tumefactus.................................. 490
Episcopus... 369
Eptesicus pallidus............................ 408
fuscus...................................408, 409
Eragrostis sp................................... 620
Erethizon epixanthus......................... 404
Eretmochelys..................................... 115
Ericymba buceata......................546,547
Erpetogomphus........................... 462,468
cophias... $\$ 1$
crotalinus................................ 451
elaps..................................481, 490
ophibolus................................. 489
sipedon..................................... 481
viperinus.................487, 489, 490
Erythemis 462
attala.. 459
peruviana 4s9
simplicicollis........................... 489
8. collocata.........................481,489
verbenata...........................457, 489
Erythrodiplax.................462, 466, 46is
berence nava ………............. 485
connata …..................|81, $457-190$
funerea... 45 \% -490
ochrama 15 in. 459
umbrata far 490
Erythrolamprus................................... 123
Fsox americantu..................................... 52
ELumopterus spinax............................ 69
Eublepharida.................................. 116
Euchirotes.. 119
biporus.. 119
Euchirotida*.. 119
Eulalia fongicornuta329
guadrioculata............... 329
Eulamis 63 Eupagurus amatus 343
 6.5 Lupheedusa 562
monisorrah 6.5
Euphagus carolinus 154
milberti 6
odontaspis $6 ; 3$
oxyrhunchus 6
Eulota 42
aprorta 593
a. tumida 593
caliginosa 592
cecillei. 454
(Aecista) celsa 33, 34
chejuensis 454
ciliosa 154
(Plectotropis) ciliosa 454
(Euhadra) contraria 591
coreanica $45+$
eminens 34
formosemis 591
fortunei 40
fulvicans 41
gottschei 454
hachijoensis 41
hebes 41
horrida 454
inornata 41
inrinensis 41
koreana 454
lxva 39
lasia 454
lautsi 41
(Plectrotropis) lepidophora scutifera 33
1.tenuis 33
Iuhuana 454,592

1. latispira 592
micra 41
mimula 454, 593
m. peninsularis 154
?munieriana 37
okinoerabuensis. 592
orientalis 45
oshechi 41
(Epista) perangulata 592
perplexa 41
(Euhadra) picta 591
proxima 45
pumilio 454
purpurascens 154
(Plectrotropis) scitula 41
sonckenbergiana 592
siaboldimm 45
sucemeta 591
trmuissima 15.
verrucosa 15.4
vulvivaga quelpartensis 15
Eulatalla 10
Eurneres 115, 119
Eunice kohmanis 34
Eanicidar 345
Eunore depremas 33:
2. var. mammillata $3: 3:$
Euphrosyne arctica 340
bicirrata 339
borealis 339
hortensis 339
longisetosa 339
Euphrosynidae 339
Eurymorpha cyanipes mouffleti.505, 511
Euscalpellum 106-108
bengalense 108
renel. 108
rostratum. 108
?squamuliferum 108
stratum 108
Eutenia 120
Eutamias amonus operarius 404
minimus consobrinus 404, 405
quadrivittatus 404, 405
Euthore 461
Euzonitis 620
Evotomys gapperi galei 404
Exoglossum maxillingua 535, 552
Farancia 122
drummondi 122
Faroa wellmani 616
Felis hippolestes 404
Ficimia 123
olivacea 123
Formosana 569
Fulgur 3-9
carica 3, 5, 6, 8
perversa 3, 6, S
Galeocerdo tigrinus 61
Galeorhinida 55
galeus 57, 59, 60
zyopterus 60, 61
Galeoscoptes carolinensis 156
Galeus. 53
melastomus 53
mustelus 59
Ganesella 10, 452, 453
albida 593, 594
a. mollicula 593, 594
? gradata 455
japonica 40
Gattyana amondseni 336
ciliata 337
cirrosa 337
senta 337
Geckonida 116
Geigeria wellmani 615
Geolycosa. 163, 514
arenicola 241
baltimoriana 246
(arolinensis. 24,8
latifrons 242
t"\alla 248, 514
Georgia 121
(ieorissa 38
bachmammi. 38, 39
1908.] N゙ATURAL SCIENCES OF PHILADEIPHIA. 659
Georissa heudei 38, 39 Helicina uberta 560
(Georissopsis) heudei 38

Helicina uberta ... 121
Helicops.........
hungerfordiana 38
nivea 38
sinensis 38, 39
sulcata 35
Georissopsis 38
Geothlypis trichas 155
Gerrhonotus 118
liocephalus 118
tessellatus 118
Ginglymostoma 54
cirratum. 53
Ginglymostomids 53
Gilauconia 119
Glycera nana 347
tesselata. 348
Glyceride 347
Glycinde wireni 348
Glyptemys 114
insculptus 114
Ginathium 621
Gomphinse, 462, 464, 468, 470, 476, 48
Gomphoides 468
suasa 459
Gomphus 461
Goniada annulata. 348
Goniadidar 318
Gopherus 115
Gradientia $112,113,116,124$
Graphipterussp 511
Graptemys. 114
geographica 114
Gryllide 399
Gryllus armatus 100, 102
(Locusta) lineatus. 20
personatus. 399
Giuloluscus 104
Gymmandeniopsis nivea 45 s
Gymnopogon brevifolius 158
Givnacantha. 162
septima 49
tihaiata 15!
trifida 159, 490
Gyrinophilus 126
Hadrotettix trifasciatus 392
Maldea 121
Halosydna insigni- 330, 335
lordi 3:311
pulchra. 329
Ifarmothode hirsura 334
imbricata 334
|rumeat: S. 5
tuta. 331
Hedera helix 419
Heliastus aridus 3666, 392
Helicidse 39
Helicima stio)
baldwini 5 (4)
laciniosa 560
rotelloide:a isti)
alleni.. 121
carinicaudatus........................... 121
erythrogrammus....................... 122
Helix ciliosa..................................... 452
(Satsuma) gradata................... 452
hortensis 425
pomatia..................................... 425
rejecta....................................... 94,594
Helminthophila pinus.................... 15.5
Helmitheros vermivorus................... 155
Heloderma.. 117
horridum................................... 117
Helodermatidre................................. 117
Helodromas solitarius....................... 153
Hemidactylium............................. 126
Hemiphedusa............................533, 571
Hemiscyllidxe................................... 53
Hemizaptyx...................................... 575
Heptranchias cinereus.....................52
Hermadion truncata..................332, 335
Hermellidæ....................................... 358
Herpetodryas astivus....................... 122
getulus....................................... 122
margaritiferus............................ 121
tricolor....................................... 122
Herpyllus....................................... 285
Hesionidx.. $3+1$
Hesperagrion.....................................41, 46 S
heterodoxum............................ 481
Hesperotettix festivus................367, 393
Heteragrion..................................... 46 s
chrysops.............................489, 490
erythrogastrum....................... 490
tricellulare.........................487, 490
Heterina462,466,46S
americana …...............462, 472, 481
capitalis.............................462, 489
cruentata....................481, 487,489
fuscoguttata 490
infecta....................................... 459
macropus462, 487, 490
majuseula 490
maxima................................... 485
miniata.......................................40, 489
rudis...................................478, 489
titia.....................................462, 489
tolteca...............................475, 488
tricolor......................462, 487, 489
sulnerata.............................. 481
Hetrerinar....................................... 4ts
Heteroxlon...23
platyrhinus............................ 123
Heterodontida...................................... 52
Heterodontus japronicus.................. 52
Heterozaptyx 576
Hexanchidx... 52
Hexanchus griseus............................. 52
Hibisens... 807
Hippasa …............................160,293
Hippiscus corallipes 356 Icterus spurius 154
Hirundo erythrogastra. 137. 15 \ddagger Idiozaptyo 583
11\% Iguanide.116
maculata.
117
Inia. 27
I Iololepida magna 329 Iridoprocne bicolor 154
Holoscalpellum109 Ischnognathus121
Homatorramium
12. 159
planiceps124 demorsa481
Homalosaparus 17
canonicus 17 369
Homorgamia erratica
Hormidetes cinereus 379. 3>1
papagensis. 366,379,38
Horia (i2 1
africana. 624
senegalensis 624
testacea624
Isurus oxyrinchus 55
481
denticollis
481
ramburi 489
Iselma. 623
Isoetes dodgei 457
Isolessa ferruginea 351-353
texana 381, 382
Isopentra 619
Horiine 624
Juncus setaceus 45
Hudsonius535
Hvalina mamillaris 594. 595
Hyalopomatopsis occidentalis 362
Hybognathus nuchalis 521, 521
n. argyritis 521
n. regius 521
procne 531, 332
Hybopsis amblops 549
bifrenatus 531
dissimilis 549
kentuckiensis 550
storerianus 550
Hyclœus duodecimpunctata 604
Hycleus 602
decimguttatus 604
Hydra viridis 415
Hydrocenidx 38
Hila 125
arborea 125
baudinii 125
viridi- 125
Hylidse 125
Hylocichla alicise 156
fuscescens 156
guttata pallasi 156
mustelina 156
ustulata swainsoni. 156
Hylodes gryllus 125
lineatus 125
Hyponeura 165
funcki. 481, 489lugens.481
Hypopachus05
seebachii125
variolosum 125
Hypelostoma. 43
(Bow-idia hatgehomom- 42
hunanensis 43
(Boysidia) hunana 42, 43
Hyprigloma 123
achrorhencha 123
Icentias virens156

1.11
Kaliella 598
boninensis 598
ceratodes. 597
coreana 455
crenulata 455
elongata 598
fusaniana 455
gudei 597
g. mutsuensis 597
koshinoshimana 597
longissima 597
multivolvis 455
obesiconus 455
prexalta 598
sororcula 597
subcrenulata 597
s. satsumana 597
Kinosternum brevicaudatum. 114
longicaudatum 114
Koeblerinia spinosa 366
Lacerta 113
acanthura 117
bullaris 116
chalcides 118
crocodilus 113
orbiculare 117
punctata 127
quinquelineata 118
serpens 118
strumosa 116
viridis carolinensis 116
r. jamaicensis. 116
Lacertilia 116
I arna nuda 352
Lagisca multisetosa 335
m. var. papillata. 335
rariopuna 335
Lagorhina 617
Lais 461
I aมmma cornubica 54, 55
Lamnidae 55
Lampropeltis 122
J.anice heterobranchia 350

Leimonia	
Lepidonotus cetoris.	
fragilis...	
squamatus	
Lepidosternum floridana.	
Leptagrion.	
Lepthemis vesiculosa................................... 468	
vacillans	487
Leptodira	
Leptopalpus.	
Leptophis.....	
Leptotyphlopide............................ 119	
Leptotyphlops	11
Leptysma...	
filiformis gracilis.	
Lepus americanus bairdi......................campestris.....	
townsend	
Lestes.............................462, 4	
alacer	
henshawi	
tenuatus	
tine, 462, 46.	
Leuciscus elongatus....................527, 535	
margarita............................	
Ieucorhinia.	
Libelulla..........................462, 467. 468	
auripennis........................ 472,48	
comanche.475,
foliata..............................475,	
herculea...........................489, 490	
luctuesa...........................475, 488	
saturata...................................... 481	

Libellulinax, 462, 464, 468-470, 476, 485
Lichanura.. 119
trivirgata 119
Ligurotettix..................................... 366
coquilletti.............354
kunzei.................................366, 354
Lilsopsis lineata............................. 459
Linguelapsus...27
lepturus 127
Liodytes... 121
Liolepisma 11 s
Liopeltis...122
Litaneutria skimneri..............................370
Lithodytes....................................... 125
Locusta... 20
Locиstina.. 12
Loricata -.. 113
Luchuphedusa................................ 569
Lumbriclymene pacifica.................. 356
Lumbrineridse................................... 346

Lumbrineris heteropoda.............346, 346
Lunatia. 5
Lutreola lutreocephala energum-
еиоs...................................... 404
Ly ycosa, 160-162, 165, 170, 170, 171, $210,211,211,220,221-223,284$, $285,257,292,293,299,299,300$, 514
alloohastata...................163, 226, 275
animosa 164
antelucana..................163, 233,513
apicata................163, 224, 232,513
arenicola, 163, 222, 223, 239, 240, 241
aspersa................ $163,224,236,242$
avara, $163,222,223,225,226,279$,
281
avida... 164
babingtonii...................168, 228,229
baltimoriana $\ldots . . .163,224,246,246$
beanii...........................163, 223, 273
bilineata 220
brunneiventris........................... 163
canadensis................................. 179
carolinensis, 163, 222, 224, 225,
$245,246,248,514$
charanoides........................21才,514
cinerea, 163, 222, 223, 281, 282,
283
coloradensis..................163, 223, 249
communis..............................163, 253
concinna................................. 205
crudelis................................163, 229
discolor...................................... 164
domifex...............................242,243
dromca..................................... 202
encarpata............................... 164
epigynata................................. 163
erratica, 163, 225, 226, 245, 251.
253
cuepigynata.........................267,514
exitiosa.................................. 163
fatifera, 161, 163, 222, 223, 23s,
241, 242, 242, 219
fativeral.......... 513
flavipes.................................... 179
floridana, 163, 223, 225, 231, 253
frondicola, 163, 225, 226, 258, 261.
fumosa......................................63, 272
funcrea..............................288, 513
furcifera...........................204,205
fuscula 205
georgiama $\quad 16 \%$
georgicola 16\%
glacialis..............................204, 205
gosiuta ….................222, 225, 281
grandis..............163, 224, 229, 231
gulosa........... $163,225,226,265,514$
grossipes................................ 16\%

I．ycosa helluo， $163,222,224,226,229$, 231，233
helvipes．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163，229
humilis．．． 217
immaculatat．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 163
infesta．． 164
indigatrix．．202
inhonesta．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163， 242
impavida．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164， 199
insopita．．．．．．．．．．．．．．．．．．．．．．．．．163， 267,514
iractunda．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．202
kochii．．．．．．．．．．．．．．．．．．163，223，263， 267
latifrons．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 163
lenta， $163,224,242,243,245,245$ ，
246
1．var．baltimoriana．．．．．．．．．．．．．．．．．．．．．． 224
lepida．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163， 253
littoralis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 163
1ทnx．． 282
mecooki．． 513
maritima．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163，282
milberti．．． 163
milvina．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．513，514
minima．． 177
missouriensis．．．．．．．．．．．．．．．．．．．．．．．．163， 242
modesta，163，163，225，226，261， 268
mordax．． 164
nidicola．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163，229
nidifex．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163， 248
nigra．． 286
nigroventris．．．．．．．．．．．．．．．．．．163， 261,261
oblonga．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 164
ocreata．．．．．．．．．．．．．．．．．．．．．．．．．214，215， 220
o．pulchra．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 220
perdita．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 164
permunda．．．．．．．．．．．．．．．．．．．．．164，224， 233
philadelpliana．．．．．．．．．．．．．．．．．．．．．．．．．．．． 164
pictilis．．．．．．．161，225，226，270，271
pikei．． 164
pilosa．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164，248
polita．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164， 279
pratensis， $164,225,226,261,263$
propinqua ．．．．．．．．．．16i，25．3
puderns．
164
pulchra．．．24， 267
punctulat：a．．．．．．．．．．．164，224，256，258
purcelli．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164，267
quinaria．．．．．．．．．．．．．．．．．．．．．．164，224，277
relucrns．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．217，514
riparia．．．．．．．．．．．．．．．．．164，224，233，236
rubicunda，．．．164，222，223，278，279
rufat．． 214
rufiventris．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164， 281
ruriewl：$\quad 16 i, 2,2 \%$
＊ルとittata．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164，．953
sabtatrix．．．．．．．．．．．．．．．．．．．217，513， 114
N以リ1．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164，208
scalaris．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．164
－＂Ittulata， $16 \mathrm{i}, 2.24,253,250,256$.
Macroclemmys 114
Macromia 462,468
Marropus caixana 496, 406
Macrothemis celieno. 166
hemichlora 489,490
inacuta 489
pseudimitans $487,489,490$
Malache 607
Malaclemys 114
Malacorlemms: 114
Maldane sarsi 355
similis 355
Maldanella robusta 355
Maldanida 355
Manculus 126
Manisuris rugosa 458
Manolepis 123
Mantichora congoensis 506, 512
livingstonei 512
Mantichorini 512
Mantidar. 369
Marmota flaviventer. 104
Mecistogaster 468
modestus. 459,490
omatus. 489,490
Megacephala regalis 512
Megacephalima 512
Megarephalini. 512
Megaloprepus cerulatus 159, 490
Megatrachelus 620
Melanis loveni. 337
Mclias corallirhvochus 496
Melanerpes erytbrocephalus 153
Delanoplus aridus. 396
atlanis. 366,396
brownii 3titi, 395
canonicus. $365,396,397$
cumeatus 39.5
femur-nigrom 397
f(muur-rubrum 397
flabellifer. 395
flavidus 396
herbacens flavescens. 395
oecidentalis 395
Melinna eristata 849,349
denticulata. 3.19
Meloidae. $600-624$
Molospiza grorgiana. 15.1
Mephitis mesomelas varians. 10.4
Mermiria texama 371
Merula migratoria. 1.5 f
Mesoscalpellum 110
Mestobregma obliterata. 346
Metaleptobasis 165.174
Motaloradis 5א7
Metator pardalinuma. 35ti, 357
D(-tazaptyx 579, 540
Miathria marcella 189
simples 1s!
Micrathyria 162, tis
deliilim. 159

Micrathyria didyma.......................... 489
dissocians.................................. 489
eximia....................................... 489
ocellata... 489
Microcentrum affiliatum..................... 399
Microstigma...................................... 461
Microps lineatum................................ 120
Microcystina lampra......................... 455
Microcystis rejecta............................ 594
Microcentrum.......................398, 399
laurifolium.................................. 399
rhombifolia 39 S . 399
thoracicum.................................. 399
Microtus mordax............................... 40.4
nanus.. $40 \cdot 4$
pennsylvanicus modestus....... 40 4
Mimesthes602
Miogryllus pictus............................... 401
Mitella... 106
Mniotilta varia.................................... 155
Mocoa zelandica................................... 11s
Molothrus ater.................................53, 15.t
Murex fortispinna.............................. 7
Mustela americana.......................... 104
Mustelus equestris..............................56, 57
felis... $5!$
mento... 37
mustelus... 56
My:......... $1 ;$
Myiarchus crinitus............................... 15:3
Mylabris......................601, 602, 607, 610
allinis.. .. dillat
ambigua.... (io)t
amphibia 101.5
amdongaanis ...
angolensis ... $61 . \bar{y}$
atrochalybea............................. 607
benguclana…............................... 607
bicincta.. 1007
bifascintat.................................... fite
bifueata...
bilineata ...60.
bissexguttata............................... 60. G
bizonata...................................... 60!?
bohemanni................................... 61 is
carinifrons.................................. bios
chevrolati..................................... 60.4
chisambersis.....................60, fits
chiyakensis.............................. 60.)
(c. var. tokama (in)
chrysomelina................................3
(Actenodia) chrysomelina...... (A) 1
richorii.................................... be!
decorata ... 1
dentata61, 609
(Aeterodia) deserticola Bo)
deserticollis.............................. 60:3
dicincta......................... © (0)9
d. vir. bияиеti..............................809
discroperos............) (0)!
dispar..................................... 9
Mylabris duodecimgutata 609 Nassa obsoleta 5duodecimpunctata601Alendensis606ericksoniexclamationis609615
flavoruttata. 609
gamicola 609
tharoldi 610
hermanniad $60-1$
holoserjecta 610
habrida610
interna [i5, 616
jacol) 610jucunda
604latrimalat
lanigera 610610
lanuginosa 604
liquida 610, 614
mixta 60
muata 610
mylabroides 604
myops 610
in. var. welwitschi 611
oculata. 611
o. var moufleti 611
o. var. ophthalmica 611
omega 606
opacula 611
palliata 611
paulinoi 611
phaterata 615
phelopsis 611
pluvialis 601, 611
posthuma 604
regis(Decapotoma) regis.606ristriputtata601
615rufitansi
senegalensis612

- Var. conjuисt612serricornis6616sibyla612
temporatio606
tropemina6.04
fincta 613
tindila.fil:
torturosat609
tricolor 614
trifurca 616
trispila614
tristicma 614. 615
t, tribuli1614
insinguttata. 615villo:a.610
yorburvi 615
Nyriophyllum 121, 124, 431, 446
Mrotis.rentis 415
 408
Mrialus;
Nithem: 11.
Cas:
trivittata 5
Natica ampla 555
bicolor 555, 557
chemnitzii 556, 558
didyma 555, 55 S
incisa 556, 55 S
intermedia 555, 558
lamarckiana 556, 557
lamarckii 555, 557
papyracea 555
p. major 556, 558
petiveriana 555, 557
problematica 556, 558
robusta 556
secunda 559
tasmanica 556, 558
vesicalis 555, 558
Natrix $120,120,121$
gemonensis 121
Nebrius 54
concolor 54
Necturus 127
maculatus 127
Necydalis 620
Nemobius neomexicanus. 399
Nemognatha 621-623
Neoneura 468, 474
amelia. 180, 487
paya 480, 489
Neoscalpellum 110
Neosorex palustris navigator 405
Neotoma orolestes 404
fallax 404
Nephepeltia 489
phryne 489
Nephthydida $3+1$
Nepthys assimilis 342
ciliata $3+1$
curea 3.11
longisetosa 342
malmgreni 342
Xercide 342
Nereis agassizi 844
armillaris 923
brandti 3.4
cyclurus 343
dumerilii 344
limbata $3+4$
paucidentata 343
pelagiea 342
procera 3.3
rexillosa 344
(Altta) vexillosa 344
virens 344
(Alitta) virens 344
Nerita umbilicata livida 555
Nerodia 120
Xicomache carinata 356
Xinoé nigripes 318
simpla 347
Nothria geophiliformis 346
iridescens 345
Notomastus giganteus $35+$
Notophyllumimbricatum 329
Notropis ariommus 535
atherinoides 542
bifrenatus. 531, 53
boops. 535
cayuga 533
chalybus $5+1$
comutus 539 539
deliciosus 531,535
d. stramineus 531
hudsonins. 535, 536
h. amarus. 536
krimi 033
photogenis 54,545
p. amcenus 545
procne 531, 53
rubrifrons 542
umbratilis ardens 545
whipplii 537, 539
w. amalostanus 535
scabriceps 535, 541
јеjunts. 535, 542
Niuda. 124
Nychaamondseni 3.iti
Nectiorax nyeticorax nevius 153
Ochotona saxatilis $10 .+110.5$
Octogomphins 461
Odoconteus hemionus 40. 4
mas-rouru- 10.4
Odontaspis (6.)
Odontochila erythropega 505, 506 , 11
variventris 506
Odontochilina 509
(Eeanthus nigricomis 102
nivens 102quadripunctatu*.................366, 402
(EMas 620
bicolor
melanura 620 620
(Higumata 1.
Gmakotettix
-iknatipes 17
() 1 ни- vechat 12
servillei 12
Omphalotropis japonic:a 1.4
Omuphidsp 3.4
Opecas chavulinum 15.5
c. kvotomse. 155
heudei 155
јаvanicum 15%
(Opheliidse 351
(p) peorery: 122
Ophibolus. 123
Ophiclia 119
(ophidii 119
Ophiogemphas 161
Ophioglossmina arenariom 15%
(b)hisaurus 117
Ophryodera bohemani 509
distanti 509
rufomarginata 506, 509
Oporornis formosa 155
Orectolobus barbatus 53
japonicus 53
Orophus 395
retinervis 395
salicifolia. 395
Orphulella compta 367,375
Oplonarsehna $461,46^{\circ} 2,465$armata 481
Orthemis. $162,46 \mathrm{~s}$
biollevi. 450
ferruginea $451,189,490$
levis 157. 459
Osceola 133
Ostrea. 6, 7
Othonna (115)
Ovis canadems. (1)!
Oxyechus vociferus 153
Oxynotus centrina 65
Pachydiplax longipennis 151
Palsmnemat 468. 42.
angelina 4×9
desiderata. 15
paulina 159
Paltothemis lineatipes-......4si, ts 7, (IM)
Pandion halisetus carolinensis 153
Panicum condensum 455
Pantala 162
flavescens...462, 472, 481, 459, 4! 4
hymenata 189
Paracornops 16
longipenne 16
Paramerium 4.11
Paranarium mobola 501
Paraphlebia................. 161, 467, 465, 147
hyalina. 小
Parazaptyx 3.9
Paratettix toltecus. 366, 368, 371
Pardosa, 160-1633, $168-170,171,210$.$211,211,25 \%, 292,300-302$316
allomaculat: $16 \%, 2(1)$
albopatella 178
annulipess. 16%
atra... 161, 172, 15 161, 172, 15
bilineata د20
brunne: $16 \% 205$
califurniea 164, 173, 174, 192, 193
canadensis. 16.
coloradensisí, 185
concinta 005
distionta $161,173,171,192$

dorsatis | 10% |
| ---: |
| 109 |
| 16% |

amertoni 164, 172, 174
flatipes 161, 17.9
ftoridana 16\%

Pleurococcus 126
Pluchea scricea154
Podarke pugettensis 3
aulacoglossadidyma$556-555$

1. ampla5.5
d. vesicalis
5in
tasmanica 550
Policipes
$35: 3$
Polynoé fragilis 332$3: 31$
Polynoida-
Porrima ,
359Potamilla reniformis
Potamothem:(i.)
Prionotus 6
Pristiurus 53
Progne sum
integer. 46
190
surents 166
1111127
Proteus 12.5
amatoriaい!
Protharamemata (i)concinma11.4
P-radobrancola122
pulchra. $12=$
Psendoleon. 161, 462,46
brovihranchiata
dedilis 3til
occelata. 364plendida359
Psendosermyle truncata 3.1
I'seudotriton marginatum 124
Padoresa buddiana. 3s1-3s3mat"ulipernnis.......................3s1 is3
tex:nn: 366, 367, 351, 358
Ptochemts 114
(c) 1 (") 1 Inti 114
Punctumamhlygona 455
:1. ("onoidetum 455
Pupilla crrptodon. 455
Pupillidsu 12
Pupinella rufa 454
Purpurat 5
l:ıpillus 5
Putorius arizonemsis 404
longicauda. 104,406
nigripes 101, 406
streatori lepius 404
Pramidula costulata 45
clatior 455
Pragomorphinse 12
P'rrhocorax columbianns 498
gruianensis 497
mesurus 498
pallescens 500
Pythiaterialitis 35
cecillei 35
n:ant 3.5
pachyodon 3.

- caralmarle 35
(2ntronemichamxi 45
Quiscalus quiscula 154
lisint 12.) +11
bufo 125
ovalis. 125
temporaria 12.5
Ranider 125
Realia 39
Resgina kirtlandii 120
Rogulus calondula 156
Rainia. 501,56Renat119
duldis 119
 116
Rhablosesorn: $\because 8.29$
latirad:a 2130
lihadineat 123
melanomephata 123
()) tus: 123
Rhinmorns 121
-ablari- 121
1:1,11.-117: $11!$
Khindothy: :2!
at ronasilio i2 6 , 51
(:atar:utt 517. $51!$
Rhimmellilus 123
|onorntoi 123
 165. 17.1
Sicopa pulactat: 118
Riparia riparas 1.1
lanmale:a nu|ntiali- 16
 15 N
Rynchospora oligantha 158
rariflora 158
sabella elegans 359
formosa 355
sabellaria californica 358
cementarium 35 S
sabellider 35 S
saccolepis gibba 458
Salamandra attenuata. 127
gigantea 127
glutinosa 126
longicauda 126
porphyriticus 126
quadridigitata 126
scutata. 126
Salentia 125
Salvadora 122
grahamise 122
Samytha bioculata 350
saparus 17
Sauromalus 117
ater. 117
Sayornis phobe 133, 153
Scalibregma inflatum 356
scalibregmide 356
Scalpellum 10. $4-111$
angustum. 109
aurivillii 110
bellum. 111
californicum. 109
calvaratum 109
carinatum 110
chiliense 111
cornutum. 109
diceratum 105
dicheloplax 110
edwardsi 110
formosium 111
gib)erum. 109
gibbum 109
eracile 111
grocnlandicum 109
grucedi 110
hamatum 109
idioplas 110
impervertum 110
inerme 109
intermedium 110
japonicum 110
javanicun 110
laceadivieum 110
larvale 110
marginatum 110
 110
nymphocola 109
ornat!am. 109
(ssculli. 109
patagonictum 109
poronii 107
phantasma 110
prossum 109
Sealpellum rostratum 107, 108
salartize 109
sanctabarbars. 110
scalpellum. $105,10 S$
stearnsi 105, 107
stroemii 104, 109
s. aduncum 109
S. latirostrum. 109
s. luridum. 109
s. obesum. 109
s. septentrionale. 109
s. substroemii 109
uncus. 107
velutinum. 109
villosum. 106
Scapanea 461
frontalis. 466
Scaptocosa 163
Scaphiopus 126
bombifrons. 126
hammondi. 126
solitarius. 126
Sceloporus torquatus. 117
Schistocerca 20
gratissima $\because 0$
lineata 20
pallens $\because 0$
vagat 366, 393
venusta 393
Schizocosa $162,163,170,210$
bilineata $165,212,218,220$
charonoides 165
gramilis. 160
humilis. 160
ocreata $165,212,215$
o. pulchara. 165
relucens. 16%
ruita. 160°
saltatrix $165,212,215$
stonci. 165
venustula. 165, 217
verisimilis 16i"
Schizodelphis cunaliculatus 29
sulcatus. 29
Scillidepas 107
Seincidse. 118
Scincus pavimentatus 118
phactitlos 115
rufeserns 115
telfairi 118
Scirpus torreyi 156
scillins alxerticoncolor. 10.4
fremonti 10)
ladovicianas 406
Scolecophiss 123
seoliodon laticaudas (6)

1. $\mathrm{Fr}: \sqrt{-110}$:- bit
scotophis. 121
Ecotll-w: 2
hrasilimasis 2.2
Scudelerin furcifaru 398
Seyliorhinidse 52
Scyliorhinus. 53
marmoratum. 53
Scyllina calida 366, 381
Sciurus aurocapillus 155
noveboracensis 155
Seminatrix 120
pygæus 120
Semotilus. 529
atromaculatus. 525,535
bullaris. 524
Senecio crawfordii 459
Seps murinus 118
Serpentes. 112, 119
Serpentia 116, 119
Serpula columbiana 361, 362
Serpulider. 361
Setophaga ruticilla 156
Siagonodon 119
Sialia sialis 156
sibon 123
Sigaleonidse 335
Sinica 38, 589, 590
Siphonostoma villosum 357
Sistrurus 124
siren. 127
lacertina 127
striatus 127
Sirenidar 127
Sitala. 598
reinhardti 595
ultima 598
Sitaris. 60
hilaris. 620
Smilisea daulinia. 125
smilium. $10(3,107,107$
 107
aries. 107
longrostrum. 107
peronii 107
pollicipedoides 107
scorpios 107
sexcormutum 107
uncus. 107
Solastes decermradiata 330
sores obseurus. 404, 107
personatus 40.4,406
p. hatydeni 407
vagrans dolssoni. 407
Sosilaus................162, 163, 169, 298, 995
spiniger. 165, 295
Sosippus, 160, $162,163,168,169,292$,292,293
floridanns: 165, 293
sper 126
spelorpes 126
lucifuga. 126
splaseralactylus. 116
sputator 116
Splargis $11: 3$
Spliyrapicus varius 15.3
-phyrna blowhii 66
tiburo. 66
tudes. 66
zygiena. 66
sphernider 66
spilogale tenuis 104, 406
spilotes 121
pullatus. 121
spiropoma.. 586
japonicum. $32,454,586$
j. chejuense 454
j. tsushimanum. 586
nakadai. 32
yakushimanum. 32
spirorbis granulata var. tridentata 362
guadrangularis 362
spirillum 362, 364
tridentata 362
Spizella pusilla 154
socialis 154
Sporobolus longifolius 458
Squalidx 68
Squalius hyalope 524
photogenis 544,555
Squalus acanthias 68
africanum 53
blainville 68
canicula 53
rarcharias 63
cirratus 54
graleus 53
jat)(mincus 31
punctatus 54
uyato 53,69
vulpes 63
Squamata 116
Squatina squatina 70
Squatinida 70
Stauronereida 347
Stauronereis annulatus 347
Steirodon thoracicus 399
Stelgidopteryx serrepennis 154
stenodelphis. 25, 29
Stemodera 620
Stenoria. 620
 126
stereopherdusa $565,567,568$
stereozaptyx. 578, 580
Lternaspida 357
:!fliti- 35%
forors 35 S
-culata 357
Sturnothorerus 114
odoratus 11.1
pennsylvanica 114
-tichopnm californica 330
-tilpmochlora 399., 399
-tilow()円न: 122- : t.111:1111"stoporia
strobilops diodontina 455
hirasei 455
Sturnella magna 154
succinea avara 46
campestris 46, 48
greeri 48
obliqua 16-51
ovalis. 45-51
o. chittenangensis 48,49
o. optima. 48, 49
putris. 46
retusa 16,50 16,50
totteniana 46, 4S, 50, 51
surirella 503
Stypocnemis 120
rufopunctatus 120
Syharis 620
flaveola 620
immunis. 620
picta 620
Sycotypus 3-9
canaliculatus 3
Syllide 323
Syllis 325
borealis 323
alternata. 323
armillaris 323, 323
quaternaria 325
(Chretosyllis) quaternaria. 325
Sylvilagus pinetis 404,405
Sympetrum. $462,467,468$
corruptum $462,-42,481,489$
illotum virgulum 60, 481, 487
Syrbula fusco-vittata 366, 375
modesta. 368, 375
Syrrophus. 125
marnockii. 125
Taniophis vermiculaticeps 123
Tantilla 124
coronata 124
Tarentula, 221, 246, 249, 263, 268, 279
baltimoriana 246
inhonesta. 238
lepida. 253
modesta. 261,270
nidifex. 240
purlens 261
pul解: 267
scalaris 253
tigrina. 238
Tauriphila 468
argo 489
azteca 189
Taxidea taxus 104
Toider 118
Tलagrion 161
Telebasis. $162,468,474$
digiticollis 181, 487, 489
salva 181,487, 490
Tolmatodytes pashustris 156
Terrapene 155 115
clausa
clausa
Terebella fasciata 351
Terebellidx 350
Terebellides stroemii 322, 352, 353
Testudinuta 113
Testudines. 113
Testudinide 114
Testudo 113, 115
berlandien 115
curetta. 115
carolina 115
concentrica 114
coriacea 113
grseca. 115
guttata 114
mydas 115
polyphemus 115
scorpioides. 114
serpentina 113
terrapin 114
Tettigonids. 398
Thalassochelys 115
Thamnophis 120
Thaumatoneura $461,462,467$ 468
Thecophora 113
Thelepus hamatus 352
Tholymis 462
citrina 489
Thomonys clusius fuscus. 104,405
fossor 404,405
Thore 461
Thyrosternum. 114
Tiliqua fasciata 117
Tmesidera. 620
Tofieldia racemosa 459
Toluca 122
lineata 122
Tomodon nasutus. 123
Tomonotus aztecus 367, 346, 387
ferruginosus. 386
Tortrix botta 119
Toxostoma rufum. $133,137,156$
Trabea. $62,163,169,295,295$
aurantiaca $185,296,298$
Trachemys 114
scabra 111
Trachypterus ishikaw: 319
seleniris $31!$
Tramea. 162
abdominalis 190
cорhysa ISI
insularis 159
longicauda. fise, tis
onlusta. (N1, 4s?
Travisia forbesii 35.4
рира 355
Trepidulus melleolus 367,307
rosaceus. $3666,367,{ }^{2} \times 87$
Tretosphys grandarvus 2
Triakis felis 59
semifasciatus 59
Tribulus 601
zegheri, 603, 604, 606, 609, 610,612-615, 617, 618
Tricca 284, 284, 285
Trichochloritis 42
Triglochin maritima 459
Trimerotropis alliciens 390
citrina 390
cyaneipemnis 391
fascicula 389
inconspicua 390
modesta 390
strenua. 390
vinculata 368, 390
Trimorphodon 123
lyrophanes 123
Trionychide 115
Trionyx agypticus 115
brongniartii 115
euphraticus 115
Trishoplita cretacea 593
c. hypozona 393
dacoste awajiensis 455
hilgendorfi 34
Triton ensatus 127
Triturus fuseus 126
viridescens 126
Trochilus colubris. 153
Trochosa.....162, 163, 221, 222, 234, 289
avara. 281
cinerea 282,.883
contestata 513
frondicola 261
helvipes 229
noetuabunda 289
parva 290
pratensis 263
purcelli 267, 514 267, 514
rubicunda. 379
scpulchralis 220
sublata 288
Troglodytes aedon 156
Trophonia papillata 356
Tropidoclonium 120
Tropidonotus 120
dekayi 121
sauritus 120
seabripes 120
torquata 120
Tropinotus. 12
affinis. 12
Trypanosvilis gemmipara …....325, 328
minakiensis. 328
nigens 325
Typhlops nigricans. 119
septemstriatus 119
Typosyllis armillaris s.3
Tyranins tyrannus 153
Diva 131
10.2
Lima 117
notata 117
Uracis fastigiata 190
imbuta $457,489,190$
Crodela 126
Urosalpinx 5
Uisus americanus 404
Ita 117
stansburiana 117
Vallonia patens 37
tenera. 455
Venatores 169
Vinuls(i. 7.9
mercenaria 0
Verticaria 118
Vertigo japonica. 455
Viburnum alnifolium 450
lantanoides 450
Vipera 121
ferus 122
Viperide 122, 124
Vireo flavifrons 155
gilvus 155
novaboracensis 155
olivaceus 154
solitarius 155
Virginia 123
inomata 121
valeris 123
Vulpes macrourus 404
Wenona 119
plumbea 119
Wilsonia canadensis 156
Xantusia 118
gilberti 118
henshaw 118
rigilis. 118
Xantusider 118
Xerobates 115
Xiphiola 17
Xiphiolx 17
Yersinia solitaria 369
sophronica 366, 369
Zablepsis 118
Zamelodia ludoviciana 154
Zamenis 121
Zaptyx $576,579,580,583$
Zapus princeps 404
Zenaidura macroura 153
Zonabris dicincta v. occidentalis. 609
Zoniopoda 16
tarsata 16
Zonitides 620
Zonitis $620,621,623$
angolensis 622
annulicornis 622
antennalis 621
ciconia. 622
posoka 622
prionocera 622
scapularis 623

GENERAL INDEX.

1908.

Additions to the Museum, 644.
Biological and Microscopical Section, report of, 636.
Bladen, Elizabeth S., announcement of death of, 456
Botanical Section, report of, 638.
Boyer, Charles S. Synonymy and relationship of Surirella (no abstract), 503. On a new species of diatom of the genus Cymatopleura (Plate XXVIII), 516,554 . Report of Biological and Microscopical Section, 636.
Brooks, William K., announcement of death of, 503.
Brown, Arthur E., Sc.D. (ieneric types of Nearctic Reptilia and Amphibia, 44, 112.
Brown, Stewardson. Report of Botanical section, 63s.
Brusina, Spiridione, announcement of death of, 457.
Bullock, Benjamin, announcement of death of, 456 .
Calvert, Philip P., Ph.D. General results of nine vears' study of the dragon-flies of Nexico and Central America (no abstract), 11. The composition and ecological relations of the Odonate Fama of Mexieo and Central America (Plate N゙XVI), 456 , 460.

Cattell, Henry W., M.I). On Trypanosomiasis (no abstract), it.
Chamberlin, Ralph V. Animal names and anatomical terms of the Goshute Indians, 44, 74. Revision of North American spiders of the family Lycoside (Plates VIII-XXIII), 158.

Clarke, John Mason, award of Hayden medal to, 502 .
Colton, Harold sellers. Charles Wilson Peale and the Philadelphia Museum (no abstract), 44. How Fulgur and sicotypus eat oysters, mussels and clams (Plates I-V), 3. some effects
of environment on the growth of Lymnea columella Say, 410, 456.
Conklin, Edwin G., Ph.D. On some phenomena and causes of heredity (no abstract), 30 .
Corresponding Secretary, report of, 627.
Council for 1909, 642.
Curators, report of, 621.
Dixon, Samuel G., M.D., and Henry A. Pilsbry, Sc.D. Report of Curators, 631.

Elections during 1908, 643.
Entomological Section, report of, 637.
Fowler, Henry W. Notes on sharks, 44, 52. Synopsis of the Cuprinid: of Pennsylvania (Plate XXVII), 516, 517.
Freedly, William G., amouncement of death of, 456 .
General Index, 673.
Harshberger, John W., Ph.D. On the geographical study of bud opening in connection with isothermal lines (no abstract), 157. The directive influence of light on the growth of forest plants (Plates XXIV, XXV), 449, 456.

Hayden Memorial Award, 1, 157, 502.
Holt, Jacob li., announcement of death of, 456.
Index to Genera, 651.
Ishikawa, Chiyomatsu, PlıD. Description of a new species of Squaloid Shark, 44, 71.
Keeley, Frank J. On secondary crystallization of early limestone and demonstration of Brownian movement (no abstract), 503.
Lyman, Benjamin smith. Report of Mineralogical and Geological bection, 640.
Mayer, Gustav, announcement of death of, 457.
Medlicott, Henry 13., amouncement of death of, 157.
Mineralogical and (ieological Section. report of, 6339.

Montgomery, Thomas H. Remarks om Prof. Clamberlin's Revision of North American Lycoside, 503, 513.
Moore, J. Percy, Pli.D. some Polychartous Amelids of the northern Pacific Coast of North America, 321, 456. Report of Corresponding Secretary, 627.
Nolan, Edward J., M.D. Report of Recording Secretary, 625. Report of Librarian, 628.
Oflicers, (ouncillors and Committee on Accounts, 1909, 642.
Ornithological section, report of, 640 .
Pilsbry, Henry A. Notes on Succinea ovalis say and S. obliqua Say (Plate VII), $4 t, 45$. On the classification of scalpelliform Barnacles, 44. 104. A comparison of the landsnail fauna of Korea with the faunas of Japan and China, 452, 456. Geographical distribution of Strobilops (no abstract), 503. Clausiliidæ of the Japanese Empire, XII (Plates XXX, XXXI, NXXI), 516, 561. Report of the Department of Mollusea, 636.
Pilsbry, H. A., and C. Montague Cooke. On the teeth of Hawaiian species of Helicina, 516, 560.
Pilsbry, Henry A., and Y. Hirase. New land and fresh-water Mollusea of the Japanese Empire, 30, 31. New land shells from the Japanese Empire, I, 30, 37. New land Mollusca of the Japanese Empire, 516, 536.

Pilsbry, H. A., and E. G. Yanatta. Notes on Polinices didyma, with description of a new Australian species (Plate XXIX), 516, 555.
Potts, William, announcement of death of, 503.
Recording Secretary, report of, 625.
Rrese, Jacol, amouncement of death of, 2.
Rohin, James A. G. Acrididee (Orth(optera) from São Paulo, Brazil, with descriptions of one new genus and three new species, 11, 12.
Rehon, James A. (i, and Morgan Hebard. An (orthopterological reconnoissance of the soluthwestorn ['nited States. Part 1, Arizona, 365̃, 456.
Meport of Miological and Microseopical cretion, 6:36.
Leport of Botanical section, 639.
Roport of Corrosponding secretary. 127

Report of C'urators, 621.
Report of Entomological Section, 637.
Report of Mineralogical and Geological Section, 639.
Report of Ornithological Section, 640.
Report of the Recording Secretary, 625.
Reports of the Sections, 636.
Ridings, James H., announcement of death of, 44.
Rosengarten, Samuel G., announcement of death of, 456.
Skinner, Henry, M.D. Report of Entomological Section, 637.
Snyder, John Otterbein. Description of Trachypterus seleniris, a new species of ribbon-fish from Monterey Bay, California, 319, 456.
Sorby, Henry Clifton, announcement of death of, 44 .
Standing Committees, 190s, 1.
Stewart, Thomas A., M.D. On the bacillus of Syphilis (no abstract), 503.

Stone, Witmer. Geographical distribution of plants and animals in southern New Jersey (no abstract), 11. Methods of recording and utilizing bird-migration data, 128. A review of the genus Piaya Lesson, 457, 492. Recent additions to our knowledge of the flora of southern New Jersey, 457. Report of Ornithologieal Section, 640.
Trotter, Spencer, M.D. On the anatomy of the apes (no abstract), 157.
True, Frederick W. Remarks on the fossil cetacean Rhabdosteus latiradix Cope (Plate VI), 11, 24.
Vaux, William S., Jr., announcement of death of, and minute, 456.
Walcott, Charles D., presentation of Hayden Medal to, 1 .
Wellman, F. Creighton, M.D. On the Meloidar of Angola, 516, 600. On the natural history of West Africa (no abstract), 516.
Wellman, F. Creighton, M.D., and Walther Hom. On the Cicindelina of Angola, 503, 504.
Whelen, Afred, announcement of death of, 503.
Wood, Casey A., M.D. Eyes and eyesight of birds (no abstract), 2 .
Young, Robert T. Notes on the distribution of Colorado Mammals, with description of a new species of hat (Eptesicus pallidus) from Boulder, 403, tisk.
,

FULGUR CARICA

SyCOTYPUS CANALICULATUS

.

TRUE ON RHABDOS

6

4

6

CHAMBERLIN ON LYCOSIDAE.

CHAMBERLIN ON LYCOSIDAE.

CHAMBERLIN UN LYCOSIDAE.

2

$$
\begin{aligned}
& \pi .0 \\
& 0 \pi 0 \\
& 3020
\end{aligned}
$$

CHAMBERLIN ON LYCOSID.EE.

2

3

4

CHAMBlERRI.IN uN I YOOSILAR
.

\qquad Zone 1 More that $30^{\circ} \mathrm{C}$. (36 F)?

$$
\begin{aligned}
& \text { n } 1130^{\circ}-35^{\circ} \mathrm{C}\left(86^{\circ}-77^{\prime \prime}\right) \\
& \therefore \quad " 11125^{\circ}-20^{\circ} \mathrm{C} \cdot\left(77^{\circ}-63^{\circ} \mathrm{F}\right) \\
& \text { - IT } \because 0^{\circ}-15^{\circ} \mathrm{C},\left(68^{\circ}-59^{\circ} \mathrm{F}^{\circ}\right)
\end{aligned}
$$

\qquad
\qquad " $\mathrm{V} 15^{\circ}-10^{\circ} \mathrm{C} \cdot\left(59^{\circ}-50^{\circ} \mathrm{F}\right)$
$1 \square$
${ }^{n} \mathrm{Y}$ Less than $10^{\circ} \mathrm{C}$. $\left(50^{\circ} \mathrm{F}\right)$
---- Muternational Boundaries
Boundaries of Mexicam States
------ Limits of Central Mexician Plateau

.

[^97]-

QH	Academy of Natural Sciences 1
of Philadelphia	
A2	Proceedings
V. 60	
Biological	
\& Medical	
Surialo	

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: ${ }^{1}$ For an illustration of the remodelled Hayden Medal see Report of Recording Secretary, Proceedings, 1907, p. 564.

[^1]:
 for many favors, and particularly 1)r. Ě. (i. ('onlilin for reading dace mannacriph of this paper and for many helpfal suggestions.

[^2]: ${ }^{1}$ I'roc. Acurd. Dat. Siri. Phila., 1906, pp. 10-50.

[^3]: probathly the latter.
 ${ }^{3}$ Tho fivo fomatos from sapmeas, Paraguay, reeordod by the anthor as L.

 deformination.

[^4]: : "opaiar, resembling, and Saparus, a !encric name.
 2

[^5]: - We do not consider the resemblance of Stoll's figure of Giryllus (Locusla) lineatus (N'atuurl. A/becld. Besch. Springh., P'l. XV 13, fig. 57) close enough to specimens of this species to consider them the same. While in one or two points resemblance exists, in a number of others the discrepancies are very considerable. Stoll's figure appears to us to be a true Locusta (Acridium of atuthors).

[^6]: ${ }^{1}$ Proc. Acad. Nat. Sci. Phila., 1867, pp. 132 and 145.
 ${ }^{2}$ Amer. Nat., 1890, p. 607, fig. 4.
 : Rep. Maryland Gicol. Surv., Miocene, 1904, II. 15.

 - Journ. Acad. Nat. Sci. Phila., Ser. 2, Vol. 7, 1569, p. 431.
 : Smithsonian Misc. Colls., Quart. Issue, 50, 1't.4. No. 175², p. 451, January 27, 19105.

[^7]: - Rep. Maryland Geol. Suri., Miocene, Pl. 15, fig. 2.

[^8]: -Journ. Acad. Nal. Sci. Philn., Ser. 2, Vol. 7, 1569, p. 134.
 "Rep. Maryland Geol. Suri', Miocene, Il. 15, fig. I.

 - Smithsonian Misc. Colls. (Quarterly Issue, 50, 1't. 4, No, $175^{2} 2$, p. 451 , January 27, 190 S.

[^9]: 10 . 1 macr. Nal., 1590, p. 607, fig. $4(2,2 a, 2 b)$.
 "That the anterior and posterior surfaces of the crown are flat is not due to westr.
 ${ }^{13}$ Jahreshefle l'er. V'aterlünd. Vaturkunde 11 "̈̈rllemberg, 12, 15sti, 11. 3, figs. 11-14.
 ${ }^{13}$ I'alcant. Ital., 9, I', 31, figs. 6-2S.

[^10]: ${ }^{\text {8 }}$ S. grceri 'Iryon has been quoted as a synonym of S. obligua, but it is certainly distinct from that species.

[^11]: ${ }^{1}$ Ann. Layc. Nat. Hist. N. Y., 1S61, p. 41.
 ${ }^{2}$ Proc. U. S. Nat. Mus., XXVI, 1903, p. 606.

[^12]: ${ }^{2}$ Wieqm. Arch., 1s37, p, 396.

 - Bull. U. S. .'ít. Mus, No. 16, 1852, p. 18.
 ${ }^{5}$ Syst. Beach Plug., 1838, p. 23.
 -Ann. Lye. Nat. Hist. N. Y., 1861, p. 40.
 ${ }^{2}$ Rep. N. J. State Mus., 1905, p. 56.

[^13]: 'Proc. Acad. Nat. Sci. Phila., 1901, p. 332, P1. 13, lig. 4 (anatomy).

[^14]: - In Proc. C'al. Acad. Sci., I.
 ${ }^{10}$ Siee Proc. Acud. S'at, Sci, Phila, V'II, p, xxii, in domations to the lihrary:
 "New Y'ork L!yc. Niut. Hist.

[^15]: ${ }^{12}$ Juall. Soc. Philomath. I'aris, 1816, p. 121.
 ${ }^{12}$ /Iisl, Nat. Poiss., I, 1799, pp. 165, 1699, 1'l. 8, fig. 1.

[^16]: "Inel. It. Sicil., 1810, 1. 14.

[^17]: is foishes of Indiu, IV, 18s0, p. 716, II. 1s0, fig. '2.

[^18]: ${ }^{14}$ Quart. Journ. C'alculla Mcd. Phys, Soc., No. V, January 1, 1838, 1’l. 1.

[^19]: ${ }^{17}$ Car. Nuor, Cicn. Sicilia, 1810, p. 13.
 ${ }^{13}$ Squalus uyatus Rafinesque, i.c., P'I. 14, fig. '2.

[^20]: ${ }^{1}$ Sibogu-Expeditic, Cirripedia Pedunculata, p. 58. October, 1907.
 ${ }^{2}$ Bulletin (f), U. S. Sational Muscum, p. 71. November 9, 1907.

[^21]: ${ }^{2}$ The mere number of plates in the capitulum is not especially significant, since the sams: number may be present in different genera, but made up of morphologically different plates, as in the case of 13 -valved species of Scalpellum and Calantion.

[^22]: ' Arcoscalpellum is exactly equivalent to Holoscal pellum Pils., Bull. G0, U.S. S. Mus., p. 25, published a few days later tham Hoek's work.

[^23]: ${ }^{6}$ Sere IBull. 60, U. S. Nat. Mus., p. Gis, fig. 26.

[^24]: －Writtern Malaclomys hy（iray，but stated by him to be a mistake．
 ${ }^{2}$ Eimys Dumeril（\％ioul．Anul，p．76，1806）is not used in a properly generic sense and has no standiag．

[^25]: Imyda Oken（1s16）．Type Trionyr euphratirus．
 A spidonectes Wagl．（1s3i）！．Type Trionys argyptims．

[^26]: ${ }^{3}$ The subgenus Diplogleasus is extra limital.

[^27]: Siren Linn．（Syst．Nat．，Eil，N1I，1，371，1766）．
 Monotype Siren lacertina Limn．
 Pseudobranchos Gray（Ann．of Phiton．，1825，f），216）．
 Monotype Siren strinta LeC＇onte．

[^28]: ${ }^{1}$ Bird Lore, 1905-1907.

[^29]: the May migrants wero concerned, a wite just at this time brought the (Wernbirds at their sormal date.

[^30]: " "Arrival" here has the same significance as explained on page 193.
 ${ }^{5}$ Cf. Twenty-five V'rars of Bird Migration at Am Arbor, Michigan, by N. A. Wood, Eighth Annual Report Mich Acad. Sci.
 "(staally only the "first arrival" within the Philadelphia circle and the one or more marked bulk movements are considered, but sometimes when the first arrival was a very "arly straggler the second arrival is also noted.

[^31]: Syn-1817. C'iligruder latr. (nd. max. part.), in Cuvier, Regne Animal, 3, p. 95
 1s23. Cиrsores Sund. (ad. max part.), Gen. Aran. Suce., p. 20.

 18.33. Coyrosides Sund. (ad. max. part.), Comp. Arachn., p. 25.

[^32]: Syn.-1885. Pardosa pallida Emerton, Trans. Conn. Acad. Sci., 6, p. 496, Pl. 49, figs. 3 to $3 c$. (Nom. preocc. by P. prallida Walck., 1837.)
 1890. Pardosa pallida, Marx, Proc. U. S. N. N., 12, p. 565.
 1892. Pardosa pallida, Banks, Proc. Acad. Nat. Sci. Phila., 44. p. 6s.
 1903. Pardosa pallida, Montgomery, Proc. Acad. Nat. Sci. Phila., p. 653, Pl. 29, fig. 3.

[^33]: \therefore - 14. -1437. Lypma suni Walckenaer, Insect. Apt., 1, p. 337.
 1416. Leyosal bulmingtoni Blackwall, Ann. and Mag. ©. 11., 17, p. 30.

[^34]: Syn-1881. Tarentula nidifex Marx, Am, Nat., p. 396.
 18\$5. Lycosa nidifex (Marx) Emerton, Trans, Comn. Acad., VI, p. 457, PI. 47, fign. 4, 4a.
 1858. Lycora arenicola Scudder, McCook, Proc. Acad. Nat. Sci. Phila., 1858, р. 333.
 18.59. Lycosu arenicola Scudder, Marx, Aranes N. A., pp. 561 and 594, note $3 d$.
 16(4). Ly/eosa arenicoluseudder, Stone, Proc. Acad. Nat. Sci. Phila.
 1892. Lyjeosa arcnicola seudder, Marx, Proe. E. S. W., II, p. 160.

 1\$95. Ly,cosu arenicola Scudder, Banks, J. N. Y. E. S., III, p. 91.
 1s98. Lyycora arenicole scudder, Simon, Hist. Nat., II, p. 341.

[^35]: Syn--Lycosa picilis, Montgomery, Proc. Acad. Nat. Sci. Milha, p. 287, P1. XVIII, figs. 7, 8.

[^36]: Syn.-1831. Lycosa lynx Hahn, Dic Arachn., II, p. 13, fig. 104.
 1811. Lycosa maritima Hentz.
 1414. Lyeosa hatodroma C. Koch, Di" Arachn. V, p. 196, figs. 410, 411.
 --. Aretose cineren (:. Koch, ibid., XIV, p. 123, fig. 1358.
 --. Arctosa lynx C. Koch, ibid., p. 133, fig. 1364.
 1475. Lyfora marilima Hentz, Spiders U.S., al. Burgess.
 1845. Lycora cinerca, Emerton, New England Lycos., Tr. Conn. Acad. Sci., VI, p. 488, P1. 47, fig. 3.
 1849. Trochose cinerca Marx, Proc. U. S. N. M., p. 564.

[^37]: Syn.-1885. Aulonia Emerton (1. aurantiaca), Tr. Conn. Acad. Sci, 6, p. 495.
 1895. Trabura Simon, Hist. Nat. Araign, 2, p. 349.
 1903. Trabera Comstock, Classification of North American Spiders.

[^38]: ${ }^{1}$ Trachypherus ishikaux Jordan and Sisyder, Journal of the College of Seience,
 Miscellancous Collections, $15, \mathrm{p}, 240, \mathrm{P} . \mathrm{L}$ - 11.

[^39]: ' The northermmost point of that name.

[^40]:

[^41]: ${ }^{2}$ This bar is very faintly indicated on the head.

[^42]: - Proc. Acad. Nat. Sci. Phila., 1904, p. 563.

[^43]: ${ }^{8}$ Proc. Acad. Nat. Sci. Phila., 1907, p. 76.

[^44]: ${ }^{\text {e P'Pac. Acad. Nat. Sci. Phila., 1907, p. } 30 .}$

[^45]: ${ }^{7}$ Proc. Acad. Nat. Sci. Phila., 1907, p. 72.

[^46]: - Proc. Acad. Nat. Sci. Phila., 1904, p. 567.

[^47]: - T'rans. Kansas Acad. Sci., XXX, pt. 2, p. 37.

[^48]: ${ }^{10}$ Proc. Acand. Nat. Sci. Phila., 1904, p. 572.
 ${ }^{11}$ IUid., 1907, p. 54.
 ${ }^{22}$ Proc. Acad. Nat. Sci. Phila., 1907, p. 78.

[^49]: ${ }^{1}$ Where the records for any species number very few, I have usually omitted such species from this part of my discussion.
 ${ }^{2}$ Plant Zones in the Rocky Mountains of Colorado, Science, N. S., Vol. XXII, pp, 642-3.
 ${ }^{3}$ Forest Formations of Boulder County, Colorado, Bot. Gaz., Vol. XLIV, pp. 321-52.
 'Life Zones and Crop Zones of the United States, Bull. 10, 1" 太. Biological Survey.

 - Merriam applies the term Arctic-Alpine to this zone.
 'Ramaley's terminology, as applied to this particular region, is perhaps more desirable than that of Merriam; but for purposes of comparisun with wher regions, and for the sake of uniformity, I much prefer the latter.

[^50]: "Warren, E. R.: The Mammals of Colorado, Colorado College Publications, Science Series, No. 46, p. 25.4, mentions the coney as occurring as low as $2,53.4 \mathrm{~m}$. near Crested Butte.

[^51]: ${ }^{12}$ Fide Warren (op. cit., p. 242).
 "Bailey, V: The Prairie Ground Squirrels of the Mississippi Valley, Bull. 4, U.S. Biol. Survey, gives its western limits as approximately Twin Lakes.
 "Fide Warren (op. cit., p. 245).
 ${ }^{16}$ Merriam, C. II.: Phenaromys preblei, a New Vole from the Mountains of Colorado, Proc. Biol. Soc, Wash., Vol. XI, p. 45.
 "Fide Warren (op. cit., p. 264).

[^52]: ${ }^{18}$ Op. cit., p. 265.
 ${ }^{18}$ Elliott, $\mathrm{F}, \mathrm{G}:$ A Synopsis of the Mammals of North America and the Adjacent Seas, Ficld Columbian M useum, Zool. Ler., II, 19א)1, ए. 367.
 ${ }^{10}$ Op. cil., p. 266 .
 ${ }^{30}$ Op. cit., p. 72.

[^53]: ${ }^{21}$ Miller, G. S., Jr.: IRevision of the North American Bats of the Family Vespertilionidse, N. A. I'auna, 13, p. 65.
 ${ }_{23}{ }^{23}$ p. cil., p. 80.
 ${ }^{23}$ All medsurements in min.
 " Average of five specimens including one male.
 2from tip to base of phalanges not including carpus.
 ${ }^{20}$ Measurements given in same order as those of the type.
 ${ }^{27}$ Average of two specimens.

[^54]: ${ }^{25}$ Loveland, fide Miller, op. cit., p. 98. A single skin without skull in my own collection from Boulder Canyon, approximate altitude $2,300 \mathrm{~m}$., has the typical brown color of E. juscus.
 ${ }^{20}$ Miller, op. cit., p. 99, says of fuscus: "Very pallid specimens are occasionally taken in the Southwestern United States, but the number of skins available for comparison is so small that it is impossible to determine the status of the form which these aberrant individuals represent." It is possible that these specimens are representatives of my new form, but not having seen them I cannot say.

[^55]: ${ }^{2}$ Cited from the Camb. Nat. Hist, Mollusks, p. 88.

[^56]: ${ }^{2}$ Inniled water from a jar in which a smail had been raised.

 - Cited from Walter ('O6).

[^57]: ${ }^{3}$ Cited by Cuvier ('17).

[^58]: - Citod from Walter ('06).

[^59]: ${ }^{1}$ Jahbluchor d. Deutechen . Watakozoologischen (iesellschufl, XIV, 18S7, pp. 9-22.

[^60]: ${ }^{2}$ The Concholagioal Magazine, II, June, 1905, pp. 25-29.

[^61]: ${ }^{1}$ Odonata, by P'. P'. Calvert, forming pp. 17-120 and Introduction, pp. ${ }^{17}=\mathrm{xxx}$ of volume Scuroptera of the Biologia Centrali Americana, edited by F. D. Godman. London, 1901-190s. fo. 9 plates, 1 map.

[^62]: ${ }^{2}$ Already pointed out by Carpenter, Scient. Proc. Roy, Dublin Soc. (n. s.), VIII, p. 450 (1897).
 ${ }^{3}$ Throughont this memoir, as in the Biologia volume on Odonata, hy "Northern America" is meant all north of central California, Irizona, New Mexico, Texas and (east of this last) of the 30th parallel of north latitude.

[^63]: ${ }^{4}$ The existing data for about 40 Mexican species would seem to show that their northern boundary line may correspond with the upper limit of the $\mathcal{L}^{\mathcal{P}} \mathrm{pper}$ Sonoran of Merriam (Map in Bull. 10, U. S. Dept. Agric., Dir. Biol. Surv., 1s9s) in California, Arizona and New Mexico; but not cast of the last named, as in Texas these species are not yet known as far north as the upper limit of Merriam's Lower Sonoran.
 -The Distrito Federal embraces much of the highest portion of the Mexican platean, having an clevation of $7200-5000 \mathrm{ft}$. or $2200-2450 \mathrm{~m}$, and has been fairly well examined as regards its Odonate fauna, which numbers 21 species, ete. Ontside of Mexico and Central America, 6 of the 21 oceur exclusivety in Northern America and 2 of the 21 exclusively in South Lanerica, so that here the southern element is weak.

 - Contrast on this feature Bates, Biol. Ccntr. Amer. Coleop., I, pt. 1, p. vi, and W. Horn, Deut, ent. Zeilschr., 1897, pp. 161-2.

[^64]: The endemie sparies of birds of this region are equivalent to 45% of the whole number (Godman, Biol. Cent.-Amer., Aves, vi). This percentage is of some interest in comparison with that of actively flying insects like the Odonata.

 I, p.

[^65]: ${ }^{8}$ Proc. Zool. Soc. London, 1905, II, p. 239.
 ${ }^{6}$ Hagen, Proe. Bost. Sor. Sat. Hist., XI, pp. 2s9-291 (1867); XVIII, pp.

 $261-269$ (1591). Cirpenter, Journ. Insl. Jamaica, II, pp. 259-263 (1896). Calvert, Biol. Cent. Amer. Neurop. Introd., Table B (1908).
 ${ }^{30}$ See the charts of provailing winds acompanying Juchan's Challenger Report on Atmosplicric Circulation, and the data given in Table VII of the Appendix thoreto, jp. 169, 170, for Matamoras and Cordova, Mex., and Belize; abor the data for Merida, ('amperhe and Jabapa hy Moreno y Anda and Gomez in EL ('lima de la Jopulier Mexicana, Dno I (ior 1895) and Il (for 1896), Mexico City, Secretaria de Fonento, 1899 and 1900. Cf. also Sapper, Miltelameri-
 for Mlewfielde, Nicar., l.e., P. 171, represent the prevailing wind as northwest, which has litilo bearing on the question of the relations of the continental and W゙eat Indian Odobata.
 " ()n the other hand (hapman atates that of the sion spercies and subspecies of birds recorded from the Wost Indies, 303, or 55%, are endemic. Bull. Amer. Mus, Nat. /Iist., IV, p. 318, 1892.

[^66]: ${ }^{12}$ While the expression "South American element" has been used in these pages to designate those species found at the present time in South America also, there seems to be no evidence to decide whether such Odonata, or their ancestors, entered Mexico and Central America from the south, or whether South America received them from the former countries. Probably only further discoveries of fossil Odonata will settle this question.

[^67]: ${ }^{13}$ Compare the geological data embodied in the sketch maps of Gadow (Proc. Zool. Soc. Lomdon, 1905, II, PP. 235-6); also the diseussions in the papers of Chapman (Bull. Amer, Mus. Nat. Hist., IV, pp. 318, 326-9, 1892) on birds, Simpson (Proc. U. S. Nat. Mus., XVII, pp. 428, 438, 477, 1894) on land and fresh-water mollusks, and Ortman (Proe. Amer. Philos. Soe., X1.1, pp, 349, 341. 347) on fresh-water decapods, of the West Indies.
 "Romero, Gcographical and Statistical Notes on Mcxico, p. 91, New York, 1808.
 ${ }^{16}$ Century Dictionary, Vol. IX, New York, 1906. Dr. Sapper gives the approximate area of Guatemala as only 110,000 square kilometres, Wittelomerikanische Reisen u. Studien, p. 424.

[^68]: ${ }^{10}$ Thar State of Vera (ru\%, lying explusively on the Atantie slope, extending through if degroes ($17^{-0} 22^{\circ}$:) of latitude and $1 \mathrm{~s}, 000 \mathrm{ft}$. ($5,187 \mathrm{~m}$.) of altitude, and having an areat of 29,210 square miles (75, (in) square kilometres), has 118 sperios of Olonata. 'The 大itate of New Jorsey, I'. S. A., also bordering the
 and with an area of 7,515 square miles (20,241 square kilometres) possesses 111 spocies of Odomata. Both areas have been examined by a number of collectors of these insects, fand the results do not seem to favor the general belief in the nohmes of tropical monntrics in (Dlonatat. It least 9 speries are common to the two arams: Helarima americana, Argia translata, Ischnura ramburi, Anomalaarion hatatum, I mare jumiu", I. longipes, Libellula auripemmis (probably), Panbuta flaroserns, sigmpotrum rorrophom. As far as I am aware no data have been puhtishod showing a richor (obonate fanna in a limited period of time than that of the vicinity of K゙ont, Ohio, whore Mossrs. Oshurn and Hine took 57 species betwees Junc 17 and 2.1 (Ohio State University Naturalist, I, Pp. 13-15, 1900).

[^69]: ${ }^{17}$ It is not intended that the remarks here made on the relations of Odonate distribution to temperature, rainfall and other envirommental factors are to be interpreted ass showing the limits which these factors set to the distribution of the insects in question. Our knowledge of the areas occupied by the latter is still too imperfect to permit this. We may be said to know where many species occur, but not where they do not occur.
 ${ }^{10} \mathrm{Mr}$. C. . II. T. Townsed, in his papers "On the Biogeography of Mevieo, Texas," cte. (Trans. Texus Icad. Sci., Vols. I and II, 1s95 and 1s97), has laid great emphasis on the difference between apparent and sensible temperatures, as obtained from dry and wet bulb thermometers respectively, holding that only sensibl. tomperatures can bue used in biogeographial work (l.e., I, pp. 89-90; 11, pp. 65-677). As very few wet bulb readings exist for our district, our data are those of his "apparent" temperatures only. I am indebted to Dr. C. C. Adams for calling my attention to these two papers, which seem to have been omitted from the "\%oological Record."

[^70]: ${ }^{10}$ The distribution of the Odonata by temperature zones in South America should also be considered hore, but even the first steps in investigating the South Awerican Odonata from this point of view have vet to be taken.
 ${ }^{30}$ Handbuch der Ḱlimalologie, 2te Aufgabe, Bl. II, p. 285, Stuttgart, 1597.

[^71]: ${ }^{21}$ Hill, Bull. Mus. Comp. Zool., XXXIV, pp. 205-207, etc., 1899.
 ${ }^{22}$ Most recently by Bray, Science for Nov, 9, 1900, pp. 709-716, and Botan. Gazette, XXVI, pp. 121-152, 1898, with citations from previous writers.

[^72]: ${ }^{23}$ Escobar, Memor. Soc. Cien. "Antonio Alzate," XX, 1903 (see his figures for Mazatlan, e.g., l.c., p. 29). Harrington, Bull. Philos, Soc, Washington, XIII, pp, 6, 19. 1895, Sapper, Meteorol. Zeitschr., 1892-1906. A still more recent review of the distribution of rainfall in Central America is contaned in Dr. Alfred Merz's "Beitrage zur Kilimatologie und Hydrographie Mittelamerikas" (Mitthe il. Vereins für Erdkunde zu Leipzig, 1906; 96 pp., \& Beilagen; 1907, especially pp. 9-23). An extended discussion of Dr. Merz's work is given in Metcorol. Zeitschr., XXV, pp. 326 et seq., July, 1908.
 ${ }^{26}$ These localities are mostly at the higher elevations, in the larger centres of human population, while the majority of the species of Odonata are found at lower levels.
 ${ }^{25}$ See a note by Mr. Champion (Biol. Cent--Amer. Neur., p. 53) and one by Mr. C. II. 'T. Townsend (Ann. May. Nitt. Hist., 6, XXX, p. 2s9, 1897) on the seasonal appearance of certain Odonata and Diptera, respectively, in our district.
 ${ }^{2}$ Mr. F. M. Chapman has some interesting remarks on the influence of temperature, independent of humidity, on tho distribution of hirds at Las Vigas and Jalapa, Vera Cruz, Mexico (Bull. Amer. Mus. Nat. Mist., X, pp. 17 and 36).

[^73]: ${ }^{27}$ Sippper, Petormanm's Millheil., XiJII, map, 1897.

 ${ }^{20}$-s:рриет, l.г., 1.897.

 ${ }^{21}$ sappor, P'otormatmis Millheil., Xl.111, M1, 117 ct scy., 1897; Metcorol. Zeitscher., XIV, p, 230, 1597.

[^74]: ${ }^{23}$ Sumichrast, quoted by Lawrence (Bull. U. S. Nat. Mus., No. 4, 1876) for birds of the Isthmus of Tehuantepee. Godman (Biol. Cent. Amer. Lepid. Rhopal., I, p. vi, 1901) for Lepidoptera Rhopalocera generally "to perhaps as far south as (e)sta Rica." V. Martens (Biol. Cent. Amer, Land and Freshw, Moll., p. xxvii) for this group to the same distance; he correlates the greater abundance of species with the greater area of the Athantic slope of Mexico, Guatemala, Honduras and Nicaragua. Champion (Éntom. News, XVIII, p. 33, 1907) for insects of Gunternala.
 ${ }^{23}$ Butl. Philos. Soc., Washington, XIII, p. 7, 1895.
 2" "Distribucion de las Lhuvias en la Republica Mexicana," Mcm. Soc. Cien., "Antonio Alzate," XVI, 1901.
 ${ }^{23}$ Peternann's Mitth., X1LII, pp. 117 et seq. and map, 1897; Das Nördliche Mitthmerila, jp. 152-3; Mittelamerikanische Reisen u. Studien, pp. 299-300.
 « Mcteorol. 'Zeilschr., ẊXIII, pp. 237 cl scq., 1906.

[^75]: ${ }^{3}$ "The terms "Athantic" and "Pacifie slopes" are here used in the wide sense as embracing: (a) in Mexico all the desending lands from the outlines of the plateau, as shown on our map (Blate XXV'I), to the Gulf of Mexico on the one side and to the Pacifie Ocean and Gulf of Califormia on the other; (b) in Mexico south of the plateau and in Central America, as corresponding to the Atlantic and Pacific drainage areas respectively.

[^76]: ${ }^{38}$ Biol. Cent.-Amer. Neurop., p. 235.
 ${ }^{23}$ L.e.e. p. 361.
 © L.e., pp. 110, 380.
 "L.c., p. 380.
 ${ }^{62}$ Some remarks by Mr. S. E. Meek (Publicat. Field Columb. Mus, Chicago, V, pp. xxvi-xxvii, 1904), on the effects on the fish fauma of tluctuations in bodies of water on the northern part of the Mexican plateau, may also be applied to Odonate larver.
 "In Das Nördliche Mittelamerika (map dated 1895), 1897, and MittelameriImaioche Rerisen und Studion (map dated 1900), 1902. There is also a larger srale map for Guatemala only, dated 1894, in Petermann's Mittheil., Erganzungsband XXIV.

[^77]: "Those disposed to make further researches as to the existence of such correlations will doubtless find assistance in Señor Jose Ramirez" "La Vegetacion de Mexico" (Inales, Ministerio de Fomento, Repub. Mex., XI, pp. 227-159, 1s95). His botanico-geographical regions, however, are not shown on any of the maps accompanying his memoir.
 © Biol. Cent-- 1 mer Xcurop., pp. $53,56,353$. Cf, also silys, Mcm. Couron. Acrad. Sci. Bely., XXXVIII, p. 9, footnote, 1ss6.
 ${ }^{6}$ With the dearing of then tore-t, bow apparently in progress (ef. Belt, Naturalist in Vicaragua, pp. 185-6; Sapper, Miltelamerikanische Rcis. u. Stud., pp, 30s-9), we must probably expect the disappearance of these Odonata.

[^78]: ${ }^{48}$ Moreno Y Anda and（iomez，El Clima de la Republ．Mex．，Ano II，p． 136.

 ＂Hamn，Hdb．d．K＇limutologie，Itte Aufgabe，II，p． 256.
 to The apparent discrepancy between this figure（ 16 ）and that to be obtained 19，irm Table 9，pate 176，is due th the fact that the there other spectes or varisties，A max longijpes and Eirythrodiphex connata at and c^{\prime} ，while as yet found only in zone IV in Mexico and Central America，have been taken at lower levels in South America or in the West Indies．

[^79]: "Biol. C'entr.-Amer. Neurop., pp. 357-3s9.

[^80]: 1. Nll colors are based on Kidgway's nomenclature of colors.
[^81]: ${ }^{1}$ Twenty species of these were taken in Angola by one of us (F. C. W.) during 1906-08.

[^82]: ${ }^{3}$ All the material collected Ly Widlman is in W. Horn's collection, where also all the other species are represented, except Cicindela leucopicta (Qued.

[^83]: ${ }^{2}$ Putzeys gave to) this subspecies (and some specimens of the following) the wrong nanie C'icimdla sencyulensis, of. Jarn. Ša, Lisho, 1850, p. 21.

 :This in the blackish form.

 - This is the brownish form.

[^84]: "C'icindela lugubris Put\%., Jorn. Sci, List., 18s0, p. 22, is the true C. mechowi.

[^85]: - Ophryoderar rufomarginata, as recorded by Putzevs, comsints of the subspeceies bohemani and distanti, cf. Jorn. Sci. Lish, 15゙50, p. 25.
 ${ }^{\circ}$ Recorded by (Quedenfeldt as O. rufomarginuth, rid. Berl. Eint. Zcitschr., 18s3, p. 247 .

[^86]: ${ }^{1}$ Synop-is of the: ('yprindid of I'moswania, I'r. Am. Philos. Soc. Phila.,

 145 , figs. 1-44.

[^87]: ${ }^{3}$ Thr Fialus of I'ennsyania, Rep, State Comm. Fish., 1889-91 (1892), pp. 1-149, |ll. 1 35.

 - Notes on a Collection of Fishes from the Monongahela River, Ann.N. Y. A cad S'ci. III, 185:3-85 (1886), pp. 335-340.
 ${ }^{\text {'Rerorde of P'ernsylvaniar Fishes, Am. Nat., XLI, 1907, pp, 5-21. }}$

[^88]: - Cope includes \boldsymbol{V}. scabriceps (Copw) from our limits, in western 1'ennsylvania, hapothetically

[^89]: ${ }^{2}$ Cope records N. umbratilis ardens (Cope) from west of the Alloghanies, evidently hypothetically, as no definite locality is mentioned.

[^90]: " Cope includes Phenucobius teretulus Cope as probably occurring in western Pennsylvania, thus purely hypothetical.

[^91]: - Recorded wrongly by me in Am. ג'at., XIII, 1907, p. 11, as R. cutaracte. ${ }^{10}$ Bean records /I. amblops (Ratinesque) from the Ohio valley hypothetically.

[^92]: :Sce Proc. A. N. S. Philn., 1901, pl. 38, figs. 52, 53.

[^93]: ${ }^{2}$ Proc. A. N. S. Phila., 1904, p. S36. To the diagnosis of Diceratoptyx should be added. a small lower palatal pliea is developed; the inferior lamella ascends in a broad, sigmoid curve.

[^94]: ${ }^{1}$ On the Cicindelinte of Angola, by F. Creighton Wellman, M.D., F.E.S., and IW:Ather IIorn, M.D., Proc. Acad. N'at. Sci. Phila., November, 1908, Pp. 504-512.

[^95]: ${ }^{2}$ I have remarked on the relation of this flower to Angolan Meloidse before the Deutsch. Entomol. Gesellschaft, rid. report in Deufsch. Eint. Zeitschrift, 1905 p. 647.

[^96]: ${ }^{3}$ Since this was written Mr. Gahan's paper has been published (Ann. Mag. Nat. Hist., Ser. 8, Vol. II, 1908, p. 199f.) under the title, "Notes on the Coleopterous genera Horia Fab., and Cissites Latr., and a List of the Described Species."

[^97]: $1: 1 \because 11 \because$

