PROCEEDINGS

OF

The Academy of Natural Sciences

OF

PHILADELPHIA

Volume LXXII

\qquad

1920

PHILADELPHIA:
The academyof Natural Sciences

> The Academy of Natural Sciences of Philadelpha,
> March 11, 1921.

I hereby certify that printed copies of the Proceedings for 1920 were mailed as follows:
Pages 1-32...

" $\sqrt[515]{2}-80$. June $23,1920$.

- 136-198 .. October 6, 1920.

" 215-278 . November 20, 1920.
" 279 -2933 . November 2:3, 1920.
- 294-340 ... 7.1921.
. $341-384$... 3. 1921.
، 389-402... . Marcb 11, 1921.
Willian J. Fox, Editor

PUBLICATION COMMITTEE:

Henry skinner, M.D., Sc.D., Witmerstone, A.M., sc.D., Henry A. Pilsbry, Be.D., William J. Fon, Milton J. Greenman, M.D.

The President, John Cadwalader, A.M., LL.D., ex-officio.
EDITOR: William J. Fox.

CONTENTS

> For Announcementr, etc., see General Index.
PAGE
C'rawles, Howarb. statistical Observations on the Texas Fever Parasite. 331
Fowler, Henry W. Description of a New Cyprinoid Fish (Notropis stonei) with Notes on other Fishes obtained in the United States 385
Gordon, samuel Gi. Ordovician Basalts and Quartz Diabases in Lebanon County, Pennsylvania 354
Hebard, Morgan. Studies in Malayan, Papaan, and Aus- tralian Mantidae 14
American Dermaptera of the Muséum National d'His- toire Naturelle, Paris, France 337
Keeley; F. J. Additional Notes on the Deal Meteorite 358
Monks, Sarah P. Notes on Arachmoidiscus 207
Oshima, Masamitsu. Notrs on the Freshwater Fishes of For- mosa, witl Descriptions of New Genera and species. 120
Two New C'ybrinoid Fishes from Formosa 189
Pennell, Francis W. Scrophulariaceac of Colombia-I 136
Phesbry, Henry A. Costa Rican Land and Freshwater Mol- lusks 2
Mollusks from Lake ('hapaka, state of Jalisco, and Vicinity 192
Mollusca from C'entral America and Mexico 195
Marine Mollusks of Hawaii, VIII-XIII 296
A C'olombian Pupillid Snail 329
Marine Mollusks of Hawaii, XIV, XV 360
Rehn, Janes A. G. Records and Descriptions of Brazilian Orthoptera 214
Vanatta, E. Ci. New Land shells 203
Wardle, H. Nevell. Iron Ore Artifacts from Alabama 209
Wherry, Edgar T. Observations on the Soil Acidity of Eri- caceae and associated Plants in the Middle Atlantic States 84
Correlation between Vegetation and Soil Acidity in South- ern New Jersey 113
,

PROCEEDINGS

OF THE

ACADEMY OF NATURAL SCIENCES

OF

PHILADELPHIA.

1920

January 20.
The President, John ('adwalader, A.MI.. LL.D.. in the Chair.
Seventy-two persons present.
The deaths of the following members were amounced: Rebecca Gihson, Annabelle E. Richards, D. Murray Cheston, William Osler, Horatio C'. Wood, and Edwin S. Dixon.

Mr. James A. G. Rehn made a communication entitled: "The Work of the Hebard-Academy Expedition of 1919 in Nevada and California." (No abstract.)

The Council reported the appointment by the President of the following committees: On Policy-Messrs. E. G. Conklin, R. A. F. Penrose, Milton J. Greemman, J. Percy Moore, George Vaux, Jr., George E. de Schweinitz, Effingham B. Morris, and George L. Harrison, Jr. On the Hayden Memorial Award—Mesis. R. A. F. Penrose, (hairman, Edgar T. Wherry, Charles D. Walcott, and John Mason Clark.

William W. Matos, J. E. B. Buckenham, David E. Harrower, Harry W. Trudell, Sabin W. Colton, Jr., Hamilton Bradshaw, Childs Frick, and Arthur R. Spencer were elected Members.

The following was ordered to be printed:

COSTA RICAN LAND AND FRESHWATER MOLLUSKS.

BY HENRY A. PILSBRY.

The mollusks enumerated below were collected by Dr. Philip P. Calvert and Mrs. (Amelia S.) Calvert in the year of their residence in Costa Rica, from May, 1909, to May, 1910. ${ }^{1}$ As their chief object was to study life histories and transformations of tropical dragonflies, other material was taken only when encountered in the course of this pursuit.

Much of their field work was done in districts where Prof. Paul Biolley ${ }^{2}$ and H. Pittier had collected shells, yet some eight species new to Costa Rica were found, five of them new to science. This large proportion, in a total of 28 species taken, is evidence that our knowledge of the fauna is still very incomplete, though as von Martens remarks, it is "one of the best known within Central America."

Biolley has carefully recorded the elevation of localities where he collected shells, and some additions to this subject are now made; but on tabulating the data it appears that so many species are known from few localities, or but one, that conclusions as to zonal distribution would be too crude to have value. Some species have a wide vertical range; the apparent restriction of others in the same districts may probably be due to deficient collecting.

Costa Rica is known as farthest north for a number of characteristically South American genera, such as Labyrinthus, Solaropsis and Marisa. The Brazilian genus Cncancylus, now reported, is an interesting addition to this series.

[^0]
CYCLOPHORIDÆ.

Aperostoma dysoni (Pfr.)
Bonnefil Farm, Rio Surubres, 700 ft . Oct. 20, 1909.

HELICINIDE

Helicina funcki Angas.
Guapiles, 980 ft . Nov. 18, 1909.

Helicina deppeana parvidens n. subsp.

Juan Viñas, farther waterfall, 3300 ft ; also on the road to Rio Reventazón, 3000 ft . Type, No. 105286, A. N. S. P.

The shell resembles H. deppeana v. Martens, of eastern Mexico, except that there is only a very low, rather wide prominence at the junction of the columella and basal lip, with no appearance of a notch below it.

Alt. 10, diam. 13.3 mm .

OLEACINIDE.

Streptostyla viridula Angas.
Near Juan Viñas, on road to Rio Reventazón, between 2500 and 3000 ft . July 23, 1909.

```
ZONITIDE.
```

Guppya calverti n. sp. Fig. 1.
Stream near the railroad west of Juan Viñas, 3300 ft . Type No. 105266, A. N. S. P.
The shell is perforate, pyramidal, fragile, pale yellow. The apex is obtuse, outlines of the spire straight; periphery acutely keeled; base convex. The surface is smooth and glossy. The whorls are convex, the last very narrowly concave on both sides of the thin median keel, the concavity forming a narrow impressed margin above the last coil of the suture. The base is impressed around the narrow perforation. The aperture is rhombic, acutely angular at the termination of the peripheral keel. Columella is short, subvertical, the columellar margin reflexed in a triangular plate half covering the perforation.

Alt. 2.5, diam. 3 mm.; 5 whorls.
This species is very distinct by its acute peripheral keel. The only form of the region approaching it is the much large. G. angasi Tryon, ${ }^{3}$ which differs in proportions.

[^1]Guppya costaricana n. sp. Fig. 2.
Alajuela, 3200 ft . Type No. 105285 , A. N. S. P.
The shell is minutely perforate, globosely conic, very fragile, light yellow; outlines of the spire are perceptibly concave, the periphery bluntly carinate. The surface is very glossy, marked with weak growth-wrinkles, and under the microscope a very fine, close, vertical striation and minute spiral lines almost equally close are seen on the second to fourth whorls, very weak on the fourth. The apex is rather acute. The whorls are strongly convex; base very convex, impressed around the oblique perforation. The aperture is broadly lunate. Columellar margin is dilated upward.

Alt. 5, diam. 6.1 mm ; $5^{\frac{3}{4}}$ whorls.
The pedal grooves are well-marked, rising at the tail. There is a wedge-shaped caudal pore, a short, blunt horn above it. The top of the tail is rounded. Sole narrow, tripartite.

Fig. 1. Giuppya caluerti. Fig. 2. Guppyn costaricana. Fig. 3. Guppya c. elatior.
This species is closely related to (r. trochulina (Morel.), of which Helix selenkai Pfr. has been shown to be a synonym. ${ }^{4}$ It differs by the slightly concave outlines of the spire, the greater convexity of the individual whorls, the higher first whorl and the microscopic sculpture, the vertical striae being much more distinct and the spirals closer. In topotypes of selenkai from Dr. Berendt, the original collector, the spirals are far more widely spaced (as noted by von Martens ako for a paratype of trochulima), and they continue on the last whorl, while the vertical striation is so weak that it has not been noticed by any of the authors who have treated of trochuloma or selenkai.

The Canal Zone speries of this group, Guppyu broumi Pils., has the straight contour of trochulina, but it differs by the very distinct and beautiful microscopic sculpture.

[^2]Guppya costaricana elatior n. sulsp, Fis. 3.
Brook near the Rio Reventazon, Juan Vinas, at 2500 ft. Trpe No. 105276, A. N. A. P.

The shell is smaller than costaricam but with nearly the same number of whors; more clevated, with the peripheral carina stronger; outlines of the spire more concave.

Alt. 4 , diam. $4 \mathrm{~mm} . ; 5 \frac{1}{2}$ whorls.
Zonitoides hoffmanni (r. Martens).
Bank of Rio Reventazón, (achi. Mar. 10, 1910. 33:30 ft.
ACHATINIDE.
Subulina octona (Bruc.)
Near town of Turrialla, 2200 ft .
Opeas beckianum (Pfr.)
Banana River, 30 ft . Nov. 10, 1910.

BULIMULIDÆ.

Oxystyla princeps Brod.)

Forest, Guacimo.
Oxystyla ferussaci tricincta (v. Martens).
Bonnefil Farm, Rio surubres, 700 ft.

Drymaeus sulphureus (Pfr.)

Near Cuapiles, $980 \mathrm{ft}$. ; Bonnefil Farm, Rio surubres, 700 ft ., on Heliconia, Oct. 16-21, 1909; Reventazón valley near Juan Viñas, 2500 ft ., in a Bromeliad. Also on the road to Rio Reventazon at 3000 ft .

Calvert notes that the living animal, from the last locality, has the foot greenish-blue with whitish edges, the tentacles greenishbrown. Those from the first three localities have the rather short form of var. citroncllus (Angas); the fourth is a longer shell.
Drymaeus costaricensis (Pfr.)
Juan Viñas, on a Bromeliad; also road to Rio Reventazón, 25003000 ft . C Cachi, 34.50 ft .

A second lot from Cachi, on Solamum, consists partly of more slender shells, in contour resembling D. attenuatus, but associated with others of stouter contour, all having the coloration of costaricensis.

Drymaeus attenuatus pittieri (v, Martens).
Road from Juan Viñas to Rio Reventazon, 3000 ft . One specimen with typical markings. There is another from Juan Vinas,

2500 ft ., without dark markings, which seems to be an albino mutation of pittieri, parallel to the mutation concolor of eastern Mexico rather than directly referable to that form. ${ }^{5}$ Von Martens has noted that in the State of Vera Cruz "the white variety [mut. concolor] has been found with typically colored specimens" of D. attenuatus.

Drymaeus josephus (Angas).
A shell of the uniform white mutation was taken at Guapiles by D. E. Harrower.

SUCCINEIDE.

Succinea recisa Morelet.
Juan Viñas, nearer waterfall, 3300 ft .
Succinea guatemalensis Morelet.
Rio Reventazón, foot of waterfall near bridge, below Juan Viñas; also at 2500 ft . on petiole of "Hoja de Pato"; ${ }^{6}$ near Cachi, 3450 ft .

PHYSIDEE.

Aplexa fuliginea (Morelet).
S. Isidro del Tejar, 4500 ft .

Aplexa spiculata guatemalensis Fischer \& Crosse.
Ditch at the south end of Cartago and other places about the city, 4750 ft. ; Rio Zapote at confluence with Rio Reventazón, Cachi, 3450 ft .

PLANORBIDE.

Planorbis tenuis Phil.

Rio de la Canas north of Santa Cruz. Guanacaste, abundant. ${ }^{7}$ 150 ft .

Planorbis caribaeus Orb.

East of Cartago and four miles southwest of the same place; S . Isidro del Tejar, 4500 ft .

Planorbis hondurasensis Clessin.
Ditch along the road from San José to La Verbena, 3800 ft .

[^3]ANCYLIDE.
Uncancylus calvertin. sp. Fig. 4 .
Brook near Rio Reventazón, Juan Tiñas, 2500 ft ., Apr. 28, 1910. Type and paratypes, No. 10527\%, A. N. S. P.

The shell is oval, moderately elevated, the altitude half the width, the apex acute, recurved or hooked, at the posterior fourth of the length and about half way between the median line and the right margin. The anterior and left slopes are convex above, nearly straight near the margins: posterior strongly concave, the right slope much less so. Isabella colored, rather opaque, not glossy. Sculpture of many raised striae radiating from the summit, a few in the middle, anteriorly, coarse, the rest fine and narrow; on the sides and behind they are scarcely to be seen except by transmitted light. The interior has a translucent-whitish layer.

Length 7.4 , width 4.6 , alt. 2.3 mm .
Ancyclus concentricus Orb., which appears to be nearly related, is less symmetrical in contour, with the apex further towards the right, and with about the same length it is more elevated.

Ancyclus radiatus Guilding, ${ }^{8}$ which is known to me only from Guilding's account, resembles A. calcerti in sculpture, but it is narrower relative to the length, if Guilding's figures are aceurate; moreover, the apical part is not abruptly narrowed near the tip, as it is in U. calverti. Practically all authors who have considered the question agree in considering A. cxcentricus Norel. identical with A. radiatus. The former is a well known species, quite distinct from U. calverti.

The writer is indebted to Dr. Bryant Walker for reviewing the determination of this species, and indicating differences from A. radiatus. He also called attention to an error in H. \& A. Adams, "Genera of Recent Mollusea", II, p. 265, pl. 84, fig. 5, said to represent A. radiatus, but really copied from one of Guilding's figures of A. irroratus. This mistake has been perpetuated in the works of Bourguignat and Clessin.

The genus Uncancylus is new to North America. The known species are chiefly Brazilian. It was proposed for South American Ancyli with the spire strongly hooked towards the right side, the shell therefore sinistral. Type Ancylus barilousis Moric. ${ }^{9}$

[^4]This species in closely related in shell characters to the type of the genus Uncancylus. Since the teeth are unknown in that and other groups of South American Ancylidac, and the system of the family, as developed by Dr. Bryant Walker, is largely based upon the modes of specialization of the teeth, its dentition becomes of interest.

Fig. 4. Left and upper figures, l^{*}. calverti. Kight and lower figures, L^{\top}. ameliae.
In U. caluerti there are 21-1-21 teeth in nearly straight transverse rows. The central tooth is bicuspid, the cusps very short, deeply separated. The laterals have three major cusps, the entocone and mesocone more or less united; between them and the ectocone there is a minute accessory casp. Outside of the ectocone there is a minute cusp in the inner laterals, then two, and in the middle teeth of the lateral scries. four or five little cusps. In some teeth a minute cusp appears between mesocone and entocone, and in the median and outer laterals another arises on the inner side of the entocone. The laterals are rather widely spaced, more so towards the edges of the radula. The basal plates are shorter than the cusps and very indistinct.

Fig. 5.-Cncancylus calverti, half row of teeth.
The jaw is long, slender, of wide, very short plates and with no lateral processes.

On comparison with the series of illustrations of Ancylid teeth prepared by Walker it is obvious that Uncancylus is closely related to the African genus Burmupia Walker. Except for the greater
development of small accessory cuspos in the American species there is no material difference. No North American genus has similar teeth.

Uncancylus ameliae n. sp. Fig. 4, left and lower figures.
Rio Zapote, at confluence with the Rio Reventazon, 345) ft. March 4, 1910. Type and paratypes, No. 105260, A. N. S. P.

With a general resemblance to C. calverti, this species is smaller, relatively wider and higher. The periphery is elliptieal, bilaterally symmetrical. Anterior and left slopes are convex, right slope concave and very steep, posterior slope somewhat concave; the apes recurved, hook-like, and very close to the right side, at the posterior sixth of the length. Isabella eolored, without gloss. Sculpture of fine, thread-like radial strine, which are a little larger and more widely spaced in front.

Length 4.8 , width 3. 4 , alt. 1.6 mm .

AMPULLARIIDE.

Ampullaria flagellata say
Rio del Canas north of santa Cruz, Guanacaste, 150 ft .

AMNICOLIDE.

Amnicola tryoni Piis.

Brook near Rio Reventazón. Juan Viñas, 2500 ft . Four miles southwest of Cartago, 4500 ft . A very young specimen, probably of this species, was found attached to a dragonfly exuvia (Paldemnema sp.) at the nearer waterfall, Juan Vinas, 3300 ft . This species was originally described from Javali, in the Chontales district, Nicaragua, at 1750 ft .

UNIONIDE.

Nephronaias tempisquensis n. sp. Fig. 6.
Rio Tempisque, Filadelfia, Jan. 18, 1910, 50 ft . Type and paratypes (2 whole specimens and 4 valves), No. 105225 , A. N. S. P.

The shell is oblong, the length slightly exceeding twice the alt., beaks at about the anterior thirt. The dorsal and ventral margins are but weakly convex, the anterior end rounded, posterior end obliquely subtruncate. The beaks are eroded, but little projecting. Surface somewhat glossy, under the lens showing very fine, hair-like and somewhat wared threads in the direction of growth lines, more prominent on the posterior end. Color deep colonial buff with numerous green rays. Interior white. The eardinal teeth are compressed, in the left valve subequal, strongly erenulated, the
single cardinal of the right valve high and oblique. The lateral teeth are smooth and not very long.

Length 28.3, alt. 15, diam. 10 mm .

$$
\text { " } 30.7, " 16.3, " \quad 9 \text { " }
$$

This species stands near N. macneilii (Lea), but differs as follows: it is not biangular behind, is relatively longer, the striation less crowded. N. dysoni (Lea) is also broader with the cardinal teeth less compressed.

Fig. 6.-Nephronaias tempisquensis.
No species of the family has hitherto been reported from the Rio Tempisque, or from any Costa Rican stream draining into the Pacific.

MUTELIDÆ.

Anodontites luteolus (Lea).
Rio Tempisque, Filadelfia, Jan. 18, 1910, 50 ft . Lea's type of this species was said to be from the Isthmus of Darien, but his figures were drawn from a larger specimen from Lake Nicaragua (Gabb), No. 41833 , A. N. S. P. In the single specimen from the Rio Tempisque the hinge line is straight instead of somewhat curved as in the type and that from Lake Nicaragua.

February 17.

The President, John Cadwalader, A.M., LL.D., in the Chair.
Thirty-one persons present.
The deaths of the following members were announced: John A. Brown, Jr., A. Sidney C'arpenter, Joseph M. Fox, Thomas C. Stellwagen, and William K. Ramborger.

Mr. Henry W. Fowler made a communication on: "Habits and Distribution of some of our Local Fishes." (No abstract.)

The report of the Committee on the Hayden Memorial Award conferring the gold medal on Professor Thomas Chrowder Chamberlin, Ph.D., LL.D., Sc.D., of the University of Chicago, was unanimously adopted.

Thomas Chrowder Chamberlin was born in Mattoon, Illinois, September 25, 1843. He graduated from Beloit College in 1866, and received the degree of A.MI. at the same institution in 1869. He pursued graduate studies at the University of Michigan from 1868 to 1869 ; he received the degree of Ph.D. from the University of Michigan and the University of Wisconsin in 1882. He received the degree of LL.D. from the University of Michigan, Beloit College, and George Washington University in 1887; from the University of Wisconsin in 1904; and from University of Toronto in 1913. He received the degree of Sc.D. from the University of Illinois in 1905. Doctor Chamberlin married, in 1867, Miss Alma Isabel Wilson, and has one son, who is now Professor Rollin T. Chamberlin, of the Geological Department of the University of Chicago

Doctor Chamberlin was principal of the State Normal School, Delavan, Wisconsin, from 1866 to 1868 , and was Professor of Natural Sciences at the State Normal School, Whitewater, Wisconsin, from 1869 to 1873 . He was Professor of Geology at Beloit College from 1873 to 1882 , and at Ceorge Washington University from 1885 to 1887. In 1887, he was elected President of the University of Wisconsin, which position he held until 1892, when he was appointed Professor of Geology and Head of the Department of Geology, and Director of the Walker Museum at the University of Chicago.

Doctor Chamberlin has carried on a vast amount of geologic research in a remarkably wide range of subjects. He was Assistant State Geologist of Wisconsin from 1873 to 1876 , and Director of
the Crological survey of Wisconsin from 1876 to 1882. During this time he produced the series of volumes entitled "The Geology of Wisconsin," which at once became the standard work on the geology of that region and is recognized the world over as of very great importance to the science of geology. In 1878, he represented the State of Wisconsin at the Paris Exposition.

During some years following this time, Doctor Chamberlin was largely engaged in researches in glacial geology, in which he was recognized as the chief authority in America. In 1878, he visited the glaciers of Switzerland; from 1882 to 1907 he was United States Geologist in charge of the Glacial Division of the United States Geological Survey; he was geologist of the Peary Relief Expedition in 1894. Somewhat later, Doctor Chamberlin became associated with the Carnegie Institution of Washington in research work; was a member of the University of Chicago Oriental Educational Investigation Committee in 1909; was Commissioner of the Illinois Geological Survey; and held many other positions. He was the recipient of medals at Paris in 1878 and 1893 in honor of his scientific work; and the Helen Culver Medal of the Chicago Cieographical society was bestowed on him in 1910. He is a corresponding member of the British Association for the Advancement of Science, and of the London and the Edinburgh geological societies.

After Doctor Chamberlin had gone to the University of Chicago he took up actively the investigation of some of the most fundamental problems of geology, the planctesimal hypothesis, the early history of the earth, the history of the atmosphere and other profound researches, and he is today recognized as the foremost scholar in the study of the fundamental principles governing the earth's origin and structure. He has written widely on this subject, both in the publications of the Carnegie Institution and elsewhere, and a remarkable volume produced a few years ago by him and entitled "The Origin of the World" shows his wonderfully clear conception of the subject.

In addition to the publications already mentioned, Doctor Chamherlin has for over fifty years been a voluminous writer in all the departments of geology to which he has given his attention. The "Cieneral Treatise on Geology," written by him and Professor R. D. Salisbury, is recognized as the standard text-book of geology in this country and abroad; and the wonderful ability with which he and Professor Salisbury have edited the Journal of Geology has commanded the admiration and respect of all their associates in the geological profession.

Professor Chamberlin is a member of the National Academy of Sciences, the American Philosophical Society, and many other scientific organizations. He was President of the American Association for the Advancement of Science in 1908; President of the Chicago Academy of Sciences in 1898 to 1914; and President of the Illinois Academy of science in 1907 . He is at present Professor Emeritur of Ceology at the Cniversity of Chicago.

The following were elected Members: Inggh Bradshaw Meredith, Robert F. Welsh, Hemry Carlisle Ntewart, Edward Woolman, George F. Tyler. C. E. Tobias, Jr., W. (i. MeDaniel. Conrad K. Roland, Benjamin Rush, and Ceorge H. Stewart, Brd.

The following paper was ordered to be printed:

STUDIES IN MALAYAN, PAPUAN, AND AUSTRALIAN MANTID x.

by morgan hebard.

During the past thirteen years the author has received by purchase from dealers in London, Paris and Berlin, several collections and numerous individual specimens of Orthoptera from the South Seas and adjacent continental areas. Recently a large number of species of Mantidze, assembled by Mr. C. F. Baker in the Malay Peninsula, Borneo and the Philippines, have been received.

It was noted, upon assembling all of the Mantidee represented, that a sufficient series was available to justify the undertaking of a study of the material of that family before us from the regions referred to above. Seventy-eight species, representing forty-one genera, are here treated, of which five genera and twelve species are described as new. The collections contain a very good representation, including many of the most remarkable and little known forms. Though in some of the groups only a minimum of the known species are before us, we feel that, on the whole, the collection is one of the most complete, for the Malayan region in particular, now extant in any of the world's museums.

This is in large part due to the efforts of Mr. C. F. Baker, and when we consider that he is forming collections in all orders of insects, we feel that he should be heartily congratulated on his achievements to date. It is our sincere hope that his work may continue successful and uninterrupted for many years to come.

All of the material treated in the present paper, unless otherwise assigned, is in the Hebard Collection at the Academy of Natural Sciences of Philadelphia, with the exception of duplicate specimens from Mr. Baker, of species which are not represented in his collection; these will be forwarded to him whenever desired.

We have included the species from the Malayan, Papuan and Australian regions, as some of the forms of each of these interdigitate over extensive areas with those of the regions adjacent. We would note, however, the rital importance of Wallace's Line, separating the Malayan and Papuan faunas. The great majority of species found in the Malay Peninsula. Sumatra, Java, Bali, Borneo and the Philippines, Lave little in common with those of

Lombok, the Timor Group, Celebes, the Moluccas, Salwatty, Borneo and the Aru, and Ké Islands, and vice versa.

The geographical distribution and affinities of the species is shown by the following table. An "a" indicates that a form of close affinity is found in the region so checked.

Name of Species
Paraoxypilus verreauxii Saussure Amorphoscelis bormenna Giglio-Tos
Metallyticus violaceus (Burmeister)
Theopompula ocularis Saussure
Theopompa burmeisteri (Haan)
Orthodera ministralis (Fabricius)
Bolbe pygmaea (Saussure)
Hapalopiza tigrina Westwoot
Epsomantis tortricoides (Haan)
Tropidomantis tenera (stảl)
Neomantis australis (Saussure and Zehntner)
Kongobatha diademata new species
Xanthomantis flava Giglio-Tos
Polyacauthopus mantispoiles new species
Sceptuchus simplex new species
Stenomantis norae-guinene (Haan)
Amantis reticulata (Haan)
Amantis maculata (Shiraki
Amantis aeta new species
Amantis basilama new species
Gonypeta borneana Giglio-Tos
Compsomantis semirufnla (Westwood)
Opsomantis tumidiceps (Bolivar
Euchomenella heteroptera (Haan)
Euchomenella molucarum (saussure)
Tagalomantis manillensis (suussure)
Haania lobiceps (Haan)
Caliris masoni (Westwood)
Caliris etegans Giglio-Tos
Gilda suavis Giglio-Tos
Leptomantis albella (Burmeister)
Leptomantis fragilis (Westwood)
Leptomantis lactea (Saussure)
Leptomantis tonkinae new species
Aetaella bakeri new species
Deroplatys desiccata Westwood
Deroplatys truncata (Guerin)
Sphodropoda tristis (Saussure)
Sphodropoda quinquedens (MacLeay)
Statilia maculata (Thumberg and Lundah!)
Stotilia nemoralis (Saussure)
Tenorlera aridifolia (Stoll)
Makyon Papuan Australian

Hieroduln obiensis new speries	-	*	-
Hierodule sorongama (Ciglio-Tos)	-	*	
Hieromula derticulate (Krauss)	-	*	
Hicrodula splondida new species	-	*	a
Rhombortera cxtensicollis (Serville)	*	-	
Rhombodera stalii Giglio-Tos	*	-	
Rhombodera basalis (Haan)	*	-	
Rhombotera valide Burmeister	*	-	
Rhombodera saussurii Kirby	-	*	-
Archimantis latistyla (Serville)	-	-	
Archimantis armata Woorl-Mason	-	-	*
Oligomantis orientalis Giglio-Tos	*	-	-
Ascomantis moultoni Ciiglio-Tos	*	:	-
Acromartis oligomeura (Haan)	*	*	
Acromantis luzonica new species	*	-	-
Acromantis hesione sta	*	:	-
Acromantis australis Saussure	a	*	-
Acromantis dyaka new species	*	:	-
Odontomantis jurana jomatr Sanssure	*	-	-
Odontomantis javana cuphrosyue stal	*	-	-
Hymenopus coronatus (Olivier)	-	*	-
Creobroter granulicollis Saussure		-	-
Creobroter labuanue new speries	*	-	-
Creobroter melengris Stal	*	-	-
Creobroter episcopalis Stal	*	-	-
Theopropus elfgros (Westwond)	-	*	

A Note on the Recent Revisionary Work on the Mantide.

The Mantidæ as a whole have never been satisfactorily revised. Of recent years, Dr. Ermamno Giglio-Tos has done much revisionary work and, as a forerunner to his monograph of the family, has published a pamphlet, giving the arrangement of the family according to his findings. ${ }^{1}$ The work of that author to date is seriously marred by an utter lack of figures throughout, with the exception of one paper, while his generic and specific descriptions are in almost all cases deplorably insufficient. Had the studies been based on a large eollection, it could be hoped that, at some future time, that author or another could more adequately diagnose the new genera and species involved. Unfortunately the material used as a basis for this work was gathered from many European institutions and once returned will make an adequate and comprehensive final study a most difficult matter.

Though the number of new genera described by (iigho-Tos at first glance appeared inordinately large, we believe that the great majority will prove valid. It is clear that the generic units, as previously recognized in the Mantille, were composed of many distinct forms, and the separation of these into logical units constitutes the most aseful portion of his contributions.

[^5]Of the new－pecies described hy that athor，we regret to state that a considerable percentage appear to he of cloubtful validity． In some cases mere color variants have been described as new spe－ cies．Geographic racial differentiation is ignoret．It is clear that we here have another example of the specialist whose activities have apparently been wholly，or in large part，limited to the study of museum specimens．

The situation shows the absolute necessity at the present time， of the specialist，working on a particular group of insects，to have a first hand knowledge of the forms in nature．The significance of differences observed，whether due to individual size or color varia－ tion，or genetic factors，or to local envirommental influences，or to geographic distribution and in this respect whether or not of racial value，or constituting valicl diagnostic criteria of specific or generic value，can otherwise hardly be fathomed．

In making this statement the author is not influenced by preju－ dice，but is speaking from experience，acquired through many months of field work in regions where a considerable number of species of the Mantide occur．

Systematic Treatment．

1．PERLAMANTIN゙モ2．

> 1st Grocp, Paraonypili.

Paraoxypilus verreauxii saussure
1870．P［qraoxypilus］verreauxii saussure，Mélang．Orth．，I，p．305．［ơ， Tasmania．］
Townsville，Queensland，Australia， $2 \sigma^{2}$ ．
This remarkable little insect has been further recorded from southern Australia by saussure and from Peak Downs，Queensland， Australia，by Sjostedt．The pronotum is figured by Giglio－Tos．${ }^{3}$

2d Group，Perlanantes．
Amorphoscelis borneana Giglio－Tos．
1913．A［morphescelis］borntana Giglio－Tos，Gen．Ins．，Fase．144，Orth．． Mantidae，Perlamantinae，p．9．［ $\%$ ，Borneo．］
Jelabu，British Straits Settlements，Malay Peninsula， 1 ㅇ．

[^6]This specimen agrees fully with the original description, except that the pronotum is two millimeters in length, one millimeter less than the pronotal length given by Ciglio-Tos. ${ }^{4}$

II. Eremiafhilinee.

1st Croup, Metallyticr.
Metallyticus violaceus (Burmeister).
18:35. M\{etallentica] ciolucea Burmeister, Handb. Ent. II, Abth. II, pt. I, p. 527. [Java.]

Zamboanga, Zamboanga, Mindanao, Philippine Islands, (from (. F. Baker), 1 ㅇ.

In the present specimen the head is without pale markings; the pronotum, in addition to two pale maculations meso-laterad at the caudal margin, has the medio-longitudinal sulcus pale from the transverse sulcus over half the distance to the caudal margin.

Though this species is remarkable in being strikingly metallic in general coloration, it is by no means as brilliant as other species of the genus.

4th (iroup, Humbertielle.
Theopompula ocularis (sausure)
1872. H[umbertiella] ocularis saussure, Mélang. Orth., II, p. 16. Io, Borneo.]
Sandakan, British North Borneo, (from (: F. Baker), $1 \delta^{7}$.
Labuan Island, British North Borneo, $1 \circ$.
This and the following species so closely resemble species of the American genus Gonatista, that we believe they will be found to have very similar habits, living on the trunks of trees, about which they run with amazing rapidity.

Theopompa burmeisteri (Haan).
1842. M[antis] (Mantis) burmeisteri Hatan, in Temminck, Verh. Nat. Gesch. Nerlerlandsche Overseesche Bezittingen, Orth., p. so, pl. XVI, figs. 3 and 4. [o7, o, Java.]
1917. T[heopompa] borneana Giglio-Tos, Bull. soe. Ent. Italiana, XLVIII, p. is. [ō, \&, Bomeo.]

Giglio-Tos states that his borneand is very similar to burmeisteri and gives certain features of coloration as the important differential characters. The first of these, costal area of female tegmina as transparent as in male, is apparently of no value, this being clearly shown by Haan's figures to be true for burmeisteri. In the other

[^7]features of coloration, it would appear that a eertain amount of differentiation in Giglio-Tos' material is clearly aseribable to individual variation. The present specimens all have the internal spines of the cephalic tibie black at their apices. We therefore do not feel justified in recognizing borneana either as a valid species or race.

Jelabu, British Straits Settlements, Malay Peninsula, $1 \mathrm{o}^{\text {Th }}$.
Sandakan, British North Borneo, (from C. F. Baker), 1 or, 1 it.
The present specinens measure as follows: length of pronotum or 8.8 to 9 , of 13.9; width of pronotum or 6 to 6.4 , of 9 ; length of tegmen or 40.8 to 41 , 8.53 mm .

The two males at hand, though from very widely separated Iocalities, are extremely similar, that from Jelabu slightly the paler in general coloration and very slightly the larger.

10th (iroltp, Orthodere.
Orthodera ministralis (Fabricius).
1775. M[amtis] mimistralis Fabricius, syst. Ent., 1. 277. [Australia.]

Queensland, Australia, 1 \&.
III. Iridofterygine.

2 ND (iROUP, IRIDOPTERYGEK.
Bolbe pygmaea (saussure).
1871. A[meles] pygmuea siaussure, Mélang. Orth., I, 1. 423. 10 North Australia.]

Queensland, Australia, $1 o^{7}$.
The present species, one of the smallest of the deveribed forms of the Mantidæ, is now known to have a wide distribution on the Australian Continent. The present specimen measures as follows: length of bocty $12,{ }^{5}$ length of pronotum 2.4 , width of pronotum 1.2 , length of tegmen 9.8 , width of tegmen 2.7 mm .

Hapalopeza tigrina Westwood.
1889. Hapalopeza tigrina Westwood, Rev. Ins. Fam. Mantidarum, p. 37, pl. XIV', fig. 13. [Ningapore, [Straits Settlements]; Sarawak, [Borneo]; Sumatra.]
Sandakan, British North Borneo, (from C. F. Baker), 2 or, 5 \& . Labuan Island, British North Borneo, 2 \&.
The present is the only known species of this Asiatic genus found in Borneo.

[^8]Epsomantis tortricoides (Haan).
1s42. M[antis] (Mantis) tortricoides Haan, in Temminck. Verh. Nat. (iesch. Nelerlandsche Overseesche Bezittingen, Orth., p. 82, pl. XVIII, fig. 4. [07, Java.]
Sandakan, British North Borneo, (from C. F. Baker), 10^{7}.
This species has been referred to Platycalymma by Westwood ${ }^{6}$ and to Ecinophlebia, with a query by Saussure and Zehntner. ${ }^{7}$ Giglio-Tos ${ }^{8}$ has erected the genus Epsomantis to include this one species, considering it separable from the Madagascar species of the other two genera by the tegmina having the costal area near the base much broader, nearly equalling half the total tegminal width, the pronotum with prozonal margin dilated and submembraneous and the cephalic tibie provided with eight external spines. This latter feature is shown by Haan's figure, but we believe that the number was actually different, as well as features of venation. We are led to suppose that the specimen before us represents the first individual of this extraordinary insect taken since the type.

In consequence, we would note the following features, some of which we believe to be of generic diagnostic value, in addition to those given by Giglio-Tos. We therefore retain Epsomantis as a valid genus.

Pronotum with lateral margins microscopically denticulate, dorsal surface with a medio-longitudinal depression, in which, on the shaft. a very delicate and smooth carina is developed. ${ }^{\text {a }}$ Tegmina with humeral vein with one conspicuous branch distad, median vein paralleling humeral vein to median portion, then strongly diverging from it, discoidal vein with four distinct branches, which themselves branch near the sutural margin. Cephalic femora with ventro-external margin bearing five spines, in addition to the small genicular spine, with a series of minute spinule intercalated between these: ventro-internal margin with the following formula of spines,
 a small genicular spine. The tibiæ have fourteen to fifteen external

[^9]and fifteen to sisteen internal spines, which increase regularly in size and length distad. ${ }^{10}$

In life the specimen was probably a very delicate pale green. The body and limbs have now faded to sellowish, except for three small and regularly placed dots on the external face of each cephalic femur, which are very rich green. The tegmina are very pale lumiere green. Mesad across the humeral field is a narrow irregular transverse band, formed by a faint tracery along the reinlets of this area of rinaceous; there is also a minute fleck of the same mesoproximad in the humeral field.

Though Haan's figure shows fewer spines and a much more simple tegminal renation, we believe that these differences are wholly due to a certain amount of inaccuracy on the part of the artist.

Tropidomantis tenera (Stil).

1858. Mantis temera Stâl, Kongl. Svenska Freg. Eugenies Resa, Ins., p. 314. [\% ; Singapore, [Straits Settlements].]

Zamboanga, Zamboanga, Mindanao, Philippine Islands, (from C. F. Baker), 1 ¢.

Singapore, British Straits Settlements, Malay Peninsula, from C. F: Baker), 2 \&

Penang Island, British straits Settlements, Malay Peninsula, (from C. F. Baker), 1 or, 2 。

The Zamboanga and Penang females are slightly larger, with pronotum slightly heavier, than those from the type locality.

Neomantis australis (Saussure and Zehntner).
1895. Tropidomantis australis saussure and Zehntner, in Grandidier, Hist. Nat. Madagascar, XXIII, Orth., p. 169. [07; Queensland, Australia.]
Townsville, Queensland, Australia, $2 \sigma^{7}$.
The very broad oval, pale green tegmina give this little insect a distinctive appearance. The minute black dots on the costal margin of the tegmina are an interesting feature.

[^10]
KONGOBATHA ${ }^{11}$ new genus.

In the arrangement of the Mantide we place this genus after Neomantis. From all known genera of the Tropidomantes the present is separated by the strongly elevated lateral portions of the vertex and the slender pronotum, which shows a minimum development of the medio-longitudinal carina; ${ }^{12}$ in the majority of genera of the Tropidomantes this carima being very decided and lamellate. The insect is much more attenuate than in Tropidomantis and consequently very much more attenuate than in Neomantis, but the spination of the ventro-internal margin of the cephalic femora and very elongate supra-anal plate agrees instead with the latter genus.

Gienus monotypie. (ienotyfe-Kongobatha diademata here described.
(ifnerie description (from female, male unknown).-Size small, normal for the Tropidomantes. Form slender, tegmina and wings much narrower than in Tropidomontis, narrower even than in Xenthomantis, with apices acute and sharply rounded. Head much less transverse than in Tropidomontis and Neomontis, facial scutellum tery strongly transerse, occiput distinctly quadrisulcate, the juxta-orular portions raised high above the eyes in blunted angulate projections, the median sections much lower, somewhat swollen but with dorsal margin transverse. ${ }^{13}$ Ocelli moderately well developed, forming a triangle very slightly broader than high. Pronotum slender, slightly longer than cephalic coxa, margins smooth; supra-coxal expansion very weak with its margins very feebly ans broadly ronvex: medio-longitudinal carina decided, but not as strongly developed or lamellate as is usual in the Tropidomantes, completely severed by the supra-coxal transverse sulcus, disappearing mesad on collar of pronotum. Tegmina with veins as characteristic for the group; false veins regular, not irregular as in Tropidomontis or very inregular as in Veomantis; marginal field very namow, with its immediate margin opaque; other portions of tegmina and wings hyaline. Wings projecting slightly beyond tegmina. Cephalic coxa with margins unarmed but showing a few very minute hair follicles, which are more numerous along the straight donsal margins of the rephalic femur. ('ephalic femur

[^11]slender, with unguicular suleus at end of proximal two-fifthe; three discoidal spines; fon spines on ventro-extemal margin and an additional small spine on external and internal genicular lobe; between but inside the first two spines of the ventro-external margin is a small round concavity into which, when the limb are flexed, fits; the apex of the terminal spine of the ventro-external margin of the cephalic tibia ; spine formula on ventro-internal margin II II InIsIII. Cephalic tibia with ventro-external margin armed with nine spines, increasing in length distad, except that the second is longer than the third and the fourth longer than the fifth; ventro-internal margin amed with eleven spines which increase regularly in length distad. Caudal metatarsus very slightly longer than the combined length of the succeeding tarsal joints. Cerci absent in sperimen at hand. Supra-anal plate very elongate.

Kongobatha diademata new speries. (Plate I, figures 1 and 2.)
The form of the specialized vertex is a very distinctive feature in this species. The inseet does not look like the other species of the Tropidomantes and it is only when closely examined that the affinity is apparent, the head and pronotum being then seen to show only a distinctive development from the same type found in Tropidomantis.

Type- - \& ; Queensland, Australia. [Hebard Collection Type No. 518.$]$

In addition to the features given in the generic description, we would note the following. Facial scotellum fire times as broad as high. Short, somewhat irregular, oblique veinlets connect the marginal and mediastine veins of the tegmina and of the wings proximad only. Stigma indicated as a colorless line ruming from the discoidal to near the humeral vein, beyond which from a number of irregularly confused veinlets springs the median vein. Wings with distal portion of anterior fied as long as its hasal width, discoidal vein triramose. Cephalic femora with ventral surface supplied with hairs and within the marginal spines minutely and irregularly denticulate; spines of ventro-internal margin extend to opposite distal margin of femoral brush, the first two and the last of the longer spines exceeding the other longer spincs very slightly in length. Supra-anal plate fully twice as long as basal width, lateral margins weakly concave convergent proximad, thence straight in the gradually narrowing slender distal portion to the acute apex, which extends well beyond the comparatively elongate subgenital plate.

Body and limbs immaculate; probably discolored, ${ }^{14}$ yellowish brown. Eyes blackish chestnut brown. Tegmina and wings hyaline, strongly iridescent, except very narrowly along the costal margin of the tegmina, which portion, not more than a third the distance between the marginal and mediastine veins proximad, is opaque, yellowish brown.

Length of body 24.5 . length of pronotum 5.7. length of pronotal collar 2, greatest width of pronotum 1.8, length of tegmen 16.5, width of marginal field of tegmen.S, length of wing 16.3 , length of cephalic femur 5.8 , length of caudal metatarsus 1.7 mm .

The type of this interesting species is unique.
Xanthomantis flava Ciglio-Tos.
1915. X[anthomantis] flara Giglio-Tos, Bull. Soc. Ent. Italiana, XLVI, p. 53. [F , Borneo.]

Singapore, British Straits Settlements, Malay Peninsula, (from C. F. Baker), $1 \circ$.

The striking yellow coloration of the entire marginal fields of the tegmina and of the distal portion of the entire marginal fields of the wings, which are otherwise clear hyaline and iridescent, gives this specimen a close resemblance to individuals of certain species of the Neuropteroid genus Mantispa. small lateral flecks of purple are found on the facial scutellum, this color appearing as a hairline, margining the opaque marginal portions of the tegmina and wings.

The strong lamellate medio-longitudinal carina of the pronotum is completely and suddenly cleft by the supra-coxal transverse sulcus, which carina only extends a brief distance on the collar in the specimen before us. Counting from the base to the apex of the cephalic tibia, the spines of the ventro-external margin increase in length distad, except the second and sixth, which are very long and the tenth which is slightly longer than the eleventh and last spine. Though the cerci are damaged, the last joint is seen to be nearly five times as long as its greatest width, the preceding joints slightly longer than wide. Giglio-'Tos has not mentioned this feature and the spine formula for the cephalic tibia would appear to have been counted from the apex proximad, the type having two instead of three small spines between the second and sixth.

[^12]POLYACAN THOPUS new gemu
This genus shows very close affinity to Xonthommentis in general form and tegminal and wing structure, but differs particularly in the different ocellar arrangement, weaker armament of the rentrointernal margins of the cephalic femora, remarkably heary armament of the cephalic tibiee and in the percurrent pronotal carina.

The armament of the cephalic tibie is heavier than in any species of the Mantide we have ever seen.

Genus monotypic. Genotype.-Polyacanthopus mantispoides here described.

Generic Description.-Size small, normal for the Tropidomantes. Form slender, tegmina and wings narrower than in Tropidomantis, but with apices rather broadly rounded, similar to the type developed in Xanthomantis and suggesting the type found in the widely separated genera Leptomantis and Aetaella. Head broad, facial clypeus transverse with dorsal margin scarcely defined, occiput scarcely raised above eyes, showing a broad and weak concavity mesal, these features as in Xanthomantis. Ventral ocellus smaller than the dorsal pair of ocelli and placed at a slightly greater distance from them than the width between them. Pronotum slender, slightly longer than the cephalic coxa, margins smooth, supra-coxa! expansion weak with its margins broadly convex, medio-longitudinal carina heavy, lamellate, percurrent, completely severed by the transverse supra-coxal sulcus: in all these features agrecing with Xanthomantis, except that in that genus the carina disappears before reaching the cephalic margin of the collar. Tegmina and wings narrow, with venation as characteristic for the group, clear hyaline except external section of marginal field of tegmina and distal portion of external section of marginal field of wings, which very narrow portions are opaque, wings projecting well beyond tegmina; these features giving to the insect a decided general resemblance to Manthomantis and causing individuals of these genera to have a close superficial resemblance to certain Neuropteroid genera of the subfamily Mantispinae. Cephalic coxa with margins smooth. Cephalic femur slender, dorsal margin straight anc smooth, unguicular sulcus near base; three discoidal spines; ventro-external margin with four elongate and slender spines, between but slightly outside of the first two of which is a small round concarity, into which fits the apex of the terminal spine of the ventro-external margin of the cephalic tibia when the limbs are flexed, genicular areas unarmed; spines on ventro-internal margin fewer and not
alternating in length to the marked degree found in Xanthomantis. Cephalic tibia with ventro-external margin armed with very numerous (twenty-five and twenty-six) and closely placed spines increasing in length distad but with two in the series and two before the very rlongate terminal spine much more elongate; ventro-internal margin armed with very numerous (twenty-five) and closely placed spines, elongate and slender and increasing slightly in length distad, except the proximal spines which are very small. Caudal limbs absent from the specimen at hand. Cerei slender, moderately elongate, terminal joint very elongate oval; these appendages much as in the specimen of Xanthomantis before us. Apex of abdomen crushed in specimen under consideration.

Polyacanthopus mantispoides new speries. (Plate I, figures 3 and 4.)

The present species shows a very close general resemblance to Xanthomantis flara Ciglio-Tos; having, however, many important differences as given in the generic deseription.

Specialization, considering the astonishingly great numerical abundance of spines on the cephalic tibix, woud appear to have rearhed a condition almost detrimental to the effectiveness of the grasping limbs in the present species.

Trpe.- σ^{7}; Sandakan, British North Borneo. (From (. F. Baker.) [Hebard Collection Type No. 517.]

In addition to the features given in the generic description, we would note the following for this remarkable species. Dorsal pair of ocelli very large, ventral ocellus large. Occiput, immediately above these, showing a small but well defined convexity, with a minute but distinct transverse carina and a vertical carina extending briefly dorsad, the juncture of these earinate forming a weak median projection. Internal margins of eyes concave and weakly divergent dorsad. ${ }^{15}$ Merlio-longitudinal carina of pronotum strongly developed and lamellate, as is characteristic of the group Tropi. domantes. Short, straight, transwre veinlets occur in the opaque portion of the marginal fields of the tegmina and wings, comecting the marginal and mediastine veins. Stigma subobsolete. Apex of abdomen crushed. Cercus considerably less than twice as long as exposed portion of sulgenital plate, segments increasing in length

[^13]distad, penultimate segment three-quartere as long as wide, hast segment elongate ovate, three times as long as its greatest width, with apex moderately acute. Suhgenital phate with lateral margins thickened, convergent, very feebly conrex, to near median portion where these thickened portions terminate, the brief meso-distal portion of the margin weakly concare hetween the ridges which indicate style bases, no styles being developed in this specimen. Cephatic femur with ventro-internal margin armed with (twelve and thirteen) spines which alternate slightly in length, ${ }^{16}$ except in area below femoral brush, which portion of the margin is supplied with two or three minute spinute (not included in the above count). Cephatic tibia with the more elongate spines of the ventro-external margin the ninth, seventeenth, twenty-fourth and twenty-fifth on one limb, the eighth, sixteenth, twenty-third and twenty-fourth on the other limb, ${ }^{17}$ not inclurling the longer distal spine of this margin.

Body and limbs immaculate; apparently discolored, yellowish brown. Eyes blackish chestnut brown. Tegmina ant wings clear hyaline, very strongly iridescent, except narrow marginal area between marginal and mediastine veins, which in the tegmina is entirely opaque, colonial buff, in the wings similarly opaque, colomial buff, distad in this area.

Length of body 21 , length of pronotum 5 , length of pronotal collar 1.8, greatest width of pronotum 1.8, width of marginal field of tegmen .9, length of wing 15.5 , length of cephatic femur 5.3 mm .

The type of this singular species is unique.

```
4th (iroup, Nanomantem.
```

SCEPTUCHUS ${ }^{18}$ new genus.
The present genus is apparently nearest in relationship to Nanomantis Saussure. It is seen to differ from Nanomantis in the more even contour of the occiput with juxta-ocular swellings rery feebly indicated, weakly convex, carinate shaft of pronotum, smooth

[^14]cephalic coxx and apparently ${ }^{19}$ fewer spines on the ventro-interna! margin of the cephalic femora.

Genus monotypic. Genotype.-Sceptuchus simplex, here described.

Generic Description.-Size small, normal for the Nanomantes; form slender. Head decidedly transverse; facial scutellum very strongly transverse; occiput quadrisulcate, these sulci broad and shallow, the dorsal outline of the sections thus formed transverse, the juxta-ocular sections showing a very broad and feeble convexity. Ocelli moderately well developed, the dorsal pair vertical, very elongate oval in form, above which is a transverse and very delicate carina. Pronotum slender, slightly longer than cephalic coxa, margins smooth, supra-coxal expansion moderately developed with its margins moderately convex, medio-longitudinal carina distinct on shaft of pronotum, lying in a broad medio-longitudinal depressed area, absent on collar. Tegmina elongate and moderately narrow with apices rather broadly rounded, entirely hyaline, median and discoidal veins connected by an oblique hyaline linear stigma, transverse sigmoid veinlets broken mesad by delicate false veins only in distal portion of tegmina. The wings do not project beyond the tegmina. Supra-anal plate triangularly produced, not as long as proximal width. Cerci simple, cylindrical, tapering to acute apices. Coxa with margins smooth. Cephalic femur slender, with dorsal margin straight, pinched into a moderately decided ridge, unguicular sulcus at end of proximal two-fifths, three discoidal spines, four spines on ventro-external margin and an additional small spine on each genicular lobe, spine formula of ventro-internal margin ilifilifilinI. Cephalic tibia with ventro-external margin armed with seven spines, increasing in length distad, of which the first is decidedly the smallest and separated a greater distance from the second than the intervals between the others; ventrointernal margin armed with eleven spines which increase in length distad. Caudal metatarsus extremely elongate and slender, over twice as long as combined length of succeeding tarsal joints.
Sceptuchus simplex new species. (Plate I, figures 5 and 6.)
The present species apparently shows nearest affinity to Vanomantis unstralis saussure. ${ }^{20}$ In addition to the differential features

[^15]given in the generic diagnosis, we would note that the present species appears to differ from all others, assigned to the eromp Nanomantes by Ciglio-Tos, in the simple immaculate coloration of limbs and organs of flight.

Trpe.- $\sigma^{\text {r }}$; Singapore, British Straits settlements, Malay Peninsula. (From C. F. Baker.) [Hebard Collection Type No. 519.]

In addition to the characters described in the gencric treatment, we would give the following. Facial scutellum five times as broad as high; dorsal margin weakly defined, transverse mesad, oblique laterad. Antemne and costal margins of tegmina microscopically ciliate. Short, straight, ohlique or vertical veinlets connect the marginal and mediastine and mediastine and humeral veins of the tegmina and wings. Cephalic femur with rentral surface supplied with hairs and within the external spines somewhat angulately ridged and denticulate; ventro-internal margin with spines extending to opposite distal margin of femoral brush, alternating long and short, except the three successive smaller spines beneath femoral brush, the elongate terminal spine longer than any of the others. Supra-anal plate triangular, with aper rather broadly rounded. Subgenital plate with lateral portions narrowly curved uprard; dextral portion evenly and weakly convex, sinistral portion straight in proximal half, then in remaining portion similarly convex and convergent with dextral portion; at the apices of these margins are situated minute styles, about three times as long as broad, separated by a brief interval, in which median portion the plate is very thin with margin angulate emarginate at slightly less than ninety degrees.

Body and limbs immaculate, pale yellowish brown, probably pale green in life, as is indicated by the presence of a few minute irregular green patches. Eyes blackish chestnut brown. Tegmina and wings hyaline, iridescent, almost clear, showing an exceedingly faint tinge of yellowish brown. Humeral vein and both median and discoidal veins, as far as the colorless stigma, purplish vinaceous.

Length of body 18.5, length of pronotum 5, length of pronotal collar 1.8, greatest width of pronotum 1.7, length of tegmen 14.7 , width of tegminal marginal field .8 , length of wing 13.7, length of cephalic femur 5.3, length of caudal metatarsus 4 mm .

Stenomantis novae-guineae (Hain).

1842. M[antis] (Mantis) morap-gnineaf Haan, in Temminck, Verlı. Nat. Gesch. Nederlandsche Overseesche Bezittingen, Orth., p. 7ti, pl. XVII, fig. 3. [o , New Guinea.]
Fakfak, Dutch New Ciumea, 1 of.
The peculiar, half-atrophiod organs of flight and evenly swollen supra-eoxal expansion with deep sulei latero-cephalad are striking features in this long and very slender insect.

Haan's figure is not as good as is usual in that work, the color pattern and contour being indistinct and particularly that of the supra-coxal expansion being apparently underestimated.

The tegmina are glassy, heavily suffused with blackish mars violet in the present specimen. Length of body 45 , length of pronotum 17.4, greatest width of pronotum 3.1, least width of shaft of pronotum 1.2, length of tegmen 15.3, width of tegminal marginal field 1.2, length of cautal femur 17.8 mm .

IV. Ameline.
2d Group, Gonypetae.

Amantis reticulata (Haan).
1842. M[antis] (Orypilus) retionlath Haan, in Temminck, Verh. Nat. Gesch. Nederlandsche Overseesche Bezittingen, Orth., p. 87, pl. XVII, fig. 9. [o7, of Krawang, [Java].]
1915. A Ammoti.] gestri Giglio-Tos, Bull. Soe Ent. Italiana, XLVI, p. 154. [0°; Si-Rambe and Pangherang-Pisang, Sumatra.]
Though a meagre four-line elescription alone is given for gestri Ciiglio-Tos, it is sufficient to show that the features of difference are quite inadequate to warrant nominal recognition of any kind. The present series shows that the cephalic metatarsi in this species are entirely dark or dark only at the distal extremities, this a feature of individual variation, the intensive dark condition occurring, however, more often in the male sex.

Kelantan, Siam, 1 ㅇ.
Island of Penang, British Straits Settlements, Malay Peninsula, (from C. F. Baker), $2 \delta^{7}$.

Singapore, British Straits Settlements, Malay Peninsula, (from C. F. Baker), $2 \sigma^{\circ}, 3$ 우.

Palabuan, southern Java, (from H. Fruhstorfer), 1 \&.
Labuan Island, British North Borneo, 1 or, 2 오.
We find that in this species, genotype of Amantis by original designation, the cephalice femora have five ventro-external spines
(including the minute genicular spine), the cephalie tibice ten rentroexternal spines; (iiglio-Tos gives nine spines for the rentro-external margin of the eephalic tibie in his generic diagnosis.

Amantis maculata (shiraki).
 [0', of; Shizuoka, Japan; Taihoku and Taipin, Formosa.|
Koonnaniu, Formosia, september 24, 1906, 1 ¢.
The present species is clearly a depauperate derivative from the same stock as A. reticulata. In maculata the cephalic tibite have the ventro-external margins armed with eleven spines.
Amantis aeta new species. (Plate I, figure 7 and plate II, figure 9.)
This species is one of the least distinctively marked forms of the genus. Except for a dark brown suffusion distad on the ventral surface of the cephalic femora, the body and limbs show no striking markings, only in the female do less decided macula of dark brown occur as well ventro-distad on the internal faces of the cephatice coxie and at the unguicular sulcus of the cephalic femora.

The species furthermore apparently differs from all others in having the tegmina and wings immaculate, elear hyaline in the males; hyaline but very faintly tinged with yellowish brown in the females, this much stronger in the marginal field of the tegmina and appearing distad as a succession of small flecks on the costal margin of the wings, with stigma colorless in both sexes.

Type.- $\sigma^{\text {º }}$; Mount Banahao, Island of Lazon, Philippine Islands. (From C. F. Baker.) [Hebard Collection Type No. 520.]

Size slightly larger, form somewhat more slender, with tegmina and wings more elongate than in the genotype, A. reticulata. Head generally as in that species, with occiput lacking sulci and weakly convex in transverse dorsal outline, differing from reticulata in having the triangle formed by the ocelli slightly broader than high and in having the facial scutellum broader, about three-fifths as high as greatest width. Antenne ciliate. Pronotum very similar to that of reticulata, but appreciably more slender, with narrowing of supra-coxal expansion cephalad not as deeided; medio-longitudinally very weakly sulcate with a very feeble carina indicated on shaft as in reticulata, supra-eoxal expansion and transverse supra-

[^16]coxal sulcus decided, but not as deeided as in that species; shaft slightly less than one and one-half times as long as neek; lateral margins of pronotum lamellate and microscopically denticulate, these dentieulations the bases of minute hairs as in reticulata. Tegmina and wings with venation and eostal margins ciliate as in reticulate, tegmina broadening distinctly distad. Supra-anal plate roughlytriangular, length less than half basal width, apex broadly rounded. Cerci small, slender, with joints bead-like, tapering to acute apex. Subgenital plate with lateral margins weakly convex convergent to styles, which are similar, slender, eylindrical, about four times as long as wide, separated by an interval equalling the length of one of them, the margin of which is transverse. Limbs as in reticulate. Cephalic coxe unarmed, with mere traces of denticulation: Cephalic femora heavy, with dorsal margin straiglst, unarmed, unguicular suleus two-fifths distance from hase to apex; four discoidal spines, of which the first is mimute; four heavy spines on ventro-external margin, with minute blunt projections on ventral face, a few of which are situated between the more distal of thesespines, and with an additional small spine on each genicular lobe; spines of ventro-internal margin showing the following formula ${ }_{\text {II }}$ IIIIIIIIIII , of the longer of which the first and last are decidedly more elongate than the others. Cephalic tibixe with ventral margins bearing (nine to ten) external and (eleven to twelve) internal, rather heavy spines, which increase regularly and gradually in length distad. Caudal metatarsus approximately one and one-half times length of succeeding tarsal joints.

Allotype.- o ; same data as type. [Hebard Collection.]
similar to the male, differing in the following features: size larger, form slightly more robust. Ocelli proportionately not as large. Facial scutellum more transverse, height very slightly more than half basal width. ${ }^{23}$ Cephalie coxæ with minute, microscopic denticulations, the bases of hairs. Cephalic femora with denticulations of ventral surface heavier. Supra-anal plate short, triangular in general outline, reaching to base of valves of subgenital plate, dorsal surface convex mesad, angulate concave along margins. Subgenital plate as in this sex of reticulata.

Both sexes yellowish brown in general coloration. ${ }^{24}$ Male immaculate, except for a dark brown suffusion ventro-distad on the

[^17]rephalic femora, which spreats from the ventral surface over the sides of the adjacent genicular lobes, and rephalic metatarsus also suffused at distal extremity with dark brown. Tegmina and wings transparent, moderately iridescent, clear hyaline. Three of the four males from Mount Makiling have the facial scutellum suffused with dark vinaceous.

The female, in addition to the dark brown suffusion for the male, has the cephalic coxæ ventro-distad showing a large dark brown suffusion, a small similar suffusion on the distal margin of the unguicular sulcus and traces of the same on the external genicular lobes of the cephalic femora and on the cephalic tibix mesad on each side and at the base of the metatarsus. The tegminal and wing coloration is described for this sex in the introduction to the species.

We would note that, except for the heavy dark marking distad on the ventral face of the cephalic femora, all of the darker suffusions found in the sexes of this species probably disappear completely in individuals of recessive coloration.

Measurcments (in millimeters).					
	Length of body.	Length of pronotum	Width of pronotum	Length of tegmen.	Greatest (distal) width of tegmen.
0^{7}					
Mt. Bamahao. type	16.3	3.8	1.9	15.7	4.3
Mt. Makiling, paratype	16	3.7	19	15.3	4.2
Davao, paratype.....	. 15.3	3.3	17	13.7	4
Davao, paratype	15.8	3.7	19	14.8	4.1
Zamboanga, paratype.	. 16.3	3.8	1.9	147	4.3
\%					
Mt. Banahao, allotype.	. 19	4.2	2.4	17.7	5.2

In addition to the described pair, the following paratypes are before us:

Mount Makiling, Island of Luzon, Philippine Islands, (from (. F. Baker), $4 o^{7}$.

Paete, Laguna, Island of Luzon, Philippine Islands, (from C. F. Baker), 10^{r}.

Dapitan, Misamis, Island of Mindanao, Philippine Islands, (from (.. F. Baker), 1 or

Davao, Davao, Island of Mindanao, Philippine Islands, (from C. F. Baker), 2 or

Zamboanga, Zamboanga, Island of Mindanao, Plilippine Islands, (from C. F. Baker), $1 \circ^{7}$.

Amantis basilana new species. (Plate I, figures 8 and 9.)
This species is closely related to A. aeta here described, differing in the proportionately slightly broader head, with distinctly more transverse facial scutellum, slightly more proximal unguicular sulcus, more decided green coloration ${ }^{25}$ and distinctly though delicately marked pronotum and cephalic tibie but immaculate cephalic femora.

Type.- δ^{7}; Island of Basilan, Zamboanga District, Philippine Islands. (From C. F. Baker.) [Hebard Collection Type No. 521.]

Compared with the male of aeta, this individual is seen to differ in the following characters, as well as in important features of coloration. Head proportionately distinctly broader. Ocelli smaller and arranged in a much more transverse triangle, almost twice as broad as high. Facial scutellum with height very slightly less than half basal width, dorsal margin weakly convex. Pronotum very similar to that of aeta, except that the medio-longitudinal sulcation is weakly indicated only at the supra-coxal expansion, the feeble carina of the shaft obsolete. Tegmina and wings as in that species, except that the tegmina widen very slightly distad, less so than in aeta. Genitalia damaged. Armament of femora and tibiæ as described for aeta. Caudal metatarsus as in that species. ${ }^{26}$

Allotype- - $\%$; same data as type. [Hebard Collection.]
Compared with the female of aeta, this specimen is found to agree closely, differing in the following respects, as well as in distinctive features of coloration. Head proportionately distinctly broader. Ocelli smaller and arranged in a much more transverse triangle, fully twice as broad as high. Facial scutellum with height about two-fifths basal width, dorsal margin transverse, scarcely convex.

Both sexes oriental green in general coloration, the specimens at hand with body faded to yellowish brown. Pronotum with a very narrow but sharply defined medio-longitudinal black line on shaft, extending from base of shaft to near the transverse supracoxal sulcus, with a minute linear parallel mark of the same color on each side near the caudal margin of the shaft. Cephalic tibix yellowish, with a large suffusion of blackish brown mesad on the external and dorsal faces and a fleck of the same color at the base

[^18]of the metatarsus. Cephalic metatarsi with a distal suffusion of blackish brown and, in the male, washed with this color mesad. Genicular areas of median and caudal femora narrowly blackish brown. Tegmina and wings transparent, moderately iridescent, hyaline, tinged weakly but distinctly with oriental green. Stigma of general tegminal coloration.

The paratypic female at hand shows a recessive type of coloration in having the cephalic tibix with only traces of the two brown suffusions.

Measurements (in millimeters)

Length of

body: \begin{tabular}{c}
Length of

pronotum. pronotum.

Width of

Length of

tegmen.

(istat) width

of tegmea.
\end{tabular}

The single paratypic female at hand bears the same data as the type and allotype.

Gonypeta borneana ciglio-Tos
1915. G[onypeta $]$ borneana Ciglio-Tos, Bull. Soc. Ent. Italiana, XLVI, p. 155. [σ^{7}, Borneo.]

Labuan Island, British North Borneo, 20^{77}.
The very dark coloration and rough surface are striking features in the present species.
V. Compsomantine

Ist Group, Compsomantes.
Compsomantis semirufula (Westwood).
1889. Hapalomantis semirufula Westwood, Rev. Ins. Fam. Mantidarum, p. 37, pl. NIII, fig. 8, pl. I, fig. 1. [0^{7}, of Sarawak, Borneo.]

Sandakan, British North Borneo, (from C. F. Baker), 10^{7}.
Males of the present species might easily be mistaken, at first glance, for representatives of the genus A mantis Giglio-Tos. Closer examination, however, shows the pronotum to be of an entirely different type, and the species to be, in fact, very widely separated from that genus. The superficial similarity of males of these species is even greater than that found between males of Opsomantis tumidiceps and those of Amantis, as in males of semirufula a weak but distinct lateral concavity of the pronotal shaft occurs.

In the male at hand the ocelli are well developed and approximate, the facial scutellum about one-third as high as its basal width,
with dorsal margin oblique and poorly defined laterad, transverse and carinate between the antennal sockets. The dark brown on the internal face of the cephalic femora is more diffuse and blurred than in Westwood's figure. The caudal metatarsus is as long as the combined length of the three succeeding joints. The genitalia are much like those of Opsomantis tumidiceps, except that the supraanal plate is slightly less produced, the styles of the subgenital plate longer. fully five times as long as the greatest width, separated by a distance equal to four-fifths the length of one of the styles.

Length of body 24 , length of pronotum 4.8 , greatest width of pronotum 2.9, length of tegmen 21, width of tegminal marginal field 1.1, length of caudal femur 6.8 , length of caudal metatarsus 2.1 mm .

Opsomantis tumidiceps (Bolivar).
1890. Compsomantis tumidiceps Bolivar, Ann. Sor. Espanola Hist. Nat., NLX, p. 303. [$\%$; Dolores, Philippine Islands.]
Mount Makiling, Island of Luzon, Philippine Islands, (from C. F. Baker), 1 。

Like Compsomantis semirufula, this species might, at first glance, be mistaken for a member of the genus Amantis, but it is readily distinguished by a number of distinctive characters.

In the male before us we note that the ocelli are minute and rather widely separated, the facial scutellum distinctly less than half as high as its basal width, with dorsal margin weakly convex and showing slight irregularities. The limbs are all spotted and dotted with dark brown on both internal and extemal faces, a particularly large dot being situated on the internal face of the cephalic femur at the distal extremity of the unguicular sulcus. The pronotum expands evenly to the portion of greatest width, the lateral margins curving evenly thence to the cephalic extremity, with no trace of coneavity anywhere, the margins are entire, without trace of denticulation. The caudal metatarsus is scarcely longer than the combined length of the two succeeding joints. The supra-anal pate is evenly romoled, its length slightly less than half its proximal wilth. The subenital plate has the lateral portions narrowly turned dorsad, the lateral margins straight convergent; the styles, situated at the narrow extremity and separated by a distance little over the width of one of these, proportionately large, flattened cylindrical, as long as the supra-anal plate, four times as long as the greatest width, with apices romded.

Length of body 18.3. length of pronotum 5, greatest width of pronotum 2.3, length of tegmen 10 . width of tegminal marginal field .9 , length of caudal femur 5.3 , length of raudal metatarsus 1.5 mm .

1N. Thespine. ${ }^{27}$

1st (iroup, Euchomenellae.

Euchomenella heteroptera (Haan).

1842. M[antis] (Mantis) heteroptera Haan, is in Temminck. Verh. Nat. Gesch. Nederlandsche Overseesche Bezittingen, Orth., p. is, pl. XVILI, fig. 1. [ơ; Banjermassin, [Borneo]; Java: Tondano, Celebes.]
Singapore, British straits settlements. Malay Peninsula, (from C. F. Baker), 1 or.

The present specimen agrees exactly with Haan's figure. We would note that the markings of the triannulate cephalic femora are exactly the same on the external and internal faces and that the wings are decidedly iridescent.

Euchomenella molucarum (saussure).

1872. E[uchomena] molucurum saussure, Mélang. Orth., II, p. 27. [8], Molureas.]
1873. Euchomenu molucarmm Saussure and Zehntner, in Grandidier, Hist. Nat. Madagascar, XXIII, p. 179. [o, Java.]
Sandakan, British North Borneo, (from C. F. Baker), $1 \sigma^{7}$.
This specimen agrees perfectly as to pronotal size and expansion with Saussure's figure, but not with the dimensions given in his description for this part. Compared with the male of E. heteroptera before us, the present insect is seen to differ in its smaller size, weakly maculate pronotum and tegmina, ${ }^{29}$ cephalic tibiæ which are as dark as the pronotum, slightly hackened internally at their extremities and cephalic femora which are as dark externally, with a few irregular areas of paler shade toward the ventral margin, but which internally are brownish buff, mottled with dark brown proximad, heavily mesad, with a broad blackish annulus meso-distad, succeeded by a narrow pregenicular blackish annulus.
[^19]
TAGALOMANTIS ${ }^{30}$ new genus. (Plate I, figure 10.)

We place in this genus the single species described by Saussure as Euchomena mamillensis and referred by Ciglio-Tos, apparently without having material for comparison, to his genus Euchomenella. To that genus nearest affinity is shown, Tagalomantis differing in the following features:

Form much less attenuate, slender. Eyes smaller and not remarkably protuberant. Pronotum with medio-longitudinal carina very weak. Limbs slender, but not as exceedingly slender as in Euchomenella. Cephalic femora with four discoidal spines, of which the third is very elongate, but not proportionately as extremely elongate as in Euchomenella. Ventro-external margin of cephalic femora armed with four elongate spines and one small spine on genicular lobe; ventro-internal margin showing the following spine
 tibiae with ventro-external margin armed, except for a brief distance proximad, with twelve spines, which increase gradually in size distad, the proximal spines very small.

Tagalomantis manillensis (Saussure).
1870. E[uchomena] manillensis Saussure, Mélang. Orth., I, p. 194, pl. VI, fig. 44. $\left[0^{7}\right.$; Manila, [Philippine Islands].]
Los Banos, Laguna, Island of Luzon, Philippine Islands, (from C. F. Baker), 1 or.

This specimen is apparently slightly smaller than the type, but agrees fully in all important features with Saussure's description.

We would note that the limbs are pale brown, the cephalic coxa showing, on their extermal surfaces, two slightly paler indistinct transverse bands and having their apices suffused with dark brown internally. In the present specimen the cephalic femora have the discoidal spines and the longer spines of the ventro-internal margin dark brown. Length of body 50, length of pronotum 18.7, length of collar 3.8, greatest width of pronotum 2.6, length of tegmen 27.8 , width of tegminal marginal field 1.8 , length of cephalic femur 11 mm .

> IX. Oligonicine.
> 2d (iroup, Haaniae.

Haania lobiceps (Haan).
1842. M[antis] (Oxypilus) Iobiceps Haan, in Temminck, Verh. Nat. Gesch. Nederlandsche Overseesche Bezittingen, Orth., p. 8.5, pl. XVIl, figs. 4 and 5. [Juv. and of (nee of and or); Padang, [Sumatra]; Krawang, [Java].]

[^20]Sandakan, British North Borneo, (from C. F. Baker), 1 \&.
(iiglio-Tos has recently cleared away the confusion surrounding this very remarkable little species. ${ }^{31}$

XVI. Caliridine.
1st (iroup, Calirides.

Caliris masoni (Westwood).
1889. Iris masoni Wextwood, Rev. Ins Fam. Mantidarum, p. 32, pl. J, fig. 6. [$\%$, India.]
Khasia Hills, Assam (?), 1 \&.
From comparison with the female of C.elegans Giglio-Tos, before us, we believe that either one exceedingly plastic species may be represented, or that elegans may prove to be a depauperate race of masoni. Additional material is needed to solve this problem.

The present specimen is larger than the measurements given by Westwood, almost the exact size of his figure. It has the marking of the radiate field more extensive and more striate caudad.

Length of hody 40 ., length of pronotum 11.3, greatest pronotal width 4.8, least pronotal width 3., length of tegmen 22.7, width of tegminal marginal field 2.1 , length of cephalic femur 12.4 mm .

Caliris elegans Giglio Tos.
1915. C[aliris clegans (iigtio-Tos, Bull. soc. Ent. Italiana, XLVI, p. s2. 1 I : Deli, Sumatra.]

Sandakan, British North Borneo, (from ('. F. Baker), 1 or, 1 \& .
We find the present female smaller than the type. even smaller than the measurements given by Ciglio-Tos for his C. elegans from sumatra. In the present female, however, the distal subcallous areas of the tegmina and the beautiful markings of the wings are as shown by Westwood's generally excellent figure. As to the distal obliquity of the humeral and median reins described for elegans, the same is true for the present female, and we believe will be found the same in the type of masoni, the figure being probably inexact in this feature.

The male sex being unknown for the genus and species, we would remark the following features:

General form similar to but more slender than that of female, armament of cephalic limbs exactly the same. Ocelli slightly larger. Facial scutellum generally similar to that of female, but very slightly broader, dorsal margin acute angulate mesad. Tegmina and wings

[^21]narrower than in female, but with similar venation; coloration transparent, with a very weak greenish tinge, veins very pale greenish. Subopaque or subcallous areas of tegmina and striking markings of wings not present in this sex. Supra-anal plate strongly transverse, length hardly one-third basal width; lateral margins nearly straight and strongly convergent from above cercal bases to broadly truncate apex. Subgenital plate flattened scoop-shaped, lateral margins weakly convex convergent, rounding distad into the broadly convex apex: dextral portion elevated dorsad from base of cercus to dextral style in a low ridge with dorsal margin broadly convex. Styles minute, simple, cylindrical, cach about three times as long as wide, separated by a distance equalling about two fifths the length of the stvle.

Though so utterly different in tegminal and wing coloration, the sexes of this species are easily associated by the similarity of cephalic and pronotal form and limb armament.

Length of body, or 26.2 , \& 30 ; length of pronotum, or 6.8 , ㅇ 7.9 ; greatest pronotal width, or 2.9, \& 3.5 ; least pronotal width, or 2.1, ㅇ 2.7 ; length of tegmen, or 18 , ㅇ 17.3 ; width of tegminal marginal field, or 1.6 , \& 1.9 ; length of cephalic femur, or 7.2 , \& 9 mm .

Gilda suavis (iglio-Tos.
1915. G[ilda] sumis Giglio-Tos, Bull. Soc. Ent. Italiana, XLVI, p. 85. [$\%$; Limbang, Borneo.]
Sandakan, British North Borneo, (from C. F. Baker), 1 ㅇ.
The female sex of this species is even more beautiful than that of Caliris masomi. The present specimen is a trifle smaller than the type, agreeing fully in all details of coloration.

We would note that, in the material at hand, the cephalic tibise have the ventro-internal margin supplied with thirteen spines in Gilda and with fourteen in Caliris, not including the terminal claw. This claw was either counted by Giglio-Tos for Caliris, or his material of that genus shows one more spine on the margin in question.

In Gilda the pronotum is longer, with shaft proportionately more slender and supra-coxal expansion much broader and consequently very much more conspicuous than in Caliris. In the present female the pronotum shows the following dimensions: length 13.3, greatest width 4 , least width 1.8 mm .

3d Ciroup, Leptomantes.
Leptomantis albella (Burmeister).
153s. M[antis] albella Burmeister, Handb. Ent., II, Abth. II, pt. I, p. 5333. [Java.]
1915. Leptomamtis sumatrata Giglio-Tos, Bull. Soc. Ent. Italiana, XLVI, p. ss. 107 , sumatra.]

After careful consideration of the literature and the material of this genus before us, we feel fully justified in placing sumatrana Giglio-Tos in synonymy. A possibility exists that the name should be placed under L. fragilis (Westwood), but due to the inadequacy of the original three-line description of sumatrana, this can be determined definitely only by examination of the type or further knowledge gleaned from sumatran material.
Singapore, British Straits Settlements, Malay Peninsula, (from C. F. Baker), 1 ㅇ․ . 2 ㅇ.

Samarang, Java, November, 1909, (E. Jacobson), $1 \circ^{77}$, [Academy of Natural Sciences of Philadelphia].

It is clear that the species of the genus are closely related, and particularly albella and fragilis. When compared with fragilis, the present insect is seen to differ in the male sex as follows. Interrupted dark line margining pronotum and mesal pair of dots normally very weakly indicated, in discolored specimens sometimes obsolete. ${ }^{32}$ Tegmina wholly immaculate. supra-anal plate triangular with apex rounded, decidedly shorter than proximal width. Cerci tapering distad to slender apices.

Unfortunately lack of female material of fragilis prevents comparison for that sex. Females of albella are readily separable from those of L. lactea (Saussure) by the distinctly narrower marginal field of the tegmina (.8 mm . in width), while those before us are smaller than the female of lactea at hand (length of pronotum 11.4 and 12 mm .) with tegmina very weakly milky, except latero-proximad where they are weakly milky, in marginal field where they are translucent, milky and distal portions of marginal fields of tegmina and wings where they are buffy and almost opaque. ${ }^{33}$

Leptomantis fragilis (Westwood).
1889. Musomia fragilis Westwood, Rev. Ins. Fam. Mantidqum, p. 31. [0^{7}]; Sarawak, Borneo.]
1859. Musonia bitineata Westwood, Rev. Ins, Fam. Mantidarum, p. 32. [[\%]; Sarawak, Burneo.]
It is extremely probable that Westwood described sexes as indicated in the above synonymy. The male was apparently a discolored specimen, as the usual striking features of pronotal coloration are not mentioned in the description.

[^22]Giglio-Tos' reason for assigning bilineata to synonymy under lactea and then describing a new species, sumatrana, is certainly not clear.

Sandakan, British North Borneo, (from C. F. Baker), 1 o.
Labuan Island, British North Borneo, 38^{7}.
When compared with albella, males of fragilis are seen to agree closely, differing from those of that species only as follows. Interrupted dark line margining pronotum and mesal pair of dots normally well defined, particularly on the collar. ${ }^{34}$ Tegmina and wings distad with outer portion of marginal field almost opaque and strikingly buffy or reddish. Supra-anal plate triangular with apex acute, length slightly greater than proximal width. Cerci shorter, - distal joint flattened with apex rounded, slightly broader than the preceding joints.

We regret that no females of this species are before us.
Leptomantis lactea (Saussure).
1870. M Mioptery.x] lactea Saussure, Mélang. Orth., I, p. 274. [\&; Manila. Philippine Islands.]
Mount Makiling, Island of Luzon, Philippine Islands, (from C. F. Baker), 1 ㅇ.

The specimen at hand has the body much discolored and shows: no dark markings on the pronotum, as did specimens in Saussure's. series, other than the type. Such a condition would appear to occur also in albella and fragilis. The specimen under consideration is slightly larger than Saussure's type, in other respects agreeing fully. The tegmina and wings are weakly milky, the outer portion of the marginal fields distad being slightly more so. ${ }^{35}$ When compared with females of albella, the present female is seen to be larger with pronotum distinctly heavier, its lateral margins minutely but distinctly denticulate, not smooth as in that species. The measurements of this specimen are: length of body 35 , length of pronotum 13, least width of pronotum 1.3, length of tegmen 21, width of tegminal marginal field 1.2 , length of exposed portion of wings when at rest 4.7 , length of cephalic femur 7.8 mm .

Leptomantis tonkinæ new species. (Plate I, figures 11 and 12.)
This species is apparently nearest L. indica Giglio-Tos, but so poorly is that species characterized that the degree of affinity can not be satisfactorily determined.

[^23]The marking of the pronotum and cephalic cosat are distinctive features in tonkime. It is nearer lacten than albelln or fragilis, agreeing with the female of lactoc before us in the heavier pronotum with lateral margins serrulate, wider marginal field of the tegmina and heavily milky tegmina and wing. The pronotum is, indeed, slightly heavier and the tegmina and wings very much more heavily milky than in lactea.
Type.-of Than-Moi, Tonkin. June and July. (From H. Fruhstorfer.) [Hebard Collection Type No. 523.]

Size large for the genus, form very slender but not as slender as in females of albella. Summit of vertex raised above dorsal margins of eyes a brief distance, straight, transverse to brief areas on each side adjacent to eyes, which are convex and project very slightly. Ocelli very small, well separated, forming a triangle nearly twice as broad as high. Facial scutellum poorly defined, strongly transverse. dorsal margin convex in median portion. Pronotum very elongate and slender hut slightly heavier than in this sex of lacten, decidedly heavier than in females of albella, lateral margins minutely serrulate, supra-coval expansion very weak, transverse sulcus distinct. Tegmina with venation as characteristic for genus, falling considerably short of apices of wings (by 5 mm .), marginal field comparatively broad (1.6 mm . in width). Cerci hairy, tapering to acute apices. Supra-anal plate can not be examined without injury to type. Cephalic femora with four discoidal spines, of which the first two are rather closely placed and nearly opposite each other transversely on the ventral surface, the first being on the internal margin just before the maguicular sulcus ${ }^{36}$ ventroexternal margin with four elongate spines and all genicular lobes with a small spine; ventro-internal margin with the following formula IIIIIIIIIIInI, of which all the longer spines in the alternating series slant inward and distad to some degree. Cephalic tibie with ventro-external margin armed with seven spines, of which the first is placed at a distance from the second, this equalling twice the interval between the second and third, the remaining intervals brief; first, third, fourth and sixth spines small, second and fifth of about double that size and length, seventh and apical spine decidedly the heaviest and longest. Caudal metatarsus twice length of succeeding joints.

[^24]Gencral coloration apparently pale green in life (the head, pronotum and caudal limbs have faded to yellowish brown). Pronotum with a pair of delicate lines, formed by a succession of blackish brown dots, margining the medio-longitudinal carina of the shaft, with more extensive blackish brown maculations forming a distinctive pattern on supra-coxal expansion and reck (see Plate I, figure 11). Cephalic coxe with ventral surface narrowly bordered for a brief distance distad along internal margin with blackish brown and with a fleck of the same color meso-distad. Body and limbs elsewhere entirely immaculate. Tegmina and wings ${ }^{37}$ heavily milky, so that when at rest they are actually transparent only distad, in other portions almost opaque; veinlets pale green; marginal fields distad, in portion between marginal and mediastine veins, opaque, milky.

Length of body 35 , length of pronotum 12.2, greatest width of pronotmon 2.2 , least wilth of pronotal shaft 1.7 , length of tegmen 23 , width of tegminal marginal field 1.6 , length of cephalic femur 8.1, length of caudal femur 9 , length of caudal metatarsus 2.4 mm .

The type of this striking species is unique.

AETAELLA ${ }^{34}$ new genus.

The present genus is very closely related to Leptomantis GiglioTos. ${ }^{39}$ We find these genera to agree closely, except in characters of the armament of the cephalic femora and tibix. In both genera the spines of these margins are strongly developed, the number and proportions constant ${ }^{40}$ for the cephalic femora the discoidal spines are four in number, of which the first two are rather closely placed and nearly opposite each other transversely on the ventral surface, the first being on the internal margin just before the unguicular sulcus; the ventro-external margin with four elongate spines and all genicular lobes with a minute but elongate spine.

Gemus monotypic. Genotype.-Aetaella bakeri here described.

[^25]The features which separate Actaclla from Leptomantes are given below for the two genera.

In Leptomantis the ventro-intemal margin of the cephatic femora shows the following formula, imimilaminI. The rephalic tibiæ have the ventro-external margin armed with seven spines, the first separated a considerable distance from the second, the second a lesser distance from the third, the others separated by very brief intervals. The first spine is elongate, the second much more so, the thired and fourth of about the same length, shorter than the first, the fifth intermediate in length between the first and second, the sixth shorter, intermediate in length between the fourth and fifth, the seventh very elongate, it and the second the longest spines of the series. The cephalic tibize have the ventro-internal margin armed with eleven to twelve spines.

In Aetaclln the ventro-internal margin of the cephalic femora shows the following formula, ilimimimimiliminI. The cephalic tithe have the ventro-external margin armed with six spines, the placement similar to that in Leptomantis, except that the distal spines are not so closely placed. The first spine is elongate, the second more so, the third shorter than the first, the fourth as long as the first, the fifth as long as the third, the sixth slightly longer than the second. The cephalic tibiæ have the ventro-internal margin armed with thirteen to fifteen spines.

We would note further that in Actaella the tegmina do not widen distad as much as in Leptomantis and, in consequence, the oblique veins are not quite as widely separated.

Aetaella bakeri ${ }^{41}$ new species. (Plate I, figures 13 and 14.)
In general appearance and form this species agrees closely with Leptomantis albella (Burmeister). In addition to the striking differences of cephalic limb armament, the tegmina of this insect are seen to be somewhat narrower in both sexes, with oblique veins consequently slightly more approximate.

The males of A. bakeri have the moderately large ocelli arranged in a triangle slightly wider than high, while the males of L. albella have the slightly larger ocelli arranged in a triangle slightly higher than wide. In the females of both species the ocelli are greatly reduced and arranged in a triangle wider than high. The tegmina and wings are clear hyaline in A. bakeri, hut show a slight milky suffusion in L. albella.

[^26]Type.- $0^{\text {T }}$; Mount Makiling, Island of Luzon, Philippine Islands. (From C. F. Baker.) [Hebard Collection Type No. 522.]
Size medium small, form extremely slender, as in L. albella. Head transverse, summit of occiput transverse and on a plane with dorsal margin of eyes, except briefly near the eyes, where, on each side, it is moderately produced and convex. Ocelli as described above. Facial scutellum strongly transverse, height one-fourth width, dorsal margin rather broadly convex. Pronotum very elongate and slender, margins unarmed, dorsal surface smooth, a trace of medio-longitudinal sulcation indicated in area of supra-cosal expansion, transverse sulcus there well defined, supra-coxal expansion feeble. The tegminal apices fall slightly short of the abdominal apex, the wing apices fall slightly beyond the abdominal apex; the venation of these organs is similar to that found in L. albella, the tegmina are, however, slightly narrower and are surpassed by the wings by a lesser distance. Supra-anal plate minute, length half basal width, lateral margins convergent to the broadly rounded apex. Cerci elongate, tapering to acute apices, each joint rounded with greatest width near distal extremity. Subgenital plate with lateral margins convexconvergent only distad, styles slender and cylindrical, about four times as long as wide, separated by a distance equalling the length of one of the styles. Cephalic femora with unguicular sulcus mesad, with a circular concavity between the first two spines of the ventroexternal margin, into which fits the apex of the terminal spine of the ventro-external margin of the cephalic tibia when these parts are flexed, ventral surface with a cluster of minute sharp teeth opposite the second spine of the ventro-external margin. Armament of limbs as given in generic diagnosis. Caudal metatarsus nearly twice as long as combined length of succeeding joints.
Allotype.-o ; same data as type. [Hebard Collection.]
Agrees with male in all but the following features. Size larger. Ocelli much smaller and arranged in a triangle which is considerably wider than high. Supra-anal plate with length slightly less than half basal width, triangular, with apex broadly rounded. Subgenital plate with valves of distal portion evenly convex dorsad and ventrad.

Gencral coloration delicate green in life. ${ }^{42}$ Entire insect immaculate. Tegmina and wings transparent, iridescent, clear hyaline. ${ }^{43}$

[^27]Measurements (in millimeteris)

07	Length of borly.	Length of pronotum.	Greatest width of pronotinn.	Lengtli of tegmen.	Widthof tegmen.
Mt. Makiling, type.	27	9.2	1.6	16.3	3.4
Malinao, paratype.	27.2	9.3	1.6	16.4	36
Dapitan, paratype.		8.9	1.5	16	3.4
Sandakan, Borneo...	25	8.6	1.4	13.6	
\%					
Mt. Makiling, allotype	. 31	11.2	1.7	18.4	3.9
Los Banos, paratype.	. 31	11.2	1.7	183	3.8
Los Banos, paratype.	33.5	11.1	1.8	18.4	$3 \times$

In addition to the trpe and allotype, the following material is before us, of which we consider the Philippine specimens paratypic.

Mount Makiling, Island of Luzon, Philippine Islands, (from C. F. Baker), $2 o^{7}$.

Malinao, Tayabas, Island of Luzon, Philippine Istands, (from C. F. Baker), 1 or

Los Banos, Laguna. Island of Luzon, Philippine Islands, (from C. F. Baker), 2 ㅇ.

Dapitan, Zamboanga, Island of Mindanao, Philippine Islands, (from C. F. Baker). $1 \sigma^{7}$.

Sandakan, British North Borneo, (from C. F. Baker). 1 or.

MXI. Deroplatine.
1st Group, Deroplates.

Deroplatys desiccata Westwood.
1839. Deroplatys desiccata Westwoon, Mod. Classif. Ins., I, p. 430. [Malacca.]

Labuan Island, British North Borneo, $40^{7}, 1$ of.
Sandakan, British North Borneo, (from C. F. Baker), 1 \&.
Deroplatys truncata (Guérin).
1843. Choeradodis truncata Guérin, in Delessert, souv. Voyage Inde, Hist. Nat., p. 65, pl. XV. [[9]; Singapore, Malay Peninsula.]
Sandakan, British North Borneo, (from C. F. Baker), 1 or, 1 오.

> XXII. Mantine.
> 2D Group, Sphodropode.

Sphodropoda tristis (Saussure).
1870. M[antis] tristis saussure, Mélang. Orth., I, p. 241. [7 ; Islands of Viti [= Fiji Islamde].]
Townsville, Queensland, Australia, 1 ㅇ.

Queensland, Australia, 2 o 7.
This species is now known to have a wide distribution over the Australian continent.

Sphodropoda quinquedens (AlacLeay).
1827. Mantis quinquedens MacLeay, King's Survey Intertrop. Coasts Australia, II, p. 454. [Northern and western coasts of Australia.]
Queensland, Australia, $1 \circ$.
The striking sculpture and coloration of the internal faces of the cephalic femora, which bear four buffy, elevated, transverse lines on the otherwise glossy ochraceous-tawny surface, are distinctive features in this species.

11th Giroup, Mantes.

Statilia maculata (Thumbers and Lundahl).
1784. M[antis] maculate Thumberg and Landahl, Dissert. Ent. Novas Ins. Spec., pt. III, p. 61. [Japan.] Giglo-Tos, Buil. Soc. Ent. Italiana,
1912. s[tatilia] hamii var. hyalina Giglio-Tos, Bull. Soc. Ent. Italiana, NLIII, p. 7. [Japan.]
We can not agree with (iiglio-Tos in recognizing the species here considered as S. haamii (Saussure). Among the Japanese Mantidee, Thumberg and Lundahl's leseription of maculate fits this species and this species only. ${ }^{44}$ Their statement "thorace alato spinuloso" we interpret to mean that the spinule along the lateral margins of the pronotmon project outward, as indeed they do. Saussure's haanii has long, and properly, been placed in synonymy under muculata.
(iiglio-Tos has proposed the name hyalina for a specimen evidently showing an extremely recessive coloration. We therefore place this name in the present synonymy as having no systematic value.

Khasia Hills, Assam, 1 ㅇ.
Labuan Island, British North Borneo, 4 $\sigma^{7}, 6$. .
Sandakan, British North Borneo, (from C. F. Baker), 2 or
()bi Island, Moluccas, $2 \sigma^{3}$.

All of the specimens here recorded show the characteristic markings of the cophalic coxse and femora. In the series the extremes of pronotal length are: of 12.8 to 14.2 , of 14.8 to 17.3 ; the extremes of greatest pronotal width, or 3.1 to 3.7 , o 4 to 4.9 mm .

Statilia nemoralis (sauswure)

1心7. Psembomantis nomorolis sausure, Mitt. A'chweizer Ent. Ges. III, p. 2e9. [o ; Manila, [Philippine Islands].]

[^28]Island of Basilan, British Straits Settlemente, Malay Peninsula, (from ('. F. Baker), 10^{7}. $1 \circ$.
Mt. Makiling, Island of Luzon, Philippine Islands, (from C. F. Baker), $2 \circ^{7}$.

Los Banos, Laguna, Island of Luzon, Philippine Islands, (from (. F. Baker), $1 \sigma^{7}$.
society Islands, $1 \mathrm{o}^{\text {re }}$.
This species is very closely related to maculata. The specimens at hand are all smaller, with cephalic femora very slightly but appreciably more slender than any examples in the large series of maculata before us. In addition, all but one entirely lack a black transverse line bordering the unguicular sulcus distad.

The black markings of the cephalic cosx and femora are shown by the present material to be extremely variable. In the Philippine specimens the cephalic coxæ are black proximad on their internal faces for a distance equalling about one-fourth their length, the adjacent portions of the prosternum dark, the femora without marking at the unguicular sulcus, with bases of ventro-internal spines maculate with black, the surface of the limb above these markings pale.

The Basilan male is marked as is characteristic for maculata, but with entire ventral surface of prostermm suffused. The Basilan female is a very dark individual, but shows the same black markings as the Philippine males; in this individual the pale area above the ventro-internal spines of the cephalic femora being very conspicuous and in sharp contrast with the dark general coloration.

The Society Islands male has the cephalic coxæ black proximad on their internal faces for a distance equal to about one-half their length, the prosternum immaculate, the femora with half of area proximad of unguicular sulcus black, with bases of ventro-internal spines blackish.

$$
\begin{aligned}
& \text { Measurements (in millimeters) } \\
& \begin{array}{c}
\text { Length of } \\
\text { body. }
\end{array} \\
& \begin{array}{c}
\text { Lengeth of } \\
\text { proatest }
\end{array} \\
& \text { prontum. pronotum. }
\end{aligned}
$$

[^29]12th Girotp, Tenodere.

Tenodera ${ }^{46}$ aridifolia (stoll).

1813. [Mantis] aridifolia Stoll, Natuur. Afbeeld. Beschr. Spooken, etc., pp. 65, 78 , pl. XXII, fig. 82. [East Indies.]

Khasia Hills, Assam, 1 \& .
Singapore, British Straits Settlements, Malay Peninsula, (from ('. F. Baker), 1 ox, 1 우.

Labuan Island, British North Borneo, $1 o^{7}, 2$ q.
Davao, Davao, Mindanao, (from C. F. Baker), $1 \sigma^{7}$.
Society Islands, $1 \sigma^{7}$.
The specimens from Lahuan are decidedly larger than the others of the present series.

We would note that the proportionate difference between the length of the shaft (metazona) of the pronotum and the cephalic coxe for the present species and simensis (saussure) is exaggerated in Ciglio-Tos' key. ${ }^{47}$ In both species the pronotal shaft is distinctly longer than the cephalic coxa, the degree averaging only slightly greater in aridifolia.

We find that sinensis is proportionately a heavier insect, with pronotum distinctly shorter and broader. In a large series of Japanese material of that species in the Philadelphia Collections, we find that the width of the tegminal marginal field varies in the females from 3.9 to 4.5 mm .

In the females of aridifolia at hand, the width of the tegminal marginal field is narrower, rarying as follows: Khasia Hills, Assam, 3.8; Trong, Siam, 2.9 and 3.3; Singapore, Malay Peninsula, 2.7; Goenong Soegi, Sumatra, 2.6; Labuan, Borneo, 2.4 and 2.6 mm . This material would appear to indicate a gradual reduction in the width of this field in material of the present species from continental Asia eastward through the Malayan Regions.
${ }^{46}$ The type of Paratenotera Rehn is simemsis, as originally designated by that author (Proe. Acad. Nat. Sci. Phila., 1903, p. 70.5, (1903)), not aridifotia as later designated hy Giglio-Tos (Bull. Soc. Ent. Italiana XLIII, p. 33, (1911)). From the study of the considerable number of species now before us in the Philadelphia Collections, we believe that but one genus is represented in the regions under consideration and follow Giglio-Tos in placing Paratemodera Rehn in synonymy under Temodera Burmeister, of which the genotype is fasciata (Olivier) $=$ attemuta (Stoll).

Though sintosis saussure and attemuata (stoll) differ so widely in form and general appearance, australasiop (Leach) is seen to be an almost intermediate type, while no combination of characters to divide the Asiatic species ean be fount, sufficient to warrant generic separation.
${ }^{47}$ Bull. Soe. Ent. Italiana, XLIII, n. 33, (1911).

Tenodera attenuata (stoll)

1792. Mantis, fusciata Olivier, Encyel. Méthod., VII, p. 640, No. 6. [I or], "Surinam." ${ }^{\prime}$
1793. [Manfis] attemmatn stoll, Natuur. Ahfeeld. Brachr. Spooken, ate., p1. 13, 79 , pl. V. fig. 16. [$\left.\circ^{\circ}\right]$, "Surinam."]
We find Kirby, Giglio-Tos and others to be in error in using fasciata (Olivier) as the name for this species. This is due to the fact that the Mantis fasciata Olivier in question is preoccupied by Mantis fasciata Thumberg, 1815, and by Mantis fascinta Olivier, 1792, Encycl. Méthod., VII, p. 640, No. 4.

Samarang, Java, July and August, 1909, (E. Jacobson), ․ $\sigma^{7,13}$ [Academy of Natural sciences of Philadelphia.]

Tenodera blanchardi (iyfio-Tos.
1911. T[emodera $]$ blanchardi Giglio-Tos, Bull. Soce. Ent. Italiana, XLIII, p. 46. [0], of : Stephansort, German New Guinea: Bukana, Gulf of Huon, New Cuinea; Ralum, Bismarek Arehipelago; Cape York, Torres Strait, [Queensland, Australia]: Port Darwin, [North Australia]: Ternate [Gilolo Island, and Island of Amboina].

Obi Island, Moluceas, $9 \sigma^{7}, 9$ 우 .
Moluccas, (Criolet), $1 \quad \circ$, from saussure, labelled superstitiosa, [Academy of Natural Sciences of Philadelphia.]

Amboina, $2 \sigma^{\text {T, }} 2 \%$, Academy of Natural Siciences of Philadelphia.]

Mesopteryx alata sausure.
1870. M[toopteryx alath simssure, Nittheil. schweizer Ent. Gesellsch., III, p. 2:3. [\quad; Manila. [Philippine Islands].]

Los Banos, Laguna, Luzon, (from C. F. Baker), 10^{7}.
As the male sex of this interesting species was previously unknown, we note the following features. Lateral margins of pronotum, dorsad and ventrad, show a series of very minute black dots. Tegmina reach slightly bevond apex of fifth dorsal abdominal segment. Distal portion of abdomen damaged. Length of body 87 , length of pronotum 29.4, length of pronotal shaft 24 , greatest pronotal width 4 , least width of pronotal shaft 3.8, length of tegmen 43.6, width of tegminal marginal field $2 . \overline{7}$, length of cephalic femur 15.9 , length of median femur 16.2, length of caudal femur 21.2 mm .

13th Ciroup, Hierodele.

Giglio-Tos has divided this complex group into three categories: the first African, including Sphodromantis and its allies; the second Asiatic and Oriental, including Hierodula and its allies; the third

[^30]Melanesian and Australian, including his new genus Parhierodula and its allies.

It is the last two categories with which we have particularly to deal and, from the material before us, we feel fully justified in repudiating the arrangement made by Giglio-Tos.

The insurmountable difficulty in that author's argument lies in the fact that, were we to accept the character of smoothness or serration of the costal margins of the tegmina as primarily important, we would give this feature far more weight than is its due. We consider this feature of probably a physiologic application and by no means as important for generic separation as the great pronotal expansion found in the forms which, in the past, were all assigned to Rhombodera. This different pronotal expansion is clearly a somatic character. It is found in the immature stages. The tegminal features are found in the adult condition only and for that reason we feel obliged to consider them of secondary value. ${ }^{49}$

We therefore place Parhierodula (iiglio-Tos under Hierodula Burmeister, and Rhomboderula ${ }^{50}$ Ciglio-Tos, described as a subgenus of Parhierodula, under Rhombodera Burmeister. These two units as recognized by Giglio-Tos, Parhierodula and Rhomboderula, may not even stand as subgenera, based only on the different character of the costal margins of the tegmina.

Using the same argument, when we consider the African species of the Hierodulæ, we find that Giglio-Tos' subgenus Rhomboderella, of the genus Sphodromantis Stal, represents a valid generic unit.
Though the relative values of the character of the tegminal margins or the pronotal development afford full justification for such action, the material at hand shows further necessity for the present adjustment. Several species before us, some with costal margins of the tegmina smooth, others with these margins serrulate, unquestionably belong not only to the same genus, but also to the same species group within the genus. The general facies and sum total of characters in these is much too close to be ascribable to convergence in two different genera, as Giglio-Tos, using his classification, would be forced to assume. Thus Hierodula laevicollis Saussure and Hierodula sorongana (Gigho-Tos) are species of close affinity,

[^31]representing a group within the genus of more recent common ancestry. To this same group belongs Hierotulu obiensis, described in the present paper. Here we have two species with costal margins of tegmina smooth and one (sorongana) with these margins distinctly serrulate. Again Hierodula venosa (Olivier) and Hierodula vitrea (Stoll) are referable to another similar group, though venosa has the costal margins of the tegmina smooth, vitrea showing these margins varying individually from very weakly to distinctly serru late, as has been noted by Giglio-Tos. In this latter species we further see that the degree of serrulation of the tegminal margins is variable, even within a species unit.

In the majority of cases the Asiatic and Malayan forms have the tegmina with costal margins smooth, the Papuan and Australian forms having these margins serrulate, ${ }^{\text {ar }}$ but this interesting feature, probably physiologic as we have stated, is by no means as absolute as one would infer from superficially considering Ciglio-Tos' statements. Though these groups are geographically defined by GiglioTos, using Wallace's Line, examination of his specific assignments shows that six species referred to Hierodula (sensu strictiore of GiglioTos), considered by him to be an Oriental genus, occur only in the Australasian regions; five species referred by Giglio-Tos to his Parhierodula, which he considered to be a Papuan and Australian genus, occur only in the Asiatic and Oriental regions, while one species of each of his divisions occurs on both sides of Wallace's line.

The genus Hierodula is exceedingly large, but ahready a number of the species have been separated by Giglio-Tos into distinct and apparently valid genera: Alalomantis, Hierodulella, Pnigomantis, Ephierodula, Camelomantis and Tisma. It will probably also be found necessary to separate Hierodula tamolana (Brancsik) and its allies in a distinct genus. At present sufficient material is wanting for proper and definite comparative analysis and assignment of these.

HIERODULA Burmeister.

1835. Hierodula Burmeister. Handb. Ent., II, Abth. II, pt. I, p. 536.
1836. Parhierodula Gigho-Tos, Bull. Mus. Soc. Ent. Italiana, NLIII, p. 108.
[^32]Genotype, selected by Rehn. ${ }^{52}$-Hierodula [Mantes] membranacea (Burmeister).

We regret, but feel obliged to say that Giglio-Tos' treatment of the Hierodule leaves much to be desired. That author has described eight genera and forty-six new species. The descriptions are deplorably brief, in some cases represented by a single short and wholly comparative sentence. The measurements omit all but the most essential proportions. Not a single figure is given. Not only are the major divisions faulty, but akso the arrangement of the species, such as placing without comment, Hicrodula ovata, dearly the female of Hicrodula laevicollis, twenty-fourth and lacvicollis thirty-fifth.

Finally we are disturbed by (iglio-Tos' conception of what constitutes a species. That anthor has described Stagmomantis nordica from Virginia and Baltimore, Maryland. After years of eareful field work in that region we have proof positive that Stagmomantis corolimu (Johansson) is the only Mantid which occurs there, nordica being based on merely an intensively colored phase of that species. Realizing this we are dismayed at the number of new species dewribed from little known tropical regions, the (lescriptions giving differences which are so shight that we can but fear that a multitude of invalid species have been proposed.

The situation only shows the absolute necessity at the present time, of the specialist, working on a particular group of insects, to have a first hand knowledge of the forms in nature. It would appear that the most serious defects in Giglio-Tos' studies are the to the fact that that author has apparently had little or no preparation in the field for the task undertaken.

Hierodula gracilicollis stal.
1s77. If [icrodula] gracilicollis Stial, Bih. till h. S'venska Veet. Akad. Handl., IV, No. 10, p. 5s. [o ; Sarawak, [Borneo].]
189s. II[icrolula] stigmata Brunner, Abhandl. Senkenb. Naturforsch. (ies., XXIV, p. 214, ph. XV11, fig. 21. [0²; Kina Balu, [British North] Borneo.
We believe Kirby correct in considering stigmata the same as gracilicollis, but are of the opinion that Mantis simitis Giebel is best assigned to synonymy under Hicrodula venosa (Olivier).

Labuan Istand, British North Borneo, $2 \bigcirc^{>7}, 1$ ㅇ.
These specimens are the most delicate and slemder of any material now before us representing the genus Hicrodula or its allies. The

[^33]female at hand differs from the type in being somewhat longer, with pronotal width slightly greater and tegmina slightly longer, in all other respects agreeing closely with the measurements given by Stial.

The following features are noted for the present material. Facial scutellum with lateral margins parallel, broader than high (or 1.9 by 1.7 , of 2.5 by 2.7 mm .), showing two parallel vertical carine which are well defined, particularly ventrad, but show a brief subsidence, though no break, immediately below the median point. Cephalic coxæ with cephatic margin armed with small, somewhat irregularly placed, slender but blunted spines (eight to thirteen ${ }^{53}$), with apices directed distad, those meso-distad being slightly the larger. Cephalic femora with base and apex of trochanter flecked with dark brown, a minute brown fleck at base of first discoidal spine, at base of first large spine beyond the unguicular sulcus and at bases of last two large spines of this series, these spines, as well as the third discoidal spine, blackish brown on their internal faces. All spines of cephalic femora and tibie black tipped. Each joint of rephalic tarsi flecked with brown distad. Pronotum with well developed but not closely placed marginal denticulations on collar and cephalic half of shaft, weaker in one male and in that specimen mainly indicated on collar. Tegmina with discoidal fied transparent, hyaline in males, opaque in female, except mesad between veins, where they are translucent; stigma small (length 2.7 to 2.8 mm.), flecked with brown proximad and distad.

Measurements (in millimeters).

$\sigma^{7 \quad \begin{array}{c} \text { Length of } \\ \text { body. } \end{array}}$	Length of pronotum.	Greatest width of pronotum.	Least width of pronotum.	Length of tegmen.
Labuan lsiand, Borneo 55	16.2	4	2.2	41.1
Labuan IsFand. Borneo 56	17.6	4.2	2.3	44.8
¢				
Labuan Island, Borneo 62	21	5.6	3.1	34.2

The width of the marginal field of the tegmina in the males is 4 and 4.2 , in the female 5 mm .

Hierodula vitrea (stoll).
1813. [Mantix] vitrea S゙toll, Nat. Afbeeld. Beschryv. Spooken, ete., pp. 15̃, 77, pl. V, fig. $19 .\left[\left[\sigma^{7}\right], "\right.$ Surinam."]

[^34]Batu Sangkar, Tanah Datar, Padangsche Bovenland, Sumatra, August and September, 1901, (Harrison and Hiller), 2 ㅇ, [Academy of Natural Sciences of Philadelphia].

Batavia, Java, 1885, 1 or from Saussure, labelled Hierodula hybrida Burmeister, [Academy of Natural Sciences of Philadelphia].

Srondol, Samarang, Java, August, 1909, (E. Jacobson), 1 juv. o', [Academy of Natural sciences of Philadelphia.]

We are by no means assured that Stoll's vitrea and Olivier's venosa do not represent sexes of one and the same species, but we do know that we have two distinct though closely allied species before us, to which we believe have been generally given in the literature the names we are using. So involved is the synonymy at present that we are strongly of the opinion that we here have to deal with an extremely plastic unit, comparable with H. patellifera Serville. and like it, the cause of much confusion in past literature. Consequently many features, usually considered of specific diagnostic value, will probably be found worthless for the species under consideration.

For this reason we fcel that Giglio-Tos has shown decided temerity in describing Hierodula vitreoides, near vitrea, and Parhierodula simbangana, near venosa. Were these species adequately described, or figures given, their proper status might be determined. As it is, examination of the types and, if valid, redescription with figures will be necessary.

In the material here recorded the cephalic coxæ have the cephalic margin armed with (eight to nine) moderately well separated spines. which increase moderately in length distad (particularly in the females, length of longest, of $.3, \circ .8 \mathrm{~mm}$.). The costal margin of the tegmina is weakly serrulate, this strongest meso-distad. In the females the pronotum has the margins of the collar moderately denticulate, the denticulations of the cephalic half of the shaft weak, the shaft with medio-longitudinal carina well developed. In this sex the tegmina extend considerably beyond the apex of the abdomen, with marginal field proportionately narrower than in females of venosa and with stigma smaller (length 2.4 and 2.9 mm .).

The adult specimens before us are all dried alcoholic. One only shows the cephalic trochanter with apex slightly darkened, but all show subobsolete traces of darker suffusions on the imner faces of the cephalic femora, as described for cenosa. From this feature we believe that H. temuis Giglio-Tos is a member of the same phy-
lum, though particularly distinct in having the margins of the mate pronotum cremulate. The margins of the male pronotum are entire, with no trace of denticulation, in both vitrea and renosa.

Hierodula venosa (Olivier).
1792. Mantis, vemosa Olivier, Encyel. Méthod., VII, p. 639. No. 73. [[P]; Tranquebar, [India].] .
Labuan Island, British North Borneo. 2 ㅇ.
Sandakan, British North Borneo, (from C. F. Baker), 1 or.
This material, compared with specimens which we consider representative of H. vitren (Stoll), shows that very close affinity exists.

We separate the material here recorded by the more numerous (twelve to fourteen) ${ }^{54}$ and closely placed spines of the cephalic margin of the cephalic coxe, which increase somewhat irregularly but strongly in length distad (particularly in females, length of longest spine, o .8 , $\mp 1.3 \mathrm{~mm}$.). The costal margin of the tegmina is distinctly, moderately strongly serrulate. In the females the pronotum has the margins of the collar and cephalic half of the shaft strongly denticulate, the shaft with medio-longitudinal carina subobsolete or weakly defined. In this sex the tegmina reach only slightly beyond the apex of the abdomen, with marginal field proportionately broader than in females of vitrea and with stigma more ample (length 3.7 and 4.9 mm .).

Measurements (in millimeters).

The width of the marginal field of the tegmina in the male is 4.4 , in the females 5.6 and 5.8 mm .

In the specimens at hand the cephalic trochanters are brown at the apes, the femora above this point, above the first discoidal spine and above the first and fifth larger spines of the rentro-internal margin are flecked with brown. These markings are decided in one female, very faint in the other two specimens. The larger female has the stigma with small brown suffusions proximad and

[^35]distad, the male shows a trace of such marking, while the remaining female has the stigma immaculate.

Hierodula rajah werner.
1911. H[ierodula] rajah Werner. Abhand. Senckenb. Naturforsch. Ges., XXXIII, p. 393. [oº , o ; Nias [Island], Moluccas.]
Nias Island, Moluccas, 1 오.
The following features are noted in the female before us of this large and striking species, originally very briefly described. Facial scutellum with lateral margins straight, weakly but distinctly convergent dorsad; hasal width (3.9 mm .) very slightly greater than median height (3.8 mm .) ; surface showing two vertical, parallel carinæ, broken meso-ventrad as in H. venosa (Olivier) but decidedly weaker than in that species. Cephalic coxæ with (cight and nine) small, stout, irregularly placed, conical teeth, which do not become longer distad. Cephalic femora with discoidal spines, first small spine beyond unguicular sulcus and all large spines of ventro-internal margin black, a fleck of black disto-internally on the trochanters, a large blotch of the same color from the apex of the trochanters to and including the unguicular sulcus, a small blotch at base of the first two black spines beyond, continued to the second large black spine of the series, and a spot of black at the base of each other large black spine of the series. All spines of cephalic femora and tibiæ black tipped. Joints of cephalic tarsi entirely black on their inner faces. Pronotum with marginal denticulation pronounced on lateral portions of collar only. Tegmina with discoidal field translucent, moderately hyaline; marginal field opaque, with margin almost entire, showing feeble traces of serrulation meso-distad; stigma large, cream colored.

The species would appear to agree more nearly with H. timorensis (Haan) than with any of the other related species.

Length of body 88 , length of pronotum 33, greatest width of pronotum 10.1, least width of pronotum 5.8 , length of tegmen 58.8 , width of tegminal marginal field 6.2 , length of stigma 4.3 , length of cephalic femur 25 , length of caudal femur 25.6 mm .

Hierodula patellifera (Servile).
1839. Mantis petellifere Serville, Hist. Nat. Ins., ()rth., p. 185. [o7, 우; Java.]
1839. Mamis bipapilla simville, Hist. Nat. Ins., Orth., p. 188. [07, of Java.]
1870. II[icrodula] mamillonsis siausure, Mittheil. shweizer Ent. Gesellsch., III, p. 233. Ló, of Manila, [Philippine Islands].]
1904. H[icrodula] saussurei Kirby, Syn. Cat. Orth., I, p. 245. 107, of; China; Java.]
1912. H $\{$ rorodula manillama Giglio-Tos, Bull. Soe. Ent. Italiana, XLIlI, p. 96. L0, of : Manila, Philippine l:land.]

Saussure first pointed out the synonymy of patellifera, bipapilla and mamillensis.

From study of the literature, the material here recorded and a moderately large Japanese series in the Philadelphia Collections, we are convinced that we here have to deal with an exceedingly plastic species. The name saussurei was proposed for a condition in which the prostermum is immaculate, manillana for a condition in which the cephalic femora are suffused with black on their internal faces from base to unguicular sulcus.

The prostermum varies from immaculate to a heavily twice banded type, the degree of banding, when present, individually differing greatly as shown in the Japanese material at hand. The maculation of the cephalic femora appears to us to be a similarly individual color variation in this insect. In this species the costal margin of the tegmina is smooth, rarely showing faint traces of serrulation.

Giglio-Tos has attempted to separate bipapilla from patellifera on the hasis of differences in pronotal curvature and other features, all of which we are satisfied are of no specific diagnostic value for this plastic insect.

Cuernos Mountains, Island of Negros, Philippine Islands, (from C. F. Baker), 1 or.

Manila, Island of Luzon, Philippine Islands, September, 1918, (R. C. Mc(iregor), 1 ㅇ, [Academy of Natural Sciences of Philadelphia].

Los Banos, Laguna, Island of Luzon, Philippine Islands, (from C. F. Baker), 1 ¢.

Mt. Makiling, Island of Luzon, Philippine Islands, (from C. F. Baker), 2 ㅇ.

The Manila specimen is green and has the internal face of the cephalic femora suffused with blackish brown ventro-proximad. The other specimens are light or dark brown, that from Los Banos being much the smallest. The darkest individual from Mt. Makiling is strongly mottled and has the internal face of the cephalic femora weakly suffused with dark brown ventro-proximad.

Hierodula aruana Westwood.
18s9. Hicrodula aruana Westwood, Rev. Ins. Fam. Mantidarum, p. 35, pl. IV, fig. 4. [8, Aru Islands.]
Setekwa River, opposite Aru Islands on south coast of Dutch New Guinea, (A.s. Meek), 1 \&.

This female has a close general resemblance to the female of H. rajah Werner here recorded, but is somewhat smaller and shorter. The coloration of the prosternum, mesosternum, cephalic coxs and femora readily distinguish these species. which we do not believe will be found nearly as plastic as the species more closely related to vitrea and the variable patellifera.

The costal margin of the tegmina is rather strongly serrate in this specimen. Length of body 75 , length of pronotum 28.2, greatest width of pronotum 9.2, least width of pronotum 5.8, length of tegmen 51, width of tegminal marginal field 6.2, length of cephalic femur 23.3 , length of eaudal femur 23.8 mm .

Hierodula laevicollis Saussure.
1870. H[ierodula] laevicollis Saussure, Mélang. Orth., I, 1. 230. [o, Amboina.]
1871. H[ierodula] orata Saussure, Mélang. Orth., I, p. 409. [7, Amboina.]
The association of the sexes in the present series is unquestionably correct, and shows that saussure described the female of this species as ovata.

Island of Amboina, Moluccas, 7 o7, 2 9,1 juv. of, [Academy of Natural Sciences of Philadelphia].
In both sexes the facial seutellum has its basal width equalling its height, with lateral margins parallel in the males, very feebly convergent dorsad in the females and with the two vertical and parallel carina subobsolete as to elevation but well defined throughout in paler coloration, each showing an impressed puncta slightly below the median point. The lateral margins of the pronotal collar are smooth to very feebly tuberculate in the males, weakly tuberculate in the females. The pronotal shaft has a medio-longitudinal earina, subobsolete to moderately developed in the males, moderately developed in the females, and in the males only, the caudal margin is bordered to varying degrees with a blackish brown suffusion. The costal margins of the tegmina are smooth, showing mere traces of denticulation under high magnification. The large oval buffy stigma in the males contrasts strikingly with the transparent, hyaline but brown tinged discoidal fields of the tegmen. The cephalie coxie are armed with (six to eight in the series) small, bluntly conical teeth in the males, with (six to seven in the series) rather heavy bluntly conical teeth in the females.

Hierodula obiensis new species. (Plate II, figures 1 and 2.)
This interesting species is closely related to H. luevicollis Saussure, both sexes differing from that species in being of smaller size. with
facial scutellum decidedly transverse, not of almost equal height and width, and with markings and coloration different.
Type.- o^{7}; Obi Island, Moluccas. 〔Hebard Collection Type No. 524.]

Size small, form rather slender for the genus. Ocelli large, closely placed, arranged in a triangle slightly broader than high. Facial scutellum transverse, height approximately three-fifths hasal width; vertical parallel carine subobsolete, the two lateral sections of the scutellum each with a small dark brown suffusion mesad: dorsal margin of scutellum moderately convex, showing an indication of mesal angulation. Pronotum as in laevicollis, except that all trace of medio-longitudinal carination on the shaft is lost; supra-coxal expansion moderate, more decided than in H. venosa (Olivier), as in luevicollis, very slightly weaker than in H. sorongana (GiglioTos), margins smooth, caudad briefly margined with a narrow dark suffucion as in this sex of luevicollis, this feature indicated to a much less degree in the male of sorongana before us. Tegmina and wings much as in laericollis, extending well beyond apex of alsdomen; marginal field opaque, broad proximad, narrowing rapidly mesad, very narrow in distal half; remaining portions clear hyaline, with cross-veinlets brown for a brief distance from each vein; stigma small, linear, hardly opaque. Limb armament exactly as in lacvicollis. Cephalic coxæ with cephalic margin armed with (six and eight) very small bluntly conical teeth. Cephalic femora with genicular areas each supplied with a small blunt spine; ventrointernal margin with the following formula, ilimitiInIIInII, these spines black tipped, the larger spines of this series as well as the first and third discoidal spines tawny, with a distinct basal suffusion of this color on the limb except for the discoidal spines. Cephalic tibix with eleven ventro-external and fourteen ventro-internal spines, the external series begimning a slight distance from the tibial base. Caudal metatarsus approximately equal in length to that of the succeeding joints.

Allotype.- © ; same data as type. [Hebard Collection.]
Agrees closely with this sex of laevicollis, differing in the smaller size and facial scutellum, which is as described for the male of this species, thus differing only in having the dorsal margin more broadly convex. Compared with the male type of this species, this sex is seen to differ in the more robust form, ocelli which are much smaller and more widely spaced, pronotum with lateral margins microscopically denticulate before the supra-coxal expansion, minutely
but distinctly denticulate on the collar, with shaft showing a weak but distinct medio-longitudinal carina. The tegmina and wings reach only to base of supra-anal plate. The tegmina are opaque, with stigma more decided. The cephalic coxie are armed with (six and seven) rather heary, rounded teeth. ${ }^{55}$ The supra-anal plate is very strongly transverse, its length hardly over one-fifth its basal width, with distal margin very broadly convex.

Male with head ochraceous-tawny, facial scutellum with two small suffusions of slate color meso-laterad, eyes dark hazel. Pronotum cimnamon-brown, caudal margin and proximal portion of lateral margins for a brief distance suffused with blackish brown. Tegmina with marginal fields opaque, biseay green, the numerous irregular veinlets vinaceous-brown; remaining portions transparent, clear hyaline, except the transverse veinlets, which are all briefly mumny brown from the points of intersection with the veins. Limbs pale green. Cephalic femora with the first and third discoidal spines tawny, the longer spines of the ventro-internal margin tawny, each with a small basal suffusion on the limb of tawny.

Female with oceiput between eyes mummy brown, eyes rich tawny, face light ochraceous salmon, facial seutellum with a small sate colored suffusion meso-laterad on each side, which is slightly larger than in the male. Caudal portion of oceiput, all of pronotum and limbs snuff brown, the pronotum somewhat irregularly tinged with blackish brown caudad. Spines of cephalic coxie light buff, larger femoral spines tawny as in male. Tegmina opaque, pale yellowish green, ${ }^{50}$ stigma cream color.

Length of body or 52.8 , ㅇ 54.6 ; width of head $0^{7} 7$, ㅇ 8 ; length of pronotum or 17 , \& 19 ; greatest width of pronotum $\sigma^{7} 4.9$, \% 5.8 ; least width of pronotum $\sigma^{\top} 2.9$, \& 3.1 ; length of tegmen $\sigma^{\circ} 41.2$, ㅇ 28.6 ; width of tegminal marginal field $\sigma^{7} 2.9$, ㅇ 3 ; stigma ơ 3.2 by .7, 우 2.9 by .8 ; length of cephalic femur $o^{7} 12.7$, of 14.7 ; length of caudal femur o 14.3 , ㅇ 14.9 mm .

This species is known from the single pair.
Hierodula sorongana (Giglio-Tos).
1912. P[arhierodula] sorongana Giglio-Tos, Bull. Soc. Ent. Italiant, XLIII, p. 120. [$\%$; Mansinam and Sorong, New Guinea.]

Haidana, Collingwood Bay, British New Guinea, April to May, 1907, (from A. S. Meek), 1 ot.

[^36]After careful study of the literature, we place this insect under Giglio-Tos' sorongana, though that species is described from females and the description palpably insufficient.

No difference of note in the present example is remarked, except that the types are described as having the metazona distinetly tectiform carinate, while in the present specimen it is evenly rounded with earination subobsolete. Such difference between the sexes is shown by the series of H. laevicollis Sanssure before us, so that we feel our present association to be justified.

When compared with males of laevicollis, the present male is seen to represent a species belonging to the same phytum. It differs in the facial scutellum being of the same proportions but with paralle! vertical carme weak but distinct, broken slightly below the middle, with brief ventral portions slightly the more developed, much as in H. renosn (Olivier). The pronotum is slightly smaller in proportion to the rest of the body but of exactly the same character, with caudal margin of shaft showing only a very weak darker suffusion. The denticulations of the cephalic coxe are more numerou(eight and nine), irregular and very slightly more slender. The tegmina have the discoidal field transparent, hyaline and colorless, while the stigma is much less conspicuous, narrower (3.1 by t, in laevicollis 3.5 by 1.1 nm .) and the costal margins of the tegminat are minutely denticulate, this well developed meso-distad.

Length of body 61 , length of pronotum 20.2, width of pronotum 5.9 , length of tegmen 46.7 , width of tegminal marginal field 3.5 , length of cephalic femur 17.3 , length of caudal femur 15.4 mm .

The Tamolana Group of the Cenus Hierodila.
Of the species assigned by Giglio-Tos to his subgenus Rhomboderula, of his genus Parhierodula, but two, saussureii Kirby and extensicollis Serville, are referable to Rhombodera.

The others constitute a group, reaching its maximum development in Papua, which includes types, annectant to varying degrees, between the typieal forms of Hierodula and Rhombodera. Of these, atricoxis Wood-Mason shows the most decided approach toward the type of pronotal development characteristic of Rhombodera.

These species may represent a valid generic unit or a subgenus of Hierodula, but for the present we believe it best to assign them as a group of that genus, which we term the Tamolana Group. All are distinguished by the pronotal expansion being slightly to de-
cidedly wider than the width of the head and all are conspicuous in form and coloration. We would place these species in the following order: pectoralis (Wood-Mason), denticulata (Krauss), phryne Stål, splendida here described, tamolana (Brancsik), atricoxis WoodMason. Three species described by Giglio-Tos, andaina, ditena and katauana, undoubtedly belong to this group, but the descriptions are given over almost entirely to discussion of coloration and without figures we are unable to determine accurately their affinities.

Hierodula denticulata (Krauss).
1902. R[hombodera] pectoralis variety denticulata Krauss, Orth. Austr. Malay. Archip., p. 756, pl. LXVII, fig. 4. [$\%$, British New Guinea.]

Setekwa River, Dutch New (Guinea, (from A. S. Meek), 1 아.
The present specimen differs from the type in having internal surface of the cephalic coxa entirely black, instead of black in the distal third. The distribution of the dark coloration on this surface has been used as an important specific diagnostic character by (iiglio-Tos, but we are by no means convinced that it is not subject to decided individual variation, at least within certain species, its extent governed by intensification and recession of the color pattern. So closely does the present specimen agree in other respects with Krauss' description and excellent figure that we would consider description of the present example as a new species both rash and unwarranted at the present time.

The present specimen has the shaft of the pronotum slightly darkened on each side proximad and mesad and heavily suffused briefly latero-caudad and along the caudal margin with blackish brown. The cephalic femora have a broad transverse har mesad on their external faces of dark brown. The apex of the cephalic trochanters and adjacent portion of the inner face of the cephalic femora are blackish brown, while the discoidal spines and the first two and all the longer spines of the series on the ventrointernal margin of the cephalic femora have their internal faces blackish brown, this color spreading briefly at their bases on the inner surface of the limb. The prosternum has two large round blackish spots near its caudal margin, the mesosternum two similar but slightly larger spots, while between the median coxa are two other dark suffusions.

It would appear that Giglio-Tos' andaina. dilena and katauana may prove to be other color variants or geographic races of H. pectoralis (Wood-Maron) or the present species. With descriptions.
given over almost entirely to color description and with no figures, particularly necessary to show the pronotal contour, the descriptions of these species as given have only added to the difficulties encountered, and instead of representing an addition to scientific knowledge, are in fact a distinct retrograde step.

Length of body 93 , width of head 12 , length of pronotum 28.8 , greatest width of pronotum 12.7, length of pronotal shaft 20.7, width of unexpanded portion of shaft 6.5 , length of tegmen 53 , width of tegminal marginal field 6.6 , length of rephalic femur 23 , length of caudal femur 22.3 mm .

Hierodula splendida new species. (Plate II, figure 3.)
The present species is distinguished from all others of this section which have been properly characterized, excepting H. tamolana (Brancsik) by the expansion of the pronotum, which is decidedly greater than the cephalic width, but narrows sharply caudad, leaving slightly less than half of the shaft without expansion. Compared the figure and description of males of tamolana, the male under consideration is found to differ in the more evenly rounded margins of the supra-coxal expansion, which are smooth, without trace of denticulation. The cephalic coxs are black on their internal faces only in the distal fourth, but this coloring appears to be individually variable in extent in species of the present group.

Type.- $\sigma^{\text {º }}$; Haidana, Collingwood Bay, British New Guinea. Aprii to June, 1907. (From A. S. Meek.) [Hebard Collection Type No. 525.]
size large, form rather robust, as in many species of the Tamolana Group. Ocelli large, rather closely placed in a triangle slightly wider than high. Facial scutellum with height equal to basal width, dorsal margin rather strongly convex, surface with two vertical parallel carine very weakly indicated. Pronotum with lateral margins smooth, shaft without trace of carina, supra-coxal expansion pyriform, considerably wider than head, margins very weakly concave-convergent cephalad, evenly convex caudad to juncture with unexpanded portion of shaft, which portion constitutes nearly half the length of the shaft. Tegmina with marginal field opaque, broad, narrowing evenly and gradually distad from point of greatest width; remaining portions transparent, hyaline, weakly tinged with brown except proximad toward marginal fields where they are embrowned and subopaque, stigma rather heavy and conspicuously pale. Cephalic coxæ with cephalic margin moderately lamellate,
armed with (eight and ten) small and very bluntly rounded spines which beeome slightly longer than wide distad, these irregularly interspaced with a few minute spinulxe, other margins roughly and bluntly nodulose. Cephalic femora with the characteristic armament of rimisimisiminiI spines, genicular lobes each supplied with a very minute, blunt, short, stout spine. Cephalic tibix with ventral margins armed with eleven external and fourteen internal spines.

Head, pronotum, body and limbs tawny olive. Cephalic femora with a broad but weakly defined transverse suffusion of warm sepia. Tegmina with marginal fields and adjacent portions proximad mars brown; remaining portions transparent, very faintly tinged with mars brown; stigma cream color, with a brief but heary suffusion proximad and distad of blackish chestnut brown. Cephalic coxe with distal fourth of internal surface shining black, ${ }^{57}$ apex of cephalic trochanters and adjacent area of cephalic femora blackish brown. First and third discoidal spines and all large spines of ventro-internal margin of cephalic femora blackish brown, this color very briefly suffusion the femoral surface at the bases of all the large marginal spines. Prosternum with four small flecks of blackish brown in its eaudal portion, mesosternum with two larger flecks of the same coloration.

Length of body 70 , width of head 9.6 , length of pronotum 22.8 , greatest width of pronotum 12.4, length of pronotal shaft 16.7, length of unexpanded portion of shaft 7.3 , width of unexpanded portion of shaft 5.7 , length of tegmen 56 , width of tegminal marginal field 5 , length of cephalic femur 17.9, length of caudal femur 18.8 mm.

The type of this handsome insect is unique.

RHOMBODERA Burmeister.

1838. Rhombodera Burmeister, Handb. Ent., II, Abth. II, pt. 1, p. 536. 1912. Rhomboderuly Giglio-Tos, subgenus of Parhierodula Ciglio-Tos, Bull. Soc. Ent. Italiana, XLIII, p. 130.
Having selected Rhombodera saussurei Kirby as genotype of Rhombodernla in the present paper, we find this species to be congeneric with Mantis ralida Burmeister, genotype of Rhombodera. ${ }^{58}$ The resultant synonymy is indicated above.
[^37]We refer to our discussion of the values of the generic characters, used to scparate the genera of the Group Hierodulse, under the group heading on page 51. We there explain our reasons for repudiating Giglio-Tos' rearrangement and the new genera and subgenera which he was obliged to erect after he had decided to consider the smoothness or serrulation of the costal margins of the tegmina of primary importance.

On page 63, under the Tamolana Croup of the genus Hierodula, we discuss the majority of the species which Ciglio-Tos referred to his subgenus Rhomboderula.

Rhombodera extensicollis (Serville).

1839. Mantis extensicollis Serville, Hist. Nat. Ins., Orth., p. 159. [o o^{7}, ㅇ ; Java.]
Samarang, Java, July, 1909, (E. Jacobson), 1 or, [Academy of Natural Sciences of Philadelphia].

This specimen agrees fully with Giglio-Tos' diagnosis of extensicollis, which species he placed in his subgenus Rhomboderula of his genus Parhierodula.

Rehn has recorded the present specimen as Rhombodera flava (Haan), ${ }^{59}$ which species is closely related and may prove a synonym of extensicolls, as was indicated by Kirby, but resurrected as valid by Ciglio-Tos and placed by that author in Rhombodera, which he considered a subgenus of Hierodula.

Rhombodera stalii Giglio-Tos.
1877. H[ierodula] basalis Stål, (not Mantis basalis Hasn, 1842), Bih. till K.. Svenska Vet. Akad. Handl., IV, No. 10, p. 21. [Java, Borneo.]
1912. H[ierodula] R[hombodera] stalii Giglio-Tos, Bull. Soc. Ent. Italiana, XLIII, p. 102. [0], ㅇ: southern Java; Tengger Mountains, Eastern Java.]
Nongkodjajar, Jara, January, 1911, (E. Jacobson), 1 ox, 1 ㅇ, [Academy of Natural Sciences of Philadelphia].

These specimens have been recorded by Rehn as R. basalis (Haan). ${ }^{6 \prime}$ Giglio-Tos has proposed the name stalii for a form with narrowed pronotum and apex of cephalic trochanters darkened. The present specimens agree with that author's diagnosis except that they are smaller.

We hesitate to use the name stalii for we are by no means convinced that this type will not prove to be a geographic race or even a mere variant of basalis, unworthy of nominal recognition.

[^38]Length of boty $0^{77} 56$, \& 64.5 ; length of pronotum or 20.3 , \& 23.7 ; greatest width of pronotum $0^{7} 11$, $\circ 14.7$; length of tegmen 0^{7} 50.2. \& 45.5 ; width of tegminal marginal field ot 4.7 , of 5.8 mm .

Rhombodera basalis (Haan).
1842. M[antis] (Mantis) basalis Haan, in Temminck, Verh. Nat. Gesch. Nederlandsche Overseesche Bezittingen, Orth., p. 67. [\% ; Krawang, Java.]

Singapore, British Straits Settlements, Malay Peninsula, (from C. F. Baker), 1 ㅇ․

This is a large specimen; length of body 85, length of pronotum 30, wiflth of pronotum 18.7 mm .

Rhombodera valida Burmeister.

1838. M[antis] (Rhombodera) ralida Burmeister, Handb) Ent., Il, Abth. 1I, pt. I, p. 536. [Java.]

Labuan Island, British North Borneo, 10^{7}.
This species is separated by (iglio-Tos from R. basalis (Haan) by the broader, sub-circular, rhomboidal pronotum and quadriramose discoidal vein of the tegmina. The material measured by that author does not show as broad a pronotum as toes the present specimen, but from study of his paper we are led to believe that the measurement given for pronotal width may not be correct.

The additional ramus of the diseoidal vein of the tegmina is dearly a poor specific criterion, noting that the same vein is bi- or tri-ramose in basalis, as stated loy Giglio-Tos.

As a result we feel that the specific validity of the condition to which the name ralida is applied is open to question, the position which we take being much the same as stated for R. stalii (iiglioTos in the present paper. We are further strengthened in this opinion by the fact that (iiglio-Tos has later described a species, rotundt, ${ }^{61}$ giving in his meagre comparative description, as differential characters to separate that form from valida, the broater pronotum and the fact that the four specimens before him have the eephalic femora with hack matulations before the unguicular sulcus. The present specimen agrees closely with Giglio-Tos' measurements for rotunda, but has the cephalic femora immaculate.

Length of body 71 , length of pronotum 21.6, greatest width of pronotum 16.3, length of tegmen 56, width of tegminal marginal ficlle 4.4 mm .

[^39]
Rhombodera saussurei kirly.

1s42. Mantis (Mantis) vatida Haan, (not Mantis (Rhombodera) ralidas Burmeister, 1835) in Temminck, Verh. Nat (besch. Nederlandscle Overseesche Bezittingen, Orth., p. 66. [Timor-Koppang; Amboina.]
1904. R(hombodera] saussurei Kirby, syn. Cat. Orth., I, p. 2ts. (New name proposed.)
Obi Island, Moluccas, 1 or, 2 ㅇ.
This handsome species, though agreeing closely with R. busulis (Haan) in pronotal form, is clearly a member of a distinct species group. distinguished by the greater definition of the lateral wingof the pronotum from the primitive portion, the distinct and greater scrulation of the pronotal margins, the serulate costal margin of the tegmina and clear hyaline wings, not tinged with pink as in basalis and its closer allies.

The present specimens, in addition, have the stigma buffy without adjacent suffusions of any kind, but this feature would appear to be variable, as Giglio-Tos records specimens from Timor with stigma showing blackish brown suffusions cephalad and caudad, as is characteristic for basalis.

From the data given in the literature, the size variation would appear to be considerable. The measurements of the specimens here recorded are: length of body, or 71.5, of 70-75.5; length of pronotum, or 24.1 , ㅇ 25.2-26.2; greatest width of pronotum, or 15.6 , \& $17.2-18.3$; length of tegmen, or 64.1 , ㅇ 4.9.7-50.2; width of tegminal marginal field, or 4.9 , $\circ 5.9-6.3 \mathrm{~mm}$.

> XXIII. Archimantine.
> 1st Ciroup, Archimantes.

Archimantis latistyla (Serville).
1839. Mantis latistylus serville. Hist. Nat. Ins., Orth., p. 179. [o7, \&; Australia.]
Queensland, Australia, 2 ㅇ.
Archimantis armata Wood-Mason.
1877. Archimantis armatus Wood-Mason, Ann. Mag. Nat. Hist., (4), XX, p. 76. [\& , North Australia.]

Townsville, Queensland, Australia, 1 오.
X̌VIII. Acromantine.
2d Choup, Acromantes.
Oligomantis orientalis Giglio-Tos.
1915. Olligomantis] orientalis Giglio-Tos, Boll. Mus. Zool. Anat. Comp. Univ. Torino, NXX, No. 702, p. 4. [σ^{7}, \%; Redjang, Sumatra; Istand of Batu; Singapore, [British straits settlements].]

Singapore, British Straits Settlements, Malay Peninsula, (from C. F. Baker), 10^{7}, 1 와.

The original description of this interesting species is inexcusably brief. No mention is made of the striking granulations covering the dorsal surface of the pronotum, which, in the female become minute but distinct tuberculations on the collar. The wings are transparent, tinged with a delicate pink, except proximad in the marginal field, where they are tinged with green.

The length of the female tegmen as given by Giglio-Tos, 13.5 mm ., is apparently in error, as he states "elytris angustata, abdomine longiora." Probably 23.5 mm . was intended.

The measurements of the pair before us are as follows: length of body, or $22, \circ 34$; length of pronotum, or 8 , \& 11.8 ; greatest width of pronotum, $\sigma^{7} 1.9$, ㅇ 2.9; length of tegmen, or 14.3 , of 23.7 ; width of tegminal marginal field, or 1.2 , of 2 ; length of caudal femur, or 5.3 , \& 7.2 mm .

Acromantis moultoni Giglio-Tos.
1915. A cromantis] moultoni Giglio-Tos, Boll. Mus. Zool. Anat. comp. Univ. Torino, XXX, No. 702, p. 5. [$\%$; Borneo; Darvel Bay, Borneo.]
Sandakan, British North Borneo, (from C. F. Baker), $10^{7}, 1$ ㅇ.
(iiglio-Tos' treatment of eight new species, of which moultoni is the second, is pitiably superficial and brief, as usual without a single figure. Particularly reprehensible is the fact that in no case is a single transverse dimension given, leaving the reader in complete ignorance as to the slenderness or robustness of the species described.

The male before us has the margin of the suture mesad above the ocelli minutely angulate produced ventrad, as may be expected for this sex of a species of Acromantis in which the females have no trace of a tubercle at this point. This specimen very closely resembles the male before us of \mathbf{A}. oligoneura (Haan), differing in not having a minute but distinct tubercle above the ocelli and in having the oblique portions of the discoidal and median veins of the tegmina more strongly curved toward their bases. The discoidal field of the tegmina is colorless, hyaline, weakly reticulated with green veins, the third and fourth of the oblique veins margined along their proximal portion with a brown suffusion.

The female has no trace of angulate production or tubercle above the ocelli. The discoidal field of the tegmina is colorless, hyaline, with veins similar to those of the male but with the reticulation somewhat smaller and closer and with no suffusions whatever. The
wings are truncate distad, with immediate apices showing very slight production.

It is clear that moultomi is very close to oligonerio and may prove to be a geographic race. Ciglio-Tos' insularis, from the superficial description, is apparently even closer to oligoneure and may represent a geographic race, but more probably an absolute synonym of that species.

Length of body, or 21.8, ㅇ 28; length of pronotum, or 7, \& 8.3; greatest pronotal width. © 2.4, \& 2.9; length of tegmen, 17.6, \% 21.2; width of tegminal marginal field, or 1.4 , $\circ 2$; width of cephalic femur, or $1 . \overline{7}$, of 2.2 mm .

Acromantis oligoneura (Haan).
1842. M[antis] oligonfura Haan, in Temminck, Verh. Nat. Gesch. Nederlandsche Overseesche Bezittingen. Orth.. p. 90, pl. XVIII, fig. 6. [07, of: Java; Padang; Amboina; Tonda, [Celebes].]
Bataria, Java, June and September, 1908, (E. Jacobson), 1 or, 1 \&, [Academy of Natural Sciences of Philadelphia.]

These specimens have been correctly recorded by Rehn. ${ }^{62}$ The measurements are: length of body, or 21 , if 26 ; length of pronotum, $0^{7} 6.3$, $\% 7.4$; greatest width of pronotum, $0^{7} 2.1$, \& 2.7 ; length of tegmen, or 16.2 , ㅇ 18.8 ; width of tegminal marginal field, or 1.2 , ㅇ 2 ; width of cephalic femur, or 1.7 , \& 2.1 mm .

Acromantis luzonica new species. (Plate II, figure 4.)
This species agrees with A. parcula Westwood ${ }^{63}$ in size and in having the apex of the anterior field of the wings arcuate and not showing the truncation indicated to varying degrees in males of the other species known to us. It differs in having no supra-ocellar spine, the pronotal supra-coxal expansion more decided, the tegmina and wings not surpassing the apex of the abdomen, the tegmina with all fields equally tinged with green and subopaque and the distal lobes of the median and caudal femora smaller, scarcely half as wide as the tibir.

[^40]Compared with a male of A. oligoneura (Haan) before us, the present mate is seen to differ widely in its smaller size, decidedly shorter and heavier pronotum with supra-coxal expansion more decided, much shorter tegmina and wings with distal margins showing no truncation, suffused tegmina with cross-veinlets very much more numerous and irregular and differently colored wings with apex of anterior field not distinctly truncate.

The position of the present species in the genus Acromantis is somewhat difficult to assign, due to the fact that the male sex of A. australis Saussure and the female sex of luzonica are unknown. The heavy pronotum and colored wings lead us to believe it to be more closely related to the group including australis than to that including the more slender species such as oligoneura. It is very possible that it represents a distinct group, in certain features annectant between these, but further material is needed before this can be definitely stated. From comparison with the male of A. hesione stal before us, it is clear that the present species is widely separated from that insect, which is clearly the nearest approach among the species of the anstralis type toward those of the oligoneura type.

Trpe.- $\sigma^{\text {; }}$; Baguio, Benguet, Island of Luzon, Philippine Islands. (From C. F. Baker.) [Hebard Collection Type No. 528.]

Size small and form robust for the genus. Head with supratocellar spine subobsolete, represented by a mere rounded node mesad on the transverse carina there formed. Occiput with lateral vertical sulcations alone distinct, the two mesad indicated only as shallow, broad, brief depressions below the summit, summit of occiput not raised above the eyes, nearly transverse, very weakly and broadly concave mesad and very weakly and broadly convex from lateral sulci to eyes. Ocelli not large, distinctly smaller than in this sex of oligoneura and not as closely placed, arranged in a triangle slightly wider than high. Pronotum strikingly heary for the size of the insect, the few blunt teeth on lateral margins of shaft and neck heavy, distinctly heavier than those of oligoneura; supracoxal expansion decided, margins smooth, forming a rounded angulation meso-cephalad, as in oligoneura. Tegmina short, not extending beyond apex of abdomen, entirely subopaque, in all fields thickly supplied with a network of minute irregular veinlets; marginal field broad, narrowing gradually to near apex of tegmina; the four oblique veins of the discoidal field straight, not curved at their bases; the apices of the tegmina moderately broadly rounded, but with
curvature at apex more decided than in oligoneura. Wings extending as far as tegmina, with apices similar except that the curvature at the apex is slightly broader, these organs distinctively colored. Cerci short, stout, apex acute, joints moderately moniliform. Cephalic coxee with cephalic margin armed with (six) smatl, blunt, irregularly placed teeth. Cephalic femora lamellate dorsad, the dorsal margin evenly and weakly convex; ventro-internal margin with spines arranged, as characteristic for the genus, in the following formula, iIIIIII ItiII I, all genicular lobes each armed with a short heavy spine. Cephalic tibix with eleven external and eleven and twelve internal spines on the ventral margins. Median and caudal femora dorso-distad each produced caudad in a longitudinal lamella, only two-thirds as wide as tibia, the margin of which is broadly convex.

Head and pronotum cimnamon brown, the latter paling slightly toward ochraceous-tawny dorsad. Tegmina subopaque, immaculate, strongly tinged with ecru-olive (probably much faded from the color in life). Wings tinged with ochraceous-orange, this hecoming ochraceous-tawny along costal margin distad in anterior field. Cephalic limbs olive lake, the coxse and tibice suffused with brown, the femora showing traces of two pale transverse bands and with the larger spines of the ventro-internal margins colored as the other spines, the tips alone darkened. Caudal limbs olive lake, the femora heavily suffused with blackish chestnut brown in proximal and distal third and with traces of this color mesad, the tibiex annulate proximad, mesad and distad with this color, the tarsal joints suffused distad. (The ground color of the limbs is apparently much faded from the color in life.)

Length of body 19.2, length of pronotum 5.9, greatest width of pronotum 2.6. width of pronotal shaft 1.6, length of tegmen 12.3, width of tegmen 4.4 , width of tegminal marginal field 1.1 , length of cephalic femur 5.8, width of cephalic femur 1.9 , height of lamella on caudal femur . 4 , length of caudal femur 4.9 mm .

The type of this extraordinary little mantid is unique.

Acromantis hesione stal.

1877. A[cromantis] hesione Stảl, Ofv. Fongl. Vetensk.-Akad. Förh., 1877, No. 10, p. 38. [8, Philippine Islands.]
Los Banos, Laguna, Island of Luzon, Philippine Islands, (from C. F. Baker), 10^{7}.

Davao, Davao, Island of Mindanao, Philippine Istands, (from C. F. Baker), 1 ㅇ.

The present species clearly belongs to the group which includes A. australis Saussure. This is shown by the robust form and cephalic femora having a dorsal expansion, weak but distinct in the males, conspicuous in the females.

The male before us is apparently an example of recessive coloration. The general coloration is yellowish, the cephalic femora weakly suffused with pale brown meso-distad on their external faces, the other femora suffused proximad and distad with pale brown. The tegmina have the discoidal fields transparent, hyaline, immaculate, with veins yellowish.

The female at hand is similar except that the general coloration is light brown, the cephalic femora dorsad suffused with slightly darker brown proximad, mesad and distad on their external faces. The tegmina have the discoidal fields transparent but heavily and evenly reticulate with innumerable pale brown veins, so that these areas appear only slightly vitreous, with third and fifth oblique veins showing a small but distinct maculation of dark brown about their bases.

Length of body, or 25 , \& 33 ; length of pronotum, or 8 , \& 9 ; greatest pronotal width, or 2.5 , \& 3.6 ; length of tegmen, or 18.8 , 우 21.9 ; width of tegminal marginal field, or 1.3 , ㅇ 2.4 ; width of cephalic femur, or 2 , if 3 mm .

Acromantis australis saussure.
1\$7I. Acromantis australis Saussure, Mélang. Orth., I, p. 449, pl. VII, fig. 68. [$\%$: Moluceas; Island of Waigiou.]
Fakfak, Dutch New Guinea, 1 ㅇ.
This is the only species of the genus before us which has a well developed conical projection above the ocelli; this projection slightly higher but more slender than that at the dorsal apex of the facial scutcllum in the female sex. The present specimen has the free margin of the axillary field of the wings tinged with dark brown, as described for Bornean material of A. aruana Westwood, a name which has been assigned to synonymy under australis.

Length of body 32 , length of pronotum 9.3 , greatest pronotal width 3.8 , length of tegmen 22.8 , width of tegmen 7 , width of tegmen at apex 4.8 , width of tegminal marginal field 2.3 , width of cephalic femur 2.9 , height of lamella on caudal femur .9 mm .

Acromantis dyaka new speeies. (Plate II, figure 5.)
This species is the heaviest of the genus, showing the maximum development of pronotal marginal denticulation and femoral lamel-
lation. In addition the tegmina and wings show the most decided distal truncation known.

Nearest relationship is with A. australis saussure, the present female differing from a female of that species lefore us, in addition to the features stated above, in having the spine above the ocelli minute, very much smaller than the spine above the summit of the facial scutellum, the tegmina with marginal field fully as broad proximad but narrowing sharply in distal third, rather than narrowing very gradually. The free margin of the axillary field of the wings is not tinged with dark brown, agreeing in this respect with all known material of australis from Waigiou and the Aru Islands, which marginal suffusion distinguishes, however, all material of that species known from New Guinea.

Type.-Labuan Island, British North Borneo. [Hebard Collection Type No. 527.]

Size large and form very robust for the genus, generally similar to australis except in the following respects. Head with supraocellar spine represented by a minute blunt projection less than half as high as the spine at the dorsal apex of the facial scutellum, which spine is as well developed as in australis. Occiput with four deep and broad vertical sulcations; summit of occiput slightly raised above the eyes, transverse, weakly convex from lateral sulci to eyes. Ocelli small, slightly smaller than in this sex of australis, similarly arranged in a triangle which is distinctly wider than high. Pronotum similar to that of australis except that it is shorter and heavier with the blunt teeth on the lateral margins fewer in number but decidedly heavier and longer. Tegmina as in that species but suddenly and broadly truncate distad, almost as if the distal quarter of a tegmen, such as is developed in australis, had been clipped off; marginal field very broad in proximal two-thirds, suddenly narrowing so that it is obsolete in the greater portion of the distal third; marginal field opaque, dorsal field transparent but with a heavy network of minute veins, which become so numerous and crowded toward the marginal field, and particularly toward the bases of the oblique veins, as to cause these portions to be almost opaque. Wings with anterior field sharply truncate, hardly reaching beyond apex of axillary field, portion of anterior field between mediastine vein and free margin opaque along the distal portion of the anterior field; axillary field transparent, very weakly tinged with brown. Cephalic coxæ with cephalic margin armed with (six) heavy blunt
teeth, between which are a number of minute denticulations. Cephalic femora lamellate dorsad, this somewhat strongest mesad, the dorsal margin minutely dentieulate; ventro-internal margin with spines arranged as follows, mimimifil I, as characteristic of the genus, all genicular lobes each armed with a short heavy spine. Cephalic tibie with eleven and twelve procumbent external and twelve internal spines on the ventral margins. Median and caudal femora dorso-distad each produced caudad in a large rounded lamella, similar to those developed in australis, but distinetly more ample.

Head tawny olive. Pronotum sepia laterad, fading to cimamonbuff mesad particularly on shaft, with teeth of lateral margins black. Tegmina with marginal field opaque, turtle green; other portions hyaline with a network of tawny olive veins as given in description, with a suffusion of warm sepia about base of third oblique vein. Wings hyaline very faintly tinged with ochraceons-tawny, except atong free margin of anterior field distad where they are opaque, antimony yellow shading through tawny to prout's brown at apex, the tawny and prout's brown portions spreading over the distal extremity of the anterior field. Limbs prout's brown; teeth of cephalic coxe buffy; internal faces of cephalic femora tawny; second and third discoidal spines black proximad and distad, larger spines of ventro-internal margin entirely black, this extending on the limb as a suffusion at the base of each of these spines; dorsal margin of cephalic femora, internal face of cephalic tibix and median and caudal femora and tibie each with two very pale brown areas, tarsal joints pale with apices darkened.

Length of hody 28.5, length of pronotum 8.7, greatest pronotal width 4 , length of tegmen 19, greatest tegminal width $\mathbf{7}$, width of tegmen at apex 6.7 , width of tegminal marginal field 2.2 , length of cephalic femur 8.8, width of cephalic femur 2.8, length of caudat fenur 7.7 , height of lamella on caudal femur 1.2 mm .

The type is unique.
Odontomantis javana javana saussure.
1870. M[icromantis] Odontomantis jumana situssure, Mélang. Orth., I, p. 181. [9, Java.]

Sandakan, British North Borneo, (from C. F. Baker), $20^{7}, 3$ is. Labuan Island, British North Borneo, $1 \sigma^{x}, 2$ ㅇ.
Puerto Princesta, Island of Palawan, Philippine Islands, (from C. F. Baker), 1 of

Measurements (in millimeters).

σ^{7}	Length of borly.	length of pronotum.	Cireatest wielth of pronotum.	Length of tegmen.
Sandakan, Borneo	16.7	4.6	21	11.3
Sandakan, Borneo	1.5	4.2	2	10
Labuan 1sland, Borneo	. 147	42	2	112
Puerto Princesa, Palawan	23	6.1	3	16.6
Sandakan, Borneo	237	6	29	17
Labuan Island, Borneo. . .	24.4	5.8	2.8	17.3

Odontomantis javana euphrosyne stál.
1877. O[dontomantis] cuphrosym stal, Ofv. Kongl. Vetensk.-Akad. Förh., 1877, No. 10, p. 35. [07, of ; Philipuine Islands.]
Davao, Davao, Island of Mindanao, Philippine Islands, (from C. F. Baker), $2 o^{7}$.

These specimens agree fully with Stai's meagre description of euphrosyne, which is briefly characterized as being larger with distal portion of anterior field of wings less produced and blunter than in javana. We note ako that these specimens, when compared with Bornean males of javana, have the collar of the pronotum slightly more elongate, distinetly longer than the width at the supra-coxal sulcus; the anterior field of the wings distinctly more suffused than the other portions, not equally suffused, and the dorsal surface of the cerci, supra-anal plate and preceding segment suffused with blackish brown, not of the general coloration of the dorsal surface of the abdomen.

No other differences of any diagnostic value are found and we believe that cuphrosyue represents a geographic race of javana.

> Measurements (in millimeters).

0^{7}	Length of borly.	Length of pronotum.	Greatest width of pronotum.	Length of tegmen.	Length of caudal femur.
Davao, Mindanao.	15.5	52	2.3	12.2	5.7
Davao, Mindanao.	20	57	2.5	12.8	5.9

MXIX. Hymenopodine.

5 5th Gruup, Hymenopode.
Hymenopus coronatus (Olivier).
1792. Mantis coronatus Olivier, Encycl. Méthod., VII, p. bi3s. If o and juv.l, Amboina.]
Nias Island, Sunda Archipelago, 1 ㅇ.
This specimen exactly resembles the excellent figure of this most remarkable pale yellowish mantid given by stoll.

Creobroter granulicollis Saussure. (Plate II. figure 6.)
1870. Cr[eobotra] granulicollis Saussure, Mittheil. Schweizer Ent. Ges., III, p. 242. [o, Siam?]
Singapore, British Straits Settlements, Malay Peninsula, (from C. F. Baker), 10^{7}.

Kirby has given Penang, British Straits Settlements, as the type locality for this species. We are unable to locate the source of his information.

The species was described from a female, but from the minute tubercle above the ocelli and moderately granulate pronotal surface we feel that the present association is correct.

This specimen is compared with a male of C. meleagris Stal as to the eyes, under the discussion of that species. We would further remark that the pronotum is regularly oval rather than quadrilobate in form. The tegmina are transparent, hyaline, very weakly tinged with green, except proximad in the discoidal field, where this becomes stronger; with a very brief (1.8 mm . in length) transverse band of mustard yellow, bordered proximad by a black line at the end of the proximal third of the discoidal field.

Length of body 23 , width of head 4.4 , length of eye 2.8 , length of pronotum 5, greatest width of pronotum 3, length of tegmen 21, width of tegmen 5.2 , width of tegminal marginal field 1.3 , length of abdomen 9.2 , width of abdomen 5.1, length of cephalic femur 6.5 , length of caudal femur 6.1 mm .

Creobroter labuanae new species. (Plate II, figure 7.)
The present species appears to find nearest affinity with C. meleagris Stål. Compared with a male of meleagri.s ${ }^{64}$ before us, the present male is found to differ in its somewhat smaller size, eyes which do not project as strongly, smaller pronotum, which is weakly granulate, with neck proportionately shorter and the margins of the neck, shaft and supra-coxal expansion all four showing about the same convexity. In addition the tegminal markings are much smaller, yellow, not orange, with the discal spot showing only a brief transverse black band which sends a short ray into the yellow area. These features of coloration may be variable within the species of the genus, however, and in the present case the differ-

[^41]ences noted may be due wholly to individual recession of coloration from a type exactly similar to that shown by the male of meleagris at hand.

As in many genera including strikingly colored species, it is clear that features of coloration, some of which are unquestionably of doubtful specific diagnostic value, have been unduly emphasized in past literature, while a number of important structural characters have been overlooked or given but scant attention.

Type.- σ^{7} : Labuan Island. British North Borneo. [Hebard Collection Type No. 526.]

Size medium for the genus, tegmina and wings very elongate, proportionately much as in meleagris and considerably longer than in gramulicollis, though the pronotum is decidedly smaller than in meleagris and of much the same size as in granulicollis. ${ }^{65}$ Head with eyes greatly projecting, as characteristic for the genus, but distinctly less than in this sex of meleagris or gramulicollis. Spine above ocelli well developed, as in meleagris. Pronotum ${ }^{66}$ with dorsal surface feebly granulate; lateral margins very slightly roughened, denticulations obsolete except faintly indicated on cephalic margins of supra-coxal expansion, much as in gromulicollis, slightly weaker than in meleagris: margins of neck, shaft and supra-coxal expansion all equally convex, giving the pronotum a more cruciform shape than in meleagris, which shape is practically lost in granulicollis; neck short, no longer than its proximal width. Tegmina and wings elongate, proportionately slightly narrower than in meleagris, of same proportions as in granulicollis, but more extensive in proportion to body bulk than in that species. Wings with a proximal suffusion of deep vinaceous, as in granulicollis and meleagris, markings of a much reduced but similar pattern to those of meleagris. Ninth dorsal abdominal segment with latero-caudal angles moderately produced and bluntly rounded, similarly produced but acute in meleagris, more decidedly produced and acute in gramulicollis. Supra-anal plate with margin between the cerci broadly convex. Cerci moderately stout, tapering sharply at extremity to acute apex, in meleagris tapering more gradually distad

[^42]to the acute apex. Styles of subgenital plate minute, hardly twice as long as wide, in meleagris minute but fully three times as long as wide. Cephalic femora with ventro-intemal margins showing the following spine formula, iminfiliminir, the five small successive spines decreasing in length distad with intervals diminishing, as characteristic of the genus. Cephalic tibiæ with thirtcen and fourtcen procumbent external and thirteen and fourteen internal spines on the ventral margins. Median and caudal femora dorsodistad each produced caudad in a lamella which is slightly wider than the caudal tibia.

Color pattern exactly as in meleagris except for the absence of the two pale transverse bands found on the pronotum in that species and the reduction of the tegminal markings. Head cimnamon brown, with margins of facial scutellum and proximal antennal joints antimony yellow. Antennæ proximad antinony yellow, then briefly cinnamon brown, the entire remaining portions blackish brown. Pronotum cinnamon brown with denticulations and marginal portions, particularly laterad, antimony yellow. Limbs antimony yellow, femora and tibiæ and cephalic coxæ each with three transverse amuli of equal width which are cimnamon brown, all femora distad and cephalic coxæ in addition suffused proximad with cinnamon brown; cephalic metatarsus suffused with cinnamon brown mesad and distad, other metatarsi suffused with cimanon brown distad, remaining tarsal joints suffused with this color. Tegmina transparent, tinged with green, this heavy proximad, a small spot at base of discoidal field and a comparatively small transverse oval area before the middle of the discoidal field mustard yellow, the latter bounded proximad by a black line which sends one short ray of black into the yellow area; extensor field clear hyaline, colorless. Wings transparent, hyaline, colorless except proximad where they are briefly tinged with dark vinaceous and distad in the anterior field where they are tinged with green, particularly toward the margins.

Length of body 23.5 , width of head 4.3 , length of eye 2.3 , length of pronotum 4.7, greatest pronotal width 3.3, length of tegmen 25, width of tegmen 6 , width of tegminal marginal field 1.2, length of abdomen 9.4, greatest abominal width 5.5, length of cephalic femur 6.8 , length of caudal femur 6 mm .

The type of this beantiful little species is unique.
1877. ('reoboter] meltengris Stål, Ofv. Kongl. Vetensk.-Akad. Förb., 1877, No. 10, p. 39. 107, of ; Philippine Islands.]

Los Banos, Laguna. Island of Luzon, Philippine Islands, (from C. F. Baker), 1 or.

This specimen agrees fully with Stal's brief description. The species appears to be close to C. urbana (Fabricius), but how close we are unable to state, lacking material of that species for the necessary comparison.

In the male before us the eyes project strongly, though not as slender and more divergent than those of the male of C. gramulicollis Saussure at hand. The conical spine above the ocelli is well developed, the pronotum with surface subgranulate and distinctly quadrilobate in form, the tegmina with proximal spot and ocellate area bitterswect orange, the latter with two black dots proximad, bounded proximad by a broad arcuate black line, distad by a hyaline margin with a similar broad arcuate black line bounding it, the extensor field hyaline, colorless except for a large mesal suffusion of blackish brown.

Length of body 26 , width of head 5 , length of eye 2.9 , length of pronotum 6.1, greatest pronotal width 3.9, length of tegmen 26.8, width of tegmen 6.9 , width of tegminal marginal field 1.7 , length of abdomen 10 , greatest abdominal width 6 , length of cephalic femur 9 , length of caudal femur 8.7 mm .

Creobroter episcopalis Stàl.

1877. C[reoboter] episcopalis Stål, Bih. till K. Svenska Vet. Akad. Handl IV, No. 10, p. S6. [$\%$, Borneo.]
Labuan Island, British North Borneo, 1 ㅇ.
This specimen agrees fully with Stål's description, except that it is larger than the type. The sharply conical eyes, lack of spine or denticulation above the ocelli, granulose surface of the pronotum and tegminal markings are particularly noteworthy features.

Length of body 30 , length of pronotum 6 , greatest pronotal width 3.8, length of tegmen 19.5, width of tegminal marginal field 1.S, length of cephalic femur 7.9 , length of caudal femur 6.5 mm .

6th Group, Pseudocreobotre.

Theopropus elegans (Westwood).
1832. Blepharis elegans Westwood, in Griffith, Anim. Kingd.. XV, p. 190, pl. LXXVIII, fig. 3. [+ ; Tanesserim [error for Tenasserim] Coast.]
British North Borneo, (from Fruhstorfer), 1 우.
Sandakan, British North Borneo, (from C. F. Baker), 1 ㅇ.
Labuan Island, British North Borneo, 1 ¢.
The three specimens of this remarkable species here recorded all agree closely in size, coloration and color pattern.

Explanation of Plates.

Plate I.-Fig. 1.-Kongobatha diademata new species. Queensland, Australia. Female. Type. Cephalic aspect of head. ($\times 7$.)
Fig. 2.-Kongobatha diademata new species. Queensland, Australia. Female. Type. Latero-external outline of cephalic tibia. $(\times 10$.)
Fig. 3.-Polyacanthopus mantispoides new species. Sandakan, British North Borneo. Male. Type. Cephalic aspect of head. $(\times 7$.)
Fig. 4.-Polyacanthopus mantispoides new species. Sandakan, British North Borneo. Male. Type. Latero-external outline of cephalic limb. ($\times 6$.)
Fig. 5.-Sceptuchus simplex new species. Singapore, British Straits Settlements. Male. Type. Cephalic aspect of head. $(\times 7$.)
Fig. 6.-Seeptuchus simplex new species. Singapore, British Straits Settlements. Male. Type. Latero-external outline of cephalic tibia. $(\times 10$.)
Fig. 7.-Amantis acta new species. Mount Banahao, Luzon, Philippine Islands. Male. Type. Cephalic aspect of head. $(\times 7$.)
Fig. 8.-Amantis basilana new species. Island of Basilan, Philippine Islands. Nate. Type. Cephalic aspect of hearl. ($\times 7$.)
Fig. 9.-Amantis basilana new species. Island of Basilan, Philippine Islands. Male. Type. Latero-external outline of cephalic tibia. $(\times 10$.)
Fig. 10.-Tagalomantis manillensis (Saussure). Los Banos, Luzon, Philippine Islands. Male. Latero-internal aspect of cephatic femur. ($\times 5$.)
Fig. 11.-Leptomantis tonkinae new species. Than-Moi, Tonkin. Femate. Typc. Dorsal view of pronotum. ($\times 6$.)
Fig. 12.-Leptomantis tonkinae new species. Than-Moi, Tonkin. Female. Type. Latero-external outline of cephalic tibia. $(\times 10$.)
Fig. 13.-Actaclla bakeri new species. Mount Makiling, Luzon, Philippine Islands. Male. Type. Dorsal view of pronotum. ($\times 6$.)
Fig. 14.-Aetaclla bakeri new species. Mount Makiling, Luzon, Philippine Islands. Male. Type. Latero-external outline of cephalic tibia. $(\times 10$.)

Plate II.-Fig. 1.-Hicrodula obiensis new species. Obi Island, Moluccas. Female. Allotypc. Dorsal aspect. (Natural size.)
Fig. 2.-Hierodula obiensis new species. Obi Island, Moluccas. Male. Type. Dorsal aspect. (Natural size.)
Fig. 3.-IIierodula splendida new species. Haidana, British New Guinea. Dale. Type. Dorsal aspect of head and pronotum. ($\times 11 / 2$.)
Fig. 4.-Acromantis luzonica new species. Baguio, Luzon, Philippine Islands. Male. Type. Dorsal aspect of pronotum. ($\times 41 / 2$.)
Fig. 5.-Acromantis dyaka new species. Labuan Island, British North Borneo. Female. Type. Dorsal aspect. ($\times 2$.)
Fig. 6.-Creolroter granulicollis Saussure. Singapore, British Straits Settlements. Male. Dorsal aspect of pronotum. ($\times 41 / 2$.)
Fig. 7.-Creobroter labuanae new species. Labuan Island, British North Borneo. Male. Type. Dorsal aspect of pronotum. ($\times 4 \frac{1}{2}$.)
Fig. S.-Creobroter meleagris Stål. Los Banos, Luzon, Philippine Islands. Male. Dorsal aspect of pronotum. ($\times 4 \frac{1}{2}$.)
Fig. 9.-Amantis aeta new species. Mount Banahao, Luzon, Philippine Islands. Male. Type. Dorsal aspect of pronotum. ($\times 8$.)

HEBARD: MALAYAN, PAPUAN, AND AUSTRALIAN MANTIDAE.

HEBARD: MALAYAN: PAPUAN, AND AUSTRALIAN MANTIDAE.

March 16.
The President, John Cadwalader, A.M., LL.D., in the Chair.
Forty-six persons present.
The deaths of the following members were announced: Robert E. Peary and Reuben Haines; and Sir James A. Grant, a Correspondent.

Mr. Stewardson Brown made a communication on: "Native Orchids of Pennsylvania and New Jersey in the Herbarium of the Academy," and Mr. J. Fletcher Street exhibited a series of elegantly colored lantern slides of local orchids and associated plants. (No abstracts.)

The following were elected members: J. Franklin McFadden, Lawrence J. Morris, Edward R. Wood, Jr., T. Wistar Brown, 3rd, Hugh F. Munro, Joseph G. Lovering, Frank B. Bower,and Astley P. C. Ashhurst.

The Publication Committee reported the reception of the following papers for publication:
"Scrophulariaceæ of the Southeastern United States," by Francis W. Pennell.
"Mollusca from Central America and Mexico," by Henry A. Pilsbry.
"Notes on New Jersey, Pennsylvania, and Virginia Fishes," by Henry W. Fowler.
"Costa Rican Land and Freshwater Mollusks," by Henry A. Pilsbry.
"Studies in Malayan, Papuan and Australian Mantidæ," by Morgan Hebard.
"Observations on the Soil Acidity of Ericaceæ and Associated Plants in the Middle Atlantic States," by Edgar T. Wherry.

The following was ordered to be printed:

OBSERVATIONS ON THE SOIL ACIDITY OF ERICACEAE AND ASSOCIATED PLANTS IN THE MIDDLE ATLANTIC STATES.

BY EDGAR T. WHERRY.

In a recent paper ${ }^{1}$ the writer described the results obtained on a trip in northern New England in June, 1919, where indicator solutions were carried into the field and tests made of the soil reactions of a number of species of Ericaceae and other families of plants thought to be sensitive in this respect. ${ }^{2}$ Both before and since that trip similar observations have been made at a number of places in Pennsylvania and adjoining states, and in the present paper some of the results obtained are described ${ }^{3}$. The field work has been carried out largely at the writer's own expense, in the course of vacation outings, but funds for certain trips were obtained from the U. S. Bureau of Plant Industry, through Mr. Frederick V. Coville, Botanist of the Bureau.

The regions in which these observations have been made are presented in the following table, with summaries of their dominant geological and soil features. Those in the Appalachian Mountain and Piedmont Provinces are given first, from northeast to southwest, and then those on the Atlantic Coastal Plain, from north to south.

Table I.
Features of regions studied.

Locality State \begin{tabular}{c}
Surface

Geology

\quad

Soil

Character

\quad

Dominant

soil reaction
\end{tabular}\quad Ericaceae

Appalachian Mountain and Piedmont. (Alleghanian Zone.)
Swamps nortl \quad Bog and up- Nediacid Abundant
of Dover............. J. cial clrift land peats N.

[^43]| Swamps south
 of Green Pond.N. J. | Calcareous glaeial tritit | Bog and upland peats | Subacid | Common |
| :---: | :---: | :---: | :---: | :---: |
| Mountain ridges in central counties. . Pa. | siliceous rocks | Upland peat sonte bog peat | Mediacid | Abundant |
| Valleys in eastcentral counties..... . Pa. | Calcareous rocks | Upland peat | Minimacid | Rare |
| Uplands in S. E. counties.... P'a. | Various igneous rocks | Upland peat | Subacid | Common |
| Uplands N. W. of Washington, D. C. Nd. | Gneisses, decomposed to clay | Upland peat | Subacid | Common |
| Nountain ridges eastern counties, W.V.a. | $\underset{\text { rocks }}{\substack{\text { siliceous }}}$ | Upland peat | Subaeid | Common |

Coastal Plain. (Carolinian Zone).

Swamps and uplands pine-barrens. N. J.	Siliceous sands	Bog and upland peats	Mediacid	Abundant
Swamps and uplands marginal areas......N. J.	Subcaleareous sands, elays	Upland peats	Subacid	Common
Swamps and uplands southern courties .. Del.	Siliceous sands	Bog and upland peats	Mediacid	Abumdant
Swamps and uplands east of Wash., D. C. Md	Siliceous sands	Bog and upland peats	Mediacid	Abundant

Grateful acknowledgement is made herewith to those who have acted as guides in several of these places; to Dr. Everett G. Logue and Mr. John P. Young, in central Pennsylvania; Messrs. Harold W. Pretz and Edward S. Mattern, in eastern Pennsylvania; Professor H. Justin Roddy, in southern Pennsylvania; and to Mr. Harry W. Trudell, who has taken part in many of the expeditions, and whose aid in pressing specimens of plants and in many other respects has greatly facilitated the covering of the ground and the obtaining of the data.

Descriptions of Individual Localities

A. Appalachian Mountain and Piedmont. (Alleghanian Zone.)

Swamps north of Dover and south of Green Pond (Warren County) New Jersey.
These two localities in the New Jersey Highlands were selected from the large number available because they are easily accessible and appear to furnish the maximum possible contrast in soil acidity relations. Dover is on the main line of the Delaware, Lackawanna and Western Railroad about 65 kilometers (40 miles) northwest of New York City; Green Pond (one of several bodies of water in New Jersey bearing that name) is two miles east of Bridgeville station, on the "old line" of the same railroad, about 20 km . (12 miles) southeast of Delaware Water Gap. In the swamps 3 km . (2 miles) north of Dover, the country rock is granitic gneiss, and the glacial drift is dominantly siliceous in character, the swamp waters being as a result mediacid. In those south of Green Pond the country
rock, at least of the valley in which the pond lies, is limestone, and the glacial drift contains abundant fragments of calcareous rocks; the pond is fed by springs arising through limestone, so that its water is subalkaline, and similar reactions are shown by the waters at various places in the swamps along the stream draining the pond. Marked differences in flora, in so far as its members, are sensitive to soil reaction, would be expected to appear on comparing these two regions.
Ericaceae (used in the broad sense) are actually far more abundant in the Dover region, forming dense thickets; and two of them, Kalmia latifolia and Vaceinium corymbosum, become small trees. Clethra almfolia, Eubotrys. racemosa, and Gaultheria proeumbens may be noted as species which grow here but appear to be absent at Green Pond. Noteworthy members of families other than Ericacae present in some abundance are: Smilax rotundifolia, Habeutria psycodes, Coptis trifolia, Spirctea tomentosa, and Ilicioides mucronata; all these are absent or rare at Green Pond. To those who are susceptible to Rhus poisoning, the Dover swamps will be found far more pleasant than the Green Pond ones, for in the former R. vermix and R. toxicodendron are very rare.

While the water of the Green Pond swamps is more or less alkaline in reaction, soils of definite and even high acidity are also present there, in the form of hummocks and mounds of decaying vegetable matter mingled with sphagnum and other mosses. On ascending these the reaction becomes less alkaline, passes through neutrality, and often reaches mediacid character at the top. The Ericaceae growing in this swamp are exclusively limited to such mounds. The species noted comprise: Azalea nudiflora (rare); A. viscosa; Kalmia angustifolia; Xolisma ligustrina; Gaylussacia baccata (rare); Vaccinium corymbosum; and Vaccinium macrocarpon. The soils of these were found to range from mediacid to subacid, their roots apparently not extending into material so moistened by the swamp water as to have less acidity than this. Notable plants of other families showing the same relations are: Cypripedium acaule, Coptis trifolua, Menyanthes trifoliata, and Limaea borealis var. americana.
On the other hand there are here a number of plants which grow entirely or chiefly in soils bathed by the alkaline water, and ranging from neutral to subalkaline in reaction. Such are Cypripedium hirsutum (reginae), C. candidum, Betula pamila, Caltha palustris, Par-
nassia caroliniana, Rhammus alnifolia, and an appalling abundance of Rhus vermix and R. toxicodendron. All these but the last two seem quite absent from the Dover swamps.

The pitcher plant, Sarracenia purpurea, grows in both swamps, in the Green Pond one only in the moss hummocks; and the water in the "pitchers" shows some peculiar reactions. The writer has tested the water held by this plant in many localities, and has found it to be usually mediacid, or subacid, the acidity being no cloubt due chiefly to dissolved carbon dioxide. In the Green Pond swamp, however, the water in the pitchers was found to be minimacid, nentral and even minimalkaline. It is possible that the plant may be able to absorb lime from the moss in which it is rooted, and excrete it into the pitcher liquid. It seems more probable, however, that lime is absorbed by the roots of the larch trees, (which are abundant in the Green Pond Swamps, though rare at Dover,) and of other shrubs and trees growing in the alkaline water; and that this lime, excreted upon the leaves of these trees, is washed off by the rain and thus gets into the upturned pitchers.

Mountain Ridges in the Central Counties of Pennsylvania.

Tests have been made of the soils of Ericaceae and other plants at a number of places in the mountains of Pennsylvania, from Heranton on the northeast to Williamsport on the northwest, and from Bethlehem on the southeast to Mont Alto on the southwest. A few of the most interesting localities will be described here in some detail, starting at the northeast end.

The most prominent ridges in the region are underlain by sandstone rocks, and the soils they yield are mostly mediacid to subacid. Lower elevations are occupied by shale rocks, which may also give rise to strongly acid soils. Under circumstances where accumulation of vegetable matter is prevented, the reactions connected with both these rock types may be minimacid to neutral. As an illustration, it may be noted that the fern Cryptogramma stelleri (Pellaea gracilis) usually described in manuals as a limestone species, was collected at Lincoln Falls, Sullivan County, miles away from any limestone. The rock is a red shale (of Devonian age) and the water oozing from it is neutral in reaction.

At South Stroudsburg the Rhododendron nursery of W. K. Labar was visited, and the methods of growing ericaceous plants there were kindly demonstrated by Mr. John van Kleef, the resident manager. The natural soil of this place is a calcareous glacial
drift, averaging minimacid in reaction. A few Ericaceae, notably Rhododendron maximum and Kalmia latifolia, grow there naturally, and it has been found possible to introduce many other species. The acidity found seems rather low, judging from what has been observed in the course of these studies, for these plants to make the best growth, but peaty material of somewhat more acid reaction-subacid-is being brought from the Pocono region, and mixed with the native soil, the result being highly satisfactory. At most other places within the glaciated area the drift is dominantly siliceous, and the soil reactions more strongly acid, Ericaceae being widespread and abundant at many points.

It was particularly desired to obtain data as to the behavior of ericaceous plants at or near a contact of a siliceous rock with a limestone; and one such locality was found, near the country club, some 3 km . (2 miles) east of Williamsport, Lycoming County. Near the main road (from Williamsport to Montoursville) there is an old limestone quarry; on the waste ground around it is a dense thicket of various shrubs bearing small, juicy fruits; the call of catbirds from the thicket suggesting how these shrubs may have been introduced. There were one or more species of Celtis, Prumus, Crataegus, Rhus, Celastrus, Sambucus, etc., present; but in spite of thorough search, not a single member of the Ericaceae could be found, although colonies of these plants, from which the birds no doubt obtain much food, are present within a few hundred meters. Evidently the seeds of the Ericaceae, when they fall into the limestone soil, either do not germinate at all, of if they do, the young plants soon succumb. Tests of the soil showed its reaction to vary from neutral to minimalkaline.

Going north from this quarry, around the end of a golf course, the limestone rock gives way to shale and this in turn to sandstone, a thin oak woods spreading over the contacts of these formations. As the limestone is receded from, the soils become more and more acid, and Ericaceae grarlually appear. The first species was found to be Vaccinium vacillans; its soil proved to be minimacid. Gaylussacia baccata and Azalea nudiflora come in a short clistance further on; their soils being minimacid to subacid. On reaching the sandstone formation Ericaceae appear in abundance, the above mentioned species being still present, and in addition Kalmia latefolia, Gaultheria procumbens, Epigaca repens and Vaccinium corymbosum. Various species of pine trees, and other acid soil plants, such as Lupinus perennis, come in here also; and tests of the soi-
showed subacid to mediacid reaction. The control of the distribul tion of Ericaceae by the soil reaction is here so evident as to require no further comment.

No other localities in the mountain region need special description, the acidities of the soils of Ericaceat observed there being included below, but the data which have been obtained on a few plants of other families than Ericaceae may be added here. The following were found to be limited to mediacid or occasionally subacid soils: Clintonia borealis, Trillium erythrocarpum, Tiarella cordifolia, Dalibarda repens, Waldsteinia fragariondes, Oxalis acetosella, Polygala paucifolia, and Trientalis borealis. In circumneutral soils, rarely ranging to subacid, characteristic plants are: Cryptogramma stelleri (Pellaea gracilis), Filix fragilis, F. bulbifera, Camptosorus rhizophyllus, Allium tricoceum, Aquilegia canadensis, and Castilleja coccinea. Wide range of reaction is shown by Taxus canadensis, Trillium ercetum, Clematis verticillaris, Hepatica acutiloba, Tiola pedata, etc. Finally it may be noted that Phlor subulata, while its acidity range is wide, shows more or less correlation of flower-color with soil reaction, in that the deep rose-violet flowered plants are usually found to grow in soil of lower acidity than those with pale rose or white flowers. There are, of course, cases in which both grow in close association, and where this relation does not hold, but in general it seems to be fairly definite.

Valleys in East Central Counties of Pennsylvania

The Lehigh-Lebanon valley of eastern Pennsylvania is largely underlain by limestone rocks, but at many places there is a thin layer of glacial drift over the limestone. The soil reactions associated with such a geological relationship and the resulting distribution of Ericaceae are matters of considerable interest. Tests have shown that the soil of unprotected limestone rock is normally minimalkaline or neutral in reaction; but that where the glacial drift occurs, upland peat tends to develop, often reaching a minimacid and occasionally even as high as subacid reaction. Woods in which many acid soil plants grow can develop in such drift-covered places, but where these woods are cut over and the acid upland peat material is given a chance to decompose, the acidity may decrease decidedly. No doubt under such circumstances those species which require the most acid conditions die out rapidly, while those which can adapt themselves to a less degree of acidity persist for some time, even to the point where the reaction goes down to the neutral point.

In the "Big Woods," about 6.5 km . (4 miles) southwest of Allentown, Lehigh County, Pa., the drift covering is thick enough to permit the growth of pine trees, and tests have shown the soil acidity of the upland peat to range from subacid down to minimacid. Here were noted the Ericaceae: Pyrola americana, Chimaphila maculata, C. umbellata, Gaylussacia baccata, and Vaccinium stamineum. In addition Cypripedium acaule and Viola pedata, regarded as acid soil plants, thrive here.

Some 5 km . (3 miles) northwest of this point is a small knoll formerly occupied by similar woods, but cut over several years ago. The humus has been extensively destroyed, and the soil acids neutralized by the underlying limestone, so that the acidity at present is minimacid, but the following Ericaceae have persisted: Azalea mudiflora, Gaylussacia baccata, Taccinium stamincum, V. vacillans, and T. corymbosum. With these are Comptonia asplenifolia (peregrina) and Viola pertata, the soil of the last in some cases reaching actual neutrality, a rather unusual occurrence. (This observation was made in early spring; later in the season slight acidity may (levelop there).

Similar relations have been observed at some five localities, and are no doubt present at other places through this limestone valley, but nowhere have Ericaceae or other plants usually limited to highly acid soils been found to grow in the neutral to subalkaline soils of the limestone itself.

Hills in Southeastern Counties of Penvsilyanla.

Describing in this province, as in previous ones, only particularly interesting occurrences, mention may first be made of a contact of sandstone and limestone at Fruitville, Lancaster County. On the sandstone, where the soils range in acidity from mediacid down, Ericaceae such as Azalea nudiflora, Gaylussacia baccata, T'accinium stamineum, and V. vacillans are abundant. On passing over the contact toward the limestone side, these gradually die out, but two of them, the Gaylussacia and Vaccinium vacillans, extend into limestone soil of neutral reaction. It should be noted, however, that these plants are there stunted and obviously not thriving; and they are absent entirely when the soil becomes actually alkaline.

Thus far acidity data have been given chiefly for sandstone and limestone, so it may be of interest to add what has been observed, in the present region, about other formations. Mica schist and mica gneiss seem to yield normally subacid reactions. Trap rock (diabase)
in spite of a rather high content of alkali and alkaline earth metals,sodium, calcium, magnesium,-gives mostly subacid to minimacid soils. Serpentine behaves similarly, and subacid or even mediacid soils often (levelop, in spite of the magnesium content. The red shale formation of Triassic age, which covers a wide area in this part of Pennsylvania, yields subacid soils in many places, but since some of its strata contain considerable calcium carbonate, minimacid, neutral, and even minimalkaline soils are at times present upon it. The abundance of Ericaceae on these several formations has been found to follow dosely the development of soils of subacid or mediacid reaction.

Hills Northwest of Washington, D. C.
On coming further south, the rocks are mostly more fully decomposed than they are in Pennsytvania, and the alkali metals are more extensively leached out, so that hills are often covered with dense clays, showing but little similarity to the original rocks. Subacid soils have been found to be dominant in such situations, and Ericaceat accordingly fairly rommon. Along the Potomac Valley northwest. of Washington, D. C., the clays are considerably eroded, and the solid rock exposed; but here a secondary factor influences the soil reaction. The Potomac River and its tributaries flow for long distances through limestone regions, and take up considerable amounts of calcium bicarbonate. Not only does this make the waters themselves minimalkaline, but the sands and muds deposited at flood times also contain so much calcareous matter as to render the soils there circumneutral in reaction. Accordingly the Ericaceae, which grow on the uplands, drop off markedly as the level of river deposition is approached, and circumneutral-soil plants are common at the lower levels.

Mouctain Ridges of TVest Virginia.
In the mountains of West Virginia, conditions are similar to those in the corresponding regions of Pennsylvania. The Ericaceae characteristic of the southern Appalachian Mountains reach their nortbern limits there, but they have not been found to show on the whole any differences in soil acidity from the Ericaceae which also grow farther north. The upland peat of the great Rhododendron thickets is mediacid to subacid in reaction, the plant roots usually extending down into material of the lesser acidity. The reactions of the soils of individual species are listed below.

B. Coastal Plain. (Carolinian Zone.)

Pine Barrens and Marginal Areas of New Jersey.
The correlation between soils and plants in southern New Jersey will be discussed by the writer elsewhere. The following is a summary of the conclusions there reached.

As every botanist interested in plant distribution has undoubtedly become acquainted with Stone's "Plants of Southern New Jersey," no description of the plants of this region need be given here. As to soils, although pure quartz sand should react neutral toward indicators, that of the Pine-barren area seems to be always more or less acid, no doubt owing to the accumulation of invisible humus matter between the grains; and where the humus is prominent, the reaction is usually mediacid, so that the Pine-barren area can be regarded as essentially a vast expanse of highly acid soils. On digging down through the surface layers of these soils, the acidity gradually decreases, and at a depth of three or four decimeters may be minimacid. Road-cuts and stream valleys through the region readily reach the levels of lower acidity, and on their banks grow plants which do best under somewhat less acid conditions, Asplenium platyneuron being a typical example.

The upper part of the Middle District or Marl area differs from the Pine-barren area in that mediacid soils are comparatively rare, the sands containing greater amounts of compounds of calcium and other elements which tend to neutralize more or less such acids as develop. The strata of Cretaceous age which outcrop are well known to contain considerable calcium carbonate derived from fossil shells, and the soil has in fact been found to reach neutral or even minimalkaline reaction in certain places, as for instance, the Lindenwold bog. In the Cohansey and Cape May areas the acidity also averages low, the source of the lime appearing to be sediments deposited in Quaternary times by the Delaware River, which drains vast areas of limestone rocks in its upper reaches, and the water of which is tolay slightly alkaline. In the Coastal area the sandy soils are mediacid as in the Pine-barrens, but contain considerable sodium chloride, calcium sulfate, etc., so that plants which require high content of salts, but are indifferent to acidity as such, together with those which require acidity but are tolerant of salts, are characteristic of this area.

The distribution of plants is evidently controlled to a marked degree by these features of the soils. As Stone remarks "The Pines seem to be the chosen land of the Ericaceae, which abound
there both in species and individuals." Many ericaceous species which are shown by studies in other regions to prefer mediacid or high subacid soils thrive in the Pine-barrens, whereas those requiring less acid conditions, such as the Pyrolas and Chimaphilas, are there infrequent, rare or unknown. On the other hand, plants which in the north are regarded as "calciphiles"-circumneutral soil plants-extend into southern New Jersey only along the marginal regions. To give but one example, Gentiana crinita is, as noted by Stone, a rarity in southern New Jersey; but in the Lindenwold bog it grows in wonderful abundance, being limited to the lower levels, where the calcareous strata outcrop, and neutralize the soil.

Southern Delaware.
During March, 1919, the writer visited the region around Millsboro, Sussex County, Delaware, to study the soil acidity as related to the distribution of native plants. The selection of this particular place was due to the reported occurrence there of the box-leaved huckleberry, Gaylussacia brachycera (Michx.), of which living specimens were desired. The earliness of the trip was determined by the fact that this plant is an evergreen and seemed likely to be most readily found before the leaves had developed on the majority of other plants. After several days'. search a single small colony of the Gaylussacia was located, many acidity tests of the soils met with being carried out in the course of the trip. The results of these studies are here presented; since this region is less well known than those previously described, it is treated in greater detail.

The Millsboro region lies on that part of the Atlantic Coastal Plain known as the Delaware Peninsula or "Eastern Shore" (of Chesapcake Bay) District, about 16 km . (10 miles) back from the sea coast, and a like distance from the southern boundary of the state of Delaware. It is best reached by train on the Franklin City branch of the Delaware, Maryland and Virginia Railroad, a part of the Pennsylvania system, running south from Wilmington, Delaware. It is a region of low relief, the Indian River, which traverses it, being a tidal estuary, while the maximum elevation is little over 12 meters (40 feet) above sea level. The geological formation exposed at the surface of the ground is the Talbot formation, of Pleistocene age, consisting of unconsolidated sand, with occasional lenses of gravel and of clay, and the soils correspond in character.

[^44]Trenton, 1911, p. 617.

The growing season, or interval between average dates of minimum temperatures of $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$.) , is about 200 days in length.

The region around Millsboro is farmed extensively, but the native regetation is preserved here and there, especially along the banks of streams. The dominant tree is Pinus taeda, and mingled with it are P. serotina, P. echinata, P. rigida, and P. virginiana. Oaks, maples, and gums are the principal deciduous trees. In the swamps occur Chamaecyparis thuyoides and rarely Taxodium distichum. A striking feature of the pine forests is the sparsity of the undergrowth, in which they resemble the southern rather than the New Jersey Pine-barren regions. ${ }^{6}$

The most prominent smaller trees and shrubs include Myrica caroliniensis, Magnolia virgimiana, Alnus rugosa and the southern species A. maritima, Ilex opaca, I. glabra, Pyrus (Aronia) arbutifolia, Aralia spinosa, Cormus florida, and some 15 ericaceous plants, divisible into two groups: those of mediacid, and those of subacid soil. The mediacid soil species which mostly grow in swamps, are: Clethra alnifolia, Azalea viscosa, Kalmia angustifolia, Enbotrys racemosa, Xolisma ligustrina, Gaultheria procumbens and Vaccinium corymbosum. The Gaylussacia brachycera itself grows in dry upland peat with mediacid to high subacid reaction. The species more characteristic of dry subacid soils are: Chimaphila maculata, C. umbellata, Azalea nudiflora, Kalmia latifolia, Epigaea repens, Gaylussacia baccata, and Taccmium vacillans.

Mediacid reaction was found to be present practically throughout the swamps, both in the water and the peat, and also in upland peat of the dry hills. On digging down into the sand beneath such upland peat, the acidity was found to decrease markedly, the measurements being: Surface, specific acidity $300 ; 25$ centimeters down, $100 ; 50 \mathrm{~cm}$. down, 30 ; and 100 cm . down, 10. As in the New Jersey Pine-barrens, both natural and artificial depressions often show the lower acidities on their banks, which relation controls to a certain extent the distribution of plants.

Two plants were observed to grow in this region which are elsewhere characteristic of circumneutral soils, Asplenium platyneuron and Aquilegia canadensts. The first appears chiefly in isolated patches in the pine woods, where either because of the presence of bacteria able to decompose the acid constituents of the upland peat,

[^45]or of lenses of calcareous clay, the acidity of the soils is markedly diminished. These areas, mostly only a few meters in diameter, and more or less circular in outline, are scattered through the woods, forming in a sense oases in the desert; with the exception of Chimaphila maculata, the Ericaceae appear to avoid them. Wherever Asplenium showed up in the forest floor,-and it was very prominent, the fronds attaining lengths of as much as 40 cm .,-tests invariably showed the area it occupied to be subacid or circumneutral in reaction. Presumably the spores of this ferm are killed when they fall into the more acid soils of the region.

The Aquilegia, together with a few plants of Asplenium, was observed in quite a different habitat, namely, on the steep banks of the Indian River. The low acidities observed were in this case obviously connected with, the fact that the plant roots entered directly the lower layers of the soil, which are everywhere less acid than the surface portions. Epigaea repens was also found to grow on the same banks, but its roots do not enter the low acid sands to any extent, being instead imbedded in superficial peaty material with the usual mediacid reaction.

Another type of relationship is shown by Yucca filamentosa, the optimum for which appears to lie at specific acidity 30 . This plant grows, apparently as a native and not an escape, in large patches in the more open pine woods, where the surface soil is upland peat with mediacid reaction. It has, however, an erect underground stem 25 or more cm. long, at the base of which is a cluster of tuberous roots, with fibrous ones extending downward from them. As far as its root system is concerned, therefore, this species is growing not in highly acid, but in subacid soils.
Region East of Washington, D. C.

The region east of Washington is so similar to the New Jersey and Delaware areas already discussed that little need be said about it at this point. Plant distribution is elaborately treated in a recent publication. ${ }^{7}$ The magnolia bogs as therein defined are dominantly mediacid in reaction, and the upland peat of the dry surrounding hillsides attains the same acidity, so that Ericaceae and their usual associates abound in both habitats. Subacid and rarely minimacid soils occur on banks and locally through the woods, and support a few plants which can not stand the higher acidities.

[^46]Many tests made in this region are included in the tables for individual ericaceous species which follow.

Observations on Individual Species

In order to bring out the acidity relations of the individual species, the plan suggested in the paper above cited ${ }^{8}$ has been modified in such a manner that while the specific acidities are plotted horizontally the number of places where each value has been observed are now plotted vertically. Thus, on p. 97 , when a given species has been found to grow in a soil with specific acidity $=100$ at two different localities (or distinctly different habitats in the same locality) an x is placed above the figure 100 and opposite the number 2. Obscrvations in nurseries are marked with n, and those made in other regions, which seem worth introducing for comparison, with o. A curve may be regarded as drawn through the points thus marked, and from its shape the behavior of the plant with respect to soil acidity may be seen at a glance. In most Ericaceae the curves indicate that there is a definite limit to growth on the less acid side. and sometimes on the more acid side as well. There is also in most cases a maximum in the curve,-an intermediate point-at which the species is observed to grow with such frequence and luxuriance that this value is to be regarded as its optimum reaction under natural conditions.

Each species has been examined, on the average, at 10 localities selected so as to show as wide a range of conditions as possible. Tests have been made at each locality in sufficient number to insure the records being typical of the occurrence. Identifications of the plants have been made with care, specimens of each being preserved, and in cases of uncertainty submitted to authorities on the groups concerned. While freely admitting that there is room for additional data from other regions the writer feels that in most cases observations enough have been made to justify accepting with some degree of confidence the definiteness of the optimum and limiting reactions indicated.

The American code of Nomenclature is followed for the most part; but the genus-splitting favored in Britton and Brown's "Illustrated Flora" and the "North American Flora" is not accepted.

[^47]
Clethra alnifolia L.

Habitat.- Wet sphagnum peat and occasionally dry upland peat at swamp margins.

The optimum soil reaction for this species is obviously mediacid. The lower values sometimes observed represent places where the plant pushes out from its usual swamp habitat into dry sandy woods. The n in the table refers to a test of sandy soil in Gillett's nursery at Southwick, Massachusetts, and is introduced to show that this plant can be grown under cultivation in a soil of somewhat lower initial acidity than it appears to occupy in nature.

Pyrola americana sweet.

Habitat.-Dry upland peat and occasionally moist peat at swamp margins.

The optimum soil reaction for this species is subacid. The most acid reaction tabulated was observed in moist peat at the margin of a swamp north of Dover, N. J. The least acid was noted in upland peat on glacial drift overlying limestone in the Lehigh Valley west of Allentown, Pa.

Pyrola elliptica Nuttall.
Habitat.--Dry and occasionally moist upland peat.

[^48]The optimum soil reaction of this species is probably between subacid and minimacid; the tests made on it in New England, indicated by o 's, led to the same value.

Pyrola secunda L.
Habitat.-Dry and occasionally moist upland peat.

```
Acidity. -
\begin{tabular}{rrrr} 
& & \(x\) & \\
& & 0 & \(x\) \\
& \(x\) & & 0 \\
300 & 100 & 30 & 10
\end{tabular}
```

The optimum soil reaction of this species is inferred, from consideration of the data from both New England and the present region, to be subacid. The most acid reaction tabulated was observed in sandy upland peat in southern Delaware.

Chimaphila maculata (L.) Pursh.
Habitat.-Dry upland peat.

```
Acidity. -
        \(\begin{array}{lrrrrrr}5+ \\ & & & x & & & \\ 4 & & & & & & \\ 3 & & & & x & x & \\ 2 & x & x & & & \\ 1 & 300 & 100 & 30 & 10 & 3 & 1\end{array}\)
```

The optimum soil reaction of this species is subacid. The most acid reaction was observed in sandy upland peat in southern Delaware. The least acid was noted in upland peat on glacial drift overlying limestone in the Lehigh Valley west of Allentown, Pennsylvania, and in upland peat over limestone at Natural Bridge, Virginia.

Chimaphila umbellata (L.) Nuttall.
Habitat.-Dry upland peat.

```
\(\begin{array}{crrrrrr}\text { Acidity. } & & & & & & \\ 5+ & & & & & & \\ 4 & & & & & \\ 3 & & & 0 & x & & \\ 2 & x & x & & 0 & & \\ 1 & 300 & 100 & 30 & 10 & 3 & 1\end{array}\)
```

The optimun soil reaction of this species is subacid. The most acid reaction was observed in sandy upland peat in southern Delaware.

Monotropa uniflora L.
Habitat.-Dry and occasionally moist upland peat.
Acidity. -

The optimum soil reaction of this species is subacid; its range is apparently rather more limited than those of preceding members of the Ericaceae. The most acid reaction was noted in sandy upland peat in southern Delaware; the least acid in clayey upland peat at two widely separated localities near Washington, D. C.

Hypopitys lanuginosa (Michx.) Nuttall
Habitat.-Dry and occasionally moist upland peat.
Tests have been made on Hypopitys chiefly during the winter, and the species could not be accurately determined. Plants approaching H. lanuginosa in characters have been examined at two localities near Washington, D. C., in clayey upland peat, and yielded subacid reaction in both cases.

Hypopitys americana (De Candolle) Small.
Habitat.-Dry upland peat.
Plants probably referable to H. americana have been examined near Dover, N. J., the soil being sandy upland peat over glacial drift, and the reaction subacid.

Azalea nudifiora L.
Habitat.-Dry upland peat and occasionally wet sphagnum peat.
Acidity. -

$5+$			x			
4				x		
3						
2						
1	x	x				
	300	100	30	10	3	1

The optimum soil reaction of this species is subacid. The most acid reaction tabulated was observed in a swamp in southern Delaware; the least acid in upland peat over calcareous glacial drift near Green Pond, N. J.

Azalea canescens D. Don.
Habitat.-Dry upland peat.
This species has been observed but rarely, in the mountains of central Pennsylvania; the soil in these cases is upland peat over sandstone rocks, and the reaction subacid or rarely mediacid.

Azalea arborescens ${ }^{\text {Doursh }}$
Habitat.-Moist upland peat.
This species has been observed in the mountains of eastern central West Virginia, chiefly in Tucker county. The soil is moist upland peat, and the usual reaction subacid.

Azalea viscosa L. (Including varieties glauca, nitida, etc.)
Habitat.-Wet sphagnum peat and occasionally dry upland peat at swamp margins.

Acidity. $\begin{gathered}5+ \\ 4 \\ 3 \\ 2 \\ 1\end{gathered}$

The optimum soil reaction for this species is mediacid. The lower values noted represent places where the plant pushes out from its usual swamp habitat into dry sandy woods. The n in the table refers to Gillett's nursery at Southwick, Massachusetts. This makes with the preceding plant a pair of closely related species with marked dissimilarity in optimum soil reaction.

Rhododendron maximum L.

Habitat.-Moist and occasionally dry upland peat and wet sphagnum peat.

The optimum soil reaction for this species appears to subacid, but its range is unusually wide. The most acid reaction tabulated represents occurrences in sphagnum peat in a swamp in central Lycoming County, Pa., and in moist upland peat in the mountains of West Virginia. The two least acid values were observed in upland peat on calcareous glacial drift east of Williamsport, Pa. While some of the roots of these plants were found to be surrounded by soils of these acidities, other roots of the same plants were in subacid soils. Seedlings have been found most frequently in subacid soils.

Menziesia pilosa (Michaux) Persoon.
Habitat.-Dry and occasionally moist upland peat.

This species has been observed only on Spruce Mountain and neighboring ridges in Pendleton County, West Virginia. The soils are upland peats over sandstone rocks, and the reaction is subacid to mediacid.

Dendrium buxifolium (Berg) Desvaux.
Habitat.-Moist and occasionally dry sand, and wet sphagnum peat.

This species has been observed at various places in central and southern New Jersey, being especially prominent in the Pine-barrens. Its soils show in practically every case a mediacid reaction, rarely approaching subacidity. In its typical occurrences in white sand, this acidity appears to be due to the presence of autogenous humus, that is, humus formed by the decomposition of the leaves of the plant itself.

Kalmia latifolia L.

Habitat.-Dry upland peat and wet sphagnum peat.
Acidıty.

$5+$			x			
4	x					
3		x				
2				x		
1	300	100	30	10	3	1

The optimum soil reaction of this species is probably subacid, but it is of frequent occurrence in mediacid soils too. The lowest acidity tabulated was noted in upland peat orer calcareous glacial drift near Stroudsburg, Pa. Seedlings have been observed most frequently in subacid soils.

Ka'mia angustifolia L.

Habitat.-Wet sphagnum peat, moist and dry upland peat, and dry sand.

Acidity.						
$5+$	x					
4		x	x			
3		0	0	n		
2	0	0				
1	300	100	30	10	3	1

The optimum soil reaction of this species is probably mediacid, but it is also frequently found in subacid soils. In northern New England it is most often met with in mediacid peat, and seedlings have been observed only in such material. Subacid reactions have
been noted in upland peats in the Pennsylvania mountains, and in gravel in the Saucon Valley, eastern Pennsylvania, as well as in Vermont. And as indicated by the n in the table, it can be grown under cultivation in soils of as low an acidity as minimacid.

Eubotrys racemosa (L.) Nuttall.
Habitat.-Wet sphagnum peat, wet and dry upland peat.

x	x	x	
300	100	30	10

31
The optimum soil reaction of this species is probably subacid, although it is also rather frequent in mediacid soils. The least acid reaction listed was observed in an occurrence in dry upland peat on schistose rocks northwest of Washington, D. C.

Neopieris mariana (L.) Britton.
Habitat.-Dry upland peat and occasionally moist peat.

$\begin{array}{rrrrrrr}4 & \mathrm{x} & & & & & \\ 3 & & & & & \\ 2 & & \mathrm{x} & \mathrm{x} & & \\ 1 & 300 & 100 & 30 & 10 & 3 & 1\end{array}$
The optimum soil reaction of this species is probably mediacid. The least acid reaction tabulated was observed in dry sand south of the New Jersey Pine-barrens.

Xolisma ligustrina (L.) Britton.
Habitat.-Dry upland peat and wet sphagnum peat.

```
Acidity.-
    \(\begin{array}{lrrrrrr}5+ & & & & & \\ 4 & \mathrm{x} & & \mathrm{x} & & \\ 3 & & \mathrm{x} & & & \\ 2 & & & & \mathrm{x} & & \\ 1 & & & & & & \\ & 300 & 100 & 30 & 10 & 3 & 1\end{array}\)
```

The optimum soil reaction of this species is probably subacid, although it is also of frequent occurrence in mediacid soils. The least acid value tabulated was noted in dry upland peat on calcareous glacial drift near Green Pond, New Jersey.

Chamaedaphne calyculata (L.) Moench.
Habitat.-Wet sphagnum peat and occasionally dry upland peat.

```
\(\begin{array}{rrrrrrrr}\text { Acidity. } & & & & & & \\ 5+ & \mathrm{x} & & & & \\ 4 & & x & & & \\ 3 & & 0 & & & \\ 2 & & 0 & 0 & 0 & & \\ 1 & 300 & 100 & 30 & 10 & 3 & 1\end{array}\)
```

The optimum soil reaction of this species is probably mediacid. The lowest acidities tabulated, marked o, represent an occurrence south of Willoughby Lake, Vt., where the plant grows at the margin of an alkaline water pond, and its roots push out as far as material of this acidity. It is also grown in nurseries in dry sandy soil between subacid and minimacid in reaction.

Oxydendrum arboreum (L.) DeCandolle.
Habutat.--Dry upland peat.
As observed in southern Virginia, this plant grows in woods where the surface soil is mediacid, but its roots usually extend down into material of subacid reaction.

Epigaea repens L.
Habitat.- Dry upland peat and occasionally moist peat.

The optimum soil reaction of this species is probably subacid, although it is fairly common in mediacid soils as well. The least acid reactions tabulated were observed in upland peats near Washington, D. C. The most heavily fruiting plants and the most numerous seedlings have been found in subacid soils.

Gaultheria procumbens L.

Habitat.-Dry and moist upland peat, and wet sphagnum peat.
Acidity. -

The optimum soil reaction of this species is probably mediacid, although it is fairly common in subacid soils as well. The least acid reaction (o) was observed in upland peat on calcareous glacial drift near Fairlee, Vt.

Arctostaphylos uva-ursi L.
Habitat.-Dry upland peat.
This species has been observed at two widely separated localities in the Pine-barrens of New Jersey, in upland peat and in white sand rendered acid by autogenous humus, the reaction being mediacid. A soil sample from a colony growing on trap rock in south central Connecticut, kindly submitted by Mr. (. A. Weatherby, proved to be subacid. On the other hand, it is reported by Fernald ${ }^{10}$ from cliffs of limestone at Bic, Quebec; and Mr. Coville informs the writer that he has collected it on limestone north of Lake Superior. In both these occurrences the soils are presumably at most minimacid, if not neutral or alkaline, which would indicate that the species has a wide range of soil reaction.

In the Alps something of the same sort has been noted. According to Schroeter: ${ }^{11}$
"In Wallis it is according to Jaccard calciphilous, likewise in the Bavarian Alps according to Sendner, while Contejean designates it as calciphobous, and Mangin and Lecoq as indifferent. According to my experience it is calciphilous in the Swiss Alps." Yet Warming ${ }^{13}$ includes it among oxylophytes or acid soil plants. Further study of this plant is desirable to ascertain whether there are any varietal differences associated with these divergences of soil reaction.

Chiogenes hispidula (L.) T. \& G.
Habitat.-Moist and occasionally dry upland peat and wet sphagnum peat.

The optimum soil reaction of this species is mediacid, which has been obtained at stations in the mountains of Pennsylvania and West Virginia, as well as in northern New England. It is interesting to note that Thoreau ${ }^{14}$ pointed out that the Indian name for this plant means "grows where trees have rotted," rotting wood being usually strongly acid in reaction.

[^49]Gaylussacia brachycera (Michx.) Gray.
Habitat.-Dry upland peat.
This species has been studied at the two stations known at present, New Bloomfield, Pa., and Millsboro, Del. ${ }^{15}$ In both places the dominant soil acidity around its roots is mediacid, ranging to subacid here and there. At the Pennsylvania locality the underlying clayey soil (derived from disintegration of Devonian shale) is lower than this in acidity, being minimacid, but the plant tends to avoid the raw soil, and to grow most profusely wherever vegetable matter is in course of decay. It follows especially the courses of old fallen tree trunks, (and stumps), which are thereby outlined in green against the dominant brown of the surrounding soil. In the Delaware colony the underlying soil is white sand rendered mediacid by admixture of humus and covered by a thick carpet of upland peat made up of Kalmia leaves and pine needles; and the plant grows in a single compact mat, some 20 feet in diameter, being apparently prevented by climatic conditions or by some parasite from spreading into similar soil surrounding the area.

Gaylussacia dumosa (Andrews) T. \& G.
Habitat.-Wet sphagnum peat.
This species has been observed in but two regions, the New Jersey Pine-barrens and the Coastal Plain swamps east of Washington, D. C. The dominant soil reaction in both places is mediacid.

Gaylussacia frondosa (L.) T. \& G.

Habitat.-Wet sphagnum peat, moist and dry upland peat.
$\begin{array}{rrr}\text { Acidity. } & \\ 5+ & \\ 4 & \mathrm{x} \\ 3 & \\ 2 & \\ 1 & 300\end{array}$
The optimum soil reaction of this species is mediacid. The lowest acidity tabulated was observed in dry woods south of the New Jersey Pine-barrens.

Gaylussacia baccata (Wang.) Koch.
Habitat.-Dry and moist upland peat and occasionally wet sphagnum peat.

[^50]```
Acidity.-
 \(\begin{array}{lrrrrrr}5+ & & & x & & & \\ 4 & & & & x & & \\ 3 & & & & & & \\ 2 & x & x & & & x & x \\ 1 & 300 & 100 & 30 & 10 & 3 & 1\end{array}\)
```

The optimum soil reaction of this species is subacid. The most acid reactions tabulated were observed in swamps north of Dover, N. J., and in southern Delaware. The least acid was noted in Lancaster County, Pa., at the contact of sandstone and limestone formations, this Gaylussacia, along with one Yaccinium, extending a short distance over on to the limestone side.

## Vaccinium stamineum L.

Habitat.-Dry and occasionally moist upland peat.

```
Acidity.-
 \(5+\) x
 4
 3
 2
 \(\begin{array}{rrrrrrr}1 & & x & & x & \\ & 300 & 100 & 30 & 10 & 3 & 1\end{array}\)
```

The optimum soil reaction for this species is subacid. The least acid reaction tabulated was observed in upland peat on decomposed diorite-gneiss rock southwest of Allentown, Pa.

Vaccinium pennsylvanicum Lamarck.
Habitat.-Dry and occasionally moist upland peat.
Acidity.-

| $5+$ |  |  | $x$ |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 |  |  |  |  |  |  |
| 3 | x |  |  | x |  |  |
| 2 |  | x |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |
|  | 300 | 100 | 30 | 10 | 3 | 1 |

The optimum soil reaction for this species is apparently subacid. In the White Mountains (indicated by the $o$ in the table) its soils are mediacid, but the plant there is distinct in several respects from the one found in the Middle Atlantic States. In Gray's Manual this northern form is distinguished (as var. angustifolium (Ait.) Gray). The lowest acidities tabulated were observed near Wilkesbarre, Pa., and on a sample of soil kindly submitted by Professor George S. Perry of the Pennsylvania Forest Academy from near Mont Alto.

Vaccinium vacillans Kalm.
Habitat.-Dry and occasionally moist upland peat.

The optimum soil reaction of this species is subacid. The least acid reaction tabulated, actual neutrality, was observed in Lancaster County, Pa., at the contact of sandstone and limestone formations, this species extending over onto the limestone. At other contacts it is one of the earliest of the Ericaceae to appear as the limestone is receded from.

Vaccinium corymbosum L.
Habitat.-Wet sphagnum peat and moist and occasionally dry upland peat.

The optimum soil reaction of this species is probably subacid, although it is common in mediacid soils as well. The lowest acidities tabulated were observed in the Lehigh Valley west of Allentown, Pa ., in upland peat on glacial drift overlying limestone.

Vaccinium aırococcum (A. Gray) Heller.
Habitat.-Wet sphagnum peat and moist and occasionally dry upland peat.

The optimum soil reaction of this species is probably subacid. The lowest acidity tabulated was observed in upland peat on glacial drift overlying limestone in the Lehigh Valley west of Allentown, Pa .

Vaccinium erythrocarpum Nichaur.
Habitat.-Moist and dry upland peat.
This species has been observed only in the mountains in Pendleton County, West Virginia. The soil acidity was found to be mediacid in most cases, occasionally ranging to subacid.

## Vaccinium oxycoccos $L$.

Habitat.-Wet sphagnum peat.
In addition to occurrences in New England, this species has been observed only in a swamp in eastern Lycoming County, Pa.; in all cases the soil is mediacid.

Vaccinium macrocarpon Aiton.
Habitat.-Wet sphagnum peat.
This species has been observed in swamps in many places in New Jersey and Pennsylvania, the soil acidity being mediacid, or rarely subacid.

Pyxidanthera barbulata Michaus.
Habitat.-Dry and occasionally moist upland peat.
This species has been observed at many places in the New Jersey Pine Barrens, in mediacid and rarely subacid upland peat and white sand, the acidity of the latter being due to the development of autogenous humus beneath the mats of the plant.

## Galax aphylla L.

Habitat.-Dry upland peat.
This plant has been observed in the mountains of southwestern Virginia, growing in open woods, with Epigaea and various Vaccinium, in mediacid or less commonly subacid soils.

Corema conradii Torrey.
Habitat.-Dry upland peat.
Included here in view of the opinion of some botanists that this family probably represents a degenerate member of the Ericales. This species has been observed only in the Plains, east of Chatsworth, in the heart of the New Jersey Pine-barrens. It grows in white sand, mingled with autogenous humus, the reaction being mediacid.

By tabulating the data, the relative acidity requirements of the various species may be made clearly evident. Bold face X's mark optimum values, ordinary-face capitals frequently observed values, small $x$ 's occasional ones, $o$ 's observations in other regions, and $n$ 's tests in nurseries.

## Table 2.

Acidity Relations of Ericaceac Studies

|  | Merliacid | $\begin{aligned} & \text { Sub- } \\ & \text { acid } \end{aligned}$ |  | $\underset{\text { acid }}{\text { Minim- Neutral }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 300 | 100 | 30 | 10 | 3 | 1 |
| Clethreae. |  |  |  |  |  |  |
| Clethra alnifolia. . . . . . . . . . . | X | x | x | 11 | . | . |
| Pyroleae |  |  |  |  |  |  |
| Pyrola americana | x | x | X | X | x |  |
| elliptica. |  | - | X | X | - |  |
| secunda. |  | x | X | x | o |  |
| Chimaphila maculata. | x | x | X | N | x |  |
| umbellata............ | x | x | X | X | . |  |
| Monotropoideae |  |  |  |  |  |  |
| Monotropa uniflora.. |  | $x$ | X | $x$ | . |  |
| Hypopitys lanuginosa |  |  | X | . | . |  |
| americana. |  |  | X | . | . | . |
| Ericoideam (Ericaceae) |  |  |  |  |  |  |
| Azalea nudiflora.. | $x$ | x | X | X | x |  |
| canescens. | x | $x$ | X | . | . | . |
| arborescens |  | . | X | . | . |  |
| viscosa. | X | $x$ | x | n | . |  |
| Rhododendron maximum | X | X | X | x | x | x |
| Menziesia pilosa. | x | x | X |  | . |  |
| Deridrium buxifolium | X | x |  |  |  |  |
| Kalmia latifolia...... |  | - | X | I | . | . |
| angustifolia. | X | K | N | n | . | . |
| Eubotrys racemosa | . ${ }^{-1}$ | X | X | $x$ | . |  |
| Neopieris mariana. | . X | x | x |  | . |  |
| Xolisma ligustrina. | . X | X | X | x | . | . |
| Chamaedaphne calyculata | X | x | X | 0 | . | . |
| Oxydendrum arboreum. |  | x | X |  | . | . |
| Epigaea repens........ | . ${ }^{\text {d }}$ | - | X | X | . |  |
| Gaultheria procumbens. | . X | - | N | 0 | . |  |
| Arctostaphylos uva-ursi | X | X | X | . | . | o |
| Vaccinioideae (Vacciniaceae) |  |  |  |  |  |  |
| Chiogenes hispidula ......... | Y | x | x | . | . | . |
| Gaylussacia brachycera...... |  | x | x | . | . | . |
| dumosa............. | X |  |  |  | . | . |
| frondosa. | X | x | x |  |  |  |
| baccata. | x | I | X | X | $x$ | $\times$ |
| Vaccinium stamineum. |  | $x$ | X | N | x | . |
| pennsylvanicum | . | - | X | ${ }^{\text {x }}$ |  |  |
| vacillans..... | . | - | X | X | $x$ | x |
| corymbosum. | . X | X | X | - | $x$ |  |
| atrococcum. |  | I | X | N | $x$ | . |
| erythrocarpum. | X | X | X | . | . | . |
| Oxycoccos.... | X |  |  | . | . |  |
| macrocarpon. | X | $x$ | x | . | . | . |
| Diapensiaceae |  |  |  |  |  |  |
| Pyxidanthera barbulata |  | x | x | . | . | - |
| Galax aphylla......... |  | x | x | . | . | . |
| Empetraceae |  |  |  |  |  |  |
| Corema conradii................... X X x |  |  |  |  |  |  |

In table 3 the Orchidaceae found in the Middle States are tabulated in a similar way. The article on this family previously published by the writer ${ }^{16}$ included the same species, only two (marked by an asterisk) having been since observed, but the acidity data were given numerically, and no optimum reaction was indicated. In the present table, the reactions are shown graphically, the optimum point is indicated as with the Ericaceae, and several extensions of range found as the result of many tests made since the publication of the other paper are included.

## Table 3

Reactions Relations of Orchidaceae Studied


[^51]Peramium pubescens.
repens................. . $x$
Serapias helleborine (viriliflora)
Malaxis unifolia
i $\quad \mathrm{X}$
Liparis liliifolia x
loeselii. . . . . . . . . . . . . . . . . x
Aplectrum hyemale (spicatum)
Tipuharia unifolia
Corallorrhiza maculata
odontorhiza
wisteriana.
................. . .
x X
x
$\underset{y}{x}$
O
x
I

| S | X | X | x |
| :---: | :---: | :---: | :---: |
| - | I | . |  |
| X | x | - |  |
| X | x | x |  |
| x | X | x |  |

April 20.
The President, John Cadwalader, A. M., LL. D., in the Chair. Twenty-nine persons present.

The deaths of Thomas Bradley, December 16, 1919, and James H. Windrim, April 26, 1919, were announced.

Mr. Leon L. Gardner made a communication entitled: "A Summer's Observations on Birds as Factors in Agriculture with Special Reference to the Crow." (No abstract.)

Thomas McKean, J. Fletcher Street, W. S. Beach, Charles P. Bower, Joseph Hepburn, Frank R. Mason, Naomi Pennock, and Anna Woolman, were elected Members; and Merritt Lyndon Fernald, Hans Friedrich Gadow, Johann Paul Lotsy, Daniel Trembly MacDougal, Raymond Pearl, William Emerson Ritter, William Schaus, William Lutley Sclater, and William Berryman Scott, Correspondents.

The Publication Committee reported the reception of the following papers for publication :
"Correlation between Vegetation and Soil Acidity in Southern New Jersey," by Edgar T. Wherry.
"Notes on Freshwater Fishes of Formosa." by Masamitsu Oshima.
The following were ordered to be printed.

## CORRELATION BETWEEN VEGETATION AND SOII ACIDITY IN SOUTHERN NEW JERSEY.

BY EDGAR T. WHERRY

By southern New Jersey is meant that portion of the state lying south of the Fall-line, which extends from the Atlantic coast near Perth Amboy, southwestward to the Delaware river at Trenton. The geology of this region has been described in many reports issued by the State Geological Survey, and in U. S. Geological Survey folios. The soils have been discussed from an agricultural standpoint in a recent publication of the U.S. Bureau of Soils. ${ }^{1}$ Several botanists have studied the vegetation in detail, but have reached widely different conclusions as to its proper geographical classification. The various divisions which have been recognized by these workers, together with data on the geological and chemical relationships, are contrasted in table 1. These divisions have been termed zones, regions, strips, etc., but it seems desirable to have a single term to apply uniformly, and area most accurately expresses the desired conception. Six vegetation-areas appear to be sufficiently distinct to justify separate treatment, although there are admittedly in most places no sharp boundaries between them. In the course of vacation outings during the past several years the writer has visited typical localities in all of these areas, and has obtained data as to the relations between the vegetation and a factor not specially considered by previous workers, namely the soil acidity. This has been determined in the field by the indicator method. ${ }^{2}$ The results obtained in the Coastal area have already been described, ${ }^{3}$ and in the present paper observations on the other areas are recorded.

[^52]Table I. Vegetation-Areas of Southern New Jersey.

| References ${ }^{\text {4 }}$ | Northwest | Southwest | South | Central | East | Sea-shore |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hollick, 1899, 3. | Tension zone | Coniferous zone |  |  |  |  |
| $\begin{aligned} & \text { Stone, } \\ & 1907,453-4.54 \end{aligned}$ | Delaware ValleyWest Jersey region |  | Southern portion of the Cape May peninsula | Pinc-barrens | Atlantic Coast strip | Maritime meadows and sea beach |
| stone. <br> 1911, 57 | Middle District |  | $\begin{aligned} & \text { Cape May } \\ & \text { District } \end{aligned}$ | Pine-barrens | Coastal strip | Maritime District |
| Harshberger, $1911,409,423$. | Transition area |  | Coniferous area |  |  | Salt strand, bearh and dume |
| Harshberger 1916,16 | Middle District |  | Farms reverting to forest | Pine-barrens | Farms reverting to forest | Maritime District |
| Taylor, 1912, 229; 1915, 9 . | (Not pine-barrens) |  |  | Pine-barrens | (Not pine-barrens) |  |
| Harper 1915, 117-124 | Greensand marl or clay belt | $\begin{aligned} & \text { Cohansey } \\ & \text { region } \end{aligned}$ | Mainland of the Cape May peninsula | Pine-barrens | Coast strip | Bearhes, moving dunes, lagooms and marshes |
| This paper | Marl area | Cohansey area | $\begin{aligned} & \text { Cape May } \\ & \text { area } \end{aligned}$ | Pinc-barren area | Coastal area | Maritime area |
| Dominant geological formations | Cretaceous Pensauken Cape May | Cape May Pensauken Miocene | Cape May | Miocene | Cape May Recent | $\begin{aligned} & \text { ('ape May } \\ & \text { Recent. } \end{aligned}$ |
| Salts of calcium, etc. | High | Medium | Medium | Low | High | Extreme |
| Dominant soil reaction | Circumneutral | Subacid | Subacid | Mediacid | Mediacid | Subalkaline |

## Acidities of the Solls of the Different Geological Formations.

For the purposes of the present study the geological formations may be grouped into: Cretaceous, Miocene, Pensauken, Cape May, and Recent. The Cretaceous strata, which outerop toward the western side of the region, are made up of sand, clay, marl, glauconite, and fossil shells. Salts of calcium, potassium, etc., are relatively large in amount in the water extracts of the soils; and there is enough calcium carbonate present in most of the beds to neutralize any acids which develop in the soils, so that circumnentral reaction is the rule.

The Miocene consists of gravel and sand beds, which were raised above sea level soon after their deposition, and have remained so practically ever since. As a result of long-continued weathering most of the calcium and potassium salts, as well as any calcium carbonate the beds may originally have contained, have been leached out. Acids arising from the decomposition of humus or from any other source remain un-neutralized, and mediacid reaction is present nearly throughout the areas underlain by Miocene formations. In the deeper parts of the soil, however, the acidity diminishes, being as low as minimacid at depths of a few decimeters; and the banks of streams, road cuts, etc., occasionally expose low acid material.

The sand and gravel classed as the Pensauken formation, with which the Bridgeton is here included, is believed to have been derived by erosion of the Miocene, and the soils of the two are practically identical in the respects under consideration.

The Cape May formation consists of sand and clay of late Quaternary age, deposited by streams swollen by water from the great ice sheet, which reached nearly to the northern edge of the present
${ }^{4}$ Hollick, Arthur. The relation between forestry and geology in New Jersey. Am. Nat., 33, 1-14. 1899. Also in Arm. Rept. State Geologist of New Jersey for 1899: 177-201. 1900.

Stone, Witmer. The life areas of southern New Jersey. Proc. Acad. Nat. Sci. Phila., 190i: 452-459.

- The plants of southern New Jersey, with especial reference to the flora of the pine barrens and the geographic distribution of the species. Ann. Rept. N. J. State Mus. for 1910: 21-S2s. 1911.

Harshberger, John WV. Phytogeographic survey of North America, 790 pp. Leipzig, 1911.

- The vegetation of the New Jersey pine-barrens. An ecologic investigation. 329 pp . Philadelphia, 1916.

Taylor, Norman. On the origin and present distribution of the pine-barrens of New Jersey. Torreya, 12: 229-242. 1912.
-- Flora of the vicinity of New York. A contribution to plant geography. Mem. N. Y. Bot. Gurden, 5: 1-683. 1915.

Harper, Roland M. A sketch of the forest geography of New Jersey. Bull. Geogr. Soc. Phila., 16: 107-125, 1918.
region. Because of containing considerable rock-flour, and of not having been long (geologically speaking) subjected to weathering, this formation yields soils relatively high in calcium and potassium salts. The content of calcium carbonate is less, however, than in the Cretaceous, so that acids are not as completely neutralized, and subacid reactions are most characteristic of the areas underlain by the Cape May.

The soil acidities of the several vegetation-areas are determined by the distribution of these different geological formations in them. In the Marl area- named after the most characteristic material represented-the salt content averages high and acidity low because the Cretaceous strata outcrop in many places. More or less isolated patches of Cape May and of Pensauken deposits occur in the area, and show locally lower salt content and greater acidity. In the Cohansey area Cape May deposits are most widespread, so that the average acidity is moderate; but again isolated patches occur, in this case occupied by Miocene and Pensauken deposits, in which the acidity is high. The Cape May and Pine-barren areas are occupied essentially by single geological formations, and show the acidities characteristic of these in each case. The peculiar features of the Coastal and Maritime areas have been discussed in the paper above referred to.

## Relation of Soil Acidity to Plant Distribution.

Tests have been made of the soils surrounding the roots of a number of plants in each of these areas, and as the results obtained have furnished evidence in support of the view that plant distribution is intimately connected with soil acidity, a few typical instances may well be described here.

The rattlesnake fern, Botrychium virginianum, which in other regions is most frequently found in circumneutral soils, is common in southern New Jersey in the Marl area, and occasional in the Cohansey and Cape May areas; it appears to be quite absent, however, from the Pine-barren and Coastal areas. As there is no physical barrier to its spreading into the latter areas, the inference seems justified that when its spores reach these areas their germination is prevented by the high degree of acidity present. By way of contrast, the curly-grass fern, Schizaca pusilla, is limited to the Pinebarren and Coastal areas, and actual tests of its soils have shown mediacid reaction. Here there seems to exist an inability of the plant to become established except where the acidity is high.

The ebony spleenwort, Asplenium platyneuron, which is usually found in soils of but moderate acidity, grows in all the vegetation areas of southern New Jersey. In the Pine-barren and Coastal ones, however, it is found only on steep banks, where the acidity may be rather lower than in level places. The oak fern, Phegopteris (Dryopteris) dryopteris, a plant characteristic of cool shaded places. where the soils are circumneutral, would hardly be expected to become established in the warm climate of southern New Jersey. But that its spores actually reach this region is shown by the occurrence of a colony in an old well in the Pine-barren area, where the combination of low acidity and cool atmosphere is of course attained.

In the paper above cited, as well as in studies in other regions, Dr. R. M. Harper has used the percentage of evergreen-chiefly coni-ferous-trees as an index of the relative poorness in salts of the soils of individual vegetation-areas. While a relation of this sort undoubtedly exists, it would be a mistake to infer from it that all conifers are alike in their soil requirements. The pitch pine, Pinus rigida, thrives in the salt-poor mediacid soils of the Pine-barren area; but the scrub pine, $P$. virginiana, is very rare in that area, apparently requiring subacid soil reaction and moderate salt content such as are present in the Marl area. The yellow pine, P.echinata, which is intermediate inits characters between the two others, appears to be relatively indifferent as to soil conditions, and grows about equally well in the Pine-barrens and the Marl area.

The Canada lily, Lilium canadense, elsewhere a circumneutral soil species, grows in southern New Jersey, as would be expected, only in the Marl area. The related turk's-cap lily, L. superbum, which seems to be partial to highly acid soils, is on the other hand widespread in southern New Jersey, and most abundant in the Pine-barren area. In the bog near Lindenwold, famous for its remarkable flora, both of these lilies grow, which might be taken as evidence that they are not particularly different in their soil acidity requirements after all. But actual observation shows that the first species grows chiefly at the lower levels in the bog, where Cretaceous strata outcrop and the soils are circumneutral, while the second occurs higher, in the highly acid soils derived from the Pensauken sand.

Among orchids many species are partial to highly acid soils, and are in southern New Jersey most abundant in the Pine-barren area. In the genus Habenaria, subgenus Blephariglottis, the three species
with fringed but simple lips, namely the white, large yellow, and small yellow fringed orchids, $H$. blephariglottis, $H$. ciliaris; and $H$. cristata, respectively, are extremely abundant in the bogs of that area. On the other hand the species with three-parted lips, the green, large purple, small purple, and short-fringed purple fringed orchids, H. lacera, H. grandiflora, H. psycodes, and H. peramoena, are limited to the areas surrounding the Pine-barrens, where they find soils of lower acidity.

The majority of the buttercup family, Ranunculaceae, appear in other regions to be partial to circumneutral soils, and it is a striking fact that members of this family are almost unknown in the Pinebarren area. The marsh marigold, Caltha palustris, has been observed in the Lindenwold bog, but it grows only at the lower levels, where the soil is circumneutral. The columbine, Aquilegia canadensis, can withstand a mediacid reaction if the salt content of the soils is high enough, as in the Coastal area.

The Heath family, Ericaceae, together with certain closely related ones, are treated in detail elsewhere; but it may be noted here how strikingly their distribution is controlled by the soil acidity. The Pyrolas favor subacid soils, and are very rare in the Pine-barrens though common in the Marl area. The same is true of the pink azalea, Azalea nuduflora, the deerberry, Polycodium stamineum, and the narrow-leaved low-bush blueberry, Vaccmium pennsylvanicum (angustifolium). Numerous other members of the family are, however, more abundant in the Pine-barrens than in any other area, evidently because of their preference for soils low in salts and high in acidity. When these ericaceous species grow in the Marl area, they avoid the places where calcareous marly strata actually outcrop, and grow instead upon patches of acid Pensauken sand.

Bearing of Soll Reaction on the Origin of the Pine Barren Flora
In papers cited in connection with table 1, Harshberger and Taylor have independently elaborated a theory of origin of the flora of the New Jersey Pine-barrens, based on the alleged remaining above sea-level of the Miocene strata ever since their first emergence at the close of the Miocene period. According to this theory, the area occupied by these strata has been an island up to comparatively recent geological time, and the plants now growing there represent direct descendants of those of the Miocene period. This theory has been criticized from the botanical standpoint by Fermald, Harper, and others, and recent advances in geological knowledge are
decidedly unfavorable to it. Barrell ${ }^{1}$ has pointed out that eertain peneplains of the easterm United States of Pliocene and Pleistocene age have resulted from marine transgression, and it seems extremely improbable that any part of southern New Jersey could have escaped submergence during these epochs.

A consideration of the soil acidity relations indicates, however, that there is an adequate explanation of the presence of this flora, entirely aside from the geological history of the New Jersey Pinebarren area. The peculiar and isolated character of the flora of this area has leen greatly overestimated, because of incomplete knowledge of the floras of surrounding regions. MeAtee ${ }^{2}$ has recently shown that over 70 per cent of the most typical plants of the New Jersey Pine-barrens grow in favorable places ineastern Maryland; and Harper ${ }^{3}$ has noted the presence of pine-barren plants in a strip of land crossing the Delaware peninsula. Not more than five or six of the members of the Pine-barren flora are actually endemic, the great majority of them ranging, as shown by Stone; for considerable distances northward or southward (or in both directions) from New Jersey. Nevertheless the plant association of the Pinebarren area is sufficiently striking to warrant a cliseussion of its origin.

The flora of the New Jersey Pine-barrens includes many plants which have migrated northward from the Coastal Plain of the southern states, such as the grass-pink orchid, Limodorum tuberosum; others from the southern Appalachian mountains, such as the rhododendron, Rhododendron maximum; and still others from aretic bogs, such as the buckbean, Menyanthes trifoliata. The one thing which all of these plants have in common is their adaptation to growth in soils of low salt content (as pointed out by Harper, loc. cit.) and high. acidity. In the opinion of the present writer, an adequate explanation of their association to make up the flora of the New Jersey Pine-barrens is the fact that this area possesses these two characteristics to such a marked degree.

[^53]
## NOTES ON FRESHWATER FISHES OF FORMOSA, WITH DESCRIPTIONS OF NEW GENERA AND SPECIES.

Br MASAMITSU OSHIMA.

Since the publication of my paper entitled "Contributions to the Study of the Fresh Water Fishes of the Island of Formosa" (Ann. Carn. Mus., 1919, pp. 169-328), many new fresh water fishes have been obtained from Formosa. Moreover, as a result of extended collections made by myself during the year 1918-1919, several species formerly considered very rare have been secured in abundance from the type-localities, or from other places on the island.

In the present paper the following eight species which seem to be new to science are fully described, and the record of new localities for the known species is given as well.

1. Acrossochcilus invirgatus.
2. Lissochilichtys matsudai (gen et. sp. nov.).
3. Scaphiodontella alticorpus (gen. et sp. nov.).
4. Leucisculus fuscus (gen. et sp. nov.).
5. Spinibarbus clongatus.
6. Rasborinus tanakii (gen. et sp. nov.).
7. Rasborinus formosa.
8. Cultriculus akoensis.

Here I express my sincere thanks to Dr. David Starr Jordan for his kind assistance in determining new species; and to Mr. Eiji Matsuda, of the Ako Public school, Formosa, who very kindly forwarded to me a fine collection of fresh water fishes from Ako.

The numbers in parenthesis, following the localities, refer to the number of specimens examined.

1. Salmo formosanus Jordan \& Oshima.

Head 3.51 in length to base of caudal; depth 4,$66 ;$ D. 3, 11; A. 3,10 ; P. 13 ; V. 9 ; snout 3.77 in head; eye 4.66 ; interorbital space 4 ; maxillary 1.84 ; pectoral 1.50 ; ventral 1.75 ; scales about 140 in an oblique series; branchiostegals 12; gill-rakers on first $\operatorname{arch} 7+10$.

Jaws subequal. Origin of the dorsal nearer to the tip of snout than base of caudal, its longest ray 1.23 in head; caudal peduncle 3 in head.

Color in formalin bluish gray above, paler below; lower parts of the sides silvery; small black round spots scattered on the back and below the lateral line; sides with eight dark oval spots; base of the dorsal dusky; caudal fin fuscous; the rest of the fins whitish; head uniformly dark, paler below. Total length 148 mm .

The present specimen Taiko River at Saramao, Nanto differs slightly from the type, being a young individual. I have also fortunately obtained three grown specimens from the type-locality.
2. Plecoglossus altivelis Temminck \& Schlegel.

Three full-grown specimens from Nankan River at Hokuzanko, Nanto. It is reported that in Sansan River and Takkiri River, Kwarenko several specimens were secured early in the spring, 1919.
3. Parasilurus asotus (Linnaeus).

Two from Ako.
4. Pseudobagrus brevianalis Regan.

Suisha River at Fumpo, Nanto (1) ; Nankan River at Ogyuran, Nanto (2) ; Ako (2).
5. Pseudobagrus taiwanens is Oshima.

Shishito, Nanto (2); Tozen River, Shinchiku (1); Suisha River at Fumpo, Nanto (1); Daito River, Nanto (2); Nankan River at Ogyuran, Nanto (3).
6. Liobagrus nantoensis Oshima.

One specimen from Ogyuran, Nanto.
7. Liobagrus formosanus Regan.

Head 4.19 in length; depth 5.66 ; D. 1, 5; A. 15; P. 1, 7; V. 6; width of head 1,14 in its length; snout 2,50 in head; interorbital space 2 ; pectoral 1,14 ; ventral 2. Body strongly compressed posteriorly; dorsal outline abruptly inclined in front of the origin of the dorsal; head large, flattened, with a median shallow groove, both sides of which slightly swollen; interorbital space depressed; snout rather short, its anterior margin obtusely rounded; mouth terminal, broad, with fleshy lips; upper jaw slightly longer than the lower, with a band of villiform teeth, similar band of the lower jaw crescent-shaped, longer than that of the upper; palatine and vomer smooth; barbels 8 , four on snout, two at the angle of mouth, other two on the lower jaw; root of the barbel thick; nasal barbel as long as the mental, the rostral nearly as long as the maxillary which reaches to the base of pectoral; nostrils superior, distinctly separated, the anterior in a short tube, the posterior in contact with the root
of the rostral barbel: eyes minute, superior, imbedded in skin; gill-openings rather large; gill-membranes entirely separated. Dorsal fin small, inserted anteriorly, its spine nearly half as high as the soft rays, hidden beneath the skin; adipose dorsal low and long, connected posteriorly with the base of caudal; pectoral with a sharp spine hidden in the skin, tip of the fin scarcely reaching the end of the base of dorsal; ventral entirely behind the dorsal, reaching beyond the vent; anal beneath the adipose dorsal, much shorter than the latter; caudal fin elongate, its tip slightly rounded. Body smooth; lateral line indistinct. Color in alcohol light brown, fins somewhat paler; ventral surface whitish. Total length, 80 mm .

One specimen from shishito, Nanto, collected by the writer on March 5, 1919.

In the former paper the present species was not described in detail, because of the absence of the specimen. Shishito, where my specimen was collected, is located near the type-locality (Lake Canclidius.)
8. Clarias fuscus (Lacépede).

Shori, Toyen (1); Ako (2).
9. Misgurnus anguillicaudatus (Cantor).

Inzampo, Giran (1); Ako (2); Tamazato, Kwarenko (2).
10. Misgurnus decmcirrosus (Basilewsky).

One specimen from Ako and Kwarenko.
11. Formosania gilberti Oshima.

Suisha River at Fumpo, Nanto (7); Shishito, Nanto (3); Nanakan River at Ogyuran, Nanto (2).
12. Hemimyzon formosanus (Boulenger).

Shinchiku (2); Shishito, Nanto (30); Kananau River at Kapiyan, Ako (10).
13. Carassius auratus (Limaeus).

Buroko River, Giran (2); Ritakukan, Giran (5); Raupi, Giran (1); Karewan. Kwarenko (5) ; Rigyochi, Kawarenko (3); Kwaren River, Kwarenko (2); Tamazato, Kwarenko (5); Shori, Toyen (2) ; Ruhikutsu, Nanto (2); Horisha, Nanto (3); Taichu (3); Daiko River, Taichu (3); Ako (2) ; Kinai, Ako (1) ; Rinraku, Ako (2).
14. Cyprinus carpio Linnaeus.

Tensonpi, Giran (1); Giran River (3) ; Karewan, Kwarenko (1); Rigyochi, Kwarenko (2): Lake Candiclius (3).
15. Labeo jordani Oshima.

Nankan River at Hokuzanko, Nanto (275); Shimo-tamusui River, Ako (1); Tamusui River, Taihoku (2).
16. Acrossocheilus formosanus (Regan).

Nankan River at Hokuzanko, Nanto (8); Shishito, Nanto (2); Horisha, Nanto (2); Heirinbi, Giran (4).
17. Acrossocheilus invirgatus new species. Plate V, figure 2.

Head 4.47 in length; depth 4.19 ; D. 3, 8; A. 2, 5; P. 15; V. 9; width of head 1.66 in its length; interorbital space 2.73 in head; snout 2.50 ; eye 5 ; pectoral 1.11; ventral $1.20 ; 42$ scales in the lateral line, 6 seales in an oblique series between origin of dorsal and lateral line, 5 scales between the latter and the middle of belly, 3 scales between lateral line and the root of ventral; pharyngeal teeth $5,3,1-1,3,4$; gill-rakers $5+9$. Body elongate, moderately compressed, rather low; abdomen rounded; head smooth, with many mucous cavities below and behind the orbit, upper surface slightly convex; snout rounded, more or less overhanging the upper lip, sides with traces of small tubercles; upper jaw projecting beyond the lower; mouth inferior, transverse, maxillary scarcely reaching a vertical through anterior border of nostril; upper lip fleshy; lower lips thick, separated anteriorly by an interspace which is about $\frac{1}{5}$ the width of mouth; anterior border of lower jaw naked, with a sharp, transverse, horny edge; barbels four, the rostral nearly half as long as the maxillary which reaches the middle of the orbit; eye superiqr and slightly anterior; nostrils close together, in front of eye above; anterior mostril in a short tube; pharyngeal teeth slender, pointed; gill-rakers short. Origin of the dorsal nearer to tip of snout than base of caudal, first ray the longest; anal behind the dorsal, rather high, inserted nearer to origin of ventral than the root of caudal, when depressed scarcely reaching the root of the caudal, anterior ray the longest; ventral inserted three scales behind the origin of dorsal, not reaching the vent; pectoral reaches two-thirds distance to ventrals; caudal peduncle compressed, its depth 2 in head; caudal fin slightly forked, tip of each lobe sharply pointed. Body covered with uniform scales; lateral line continuous, nearly straight, rumning along the middle of the sides. Color in alcohol dark bluish gray above, sides silvery, with no black stripes; throat and belly whitish; tip of head dark; membrane of dorsal fin dark; pectorals grayish; ventrals and anal whitish, their branched rays reddish yellow; caudal fin fuscous, partially reddish-yellow colored. Total length 160 mm .

Type No. 49,946, A. N. S. P. Buraku River at Ako, collected by Eiji Matsuda on February 2,1919.

Differs from Acrossocheilus formosanus in having the body lower; no black stripes on sides; 5, 3, 1-1, 3, 4 pharyngeal teeth instead of $5,3,2-2,3,5$, and the anal with two undivided rays.

## LISSOCHILICHTHYS new genus.

Body elongate, compressed, head smooth, pointed anteriorly; snout obtuse, bluntly rounded, slightly prominent, sides with no tubercles, no lateral lobes. Upper jaw projecting beyond the lower. Mouth transverse, inferior, horse-shoe shaped; upper lip entire, with no inner fold. Lower lips considerably broader than the upper, scarcely in contact with each other, distinctly separated from the lower jaw; postlabial groove is restricted to the lateral parts of the lower lip, not continuous. Tip of the lower jaw naked, obtusely rounded, rather fleshy, with no horny substance. Barbels four, two rostrals and two maxillaries. Dorsal 3, 8 , inserted opposite to ventrals. Anal short, with 5 branched rays. Scales moderate, about 42 in the lateral line; 1. l. running along the middle of the tail. Pharyngeal teeth 5, 3, 2-2, 3, 5; gill-rakers short. Type, Lissochilichthys matsudai Oshima.

This genus is very closely related to Lissochilus Weber and Beaufort, differing from it in having smaller scales, thick lower lips, lower jaw with no horny substance, and connected lower lips.
18. Lissochilichthys matsudai new species. Plate III, figure 2.

Head 4 in length; depth 4; D. 3, 8; A. 3, 5; P. 14; V. 8; width of head 2 in its length; interorbital space 3 in head; snout 3; eye 3.66; pectoral 1, 36; ventral 1.36; 42 scales in the lateral line, 6 scales in an oblique series between origin of dorsal and lateral line, 5 scales between the latter and the middle of belly, 3 scales between the lateral line and the root of the ventral; pharyngeal teeth 5,3 , $2-2,3,5$; gill-rakers $3+10$. Body elongate, compressed, abdomen rounded; top of head more or less fallen from the back; head smooth, pointed anteriorly, bluntly rounded in front, tip of the skin partially overlapping the upper lip, sides with no tubercles; interorbital space slightly convex; lateral lobes none; upper jaw projecting beyond the lower; mouth transverse, inferior, horse-shoe shaped, maxillary scarcely reaching a vertical through the posterior border of nostril; upper lip continuous, rather thick, entire, with no inner fold; lower lip nearly twice as broad as the upper, both connected anteriorly, postlabial parts distinctly separated from the
jaw, postlabial groove interrupted; tip of the lower jaw entirely naked, edge rounded, fleshy, with no horny substance; barbels four, the rostral nearly as long as the eye, the maxillary longer, reaching beyond the posterior border of orbit; eye slightly superior and anterior; nostrils close together, in front of the eye above, anterior nostril in a short tube; pharyngeal teeth slender, hooked; gill-rakers short. Origin of the dorsal midway between the tip of snout and base of caudal, opposite to ventrals, armed with three undivided rays, the last one the longest; pectoral as long as the ventral, reaching two-thirds the distance to the latter; ventral inserted below first branched ray of the dorsal, scarcely reaching the vent; anal nearer to origin of ventral than the root of caudal, anterior ray the longest, when depressed not reaching the caudal; caudal peduncle compressed, its depth 2 in head; caudal fin deeply forked, tip of the lobes sharply pointed. Body covered with uniform cycloid seales, ventral with a scaly flap; lateral line nearly straight, running along the middle of the tail, slightly decursed anteriorly. Color in alcohol yellowish gray above, paler below; top of head dark; sides with seven dark vertical stripes, one of which at the base of eaudal; back with a series of irregular, dark spots; membrane of the dorsal fin with a series of dark stripes; pectoral and anal grayish; ventrals white; caudal uniformly dark. Total length 72 mm .

Type, No. 49.947, A. N. S. P. Kmanau River, Ako, collected by Eiji Matsuda on January 2, 1919.

Kuanau River, Ako; Tamusui River at Shinten; Shishito, Nanto; Dakusui River at Musha; Suisha River at Fumpo.

Besides the type, 9 paratypes, 2 of which from the Kimanian River, show the following: Head 3.52 to 4.40 ; depth 3.83 to 4.13 ; D. ini, S; A. int. 5; P. 14, few 15 or $16 ; V .8$, few 9 ; head width 1.66 to 2 ; interorbital space 2.71 to 3 ; eye 3.40 to 4 ; snout 2.62 to 3 ; scales $6-41$ or $42-5$; length 77 to 116 mm .
19. Scaphesthes tamusiensis Oshima.

Koshiryo, Giran (2); Taiko, Giran (6); Inzampo, Giran (1); Takkiri River, Kwarenko (16) ; Mokkui River at Domon, Kwarenko (3); Nankan River at Hokuzanko, Nanto (3); Dakusui River at Musha, Nanto (11); Shishito, Nanto (2); Kunanau River at Kapiyan, Ako (10).

SCAPHIODONTELLA Oshima, new genus.
Body elongate, deep. compressed. Snout short, pointed anteriorly, tip of the skin extends downwards, overlapping the upper lip.

Mouth transverse, inferior; lower jaw with no lip, edge of the mandible sharp, covered with a horny layer. No labial fold. Barbels none. Dorsal fin with not more than 9 branched rays, armed with three undivided rays, inserted opposite to ventrals. Anal rather short. Pharyngeal teeth 5, 3, 2-2, 3, 5, laterally compressed, plough-shaped. Scales large, less than 45 in a longitudinal series. Lateral line continuous, ruming along the middle of the tail. Type Scaphiodentella alticorpus Oshima..

The type is very closely related to Scaphesthes tamusuiensis Oshima. It differs however, in having a deeper body, no barbel, ploughshaped teeth instead of camine-like, pointed ones.
20. Scaphiodontella alticorpus new species. Plate IV, figure 1.

Head 4.67 in length; depth 3.27 ; D. 3.8; A. 3.5; P. 17; V. 9; width of head 1.36 in its length; eye 5 in head; interorbital space 2; snout 2.47 ; pectoral 1.08 ; ventral 1.08 ; scales 43 in the lateral line, 8 in an oblique series between origin of dorsal and lateral line, 8 between the latter and the middle of belly, 4 between the lateral line and the root of ventral; pharyngeal teeth $5,3,2-2,3,5$; gill-rakers $8+30$. Body deep, elongate, slightly compresed, deepest in front of the dorsal, abdomen rounded; head rather small and short, with mucous cavities below and behind the orbit, its upper surface strongly convex; interorbital space broad, vaulted remarkably; snout short, pointed anteriorly, tip of the skin extends downwards and overlaps the upper lip; mouth transverse, inferior, crescent-shaped, maxillary scarcely reaching the anterior border of the orbit; mandibular edge sharp, broadly rounded, covered with a horny layer; upper lip smooth, with no imner fold; lower jaw with no lip; barbels none; eye small, slightly anterior and superior; nostrils close together, in front of the eye; pharyngeal teeth in three rows, laterally compressed, each tooth with an oval grinding surface; gill-rakers slender, set close together; gill-openings moderate, extending downwards and forwards. Dorsal fin inserted nearer tip of snout than base of caudal, with three smooth undivided rays, the first minute, the third nearly four times as long as the second, first branched ray the longest; anal fin entirely behind the dorsal, inserted midway between origins of ventral and caudal, rather short, outer margin nearly straight; origin of ventral below the third branched ray of the dorsal, not reaching the vent; pectoral as long as the ventral, reaching beyond half the distance to the latter; caudal penduncle short, its depth 1.72 in head; caudal fin long, deeply forked, tip of each lobe sharply pointed. Body covered with uni-
form cycloid scales; ventral with a scaly flap; lateral line continuous, slightly decurved in front, running along the middle of the tail. Color in alcohol grayish above, belly and lower parts of sides silvery; hearl dark; all the fins dusky, fin membranes reddish; caudal fin uniformly dark, interspace between the middle rays reddish. Total length 220 mm .

Type No. 49,948 , A. N. S. P. Buraku River, Ako, collected by Eiji Matsuda on February 2, 1919.

Also paratype, Kwaren River at Kado. Kwarenho. It shows: Head 4.53 ; depth 3.43 ; fins as in type; head width 1.60 ; interorbital space 2.18 ; snout 2.66 ; eye 4.50 ; scales $8-43-7$; length 138 mm .
21. Hemibarbus labeo (Pallas).

Heirinbi, Giran (1) ; Taihoku (3).
22. Barbodes paradoxus (Günther).

Five from Ako.
23. Puntius snyderi Oshima.

One from Nankan River at Ogyuran, Nanto.
24. Spinibarbus hollandi Oshima.

Ako (2); Rinraku, Ako (2); Shukoran River at Suibi, Kwarenko (3) : Kwaren River at Kada, Kwarenko (20).
25. Spinibarbus elongatus new species. Plate $I V$, figure 2 .

Head 3.58 in length; depth 5.27 ; D. ini, 8; A. II, 5; P. 16; Y. 9 ; width of head 1.59 in its length; eye 6 in head; interorbital space 3.12 ; snout 2.67 ; pectoral 1.36 ; ventral 1.33 ; 28 scales in the lateral line, 4 in an oblique series between origin of dorsal and lateral line, 5 between the latter and the middle of belly, 2 between the lateral line and the root of ventral; pharyngeal teeth $5,3,2-2$, 3,5 ; gill-rakers $3+11$. Body elongate, low, slightly compressed; head elongate, rounded, dorsal outline convex; interorbital space broad, more or less compressed, with many mucous cavities around the orbit; snout long, rounded anteriorly; eye rather small, anterior and superior; nostrils close together, in front of eye; mouth subinferior, maxillary searcely reaching a vertical through anterior border of nostril; upper lip fleshy; lower lips not continuous, distinct at the angle of the mouth; upper jaw slightly longer than the lower, protractile; anterior margin of the lower jaw rounded, rather sharp; barbels four, the rostral reaching bevond the nostrils, much more slender and shorter than the maxillary which reaches far beyond the orbit; gill-openings moderate; gill-rakers on first arch
slender, apical ones on the lower limb rudimentary. Dorsal fin inserted midway between the tip of snout and the base of caudal, osseous rays smooth, the first one minute, anterior ray the longest; a recumbent spine in front of the origin of the dorsal, partially hidden beneath the scales; pectoral reaching beyond two-thirds the distance to ventral; origin of ventral two scales behind that of the dorsal; anal entirely behind the dorsal, inserted nearer to origin of ventral than base of caudal, when depressed scarcely reaching the root of caudal, anterior ray the longest; caudal peduncle elongate, its depth 2.89 in head; caudal fin deeply forked, tip of each lobe sharply pointed. Body covered with large cycloid scales; ventral fin with a scaly flap; lateral line decurved, running along the middie of the side, gradually entering the middle of the tail.
Color in alcohol dark gray above; belly and lower parts of the sides silvery; base of each scale dark, dorsal fin grayish, with a series of black streaks; pectoral uniformly dusky; ventrals, anal, and caudal fuscous, more or less reddish; top of head uniformly dark. Total length 233 mm .

Type. No. 49,949. A. N. S. P. Buraku River, Ako, collected by Eiji Matsuda on February 2, 1919.

The present species is very closely allied to Spimbarbus hollandi. It differs from the latter in having much more lower body, round snout and 28-29 scales in the lateral line instead of 26-27.
26. Gnathopogon iijimae Oshima.

Fight from Rihikutsu, Nanto.
27. Pseudorasbora Parva (Schlegel).

Lake Candidius (1); Rihikutsu, Nanto (abundant); Kirai, Ako (3); Shinkaiyen, Daito (11); Shukoran River at Suibi, Kwarenko (1) ; Kwaren River at Kada, Kwarenko (3).
28. Phoxiscus kikuchii Oshima.

Raupi, Giran (2); Karewan, Kwarenko (7); Kwarenko (20); Kwaren River at Kada, Kwarenko (15); Rigyochi, Kwarenko (17); Riran, Daito (6); Shinkaiyen, Daito (abundant).

## LEUCISCULUS new genus.

Body robust, more or less compressed posteriorly. Head rather short, triangular; snout pointed. Mouth transverse, oblique; upper lip entire, thin; lower lips widely separated in front, postlabial folds discontinuous; anterior edge of the lower jaw naked, trenchant. Barbels none. Pharyngeal teeth in a single series, 5 - 4 ; teeth molar-like, with smooth, oval grinding surface. Dorsal fin short,
with no osseous ray or spine; anal short, with $S$ branched rays, entirely behind the dorsal; root of the rentral covered by tiled scaly sheath. Scales large, imbricated. Lateral line continuous, slightly ciecurved, running along the middle of the tail. Type Leucisculus fuscus Oshima.

Very closely related to Leuciscus, differing from it in having singlerowed, molar-like teeth.
29. Leucisculus fuscus new species. Plate $V$, figure 1.

Head 3.46 in length; depth 3.40 ; D. 3.7; A. 3.8; P. 19, V. 9 , width of head 1.57 in its length; interorbital space 2.43 in head; snout 3.38 : eve 5.50 ; pectoral 1.38 ; ventral $1.49 ; 43$ scales in the lateral line. 7 scales in an oblique series from origin of dorsal to lateral line, 7 scales between the latter and the middle of telly; 4 scales between lateral line and the root of ventral; pharyngeal teeth 5-4; gill-rakers minute. Body robust, elongate, more or less compressed posteriorly; decpest in front of the dorsal; dorsal outline much more curved than that of the ventral; head triangular, strongly depressed, its dorsal outline straight. inclined; interorbital space broad, nearly flat; postoperculum radially striped; snout short, sharply pointed anteriorly; mouth terminal, oblique, maxillary reaching a vertical through posterior border of the anterior nostril; upper jaw slightly longer than the lower; upper lip entire, rather thin, lower lips discontinuous, postlabial folds distinctly separated in front; tip of the lower jaw naked, trenchant; barbels none; eye large, anterior; nostrils large, close together, on the upper surface of the snout. anterior nostril in a short tube, the posterior covered by a large flap; pharyngeal teeth in a single series, molar-like, very large, with smooth, oval grinding surface; gill-rakers minute, rudimentary: gill-openings large; gill-membranes connected below the postoperculum. Origin of the dorsal a little nearer to the tip of snout than base of caudal, rather short. high, first branched ray the longest, when depressed reaching to the origin of anal, outcr margin rounded; origin of anal midway between origin of ventral and the root of caudal, rather short, anterior branched ray the longest, when depressed scarcely reaching the root of the caudal; pectoral large, not reaching the root of ventral: ventral inserted below the second divided ray of the dorsal, scarcely reaching the vent; caudal peduncle short, slightly compressed, its depth 2.16 in head; caudal fin broad, forked, its lobes obtusely pointed. Scaies large, cycloid, imbricated; pectoral and ventral with a short scaly flap; lateral
line continuous, weakly decurved, running along the middle of the tail. Color in alcohol uniformly grayish brown; lower parts whitish; all the fins dark brownish gray; head dark brown. Total length 230 mm .

Type. No. 49,950, A. N. S. P. Ako, collected by Eiji Matsuda in June, 1917.
30. Achilognathus himantegus Gunther.

Shori, Toyen (1); Kirai, Ako (4).
31. Zacco platypus (Schlegel).

Dakusui, Giran (1); Koshiryo, Giran (4); Heirinbi, Giran (11); Daito River, Nanto (1); Nankan River at Hokuzanko, Nanto (1); Ako (7).
32. Zacco temminckii (scllegel).

Dakusui, Giran (5); Buroko River, Giran (14); Taiko, Giran (2): Raupi, Giran (1); Horisha, Nanto (4); Nankan River at Hokuzanko, Nanto (16); Rinraku, Ako (1); Kapiyan, Ako (7).
33. Zacco pachycephalus (Gunther).

Nine from Dakusui River at Musha, Nanto.
34. Candidia barbata (Regan).

Horisha, Nanto (1); Kirai, Ako (2).
RASBORINUS new genus.
Body elongate, compressed, rather high. Abdomen compressed, a soft median keel at the postventral part only. Head pointed. Mouth terminal, oblique, maxillary not reaching beyond the orbit. Lower jaw slightly projecting beyond the upper, with no prominent hook or knob. Lips thin; barbels none. Dorsal fin with no spine, with $7-8$ branched rays, above the space between ventrals and anal. Anal entirely behind the dorsal, elongate, many rayed. Scales moderate, thin, deciduous. Lateral line broadly curved, running along the lower half of the tail. Pharyngeal teeth in three series, 5 or 4, 4, 2-2, 4, 4; gill-rakers slender. Type Rasborinus takakii Oshima.

Rasborimus is a nearest relative of Rasborichthys Bleeker. It differs from it in having lateral line running along the lower half of the tail and pharyngeal teeth of 5 or $4,4,2-2,4,4$, instead of 5,3 , 1-1, 3.5 .
35. Rasborinus takakii new species. Plate III, figure 3.

Head 4 in length; depth 3.10; D. 3.7; A. 3.16; P. 14; V. S; width of head 2 in its length; interorbital space 2.50 in head; snout
3.33 ; eye 3 ; pectoral 1.25 ; ventral $1.50 ; 36$ seales in the lateral line, 7 scales in an oblique series between origin of dorsal and lateral line, 6 scales between the latter and the middle of belly, 4 scales between lateral line and the root of ventral; pharyngeal teeth 4,4 , $2-2,4,4$; gill-rakers $3+9$. Body elongate, compressed, rather high, dorsal and rentral profiles equally eurved; abdomen compressed, proventral part rouncled, postrentral part with a welldeveloped, soft, median keel; head pointed; interorlital space broad, nearly straight; snout short, truncated in front; mouth terminal, oblique, maxillary not reaching the orbit; lower jaw slightly projecting beyond the upper, with no knob-like protuberance on the symphysis; lips thin; barbels none; eye large, anterior; nostrils close together, in front of eve above, the anterior in a short tube; pharyngeal teeth slender; gill-rakers short. Dorsal fin inserted above the space between rentral and anal, nearer base of caudal than tip of snout, with no spine, rather high, anterior ray the longest; pectoral elongate, reaching beyond the root of ventral; rentrals slender, not reaching the vent; anal fin elongate, entirely behind the dorsal, with a scaly sheath along the base, anterior ray, the longest; caudal peduncle short, its depth 2.29 in head; caudal fin deeply forked, tip of each lobe sharply pointed. Scales moderate, thim, deciduous: lateral line broadly decurved, ruming along the lower half of the tail. Color in alcohol grayish above, yellowish below, with a thin, dark stripe along the middle of the sides; all the fins whitish. Total length 63 mm .

Type, No. 49, 951, A. N.S. P. Ako, collected by Eiji Matsuda.
Named for Dr. Tomoe Takaki, former Director of the Institute of Science, Govermment of Formosa.

Besides the type, 2 paratypes from tko and one from Rinraku, Ako which show: Head 3.73 to 4 ; depth 3 to 3.50 ; D. in, 7 ; A. ur, 15 or 16 ; P. 14 or 15 ; Y. 8 ; head width 1.71 to 2 ; interorbital space 2.40 to 3 ; snout 3.50 ; eye 3 to 4 ; scales $7-35$ or $36-6$; length 54 to 125 mm .
36. Rasborinus formosae new species. Plate III, figure 1.

Body 4 in length; depth 4 ; D. 2.8; A. 2.14; P. 13; V. 8; width of head 2.25 in its length; interorbital space 3 in head; snout 3.33; eye 3 ; pectoral 1.38 ; ventral $1.50 ; 47$ scales in the lateral line, 10 seales in an oblique series between origin of dorsal and lateral line, 5 scales between the latter and the middle of belly, 3 seales between lateral line and the root of ventral; pharygneal teeth $5,4,2-2,4,4$; gill-rakers $3+12$. Body elongate, compressed, deepest in front of
the dorsal; dorsal outline weakly curved; proventral part rounded; postventral part trenchant, with a sharp, soft, median keel; head rather small, triangular; dorsal outline straight, slightly fallen from the back; interorbital space broad, slightly arched; snout short, truncated in front; mouth terminal, slightly oblique, maxillary reaching a vertical through anterior border of nostril; lower jaw more or less protruding beyond the upper; lips thin; barbels none; eye large, anterior; nostrils close together, in front of the eye above, the anterior covered with a small flap; pharygneal teeth slender, hooked; gill-rakers rather slender, long. Dorsal fin above the space between ventrals and anal, inserted nearer base of caudal than tip of snout, with no spine, rather high, anterior ray the longest; pectoral short, reaching three-fourths the distance to ventral; ventral inserted in advance of the origin of dorsal, not reaching the vent; anal elongate, outer margin incurved, inserted below the last divided ray of the dorsal, anterior ray the longest; caudal peduncle depressed, its depth 2.50 in head, caudal fin deeply forked, tip of each lobe sharply pointed. Scales moderate, thin; lateral line broadly decurved, running along the lower half of the tail. Color in formalin greenish gray above, lower parts of sides whitish, sides with a dark, longitudinal band above the middle; a dark narrow band along the dorsal median line; a brownish round spot on occiput; all the fins whitish, caudal somewhat dusky. Total length 88 mm .

Type No. 49,952, A. N. S. P. One specimen from a small pond near Manka, Taihoku, collected by Takeo Aoki in June, 1919.

Also 2 paratypes, same data, which show: Head 3.81 to 3.93 ; depth 3.81 to 3.93 ; fins as in type; head width 2 ; interorbital 3 to 3.25 ; snout 3.66 ; eye 3 to 3.25 ; scales $10-45$ to $47-5$; length 75 to 79 mm .

The scale row of the present species distinctly differs from that of Rasborimus takakii.
37. Chanodichthys macrops Gunther.

One from Heirinbi, Giran.
38. Cultriculus akoensis new species. Plate III, figure 4.

Head 4.39 in length; depth 5; D. ir.7; A 3.12 ; P. 14, V. 9 ; width of head 2.25 in its length; interorbital space 3.27 in head; snout 3.40 ; eye 3.40 ; pectoral slightly longer than head; ventral 1.38; 45 scales in the lateral line, 9 scales in an oblique series between origin of dorsal and lateral line, 3 scales between the latter and the middle of belly; one scale between lateral line and the root of ventral;
pharyngeal teeth $5,4,2-2,4,5$; gill-rakers $4+16$. Body elongate, compressed, dorsal outline nearly straight, rentral profile strongly curved; abdomen compressed, pro- and post-ventral edge distinctly carinated; head moderate, its dorsal outline fallen from the back; interorbital space nearly straight; snout pointed anteriorly; mouth terminal, oblique, maxillary scarcely reaching a vertical through anterior border of nostril; jaws subequal, the lower more or less projecting beyond the upper; anterior edge of lower jaw rather sharp; eye large, anterior; nostrils close together, in font of the eye above, the anterior in a short tube; pharygneal teeth slender, canine-like; gill-rakers setiform, slender and long. Dorsal fin inserted nearer tip of snout than base of caudal, armed with two smooth spines, first spine nearly half as long as the second, anterior ray the longest; pectoral elongate, scarcely reaching the root of the ventral; origin of ventral in advance of that of the dorsal, rather slender, not reaching the vent; anal fin high, elongate, entirely behind the dorsal, anterior ray the longest; caudal peduncle long, strongly compressed, its depth 2.43 in head; caudal fin strongly forked, tip of each lobe sharply pointed. Body covered with thin cycloid scales; lateral line continuous, abruptly bending downwards above the pectoral, thence extends backwards making a weak curve, running along the lower half of the tail. Color in alcohol grayish above, belly and lower parts of sides silvery; fins whitish; caudal fin gray. Total length 93 mm .

Type, No. 49,953, A. N. S. P. Ako, collection of Eiji Matsuda.
Differs distinctly from Cultriculus kneri in having 45 scales in the lateral line.
39. Oryzias latipes (Temminck \& Schlegel).

Kizan Island, Giran (abundant); Lake Candidius (15); Taiko, Giran (4).
40. Gambusia affinis (Baird \& Girard).

This American species was originally brought from Texas to Hawaii, by Mr. Alvin Seale. Collected from rice-fields at Kwarenko. As a result of artificial propagations enforced by the Government for the purpose of extirpation of mosquitoes the present species is becoming very common in streams and stagnant pools of Formosa.
41. Fluta alba (Zuiew).

Shori, Toyen (1); Ako (2).

## 42. Anguilla mauritiana Bennett.

One from Ako and 5 from Shinkaiyen, Daito.
43. Anguilla japonica Temminck \& Schlegel.

Tozen River, Shinchiku (1); Lake Candidius (1); Shinchiku (2); Ako (1).
44. Mugil cephalus Limnaeus.

Kwaren River at Kada, Kwarenko (3); Inzampo, Giran (1).
45. Mugil oeur Forskal.

Kwaren River at Kada, Kwarenko (2); Botansha, Daito (1).
46. Liza troscheli (Bleeker).

One from Rinraku, Ako.
47. Polyacanthus operculatus (Linnaeus).

Maruyana, Taihoku (8) ; Ako (2).
48. Kuhlia marginata (Cuvier \& Valenciennes).

Mokui River at Domon, Kwarenko (1); Kwarenko (2); Shukoran River, Kwarenko (3); Tamazato, Kwarenko (12); Beiron River, Kwarenko (3); Shinchiku (3).
49. Ophicephalus tadianus Jordan \& Evermann.

Inzampo, Giran (1); Ako (2).
50. Eleotris oxycephala (Schlegel).

Inzampo, Giran (2) Kirburan, Giran (6); Beiron River, Kwarenko (5) ; Ako (2).
51. Eleotris fusca (Schneider).

Two from Suirenbi, Kwarenko.
52. Sicyopterus japonicus (Tanaka).

Taiko, Giran (5); Heirmbi, Giran (2); Taichu (5); Kunanau River at Kapiyan, Ako (9).
53. Rhinogobius candidius (Regan).

Maruyama, Giran (5); Shito, Giran (1); Tensonpi, (iiran (1); Wodensho, Taichu, (1); Lake Candidius (18); Koshiryo, Giran (6); Shishito, Nanto (4).
54. Rhinogobius giurinus (Rutter).

Taiha, (iiran (9); Heirinbi, Giran (1); Tensompi, Giran (3); Buroko River, Giran (1); Raupi, Giran (3); Inzampo, Giran (1); Beiron River, Kwarenko (1); Sobun River, Tainan (1); Ako (1). 55. Rhinogobius formosanus Oshima.

Dakusui, Giran (1); Koanronsha, Taichu (1); Ogyuran, Nanto (3); Lake Candidius (16); Sobun River, Tainan (4).
56. Rhinogobius taiwanus oslima.

Ogveran, Nanto (5); Heirinli, Giran (1); Taiko River, Taichu (1).


OSHIMA: FORIMOSA FISHES.


57. Glossogobius brunneus schiegei).

Kwarenko (3); Maruyama, Taihoku (2).

## Explanation of Plate, III, N , 1.

Plate III-Wig. 1.-Rashorimes formoser new eperios.
Fig. 2.-Liswochelichthys matsulai new genns and speries
Fig. 3.-Rasborimas takalii new genus and -peries.
Fig. 4.- 'ultriculus akoensis new speries.
Plate IV.-Fig. 1.-Siaphiodoutella allicorpias new genu* and seepez
Fig. 2.-Simibarlus clongatus new speries.
Plate V.-Vig. 1.-Lucisculus fuscus new genus and species.
Fig. 2.-Acroswocheilus imirgatus new epreres.

## SCROPHULARIACEAE OF COLOMBIA-I.

BY FRANCIS W. PENNELT.
For a period of cight months, during 1917 and 1918, the writer was engaged in scientifie work in Colombia. No attempt will now be made to tell the story of his adventures there, nor to give more than the briefest summary of his impressions of Tropical or Andine vegetation. A short narrative of my explorations and a comparative sketch of the plant-life seen has already been presented in the Jounal of The New York Botamcal Garden for June, 1918. I will simply say that my travels took me from the northern seacoast to the Andes east of Neiva in $3^{\circ}$ north latitude, from the prairies and lowland forest of the Orinoco draimage, from the Magdalena and Simu valleys, upward through every zone of vegetation to the summits of each of the three langes of the Andes The greatest diversity of life was seen, and the collections of plants, brought from nearly all points visited, inc.ude much that is new to science.

From July 6 to August 16, 1917, it was my privilege to work with Dr. Hemry H Rusby, of the College of Pharmacy, New York City-a companionship which to a botanical novice in a strange land was invaluable. All specimens made on and before August 16, while numbered consecutively with those made by myself alone later, are to be cited as Rusby \& Pemnell. . . .

Detailed maps of Colombia are difficult to obtain, and many of our collecting-stations were at small towns, or single houses. Consequently, although in the liste of specimens given I am stating the Department in which each point is located, it seems important to give a full list of the localities from which our plants have come. Arranging these in the order of our itinerary, and grouping them according to broad natural areas of topography, should enable anyone to place approximately any station. For cach point the Department is stated. The names of houses are placed in quotation marks.

Northern Seacoast:
July 6, 1917. Cartagena, Bolivar.

Along Rio Magdalena:
July s, 1917. Barranquilla, Bolívar
" 10 , " Calamar,
" 11, " El Banco, Magdalena
" 12, " Gamarra and Carpentiera, Magdalena
"14, " Puerto Berrio, Antioquia
" 15, " Buenavista, Caldas.
Plain of Tolima:
July 16, 1917. Mariquita and San Lorenzo, Tolima.
Plain of Upper Magdalena:
July 19, 1917. Girardot, Cundinamarea
"21, " Espinal to Cuamo, Tolima
"22, " Cuamo to Rio Sikklaña, Tolima
"22, " Rio Saldaña to Natagaima, Huila
" 2t. " Quebrada de Angeles,
"25., " Quebrada de Angeles to Rio Cabrera, Ituila
" 26, " Rio Cabrera to Villavieja,
" $2 \overline{7}$, " Villavieja to Neiva,
"30, " Neiva, Huila.
Cordillera Orientál:
July 30 to August S, 1917. Excursion from Neiva over the crest of the Cordillera to "Balsillas", and return.
Aong Upper Magdalena:
August 8-9, 1917. Neiva, Huila
"12, .. Natagaima, Huila
" 13. " Boca Salkaña, Hıila.
Railroad from (iirardot to Bogotá:
August 14, 1917. Portillo, Anapoima, San Joaquin, Hospicio, La Esperanza, Cachipay, Zipacon and Anolaima, Cundinamarea.
Upper western slopes of Cordillera Oriental:
August 16, 1917. Bogotá. Cundinamarea.
Eastern slopes of Cordillera Orientál:
August 22, 1917. Chipaque, Cundinamarea
$\because 23$, " Carplezá,
"24, " Caquezá to Rio Sananie, Cundinanarea
"24, " Quetame to "Sisumuco," "
" $25-26,1917 . \quad$ "Susumuco,"
Plain of Meta:
Angust 26 to September 2, 1917. Villavicencio, Meta.
Eastern slopes of Cordillera Oriental:
September 4, 1917. Villavicencio to "Buenavista," Meta
"4, " "Buenavista" to "Pipirál," Cundinamarea
" $\quad$., " $\quad$ "Pipirál" to "Susumuco,"
" $\overline{6}$, " "Ginayabetál," " "
"6, " "(iuaybetál" to "Monte Redondo," Cundinamarea
" $\quad$ ", ", "Monte Redondo" to Quetame,
7-8, " Caquezí,
Tbaguć.
Summit of Cordillera Orientál:
September S, 1917. Paramo de Cruz Verde, Cundinamarea.
Upper western slopes of Cordillera Orientail:
September 12, 1917. Bogotá amd Mt. Guadalupe, Cundinamarea
" 13, " Bogotá (Riosian Francisco),
" 15, " Tequendama,
" 17, " Bogotá (Jlonserrate),
$15,23, \quad " \quad$ Bogotá (Chapinero),
Summit of Cordillera Orientál:
September 20, 1917. Paramo de Craz Verde, Cumdinamarcat.
Upper westem slopes of Cordillera Orientál:

September 20, 26, 1917. Bogotá (Rio San Cristobal), Cundinamarea

| $"$ | 22,24, | " | " | (Rio del Irzobispo), |
| :--- | :--- | :--- | :--- | :--- |
| $"$ | 24,25, | " | " | (Tas Cruces), |
| $"$ | 26, | $"$ | " | (Cerro de Focha), |

Summit of Cordillera Orientál:
september 27, 1917. Paramo de Choachi, Cundinamarca.
Upper western slopes of Cordillera Orientál:
September 30, 1917. Bogotá (San Cristobal), Cundinamarca
October 4-S,

| $"$ | 6, | $"$ | (Chapinero), | $"$ |
| :--- | :---: | :---: | :--- | :--- |
| $"$ | 6, | $"$ | Rio Teusaca, |  |
| $"$ | 12, | $"$ | Bogotá (Rio San Cristobal) | $"$ |
| $"$ | $13-15$, | $"$ | Nibaté to El Peñon, |  |
| $"$ | $20-24$, | $"$ | Ziparuirí to Mt. Chuscal, | $"$ |
| $"$ | 23, | $"$ | Nemarón, |  |
| $"$ | $2 s$, | $"$ | Tequentana, |  |
| $"$ | 29, | $"$ | Sibaté to El Peñon, | $"$ |

Summit of Cordillera Orientál:
November 14, 1917. Paramo te Cruz Verde, Cundinamarea.
Lower western slopes of Cordillera Orientál:
November 2s-30, 1917. Fusagasugá, C'mdinamarca
December 1-4, " Pandi and Ieononzo, Cundinamarca.
Plain of Upper Magdalena:
December 4-5, 1917. Melgar and Girardot, Cumlinamarca.
Eastern slopes of Cordillera C'entrál:
Derember 11, 1917. Libano. Tolima


Plain of Tolima:
December 30, 1917. San Lorenzo, Tolima
January 6, 1918. Guayabal and San Felipe, Tolima
3,7 , " Honda and Mariquita,
Along Rio Magdalena:
Jamuary $9-10,1918$. Brazucla de Perales, Antioquia

| ry | - ${ }^{\text {-10, }}$ | 1 | Brazucla de Perales, Antiogua |
| :---: | :---: | :---: | :---: |
|  | 11-13, | ، | l'ucto Berrio and Malena, Antioquia |
| ، | 14 , | " | Tuclta de Aeuña. " |
| " | 14. | " | Opposite Boca Carare. " |
| " | 15. | \% | Cañabetal, Bolívar. |
| " | 15. | ، | Roca de Rosario, Puerto Nuevo and Boca Sogomosa, Santamler |
| " | 16. | " | El Banco, Magdalena |
| ، | 18-19, | " | Magangué, Bolívar. |

Plain of Bolivar:
January 24, 191s. Buenavista, Bolivar
" 2.5, " Sincé and Corozál, Bolívar
" 26 , " Sincelejo,
" 27 , " Chinu and Sahagum,
"2. 2s, " Cienaga de Oro and Cereté, Bolívar
" 30, " Monteria.
Along Pio Sinu:
February 3, 1918.
"Medellin," Bolívar
"، 4, " "Los IIurtados," Bolívar
$\begin{array}{llll}\text { " } \\ \text { " } & \text { " } & \text { Morales, } & \text { " }\end{array}$
" 6, " Barro Blanco,
" 8, " Tierra Alta and Boca Tai, Bolívar
" 10-11, " "Angostura" and Frasquillo, "
"13-1t, " Boca Verde,
Upper slopes of Cordillera Oecidentail:
February 23, 1918. Paramo de Chaquiro, Bolivar
\&" 25." Caseada Chorron.
Along Rio Antizales:
February 25-26, 1918. Antizales, Bolívar.
Along Rio Esmeralda:
February 26, 1918. Boea Antizales, Bolívar " 27 , " "Las Dantas" to "Pıerto Canoa," Bolívar " 2S, " "Puerto Canoa" to "Salvajin."
Along Rio Sinu:
March 1, 1918. Boca Esmeralda, Bolívar
" $\quad$ ". " Boca Verde.
" 5-6, " Frasquillo and "Angustura," Bolívar
"7-10. " Boca Tai and Tierra Alta,
"11, " " Morrocoquiel,
" 12, " "Los Hurtados," "
" 21, " Montería,
" 23, " Vilehes,
"25, " "El Pueblo," below Lorica. "
Northern Seacoast:
March 2627,1918 . Cartagena and Turbaco, Bolívar
April 1, " Santa Marta, Magdalena.
Of chicf interest has been the comparison of the vegetation of different altitudinal life-zones, and these upon the slopes of the three divergent Cordilleras of the Andes. The central axis of the Andes, entering Colombia from the South, soon divides into three ranges, all of which, rising from the midst of a broad low Tropical plain, reach high elevations. Also in the northeast is the wholly isolated Sierra Nevada de Santa Marta. Upon each mountain system, one ascends from Tropical lowland, forest or prairie ("sabana"), through subtropical forest, through Temperate forest or "Sabana," to the "Paramo," as the treeless chill slopes above timber-line are called. Temperature and moisture cause the floras of the different zones to differ, and similarly the isolation of the different mountain systems accounts for a divergence in the floras of the same zone on each chain.

Dr. Frank M. Chapman, in his "Distribution of Bird Life in Colombia," has given us a masterly presentation of this problem, and I adopt his system of life zones and his terminology of each. As stated in his summary on page 85 of volume 36 of the Bulletin of The American Museum of Natura Hisory, these are:

Tropical Zone-sea-level to $4,500-6,000 \mathrm{ft}$. (1350-1800 meters).
Subtropical Zone- $-4,500-6,000 \mathrm{ft}$. to $9,000-9,500 \mathrm{ft}$. (2,700-2,850 meters).
Temperate Zone- $9,000-9,500 \mathrm{ft}$. to $11,000-13,000 \mathrm{ft}$. $(3,300-3,900$ meters).
Paramo Zone- $11,000-13,000 \mathrm{ft}$. to snow-line, $15,000 \mathrm{ft}$. $(4,500$ meters).

My observations have sed me to occasional slight modifications of his limits, as in placing the lower limit of the Paramo above Bogotá at only 3100 meters. Here local conditions explain such a change. But in general outline, and in nearly all details, his scheme may be adopted for plants as for animals. Plants seem more subject to geographical differentiation than animals, so that in certain genera the same zone on different Cordilleras has related, but never the same, species. A fuller discussion of this subject will be given in the concluding paper of this series-now I wish but to make the summary of distribution accompanying each species of this study intelligible.

The vegetation of a land so diverse as Colombia is immensely rich; consequently upon a short expedition it has been impossible to folow out in comparative study any wide number of families. A few groups well selected, and so far as possible all their species considered, will give data for geographical botany nearly as precise as would the comparing of many fammies. I have studied the Scrophulariaccae, keeping a record of each species, and making a careful floral description of each. For the Temperate and Paramo zones, and for the Tropical prairies, this family furnishes an excellent index to floral areas. My collections were mainly in these regions, and of herbaceous plants, so that from a phytogeographical viewpoint, the selection of this family has been justified. It is my hope to follow this study with that of some allied group requiring forest enviromments, probably of the Gesneriaceae.

The present paper gives the results of a study of only about onehalf the Scrophulariaceae of Colombia-those which we may cal the Antirrhinoid genera. These fall into several tribes, each predominant or restricted to a special life-zone. The Gratioleae are mainly Tropica, while wholly so are the Russelieae and Angelonicae. The Mimuleae, Hemimerideae and Fagelieae, the last with many conspicuous species, predominate in the Temperate Zone of the mountain-slopes. The genus Bartsia, of the Rhinanthoid Scrophulariaceac and so yet to be studied, is best developed in the Paramo Zone.

Necessarily the chief basis of this study has been my own collections. I have however revised all the collections from Colombia which I know to be in the United States. These are surprisingly meagre, and from widely scattered localities. The chief are those made by H. H. Suith in the Siera Nevada de santa Marta in 1899-1901; by I. F. Holton near Bogotá and in Vallé in 1852-1856;
and-more imperfect-certain series of specimens made in southern Colombia by F. (. . Lehmann and at widespread stations over the country by Jose Triana. To the custodians of the herbaria which have lomed me specimens; the United States National Museum, Gray Herbarium, and Field Museum of Natural History, as well as to my colleagues at The New York Botanical Garden, I am under obligation.

Also, I would mention my indebtedness to that group of Colombian workers whom I had the privilege of meeting in 1917, the growth of whose muscum at Bogotá has been phenomenal. Especially would I thank Brothers Aristé-Joseph and Ydinael, Hermanos Cristianos of the Universidad de La Salle. A further word of appreciation must be given to Sr. Santiago Cortés of Bogotá, who, working long alone, has been able to give to the world only the first volume of his "Flora de Colombia."

The following study is primarily systematic, and keys are given throughout. New species and those seen by the writer are earefully described. Synonomy for Colombia is cited fully, otherwise only those names are included which are of first deseriptions of Colombian species. The original statement of distribution, or of type-specimen is quoted, and the effort is made to firmly establish the nomenclature used. But it must be said that, as most of the types are in Europe and inaccessible to me, and as Col ombia's flora is as yet very partially known, we cannot be certain of the identity of some of these. But I believe that, with very few exceptions, the names now used will be permanent.

For each species a statement of environment and distribution is given, the latter made as definite as our knowledge permits, and analysed accordingly to life-zone and Cordillera. Lastly is given a list of specimens seen, these grouped under the Departments which at present (1920) are in force. State-outlines in Colombia have been so shifting that these limits have not always been easily ascertainable. The herbaria in which specimens may be consulted are indicated by the symbols:

A-The Academy of Natural Sciences of Philadelphia.
C-Field Museum of Natural History, Chieago, Ill.
H - Gray Herbarium of Harvard University, Cambridge, Mass.
U-United States National Museum, Washington, D. C.
Y-New York Botanical Garden, Bronx Park, New York City.
My own collections may all be consulted at The New York Botanical Garden. Duplicates are being distributed to many herbaria.

At the conclusion of the systematic portion of this study there is plamed a synopsis of the geographic distribution of the scrophulariaceae of Colombia, and also a series of brief sketches of those collectors in Colombia to whom reference will have been made in the text.

Key to Antirrhinoid Scrophulariaceae of Colombis. ${ }^{1}$
Corolla with the posterior lobes external in the bud.
(ANTIRRHINOIDEAE.)
Capsule septicidal, or loculicidal by a simple median split, the septum breaking from the capsule-wall or rupturing. Corolla not spurred. Leaves opposite or whorled in threes (except in Capraria).
Corolla, even if saccate anteriorly, without a hom-like process at the base of the anterior lobes. Capsule septicidal, or loculicidal. Seeds, if reticulate, with lines not raised or wing-like.
Stigma two-lipped.
Capsule septicidal, or secondarily also somewhat loculicidal, splitting to base; placentae simple. Sepals distinct or nearly so (except in Vandellia and Torenia). Leaves, or rarely only the capsule, somewhat glandular-punctate. Inflorescence simply racemose (if several pedicels are in one axil, then no common peduncle is evident). Corolla yellow, blue or white.
I. Gratioleae.

Capsule loculicidal (only tardily septicidal if at all), or inclehiscent; placentae branched and widely spreading. sepals united over one-half length. Leaves and capsule not glandular-punctate. Inflorescencer racemose, or of axillary cymes a single one of which is terminal to the primary peduncle. Corolla yellow, two-ridged and pubescent within on the anterior side.
II. Mimileae.

Stigma capitate.
Corolla conspicuously zygomorphic, the tube scarcely developed and the anterior lobes much exceeding the posterior ones. (apsule without placental hairs, and dehiscing only distally. Seeds ridged, not reticulate. Leaves opposite, or the upper alternate.
Stamens four'; anther-sacs with membranons walls. Corolla orange, flattened, its lobes all evident, the tube split to base between the posterior lobes. Sepals five, less than one-half the length of the capsule.

[^54]Capsule scatcely dehiscing loculicidally. Seerls blackish. Infloresence simply racemose. Stem quadrangular. ILI. Hemimerideae. Stamens two; anther-sacs with firm walls. Corolla yellow, its lips concave-satceate or the posterior much reduced, the individual lobes scarcely or not evident, the tube not split to base between the posterior lobes. sepals four, at least one-half the longth of the capsule. Capsule dehiscing loculicidatly as well as septicidally. seeds brown. Inflorescence crmose, two pedicels of each cyme being terminal to the primary peduncle. Stem terete or nearly so. IV. Fagelieaf.

Corolla red, nearly regular, tubular, the short lobes nearly equal. Ciupsule fillet with slender hairs between which are the scattered seeds, dehiscing to base septicidally. Seeds reticulate, not ridged. Leaves whorled in threes, and the stem with six angles. Inflorescence of axillary cymes, two pediecls of each being termimal to the primary peduncle. $\quad \mathrm{V}$. Russelieae.
Corolla violet-blue, saceate anteriorly and with a fine homlike process at the base of the anterior lobes. (apsule loculicidal, the septum only tardily if at all splitting sagittally. Seeds reticulate, the reticular lines raised into wing-like processes. Inflorescence simply racemose.
II. Angelonieae.

Capsule loculicidal, the septum and adjacent capsule-wall persisting, the remaining wall splitting irregularly. Corolla blue, with a spur at the base of the anterior petal. Leaves alternate.

Vit. Antirrmineae.
Corolla with the antero-lateral or anterior lobes external in the bud.
(RHINANTHOIDEAE. ${ }^{2}$ )
I. GRATIOLEAE.

Leaves alternate, serrate. Stamens five. Corolla essentially regular, the five lobes equally distinct. 1. Capraria.
Leaves opposite or whorled in threes. Stamens four, three or two (the postcrior one lost). Corolla more or less zygomorphic, the two posterior lobes united over one-half their length.
Leaves entire to serrate-dentate. Capsule globose to lanceolate in outline. Seeds not regularly cylindric nor spirally ridged, disposed in more than one row within cach value of the capsule.
Corolla with the ridges to the antero-lateral simuses, if developed, low and not projecting beyond those points (so anterior filaments simple). Style not with a semipersistent callose base. Septum rupturing, so that the

[^55]placental mass eventually stands free. Pedicels frequently bibracteolate. Stem, if quadrangular, with the angles not conspicuously ridged or winged.
Anther-sacs proximate, no comnective arms developed,
Seeds reticulate. Leaves sessile or nearly so.
Pedicels bibracteolate. Sepals five.
Pedicels bibracteolate at base (remote from the (alyx). Corolla yellow, pubescent within at base of posterior lobes. Sepals unequal, and leaves serate. Plant repent-ascending. 2. Mecurdonia.

Pedicels bibracteolate at apex (just beneath calyx). Corolla violet-blue or white.
Filaments four, all with anthers. Bractlets 1 mm. or leas long, much shorter than the sepals.
Sepals unequal, the outer much larger than the narrow innemost. (corolla pubescent within at base of posterior lobes, or glabrous, violet-blue or white. Capsule glo-bose-ovoid to oblong. Leaves serrate to entire, and stems, erect or ascending.
3. Caconapea ${ }^{3}$

Sepals uniform. Corolla pubescent within at base of the anterior lobes. ('apsule de-pressed-globose. Leaves serrate and stem repent-ascending. 4. Conobea.
Filaments two, the anterior rudimentarv or wanting. Bractlets $5-10 \mathrm{~mm}$. long, equaling or exceeding the nearly uniform sepals. Corolla pubescent at base of the posterior lobes, white or pinkish-tinged. Leaves sorrate and stem ascending or erect. 5. Cratiola.
Pedicels not bracteolate. Sepals four or five. Corolla blue or white.
Corolla glabrous within. Sepals mequal, the innermost narrowest. Leaves palmately reined, entire or slightly undulate. Pedicels tending to deflex in fruit. Plants repent.
Outermost sepal cordate, much exceeding the linear-attenuate immermost ones; five sepals always present. Capsule oblong or ovoidoblong, acute, brown, much shorter than the sepals. Styles united to apex. Corolla blue or white.
6. Monocardia.

[^56]Outermost sepal ovate-oblong, scarcely longer than the lanceolate imncrmost, one of which may be lost. C'apsule nearly globose, obtuse, palebrown, little shorter than the sepals. Styles distinct near apex. Corolla white.
Corolla 4 mm . long, appearing four-lobed because the three petals forming the anterior lip are all evident. Stamens four. Sepals five or four. 7. Macuillamia.
Corolla 2 mm . long, appearing three-lobed because the anterior petal is lost, leaving the anterior lip two-lobed. Stamens three (only one of the antero-lateral pair developed). Sepals four. 8. Hydranthelium.
Corolla white, densely hirsute within over bases of all lobes. Sepals four, uniform. Leaves pinmately reined, serrate-dentate. Pedicels permanently ascending-spreading. Plant erect.
9. Scoparia.

Anther-sacs separated on short arms of the connective. Seeds longitudinally striate, the striae frequently tuberculate. Corolla blue or white. Plants erect.
Pedicels bibracteolate, 1 mm . long or less. Corolla blue, pubescent within on the anterior side. (apsule acuminate. Seeds tuberculate-striate. Leaves cordate-clasping at base. Tall herb.
10. Stemorlia.

Pedicels not bracteolate. Corolla pubeseent within on the posterior side, or glabrous. Sieeds minutely roughened-tuberculate or smooth. Leaves narrowed at base.
Leaves sessile or nearly so, in whorls of three. Corolla $9-13 \mathrm{~mm}$. long, glabrous within, blue. Capsule acuminate. Seeds minutely roughenedtuberculate. Style semi-persistent. Tall herb.
11. U'namuea.

Leaves evidently petioled. opposite. Corolla 4-8 mm. long, pubescent within on the posterior side, blue or white. Capsule acutish. Seeds smooth, with rounded ridges. Style soon deciduous. Low herbs. 12. Lendneria.
Corolla violet-blue or white, with two raised ridges (each formed by the adherence of a filament) to the anterolateral sinuses, and which frequently project as knoblike processes beyond those points (the free portion of the filament appearing as a lateral outgrowth of the adherent portion). Style with a semi-persistent, frequently enlarged and callose base. Septum persistent, with the attached placentae. Pedicels never
bracteolate. Stem quadrangular, the angles ridged or slightly winged.
Sepals united over one-third length. Filaments all with anthers. Seeds not with transverse lines. Leaves petioled, serrate-dentate. Angles of stem slightly winged.
Pedicels 1-2 mm. long. Sepals united nearly onehalf their length, much shorter than the capsule. Corolla straight, the tube strongly horizontally flattened, the posterior lip purple-brown, elsewhere corolla white throughout, pubescent within on ridges to antero-lateral sinuses; the free portions of the anterior filaments appearing as upcurved from the apices of these ridges. Capsule accuminate, finely pubescent to ghabrous. Seeds tuberculate. Leaves oval, rounded, narrowed at base. Plant repent, pubescent.

## 13. Vandellia.

Pedicels $10-25 \mathrm{~mm}$. long. Sepals united over threefourths length, equaling or slightly longer than the capsule. Corolla decurved, the tube scarcely or not flattened horizontally, blue or white, glabrous within on the ridges to antero-lateral sinuses; the free portions of the anterior filaments appearing as outgrowths proximad to the apices of these ridges which therefore terminate as short knohs. (apsule mucronate or acute, glabrous. seeds shallowly pitted. Leaves ovate or lanceo-late-ovate, acute, truncate-cuneate at base. Plants repent to erect, glabrous. 14. Toremia.
Sepals ristinct or nearly so. Antero-lateral filaments without anthers. Seeds with fine transverse lines. Leaves sessile, mostly clasping, sightly crenate or entire. Angles of stem ridged, not winged. Corolla bue. Plant diffused-ascending, glabrous.
15. Ilysanthes.

Leaves pimatifid. Capsule linear-attenuate in outline. seeds regularly cylindric, spirally ridged, disposed in one row within each valve of the capsule. Corolla purpleblue. Plant low, branched, erect. 16. Schistophragma.

## II. MINIULEAF.

Capsule oblong, dehiscing loculicidally, its walls dry, membranous, brownish. Calyx-tube longer than and enclosing the capsule, its ribs slightly winged, its lobes decidedly unequal, the posterior longest. Corolla 10-15 mm. long, yellow, with many red-brown spots within throat on the anterior side. Leaves broadly ovate, shortly petioled, 1-4 cm . long. Inflorescence of axillary simple pedicels. Stem obscurely angled, not winged. Plant low, repent-ascending.
17. Mimulus.

Capsule glohose，indehiscent，its walls fleshy，white．Calyx－ tube shorter than the capsule，its ribs not winged．its lobes slighty mequal，the posterior longest．Corolla 15－18 mun． long，yellow throughout．Leaves lancoolate，cordate－ clasping at base， $15-20 \mathrm{~cm}$ ．long．Infloresence of axillary severt－branched eymes，borne upon conspicuous peduncles． Stem with angles narrowly winged．Plant tall，erect， widely branched from base． 18．Lencocarpus．
III．HEXIIMIERIDEAE．
19．Alonsou．
IV．FAGELIEAE．
20．Fugelia．
V．RUS゙心ELIEAE．
VI．AN゙GELONIEAE．
21．Russeliu．

VII．ANTIRRHINEAE．
22．Angelonia．
23．Linaria．

## 1 CAPRARIA Limné．

Cupruriu L．．Sp．Pl．628． 1753.
Type species，Capraria biflora L．

## 1．Capraria biflora L．

Capraria bifloru L．，l．e．62s．1753．＂Mabitat in Curassao．＂Sperimens from Curaçao seen in berbarium New York Botanical Garden．
Crapraria lanceolata Vahl，Eal．Am．？：47．1798．＂Habitat ad St．Mar－ tham．von Rohr．＂Not C＂．lenceolata L．f．．Suppl．2st．17S1．Von Rohr＇s plant was the pubseent form wevalent in Colombia，but appears to have represented an abnormal state in which the perlicels are short and arise from an abloreviated branch．
Copraria semiserata Willd．，Sp．Pl．3：32t．1800．New name for C． lemecoloter Vahl．
（＇apraria semiserota berterii A．DC．；Benth．in 1）C．Proel．10：429．1846． ＂Adstam．Martham（Bert．！in h．DC．．）．＂In entire－leaved state．

A widespread species of lowland Tropical America，growing mostly on and near the seashore，but extending inland on river－banks， plains and waste land．Very variable，but with most states found in the same region or even in the same colony．Varies in size of leaves，in form of leaves from linear－lanceolate to nearly orate，and in serration from entire to sharply serratedentate；varies in the length of the pedicels；varies in length of and attenuation of the sepals，in size of corolla from 8 to 10 mm ．long，and somewhat pubes－ cent or glabrous within anteriorly，and in capsules from oblong to ovoid，and from round and emarginate to acutish．Most con－ spicuously does the plant vary in pubescence，from glabrous through－ out，through states with the stem pubescent and the pedicels glabrous or the pedicels sparsely pubescent－pubescent either with short or long hains－to forms densely hirsute on stems，pedicels，sepals and
the midribs and margins of the leaves. The last state (forma hirta ${ }^{4}$ Loes. in Bull. Herb. Boiss. ser. II, 3: 284. 1903. "Habitat in Guatemala, in dept. Chiquimula in ruderaibus ad S. Juan Ermita: Sel[er] n. 3314." Isotype seen in herbarium New York Botanical Garden) prevails in Colombia.

River-banks, flats and sandy waysides, at altitudes below 200 meters, Tropical zone; the typical form near the Caribbean shore (doubtless also along the Pacific shore), forma hirta Loes. (indicated in lists by asterisk) along the lower river-courses and across the Sabana of Bolívar.

Antioquia. *Brazuela de Perales, on Rio Magdalena (river-flat. alt. 150 m. ), Pennell 3704 ; *Vuelta de Acuña, on Rio Magdalena (sandy loam, alt. 125-130 m.), Pennell 3789.

Bolivar. *(alamar (along Rio Magdalena, alt. 15-25 m.), Rusby \& Pemell 20 ; Cartagena, I. F. Holton 582 (H, Y), (roadside, alt. $5-10 \mathrm{~m}$.), Rusby \& Pennell 3 (somewhat pubescent with short hairs). *Siné (edge of thicket, alt. 120-170 m.), Pennell 4039: *Turbaco (thin loam over white rock, alt. $150-200 \mathrm{~m}$. ), Pennell 4761; *Vilches, on Rio Sinu (orchard, alt. 20-50 m.), Pennell 4711.

Magdalena. *Bonda (open damp place, alt. 45 m.), H. H. Smith 1331 (C, H, U, Y). Don Jaco (near the coast), H. H. Smith 5.51 (C, H, U. Y). Playa Brava (open plain near the coast), H. H. smith 2823 (Y). Santa Marta (railroad bank, alt. 0-10 m.), Pennell 4771. Around Rio Frio (between the Cienaga tle Santa Marta and the foothills, alt. $0-100 \mathrm{~mm}$.) , H. Pittier 1611 (U).

## 2 MECARDONIA Ruiz and Pavon.

Merardomia R. \& P. [Fl. Peruv. et Chil. Prod. 95. 179t, generic diagnosis]: Syst. Veg. Fl. Peruv. et Chil. 164. 1798.
Type species, M. orata Ruiz \& Pavon, ${ }^{5}$ of Peru.

[^57]1. Mecardonia procumbens (Mill.) Small.

Erinus procumbens Mill., Gard. Dict. ed. VIII. n. 6. 176s. "Houst. MSS."
Merpestis caprarioides H. B. K., Nov. Gen. et Sp. 2: 365. 1818. "Crescit loeis arenosis, siceis Regni Novo-Granatensis in ripa fluminis Magdalenae juxta El Peñon [Humboldt \& Bonpland]."
Monmiera procumbens (Mill.) Kuntze, Rev. Cien. 463. 1891.
Mecardonia procumbens (Mill.) small, Fl. S. E. Un. St. 1065. 1338. 1903.
Bacopa procumbens (Mill.) (ireenm. in Field Col. Mus., Bot. Ser. 2: 261. 1907.

Herpestis procumbens (Mill.) Cro., Symb. Bot. 4: 55s. 1911.
Moist open soil, along streams in loam or sand, at altitudes below 1200 meters. Tropical zone, doubtless throughout lowland Colombia, largely as a weed. Also in the Sabana of Bogotá at an altitude of 2600 meters, probably introduced. Widespread throughout Tropical America.

Antioquia. Opposite Boca Carare (forest along R. Magdalena, alt. 125 m .), Pennell 3829.

Bolívar. Boca Verde on Rio Sinu (field along river, alt. 100-200 mi.), Pennell 4568; Cañabetal (sand along river, alt. 90-100 m.), Pennell 3874; sincelejo (thicket, alt. 150-200 m.), Pennell 4068.

Caldas. Buena Vista (moist open sand, alt. 170-180 m.), Rusby \& Pennell 63.

Cundinamarca. Bogotá (desiccated soil in meadow, alt. 2600 m.), Pennell 1909 [small-leaved form which has been described as Herpestis chamaedryoides H. B. K.]; Icononzo (loam slope, alt. 9001000 m .), Pennell 2777.

Huila. Natagaima (soil frequently overflowed by river, alt. t00450 m. ), Rusby \& Pemnell 1182; Quebrada de Angeles above Natagaima (gravel, alt. 450-600 m.), Rusby \& Pemell 286.

Magdalena. Masinga (damp clearings, alt. 90-750 m.), H. H. Smith 1326 (Y), Agua Dulce, H. H. Smith 1326 (Y).

Meta. Villavicencio (moist meadow along Rio Cuatiquia, (alt. 500 m.), Pemnell 1556.

Tolima. Honda (moist sandy field, alt. $250-300 \mathrm{~m}$.), Pennell 3620 ; Libano (field on "La Trimidad," alt. 900-1200 m.), Pennell 3368.

Valle. La Paila, I. F. Holton 579 (Y).
3. CACONAPEA Chamisso.

Craconapea Cham. in Linnaea s: 2s. 1833.
Type species C.gratioloides Cham., of Brazil.
Pedicels $5-10 \mathrm{~mm}$. long, one to an axil. Corolla $\overline{5}-7 \mathrm{~mm}$. long, pubescent or puberulent within over base of posterior lobes; lobes violet, throat yellow within, especially on the anterior
side and lined with violet, the posterior lobes united nearly to apex.
Corolla 7 mm . long, pubescent within. Anthers all uniform. Sepals strongly rissimilar, the outer ovate, all puberulent. ('apsule septicidal, with thick protuberant placentae, in dehisconce portions of the septum remain adhering $t$ the walls. Seeds conspicuously reticulate. Leaves lanceolate-elliptic, crenate-semate. Stem sharply quadrangular, 1-3 din. tall.

1. C. auriculata.

Corolla 5 mm . long, puberulent within. Anthers of posterior filaments larger. Sepals slightly dissmilar, the outer lanceolate, all somewhat puhescent. ('apsule loculicidal, with thin placentae, placed along median line of the septum which ultimately breaks free from the lateral walls. seeds finely reticulate. Leaves linear, entire. Stem olscourely quadrangular, . 3 -.s dm. tall. 2. C. debilis.
Pedicels less than 2 mm. long, usually several to an axil. Corolla $2-3 \mathrm{~mm}$. long, glabrous within; lobes white or violet, throat white and without lines. Placentar thin, attached to median line of septum. Seeds fincly reticulate.
Leaves tapering to the morow hase. Stom pilose with spreading white hairs.
3. C. axillaris.

Leaves rounded-clasping at lase. Stem appressed-pubescent or glandular-dotted.
Corolla deciduous, white throughout, its posterior lohes united nearly to apex. Exterior sepals rounded, all glabrous or obscurely puberulent. Stem whitish with appressed reflexed hairs. 4. ('. appressa.
Corolla persistent, lobes violet-blue, its posterior lobes united only three fifths length. All sepals acute, each with a tuft of white hairs at apex. Stem yellowish with sessile glands.
5. C'. conferta.

1. Caconapea auriculata (Rob.) Pennell, comb. nov.

Herpestis ariculate Roh. in Proc. Am. Acarl. 26: 172. 1891. "Wet places near Guadalajara [Mexico]; November, 1889 [C. C. Pringle] (n. 2937)." Later collections of Pringle from near Guatalajara, 4623 and 6145 , seen in herbarium of Colmmbia University at The New York Botanical Garden.
Bacope auriculata (Rob.) Greenm. in Field Col. Mus., Bot. Ser. 2: 262. 1897.

Stem 1-3 dm. tall, sharply four-ingled, glabous to slightly puberulent above. Leaves $1-1.7 \mathrm{~cm} . \operatorname{long}, .5-.8 \mathrm{~cm}$. wide, oblong-lanceolate, crenate, often dentate at and near base, obtuse, romded-clasping at base; glabrous or glabrate. Pedicels solitary, 5-10 mm. long, puberulent. Bractlets linear-subulate, less than 1 mm. long. Sepals obscurely puberulent: outermost 4 mm. long, ovate, obtuse to acute, obscurely veined; two median slightly shorter and more narrowly ovate; two innermost 3 mm. long, linear-attenuate,
somewhat hyaline. Corolla 7 mm . long; posterior lobes united nearly to apex; pubescent within tube, especially on anterior side, pubescent in horizontal line over hases of posterior lobes; within tube yollow, extending to base of anterior lobes, distally and over lobes violet-blue, with longitudinal fine deep-riolet lines. Filaments glabrous, the postero-lateral pair slightly shorter, its anthers equalling those of the antero lateral pair; posterior filament represented by a tiny knob. Style glabrous, at apex bifid and bearing two plate like stigmas. Capsule $2.5-3 \mathrm{~mm}$. long, globose-ovoid, glabrous, dehiscing septicidally, the lateral portions of the septum adhering to the capsule wall. Placentae protruding into the cells, not coalescent. Seeds 4 mm . long, eres-centic-cylindric, trumeate at the apex, brown. with eviclent longitudinal lines and cross reticulations.

Wet open soil, sandy or loam, at altitudes of 500 to 800 meters, Tropical zone, llanos of upper Magdalena valley. Doubtless in the Sahina of Bolívar and elsewhere in northen Colombia. Ranges northward to Mexico.

Cundinamarea. Melgar (moist open clayey loam, alt. 500-600 m.) Pemell 2885.

Huila. Neiva (seepy place in plain, alt. 550-600 m.), Rusly \& Pennell 1067.

Tolima, San Lorenzo (open springy loam, w. of, alt. $600-800$ m.), Pennell 3531.
2. Caconapea debilis Pemnell, sp. nov.

Stems ascending, repent and matted below, becoming erect and $.3-.5 \mathrm{dm}$. tall, obscurely four-angled, finely pubescent with reflexed appressed white hairs. Leaves $.4-.6 \mathrm{~cm}$. long, $.07-.1 \mathrm{~cm}$. wide, linear, obtuse, clasping (but not dilated) at base, nerveless beneath; fincly pubescent on the midrib beneath or glabrous throughout. Pedicels solitary, $5-7 \mathrm{~mm}$. long, finely pulescent with reflexed hairs. Bractlets linear-subulate, less than .5 mm . long. Sepals: outermost 3.5 mm . long, linear-lanceolate obtuse; two median slightly shorter but nearly similar, these three green, glabrous or nearly so, except for a frequent terminal tuft of short hairs; the two imermost 3 mm . long, lanceolate-linear, acuminate, with broad scarious margins and ciliate with minute white hairs. Corolla 5 mm . long; posterior lobes united nearly to apex; externally minutely pubescent, within slightly pubescent over bases of the posterior lobes, elsewhere glabrous; within tube pale, yellowish on anterior side, lined with
violet, distally over lobes violet. Filaments glabrous, the pos-tero-lateral pair shorter, its anthers more than twice larger than those of the antero-lateral pair. Style glabrous, with two plate-like stigmas. Capsule 2 mm . long, oblongpyriform, rounded and retuse at apex, glabrous, dehiscing loculicidally. Placentae thin, linear, flattened against the persistent septum. Seeds about .2 mm . long, oval, slightly crescentic, yellowish-brown, obscurely ridged to somewhat reticulate at maturity.

Type, shallow pool in llano, east of Villavicencio, Meta, altitude about 450 meters, collected in flower and fruit September 2, 1917, F. W. Pennell 1623 in herbarium New York Botanical Garden.

Nearest to Herpestis reptans Benth. of Brazil, which is described as having leaves $.2-.3 \mathrm{~cm}$. wide, linear-lanceolate, prominently nerved beneath, all sepals obtuse and seeds yellow.

Shallow pools in llano, at an altitude of 450 meters, Tropical zone in Meta.
3. Caconapea axillaris (Benth.) Pennell, comb. nov.

Herpestis axillaris Benth. in DC. Prod. 10: 396. 1846. "Ad aquas stagnantes in campis Deluvia Sanctae Marthae (Purdie!) . . . (v. in hert. Hook.)."
Monniere axillaris (Benth.) Kuntze, Rev. Gen. 4(i3. 1 S91.
Tropical zone, in Magdalena. No specimens seen.
4. Caconapea appressa Pennell, sp. nov.

Stem .7-1.5 dm. tall, obscirely four-angled, below glabrous, above pubescent with reflexed white hairs. Leaves $1-2 \mathrm{~cm}$. long, . $3-.4$ cm . wide, lanceolate-linear, entire, tapering from the roundedclasping base, glabrous, glandular-dotted. Pedicels $1-5$ in an axil, $1-2 \mathrm{~mm}$. long, pubescent with reflexed hairs. Bractlets filiformsubulate, less than 1 mm . long. Sepals glabrous, densely glandularpunctate: outermost 3 mm . long, ovate; the next nearly as wide, the median one-sided, narrower, these three obtuse, somewhat reticulate, glabrous; the two innermost narrowly lanceolate, attenuate, costate, with the margins hyaline and ciliolate. Corolla 2-2.5 mm. long; posterior lobes united nearly to apex; glabrous throughout; white throughout. Filaments glabrous, the postero-lateral pair slightly shorter and its anthers slightly smaller. Style glabrous, bearing two approximate stigmas. C'apsule 2 mm . long, narrowly cylindric oblong, glabrous, dehiscing septicidally and loculicidally, none of the septum adhering to the capsule wall. Placentae narrow, thin, a little raised line median to the persistent broad septum. Seeds .5 mm . long, rylindric, tapering to each end, brown, with longitudinal ridges and fine cross lines.

Type, moist depression in llano east of Villavicencio, Meta, altitude about 450 meters, collected in flower and fruit, August 28 and September 2, 1917, F. W. Pennell 1460, in herbarium New York Botanical Garden.

Moist soil, in llanos, at an altitude of 450 meters, Tropical zone, in Meta.
5. Caconapea conferta Pennell, sp. nor.

Stem .5-1.8 dm. tall, obscurely four-angled, below glabrous, above puberulent with sessile yellowish glands. Leaves $1-2 \mathrm{~cm}$. long, .2-. 4 cm. wide, narrowly lanceolate, tapering from the roundedclasping base, entire, densely glandular-dotted. Pedicels 1-5 in an axil, less than 1 mm . long, puberulent with sessile glandular dots. Bractlets fuiform-subulate, less than 1 mm . long. Sepals densely glandular-puberulent, each tipped with a tuft of white hairs: outermost 3 mm . iong, narrowly ovate; two median narower and oncsided, these three acuminate; two innermost 2.5 mm . long, lanceolateattenuate, somewhat hyaline-margined and more ciliolate. Corolla 3 mm . long; posterior lobes united $\frac{3}{5}$ length; glabrous throughout; its tube white, lobes violet-blue, darker distally within. Filaments glabrous, bluish, the postero-lateral pair slightly shorter; anthers all of about the same size, light-yellow. Style glabrous bearing two stigmas. C'apsute 2 mm. long, elliproid-oblong, glabrous, dehiscing septicidally and loculicidally, none of the septum adhering to the capsule-wall. Placentae narrow, thim, median to the persistent broad septum. Seeds . 3 mm . long, cylindric, slightly irregularly curved, rounded, brown, with fine longitudinal ridges.

Type, moist depression, in llano east of Villavicencio, Meta, altitude about 450 meters, collected in flower and fruit August 28 and September 2, 1917, F. W. Pennell 1435; in herbarium New York Botanical Ciarden.

Moist soil in llanos, at an altitude of 450 meters, Tropical zone, in Meta.

## 4. CONOBEA Aublet.

Conobea Aubl., Hist. Pl. Guiane Fr. 2: 639. pl. 258. 1775.
Type species, C. aquatica Aubl., of Guiana.

1. Conobea scoparioides (C. \& s, Benth,

Sphaerotheca scoparioides Cham. \& Schlechtd. in Limaea 2: 606. 1827.
"E Brasilia aequinoctiali misit Sellow."
Conobea scoparioides (C. \& S.) Penth. in DC. Prod. 10: 391. 1846.

Tropical zone, collected only in Choco, but doubtless widespread in northern and eastern Colombia. Widespread through eastern lowland South America.

Choco. Novisa, J. Triana (H, Y).

## 5. GRATIOLA Linné.

Gratiola L., Sp. Pl. 17. 1753.
Type species, $G$. officinalis L., of Europe.

1. Gratiola bogotensis Cortés, sp. nov.

S'preading extensively by rootstocks. Aerial stems erect or decumbent at base, succulent, slightly pulerulent, 1-4 dm. tall. Leaves oblong-lanceolate, $1.5-2.5 \mathrm{~cm}$. long, . $3-.8 \mathrm{~cm}$. wide, clasping by a rounded base, distally dentate and glandular-punctate, finely puberulent to glabrate. Pedicels $1-2 \mathrm{~mm}$. long. Bractlets similar to and equaling or slightly exceeding the lanceolate calyx-lobes, $5-10 \mathrm{~mm}$. long. Corolla $12-14 \mathrm{~mm}$. long, its tube four-angled, yellowish, with fine brown lines, its lobes sprearding, white, somewhat pinkishtinged or at times the corolla strongly pink. Antero-lateral filaments evident, each capped by two small rudimentary anthers. Capsule ovoid, 5 mm . long. Seeds . 5 mm . long, ohovoid, conspicuously alveolate-reticulate.

Type, wet grassy place, base of mountain above Chapinero, near Bogotá, Cundinamarca, altitude 2700-2800 meters, collected in flower and fruit September 23, 1917, Pemell 2108 in Herb. New York Botanical Garden. This was collected in company with Sr. Santiago Cortés, who designated it by the name bere given.

A near ally or possibly geographical variety, of Gratiola peruriana L., S.p. Pl. 17. 1753, based upon Feuillée's description and drawing of a plant found in the mountains of (hile, at $26^{\circ} \mathrm{S}$. L. Feuillée's plant is well-matched by a specimen collected by Otto Kuntze in February, 1892, at Ervilla, (hile, and which has the stem less fleshy, the leaves broader and the pedicels slightly longer than does our plant.

Wet grassy places, springheads and ditches at altitudes of 2600 to 3200 meters, Temperate zone, ascending, in dwarf form, to Paramo, Cordilleral Orientál, and Cordillera C'entrál, southward at least into Ecuador.
(undinamarca. Bogotá (ditch in meadow, alt. 2600 m. ), Pennell 1908, (wet grassy place near (hapinero, alt. $2700-2800 \mathrm{~m}$.) Pemnell 2108, (southwest of Las Cruces, open spring-head, alt.

2600-2700 m.) Peunell 2158; Sibaté (wet loam, alt. 2700-2800 m.), Pennell 2451; Thaqué (wet ditch, edge of paramo, alt. 3000-3200) m.), Pennell 1902; Zipaquirá (Mt. Aquila, edge of pool, just below paramo, alt. 3100 m .), Pennell 2532.

Nariño. Tuquerres (alt. 3000 m .), Triana (H, Y).
Tolima. Nurillo (pool, alt. 2600-2800 m.), Pennell 3155.
6. MONOCARDIA ${ }^{6}$ Pennell, gen, nos.

Stems much branched, terete, repent, the apices ascending. Leaves sessile, slightly clasping, oblong to orbicular, entire, pal-mately-veined from base, obscurely glandular-dotted and not odorous. Pedicels axillary, 6-20 mm. long, pubescent, not bracteolate. Calyx of 5 very dissimilar sepals: outermost (posterior) heartshaped; two antero-laterals smaller, obliquely, or but one-half cor-date- or truncate-ovate, three outer prominently reticulate; two pos-tero-laterals (imnermost) linear-attenuate, only 23 length of outermost and usually slightly longer than the capsule. Corolla 3-7 mm . long, the widely-spreading lobes longer than the tube, the two posterior lobes united nearly throughout; glabrous throughout, blue or white. Stamens four, glabrous, didynamous (the posterior filaments shorter and usually anthers smaller); anthers uniform, the narrow sacs closely commivent, each opening its entire length. Style glabrous, litte exceeding the sepals. Stigmas distinct, flat. Capsule 2-4 mm. long, much shorter than calyx, oblong or ovoid-oblong, acute, brown, septicidal and loculicidal; the septum with adherent thin placentae, persisting plate-like. Seeds . $2-.3 \mathrm{~mm}$. long. oblong, blackish-brown, ridged and with cross-reticulations.

Type species, M. violacea Pennell.
Hydrotradus small, in general aspect like this genus, differs in possessing a circle of bristles surrounding the orary, pubescence within orer the bases of the corolla-lobes, two bracteoles below the calyx, and more conspicuous glands which exhale a strong aromatic odor. Pedicels and sepals with spreading hairs. Stems and leaves beneath pubescent. Corolla blue.
Corolla $6-7 \mathrm{~mm}$. long. Calyx $5-7 \mathrm{~mm}$. long. Leaves $1.2-1.8$ cm. long, and nearly as wide. Stems densely hirsute, 2-3 dm. long. 1. M. violacea.
Corolla $4-5 \mathrm{~mm}$. long. Calyx $4-6 \mathrm{~mm}$. long. Leaves $.7-1.5 \mathrm{~cm}$. long, ovate-oblong. Stems pubescent, less than 1.5 dm. long.

[^58]Leaves $1.2-1.8 \mathrm{~cm}$. long, the younger pubescent along midrib beneath. Sepals 56 mm . long. 2. M. lilacina.
Leaves $.7-.9 \mathrm{~cm}$. long, the younger pubescent over the entire surface beneath. Sepals $4-5 \mathrm{~mm}$. long. 3 . M. humilis. Plant glabrous throughout. Corolla white, $3-3.5 \mathrm{~mm}$. long.
4. M. albida.

1. Monocardia violacea Pennell, sp. nov.

Stems fleshy, 2-3 dm. long or longer, densely hirsute with yellowish hairs. Leaves ovate- or oval-orbicular, $1.2-1.8 \mathrm{~cm}$. long, 1-1.4 cm. wide, obtuse, pubescent beneath along midrib proximally, distally glabrous and olswurely reticulate. Pedicels $10-20 \mathrm{~mm}$. long, hirsute with spreading hairs. Sepals all ciliate: the three outer 57 mm . long, the imermost pulescent on the midrib. Corolla 6-7 mom. long; tube yellow, distatly purplish, the lobes violet. Filaments violethluish; anthers white. C'apsule 34 mm . long, narrowly oblong. Seeds .3 mm . long, brown.

Type, wet loam, along trail in forest, near Villavicencio, Meta, altitude 450 meters, collected in flower and fruit August 28, 1917, F. W. Pemell 1480; in Hert. New York Botanical Garden. Only specimen seen.

Wet loam in forest at an altitude of 450 meters. Tropical zone, in Meta, and in Panama. Doubtless wide-spread in northern South America.

## 2. Monocardia lilacina Pennell, sp. nov.

Stems slightly fleshy, .5-1.5 (lm. long, pubserent with spreading hairs. Leaves ovate-oblong, $1.2-1.8 \mathrm{~cm}$. long, . $8-1.1 \mathrm{~cm}$. wide; obtuse, pubescent beneath along midhib proximally. Pedicels 8-12 mom. long, pabescent with spreading hairs. Sepals all ciliate: the three outer $5-6 \mathrm{~mm}$. long, two imnemost pubescent on the midhih, shorter. Corolla $4-5 \mathrm{~mm}$. long, tiolet within throat, the lobes paleblue. Filaments of anterior stamens pale-blue, of posterior violet; anthers pale-blue. Capsule $2.5-3 \mathrm{~mm}$. long, ovoid-oblong. Seeds $.2-.25 \mathrm{~mm}$. long, blackish.
Type, wet loam, along trail in forest, near Villavicencio, Meta, alt. 450 meters, collected in flower and fruit August 28, 1917. F. W. Pennell 1476; in Herl). New York Botanical (iarden.

Wet loam in forest, at altitudes of 450 to 500 meters, Tropical zone, in Meta.

Meta. Villavicencio (wet trail in forest, alt. 500 m. ), Pennell 1378, (alt. 450 m. ), Pemnell 1476 , (wet place near Rio Guatiquia, alt. 500 m .), Pennell 1547.

## 3. Monocardia humilis Pemnell, sp. now.

Stems not fleshy, . 21 dm. long, pubeserent with spreading hairs. Leaves orateoblong, . $7-.9$ cm. long, . 3 - .8 ('m. wide, obtuse, at least when young hirsute over entire under surface, not evidently reticulate. Pelicels 6-9 mm. long, puleseent with spreading hairs. Sepals all ciliate: the three outer $4-5 \mathrm{~mm}$. long, pubescent over entire outer surface. Corolla $4-5 \mathrm{~mm}$. long, violet within throat, the lobes pale-hlue. Filaments of anterior stamens pale-blue, of posterior violet; anthers pale-blue. Capsule 2-3 mm. long, owoidoblong. Sceds . $2 . .25 \mathrm{~mm}$. long, backish.

Type, sandy soil, seepy place in plain east of Neiva. Huila, alt. 550-600 meters collected in flower and fruit August 8, 1917, Rushs \& Pennell 1065; in Herb. New York Botanical Garden.

Wet open soil, sandy or loam, at altitudes below 800 meters, Tropical zone, llanos of upper Magdalena valley, and in Panama. Doubtless in the Sabana of Bolivar.

Huila. Neiva (sandy seepy place in plain east of N., alt. 5.50600 m .), Rusby \& Pennell 1065.

Tolima. San Lorenzo (swale west of S. L., alt. 600-800 m.), Pénnell 3544.
4. Monocardia albida Pennell, sp. nov.

Stems not fleshy, .3-1.5 dm. long, glabrous Leaves orateoblong, .7-1.5 cm. long, . $3-1 \mathrm{~cm}$. wide, obtuse, glabrous. Pedicels 7-14 nmm. long, glabrous. Fepals glabrous: the three outer $4-5 \mathrm{~mm}$. long. Corolla $3-3.5 \mathrm{~mm}$. long, dull white throughout. Filaments and anthers white. Capsule $2-3 \mathrm{~mm}$. long, narrowly elliptic-oblong. Seeds . $2-.3 \mathrm{~mm}$. long. blackish.

Type, wet loam, trail in forest, Villavicencio, Meta, alt. 450 meters, collected in flower and fruit August 28, 1919, F. W. Pennell 1477; in Herb. New York Eotanical Carden.

Wet loam in forest at altitudes of 450 to 500 meters, Tropical zone, in Meta.

Meta. Villavicencio (wet trail in forest, alt. $450^{\circ} \mathrm{m}$.), Pennell 1477, (moist meadow near Rio Guatiquia, alt. 500 m. ), Pennell 1555 (plant much smaller than 1477).

## 7. MACUILLAMIA Rafinesque.

Macuillumia Raf. [Neogenyton 2.1825, generic description only.] Autik. Bot. 44, 1840 .

Type species, Monniera rotundifolia Mich., of Illinois.

1. Macuillamia limosa Pennell, sp. nor.

Extensively repent. Stem slightly succulent, finely pubescent rather densely so distally. Leaves $1.2-1.7 \mathrm{~cm}$. long, $8-10 \mathrm{~mm}$. wide obovate-elliptic, entire, narrowed at base, rounded at apex, with 7 or 9 longitudinal veins. Pedicels slender, $10-15 \mathrm{~mm}$. long, finely pubescent, in flower ascending, soon reflexing below the leaf-like bracts. Sepals 2.5-3 mm. long, obtuse, somewhat pubescent; two outer ovate-oblong; two median lanceolate-oblong; the innermost one narrower or wanting. (orolla 4 mm . long, the lobes spreading, slightly longer than the tube, the two posterior united to apex; glabrous throughout, white. Filaments white. Anthers purplish. Styles distinct near apex; stigmas semi capitate. Capsule 2-2.5 mm. long, nearly globose, obtuse. Seeds .6 mm . long, celindricoblong, reticulate, brown.

Type, open pool in clayey loam, Melgar, Cundinamarea, altitude 400-500 meters, collected in Hower and fruit December 4-5, 1917, F. W. Pemncll 2927; in Herb. New York Botanical Carden.

Open pools and ditches, in shallow still water, at altitudes below 500 meters, Tropical zone, in the Magdalena and Couca valleys, and doubtless through northern Colombia. Ranges northward to Mexico.

Antioquia. Puerto Berrio (shallow water, alt. 125-135 m.), Rusby \& Pemmell 32.

Cundinamarea. Melgar (pool in clayey loam, alt. $400-500 \mathrm{~m}$.), Pennell 2927.

Tolima. Espinal to Cuamo (ditch, loam, alt. 350-400 m.), Rushy \& Pennell 179.

Valle. La Paila, I. F. Holton 581 (H, Y).
8. HYDRANTHELIUM Humboldt, Bonpland and Funth.

I ydromthetium H. B. K., Nov. Gen. et Sp. 7: 202. pl. 64ti. 1s:2.).
Type species, $H$. callitrichoides H. B. K., of Venezucla.

1. Hydranthelium braunii Ernat.

Hydrauthetum bremmii Ernst, in Vargasia 1: 189. 1870.
"Hallé al 19 do Setiembre de 1869 en uno de los pozos de la s:dmatha delante el camposanto de la Merced [Caracas]," Venezuela.
Open wet soil, at an altiturle of 30 meters, Tropical zone, in Magdalena; doubtless eastwad near the Caribbean coast through Venezucla.

Magdalena. El Libano plantation, (Santa Marta region, open land on border of swamp and Hooded during heavy rains, alt. 30 m. ),
H. H. Smith 2544 (C, H, U, Y). (Plants small, largest . 8 dm. long, and in flower only, youngest leaves slightly undulate-lobed.)

## 9. SCOPARIA Linné.

Scoparia L., Str. Pl. 116. 1753.
Type species, S. dulcis L.

## 1. Scoparia dulcis L.

Scoparia dulcis L., l. e. 116. 1753. "Habitat in Jamaica, Curassao"; ex L., Hort. Cliff. 320. 1737. "Crescit in Curassao \& Jamaica." Noo specimens from Curaçao seen but the plant here considered ninquestionably oecurs there.
Courarin dulfis (L.) Kuntze, Rev. Gen. 459. 1891.
Open soil, loam or sand, river-banks, fields, along trails and in towns, at altitudes below 1500 meters, Tropical zone, doubtless throughout lowland Colombia. Ranges throughout Tropical America, a weed of South American origin.

Antioquia. Vuelta de Acuña on Rio Magdalena (sandy loam shore, alt. 125-130 m.), Pennell 3790 .

Bolívar. Boca Verle on Rio Sinu (cacaotale; alt. $90-120 \mathrm{~m}$. ), Pennell 4233; Buenavista, east of Sincé (open grassy place), Pennell 3991; Calamar (along Rio Magdalena, alt. 15-25 m.), Rusby \& Pennell 17; Vilches on Rio sinu (loam, alt. 20-50 m.), Pennell 4713.

Cundinamarca. (iirardot (field, alt. 350-400 m.), Rusby \& Pennell 113; Pandi (open slope, alt. 900-1100 m.), Pennell 2816.

Huila. Cordillera Orientál, east of Neiva (open foot-hill, alt. $700-1500 \mathrm{~m}$.), Rusby \& Pennell 460 .

Magdalena. Bonda (alt. $45 \mathrm{~m} .$, common weed in open places below 900 m. ), H. H. smith 1330 ( (', H, U, Y).

Meta. Villavicencio (streets, alt. 525 m. ), Pennell 1372, (roadside, alt. 500 m. ), Pennell 1572.

Tolima. Libano (ficld, alt. $700-900 \mathrm{~m}$. ), Pennell 3426.
Valle. La Paila, I. F. Holton 587 (Y).

## 10. Stemodia limé.

Type species, S. maritıma L., of Jamaica.
Stemodia L., Syst. Nat. ed. X, 1118. 1759.

1. Stemodia durantifolia (L.) Sw.

Capraria durantifolia L., Syst. Nat. ed. X. 1116. 17.59. ". . . Sloan. Jam. 1. 174." Ex Sloane, Jam. 196. pl. 124. f. '2: "Crows in the sandy savannas [of Jamaica]."
Stemodia durantifolia (L.) Sw., Obs. Bot. 240. 1791.
Stemodacra duratifolia (L.) Kuntze, Rev. Cren. 466. 1891.
Occurs in two color-forms, blue, and lavender or "pale-pink."

River-flats and moist, or frequently desiccated, ditches, in open land, at altitudes below 500 meters, Tropical zone, near the Caribbean Coast, along the Rio Magdalena and on the sabana of Bolívar. Ranges from Mexico to Brazil and in the West Indies.

Antioquia. Brazuela de Perales (river flat along Rio Magdalena, alt. 150 m. ), Pennell 3698 [corolla blue].

Bolívar. Cartagena (moist arroyo, 12 km . s. e. of C., alt. 50-100 m.), Pennell 4729 [corolla blue], (open ditch, 14 km . s. e. of C., alt. $50-100 \mathrm{~m}$.), Pennell 4730 [corolla lavender]; sincé (desiccated pool in prairie, alt. $120-170 \mathrm{~m}$.), Pennell 4047 [corolla lavender].

Huila. Quebrada de Angeles, above Natagaima (alt. 450-500 m.), Rusby \& Pemnell 263 [corolla blue].

Magdalena. ('arpentiera (along Rio Magdalena, alt. 50-60 m.), Rusby \& Pemell 28; Mamatoca (open boggy ground, $5 \mathrm{~m} . \mathrm{s}$. of M., alt. 30 m.$)$, H. H. Smith 1360 (C, H, U, Y) [corolla pale pink].
11. UNANUEA (Ruiz and Pavon.) gen, nov.

C'mamuea R. \& P., (Ic. Fl. Per. Inerl.),
Erect, much-branhed shrubby herbs or low shrubs, at least S-10 din. tall. Stems 4-angled. Leaves mostly whorled in threes, lanceolate to ovate, acute to acuminate, serrate to dentate, shortly petioled. Pedicels axillary, slender, as long as or longer than the calyees, not bracteolate. sepals five, umiform, linear to lanceolate, entire, Corolla 9-13 mm. long, tubular-campanulate with sprearling lobes, the posterior united three fourths length; extemally puberulent, within glabrous, purple-blue. Stamens four, didynamous (the posterior filaments shorter), glabrous, anthers-sacs elliptic, each stalked on a short arm of the commective. Style glabrous. Stigmas distinct, flattened. Capsule brown, ovate in outline, acmomate, dehiscent septicidally (even through septum) and slightly abso loculicidally; placentae adherent to septum, roughened by funicles. seeds oblong, minutely roughened-tubercular.

Differs from Stemodia L., which has corolla-lokes not widely spreading, pubescent or glabrous within on the anterior side, two bracteoles on the perlicel beneath the calyx, and the leares ressile and clasping: from Lemdnera Minod, which are herls low and spreating, with smaller corollas densely pubescent within over the bases of the posterior lobes and with evidently petioled leaves. Both Stemodia and Lemdnerin are genera of the Tropical life-zone, while Cnanuea is of the Subtropical and Temperate zones.

Type species, Stemodio suffruticosa H. B. K., of Ecuador.

1. Unanuea dentata (Minod) Pennell, com!. nov.

Stemodia suffruticosa H. B. K., f. dentata Minod in Bull. Sor. Bot. Cienéve ser. II. 10: 201. 191s. "In Andibus Ecuadorensibus' (R. Spruce, n. $5066!$ )." Isotype seen in Gray Ilerbariun of Harvard University.
At an attitude of 2600 meters, Temperate zone, southern Cordillera Centrál southward into Ecuador.

Cauca. Mozoco, Moras Valley, Tierra Adentro (alt. 2600 m .), H. Pittier 1326 (U). ["A shrub, 1 m . high; fl. deep purple."]
12. LENDNERIA Minod.

Lendneria Minod, in Bull. sioc. Bot. Genéve, ser. II. 10: 240. 1918.
Type species, Capraria humilis Soland.
Pedicels 1-2 mm. long. Corolla 4 mm . long, its lobes blue, the posterior united two-thirds length. Hairs within corolla over base of posterior lobes not knobbed. Anther-sacs circular, slightly separated on very short connective-arms. ('apsule globose, 2 mm . long, much shorter than the sepals. siecls pale yellowish, nearly cylindric. 1. L. hmmilis.
Pedicels longer, mostly $7-20 \mathrm{~mm}$. long. Corolla 8 mm . long, its lobes white, the posterior united nearly to apex. Hairs within corolla over base of posterior lobes knobbed. Anther-sacs oblong, distinctly separated on stout comective-arms. Capsule in outline oblong-ovate, $4-5 \mathrm{~mm}$. long, about equaling the sepals. Sceds brown-black, nearly oblong. 2. L. angulata.

1. Lendneria humilis (Soland.) Minod.

Capraria humilis [Koland. in] Ait., Hort. New. 2: 354. 1789. "N̈at. of the East Indies. John Gerard Koenig. MI.D. Introd. 1781, by Sir Joseph Banks, Bart." 1dentified by Bentham in DC. Prod. 10: 38:3. 1846 , as species here considered, his determination with an "!" Our plant has been occasionally reported as an introrluction into the Old World Tropies.
Stemodia parviflora Ait., Mort. Kew., ed. II. 4:52. 1812. "N゙at. of Gouth America. Cult. 1759 by Mr. Ph. Miller." Miller's plant was derived from Houston who collected at Cartagena in Colombia as well as in Mexico and the Wrest Indies. The original introduction of Ifouston, published as Erimus verticillatus Mill., Gard. Dict. n. 5. 1768, differs so essentially from the accomnt of Aiton's plant, especially in denoting a plant with glabrous stems and leaves, as to lead to the supposition that the latter was described from specimens of a different origin.
Stemodia arenaria H. B. K., Nov. (ien. et S'p. 2:357. pl. 175. 1818. "Crescit in ripa inundata fluminis Magdalenae prope Banco et El Peñon inter Mompox et Morales."
Lendneria humilis (Solander) Minod in Bull. Soe. Bot. Genéve, ser. II. 10: 240. 191 S .

Corolla-tube yellowish, lobes blue-violet, tube and lobes, especially on the posterior side, with deep violet lines. Seen also (Pennell 4709) with corolla very pale, a distinct color-form.

Moist soil, river-banks and waste-land, frequently a weed near habitations, at altitudes below 200 meters, Tropical zone, along the

Rio Sinu in Bolitar, the Rio Cauca in Valle, and the Rio Don Diego in Magdalena; doubtless wide-spread elsewhere. Ranges from Mexico to Argentina and in the West Indies.

Bolívar. Boca Verle, on Rio Sinu (gravelly river-bank, alt. $90-120 \mathrm{~m}$. .), Pemell 4197, (field along river, alt. 100-200 m.), Pennell 4567; Frasquillo, on Rio Sinu (grove along river in village, alt. $90-120 \mathrm{~m}$.), Pennell 4610 ; Vilches, on Rio Sinu (shated yard, alt. $20-50 \mathrm{~m}$.$) , Pennell 4708$ [corolla bhue], 4709 [corolla pale-blue], 4710 [corolla intermediate in color between 4708 and 4709].

Magdalena. Open sandy ground by the Rio Don Diego, near the sea, H. H. Smith 2730 (Y).

Valle. La Paila, I. F. Holton 580 (H, I').
2. Lendneria angulata (Oersted) Pennell, comb. nov.

Stemodia angulata Oersted in Kjoeb. Vidensk. Meddel. 1853: 22. 1853.
"I Naerheden af Cartago i Costa-Rica."
Certainly distinct from Stemodia jorullensis H. B. K., Nov. Gen. et Sp. 2: 358. 1818, which is described as $1-1 \frac{1}{2}$ feet tall and with leaves in threes, incised or doubly serrate.

Moist soil in shade, river-banks and waste land, at altitudes below 600 meters, Tropical zone, along the Rio Sinu in Bolívar, and in Magdalena; doubtless wide-spread in northern Colombia. Ranges northward to Guatemala.

Bolívar. Frasquillo, on Rio Sinu (shady soil along river, alt. 70-100 m.), Pennell 4192.

Magdalena. Minca (damp door-yard, in crevices of bricks, alt. 600 m.$)$, H. H. Smith 1328 (C, H, U, Y).
13. VANDELLIA Browne.

Tandellia Browne; L., Mant. Il. 1: 12, S9. 1767.
Type species, T . diffusa L.

1. Vandellia diffusa $L$.

Fandellia diffusa L., Mant. Pl. 1:89. 1767. "Habitat in Insulas. Thomae. D. D. Browne." Description inaceurate in describing the ealyx as quadripartite (but with upper lobe subbifil), its lobes equal, the lower lip of corolla as bilobed, and the capsules as one-celled, but is nevertheless certified by Bentham, DC. Prod. 10: 416. 1846 as being the plant here considered.
Lindermia diffusa (L.) Wettst. in N゙at. Pflanzenfam. 43b: 79. 1891.
Pyxidaria diffusa (L.) Kimtze, Rev. Gen.: 464. 1591.
Moist open soil, along trails and in towns, at altitucles berow 1500 meters, Tropical zone; widely distributed through tropieal America, in situations to suggest its having been maturalized. Ap-
parently introduced from the Ethiopian Region of the Old Work Tropics.

Cundinamarca. Icononzo (along trail in forest, alt. 1400-1800 m.) , Pennell 2871.

Magdalena. River Don Diego (open sandy wet ground near sea, alt. 0-10 m.) , H. H. Smith 2729 (H, Y).

Meta. Villavicencio (moist depression in llano, e. of, alt. 450 m.), Pennell 1466 ; (streets of town, alt. 525 m .), Pennell 1575 , (gravel along Rio Guatiquia, alt. 500 m .), Pennell 1590.

Tolima. Mariquita (prairie, (lepression, alt. 250-300 m.), Pennell 3639 .

## 14. TORENIA Linné.

Torcníи L., Sp. Pl. 619. 1753.
Type species, T. asiatica L., of India.
Bracts leaf-like, the upper smaller; inflorescence an elongate raceme. Pedicels $20-25 \mathrm{~mm}$. long. Sepals $4-5 \mathrm{~mm}$. long. Corolla $5-7$ mm. long, its posterior lobes united $\frac{2}{3}-\frac{4}{5}$ length and equaling the anterior; anterior lobes widely horizontally spreading; within glabrous, bIue on posterior lobes and distally on anterior lobes, these yellowish-white proximally with an arch of deepviolet at the base of the anterior lobes. Capsule $3-4 \mathrm{~mm}$. long, obtuse and mucronate. Leaves ovate, $1-1.5 \mathrm{~cm}$. long. Plant repent-ascending. 1 . T. crustacea.
Bracts minute, subulate; inflorescence congested at the nodes. Pedicels $10-15 \mathrm{~mm}$. long. Sepals $9-11 \mathrm{~mm}$. long. Corolla S-9 mm . long, its posterior lobes united nearly to apex and shorter than the anterior lobes: antero-lateral lobes placed sagitally, the anterior lobe horizontal and longest; within pubescent over bases of anterior lobes, white or on anterior side somewhat blue-violet. Capsule $\delta-10 \mathrm{~mm}$. long, acute. Leaves lanceolate-ovate, $1.2-2.5 \mathrm{~cm}$. long. Plant ascendingerect.
Corolla on anterior lobe bluc-violet, and on antero-laterals with blue-violet streaks. Leaves dentate. 2. T. thouarsii.

- Corolla white throughout. Leaves crenate-serrate.

2a. T. thouarsii nivea.

1. Torenia crustacea (L.) Cham, \& Schlecht.

Capraria crustacea L., Mant. s7. 1767. "Habitat in Amboina; China." Amboina plant, described by Rumphius, Herb. Amb. 5: 461. pl. 170 f. 3, verified by Dr. E. D. Merrill, Interp. Rumph. Herb. Amb. 468, as the plant here considered.
Toremia crustaeca (L.) C. \& s. in Linnaea 2:570. 1827.
Tandellia crustacea (L.) Benth., Scroph. Ind. 35. 1835.
Linderria crustacea (L.) F. Muell., Census 97. 1882.
I!!xidaria crustacea (L.) Kuntze, Rev. Gen. 2: 464. 1891.

Moist open soil, along trails and in towns, at altitudes of 500 to 600 meters, Tropical zone; introduced from Oriental Region of Old World Tropies.

Cundinamarea. Melgar (moist loam, open slope, along trail, alt. $500-600 \mathrm{~m}$. ), Pemell 2878,2879 [form smaller throughout].

Meta. Villavicencio (streets and yards, alt. 525 m .), Pennell 1527.
2. Torenia thouarsii (Cham \& Schlecht.) Kuntze.

Nortenia thouarsii Cham. \& 'schlecht. in Limnaea 3: 18. 1828. "In Brasiliae provincia Rio Janeiro in uliginosis post Botafoginam . . . legit Beyrich, in insulis Madagascaria et Mauritii Depetit Thouars.
Willd. Hb. n. 11,547 (planta madagascariensis a Thouarsii comm.)."
Torenia nortenia Steud., Nom., ed. 1I. 2: 692. 1841.
Torenia thouarsii (Cham. \& Schlecht.) Kuntze, Rev. Gen. 468. 1891.
This has usually been known as Torenia parviflora Ham.
Moist banks, in elge of forest, at an altitude of 500 meters, Tropjeal zone; wide-spread through lowhand tropical South America, growing as if a native plant. However, as this American plant appears to be indistinguishable from the plant of the Old World, and the remaining species of the genus are all Palactropic it appears nearly certain that our plant is an introduction. From the Ethiopian and Oriental regions of the Old World Tropics.

Meta. Villavicencio (moist shaded bank near Rio Guatiquia, alt. 500 m .), Pennell 1528, (moist meadow and swamp in forest, near Rio Guatiquia, alt. 500 m. ), Pennell 1560.

2a. Torenia thouarsii nivea Pemell, val' nov.
Leaves smaller, $1.2-1.5 \mathrm{~cm}$. long, crenate-serrate, rather than dentate. Corolla white throughout. Probably a color-form identical with plants of the Old World Tropies and introduced therefrom.

Type, wet sand along Rio Guatiquia, altitude 500 meters, collected in flower and fruit August 30, 1917, F. W. Pemell 1531. in herbarimm New York Botanical Ciarden.
15. ILYSANTHES Rafinesque.

Ilysanthes Raf., Anm. Nat. 13. 1820.
Type species, I. mparia Raf., of the Ohio.

1. Ilysanthes inaequalis (Walt.) Pemmell.

Gratiola inaequalis. Walt.. Fl. Carol. 61. 17SS. [South Carolina.]
Ilysanthes inaequalis (Walt.) Pennell in Torreya 19: 149. 1919.
Wet soil near streans, at an altitude little above sea-level, Tropical zone, in Magdalena. Probably wide-spread, and ako in the

Subtropical and Temperate zones. Through lowland South America south to Paraguay; ranges northwarl into Temperate North America.

Magdalena. Rio Buritaca (observed only in a swampy place, bank of R. B., close to the sea-50 m. e. of Santa Marta), H. H. Smith 1329 (C, H, U, Y).
16. SCHISTOPHRAGMA Bentham.

Schistophragma Benth. in DC. Prod. 10: 392. 1846
Type species, S. pusilla Benth.

1. Schistophragma pusilla Benth.

Schistophragma pusilla Benth. in DC. Prorl. 10: 392. 1S46. "In Mexico pr. Tehuantepec (Alaman!) . . . (v. s. comm. a. cl. DC.)." Description from a dwarf plant, which explains the variety following.
Schistophragma pusilla major Benth., 1. c. 392. 1846. "In campis aridis pr. Sta Martha (Purdie!) . . (v. in herb. Hook.)."
Conober preilla (Benth.) B. \& H. Gen. 2: 951. 1876.
Open dry, stony soil, at altitudes below 300 meters, Tropical zone, in Magdalena, and doubtless spread across northern Colombia. Ranges northward to Mexico.

Magdalena. Bonda (alt. 60 m .), H. H. Smith 1970 (C, H, U, Y).
["Rare on open, stony and dry ground, hillsides or banks below 1000 f."]

## 17. MIMULUS Linné.

Mimulus L., Sp. Pl. 634. 1753.
Type species, M. ringens L., of Virginia.

1. Mimulus glabratus H. B. K.

Mimulus glabratus H. B. İ., Nov. Gen. et Sp. 2: 370. 1S1S. "Crescit prope Moran Mexicanorum, alt. 1330 hex. $[=2527 \mathrm{~m}$.]. Varies, even in same colony, with leaves obviously petioled or nearly sessile, and with all parts of the plant, including the flower, relatively large or relatively small. The latter state is doubtless the basis of M. andicola H. B. Ǩ. from Ecuador.

Corolla lemon-yellow, within throat on anterior side golden and spotted with many red-brown spots.

Along streams, springheads, swales and brooks, at altitudes of 2300 to 3200 meters, Temperate zone, ascending as a dwarfed plant to Paramo, and descending rarely into the Subtropical zone, both slopes of Cordillera Orientál, in C'undinamarca. Doubtless throughout this and the other Cordilleras. Ranges through the Andes southward to Bolivia and with many breaks, through the mountains of Central America and Mexico, northward to Colorado and the plains of North Dakota.

Cundinamarea. Bogotá (ditch in field near Rio San Cristobal, alt. 2800 m.), Pemell 2194, 2279, (wet open spring-head, alt. 27002800 m .), Pennell 2296; Chipaque (wet roadside, alt. 2300-2400 m.), Pennell 1326; Sibaté (wet roadside, alt. 2620 m .), Pennell 2387; Zipaquirá (springhead in meadow, alt. 2650 m .), Pennell 2533; Mt. Chuscal, west of Zipaquirá (swale on paramo, alt. $3100-3200 \mathrm{~m}$.), Pennell 2600; (iuasca (alt. 2700 m .), Triana.
18. LEUCOCARPUS D. Don.

Lencocarpus D. Don in Sweet. Brit. Flow. Gard. II. pl. 124. 1831.
Type species, Conobea alata Craham, of Mexico.

1. Leucocarpus perfoliatus (H. B. K.) Benth.

Mimulus perfoliatus H. B. K., Nov. Cien. et Sp. 2:371. 1818. "Crescit in Regno Novo-Granatensi. . . . A Mutisio cum Bonplandio communicatus." Described as with leaves connate, but this appearance has misled subsequent workers, including Benthom in his characterization of Leucocarpus. The plant actually has opposite cordate-clasping leaves.
Lencocarpus perfoliatus (H. B. K.) Benth. in DC. Prod. 10: 335. 1846.
This species has usually been called L. alatus (Graham) D. Don, hased upon Conobed alata Ciraham (1830) of Mexico, a plant more carefully described and under an appropriate name. The character of length of calyx-lobes, used by Bentham, is of no significance, the lobes varying in the same specimens and usually seeming relatively longer when in the bud.

Corolla yellow throughout, with two pubescent ridges within throat anteriorly. Plant shrubby below, from a peremial root sending up a clump of many long densely floriferous stems. Fruit fleshy, chalky-white.

Along stream banks in forest, at altitudes of 1350 to 2000 meters, probably from all slopes of the Cordilleras and also on the Sierra Nevada de Santa Marta. Subtropical zone. Ranges from Mexico to Bolivia. The seeds are doubtless carried by birds.

Huila. C'ordillera Orientál, east of Neiva (along rocky stream in forest, alt. $1500-2000 \mathrm{~m}$.), Rusly \& Pennell 600.

Magdalena. Las Nubes (damp clearing near stream, alt. 1350 m .), H. H. smith $1405\left(\mathrm{C}^{\prime}, \mathrm{H}, \mathrm{U}, \mathrm{Y}^{\prime}\right)$.

Tolima (?). "Forets de Quindio" (2200 m.), J. Triana (U).
Valle. Jicaramata, "circum flumen Toluam", I. F. Holton 578.
19. ALONSOA Ruiz and Pavon.

Alomsoar R. \& P', Syst. Yex. Fl. Peruv. et Chil. 150. 179s.
Type species, A. camlialata R. \& P., of Pern.
Leaves coarsely serrate or dentate, the largest $5-6 \mathrm{~cm}$. long. Corolla 10 mm . long. Filaments thick. Anthers infundibuliform-
explanate. ('apsule 9-10 mm. long, narowly ovoid, conspicuously attenuate seods hack, the furows nearly as wide as the intervening ridges. stem above, perlieels and ealyees usually ghabous, rarely somewhat glamdular-pubescent.

> 1. A meridiomalis.

Leaves uniformly serrate, the largest 8-9 cm. long. (orolla 5-6 mm. long. Filaments thin. Anthers widely and flatly explanate. Capsule 6 mm. long, promiclal, shortly attemate. seeds dark-brown, the furrows much narrower than the interrening ridges. Stem above, pedicels and calyoes glamdularpubeseent, densely pubeserent at the bases of the petioles.
2. A. serrutu.

1. Alonsoa meridionalis (L. f.) Kuntze.

Scrophularin meridionalis L. f., Ruppl. 290. 17®1. "Habitat in Nova Ciranada. D. Mutis." Type probably from Bogotí.
Hemimeris mutisii 11. B. K.. Nor. Gen. et sip. 2: 376. 1817. "Cressit prope Santa Fe de Begota [Humboldt \& Bonpland].'
Alonson mutisio (H. B. K.) (i. Don, (ien. Syst. 4:513. 183S.
Alonsoa mordimalis (L. f.) Kuntze, Rev. Gen. 2: 4.7. 1891. The plant of Venezuela noted ! y Kuntze, and described as so variable in color, is A. purvillare (II. 13. K.) (i. Don.

Corolla uniformly dull-orange. Filaments dull-yellow. Anthers yellow.

Waysides and grassy slopes, around the margins of the sabana of Bogotá, on the western slope of the Cordillera Oriental; at altitudes of 2600 to 2900 meters. Temperate zone.

Cundinamarea. Zipacuirá, Pemell 2.56t (Y); Bogotá, Holton ( $)^{*}$ ), Pemnell 1309 ( Y ), Pemell 2099 ( Y ), Pemnell 2332 ( Y): (Platean de Bogotá), J. Triana (I) ; El Peñon, s. w. of silaté, Pemnell 2410 ( Y ), [perlicels umusually glandular-pubescent].
2. Alonsoa serrata Pennell, sp. nov.

Stem 6 dm. tall, four-angled, angles slightly winged, stem glabrous below, glandular pubescent above. Leares opposite, 8-9 cm. long, the blates ovate, uniformly serrate, slightly paler beneath, glabrous, on petioles.less than one-half length of bade. Racemes indefinite. temmal on the stem and branches; bracts sessile, the lowermost orate and somewhat serrate, nearly 2 em . long, the upper lanecolate: smaller. Perlicels sprearling, $10-11 \mathrm{~mm}$. long, glanhmar-pubescent. sepals oblong-lanceolate, acute, glandular-pubescent, $3-4$ mon. long. Corolla $5-6 \mathrm{~mm}$. long. Filaments slender. Anthers widely explanate. Style $2-2.5 \mathrm{~mm}$. long. Stigma capitate. Capsule 6 mm . long, pyramidal, sightly attenuate to an obtuse apex. glaprous. Seeds . $8-.9 \mathrm{~mm}$. long, eylindric, dark-brown, with about 8 rounded longitudinal ridges separated by deep narrow furrows; the whole surface fincly alveolate-reticulate.

Type, santa Marta Mountains, collected in flower and fruit about April, 1899, H. H. Smith 1497 ; in Herb. New York Botanical Garden. The note for 1497 is stated by Smith to have been lost, but he tells us that the plant is "probably from Valparaiso, 4500 ft . [ $=1350 \mathrm{~m}$.]" altitude. I suspect that this plant came from much higher than this.

Rusby has compared this with Purdie's plant from Santa Marta and has written on our sheet "Purdie's plants are more hairy than this," an excellent confirmation of Purdie's specimens cited in DC. Prod. 10. 250: being this same species.

Magdalena. Vaparaiso, Santa Marta Mts., H. H. smith 1497 (C, H, U, Y).
20. FAGELIA schwencke.

Fagelia Schwencke, [in Yerh. Bataafsh. Genootsch. Rotterdam 1: 474. pl. 13. 1774, generic diagnosis only $;$ J. F. Cimel., Syst. Nat. 40.1791.
Calceoluria L., in Kongl. Vetensk. Acad. Handl. 31: 288, 1770, not Calceolaria Fabr., Enum. Meth. Pl. Host. Med. Helmstad. ed. II. 37. 1763.

Type species, F. flavicans J. F. Cimel., probably from Ecuador. Anther-sacs proximate on the simple filament, both alike and fertile.

Anterior lip of corolla ( = sac) not over twice width of posterior
lip ( $=$ hood). Leaves entire to coarsely serrate-dentate, the
blades at times triangular. [Cheiloncos Kranzl.]
Capsule ovate or broader, no longer than broad, thick-walled, shorter than or but slightly exceeding the sepals. Corolla $8-25 \mathrm{~mm}$. long, with the posterior lip broadly truncate to notehed. Filaments stout, not or but little longer than the oblong anthers. Inflorescence corymb-like, both secondary branches developed, and at least some of the lateral flowers without bracts.
Shombs. Glutinous above, on stems, pedicels, sepals and leaves. Leaf-hlades lanceolate, entire to slightly serrate, shortly petiolate. Corolla appearing broader than long because the sac is pressed tightly against hood; orifices to lips broad and rounded, so sac is shallow.
Calyx 4-6 mm. long. Leaves glatucous beneath. Plant less glutinous. Branches of the inflorescence once branched, so that flowers occur in fours. 1. $F$. microbefaria. Calyx $2-3 \mathrm{~mm}$. long. Leaves slightly paler bencath. Plants very elutinous. Branches of the inflorescence irregubarly twice branched, so that flowers occur usually in clusters of more than four. 2. F. finticost.
Herbaceous throughout. Not glutinons, but often with stalked glands. Leaf-blades lanceolate to broadly triangular, serrate to doubly dentate. Corolla evidently elongated sagittally, with sac wasully not pressed against hood and so
with its orifice evident; orifice to hood narrow, or truncate; to sac trumeate, with sac leep.
Calyx 4-5 mom. long, shorter than or about equating the capsule. Leaves sessile. Stem densely glambular-pubescent.
Leaves narrowed at base, elliptic-lanceolate, dentate, on both surfaces rensely ferruginous-pubescent with darkjointed hairs. Stem below densely, above sparsely pubescent. Inflorescence of a few wide-spreating branches. Corolla $8-10 \mathrm{~mm}$. long. Anthers about 1.5 mm . long. $3 . F$. lehmanniana.

Leaves rounded-clasping at base, lanceolate, crenate-serrate (with spinulose serrations), above glabrate, beneath paler and fincly pubescent. Stem below apparently glabrate, above pubescent with short gland-tipped hairs. Corolla about $12-15 \mathrm{~mm}$. long. Anthers about 2.5 mm . long. 4. F. crenata.

Calyx $7-12 \mathrm{~mm}$. long, longer than the capsule. Leaves petioled, petiole at times broadly winged.
Anther-sacs stiffly divaricate (so anthers straight), opening throughout or from distal apices. Capsule with gland-tipped hairs. Corolla slightly pubescent within at base. Style $1.5-4 \mathrm{~mm}$. long. Wing of petiole less than one-third width of blade or wantimg.
Leaves 3-5 mm. long, the petioles wingless.
Stem pubescent throughout with glandless hairs. Calyx-lobes obtuse to acute. Corolla 15-20 mm. Jong. Style 1.5 mm . long. Leaves $3-4 \mathrm{~cm}$. long, obtuse to acutish, simply or somewhat doubly crenate-serrate, beneath pale and densely pubescent. Secondary branches of the inflorescence not or scarcely branched.
5. F. saxatilis.

Stem pubescent distally with gland-tipped hairs. Calyx-lobes acuminate. Corolla about 10 mm . long. Style 3 mm . long. Leaves $4-5 \mathrm{~cm}$. long, acuminate, irregularly somewhat doubly serrate witl acute teeth, beneath lighter green and somewhat pubescent. Secondary branches of the inflorescence repeatedly branched.
6. F. bogotensis.

Leaves $11-17 \mathrm{~cm}$. long, the petioles winged proximally or throughout, the wing comnate with that of opposite leaf.
Petioles broadly winged proximally, distally very narrowty margined; leaf-blades broader than long, irregularly shallowly crenate-dentate. Corolla with posterior lobes not united to apex, so leaving a deep narrow orifice into hood. Anther-sacs broadly contiguous. 7. F. trilobata.

Petioles nearly uniformly winged throughout; leafblates longer than broad, sharply doubly sematetentate. Corolla with posterior lobes united nearly or quite to apex, so leaving slight if any metlian orifice into hood. Anther-sacs narrowly contiguous.
Corolla $8-10 \mathrm{~mm}$. long; hood with slight median orifice. Anthers 2 mm . long, the sacs opening throughout. Style $1.5-1.8 \mathrm{~mm}$. long. Capsule $3-1 \mathrm{~mm}$. long. Winged petiole usually 12-18 mmm. wide, and somewhat dentate. Plant pubescent above with some gland-tipped hairs.
8. F. alata.

Corolla 13-15 mm. long; hood truncate, without apical median orifice. Anthers 3.5 mm. long, the saes opening from distal apex but not throughout. Style 4 mm . long. (apsule $5-6$ mm. long. Winged petiole \& 13 mm . wide, entire. Plant pubescent throughout with glandless hairs.
9. F. nevadensis.

Anther-sacs curved (so anther horseshoeshaped), opening from proximal apices partially or throughout. ('apsule pubescent with glandles hairs. Corolla glabrous within at base. Style 5 mm . long. Wing of petiole more than one-third width of blade.
Leaves sharply dentate, above glabrate, bencath pater and finely pubescent. Stem ghabrate below, somewhat hirsute above. ('alyx $8-10 \mathrm{~mm}$. long.
10. F. tolimensis.

Leaves obtusely dentate, above pubesecnt, bencath softly pubescent to tomentose. Sitem hispid below, hirsutepubescent above. Calyx 9-11 mm. long. 11. $F$. perfolinta.

Capsule narrowly promidal, longer than broad, thin-walled, nearly twice as long as the sepals. Corolla $5-6 \mathrm{~mm}$. long, nearly globose, with posterior lip attenuate to a shallowty notehed apes. Filaments slender, several times longer than the hemispheric anthers. Infloreserence appearing as if with flowers axillary, normally one secondary branch developing repeatedly through an indefinite number of nodes.

> 12. F. ovata.

Anther-xace separated on two arms of the connective (filament wanting or very short), dissimilar, the anterior tending to become sterile. Anterior lip two to four times the width of the posterior. Leaves pinnately lobed. [Afoseros Benth.]
Anterior anther-sac fertile, brown or vellowish. Style 66.8 mm . long. (alyx $3-5$ mm. long. Pedicels and stems above pubescent with gland-tipped hatirs.

Leaves $2-4$ em. long. the hates with one or two partial pairs of segments, the sinuses of which are narmo and reach only one-half to two-thirds the distane to the midrit). Calys $3+\mathrm{mm}$. long. 13. F. micrantha.
Leares 210 (m. long, the bates with usually three pairs of segments, the proximal sinuses of which are usually broad and reach nearly to the midrib) Calyx $4-5$ mm. long.
14. F. radiculoides.

Anterior anther-sac sterile, yollow or orange-yellow. Style $1-2$ mm. long. Calyx 59 mm . long.

Anterior anther-sac light-yellow. (orolla $5-7 \mathrm{~mm}$. long. Leafblades with shallow cremately-toothed Iobes. Distally finely pubescent with glandless hairs. 15 . F. crenatiloba.
Anterior anther-sac orange-yellow. Corolla $7-21 \mathrm{~mm}$. long. Leaf-blades with deep sharply serrate lobes.
Stems above and pedicels pubeseent with few-celled glandtipped hairs. Blades of lowermost leaves with shallow lobes. Base of petioles very narrowly comate. Calyslobes slightly serrate, obvionsly ciliate with gland-tipped hairs. Style 1-1.3 mm. long. Capsule pubescent with short gland-tipped hairs. $\quad 16 . F$. chelidonioides. Stems above and perliechs hirsute with many-celled darkjointed hairs. Blades of all leaves pimatisect nearly to the midrib. Base of petioles ohviously comnate. Calyx-lobes decidedly semate, hirsute on the back and margin. Style 1.82 mm . long. Capsule pubescent with glandless (or in pimatisecto with interspersed glandtipped) hairs.
Corolla 15-21 mm. long. Calyx-lobes ovate, acute. Capsule 6 mm . long. Leaves $5-8 \mathrm{~cm}$. long, $3-5$ em. wide. 17. F. scalaris.

Corolla S-10 mm. lomg. Calyx-lobes lanceolate or narrowly ovate, acuminate. Cabsule 4 mm . long. Leases $3-5.5 \mathrm{~cm}$. long, 2-3 cm. wide. 18. F. pimatisecta.

## 1. Fagelia microbefaria (Kränzl.) Pennell, comb. nov.

Colcolaria microbeforia Kranzl, in Amn. k. k. N゙aturh. Hofm. Wien 22: 193. 1907. "Kolumbien, Ostkordilleren, Provinz Pamplona, zwischen Caban und Las Vetas in 3300 m ü. d. M1. (Linden Nr. 730!)."

Stem 1-2 meters tall, much branched, woody, with grayish-brown bark, the twigs reddish- or yellowish brown, glutinous and fincly pubeseent. Leaves 6-8 cm . Iong, the blates lanceolate, aruminate, serrate to entire, at times slighty revolute, $12-17 \mathrm{~mm}$. wide; each narrowed to a petiole $5-10 \mathrm{~mm}$. long; blades above green, pubescent on the midrib or pulverulent or quite glabrous, bencath glaucous. sparsely puberulent to glabrous, reticulate; somewhat glutinous on upper surface. Corymb bractles, the secondary branches shighty
if at all branched, so that the infloreseence simulates a stalked fourflowered umbel. Peduncle and pedicels somewhat glutinous and pubescent with brown hairs. Calyx 4-6 mm. long, the lobes tri-angular-ovate, obtusish to acute, entire, puberulent, glutinous. Corolla: posterior lip $6-7 \mathrm{~mm}$. long, 79 mm . wide, with broad rounded orifice; anterior lip 12-13 mm. long, 8-10 mm . wide, with rounded orfifee opening into two-thirds or more of its length; sac pressed against hood so that corolla appears broader than long; externally finely puberulent, within glandular-pubescent proximally, especially about bases of filaments. Filaments stout, less than 1 mm . long. Anther 2.5 mm . long, brown, the walls thin, the sacs contiguous, opening throughout and eventually through the thin connective. Style 3 mm . long. Capsule 5 mm . long, broadly ovate, acute, puberulent. Seeds .4-.5 mm, long, oblong, obtuse, ridged, red brown.

Thickets, allong streams and at edge of forest, also in thicketislands in Paramo, at altitudes of 2800 to 3300 meters; Temperate zone of western slope of Cordillera Oriental, from Santander to Cundinamarea.

Cundinamarca. Rio Frio, west of Zipaquirá (along streambanks), Pennell 2570, 2605; Mt. Chuscal, west of Zipaquirá (thicketisland in paramo), Pennell 2584; Sibaté (bushy hillsides southwest of), Pennell 2389.

## 2. Fagelia fruticosa Pennell, sp. nov.

Stem 1-2 meters tall, much lranched, woody, with grayish bark, the twigs reddish and glutinous-puberulent or slightly pubescent. Leaves $5-6 \mathrm{~cm}$. long, the blades lanceolate, acuminate, slightly serrulate to entire, at times slightly revolute, 12-13 mm. wide; each narrowed to a petiole $4-7 \mathrm{~mm}$. long; blades above dark-green and puberulent, beneath paler and reticulate, on both surfaces strongly glutinous. Corymb bractless, the secondary branches soon branching so as to simulate an umbel. Peduncle and pedicels glutinous and somewhat pubescent with brown hairs. Calyx 2-3 mm . long, the lobes broadly ovate, acute, entire, puberulent, glutinous. Corolla: posterior lip $6-7 \mathrm{~mm}$. long, $7-8 \mathrm{~mm}$. wide, with broad rounded orifice; the anterior lip $12-13 \mathrm{~mm}$. long, 8-9 mm. wide, with rounded orifice opening into two-thirds or more of its length; sate pressed against hood so that corolla appears broader than long; externally finely puberulent, within pubescent proximally, especially near the filaments. Filaments stout, less than 1 mm . long. An-
thers nearly 2 mm . long, brown, the walls thin, the sacs contiguous, opening throughout and through connective. Style 3 mm . long. Capsule $\overline{5} \mathrm{~mm}$. long, broadly pyramidal, acute, glandular-puberulent. Seeds.

Plant more ghutinous and drying blacker than Fagelia microbefaria.

Type, forest at margin of Paramo de Ruiz, Tolima, altitude 32003500 meters, collected in flower December 16, 1917, F. W. Pennell 2998; in Herb. New York Botanical Carden.

Shrub belt about and below paramo, Temperate zone, eastern slope of the Cordillera Centrál, in Tolima.
3. Fagelia lehmanniana (Kriüzl.) Pennell, comb. nov.

C'alceolaria lehmammiuna Kränzl. in Fedde, Rep. Nov. Spee. 1: 100. 1905. "Colmmbien: Dpto. Canca; an feuchten Orten an den oberen Ciehängen des Vulcan de Sotará und auf dem Paramo de Barbillas in 3000 bis 3300 m ü. d. M. (F. C. Lehmam, no. 6134!)" ; not C. lchmammii (Hieron) Hieron. in Engl. Bot. Jahrb. 20. Beibl. 49:57. 1894.
At altitudes of 2800 to 3300 meters, Temperate Zone, southern Cordillera Centrál, from Canca to Pasto.

Pasto. Puruquai, J. Triana in 1851-7 ( Y ).
4. Fagelia crenata (Lam.) Kuntze.

Calceolaria crenatu Lam., Eneyc. Meth., Bot. 1:556. 1785. "Trouvée au l'érou par M. Joseph de Jussieu (v. s. in herb. Juss.)." Jussieu collected mainly in Eemador.
Fagelia crerata (Lam.) Kintze, Rev. Gen. 495. 1891.
At an altitude of 3000 meters, Temperate Zone, southern Cordillera Centrál, from Pasto to Ecuador.

Cauca. Valle de Quintero above Pitaio, R. Palo basin, Central Cordillera, H. Pittier 1425 (U).

Pasto. "Tuquerres et Puruquai," J. Triana in 1851-7. "Judabolsa."
5. Fagelia saxatilis (H. B. K.) Kuntze.

Calcolaria saxatilis H. B. K., Nov. (ien. et Sp. 2: 382. 1817. "Crescit locis saxosis montis Chimborazo in summa planitie Sisgun, alt. 1750 hex. [ = 3325 meters] . . . \{Humboldt \& Bompland]."
Fagelia saxatilis (H. B. I.) Kuntze, Rev. Gen. 460. 1891.
Stem about 1 meter tall, much branched, herbaceous, green or reddish, pubescent with white hairs, densely so above. Leaves 3-4 cm. long, the blades ovate, cordate or truncate at base, obtuse, each narrowed to a petiole $5-10 \mathrm{~mm}$. long; blades above green, finely pubescent, beneath pale and densely pubescent, with some sessile glands; petiole white-lanate. Corymb bracted at base, its secondary branches usually quite simple. Pedicels lanose with glandless white
hairs. Calyx 8-14 mm. long, the lobes ovate, obtuse to acute, obscurely lobed, lanose-pubescent. Corolla: the posterior lip 3-4 mm. long the two lobes united nearly to apex (so strongly hooded with shatlow metian orifice); anterior lip $20-25 \mathrm{~mm}$. long, 10-12 mm. wide, with orifice opening about one-third of its length; sace upeurving tow: hood, the orifice opening externally; externally glandularpruinose, within slighty pubescent at base on anterior side. Filaments 2 mm . long. Anthers 2 mm . long, brown, the walls thick, the sace broadly contiguous, opening throughout and through the thin connective. Style 1.5 mm . long. ('apsule $5-6 \mathrm{~mm}$. long, broadly globose-pyramidal, obtuse, thick-walled, puberulent with gland-tipped hairs. Seeds .5 mm . long, oblong, distally acute, finely ridged, brown.

Thickets, along streams and at edge of forest, at altitudes of 2700 to 3300 meters; Temperate zone of eastern slope of Cordillera Centrál, from Tolima to Ecuador. C'ollected also above Bogotá, where probably an escape.

Tolinat. "Rosalito," near Paramo de Ruiz (along stream in meadow), Pemnell 2990. Also recorded by Kränzlin from Paramo de Ruiz, Purdie.

Cundinamarea. Guadalupe, above Bogotá, Bro. Ariste-Joseph A230 ([).
6. Fagelia bogotensis Pennell, sp. now.

Stem probably about 1 meter tall, branched, herbaceous, pubescent with white hairs, distally these gland-tipped. Leaves $4-5 \mathrm{~cm}$. long, the blates trimgular ovate, cordate, acuminate, irregularly dentate with acute lobes $3-4 \mathrm{~cm}$. long, 2.5-3 (cm. wide; cath on a wingless petiole $10-20 \mathrm{~mm}$. long; blades above green, pubeseent, beneath lighter green and moderately pubescent, without sessile giands: petiole pubeseent, some hairs gland-tipped. Corymb, leafybracted at hase, its secondary branches becoming much branched. Peduncles and pedicels hirsute with gland-tipped hairs. Calys 10-12 mm, long, the lobes ovate, acuminate, entire, hirsute-pubescent. ('orolla: the posterior lip 4 mom. long, the two lobes united nearly to apex (so strongly hooded, with shallow median orifice): anterion lip about 10 mm . long, with orifice opening less than $\frac{1}{2}$ of length; sate upeurving toward hood, the orifice opening extemally, externally glandular-pruinose, within somewhat pubescent at base. Filaments $1 . \overline{5}$ mm. long. Anthers 2.5 mm. long, brown, the walls thick, the sace broadly contiguous, opening from proximal end,
eventually to the distal apex. Style 3 mom. Iong. ('apsule $6-8$ mm . long, ureeolate pyramidal, arute, thick walled, pubescent with short gland-tipped hairs. seeds . 3 mm. long, oblong, mucronately acute at ach end, ridged, brown

Trpe, Bogota, Cundinamarca, alt. 2600 moters, collected in 18511857 by J. Triana; in Herb. Colmmbia Cniversity at The New York Botanical Garden.

At an altitude of slightly over 2600 meters, Temperate zone of western slope of Cordillera Orientál, in Cundinamarea.

7, Fagelia trilobata (Hemsl.) Rusby.
Calcoolariatrilobata Hemsl., Biol. Centr. Am., Bot. 2: 439. 18s1-2. "Guatemala, Volean de Fuego, 7000 to 10,000 feet (Godman \& Salvin, 239). Colombia. Hb. Kew. The deseription was mainly drawn up from Hotton's [ $=$ Holton's] Colombian sperimen, $n$. 575. ." Speries an aggregate, and to be typified by I. F. Holton 575. An isotype of this, in Herb. Columbia Cniversity at The New York Botanical Garden is labeled "Rio Arzobispo, in montibus juxta Bogotam, legit . . 23 Oct. 18ise." A redescription, from this specimen, is given below.
Fagtia tri!obata (Hemsl.) Rushy in Mem. Torr. Bot. Club 6: 93. 1896. As to synonomy only.

Stem probably ahout 1 meter tall, branched, herbaceons, pubescent with white hairs, distally these gland-tipped. Leaves 15-17 cm . long, the blades triangular, slightly three-lobed, cordate, tapering to an acute tip, irregularly crenate-dentate, with callous-tipped lobules, 9-10 cm. long, 11-12 cm. wide, each on a petiole $6-7 \mathrm{~cm}$. long its wing distally pery narrow, proximally expanding to $3-4$ cm. wide and commate with that of opposing leaf; above green, pubescent, bencath pale-green and slightly pubescent, more so on the veins, narrow-winged portion of petiole pubescent, some hairs with glandular fips. (orymb leafy-bracted at base, its secondary branches much branched. Peduncles and pedicels hirsute with gland-tipped hairs. (alyx 12 mum. long, the lobes ovate, acuminate, obscurely lobate, hirsute pubescent. Corolla: the posterior lip $5-6 \mathrm{~mm}$. long, the two lobes not united to apex, so not hooded, with deep, narrow median orifice; anterior lip $10-12 \mathrm{~mm}$. long, with orifice opening much less than one-half of length; sac upeurving toward hood; externally glandular-pruinose, within somewhat pubescent at base. Filaments 2 mm . long, widening distally. Anthers 3.5 mm . ${ }^{\text {ong }}$, brown or yollowish, the walls thick; the sacs broadly contiguous, opening throughout, the septum between very thin, and ultimately (?) breaking. Style 4 mm. long. Capsule glandular-puberulent, not seen mature.

Thickets along stream, at an altitude between 2600 and 3000 meters, Temperate zone of western slope of Cordillera Orientál, in Cundinamarea.
8. Fagelia alata Pemnell, sp. nov.

Stem about 1 meter tall, little branched herbaceous, pubescent with white hairs, distally lanose and with short-stalked glands. Leaves $11-17 \mathrm{~cm}$. long, the blades triangular-ovate, cordate, acuminate, coarsely doubly dentate (dentate with the lobules triangular and dentate), $7-10 \mathrm{~cm} . \operatorname{long}, 6-8 \mathrm{~cm}$. wide; each on a petiole $4-7$ cm. long, this broadly winged throughout (in middle $10-18 \mathrm{~mm}$. wide), entire to crenate-dentate, proximally slightly expanding and comate with that of opposing leaf; above green, bencath pale green, on hoth surfaces slightly pubescent, more so on younger growth. Corymb bractless, its secondary branches repeatedly branched. Peduncles and pedicels pubescent with longer white glandless, and with shorter gland-tipped hairs. Calyx 8-9 mm . long, the lobes lanceolate, acmminate, slightly serrate-dentate or some entire, glandular-puberulent. Corolla: the posterior lip $2-3 \mathrm{~mm}$. long, 5 mm . wide, arched, the two lobes umited very nearly to apex (so hooded with slight median aperture); anterior lip 8-9 mm. long, 7 mm . wide, with orifice opening much less than $\frac{1}{2}$ length (not strongly upeurving toward hood) ; externally minutely glandular-puberulent, within minutely pubescent at base on anterior side, lemon-yellow margin of sae very finely purple-spotted. Filaments $.5-.7 \mathrm{~mm}$. long, narrowing distally. Anthers 2 mm . long, yellowish, the walls thick; the sacs narrowly contiguous, opening throughout, the septum between thin and ultimately breaking. Style $1.5-1.8 \mathrm{~mm}$. long. Capsule 3-4 mm. long, urceolate-pyramidal, emarginate, pubescent with short gland-tipped hairs. Seeds $.2-.3 \mathrm{~mm}$. long, oblong, distally obtuse, ridged, black brown.

Type, moist bank in forest, loam soil, western slope of Cordillera Orientál, east of Neiva, Huila, altitude 1800-2300 meters, collected in flower and fruit August 1-8, 1917, Rushy \& Pemnell 579, in Herb. New York Botanical Garden.

Moist banks in forest at an altitude between 1800 and 2300 meters, Subtropical zone of the western slope of Cordillera Orientál, in Huila.
9. Fagelia nevadensis Pennell, sp. nov.

Stem erect, nearly 1 meter tall, branched, pubescent, lanose distally, with long glandless white dark-jointed hairs Leaves 16 em. long, the blades ovate, cordate, acmmate, doubly and sharply
dentate, (dentate with lobules irregularly and sharply dentate), 10 cm. long, 8 9 cm . wide, each on a petiole 6 cm . long, uniformly winged throughout (in middle $8-13 \mathrm{~mm}$. wide), entire, proximally slightly expanding and connate with that of opposing leaf; above green, beneath slightly paler, slightly pubescent on hoth surfaces. Corymb leafy-bracted at base, its secondary branches long, each dividing above a long pedumeular portion into six to cight pedicels. Pedmeles and pedicels hirsute with glandless white hairs and with short-stalked glands. Calyx $11-12 \mathrm{~mm}$. long, the lobes ovate, acuminate, entire, pubescent. Corolla: the posterior lip about 5 mm . long, 6 mm . wide, arehed, the two lobes united to apex (so hooded, truncate without apical aperture); anterior lip $13-14 \mathrm{~mm}$. long, 12-14 mm. wide, with orifice opening much less than one-half length of sac (sac strongly upcurving toward bood) ; externally glabrous, within pubescent at base on anterior side. Filaments .8 mm . long. Anther straight, 3.5 mm . long, grayish, its walls firm, sacs contiguous, permanently separated by a firm septum, each opening by a slit from the distal apex which does not reach the proximal end. Style 4 mm . long. Capsule $5-7 \mathrm{~mm}$. long, pyramidal, somewhat obtuse, puberulent, with short-stalked glands. Seeds. $2-.3 \mathrm{~mm}$. long, irregularly oblong, ridged and transverse-lined, dark-brown.

Type, damp hillside, clearing at Las Nubes, slopes of Sierra Nevada de Santa Marta, Magdalena, collected in flower and fruit December 15, 1898-1901, Herbert H. Smith 1404, in herbarium New York Botanical Ciarden; isotypes in Cray Herbarium, United States National Museum, and Field Museum of Natural History. Said to be from " 4500 feet" $[=1350$ meters], such a low elevation for a plant of this genus as to force the suspicion that datum is erroneous. The specimen is more probably from sonie slope much higher, surely over 2000 meters altitude.
10. Fagelia tolimensis Pennell, sp. nov.

Stem lax, ascending. 1 to 2 meters long, branched, reddish herbaceous, glabrate below, above slightly hirsute with dark-jointed hairs. Leaves $8-10$ cm. long; the blades triangular-lanceolate, cordate or truncate, acuminate, irregularly and somewhat doubly dentate (dentate with lobules shallowly triangular and irregularly acutely toothed), $6-7 \mathrm{~cm}$. long, $2.5-3.5 \mathrm{~cm}$. wide; each on a petiole $2-3 \mathrm{~cm}$. long, broadly winged throughout (in middle $12-15 \mathrm{~mm}$. widc), irregularly shallowly crenately dentate, proximally expanding and connate with that of opposing leaf; above dark-green, minutely
pubescent, hecoming glabrate, beneath pale-green, permanently pubescent. especially on the veins. Corymb leafy-bracted at base, its secondary branches soon much branched (pedicels long and slender) Peduncles and pedicels hirsute with dark-jointed hairs. these of various lengths. Calyx $8-10 \mathrm{~mm}$. long, the lobes ovate, acuminate, entire, pubescent. Corolla: the posterior lip 3-4 mm. long, 5 mm. wide, arched, the two lobes united to apex (so hooded, without median aperture) ; anterior $\operatorname{lip} 12-14 \mathrm{~mm}$. long. 10 mm . wide, with orifice opening about onc-half length (sac strongly upcurving toward hood), externally slightly pubescent to glabrate, within glabrous throughout. Filaments 1.2 mm . long. Anthers horseshoe-shaped, brown; each sae 2 mm . long, contiguous, splitting its entire length, septum between sacs thin, but apparently not rupturing. styple 5 mm . long, proximally pubecent. Capsule pubescent with white glandless hairs; not seen mature.

Type, moist mossy loam, margin of forest, "Rosalito" (east of Paramo de Ruiz), Tolima, altitude 2800-3100 meters, collected in flower December 15-17, 1917, F. W. Pennell 2979; in Herh. New York Botanical Garden.

Nearest to Fugelia purpurescens (Sorliro) Pemell, comb, nov., of Ecuador, but appears distinct in having leaves more sharply eut, stem less pubescent, pedicels more slender and sepals shorter.

Moist roil, edge of forest, at an altitude between 2800 and 3100 meters, Temperate zone of eastern slope of Cordillera C'entrél, in Tolima.
11. Fagelia perfoliata (L. f.) liuntze.

C'ulecoloria perfoliato L. f., Suppl. S6. 1781. "Habitat in N"oval Cranata. Mutis." Type probably from Bogotá.
Falstia perfolintu (I. f.) Kuntze. Rev. (ien. 460.1891.
Stems lax, ascending, 1-2 meters long, somewhat branched, red-dish-brown, pubescent throughout, above densely so, with hairs not or slightly dark-jointed. Leaves 8-13 (cm. long, the blarles tri-angular-kancoolate to ovate, cordate to trumcate, acominate, irregularly and somewhat doubly dentate (dentate with lobules shallowly triangular and shatlowly dentate), $5-8 \mathrm{~cm}$. long. 3.5-5.5 (mm. wide; each on a petiole $3-5$ cm. long, broadly winged throughout (in midelle $15-20 \mathrm{~mm}$. wide), slightly crenate-dentate to entire proximally expanding and commate with that of opposing leaf; above green, beneath whitish green, pubesent on both surfaces, densely (anesernt bencath. Corymb leafy-hacted at base, its secondary branches soon much branched (pedicels long and slender). Pe-
dimekes and perdicels villous. with sprearling dark-jointed hatise these mostly long. ('alys 9-11 mm. long, the lobes orate, aduminate, entire, pulescent. Corollat the posterior lip 4.5 mm . long, $5-6 \mathrm{~mm}$, wide, arched, the two lobes mited to aper (so hooded withont merlian aperture) ; anterior lip $13-14 \mathrm{~mm}$. long, $7-8 \mathrm{~mm}$. wide, with orifice opening about onc-half length (wac strongly uperming toward hood), extemally slighty pubeseent to ghabrates within glabrous throughout. Filaments about 1 mm . long. Anthers horseshoe shaped, brown, each sac 1.8 mm . Jong, contiguons, splitting from proximal end its entire length, septum between sate thin and mpturing. strye 5 mm. long, proximally pubescent. ('apsule $\overline{\text { m }}$ mm. long, urceolate pyramidal, acutish, pubeseent with white glandless hairs. Feeds 5 mm . long, lanceolate, distally acmminate, ridged. and transerse-lined, hrown.

Moist bushy slopes, along streams in shrub-zone, at altitudes of 2700 to 3000 meters, Temperate zone of western sope of cordillera Orientál, in Cundinamarea.

Comelinamarea. Rio Sion Cristohal, near Bogotá (bushy momn tain-slope, alt. 2800-3000 m.), Pennell 2380; (hiparuc (moist roarlbank above, alt. $2800-2900 \mathrm{~m}$.) , Pemell 1317 : Sibate (bushy slopes near, alt. 2700-3000 m.), Pennell 2485; Bogotá (alt. 2700 m.), J. Triana ( $\mathrm{C}, \mathrm{Y}$ ).
12. Fagelia ovata (smith) Kuntz
 Donbey,"
Fagelia orata (smith) Kuntz, Rev. Cien. 460. 1s!
Stem erect or ascending, $1-t$ dm. tall. branched, pubserent with white gland-tipped hais. Leaves 2.5-3.5 (om. long, the blades ovate. namowed to nealy thuncate at base, acute, obscurely simply sermate with shallow teeth, 2.3-3 (cm. long, 1-1.5 (cm. wide. eath on a petiole $2-5$ em. long, not winged, lanere with gland-tipped hairs: green. $\begin{aligned} & \text { eneath shightly paler. pulescent on both surfaces. In- }\end{aligned}$ foresonce apparently axillay, actually at each node two pedicels oceur, at right angles to which are two leaves from the axil of one of which usually develogs the hranch which indefinitely repeats this manner of branching. Pedicels pubescent with gland-tipped hatis. Calyx 3 mm . long, the loles ovate, ateutish, entire, pubescent. ('orolla: the posterior lip 3-4 mm. long, 4-5 mm . wide, arehed, the two lobes united thoughout, distally attenuate to a slightly notehed apex (so hooded); anterior lip 5 mm . long, 5 mm . wide, widest at Lase with orifice opening much less than one-half length of sac
(sac, upeurved toward hood, its anterior surface incurved forming a broad pouch into which anthers shed pollen and into which the stigma grows, apparently ensuring self-pollination) ; externally ghabrous, within with a few hairs about base. Filaments 1.5 mm . long. Anthers .6 mm . long, elliptic or hemispheric, yellow, the walls thin; sacs contiguous by a broad contact, opening throughout. Style 1.2 mm . long. Capsule $5-6 \mathrm{~mm}$. long, narrowly pyramidal, obtusish, thin-walled, sparsely puberulent with short-stalked glands. Seeds .1-. 2 mm . long, oval, obtuse, ridged and transverse-lined, brown.

Type, moist roadside below Chipaque, Cundinamara, altitude 1800-2200 mı, collected in flower August 23, 1917, F. W. Pennell 1327 ; in Herb. New York Botanical Garden.

Moist shaded banks, at altitudes of 1300 to 2200 meters, Subtropıcal zone of eastern slope of Cordillera Orientál, in Cundinamarca.

Cundinamarea. Chipaque (moist roadside helow, alt. 1800-2200 m.), Pemell 1327; Quetame to Monte Redondo (moist cliff, along stream in woodland, alt. 1300 m .), Pennell 1352, (moist bank, alt. 1400-1.500 m.), Pennell 1854.
13. Fagelia micrantha Pennell, sp. nov.

Stem spreading and laxly ascending, 2-3 dm. long branched, sparsely pubescent below with short few-celled gland-tipped hairs. Leaves $2-4 \mathrm{~cm}$. long, the blades acute or obtusish at apex, irregularly pimately lobed with 1-2 pairs of segments, the incisions usually reaching $\frac{1}{2}$ to $\frac{2}{3}$ the distance to the midrib, the lobales and main portion of the blade irregularly dentate, $15-3 \mathrm{~cm}$. long, $1.5-2.5 \mathrm{~cm}$. wirle: each on a petiole $.5-1$ (cm. long, slight'y winged, proximally clasping stem and slightly comate with that of opposing leaf; above deep-green, with sparse seattered pubescence soon becoming glabrous, bencath pale-green and nearly glabrous. Corymb leafybracted at base (the two primary flowers developed), the secondary branches searecly or not longer than the primary perlicels, usually once dividing, and bracted with reduced leaves. Peduncles and pedtels pubeseent with short gland-tipped hairs. Calys $3-4 \mathrm{~mm}$. long, the lohes ohbong-ovate, obtuse, slighty serrate, pubescent proximally. Corolla: the posterior lip about 2 mm kong and 2 mm . wide, arched, the two lones united amel shighty hooded, free toward apex (leaving a narow archod aperture into hood); anterior hp j-6 mm. long, 4 5 mm. wide, with narrow hase, hooded almost
entire length (sac strongly upcurving against hood): externally glabrous or minutely puberulent at base, within glabrous. Filaments none. Anther with two sacs separated on two arms of the connective, both sacs fertile; opening throughout, the anterior projecting into orifice, smaller; posterior arm (with sac) 1.5 mm . long, anterior arm (with sac) 1 mm . long. Style $6-.8 \mathrm{~mm}$. long. Capsule glabrous, not seen mature.

Type, along streamlet, edge of forest, "Rosalito" (between Murillo and Paramo de Ruiz) Tolima, altitude 2800-3100 meters, collected in flower December 17, 1917, F. W. Pennell 3145; in Herb. New York Botanical Garden. Growing with $3119, F$. crenatioba.

Along streamlets, edge of forest, at an altitude between 2800 and 3100 meters, Temperate zone of eastern slope of Cordillera Centrál, n Tolima.
14. Fagelia radiculoides Pennell, sp. nov.

Stem spreading and laxly ascending, $1-15$ dm. long, branched, glabrate, above pubescent with sprearling gland-tipped hairs. Leaves $2-10 \mathrm{~cm}$. long, the blades acute to acuminate at apex, pimatety lobed with usually three pairs of lanceolate segments, the incisions extending nearly to the midrib, the lobules and terminal segment irregularly serrate-dentate, $1.5-6 \mathrm{~cm}$. long, 1.5-6.5 cm. wide; each on a petiole $.5-4 \mathrm{~cm}$. long, narrowly winged, proximally slightly expanding and comnate with that of opposing leaf; above deep-green, with scattered hairs or glabrous, beneath glancous, glabrous or pubescent on the midrib. Corymb leafy-bracted at base (the two primary flowers developed), the secondary branches long and repeatedly dividing, bracted throughout. Peduncles and pedicels pubescent with gland-tipped hairs. Calyx 4.5 mm . long, the lobes orate, acute to obtusish, obseurely slightly serrate, pubescent proximally and on margin with gland-tipped hairs. Corolla: the posterior lip $1.5-2 \mathrm{~mm}$. long, 2 mm . wide, arehed, the two lobes united and slightly hooded, free toward apex (leaving a narrow arched aperture into hood); anterior lip $6-7 \mathrm{~mm}$. long, 4-5 mm . Wide, narrowed at base, hooded almost entire length (sace strongly upcurving against hood); externally and internally glabrous. Filaments none. Anther with two sacs separated on two ams of the connective, both sacs fertile, opening throughout, of about equal size, each arm (with sac) about 1 mm . long. style . $\overline{-}-.8 \mathrm{~mm}$. long. Capsule 3-t mm. long, broadly globose-pyramidal, rounded and slightly notched, somewhat pubescent with gland-tipped hairs.

Seeds . . $^{-} .6 \mathrm{~mm}$. long, oblong, obtuse, ridged (with rounded ridges) dark-hrown.

Type, moist rocky cañon, Rio san Francisco, above Bogotá, Cundinamarca, altitude $2700-2800$ meters, collected in flower and fruit September 13, 1917. F. W. Pennell 1942; in Herb. New York Botanical (iarden.

Moist or wet soil, springheards, swales and cliffs, partially shaded or open, at altitudes of 2600 to 3200 meters, occasionally descending to 1500 meters, Temperate zone, ascending to Paramo, where dwarfed, and to Subtropical zone. Where more rank; on both slopes of the Cordillera Orientál, in C'undinamarca.
('undinamarea. Zipaquirá (springhead in meadow, alt. 2650 m. ), Pennell 2534: Mt. Chuscal, west of Zipacquirá, (swale on paramo, alt. $3100-3200 \mathrm{~m}$.), [only $1-2$ dm. tall; leaves in some plants more pubescent], Pennell 2602; Bogotá (moist rocky cañon on Rio San Francisco above, alt. $2700-2800$ m.), Pemell 1942, (moist bank, base of mount, alt. $2700-2800 \mathrm{~m}$.) , Pennell 2293 ; Sibaté (wet roadbank, alt. 2600-2800 m.), Pennell 2386; Uhaguc (moist loam in shrub-zone above, ait. 2700-3000 m.), Pemell 1898; Monte Redondo to Quetame (wet bank, alt. $1400-1500 \mathrm{~m}$.) [plant especially rank], Pennell 1855.
15. Fagelia crenatiloba Pennell, sp. nov.

Stem ascending, 3-6 dm. long, little branched, glabrous or nearly so, above pubescent with white several-celled glandless hairs. Leaves $5-7 \mathrm{~cm}$. long, the blades obtuse or acutish at apex, pimately lobed with 2-3 pairs of segments, the incisions rarely extending over $\frac{1}{2}-\frac{2}{3}$ the distance to the midrib, the lobules and main portion of barle crenately dentate, 3.5-5 cm. long, 3-t cm. wide; earh on a petiole $1.5-2 \mathrm{~cm}$. long, slightly margined, glabrous or neaty so, proximally somewhat expanding and comnate with that of opposing leaf; above green and with seattered pubereence, leneath pale-green and the midrib and principal veins puleseent. Corymb leafyhracted at hase (the two primary flowers developed), its secondary branches longer, once or twice dividing and bracted throughout with reduced leaves. Peduncles and perlicels finely pubeseent with several-celled glandless hairs. ('alyx 5-6 mm, long, the lobes ovate, obtuse or acutish, slightly sermate, slightly pubescent, expecially proximally. Corolla: the posterior lip $1-2 \mathrm{~mm}$. long, 2.2 .5 mm . wide, arched, the two lobes united and slightly hooded, free toward apex (leaving a narrow or trimgular slit-like aperture into hood):
anterior lip 5.7 mm . long, $4-5 \mathrm{~mm}$. wide, narrowed at base. hooded almost entire length (sate strongly upenving against hood); externally glabrous or finely puberulent proximally, within glabrous. Filament none or very short. Anther with the two sacs separated on two ams of the comective, each (including sace) about 1.5 mm . long; posterior sac $.6-.7 \mathrm{~mm}$. long, whitish, opening throughout, fertile, concealed within hood; anterior sac shorter, projecting into orifice, partially or wholly sterile. Style 1 mm . long. ('apsule nearly globose, finely pubescent with glandless hairs; not seen mature.

Type, along streamlet, edge of forest, "Rosalito," (between Murillo and Paramo de Ruiz), Tolima, altitude $2800-3100$ meters, collected in flower Derember 17, 1917, F. W. Pemell 3119: in Hert). New York Botanical Carden.

Along streamlets, edge of forest, at an altitude between 2800 and 3100 meters, Temperate zone of eastern slope of Cordillera C'entrál, in Tolima.
16. Fagelia chelidonioides (II. B. K.) Kuntze.
 in radicibus montis Javirar prope Quito, alt. 1500 hex. [ = ea. 2sint m.] [Humboldt \& Bonpland]."
Fagelia chelidomioides (H. B. K.) Kuntze, Rev. (ien. 2: 459. 1891.
Fagelia diversifolia Pennell, in Addisonia 4: 73. pl. 153. "Type". collected on a moist bank at Chipaque, Department of Cuntinamarea, Colombia, at an altitude of about 8700 feet, August 23, 1917, my number 1320, and is preserved in the hebarimm of the New York Botanical Garden." specimens seen later appear to umite this with the plant from Ecuador.

Stem erect or ascending, 3-9 dm. tall, little branched, sparsely pubescent, more so about nodes, with few-celled gland-tipped hairs. Leaves $4-15 \mathrm{~cm}$. long, the blades acute to acuminate at apex, the lower ovate and shallowly pinnately lobed, irregularly serratedentate, the upper pinnately lobed nearly to the midrib with two or three pairs of oval or ovate, irregularly doubly serrate-dentate segments, (the odd terminal segment largest), $3-10 \mathrm{~cm}$. long, 2.57.5 cm . wide, each on a petiole $1-5 \mathrm{~cm}$. long, slightly margined, glandular pubescent, proximally slightly expanding and clasping the stem, usually slightly connate with that of opposing leaf; green above, pale green bencath, with seattered pubescence on both surfaces. Corymb leafy-bracted at base (the two primary flowers developed), its secondary branches clongated, several times dividing and bracted throughout with reduced leaves. Peduncles and perticels finely pubescent with few-celled gland-tipped hairs. Calyx 7-8 mm. long, the lobes ovate, acmminate, slightly sermate the
few serratures not callous-tipped), slightly pubescent on the back, and conspicuously ciliate with gland tipped hairs. Corolla: the posterior lip about 3 mm . long, $3-4 \mathrm{~mm}$. wide, arched, the two lobes united and hooded, but not to apex (leaving a narrow slit like aperture into hood), anterior $\operatorname{lip} 10-15, \mathrm{~mm} . \operatorname{long}, 11-13 \mathrm{~mm}$. wide, narrowed at base, hooded almost entire length (sac strongly upcurving against hood) ; externally glabrous or puberulent on posterior lip, within pubescent about base and within posterior lip. Filament none. Anther with the two sacs separated on two arms of the connective, each about $1.5-1.8 \mathrm{~mm}$. long; posterior sac 1.2 mm. long, yellowish, opening throughout, fertile, concealed within hood; anterior sae short, orange yellow, sterile, projecting into the orifice, the club-like dark connective arm serving as a lever against which entering insect pushes. thus forcing the fertile sac out through the slit like aperture of the hood and against back of insect. Style 1.1-1 3 mm . loug. Capsule 8 mm . long, globosp-byramidal, obtuse, pubescent with short gland-tipped hairs. Seeds $.6-.7 \mathrm{~mm}$. long, obleng, obtuse, ridged (with high rounded ridges), brown.

Moist soil, roadside ditches and banks, frequently cultivated and possibly introduced from Ecuador, at altitudes of 2000 to 2700 meters, Subtropical zone of eastern slope of Cordillera Orientál, in Cundinamarca; also obvious!y from cultivation at Bogotá and at "Balsillas", east of Neiva in Huila, also from the Subtropical zone of the Cortillera Oceidentál, in Valle. In Ecuador.

Cundinamarca. Chipaque (moist bank, alt. 2600-2700 m.), Pennell 1320; Ubagué (moist soil, alt. 2000-2500 m.), Pennell 1877; [Zipaquirá (moist ditch on hill-alt. 2900 m .), evidently escaped from garden, Pennell 2567].
[Huila. "Balsillas," on Rio Balsillas (cult. in garden, alt. 20002100 m.$)$, Rusby \& Pennell 692.]

Cauca. Cuestá de Tocotá, road from Buenaventura to Cali, western Cordillera; alt. 1500-1900 m., H. Pittier 698 (U).
17. Fagelia scalaris Pennell, sp. nov.

Stem erect or ascending, about 1 meter tall, little branched, pubescent to hirsute above with many-eelled dark-jointed not or searcely gland-tipped hairs. Leaves $5-8 \mathrm{~cm}$. long; the blades acuminate at aper, pinnatisect (cut nearly to midrib) with 2 or 3 pairs of lanceolate-ovate, irregularly scrate-dentate segments (the odd terminal segment largest), $4-6 \mathrm{~cm}$ long, $3-5 \mathrm{~cm}$. wide; each on a petiole $1-2 \mathrm{~cm}$. long, very narrowly winged, hirsute, proximally
slightly expanding and comate with that of opposing leaf; green, beneath paler, with scattered pubescence on both surfaces. Corymb) leafy-bracted at base (the primary flowers sometines not developed), its secondary hranches (one or both developed) long, once or twice dividing and bracted throughout with reduced leaves. Peduncles and pedicels hirsute with yellowish-white dark-jointed hairs. Calyx 6 mm . long, the lobes ovate, acute, serrate (with shallow calloustipped serratures). densely hirsute. Corolla: the posterior lip $2-3 \mathrm{~mm}$. long, 4 mm . wide, arehed, the two lobes united and hooded, but not to apex (leaving a slit like aperture into hood), anterior lip $15-21 \mathrm{~mm}$. long, $14-18 \mathrm{~mm}$. wide, narrowed at base, with narrow orifice, hooded almost entire length (sac strongly upcurving against hood) ; externally pubescent with short hairs on posterior lip, with longer hairs on base of anterior lip, within pubescent at base. Filaments very short or not developed. Anthers straight, 4 mm . long, the two saes separated on two arms of the connective; posterior sac 1.5 mm . long, yellowish, opening throughout, fertile, concealed within hood; anterior sac short, orange-yellow, sterile, projecting into the orifice, the club-like dark connective-arm serving as a lever against which entering insect pushes, thus forcing the fertile sac out through the slit-like aperture of the hood and against back of insect. Style 2 mm . long. Capsule 6 mm . long, globose pyramidal, obtuse, pubescent with glandless hairs. Seeds $.6-.7 \mathrm{~mm}$. long, oblong, obtuse, ridge-angled, brown.

Type, swale, "Balsillas," on Rio Balsillas, altitude 2000-2100 meters, collected in flower and fruit August 3, 1917, Rusby \& Pennell 710 ; in Herb. New York Botanical Garden.

Swales, at an altitude of 2000 to 2100 meters, Subtropical zone of eastern slope of Cordillera Orientál, in Huila.
18. Fagelia pinnatisecta Pennell, sp. nor.

Stem ascending, 2-6 dm. tall, little branched, pubescent above with many-celled dark-jointed not or scarcely gland-tipped hairs. Leaves $3-5.5 \mathrm{~cm}$. long; the blades acuminate at apex, pinnatisect (cut nearly to midrib) with three pairs of lanceolate, irregularly serrate dentate segments, (the odd terminal segment largest) 2-3.5 cm . long, $2-3 \mathrm{~cm}$. wide; each on a petiole $1-2 \mathrm{~cm}$. long, narrowly winged, somewhat hirsute, proximally slightly expanding and connate with that of opposing leaf; green and pubescent above, beneath pale, and hirsute pubescent on the main veins, sparsely so over surface. Corymb leafy-bracted at base (the primary flowers not
developed), its secondary branches long, once or twice dividing and leafy-bracted throughout with reduced leaves. Peduncles and pedicels hirsute with yellowish-white dark-jointed hairs. Calyx 7-9 mm. long, the lobes lanceolate or narrowly ovate, acuminate, serrate (with not or scarcely callous-tipped serratures), hirsute, especially proximally. Corolla: the posterior lip $2-3 \mathrm{~mm}$. long, 2-3 mm. wide, arched, the two lobes united and hooded, but not to apex (leaving a narrow aperture into hoord) ; anterior lip 8-10 mm. long, $6-7 \mathrm{~mm}$. wide, narrowed at base, hooded over $\frac{2}{3}$ length (sac strongly upeurving against hood) ; externally and within slightly pubescent about base. Filaments very short or none. Anther with the two sacs separated on two arms of the eonnective, each about $1.6-1.8$ mm . long; posterior sac 1.2 mm . long, yellowish, opening throughout, fertile, concealed within hood; anterior sac short, orange-yellow, sterile, projecting into the orifice, the club-like dark connectivearm serving as a lever as in $F$. scalaris. Style nearly 2 mm . long. Capsule 4 mm . long, broad-globose, rounded, pubescent with glandless and some gland-tipped hairs. Seeds $.6-.7 \mathrm{~mm}$. long, oblong, obtusish, ridge-angled, brown.

Type, swale, "Balsillas," on Rio Balsillas, altitude 2000-2100 meters, collected in flower and fruit August 3, 1917, Rusby \& Pennell 721 , in Herl. New York Botanical Garden. From the same swale as $710, F$. scalaris.

Swales, at an altitude of 2000 to 2100 meters, Subtropical zone of eastern slope of Cordillera Orientál, in Huila.
21. RUSSELIA Jacquin.

Russelia Jacq., Enum. Pl. Carib. 25.1760.
Type species, R. sarmentosa Jacq., of Cuba.

1. Russelia colombiana Pennell, sp. nov.

Herb, or shrubby below, diffuse, reaching 5 feet long. Stem 6 -angled helow, sharply 4 -angled above, glabrous or with sparse pubescence. Leaves in threes, the upper opposite, ovate, 5 cm . long, 3 ('m. wide, truncate at base, strongly acuminate, sharply scruatedentate with ascending teeth (bracts lance-ovate, coarsely toothed), glabrous nearly from the first, green, with brown wax dots on upper surface. Infloresecuce much elongated, of axillary cymes. Cymes hirtellous, 5 15-flowered. Calyx 4 mm . long, with brown was dots, its lobes narowly ovate with caudate pubescent tips nearly equaling the length of the body, slightly pubescent. Corolla red, $10-11 \mathrm{~mm}$. long, its lobes 1.5 mm . long, the posterior united $\frac{1}{2}-\frac{2}{3}$ their length, externally glabrous, within on anterior side pubes-
cent with yellow hairs. Stamens and pistil ghbrous throughout. Capsule brown, globose-ovoid, 4.5-5 man. long, with a slender beak $1-1.5 \mathrm{~mm}$. long.

Related to $R$. sarmentosis Jacq. of Cuba, which diffors in the stem being t-angled, its leaves smaller, with rounded tecth and obtuse at apex, its sepals with shorter caudate tips, its corollas slightly larger, 12-14 mm. long, and its capsules smaller, excluding the beak, only 4 mm . long.

Type, in mountain forest, on the Agua Dulce road, between Santa Marta and the Nierra Nevada, altitude 450 meters $L=1500$ feet], collected in flower and fruit November 22, 1898, Herbert H. Smith 1361; in Herb. New York Botanical (iarden; isotypes in United States National Herbarium, Cray Herbarium and Field Museum of Natural History.

Forest, at an altitude of 450 meters. Tropical zone on lower slopes of Sicra Nevada de Santa Marta in Magdalena.
22. ANGELONIA Humboldt and Bonpland.

Aruflonia Humb. \& Bonpl., PI. deguin 2:92. 1809.
Trpe species, A. salicaruefoha H . \& B.

1. Angelonia salicariaefolia IIumb. \& Bonpl.
A. salicariacfolia Humb. \& Bonpl.. Pl. Aequin. 2. 92. pl. 108. 1809. "Habitat in America meridionali ad Caracas.". . . "('roit sur les collines arides de gneiss, qui avoisinent la ville de Caracas, a une hanteur de cing ou six cents toises [ca. 1000-1200 m.] ou-dessus du niveau de l'ocean." Specimen from Caracas, Otto Kuntze 1407, seen in Herb. New York Botanical Garden.

Gravelly slopes, rather moist, along the lower westem slopes of the Cordillera Oriental, and the similar eastern slopes of the Cordillera Centrál, doubtless continuously encircling the upper Magdalena Valley; in the Canca valley; extending eastward along the northern lower slopes of the Venezuelan Andes; at altitudes of $450-1400$ meters. Tropical zone. ${ }^{4}$

Cundinamarca. Anapoima, J. Triana (Y); Fusagasugá, I. F. Holton 577 (Y) : Fusagasugá to Pandi, Pemell 2714 (Y); Icononzo, Pemnell 2761 ( $\mathrm{Y}^{*}$ ).

Tolima. San Lorenzo, (first foothill of Cordillera Central, west of), Pemell 3517 ( Y ).

[^59]Huila. Neiva (open slope of first foothill of Cordillera Oriental, east of), Rusby \& Pennell 1082 (Y); Quebrada de Angeles, above Natagaima, Rusby \& Pennell 254 (Y).

Valle. Cali, H. Pittier 632 (V).

## 23. LINARIA Niller.

Linaria Mill., Gard. Dict. ed. IV. 1754.
Type species, Antith inum lmaria L., Sp. Pl. 616. 1753, of Europe.

1. Linaria texana scheele.

Linaria texana scheele in Linnaea 21: 761. 1848. "Zwischen Houston und Austin [Texas] haufig: Römer." Type not seen nor verificd, but description evidently of plant here characterized.
Meadow-land, on the Sabana of Bogotá, at an altitude of 2600 to 2650 meters, certainly introduced. Widespread through westem temperate North America, and collected extensively in Andine and Temperate South America, probably always as a weed.

Cundinamarca. Sibaté (meadow on sabana, alt. ), Pennell 2469; Hacienda de Tequendama, I. F. Holton (Y).

Correctrons to "Scrophulariaceae of the Southeastern L'nited States" in Proceedings of the Academy of Natural Sciences of Philadelphia 1919: 224-291. 1920.
p. 228, last line. For "Ranapalus" read "Macuillamia."
p. 231, l. 19. Delete "lanate."
p. 238, 1. 31. Delete "stoloniferous." The plants have slender rootstocks, not stolons.
p. 242. For entry under genus " 8 . Ramapalus Kellogg," substitute: "8. Macuillamia Rafinesque.
Macuillamia Raf. [Neogenyton 2. 1825, generic description only] Autik. Bot. 44. 1840.
Type species, Mommiera rotundifolia Michx., of Illinois.

1. Macuillamia rotundifolia (Michx.) Raf.

Monniera rotundifolia Michx.,
p. $248,1.8$. Before the word "type" read:

Micranthemum orbiculatum Michx., Fl. Bor. Amer. 1: 10. pl. 2. 1803. "Hab. in udis opacisque sylvarum C'arolinae et Georgiae.
p. 250, l. 9. Under "1. Verbascum blattaria L.," insert:
"Verbascum claytoni Michx., Fl. Bor. Amer. 1: 148. 1803. 'Hab. in C'arolina [A. Michaux].' Evidently a form of the introduced species, V. blattaria."
p. 254, 1. 29. For" Texas" read "Louisiana." Penstemon austratis is replaced west of the Mississippi River by $P$. pauciflorus Buckl. p. 255, 1. 18. Delete "and west to Oklahoma." Specimens from west of the Mississippi River belong to another species.
p. 288, 1. 1. Delete "Siceds."
p. 290, 1. 29. For" "straw-colored" read "brown to straw-colored," as the supposed contrast in color of capsule cannot be maintained.

# TWO NEW CYPRINOID FISHES FROM FORMOSA. 

BY MAsAMITSU OShlMA.

By courtesy of Mr. Moichiro Maki, of Taihoka Normal School, the author was able to examine the collections of Formosan freshwater fishes made by his students during the summer of the year 1919. Among them two species of Leuciscus were found which are apparently new to science. Unfortmately, there are no records with regard to their type localities. It is rertain, however, that they were obtained in the mountain streams of central Formosa, hecause other species preserved in the same loottle, that is, salmo formosamus and Liobagrus formosamus, are not found from in other places than the tributaries of the Taiko and Taito Rivers.

## Leuciscus schisturus new species, Fig. I.

Head 4,20 in length; depth 4. 65; D. 1m,7; A. 111,8; P. 17, V. 9; seales 74 in lateral line; 14 scales between origin of dorsal and lateral line, 16 between the latter and middle of belly; 9 scales between


Fig. 1.-Leuciscus schisturus new speries.
lateral line and the root of ventral; width of head 2 in its length; snout 3 in head; eye 5 ; interorbital space 3; pectoral 1.50; ventral 1.81; pharyngeal teeth 4, 2-2,5; gill-rakers $4+8$. Body elongate, compressed postcriorly; head elongate, triangular, upper profile nearly straight; snout rather long, pointed, edge of its skin slightly
covering the upper $l_{p}$; interorbital space and top of head more or less convex, eye small, anterior and superior, 1. 46 in snout; mouth subinferior, not very oblique, maxillary reaching posterior border of nostril; lips thin, the lower discontinuous, distinct at the angle of mouth only; anterior margin of lower jaw trenchant; pharyngeal teeth hooked, with no grinding surface; nostrils close together, on the supra-lateral part of snout; gill-openings rather large; gill-rakers rather short and pointed. Origin of dorsal midway between tip of snout and base of caudal, the first branched ray the longest, reaching beyond the others to origin of anal when depressed, its outer margin nearly straight; pectoral five-eighths the distance to ventrals; origin of ventral in advance of that of dorsal, inserted nearer origin of anal than that of pectoral; anal inserted a litfle nearer to tip of pectoral than base of caudal, the first branched ray the highest, scarcely reaching beyond the others when depressed, the base of the fin 1.50 in its height, outer border slightly concave; caudal peduncle long, its depth 2.50 in head; caudal fin deeply emarginate, lobes sharply pointed. Scales cyeloid, imbricated, of rather even size; no pectoral flap; ventral with a slemer scaly flap; lateral line continuous, more or less lecurved anteriorly, rumning along the middle of tail. Color in alcohol uniformly grayish brown above, paler below; all the fins whitish. Total length 145 mm .

Habitat: Central Formosa (type-locality unknown).
(Schistuns, split-tail; with reference to the well-developed rudimentary caudal rays.)

## Leuciscus medius new species,

Head 3.83 in length; depth 4.55 ; D. ın, 7 ; A. nı, 7 ; P. 15; V. S; scales 76 in lateral line; 19 seales between the origin of clorsal and lateral line, 17 between the latter and middle of belly; 11 scales between lateral line and the root of sentral; width of head 2 in its length; snout 3 in head; cye 4.33 ; interorbital space 3 ; pectoral 1.71; rentral 1.81; pharyngeal teeth 4,2-2,5; gill-rakers $2+7$. Body elongate, compressed; heal elongate, pointed, sides flattened, upper profile nearly straight; snout rather pointed, slightly produced; cye moderate, anterior 1.50 in snout; mouth terminal, slightly oblique, maxillary reaching posterior border of nostril; lips thin, not dilated; lower lips discontinuous; anterior margin of lower jaw trenchant; pharyngeal teeth hooked, with no grinding surfaces, nostrils close torether, in front of eye above; inter-
orbital space and tol of head very slightly convex; gill-openings moderate, gill-rakers rather short and pointed. Origin of dorsal nearer base of catal thim tip of suout, rather high, the first branched ray the longest, reaching far beyond the origin of anal when depressed, its outer margin nearly straight, anal inserted nearer tip of pectoral than base of candal, the first branched ray the highest, not reathing beyond the others when depressed, the base of the fin 1.42 in its height, its outer margin straight; pectoral two-thirds the distance to rentrals; ventrals inserted nearer origin of anal than that of pectoral, in actrance of origin of doreal; caudal petuncle


Fig. 2.-Lenciscus modius new species.
compressed, its depth 2 in head; caudal fin deeply forked, the lobes obtusely pointed. srales cycloid, moterately small, of rather even size; no pectoral flap; ventral with a small fleshy flap; lateral line continuous, slightly decurved, rumning along the middle of the tail. Color in alcohol grayish brown above, paler below; all the fins whitish. Total length, 110 mm .

Habitat: Central Formosa (type-locality unknown).
The present species distinctly differs from the former in having 19 scales between origin of dorsal and lateral line.
(Medius, central, the species having been obtained in central Formosa.)

## MOLLUSKS FROM LAKE CHAPALA, STATE OF JALISCO AND VICINITY.

```
BY HENRY A. PILSBRY.
```

Professor Francisco Contreras, in the course of his studies of the natural resources of Mexico, has made a small collection of the shells of Lake Chapala. The occurrence of peculiar species of Planorbis, Physa, and Anodontates probably indicates that there is a considerable endemic element in the mollusk fauna of this Mexican lake.

In treating of the Planorbes and Physas of Lake Patzcuaro ${ }^{1}$, the writer called attention to the more enlarged last whorl of the shell, compared with the most closely related species found in other Mexican localities. It was conjectured that larger lung capacity might be advantageous to air-hreathing snails of this deep lake. The same peculiarity is seen in Planorbis contrerasi and Physa solidissima of Lake Chapala; but while the shells of Lake Patzcuaro are thin and light, those of Chapala are remarkably solid, perhaps an adaptation to wave-beaten shores.

Polygyra ventrosula (Pfr.).
Chapala. Diameter about 10 mm . Also similar smaller shells, diam. 7.3 mm ., which are referable to the varicty handsia (Pfr.). Whether these sizes occur in the same colony, or are connected by intermediate sizes, should be noted.

Polygyra matermontana jaliscoensis Pils.
Chapala. This form was described from Guadalajara.
Drymaeus hegewischi (Pfr.).
Chapala.
Planorbis tenuis chapalensis new subspecies. Fig. 1.
The shell is very strong and solid with narrow, deeply sunken spire on the left side. The aperture is piriform, the penult whorl intruding but little.

Greatest diam. 16, alt. at aperture 9.3 mm .

[^60]Lagma de Chapala, State of Jalisco, collected by Prof. Francisco Contreras, March 1, 1920. Type No. 46,194.


Fig. 1.-Planorbis trmis rhapalensis. Enlarsed.
Planorbis contrerasi new species, Fig. 2,
The shell is solid; last whorl compressed on the right side, bluntly angular, with fumel- or vortex-shaped umbilicus; left side angular, with rather wide bowl-shaped concavity. Surface closely striate spirally within both concarities, seemingly with weak traces of spiral lines over the peripheral part, though the specimens are all so waveworn that the external sculpture cannot be seen except within the aperture. The aperture is narrow, angular at the ends.

Cireatest dimeter 14.3 , alt. at aperture 10.2 mm ; fully 4 whorls.


Fig. 2.-Plambis contrerasi. Enlarged.
Lagma de Chapala, State of Jaliseo, collected by Prof. Francisco Contreras, March 1, 1920. Type No. 46,193.

While the shape is somewhat like that of Planorbis temuis exaggeratus, of Lake Patzemaro, this species differs by its solidity and especially by the strongly developed spiral seulpture. It is a very distinct species.

Physa solidissima Pils.
Laguna de Chapala. Dead specimens of this remarkably globose, heary species are somewhat larger than the type, the largest measuring: length 11.3 , diam. 9.5 , length of aperture 9.9 mm . The rounded fold of the massive columella is prominent, as in the type.

It is hoped that living individuals can be secured. They may show differences from the ordinary Physas.
Anodontites jaliscoensis u. sp. Fig. 3.
The shell is oblong, the alt. 55 per cent. of the length, the diameter slightly less than one-third the length, moderately solid; isabella
color, paler buff toward the beaks, a little browner toward the lower margin, the epidermis thin with weak growth tines; under the lens showing radial bands of festooned striae in the middle part. Beaks small, somewhat worn, showing no sculpture. The interior is pale Payne's gray with a rather wide matt border; stamed with olive-baff in the cavity toward the beaks. There is a dark, iridescent triangle at the posterior ent of the hinge.

Length 46 , alt. 25.5 , diam. 14 mm .
Tolimán, state of Jalisco. Prof. F. Contreras. Type No. 46,197.
This is a longer shell than Anodonta coarctate Anton, differing also in external texture, the wide dull border inside, and the deep, triangular "simulus" at the end of the hinge.


Fig. 3.-Anodontites jaliscoensis. Natural size.
Nephronaras aztecorum tolimanensis new subspecies. Fis. 1.
Differs from $N$. aztecorum and $N$. a. chapalenses by the smaller size and lower form, the shell not so wide posteriorly.

Length 43 , alt. 24.3 mm .
Length 35, alt. 19.3 , diam. 11.4 mm .
Tolimán, State of Jalisco. Type No. 46,195.
A specimen from Rio Cirande, Zapotitlan, Jalisco, measures: length 54 , alt. 28 mm .


Fig. 4.-Aephromaias aztecorum tolimanchsis. Natural size

## MOLLUSCA FROM CENTRAL AMERICA AND MEXICO.

BY HENRY A. PILSBRY.

The following descriptions and notes are in continuation of those published in these Proceedings for 1919, pp. 212-223.

Further comparisons have shown that I)omax mediamericana (op. cut. p. 222) is merely a form of $D$. striata. The differences depended upon are inconstant.

Scolodonta zeteki new speries. Fig. 1.
The shell is discoidal, broadly umbilicate, almost flat above, thin, isabella colored, slightly tramslucent. The surface is glossy, finely striate ahove, more weakly so below. There are six narowly coiled, slowly increasing, convex whorls, the last, at the aperture, nearly twice the width of the preceding, rounded at periphery and


Fig. 1.--Sicolotoutn zetelii.
base, not descending in front. The umbilious is conic, showing all of the whorls. The aperture is slightly oblique, lunate, higher than wide. Peristome thin and simple, the widely separated terminations joined by a very thin callus.

Alt. 4 , diam. $10.9 \mathrm{~mm} . ; 6$ whorls. Gatun.
Alt. 3.4, (liam. $9.1 \mathrm{~mm} \cdot ; 5.5$ whorls. Camboa.
Canal Zone: Gatun (D. E. Harrower); Gamboa (James Zetek). Type No. 114,079, A. N. S. P.
Readily recognized by its discoidal form. There is a very closely related species in the collection from Venezuela without definite locality (R. Swift coll.; No. 23,775), whitish, with the whorls a trifle less closely coiled.

Thysanophora textilis new species. Fig. 2.
The shell is umbilicate, conoirl, the height and diameter about equal, pale brown. Sculpture of extremely low, subregularly spaced longitudinal waves, over all a microscopic granulation produced by the intersection of very minute striae and equally close spiral lines, giving the appearance of a fine woven material. First $1 \frac{1}{3}$ whorls smooth. The whorls are very strongly convex. Suture very deeply impressed. Aperture somewhat semilunar, oblique, outer lip thin and simple, the columellar margin broadly dilated.

Alt. 1.S, diam. $1.8 \mathrm{~mm} . ; 4$ whorls.
Alt. 1.95 , diam. 1.95 mmn. ; $4 \frac{1}{4}$ whorls.
Chamá, Guatemala, A. A. Hinkley.
The microscopic sculpture is somewhat like that of the apex of Drymaeus, and umlike any Thysanophora I have examined. Whether the species belongs to Thysanophora or to Pupisoma is an open question, but the shape is rather more like the former.


Fig. 2.-Thysanophora textilis.


Fig. 3.--IIelicina ontuctana.

Helicina oaxacana new species. Fig, 3,
The shell is a little wider than high, with conic spire and bluntly carinate periphery, whitish, not ghossy. Sculpture of fine growthstriae and fine, indistinct, protractive wrinkles, visible in places only. The whorls are rather strongly convex, the last having a blunt median keel, convex above and at the basc. The aperture is semicircular, oblique. Outer lip is moderately expanded. Columella strongly concave on its ventral side, terminating in a projecting tubercle. Callus small, a groove behind the columellar side.

Alt. 4 , diam. 4.5 mm ; $4_{4}^{3}$ whorls.
Paerto Angel, Oaxiaci, Mexico. C. R. Orcutt, 1910. Type No. 112,572, A. N.S. P.

This species appears related to $H$. raresulcata of Vera Cruz, but besides the somewhat diverse sculpture it differs by the angular periphery. The same character differentiates it easily from other small species of the region.

Eutrochatella microdina chryseis (Tristr.).
Two speeimens from Chamá measure: Alt. 4.2 , diam. 3.83 mm , and Alt. 3.55 , diam. 3.45 mm ., respectively.

The color is barimm yellow or between that and amber yellow. The size is about that given for E. microdint, but the proportions are between microdina, in which the alt. and diam. are 4 mm., and chyseis, alt. 4 , diam. 3 mm . Perhaps chryseis may better be ranked as a subspecies of $E$. microdina.

In this connection it may be noted that Wagner in his monograph places microdina in both Eutrochatella (p. 138) and Helicina (p. 318). The species described at p. 318 is certainly not Morelet's species, which has been figured from author's specimens by Fischer and Crosse.
E. microdina, of which I have three from Morelet, is covered with excrement when alive. It is paler than chryseis, with the spire slightly lower, tapering with a wider angle, as Fischer and Crosse have pointed out.
E. simpsomi Ancey, from Utila Island, Honturas, is closely related, but the whorls project more prominently at the periphery, and the size is smaller. One of the original lot was figured in these Proceedings 1903 , pl. 49, fig. 4.

These three forms belonging to the subgenus Pyrgodomus Crosse and Fischer, are now for the first time brought together.

As this genus has doubled in number of species since the publication of the "Biologia Centrali-Americana" a catalogue of the species may be of use:

## Cochliopa riograndensis Pils. \& Ferr.

Proc. A. N. S. Phila., 1906, p. 171, pl. 9, figs. 10-13. Nautilus, XXIII, p. 99.

Rio Grande (Ferriss and Pilsbry) to the Panuco River tributaries (Hinkley).

Cochliopa compacta Pils,
Nautilus, XXIII, Jan. 1910, p. 99, pl. 9, figs. 4. 5.
Choy River, State of San Luis Potosi (Hinkley).

## Cochliopa picta Pils.

Nautilus, XXIII, Jan. 1910, p. 100, pl. 9, figs. 1, 2.
Choy and Ganina Rivers, State of San Luis Potosi (Hinkley).

## Cochliopa guatemalensis (Morelet)

Valvata guatemalensis Morelet, Testacea Novissima, ete., II, 1851, p. 23. Fischer and Crosse, Miss. Sci. Mex., Moll. II, p. 302, pl. 48, figs. 2-2b; pl. 50 , figs. $1-1 b$.
Cochliopa guatemalensis (Morel.) v. Martens, Biologia, p. 428.
Rio Michatoya near Istapa, southern Guatemala.
Cochliopa rowelli (Tryon).
Amnicola rovelli Tryon, Proe. A. N. S. Phila., 1S63, p. 147, pl. 1, figs. $8,9$. Cochliopa rovelli Tryon, Stimpson, Smithsonian Misc. Coll. No. 201, 1865, p. 50. W. (i. Binney, Land and Freshwater Shells of N. A., III, p. 73, figs. 144. Pilsbry, Nautilus XIX, 1905, p. 91. J. Rowell, Nantilus, XX, p. 10.

Panama (W. Newcomb); Rio Natasnillo, Las Sabanas, Panama (J. Zetek).

This species has been omitted from works on Central American mollusks heeause it was reported from California by the Rev. J. Rowell, who colleeted the original specimens. No other Californian eonchologist has found it in the places he mentioned, but it has heen taken in Panama by Dr. Wesley Newcomb many years ago, and recently by Mr. James Zetek. There can be no reasonable doubt that Mr. Rowell was mistaken in the locality, and really picked it יp on his way to California by the Panama ronte.

## Cochliopa tryoniana pils.

Nautilus, IV, 1s!0, p. in 2. Proc. A. N. S. Phila., 1s!1, p. 331, pl. 15, fig. 12. Biologia, p. 428, pl. 33, figs. 9-9c.
Western Nicaragua, southwestern Costa Rica.
Cochliopa trochulus Niartens.
Biologia, p. 429, pl. 23, fig. 7.
Bouthwestern Costa Rica (Pittier and Biolley) to Panama (.James Zetek).
Cochliopa infundibulum Nartens.
Biologia, p. 429, pl. 23, fig. 3.
Guatemala.
Another related speeies was taken at Esmeralda, Rio Dulec, Guatemala, by Mr. Hinkley. This, I understand, will soon be described, making in all twelve species of Cochbiopu.
Cochliopa hinkleyi new species. Fig. 4.
The shell is minate, planorboid, with a very wide, shallow umbilicus and a slightly concave spire. Color brownish corneous. The three whorls are oval in section, the last descenting slowly and at the end, only very shortly in contact with the preceding. Sculpture of numerous subequal, rather sharp spiral threads separated by
wider intervals, a narrow plain band below the suture and a wider one within the umbilicus. The aperture is slightly oblique, roundedoval, the peristome very shortly adnate in adults (or sometimes very shortly free, continuous).

Alt. 0.75, diam. 1.75 mm .


Fig. 4.-Cochliopethinkleyi.
Lake Izabal near Jocolo, Guatemala, A. A. Hinkley.
With the sculpture of C. guatemalensis, this species has the shape of a small Planorbis of the parrus group. In most adult shells the inner whorls are eroded away, leaving a hole through the center of the dise, as in the right hand figure. Sometimes the last whorl is shortly free, as in the lower figure.
Cochliopa minor new species. Fig. 5.
The shell is denressed, umbilicate (the umbilicus rapidly enlarging in the last whorl, contained five times in the diameter), selid, very pale brownish. The spire is very low conic. The first of the four whorls is smooth; spiral ridges set in on the second; on the last there are about 23 of these ridges, nearly equal, and a little narrower than the concave intervals; the latter showing microscopic growthlines and traces of fine spirals in some places. The last whorl is rounded peripherally, and descends slightly to the aperture. Aperture is strongly oblique, rounded. Peristome blunt, the margins joined by a heary parietal callus.

Alt. 1.2, diam. 2.1 mm . 4 whorls.


Fie. 5.-C'ochliopa minor.
Polvon, Niearagua. Type and paratypes No. 58,286, A. N. S. P., collected by the MeNeil Experlition.

These specimens were formerly identified by the writer as $C$. guatemaiensis (Morelet). The latter is much larger, diameter 3.5 mm., and came from the Michatoya River near Istopa, in southern Guatemala.

The teeth of the radula have denticles according to the formula $\frac{4.1 .4}{3-3}, 2.1 .3,13, \infty$. Those of the outer uncinus are very minute, not clearly seen. The lateral tooth has the boss and socket structure of the broad body, as in many other Amnicolidae.

Cochliopa izabal new species. Fig. 6.
The shell is conic, umbilicate (umbilicus narrow, rapidly widening in the last half whorl), rather thin; very pale brownish-gray; smooth except for faint traces of spiral striae, a little stronger near the umbilicus and sometimes on the penult whorl. The spire is elevated, the early whorls eroded. The whorls are strongly con-


Fig. 6.-Cocnliopu izubal.
vex, the last everywhere rounded. The aperture is moderately oblique, angular above, otherwise rounded. The outer lip is thin; columella concave, thickened, continued in a callus across the parietal wall.

Alt. 1.75, diam. 1.9 mm . Type, fig. $5 a, b$.
Alt. 1.7, diam. 2.15 mm . Fig. $5 c, d$.
Alt. 1.85, diam. 1.5 mm . Fig. 5 e.
Lake Izabal near Jocolo, Guatemala.

The nearly smooth form is selected as typical because it predominates in the lot collected. In some examples no spiral sculpture is visible; others are slightly to distinctly striate. The spire is always croded, even in the smallest taken, diameter 1.3 mm ., of 3 whorls (fig. 5f), but the summit would be obtuse if perfect, the early whorls increasing the shell rapidly in diameter. At this stage it has the normal shape of Cochhopa. Later the whorls descend more rapidly, giving it a somewhat Amnicoloid outline. Fig. je represents the narrowest specimen found.

Mutation perstriata (Fig. 7). Occurring with the smooth and moderately striate specimens there are a few having many strong, spiral threads at all post-embryonis stages of growth, as in C. guatemalensis. The largest specimens are of this kind. Alt. 2.7, diam. 2.75 mm .

This species differs conspicuously from C. guatemalensis (Morel.) by its elevated spire. A large series was collected.


Fig. 7.-Cochliopa izabal mut. perstriata.

## Names Applied to Pachychiltts.

Pachychilus I. and H. C. Lea, Proc. Zool. Soc. London 1850, p. 179, for P. cummingii Lea [ = graphium Morel.]. Not Pachychila Eschscholtz, Zoologischer Atlas, 4tes Heft, 1831, p. 5 (Coleoptera).
Cercimelania Fischer and Crosse, Mus. Sci. an Mex., Moll. terr. et Fluv., ii, p. 327, 1892, type P.liebmanni Phil.
Glyptomelania F. and C., op. cit. p. 328, type P. glaphyrus Morel.
Oxymelania F. and C., op. cit. p. 328, type P. schiedeanus Phil.
Sphaeromelania Rovereto, Atti della Societá Ligustica di Sci. Nat. e Geogr., X, 1899, p. 109, new name for Pachychilus Lea.

The name to be used for this genus depends upon whether Pachychitus and Pachychila are considered to be different names. They are of course of identical derivation; so are Louis and Louise, Francis and Frances, which serve very well. Until there is a definite ruling by the International Commission, it may be as well to continue to use the familiar Pachychilus.

Those who consider -us and -a names identical can adopt Cercimelania, type liebmanni Phil., proposed as a subgenus of Pachychilus.

## NEW LAND SHELLS.

BY E. G. VANATTA.

Odontosagda havanensis new species. Pl. VI, figs. 1, 2, 3.
Shell small, thin, opaque, pinkish grey; apex obtuse, rather large, and smooth; spire depressed conic, composed of four and one half slowly increasing, vertically striate whorls; suture moderately deep; last whorl obtusely angular above the periphery, not desconding in front; base obtusely conic, with a wide, perspective, well-like umbilicus. The surface of the hase is provided with irregular incremental striae, and under a strong lens showing spaced spiral striae. Aperture lunate; peristome sharp, evenly arcuate, within the lip provided with one large white tooth in the basal region below the periphery, and a smaller white tooth near the base of the narrow columella.

Alt. .77, diam. 1.25, alt. of aperture .42, diam. . 51 mm .
Picked from red earth collected under bushes in front of the Country Club at Havana, Cuba, by Louis H. Bregy in March, 1920.

The type is tray number 46,077 in the collection of The Academy of Natural Sciences of Philadelphia.

This species is smaller than Odontosagda hillei (Grundl.): O. abboiti Van. is larger and less angular near the periphery; and $O$. blandi (Weinl.) is more elevated.

This new Odontosagda was associated with Praticolclla griscola (Pfr.), which has not been reported from Cuba before; also Volvidens trichostoma (Pfr.), Urocoptes poeyana (Orb.), Guppya gundlachi (Pfr.), Cactultoides gundiachi (Pfr.), and Ennca bicolor Hutton.

Zonitoides bregyi new species. Pl. VI, figs. 6, 7, 8 .
Shell small, thin, translucent, corneus, shining, apex smooth, rather acute; spire low-conic; suture moderately deep; whorls about four, sculptured with irregular incremental striae, and under a strong lens showing fine undulated spiral lines; periphery evenly arcuate; base convex, provided with a deep umbilicus, surface shining, showing a few growth lines, and under a strong lens fine undulated spirals
may be seen; aperture semilunate; peristome thin; columella slightly reflexed; parietal wall thin.
Alt. 1.3, diam. 1.88, alt. of aperture .75 , diam. .88 mm .
Picked from leafmould collected at the Costa Mine, about 15 miles from Bueicito, Prov. Oriente, Cuba, by Louis H. Bregy in March, 1920.
The type is in the cabinet of The Academy of Natural Sciences of Philadelphia, being tray number 46,089 .
This species has narrower whorls and smaller umbilicus than Zonitoides maya Pils.; Z. paraensis Bkr. is smaller; and Striatura neomexicana Pils. has a wider umbilicus, fewer whorls, is more depressed, and has a duller surface.

Caecilioides domingensis new species. Pl. V1, fig. 15.
Shell small, subeylindrical, translucent corneus; apex obtuse; spire high, composed of four and one half moderately convex whorls; suture rather deep; surface shining, sculptured with a few irregular incremental striae; base convex, imperforate; aperture about onethird the altitude of the shell, oval, narrow above and broader below; lip acute, slightly arcuate; basal lip convex; columella truncate, comparatively thick, concave; parietal wall nearly straight; parietal callus thin.

Alt. 2.27 , diam. .79, alt. of aperture .75 , diam. . 54 mm .
The types are tray number 44,654 in the Acadeny's collection, and were picked from earth collected by Dr. W. L. Abbott, one mile northwest of Sanchez, Santo Domingo.

This species has a deeper suture, more convex whork, and a more obtuse apex than Cacilioides consobrina Orb.

Opisthosiphon maynardi new species. Pl. V1, figs. 9, 10, 11, 13.
Shell conical, thin, opaque, reddish brown above and greyish. yellow below, and a white line composed of sharp points at the suture: apex truncate, widely perforate, provided with a bluish phyg of shell matter in the end of the decollated whorl; spire high, conic, composed of nearly four convex whorls; suture deep, acutely dentate; the last whorl free from the penultimate whorl near the aperture and again mited to it by the parietal callus; last whorl evenly arcuate, provided with two slightly thickened, white, spiral lines near, and four others visible within, the umbilicus. The surface of the shell has a dull silk-like sculpture, and many very indistinct vertical costac, about sixty on the penultimate whorl; body whorl nearly smooth near the aperture; aperture entire, wide, ellip-
tieal, with a raised, smooth rim in advance of the broadly expanded, flat, white lip, which is provided with several, slightly raised, concentric lamellae; outer lip forming at the suture a recurved hollow tube connecting the deep suture openly with the interior of the aperture by a small round pore. The broadly expanded basal and columellar lips showing faint white thickenings at the ends of the abovementioned spirals; parietal lips expanded into a broad flat plate with its edge attached to the body-whorl, the concentric lamellae upon its surface are interrupted in an oblique line above the pore in the aperture, forming a small bay in the upper cdge near the outer lip. Operculum, thick, calcareous, paueispiral, smooth within, composed of about three rapidly increasing volutions; nucleus below the middle; outer surface with a deep spiral groove with a raised irregular edge arising near the nucleus, continuing along the suture and completely around the outer edge of the operculum; the surface is also covered with coarse raised lamellae in the direction of the lines of growth.

Alt. 11.2, diam. 6.3, alt. of aperture 5.0 , diam. 4.4 mm .
The types are in the cabinet of the Academy, being tray number 44,488, collected at Nassau, New Providence, Bahama Islands, by Mr. C. J. Maynard in 1888.

One specimen has the apex almost entire and is composed of about seven whorls; another (fig. 11) which is not quite mature, has a broad open bay at the upper angle of the aperture disconnecting the parictal wall and outer lips, and lacks the raised rim about the inner edge of the mouth; some specimens are uniform greyish yellow.

This species differs from Opisthosiphon bahamensis (Shutt.) by being smoother, having weaker, more spaced vertical costae, finer erenulations at the suture, and a wider expanded lip; O. moreletiana (Pet.) has stronger costae, and the aperture is free from the body whorl; O. excurrens (Gundl.) is more strongly costate, obese and cylindrical.

Helicina abbotti new species. Pl. V1, figs. 12, 14.
Shell small, glotose, moderately thick, opaque yellowish corneus; apex oltuse; spire elevated, conic, composed of four arcuate whorls; suture moderately impressed, not descending at the aperture; periphery convex; surface smooth, shining, with a few oblique lines and incremental striae crossed by very indistinct spiral lines visible under a lens. The base is rather flat, carimate about the edge of
the deep umbilical rimation; aperture subtriangular; outer lip slightly thickened, narowly reflexed, descending in a nearly straight line to the convex periphery; basal lip simuous, narrowly reflexed; columella thick, concave at the elge of the umbilical rimation; parietal callus broad, heavy, linguiform, and granulate; operculum not found.

Alt. 2.1, diam. 2.8, alt. of aperture 1.1, diam. 1.4 mm .
The types are in the collection of the Academy, being tray number 44,370 , and were picked from earth collected one mile northwest of Sanchez, santo Domingo, Mayti Island, by Dr. W. L. Abbott, during February, 1919.

This species (liffers from Inclicina (Artceallosa) contimua (Cundl.) Poey by having broader parietal callus. smaller umbilical rimation, a more simous lasal lip, a broader columella, a more obtuse spire, and is smatler and more globose.

Stoastoma domingensis n. sp. Pl. Y1. figs. 4, 5.
Shell small, conic, thim, opaque, greyish white; apex rather obtuse, smooth; spire high, conice, slightly concave sided, composed of five and one half convex whorls; body whorl contracted and free near the aperture; suture impressel, descending in front; periphery evenly convex; base convex; umbilicus minute. The surface of the shell is seulptured fine spiral hair lines, of which nine are visible on the pemultimate whorl, about nineteen on the borly whorl, and sixteen on the base, the growth lines are very indistinct; last whorl provided with a smooth land near the aperture; aperture semilunate; peristome contimous; outer lip evenly arcuate; basal lip acute; colmmella arcuate, slightly thickened; parictal wall nearly straight, rather thick, free from the penultimate whorl.

Alt. 2.47, diam. 2.26, alt. of aperture . 89 , diam. 1.04 mm .
The type is in the collection of the Acalemy, being tray number 44,372 , picked from soil collected by Dr. Wr. L. Abbott, one mile northwest of Sanchez, santo Domingo, Hayti Island.

This species is larger and more conic thatn Storstoma (Lindsleya) leamm Ad., which it resembles in the shape of the aperture and sculpture.


VANATTA: NEW LAND SHELLS.

## NOTES ON ARACHNOIDISCUS.

BY SARAH P. MONKS.

While studying specimens of Hemiptychus (Arachmoidiscus), which are extremely abundant in many San Pedro, California, tidepools, an unusual form was foum which may he called a rariety of Arachnoidiscus ehrenbergii.

Instead of being circular with rays of equal length, it is bluntcuneiform, with sides compressed and two sets of short lays. In all but shape and rays, even in various sizes and deformations, it is a true Arachmodiscus, and I have called it A. ehrenbergii var. cuneatus.

It is quite abundant, thirty specimens being found in thirty micromounts.

The change of shape is no doubt partly due to overcrowding, for although there are miles of tide-pooks and millions of sea-plants to choose from, the diatoms are often on some plants in almost incredible abundance.

These alien epiphytes cowd on many different algae-on stiff Gelidium, stony Corallines, and even on the flexible stems of other plants. sometimes in shallow tidepools nearer land which are exposed to winter cold, or summer heat, during very low tide, the diatoms are killed, and then the host plant is gray-coated like sleetcrusted trees in winter. But when alive the brown of the diatoms entirely covers the stem of the host like a shiny varnish, and the only chance the burdened alga has is for terminal growth. When the brown film dies, on exposure to the sun or the dry air, the whole colony shows the green of chlorophyll, and this green remains for years; then when nothing remains but skeletons the effect is grayish white and the diatoms still stick to the host plant. Not only are the algae burdened with "an imumerable host" of Arachnoidiscus, but there are co-dwellers, members of ten or more other genera.

The habits of these diatoms may account for the many and various irregularities of Arachmoidiscus. Species of Isthma hang in festoons and swing away from the alga's stems, as do some Biddulpha
also; acicular species like Lichmophora and Climacosphenia shoot out at many angles, thus leaving Arachnoidiscus and other sedentary forms to bear the burden of growth-pressure. This intensive growth pressure in the struggle for existence in the overcrowded sea-tenement may be responsible for the many deformations of diatoms and the forming of Arachnoidiscus ehrenbergii var. cuneatus.

## IRON ORE ARTIFACTS FROM ALABAMA.

```
BY Il. NEWWELL WARDLE.
```

The attention of the writer was recently ealled to a series of artifacts of peeuliar form and musual material-all surface finds, from Blount County, Alabama. Their owner and discoverer, Mr. E. S. Gimnane, a local private collector, being unable to account for their singular form, and noting no duplicates on display in the great museums of our cities, kindly sent a selection of the pieces to The Academy of Natural solences of Philadelpila, and, these proving so interesting. followed them with the loan of his entire series for purposes of study.

The material is iron ore of varying grade-some hematite, some limonite. Many of the pieces, taken by themselves, might be considered as implements in the process of blocking out, but, brought into relation to the series, show a definiteness of purpose that calls for interpretation.

In general, the outline is amygdaloid, varying to oblong, with one plane surface and one more or less convex. The plane surface, and occasionally the lateral surfaces ako, show signs of rubbing or polishing. Though some pieces thus approach the well-known boatstone in form, ${ }^{1}$ neither material nor finish permits their assignment to that class, and the objects are obviously tools. Their narrow ends are frequently flattened, squared or notched. This last peculiarity was the first to attract attention. Taken in conjunction with their relatively great weight, it seemed to throw them into the group of sinkers. But why the notch shoukl have heen placed on the ends, in preference to the sides, as in all recognized sinkers, remained a disconcerting problem.

A second possible explanation was their employment as wearing weights where a slender weight would have its adrantage among the elose-hung strands. Not all the pieces are notched, however, and, of those which are, some have the groove much shallower

[^61](Plate VII, fig. 5), or even absent (Plate YII, figs. 2, 6, 7) at one extremity.

Judged by material alone, all might be classed as paint-stones, for they are quite capable of renderirg a red or red-brown paint. But, in that case, why were they ground into so special a form when any irregular shape would serve, as witness other specimens of identical material which bear evidence of such usage and which were collected from the same fields (Plate IX); while, on the other hand, an occasional artifact, not of irou-ore but of ordimary sandstone (Plate VIII, figs. $7,8,9$, or even of fime-grained quartzite (Plate VIII, fig. 6), may offer the same general characters.

One quality is common to all the pieces under consideration, whatever their composition or their contour-namely grit. This would indicate that they were hones of convenient form for the dressing and finishing of small tools such as awls, needles, fish-hooks, ete. Only oceasionally, however, do they exhibit the grooves on their flat surfaces which are attributed to the sharpening and pointing of such tools (Plate VII, fig. 10, Plate VIII, fig. 5.). Moorehead, in "The Stome Age in North America,", figures two samblone arrow- and needle-sharpeners from North Dakota, which have the form of the Alabama pieces under discussion, but are grooved from ent to emd on the face. It may be added that two of the irregular paint stones (or hones?), referred to ahove (Plate IA, figs. 6, 8) exhibit fine striae, apparently made by such work in sharpeming tools, in one instance (Fig. 8), the groove having been partly obliterated by later grinding.

This usage leaves mexplained the noth upon the ends. Obviously it could not have served for the attachment of a thong to prevent loss for the noteh is perpendicular to the flat surface of the tool, so that a thong would have traversed its working plane in all cases save in one piece, a very crucle one, showing little use-an unthinkathe attachment. Such is believed to have been the purpose of the groove which lies akong the periphery of the beautifut boat-shaped hones and tool trimmers of Neolithic Seandinavia. ${ }^{3}$

The only hematite known to the writer, which appears to belong to this class, is in the Andover collection, and is described ly Moorehead, ${ }^{4}$ as "a grooved hematite object, the groove extending around

[^62]the periphery of the object." Unfortunately, it is impossible to le certain from the illustration, whether the piece is truly one of the group here described.

Actual experiment with the notched hones convinced the writer that the teminal groove had served for the dressing of thong or sinew, the tool being held confortably in the closed hand, and the thong drawn through the hamd and over the end of the stone, cutting more or less deeply into its and and the adjoining faces. This methorl of handling tends to slant the noteh to the left--for righthanded workers. One specimen (Plate VII, fig. 7; text fig. 1) presents, in addition to its notched end, a series of five finer striae atross one edge of the hone, apparently cut in by a slender simew thread.


Fig 1.-Sinew scored edge of Pl. VII. fig. 7.


Fig 2.-Basal view of Pl. VIl, fig. s .

In addition to the hones already described, there are, in the collection certain irregular pieces which call for special mention. One little hone (Plate VII, fig. S; text fig. 2), which approaches in form the Antillian Zemi or "cocked-hat stone," has been drilled near one edge, probably for the attachment of a cord, which passed in a shallow groove over the edge of the artifact. The working down of the face through use has amost obliterated the groove, and possibly, by wear on the cord, accounts for the loss of the tool.

Another hone (Plate IX, fig. 9), likewise of oval outline on the flat face, is hollowed upon its opposite aspect, so that it comfortably fits the thumb when the piece is turned edgewise in order to use the lateral surfaces for abraiding-as has been freely done.

One of the most interesting tools is roughly quadrangular in outline (Plate IX, fig. 4). Evidence of long and hard service is apparent on one narrow side, as well as on the irregularly convex face and in the deep concavity of its opposite aspect. The curve of this hollow face is such as to suggest the spear-shaft and the paddle handle, or the curverl back of a bow, as objects which it had served to finish, but the delicate friction lines, traversing lengthwise the wide groove, suggest a more resisting material than wood. Such a tool as this might have worked the bowl of a stone pipe or the handle of that monolithic axe from Moundville, Alabama.

Another of these artifacts is a little truncated pyramid (Plate IX, fig. 10), its narrow base worn off diagonally, the angles of its long sides sharply defined, and the apex broken away so as to leave in doubt the problem of its possible pendent form.

Lastly attention may be called to three pieces of worked hematite (limonite?) (Plate IX, figs. 1, 2, 3.) Upon the first (Plate IX, fig. 1) a mass of limonite crystals, the primitive artificer has just begun to work, as shown by a single rubbed surface. The second (Plate IX, fig. 2) has been roughly blocked into circular frim, and the flat base and convex upper aspect offer patches of po aed surface; while in the third (Plate IX, fig. 3) the grinding and polishing has progressed farther so that the object takes on the form of the wellknown hematite cone. This piece was however far from finished, as attested by the still irregular contours and the rough depressions which the grinding down process has not yet reached.

To sum up: certain iron ore objects of amygdaloid or oblong shape, which, as a group, fall neither into the class of pendent ornaments, nor of weights used in fishing or weaving, are here identified as probable hones and sinew-dressing tools of a special form. It is hoped that the present study offers not only the description of a hitherto undescribed type of stone artefact, but its interpretation in terms of aboriginal life.

## Explanation of Plates VII, VIII, IX.

The numbers on the specimens refer to Mr. Cinnane's catalogue. All figures are shown natural size.


WARDLE : IRON ORE ARTIFACTS.



Plate VII.-Artifacts of hematite and himonite.
Figs. 1, 2, 8.-Hones.
Figs. 3, 11.-Lower aspert of planoronvex hones.
Figs, 3, 4, 5, 6, 7, 9.-Sinew dressers and hones combined.
Fig. 10.-Tool sharpener and dresser.
Plate VIII.- Iron ore objects and homologues of gritty stone.
Figs. 1, 5.-Hones of iron ore.
Fig. 2.--Iron-ore hone and sinew-dresser combined.
Figs. 2, 4. -Sinew dressers of iron-ore.
Fig. 9.-Sinew-dresser of sandstone.
Figs. 6, 7, 8.-Hones of quartzite and sandztone.
Plate IS.- Irregular artifacts of hematite and limonite.
Figs. 1, 2, 3.-Stages of making hematite cones.
Fig. 4.-Concave rubbing stone, shaft-dresser.
Figs. 5, 8.-Tool sharpeners.
Fig. 6.-Heart-shaped artefact.
Figs. 7, 10.-Pyramidal rubbing stones.
Fig. 9.-Rubbing-stone socketed for thumb.

## RECORDS AND DESCRIPTIONS OF BRAZILIAN ORTHOPTERA.

## BY JAMES A. G. REHN.

The records and descriptions in the present paper have been aceumulating for approximately five years during the study of more representative regional series of Brazilian Orthoptera. Aside from the geographic data here presented, the taxonomic and variational information thus sifted out and here brought together is of very considerable value.

Two hundred and nineteen specimens are discussed, representing one hundred and two species belonging to seventy-six genera, of which seventeen species and one genus are described as new. In addition it has been necessary to give one new generic name.

The material treated belongs almost wholly to Time Academy of Natural Sciences of Philadelphia, the Hebard Collection, which is on deposit at the Academy, the United States National Museum, the Museum of Comparative Zoology, and Comell University, to the authorities of which institutions the author is indetsted for the opportunity to study these collections. These institutions are indicated through the following pages by their respective initials.

## BLATTIDAE.

ECTOBIINAE.
Anaplecta replicata Saussure and Zehntner.
1893. Anaplecta replicata sausure amt Zehntner, Biol. Cent.-Amer., Orth., 1, p. 2s, pl. IV, fig. [Pernambuco, Brazil.]
Bonito, State of Pernambuco. January, 1883. (A. Koelsele.) One male, three females. [C. S. N. M.]

These specimens are identical with material from Igarapé-assú, State of Parí, Brazil.

Anaplecta chrysoptera shelford.
1906. Anaplecta chiysoptere thelford, Trans. Entom. Soc. London, 1906, p. 247, pl. NVI, fig. 7. [Amazons.]

Bonito, State of Pernambuco. September, 1883. (A. Koebele; "on reotton".) (one male. [l. s. N. M.]

This specimen does not fully accord with shelford's deseription and figure, having but ten instead of thirteen costal veins to the wings and no backish color on the palpi. In other features the individual fully agrees with the description and it seems desirable to tentatively refer it to chrysoptera.

## PSEUDONIOPINAE.

## Ischnoptera amazonica Rehn.

1916. Ischnoptera amazonica Rehn. Trans. Amer. Entom. Soc., XLII, p. 225, pl. N1V, figs. 4 to s. [Igarapé-assu, Pará, Brazil (type); Par:́, Brazil; Independencia, Parahyba, Brazil; Cearí, Brazil; Pimuha to Conchal Huaya, Peru.]
Bonito, State of Pernambuco. Fehruary 18, 1883. (A. Kochele.) One male. [U. S. N. M.]

This specimen has been compared with the typical material. The present record extends the range of this species a short distance south along the coast.
Neoblattella conspersa (Brunner).
1865. Ph[yllodromia] conspersa Brunner, Nouv. Syst. Blatt., p. 106. [Brazii.!
Bonito, State of Pernambuco. January-February, 1883. (A. Kocbele.) Five males, one female. [U. S. N. M.]

These specimens are somewhat paler than the average of a large series from the state of Pará, with the usual pronotal pattern greatly reduced, faintly indicated or even absent. In all the tegminal punctulations are indicated although never strongly so.

## EPILAMPRLNAE.

Notolampra gibba (Thunberg).

Pernambuco, State of Pernambuco. January 2. 1883. (A. Koebele.) One male. [U. 心. N. M.]

This specimen shows no trace of the median brown pronotal line mentioned by Gaussure in deseribing the synonymous lucida.

All the previous exact records given for the species are from Bahia.
Phoraspis picta (Drury).
1782. [Blatta] picta Drury, Illust. Exot. Entom., III, p 76, ind. (2), p]. 50, fig. 3. [Rio de Janeiro, Brazil.]
Santa Catharina. One male. [Hebard C'ln.]

Epilampra fallax saussure and Zehntner.
1893. Epilampra fallax Saussure and Zehntner, Biol. Cent.-Amer., Orth., I, p. 64. pl. IV, fig. 36. [Santa Catharina. Brazil.]
Santa ('atharina. One female. [Hebard C'ln.]
Roça Nova, Serra do Mar, State of Parama. One female. [A. N.S. P.]

These specimens are typical of the species.
Epilampra imitatrix Saussure and Zehntner.
189:3 Epilampra imitatrix Faussure and Zehntner, Biol. Cent.-Amer., Orth., I, p. 63. [Brazil.]
Chapada, State of Matto Cirosso. Octoher. One female. [U. S. N. M.]

This specimen differs from the description in several features, but as the species was based on the male sex these are probably only sexual. The tegmina are somewhat shorter and the pronotum of smaller size, but the other characters are in accord. The supra-anal plate is narrowly divided mesad.

This is the first record of the species with exact locality.
Epilampra latifrons Saussure and Zelintner.
1893. Epilompra latifrons Saussure ant Zehntner, Biol. C'ent-Amer., Orth., I, p. 66. [אoutb America]
Pernambuco, State of Pernambuco. (J. C. Fleteher.) One male. [M. (. Z. Z.]

This specimen, which is the first of the species recorded with exact locality, fully agrees with the description except in a few features which appear to us to be matters of variation or interpretation. The interspace between the eyes is exceptionally broad for the male sex, but is not quite twice as wide as the depth of the eye; the intercalated area is represented by a slight but distinct fold, while the supra-anal plate is sub-bilobate instead of having its margin entire as deseribed. In every other respect the specimen is in exact aceordance with the description, and differs from the related azteca, with which it has been compared, in the differences given by the original deseribers.
Epilampra atriventris saussure.
1895. E[pilampra] atriventrissiussure, Revue Sinisse de Zoolngie, II1, , 3. 35:. [Brazil.]
Santa Catharina. One female. [Hebard ('ln.]
This specimen fully agrees with the original description except that the tegmina are slightly longer ( 22.6 mm .) and the supra-anal plate is not mimately incised mesad. The latter features is probably one which varies on account of the, at most, very delicate character of that area of the plate. This is the first record of the species with cxact locality.

Panchlora prasina Burmeister.
1838. P[anchlora] prasinu Burmeister. Handb. der Entom., II, abth. II, pt. 1, p. $50 \overline{4}$. [Rio de Janeiro, Brazil.]
Piquete, State of São Paulo. January, 1901. One female. [A. N. S. P.]

Santa Catharina. Two females. [Hebard ('ln.]
These appear to be the first exact records published since the original description of the species. One of the Santa Catharina females is smaller than the other individuals of this exceptionally large species.

## BLABERINAE.

Petasodes dominicana (Burmeister).
1838. M[onachoda $]$ dominicana Burmeister, Handb. der Entom., II, Abth. II, pt. 1, p. 514. [Brazil.]
Santa Catharima. One male. [A. N. S. P.]
River Una, forty-six miles south of Bahia, State of Bahia. (A. de Lacerda.) One male. [Hebard Cln.]

Monastria biguttata (Thunberg).
"1826. Blatta biguttata Thunberg, Mém. Acad. Imp. sci. St. Pétersb., X, p. 276, pl. 14."

Teffe (Ega), State of Amazonas. (Roulin; Thayer Expedition.) One male. [Hebard Cln.]

Rio dos Macacos, State of Pará. (Thayer Expedition.) One mate. [M. C. Z.]

Rio de Janeiro, State of Rio de Janeiro. (Thayer Expedition.) One male. [M. (. Z.]

We have not been able to examine the original description of this species, volume ten of the "st. Petersburg Memoirs" being lacking in our set of that publication. However, the specimens before us accord with the interpretation of the species presented by Serville and Brunner, and have the cephalic margin of the pronotum lined with fuscous and the costal margin of the tegmina without any contrasted pale edging. The specimens previously recorded by us as this species, from Yaguarasapa, Paraguay ${ }^{1}$ and Misiones, Argentina, ${ }^{2}$ together with two other males now before us from Puerto Cantera (X, 1913; C. schrottky) and Alto Paraná (II, 1914; C. Schrottky), Paraguay, belong to the form called similis by Serville. This has the cephalic margin of the pronotum deep ochraceous-orange and

[^63]the costal margin of the tegmina largely edged with the same. Whether similis should be considered a distinct species or merely a chromatomorph of biguttuta we cannot say at present, an uncertainty shared with Brunner and Saussure, but it is our opinion that, tentatively at least, it should be considered worthy of specific rank. Asile from the color features the female appears to differ in the tegmina being longer than in biguttata, and of sufficient length to cover half of the dorsum of the abdomen. All the material we have referable to similis is of considerably larger size than that referred to biguttata, also much smpassing the measurements given in both of the original descriptions, but this, we feel, may be individual or geographice in character.
Monastria cassidea (Eschscholtz).
182.2. Blatte cussidea Eschscholtz, Entomographien, p. S7. [Santa Catharina, Brazil.]
Theresopolis, State of Santa Catharina. One female. [Mus. Comp. Zool.]

It may be necessary in the future to remove this species from the genus Monastria, as there is a very great amount of difference between M. bigutlata, the type of Monastria, and this species.

## CORVDIINAE.

Euthyrrhapha pacifica (Coquebert).
1804. Filattu pacifica Coquebert; Illustr. Inconogr. Insect., III, p. 91, pl. XXI, fig. 1. [lslands of the Pacific; Ocean.]
Piquete, State of São Panlo. One male. [A. N. S. P.]
1'ERISTHAERIN゙AE.
Hormetica ${ }^{3}$ scrobiculata Burmeister.
1838. II [ormetica] scrobiculata Bummeister, Handb. der Entom., Il, abth. I1, pt. 1, p. 512. [Bahia, Brazil.]
Amazons. One male. [A. N. A. P.]
As pointed out clsewhere we consider this name to represent a species well separated from $H$. laenigata Burmeister, with which it is usually synonymized.

[^64]MANTIDAE.
ORTHODERIN゙AE.
Mantoida burmeisteri (Giebel).
$1 \wedge 62$. Ch[actuessa]burmeisteri Criebel, Zeitschr. für die gesammt. Naturwiss, NX, p. 316. [Neu Freiburg, State of Rio de Janciro, Brazil.]
('haparla, State of Matto Grosso. August. One male. [M. C. \%.]

This sperimen has been compared with individuals of the species from the Rio salado and the Misiones, Argentina. The range of the insect is considerably extended to the north-westward by the present record.

## MANTINAE.

Acontiothespis bimaculata (Sunsure).
1870. A ccomistor bimaculatu Sausure, Mittheil. Schweiz. Entom. Gesell., III, p. 229. [Brazil.]
Goyaz, state of Goyaz. Two males. [Hebard Cln.]
We have compared these specimens with mates from sapucay, Paraguay and the Misiones and Jujuy, Argentina.

Euryderes anisitsi Brancsik.
1897. E[uryderes] anisitsi Brancsik, Jabresh. Naturw. Ver. Trencsin. Comit, XIN-NX, p. 6i3, pl. 1, fig. 9. [Fuerte Olympo. Paraguay.]
(ioyaz, State of Goyaz. Six makes. [Hebard C ln.]
It was a surprise, as well as a pleasure, to recognize this previously little known genus and species in the present collection. The specimens fully agree with the original description and aks, after allowing for a certain degree of roughness in the drawing, with the figure. Our specimens are all slightly larger than the original measurements, several appreciably so, but it is evident there is considerable individual variation in this respect. Superficially the present insect bears a considerable resemblance to the African Vatid genus Danuria and allied genera, the form of the head and pronotum much suggesting that found in the Old World group, but Euryderes is a true member of the Mantinae. Its position, however, appears to be removed from Coptoptery.x and near Photina than the location given it by Kirby in his Catalogue. While distinctly aberrant in general features it would seem to us to fit more logically in a linear arrangement between Metriomantis and Photina.

The species was previously known only from the type locality.

## Photina brevis Reln.

1907. Photina brevis Rehn, Proc. Icad. Nat. Sci. Phila., 1907, p. 156, figs. 1 and 2. [Sapucay, Paraguay.]
Goyaz, State of Goyaz. Two males. [Hebard C'ln.]

These specimens have been compared with the type of the species. In this form the venation of the wing shows much individual variation in the number of rami of the principal veins. Both of the Goyaz specimens are somewhat larger than the Sapucay indivichals (type and paratypes).

The present record extends the range of the species to the northward.
Angela infuscata (Chopard).
1911. Thespis infuscato Chopard, Ann. Boc. Entom. France, LXXX, p.. 320. [Saint Jean du Maroni and Nouveau Chantier, French Guiana.]

Obidos, Rio Amazon, state of Amazonas. One male. [A. N. S. P.]

This specimen agrees with two cotypes of this species now in the Hebard Collection. The range of the form is extended southward into the Amazon valley by the present record.

## MIOPTERYGINAE.

TRACHYMIOPTER YX ${ }^{5}$ new genus.
This genus is nearer to Pseudomiopteryx Saussure and Eumioptery.r Ciglio-Tos than any others. Its relationship to Pseudomiopteryx is much less intimate than that with Eumiopteryx, and from the former the new genus can be immediately separated by the absence of a frontal spine and the angulation of the latero-cephatic sections of the pronotal margins. From Eumiopteryx its differences are more subtle, yet distinctly evident. The basal outline form of the pronotum is much the same as in Eumiopteryx, showing, however, a slight angulation to the expansion, which is suggestive of that found in Pseudomopteryx, but the dorsal surface has three pairs of pronounced tuberele; the vicinity of the transverse sulcus is strongly sellate; the occipital outline is distinctly arcuate emarginate, instead of subtruncate as in Eumiopteryx, and the juxta-ocular lobes are decided and rectangulate; the facial shield is deeper in proportion, while the tegmina are more ample, as in Pseudomioptery.r.

The present genus is apparently a type intermediate between thetwo genera with which it has been eompared, but sufficiently distinct to he generically recognized.

Genotype--T. tuberculata new species.
Trachymiopteryx tuberculata new species. (Plate N , figs. 1 and 2.)
Type- - ${ }^{2}$; (ioyraz, state of Goyaz, Brazil. [Hebard (oollection, Type no. 216.]

[^65]Size medium (for the subfamily); form but little elongate. Head with the greatest depth contained one and one-half times in the greatest width across the eyes; cephalic face of occiput moderately declivent mesad with a distinct but low and rounded boss or swelling, laterad of which are shallow, broad, depressed areas, in which the antennae lay when directed caudad; occipital outline, when seen from the cephalic aspect, distinctly though not deeply arcuateemarginate, very faintly bulbous on each side immediately mesad of the juxta-ocular sulci, the juxta-ocular lobes distinct, elevated, slightly acute with the apices rounded; ocelli relatively large, moderately prominent, well separated, placed in an inverted, subdepressed triangle, their vicinity without a frontal production; facial shield transverse, its greatest depth contained three times in the greatest width; dorsal margin of shield arcuate mesad and arcuate-emarginate laterad, ventrad of the antemal scrobes; ventral margin of the shield arcuate-emarginate; the curve of the median section of the dorsal margin continued ventro-laterad over the plate by low ridges: clypeus transverse, its surface elevated in a distinct transverse ridge, highest mesad: eyes prominent, inflated, in basal outline short ovate, close to the internal margin of each eye, and between it and the nearest antenna and ocellus, is placed a pair of well separated tubercles, the dorsal of which is more pronounced than the ventral: antemae with the joints, aside from the proximal three, moniliform, the proximal jointfrelatively large.

Pronotum in general form intermediate between that found in Pseudomiopteryx and Eumiopteryx, the greatest width across the supra-coxal expansion contained about twice in the greatest length of the pronotum, which is nearly twice the least width, this being situated caudad of the middle of the shaft: collar with the lateral margins appreciably depressed ampliate, cephatic margin relatively narrowed, rounded, with a slight angle where it passes into the lateral section, thence the margins are straight and obliquely diverging to faintly before the middle of the shaft, where there is a distinct obtuse-angulate projection, the margins thence to the angle of the dilation divergent arcuate-emarginate; angles of the expansion obtuse, the immediate angles narowly rounded; margins of the shaft regularly narrowing from the long expansion to the point of least width, thence faintly expanding to the arcuate cautal margin: lateral margins in the vicinity of the expansion minutely crenulate: collar occupring two-fifths of the length of the pronotum, its surface with a paired median tubercle and candad of this a pair
of slighty more conical tubercles: shaft at cephalic third with a median bifid tubercle, the points of which are conical, immediately caudad of this is a pair of widely separated, low, conical tubercles, and about an equal distance from this pair, but on each lateral face of the shaft, is a pronounced conical tubercle, caudad of which and ruming dorso-caudad is a carinate ridge, stronger caudad, and fusing with a strumose area near the caudal margin, where there is a pair of elevated, longitudinally disposed projections, the crests of which are semulate; median carinulation distinct but low caudad of the median paired tubercle on the collar; when seen from the side the region of the expansion is distinctly sellate, and the shaft less decidedly but still distinctly so.

Tegmina four and one-third times as long as the pronotum, its greatest width contained three and one-half times in the tegminal length, the greatest width at the distal third: costal margin appreciably ciliate, very briefly arcuate provimad and in distal third moderately arcuate to the rotundato-rectangulate apex, distal margin suturad of the apex broadly rounding into the sutural margin: marginal field coarsely reticulate; discoidal vein bifurcate at distal fourth; median vein bifurcate at middle; uhar vein bifurcate near the base, the sutural ramus bifurcate immediately distad of the primary bifurcation, all rami of the median and ulnar veins reaching the sutural margin: anal vein areuate in proximal half, thence straight oblique; axillary veins two in number, the sutural one bifurcate near its base; stigma distinct, slightly oblique, involving all veins from the median to the caudal ramus of the ulnar vein; areas between all veins of the discoidal field irregularly but rather openly and finely recticulate with cross-reins, which are less numprous in the immediate vicinity of the main reins than in the middle of the areas. Wings when in repose surpassing the apices of the tegmina by about the length of the collar of the pronotum, the apex rotundate-rectangulate: unar vein biramose. the proximal ramus diverging near the proximal third, the distal ramus diverging at about the distal third, the proximal ramus separated from the distal one by a considerable space, which narrows distad: discoidal field of the wing with the interspaces between the veins proximad with fairly regular crossreins, which are much more oblique in some areas than in others, distad the cross-veins lecome irregular and anastomosing, except in the narrower fields where there is a general biseriate disposition.

Ablomen with the supra-anal plate transverse, triangularly produced mesad, moderately tectate, weakly carinate mesad, the apex
angulate; cerei moderately surpassing the subgenital plate, subequal in width, moniliform, slightly depressed, apical joint bhuntly acuminate: internal genital plates which are apparent from the dorsum, lying in the hollow of the subgenital plate, are: on the right side a depressed, broad, narrowing and incurved plate, the apex of which is bluntly acuminate and slightly decurved; on the left and extending over to the center is a very broad, strongly depressed plate, which is in general obliquely subtrumcate at the distal extrenity and from the dorso-distal portion of which arises an erect, falcate process, which is curved to the left; rentrad of this plate lies a narrow, sinuato-falcate titillator, the apex of which is bluntly acuminate and reaches to the dextral internal plate: subgenital plate broad, depressed, sancer shaped, the margin sinuato-arcuate when seen from the dorsum, styles represented sinistrad by a strong acuminate appendage, the dextral equivalent of which is, possibly teratologically, a mere node.

Cephalic coxae subequal to the pronotum in length, subcompressed, external margin lamellato-carinate, all margins very finely and sparsely serrulate: cephalic femora nearly one and one-fifth times the length of the pronotum, distinctly compressed, the general form of the femur elongate sub-triquetrous, the greatest femoral depth contained about three times in the length of the same; dorsal margin of the femm lamellato-carinate, faintly sinuate; external face obsoletely granulose; rentro-external margin with fise relatively short, conical spines, the distal one on the genicular lobe; rentro-internal margin with thirteen conical spines, which are arranged according to length in the following biseriate formula-(reading proximad) I IiIiliIilili; discoidal spines four in number, the second (reading proximad) much the longer; proximal section of the ventral surface with a median row of tubercles; cephalic tibiac (aside from the apical spur) half as long as the femora, moderately compressed, subcarinate on the extensor surface, external margin with a series of six distinct, adpressed spines on the distal half, these increasing in length distad and represented proximad by weak crenulations; internal margin with a continuous series of ten spines, which regularly increase in length distad, apical claw greatly clongate, falciform: cephatic metatarsi but little shorter than the tibiae, the remaining joints of the cephalic tarsi but slightly shorter than the metatarsi. Median and caudal limbs of medium length, relatively slender.

Gencral color ochraceous-buff to ochraceous-tawny, very thickly and in general uniformly overlaid with a nebulose or punctulate
pattern of mummy brown to blackish-fuscous, which is in general so heavy that at first glance it is supposed to be the base color: eyes ochraceous-tawny overlaid with cloudings of blackish fuscous; ocelli zine orange; antemae mummy brown on an ochraccous-tawny base: tegmina with the discoidal and all principal veins suturad of the same regularly checked with blackish fuscous, the base color of the veins being buffy, of the discoidal vein strongly ochraceous-buff, the general infumation of the tegmina weak mummy brown, with the immediate vicinity of the areal cross-veins hyaline; wings infumate similar to the tegmina, but proximad and on the radiate field more weakly so, the veins of the humeral field checked similar to those of the tegmina, the veins of the radiate field with a faint indication of similar but infrequent and attemuate checking; internal face of the cephalic coxae in general uniformly pale; internal face of the cephalic femora largely blotehed with fuscous; cephalic tibiae with three rather indistinct bands of mummy brown; cephalic metatarsi with incomplete median and distal anmuli of fuscous, remaining tarsal joints each uni-annulate, median femora obscurely tri- and caudal femora obscurely bi-ammate with fuscous clouds.

Length of body, 24.2 mm . ; greatest width of head across eyes, 4 ; length of pronotum, 5.4; greatest width of pronotum, 2.8; length of tegmen, 23 ; greatest width of tegmen, 6.4 ; length of exposed portion of wing distad of tegmen, 2.4; length of cephalic femur, 6.1; length of caudal femur, 7.2 .

The type of this interesting gemus and species is unique.

## Eumiopteryx laticollis Giglio-Tos.

1915. E[umioptery.r] luticollis Giglio-Tos, Bull. soc. Entom. Ital., XLVI, p. 141. [Paraguay; Province of Sara, Bolivia.]

Coyaz, State of Coyaz. One male. [Hebard Chn.]
This specimen agrees quite well with the generic and specific deseriptions, although very slightly smaller than the original measurements for the sex. The individual has been much damaged about the wings and the median and caudal limbs, and in consequence certain venational features are not as clearly discernable as might be desired. The genus is not far distant from P'seudomioptery.r. and also close to the gemus Trachymiopteryx, above described. The principal features of difference hetween the latter gems and Eumiopteryx are given under the diagnosis of Trachymioptery.x.

CNEPHOMANTIS ${ }^{6}$ new name.
1915. Miopteryx (iglio-Tos, Bull. Soc. Entom. Ital., NLVI, p. 139. (Not Miopteryx Sausure, 1869.)
1919. Wioptery. Giglio-Tos, Ibid., NLIX, p. 60. (Not Miopteryx Saussure, 1869.)
Gigho-Tos' recent reference of Miopteryx granadensis saussure to a new genus Promiopteryx, ${ }^{7}$ as its genotype, is completely in eror. His procedure is completely mullified by the first (the present author's) fixation of the genotype of Miopteryx as M. granadensis., Gigho-Tos was, doubtless, following Kirby's fixation of rustica as the genotype, ${ }^{9}$ but Kirby's fixation was made a number of months posterior to the indication of granadensis. The name Promiopteryx is, consequently, a pure synonym of restricted Niopteryx. It is necessary, therefore, to have a new gencric name for the gemus called Miopteryx by Cigho-Tos, and we are here proposing Cnephomantis, selecting as genotype the species described as Miopteryx fuseata by (iiglio-Tos.
Cnephomantis ${ }^{10}$ fuscatus (Giglio-Tos).
1915. W[iopteryx] fusctu (iiglio-Tos, Bull. Soc. Entom. Ital., XLVI, p. 139. [Brazil.]

Espirito Santo. One male. [Hebard ('ln.]
This specimen fully :mswers the brief description of Cigho-Tos, but has the pronotum faintly shorter ( 4.6 mm . instead of 5 ).
Musoniella chopardi Giglio-Tos.
1913. Wiopteryx livida Chopard, Ann. Entom. Sor. France, LXXXII, p. 759. (Nee Thespis livida Serville, 1s:39.) [Cuyaba, Matto Grosso, Brazil.]
1916. M[usoniflla] chopardi Giglio-Tos, Bull. Soc. Entom. Ital., XLVII, p. 4. (Name for livida Chopard, nee serville.)

Goyaz, State of Goyaz. One male. [Hebard Chn.]
This specimen is apparently inseparable from the insect erroneously determined as Serville's Thespia limida hy Chopard, and later named chopardi by Gigho-Tos. The species is a rather aberrant Musomella, showing, in its pronotal form and type of head, a tendeney toward Enmusomia.

[^66]Musonia ${ }^{11}$ costalis new species. (Plate X, figs. 3 and 4.)
This species is a quite interesting one, being on the borderland between the genus Musonia(Promusonia Giglio-Tos ${ }^{12}$ ) and Musoniella Giglio-Tos, but apparently nearer the former assemblage. When compared with a sit. Laurent cotype of Chopard's Miony.x fuscescens. ${ }^{13}$ which is a member of the restricted genus Musonia and to which the new form is closely allied, costalis is seen to differ most strikingly in the deeper frontal shied, the shorter and broader pronotum, this showing Musoniclla tendencies, the strongly infuscate marginal field of the tegmina. which has a strikingly marked pale line on the costal margin, and in the infuscate proximal sections of the tranverse veins. The apex of the abdomen is lacking in the specimens seen. From surimama, the genotype, costalis is separated by a number of characters, the shorter pronotum and bicolored tegmina, with infuscate bases to the cross-veins, being sufficiently distinctive in costeles to separate readily the two forms.

Type.-- $O^{7}$ (presumat)ly); Coyaz, State of Goyaz, Brazil. [Hebard Collection, Type no. 217.]

Size small: form morlerately elongate. Hearl much wider than the pronotal expansion, when seen from the cephatic aspect strongly transverse, the greatest depth contained one and one-half times in the greatest wilth: occipital line between the juxta-ocular sulei straight tramserse, between the juxta-ocular sulci and the eyes the margins is slightly declivent and developed into low obtuse-angulate lobes, from the side the longitudinal angle of the occiput is seen to be slightly acute: ocelli large, but little separated, placed in a reversed, slightly depressed triangle: facial shield strongly transverse, the greatest depth contained two and one-half times in the

[^67]greatest width, dorsal margin of shield in general obtuse-angulate, slightly emarginate ventrad of the antemnae; lateral margins slightly diverging dorsad; rentral margin faintly emarginate: eyes moderately prominent, not extending caudad of the general line of the head, in basal outline broad ovoid: antemace clongate, joint moniliform.

Pronotum moderately elongate, the greatest width across the expansion contained nearly four times in the length of the same: collar occupying about two-fifths of the pronotal length, the collar margins regular'y diverging caudad to the moderately indicated expansion, the cephalic extremity of the pronotum regularly, but relatively narowly, rounted; shaft of the pronotum appreciably broader than the collar, the margins ahost subparallel, faintly diverging eaudad, caudal margin subtruncate, all lateral margins sparsely but distinctly denticulate, expansion rounded; median earina distinct, weak cephalad on the collar: transverse sulcus well indicated; collar with lateral impressed areas throwing an elongate-elliptical dorsal nedio-longitudinal area into relief.

Tegmina in length equal to about three times that of the pronotum: costal margin distinctly and regularly fringed with relatively short hairs, strongly rounding to the narowly rounded but acute-angulate apex: marginal field narrow, proximal section weakly expanded. the field having in the broader proximal section a false longitudinal vein which forms a biseriate row of arolets: discoidal vein bifurcate at distal third, median vein hiramose, ulnar vein biramose proximad; stigma nearly longitudinal, involving both distal rami of the ulnar vein and the proximal ramus of the median vein; axillary veins two in number, the distal one strongly sigmoid; interspaces between the veins of the discoidal field with false longitutimal reins, which make a biseriate disposition of the subrectangulate areolets. Wings surpassing the closed tegmina by about the lengtl of the shaft of the pronotum, the apex slightly acute. surface of the tegmina and of the exposed portion of the wings covered with short, plush-like, microscopic pile. Abdomen with the distal portion missing.

Cephatic coxae subequal to the pronotum in length, slender, strongly carinate, the margins mopined: cephalic femora equal to one and one-fourth the length of the coxae, slender, the depth hardly more than one-sixth of the length; ventro-external margin with five spines, one of which is genicular in position; ventrointernal margin with thirteen spines, which are arranged in the following formula (reading from the distal extremity) iIiIiIiIiliIi,
of which the first, fifth and sixth of the longer spines are more rohust than the others of that category; discoidal spines four in numher, the distal one small: cephatic tibiae slightly less than half the length of the femora, external margin with five spines, with a large proximal diastema, internal margin with nine spines, increasing in length distad, apical claw large: cephalic metatarsi very slender, elongate, in length faintly longer than the tibiae (without (law), proximad sigmoid, remaining cephalic tarsal joints about two-thirels as long as the metatarsus. Median and caudal limbs very clongate and slender, the median femora subequal to the pronotum in length, the caudal femora almost half again as long as the median femora.

General color wood brown, overlaid with a finely punctulate pattern and clouding of bone brown to fuscous. Head with the ocellar region solidly, and the facial shield almost solidly, fuscous; eyes broadly blotched with fuscous on the ground color; antemae of the general color, weakly infuscate distad. Lateral portions of the pronotal shaft heavily blotched with fuscous. Tegmina suuff brown, the marginal field solidly clove brown, the costal margin narrowly but strikingly lined with light buff, this weakening distad; discoidal field with a very short section of each of the cross-veins adjacent to the longitulinal veins lined with clove brown; distad the longitudinal veins show a pencilling of clove brown. Exposed portion of wings colored similarly to the distal section of the tegmina. Limbs with the pale hase color evident on the carinae of the coxae and femora; external face of the cephalic femora heavily clouded with fuscous, internal face with a heary blotch of fuscous at the ungual groove; cephalic tibiae with three incomplete amuli composed of fuscous blotches.

Greatest width of head across eyes, 3 mm ; length of pronotum, 5.6; greatest width of pronotum across expansion, 1.5; length of tegmen, 17.2; greatest width of tegmen, 4 ; length of cephalic femmr, 4.9; length of caudal femmr, 8.6.

The type of this species is unique.
Eumusonia ${ }^{14}$ livida (Serville).
1839. Thespis lividu serville, Hist. Nat. Ins., Orth., p. 172. [Brazil.]

Goyaz, State of Cioyaz. One male. [Hebarl Cln.]
This specimen appears, in the light of Ciiglio-Tos' comments ${ }^{15}$ and a re-examination of all of serville's remarks, to be the same as.

[^68]or extremely close to, serville's species. The insert previously called Tuida by C'audell ${ }^{16}$ and the present author ${ }^{17}$ is quite close, and we have identified it as Eumusonia viridis (iigho-Tos, ${ }^{\text {Is }}$ which was recently described from a single male from salto (rande, State of São Paulo, Brazil. The species viridis has both green and brown chromatomorphs, the green apparently the more infrequent, but a single specimen of it heing in the series of six individuals of the species now before us.

Thesprotia fuscipennis saussure and Zehntner.
1894. Thesprotiat fuscipemis saussure and Zchntner, Biol. Cent.-Amer., Orth., I, p. 171. [Kio de Janeiro, Brazil.]
Espirito Santo. One male. [Hebard ('ln.]
This specimen is fully typical of the species, but unfortunately has the supra-anal plate damaged, as did the male type, so that the character of this important part is as yet unknown.

## CREOBOTRINAE.

## Acanthops erosa serville.

1839. Actuthops crost Serville, Hist. Nat. Ins., Orthopt., p. 165. [Brazil.]

Bonito, State of Pernambuco. Janvary, 1885. One female. [U. S. N. M.]

The present specics, as we understand it, is quite close to A. falcataria, from which it readily can be separated by the narrower proximal section of the marginal field of the tegmina.
Acanthops rehni (Cliopard). ${ }^{19}$
1913. Pllesidctuthops] rehmi Chopard, Bull. Soc. Entom. France, 1913, p. 55, figs. 1 to 3. [Ciran Chaco, Argentina.]
Goyaz, state of Goyaz. Two males. [Hebard Chn.]
This species is extremely variable in size in the male sex, as a series of nine males from Sapucay, Paraguay, now before us, shows. Females from the latter locality are appreciably larger than the type measurements.

The genus Plesiacanthops, which was erected for tuberculata Saussure and the present species, does not appear to us to be very sharply distinguished from true Acanthops, three species (brumneri, falcataria and erosa) of which latter division are now before us. Chopard has

[^69]recently reduced Plesiacanthops from generic rank to that of a division or subgenus of Acanthops. ${ }^{20}$

As the male sex of this species has not been described, a few notes may be of value:
$\sigma^{7}$. Sapucay, Paraguay. December S, 1909. (William Foster.) [Hebard Collection.]

In general form differing from the female in the same fashion as males of the other species of the genus Acanthops differ from the females of their respective speeies. Form moderately slender, in general depressed, tegmina and wings well developed, considerably surpassing the aper of the abdomen. Head with its greatest depth contained one and one-third times in the greatest width of the head across the eyes: facial shicld slightly more transverse than in the female; ocelli large, subcontiguous, placed in a depressed triangle: eyes much more produced than in the female, the apices more decidedly mammillate; antemnae setaceous, but slightly heavier than in the female: surface of head with faint traces of the asperities found in the female.

Pronotum relative smooth, no trace of asperities being present; greatest width across the expansion contained three and one-third times in the greatest length of the pronotum, subequal to the length of the collar; expansion moderately indicated, rounded, margins entire, no median carina or depression indicated. Tegmina of the usual type found in the males of this genus, mortui-foliaceous, greatest width (which is at distal fourth) eontained three and onethird times in the tegminal length; costal margin bisinuate, the distal one shorter longitudinally than the proximal one; apex sub)rectangulate with the angle slightly produced lobulate. Wings infumate, with the transerse veins of the anterior humeral and more distinctly of the radiate, but not of the posterior humeral, fields whitish, forming a distinct pattern; greatest width of the wing contained one and threequarters times in the greatest length of the same; apex narrowly rounded rectangulate, costal margin in general straight, at the distal fourth rounded and thence to the apes obligue truncate.

Supratanal plate subtransterse rounded trigonal; rered not longer than the subgenital plate, subdepressed, subequal in width, the distal joint as long as the two preceding it and truncate at the extremity: subgenital plate shovel-shaped, subtrigomal, the distal

[^70]extremity $V$-emarginate, the styles very bricf. In structure the abdomen is lamellate as in the female, but in a slightly more reduced fashion; the dorsal black pattern is somewhat different ; seconel segment with a tramsverse bar caudad, third segment with an arcuate figure distad taking up about two-thirds of its surface, fourth segment similarly but more completely occupied, fifth sogment completely colored except that proximo-mesad the tone is weaker and brownish, sixth segment broadly bordered laterad and faudad with black, seventh segment distinctly and eighth and ninth segments faintly bordered caudad with blackish: venter of the abdomen with the structure of the segmental margins as in the male. Limbs of the type found in the female but much more slender.

Measurements of the described specimen: length of body, 41 mm ; greatest width of head across eyes, 5. 5; length of pronotum, 11.5; greatest width of pronotum across expansion, 3.5 ; length of tegmen, 38.6; greatest width of tegmen, 11.5; length of cephalic femur, 10 ; length of caudal femur, 7.5 .

## V.JTLNAE.

## Oxyopsis lobeter Rehn.

1907. Oxyopsis loheter Rehn, Proc. Acad. Nat. Sci. Phila., 1907, 1. 159, figs. 3 and 4. [אapucay, Paraguay.]
Goyaz, State of Coyaz. Three males. [Hebard Cln.]
The range of this species is now known to extend from the Misiones, northeastern Argentina north to Coyaz, Brazil.
Oxyopsis oculea new species. (Plate $\mathcal{X}$, figs. 5, 6 and 7.)
A member of the section of the genus having produced and acute apices of the wings, and related to $O$. rubicunda (Stoll), from the Guianas, but differing from that species in the female sex in the less etongate pronotum, more decidedly trigonal sectional form of the shaft of the same, in the more produced (laterad) eyes, in the somewhat narrower marginal field of the tegmina, in the reduction in number and size of the hyaline areas of the discoidal field of the same, in the more acute tegminal apices, in the slightly more acuminate apices of the wings and in the relatively shorter median and coudal limbs. We are umable to compare the male very satisfactorily with mbicunda, owing to a lack of material of that sex of the older species, and the rather poor character of the available clescripdions and figures of the same.

Type.-q, Bonito, State of Permambuco, Brazil. July 15, 1883. [Cnited States National Museum.]

Size medinm, form moderately slender. Head with the greatest width across eres twiee that acrose the expansion of the pronotum, when seen from the cephatic aspect the form of the head is depressed trigomal, the greatest depth contained one and five-eighths times in the greatest width across the eyes; oceipital lime subtruncate, rounding to the eyes laterad; region of the frons distinctly declivent, slightly concase: justa-ocular suldi and the median pair of sulei well impressed on the frons; ocelli distinet, small, well separated, placed in a strongly eurved line; facial shich transverse, its greatest depth contained one and two-thirds times in the greatest width, the dorsal ontline of the plate transverse truncate mesad, obliquely trmeate laterad, lateral margins vertical, ventral margin wakly areuatoemarginate, surface of the phate with a few depressions laterad hut (10) bevations excepting the dorsal and lateral margins, which are dingulate: elypers and labrum transwerse, eyos strongly produced laterad, when seen from the dorsum or from the cephalic aspect the production of the eyes is rectangulate, the apex submammilate, the erephatie surfaer of the eyes with a distinet eonvesity: antemnae simple, sotaceous, rolatively short.

Pronotmon elongate, the greatest width across the inflation contained slightly more than five times in the greatest length of the same, inflation little pronounced, the collar regularly narrowing from this to the rather narrowly rounded rephatice extremity, the whaft with the margins faintly eoncave, the least width of the shaft being at the median third, where the margins are briefty subparallet; lateral margins of the shaft distinetty dentate the teeth sarser candad, the margins of the collar elosely denticulate, on the expansion proper the denticulations are few and weak; in section the shaft is strongly trigonal, median camina of the shaft faily decided and eontinuous, collar with a medio-longitudinal impression, which is stronger candad and there accompanied by a median carimmlation, transerse impression well indicated.

Tegmina atont one and one-fourth times as long as the pronothme, in form quite elongate elliptioo-ovoid. the greatest width contamed about three times in the greatest length; costal margin strongly arcuate proximad and distad but straight for the greater portion of its length mesad, apex subrectangulate with the immediate apex very narowly rounded, sutural margin with the proximal third faintly areuate, the distal fourth obliquely rounding to the apex: marginal field oceopying abost two-fifthe of the width of the tegmen, gently broalening to the distal fometh, thenee marrowing
to the apex: obligue rami in the marginal fied nine in momber, occasionally hifureate; hyalinc areolate of the proximal section of the diseoidal and anal areas relatively few in momber, not markedly conspicuous. Wings surpasing the apices of the tegmina by about one-third of the pronotal length, the exposed portion of the wings distinctly and regularly arute the proximal widtlo of the exposed portion contamed one and one-third times in the length of the same section, the structure of the exposed area coriaceors: wing in gendrat relatively long and narmo, its greatest wisth contained about twice in the total wing length. Abdomen incomplete.
('ephalic cosar about fivereighthe as long as the pronotum, in section compressed triquetrous, domsal (eophalie) margin with moderate -pines. which are biseriate in length atnd somewhat irregular in disposition; rephalie fomora equal to two-thirds of the pronotum, slender, bitte compressed; diseodal spines fotir in number: external margin with fom large spines and a microseopie point on the genicular bot internal magin with fifteen spines, which are biseri-
 "ephate tibiae (exchsive of apical chaw) slightly les than half as long as the rephatic femora, subempressed, the daw heary, external margin with eleven spines, which incerease in length distad and proximad of which is a hrief diastema, internal margin with sisteen to seventem spines, which increase in length distad: cephatic motatars shagtly shorter than the tibiae, famtly longer than the remaining tarsal joints. Median and candal limbs elongate, moderately slender: median femora slightly longer than the cephalic coxae: candal femora subequal in length to the shaft of the pronotum, caudal tibine subcqual in length to the fomora; camelal metatarsi slightly shorter than the collar of the pronotum, the remaining tarsal joints faintly shorter than the metatarsus.

Allotype- - $\sigma^{7}$; same data as type. [Conited States National Museum.]

Differing from the deseription of the type in the following features. size smaller: form more slemeter, as usual in males of this genus. Head with greatest width acrose eres ower two and one-half times that arross the expansion of the pronotum, the form of the head more depressed. the greatest depth contamed one and three-fouthes times in the width across the eres; oceipital line more broadly transverse, hardly roumting to the eyes; ocelli large, closely placed in a triangle; facial shield strongly transerse, its greatest depth contained three times in the greatest width of the shield. the dorsal line of the plate
narrowly truncate mesad, broadly oblique truncate laterad, lateral margins truncate, distinctly converging ventrad, ventral margin decidedly areuate-emarginate; eyes slightly more prominent than in the female; antennae lacking.

Pronotum very slender, its greatest width across the expansion contained more than five times in the length of the same, general form much as in the male, but the form of the inflation is more decided and the shaft is more strongly triquetrous, with the median carina decidedly indicated and the collar margins more subparallel; lateral margins very weakly cremulate, this more evident, though there far from decided, on the suprat-coxal inflation. Tegmina missing. Wings two and one-fourth times as long as the pronotum. apices rotundato-rectangulate, these less coriaceous and less sharply differentiated than in the female. Abdomen with the apex missing.

Cephalie coxae with a single series of well-spaced spines; rephalie femora about five-eighths as long as the pronotum, armed as in the female; cephalie tibiae with one spine less on cach margin than in the female. Caudal limbs missing.

Coloration of type and allotype have been completely destroyed by immersion in a liquid preservative, from which they were mounted. At present both specimens are ochraceous or brownish, with the eyes walnut brown. The wings of the male are hyaline with the tips brownish in the coriaceous section; the wings of the female are hyaline tessellate with yellow, which colors the vicinity of the crossveins, the coriaceous section of the apices of the general tone. The tegmina of the female show sufficient contrast to warrant the assumption that the marginal field and probably a portion of the proximal section of the discoidal fied were originally purplish or brownish, while the remainder of the discoidal and the anal fields were greenish or yellowish, the hyaline areas moderately contrasted.

Measurements (in millimeters).

| 0, allotype\%, type | Gireatest width of head (across eyes) $5 . \mathrm{s}$ S. 6 | Length of pronotum$\begin{aligned} & 12.4 \\ & 23.2 \end{aligned}$ | Cireatest width of pronotum across inflation | Length of tegmen | Length of exposed cortaceons portion of wing | Width of exposed coriaceous portion of wing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2.2 | - | 4.8 | 5.6 |
|  |  |  | 4.2 | 29.5 | 7 | - |
|  |  | Length of cephatic femur |  | Length of median femur |  | Length of audal femur |
| - ${ }^{\text {a }}$, allotype | . . . ... |  | 8.5 | 8 |  |  |
| ㅇ, type... |  |  | 15.7 | 13. |  | 1s |

The type and allotype of this species are the only specimens we have examined.

Parastagmatoptera glauca new species. (Plate X , figs. S and 9.)
An interesting species related to $P$. theresopolitana and pellucida Ciglio-Tos ${ }^{22}$, agreeing with those species in the non-tessellate wings and the subpellucid, non-fenestrate wings. From both of these speries, however, glauca differs in its much smaller size, more weakly denticulate lateral margins of the pronotum, the narrower marginal field of the tegmina and impunctate stigma, and, in addition, from theresopolitana in the absence of black from the wings and cephatic coxae and in the mmarked bases of the larger internal spines of the cephalic femora.

Type-o; Colonia Hansa, State of Santa Catharina, Brazil. [Hebard Collection, Type no. 221.]

Size small, form somewhat more robust than usual in the same sex in this genus. Head depressed trigonal in form, with the greatest width one and one-half times as great as the greatest depth of the same; oceipital outline sinuato-truncate between the juxta-ocular sulci, juxta-ocular section (laterad of the sulci) moderately areuatobullate, sulei moderately impressed, straight, vertical for the greater portion of their length; face hardly concave; ocelli small, distinct, placed in a very much depressed triangle; facial scutellum strongly transverse, the greatest depth contained about two and one-half times in the greatest width, dorsal margin very broadly rounded obtuse-angulate mesad and faintly emarginate laterad, dorso-lateral angles nearly rectangulate, ventral margin shallowly areuatoemarginate, surface faintly excavate; eyes well rounded in outline when seen from the cephalic aspect, in basal outline subovoidpyriform, flattened caudad; antennae filiform, in length slightly shorter than the pronotum.

Pronotum moderately robust, greatest width of supra-coxal dilation contained three and one-third times in the greatest length; collar broad, margin regularly expanding from the strongly arcuate cephalic margin: supra-coxal dilation hardly differentiated from the collar, passing regularly by expansion from one to the other, broadly rounded and as evenly narrowing caudad to the shaft, the caudal half of which is subequal in width, caudal margin truncate mesad, well rounded laterad, entire lateral margins elosely denticulate; median line on collar and cephalic section of shaft

[^71]as a finc sulcation; surface with momerous scattered fine asperities; transerse sulcus trumeate mesad, arcuato-rectangulate laterad.

Tegmina surpassing the apex of the abolomen, in shape ovod, one and four-fifthe times as long as the pronotum, broad, the greatest width about two-fifthe of the greatest length, marginal fied opacque, discoblal and anal fiche translucent; costal margin strongly and regularly arcuate, sutmal margin largely straight, rounding to the retmmats-rectangulate apex; marginal field forming about one-third of the total tegminal width, obligue veins of the same quite irregular and much forked and fused; discoidal soretors five to six in mmber', oblique, equidistant, merlerately sigmoid, transserse nervares moterately regular, irregular false sedors present toward the sutural margin; anal vein moderately arruate, joining the sutural margin shightly proximat of the middle, anal fied with axillary veins disposed similarly to the diseoidal eectors; stigma (listinct, dose to the humeral trunk proximad of the middle, longitudinal, uncolored. Wings reaching to the tiph of the tegmina, subhyatine translucent. Abdomen depressed, broad.
supratanal plate produced mesad into a linguiform procese which is subequal to the proximal witth of the plate; sulgenital plate strongly compresso-rostrate distad, this sertion derp. C'ophatic coxae faintly longer than the shaft of the promotum, faintly arruate distad, dorsal margin biseriate denticulate, the larger series six in mumber and recorved, the smatler ones minute and more numerous, the nombers between the larger denticulations variable, ventral margin sparsely serrulato-denticulate, the extermal margin similar but more dosely armed, internal face with a few low tubereles paralled to the dorsal margin; cephalie femora fatuty shorter than the pronotum in length, greatest depth contained three and one-half times in the greatest length, subeompressed, dorsal margin straight, ventroexternal margin with four large spines, slightly longer proximad, lateral genicular lole with a single rather short spine ventre-internal margin with thirtern spines whith are biseriate in length, the for-
 number; rephatie tibiate (exchsive of the apical (latw) suberqual to one-half the femoral length, extemal margin amed with seven spines increasing in length distad, a oonsiderable mammed diastema present proximad, internal margin with eleven opines increasing in longth distarl, apical claw quite long, gently arcuate; cephatic metatarsi subegral to the remaining tarsal joints in length. Mertian and raudal limbs clongate, tibial carinations weak.
(iencral color (mmdoubterly diseolomed in drying and probably green in life ochraceoustawny. Head ehestmut-hrown doubtless diseolored). Tegmina yedlowish-glancous, mytho-green distad, the latter probably the natural color of the whole tegmen. Wing. hyaline faintly yellowish. ('ephatie femoral ame tibial epines weakly tipped with hark or pitch blatek.

Length of body, 28.8 mm1. $;^{22}$ length of pronotum, 11.2 ; greatest width of supmatoxal expansion of pronotmon, 3.4: length of tegmen, 20.5 ; greatest width of tegmen, 8.5; greatest width of marginal fied of tegmen, 2.6; length of rephalic coxa, 8.8 ; length of rephatie femur, 10.5; length of cautal femur, 10.5 ; length of cautal tibiat 10 .

The type is unique.
PHASMIDAE.
PYGIRHVNCHINAE.
Ceroys perfoliatus ((iray).
1835. ('lladomorphus] perfoliatus (iray, syongs. Siper. Ins. Fian. Phasm.. p. 15. [Brazil.]

Rio de Janeiro. Ohe female. [MI. ('. Z.]
This specimen is perfectly typical of the species, but shows some difference from the descriptions in having a second pair of tubereles On the mesonotum eephatad of the usual pair, the extra ones being developed as a strong spine (right side) or as a short eonical tuberele (left).

The speries has heen previonsly recorted from this locality.

Olcyphides tithonus (iray).
18:35. Plhasma] tithomus (iray, syonos. Phasm., p. 23. P"East Indies" (in error).]
Espirito Santo. One male. [Hebard ('ln.]

[^72]Rio de Janeiro. November. Two males, two females. [U. S. N. M.]

This beatiful species has been reported from as far north as Cayeme, south to Santos, Brazil. The Espirito Santo male has the black areas on the antennae more extensive than in the other specimens.

Paraphasma marginale Redtenbacher.
1906. P [araphasma] marginale Redtenbacher, Die Insektenfam. Phasm., I, p. 115. [Fantos, Minas Geraes, Rio de Janeiro, and Goyaz, Brazil; Paraguay. 1
Piexe Boi, cast of Pará, State of Pará. (H. B. Merrill.) November to December, 1907. One female. [A. N. S. P.]

Goyaz, State of Goyaz. Two males, three females. [Hebard Cln.]

Corumbsí, State of Matto (irosso. April (highland). (H. H. Smith.) Three males, one female. [U. S. N. M.]

This species, or at least individuals which we feel compelled to refer to this species, exhibits a most extraordinary amount of variation in structure and, to a certain extent, in coloration. We have before us in addition to the specimens recorded above, indiriduals of both sex from Napucay, Puerto Cantera and Alto Paraná, Paraguay, and Misiones, Argentina, most of which already have been reported. These specimens show appreciable variation in the relative width of the head, in the relative size of the ocelli, in the relative length of the tegmina, in the acutemess and degree of development of the tubercle of the tegmina and in the coloration of the wings and the limbs. The anterior field of the wings may have the coloration strongly bicolored, blackish and pea green, or the ground color pale with the vicinity of the longitudinal veins lined with fuscous; the posterior field of the wings may be unicolored infumate with the principal reins well lined, while in the other extreme the greater portion of the field is pale with the distal section and part of the margin infumate, the veins in the pale area nom-infumate. The limbs may be blackish or mummy-brown. At first examination it appears that two distinct species are present, hut when all the available material is examined it is found that there is only a partial correlation of these characters, one male from sapucay, for instance, being in every other way characteristic of one of the extremes analyzed above, but having the broad head of the other extreme, while the Peixe Boi individual is in most of its features intermediate between the two types. The genitalic features of all of the specimens seem to be identical for the respective sexes.

Damasippus pulcher Redtenbacher．
1906．D［amasippus］pulcher Redtenbacher，Die Insektoufam．Phasm．，I， p．14s．［Expirito Santo，Brazil．］
Espirito Santo．One female．［Hebard C＇ln．］
This specimen has the greenish－yellow on the head less elearly defined than the original description would lead one to suppose it is in the type，which was also a female．The caudal femora are also more clear greenish than＂flavo－ferruginous＂as described．In all the other features，however，the present individual is typical．

## Prisopus horstokkii De liatan．

1S42．P［hasma］（Prisopus）horstokkii De Haan，Verhamdl．Natuurl．Ges－ chied．，Bijdragen Ken！？．Orth．，p．113，pl．XII，fig．1．［＂Cape of Cood Hope＂（erroncous）．］
Rio Verde，State of Goyaz．One female．［Hebard Chn．］
Gahan＇s recently described $P$ ．fisheri ${ }^{24}$ is supposed to differ from horstokkii in the presence of triangular processes on the lateral sec－ tions of the metathorax，but our material，which fully agrees with the description and figure of horstokkii，possesses the same structures， yet differs from the description of fisheri in other features，as the color of the ventral surface of the body and of the membranous sec－ tion of the wings．It is evident that either horstokkii possesses such appendages on the metathorax or the coloration given for certain areas，which are as a rule of fairly fixed character，varics in fisheri． We feel that the first explanation is more likely the correct one，in which conclusion we are strengthened by an examination of other material of the genus．The metathoracic processes are hidden from above in spread specimens and this may explain their oversight by previous workers．

This is the first Brazilian record of the species．

## HETERON゙EMIN゙AE．

Dyme straminea new species．（Plate X ，figs． 10 and 11．）
This remarkably elongate and attenuate species can be distin－ guished by the excessively elongate and straw－like limbs，the slen－ derness of the hody and the distinct medio－longitudinal fuscous line， which reaches from the inter－antennal region to the proximal por－ tion of the abdomen，where it becomes obsolete．Of the species treated by Brumer the only one to which it appears at all allied is $D$ ．incolumis，from Vera Paz，Guatemala，and from the deseription of which it differs in the male（the only sex in hand）having the ventro－ lateral margin of the penultimate（eighth）dorsal abdominal segment

[^73]straight, its angles rectangulate, insteat of rounded with the angles obthse in the ultimate (ninth) dorsal abolominal segment of the same sex feing two and one-hatf times as long as broad, instead of equally long and broad, and in the subgental operentam falling distinctly short of the apex of the dorsal pembtimate (eighth) segment, insteal of reaching to the apee of the same as in incolumis.

Type, - or ( (oy:az, Ntate of Coyaz, Brazil. [Hebard collection. Trpe no. 471.]

Size moderately large: form very elongate and sender, bacilliform. Head with its lemgth neanly one and one-half times that of the pronotum, the greatest width arerose the eyes eontained twiee in the length of the head, the camdal seetion of the head, i. e. that camdad of the eqes, subequal in widh, slightly narower than the width ateres the eyes: ocelli atsent: eye very short oval in hasal outline hatrly prominent when seen from the dorsum: antennae not eomplete, in lengh certainly exeeding the head, pronotim and mesonotum as remaining portions show.

Pronotum no wider than the catal section of the head, the length about twier the median width, the cephatic half faintly marower than the caudal half; cophalie margin fainty areuate emarginate, caudal margin very slighty aremate emsex; median transerse indentation pronemered. medio-fongitudinal sule we indicated cephalat. Newonotum ahout three times as long as the eombined length of the head ame promotim, stender, faintly widening candad, the witth ekewhere miform, hardly greater than that of the head. strongly areuate in tramsprse section, near each lateral margin with a comtimous but low carina; catal margin weakly areatoemarginate. Metanotum, including the median segment, fonr-fifthe as long at the mexonotum, in gemeral fomm and seupture similas to the mesonotum: length of the merlian sequent eontamed orer three and one-half times in the length of the remainelere of the metanotum: caulal margin of the median segment arevato-emarginate. Meso- amd metastermmon with pared, prominent lateral carinar prominent thr:ughout their longth.

Abdomen sightly longer than the comblaned length of the head amd thoracir segments. semder, faintly thekemed and enlarged at the sutures between the sequents: first to serenth joints distinctly chongate, the seconcl to fourth joints slightly the longer; eighth dorsal segment sender, faintly shorter than the ninth segment, distinctly infolded ventro-distad; nimth dorsal abolominal segment three-fourths as long as the eighth dorsal abdominal segment.
shoder, subeompressed, tectate, carimate domsad, distal extremitre broatly $V$-emarginate, the margin thekened, the ventral surface of the same supplied with a heavy eovering of small, imbricate, adpressed denticulations, when seen from the side the sequent hate the lateral margins straght, the angles reetangulate; subgenital opereuhm moderately compressed, rostrate distad, reaching to thr distal third of the eighth dorsal ahtominal segment, ventral surfach with a medio-longitudinal eatina on distal section: rerei simple. slightly inemred, subequal in width, their length equal to abont one-third that of the mintle dowsal abommalsegment, apex blunt. that section covered with recurved. chatetifom spimatams.

Limbs extremely slemerer, attemmate, multicarinate. ('ephatic femora almost twier as long as the metanotum (inchoding the median segment). erphatio flexum pronounced amd slightly sigmbid when seen from the dorsma: rephatic tiliar surpassing the fomoral length ber about twice the length of the head: rephalic metatarsi nearly twiee as long as the length of the remaining tarsal joints unted. Nedian femora equal to the length of the metanotmon and the first and half of the second abxtominal segments, very slightly bowed: merlian tibiae smpassing the femoral length by about the length of the pronotum: median metatasi hardly longer than the remainder of the median tarsal joints mited. ('andal femora reaching to about the apex of the fifth dorsal abdominal segment, ahmost impereeptibly arcuate: caulal tibiae smpassing the femomal length by about the length of the heat : eaulal metatarsi slightly longer than the remaining tarsal joints mited. Arolia relatively large in all tarsi.

Gencral color ranging from primutine vellow on the thoracic segments to dull wax yellow on the abdomen, passing through buckthom brown to dinmamon-brown on the limhs. Eyes buckthorn brown: antemate mar's brown proximad, passing into fuscous distad. Head with paimed postocular lines of mummy bown; these are discontimunsly indieated on the meso- and metanotum and the proximal abolominal segment. A modio-longitudinal line of blackish fuscous extents contimomely from the inter-antemal region to the sixth abdominal segment, not strongly indieated distad of the second abdominal segment.

Length of lody, 113.5 mm . ; length of head, 5 ; length of pronotum. 3.6 ; length of mesonotmm, 26 ; length of metanotum (including median segment), 21.2; length of median regment, 4.4; length of cephatic femur, 43.5; length of cephalic tibia, 54.2 ; length of median femur, 32 ; length of caudal femm. 37.

In addition to the type we have before us a paratypic male, differing from the type solely in being slightly smaller.

## PHIBALOSOMIINAE.

Bactridium grande new species. (Plate X , fig. 12.)
A vory striking new species allied to $B$. dentipes Redtenbacher, emortuale (Saussure) and gracile (Serville), but differing from all in the much shorter operculum of the femake, which does not exceed the apex of the body, and also from the individual species as follows: from dentipes in the larger size, in the presence of very deeided teeth on the dorsal and ventro-external margins of the cephatic femora, in the relatively longer limbs and in the different spination of the median and caudal limbs; from emortuale in the relatively longer limbs and in the absence of lobes on the proximal seetion of the ventral margins of the median femora; and from the poorly defined gracile in the much greater size and the more spinose ventral carinae of the median femora.

Type.- 9 ; Santa Catharina, Brazil. [Hebard Collection, Type no. 401.]

Size very large; form clongate and as usual in the genus. Head nearly twice as long as the pronotum, subovate in outline when seen from the dorsum, the greatest width (across the eyes) contained one and one-half times in the length of the head; occiput subdeplanate, the caudal margin of the same weakly produced mesad and shallowly divided into two by a faint longitudinal impression, laterad of which production there is another faint impression in the same margin, the lateral margins of the occiput moderately and regularly converging caudad from the eyes; no apparent ocelli present; eyes moderately produced, subglobose: antemac missing except for the two proximal joints, the first of which is quite slender and elongate, depressed.

Pronotum moderately longitudinal, slightly broader caudad than cephatad; cephalic margin obtuse-angulate, strongly elevato-cingulate; lateral margins shallowly areuate-emarginate cephalad, subparallel caudad; caudal margin arcuato-cmarginate; cephalic intermarginal sulcus with a distinct median and paired lateral fossae, median transverse impression well marked mesad, obsolete laterad. Mesonotum about three times as long as the head and pronotum together, non-camate. Metanotum (with median segment) about two-thirds as long as the mesonotum, of simitar structure; median segment subequal in length to the metanotum proper.

Abdomen with all segments longitudinal, those from one to five regularly increasing from twice to four times as long as wide, sixth segment slightly more than three times as long as wide, seventh segment strongly compressed and three times as long as wide, eighth segment clongate quadrate, one and one-half times as long as wide, ninth segment (anal scoment) with median length faintly more than greatest width, lateral margins moderately expanding caudad, caudal margin obtuse-angulate emarginate, median line finely suleate; distal margin of the fourth dorsal segment transversely tuberculate mesad; supra-anal plate small, placed in the emargination of the anal segment, the margin arcuate; cerci slender, styliform, acuminate, but faintly surpassing the lateral portions of the anal segment; sixth ventral segment produced ventrad into a distinct bidigitate process, which is subdepressed, with the processes well separated by a deep median incision and converging distad; subgenital operculum large and broad, but not surpassing the apex of the abdomen, the distal margin subobtusely rounded, the surface of distal portion wrinkled rugulose, a distinct median earina distad. Prostermm slightly transverse, trigonal.
( "ephalie femora subequal in length to that of the head, pronotum and mesonotum combined, proximal flexure decided and strongly narrowed, dorso-internal margin strongly and ventroexternal margin distinctly lamellate developed and serrato-dentate, dorso-extemal margin not elevated but with six spaced dentations, genicular lobes spiniform; cephalic tibiae damaged. Nedian femora subequal in length to the three proximal abdominal segments, very faintly bowed, dorso-internal margin with a high trigonal recurved spiniform lobe at the proximal third, distad of which there are from five to six similar but very much smaller tooth structures, dorso-extemal margin with four similar small structures on distal two-thirds, ventro-external margin with nineteen similar teeth, ventro-internal margin with eighteen to twenty teeth, ventromedian carina with five to six teeth; median tibiae slightly longer than the median femora, all the margins finely serrato-dentate, the dorso-internal mesad with an elongate but rather low lobe ending distad in a spine, all the carinae subrristate distad and there with several fine teeth; merlian metatarsi subequal in length to the remaining tarsal joints, dorsad with a low but distinct median carina. Caudal femora slightly longer than the median femora, of similar character, the margins armed with serrato-dentations of a minor grade, as follows-dorso-external, fom to eleven; dorso-
internal, six to fiftern; ventro-extemal, twenty to twenty-six; rentrointernal, twonty-one to twenty-nine; ventro-median carina, ten to eleven, no loles present on the margins; genicular bhes spinose, subdepressed; caulal tibiat famtly shorter than the fow proximal abolominal segments, the margins armed and developed as on the median tibiae: caudal metatarsi slightly longer than the remaming tarsal joints, evenly eristato-lohate dorsad, the distal extremity of the lobe with three to six minute teeth.

Gencral coloration pinkish-rimamon to kaiser-t)rown (uncuestionably green or a more miform brownish in life), the femora, particularly the caudal pair, weakly washed with dark livid-purple, whike the tibiate are in part weakly light fluorite-green to dull maki-chite-greem, this probably a trace of the original coloration.

Length of body, 264.6 mm . : length of head, 12.5 ; length of pronotum, 7.3 ; length of mesonotum, 59.5; length of metanotum (in(luding modian segment), 40.3 ; length of median segment, 19.7; length of eephalic femme, 7 ; length of merlian fermur, 56.5 ; length of median tibia, 64.3 ; longth of cautal femur. 59.4: length of cautal tibia, 77.5 : length of opereulmm, 24.2.

The type of this striking sperese is migue.

## ACRIDIDAE.

PRORCOPINAE

## Proscopia scabra Klug.

 p. 19, pl. III, fig. ㄹ. [Parí, Brazil.]

Epper Amazon. Two females. [M. (. . Z.]
Bromer has recorded this speries from "Provincia Alto Amazonats."

Corynorhynchus hispidus kilug.
1820. Proscopia hispidn Klug, in Noes ab Esenberk. Home Physime Berohn., p. 20. pl. Ill, fig. 万. [Bahia, Brazil.]
Rio de Janeiro. One mate, ome female. [M. (`. Z.]
The female sperimen is somewhat smaller tham the original measwrements and is minus the cadud limbs, but it is dearly the opposite sex of the male now before us, and, when compared with a pair of ('. radula, their close relationship) to the latter specics is very apparent. The sperimens measure as follows:

Lengeth of beoty

| 62, 8 \% 1 m. | *:3, 5 mmm. |
| :---: | :---: |
| ! :3 - | 14 |
| 1 s ${ }^{\text {c. }}$ | + + |
| 17 : 3 | 19.5 |
| $10: 3$ | 111 |
| 23 |  |
| 2.) - |  |

The form of the rostrum of the female is as figured by Brumer. The apex of the mate abolomen is more short elavate than in the male of radula, the supratimal plate is less seulptured and the sub)genital plate less problued, hat the general form of the region is very similar.

The species was previously known only from Bahia.
ACRIDLN゙AE (Trusalimar of alathors).
Peruvia nigromarginata ${ }^{25}$ (soudder). (Toropter is mini tus of most authors.)
 XTII, p. 2(6s. [Eastern shopes of the Pepurian Andes.]
Coyaz, state of Goyaz. One female. [Hebard ('hn.]
This in the most eastern locality for the species. The previous record from Rio de Janeiro, marle by Brumer, ${ }^{26}$ refers to $I$. ensicornis (Rehn), which is all east eoast form.

## OMIIENECHINAE.

Spathalium klugii (Burmeister).
1s:3S. O[mmurerab Klugii Burmeister, Handb. der Entom., II, abth. II, pt. I, 1. (6.\%). [Brazil.]
Goyaz, state of Cioyaz. Three mates, one female. [Hebard C'm.]
These specimens are inseparable from the female from (hapada, Matto Grosso, previously recorded by us, first as cyanopterum²7 and afterward correetly as libugii.2s

The species is known from Bahia, santarem, Coyaz and Chapada. Brazail.

> Lo('STIA.AE (Acridime of most authors).

Diedronotus laevipes (stia).
 Handl., V, no. 9, p. 20. Wha Leopoldo, Brazil; Argentine Republie.]
Goyaz, State of Coyaz. One female. [Hebard Cln.]
This is the most northern as well as the extreme northeastern record for this species, which ranges south into northem Argentina and west to santa Cruz de la Sierra, Bolivia (Bruner).

[^74]
## Zoniopoda fissicauda Bruner.

1906. Zomiopoda fissicauda Bruner, Proc. U. S. Nat. Mus., XXX. p. 653. [Sapucay, Paraguay.]
Gioyaz, State of Goyaz. One female. [Hebard Ch.]
This specimen, which is clearly the present species, has lost some of the brilliancy of its original coloration, as if it had been exposed to the continued action of a strong killing medium. It is slightly smaller than the measurements of the same sex given by Bruner. The two localities are the only ones from which the species is known.

## Zoniopoda collaris Bruner.

1911. Zoniopoda collaris Bruner. Ann. Carneg. Mus., VIII. pp. 58, 60. [Chapada, Matto Grosso, Brazil.]
Rio Verde, State of Goyaz. Three males. [Hebard Cln.]
These specimens agree with the original description of the unique type except that all the pale areas are slightly pinkish, which, however, we feel is not normal but due to chemical action of a killing medium. The species is known only from the two localities given above.

Diponthus bilineatus new species. (Plate X, figs. 13 and 15.)
A close ally of D. craswus Brumer (plate X, figs. 14 and 16), from northeasterm Argentina and eastern Paraguay, differing in the slightly more clongate form (for the sex), in the slightly less declivent fastigium, in the proportionately more longitudinal pronotum, the more distinetly angulate caudal margin of the disk of the same, in the slightly more elevated medio-longitudinal section of the metazona, in the more oblique caudal margin of the lateral lobes of the pronotum, in the more clongate, narrower tegmina, in the more elongate male cerci, which surpass the apex of the supraanal plate and have their distal extremity distinctly decurved, and in the coloration-the tegmina being non-reticulate but with the humeral trunk and the anal angle contrastingly lined with yellow on an olive-green ground, the caudal femora pinkish with a weaker medio-longitudinal line on the external face and with the caudal tibiae lacking the dark lining of crassus and reddish on the intermal face, while the wing is more greenish hyaline, without the huish wash seen in crassus.

Type- $0^{7}$; Santa Catharina, Brazil. [Hebard Collection, Type no. 411.]

Size large (for the genus); form as in D. crossus; surface of the head, pronotum and pleura strongly and closely eribroso-punctate. Head with the vertex and fastigium considerably declivent, nar-
rowly rounding into the slightly retreating facial line; interpace between the eyes broad, but little narrower than the fastigimm; fastigium distinctly broader than long, trumeate cephatad, very shatlowly and broadly exeavate; frontal costa dorsad nearly as wide as the vertex interspace between the eyes, regularly narowing ventrad until on the lower face, at the ventral third of the face, it is less than one-half the width at the fastigio-facial region, subobsolete in the vicinity of the elypeal suture, dosely and deeply cribroso-punctate dorsad and ventrad, excarato-suleate mesad, lateral margins well indicated; lateral facial camac arcuate, converging to the elypeal base: eyes quite prominent, subovate in outline, faintly flattened ventrad, in depth about one and one-half times that of the infraocular portion of the genae: antemate about two and one-third times as long as the pronotal disk, thick, apex moderately acuminate.

Pronotum of moderate length, the greatest eaudal width of the disk contained one and one-third times in the greatest dorsal length of the same; in section the prozona of disk is areuate, the metazona low tectate: cephalie inargin of disk broadly and shallowly angulatoemarginate mesad, caudal margin of disk regularly obtuse-angulate with the immediate angle narrowly truncate; prozona slightly shorter than the metazona; median carima obsolete, being but faintly indicated by strmmosities between the punctures, lateral angles not at all indicated on the prozona, well marked but not carimate on the metazona; transverse sulci deeply impressed, the mesii:m one shighty weaker on the dorsm than the other two: lateral lobes with their greatest depth subequal to the greatest dorsal length of the same; ventro-cephatic angle of lobes oltusely rounded, ventral margin obliquely truncate cephalad, thence truncate to the broatly rounded ventro-caudal angle, caudal margin obliquely subconcave. Tegmina reaching to but not surpassing the apex of the abdomen; costal margin regularly hroad areuate, sutural margin nearly straight, apex rather narrow, obliquely subtruncate; principal longitudinal veins deciled. Wings reaching to the apices of the tegmina. Prostemal spine distinctly compresied, directed moderately caudad, bhunt; interspace between the mesostomal tobes faintly longitudinal, the intemal face of the lobes arcuate; interspace between the metasternal lobes slightly transverse.

Fureula developed as broad, depressed, well separated, acute trigonal loles, the extemal margin of which is straight, the internal concave: supra-anal plate escutcheon-shaped, slightly constricted proximad, of the same form found in $V$. crassus, a median rectangu-
late transverse strumosity placed at distal third, the adjacent portion of the lateral margins with a similar thickening, the section of the plate distad of these elevations deflected from the plane of the major portion of the plate; medio-longitudinal sulcus and its lounding carimae indicated on the proximal two-thirds of the plate, this area widening proximad: cerci straight, styliform, tapering, the extremity moderately decurved and incurved, apex acute: subgenital plate moderately full, faintly compressed dorso-proximad. free margin weakly and broadly emarginate mesad.

Cephatic and median femora moderately robust. Caudal femora equal to slightly more than onc-half the body length, similar to the type foumd in crassus but more slender; caudal tibiae with ten spines on the external margin.

General color blackish-green, varied with shades of yellow-ocher, pinkish red and purplish. Head with a broad medio-longitudinal bar of vinaceous-rufous covering occiput, vertex, fastigium and face, except lateral margins of frontal costa, passing into the general - color on the genae; eyes tawny-olive; antennae dark slate-purple, becoming dull brownish distad. Pronotum with a medio-longitudinal bar of ochraccous-tawny, sharply delimited from the general color, a narrow cephalic margin on the lateral lobes amber-yellow, almost all of the metazona on the lateral lobes and a lateral seetion of the dorsum of the same olive-ocher. Tegmina with the bumeral trunk and vicinity of the anal vein lined with olive-yellow; veins of the general color on a greenish lyyaline ground. Wings hyaline. faintly washed with greenish toward the enstal margins, principal veins finely colored with the general shade. Abdomen tawny-olive with the dorsum, aside from a continuous, narrow, medio-longitudinal bar of the basic abdominal color, washed with blackishgreen, this disappearing ventro-laterad; apex and internal margin of the furcula, strumosities of the supra-anal plate and apices of cerei black. Limbs largely vinaccous-russet; caudal femora with a median longitudinal line of hackish on proximal portion of the paginae, internal face pale carmine, with three transverse areas of blackish green-one premedian, one postmedian and the other covering the internal genicular area, external genicular area olive-citrine: caudal tiliac on the external face colored the same as the femora, on internal face pale carmine, external spines pale greenish tipped with black, internal spines black.
Length of body, 31 mm .; length of pronotmm, 7 ; greatest caulal width of pronotal disk, 5.2 ; length of tegmen, 22; length of caudal femur, 16.8.

The type is unique.
Chlorohippus roseipennis Bruner.
1911. Chlorohippus roseipenmis Bruner, Ann, Carneg. Mus., Vill, p. ss. [Chapada, Matto Cirosso, Brazil.]
Goyaz, State of Coyaz. One female. [Hebard Cln.]
The present specimen agrees with Bruner's description of this interesting genus and species, except that the caudal margin of the pronotal disk is arcuate instead of subangulate as described, that the caudal tibiae have six instead of seven or cight spines on the external margin and the same tibiae are purplish-glaucous instead of oil-green as described. These differences appear to us to be individual, although future work may show the Goyaz and Chapada specimens to differ from one another in other unnoticed specific features. For the present, however, it is best to consider them as representing the same species.

Copiocera erythrogastra (Perty).
1834. Niphict ra erythrogastra Perty, Delect. Anim. Articul. Brasil., p. 122, pl. NXIV, fig. 2. [Mountains of the Province of Minas Geraes, Brazil.]
Goyaz, State of Goyaz. One female. [Hebard Cln.]
It seems very probable that Marschall's euceros was based on the male sex of this species. The difference in antennal coloration mentioned by him may have lieen due to Perty's specimen having had the pale tips broken off.

## Episcopotettix sulcirostris Rehn.

1902. Episeopotettix sulcirostris Rehn, Trans. Amer. Entom. Soc., XXIX, p. 13. [Forest of San Juan, Mexico. ${ }^{29}$ ]

Coyaz, State of Goyaz. Two females. [Hebard Cln.]
These specimens appear to us to represent the previously unknown female of this species. Certain features of difference from the male type are very apparent, but of these several are clearly sexual and the others are in all probability so. There exists, however, a possibility that the Goyaz females may be specifically distinct from the type of sulcirostris. The points of difference can be summarized as follows. The fastigium is shorter and broader than in the type, being distinctly shorter than the occiput, the dorsal surface not sulcate and distinctly lower than the level of the occiput, which latter is appreciably arcuate dorsad; the frontal costa is broader, less marked ventrad, with the sulcation distinct dorsad and subobsolete

[^75]rentrad; the fastigio-facial truncation is more rounded; antennae much shorter and less strongly ensiform proximad. The wings have the disk colored as in the male, but the anterior field is hyaline instead of largely blackish-brown as it is, continuously with the disk, in the male. The prosternal process, rather curiously, is unsymmetrical in both females, l eing transverse as in the male, I ut having the simistral angle distinctly projecting in a moderately acute or subbulbous projection, far more developed than the corresponding dextral angle. The cerei of the female are sery slender, tapering, nearly reaching the tip of the supra-anal plate; ovipositor valves elongate, the dorsal pair greatly produced, slightly more than twice as long as the cerci and nearly twice as long as the ventral valves, strongly compressed, sublamellate, umarmed, tips blunt. The fastiginm and occiput bear a pair of fine blue-black lines, which gradually diverge catudad, these represented on the promotum by paired dilfuse mottlings of the same shate, which color the punctations of the regions they cover, the transerse sulei are lined with blue-black: the impressed lines on the face and some of the punctations on the same, blue-black; florsm of the abdomen broadly nopal red; a narrow line on the ventral section of the external face of the caudal femora and the dorsal surface bhe-blark.
The present specimens measure (in millimeters) as follows:


Brumer has reported a female of this species from South Americ:a without exact locality. ${ }^{30}$

## TETTIGONIIDAE.

## PHANEROPTERINAE.

## Hyperophora brasiliensis Brumer.

1878. II[yperophora] brasiliensis Brunner, Monogr. der Phaneront., p. 126. [Brazil.]
('orumbá, State of Matto (irosso. March. (H. H. Smith; highlamol.) One female. [U. S. N. M.]

This specimen is somewhat smaller than the original measurements of the same sex, but otherwise it is not different as far as ean be determined from the very bricf orrginal description. The antemae have well-separated pate annuli on a dark ground, the pale areas.

[^76]more closely placed proximad, becoming more distant distad. The females previously recorded by us as this specios from sapucay. Paraguay, ${ }^{31}$ we find instead represent the previously unknown female of eerriformis Rehn. ${ }^{32}$ The female of cervformis is a larger insect than brasilicnsw, with a broader head as in the male, more elongate tegmina, shorter, more regularly tapering and less attenuate eerei, and much longer, more regularly arcuate ovipositor, whieh latter has the apex acute and the margins with fewer well-spaced teeth, which distad on the ventral margin are recurved. The surface of the ovipositor in cerviformis is less shagreenous than in brasiliensis. The selected allotype of eernformis measures as follows: length of body (exelusive of ovipositor), 23.4 mm.; length of pronotum, 4.4 ; length of tegmen, 29.2; length of wing distad of tegmen, 7.5 ; length of caudal femmer, 23.5; length of ovipositor, 9.

Hyperophora peruviana Brumner. ${ }^{33}$
1891. Hyperophora permiane Brommer, Yerhandl. k.-k. Zool-botan. Gescll. Wien, NLI, p. 5!. [Peru.]
Goyaz, state of Coyaz. Two females. [Hebard C'ln.]
These specimens are both in the green phase and subequal in size to females from the province of Mendoza, Argentina, and appreciably smaller than sapucay, Paraguay representatives of the same sex.

The spectes is now known to range from Peru east to Coyaz, Brazil, south to the Province of Mendoza, Corrientes and the territory of Misiones, Argentina.

Uberaba brevicauda Bruner.
1915. Cberab bremichulu Bruner, Ann. Carneg. Mus., IX, p. 303. [Cbaparla, Matto Cirosso, Brazil.]
Goyaz, State of Cioyaz. One femate. [Hebard Cln.]
This specimen fully agrees with the description of this very interesting gents and species. The genme is known only from the two ocalities here mentioned.

[^77]Ligocatinus sordidus new species. (Plate X , figs. 17 and 18.)
Allied to L. olivaceus (Brumer), from southeastern Brazil, Paraguay and northern Argentina, having much in common, in addition to the similar coloration of the two forms, but differing in the greater size, narrower fastigium of the vertex, narrower fastigium of the face, more distinctly longitudinal tegmina, which have a coarser reticulation than those of olivaceus, in the proportionately more slender and elongate limbs and in the decidedly more slender and elongate ovipositor. We do not know the male of the species, but are very certain it is not the female of $L$. longicercatus (Brumer), which was based on the male sex alone, as the size and coloration are quite different.
Type.-- 9 ; Corumbá, state of Matto Grosso, Brazil. Mareh. (H. H. Smith, highland.) [United States National Museum.]

Size medium, form more elongate and compressed than in $L$. olivaceus. Head with the occiput and interocular space full and strongly rounded, the latter moderately declivent to the fastigium, which is narrow, compressed, sulcate dorsad, with the distal extremity weakly inflated, nearly in contact with the acute-angulate but apically blunted fastigium of the face, the outline of the fastigiun of the vertex, when seen from the side, being coneave, the juncture with the vertex proper marked by a slight inflation: eyes large, quite prominent when seen from the dorsmm, broad ovate in basal outline with a distinct ventro-cephatic angle, their depth subequal to that of the infra-ocular portion of the genac: antemae about twice as long as the body, proximal joint nearly half as wide as the eye. Pronotum not at all sellate, the dorsal line when seen from the side being straight, lateral angles of the disk not marked cephalad, weakly indicated caudad: disk with the cephalic margin truncate, caudal margin broadly and strongly arcuate; caudal width of the disk contained one and one-third times in the length of the same; lateral margins of the disk gently and regularly diverging caudad; surface of the disk with a median $V$-shaped impressed figure: lateral lobes of the pronotum with their greatest dorsal length slightly less than their greatest depth; cephalic margin of the lobes straight, ventro-cephalic angle roundly obtuse-angulate, ventral and caudal margins broadly and regularly arcuate to the distinct, rotundato-rectangulate humeral simus. Tegmina elongate, the greatest width (at proximal two-fifths) contained about six times in the greatest length of the same; reticulations coarse and open compared with those of $L$. olicaceus; costal and sutural margins sub-
parallel proximad, the tegmen somewhat narrowed in distal half, apex narrowly rounded; humeral and discoidal veins non-attingent throughout, discoidal vein with one distinet distal ramus, median vein diverging slightly proximad of the middle of the tegmina, biramose. Wings surpassing the tips of the tegmina by about twothirds of the dorsal length of the pronotum, apex of the closed wings sutural and rectangulate, the costal margin arcuate to the apex. Prosternum umarmed: meso-and meta-sternum strongly transverse, the former distinctly, the latter weakly emarginate mesad, caudolateral angles of both plates strongly rounded. Supra-anal plate ${ }^{34}$ moderately acute trigonal, surface plane: cerci simple, short, tapering: ovipositor not strongly abbreviate and very deep as in olivaceus, but slightly bent at the base and faintly arcuate, the greatest depth not more than one-half the length and the form narrowed distad; dorsal margin of the ovipositor very faintly arcuate-concave, the extremity of the dorsal valves narrowly rounded; ventral margin of the ovipositor strongly arcuate throughout; all of the margins excepting the proximal third of the ventral margin with strong spiniform teeth, which are directed disto-dorsad on the dorsal margin and appreciably recurved on the ventral margin, those distad on the latter strongly recurved; surface of the ovipositor with three lines of serrato-dentations and mesad irregularly scattered, low, rounded tubercles: subgenital plate acute trigonal, compressed. Cephalic and median femora unarmed beneath; cephalic tibiae sulcate dorsad, but margins without spines excepting the caudal apical one; foramina open. Caudal femora four-fifths as long as the tegmina, strongly inflated proximad, distal half slender and the ventral margins there with not more than three spines, genicular lobes bispinose.

General color (apparently that of life) cimmamon, the tegmina with their base color warm fuscous, the venation and reticulations outlined in the general color proximad and in maroon distad; tibiae and the distal half of caudal femora washed with ox-blood red, the distal extremity of the caudal tibiae and the tarsi fuscous. Eyes brussels brown; antemae (aside from the proximal joint which is of the general color) amber-brown, multi amulate with fuscous, which is the predominating color distad; face with the ventral margin of the antennal scrobes, the elypeal suture and a pair of short, areuate vertical lines on the clorsal half, fuscous. Tegmina faintly greenshi

[^78]mesad on the costal margin. Exposed portion of the wings colored similarly to the distal portion of the tegmina. Abdomen with a broad, medio-longitudinal, dorsal bar of shining black, which includes the whole of the supra-anal plate; laterad of this bar the abdomen bears a pair of deep-chrome areas. Femoral and tibial spines tipped with black. Ovipositor teeth fuscous tipped.
length of horly (exclusive of ovipositor), 18.2 mm . ; length of pronotum, 3.9; greatest (caudal) width of pronotal disk, 3.1; length of tegnen, 24.2; greatest width of tegmen, 4.1, length of candel femme, 19.1: length of ovipositor, 5.

In addition to the type we have before us four paratypic females bearing the same data as the type, except that two were taken in April instead of March. The paratypes fully agree with the type in all esential features. In coloration they have some variation in the general tone, but the relative values remain the same. In one individual, which is not the palest of the lot, the facial makings are subobsolete.

Ligocatinus minutus new speries (Plate X, figs. 19 and 20.)
A strikingly small member of the olicacens-tongicercutus-sordidus group of the genus, which in size is hardly more than two-thirds the bulk of the smallest of the previously known species. The genitalia are nearest in type to those of longicercatus, but the subgenital plate is hardly emarginate, while the caudal femora are unamed beneath distad and the size, as already mentioned, is very much less. From oliduceus the species differs chiefly, aside from the smaller size, in the mspined ventral margins of the catudal femora, the form of the cerei and in the short styles of the subgenital plate. The species sordidus is known only from the female sex, but the size is quite different, the caudal femora are spined ventrad and the angle of the catud margin of the lateral lohes of the pronotum is more decided and less rounded.

Tyre- - $0^{2}$; (ioyaz, state of Coyaz, Brazil. [Hebard Collection, Type no. 416.]

Size quite small: form as usu:a in the genus. Occiput gently rounded, regularly but strongly rounded to the fastigium, least width between the eres slighty less than the depth of one of the ryes; fastigium compressed, weakly strumose proximad, distal portion faintly bulbous, sulate dorsad, when seen from the lateral aspect rounded, largely in contact with the fastigium of the face: eyes moderately prominent, subreniform-ovate in basal ouiline, in depth subequal to the infra-ocular portion of the genac: antennae
incomplete. Pronotum with the gencral form much as in sordidus but with the disk broader, the greatest eatatal width of same contained one and one-third times in the greatest length: lateral lobes with the general form more quatrate than in sordidus, the ventrab margin being obliquely arcuato-trumeate candat, the ventro-cantal angle rotundato-rectangulate, humeral sinus as in sordidus. Tegmina but slightly exceeding the apices of the cautal femora, form similar, reticulations slightly eoarse; diseodal vein with three distal rami, median vein diverging from the discoidal vem slightly proximad of the middle of the tegmina: stridulating field relatively simple, no distinct tympanum, stridulating vein no stronger than the other reticulations of the field. Wings surpassing the tegminal apires. sternal plates of the types found in $L$. sorduhes, but the meso-and metasternm are more dedidedly transerse with the caudo-lateral angles more broadly rounded. Disto-dorsal abolominal segment areuato-truncate dorso-mesad, with a shatlow and very broad median emargination: supratanal plate trigonal: cerci surpassing the subgenital plate, tapering, straight in the proximal fourfifths, the distal fifth slightly flattened and bent inward and dorsad, the immediate apex weekly uncinate, surfare of the proximal portion of the eerei delieately tuberculate: subgenital plate narrowing distad, the distal margin truncate, styles very brief articulate nodes, rentral surface of the plate with a medio-longitudinal carina and conserging paired ridges, which distad carry the styles. Caudal femora four-fifthe as long as the tegmina, rather strongly inflated proximad, vontral margins umarmed, genicular lobes very weakly bispinose: caudal tibiae subequal to the femora in length.

General color chamois, becoming honey-ycllow on the dorsum of the abromen, the tegmina with their base color and also that of the wings mars-brown. Head with paired arcuate facial lines of marsbrown; eyes auburn; antemae (incomplete) hazel, sparsely amulate proximad with blackish. Tegmina with the stridulating fiedd largely chamois, the sutural margin netted with wax-yellow, the humeral trunk, reticulations of the marginal and adjacent portion of discoidal field and costal margin primuline-yellow proximad, passing into bice-green distark. Abdomen with a broad mediodorsal blackish fuscous line; cerei tipped with same. Caudal tibiae pale absinthe green, becoming ochraceoustawny.

Doubtless the original coloration of this insect was largely green or greenish, as traces of green are evident on the disk of the pronotum.

Length of body, 11.5 mm .; length of pronotum, 3.6, greatest dorsal (eaudal) width of pronotal disk, 2.8, length of tegmen, 18.3; greatest (median) width of tegmen, 3.6 ; length of caudal femur, 14.8.

The type of this species is unique.
Ligocatinus spinatus (Brunner).
1878. A [maura] spinata Brimner, Monogr. der Phaneropt., p. 248, pl. V, figs. 74a and 74b. [Buenos Aires, Argentina.]
Corumbá, State of Matto Grosso. Mareh (one), no date (four). One male, four females. [U. s. N. M.]

These specimens are indistinguishable from a pair from Rosario and a female from Buenos Aires, Argentina.

The species was recorded from Corumbá by Bruner. ${ }^{35}$

## Homotoicha fuscopunctata Caudell.

1906. Ifomatoicha (sie) fuscopunctata Caudell, Proc. U. S. Nat. Mus., XXX, p. 236. [Sapucay, Paraguay.]
(hapada, State of Matto Grosso. May (two), June (one), July (one), September (one), no date (three). (H. H. smith.) Three males, five females. [U. S. N. M.]

These specimens have been compared with the male from Sapucay, Paraguay, previously recorded by us, ${ }^{36}$ a female from the same locality and another from the Misiones Territory, Argentine, and found to be identical. Bruner has recently recorded both sexes of the species from Chapada, ${ }^{37}$ remarking that some little size variation was present in his series. The present representation shows the same feature, which, however, does not interfere with the recognition of the species, which is nearest in affinity to $H$. laminatu Brumner. The form of the male cerei is very distinctive, particularly the structure of the apex.

The species is known only from the localities mentioned above.
Ceraia cornutoides Caudell.
1906. Ceraia cormutoides Caudell, Proc. U. S. Nit. Mas., XXX, p. 237. [sapucay, Paraguay.]
(hapada, State of Matto (irosso. November. (H. H. Smith.)
One female. [U. S. N. M.]
Corumbá, state of Matto Cirosso. April. (H. H. smith; highland.) One female. [U. S. N. M.]

These specimens fully agree with males from Paraguay and a female from Misiones, Argentina. It is worthy of note, from the

[^79]above females, that the subgenital plate of that sex is progressively deeper in its cmargination as material from more northern localities is examined, this being shallowest in the Misiones individual and almost fissate in the Chapada specimen. The lateral angles of the plate are progressively produced as the incision deepens.

Brumer has reorded the species from both of the above localities and Puerto Suarez, Bolivia.

Scaphura nigra (Thumberg).
1s24. Cr[ylhs] miger Thumberg, Mém. Acad. Imp. Sici. St. Pétersb., IX, p. 415. [Brazil.]

Cioyaz, State of Goyaz. Thnee females. [Hebard C'ln.]
Rio Verde, State of Goyaz. Three females. [Hebard ('In.]
These specimens represent about four stages in the color variations of this unstable species, of which numerous color forms have heen described as distinct species. One type is extremely close to Kirby's figure of vigorsii, except that the proximal section of the marginal field of the tegmina is as dark as the apex of the tegmina: another is similar but paler, with the pronotum largely rufous and the distal portion of the abdomen, particularly ventrad, similar. poobably near to kirbii Westwood; the third has the rufescence gone except from areas in the anal field, proximal section of the discoidal field and a proximo-median pateh in the marginal field of the tegmina, while the apex of the tegmina is pale; the fourth form is nearly typical nigra or chalybea, with immaculate or nearly immaculate velvoty black tegmina and strongly chalybeous abdomen.

Stilpnochlora marginella (Serville).
1839. Phylloptera margincllanerville, Hist. Niat. Ins., Otth., p. 405. ["Cape of Crood Hope.' ']
Bonito, state of Pernambuco. (A. Koeleele.) One male. [U. S. N. M.]

Theresopolis, state of Santal Catharima. One male. [M. C. Z.]
For comments on this species and its affinity to the other members of its species group, see the recent paper by the author on the subject. ${ }^{3 s}$ Since the latter paper was written we have been able to examine the type of Scudder's quadrata, and find it to be identical with the material referred to that species by us. The type (male; Guayaquil, Ecuador; Museum of ('mparative Zoology) has been hadly damaged by insect pests at some time in the past, but its characters are clearly evident.

[^80]Anaulacomera ${ }^{39}$ brevicauda Brunner.
1891. Anculacomern brevcenuda Brumner, Verhandl. k.-k. Zool.-botan. Gesoll. Wien, NLI, p. 144. [Sao Panlo, Brazil.]
Chapada, State of Matto Crosso. July and August. (H. H. Smith.) Four males. [U.S. N. M.]

Commbá, state of Natto Cirosso. July. (H. H. Smith.) One male. [U.S. N. M.]

These specimens apparently represent the previously undeseribed male of the species. As far as can be determined from the ambisexual characters given in the original deseription, our individuals are consperific with the female deseribed by Brmmer. The stridulating field of the male tegmina is elongate and relatively narrow, bearing two very conspicuous, ivory-white, subcircular areas, surrounded and separated hy a border of ox-t)lood red. The margin of the disto-dorsal abolominal segment is faintly arcuato-emarginate distad, while the supra-anal plate is of uncertain form, being buried by the flexed cerci; the latter are simple, tapering, deplanate distad, straight in the proximal two-thirds. then moderately arcuate inwards, the apex blunt; subgenital plate rather short, narrowing distad, with a distinct median carina, the distal margin truncate with the lateral angle produced into distinct, alcute, substyliform procesces. A representative sperimen measures as follows: length of body, 14 mm . length of pronotum, 4.3 ; length of tegmen, 25.5; greatest width of tegmen, 5.6 ; length of caudal femur, 17.5

The localities given above are apparently the only ones from which the species has been reported, Bruner having already recorded it from Chapada. ${ }^{40}$

Anaulacomera bellator new speries. (Plate $\mathbf{X}^{2}$, figs, 21 and 22.)
Closely related to A. intermedia Brumner (plate X. fig. 23), with a male of which we have compared the now species, but differing in the more roundly deflected lateral lohes of the pronotum, the more narrowly rounded tegminal apices, somewhat longer limbs and more strongly divergent seetions of the male cerci, these divided more proximad and the ventral section of which also earries on it dorsal surface a short supplementary spine.

[^81]Trae- - $\sigma^{7}$; Rio de Janeiro, Brazil. November. (II. H. Simith.) [Unitcel Štates National Museum.]
size medimm: form moderately eompressed. Head with the oceiput moderately areuate in transverse section, not at all declivent rephatad; fastigimm morlerately compressed, fatuly elevated and slightly entarged distad, sulcate dorsad, the lateral margins of the dorsal surface faintly elevated proximad, cephalle face of the fastigimm cuneate, weakly exavate, well separated from the acominate frontal fastigium: papi very elongate, extremely slemder, the distal joint moderately areuate distad; eyes prominent, semighobose, in hasal outline circular: antemate incomplete in the type, proximal joint large. Pronotum with the greatest candal width of the disk contained one and two-thirels times in the length of the same, the surface of the disk moderately arenate in transwerse section cephatarl deplanate caudarl, lateral angles weakly indicated caudad; cephatic margin of disk faintly aremato-emarginate, caudal margin moderately arcuate: an impressed figure in the form of a broad $I^{\circ}$. placed slightly caudad of the middle of the disk: lateral lobes of the pronotum sightly longer than deep; cephatic margin of lobes areuatosinuate. ventro-cephalic angle obtusely rounded, ventral margin, ventro-raulal angle and cautal magins broadty arcuate, regularly passing from the ventro-cephalic angle to the humeral simus, the latter distinct but not deeply indicated, obtuse-angulate. Tegmina elongate lancoolate, surpasing the apex of the abolomen by more than twice the length of the head and pronotum combined; greatest width of tegmen contained four and ome-half times in the length of the same. greatest width of the marginal fied at the proximal thind of the tegmen and there forming two-fifthe of the entire tegminal width; costal marwin in general very weakly arcuate, very hrefty sharp arcuate proximad, distad regularly and decidedly arcuate to the relatively namow, hut well rounded apex; sutural magin nearly straight, moterately distad to the apex; marginal field irregularly areolate, with about six or seven oblique, irregular rami of the humeral voin, which are poorly dominant in the general areolation of the fiedd; median rein diverging from the discoidal very faintly proximad of the middle of the tegmen, bifurate, with the rami reaching the sutural margin; uhar vein markedly undulate, without appreciable rami; discoidal field very closely and fincly areolate, these slightly larger distad, in the proximal half of the area between the discoidal and unar veins are placed a series of six to seven low nodes in the reticulate areolation: stridulating field relatively nar-
row, morlerately elongate, the margin very broadly obtuse-angulate at the apex of the stridulating vein, the latter thick, depressed, hardly arcuate. Wings surpassing the closed tegmina by about two-thirds the length of the pronotal disk. Prosternum with a broadly triangular figure: mesosternum with rounded obtuse-angulate lobes: metasternum with convergent, shallow, arcuate lobes. Abdomen but little compressed, the dorsal surface rounded tectate: disto-dorsal abdominal segment relatively short, subdepressed dorsad, faintly dechivent distad; distal margin sinuato-truncate dorso-mesad, lateral margins markedly bisinuate: cerci relatively heavy, forked from the base, the rami strongly diverging, the dorsal one ereet, moderately inbowed or faintly inbent, tapering, the apices acute spiniform, on the external and internal surfaces bearing three longitudinal grooves, separated by distinct, sharp carmulae: ventral ramus directed ventrad and slightly cephalad, when seen from the caudal aspect directed slightly inwards toward the median line of the body, the ramus relatively thick, weakly chamelled on the internal face, the extremity somewhat thickened and rounded hulbous, with a blunt tooth on the internal face slightly proximad of the extremity; at about the middle of the ventral ramus, on the caudal face, there is present a slender, spiniform process, which is nearly straight and is directed caudo-mesad: subgenital plate relatively large, scoop-shaped, with a distinct, complete, median carina and short lateral carimae on the distal section of the plate, the latter carinae ending in very low, blunt tubercles, which form the lateral angles of the distal margin of the plate: distal margin of the plate not longer than two-thirds the length of the lateral margin of the plate, faintly angulate emarginate; lateral margins of the plate simato-arcuate. Cephalic femora more than five-sixths the length of the pronotal disk: cephalic tibiae one-third longer than the cephatic femora, very slender distad of the enlarged proximal section, auditory foramina selatively large, elliptical on both faces. Median limbs missing. Caudal femora but slightly shorter than the body, moderately slender, ventral margins, spined distad, the extermal with seven, the internal with five spines both genicular lobes with a single spine; caudal tibiae surpassing the length of the femora by about half the length of the pronotal disk, all margins continuously spined, the dorsal ones more heavily so than the ventral ones.
(ieneral color ranging from sayal-brown on the head, pronotum and sides of the ahdomen, to ochaceous-tateny on the dorsum of the ablomen, and cimamon-buff, the latter broadly washed with
light cress-green, on the tegmina and exposed portions of the wings. The original color was probally more green than is now the case with the type specimen, but to what extent we camot say, and the coloration described is that found in the present condition of the individual. Eyes cimamon-brown, blotehed with fuscous. Antennae, except for the proxinal portion which is of the general color, clear kildare-green. Femora of the general color, tibiae weakly light cress-green.

Length of body, 21.8 mm . ; length of pronotal disk, 5.3 ; greatest (caudal) width of pronotal disk, 3 ; length of tegmen, 29.3; greatest width of tegmen, 6.1; length of caudal femur, 19.8.

The type of this most interesting species is unique.
Anaulacomera libidinosa new species. (Plate X , figs. 24; Pl. XI, fig. 25.)
Apparently close to A. chelata Brunner, having with the older species a unique position in the genus by possessing an articulate appendage attached to the cereus of the male, but differing from chelata in the lateral lobes of the pronotum being longer than high, and in the articulate arm of the cereus being of a more highly specialized character, having the apex of the same blunt and depressed and the ventral surface with an arcuate compresso-lamellate expansion.

Type.- $o^{7}$; Bonito, State of Pemambuco, Brazil. January 16, 1883. (A. Koebele.) [United States National Museum.]

Size medium: form distinctly eompressed, deep: surface of limbs shining, of most of body dull. Head slightly broader across genae than caudad of the eyes; face faintly bullate, slightly compressed and the infra-antennal region impressed: palpi elongate, slender: eyes moderately prominent, faintly flattened subglobose when seen from the dorsum, slightly projecting cephalad, basal outline subcircular: antennae slender, proximal joint relatively large. Pronotum with the disk narrow, its greatest caudal width contained about one and two-thirds times in the greatest length of the same, surface of the disk faintly arcuate transversely cephalad, deplanate caudad, lateral angles moderately indicated caudad, more rounded cephalad, surface of the disk with a fine medio-longitudinal suleation, across which, slightly caudad of the middle of the disk, is placed an obtusely-angulate suleation, which does not reach the lateral angles of the disk; surface of the cephalic portion of the disk slightly rugulose: cephalic margin of the disk truncate, caudal margin of the disk moderately arcuate: lateral lobes of the pronotum slightly longer than deep, nearly vertical; cephalic margin areuato-emarginate,
ventro-cephalic angle romeded obtuse, ventral margin oblique subtruncate, ventro-caudal angle and cautal margin broadly and regularly arcuate, humeral simus moderately decided, romeded rectangulate.

Tegmina about half again as long as the lorly, lanceolate, the greatest width eontained slightly more than three and two-thirds times in the length of the same, the marginal field at the proximal third of the tegmen forming two-fifthe of the entire tegiminal width: eostal margin well areuate proximad and distad, flattened mesad, apex moderately narrowed but well romded, sutural margin gently arcuate: marginal fied with mumerous but coarse areolations, which are deeply etched, among which there stand out above seven poorly defined oblique rami of the humeral vein; median vein diverging slightly distad of the middle of the tegmen, this bifurcate with the rami reaching the sutural margin shortly proximad of the apex. these and the uhar vein moth fractured and in consequence somewhat zig-zag in their direction, the areolations of the discoidal fied in general, but particularly proximad, finer than those of the marginal field: stridulating field relatively small, the margin rounded obtuse-angulate at the apex of the stridulating vein, the latter slightly oblique, gently arcuate, distinetly depressed, thickened. Wings with the normally exposed portion projecting distad of the tegmina a distance equal to the length of the pronotal disk, the form of the apex narrowly rounded arote.

Prostermum with a broadly $V$-shaped camate elevation: menosternal lobes very small, rounded rectangulate, convergent: metasternal lobes similar to the mesostermal lobes but slightly larger. Disto-dorsal abdominal segment moderately eucullate, the margin arcuate-emargimate laterad around the eercal bases, the distal margin proper (mesad) shallowly arcuate-emargimate: cered with the main (ventral) shaft about two-thirds as long as the disk of the pronotum, weakly compressed, gently fakciform, tapering in proximal half, suberpual in distal half where the width is little more than half that at the base, the apex with an unguiculate spine: forsal articulate section of the eereus about half again as long a the ventral portion, straight, at the midelle on the ventral surface there is developed a low but distinct lamellation, which is regubarly arcuate proximad, oflique subtruncate distad, the angle marrowly rounded, the general fom of this lamellation strongly suggesting the femoral lobes of certain mantids of the subfamilies Vatimae and Empusinare, the distal seretion of this arm of the cerens
is depressed and when scen from the dorsum spatulate: subgenital plate broad, slightly scoop-shaped, regularly narrowing distad, distal margin of the plate so damaged that its true form camot be determined, the styles ako being missing, hut the latter were in all probability well developed, as tubular sockets in which they were placed are indicated in the remaining section of the distal portion of the plate.

Cephatic femora subequal to the disk of the pronotum in length; cephalic tibiae surpassing the femora in length by about one-fourth of the femoral length, very slender except in the proximal fourth, auditory tympani elliptical. Median femora half again as long as the pronotal disk; median tibiae surpassing the femoral length by about that of the distal tarsal joint. Caudal femora nearly three-fifths as long as the tegmina, moderately inflated proximad, slender distad, moderately compressed proximad, rentaal margins armed with three to four (external) and two (internal) spines; caudal tibiae one and one-fifth times as long as the femora, compressed, deeper proximad than distad, armed on the dorsal margins with distinct spines, those of the internal margin more mumerous than those of the external and differing from those on the latter margin in being erect and not diverging, between the spines is present a contimuous, distinct and deep sulcus, ventral margins with relatively few spines, these mainly distad.

Original coloration of the specimen destroyed by immersion at some time in a liquid preservative. Present color wood-brown, the tegmina verona brown.

Length of boty, 17.2 mm . ; length of pronotmm, 4.9 ; greatest (caudal) width of the pronotal disk, 2.9; length of tegmen, 27; greatest width of tegmen, 6.8 ; length of caudal femur, 21.2 ; length of caudal tibia, 18.5.

The type of this species is unique.

## Anaulacomera sulcata Brunner.

1878. A [naulacomera] sulcata Brunner, Monogr. der Phaneropt., pp. 279, 289. [Brazil; Peru.]

Goyaz, State of Goyaz. One female. [Hebard Cln.]
This specimen fully agrees with the original description and is inseparable from an individual of the same sex from Rio de Janeiro, in the collection of the Academy of Natural Sciences of Philadelphia, which was determined as sulcata ly saussure, from whom it was received. The species has heen questionably recorded from Rio de Janeiro by Bruner.

Grammadera rostrata Rehn.
1907. Girammadert rostrata Rehn, Pror. Aead. Nat. Sei. Phila., 1907, p. 378 , figs. 10 and 11. [Sapucay, Paraguay.]
Corumbá, State of Matto Crosso. March. (H. H. Smith; lowland.) One female. [U. s. N. M.]

This specimen has been compared with the type and found to be inseparable. The size is very faintly smaller, and the ovipositor is faintly more arcuate proximad on the ventral margin, but otherwise the two are identical.

Corumba and Sapucay are the only localitics known for the species.

## Grammadera chapadensis Bruner.

1915. Grammatera chapadensis Brmer, Ann. Carneg. Mus., IX, p. 321. [Chapada, Matto Cirosso, Brazil.]
Chapada, State of Matto Crosso. November. (H. H. Smith.) Two males, two females. [U. S. N. M.]

Coyaz, state of Goyaz. Four females. [Hebarel C'ln.]
These specimens fully agree with the description of chapadensis, which is certainly close to albida Brunner. Just how it differs from the older species is not at all clear, as the form of the supra-anal plate of the male, which is said in the original description of chapadensis to be the chief characteristic of the species, shows no differences which would not be covered by Brumer's brief description of this area in albida.

The material from Sapucay, Paraguay and Misiones, Argentina which we had previously referred to albida, ${ }^{\text {th }}$ we now know does not belong to that species, but instead represents (i. steinbachi Bruner, ${ }^{42}$ a species which at the time of our references was undescribed. In consequence we do not know albida Brunner, to which, however, chapordensis is very close.

The localities given above are the only ones known for the species. Phylloptera ${ }^{13}$ quinque-maculata Bruner.
1915. Phylloptera quinquc-maculata Bruner, Ann. Carneg. Mus., IX, p. 325. [Chapada, Matto Grosso, Brazil.]
Chapada, State of Matto Crosso. July and October. (H. H. Smith; campo [October].) Two males, one female. [U. S. N. M.]

These specimens: are perfectly typical of Bruner's species. One male is more brownish than the other individuals, while in all the dorso-caudal section of the pronotal disk is strongly colored.

[^82]Phylloptera phyllopteroides (Brumner).
187s. P[arableta phyllopteroides Brumner, Monogr. der Phaneropt., p. 254. [Brazil.]
Goyaz, State of Goyaz. One male, two females. [Hebard Cln.] This is apparently the first record of the species with exact data.

Phylloptera tenella new species. (Plate NI, figs. 26, 27 and 25.)
A close relative of $P$. allieded Caudell, from Paraguay, ${ }^{4 t}$ and $P$. cognata Rehn, described below, but particularly close in its relationship to the former. From alliedea the present species differs in its considerably smaller size, more robust proximal portion of the caudal femora and the more bent, shorter and blunter ovipositor. The form of the latter strongly approaches that of the ovipositor of $P$. eognata. but in proportions it would hold an intemediate position, as the apex is more acute and the disto-dorsal section of the margin is by no means as coarsely spined as in cognuta.

Type- © ; Corumbá, State of Matto Grosso, Brazil. March. (H. H. Smith: highland.) [Cnited States National Museum.]

Size medium: form compressed. Head with the fastigium narrow, acuminate, sulcate, moderately declivent, hardly in contact with the fastigium of the face, the latter moderately acuminate: palpi clongate, slender' the distal joint arcuate: eyes not prominent, faintly compressed, slightly projecting cephalad, in basal outline slightly ovate. Pronotum with the disk deplanate, relatively broad, the greatest caudal width contained one and one-fifth times in the greatest length of the same; cephalic margin of the disk concave with a faint angulate tendency, caudal margin of the disk strongly arcuate; surface of the disk with a distinct but narrow medio-longitudinal sulcus, a median figure forming with the sulcus the letter ' $\Psi^{\prime}$; laterai angles distinct, rectangulate, subcarinate: lateral lobes slightly deeper than long: cephalic margin of the lobes weakly concave ventro-cephalic angle moderately rounded, ventral margin

[^83]broadly arcuate, ventro-caudal angle not indicated, the ventral margin passing regularly into the arcuate caudal margin, humeral sinus well inticated, rounded obtuse-angulate.

Tegmina surpassing the apex of the abdomen by the greater portion of the length of the caudal femora, its length slightly more than six times that of the disk of the pronotum, its greatest width contained two and four-fifths times in the greatest length of the same: costal margin regularly and rather strongly arcuate, sutural margin similarly arcuats, apex broadly rounded acute: marginal field at its widest point forming about two-fifths of the entire tegminal witth at that point: median vein diverging at two-fifthe of the tegminal length from the base, bifurcate, the arms reaching the sutural margin very shortly before the apex; ulnar vein with two distinct rami; transverse nervures of the discoidal field retatively few, rather regularly placed, those distad slightly oblique, the "dead"'spots placed one on each of the ulnar rami close to the main vein, the third covers the short transverse nervures connecting the ulnar vein and the proximal fork of the median vein: anal field narrow, clongate. Wings but slightly projecting distad of the closed tegmina, the apex moderately acute when closed, when the wing is expanded the apex is rotundate rectangulate.

Mesosternal lobes relatively small, acute: metasternal lobes rectangulate, arcuate laterad. Abdomen distinctly compressed, moderately carinate dorsad, aside from the two dorsal segments: disto-dorsal abolominal segment short, weakly sulcate medio-longitudinally, the margin rather briefly sinuato-emarginate on each side of the sulcus: supra-anal plate trigonal, briefly and shallowly sulcate proximad: rerci tapering, falciform, relatively thick proximad. the extremity slender: ovipositor one and two-fifths times as long ats the disk of the pronotum, strongly compressed, deep, regularly falcate, the dorsal margin sermlate in the greater portion of its length, the denticulations regularly increasing in size distad, ventral margin with recurved denticulations for a short distance distad, apex of the two valves together moderately acute; surface of ovipositor with depressed shagreenous teeth: subgenital plate trigonal, deeply sulcate medio-longitudinally, this bounded laterad by converging, clevated, rounded ridges.

Cephatio femora very slightly longer than the pronotal disk, ventro-intermal margin armed distad with two to three spines; rephalic tibiae with the autitory foramina elongate elliptical. ('andal femora about three-fifthe as long as the tegmen, moderately
inflated proximad, appreciably compressed, ventro-external margin with sin spines, ventro-internal margin with five to eight spines, genicular lobes bluntly bispinose: caudal tibiae faintly longer than the femora, subcompressed, particularly proximad, the dorsal margins sublamellate carinate, multispinose, the ventral margins less thickly spined, dorsal surface moderately deplanate impressed.

Allotype- $o^{\text {t }}$ : Same data as type. [United states National Museum.]

Differing from the above description of the type in the following features. Stridulating field of the tegmina with its margin oblique arcuate to the apex of the stridulating vein, there rounded and distad very faintly areuate the remainder of its length; stridulating vein thick, strongly depressed, in fact flattened, in the greater portion of its length transverse, narowing distad, the distal margin of the rein with a distinct cingulate ridge. Disto-dorsal abdominal segment with the sinuate-emarginate character of the margin much less decided than in the female, yet appreciable: cerci strongly falcate dorso-mesad, slightly thickened proximad, elsewhere uniform in thickness, the extremity not acuminate, armed with two low, very blunt teeth: subgenital plate with the lateral margins regularly narrowing distad, the distal extremity very namowly arcuateemarginate, the bases of the styles developed as short projections on each side of the distal emargination, these projections represented and continued over the plate for some distance by slightly diverging rounded ridges; styles short, their length subequal to the distance between their bases, simple. Caudal femora with the rentro-external margin bearing four to five spines; ventro-internal margin with four to five spines.

General color honey yellow to clay color (doubtless discolored), the distal three-fifths or all of the tegmina courge-green, the venation in the green sections lined with light hellebore-green, the "dead" area mummy-brown. Normally exposed portion of the wings colored similarly to the tegmina. Eyes buckthorm-brown. Limbs proximad of the general color, passing on the distal section of the femora and the tibiae to course- and biscay-greens, these more decided on the caudal limbs.

|  |  | Measur | ments.s | millin |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { body } \end{gathered}$ | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { pro- } \end{gathered}$ | Greatest (caudal) width of pronotal | Length of tegmen | Greatest width of | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { caudal } \end{gathered}$ | Length of ovi- |
| $0^{7}$, allotype |  | $\stackrel{\text { notum }}{\substack{\text { a }}}$ | 3.3 | 26 | 9.2 | 16.1 |  |
| of, type | 21.5 | 4.1 | 3.6 | 28.3 | 10.2 | 18.3 | 6 |

In addition to the type and allotype we have before us two male and one female paratypes which bear the same data as the type, except that all three of them were taken in the month of April. These specimens show no noteworthy variation from the above descriptions, except in furnishing data on the variability of femoral spine formulac. The cephalic femora have on the internal face distad from two to four spines, while the caudal femora are armed on the external margin with from four to six (generally five) spines, the internal with from four to eight spines.

Phylloptera cognata new species. (Plate XI, figs, 29, 30 and 31.)
Closely related to $P$. allichea Caudell, from Sapucay, Paraguay, ${ }^{45}$ agreeing in the sulcation of the cephatic femora, the form of the sternal lobes and the general form, but differing in the more elongate hasal outline of the eyes, the axis of which is more oblique dorsocaudad, the more compressed fastigium of the face, the proportionately narrower tegmina and the shorter, much broader (proportionately) and tlistinctly bent ovipositor, the apex of which is dorsad and sharply narrowed and on the distal portion of the dorsal margin is strongly dentate. From the above described tenella, cognata can be separated readily by its larger size, the shape of the eves and the stouter and more abbreviate ovipositor. The male of the species is unknown.

Type-- 9 ; Chapada, State of Matto Grosso, Brazil. August. (H. H. Smith.) [United States National Museum.]

Size medium: form compressed: surface dull, mat, the tegmina and exposed portion of the wings coriaceous. Head in general form similar to that of tenella: fastigium faintly longer and more regularly narrowing than in tenella; fastigium of the face as in tenella, median ocellus large: face bullate to the same degree and laterally compressed in similar fashion to that of tenclla: palpi equally slender but slightly shorter than in tenelle: eyes in basal outline distinctly ovate, the axis oblique: antennae reaching at least as far as the tips of the tegmina.

Pronotum as in tenella except that the ventro-cephalie angle of the margin of the lateral lohes is more obtuse and lese rounded. Tegmina very similar to those of tenella, but the apex is slightly more sharply romeded. Sternal lobes of the type found in tenella, but they are individually slightly more longitudinal. Apex of the abdomen as in tenclla, with the following differences: oviposi-

[^84]tor subequal in length to the disk of the pronotum, strongly compressed, moderately deep, bent dorsad very close to the base, apex of the two valves together broader and hlunter than in tenella, the dorsal margin sermate distad, the ventral margin recurved denticulate distad.

Cephatic fomora armed on the ventro-intermal margin with four spines distad. Caudal femora about four-sevenths as long as the tegmen. general form as in tenella, ventro-external margin with six to nine spines, ventro-internal margin with four to six spines: caudal tibiae as in temella.

General color of the body and limbs antimony yellow to ochraceousbuff, darkening on the ventral surface of the abdomen to tawny, tegmina, exposed portion of the wings and to a certain extent the dorsum of the pronotum, courge-green, the veins frequently, and to a variable degree, lined with light hellebore-green, the "dead" spots mummy brown and variable in size, occasionally but two being present. Eyes buckthorn-brown. Tibiae courge-green, the extremitics of the caudal femora weakly of the same color. In life the body coloration was in all probability green or greenish, that of the tibiae probably being a remnant of the natural color.

Length of hody, 19 mm . length of pronotum, 4.5 ; greatest (caudal) width of pronotal disk, 3.9; length of tegmen, 32; greatest width of tegmen, 10.9 ; length of caudal femur, 18.5; length of ovipositor, 5.

In addition to the type we have before us two paratypic females, which bear the same data as the type, except that one was taken in the month of July instearl of August. These specimens show no noteworthy differences from the type. One of the specimens has lost the cephalic femora and the other has but a single one; in this latter the femur has but a single spine on the ventro-cephalic margin. The ventro-external margin of the caudal femora has the spines seven or eight in number, of the ventro-internal margin six to eight in number. These figures make the known variation in the formulae of these margins for the species, six to nine and four to eight respectively.

Phylloptera ovalifolia Burmeister.
1838. Ph[ylloptera] ovalifolia Burmeister, Handb. der Entom., II, Abth II, pt. I. p. 693. [South America.]
Rio de Janeiro, State of Rio de Janeiro. November. One male. [U. S. N. M.]

This species previously has been recorded from Rio de Janeiro, Theresopolis and santa Catharina, Brazil.

Phylloptera spinulosa Brunner.
1878. Ph[ylloptera] spimulosa Brunner, Monogr. der Phaneropt., p. 314. [Ypanema, State of Sao Paulo, Brazil.]
Rio Verde, State of Goyaz. One female. [Hebard Chn.]
Coyaz, State of Goyaz. One male. [Hebard Cln.]
Corumbá, State of Matto Grosso. March and April. (H. H. smith; highland.) Three females. [U. S. N. M.]

These specimens show a great amount of size variation, which appears to have some geographic correlation.

The Corumba specimens are of a miformly medium size, while the Rio Verde female is quite large, and the Goyaz male the smallest individual of the species we have seen, much smaller than a sapucay male, the only other individual of that sex at hand. The tegmina of one Cormmbá individual are unnarked, of another with a single small ocellar spot on the uhar vein at the base of its first ramus, and the third with a relative large greenish-white ocellar spot in the same position. The Rio Verde female has no tegminal spots, and the Goyaz male is similar in this respect to the second Corumba individual mentioned above. There is considerable rariation in the relative width of the tegmina, which is apparently individual in character.

The species is now known to range from the State of Goyaz west to at least Cormbá, south to Sapucay, Paraguay and the Misiones, Argentina.

Pycnopalpa bicordata (Nerville).
1825. L[ocusta] bicorduta Serville, Eneycl. Méthod., Ins., X, ]. 343. [Brazil.]
Rio de Janeiro, State of Rio de Janeiro. November and December. (H. H. Smith.) Two males. [U. S. N. M.]

These specimens show some difference in size, hut are clearly identical. Bruner has recorded the species from this locality.

Pycnopalpa rubiginosa (Bruner).
1915. Topama rubiginosa Brmer, Ann. Carneg. Mus., IX, p. 330. [Chapada, Matto Crosso, Brazil.]
(hapada, State of Matto Grosso. July. (H. H. Smith.) One mak. [U. S. N. M.]

This specimen fully agrees with the original description except for its faintly smaller size. We feel that Bruner was not correct in placing this species in Topena, as a careful comparison of it with the genotypes of Topene and P'ycnopalpa shows more features of agreement with the latter than with the former. The cingulate disk of the pronotum, the form of the palpi, the number of spines

On the ventro-cephalic margin of the cephatic femora, the form of the stridulating field of the male tegmina and the color distribution at the base of the tegmina are as in Pycnopalpa, while the tegminal venation and the non-erose character of the tegmina are as in Topana. As the majority of the striking features accord with Pycnopalpe this association is clearly the more justifiable course to pursue, although rubiginosa is a definite proof of the common origin of the two genera.

Topana cincticornis (stil).
1573. P[lagioptera] circticormis itål, Ofr. K. Vetensk.-Akad. Förhandl., NXX, p. 43. [Brazil.]
Chapada, State of Matto Cirosso. April, July and August. (H. H. smith; one labelled "highland".) One male, four females. [U.S.N. M.]

Bruner ${ }^{66}$ has recorded the species from this locality. These specimens agree with stal's description, but are somewhat smaller than the masurements given for the species by Brumer. The species has been definitely recorded from Rio de Janeiro, Nova Friburgo, Matto (irosso and Chapada, Brazil, and Luque, Paraguay, as well as general "Brazil" and "Paraguay" records.

Diplophyllus ensifolius Saussure.
1859. Ph[yllopteru (Diplophyllus)] ensifolia Saussure, Révue et Magasin de Zoologie, 2e sér., NI, p. 202. [Bahia, Brazil.]

Corumbá, State of Matto Grosso. March. (H. H. Smith; highland.) One female. [U. S. N. M.]

This specimen agrees with the two previous descriptions (Saussure and Brumer), which were based on the male sex, but has the tegmina shorter ( 33 mm . instead of 39) and narrower (10 instead of 11) than Brumner's measurements of the same. When compared with a female of $D$. punctatus (Stå), from Montserrat, West Indies, ensifolius is seen to be a more slender insect, with less globose eyes, more regularly lanceolate and less angulate tegmina, and much more elongate, narrower and regularly areuate ovipositor, which has the distal third of its dorsal margin crenulato-serrate and the same portion of the ventral margin recurved serrato-dentate. The length of the ovipositor is 9.6 mmm.: the median depth of the same, 1.9 .

[^85]Microcentrum lanceolatum (Burmeister).
1Si3S. Ph[ylloptera] lanceolata Burmeister, Handl. der Entom., II, abth. II, pt. 1, p. 692. [Brazil.]
Rio de Janeiro, State of Rio de Janeiro. November. (H.H. Smith.) Two males. [U. S. N. M.]

The present widely distributed species has been recorded from this locality by Brumer and Bruner.

## Lobophyllus reversus new species. (Plate N1, figs 32 and 33.)

A striking species, differing chiefly from $L$. legnmen saussure, from "Brazil," the genotype and only previonsly known species, in the more subequal dorsum of the pronotum, the much more ample tegmina, the distal portion of which is much wider, in the transverse veins of the marginal fied of the tegmina being directed proximad, in the ramus of the median vein being proximad extremely close to the median rein, in the more regular disposition and correlation of the rami of the median and ulnar veins and in the caudal tibiae slightly surpassing insteat of being shorter than the femora. The ovipositor of the new species is quite different from that of legumen, being proportionately shorter and broader with a rotundato-truncate apex and the margin of the same section denticulate.

Type-- 9 ; Goyaz, state of Coyaz, Brazil. [Hebard Collection, Type no. 473.]

Size large: form moderately compressed: surface umpolished, tegmina and exposed portions of wings coriaceous, with a faint gloss. Head with its greatest width slightly greater than the lepth from the occipital margin to the clypeal suture: occiput bullato-areuate transversely, regularly arcuato-declivent from the caudal portion of the oceiput to the fastigial suture: fastigimm of the vertex very broad, faintly broader than the greatest dimension of the eye, not at all elevated above the general level of the head, broadly in contact with the equally wide and similarly constructed fastigium of the face, the inter-fastigial suture straight: surface of the fastigia and vicinity cribroso-punctulate, the occiput and genae with scattered indications of the same: cyes little prominent, relatively small, in basal outline subcircular, with a slight flattening cephalad: antennat not reaching to the apex of the abdomen, aside from the two proximal joints very slender.

Pronotum with the length of the disk about one and one-fourth times the greatest width of the head, the greatest (caudal) width of the disk contained one and one-fourth times in the length of the same; disk nearly subequal in width; the lateral margins faintly diverging, regularly, cautat, the cephalie width equal to about nine-tenthe the caurlal width; rephatie margin of the disk areuate-
emargimate with a faint median tooth, caudal margin of the disk strongly arcuate with a weak, shallow median emargination; lateral margins of the disk rectangulate in caudal two-thirds, olstuse in cephatic third, rounded in both sections, cut at one-third their length from the cephatic margin by a very brief sulcus, which does not extend over the dink of the pronotum, the latter with a broad V-shaped figure faintly cephalad of the middle, when seen from the side the portion of the disk caudad of this figure is plane, while that cephalad of the same is regularly ascending cephalad: lateral lobes of the pronotum stightly deeper than long, the dorsal length contained one and one-fifth times in the depth; rephalic margin areuato-emarginate, ventro-cephatic angle rounded obtuse, the ventral margin relatively short, oblique, rotundato-truncate, ventro-cautal angle broadly rounded-rectangulate, caudal margin flattened arcuate, slightly oblique ventro-cephalad in disection, humeral sims relatively small, but acute and sharply indicated: surface of disk and lobes cribroso-punctulate, the indentations finer cephalad on the disk and the dorsal section of the tateral lobes than elsewhere.

Tegmina clongate and ample, their length slightly greater than one and two-thirds times the body length, the greatest width contained two and one-third times in the greatest length of the same, the general form of the tegmen acuminate orate-lanceolate, the greatest width at five-eighths of the length from the base: costal margin regularly and strongly arcuate, apex slightly acute, the immediate apex rather narrowly rounded, sutural margin faintly arcuate distad to the distal third, thence broadly arcuate and in the remainder of the margin (subapical portion) oblique subtruncate to the apex: marginat field very broad in the proximal two-thirels of the tegmina, distad of this point the curving of the humeral trunk restricts the margimal field to a mere edging, the greatest width of the field (at the proximal third of the tegmen) slightly more than one-third of the greatest tegminal width and two-fifths of the entire tegminal width at the proximal third; anal field relaticely marow and elongate: mediastine vein short, subohsolete; rami of the humeral vein, which eross the marginal field, all regularly trend in the direction of the base of the tegmen as they diverge toward the costal margin, these rami more numerous and crowded distad; humeral trunk sigmoid, the arcuate at the distal third rery decided when compared with that at the proximal third; median vein diverging from the discoidal vein very shortly before the middle of the tegmen,
for a short distance paralleling the discoidal vein, bifurcate then diverging from the main humeral trunk at an angle of sixty degrees and in a fractured fashion reathing the oblique portion of the sutural margin; ulnar vein arcuate toward the humeral trunk, which it closely approaches, distad connected with the proximal ramus of the median vein by a short cross-vein, the uhar vein with two oblique arcuate rami, which follow the general trend of the extremity of the main uhar vein, a mumber of oblique cross-veins between the humeral trunk and the uhar vein are also present, these having the same trend toward the base as they approach the humeral trunk, a peenliarity possessed by all the more prominent rami and cross-veins. Wings with the exposed portion very acute, projecting distad of the tegmina a distance subequal to the length of the pronotal disk.

Mesosternal lobes clongate, acute-angulate caudad, the angle very narrowly romeded, the extemal margin of the lobes gently arcuate. the lobes held in a nearly vertical position: metasternal lobes individually longitudinal, shorter proportionately than the mesosternal lobes, the candal angle moderately acute, the angle narrowly rounded, the caudal and lateral margins moderately arcuate. Disto-dorsal abdominal segment moderately areuate about the base of each cercus, the distal margin of the plate corsad of the supra-anal phate weakly and broadly emarginate, the surface of the plate moderately concave mesad: supra-anal plate trigonal, slightly longer than the proximal width: cerci styliform, regularly tapering from the relatively incrassate base to the very slender distal portion, straight: ovipositor with its greatest length equal to four-fifths of the length of the pronotal disk, bent arcuate in proximal third, thence very gently arcuate, the greatest depth of the ovipositor equal to about two-fifthe of the ovipositor length, the ovipositor very faintly narrowing in the distal half, the extremity obliquely areuato-trmeate, the obliquity towards the dorsal margin, the margin of the apex with deeply cut denticulations, which are larger mesad, other margins of the ovipositor marmed: subgenital plate small, compressed trigonal, paired carinae converging distad.

C'ephalic fomora four-fifthe ats long as the disk of the pronotum, subcompressed, ventro-cephalic margin with five spines, genicular lobes hispinose: cephalic tibiae with the auditory formmina having rimate apertures on both faces. Median femora one and one-third times as long as the pronotal disk: median tibiae weakly expanded in the proximal half on the ventral surface, there subcompressed. ('andal femora in length equal to two-fifthe of the length of the
tegmina, compressed, rather regularly tapering distad, the external face with a well-impressed but irregular pattem of the pagina; genicular lobes hispinose: ventral-extermal margin with a continuous series of twenty-one to twenty-two spines, the ventro-internal margin with a series of mine to tem spines restricted to the distal section of the margin, the spines of both margins of similar size and equally spaced, except that distad on the extermal margin they are more crowded than elsewhere; ventral surface moderately channelled: caudal tibiae in actual length slightly surpassing that of the caudal femora, faintly compressed proxintad, the dorsal surface moderately deplanate, dorsal margins regularly spined, the ventral margins with a much sparser spination.

General coloration of the head and pronotum light yellowish-olive to ecru-olive, on the abdomen saceardo's-umber, on the venter of the same bister; tegmina and exposed portion of wings courge-green to light elm-green, blotched with chamois and cream-buff, probahly through dessication of the original green eolor: limbs saecardo'sumber to ecru-olive. Eyes mottled prout's-brown and fuscous: antemma amber-brown, greenish proximad. Pronotum with the lateral angles of the disk rather obseurely lined with ochraceousbuff, the short sulei (paired) which intersect the lateral angles of the disk at the cephalic third are lined with black. Humeral trunk of the tegmina and the principal veins of the same lined with buffy, the veins other than those of the trunk with this passing into cedargreen; discoidal field and the adjacent portion of the marginal field with mumerous, scattered, rely small points of creamy-white. Oripositor ochraceous-tawny, more or less distinctly edged with russet.

Length of body, 29.3 mm . ; length of pronotum, 7.6 ; greatest (cau(lal) wilth of pronotal risk, 6.1; length of tegmen, 50 ; greatest width of tegmen, 21.4; length of candal femur, 20; length of ovipositor, 6.1.

The type of this most interesting species is unique.

## Ischyra punctinervis Brunner.

1878. I[schyra] punctinereis Brumner, Monogr. der Phaneropt., p. 344, p!. VII, fig. 99a-b. [Matto (irosso, Brazil.]
Goyaz, State of Coyaz. One female. [Hebard ('ln.]
This specimen is faintly smaller than the original measurements and shows no sangumeous punctations at the base of the tegmina, although the ivory areas and the rows of fuscous points bordering the veins are well marked. It fully agrees otherwise with the description.
1879. Meroncidius flarolimbatus Brunner, Monogr. der Pseudophyll., p. 150. [Paraguay; State of Espirito Santo, Brazil.]

Bonito, State of Pernambuco. January 11, 1883. (A. Koebele; on Agare sp.). One female. [U.S. N. M.]

This specimen fully agrees with the original description of the speries, which catn be distinguished from marginatus Walker by its smaller size, its relatively straighter cephalic femora, its slightly more compressed pronotum, which has the marginal color contrast moderately decided, and its less produced lateral angles of the mesoand metasternum. The present species has the same type of mot tled light and dark coloration of the sutural margin of the tegmina found in margomatus, but as the general color is darker the pale areas are reduced in size and less conspicuous. At first glance fluvolimbatus. might be taken for a small specimen of marginatus, but the structural differences appear to he sufficiently marked to distinguish the two.

Meroncidius marginatus Walker.
1870. Meroncidius marginatus Walker, Catal. Spec. Derm. Salt. Brit. Mus., III, p. 450. [Parí, Brazil.]
Bonito, State of Pernambuco. January 11, 1883. (A. Kocbele; on Agare sp.) One male, two females. [U. S. N. M.]

These specimens agree with Walker's description of the species, which is close to ochraceus of Stoll. The older species, however, as understood hy Brunner, has unicolorous antemnae, the ovipositor without distal rugae, very much greater general size and a distinctly longer, although no deeper, ovipositor.

Anchiptolis chapadensis Brumer.
1915. Anchiptolis chapadensis Bruner, Amn. (arneg. Mus., IX, p. 355. [Chapada, Matto Cirosso, Brazil.]
Chapada, State of Matto Grosso. June and september. (H. H. smith.) Two males, three females. [U. S. N. M.]

These sperimens fully agree with the original description, which was based on a single female. Several features of the male sex are worthy of comment. The stridulating field of the male tegmina occupies about one-fourth of the sutural section of the tegmina. The two disto-dorsal abdominal segments are shining black, as in the female sex. Supra-amal plate rather short, trigonal in form, with the distal angle produced into an acute process; cerei short, incrassate, faintly inhowed, the apex recurved with a straight tooth,
the ventro-lateral section of the shaft with a shallow longitudinal impression; subgenital plate distinctly narrowed distad, the distal extremity very narrowly and quite deeply U-emarginate; styles rather short, cylindrical, ventral surface subsulcate.

The measurements (in millimeters) of the present material are as follows:


Tanusia angulata-ocellata Brumner
1895. Tanusia angulato-ocollatu Brumner, Monogr. der Pseudophyll., P. 251. [Brazil.]

Canta Callo, State of Rio de Janeiro. (Dr. Teuscher; Thayer Experlition.) One female. [M. (. Z.]

This specimen is typical except that the proximal three-fifths of the tegmina is green, instead of ferruginous as described. We know there is dichromatism in some of the Pterochrozae (i. e. Mometica) and this is apparently a case of the same sort. We have not used Serville's pecturata for this species, an action taken by Kirby, as we do not feel convinced the older name was applied to the same species as Brimner's anqulato-ocellala.

This is the first record of the species with exact locality.

## COPIPHORINAE.

Copiphora producta (Bolivar).
1903. Copiophora producta Bolivar, Revista C'hileña Hist. Nat., VII, p. 143. [Paraguay.]

Goyaz, state of Coyaz. One male. [Hebard Cln.]
This specimen shows a few differences from the description, which was based on the female sex, but these are chicfly in measurements and are probably due to sexual difference in proportions. The development of the caulal section of the pronotum is exactly as deseribed by Bolivar.

The species has been recorded from Rio de Janeiro, Brazil, and "Province del sara", Bolivia, by Bruner.

[^86]Oxyprora flavicornis Redtenbacher.
1891. Oxyprora flavicornis Redtenbacher, Verhandl. k.-k. Zool.-botan. Gesell. Wien, ŇLI, p. 360. [Bahia, Brazil.]
Goyaz, State of Goyaz. One female. [Hebard Cln.]
Chapada, State of Matto Grosso. July and October. (H. H. smith.) Three males, one female. [U. S. N. M.]

One male is decidedly brownish, apparently indicating the presence of a brown phase in the species.

Previous records were of its occurrence at (hapada, by Bruner,4) and Urucum, near Corumbá, Matto Crosso, by Cigtio-Tos. ${ }^{19}$
Caulopsis lancifera new species. (Plate XI, figs. 34, 35, 36, 37 and 38.)
('losely related to C. cuspidata Scudder, from Cuba, but differing in the more compressed form, more elongate fastigim, which is also deeper and faintly decurved distad, in the more retreating face, in the much reduced stridulating field of the male tegmina, which has the tambourine hardly half the size of that foum in cuspidata, in the narrower and more acuminate tegmina, the more deeply divided disto-dorsal abdominal segment of the male, the armament of the male cerci and the more deeply emarginate subgenital plate.

Type.-- © ; Corumbá, Matto Crosso, Brazil. March. (H. H. Smith; lowland.) [United States National Museum.]
size rather small: form very elongate: surface of heal, pronotum, pleura and sterna cribroso-punctulate. Head with the greatest dorsal length (from apex of fastigium) nearly twice as great as the length of the promotal disk: dorsal line of occiput and fastigium in greater part faintly and regularly ascending eephalad: fastigium with its dorsal length subequal to the length of the oceiput and inter-ocular region of vertex, lanceolate, faintly narrowed proximad, subequal in width of remainder of proximal half, then narrowing distad to the strongly blunted apex; ventral line of fastigium. when seen from the side, faintly concave; ventral surface non-carinate, but deeply punctate, proximal tooth prominent, completely in contact with the fastigium of the face; facial line, when seen from the side, greatly retreating, straight: eyes hardly prominent, ovate-orbicular in basal outline: antemae at least two and one half times as long as boly.

Pronotum of the usual type for the genus, the greatest caudal width of the pronotal disk contained nearly twice in the greatest length of the same: cephatic margin of disk weakly arcuato-emarginate, cauda margin of disk arcuato-truncate, lateral angles of disk distinct but well rounded, except caudad, when they are slightly more decided shoulders; tramsverse sulcus placed slightly cephatad of the eephatic

[^87]third, a fine medio-longitudinal suteus impressed for some distance caudad of the transverse sulcus: lateral lobes of the pronotum distinctly longitudinal; cephalic margin of lobes strongly oblique, arcuato-truncate: ventro-cephalic angle hardly indicated; ventral margin oblique truncate; ventro-caudal angle rounded obtuse, caudal margin strongly aremate; humeral simus deep, well rounded rectangulate. Tegmina elongate lanceolate, the greatest width contained slightly more than nine times in the length, surpassing the apex of the abdomen by more than twice the dorsal length of the head: costad margin straight except for a regular areuation in the distal third to the suturad apex, which is rather well rounded: stridulating field small, in its entirety not quite two-thirds as long as the clorsum of the pronotum, free margin but moderately arcuate, stridulating vein not more pronounced than the other veins of the field. Wings equalling the tegmina.

Prostemal spines very elongate, aciculate, parallel; sternal lobes strongly compressed, those of mesosternum rounded rectangulate, of metastermum arcuate laterad, with an extremely faint obtuseangulation caudad. Disto-dorsal abdominal segment with a broad, relatively shallow, obtuse-angulate depressed area on the clistal half of the dorsal surface, this area deepest disto-mesad and its proximal outline is rectangulate, the distal margin obtuse-angulate cmarginate, the supra-cercal angles moderately acute, cercal emarginations relatively deep, broad, truncate at the bottom: subgenital plate reflexed, linguiform: cerci of medium length, moderately robust, covered with shagreenous points which give rise to short chaetiform and long piliform hairs; when seen from the dorsum the cerci are nearly straight, when seen from the side they are moderately reqularly arcuate, subequal in depth; apex obliquely subtruncate, supplied with two spines, one large and cultriform, directed dorsad, the other aciculate, directed toward the median line and placed distad of the cultriform spine; subgenital plate compressed, relatively short, distal margin narrowly fissato-emarginate; styles articulate, short.

Cephalic and median limbs relatively short, comparatively slender: caudal femora elongate, slender, one-half as long as the tegmina; ventro-external margin with two to five spines, ventro-internal margin with two to three spines. Genicular lobes unarmed except those of the caudal femora and the caudal one on the median femora.

Allotype- - $\%$ : Iça, River, State of Amazonas, Brazil. (Thayer Expedition.) [Museum of (omparative Zoology.]

This specimen differs from the description of the type in the following features. Size larger, form faintly more robust. Head with the greatest dorsal length one and a half times as long as the pronotal disk; dorsal line of occiput and fastigium faintly and regularly ascending; facial line slightly less retreating than in the male; antemac broken. Cephalic margin of disk of pronotum very faintly more angulato-emarginate than in the male; greatest caudal width of pronotal disk three-fifths of length of same. Disto-clorsal abdominal segment deeply and narrowly V-emarginate mesad: cerei terete, tapering in distal third, acute, faintly arcuate when seen from the side: ovipositor in length subequal to that of the dorsum of the head and pronotum together, relatively broad, subequal in width, faintly decurved in distal two-thirds, apex acute: subgenital plate produced trigonal, compressed, subcarinate ventrad, distal margin narow, shallowly arcuate-emarginate. Caudal femora slightly less than one-half as long as the tegmina: ventro-external margin armed with three to four, ventro-internal margin with two to three spines.

Cieneral color serpentine-green to old-gotd above, beneath old gold to dull yellow-ocher. Eyes russet; antennae dresten-brown to buckthorn-brown, passing into the general color proximad. Larger areas of the male stridulating field washed to a variable degree with mummy brown. Tibial spines yollowish, tipped with brownish. The female (allotype) has lost all trace of the original coloration, the above features being derived entirely from the type and paratype.

| Measurements (in millimetor.) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { body } \end{aligned}$ | Length of fastigium | Length of pronotum | Greatest caudal widt h of pronotum |  | $\begin{aligned} & \text { Greatest } \\ & \text { width } \\ & \text { of } \\ & \text { tegmen } \end{aligned}$ | Length caudal femur | $\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { oviposi- } \\ & \text { tor } \end{aligned}$ |
| $\begin{aligned} & v^{3}, \text { Corumbá, } \\ & \text { Brazil, type } \end{aligned}$ |  | 3.6 | 4.3 | 2.2 | 29.20 | ( 3.1 | 14.8 |  |
| $0^{7}$, Corumbá, Brazil, paratyp | $2: 3$ | 3.1 | 4 | 2.2 | 2 S 2 | 2.6 | 13.2 | ....... |
| १, Ica River, Brazil, allotype | $2 y^{51}$ | 4 | 4.6 | 2.8 | 3.5.2 | 3.5 | 15.8 | 12.9 |

In addition to the type and allotype we have before us a paratypic mate bearing the same data as the type. It is a smaller insect than

[^88]the type, with the fastigim relatively shorter, but it is clearly the same species as the described individual. The number of spines on the ventro-extemal margin of the caudal femora is two to five in the paratype.

Neoconocephalus irroratus (Burmeister).
1838. ('[onocephalus] irroratus Burmeister, Handb. der Entom., II, abth. II, pt. 1, p. 705. [Brazil.]
Bonito, State of Permambuco. February, 1883. (A. Kochete.) Three females. [U. S. N. M.]

These specimens have lost all of their original coloration, from liquid immersion, but they are inseparable from well preserved specimens from other localities.

Neoconocephalus vicinus Karny.
1907. Neoconocf phalus vicimus Karny, Abb. k.-k. Zool.-bot. Gesell. Wien, IN, heft. 3, pp. 26, 34. [Rio (irande do Sul (Brazil): Paraguay.]
Chapada, State of Matto Crosso. May and June. (H. H. smith). Four femakes. [U. S. N. M.]

These individuals have been compared with specimens from Sapucay, Paraguay. Two of the series are in the brownish phase of coloration, with the costal margin of the tegmina finely lined with fuscous, while the others are in the greenish phase, with the tegmina not lined. The degree of completeness of the blarkish marking on the venter of the fastigium varies appreciably.

We have every reason to believe that Bruner's Neoconocephalus longifossor, described from Chapada, ${ }^{52}$, is identical with this species.
Bucrates ${ }^{53}$ capitatus (Decieer).
1773. Locustı capitata DeGeer, Mém. Hist. Ins., III, p. 455, pl. 40, fig. 1. [Unknown locality.]
Bonito, State of Pernambuco. February 15, 1883. (A. Kocbele.) One immature female. [U.S.N. M.]

[^89]We have compared this individual with an adult female from La Piedrita, Venezuela (II, 16, 1911; Stewardson Brown), in the collection of the Academy, and as far as can be determined from the immature specimen, which is in the instar preceding maturity, the two represent the same species. Redtenbacher has recorded the species from Bahia.

> LISTRONCELINAE.

Listrocelis atrata Redtenbanher.
1891. Listrocelis atrata Redtenbarher, VerhandI. k-k. Zool-bot. Gesell. Wien, XLl, pp. 544, 545. Nova Friburgo (Neu Freiburg), State of Rio de Janeiro, Brazil.]
Espirito Santo, Brazil. One male. [Hebard C'ln.]
This specimen is somewhat larger than the measurements given by Redtembacher, but it does not appear to differ in other features. From the closely related $L$. carimuta Karny, the present specimen differs, as does the description of atrata, in the longer and strongly arcuate process of the left mandible and the straight rerei.

The localities given above are all known for the apecies.

## (ONOCEPHALIN゙AE.

Conocephalus iriodes Rehn and Hebard.
1915. Conocephalus irioles Rehn and Hebard, Trans. Amer. Entom. Soc., XLI, pp. 231,255 , pl. XXI, fig. 6 , pl. XXII, figs. 5 and 23 , pl. XXIII, figs. 12 and 13, pl. XXJV, fig. 5. LCuidad Bolivar and Maripa, Venezuela; Kiaiteur (type and allotype) and Rockstone, British Guiana: Ireng River near Rorama, British Cuiana: Bonito, Pernambuco, Brazil.)
Bonito, State of Pernambuco, January 7 and 15, 1883. (A. Koebele.) One male. [U. S. N. M.]

This specimen. like the female from the same locality previously recorded hy us, has been immersed in alcohol or a similar preservative, so that to-day its distinctive coloration is ahmost entirely lacking. The caudal limbs and the cephalic and median ones on the left side are missing, but all the important structural features of the species are evident. The tegmina are longer than in any of the other males measured by us, being but slighty shorter ( 18.3 mm .) than those of the female from the same locality previonsly measured. ${ }^{54}$

Conocephalus saltator (sanssure).
1859. X $\{$ [iphidium saltutor Saussure, Rév. et Mag. de Zool., Ó' ser. XI, p. 208. [Guiana.]

Bonito, Nate of Permambuco, January 27, 188:3. (A. Koebele.) One mate. [U. S. N. M.]

This serecimen is of the brachypterous type.

[^90]GRYLLIDAE．
GRYLLOTALPIN゙AE．
Scapteriscus vicinus scudder．
1869．Scapteriscus vicimus Scudder，Mem．Peabody Acad．Sci．，I，pp． 7 and $12, \mathrm{pl}$ ．1，figs． 4 and 23 ．（Rio Negro；Piauhy and Pará，Brazil； Panama；Rio Grande（Brazil？）；Asia？］
State of sĩo Paulo．（Hammar．）One male．［Cornell Univ．］
GRYLLINAE．
Nemobius hebardi Rehn．
1915．Nemobius（Argizuld）Webarti Rehn，Proc．Acarl．Nat．Sci．Phila．， 1915，p．290．figs． 4 and 5．［Buenos tires（type locality）and Misiones， Argentina．）
Bonito，State of Pernambuco．February 27，1883．（A．Koebele．） One female．［U．S．N．M．］

This specimen fully agrees with the typical material，and，like the original individuals，has caudate wings．

This record carries the range of the species greatly to the north ward．

OECANTHIN゙AE．
Oecanthus minutus saussure．
1878．Oe［ranthus］mimutus Saussure，Mélang．Orthopt．，II，fasc．VI，p． 594．［Pemambuco，Brazil．］
Bonito，State of Pernambuco．January 16，1883．（A．Koebele； collected on cotton．）One male，one female．［U．S．N．M．］

These specimens show no differences worthy of mention from the original description．The disparity in size of the two faces of the foramina of the cephalic tibiae is quite evident，while in the measure－ ments the female，which is the sex of the type，shows no noteworthy difference except that the tegmina are about one millimeter longer． The male tegmina is narrow，the greatest width of corsal field con－ tained two and one－half times in the greatest length of the same． Both of the present specimens are minus two to three legs and the coloration has been much affected in the male．

TRIGON゙IDIN゙AE
Cyrtoxipha pernambucensis new species．（Plate XI，fig．39；text fig．1．）
Thin species is a relative of C．gundlachi（the genotype），from which it differs chiefly in the more deplanate head and more elongate eyes，which in basal outline are more pyriform than reniform；the head when seen from the cephalic aspect is much more strongly transverse and shallower in proportion to its depth than in gund－ lachi．The pronotum of the male is slightly less decidedly trans－ verse，with a more marked cephalic narrowing than in gundluchi， while the tegmina of the male have the dorsal field slightly narrower
in pernambucensis than in gundlachi, with the speculum and the principal veins more longitudinal. Most of the limbs are missing in the mique type of pernambucensis. It is probable that the Pernambuco material referred to gundlachi by Saussure ${ }^{55}$ belongs to this species.
'Trpe.- - ${ }^{7}$; Bonito, State of Pernambuco, Brazil. January, 1883. (A. Kochele.) [United itates National Museum.]

Size medium (for the genus), form slender but appreciably depressed; surface of body and limbs rather thickly clothed with short hairs. Head of the transverse depressed type characteristic of the genus; occiput and fastigium strongly and uniformly deplanate declivent when seen from the side, the fastigio-facial angle rectangulate: interspace between the eyes broad, faintly exreeding the greatest length of the eye, inter-antennal width of the frontal costa less than one-third of the interocular width, dorsum of the fastigium and cephalic section of occiput with a delicate mediolongitudinal sulcus: facial line, when seen from the side, slightly arcuate: palpi rather short, fourth joint slightly shorter than the third joint, fifth joint faintly shorter than the fourth, the fifth joint forming a nearly equilateral triangle, the distal margin truncate and but faintly shorter than the length of the joint: eyes distinctly longitudinal pyriform, the greatest depth, which is cephalad, contained about one and a half times in the eye length: antennae with the proximal joint broad, strongly depressed.

Pronotum transverse, the greatest caudal width one and two-thirds times the greatest length, the cephalic width about two-thirds the caudal width, when seen from the dorsum the pronotum is appreciably narowed cephalad: cephalic margin of disk faintly arcuate, caudal margin of disk bisinuatotruncate; disk of the pronotum with a medio-longiturlinal sulciform impression for the greater portion of its length, lateral angles of disk well rounded: lateral lobes of pronotum subrectangulate, distinctly longer than deep): cephalic margin, moderately oblique, truncate, ventro-cephalic

[^91]angle well romded, ventral margin subtruncate, ventro-caudal angle narowly rounded, caudal margin straight ; surface of lobes with an oblique, poorly delimited, broad depresion, its general trend rentrocaudad.

Tegmina moderately narow, their greatest width contained about two and one-half times in the greatest tegminal length; dorsal venation and areas strongly longitudinal in disposition (see figure 1): lateral venation with the mediastine vein moterately bi-sinuate. three short, free veins present, the second abbreviate. Wings surpassing the tegmina by about one and a half times the combined length of the head and pronotum. Cerci failing to reach the apices of the elosed wings by about one-third the length of the exposed portion of the latter. Cephalic tibiae faintly fusiform: both faces with an elliptical foramen. Candal limbs missing.

General coloration dull colonial-luff, apparently quite greenish in life. Eyes tawny, Leroming russet ventro-cephalad.

Length of body, 6 mm . : length of pronotum, 1 ; greatest caudal width of pronotum 1.7: length of tegmen 5.3 ; greatest width of dorsal field of tegmen, 1.9.

The type is unicque.
Anaxipha ${ }^{56}$ aptera (Chopard).
1912. C[yrtoripha] apteru Chopard, Ann. Soc. Entom. France. LXXXI, p. 410, $\&$ figs. [Charvein, st. Laurent and Nouveau-Chanticr, French Guiana.]
Bonito, state of Pernambuco. January, 1883. (A. Koebele.) One male. [U. s. N. M.]
Anaxipha olmeca (saussure).
1897. Cyrtoxiphus olmens Saussure, Biol. Cent-Amer., Orth., I, p. 236. pl. XI, figs 42 and 43. (Teapa, Tabasoo, Mexico.)
Bonito, State of Pernambuco. Jamary, 1883. (A. Koebele.) Two females. [U. S. N. M.]

The reference of this material to olmecus is provisional, as we have no Mexican individuals for comparison, and the Bonito representation is not in as good condition as could he desired. It shows, however, no differences worthy of mention from the original description and figures, and for the present must be referred here. This is the first South American record of the species.

## ENEOPTERINAE.

Podoscirtus americanus saussure.
187S. I [ofloscirtus] americomus Saussure, Mélang. Orthopt., II, fasc. VI, pp. 776, フ̊2. [Bahia, Brazil.]

[^92]Bonito, State of Pemambueo. February, 1883. (A. Kocbele.) One female. [U. S. N. M.]

This specimen fully agrees with the description of the present species. The only really noteworthy difference is that the caudal tibiae have five spines on the extermal and six on the internal dorsal margins. instead of $5: 5$ or $4: 3$ as desoribed.

This is, apparently, the first record of this magnificent species since the original deseription.

Aphonomorphus inopinatus new speries. (Plate XI, figs. 40,41 and 42 ; text figure 2.)
Apparently related to A. mutus (Sanssure), from (iuiana, from which it differs chiefly in the cauclal margin of the pronotum being hardly angulate caudarl, in the lateral lobes of the pronotum being more longitudinal than quadrate, in the more mumerous (six) spines on the dorso-internal margin of the caudal tibiae, in the fewer (two) spines on the dorso-external margin of the caudal metatarsi and in the distal palpal joint not being black.

Type-of; Bonito, State of Pernambuco, Brazil. January, 1883. (A. Koebele.) [Cnited States National Musemm.]

Size mertium: form moderately elongate, slightly


Fig. 2.- $\mathrm{A}^{\prime}$ 保 nomorphos inopinatus new speries. Dorsal outline of teqmina of femate (type). ( $\times 3$. .) depressed: surface of hody and limbs rather sparsely pilose, of tegmina mioroscopically adpressed pilose. Head with its caudal wilth but faintly greater than the cephalic width of the monotum, when seen from the cephalic aspect the greatest depth is slightly greater than the width across eyes: occiput weakly declivent cephatad :ocelli of medimusize. placed in anareuate line; median one transerse elliptical, weakly fossetted cephalad, the interspaces betweren the merlian and lateral ocelli slightly greater than the short dimension of the median one; lateral ocelli sublongitudinat in position, ovate, larger than the median one, separated from the eyes hy a distance subergal to that between the median and lateral ocelli: inter-antemal rostrum rounded obtuse-angulate when seen in lateral outline. its least wiolth suberual to that of the proximal-antemmal joint, dorsal seretion weakly fossetted: eyes but moderately prominent, slightly directed ecphalad, subremiform and narow ventro-rephalad in lasal outline: palpi with the third joint relatively heary ; fourth joint subergual in length to the thire, semeder proximad; fifth joint elongate securiform, its length geator than the breath of
the distal margin, which latter is truncate, the flexor margin straght, rounding into the distal margin, the extensor margin moderately but distinctly concave: antennae incomplete.

Pronotum transverse, the greatest median length contained nearly one and a half times in the greatest caudal width of the pronotum; in transverse section the dorsum of the pronotum is rather strongly arcuate, well rounding into the lateral lebes: cephalic margin of dorsum emarginato-truncate: caudal margin bisinuate laterad, ro-tundato-angulate mesad; lateral borders of the disk weakly diverging caudad, all pronotal margins excepting the usual lamellatocingulate portion ventro-caudad on the lateral lobes, narrowhy cingulate: medio-longitudinal line weakly impressed; pyriform inpressions transerse, elongate: lateral lobes longitudinal, their depth contained nearly twice in their length, moderately impressed ventro-caudad; ventro-cephalic angle and ventral margin arcuate, ventro-caudal angle rounded obtuse.

Tegmina very slightly surpassing the tips of the caudal femora, relatively narrow, the lateral borders of the dorsal field subparallel proximad, faintly areuate convergent distad: lateral field rather narrow, subequal in width in the proximal third, very gradually narrowing thence to the distal fourth, from which point distad it more sharply narrows; mediastine vein with four to five rami and the field with five free veins proximad; dorsal field with its greatest width contained about five times in the greatest tegminal length; ulnar vein strongly simuate at about its middle; anal vein with a faint sinuation slightly proximad of its middle; axillary veins (two) simple: median vein with four oblique rami distad, which are not strongly marked, yet form with the uhar and anal veins the usually distinct pattern of oblique "sectors" found in most of the species of the genus; longitudinal sinuate intercalated nervures and short cross-veins evident. Closed wings extending distad of the tegmina a distance equal to abont one and one-third times the length of the pronotum.

Limbs moderately robust, the cephalic and median femora quite deep, moderately compressed. ('ephalic tibiae with a small elliptical formen on the cephalic face, the caudal face imperforate. Caudal femora one and two-fifthe times as long as the tegmina, reqularly narrowing distarl: caudal tibiae subequal to the femora in length; dorsoexternal margin armed with five major spines, the dorso-internal with six, the dorso-external margin with 3-2-2-1 intercalated spinulations, the internal with $2-2-1-2-0$; external distal spurs very
small, dorso-intermal spur twice as long as the ventro-internal one: caudal metatarsi with two spimulations on the external, and a single one on the internal, margins; internal distal metatarsal spur subequal to the metatarsus in length. Ovipositor slightly longer than the candal femora, the structure of the apices very similar to that of the recently described $A$. surdus Rehn, ${ }^{57}$ the marginal teeth, however, slightly smatler, more regular and more acute.

Gieneral coloration ochraceous-buff; a pronounced grouping of spots along the cephatic, and a less decided row of the same along the caudal, margins of the clorsum of the pronotum, fuscous: a poorly defined speckling on the limbs and over much of the pronotum, cinnamon-brown; eyes cimamon-brown; tegmina peneilled in weak tawny, the proximal third of the humeral vein lined ventral with fuscous; ovipositor tipped with fuscous.

Length of borly, 13.6 mm ; length of pronotum, 2.8; greatest (cau(dal) width of pronotum, 3.9; length of tegmen, 15.5; greatest width of dorsum of tegmen, 3 ; length of caudal femmr, 11 ; length of ovipositor, 11.8 .

In addition to the type we have hefore us a paratype female with the same data as the type, except that it was taken in February, 1883. This specimen is slighty larger than the type and has been badty damaged, lacking all the limbs excepting the dextral median one and the dextral caudal femur, while the tegmina are not perfect. It is in a more intensive type of coloration than the type, having the punctulation much hearier, far more monerous and fuscous; washes on the fastigium, in the median area of the pronotum, irregular bearling along the median vein of the tegmina and a spot at the base of the humeral trunk, cloudings on the tegminal "sectors" and beating along the ventral margins of the eaudal femora, fuscous.

Nessa vectis new species. (Plate Xi, fig. 43; text figure 3.)
This species is referred to Nesse provisionally, as it may prove to he generically distinct from the poorly known gems of Walker. From the deseription of the gems Nessa, and the genotypic $N$. linearis, the new species differs in the pronotum heing slightly broader than long, in the ovipositor faintly surpassing the length of body and very much longer than the abdomen, in the caudal tibiac having six external and seven internal spines on the dorsal margins, in the

[^93]candal femora being withont distinct black markings and the tegmina with the veins unlined with piceous, and in the smaller size. Some affinity is shown to Parametrype and some similarity to Cylindrogryllus and Tapinopus is noted, but from the former the new species differs chiefly in the femoral spination, as well


Fig. 3.-Nessa vectis new species. Dorsal outline of female (type). ( $\times 3,2$ ) as the elongate and fully developed tegmina, while the shorter pronotmo, clongate tegmina, tibial and metatarsal spination, and the abbreviate distal caudal tibial spurs are the more readily perceived featues of difference from Cylindrogryllus. From Tapnopus the new form differs in the shorter head, shorter and simpler pronotum, the imperforate cephatic tibiae, the short rephalic tarsi and the slender ovipositor, which has the distal valves short and slender.

Trpe.- $q$ : Bonito, State of Pernambuco, Brazil. January 17, 1883. (A. Koebele.) [Cnited States National Musemm.]

Size merlium: form quite clongate, slender, subequal in width: surface of boty and limbs with adpresed pile, on the tegmina a similar, but more decidedly microsopical, pile covering is present. Head with its caudal width slightly greater than the cephalic width of the pronotum. depressed, dorsal surface deplanate, greatest width acrose eyes but faintly less than the greatest length of the head, the greatest depth of the head distinctly less than the greatest width: oceiput gently rounded, the interocular portion of the dorsum plane, ahnost imperceptibly excavate; ocelli placed in a strongly arcuate line, small, the median one slightly smaller than the lateral ones, the median ocellus fossetted cephalad, all the ocelli well separated from each other and ako from the eyes: interantemal rostrum with the width subequal to that of the proximal antennal joint, the lateral outline of the rostrum arcuate obtuse-angulate when seen from the side: palpi moderately elongate; fourth joint slightly shorter than the third joint; fifth joint elongate securiform, its flexor length slightly greater than that of the oblique subtruncate distal margin: eyes hardly prominent, elliptical in basal outline, slightly declivent cephatad in their general trend from the horizontal: antemnac broken.

Pronotum with the greatest dorsal width about a fourth greater than the median length, the disk weakly transverse. the lateral bor-
ders faintly bowed outward mesad, but the cephalic width is subequal to that caudad; in transverse section the disk is arcuatodeplanate: cephalic margin very faintly and broadly areuato-emarginate; caudal margin weakly bisinuate-laterad, very slightly and broadly arcuato-angulate; cephalic margin rather narrowly, caudal margin more broadly, cingulate: surface with a narrow mediolongitudinal line, which is delicately filiform cephatad and caudad more broadly and conspicuously indicated; prriform impressions distinct, tather large, moderately elongate, more approximated than usual; lateral lobes strongly longitudinal, the greatest depth of the lobes contained slightly more than twice in their length, the depth in general subequal; ventro-cephalic angle rounded rectangulate, ventral margin straight, horizontal for two-thirds of its length; ventro-caudal angle obliquely rotundato-trmeate, passing into the caudal margin; surface of the lobes with the point of impression ventro-caudad.

Tegmina reaching to the apex of the abdomen, elongate, slender, lateral borders of the dorsal field parallel: costal margin straight; metliastine vein with six oblique rami, three of which are short and distal and three elongate and proximal in origin; marginal field with one free vein proximad; humeral and discoidal veins following the curve of the mediastine vein, simple: dorsal field narrow, its greatest width contained about five and a half times in the greatest length of the same; median vein straight, with two poorly defined rami distat; ulnar vein bifurcate; simple anal and two axillary veins mbranched, regularly placed, nearly longitudinal; veins of the dorsal field almost longitudinal, subparallel, the interspaces with numerous, generally irregular, cross-veins, which are never as distinct as the principal veins and rarely form regularly shaped areolae. Wings, when closed, with their fokded tips very briefly surpassing the tegmina. Cerci faintly more than twice as long as the pronotum, tapering, supplied with rather short hairs and clongate. more erect, hairs: ovipositor slightly surpassing the body in length, very slender, weakly compressed, in lateral outline weakly sinnate proximad, moderately curved dorsad in distal three-fifths; surface of the lateral aspects microseopically rugulose; ristal valves little inflated, strongly atuminate, ventral surface of valves with a series of weakly recurved, serrate teeth, these decreasing in size distad.
('ephalie and median limbe moderately robust, rather short : cephatie tibiae imperforate, cephatic amd median tarsi short. Caudal femora but faintly shortor than the tegmina, moderately mobst, regularly
tapering distad: caudal tibiae but faintly shorter than the femora: dorsal margins armed with six external major spines and seven intemal ones, the intercalated spinulations mumbering 3-2 $2-0$ on the external, and 3-2-1-1-1-0 on the internal margin; distal spurs of the external side small, the internal side having the dorsal distal spur slightly less than twice as long as the ventral one: caudal metatarsi very short, the dorsal surface with two external and one internal spinulations, distal spurs of both sides slightly surpassing the second tarsal joint.

General coloration pale buckthorn-brown, the head inclining toward dresden-brown, the venter of the abdomen ochraceous-tawne. Ocellar region outlined dorsad with fuscons, a $V$-shaped patch of the same on the occiput: eyes auburn with a median and a dorsal thread of fuscous. Pronotum with a fuseous medio-longitudinal line which is almost completely divided by a thread of the general color, points of fuscous regularly disposed along the erphatic and caudal margins of the disk and along the lateral horder of the same, a very faint wash of russet suggesting a post-ocular bar. Tegmina with a moderately broad har embracing the humeral vein, fuscous, bordered suturad by the pale ochraceous-buff pencilling of the median vein. Abdomen with the dorsum shining blackish-fuscous. ('audal tibiae dorsad weakly wasbed with mummy-brown. Ovipositor finely lineate on the external surface with hackish-fuscous, the valves rhestnut with blackish-fuscous teeth.

Length of body, 16.5 mm . length of pronotum, 2.7; greatest (cau(hal) width of pronotum disk, 3; length of tegmen 13.8; greatest width of dorsal field of tegmen, 2.3; length of caudal femur, 12.3; length of ovipositor, 18.5.

The type of this very striking and peculiar species is unique.

# Explanation of Plates X, Ni. 

## Plate X.

Fig. 1. Trachymioptapy tubcroblath new genus and species. Dorsum of promotum of male (TYPE). ( $\times 4$ )
Fig. 2.-Trachymiopteru. tuberculata new genus and species. Outline of cephatic aspect of head of male (type). ( $\times 4$ )
Fig. 3.-1Hsonia costalis new species. Outline of dorsum of pronotum of male (TYPE). ( $\times 6$ )
Fig. 4.- Ih usomiu costalis new species. Outline of cephalic aspect of hearl of male (TYPE). ( $\times 4$ )
Fig. 5.-Oryopsis orulet new species. Outline of dorsum of pronotum of female (TYPE). (Natural size.)
Fig. 6.-Oryopsis orulu new species. Cephalic aspert of head of female (TYPE). ( $\times 4$ )
Fig. 7.- Oxyopsis multor new species. Apex of tegmen and wing of female (TYPE). (Natural size.)
Fig. 8.-Purastagmatoptern glaura new species. Dorsal outline of pronotum of female (TyPE). ( $\times 3$ )
Fig. 9.-I'arastuqmatoptert gluuca new species. Cephalic aspent of head of female (TYPE). ( $\times 3$.)
Fig. 10.-Dyme straminea new speries. Dorsal outline of apex of abolomen of male (Type). $(\times 2)$
Fig. 11.-Dyme straminew new species. Lateral outlime of apex of abdomen of male (TYPE). ( $\times 2$ )
Fig. 12.-Batridim gronde new species. Lateral outline of apex of abdomen of female (type). (Natural size.)
Fig. 13.-Diponthus bilintotus new species. Dorsal view of head and pronotim of male (TYPE). ( $\times 3$ )
Fig. 14.-Diponthus crussus Brumer. Misiones, Argentina. Dorsal view of head and pronotum of mate. $(\times 3)$
Fig. 15.-Diponthus bilineatus new species. Lateral outline of apex of ahdomen of male (Tire). ( $\times 3$ )
Fig. 16.-Diponthus crassus Brmer. Misiones, Argentina. Lateral outline of aper of abdomen of male. ( $\times 3$ )
Fig. 17.-Liqucatinus sordidus new species. Cephalic aspect of torsal portion of head of female (type). (Creatly entarged.)
Fig. 1s.-Ligocatinus sordidus new species. Lateral view of ovipositor of female (TYPE). ( $\times 6$ )
Fig. 19.-Ligocatinus minutus new species. Lateral outline of pronotom of male (TYPE). ( $\times 6$ )
Fig. 20.-Ligocatimus minutus new species. Dorsal outline of apex of abdomen of male (TYPE). ( $\times 6$ )
Fig. 21.-Ananlacomera bellator new species. Lateral sutline of pronotum of make (TYPE). ( $\times 6$ )
Fig. 22.-Anandacomera bellator new species. Cercus of male (TYPE). (Greatly enlarged.)
Fig. 23.-Anaulacomera intermedia Brumner. Petropolis, Brazil. Cercus of male. (Greatly emlarged.)
Fig. 21. Annulacomera libidinowa new speries. Lateral view of cercus of male (TYPE). (Greatly enlarged.)

Plate XI.
Fig. 25.-Anamaromera libidinosa new species. Lateral outline of right tegmen of male. $\left(\times 2^{1} 2_{2}\right)$
Fig. 26.-Phylloptora tonella new species. Lateral outline of left tegmen of female (TYPE). ( $\times 21.2$ )
Fig. 27.-Phylloptcra temilla new speries. Outline of eye in latero-cephalic aspect. Female (Tyer). (Greatly enlargerl.)

Fig. 2N.-Phylloptera tomlla new species. Lateral view of ovipositor of female (TrPE). (Greatly enlarged.)
Fig. 29.-Phylloptera cognuth new species. Lateral outline of left tegmen of fomale (TYPE). ( $\left.\quad 2^{2}{ }_{2}{ }_{2}\right)$
Fig. 30.-Phylloptera cogmata new species. Outline of eye in latero-cephalic aspect. Female (Trpe). (Creatly enlarged.)
Fig. 31.-Phylloptera cognata new species. Lateral view of ovipositor of lemale (TYPE). (Greatly enlarged.)
Fig. 32-Lobophyllus renersus new speries. Lateral outline of pronotum of female (TYPE). $(\times 112)$
Fig. 33.-Lobophyllus remersus new species. Lateral outline of right tegmen of female (TYPE). (Natural size.)
Fig. 34.-C'thlopsis lancifere new species. Dorsal outline of fastigium of male (TYPE). ( (ireatly enlarged.)
Fig. 35.-C'tulopsis lancifore new species. Lateral outline of fastigium of male (TYPE). (ireatly enlarged.)
Fig. 3t.-Cambosis latuifora new species. Dorsal outline of stridulating field of left tegmen of male (TYPE). (Greatly enlarged.)
Fig. 37.-Coulopsis lameffera new species. Dorsal outline of apex of abdomen of male (TyPE). (Creatly enlarged.)
Fig. 38. - Cublopsis lancifor new speries. lateral outline of apex of abdomen of male (TYPE). (Greatly enlarged.)
Fig. 39.- C'yrtoriphu proambuctusis new species. Lateral outline of head of male (TYPE). (Greatly enlarged.)
Fig. $40 .-A$ phomomorphus inopinatus new species. Ocelli of female (TYPE). (Creatly enlarged)
Fig. 41.-Aphonomorphus inopinatus new species. Palpus of female (TYPE). (Cireatly enlarged.)
Fig. 42.-Aphonomorphus inopimutus new species. Cephalic face of cephatic tibia of female (TYPE). (Greatly enlarged.)
Fig. 43.- ${ }^{+}$essu urtis new species. Palpus of female (type). (Crreatly enlarged.)
.


REHN: BRAZIIIAN ORTHOPTERA.


REHN: BRAZILIAN ORTHOPTERA.

Fig. 28.-Mhylloptera temella new species. Lateral view of ovipositor of female (trpe). (Greatly enlarged.)
Fig. 29.-1 Phylloptera cognata mew sperien. Lateral outine of left tegmen of female (TYPE). (X2l $\mathbf{2}^{2}$ )
Fig. 30.- Phyllopter cogmata new species. Outline of eye in latero-ceplratio aspect. Female (type). ( ireatly entarged.)
Fig. 31.-Phylloptera cognata new species. Lateral view of ovipositor of female (TYPE). (Cireatly enlarged.)
F'ig. 32.-Lobophyllus remetses new species. Lateral outline of pronotimn of female ( R'Pre $^{1}$ ). $(\times 112)$
Fig. 33.-Lobophyllus remersus new species. Lateral outline of right tegmem of female (TYיD). (Natural size.)
Hig. 34.-Canlopsis lancifora new species. Dorsal outhe of fastigimm of male (TYPE). (Greatly enlarged.)
Fig. 35.-Canlopsis lancifera new species. Lateral outline of fastigium of male (Trob). (Cireatly enlarged.)
Fig. 36.-Camopsis lancifora new species. Dorsal outline of stridulating field of left tegmen of male (TYPE). (Greatly enlarged.)
Fig. 37.-(tumbosis lancifert new species. Dorsal outline of apex of abdomen of male (TYPE). (Creatly enlarged.)
Fig. 38.- Canlopsis lancifern new species. Lateral outline of apex of abdomen of male (TYPE). (Greatly enlarged.)
Fig. 39.-C'yrtoripha protmbucensis new species. Lateral outline of head of male (TYPE). ( (ireatly entarged.)
Fig. 40.- 1 phonomorplus imopimafus new species. Ocelli of female (tyre). (Creatly enlarged.)
Fig. 4.-1 1 phonomorphus inopimotus new species. Palpus of female (TYPE). (Greatly enlarged.)
Fig. 42.- 1 phomomorphas imopimatus new species. C'rphalie face of aphalie tibia of female (TyPE). (Creatly entarged.)
Fig. 43.- ${ }^{+}$cssa vectis new species. Dalpus of female (Trpe). (Greatly enlarged.)

November 16, 1920.
The President, John Camwalader, A.M., LI.D., in the Chair. Eighteen persons present.
Henry A. Palsbry, se.D., made a communication on " Hawaii and the Pan-Pacific sicientific Conference," illustrated hy lantem slides. (No abstract.)

The Publication Committee reported the receipt of the following papers for the Proceedings:
"scrophulariaceae of C'olombia-I," hy Francis W. Pemell.
"Two New Cyprinoid Fishes from Formosa," by Masamitsu Ushima.
"Mollusks from Lake Chapala, State of Jalisco, and Vicinity," by Henry A. Pilsbry.
"New Land Shells," by E. (i. Vanatta.
"Mollusca from Central America and Mexico," by Henry A. Pilsbry.
"Notes on Arachoidiscus," by Narah P. Monks.
"Records and Descriptions of Brazilian Orthoptera," by James A (i. Rehn.
"Iron Ore Artifacts from Alabama," by H. Newell Wardle.
"Marine Mollusks of Hawaii, Vlll-XIII," by Hemry A. Pilsbry.
"Statistical Observations on the Texas Fever Parasite," by Howard Crawley.
"American Dermaptera of the Musćum d'Histoire Naturelle. l'aris," by Morgan Hebard.
"A Colombian Pupillin Suail," hy Hemry A. Pilshry.
"Ordovician Basalts and (Quartz Diabases in Lebanon ('ounty, Pemsylvania," by Simuel (i. Gordon.
"Marinc Mollusks of Hawaii, XIV," by Hemy A. Pilshry.
"Studies on Some Flagellates," by E. Penard.
Nominations for Offecers, ('omeillors, and members of the Committee on Aceounts were made.

The deaths of $\mathbb{W}$. Leman Biddle and Benjamin Smith Lyman, members, were amounced.

Edwin B. Bartran, John ( ${ }^{\text {arlwalader, Bral, Francis I. DuPont, }}$ Richard Erskine, Simucl (i. (iordon, Julian Ki. Potter, D). W. Steckbeck, Henry F. (. Stikeman, Rodney H. True, and Willian Chatten Wetherill, were eleeted members.

The following were ordered to be printed:

## MARINE MOLLUSKS OF HAWAII, VIII-XIII.

BY HENRY A. PILSBRY.
The description of material submitted to me for determination by Mr. D. Thaanum, Prof. Whr. A. Bryan and M1. J. M. Ostergatard, with other foms collected by myself in 1913, is here contimued. Former papers of this series were published in these Proceedings for 1917, pp. 207-230, and 309-333 (1918).
vif. Stylifer, Odostomia, Acteocina
One Hawaiian species, Stylifer robustus, was described by Mr. Panse. The Hawaiian species referred to Sealenostoma apienlatum Souv. in a former paper ${ }^{1}$ is perhaps a Stylifer or chosely related thereto. It is parasitic or commensal on Echinoderms. Whether it is without an operculum, like the typical Stylifers, has not been noted.

Stylifer deformis Pease, from the Paumotus, resembles both of the Hawaiian forms from the Bryan collection, without exactly matching them. A series of four $S$. deformis, including the figured type, is in the collection of the Academy. They show considerable variation in the degree and direction of curvature of the acuminate early whorls.

Stylifer deformis hawaiensis n. subsp. Fig. 1a
Honolulu Harbor, Oahu, collected by W. A. and E. J. Bryan.
The shell is thin, white. The upper fourth is acmminate, of about eight nearly flat, smooth whorls. The rest of the shell, about 6'2 whorls, tapers more mapitly; the whorls increase slowly and ahmost regutarly, and are sather strongly convex; and the surface is malleate, having many spiral facets, giving some appearame of having coare, low, spinal threats on the last two whork. The last whorl is well rounded basally. The aperture is ovate. Columella is slightly concave.

Length 9.2, diameter 3.2 mm .

[^94]Only one specimen wat oltained. Its host is unknown. The shell tapes more regularly that athy of the examples of s. deformis seen, and I am inclimed to think it a distined thomeh dosely allied subreperios.


Fig. 1.-(1, Stylifor deformis hawaiensis; b, c, S. Icformis romotissimus.
Stylifer deformis remotissimus n. subsp. Fis. 1 b, c.
Pearl and Hermes Reef. Collected by Lient. Munter.
The shell is thin, white, polished, consisting of a very narrow, slightly curved early stage of about 9 flat whorls, the shell then abruptly enlarging in the next two whorls, after which it approaches a cylindric form, enlarging slowly to the last whorl, which is a little more dilated. The $5 \frac{1}{2}$ whorls of the second stage of growth are convex, the last whorl rounded below. The colnmella and parictal wall are heavily calloused.

Length 9, diameter 3.5 mm .
As the apex and last half whorl of the largest specimen are broken away, the dimensions given are estimated. A half grown cotype (fig. 1 b) is 4.6 mm . long.

The subeylindric shape of this species is like one of the specimens in Mr'. Pease's sencting of stypifer deformis, but none of the latier has a heary parietal callus. This may, however, he a chamacier of ohd age.
Stylifer mittrei Petit. Fig. 2a, b.
The shell is ovate with a very small, narrow apical point, white. The attenuate initial portion consists of 4 somewhat convex whorls. It then enlarges abruptly, the 5 to 6 whorls following being quite convex, glossy, smooth, except for very faint lines of growth. The morlerately impressed suture is not margined. The aperture is
ovate, outer and hasal margins obtuse. The columella is weakly roncave and somewhat thickened. The parietal callus is moderately thick. There is no operculum.

Length 10.6, diameter 6.75, apesture 4.8 mm .
Length 9.2 mmm . Smallest adult.
Hilo, Hawaii, on the sea urchin, Diadema. D. Thaanum.
The apical point is more or less worn away in the adult stage. A young one, 3 mm . long, is figured showing it perfect. Mr. That num writes that he did not find this Stylifer on any other species of set urehin, though many others were extmined.


Fig. 2.-a, $b$, Stylifer mittrei Petit, adult and yong; $c$, Siylifer thaamumi n. sp.
This form agrees so exactly with that (lescribed without definite locality by Petit (Journ. de (onchyl. II, p. 27, pl. 2, figs. 8, 9) that the ikentity can scarcely be doubted. I am inclined to think that it was a distinct species which Schepman and Nierstrasz ${ }^{1}$ had under the name Mucronalia mittrei from simbawa. It was operculate, 6 mm . long, 4 wide.

Mucronalia tumida Pse., mentioned by Tryon as identical with S. mittrei, is certainly distinet from that species.

Stylifer thaanumi n. sp. Fig. 2 c .
The shell is shortly ovate with slender summit, white, glossy and smooth, growth-striae being searcely noticeable. About 5 early whorls form the slender summit, but the transition to the broad later portion of about 3 whorls is gradual. The last whorl is globose. Suture impressed, not margined. Aperture ovate. Outer and basal lips evenly curved, blunt; columella slightly concave, a little thickened. Parietal callus distinet hut rather thin. There is no operculum.

[^95]Length 5.2, diameter 3.4, aperture 2.5 mm .
Hilo, Hawaii, on Diadema. D. Thatmum.
Often found with the precerling species.
Stylifer robustus Pease.
Proc. Zool. Soc. Lond., 1sfio, p. 4.37.
"Shell globosely ovate, light, polished; finely striated longitudinally; whorls convex and marginated, last whorl swollen, sutures well impressed, inner lip slightly reflected at its junction with the columella and around the base, disappearing at about the center of the outer lip. Color white. Lives on Echini." Sandwich Iskands.

This species is not contained in the Pease collection, Musemm of Comparative Zoology. The description does not apply well to any specimens I have seen, and without measmements or figure it can hardly be recognized.

Odostomia (Chrysallida) hiloensis n. sp. Fig. 3.
The shell is ovate-conic, solit, white, nuclean whorl smooth, convex, with inturned apex; next whorl very indistinctly plicate axially. The whorls of the spiee are nearly flat. Suture chamelled. Last whor is more convex, with soulpture of spiral furows, unequally


Fig. 3.-O. hitoensis, with outline of apex.
spaced, a deep one just below the periphery, three less impressed grooves above it, the middle one deepest; below it are 7 or 8 spirals the lower three but little impreseed. The aperture is ovate, columellar plait strong.

Length 2.1, diameter 1.05, aperture 0.85 mm . $5 \frac{1}{2}$ whorls.
Hilo, Hawaii. D. Thaanum.
Near O. stearnsiclla, hut this is smaller and differs in details of sculpture. How constant the groove patterns are in these small shells remains to be seen.

Acteocina hawaiensis n. sp. Fig. 4.
The shell is minute, cylindric, white with several spiral series of gray spots. The spire is moderately rased, of very convex whorls parted by a deep suture. The initial whorl is prominent, tilted on edge, smooth; following whorl very narrow. There are three postambryonic whorls. The last whorl is strietly cylindrie, shouldered below the suture, with rather coarse wrinkles of growth. The columella is straightened above, excavated or obliquely truncate below. Outer lip arches forward.

Length 2.35, diameter 1 mm .
Off Lamiupoko C'amp, near Lahaina, West Mini, in 25-75 feet. Thammon and Langford. Type 127746 A. N. S. P.


Fig. 4.-Actrocina kanarionsis.
Smaller and more straightly cytintric than other known Hawaian Acteocinas, further distinguished by the rather strong sculpture and the gray spots. Five series of these are seem in the type, seven in another example. They are chiefly visible on the back. All of the specimens sent are "dead" shells; one, somewhat defective, is a little larger and relatively wider than those figured.

## ix. Terebra

Pease's notes on Hawaian species may be found in Amer. Journ. Conch. IV, pp. 123-125, and V', 86 . There are no exanples of his Terebra assimilis Pse. $(=T$. comtigua Pse., 1871) in the Pease collection, Museum of Comparative Zoology.
T. swainsomi Dh. has been discussed by Pease, who described a var. imflexa, to which he referred Reeve's figure 118 , of sucamsomi. I believe the figure was drawn from the latter species, of which Pease's iuflexa becomes a synonym. It is rather common off the south coast of Oahu. It differs from T. mitida and pheatella, which are very closely allied, by having fine spiral striae in the interstitial intervals. The immer lip forms a raised ledge as in $T$. mbdu. The
color ascribed to $T$. sumiusom by Deshayes and Reeve is that of faded beach shells. Twouty specimens examined, in eoll. A. N. s. P. and M. (1. Z.

Terebra suleata Pease (Amer. Journ. Conch. V', p. 67, from Oahu) appears to be merely a small form of suomsomi, with stronger spiral sculpture, approaching that of $T$. rostacen somewhat. The specimens seen are No. 49967 M. ( $\because$ Z., agreeing exactly with 117036 P. A. N. S., from 6-8 fathoms, off Honoluln. D. 13. Langford.

Pease stated that he had 32 species of Terebra from the Hawaian Islands. The following species are before me, in aldition to several not determined.
T. chlorete Lam. Midway Island.
T. cremulata fombrinte Lam. Kahnku, Oahn.
T. goulder Desh. Off Monolulu.
T. inconstans Hinds. Off Diamond Hearl, cte., Oalnt; Molokai; Kauai.
T. inconstans confusa Smith. Off Halawa, Molokai.
T. lauta Pse. Off Ifonolulu; Mokapu Point, Oahu.
T. matida Hincls. ${ }^{2}$ Off Honolulu.
T. nodularis Desin. ${ }^{3}$ Honotuln Harhor; Kaneohe Bay.
T. pertusa Born. Off Honolulu.
T. propinqua Pse. Off Honolulu and Waikiki.
T. rosacea Pse. Off Honolulu.
T. suffusa Pse. Off Honolulu.
T. swainsoni Desh. Off Honolulu.
T. venosa Hinds. Off Honolulu; Kauai; Mani.
$T$. verreauai Desh. (T. strigilata of Born and Lamarck, not of Limé). Off Honolulu; Haena, Kamai.

## Partial Key to Hawaizan Terebre.

1. No groove defining a presutural hand; smooth ribbed, without spiral seulpture
A presutural hand defined by a groove or series of pits, at least in the upper half of the shell
2. Aperture dilated below; no canal, the emarginate base broat. T. inconstans Hinds.

Aperture not dilated below, the base narrow, somewhat channelled
3. A series of dark spots on or below a whitish hand at the suture.
T. verreauxi Desh.

[^96]Spaced brown axial lines on a pale ground; ribs extending from suture to suture as far down as the penult whorl; $38 \times 6.4 \mathrm{~mm}$.
T. lanceata och uensis n. subsp.

White bends at sutme and below periphery, a broad hand of brown streaks or blotehes aloove periphery, a narrow one at the hase, apex purplish; ribs very fine, retracted at suture... 4

1. $20 \times 5 \mathrm{~mm}$.; Homolulu (.... T. medipacifice n. sp.
$28 \times 7 \mathrm{~mm}$.; Kaneohe Bay $\quad$ T. m. melior, n. subsp.
2. Presutural hand defined hy a series of transerse pits or punctures

6
Presutural hand defined by a groove, at least on the upper half of the shell ... 10
(6. Rils and intervals smooth .. 7

Intercostal intervals below the presutural band transversely grooved .... .. 21
7. Inner lip callous and raised; ribs strong ... 9

Inner lip not raised . .... .............. \&
8. Rihs straight, strong and subangular; brownish (fading to pinkish), paler below the suture $T$. clappi n. sp. Ribs low; whitish, or with a dull purplish band. Marked with flexuous axial brown lines T. venosa Hinds.
9. A series of dark spots below the suture T. lanta Pse.

Color nearly uniform
$T$. mitide Hinels.
10. Whorls that; no sculpture except the groove

Whorls having other sculpture 12
11. 60 to 75 mm . long; maculate T. chlorata Lam. 30 to 35 mm . long; pale fleshy...$T$. suffusa Pse.
12. Without spiral sculpture below the presutural groove 13
Having spiral sculpture below presutural groove . ............... 17
13. Presutural band nodular, the later whorls elsewhere nearly smooth; large; with a few series of dark dots. T. crembata (L.). Presutural hand with numerous ribs 14
14. Last whorl nearly smooth below the band, with 4 rows of faint spots on a whitish ground; earlier whorls ribbed; whorls, shorter, less oblique than in $T$. argus. $40 \times 8 \mathrm{~mm}$., 12 whorls.

T'. argus brachygyea n. subsp.
All whorls ribbed 15
15. Inner lip not callous; length 60 to over 70 mm .......... 16 Imer lip callous throughout ; whitish with fleshy intereostal intervals and three faint gray spiral lines on last whorl; peristome retracted above a point at termination of suleus. Similar to T'. cerithim, Lam., but costate throughout. 29.f x 6.9 mm., I's whorls T. speldiugi n. sp.
16. Diameter contained about $4 \frac{2}{3}$ times in lengtla; matculate.
T. gouldii Desh.

Diameter about $4_{2}^{\frac{1}{2}}$ times in length; no distinct pattern of color: lasi whorl much more eonvex and more contrated helow than $T$. gomblii; $60 \times 13.5$, aperture $14 \mathrm{~mm} ., 12$ whorls remaining
T. thuammmi 11. sp).
17. Presutural bamd and surfane below it axially ribbed 18

Band and surface below it striate, not axially ribbed; band very convex, narrow, a cord and seroral smaller spirals below it; ochraceous-hulf; long, slowly tapering; $41 \times 7.9$, aperture

18. A tubercular cord below the presutural bamd, camsing it to appear double

19
No cord below the presutural hand; suface with piral grooves in the intercostal intervals

1!
19. Pale buff; about $27 \times 5 \mathrm{~mm}$. . T. nodularis Desh.

White with three sories of tawny dots on last whorl helow the band; columella biplicate; a recurved basal chamel; $30 \times 6.7$ mm., 17 whorls T. waikikiensis n. sp.
20. Tawny, with whitish streaks on hand

21
White, with 3 series of tawny dots on the last whorl, presutural band white: below the band there are 3 or 4 spiral cords separated by deep impressions across the interostal intervals, the upper cord widest; columella distinctly hiplicate; a recurved basal channel; $30 \times 6.7 \mathrm{~mm} ., 17$ whorls.
T. wulkikieusis n. sp.
21. Small, slender forms with raised inner lip and rather fine spiral striae in the intervals of the strong ribs $T$. suainsoni $\mathrm{Dh}_{1}$.
Inner lip not raised; intervals spirally grooved ... 22
22. Tawny, irregularly marked with whitish streaks; presutural band marked with purplish-brown between the white ribs; $50-60 \mathrm{~mm}$. long $T$. pertusa Born.
Tawny, ribs white on the presutural hand: 30-35 mm. long.
T. propinqua Pse.
smaller; pale, with 3 ochraceous-buff hands; presutural ribs white, some of the intervals brownish; intercostal spirals finer, 10 on penult whorl, apertme somewhat chamelled and yellow below. $25 \times 5.5$, aperture 5.3 mm ; 15 whorls. Matio and Oahu T.flarofasciatern.sp.
small, length about 20 mm.; roseate and whitish, without distinct pattern
T. rosacen Pse.

Terebra langfordin. sp. Pl. XII, fig. :5.
A long, slowly tapering species similar to $T$. strominea in appearance; light ochraceous butf in color. The whorls are short, presutural fasciole a stronge eord, its upper sope somewhat grooved; below it a much smaller cord followed hy four (rarely three) megual spirals, traversed by unequal areuate incremental striac, Base of the last whorl with mumerous smaller spirals. The aperture is small, with strongly oblique anterior canal. Columella short, smooth.

Length 41, diameter 7.8 , aperture 7.2 mm .; 23 whorls.
Length 50, diameter 9 , aperture 8.2 mm ., 21 whorls, apex broken
Off Honolulu in $\mathrm{f}_{\mathrm{t}}$ to 8 fms. D. B. Langfort.

In $T$. strammea the presutural band and the cord following it are obliquely costulate, the presutural band flattened. Otherwise it is much like the present species. T. fumiculata Hinds is more closely related. It is decidedly more slender than $T$. longford, with more spiral threads, one at the periphery more prominent.

A form of which I found a single specimen on the dredger dump at Honolulu is much more slender. The groove dividing the sutural band is deeper, and there are but three spiral cords below the one arcompanying the band. In the small number of spirals it differs from T. fumoulata. This form may be called $T$. langfordi angustion (Pl. XII, fig. 6.)

Length 29, diameter 5 , aperture 4.5 mm .; 20 whorls remaining.
I at first thought this form was $T$. sculptus Pease, but that is described as having a conspicuous notose rib.

The spiral sculpture is much more pronounced than in $T$. ineviyata Gray.

Terebra argus brachygyra n. subsp. Pl. NiI, fig. 4.
The shell is smaller than $T$. argus with shorter, less oblique whorls; the sculpture of low ribs cut by an irregularly punctured spiral sulcus is stronger, and visible down to the penult or even on the last whorl. The pattern of three series of squarish pate buff spots on an almost white ground is very indistinct.

Length 40 , diameter $\& \mathrm{~mm}$., 12 whorls remaining, the apex broken.

Length 39, diameter 8.7 mm. ; 12 whorls remaining.
Off Honolulu, 3 to 8 fms. D. Thaanum.
Terebra peasei Desh.
This species of the section Stroterebrum has been considered at synonym of $T$. puncticulata by Reere. Pease (Amer. Journ. Conch. V, p. 64) concurs in this synonymy. The locality of T. punctiouluth was unknown. The description agrees well with the Hawaiian species except for the phrase "plicis regularibus, depressis latix, obtusis" and the statement that the whorls are "subuequaliter divisis" by the presutural line.

In the Hawaiian shell the folds could not be called wide, and the division of the whorls is well above the middle.

Reeve's figure of $T$. puncticulata evidently represents the type of $T$. pernei, agrering with that, and not with puncticulatu, in measurements.

Under the eireumstances it appeare safer to call the Hawaiian form (which has been taken hy Langforl off Honolula in 6 to 8 fathoms) T. peaser Desh. Two lots fiom Pease are in the collection of the Academy.

Terebra flatescens Desh. (P', Z. S. 1559, p. 299, Reeve, (: I con. XII, pl. 14, fig. 59) does not appeat to differ much fom $T$. peasei Desh., except that the axial ribs are areuate. I have not seen it. Locality, Sanderich Islands, ('uming coll.

Terebra thaanumin. sp. Pl. Nil, figs. 1. 2.
A shell resembling $T$. gouldi, Desh.; the whonls shorter than in that species, especially the last whorl, which is much more convex; aperture shorter. It is pinkish buff with ill-defined streaks of cimmamon or russet. The sides are straight. The suture and the furrow defining the presutural fasciole are subequal, deeply impressed, the surface narowly shouldered, subangular below both. The presutural band occupies somewhat more than one-third of each whorl. Sculpture of smooth ribs equal to their intervals, about 30 on the penult whorl. No interstitial spiral sculpture. The last whorl contracts abruptly below, the base well rounded, separated from the siphonal fasciole by a furrew bounded below by a sharp ridge. The aperture is subtrapezoidal. Cohmella straight, ohliquely truncate.
length 60 , diameter 13.5 , aperture 14 mm .; 12 whorls, the apex broken. Type.

Length 51 , diameter 10.7, aperture 12.3 mm . 18 whorls, apex perfect.

Off Honolulu in 6 to 8 fms. D. B. Lamgford. Also aff Waikiki in 25 to 50 fms .

By conchological criteria this would probably belong to Duplicaria; yet until the teeth of many more species of Tertora are examined, no classification of the species has much value.

Terebra waikikiensis n. sp. Pl. XIl, fig. 12.
The shell is stender, slowly tapering, white, with three spiral serios of ehestnut dots on the last, two on the preceding whorls; these dots are also in vertical series, of which there are about 8 on the last whorl. soupture of rounded axial ribs equal to their intervals, about 21 on the last whorl. The ribs are deeply sinuated by the presutural groove, which is rather deep between them, and defines a wide presutural band. Below the groove there are three or four furrows across each intercostal interval, and above, near the suture there is one such furrow. The last whorl is convex with numerous spiral
cords. Aperture small, the anterior canal recurved. The columella is biplicate within.

Length 30, diameter, 6.7, :uperture 6 mmm ; 17 whorls.
Olf Waikiki, Oahn, in 25 to 50 fms. D. B. Langford.
In form and color somewhat like T. decorata Desh. (Proc. Zool. Boce. 1859, 1.. 314, no. 214), which is said by Reeve to be identical with T. tessellata Gray (P. Z. S. 1834, p. 61) ; but that species is entirely distinct in seoulpture.

Terebra flavofasciatan. sp. Pl. N1I, tig. 3.
Shell shaped like $T$. propinqua Pse.; white, part of the intercostal spaces of the presutural band marked with vinaceous russet; 3 ochraceous-buff bands. one below the sutural band, another narrow, at the periphery, and the third oceupying the base. Sculpture of smooth, rounded axial ribs, slightly wider than their intervals, 19 on the last whorl of the type, 25 mm . long, ( 16 in a shell 17 mm . long). The intercostal intervals have many spiral cords wider than their interstices, 10 on the penult whorl, below a series of deeper transverse pits defining the presutural band. Upon the band the interstitial spirals are finer. On the base the ribs become obsolete and there are coarer spiral cords. Aperture rhombic, somewhat channelled and yellow at the base.

Length 25, diameter 5.5, aperture 5.3 mm.; 15 whorls.
Off Lamiupoko camp, West Mani; sma'l specimens, 17-18 mm. long, off Honolulu, 6 to 8 fms. D. Thatmum and D. B. Langford.

Smaller than $T$. propinqua and $T$. pertura, with more nmmerous spirals and different coloration. Possibly to be compared with $T$. sulcatu Pease (Amer. Joum. Conch., V. 67), the type of which is lost.

Terebra clappin. s. •
The shell is slender, shaped about as in T. metida, glossy, dark vinaceous bown, the ribs and an ill-defined helt below the suture paler or whitish. Whorls nearly flat, with well-impressed suture, the last whorl contracting downward. Sculpture of straight, angular ribs, rather suddenly terminating at the base, the intervals hasing a spiral series of impressions defining an infrasutural band: these impressions sometimes nicking the summite of the ribs slightly. In the type there are 15 ribs on the last whorl. The aperture is a little dilated below. ('olumella one-folded.
length 17.5, diameter 3.8, aperture 4.2 mm. 11 post-embryonic whorls.

Length, 21, diameter 4.5 mm., 13 post-embryonic whorls. Ifonolulu, Pease Coll., M. (.. Z., 49964.
(Off Mt. Liham, West Maui, 25-75 feet., D. Thatmum. Also ofl Honohulu, 35-50 feet., D. B. Langford.

This species differs from $T$. mitude by the absence of a raised inner lip, though it is often somewhat calloused. It is much like $T$. suramsoni, as I have identified that species, but lacks the interstitial sculpture and the raised inner lip of that species. Feventecn specimens in coll. A. N. S. P. and M. ('. Z.

It appears to be what Pease identified as $T$. suminsomi Desh., but that is described as having the carly whorls transversely striate.

It is named for Mr. Wm. F. (lapp, who has kindly assisted in the examination of Pease's species.

Terebra lanceata oahuensis n. sump. Pl. Nil, fig. it.
The shell is rather smaller than lanceate and for at least half of its length the ribs extend entirely across the whorls; on the later whorls they shorten, but are visible below the suture on the last. The pattern of brown lines, interrupted or bent at the periphery, is similar to that of lenceeter.

Length 38 , di:meter 6.4 mm .
Off Honolulu, 6 to 8 fathous. D. B. Langford.
Dr. Dall (Bull. M. (․ Z., 43, p. 249), has formed at sulgemus Aeumima for Terebra lanceata (Linné); but that species is conchologically close to $T$. strigilata of Born and Lamarck, and would seem to belong to Hastula.

## Terebra verreauxi Desh.

Journ. de Conchyl., II, 1s.57, p. 9.5, pl. 5, fig. 3.
Exactly what species was intended by Buccimum striyilubum Limé (Ayst. Nat. X, p. 741; Hanley, Ipsa Lim. ('onch. p. 261) is not known. As Hanley remarked, the identification of Born has been generally accepted. ${ }^{4}$ He states that the shell in Linne's cabinct is $T$. concimu Desh.

For the Hawaian form we prefer to use the name given by Deshayes, whose description and figure represent this form. It is one of the most beautiful of the gemus. The color is from deep olive to ecru-olive or more ochraceous, with white bands at suture and below periphery, the former decomted with regular black-brown spots. It has been taken off Honolulu, 6-S fme (D. B. Langford), and at Hacna, Kauai (Bryan).

[^97]Terebra medipacifica n. sp. Pl. XII, figs. 8, $9,10$.
Shell rather slender with slightly eonvex lateral outlines; a white band below the suture, followed by a broad band of brown streaks and blotches on a white ground, extending to the periphery. A second white band below the periphery and a narrow band of brown markings just above the narrow, rather shallow furrow between betse and siphonal fasciole; apical whorls purplish. Sculpture of fine, forwardly curved axial ribs, about 35 on the last whorl. Both ribs and intervals are smooth, there being no spiral sculpture. There are about $4 \frac{1}{2}$ smooth embryonie whorls, the last bulging, wider than the following seulptured whorl $8^{1} 2$ sculptured whorls. Suture is regularly cremulated hy the ends of the ribs. The aperture is narrow, channelled above by the retraction of the lip near its insertion. Anteriorly it is hoadly notehed. Columella smooth. 'There is no raised inner lip, though the parictal callus is rather thick.

Length 18.8, diameter 4.4, aperture 5.4 mm .
Length 20 , diameter 5 , aperture 6 mm .
Off Honolulu, 6 to $S$ fathoms. D. B. Langford.
It is much more finely ribbed than $T$. inconstans, with a differently shaped aperture. T. bipartita Desh. (Proc. Zool. Soc. London, 1859, ?. 284), from the Isles Sandwich, requires comprison, but the description does not agree fully, and the species has not been figured.

It is one of the species which Reeve and Tryon would have placed umbler $T$. hastata.

Terebra medipacifica melior $n$. subsp. Pl. Nll, hir. 11 .
A much larger form of this species was taken in Kinncohe Bay, Oahu. The brown markings are much reducerl, but not more than in some Honolulu shells. There are 38 ribs on the last whorl.

Length 28 , diameter 7 , length aperture 8 mm., 10 post-embryonic whorls.

Terebra spaldingi 11 .s. Pl. Nhl, fig. 13.
shell narrow, polished; whitish, the intereostal intervats flesh colored; three faint gray spiral lines on the last whorl, the upper one visible on the spire.

Sculpture of smooth, rounded axial ribs, about 22 on the last or penult whorls, a little prominent just below the suture, intermpted by a well impressed presutural groove; intervals smooth. Last whorl with a spiral ridge bounding a narrow basal furrow, which extends also above the narowly reflected basal margin. The aper-
ture is rather wide below, posteriorly chammolled, the outer lip retracted a little above. Immer lip callonsed, a little elevated. No colume llar fold.

Length 29.5, diameter 6.9, aperture 7.5 mm. Twolve whorls.
Off Honolulu, 6 to 8 fathoms. D. B. Langford.
A form from Kaneohe Bay in 4 fathoms is much larger, length 37.3 , cliameter 9 mm .

This species is closely related to T. cerithmu Lam., but differs in having all of the whorls ribberl. The Honoluln specimens are stained with iron. T. uffinis (iray differs by the interstitial sculpture.

## Terebra dussumieri hiradoensis n. subsp.

The shell is simitar to $T$. dussommeri in form, but differs by the smaller number of longitudinal ribs, which we wider and more widely spaced, about 17 on the penult whorl.

Length 55 , diameter 11 mm .
Hirado, Hizen, Japan. Type 81994, A. N. S. P.

## x. Mitra and Vexillum

W. H. Pease deseribed several forms about which little is known. His notes on various Hawaiian species were published in the American Journal of Conchology, III, pp. 212-215, 233, 271; IV, pp. 119121 ; V, 85.

Mitra mitra (L.) (Voluta mitra episcopalis L.) has been taken in the material dredged from Honohuh Harbor, but no specimens are at hand for comparison with those of other localities.

## Partial Key to Hacaian sipecies of Mitra and V'exillum.

I. Mitra. Shell smooth, finely striate, or with spiral punctured lines; throat not lirate.

1. Shell with spiral series of spots on a light ground 2.
2. Six spiral series of orange spots; large, the last whorl smooth. M. mitica (L.).

Three irregular series of hrown (tamys) spots; finely striate spirally throughout ; onter lip thin near the upper insertion, elsewhere rather thick and smooth, a low swelling behind it. 6 plaits; hase recurved. Aperture longer than in M. ustulata Rve.; $50 \times 15$, aperture 26 mm .
M. Kamehamcha n. sp.
3. Suture cremulated by a series of white tubereles.... ... 4

Suture even or nearly so .... ....... ... ... ... 6
4. Weakly, irregularly plicate, with coarse punctures in spiral amel axial series
Not plicate; fine punctures in spiral series, often obsolete at periphery; a ragged or blotehed white band near the suture and usually other white spots, on a dark gromed.
M. coronata anerora Dohrrn.
5. Chocolate, with a white band bordering the suture.
M. lugubris Sw.

A narrow whitish band a short distance below the suture, white sutural tubereles. Honolulu.
M. lugubris honoluluensis n. subsp.
6. Spire and upper part of last whorl finely axially costulate, with spiral punctured lines
spire spirally striate, not distinctly costulate 9
7. Aperture $\frac{2}{3}$ or more of the total length; spire short; yellow (or white) with dark apex and hasal spot 8 Aperture less than $\frac{2}{3}$ of the length, spire moderately long; white with a dark brown median belt M. newcombi Pse.
8. Last whorl sculptured only at the upper part.
M. olivaeformissw.

Last whorl having spaced, closely punctate piral lines throughout, otherwise similar to the preceding.
M. obirellacformis 11. sp.
9. Fusiform, the aperture half the length or less 10

Pupiform, with shorter spire and longer aperture 14
10. Small species, less than is mm. long I2

Larger or large specics, about $20-50 \mathrm{~mm}$. long 13
12. White, smooth, with two wide orange zones; about it mm. long M. micons Rve.

White; minutely striate spirally, 7-8 mm. long.
M. albo Pse.
13. Uniform cimamon-brown; outlines rather straight above and below the convex periphery, soulpture of punctate spiral lines, 8 on penult whorl, weaker in the peripheral region; outer lip contracting above, with cremulate edge, but without any internal tubercle or callus; 6 plaits. $51 \times 19$ aperture 24.4 mm ., 8 whorls $\quad$ IV. theatermiane n. sp.
similar to the preceding, but the last whorl is somewhat flattened peripherally; there are 6 punctured lines on pemult whorl ; irregular eremulations below the suture; 5 phats. $43 \times 15$, aperture 22.3 mm . Orange (foded); Honoluha.
M. ostergaardi n. sp. Olivaceous or dasky, with widely spaced dark spiral lines; outer lip thickened or with a tuberele within.
M. astricta Rve.
M. litterata Lam.
M. atericuloides Rve.

1t. Speckled with buff on a dark ground Chocolate, with a pale shonkler band Uniform dark brown
1.). A rallous projection within the outer lip in atult shells, nome in the throat; peripheral region convex: is well developed plaits
M. brumene Pse.

No lip callus; a nodule in the throat ; (arob brown to chestmut brown, the aperture chocolate; last whorl somewhat cylindrie. smooth with spirels at the base; 4 plaits. $25 \times 10.4$, :sperture 14 mm. M. ticaomicaragens n. subsp.
II. Shedl conspicuously spirally lirate, axial sculpture subordinate or wanting; outer lip blunt or thin, cremulate, throat smooth.

1. Diameter near! y half the length: with smooth spiral cords, very little interstitial sculpture
sholl more slender, with distinct interstitial scoupture $\quad 4$
2. Shell irregularly plieate axially; very pale with a thin brown "pidermis:
M. turgida Rve.
'hell not plicate
3
3. Orange, often with white peripheral maculation.
M. tabomula Lam.

Thin, fulvous
Brown with some white maculation
White, varicgated with smoky brown
M. subrostrata nowb. M. proscissa Rue. 1I. pudica Pso.

1. Interliral spaces with an intermediate thread and close axial sculpture leaving narrow pits $\quad M$. interlirata Rove.
Having close low riblets, making the cords tubereular'; 11 cords on last whorl; yellowish with 2 indistinct brown bands, tubercles white; 3 columellar phaits. $11.6 \times 4.5$, aperture 6.3 mm . M. waikikiensi* n. sp.
Having spaced axial impressed lines throughout; apex pink; 4 or a plats.
万. spirats narow, brown on a white groumd; smaller than $M$. franatima Lam., the brown lines continuous; 35.3x11.4, aperture 18 mm ; \& post-embryonic whorls; Honolulu.
M. langfordi n. sp. spirals blunt, alternately lager and smaller; buff with a broad chestnut peripheral band, its upper half intermpted into a series of large spots: $29.3 \times 9.3$, aperture 16.4 mm .; $7 \frac{1}{2}$ post-embryonic whorls; near crenifere Lam., but smaller with many more impressed axial lines $M$. emersonin. sp.
III. Vexillum, Axial ribs predominating over spiral sculpture when the latter is present. (In baldwini the later whork are smooth.)
2. Shell obesely fusiform, with narrow aperture; outer lip conspicuously receding or excised lelow, lirate within, a plait at its upper third; or 6 plaits (Section Idiochila, new) 2 Outer lip normal, not receding below
3. Last 3 or 4 whorls very smooth and glossy, marbled or streaked; carly whorls costulate
I. buldwini Melv. 5
[^98]Later whorls with many fine ribs, intervals spirally grooved; clear yellow. $22.7 \times 12 \mathrm{~mm} . \quad$ V. turben lionakia n. subsp.
3. Rather short species with about 15 or fewer axial folds on the last whorl
Having more numerous axial folds or ribs ..... 7
4. Stout sliells with strongly coronate whorls and coarse spirals
Whorls axially plieate, not coronate, with very fine, close spiral striation

6
5. Spiral corts strong; no lirate in the throat I . tuberosa (Rve.). spiral cords less strong: throat lirate.
I. patriarchialis (Gmel.).
6. $12 \times 7 \mathrm{~mm}$. to $18 \times 8 \mathrm{~mm}$. $\mathrm{V}^{\text {. dermestina (Lam.). }}$

About $9 \times 3.7$ mm.; white with brown lineolation.
I. nodulosa (Pse.).
7. Simall axial ribs in some of the intervals of the larger.
I. bella (Pse.).

Axial ribs about equal
8. A finely striate depression in the ribs a short distance below the suture; small, chocolate-colored, with the upper surface maculate with white $\quad 1$. tusa (Rve.).
Without such depression or coloration
9. Spiral cords rumning over the axial ribs 10

Spiral seulpture appearing as transverse grooves in the intervals only 13
10. Whitish, with pale markings: stippled lirae in the throat . 11

Marked with tawn or brown; stout in form; continuous threads in the throat 12
11. Subtubereular and angular close below the suture: a faint fleshy band with sparse brown dots on the ribs.

> I. uisemami (Dhn.).

Third spiral below suture slightly prominent ; base pale vinareous .... ... I. compta (All.)
12. Axial ribs rather coarse, continuous; many fulvous spiral bands; $18-20 \mathrm{~mm}$. long $\mathrm{I}^{\circ}$. aiereolate (Sw.).
Axial ribs very fine, eut by spiral grooves; tawny or brown with a white band and hase: about ! mm . long.
I. picea (Pse.).
13. Minute species, less than 10 mmi. long; dark-colored 14

Larger shells, over 15 mm . long 15
14. (hocolate, sometimes with a white band; about $8 \times 3$ mm. I. mict (Rye.).

Fusiform, vinareoustawny, with lurnt umber bands at periphery and hase; about 30 rounded axial ribs on last whorl, intervals with wide, low, spiral cords separated by impressed lines, 4 on penult whorl; 4 plaits; $6.5 \times 2.7$, aperture 3 mom.; $s_{2}^{\frac{1}{2}}$ post-emberomic whorls 1 . micra n. sp.
15. Fusiform, white with a cimamon band below periphery; at periphery are narrow brownish spots between the ribs,
surmounted hy a cimmamon line; 11 rounded ribs on the last whorl, intervals with transverse impressions, 10 or 11 in intervals on penult whorl; 5 plats, 25.3 x 8 , aperture 12 mm : 10 whorls F . theremumi n. sp. Fusiform, white with a chestmut band below the periphery and few backish-brown spots below the suture, apex dark hrown, 22 smooth asial ribs on last whorl with short, transverse impressions in the intervals, 6 in each interval on pemult whorl ; 2 spiral eords more prominent at hase; 5 thin plaits. $18 \times 7.5$, aperture 8.4 mm . 10 whorls.
$\mathrm{V}^{\prime}$. xeminm 11.sp.
Mitra kamehameha n. sp. PI. N11, fig. 23.
The shell is slender, fusiform, fincly striate spirally. White, with three series of ochaceous orange spots, subsutural, peripheral and basal, the former with few spots. On the spire these spots are more or less concrescent into longiturtinal stripes.

The last whorl has a broad swelling behind the outer lip. The aperture is more than half the total length, narrow. Outer lis is rather thick, exeavated within and beeoming quite thin near the upper insertion. There are six plaits, the lower ones small.

Length 50 , diameter 15 , aperture 26 mm . Type.
Length 40, diameter 12.7, aperture 22 mm .
Honoluhu Harbor, in the dredger dump. J. M. Ostergaard.
This species is related to M. ustulata Rve., hut it differs by having the aperture 'onger, more than half the total length, while in ustulata it is less than half. The color is doubtless darker in living specimens.

## Mitra thaanumiana n. sp. Pl. X11, fig. 21.

The shell is solid, fusiform. Outlines of spire and basal part straight, periphery convex; cimnamon-brown, where the thin cuticle is lacking, sayal brown, the apical whorls paler. Seulpture of fine, well-spaced spiral striae marked with series of small punetures, and separated by flat intervals; on the back of the penult whorl there are 8 such spirals. The basal third of the last whorl has coarser, deeper spirals and punctures, with convex intervals. The aperture is clouded with eimnamon within. It is widest in the lower part, the hip being straght and abruptly contracted above. There are six white plaits.

Length 51, diameter 19, aperture 24.4 mm . Eight whorls (the apex worn.)

Hilo, Hawaii, D. Thaanum.

Mitra ostergaardi n. sp. Pl. XII, fig. 22.
The shell is fusiform with conic spire somewhat flattened periphery, somewhat convexly tapering hase, slightly concave below; ochraceous huff to nearly as dark as ochraceous-orange, the spire usually a little paler. Scupture of widely-spaced spiral series of small punctures, six on the back of pemult whorl, the intervals very minutely, superficially striate spirally; towards the hase having punctured spiral grooves. Under the suture the whorls are a little prominent and finely, irregularly cremulate.

The aperture is flesh-tinted within; narrow, but slightly wider below; lis contracted above. Five platits.

Length 43 , diameter 15 , length aperture 22.3 mm . (summit broken).
Honolulu Hathor, in the dredger clump. J. M. Ostergaard.
The color is altered, as in nearly all shells from the "dump," in life it will be foum to be much darker in color. It is closely related to $M$. thaammiana, but the last whorl is decidedly more cylindrice, and there are fewer spiral puncture lines.

Two of the three specinens show a very faint pate line at the shoukler. Some young shells which are perhaps this species have a distinet whitish line at the shoulder, They have 4 columellar plaits.

## Mitra coronata aurora Dohrn.

Faded specimens are found in the dump of the Honolulu Harbor dredge. Also taken alive in 150300 feet off Wakiki by D. B. Langford. Mr. Thamum collected heautiful living ones at Keckea, Hilo, Hawaii.

Mitra lugubris swains.
Honolulu Harbor; off Waikiki, 35-50 fms.
Mitra lugubris honoluluensis n. subsp. PI. XII, tig. 16.
Similar to $M$. lugultris in the deep punctures and longitudima wrinkles, but having small, white subsutural tubereles and a naroow white band a short distance below the sut me

Length 23, diameter 9.7 mm .
Honolu'u Harbor.
Mitra (Strigatella) ticaonica vagans n. sub)p. Pl. Xll, firs. 14, 1.
The shell is oblong, solid. (hestmut-brown. spire short, with seulpture of five impresed spiral lines. Last whorl emooth execpt at the base, where there are about 10 spiral furrows.

The aperture is long and narrow, dark brown within, the outer lip contracted above, having a deeply placed median fold in the throat. Columellar plaits whitish, four, sometimes with a short tubercle between the first and second.

Length 25 , diameter 10.4 , length of apertme 14 mm .
Length 22.5 , diameter 10 , length of aperture 12.3 mm .
Hilo, Hawaii. D. Thatamm. Also collected on the Honolula Harbor dump in considerable quantity by Prof. Wm. A. Bryan scoral years ago, and by the writer in 1913.

Hawaiim examples have the spire less deeply grooved, and the last whorl more extensively smooth than $M$. ticaonica Reeve of the Philippines. They appear to he worthy of varietal separation.

Strigatella fuscescens Pse. (Proc. Zool. Soc., 1860, p. 146; Amer. Journ. ('onch., III, 233) differs by the white aperture and 5-plaited columella.

The Honolulu specimens have faded to a tawny or ochraceous buff tint. The largest measures, length 31, diameter 11.3, aperture 15 mm . (fig. 14 ).

Mitra olivellaeformis $n$. st .
The shell is similar to $M$. olnaeforms sw. except that it is more slender, and the entire last whorl is provided with impressed, punctured spirals, about 13 on the last whorl.

Length 11.2 , diameter 4.7 mm . Type, Niihau.
Length 15 , diameter 56 mm Viti Lslands.
Niihau. Type 67779 A. N. S. P.
The typical M. olivactormes swains. ${ }^{\text {f }}$ has two or three puncture series about the summit of the last whorl. It has been found in Honolulu Harhor by Prof. W. A. Bryan, who gave me a specimen. Mitra langfordi n . sb. Pl. XII, fig. 20.

Closely related to M. gramatina Lam. (M. scabriuscula L., of Reeve and Tryon), but constantly smaller, with smaller secondary spirals and several fine striac in the intervals between major spirals; of the latter there are five on the penult whorl, with a smaller one above, near the suture; the brown lines of these spirals are contimuous or nearly so (while in gromatina they are much interrupted). Columella with fom or five plaits. The embryonic stage, of about 3 whorls, is smooth and pink.

Length 35.3, diameter 11.4, length of aperture $18 \mathrm{~mm} ; 8$ postembryonic whorls.

[^99]Off Honolulu, D. B. Langford.
The shell is less elongate than $M$. grachlis Reeve, and is more closely related to $M$. aranatma than to the $M$. filose complex.

Voluta filans L. (Mantissa p. 548, 1771) is not positively identified, though the opinion of Hanley that it is identified with $M$. filosa Lam. (not Born), (Kiener's pl. 5, figs. 12), seems probable.
M. filosa Born ( + M. nerilis Martyn) and M. bernarduana Phil. appear to be distinct and valid species. M. creuld Kiener ("curculate" of Reeve and Tryon) is ako quite distinct. None of these has been taken in Hawaiian waters so far as I know.

Mitra emersoni n. sp. Pl. Xif, fig. 19.
A species closely related to M. crenifer Lam.;' smaller; the vertical impressed lines about twice as far apart.

The shell is buff with a broad, irregu'ar peripheral band of chestnut, its upper half interrupted into a series of large spots; also an indistinet, brown land composed of spots and dashes at the base.

Sculpture of alternately smaller and larger spirals and well-spaced, vertical, impressed lines. Four plaits. Embryonic shell pinkish.

Length 29.3, diameter 9.3, aperture 16.4 mm . Seven and onehalf post-embryonic whorls.

Off Honolulu. D. B. Langforel.
Named in honor of Mr. Joseph Emerson of Honolulu.
Mitra pallida Pse (Proc Zool Sor. London, 1860, p. 146) has not been deseribed with sufficient detail for recognition.

Mitra waikikiensis n. sp. PI. XII, fig. 17.
The shell is fusiform, pale brown with ill-clefined darker peripheral and basal bands and white tubereles. Sculpture of spiral cords (eleven on the last whorl behind the lip) and lower longitudinal ribs, producing tubereles where they cross the cords. Aperture white. Columella with three plats, the upper large, the kower quite small.

Length 12.5 , diameter 4.8 , length of aperture 6.7 mm .
Length 11.6, diameter 4.5, length of aperture 6.3 mm .
Off Waikiki, Oahu, in 35-50 funs. D. B. Langford.
Vexillum thaanumin. sp. Pl. N11, fig. 31.
The shell is fusiform, rather slender, white, with a cimamon band below the periphery. At the periphery there are narrow vin-

[^100]aceous or brownish spots between the ribs, surmountel by a continuous, einnamon line. (On the penult whot this line is median.

Sculpture of vertical ribs wakening towards the base, the intervals with short impressed lines in a spiral direction; on the last whorl there are 11 ribs and ahout 19 spirals, exchsive of those on the siphonal fasciole. On the penult whorl there are 10 or $11 \mathrm{im}-$ pressions in an interval.

The aperture is slightly pink tinted within, lirate in the throat, Five columellar plaits, the lower one very small.

Length 25.3, diameter 8 , aperture 12 mm ; 10 whorls.
Off Wakiki, Oahu, in 200-300 feet. D. B. Langford.
Mitia uterstriata sowerby (Thes. Conch. fig. 392) resembles this species somewhat in color, but it is wider, contracted more above the more prominent siphonal fasciole, and has a wider aterture.

Vexillum xenium n. sp. Pl. Nll, fig. 25.
The shell is fusiform, white with a chestnut band traversed by several paler spiral lines, below the periphery, two or three paler interrupted lines above it on the summits of the ribs only, and a few widely spaced backish-brown spots below the suture, on the ends of some of the ribs. The first three whorls are also deep brown. sculpture of smooth, longitudinal ribs, 22 on the last whorl, equal to their interstices, the latter marked with short impressions in spiral series, 6 on the penult whorl in each interval; base spirally grooved over ribs and intervals forming about 4 spiral series of tubercles. Two obliquely spiral cords are more prominent just above the siphonal fasciole. Aperture shorter than the spire, the throat with 9 thin beaded lirae. Columella with 5 thin plaits.

Length 18 , diameter 7.5 , aperture 8.4 mm ., 10 whorls.
Off Waikiki, Oahu, 25-50 fims. D. B. Langford.
Turricula approxima Pase (P. Z. S. 1860, p. 146) is tescribed as convexly angulated at the sutures and with + phats; it seems therefore to be a different species.

Vexillum micra $\mathrm{n} . \mathrm{sp}$.
The shell is fusiform, vinaceous tawny with a band at the periphery and another on the base of burnt umber. Sculpture of many vertical rounded ribs, about 30 on the last whorl, the intervals with wide, low spiral cords separated by impressed lines, of which there are 4 on the penult whorl; base with spiral cords. Aperture colored like the outside. Columetla with four plaits. The embryonic shell is long-conic, of about $31 / 2$ smooth whorls.

Length 6.5 , diameter 2.7, aperture 3 mm . ; $51 / 2$ post-embryonic whorls.

Off Waikiki, Oahu, in 25-50 fms. D. B. Langfort.
One specimen is a little stouter and lacks the lower brown band.
Vexillum turben kanaka n. subnp. Pl. Xit, fig. 26.
The shell is similar to M. twoben Reeve (Philippine Islands) in seulpture and the ochraceous-huff or bulf-yellow color, but the spire is more shortly and a little concavely conic above, the pemult whorl slightly swollen. There are six plaits, the upper one strong and horizontal. Within the outer lip there is a small fold, more prominent than the others about the upper third.

Length 22.7, (liameter 12 mm .
Length, 21, diameter 10 mm .
Honoluhu, on the chedge dump, J. M. Ostergatard.
Three specimens of this exquisite shell have been taken. On comparison with a specimen of Reeve's species they show certain differences of shape which seem to be of racial significance.

The related $M$. balderini Melvill is very different in color and sculpture. It should le eompared with T. flemmulata Pease, which may be the same.

## xil. Various other Gastropods

Murex pele Pilsty. Pl. X11, figs. 29, 30.
Murex pele Pils., Nautilus XXXI, pl. 3, figs. 9, 12.
Off Waikiki, Oahu, in 35-50 fathoms. D. B. Kuhns, 1916. Type 110. 47191 A. N.s. P. Also in the Thammun collection.
('losely related to $M$. rota, which it resembles in general form. Pure white. The muclear whorls are lost. The first $2_{2}^{1}$ remaining whorls form a slender, slowly tapering style, the whorls being nearly flat, the suture oblique, well impressed, brifged by a few laminae. After that the shell enlarges abruptly; the next $1 \frac{1}{2}$ whorls being carimate, flattened above the keel, very deeply exavated below it, rassed by six lamellar flomed varices on a whorl. The last whorl is rounded with several quite low spiral welts. The six varices, which increase pregressively and rapidly in prominence, are comeneted by broad bamellae with the preceding whord, dividing the sutural region into a series of deep eavities. The varices bear long spines, bhant or expanded at the ember eremulated on the bard and sides, sit in front. There are two of these proeesses on each varix muth barger than the others, more expmated at the ends. A series of little
foliations stands at the front bases of the large processes. The aperture is small, oval. The long anterior camal is nearly or quite rlosed.

Length 31, diameter, including spines 18.5 mm. Type, fig. 2!. Length 40, diancter, inchurling spines, 30 mun.
The opereulum is Purpuroid, the mucleus lateral. It has external sculpture of concentric laminae, which are prominent and crimped in the outer and basal parts, subobsolete in the median and imner portions, which are nearly smonth, or merely wrinkled.

Compared with $M$. rota Sowb, this species differs by having fewer enlarged spincs. M. wha has four or five subequal ones on the last varix, of which at least three ratliate from the aporture like the spokes of a wheel, and one is on the canal. In M. pele there are only two enlarged processes. Other characters of the two species appear to be much alike, thongh in the old specimens of $1 /$. rota, which alone are at hand for eomparison, the whork of the spire are worn, and the earlier ones lost. It attains a greater size than the Hawaiian species.

The largest individual of $M$. pele found (Pl. XII fig. 30) is evirlently quite old. It is much encrusted. The quite clean one selected for description (fig. 29) is probably nearly a whorl short of full size.
Murex torrefactus insularum n. subsp.
Specimens from off Wakiki, Oahn, in 35-50 fms. (Langfort), differ from the typieal form of M. tomrefactus, howb., being relatively larger, with somewhat less complex variceal processes, the second from above nearly as long as the first and receding. M. rubigmosus Reeve has a larger aperture, and the seeomd variceal process does not recede.

Length 69, diameter 44 mm .

## Sistrum vitiense u. sp.

Viti Islands, A. J. Garrett. Type and paratypes no. 36732 A. N. $s . \mathrm{P}$.

The shell is stout, ovately fusiform, solid, with straightly conic spire. The ground color is buff-yellow. It is rather weakly plicate longitudinally, with about seven low spiral corcls, which are enlarged to form oblong tubercles, from hazel to chestmut-brown in color where they pass over the folds. The tubercles of the series below the suture are lower than the others and separated from the next series by a wider spare. Between the tubereulose girdles there
are two or three low corts in each space, all being slightly irregular. The rather prominent siphonal fasciole is apricot-orange colored.

The aperture is white, outer lip having aseries of five or six teeth within, the upper and lower ones slightly larger. The columella is straight, having several short, rather strong transverse folds below the middle.

Length 22.5 , diameter 14 mm .
It is related to $S$. concutenatum (Lam.), but it is a more compact shell with smaller white aperture, and much less coarse sculpture.

Cymatium species.
Cymathom intermedium (Pease) is the most abundant Triton in Oahu. (. chlorostoma (Lam.) is found in Honohulu Harbor, Hilo and other places. C. tuberosutm Lam. is not uncommon on reffs.
C. vestitum Hinds ${ }^{9}$ is represented by a sace in which the tooth intervals are carnelian red or rufous, the form more slender, and the few intervariceal ribs are very weak. Length 74 , diameter $34 m m$. This race may be called C. vestitum msulure. Type no. 35279 A . N.S.P.

The finest specimen I have seen is in the collection of Irwin Spalding.
Strombus ostergaardin. sp. Pl, NIl, figs. 27, 28,
The shell is somewhat pear-shaped, rather solid, white in the only examples known, which are long-dead sholls.

The rather short spire is concavely conic. In the most perfect example the penult whorl is weakly angular above the suture, with very weak, coase nodes; the next earlier whorl is distinctly angular and tuberculate; above this the tubereles become closer, longer, so that the next two whorls are costate. The conic summit, of about 3 convex whorls, is smooth. The last whorl is very slightly compresed between face and back. It is slightly swollen behind the outer lip, somewhat flattened preceding the swelling, on the rentral face strongly eonvex above. It is smooth except for oblique grooves around the lower part and more or less distinct spiral threads near the lip. The suture descends in the last third of a whorl, ascending a little at its temmation. The aperture is narrow. Onter lip not excavated posteriorly, having a moderate simus anteriorly; closely lirate within. The inner lip is thick, with well defined edge, and is regularly lirate throughout.

[^101]Length 24.5, (liameter 12 mm.
Length 31, diameter 16 mm .
Honolulu Harbor, from the dreedger demp on the Harbor side of sand Island, J. MI. Ostergard. Also from the Kailua coast, on the north side of Oahu, W. A. Bryan.

This species is less distorted than s. gibbenulus L., with a lirate columellar callus, and no excavation of the outer lip posteriorly. S. bulbulus Sowb. is more closely related, but it has a smooth, thimer and less extended colmmellar callus, and smooth, convex whorls of the spire.

While the specimens have the appearance of fossils, it is likely that the species is still to be foumd living. The single one before me from Kailua is 21.3 mm . long, and has the short spital threads orer the swelling behind the lip more distinct.

In the largest specimen there seems to be lout one nodulose intermediate whorl of the spire, the whorls having the usual impressed spiral line below the suture; but as the spire is quite short, the nodules may be concealed by the enveloping whorls. The sculpture of the spire described above is therefore not a constant feature.

This stromb was first found by Mr. Ostergaard in 1905. Sub. sequently he found three more.
Rissoina striatula hawaiensis n. subsp.
Differ from $R$. striatula Peaser by the constantly smaller size.
Length 4.5 mm .
Length 5.2, diameter .2 mm.; 9 whorls (type).
Length 6.4, diameter 2.7 mm .
Oahu: Paumalu, type loc.; Wamea. Kanai: Hacna. All collected by W. A. and E. J. Bryan.
R. striatula was described from the Pamotu group. Two sperimens measure:

Length 8.3, diameter 3.5 mm.
Length 8.6 , diameter 3.4 mm . (Cotype, figured ini A. J. (..)

## xili. Pelectpods.

Modiolus matris n. sp. Pl. XII, tig. 1s.
The shell is small oblong wedge-shaperl, strongly inflated, thin, bright colored, the prevalent colors being old rose, apricot buff, picric yel'ow, or white with vinaceous rays; having a thin ye'lowish

[^102]euticle, in large part deciduons, chiefly preserved near the posterior end, and bearing very delicate raised concentric striae. Beaks are rather prominent. The hinge-line is short, slighty curved under the beaks. Internal margins smooth. The interior is colored like the outside but usually brighter in tone.

Greatest length 12.5, greatest breadth 6.5, diameter 6.5 mm .
Greatest length 12.8, greatest breath 8, diameter 7 mm .
There is considerable variation in contour. The largest valve serm, from Moommmi, Molokii, measures, length 19.3, width 10.2, semidiameter 4.8 mm .

Oahu; Rabbit Istand; Pammalu; Mokapuu Point (type loe.), Honolulu Harbor. Molokai: Moomomi Pukahaku. Midway Island. Pearl and Hermes Reef (W. A. and E. J. Bryan).

Modiolus peasei Newcomb.
1870. Amer. Joum Conch. V, p. 163, pl. 17, fig. 7. ("Sandwich Iskands, (redged in 12 fms., onter harbor of Honoluha').
Off Honolulu in 6 fathoms, D. B. Langford, 1915; Off Mala Bay, West Mani, 21 fathoms, Thatmum and Langford, 1918. From the second locality there are very fine specimens, יp to 31 mm . long.

Mytilus crebristriatus Conrad.
18:37. Courad, Journ. Acarl. Nat. Sci. Phila. VII, ! $2+2$.
1916. Bryan, Nat. Hist. of Itawaii, p. 457, pl. 104, fig. 1.

Oahu: Honolulu Harbor'; Pearl Harbor. Molokai: Kainahu. Hawaii: Hil).

The large typical form of this seecies is particularly abundant in P'arl Harbor and the adjacent fossil deposits. In Honolulu it oreurs on the Kewalo reef, off the mud flats where considerable fresh water comes in, and Melania mamiensts is aboundant. Prob)ably typical $M$. crebristratus occurs only where the salt water is slightly diluted with fresh; on open shores it is replated by a small form.

The usual length of $M$. cretmistriatus is from 25 to 35 mm . so fis as we know, the only published figure is that in Bryan's Natural Ilistory of Hawaii.

A very thick form was fomm fossil at Wamamalo, (ahm, by Prof. Bryan.

On most of the open beaches a small form, which may be called form materma, is foumd in aboudanere; the length is 10 to 15 mme. Loralities for this form follow, manly from the Bryan collection.

Ocean Iskand. Moknmamu. Kianai: Hamalei, Haceat, Milolii, Kabalau. Oahm: Homohulu Harbor, Mokipu Point, Kailua, Paumaha, Wamamalo, Kaneohe Bay, Laie. Mohokat: Moomomi, Kainalu, Papohaku. Mani: Mablaca Bay, Kahuhui. Hawaii: Hilo.

At Kainaln, Molokai, a set was taken having the shell very thin and frail, the corrugation weakly developed. Length 17 mm .

Congeria bryanae n. sp.
The shell is triangular, very much inflated along the midedle of its length, the ventral side flattened and subtruncate, the posterior and dorsal borders, beyond the hinge, broadly romeded. sculpture of very numerous radial riblets crossed by closer and narrower concentrie threads which are more prominent in the intervals. The color is green or yellow, uniform or douded in varying shades and tints, often with some irregular, maculation of brown, or whitish and pate yellow with vinaceons or bink maculation The interior is whitish. more or less tinted with the extermal colors. The septum is small, There are about 10 rather strong teeth in each valve, between beaks and septum, and a group of elongated erenulations at the posterior end of the hinge-line. The rest of the intermal marein is delicately cremulate.

Length 6.5, width 4.3, diameter 5 mm.
Length 11.2 , width 6.6 , diancter 6 mm .
Oabu: Mokapu Point, Kailua, Pammalu, Rabhit Island (type loc.), Makapuu Point, Homolulu Harbor. Kiauai: Mouth of Hanalei River. Molokai: Moomomi. Laysan Istamd. Pearl and Hermes Reef (W. A. and E. J. Bryam).

Mytilus bifurcalus (omral, said to be from the samdwich [slands, is a common Califormian species. See Nautilus XII, Oet., 1898, 1. 69.

Cardium thaanumi n. sp. Pl. X11, lig. 24.
The shell is small, phomp, thin. Beaks full, stightly inclined forward, nearly smooth; posterion end trumcate, anterior roumded. White with the beaks and mumerous rays of a light coral red color; the rays faint except towards the periphery.
sculpture of many very fine, even radial striae, which are closely, minutely prickly towards the periphery and conds. Hinge-teeth well developed; inner margin cremulated.

Length 11 , height 10.5 , diameter 9 mm .
Off Wakiki, Oahu, 35 to 50 fathoms. Also off Lammupoko ('amp, near Lahaina, West Maui 4 to 8 fathoms, Thatanum and Langford.

Two other species of Cardum are not uncommon, the large Cardımm orbita B. and S., Hilo, Hawaii (Thaanum); Moomoni, Molo kai, Haena, Kanai (Bryan), and C. arcuatulum Sowerby, a very small, angular Fragum, from Hilo, Hawaii (Thaanum); Honolulu (Bryan), and Haleiwa (Pilsbry), Oahu.

Solecardia bryanin. sp. Fig. 5.
The shell is thin, oval, somewhat inequilateral, moderately plump, white. Upper and lower margins subequatly curved; anterior end narrower than the posterior, both being rounded. Except the beaks, the surface is mimutely densely punctate, more coarsely so near the ends; the points arranged in radial lines on the dorsal posterior slope, elsewhere irregularly or in indistinct zigzags. Right valve having a slender, erect, cardinal and a low, elongate posterior tooth.


Fig. 5.--solecadia brgemi, n. sp., interior aml dorsal view of right valve.
Length 10.8 , altitude, 7.8 , diameter 5.2 mm.
Gahm: Paunalu, W. A. and E. L. Bryan.
Solecardia hawaiensis 12. sp. Fig. $6, a, b, c$
The shell is thin, white, oblong, moderately plump, inequilateral. Dorsal margin arched, a little more curved than the hasal; anterior cond vertically subtruncate, anterior end romeded. Beaks very small with more convex, orbicular embryonic caps. Surface glossy, with fine growth lines only. Interior dull, the musele impressions and pallial line rather indistinct. Right valve with a strong, erect anterior tooth and an elongate, lower posterior. Left valve has strong median, weak anterior and elongate posterior tooth.
Lemgth 7 , altitule 4.8 , diameter 3.4 mm.
Hawaii: Hilo, Thamm, type loe. Kahoolawe, on the north share (Pilshy). Molokai: Kainaluand Moomomi (Bryan). (Gahm: Homblulu Hathor :nd Pamalu (Bryan), near Kahuku and Halciwa
(Pilshy). Kimai: Hanalei river (Bryan). Laysan Iskad (Capt. Brown).

Near the figure of Semtlla deshayesi sowh., but more elongate, not so abrupt posteriorly. Erycina orata (ikl. ${ }^{11}$ is less inequilateral. and the anterior truncation is a little oblique. The teeth, too, appear to differ, if Ciould's figure is correct.

Solecardia hawaiensis obesior n. sub.p. Fig. 6; d, e.
Similar to A. havaiensts, hut plumper, shorter, with wider beaks.
Length 7 , altitude 5.3 , diameter 4.7 mm .
Honolulu Harbor (IV. A. and E. L. Bryan).


Fig. 6.-a, b, Solcardia hawaiemsis, interior and dorsal views of right valve; c, hinge of left valve. d. c. Solfcardia hametionsis obesior, lateral and dorsal views.

Solecardia stigmatica n. sp. Fig. 7
The shell is very thin, fragile, somewhat ovate, the anterior end narower, posterior end broadly rounded, rather compressed, white, with a median radial russet band, fading at the edges and below. Surface glossy, marked with faint growth lines. Interior clull. Right valve having a slemder, erect cardinal tooth. Left valve with an elongate, lower one.

[^103]Lemgth 5.3 , altitude 3.5, diameter 1.8 mm .
Hilo, Hatwaii, D. Thaanum.
Easily known by the rich brown stripe.


Fig. 7.-Solecarliu stighrtica n. so.


Fig. S. -Solecardia thatmami, n. sp.

Solecardia (Scintilla) thaanumin. sp. Fig. S.
The shell is white, oblong, the basal margin slightly more curved than the upper, not gaping; ends rounded, the anterior slighty shorter; compressed, slightly incquilateral. Beaks very small, capped with mimute, orbicular embryonic valves. Surface with faint growth lines. Interior dull, mimately vermiculate with white on a grayish ground outside of the pallial line, which is distinct and irregular. Cardinal tooth of right valve very low, indistinct.

Length 6.75 , altitude 4.25 , diameter 2.4 mm .
Hawaii: Hilo, D. Thatanum.
Solecardia (Scintilla) chascax n. sp. Fig. 9.
The shell is very thin, fragile, sompressed, oblong, suberquilateral, broally waping below; whitish, translucent. Hinge margin straight;


banal margin straightened in the midelle, then somewhat dilated anteriorly; cuds roumderl. Beaks very small. Both valves have a very low, indistinct cardinal nodule but no other terth.

Length 6.9, attitude 3.8, diameter 2 mm.
Hawaii: Hilo, D. Thatamm.


PILSBRY: MARINE MOLLUSKS OF HAWAII, VIII-XIII.

Thecodonta (?) symmetrica s. sp. Fig. 10.
The shell is oval, white, very inequilateral, the beaks being nearly terminal, moderately convex, fasal margin more curved than the dorsal. Exterior smooth except for very faint growth lines. In the right valve there is a bilobed tooth in front of the beaks, low, clong ate lamina posteriorly.

Length 2.65 , altitude 1.9 , diameter 1.1 mm .
Oahu: Haleiwa on the beach, Pilshry, 1913.


Fig. 10.-Thecodonte (?) symmetrica


Fig. 11.-N Morula hawaiensis n. so.

Nucula hawaiensis n. sp. Fig. 11.
The shell is white, broadly ovate, moderately plamp, smooth near the beaks, elsewhere very closely ridged with smonth, regular concentric striae. Anterior end broadly rounded, posterior narrow!y rounded; basal margin more arcuate than the dorsal. The teeth are rather short, 5 before and 10 behind.

Length 2.8, altitude 2.2. diametrer 1.5 mm .
Oahu: Haleiwa, on the beach, Pilsbry, 1913.
Probably immature.

## ENPLANATION OF PLATE XIL.

Fig. 1.-Terebre thatummi n. sp. Type 117019.
Fig. 2.-Tercha thacommi Waikiki. 74526.
Fig. 3.-Terebra flowofascinta n. sp. Type. 46909.
Fig. 4.-Terebra argus brachygyra n. subsp. Type. 46910.
Fig. 5.-Terebra langfordi n. sp. Type. 11703s.
lig. 6.-Terbra langfordi angustion n. subsp. Type.
Fig. 7.-Terebra lancatu oahutnsis n. subsp. 117041.
Fig. 8-10.-Terebra medipacifica n. sp. Type and paratype 117039.
Fig. 11.-Terebra medipacifict melior n. subsp. Type.
Fig. 12.-Terebra wrikikiensis n. sp. Type. 117030.
Fig. 13.-Tcrebra spaltlingi n. sp. 'Type. $11704 t$.
Fig. 14.-Mitra ticaonica vagans n. subsp. Honolulu Marbor.
Fig. 15--Mitra ticaonica ragras n, subsp. Type. Hilo. 46790.
Fig. 16. Mitra lugutris honoluluensis n. subsp. Type. 46793.
Fig. 17.-Mitra walkikosis n. sp. Type. 46788.
lig. 18.—Modiolus matris n. sp. Type. 47193.
Fig. 19.-Mitra emersoni n. sp. Type. 46804.
Fig. 20. - Vitra langfordi n. sp. Туре. 46805.
Fig. 21.-Mitra thaanumima n. sp. Type. 46810.

Fig. 2.- Mitra ostergaurdi n. sp. Type. 46770.
Fig. 29.-Milra kamchameha n. sp. Type. 46793.
Fig. 24.-Cardium thamumi n. sp. Type. 47179.
Fig. 25.-Vexilhm remium n. sp. Туре. 116983.
Fig. ©6. - I'exillam tarben litakia m. subsp. Type. 4676:3.
Figs. 27, 2s.-Strombus ostergaterdi n. sp. Type and paratype. 74549.
Figs. 29, 30.-Murex pele P'ils. Type and paratype.
Fig. 31.-V exillum thaanumi n. sp. 46820.

## A COLOMBIAN PUPILLID SNAIL.

```
BY IlENRY A. PILSBRY.
```

Among other interesting mollusks collected ly Messrs. Morgan Helard and J. A. G. Rehn during their recent visit to Colombia, there were specimens of a peculiar snail of the family Pupillide, which may be described as follows.

Gastrocopta colombiana n. sp. Figs. 1-4.
The shell is thin, faintly brown tinted, subeylindric, but tapering very slowly from the last whorl, composed of $51 / 2$ strongly convex whorls, the last whorl somewhat flattened dorsally, with a slight impression over the imer part of the lower palatal fold. Faintly striate. The aperture is squarish-oval; peristome thin, well expanded and reflected, continuous across the parietal wall, but very shortly adnate ihere. The angulo-parietal lamella reversed $y$ -


1
Figs. 1, 2.-Gastrocopta colombiana, enlarged aperture and front view of type. Fig. 3.-Columella and parietal wall seen from below, the peristome above, showing: $e$, columellar lamella; $p$, parietal, and $a$, angular lamellae.
Fig. 4.-Inside of the palatal wall, the peristome on the right. $s$, suprapalatal fold; $u$, upper palatal; $l$, lower palatal, and $b$ basal folds.
shaped, the angular sinuous, emerging to the lip edge, parietal arcuate, higher, emerging much less. Columellar lamella strong, lunate, the inner half descending, outer horizontal. Within the outer lip there is a small, high, suprapalatal fold and a larger, more immersed upper palatal. Lower palatal fold is very long, somewhat immersed, oblique and indistinetly binodose in front, its upper end continued inward as a slender ridge, then enlarging into a high, stout fold. The basal fold is transverse, weakly bilobed.

Length 2, diameter 09 mm .
Puerto Columbia, dept. Atlantico, Colombia, on limestone hills. Morgan Hebard and J. A. (. Rehn, 1920. Type and paratypes no. 46634 A. N.S. P.

While this species of the subgenus Immersidens is somewhat similar to $G$. cochusensis, $G$. delluma and other North American snails of the same subgenns, it differs remarkably in the palatal folds, the upper heing doubled, probably hy division of a primitively single upper palatal, and the lower fold enters so deeply that its full structure can be understood only by breaking out the palatal wall, as in fig. 4.

A weak-toothed form of Castrocopta scmetis (Cild.,) referable to (i. s. rirser (Pfr.), was found in the same locality.

## STATISTICAL OBSERVATIONS ON THE TEXAS FEVER PARASITE.

BY HOWARD CRAWLEY.

The study herein deseribed was based on material obtained from two cows, Nos. 1025 and 1031, of the series of the Experment Station of the United States Bureau of Animal Industry. These, being so-called northern animals, were susceptible to Texas fever, and were both inoculated with this disease by infestation with infectious seed ticks on June 27, 1913. Cow No. 1031 died on July 10, and a ceries of preparations was obtainel shortly after death from the heart muscle, the liver, the spleen, and the kidney. Cow No. 1025 died Joly 11, and a set of smears was obtained from the heart muscle.

The morphology of the Texas fever parasite, for which the correct name appears to be Babesin bowis, has been described a number of times and is in consequence a matter of common knowledge. This phase of the biology of the organism was therefore not stuthed, but since the material obtamed, especially from Cow 1031, was rich in parasites and parasitized cells, a statistical investigation was undertaken. This had to do, first, with the relative numbers of parasitized and non-parasitized cells; second, with the number of individual parasites in each parasitized cell; third, with the varying conditions found in the several organs of Cow 1031; finally, a count was made of the parasites occuring free in the preparations. The exact significance of these latter is somewhat problematical, since, theoretically, they may either represent clements escaped from a blood cell, or merely what remains after the blood cell has been destroyed. The latter supposition seems the more probable, since these parasites, like those within the cells, may occur cither singly or in multiple form. Indeed, the fact that these apparent free parasites occur in multiple form rather suggests that they are still lying in some remant of the blood cell which does not stain. The impression received from an examination of this material is that these "free" parasites have no especial significance, and are to be placed in the same category as those still lying in intact blood cells.

The smears were fixed in atcohol and stained with Ciemsa. The methorl of study was very simple. A small squate was cut on a
round cover glass with a diamond, and placed in the eye-piece of the microseope. The square marked out a smatl region in the smear and all the cells in this region were then taken into account. These regions were selected wholly at random, in fact, without heing first seen. The only restriction was that those eases where the blood cells were very closely erowded were not used.

Taking up first the ratio of parasitized and non-parasitized cells, the counts made gave the following results:

Table 1.

| Cow 1031 | Parasitized cells | Non-parasitized eells | Total |
| :---: | :---: | :---: | :---: |
| Heart. | 45633 | 4083 | 8646 |
| Kidney. | 767 | 464 | 1231 |
| Spleen. | 348 | 2495 | 2843 |
| Liver. . | . 1048 | 1646 | 2694 |
| Totals | 6726 | 8688 | 15414 |
| Cow 1025 |  |  |  |
| Heart. | . . 250 | 3732 | $33 \times 2$ |

Reducing the above to percentages we obtain:
Table 2.

| Cow 10.31 | Parasitized | Non-parasitized |
| :---: | :---: | :---: |
| Heart. | . 52. ${ }^{\text {p per rent. }}$ | 47.2 per cent. |
| Kidney. | . 62.3 | 37.7 |
| Liver. | . 38.9 | 61.1 |
| Spleen. | . 12.2 | 87.7 |
| Totals | 43.64 | 56.36 |
| $\text { Cow } 1025$ | 6.30 | 93.70 |

The first distinction to be noted is that between the two cows. In 1031, at least as regards the heart, the split is about even, there being practically as many parasitized as non-parasitized cells. On the other hand, in Cow 1025, the ratio is roughly I to 15 . This cow emrvived for one day longer than did 1031, and this may be the sxplanation, but a much more precise study than was made woukd be necessary to elucidate this problem.

Turning our attention to Cow 1031, it is easily seen that there is a marked distinction between the conditions in the different organs. The heart, kidney, and liver may be grouped, although the differences between them are too great to be aceredited to a mere acci dental variation. It may also be noted that the liver shows a lower ration of parasitized cells than does either the heart or kidney. This is in contrast to what occurs in infections with trypanosomes, these
parasites tending to persist in the liver after they have disappeared from other organs. At last this is stated to lee the condition foumd post mortem.

But the very low pereentage of parasitized cerls present in the spleen, only 12.2 per eont, as against the general pereentage of 43.64 in this cow is very rearly significant. It is usual to aseribe to the spleen a hemolytic function, and we appear to have an example of it here. The assmmption is that the colls would themselves be destroyed, and along with them their contained parasites. In the case in point, however, it is necessary to assume that the parasitized eells are destroyed more easily than those which are still intact, but this is something which woukl be anticipated. The presence of the piroplatem in the cell would in all probability render it more susceptible to any destructive influence.

In the parasitized celts, the number of parasites per cell ranges from one to sis, the following table showing the coment:

## Table 3.

Parasites per Cell

| Cow 1031 | 1. | d. | 9. | 4. | 5. | 6. | Total. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heart | $35: 37$ | 53.54 | 247 | 151 | 4 | 1 | 9294 |
| kidney. | 1237 | 30.5 | 20 | 5 | 0 | 0 | 1567 |
| Liver. | 2:372 | 315 | 10 | 4 | 0 | 0 | 2701 |
| Spleen. | 1301 | 85 | 2 | 1 | 0 | 0 | 1389 |
| Cow 1025 |  |  |  |  |  |  |  |
| Heart. | 1317 | 1394 | 29 | 22 | 0 | 0 | 2762 |
| Totals | 9764 | 745 | 308 | 183 | 4 | 1 | 17713 |

Reducing the above to percentages, we obtain:

$$
\text { Table } 4
$$

| Cow 10.31 | 1. | 2. | 3. | 4. | 5. | 6. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heart | 35.06 | 57.61 | 2.66 | 1.62 | . 04 | . 01 |
| Kidney. | 7S.94 | 19.46 | 1.20 | . 32 | 0 | 0 |
| Liver | 87. ${ }^{2}$ | 11.66 | . 37 | . 15 | 0 | 0 |
| spteen | 98.67 | 6.12 | 14 | . 07 | 0 | 0 |
| ( 0 w 1025 |  |  |  |  |  |  |
| Heart | 47.65 | 30.47 | 1.05 | . 80 | 0 | 0 |
| Totals | 55.12 | 42.08 | 1.74 | 1.03 | 02 | . 01 |

It is perhaps desirable to mention what at first glance looks like a diserepancy in the data. For example, in Table 3 there are given 2762 parasitized cells from the heart of Cow 1025, whereas in Table 1 this cow is credited with only 250 parasitized setls. This merely means that in the two cases the results were based on different counts. Thus, in the data given in Table 1 the cells were merely
scparated into those that were parasitized and those that were not. It was found much easier to handle the material in this manner and the rlata given in Table 3 were based on a wholly separate set of ohservations from those given in Table 1. It is, however, believed that in ohtaining the results set forth in Tables 1 and 2 , the number of cells counted is large enough.

Turning our attention now to Tables 3 and 4 , the percentages obtained from the slides taken from the hearts of Cows 1025 and 1031, respectively, are probably not far enough apart to warrant any conclusions, but a sharp distinction is to be seen between the findings in the different organs of Cow 1031. Thus, whereas, in the heart there were only some 38 per econt of the single parasites, this perecontage rises to nearly 94 in the case of the spleen. It has already been suggested that the low percentage of parasitized cells in the spleen may be explained by supposing that the parasitized cell is more easily destroyed than that not parasitized. If this be so it would be consistent to suppose that as the mumber of parasites present increases, the invaded cell becomes more and more readily destroyed. For, since the parasite must enter the cell as a single organism, the multiplicative stages are indicative of a more prolonged occupancy, which in its turn is correlated with a greater ramage to the cell. Moreover, two or more parasites occupy a greater volume than one, and this also wotld render the cell more liable to destruction. It is in support of this explanation that the liver stands next to the spleen both in regard to the proportion of parasitized cells and in the proportion of those which contain but a single parasite. These figures at least suggest that the liver is not a favorable environment for Babesia.

In addition to the above, a number of the so called "free" parasites were comnted, the results being given in Tables 5 and 6 . This could not be done with the spleen, which may be due either to the fare that the smears from this organ are never so clean as those from other situations, or to the fact that, as suggesterl, the parasites are here more quickly destroyed. The talles follow:

Table 5.

| (1)w 1031 | 1. | $\therefore$ | 3. | 44. | 5. | $f$. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 carl | 623 | 10.97 | 38 | 39 | 0 | 0 | 1757 |
| Kidnoy | 1044 | 223 | 4 | 4 | 0 | 0 | 1275 |
| Liver | 262 | 2 S | 0 | 0 | 0 | 0 | 290 |
| ( 0 小 10-3 |  |  |  |  |  |  |  |
|  | 304 | 512 | 12 | 20 | 2 | 1 | 8.51 |
| Totals: | 22:3 | 1500 | S1 | (i.) | $\because$ | 1 | 1170 |

Changing these figures to percentages we obtain:

$$
\text { Table } 6
$$

| Cow 1031 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heart. | 35. 46 | 60.16 | 2.16 | 2.22 | 0 | 0 |
| Kidner. | 81.89 | 17.49 | . 31 | 31 | 1 | 0 |
| Liver | 90.34 | 9.66 | 0 | $1)$ | $1)$ | 0 |
| Cow 1025 |  |  |  |  |  |  |
| Heart | 35.73 | 60.17 | 1.11 | 2.35 | . 23 | . 11 |
| Totals | 233. 51 | 43.61 | 1.29 | 1.51 | 0.5 | 03 |

If Table 6 be compared with Table 4 it will he observed that there is a quite close accord so far as Cow 1031 is concerned. With regard to Cow 1025, however, there is a noticeable smaller percentage of the single forms. It is also to be noted that whereas in Table 3 there are a good many more parasites in the three stage than in the four, that this is reversed in Table 5.

Finally, as regards the number of parasites in each group, Tables 7 and 8 combine both those present in the refls and those which were apparently free.


Reducing to the usual percentages we get:

| Cow 1031 | 1. | 2. | 3. | 4. | 5. | c. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heart | 37.64 | 2S. 01 | 2.58 | 1.72 | . 04 | 01 |
| Kidney | 80.26 | 15.55 | . 84 | . 32 | . 0 | 0 |
| Liver. | ss. 07 | 11.47 | . 33 | .13 | 0 | 0 |
| Spleen. | 93.67 | 6.12 | . 14 | . 07 | 0 | - |
| Cow 1025 |  |  |  |  |  |  |
| Heart. | 44.87 | 52.75 | 1.13 | 1.16 | . 06 | . 03 |
| Totals | 54.82 | 42.37 | 1.65 | 1.12 | . 03 | . 01 |

The percentages of Table 8 run very close to those of both Tables 4 and 6 , wh|ch was of course to be expected. It may be of interest to note that of ncarly twenty-two thousand cases there were only six groups of five and two groups of six.

With regard to the shape of the paired parasites, they were either approximately round or approximately piriform. Of 741 cases noted, in 406 the parasites were round, in 335 piriform. It may be mentioned, however, that the parasites fomm in smears of the organs made post-mortem are always smatler and rounder than those in smears made from the peripheral blood of the living cow. To the best of my knowledge, the only author who has emplasized this fact is Theobotel smith.

## AMERICAN DERMAPTERA OF THE MUSEUM NATIONAL D'HISTOIRE NATURELLE, PARIS, FRANCE.

BY MORGAN IIEBARD.
The series here treated was recently forwarded for determination by Monsieur Lueien Berlant, of the Paris Musemm. Though including but one homdred amd seven specimens, the collection has been found to have represented in it a number of little-known as well as indescribed forms, well worth reporting as a contribution to the knowledge of the American Dermaptera.

The series has been returned to the Paris Museum, with the exception of a few duplicates now in the collection of the author, deposited at The Academy of Natural Sciences of Philadelphia.

Thirty-six species are represented. Of the new species described, one is from Guatemala, three from French Guiana and one from Argentina.

## PYGIDICRANIDAE. <br> PYGIDICRANINAE.

Pygidicrana bivittata Erichson.
1s48. Pygidicrama bivittata Erichson in Schomberg, Reisen in Brit. Gimiana, III, p. $579 . \quad[B r i t i s h ~ G u i a n a$.
St. Jean du Maroni, Prench Guiana, IV to V, 1914, 1 juv.
The present determination is made with some uncertainty, as the immature example before us (length, exclusive of forceps, 11.3 mm.) has the pronotum heavily suffused with blackish, being pale only in a medio-longitudinal line and along the lateral and caudal margins. The difference from the original deseription may be due to individual intensification of color pattern, or an undescribed species may be represented.

The head, mesonotum, metanotum and abdomen are black, except the four proximal abrlominal tergites, which are bufty in a broad median section. The limbs are buffy, with the femora suffused with black ventrad on their cephalic faces. The forceps are long ( 3.7 mmi.), straight and sleuder, subadjacent to their sharply incurved and acute apices, with internal margin microscopically serrulate.

Pyragra fuscata serville．
18：31．I＇lfagrat fuscala Serville，Amm．Sci．N゙at．，XXII，p．B4．［Freneh （iniana．］
st．Jean du Maroni，French Guiana， 1 of， 1 juv．St．Laurent du Maroni，French Guiana， 1 © ．Nouveau Chantier，French Guiana， 1 juv．

Pyragra brasiliensis（＂ray）．
1S32．Forficula brasiliensis（iray in Gitfith，Anim．Kingd．，JV，p．1st， pl．78，fig．2．［13razil．］
（＇urityba，Parana，Brazil， $1 \sigma^{\text {h }}$ ．San Ignacio，Misiones，Argen－ tina， 1 of．

Pyragropsis paraguayensis（Borelli）．
I904．I＇yragra paraguayensis Borelli，Bohl．Mus．Zool．Anat．Comp．Inive Torino，XIX，No．479，p．1．［ $\sigma^{7}$ ，\＆；Asmomon，Lnque and Villa Rica， Paraguay；Caiza mad Mission of tguairenda，Bolivia；Corumbá，Brazil．］

Villa Lutecia，San Ignacio，Misiones，Argentina，I to IV，1910， 1 \＆， 1 juv．

## LABIDURIDAE．

ENJIALNEN゙IN゙AE．
Esphalmenus lativentris（Philippi）．
1sti3．Forficula lutiontris Philippi，Zaitselar．gesam．N゙aturwiss．，NXI， p．217．［o7， 9 ；Province of Valdivia，Chile．］
Province of Aconcagua，（hile，（José N．Thomas）， 2 q．

## PSALINAE

Psalis americana（Beauvois）．
1817．Forficula americana Beamvois，Ins．rece．Afr．Amér．，1r．16．5，Orth．， pl．NJV，fig．1．［San Domingo．］
Port－au－Prince，Haiti，3 $\boldsymbol{o}^{7}, 3$ 오 ．Havana，Cuba， 1 와
Euborellia jane ${ }^{\text {rensis（Dohnn）．}}$
1s64．F［orcimella］jameirensis Dohm，stett．Ent．Zait．，XNV，p．2sis．［Rio de Janciro，Brazil．\}

Bahia，Brazil， 1 juv．${ }^{1}$

## Euborellia minuta（Caudell）．

 of Aroyo and Mayagnez，Porto Rion．］
Mavana，（＇uba， $10^{8}, 1$ 우․

[^104]
## Euborellia annulipes (II. Lucas).

1857. Forficelisa anmlipes II. Luras, Bull. Sor. Lnt. France, (2), V, 1). LAXNIV. [Jardin des Plantes, Paris, France, (probably intronduced).]

Montevideo, Uruguay, 2 . $\%$.
Euborellia peregrina ( M ioberg)
1904. Anisolathis pereqrimn Mjoberge Ent. Tidsk. Storkhohn, 1904. p. 1:31. [卆; Stockholm, Sweden, introlured from St. Duna, Matto (imoson, Brazil.]
St. Laurent du Maroni, French (iuiana, NII, 1 \&. Nouvean ('hantier, French Guiana, XII, 1 of

The two females at hand agree in all important features with the original description. We woukd note that the cephatic tibiae, in addition to being well supplied with hairs distad on all but the dorsal surface, have the distal margin rentrad armed with a very closely placed fringe of chactiform spines; these, due to the size of this sedies, being more conspicuous than in specimens of the other species of Euborellie at hand.

Length of body (exclusire of foreeps) 16.9 and 17.8 ; greatest width of head, 2.6 amd 2.8: length of pronotum, 2.7 and 2.7 ; cephatic width of pronotum, 2.3 and 2.6 ; caludal width of pronotum, 2.7 and 3 ; length of forceps, laterally 3.3 and 3.7 . donsally 2.8 and 3 mm.

For the type female the total length is given as 23 , the length of the forceps as 3 mm .

Euborellia scudderi (Bormans).
1900. Ps [alis] scudderi Bormans, Ann. Mus. (iv. Stor. Niat. (ionovia, (2), XX, p. $449 . \quad[8:$ Puerto 14 de Mayo, Vper Paraguay (now in Bolivian Chaco); Olivenza, Amazon River (Brazil).]
St. Jean du Maroni, French (iuiana, V, $1 \circ$.
Length of body 10 , length of pronotum 1.3 , length of tegmen 2.2 , length of exposed portion of wing 1.6 , length of forceps 1.7 mm .

This specimen has fully developed tegmina and wings, hut agrees so closely with material in the Philadelphia Collections which we believe to represent this species, showing a varied development of the organs of flight, that we make the present assigmment fecling assured that we here have to deal with a species which develops a remarkably wide range of tegminal and wing variation.

The present specimen agrees closely with a female from Porto Velho, Rio Matera, Brazil, ${ }^{2}$ except that in that specimen the tegmina and exposed portions of the wings are not as elongate. Both of these specimens have the femora more generatly and not as contrastingly darkened as the specinens having short tegmina and no
${ }^{2}$ Recorded by Rehn as P'salis sp. Trans. Am. Ent. Soc., XLII, p. 219, (1916).
apparent wings at hand. In addition they are slightly more robust, with shorter and more truncate pronotum than the specimens recorded by Rehn from Parí, Brazil, ${ }^{3}$ but agree fully in these respects with the original deseription, as well as with specimens from Chanchamayo, Peru, before us, which show even greater tegminal reduction than the Pará individuak.

Labidura riparia (Pallas).
1773. Forficula ripuria Pallas, Reise Russischen Reichs, H, Buch 2, Anhang. p. 727. I $0^{7}$; shores of Irtysh (Irtin) River, western Siberia.]

Pio de Janeiro, Brazil, $10^{7}$.
Labidura xanthopus (stai).
1855. F[orficelisa] xuthopus stial, Ofv. Vet. Akat. Förh., XII, p. 34s. [Rio de Janciro, Brazil.]
Sin Ignacio, Nisiones, Argentina, III and IV, Iq. Tucuman, (border of Rio Chilimayo), Argentina, 2 $\frac{\text { P }}{}$ Icaño, Santiago del Estero, Argentina, 2 \& .

The females from the last locality alone have the wings visible and fully developed. These have the pronotum proportionately smatler and distinctly more slender than the others.

## LABIIDAE.

SPONGIPHORIN゙AE.
Purex formosus new speries. (Plate Xlli, figs. 1 and 2.)
This handsome speries appears to be widely distinct from the other known forms of the gentus, agreeng in certain features of coloration more closely with brumneri (Bormans), from the upper Amazon, than with the others.

The male pygidimen, though more highly specialized and much more decelivent, recalls the type developed in Tostox brunncipennis (herville), (see plate XIII, fig. 3).

The male forceps show a mond weaker curvature than is developed in several species of Purex and are distinctive in having a heavy modian and smatler uncinate proximal tooth on the ventro-intermal margin.

Type-or; (iourdonville, French (iuiana. October. [Paris Mucolim.]
size medimm, form shender. Head depressed, broadly convex surface botwern eyes showing two small and weak impressions,

[^105]sutures obsolete; very weak but distinct depressions rum from the eyes toward the middle of the caudal margin of the occiput; cheeks almost as long as eyes, caudal margin of occiput very broadly and weakly concave. Antennae with first joint three times as long as distal width, enlarged in distal three-fifths; second joint very small; third joint three-fifths as long as first; fourth slightly shorter; succeeding joints increasing regularly in length and slenderness distad. Pronotum small, three-quarters as broad as head, longer than wide, lateral margins almost straight and showing an almost imperceptible divergence caudad, caudal margin rather strongly convex; surface of prozona weakly convex and showing a faint medio-longitudinal linear sulcus, other portions deplanate except narrowly toward the lateral margins where they are obliquely raised. Tegmina very wide at shoulders where their combined width is slightly less than twice the pronotal width, their length over twice that of pronotum, narrowing evenly caudad, with caudal margins weakly oblique. Wings fully developed, exposed portion nearly one-third as long as tegmen. Abdomen widening moderately to distal portion, glands of second and third tergites moderately prominent. Ultimate tergite very slightly produced between forceps, caudal margin laterad weakly concave and very weakly oblique, mesad straight, transverse. Between the base of each arm of the forceps and the transverse portion of the caudal margin, this tergite is inflated, weakly convex, being depressed about these areas externally and in the entire median area between them. Pygidium almost perpendicular, as long as wide, lateral margins straight and parallel, latero-distal margins weakly concave, oblique to the minute medio-distal portion which is produced in a minute bi-denticulate projection, the angles formed by the lateral and latero-distal margins also each produced in a slightly larger denticulation. Foreeps feebly divergent in proximal fourth, thence almost straight to near the incurved apices, moderately heavy proximad, tapering gently to apices; dorsal surface deplanate to near distal portion, with delicate rounded ridge bordering the external margin; internal surface flattened, unarmed except for a small ventro-proximal uncinate tooth, with apex directed caudad, and just before the middle with a heavy and moderately large triangular ventral tooth, directed meso-ventrad. Caudal margin of penultimate sternite transverse. Caudal metatarsus with ventral surface well supplied with fine hairs, combined length of two succeeding joints about three-quarters that of metatarsus.

Length of body $8^{4}$., greatest width of head 1.25 , length of pronotum .95, length of tegmen 2.1, greatest width of abdomen 1.7, length of forceps 2.8 mm .

Head blackish chestnut brown. Antennae with first two joints prouts brown, succeeding joints paler, buckthorn brown, deepening rapidly to mummy brown, which is the color of the seventh to tenth joints (remaining joints missing). Pronotum and limbs immaculate ochraceous-buff tinged with tawny. Tegmina chestnut brown, showing weakly the paler pronotal coloration at the shoulders and distad, with a small oval of the same coloration mesad, this oval half on the tegmina and half on the exposed portions of the wings and as long as the tegminal width at that point (compare brumneri), remaining exposed portion of wings chestnut brown. Abdomen dorsad russet tinged with einnamon-brown distad, except laterad about the glands where it is blackish chestnut brown. Forceps russet tinged with cimnamon-brown.

The type of this graceful little insect is unique.

## Vostox punctipennis (Stål)

1860. Forficula punctipermis Stål, Kongl. Svenska Freg. Eugenie's Resa, Ins., p. 304. [ $\sigma^{7}$ : Rio de Janeiro, Brazil.]
Icaño, Santiago del Estero, Argentina, $1 \sigma^{7}$.
Stal's punctipennis has been placed under IV . brumneipennis (Serville) by Burr. The specimen before us represents a species very close to brunneipennis but readily distinguished by a number of features. Though Stal's description of punctipennis does not give the most important of these, we believe that the species represented by the specimen at hand is the same, and in consequence we restore the name punctipennis.

Compared with material of brunneipennis from the United States, the present male is seen to differ in the following respects. Cheek much shorter, two-fifths instead of two-thirds as long as eye. Exposed portion of wings about half as long as tegmen, instead of distinctly less than half that length. Pygidium with marginal flange narrower, lateral points more acute and distal truncation narrower. Median and caudal femora and tibiae heavily suffused with brown mesad.

Length of body 8.3 , length of pronotum 1.7 , caudal width of pronotum 1.6, length of tegmen 2.9, length of exposed portion of wing 1.5 , length of forceps 3.8 mm .

[^106]Spongovostox berlandi ${ }^{5}$ new species (Plate XIII, figure 4.)
This species bears Iostox brunneipennis (Serville) a general superficial resemblance. The males at hand are, however, readily distinguished by the cheeks, which are longer than the eyes; the tegmina, which are keeled; the femora, which are suffused proximad; the pygidium of generally similar form but more declivent, with disto-lateral oblique margins much more transverse and not at all emarginate, and forceps, which show a greater inward curvature distad and have the larger tooth of the internal margin proximad, not at the end of the proximal third.

Type: or'; Guatemala (ity, Guatemala. [Paris Museum.]
Size medium for the genus, form weakly depressed. Head showing a moderate depression from eyes to median point of caudal margin, occipital lobes prominent, so that cheeks are louger than eyes and caudal margin of occiput broadly angulate emarginate, sutures obsolete. Antennae with first joint moderately large, broadening so that the distal two-thirds are the more ample; second joint minute; third nearly as long as first, but much more slender; fourth half as long as third, slightly longer than greatest width; fifth intermediate in length between third and fourth; sixth as long as third. Pronotum very slightly longer than caudal width, smooth, showing a very weak medio-longitudinal linear sulcus, lateral and caudal margins showing a very slight convexity, the former showing a very feeble convergence cephalad; prozona tumid, metazona weakly concave proximo-laterad and very feebly convex mesad, elsewhere deplanate. Tegmina smooth, with a very fine but distinct and percurrent keel along the external margin of the dorsal surface, transverse truncate caudad. Wings fully developed, exposed portion about two-fifths as long as tegmen. Abdomen with dorsal surface polished but microscopically punctulate, fourth and fifth tergites showing laterad a weak rounded carina, these tergites there slightly produced caudad. Ultimate tergite very weakly depressed meso-caudad, caudal margin almost evenly transverse. Pygidium very strongly declivent, with surface in a broad triangular dorsal area deplanate, thence convex; lateral margins fitting forceps tightly, latero-caudal margins very strongly convergent, almost transverse to a broad, weakly produced median portion which is truncate. Forceps elongate, showing a very feeble curva-

[^107]ture, which is stronger toward their incurved apices, with a few irregular blunt denticulations proximad on the internal surface particularly along the ventral margin, of which that on the ventral margin opposite the apex of the pygidium is the largest. Penultimate stemite simple, its caudal margin transverse, showing a subobsolete concavity. Caudal metatarsus with ventral surface well supplied with hairs and with an internal fringe of lamellae, second joint very short.

Length of body ${ }^{6} 8$. and 7.8, width of head, 1.6 and 1.6 , length of pronotum 1.7 and 1.7 , width of abdomen 2.3 and 2.3 , length of forceps 3.3 and 3.4 mm .

Coloration. Entire insect glabrous. Head and pronotum dark chestnut brown, the pronotum laterad becoming chestnut brown, mouthparts and proximal antennal joints ochraceous-tawny, the antennae thence cinnamon-brown. Tegmina chestnut brown. Exposed portions of wings warm buff, except distad and along sutural margins where they are chestnut brown. Abdomen dark chestnut brown. Forceps proximad and distad russet, becoming very dark mesad. In the paratype the russet invades the ultimate tergite. Limbs honey yellow, the femora suffused with prouts brown proximad.

In addition to the type, a paratypic male bearing the same data is before us.

## Spongovostox asemus ${ }^{7}$ new species (Plate XIII, figure 5).

This species is in many respects a smaller replica of S. berlandi here described. From that species it is readily distinguished by the tegmina which are not keeled, the more slender abdomen and distinctive male pygidium and forceps which latter have a heavier denticulation of the internal surface with a more conspicuous proximal tooth.

The form of the pygidium agrees closely with that figured by Burr as of Spongovostox ghilianii Dohrn var. ${ }^{8}$

We believe that the material examined by Burr represents one or more distinct species. Burr's characterization does not agree with the original description of ghilianii ("pygidium or longe productum, postice rotundatim") and his type designation "Venezuela (Moritz, Typus von Dohrn)" consequently does not hold. As part at

[^108]least of the material which was before Burr may represent the present species, we feel it advisable to fix the name ghiliamii. We do so, therefore, by selecting the type locality of Labia ghilianii Dohrn as Pará, Brazil. The material which Dohrn had from that locality was collected by Chiliani and it is reasonable to suppose was that actually used in describing the species named in honor of that eollector.

The heavier structure and broad head and pronotum distinguish this insect from the speeies Microvostox, in addition to its having a more deplanate head with evident sutures.

Type: or'; San Ignacio, Misiones, Argentina. [Paris Museum.]
Size small for the genus, form moderately depressed. Head very weakly depressed in area bounding the very weakly defined occipital lobes, cheeks longer than eyes, eaudal margin of oeciput almost evenly transverse, sutures very fine but distinct. Antennae with first joint more elongate and slender than in berlandi, broadening so that the distal half is somewhat the more ample; second joint minute; third three-quarters as long as first, slender, cylindrical; fourth joint slightly over half as long as third, slightly longer than greatest width; fifth joint intermediate in length between third and fourth; sixth joint as long as third. Pronotum smooth, showing a very weak medio-longitudinal sulcus, length equal to width, lateral margins almost straight, parallel, eaudal margin showing a very slight convexity; prozona tumid, metazona almost deplanate, showing a very feeble convexity meso-proximad. Tegmina smooth, without trace of keel, truncate caudad. Wings fully developed, exposed portion about half as long as tegmen. Abdomen as in berlandi except that it is more slender. Ultimate tergite rather heavily punctulate except in meso-proximal section, with a weak medio-longitudinal depression, caudal margin almost evenly transverse. Pygidium strongly declivent, dorsal surface tapering with a strong convexity to apex, which is briefly produced and truncate. Foreeps much as in berlandi except that the denticulations of the internal surface are heavier both dorsad and ventrad, extending to distal portion, with proximal tooth median in vertical position and projecting as a small quadrate process, higher than wide, above the pygidial apex on eaeh side. Penultimate sternite with lateral portions of eaudal margin convex, these forming mesad a rounded obtuse-angulate emargination.

Length of body 7.5 , width of head 1.1 , length of pronotum 1 , greatest width of abdomen 1.7, length of forceps 2.6 mm .

Coloration. Entire insect glabrous. Head mummy brown, mouthparts and proximal antennal joints dresden brown, the antennae deepening to prouts brown. Pronotum mummy brown shading to buffy caudad, lateral portions buffy. Tegmina mummy brown, paler toward the external margins. Exposed portions of wings broadly suffused with mummy brown along sutural margin and distad, narrowly suffused with the same color along distal portion of costal margin, remaining portions buffy. Abdomen cinnamon brown, deepening to dark chestnut brown proximo-laterad on proximal portions of tergites, the ultimate tergite entirely of this color. Pygidium and forceps dark chestnut brown, the latter paling to dresden brown in proximal portion. Limbs suffused buffy.

The type is unique.
Microvostox parvus (Burr)
1912. Spongovostox parvus Burr, Ann. k. k. Naturhist. Hofmus. Wien, XXVI, p. 336, fig. 12. [ $0^{3}$ : Tapanokoni, Dutch Guiana (type); Georgetown, British Guiana.]
Cartago, Costa Rica, 1600 meters, (C. Picado), $1 \sigma^{7}$.
The present specimen agrees fully with Burr's figure and very short analysis except in size. ${ }^{9}$ Length of body 5.3 , length of pronotum, 6 , caudal width of pronotum .7 , length of tegmen 1.2, length of exposed portion of wing, 6 , length of forceps 1.8 mm .

It belongs to the same species group as bilineatus (Scudder) and pygmaeus (Dohrn), differing from the genotype, alter (Burr), and other forms of that species group, in the more flattened head, which shows a closer approach to the type developed in the genus Spongovostox.

Microvostox chopardi ${ }^{0}$ new species (Plate XIII, figures 6 and 7.)
This species is apparently closely related to Borman's Spongiphora similis. ${ }^{11}$ Compared with the original description of the male of that species, the male before us is found to differ in the smaller size, broader pale coloration of the lateral and caudal margins of the pronotum, longer exposed portion of wings, entirely blackish limbs

[^109]and in the pygidium and forceps which, though of very similar general structure, show important differences. The former being merely subconical mesad in the convex area, the latter in having the internal margins entirely marmed distad.

Type: or; Nouveau Chantier, French Guiana. August. [Paris Museum.]

Size medium, form moderately broad, for this genus which includes very small species. Head depressed and showing weak but distinct depressions which run from the eyes toward the middle of the caudal margin of the occiput, cheek one and one-half times as long as eye, caudal margin of occiput showing very broad and weak concavity, sutures obsolete. Antennae with first joint twice as long as distal width, other joints missing. Pronotum with length equal to width, very slightly broader cephalad than caudad, showing a weak medio-longitudinal sulcus and on the prozona a lateral sulcus on each side; lateral margins very broadly convex and very weakly convergent caudad, rounding broadly into the very broadly convex caudal margin. Tegmina slightly over twice as long as broad, caudal margin transverse. Wings fully developed, exposed portion nearly half as long as tegmen. Abdomen with dorsal surface polished and punctulate laterad except ultimate tergite which is smooth, shows a very feeble median depression and has its caudal margin transverse. Pygidium moderately declivent, surface convex becoming subconical mesad with a minute medio-longitudinal carina rumning down the caudal face of this production, lateral margins weakly convex, with a minute tubercle on each side just beyond the median point where these margins no longer touch the forceps, distal margin transverse, as broad as basal margin, with a small rounded tooth at each disto-lateral angle. Forceps straight, slightly divergent and weakly tapering in proximal half, with a few microscopic tuberculations on the internal face opposite the pygidium, inbent at end of proximal half, the distal half more slender but gently swollen meso-distad, almost straight to the slightly incurved apices and wholly unarmed. Penultimate sternite and tarsi wholly concealed by mounting slip.

Length of body 5.2 , greatest width of head (across eyes) .9, length of pronotum .75 , greatest width of abdomen 1.5 , length of forceps 1.3 mm .

Head dull black, proximal antennal joints dresden brown. Pronotum shining blackish brown, broadly margined laterad and caudad with translucent whitish. Tegmina shining blackish brown, show-
ing a longitudinal buffy tinge on the shoulders. Exposed portion of wings shining, blackish brown toward sutural margin, remaining half warm buff. Dorsal surface of abdomen shining blackish, showing a rich chestnut tinge mesad. Forceps shining blackish brown with a rich chestnut tinge. Limbs shining blackish brown.
The type of this remarkable species is unique.
Microvostox ghilianii Dolurn.
1864. L[abia] ghilianii Dohrn, Stett. Ent. Zeit., XXV, p. 424. [o7, \&: Para, ${ }^{12}$ (Brazil); Cayenne, (French Guiana); Venezuela.]
Charvien, lower Maroni River, French Guiana, V, $10^{7}$.
From examination of this specimen, which appears to agree fully with the description of ghilianii, we find M. schwarzi (Caudell) to be a very closely related species, differing only in its decidedly broader form. As a result the pronotum of the present species is distinctly smaller in proportion to its body length, while the tegminal width is contained in the tegminal length three times. In males of schwarzi the tegminal width is contained in the tegminal length about two and one-half times. The male genitalia in these species show no diagnostic differences whatever.

These species, as well as the genotype, M. alter (Burr), belong to a species group having the head more strongly and evenly convex, strongly suggesting the type usually encountered in the genus Labia.

> LABIINAE.

## Labia arcuata scudder.

1876. Labia arcuata Scudder, Proc. Bost. Soc. Nat. Hist., XVIII, p. 257. [ $o^{\star}$; Vassouras, one hundred miles north of Rio de Janeiro, Brazil.]
St. Jean du Maroni, French Guiana, III, $10^{7}$. St. Laurent du Maroni, French Guiana, XII, $10^{7}, 1$ 우.
Labia dorsalis (Burmeister)
1877. F[orficula] dorsalis Burmeister, Handb. Ent., II, abth. II, pt. I, p. 754. [Colombia.]

Guadeloupe, West Indies, $1 \delta^{\text {T}}$. St. Jean du Maroni, French Guiana, V, 2 o $^{7}, 2$ ㅇ. St. Laurent du Maroni, French Guiana, I and XII, $2 \sigma^{7}, 2$ of.
Prolabia unidentata (Beauvois)
1805. Forficula midcritata Beauvois, Ins. Recueil. Afr. Amér., p. 165, pl. XIV, fig. 3. [San Domingo.]
Port au Prince, Haiti, $1 \sigma^{\text {r }}$. San Jaun, Porto Rico, $1 \circ$.

[^110]
## SPARATTIN゙AE.

Sparatta semirufa Kirby (Plate X111, figure 8.)
1896. Sparatta semirufa Kirby, Jn. Linn. Soc. London, Zool., NXV, p. 528 , pl. XX, figs. 4 and 4a. [[0]]; Igaurassu, near Pernambuco, Brazil.]
French Cuiana, $10^{7}$. St. Jean du Maroni, French Guiana, 1 ㅇ. St. Laurent du Maroni, French Guiana, $1 \circ$.

These specimens agree closely and are clearly conspeeific with the specimen from Parå, Brazil, referred tentatively to semirufa by Rehn. Kirby's deseriptions of species of this genus are thoroughly unsatisfactory as to sex ${ }^{13}$ and details of genitalia, hence determinations can not be made with full satisfaction until the material from which that author described semrufa has been studied. Kirby's figures agree fully with the females before us, the genitalia of the male at hand are here figured.

All of the specimens we have seen are apparently paler than Kirby's material. In these the pronotum, limbs, proximal portion of tegmina and proximal portion of abdomen are immaculate ochraceous buff, the head and antennae tinged with rosy.

Parasparatta guyanensis new species (Plate XIII, figures 9 and 18).
This species is related to the Mexican P. dentifera (Rehn) and the Brazilian and Paraguayan $P$. nigrina (Stål). ${ }^{14}$ With the former it agrees in abdominal coloration and form of male pygidium, with the latter in antennal aud limb coloration.

The male foreeps bear two teeth on each branch, as do those of nigrina, but the position of these teeth is not the same, being more nearly that of the two more distal teeth in dentifera.

In the female, unlike in females of dentifera, the pygidium has the ventral lamellate area completely visible from above, while the foreeps lack a proximo-internal lamellation.

Type: $0^{7}$; St. Jean du Maroni, French Guiana. April and May. [Paris Museum.]
Size and form as in dentifera. Head greatly depressed, conventional heart-shaped, the caudal margin rather strongly coneave; eyes very small, sutures obsolete. Antennae with first joint nearly four times as long as broad; second joint minute; third joint slightly

[^111]over half as long as first; joints immediately succeeding increasing strongly in length distad. Pronotum as typical of genus, flattened, longer than broad, briefly produced cephalad to form a collar which is delimited by a delicate transverse sulcus, this produced area not as long as in Sparatta, with lateral margins very feebly convex and nearly parallel and caudal margin moderately convex. Tegmina and wings fully developed, thickly supplied with minute hairs. Dorsal surface of abdomen similarly hairy, except ultimate tergite which is smooth dorsad and has a U-shaped impressed line. Pygidium as in dentifera, a produced shaft, three times as long as basal width, with dorsal surface convex, the lateral margins weakly convex, so that it is narrowest meso-proximad, the disto-lateral angles produced in acute points, the distal portion between these produced caudad in a square median lamella. Forceps hairy, with shaft almost straight to distal third where it curves evenly and rather weakly inward to the flattened acute apex; internal surface concave in slightly over proximal two-fifths, the ventral margin there supplied with minute and irregular denticulations terminated by a large tooth directed meso-caudad, armed at end of proximal four-fifths with another similar tooth which, however, is dorsal in vertical position and is directed mesad. Penultimate ventral sternite with caudal margin weakly bilobate. Caudal metatarsus as long as third tarsal joint, supplied ventrad with an external row of widely spaced minute spines and an internal very close fringe of spinuliform hairs.

Allotype: of ; same data as type. [Paris Museum.]
Agrees closely with male except in the following features. Ultimate abdominal tergite longer, its median length equal to its caudal width. Pygidium small, with dorsal surface convex and very strongly declivent, the distal (caudal) portion produced in a lamella shorter than wide, the lateral margins of this lamella straight and divergent in brief proximal portion, thence concave and showing no divergence to the apices, caudal margin straight mesad, convex to the acute apices laterad; these margins resultantly forming a minute proximal denticulation on each side and two large, slightly recurved horns at the disto-lateral extremities.

Head (except mouthparts), pronotum, tegmina, exposed portions of wings and dorsal surface of abdomen (except ultimate tergite) blackish, shining, showing a very slight brown tinge. Mouthparts dresden brown. Antennae entirely blackish brown. Ultimate tergite of abdomen tawny (ochraceous-tawny in recessive specimens), shining, the dorsal surface of the abdomen having, in some
specimens, the preceding distal tergites tinged with tawny distad as well. Pygidium and forceps mars brown. In one recessive example with pygidium light ochraceous-tawny and forceps mars brown, in another with pygidium and forceps ochraceous-tawny. Limbs in intensive specimens blackish mummy brown, paling slightly to prouts brown distad. In the majority of examples the femora and tibiae are mummy brown paling to dresden brown distad, the tarsi dresden brown.

| Measurements (in millimeters) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Length of body | Length of pronotum | Width of pronotum | Length of tegmen | Length of forceps |
| St. Jean du Maroni. | Type..s. | 1.2 | . 9 | 1.8 | 2.9 |
| Charvien. Paratype. | .....7.8 | 1.25 | . 9 | 1.8 | 3. |
| Nouveau Chantier. type............. | Para- <br> 7.9 | 1.25 | . 9 | 1.8 | 3.2 |
| St. Jean du Maroni | ${ }^{\text {Allo- }} \text {. . .S. } 1$ | 1.2 | 95 | 1.8 | 2.7 |
| Charvien. Paratype. | 8. 3 | 1.3 | 1. | 1.8 | 2.8 |
| Nouveau Chantier. type............... | Para- $.7 .2$ | 1.2 | . 9 | 1.8 | 2.9 |

Coloration is apparently of considerable specific diagnostic value in this and allied species, but can not safely be used without full consideration of the structural details, a frequent fault in past literature.

In addlition to the described pair, we have before us eight paratypes from French Guiana. Of these one pair are from Nouveau Chantier, taken in May; one pair from Charvien, taken in October and November, the other four females without additional data.

## Parasparatta dentifera (Rehn)

1901. Sparatta dentifera Rehn, Trans. Am. Ent. Soc., XXVII, p. 218. [ $\%$; Orizaba, Vera Cruz, Mexico.]
Guatemala City, Guatemala, 2 오
One of these specimens is smaller than the other, with specialization of the forceps less decided. Such variation is frequently encountered in this and allied species.

## FORFICULIDAE.

## FORFICCLIN:IE.

Skalistes lugubris (Dohun)
1862. Forficula lugubris Dohrn, Stett. Ent. Zeit., XXIII, p. 230. [Cordoba, (Vera Cruz) Mexico.]
Sierra de Tlalpujahua, near Toluca, Mexico, Mexico, 2400 to 2700 meters, $10^{7}, 1$ juv. Vicinity of Guadalajara, Jalisco, Mexico, XI, 1 ㅇ.

## Skalistes inopinata (Burr)

1900. Aneistrogaster inopinata Burr, Ann. Mag. Nat. Hist., (7), VI, p. 85. [o ${ }^{7}$, i, ; Costa Rica.]

Antigua, Department of Sacatepequez, Guatemala, 1400 meters, $1 \sigma^{\top}, 1$ ¢.

The length of the forceps in the present male is 3.7 mm .
Though inopinata has been referred by Burr to synonymy under S. lugubris (Dohrn), we believe it to be a very distinct species. We have not as yet seen Mexican material referable to $S$. cornuta (Burr), which name may prove a synonym of inopinata.

Doru lineare (Eschscholtz)
1822. Forficula linearis Escholtz, Entomogr., p. 81. [Santa Catharina, Brazil.]

Huejotitlan, Jalisco, Mexico, 1700 meters, VI, VII and XI, 3 б', 1 ㅇ. Guatemala City, Guatemala, $2 \sigma^{7}, 2$ ㅇ. Curityba, Parana, Brazil, 2 ㅇ. Gran Chaco, Argentina, 2 ㅇ. Villa Lutecia, near San Ignacio, Misiones, Argentina, I to IV, 2 o', 5 오. Icaño, Santiago del Estero, Argentina, XII, 5 o $^{7}, 6$ ㅇ.

Two of the females from Villa Lutecia lack apparent wings. These specimens have the pronotum slightly larger, but in other respects agree perfectly with the other females of the series.

## NEOLOBOPHORINAE.

Neolobophora ruficeps (Burmeister)
1838. F[orficula] ruficeps Burmeister, Handb. Ent., II, abth. II, pt. I, p. 755. [Mexico.]

Antigua, Department of Sacatepequez, Guatemala, 1400 meters, 1 ㅇ.

This specimen has the tegmina impresso-punctate..$^{15}$
OPISTHOCOSMIINAE.
Neocosmiella atrata Hebard.
1919. Neocosmiclla atrata Hebard, Trans. Am. Ent. Soc., XLV, p. 96, pl. XVI, fig. 4. [ $\sigma^{\text {T }}$ : Pamplona, Santander, Colombia.]
Pamplona, Santander, Colombia, $10^{7}$.
The specimen here recorded agrees fully with the type of this interesting species.

[^112]

HEBARD: AMERICAN DERMAPTERA.

## Explanation to Plate XIII.

Fig. 1.-Purex formosus new species. ob, type. Gourdonville, French Guiana. Dorsal view of ultimate tergite, pygidium and forceps. ( $\times 7^{1 / 2}$ ).
Fig. 2.-Purex formosus new species. $0^{7}$, type. Gourdonville, French Guiana. Dorsal view of pygidium. (Greatly enlarged.)
Fig. 3.-Vostox brumeipennis (Serville). 07. Arcadia, Louisiana. Dorsal view of pygidium. (Greatly enlarged.) (For comparison with figures 2 and 4.)
Fig. 4.-Spongorostox berlandi new species. of type. Guatemala City, Guatemala. Dorsal view of pygidium. (Greatly enlarged.)
Fig. 5.-Spongorostox asemus new species. $0^{*}$, type. San Ignacio, Misiones, Argentina. Dorsal view of ultimate tergite, pygidium and forceps. ( $\times$ $121 / 2)$
Fig. 6.-Microrostox chopardi new speries. ${ }^{\circ}$, type. Nouveau Chantier, French Guiana. Dorsal view. ( $\times 81 / 2$ ).
Fig. 7.-Microrostox chopurdi new species. or, type. Nouveau Chantier, French Guiana. Dorsal view of pygidium. (Greatly enlarged.)
Fig. 8.-Sparatta semirufa Kirby. $0^{77}$. St. Jean du Maroni, French Guiana. Dorsal view of ultimate tergite, pygidium and forceps. ( $\times 71 / 2$ ).
Fig. 9.-Parasparatta quyanensis new species. or, type. St. Jean du Maroni, French Guiana. Dorsal view of ultimate tergite, pygidium and forceps. ( $\times 101 / 2$ ).
Fig. 10.-Parasparatta guyanensis new species. of allotype. St. Jean du Maroni, French Guiana. Dorsal view of ultimate tergite, pygidium and forceps. $(\times 101 / 2)$.

## ORDOVICIAN BASALTS AND QUARTZ DIABASES IN LEBANON COUNTY, PENNSYLVANIA ${ }^{1}$

SAMUEL G. GORDON.

As no Paleozoic volcanic rocks have hitherto been discovered in Pennsylvania, the occurrence of an Ordovician basalt flow in Lebanon County is of interest, especially in view of the fact that deep seated intrusives occur in the Octoraro schists of similar age to the southeast. ${ }^{2}$

The basalts and quartz diabases described below occur in the Lebanon quadrangle, just south of the Swatara Creek, between Jonestown and Lebanon (see Fig. 1). The area is undertain by a thick series of Martinsburg shales, whose outcrop has been considerably extended in width by folding and faulting. Intrusive in it are sills and dikes of quartz diabase, to the northwest of which lie the interbedded basalt flows.

Martinsburg Formation. The Martinsburg formation consists of a thick series of gray, greenish, and reddish shales, with interbedded sandstones, and thin beds of dolomite,-the last notably in the vicinity of the Swatara. A white sandstone is exposed on the Bunker Hills. Slaty cleavage has been developed in the shales. The formation has been overturned, dipping steeply toward the southeast throughout this area.

In the vicinity of the intrusive diabases, the shales have been metamorphosed to dense dark grayish, greenish, or reddish rocks containing veins of epidote or vesuvianite. Such rocks are well exposed just south of the Swatara, 2 miles southeast of Jonestown, and one half mile east of Bunker Hill Station in a cut on the Jones-town-Lebanon road. Under the microscope the rocks are seen to be aggregates of orthoclase, tremolite, epidote, vesuvianite, chlorite, quartz, and rounded zircons.

[^113]Quartz Diabase. The quartz diabases form minor wooded ridges, rising above the country occupied by the softer shales in which they occur as sills and dikes. The exposures consist chiefly of enormous boulders, many of which have travelled slowly down the hillsides, and have been collected from the fields by the farmers to form stone

fences. When the need for road metal arose, these rocks, locally known as "iron-stone," have been crushed.

The quartz diabase (Fig. 2.) is typically a fine-grained, dark greenish black or mottled black and gray rock, which may become


Fig. 2.-Quartz diabase, three miles northwest of Lebanon. (Slide $1, \times 15$ ). Structure ophitic; latbs of labradorite, euhedral augite, with interstitial graphic intergrowths of quartz and orthoclase.
Fig. 3.-Edge of fragment of basalt in glass, separated by a vein of calcite. One mile southwest of Jonestown. (Slide 19, $\times 15$ ).
Fig. 4.-Basalt glass, amygdaloidal; one mile southwest of Jonestown. (Slide $20, \times 25)$. Shows perlitic structure in the glass, and a calcite amygdule (white).
Fig. 5.-Amygdule of quartz in basalt; one mile southeast of Jonestown. (Slide $27, \times 25)$.
All in ordinary light.
quite fine-grained at the contacts. Three miles northwest of Lebanon, the quartz diabase is porphyritic, with black augite phenocrysts up to 1 cm . in length, in labradorite.

The texture is diabasic or ophitic. The labradorite is quite zoisitized, and the associated augite is more or less altered to chlorite, all stages of the alteration from incipient changes along cleavage cracks to complete chloritized individuals being shown in thin section. Graphic intergrowths of quartz and orthoclase form interstitial aggregates. Magnetite and pyrite are the primcipal accessory minerals, the latter being recognizable in most hand specimens.

Basalt. The basalts are exposed along the Swatara Creek, on the north slope of Bunker Hill, along the railroad cut one half mile north of Bunker Hill Station, and in the road cut one half mile east of Bunker Hill Station.

The rock is chiefly a brecciated or tuffaceous amygdaloidal basaltic glass, indicating that the flow occurred under water on the floor of the Ordovician sea. The brecciated character is well shown on weathering, which also causes the rock to assume a vesicular appearance due to the weathering out of the calcite amygdules.

Freshly broken specimens show angular fragments of dense black glass in an aggregate of greenish glass and calcite anygdules. On weathering the rock becomes dark yellow. The most typical basalt occurs two miles southeast of Jonestown, where it forms a dense crystalline rock, with amygules of calcite, or more rarely, of quartz.

Under the microscope, the basalt breccia (Figs. 3-5) is seen to be composed of greenish glass ( $n<1.60$ ) showing perlitic structure, which exhibits strain effects or incipient crystallization under crossed nicols. The glass is filled with inclusions, and larger fragments of crystalline basalt, consisting of aggregates of plagioclase laths and augite in a dark glassy groundmass, similar to the crystalline basalt, two miles southeast of Jonestown.

## ADDITIONAL NOTES ON THE DEAL METEORITE.

BY F. J. KEELEY.

In the Journal of the Academy of Natural Sciences of Philadelphia, 1830, Volume VI, page 182, Mr. Robert Vaux and Dr. Thos. M'Euen described the fall of a small stone meteorite at Deal, Monmouth County, New Jersey, August 14, 1829, 11.30 P. M., a portion of which they presented to the Academy.

In 1851, Shepard, who had received part of this specimen from the Curators of the Academy, published some further information, including a determination of its specific gravity, which he reported as 3.25 to 3.30 .

At the present time, but thirty grams of this meteorite is known to be in existance, hence, sufficient material for adequate investigation is not available without too greatly impairing the specimens, but it seems desirable that at least some additional description be recorded.

The Academy's specimen, which weighs 20.8 grams, and therefore constitutes over two thirds of the known material, consists of one end of a stone that may have been originally three times as large. Its length is about 35 mm ., width 25 mm . and thickness 15 mm . and on more than half of it, the original surface is preserved, rounded and pitted by fusion, and covered with a dull black crust averaging .3 mm . in thickness.

The broken surface, of about 30 mm . by 25 mm ., when examined with the microscope, is extremely fine and uniformly grained and of pale pearl gray color, penetrated by a few narrow black veins which are continuous with the crust and branch and anastomose. Scattered through the mass are innumerable minute grains of metal and sulphide, the largest of the former not exceeding 1 mm . and few being over .2 mm ., while the grains of sulphide average even smaller with no tendency to form larger nodules. There are also a few small black particles and a slight rusty tint is visible over much of the surface but no exudations of molysite to indicate the presence of lawrencite. A careful study of the entire broken surface under a binocular compound microscope with magnification of about 40, failed to reveal a single chondrule or larger cerstalline mass, but near one end there is a spherical depression about 1.5 mm . in diameter which looks as if it might have been the matrix of a chondrule.

Unless this very slight character is accepted as sufficient, there is nothing visible on the specimen to justify classing it as a chondrite. On the broken face was a partly separated spall, a few millimeters in diameter, which was removed, and from it a rather unsatisfactory section prepared for mieroscopical examination. This seetion, which would have been entirely too small to represent the meteorite generally, had not the preliminary examination demonstrated a remarkable degree of uniformity throughout the stone, shows a fine granular texture made up of minute angular fragments of enstatite and olivine, mostly too small for satisfactory determination. There are two or three individuals in the section which exceed . 5 mm in length, but many less than .1 mm . A portion of one of the veins passes through the section. It is black and opaque, and about .02 mm . thick throughout most of its length, with several lenticular thickenings, which generally include grains of metal and sulphides. Numerous small grains of metal are likewise scattered among the silicates, together with even more plentiful, but smaller, grains of troilite or pyrrhotite. A few opaque black grains, with some indications of crystal faces, are probably chromite.

The most interesting feature exhibited by the section, is the presence of not inconsiderable quantities of a glassy transparent substance that may be identified as maskelynite, resembling in all respects that of Alfianello. This mineral, which has a refractive index so close to that of balsam that the ground surfaces appear as if perfectly polished, generally occupies irregular spaces between the magnesian silicates and sometimes holds small grains of the latter as inclusions, but in one case takes the form of a nearly circular grain suggesting a rounded crystal, with its interior clouded with numerous small inclusions. When examined in ordinary light under high powers, using good objectives and carefully adjusted illumination, there oceasionally appear in it systems of fine parallel lamina, sometimes intersecting. On applying polarized light, such spaces generally show faint double refraction, somewhat similar to that of leucite. Not the comparatively strong clouble refraction of large leucite crystals, but more closely resembling that of the small crystals in fine grained Vesuvian lavas, which likewise sometimes show similar parallel laminations with ordinary light. These laminations might be interpreted as indicating incipient polysynthetie twimning in a feldspathic material, but the resemblance shown by all the characters of maskelynite to those of leucite, seems to furnish some justification for Groth's opinion that the two minerals are closely related.

## MARINE MOLLUSKS OF HAWAII-XIV, XV.

by henry a. pilsbry.
Part of the Hawaiian tectibranch mollusks were considered in part II of this series. ${ }^{1}$ Others were found in the Bryan and Thaanum collections, and in material taken in 1913. Probably further additions can be made when material collected this year is assorted; but as the following revision has already been held some time awaiting the preparation of illustrations, it is thought best to publish at this time.

Very little is known of the ecology of Hawaiian Tectibranchs. Collectors of living specimens should note their stations and such conditions as can be observed.
Little additional information has come to hand on the Aplysioid and Notaspidian Tectibranchs since the publication of Manual of Conchology, Vol. XVI, in which the known species are described.

Key to Hawaiian genera of cephalaspidian Tectibranchs.

1. Shell an open, flat spiral, wholly concealed, the mantle concrescent over it..................................... Aglaja Ren.
Shell not covered by the mantle................................ . . . 2
2. Spire exposed...................................................... . 3

Spire deeply sunken or concealed............................... 6
3. Spire more or less conic, the apex not depressed................ 4

Spire convex or level, apex not projecting above the following whorl.
.Hydatinider.
4. Larger shells, with a strong columellar fold or a basal truncation; spiral grooves punctured when present...................... 5
Smaller, white shells with a weak columellar fold and without punctured spiral grooves; apical whorl tilted on edge. Acteocina Gray.
5. Columella having a strong, bilobed fold above, concave below; imperforate Pupa Bolt.
Columella straight, with a small fold above and obliquely truncate at base; shell oval, with close spiral sculpture; perforate.

Bullina Fér.

[^114]6. Summit narrowly, deeply umbilicate........... . . . . . . . . . . . . . . 7

Summit imperforate or barely perforate...................... . . . 8
7. Shell larger, in large part smooth, marbled with brown. Bullaria Raf.
Shell small, spirally sculptured throughout, often banded. Mnestia Ads.
8. Axial margin above the summit folded. . . . . . . . . . . . . Atys Helbl. Axial margin not folded above. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9. Columella abruptly truncate anteriorly............ Dinia Ads.

Columella slightly concave, indistinctly truncate anteriorly; shell having incised spiral lines throughout.

Haminca, subg. Liloa.
Columella broadly, strongly concave, not truncate. . . . . . . . . . . . 10
10. A thin, broad, spiral plate posteriorly on columella; shell green, shaped like a split bean................. Smaragdinella Ad. No such columellar plate; light colored........................ . . . . 11
11. Summit produced in a narrow spout; shell very fragile, showing the interior in a basal view. .................. . Volvatella Pse. Summit not produced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
12. Summit rather narrow, not impressed over the axis; aperture very ample below .Scaphander Montf. Summit rounded, impressed in the center. Hamincea T. \& K.

## ACTEONIDEF.

Three species of the genus Pupa Bolt. (Solidula F. deW.) have been found. P. nitidula (Lam.), a widely dispersed species, is known from the Islands by specimens in the collection of the Academy from Dr. Newcomb. It has not been found by any recent collector, so far as I know. It seems possible that Newcomb's shells were from Polynesia. In his time many shells from the southern islands were coming into Honolulu in the missionary schooner Morming Star, and sold there for the benefit of missions.

1. Nearly white; smooth save for a group of spiral grooves at the base; spire very short, apex mamillar; columellar fold very heavy and prominent. Length 17, diameter 9 to 10 mm . $P$. nitidula (Lam.)
Spirally grooved at summit and below middle of last whorl, or throughout; spire conic

2
2. Deeply grooved spirally throughout; $9 \times 4$ to $11.5 \times 5.1 \mathrm{~mm}$.
$P$. thaanumi Pils.

Grooves narrower, less deep; obsolete or weaker and more widely spaced above the middle of last whorl; 13 to 14 mm . long. Fossil, around Pearl Harbor...... P. pearlensis, n. sp.

Pupa thaanumi Pils.
Further specimens of this species confirm the characters of color and sculpture, but show that it sometimes reaches a larger size; and some specimens are broader with relatively shorter spire. Two from Haena, Kanai, measure:

Length 11.5 , diameter 5.1 mm .
Length 10, diameter 4.7 mm .
Kauai: Haena. Oahu: Honolulu; Mokapu Point.
Pupa pearlensis n. sp. Figure 1.
The shell is similar in shape to $P$. thatmomi. It differs by the larger size, the narrower, less deeply cut spiral grooves; above the middle of the last whorl several grooves are lacking in typical specimens; when present they are weaker and more widely spaced than in thaanumi. No color is visible in the fossil specimens.

Length 13.7, diameter 7.2 mm . Type. Near Waipahu.
Length 14, diameter 6.8 mm . Near Aiea Station.
Length 11.5, diameter 6 mm . Near Aiea Station. Young.
Oahu: fossil in superficial deposits along the Oahu Railway in the neighborhood of Pearl Harbor. The type lot is from the bank of a taro patch on the west side of the railroad about half a mile west of Waipahu Station. Also found east of Aeia Station, 6-10 feet above level of the Eastern Loch (Pilsbry), and at Hoaeae (W. A. Bryan).


Iig. 1.--Pupa pearlensis, n. sp


Fig. 2.-Bullina scabra solida, n. subsp

## Bullina scabra solida n. sulxp. Figure 2.

Differing from $B$. scabra by its solidity, the lip being far thicker. The fold near the upper end of the straight columella is much stronger. It agrees with $B$. scabra in the sculpture of close, punctate, spiral furrows, and in the color, two red lines dividing three zones which have thin, waved axial red lines.

Length 12.3 , diameter 7.7 mm .
Oahu: Honolulu, type locality; Kauai: Haena (Wm. A. Bryan).
The ordinary thin form of $B$. scabra I have not seen from the Islands. Even the young shells of the Hawaiian race are thick.

## Bullina vitrea Pease.

Bullina vitrea P's., P'. Z. J. 1860, p. 19 ; repeated in Man. Conch. XV, p. 177. Sowerby, Conch. Icon. XVIII, pl. 1, fig. 4.

Described as thin, fragile, with or without one or two gray bands composed of two or three black lines, and with no axial lines. Otherwise appears rather similar to $B$. scabra. Not yet found by modern collectors.

## ACTEOCINIDAE (Tomatimidae). ${ }^{2}$

Acteocina sandwicensis (Pse.)
Honolulu, Oahu; Haena, Kauai.
Acteocina honoluluensis Pils.
Honolulu and Haleiwa, Oahu; Lisiansky I.

## Acteocina hawaiensis Pils.

Off Maui, near Lahaina.

## BULLARIIDAE.

Bullaria peaseana (Pils.)
Bulla peaseana Pils., Man. Conch. IV, p. 348.
This mottled species, very similar to the West Indian B. occidentalis, is generally spread in the islands. Specimens are before me from Oahu: Haleiwa, Kaneohe Bay, Kailua. Maui: Lighthouse Point, Lahaina. Hawaii: Hilo.

SCAPHANDRIDE.
Scaphander (Bucconia) alatus Dall, and Scaphander (Sabatia) pustulosus Dall, are from deep water, 234 to 298 fathoms, near the Hawaiian Islands.
Smaragdinella viridis (Q. \& G.)
Oval, thin, green, with a thin, broad plate on the columella. Koko Head, Oabu, collected by Wm. A. Bryan; taken also by earlier collectors in the Islands, but not definitely localized.

[^115]Dinia compitorum n. sp. Figure 3.
The shell is white, oblong, perforate, rounded below, truncate and imperforate at the summit. The surface has faint traces of spiral striae, and at the base there are several distinct spirals. The lip is inserted in the center above, rising but little; outer lip is quite


Fig. 3.-Dinia compitorum n. sp.
slightly curved, and in adults is rather strongly thickened within. In profile view it recedes decidedly above, very little at the base, and curves forward very slightly elsewhere. The columella projects obliquely towards the right and is abruptly truncate at base.

Length 7.1, cliameter 4 mm .
Oahu: Honolulu, type locality and Haleiwa (Pilsbry, 1913); Paumalu and Mokapu Point (Bryan). Maui: off Mala Bay, near Lahaina in 25 to 75 feet. (Thaanum and Langford).

Dinia has been considered a subgenus of Atys but it cliffers by lacking a spiral fold in the lip ascending from the summit, and by the very strong truncation of the columella, characters sufficient for generic separation. There are now four Indo-Pacific species.

## ATYS.

Five of the six species of Atys now known from the Islands were figured in the first paper of this series, 1917, pp. 216-218. A fossil (Pleistocene?) species, probably extinct, is now added.

Key to the Hawaizan species of Atys.

1. Columella rather thin, mainly vertical or weakly sigmoid, the edge but narrowly reflected (Atys proper).

2
Columella thicker, its edge reflected, bounded by an arcuate groove (Subgenus Aliculastrum Pils.). . . . . . . . . . . . . . . . . . . . . . 3
2. Diameter about two-thirds of the length; rather inflated, often striped; $15.5 \times 10 \mathrm{~mm} . .$. . . . . . . . . . . . . . . . . A. kuhnsi Pils. Smaller, less inflated, white.............A. semistriata Pse.
3. Apical part of the lip biangulate at summit; diameter slightly less than half the length
Lip not biangulate at summit; diameter about half the length;

4. Shell conspicuously widest below the middle...A. debilis Pse. Shell widest about the middle.......... . . . . . . . . . . . . . . . . . . . . . . 5
5. Surface axially weakly plicate; $5 \times 2.3 \mathrm{~mm} . .$. . A. costulosa Pse. Without noticeable axial sculpture; $10.6 \times 4.8 \mathrm{~mm}$. A. cornuta Pils.

## Atys semistriata Pease.

Proc. A. N. S. Phila., 1917, p. 217, fig. 5.
The specimen in the Pease collection which I figured is larger than any others seen, few of which exceed 10 mm . in length. Typically it is distinctly wider below the middle, but sometimes the greatest diameter is nearly median. There is also variation in the number of engraved lines on the lower third, which are often less numerous, perhaps ahways so in the immature shells. Specimens seen are from Kauai: Hanalei River and Haena. Oahu: Waikiki beach, Kahala and Waimanalu. Maui: Kahului dunes (Bryan). Kahoolawe (Pilsbry).
Atys semistriata mua n. subsp.
The shell is decidedly compressed near the summit which is narrower than in the typical form.

Honolulu (Pilsbry, 1913). 116611 A. N. S. P.
Atys semistriata fordinsulae $n$. subsp.
Greatest diameter about median; about 10 spiral grooves above and below. Length 10.5, diameter 6.3 mm . Ford's Island, in Pearl Harbor (W. A. Bryan).

Atys kekele n. sp. Figure 4.
The shell is oblong, widest below the middle, tapering slowly posteriorly to the rather narrow, angular vertex; outline towards the base rather strongly convex. Near the summit there are 8 or 9 spiral grooves, the lower ones widely spaced. The convex base has numerous finer and closer linear grooves. Vertex rather deeply excavated. The aperture is very narrow in the upper half, moderately dilated below. There is a strongly salient, compressed fold in the sloping upper margin of the lip. Columella rather thick, nearly straight, joining the basal margin in a short curve. Basal margin retreating.

Length 19, diameter 9.5 mm .
Length 17 , diameter 8.5 mm .
Oahu: on a taro patch embankment west of the Oahu railroad, about a half mile west of Waipahu station, Pilsbry, 1913. Type 116610 A. N. S. P.

Only found fossil in earth dug out of the taro field probably Pleistocene. It is related to A. cylindrica (Helbl.), but in the present species the upper part of the aperture is narrower, the excavation of the summit deeper with angular margin; the base is more effuse, and the columellar callus is more raised, the groove bounding it being wider.


Fig. 4.-Atys kekele, n. sp.


Fig. 5.-Mnestia pusilla (Pse.)

Mnestia pusilla (Pease). Figure 5.
Haminea pusilla Pse., P. Z. S. 1860, p. 20; description repeated in Man. Conch. XV, p. 364.

This species was described by Pease in his earlier manner, Linnean in brevity. It is not present in his collection in the M. C. Z., but his allusions to its small size, solidity, cancellated surface and umbilicate apex apply well to a small shell which has been taken in several localities.

The shell is solid, nearly cylindric in the middle, contracting rather abruptly towards the ends. It is whitish with an ill-clefined white band near the base, some indistinct brownish markings above it. The surface has strongly impressed spiral lines throughout, the intervals cut by much finer, shallower, close axial impressed lines, hardly visible except under the microscope. The aperture is very narrow in the upper two-thirds, but dilated somewhat below. The outer lip rises well above the vertex, which is narrowly, deeply umbilicate; outer margin rather straightened. Columella nearly straight and having a very slight fold.

Length 5, diameter 2.4 mm., largest specimen.
Oahu: Honolulu, Mokapu Point and Pammalu (W. A. Bryan); Haleiwa (Pilsbry). Maui: off Kaanapali in 60 feet. (Thaanum and Langford).

This species is smaller than Mnestia bizona (A. Adams), and does not have the distinct bands of the typical form of that species; but the relationship appears to be very intimate.

The shore specimens are bleached quite white.
Mnestua has been generally considered a subgenus of Cylichna. Many authors consider the latter name to be a homonym of Cylichmus (Insecta), and moreover, Mnestia differs from Cylichna by its well developed spiral sculpture; its soft parts are unknown. For the present it appears best to treat the two groups as generically distinct.

## AKERIDÆ.

## HAMINEA.

Hamincea ${ }^{3}$ appears divisible into three sections by the structure of the columella. These are defined in the following.

## Key to Hawaiian species of Haminca.

1. Columella deeply concave, the reflected columellar margin crescentic, rather thick, its edge separated from the whorl by a furrow. Section Haloa, new section, type H. crocata Pse. . . . . . 2
Columella but slightly concave, the columellar edge free, narrow, and but little reflected, an umbilical crevice behind it. Shell narrow (diameter less than half the length in our species); sculptured with engraved spiral lines throughout. Subgenus Liloa, new subg., type $H$. tomaculum Pils .4
Columella concave, its reflected margin rather broad, thin, at the edge closely appressed to the whorl. Section Hammoa proper, type Bulla hydatis; not known to be represented in the Hawaiian fauna.
2. Apex perforate........................... . . H. sandwichensis Sowb.

Apex imperforate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Oval; diameter two-thirds the length or less; yellowish when fresh; less than 14 mm . long.................. H. crocata Pse. H. galba Pse.

[^116]More globose; white; 14 to 17 mm . long. H. aperta oahuensis Pils.
4. Diameter equalling or close to half the length. . H. curta (A. Ad.)

Diameter less than half the length
5. Nearly cylindric, elongate.................. . . . H. tomaculum Pils.

Shorter; sides distinctly convex................. H. olopana, n. sp.
Haminœa crocata Pease. Figure 6.
Oval, light ochraceous buff. The specimen figured, received from Pease, measures, length 13.2 , diameter, 8.3 mm ., but most of those seen are smaller. $H$. crocata is scarcely to be distinguished from H. galba Pse.; the latter (fig. 7 , length 11, diameter 6.8 mm .) is perceptibly less swollen, with the lip rising less at the summit; according to Pease there are differences in the shape and color of


Fig. 6.-H. crocata Pse. Fig. 7.-H. galba Pse.
the living animals. In actual practice I find the assorting of specimens far from easy. The historic examples figured are extremes and recently collected shells often fall short of the ideal form. Both forms have a close, fine, shallow and wavy spiral striation, scarcely visible except under the microscope.

Probably when the living animals are observed the conclusions of Pease can be tested, and the matter put on a sounder basis.
H. crocata is before me from Paumalu, Kailua, Koko Head and Kancohe Bay, Oahu, and Haena, Kauai. Specimens referable to H. galba from Paumalu, Honolulu, Kaneohe Bay, Oahu, and Haena, Kauai.

## Haminœa sandwichensis Sowerby.

This shell is said to have an umbilicated summit and more pointed ends. It is white, and rather similar to the preceding in shape. I have not seen it in some hundreds of Hawaiian Hamineas examined.

Hamincea aperta oahuensis Pils.
Oahu: $11 / 2$ miles east of Kahuku, Pilsbry. Additional specimens from Oahu are somewhat larger, up to 17 mm . long. They are strongly malleate or faceted around the middle.

In the section Haloa, containing the foregoing species, the columella resembles that of Bullaria or Aliculastrum.

Haminœa curta (A. Ad.) Figure sa.
Bulla curta A. Adams, Thesaurus Conchyliorum II, p. 582, pl. 124, fig. 100. Pilsbry, Man. Conch. XV, p. 368.

This species was described without locality. Specimens from Fiji collected by Andrew Garrett agree with the original figure. I refer to this species provisionally two smaller, perhaps immature, examples from Kaneohe Bay, Oahu, one of them figured. It measures, length 7 , diameter 3.5 mm . The straighter lateral outlines separate this from $H$. oiopana. It has the same sculpture as $H$. olopana, fine, clearly engraved spiral lines of which I count about 36.
H. curta was first reported from the Sandwich Islands by von Martens. ${ }^{4}$ Cooke united as synonyms certain Red Sea forms, whether correctly or not remains to be seen.

The original figure of $H$. curta measures, length 14.3 , diameter 7.5 mm . One from Fiji measures, 12.3, diameter 6.3 mm . The summit is very minutely perforate, and the lateral outlines are a trifle straighter than in the Kaneohe Bay form figured.


Fig. 8.-a, Haminara curta A. Ad. b, H. olopana n. sp.
Haminœa olopana n. sp. Figure 8b.
The shell approaches a cylindric form, but the outlines are noticeably convex. It is thin, translucent whitish with opaque white terminations. Surface scored by fine spiral lines of which I count 26 just behind the outer lip. There are additional closer ones in

[^117]the columellar-basal region. These impressed lines are very smoothly evenly engraved, widely spaced, and appear white on the translucent ground. The rounded vertex is minutely perforate. There is a fine slit behind the columellar callus. The aperture dilates below. Outer lip arches forward; basal lip receding. The columella is only weakly concave with a narrow, expanded edge, forming a long umbilical crevice; below it is slightly truncate.

Length 7.8 , diameter 3.3 mm .
Kauai: Haena (W. A. Bryan).
A less cylindric species than $H$. curta.
Haminœa tomaculum Pils.
Haminea eurta tomaeulum Pils.. Proc. A. N. S. Phila., 1917, p. 219, fig. 10.
Further study of the Hawaiian Hamineas convinces me that this form differs specifically from $H$. curta A. Ad.

The three species preceding, as well as $H$. papyrus (A. Ad.), $H$. brevis (Q. \& (r.), H. canmsiana Melv. and $H$. cuticalifera Smith, belong to the group which I have called Litoa. It is quite possible that when the animal can be examined, this group will be transferred to the vicinity of Atys. The sculpture and the form of the columella are much like Atys and unlike other groups of Hammana. Atys, however, has a fold in the axis posteriorly. Roxaniella Monts and Damoniella Iredale ${ }^{5}$ differ by having the summit umbilicate. It is barely perforate or sometimes imperforate in Liloa.

## Volvatella fragilis Pease.

Volvatella fragilis Pse., P. Z. S. 1860, p. 20; Amer. Journ. Conch. IV, p. 73, pl. 7, fig. 4. Description and figures repeated in Man. Conch. XV, p. 384.

Sandwich Islands. Not found since the time of Pease.

## HYDATINIDE.

Thin, oval, capacious shells, banded, with the spire flattened or convex. The Hawaiian species are widely ranging forms.

1. Base contracted by a furrow rumning spirally from the insertion of the columella; aperture shorter than the shell; two pink and three white zones, separated by narrow blackish bands.

Hydatina (Aplustrum) amplustre (L.).
Base not so contracted; aperture nearly as long as the shell; columella broadly concave.

[^118]2. Large, with many brown spiral lines; columellar reflection lunate, not appressed; spire level, of $31 / 2$ whorls parted by a deep suture; length 26, diameter 18 mm .

Hydatina physis staminea (Mke.)
Small, with two or three remote spiral lines and spaced, festooned
axial lines of brown; spire minute, of $21 / 2$ whorls; columellar reflection closely appressed; length 9 , diameter 6 mm ., often smaller...................... Micromelo guamensis (Q. \& G.)
Hydatina physis staminea (Alke.)
Honolulu Harbor, Oahu; Kainalu, Molokai (Wm. A. Bryan).
All of the Hawaiian specimens seen belong to this subspecies. The typical $H$. physis is larger and more globose.
Hydatina (Aplustrum) amplustre (L.)
Honolulu Harbor and Kahana, Oahu; Kailua, Hawaii (W. A. Bryan). Kahoolawe (Pilsbry).

Easily recognized by the pink and white zones bordered with wide blackish lines. One from Kahoolawe measures, length 21, diameter 15 mm .
Micromelo guamensis (Quoy \& Gaimard). Figure 9.
Hawaij: Kailua ( $\mathrm{W}^{\mathrm{m}} \mathrm{m}$. A. Bryan). Hilo (Garrett, for Bulla scripta).

This snail appears to have been collected rarely, though described long ago. Besides the peculiarities of shape and color-pattern shown in the figure it has spaced spiral series of oblong punctures, Acteon like, not easily seen without a lens. The narrow spire is level. The specimen figured measures: length 9 , diameter 6 mm . Others are smaller.

## AGLAJIDÆ.

Aglaja, better known as Doridium, appears to be well represented in the islands, though so far as I know, each species has been taken but once. Two were described by Pease under the genus Philinopsis, which appears to be the same as Aglaja.

The small shell is entirely concealed in the mantle.
Aglaja speciosa (Pease)
Above fawn, spotted and speckled with white, margins varied with blackish and yellow; sides paler; foot purplish fawn closely freckled with whitish. 3 inches long.

Seen only by Pease, whose full description of this species and A. nigra may be found in Manual of Conchology, vol. XVI. He gave only "Sandwich Islands" as locality.
Aglaja nuttalli Pils.
Uniform black-brown above, pale with faint lighter maculation below. A caudal filament. Length 40 mm .

Sandwich Islands (Nuttall). Based on an old alcoholic specimen. Man. Conch. XVI, p. 50.
Aglaja nigra (Pease)
Black, two large white spots on anterior end, two on head disc, and two on mantle lobes; sides white. Foot white, with three large black spots on each revolute side. Unknown to recent collectors.
Aglaja pilsbryi hawaiensis n. subsp. Figure 10.
Similar to A. pilsbryi Eliot, ${ }^{6}$ of the Samoan Islands, in having figure 8 shaped black marks on both cephalic shield and mantle, but the figures are heavier than in that species.


Fig. 10.-Aglaja pilsbryi hawaiensis. The markings on the parapodia are reduced to a few black spots along the lateral borders, four on each side, one being bencath; and there is an imperfect black rim on the front edge of foot. The ground color is brownish (perhaps stained by the alcohol, which has a yellowish tint). No posterior filament.

Length about 24 mm .
Hilo, Hawaii (D. Thaanum). Type 47421 A. N. S. P.

This is probably related to A. nigra (Pse.), and may possibly be a less pigmented form or race of that, though I do not think so. As Pease's species has not been figured, no close comparison can be made.

## XV. Various Gastropods and Pelecypods. MURICIDE.

Vexilla thaanumi n. sp.
Hilo, Hawaii. Types no. 127747 A. N. S. P., collected by D. Thaanum.

The shell is obovate, widest at the upper third, very solid. Surface dull, regularly sculptured with very low, rounded, cantiguous

[^119]spiral girdles parted by impressed lines, and themselves weakly striate spirally; deep brownish drab, every third or fourth girdle yellowish, or in worn shells whitish; there being 8 or 10 of these pale, narrow bands. The spire is extremely short and obtuse. The aperture is oblique, of about equal width almost throughout, blackish brown deep in the throat, becoming pale or white within the lip. The outer lip is very thick, bevelled, liver-brown, its outer edge minutely scalloped, the inner edge set with 10 or 12 small teeth. The columellar border is broadly flattened, vinaceous-brown with pale inner edge.

Length 14, diameter 9.5 mm . length of aperture 12.3 mm .
Length 13.6, diameter 9.6 mm .
The operculum is liver-brown, long and narrow, widest above, the nucleus (which is worn away) at the upper, outer extremity; the outer margin arcuate, inner margin straight.

It is near $V$. taeniata Powys, but smaller and wider in the upper part.
Murex cyclostoma baldwiniana n, subsp.
The shell is similar to $M$. cyclostoma Sowb. in having the faces of the varices cellular, in the shortly oval aperture and sculpture of strong encircling cords; but the specimens from two sources are very much smaller. There are 5 cords on the last, 2 on the penult whorl The nearly closed anterior canal is a little shorter than the aperture.

Length 8.2, diameter 5.2 mm .
Kailua, Kona coast of Hawaii (Bryan); Maui (D. D. Baldwin).
Possibly distinct from $M$. cyclostoma, which is a much larger shell; a longer series is needed to show whether the small size is constant.

## VANIKORO.

The following species of Tanikoro are now known from the Islands. For references see Smith, Proc. Malac. Soc. London, VIII, 104-117.

Vanikoro semiplicata Pease. Hilo, Hawaii; Paumalu, Oahu; Haena, Kauai.

Vanikoro imbricata Pease. Hilo, Hawaii; Kaneohe Bay, Oahu.
Vanikoro acuta (Recl.). Kameohe Bay, Oahu; Haena, Kauai. Originally described from Lord Hood's Island, on coral reefs. The Hawaiian specimens appear to be quite typical.

## Vanikoro hawaiensis n. sp.

The shell is openly umbilicate, subglobose, with small, conic, acute spire; white with the apex brown. Embryonic and nepionic 3
whorls brown, high conic, the first smooth, the others having 3 spiral cords. The next two whorls have very strong retractive ribs nearly as wide as their intervals, crossed by spiral cords which bead the ribs. On the first post-nepionic whorl I count 13 ribs; on the second there are about 9 cords, and the ribs become very low, fading out, on its last third. The last $11 / 2$ whorls have a close sculpture of slightly unequal spiral threads; lines of growth are scarcely visible. The umbilicus is funnel-shaped, rather weakly axially plicate within, its margin smooth and rounded. The aperture is oblique, semicircular, the inner border slightly concave.

Length 5.5 , diameter 5.4 mm ., $31 / 2$ post-nepionic whorls.
Hilo, Hawaii; Kaneohe Bay, Oahu; Haena, Kauai.
Type 116963 A. N. S. P.


Fig. 10-I'anikoro hawaiensis.
Vanikoro kanakarum n. sp.
Shell openly umbilicate, subglobose, with a short, conic spire and slightly obtuse apex; white, the apex brown. The embryonic and nepionic shell is semiglobose, of little more than one whorl, and smooth. Retractive ribs then set in, continuing for two whorls; their intervals are a little wider than the ribs, and crossed by about 10 spiral cords. The adult sculpture abruptly replaces this ribbed neanic stage. It consists of spiral threads, between which there are one to three finer threads. Lines of growth are scarcely noticeable. The umbilicus is funnel-shaped, slightly plicate inside, bounded by a nearly smooth rib, but slightly prominent. The aperture is semicircular.

Length 3.7, diameter $4 \mathrm{~mm} . ; 31 / 4$ post-nepionic whorls.
Haena, Kauai.
The shape of the shell, in the floating stage, differs entirely from that of I. hawaiensis. The ribbed neanic stage is longer. The type
would probably add another whorl; I think it is possibly not fullgrown; but I camot identify it with any of the species hitherto described.

## CECIDE.

In the Challenger Report, de Folin records C. sepimentum de Fol., C. crystallinum de Fol., and Strebloceras subammulatum de Fol. from Honolulu. Subsequently he added Meioceras sandwichensis de Fol.
C. sepimentum has been taken at Hilo, Hawaii, by Thaanum, abundantly at Mokapu Point, Oahu, by Bryan, and at Moomomi, Molokai by myself. S. subannulatum also occurs at Mokapu Point.

## Cæcum oahuense n. sp.

The shell is similar to C. sepimentum in form. It has an evenly convex septum. The aperture is moderately contracted. Sculpture of 40 rounded rings, hardly as wide as their intervals, and much smaller than those of $C$. sepimentum.

Length 2.2 , diameter at septum 0.38 , at aperture 0.5 mm .
Mokapu Point, Oahu.

## Fossarus ecphora n. sp.

The shell is umbilicate, white with a dark brown embryonic whorl. Sculpture of three very prominent spiral ridges and one or two minor ones on the last whorl, the upper one appearing on earlier whorls, the rest of the surface having fine spiral threads and axial striae. Spire shorter and ridges stronger than in $F$. lamellosus Montr.

Altitude 2.3 , diameter 2.5 mm .
Haleiwa, Oahu, Pilsbry, 1913.
This is evidently not the young of $F$. garrettii Pse., which has been taken at Hilo, Hawaii and Koko Head, Oahu.
$F$. multicostata Pse., has been found at Waikiki and Kaneohe Bay, Oahu.
Epitonium decussatum (Pease).
Not an uncommon species. Dr. Dall informs me that the name is pre-occupied.
Epitonium kanemoe n. sp. Fig. $11 b$.
It is very slender, imperforate, white, with sculpture of slender, recurved ribs, 8 on the last whorl, the intervals having minute axial striae and coarser, more spaced spiral threads. Whorls not quite in contact except at the ribs.

Length 10.4 , diameter 3.3 mm .; 10 whorls, the tip lost.
Haena, Kauai.
It is as narrow as E. umbilicatum (Pse.), but has fewer ribs and the spirals would not be called "remote." It is more slender than $E$. decussatum, with more delicate ribs.

Epitonium fucatum (Pse.) Fig. $11 a$.
It is broader, than Epitonium decussatum, clouded with brown in the peripheral region, with rather strong ribs, 10 on the last whorl. Interstitial sculpture and form of the whorls about as in decussatum.

Honolulu Harbor.
Length 14.5, diameter $5.8 \mathrm{~mm} . ; 7$ whorls remaining, the apex lost.


Fig. 11.-a, Epitonium fucatum b, E. kanemoe. c, E. ulu. f, E. oahuense.
Dr. Dall suggests that this may be the unfigured Scalaria fucata Pse.

Epitonium ulu n. sp. Fig. 11c.
Related to S. crispata Pse., of the Paumotu group, but having the delicate riblets much more widely spaced. There are about 21 of these thread-like riblets on the last whorl. The base is perforate; columellar lip reflected below. Aperture rather trapezoidal, the parietal callus thin, outer lip narrowly reflected. White.

Length 14, diameter 5.8 mm .; 10 whorls, the tip lost.
Hilo, Hawaii. D. Thaanum.
Epitonium oahuense n. sp. Fig. 11d.
Resembling E. turricula (Sowb.). The shell is umbilicate, rather thin, suffused and clouded with brown. Glossy, having thin riblets with a few wider ones, 14 on the last whorl; in the intervals minute, unequal engraved spiral lines may be seen. The whorls are in contact, well rounded. The aperture is shortly ovate, peristome adnate for a short distance above.

Length 14, diameter 5.3 mm. ; aperture 3.5 mm . long; 9 whorls, the tip lost.

Oahu: Honolulu Harbor and Kahana.
Epitonium perplexum (Pse.) is the largest Hawaiian species known to me, also the most generally (listributed. E. alatum (Sowb.), E. millecostatum (Pse.) and E. decussatum (Pse.) have been taken by Prof. Bryan and Mr. Thaanum. E. attenuatum and umbilicatum of Pease I have not seen. I have provisionally identified a small specimen from Waimanalo, Oahu, as E. paumotense (Pse.). The curious, solute E. hyalinum (Sowb.) is represented in Kaneohe Bay by specimens agreeing well with those from Luzon in shape, but of smaller size, the largest 8 mm . long, 4 wide, of five whorls after the slender nepionic tip; 8 ribs on the last whorl, 7 points on each rib. This small race may be called $E$. hyalinum mokuoloense.

Haplocochlias (Lophocochlias) minutissimus n. sp.
The very small shell is umbilicate, turbinate, not nacreous, white with a conic brownish spire. The first whorl appears to be smooth; on the second fine radial folds or puckering appears below the suture, becoming coarser on the following whorl. The last whorl has six strong, smooth spiral keels, narrower than the intervals, which are flat and crossed by numerous retractively axial threads, which are much narrower than their intervals. Within the umbilicus two rather small spiral cords are seen. The aperture is quite oblique, subcircular. The outer lip is strengthened by a rounded external rib or varix a short distance behind the edge.

Length 1, diameter $0.9 \mathrm{~mm} . ; 41 / 3$ whorls.
Mokapu Point, Oahu, 4 specimens.
By the well-developed varix this shell resembles Haplocochlias or Liotia. I have placed it in the former genus with doubt. It differs by the very strong sculpture and the open though not wide umbilicus, which may characterize a separate section Lophocochlias.

This is the smallest Hawaiian sea shell I have seen.

## LEPTOTHYRA. ${ }^{7}$

The following species have been reported from the Hawaiian Islands.
L. verruca Gld.

[^120]L. rubricincta Migh.
L. candida Pse.
L. (?) marmorea 'Pse' Sowb.
L. costata Pse.

Only the first two can be considered well known.
Leptothyra verruca manti, n. subsp., differs from the typical form by the black (on the beach fading to brown or olive-brown) color of the tesselation, or it may be black with whitish spots, and the smaller size, altitude 4 , diameter 3.8 mm . It is from Diamond Head, Oahu, Haena, Kauai and other places, often abundant.


Fig. 12.-Leptothyra candida percostata.


Fig. 14. $-L$ balnearii.

Leptothyra candida percostata (fig. 12) is a small, thick, white, narrowly umbilicate shell, with sculpture of 7 spiral ribs, the first radially plicate, the rest smooth, below them a broad, radially plicate border about the umbilicus. The aperture is rounded, oblique. Columella arcuate, narrow next to the umbilicus, very broad and flat at the base. Length 2.3 , diameter 2.5 mm . It differs from L. candida as defined by Pease by the solidity and coarse ribs. Has been taken at Haleiwa and Honolulu (Pilsbry) and Hilo (Thaanum).

There are sometimes interstitial threads between the ribs.
Leptothyra balnearii n. sip. Fig. 14
The shell is perforate, solid and thick, red tessellated with white (or entirely red), the first whorl white. Sculpture of smooth spiral cords, of which four in the flattened peripheral region are large; above them there is a small cord and a flattened, radially plicate subsutural band; below there are four small cords and a strongly plicate band around the unbilicus. Aperture oblique. Columella
straightened outwardly, concave within, dilated and very broad towards the base. Outer lip thin-edged.

Altitude 2.6, diameter 2.6 mm .
Off Waikiki, 25-50 fms. D. B. Langford. This species agrees partly with Pease's $L$. costata (Mani), but that is said to be "mottled and spotted with white, black and brown." It is also larger.

## Leptothyra viaria n. sp. Fig. 13.

The shell is solid, narrowly umbilicate, buff-white with small scattered olivaceous dots. Sculpture of about 5 smooth larger cords in the peripheral region, about 4 smaller ones on the base, the intervals of all finely striate spirally; above the peripheral cords there are subequal spiral threads, 7 in the type specimen; the penult whorl is angulated in the middle. Umbilicus is surrounded by a rounded, radially plicate ridge. The columella is narrow above, very much produced basally, with a broad, excavated face. Outer lip thin.

Altitude 3.7 , diameter 3.5 mm .
Honolulu, type locality, and Haleiwa, Pilsbry.
Apparently related to L. costata Pse., but differing in proportions and various other details from that still unfigured species.

Siphonaria normalis Gld.
Specimens from numerous places on all of the islands except Lanai and Niihau examined, often in large series. There are many local forms, but so far as I can see, but one species, S. normalis Gld., which varies extraordinarily in size, color and sculpture. The following names are on the Hawaiian list.
S. normalis Gld. Proc. Bost. Soc. N. H. II, 1846, p. 178; Otia Conch. pp. 12, 242; U. S. Expl. Exped., Mollusca, p. 359, pl. 30, fig. 468.
The type was a small, dark subregular form, 10 mm . long.
S. amara Nuttall, Reeve, Conch Icon., IX, 1856, pl. 7, fig. 33 ("California").

Said by Reeve to be from California, but this was a mistake. A set given by Nuttall is labelled "Atooi"(=Kauai). Carpenter has noted this in his Mollusca of Western North America.
S. funiculata Reeve, Conch. Icon. IN, pl. 7, fig. 35 (Hab. unknown). Name changed to $S$. lirata on index page, as funiculata had been used for another species.
This is the very black form.
S. muttalli Hanley, Proc. Zool. Soc. Lond., 1858, p. 152 (Ins. Sandwich).
S. crebricostata Nuttall Ms. was placed by Reeve in the synonymy of S. sipho Sowb., but it was really a Hawaiian shell., a rather large form of S. normalis.

The specimens of a colony are usually rather uniform. The finest seen are from Lahaina, length 21, height 9 mm . In Honaunau Bay, Hawaii, all seen are small, about length 10 , altitude 4.5 mm ., and they are very black (var. lirata Rve.). Further up the coast the shells are larger, often with some ribs emphasized. At Moomomi, Molokai, the cavity is some shade of chestnut, border wide, whitish with many brown rays. Similar shells occur at Honokowai, Maui, Diamond Head, etc. These shells agree best with var. amara.

On the north shore of Kahoolawe I found some very flat shells with 4 or 5 posterior ribs very emphatic (fig. 15). This may be called S. normalis form chirura. Length 10.5, alt. 2.5 mm .

All of these forms have the same dark, oblong, Nacella-like embryonic shell, with posterior apex, and all seem to fade into one another in color and sculpture, in the series of some hundreds examined.


Fig. 15.-Siphonaria normalis form chirura.
Stomatella concinna inconcinna n. subsp.
Similar to S. concinna in shape, but dull, greenish white, with some opaque white flames and sometimes a few small brownish dots on the base; these markings confined to the spiral cords. Spiral cords more or less distinctly alternating in size.
Greatest dimension 3.5 mm .
Honolulu, on the reef, Pilsbry, 1913. 3 specimens.
Heteroglypta kanaka n. sp. Fig. 16.
The shell is oblong, compressed, white, faintly freckled with tawny. The small beaks are central. Anterior part tapering, rounded at the end. Posterior part wider, obliquely truncate. Sculpture of rounded ribs posteriorly, divaricating from a line from the beaks to the lower posterior angle, curved and running to the posterior end behind, straight and rumning to the basal margin in front of the line of divarication. The rest of the surface has narrow impressed lines running obliquely backward and downward except close to the anterior end, where there is some very weak oblique corrugation,
running to the upper anterior margin. The pallial sinus is deep, extending past the beaks. The right valve has two diverging cardinal teeth, and a pink spot on the hinge margin on each side of the cardinal region.
Length 11.4, altitude 6.3 , diameter 3 mm .


Fig. 16.-Heteroglypta kanaka n. sp.
Off Waikiki, near Honolulu, 35-50 fms. D. B. Langford.
While it differs from $H$. contrarius Dh . in proportions of the shell and arrangement of the sculpture-areas, I have not found any more closely related species.
Loripes (Pillucina) Spaldingi n. sp. Fig. 17.
The shell is rather strong, rounded-oval, higher than long, very plump; white with some unevenly spaced grayish streaks along darker lines of growth-arrest. Sculpture of rather irregular but close concentric wrinkles and radial lines, which are distinct at the ends but nearly obsolete in the median part. Beaks rather prominent, median. Anterior end evenly rounded; posterior end less produced and less convex; basal margin strongly convex. Lunule small, rather deeply impressed, wider and deeper in the right valve. The internal margin


Fig. 17.-Loripes spaldingi, n. sp. is finely crenulate. Cavity of the beaks narrow and deep. There is a stout median cardinal tooth in the right valve, a prominent,
erect, triangular anterior cardinal in the left. No laterals. Anterior adductor scar elongate (shown too short in the figure).

Length 7.4 , altitude 8.5 , diameter 6.5 mm .
Oahu: Kaneohe Bay, Spalding, Thurston and Pilsbry, type locality; Paumalu, W. A. Bryan.

This little clam is related to the Japanese Lucina parvula Gld. (L. pisidium Dkr.), but it is plumper and higher. Lateral teeth seem to be entirely wanting. These species appear to represent a new subgenus of Loripes, Pillucina; L. spaldingi being the type. Shell plump, with radial sculpture, the anterior adductor scar less elongate.

Loripes is here used as defined by Dall, Proc. U. S. N. Mus. XXIII, p. 803.

## December 21.

The President, John Cadwalader, A.M., LLL.D., in the Chair. Fifty-seven persons present.

Officers, Councillors, and members of the Committee on Accounts were elected for the ensuing year, as follows:

President. . . . . . . . . . . . . . . . . . . John Cadwalader, A.M., LL.D.
Vice-Presidents. . . . . . . . . . . . Edwin G. Conklin, Plı.D., Henry Skinner, M.D.
Recording Secretary...........James A. G. Rehn.
Corresponding Secretary......J. Percy Moore, Ph.D.
Treasurer.......................... George Vaux, Jr.
Librarian.... . . . . . . . . . . . . . . . . Edward J. Nolan, M.D., Sc.D.
Curators. . . . . . . . . . . . . . . . . . Witmer Stone, A.M., Sc.D., Henry A. Pilsbry, Sc.D., Henry Tucker, M.D., Spencer Trotter, M.D.
Councillors to serve three
Years. . . . . . . . . . . . . . . . . . . . C'barles B. Penrose, M.D., Charles Morris, William E. Hughes, M.D., Roswell C. Williams.
Committee on Accounts...... . Charles Morris., Samuel N. Rhoads., John G. Rothermel., Thomas Stewart, M.D., Walter Horstmann.

On the election of his successor as Recording Secretary in pursuance to a resolution adopted at the meeting in November, Dr. Edward J. Nolan, became Recording Secretary Emeritus for life.

Annual Reports were received from the Recording Secretary, the Corresponding Secretary, the Librarian, the Curators, the Treasurer, the auditors of the Treasurer's accounts, the Treasurer of the Manual of Conchology, the Curator of the William S. Vaux Collections, and from the following sections of the Academy: Biological and Microscopical, Entomological, Botanical, Ornithological, Mineralogical and Geological.

The Publication Committee reported the receipt of the following papers for publication:
"Additional Notes on the Deal Meteorite," by F. J. Keeley.
"Description of a New Cyprinoid Fish (Notropis stonei), with Notes on other Fishes obtained in the United States," by Henry W. Fowler.

The deaths of Theodore C. Search, May 10, 1920, and Alfonso de Figaniere, members, were announced.

The following was ordered to be printed:

## DESCRIPTION OF A NEW CYPRINOID FISH (NOTROPIS STONEI) WITH NOTES ON OTHER FISHES OBTAINED IN THE UNITED STATES.

BY HENRY W. FOWLER.
Several small collections of fishes obtained in various parts of the United States have been received at the Academy recently. A summary is presented herewith of those not reported previously, mainly as short annotated lists. One species obtained in South Carolina is described as new, and several others are recorded within new faunal regions or at new localities.

## New Jersey.

Mr. Henry S. Drinker has contributed interesting data on various sharks secured at Beach Haven. Dr. R. O. Van Deusen visited Blackwood in late April, 1920, and Tuckahoe, in Cape May County, on May 23, 1920. On September 12, 1920, the writer with Mr. Edwin Fowler, visited Laurie's Pond at Lakeside, near Yardville, in Mercer County. Mr. Wm. T. Innes visited Corson's Inlet on October 17, 1920, and sent a few notes on several common species seen there.

Carcharias taurus Rafinesque. Jaws of a small example, about 3 feet long, obtained at Brigantine during the past summer.

Carcharodon carcharias (Limé). Mr. Drinker reports a large example taken in a pound at Beach Haven, in early July, 1920. A small section of its skin, together with some copepods with which it was infested, were received later. As the specimen was largely butchered, Mr. Drinker had no opportunity to secure measurements or other data. This ferocious shark is only known in New Jersey waters from two previous records. The first notice is by Hussakof, who mentions seeing two teeth of a freshly caught specimen, alleged from the New Jersey coast, in early June of 1916. He estimated this specimen at 7 or 8 feet in length. Nichols reports the second example from off South Amboy, July 14, 1916, which he saw mounted, and measured $7 \frac{1}{2}$ feet in length. These records appear to have been the only ones in 1916 suggesting that the shark scare of that season may have been due in part to the presence of the great white shark. Our record shows that the species occurs casually. It may be present more frequently than is generally supposed.

Eulamia milberti (Müller and Henle). Mr. Drinker secured one August 8, 1919, 8 feet, 6 inches in length, which weighed 300 lbs . Another caught August 5, 1920, was 8 feet, 7 inches long, girth at gills 45 inches, and weight 300 lbs. These were captured at Beach Haven, as well as two smaller examples, without detailed data, but which show the teeth slightly more serrate, or the serræ coarser. Jaws from an example secured recently at St. Thomas, West Indies, by Mr. N. P. Alexander, agree in every respect.

Hypoprion brevirostris Poey. Mr. Drinker secured a fine example of this species at Beach Haven, on July 11, 1919. It measured 9 feet 6 inches in length and weighed 265 lbs . The jaws have been received at the Academy. This is the first record, so far as I know, of the occurrence of the short-nosed shark in New Jersey waters, or north of the Carolinas. It is therefore another interesting addition to our local fauna.

Sphyrna zygena (Limné). Mr. L. Hoffman reported two examples, each about 7 feet in length, at Beach Haven, on September 11, 1920. Other species also seen by him at this locality were: Mustelus camis; egg-case of large skate, containing embryo (probably Raja ocellata), Pomatomus saltatric, Roccus lineatus, Cynoscion regalis, Scoænops ocellatus, Micropogon undulatus, Leiostomus xanthurus, Menticirrhus saxatilis, Pogonias cromis.

Pomolobus pseudoharengus (Wilson). Blackwood.
Ameiurus natalis (Le Sueur). Blackwood and Tuckahoe.
Ameiurus nebulosus (Le Sueur). Lakeside.
Semotilus bullaris (Rafinesque). Blackwood.
Abramis crysoleucas (Mitchell). Tuckahoe.
Catostomus commersonnii (Lacépède). Blackwood and Tuckahoe, also the next.

Erimyzon sucetta oblongus (Mitchill).
Anguilla rostrata (Le Sueur). Tuckahoe and Lakeside, also the next.

Esox americamus (Gmelin).
Esox tridecemlineatus Mitchill. Blackwood and Tuckahoe.
Umbra pygmœa (De Kay). Lakeside.
Fundutus majalis (Wallsamn). Corson's Inlet, with the next two. Fundulus heteroclutus macrolepidotus (Walbaum).
Cyprinodon variegatus Lacépède.
Euleptorhamphus brevoortii Gill. The head of an adult example, now in the Academy, was secured by Dr Witmer Stone. It was given to him by a collector, Mr. Cumningham, who picked it up on
the beach at Cape May several years ago. But a single previous New Jersey record is known, and that is still represented by the example in the Academy obtained at Atlantic City in 1870 and reported by Cope. The species is rare on the coast of the United States.

Menidia menidia notata (Mitchill). ('orson's Inlet, with the next. Trachinotus carolimus (Limné).
Seserinus paru (Linné). Dr. Van Deusen sent a fine example, received from Fortescuc, on Delaware Bay, July 13. He also reports 40 examples taken at Atlantic City at the same time. These are the first definite records we have for this species in New Jersey, as Abbott only refers to it in 1868 as Peprilus longimanus and vaguely from "our coast."

Pomox̃is sparoides (Lacépède). Blackwood.
Acantharchus pomotis (Baird). Tuckahoe, with the next two.
Emneacanthus gloriosus (Holbrook).
Mesogomzstius choetodon (Baird).
Lepomis auritus (Linné). Blackwood, with the next.
Lepoms incisor Valenciemnes.
Pomotis gibbosus (Linné). Blackwood and Lakeside.
Micropterus salmoides (Lacépèle). Blackwood, with the next.
Perca flavescens (Mitchill).
Boleosoma nigrum olmstedi (Storer). Tuckahoe and Lakeside.
Orthopristis chrysopterus (Limné). Two at Ocean City, July 30 by Prof. C. La Wall and one at same place, september 17, by Mr. D. McCadden.

Tautoga onitis (Limné). Corson's Inlet.

## Pennsylvania.

Several collections were made by the writer with Dr. R. O. Van Deusen and Mr. Frederick Morrell, July 5, 1920, in Montgomery County: Mine Run, a tributary of the Perkiomen near Audubon; Skippack Creek near Lower Providence; western tributary of the Perkiomen near Doe Rum and another near Yerkes; Perkiomen at Yerkes; West Swamp Creek, a tributary of the Perkiomen at Zieglerville; Rich Valley Creek at Sumneytown; North East Branch of Perkiomen Creek.

Ameiurus nebulosus (Le Sueur). Yerkes and North East Branch of Perkiomen, also the next.

Schilbeodes insigmes (Richardson).
Semotilus atromaculatus (Mitchill). Near Doe Run and at Yerkes.

Abramis crysoleucas (Mitchill). North East Branch of Perkiomen.

Notropis whipplii analostanus (Girard). Lower Providence, Yerkes, Zieglerville, Sumneytown and North East Branch of Perkiomen.

Notropes cornutus (Mitchill). Same as last, except not found at Zieglerville.

Notropis photogenis ameenus (Abbott). Three examples, 64 to 83 mm. in length, from Lower Providence. The smallest has a distorted vertebral columm, so that its body in the vertical axis appears slightly sigmoid after the dorsal fin. The others are the largest examples I ever secured, and are spawning females, full of ova. Their depth is $4 \frac{1}{3}$ to $4 \frac{2}{5}$. They were obtained in a pool, possibly 30 inches deep, and are without brilliant coloration.

Rhinichthys atronasus (Mitchill). Mine Run, near Doe Run and at Yerkes.

Cyprinus carpio Limné. Yerkes.
Catostomus commersonnii (Lacépéde). Mine Run, Lower Providence, Yerkes and North East Branch of Perkiomen.
Erimyzon sucetta oblongus (Mitchill). Yerkes.
Anguilla rostrata (Le Sueur). Yerkes and North East Branch of Perkiomen.
Fundulus diaphamus (Le Sueur). North East Branch of Perkiomen.

Lepomis auritus (Linné). Yerkes, Zieglerville and North East Branch.

Pomotis gibbosus (Linné). Yerkes and North East Branch. Micropterus dotomieu Lacépède. North East Branch.
Perca flavescens (Mitchill). Yerkes.

## Delaware.

Nine collections were made by the writer, with Messrs. H. E. Thompson and L. Dorsey, in the lower part of the State: West Branch of the Nanticoke, and East Branch, 4 miles west of Harrington, October 3, 1920; headwaters of Brown's Branch, near Harrington, October 4; Cedar Creek south of Lincoln City, from the P. R. R. down its lower course and passing two mill-dams,' October 4; Indian River at Millsboro, October 5; estuary of creek flowing from Dagsboro, near Indian River Bay, October 5; Ocean View, October 5 ; headwaters of Herring Creek, and lower fresh waters of same, October 6.

Brevoortia tyramus (Latrohe). School of small ones in Indian River just below Millsboro.

Anchovia mitchilli (Valenciennes). Mouth of stream from Dagsboro.

Schilbeorles gyrimes (Mitchill). East and West Branches of Nanticoke.

Abramis erysolcucas (Mitchill). West Branch of Nanticoke, Cedar Creek at first dam, Millsboro and lower Herring Creek.

Notropis hudsonius amurus (Girard). West Branch of Nanticoke.
Notropis chalyberus (Cope). Cedar Creek at first and second dams, and lower Herring Creek.

Erimyzon succtta oblongus (Mitchill). East Branch of Nanticoke.

Anfuilla rostrata (Le Sueur). West Branch of Nanticoke and fresh pond at estuary of Herring Creek.

Esox americams (Gmelin). West Branch of Nanticoke and Cedar Creek at upper dam.

Esox tridecemlincatus Mitchill. Cedar C'reek at both dams, Millsboro and Herring Creek headwaters.

Umbra pygmæa (De Kay). West Branch of Nanticoke.
Fundulus majais (Walbaum). Estuaries from Dagsboro and Herring Creek.

Fundulus heteroclitus macrolepidotus (Walbaum). Localities as for last species, and in ditch at Ocean View.

Fundulus diaphanus (Le Sueur). Fresh ponds along Herring Creek estuary.

Lucania parca (Baird). Ocean View and Herring Creek, also the next.

Cyprinodon variegatus Lacépède.
Gambusia affinis (Baird and Girard). Lower dam on Cedar Creek, Millsboro, Ocean View and Herring Creek. In ponds and often in fresh water.

Menidia beryllina (Cope). Stream from Dagsboro and lower Herring Creek.

Menidia menidia notata (Mitchill). Estuary from Dagsboro stream.

Apeltes quadracus (Mitchill). Millsboro.
Aphredoderus sayanus (Gilliams). West Branch of Nanticoke Creek. Brown's Branch, upper Cedar Creek and first dam.

Trachinotus carolmus (Linné). The only fish we found in the surf at Bethany Beach. Along the shores of Delaware Bay, at Slaughter

Beach, the following were reported recently or during the warm period in late September: Musteius canis, Raja eglanteria, Dasyatis say, Brevoortia tyrannus, Alosa sapidissma, Pomolobus pseudoharengus, Cynoscion regalis, Leiostomus xanthurus and Mucropogon undulatus. But one Acipenser sturio, reported taken at the fishery below, during the spring.

Acantharchus pomotes (Baird). We captured a single adult in the upper waters of Herring Creek. This is an interesting addition to the fauna of the State.

Emeacanthus gloriosus (Holbrook). East and West Branches of the Nanticoke, Cedar Creek at both dams and Herring Creek in fresh water.

Mesogomistius choctodon (Baird). Upper dam on Cedar Creek.
Lepomis auntus (Linmé). West Branch of Nanticoke.
Pomotrs gubbosus (Linné). With the last, also in Cedar Creek at the upper dam and in brackish water of stream from Dagsboro.

Boleosoma magrum olmstedi (Storer). West Branch of Nanticoke and Brown's Branch.

Boleichthys fusiformis (Girard). West Branch of Nanticoke and Cedar Creek at both dams.

Cynoscion nebulosus (Cuvier). Estuary from Dagsboro stream, also the next.

Pseudoplewronectes americamus (Walbaum).

## Maryland. ${ }^{1}$

Small collections were made in Barrow Creek, tributary to the Rhodes River, and Glebe Creek, a fresh tributary of the South River in Anne Arundel County, during May of 1920, with Mr. R. M. Abbott. In C'ecil County Mr. H. L. Mather and the witer visited Elk Neck and Piney Creek Cove, on the Elk River, September 25, 1920. Two days later Stony Run and streams about North East and Charlestown were examined.

Ameiurus catus (Linné). Elk Neck.
Ameinus nebulosus (Le Sucur). Glebe Creek.
Hybognathus nuchalis regius (Girard). Elk Neck and Piney Creek Cove.

Abramis cyysoleucas (Mitchill). Glebe C'reek, Stony Run and North East.

[^121]Notropis bifrematus (Cope). Piney Creek Cove.
Notropis hudsomius amarus (Cirard). Elk Neck.
Notropis whipplii amalostamus (Girard). Stony Run and second brook above Charlestown.

Notropis cormutus (Mitchill), Stony Rum.
Ertmyzon sucetta oblongus. (Mitchill). Piney Creek Cove.
Anguilla rostrata (Le sueur) Barrow (reek and North East.
Fundulus heteroclitus mucrolepdotus (Walbaum) Barrow Creek. Fundulus diaphamus (Le Sueur). Piney (reek Cove and North East, also the next.

Menidia beryllima (Cope).
Menidia memedia notuta (Mitchill). Barrow Creek.
A peltes quadracus (Mitchill). Piney Creek Cove.
Seserinus paru (Limmé). One from the Rhodes River, obtained by Mr. Abbott, September 25, 1920.

Emneacanthus gloriosus (Holbrook). Piney Creek Cove.
Lepomis aurtus (Linné). North East.
Pomotis gibbosus (Linné). Piney Creck Cove, Elk Neck and North East.

Pereaflarescens (Mitchill). Elk Neck, second brook above Charlestown and North East.

Boleosoma nigrum olmstedi (Storer). Piney Creek Cove.
Roccus limeatus (Bloch). Elk Neck, North East, with next.
Morone americana (Gmelin).
Leiostomus xanthurus Lacépède. Barrow Creek.
Micropogon undulatus (Linné). Barrow ('reek and Elk Neck.
Gobiosoma bose (Lacépède). Barrow Creek.
Soutil Carolina.
In May of 1917 Dr. Witmer Stone obtained an interesting small collection from the Pocataligo River, near Maming. He had previously visited this locality in 1914 and published a list of the fishes obtained then. ${ }^{2}$ It is noteworthy that three of the species secured then are not represented in the present collection, though there are equally as many present not in the 1914 lot, and one appears new to science.

Notropis stoner. new species. Head $3 \frac{7}{8}$; depth 4; D. if, S; A. if, 8; P. i, 12; V. i, 7; scales 30 in lateral line to caudal base and 3 more on latter; 7 scales above 1. 1. to dorsal origin, 3 below to anal

[^122]origin; predorsal scales 18 , snout 4 in head; eye $3 \frac{1}{8}$; maxillary $3 \frac{1}{4}$; interorbital $2 \frac{1}{6}$; second simple dorsal ray $1 \frac{1}{8}$; second simple anal ray $1 \frac{1}{5}$; pectoral $1 \frac{1}{3}$; ventral $1 \frac{1}{3}$; least depth of caudal peduncle $2 \frac{1}{5}$; upper caudal lobe 1 .

Borly well compressed, edges rounded, deepest at dorsal origin. Caudal perluncle compressed, least depth $1 \frac{1}{3}$ its length.

Head conic, moderately compressed, flattened sides moderately approximated below. Snout wide, conic, length $\frac{2}{3}$ its width. Eye large, advanced, hind pupil edge nearly midway in head length. Mouth moderate, oblique, jaws even. Maxillary largely concealed, reaches eyc. Premaxillaries protractile. Jaw elges moderately trenchant. Lips narrow. Mandible ratber shallow and rami little elevated inside mouth. Nostrils together, near last $\frac{2}{5}$ in snout. Interorbital broadly and evenly convex.

Gill-opening forward about opposite front pupil edge. Rakers small, weak, obsolete or scarcely evident. Filaments about half of eye. Isthmus narrow, especially forward, where frenum narrow. Pharyngeal teeth 5-4, well hooked, and broad grinding surfaces entire.

Scales large, well exposed, more or less uniform on trunk and smaller on caudal base, belly and breast. Scales cycloid; basal radiating striæ 9 ; circuli rather coarse, 16 to 20 , weak and obsolete apically. Scales disposed in longitudinal rows parallel with l. l., which continuous to eaudal base and well decurved forward; small tubes simple.

Dorsal origin about midway between hind cye edge and caudal base, second simple ray longest. Anal rather well developed, like dorsal, inserted little nearer caudal base than pectoral origin. Caudal moderate, emarginate behind. Pectoral moderate, not quite reaching ventral. Last inserted well before dorsal, reaches anal. Vent close before anal.

Color in alcohol faded dull brown, paler or whitish below. Dark lateral band begins at snout tip and extends to caudal base, and on sides forward expanded until much wider than eye. Fins all pale, ventral and anal slightly whitish. Dorsal with dusky bloteh forward near base. Lateral dark band ends in dusky bloteh at caudal base size of pupil, which reflected out on median caudal rays basally. Along back pale longitudinal line separates color from back above.

Length 36 mm .
Type, No. 50,118, A. N. S. P. Pocataligo River near Manning. May 1917. Dr. Witmer Stone.

Paratypes, Nos. 50,109 to 50,121, same data. Head $3 \frac{2}{3}$ to $3 \frac{7}{8}$; depth $4 \frac{1}{8}$ to $4 \frac{3}{5}$; D. 11,7 or 8 ; A. ir, 8 ; scales 29 ? to 32 in lateral line to caudal base, and several more on latter; predorsal scales 15 or 16 ; snout $3 \frac{1}{8}$ to $3 \frac{1}{4}$ in head from upper jaw tip; eye $2 \frac{1}{5}$ to 3 ; maxillary $2 \frac{7}{8}$ to 3 ; interorbital 3 to $3 \frac{1}{8}$; length 20 to 35 mm .

Of this species $I$ have seen only the above examples. They apparently represent a species allied in the subgenus Alburnops as the pharyngeal teeth are uniscrial and well hooked, lateral line complete, and large scales (less than 40) well exposed. N. stonei may readily be distinguished from the other lowland species of the genus, $N$. roseus and $N$. chaybous, by its extremely broad dark lateral band and dark bloteh on the dorsal fin.
(For Dr. Witmer Stone, who collected the types.)


Notropis stonci, new speries.
Notropis chalyborus (Cope). Four examples.
Fundulus nottii (Agassiz). Abundant.
Gambusia affinis (Baird and Girard). Very abundant, females more so and greatly larger than males. Largest female 58 mm .

Chanobryttus gulosus (Cuvier). Several.
Enneacanthus gloriosus (Holhrook). Five examples, all dull in color.

## Ceorgia.

On March 25, 1904, Mr. J. A. G. Rehn secured a few fishes in a small stream at Thomasville.

Abramis crysoleucas bosci (Valenciennes). Fifteen examples.

Erimyzon sucetta (Lacépèle). One.
Esox ameticanus (Gmelin). One.
Fundulus nottii (Agassiz). Four.
Lepomis megalotss (Rafinesque). Ten. Also one on March 30.
Florida.
Mr. Morgan Hebard obtained a fine lot of small fishes from the Everglades about Miami in March, 1920. Mr. Howard R. Hill sent a number of specimens and notes, on the fishes noticed during the fall of 1920 , in Pensacola Bay near Pensacola. These are all indicated by the letter $P$.

Seoliodon terra-nore (Richardson). P.
Dasyatis sabina (Le Sueur). Three young from Allenhurst, July, 1917. H. W. Aitken. These show the front margins of the disk slightly concave opposite the nostrils.

Elops saurus Limné. P.
Harengula pensacole Goode and Bean. Young from Useppa Island, Lee County, obtained by Mr. Hebard in 1919.

Brevoortia tyrammes patromus Goode. P.
Anchovia mitchilli Valenciennes. P.
Gymmothorax funebris Ranzani. P.
Fundulus similis (Baird and Girard). Two smaller ones from Useppa Island, Charlotte Harbor, in May, 1919, obtained by Mr. Hebard.

Fundulus grandis Baird and Girard. Abundant and all of modererate size and variable. In alcohol many males with orange caudal, ventral and anal borders. In other specimens these fins gray. Tamiami C'anal, Everglades. March 8 to 12. 1920.

Fundulus confluentus Goode and Bean. Large series from the Tamiami Canal. The species is more abundant than the preceding, which it greatly resembles. It may be distinguished at a glance by at least one blackish or dusky vertical line, or bar, on the caudal basally, also the presence of a black blotch ocellated with white on the last dorsal rays, which occurs in both sexes. It is very variable, the back mostly finely spotted with black or dusky, which usually assumes a greatly mottled appearance. In one example approaching melanism the ground-color in alcohol is pale warm brown above, greatly specked or spotted with blackish, the spots completely covering dorsal and caudal fins and extending well down side. Dark lateral bars very variable in intensity, mostly distinct or pronounced
in males and young. Male ako with pectoral, anal and caudal more or less gamboge.

Fundulus cingulatus Valenciennes. Four from the Tamiami Canal. Color in alcohol largely dull olivaceous, with rounded pale scattered pearly spots on side. Anal with 9 branched rays.

Jordanella floride Goode and Bean. Abundant at Muck, Tamiami Canal. In alcohol hack shows 4 to 6 dull-brown saddle-like blotches. Younger or smaller examples more contrasted, with 7 or 8 dull brown vertical bars, which may be interrupted above to form altemately with dark blotches along back. All show black median lateral blotch.

Mollienisia latipima Le sueur. Very abundant, at Muck, with the preceding.

Corythoichthys albirostris Kaup. One received from Mrs. George Eubank, through Mr. Clarence B. Moore, from Marco in Lee County, obtained in April, 1919.

Cypselurus heterurus (Rafinesque). Many young, about 40 in all, from Miami Beach, obtained by Mr. Hebard. Largest 50 mm ., smallest 13. These show great variation. The pectoral reaches back nearly far as tip of depressed ventral. Of the specimens counted anal shows 10 branched rays. Lower part of sides usually with 5 large dusky blotches. Pectoral blackish. Dorsal dark, though in some small examples dusky, and anal white like caudal.

Strongylura notata (Poey). P.
Strongylura timucu (Walbaum). P.
Membras vagrans (Goode and Bean). Small example from near Useppa Island, in Lee County, May, 1920.

Mendia beryllina (Cope). Young with the last.
Mugil cephalus Linné. Two in the Querimana stage, from near Useppa Island. Both have A. II, 9, and are 22-23 mm. in length. Sarda sarda (Bloch). P.
Scomberomorus maculatus (Mitchill). P.
Selar crumenophthalmus (Bloch). P.
Selene vomer (Linné). P.
Vomer sctapinnis (Mitchill). P.
Trachinotus falcatus (Linné). One from Miami Beach. Length 15 mm. D. vir, 20; A. ini, 18.

Seserinus paru (Linné). P.
Coryphena hippurus Linné. Seven from Miami Beach, largest 50 mm .

Gobiomorus gronovii (Gmelin). Six from Miami Beach.

Chenobryttus gulosus (Cuvier). Abundant at Muck in the Tamiami Canal.

Lepomis punctatus (Valenciennes). Eight from the Tamiami C'anal at Muck. All with long gill-rakers, and pectorals shorter than head. Spots variable.

Lepomis megalotis (Rafinesque). Very abundant with the last two. All small and quite variable in color. Many, especially larger, show a slightly darker spot on each scale basally, in alcohol. Most all show pale blue bars or lines on the snout, side of head and cheek. In none, though often wide, is the opercular flap producel. Many show dark fins. In all the rakers are short, rather weak and mostly less than 10 . Pectoral always much less than head.

Lepomis incisor (Valenciennes). Four from the Tamiami Canal. Largely silvery when fresh in alcohol. No blue lines on side of head. Pectoral long as head and rakers lanceolate. Though small, these appear more slender than in the last species.

Epinephelus striatus (Bloch). ${ }^{3}$ P.
Epinephelus morio (Valenciennes). P.
Garrupa nigrita (Holbrook). P.
Promicrops guttatus (Linné). During the winter of 1905 Capt. Willoughby secured a large adult example at Ft. Lauderdale, the skull of which is in the collection.

Mycteroperca falcata phenax Jordan and Swain. P.
Lutjanus aya (Bloch. P.
Lagodon rhomboides (Linné). P.
Cynoscion nothus (Holbrook). P.
Bairdiella chrysura (Lacépède). P.
Leiostomus xanthurus Lacépède. P.
Menticirrhus americanus (Linné). P.
Abudefduf marginatus (Bloch). Young example, 15 mm . long from Miami Beach.

Hahchares bivittatus (Bloch). P.
Alutera schapfii (Walbaum). P.
Chilomycterus scheppfi (Walbaum). Two from South Boca Crande in Boca Grande Pass. Collected by Mr. Hebard in May, 1920. These are exactly the reverse of Eigenmann's statement that "in the young there seems to be more lines than in the old. Two speci-

[^123]mens examined, 3 inches long, have 17 lines between the pectorals; a specimen 5 inches long has 10 lines; and the largest specimen examined, 10 inches long, has 12 lines." ${ }^{4}$ My larger example, 155 mm. long, has 21 lines between the pectorals; the smaller example, 132 mm . long, has 10 lines between the pectorals. Their general color-pattern is similar, even to the disposition of the black blotehes, though these are quite variable, likewise the armature. The fins are pale or whitish, and uniform in color.

Prionotus tribulus (Bloch). P.
Citharichthys macrops (Dresel). P.
Opsamus tau (Linné). Allenhurst. November 11, 1917. H. W. Aitken.

Gobiesox strumosus Cope. Small one from an empty shell at Captiva Pass, south end of Lacost Island. Obtained by Mr. Hebard in May, 1920.

Histrio histrio (Linné). Of 21 young from Miami Beach, largest 45 mm . These show great variation in color-pattern, and even the smaller ones may be coarsely or finely variegated.

## Illinois.

With two exceptions, as noted, the following were secured by Mr. W. T. Innes in a small tributary of the Illinois River at Marley, in September 1, 1912.

Campostoma anomalum (Rafinesque).
Chrosomus erythrogaster (Rafinesque).
Notropis cormutus (Mitchill).
Notropis athermoides Rafinesque. Mr. C. J. Hunt ${ }^{5}$ sent eight examples from the West Fork of the South Branch of the Chicago River, January 24, 1911.

Fundulus notatus (Rafinesque).
Micropterus dolomieu Lacépède.
Percina caprodes (Rafinesque). Two obtained by Mr. Innes from Fox Lake in October, 1920.

Boleosoma nigrum (Rafinesque).
Pocilichthys corulcus (Storer).
Pcecilichthys flabellaris (Rafinesque).
Cottus bairdii Girard.

[^124]
## Wisconsin.

Mr. H. T. Wolf obtained the following in Booth's fish market, \ilwaukee, during the summer of 1906:
Coregomus quadrilateralis Richardson. Lake Superior.
Coregomus chupeaformis (Mitchill). Lakes Superior and Michigan, and Georgian Bay.

Leucichthys nigripinnis (Milner). Milwaukee.
Leucichthys prognathus (H. M. Smith). Milwaukee.
Salvelinus fontinalis (Mitchill). Lakes Superior and Michigan.
Cristivomer namaycush (Walbaum). Milwaukee.
Micropterus salmoides (Lacépède). Fox Lake.
Stizostedion vitreum (Mitchill). Nilwaukee, also next two.
Stizostedion canadense (Griffiths).
Perca flavescens (Mitchill).

## Minnesota.

Mr. F. L. Tappan secured the following about Minneapolis during September 1911:
Semotilus atromaculatus (Mitchill).
Notropis heterodon (Cope).
Notıopis cornutus (Mitchill).
Schilbeodes gyninus (Mitchill).
C'mbra limi (Kirtland). Cedar Lake.
Labidesthes sicculus (Cope).
Eucalia meonstans (Kirtland).
Pomoxis sparoides (Lacépède).
Lepomis megalotis (Rafinesque).
Boleosoma nigrum (Rafinesque).

## Missouri.

Mr. Julius Hurter sent a small collection in July, 1912, from Fox Creek, a tributary of the Meramec River, at a point about 26 miles from St. Louis:
Ichthyomyzon concolor (Kirtland). Adult.
Scaphirhynchus platorynchus (Rafinesque). Young example.
Polyodon spathula (Walbaum). Young.
Lepisosteus platostomus (Rafinesque). Young.
Amiatus calvus (Linné). Small example.
Campostoma anomalum (Rafinesque). One from St. Louis in fall of 1915 .
('hrosomus erythrogaster (Rafinesque). Several.

Pimephales motatus (Rafinesque). One from St. Louis received from Mr. W. T. Imes in 1918.

Notzopis cormutus (Mitchill). Adult.
Notropis zonatu. (Agassiz). Two.
Lepomis humblis (Cirard). One from St. Louis. Obtained from Mr. Innes, November 1, 1920.

Pocilichthys corulens (Storer). Several.
Cottus bairdii Cirard. Several.

$$
\text { Arizona. }{ }^{\circ}
$$

Several species were secured by Dr. Henry A. Pilsbry in the fall of 1910 for the Academy.

Campostoma anomalum (Rafinesque). Dr. Witmer Stone obtained 6 young examples in a stream in Rucker Canyon, headwaters of the Rio Yaqui basin, at 6500 feet elevation in the Chiricahua Mountains, July S, 1919.

Lenciscus intermedius (Girard). Very many from the santa Cruz River at Tuecon, September 4, 1910, and a single example from the Salt River, tributary of the (iila at Tempe, September 5, 1910. Some of the larger examples tuberculated. These and the next all in Dr. Pilsbry's collections in the Acarlemy.

Cyprinodon macularins Baird and Cirard. One from the Salt River at Tempe.

Molliemisia occidentalis (Baird and (iirard). Many with the last and from the Santa Cruz River at Tuecon.

## Utall.

The following were collected by Mr. Herbert J. Pack, of Logan, during the past season.

Leuriscus lineatus (Girard). Very many small ones from Hanyton Bridge, Bear River at Fielding, August 15. These all show but a short lateral line, not extending beyond the dorsal in the largest. Abundant in warm spring at Cdy's Springs, Riverside, in Boulder County, August 12.

The largest example, from Magna, measures 100 mm . It and many young from slightly muddy fresh water, July 31.

Leuciscus phlegethontis (Cope). Two from meadow-streams in western part of Logan, August 9. Length 31 to 42 mm . Color of

[^125]larger example, when fresh in alcohol, with median dusky lateral band from snout, including mandible tip, to caudal base. This band very distinct and composed of rather large dots. Parallel from upper eye edge back to caudal peduncle and defining color of back, narrower similar band or line, mostly pale posteriorly. From pectoral axil side of body below broad dark lateral band pale cadmium to anal base, and more yellowish on lower surface of caudal peduncle. Axils of pectoral and ventral more or less tinged with pale citron-yellow, also basal portions of paired fins. Breast, belly and lower surface of head, white. Dorsal and caudal clull olive, other fins pale, with dusky terminal tints.

Also two from small pond at edge of railroad, Salt Lake City, August 31.

Agosia mbila carringtomi (Cope). Abundant in meadow streams in western Logan, August 9. Most with lateral line incomplete and barbel absent.

Cyprinus carpio Limné. One from Hanyton Bridge.
Cottus semiscaber (Cope). Abundant, in meadow streams in western Logan, August 9. Largest 58 mm .

## Nevada.

Agosia nevadensis (Gilbert). Twelve examples, largest 55 mm . long, from the Amargosa River at Beatty, August 12, 1919. Obtained by Messrs. J. A. G. Rehn and Morgan Hebard. These fish were found in small schools, in the larger pools, and moderately plentiful.

## California.

During the late fall of 1897 the Academy received from Prof. Harold Heath a collection of fishes from Pacific Grove, all of which are still in good condition. These are indicated by the letter P. I have also included several notes given by Mr. J. A. G. Rehn on some of the larger fishes seen by him at Santa Catalina in the summer of 1907 .

Polistotrema stouti (Lockington). P.
Galeorhimus zyopterus Jordan and Gilbert. Four small gray sharks at Santa C'atalina, about 3 to 5 feet long, were evidently this species.

Raja binoculata Girard. P.
Torpedo californica Ayres. P.
Hydrolagus collici (Lay and Bennett). P.

Pogomichthys microlepidotus ((iirard). Mr. F. S. Curtis forwarded an example of this and the following two species from Arrayo Crista Blanca at Livermore, which were received in september, 1912. He says, "in the winter and early spring this stream flows into the Bay of San Francisco, but in the summer is only a series of pools. The head of the stream is coarse gravel, several feet deep, and the water flows under ground between the deep pools. None of the pools are more than four feet deep, or usually only about two. The fish were caught in strong sulphur water, as just above the pool a strong sulphur-spring boiled up in the middle of the creek. This is so strong that it fills the air with the odor, and the stones, etc., in the pool are all coated with sulphur. About a dozen sculpins [Cottus gulosus (Girard)] $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inches long were caught, and were smooth. Those taken last year at Niles were prickly, with the sides rough. Together with the suckers [Catostomus ocfidentalis Ayres] and Sacramento perch [Archoplites intermptus (Cirard)] they are about the only fish found here. The game-wardens are glad to have us take the dace as they are very destructive to the trout eggs and fry, and in fact the chief enemies they have in these streams."

Ptyehocheilus grandis (Ayres).
Myloleueus symmetricus (Baird and (iirard).
Atherinopsis califormiensis Girard.
Cypselurus califormicus (Cooper). Popular bait for tuna at Santa Catalina. Retailed for 10 cents each, or prices varied with abundance. Messrs Rehn and Hebard kindly furnished the note on this species and the following six.

Auxis thazard (Lacépèle). Reported occasionally at Santa Catalina. One seen by Mr. Rehn $4 \frac{1}{2}$ feet long a mounted dry specimen. Called "Japanese tuma" and "short-fimned tuma."

Thunnus thymnus (Linné). Four seen at Santa Catalina and a number of mounted examples. Previously, or ten days before Mr. Rehn's stay, 15 to 20 were taken, and many more were reported since. Some were upwards of 168 lbs ., and one of such size had a large piece bitten out by a shark. The examples Mr. Rehn saw ranged from 110 to 125 lbs . They were captured altogether by rod and reel anglers, with flying-fish as bait.

Germo alatunga (Cmelin). Called "albacore" and "long-finned tuna." Abundant game fish at Santa Catalina. Mr. Rehn took two of 18 lbs ., one of 20 lbs and one of 27 lbs . The species attains a weight of 50 lbs .

Seriola dorsalis (Cill). "Yellow tail." Several fresh ones seen at Santa Catalina. Taken closer in shore than the other fishes.

Tetrapturus mitsukurii Jordan and Snyder. One example, captured September 21, 1910, about five miles off the southeastern shore of Santa Catalina, measured nine feet in length. At the time the species was irregular, or only a few taken by the anglers. They break at the surface, but do not jump like the tarpon. They do not strike the hook but take it gradually, so that after a short interval the angler sets it with a jerk. Then a battle ensues for half an hour or more, in which time the fish becomes exhausted and is finally gaffed. Mr. Rehn did not hear the alleged name "marlin spikefish" for it at Santa Catalina.

Stereolepis gigas (Ayres). "Jew fish." Mr. Rehn reports 6 or 8 large ones on the dock at Santa Catalina, and the largest 6 or 7 feet long.

Genyonemus lineatus (Ayres). This and all the following from Pacific Grove: Zalembius rosaceus (Jordan and Cilbert), Cymatogaster aggregatus Gibbons, Oryjuis caluformicus (Ciünther'), Sebastodes paucispmus (Ayres), Scbastodes elongatus (Ayres), Anoplopoma fimbria (Pallas), Scorpomichthys marmoratus. (Ayres), Hemilepidotus jordani Bean, Taranichthys filamentosus (Gilbert), Eopsetta jordani (Lockington), Parophrys vetulus Cirard, Microstomus pacıficus (Lockington), Glyptocephalus zachirus Lockington, Citharichthys sordidus (Girard), Caularchus neandricus (Cirard), Grbbonsia evides (Jordan and Gilbert), Anoplarchus atropurpureus (Kittlitz), Xiphidhon rupestre (Jordan and Cilbert), Anarichthys ocellatus Ayres, Chitara taylori (Girard), Porichthys notatus Girard.

## INDEA TO GENERA AND SPECIEA DESCRIBED AND REFERRED TO IN THE PROCEEDINCA FOR 1920

Neu species and genera are inticated by herwy-faced type.
Abramis crysolencas. . . . 386, 388-390
e. bosei ..... 393
Anaplecta chrysopteria ..... 214
replicata ..... 214
Abudef duf marginatus ..... 399
Acantharchus pomot is ..... $387,3!0$
Acanthops erosa ..... 22!
rehni ..... 294
Achilognathus himantegus ..... 130
Acipenser sturio ..... 396
Acontiothespis bimaculata ..... 219
Acromantis allstralis ..... 74
dyaka ..... 74
hesione ..... 73
luzonic: ..... 71
moultoni ..... 70
oligoneura ..... 71.72
parvula ..... 71
Acrossocheilus formosanus ..... $12: 3$
invirgatus ..... 123
Acteocma hawaiensis ..... 300, 36:3
honoluluensis ..... $36: 3$
sandwicensis. ..... 36.3
Aetaclla ..... 44
bakeri ..... 45
Aglaja nigra ..... 372
nuttalli. ..... 372
pilsbryi hawaiensis ..... 372
speciosa ..... 37
Agosia nevadensis ..... 400
nubila carringtoni ..... 100
Alonsoa ..... 147,166
meridionalis ..... 167
serrata ..... 167
Alosa sapidissima ..... 390
Alutera schoepfi ..... 3916
Amantis aeta. ..... 31
basilana ..... 34
maculata. ..... 31
reticulata ..... 30
Ameiurus catus ..... 390
natalis ..... 356
nebulosus ..... $386,387,390,399$
Amiatus calvus ..... 398
Amnicola tryoni ..... 9
Amorphoscelis Jorneana ..... 17
Ampullaria flagellata ..... 9
Anarrichthys ocellatus ..... 402
Ananlamomera bellator ..... 258
hrevicauda ..... 25
libulinosa ..... 261
sulcata ..... 263
Anaxiphat aperta ..... 285
olmera ..... 205
Anchiptolis chapadensis ..... 276
Anchoria mitehillii ..... 359, 394
Ancerlas ancentrias ..... 7
rarliatus ..... 7
Angela infuseata ..... 
Angelonia. ..... 147
angustifolia. ..... $1 \times 7$
salicarixholia ..... 157
Anguilla japonica ..... 134
maturitiana ..... 133
rostrata. ..... 391
Anisoletbis amoulipes. ..... 338
Anodontites jaliseronsis ..... 193
luteolus. ..... 10
Anoplarchus atropurpureus ..... 402
Anoplopoma fimbria ..... 402
Apeltis quarliacus ..... 389, 391
Aperostoma dyromi ..... 3
Aphonomorphas inopinatus. ..... 286
Aphredorlerus sitymas. ..... 389
Aplexa fuliginea ..... 6
spiculata guatemalensis ..... 6
Apogonichthys stellatus ..... 396
Aquilegia canadensis ..... 118
Arachmoidiscus. ..... 207
ehrenbergi cuneatus ..... 207
Archimantis armata ..... 69
latistyla ..... 69
Aretostaphylos uva-ursi ..... 104
Asplenium platyneuron ..... 117
Atherinopsis californiensis ..... 401
Atys ..... 370
kekele ..... 365
semistriata. ..... 36.5
s. fortinsulae ..... 365
$s$ muat ..... 365
Auxis thazard ..... 401
Azalea arborescens ..... 100
canescens ..... 99
nudiflora ..... 99, 118
viscosa ..... 100
Babesia bovis ..... 331
Bactridium grande ..... 242
Bairdiella chrysura ..... 396
Bartsia ..... 140
Barbodes paradoxus ..... 127
Basalt ..... 354-357
Bolbe pygmaea ..... 19
Boleichthys fusiformis ..... 390
Boleosoma nigrum. ..... 397, 398
n. olmstedi. ..... 387, 390, 391
Botrychium virginianum ..... 116
Bramia monnieri ..... 144
Brevoortia tyranmus. ..... 389, 390
t. patronus ..... 394
Bucrates capitatus. ..... 281
Bullaria peasiana ..... 363
Bullina scabra solida ..... 362
vitrea ..... 362
Caconapea ..... 144, 149
appressa. ..... 150,152
auriculata. ..... 150
axillaris ..... 150, 152
conferta ..... 150, 153
deb,ilis ..... 150,151
Caecilioides domingensis ..... 204
Caecum oabuense. ..... 375
Caliris elegans ..... 39
masoni ..... 39
Caltha palustris ..... 118
Campostoma anomalum ..... 397-399
Candidia barbata ..... 130
Capraria ..... 143,147
biflora ..... 147
b. pilosa ..... 148
hirsuta ..... 148
Carassius auratus ..... 122
Carcharodon carcharias ..... 385
Carcharias taurus ..... 385
Cardium thaanumi ..... 323
Catostomus commersonnii ..... 386, 388
Caularchus neandricus. ..... 402
Caulopsis lancifera ..... 278
Ceraia cornutoides ..... 256
Ceroys perfoliatus ..... 237
Chaemobryttus gulosus ..... 396
Chamaedaphne calyculata ..... 102
Chandodichthys macrops ..... 132
Chilara taylori ..... 402
Chilomycterus schoepfii ..... 396
Chimaphila maculata. ..... 95
umbellata ..... 98
Chiogenes hispidula ..... 104
Chlorohippus roseipennis ..... 249
Chrosomus erythrogaster ..... 397, 398
Citharichthys macrops ..... 397
sordidus ..... 402
Clarias fuscus ..... 122
Clethra alnifolia ..... 97
Cnephomantis ..... 225
fuscatus. ..... 225
Cochliopa compacta ..... 197
guatemalensis ..... 198
hinkleyi ..... 198
infundibulum ..... 198
izabal ..... 200
minor ..... 199
picta ..... 197
riograndensis ..... 197
rowelli ..... 198
trochulus. ..... 198
tryoniana ..... 198
Compsomantis semirufula ..... 35
Congeria bryanae ..... 323
Conobea ..... 153
scoparioides. ..... 153
Conocephalus clausus ..... 281
iriodes ..... 282
saltator ..... 282
Copiocera erythrogastra ..... 249
Copiphora producta ..... 277
Coregonus clupeaformis. ..... 398
quadrilateralis ..... 398
Corema conradii ..... 108
Corynorhynchus hispidus ..... 244
Coryphaena hippurus ..... 395
Corythoichthys albirostris ..... 395
Cottus bairdin ..... 397, 399
semiscaber ..... 400
Creobroter episcopalis ..... 81
granulicollis ..... 78
labuanae ..... 78
meleagris ..... 80
Cristivomer mamaycush ..... 398
Cultriculus akoensis ..... 132
Cymatium spp ..... 320
vestitum ..... 320
v. insulare ..... 320
Cymatogaster aggregatus ..... 402
Cynoscion fusiformis ..... 390
nothus ..... 396
regalis ..... 386, 390
Cyprinodon macularius ..... 399
variegatus ..... 386, 389
Cyprinus carpio ..... 122, 388, 400
Cypselurus califormicus ..... 401
heterurus ..... 395
Cyrtoxipha pernambucensis ..... 283
Damasippus pukcher ..... 239
Damoniella ..... 370
Dasyatis say ..... 390
sabina ..... 394
Dendrium buxifolium. ..... 101
Deroplatys desiccata ..... 47

Elentris oxycephala ..... 134
fuscat ..... 134
Elops saurus ..... $39 t$
Emneacanthus gloriosis
$357,390,391,393$
Eopsetta jordani ..... $1(1)$
Epigaea repens ..... 10:3
Epilampra atriventri ..... 216
fallax. ..... 216
imitatrix ..... 216
latifrons ..... 216
Epinephelus morio ..... 399
striatus ..... 396
Episcopotettix sulcirostris ..... 249
Epitonium decussatum ..... 375
fucatum ..... 376
hyalinum mokuoloense ..... 377
kanemoe ..... 375
oahuensis ..... 376
ulu. ..... 376
Epsomantis tortricoide. ..... 20
Erimyzon sucreta ..... 394
s. oblongus. . . . 386, 388, 389, 391
Esox americanus. . . . . . 386, 389, 394
tridecemlineatus. ..... 386, 389
Esphatmenus lativentri ..... 335
Euborellia annulipes ..... 339
jancirensis ..... 335
minuta ..... 3:30
peregrina ..... 333
seudderi ..... 3:39
Eubotrys racemosa ..... 102
Eucalia inconstans ..... 395
Euchomenella heteroptera ..... 37
moluearum ..... 37
Eulamia milherti ..... 386
Euleptorhamphus brevoortii ..... 386
Eumiopteryx laticollis ..... 224
Eimusonia livida ..... 228
Euryderes anisitsi ..... 219
Euthyrrhapha pacifica ..... 218
Eutrochatella microdina chryseis, ..... 197
Fagelia ..... 147, 168
alata ..... 170, 176
bogotensis ..... 169, 174
chetidonioides ..... 171, 183
crenata. ..... 169, 173
(renatilob: ..... 171, 182
frutionsat ..... 165, 172
lehmamiana. ..... 169,173
micrantha ..... 171, 180
microbefaria ..... 16is, 171
nevadensis ..... 170, 176
ovat: ..... 170, 179
perfoliata ..... 171), 178
pimatiserta ..... 171, 18g
radicnloites ..... 171, 181
saxatilis ..... 169,173
scalaris ..... 171, 184
tolimensis ..... 170, 177
trilohata ..... 169, 175
Fhata alla ..... 133
Formosania gilherti ..... 122
Fossarus ecphora ..... 375
Fundulus cingulatus. ..... 395
confluentus ..... 394
diaphanus ..... 391
grandis ..... 394
heteroclitus macrolepidotus
$386,389,390$
majatis. ................. 386, 38, 389
notatus. ..... 397
notii ..... 393, 394
similis. ..... 394
Galax aphylla ..... 105
Galoorhinus zopoterus ..... 400
Gambusia affinis. ...... 133, 359, 391
Gaulthieria procumbens ..... 103
Garrupa nigrita ..... 396
Gastrocopta colombiana ..... 329
Gaylussaria haceata ..... 10.
brachycera ..... 105
dumosa ..... 105
frontosa ..... 105
Genyonemus lineatus ..... 402
(iermo alatunga ..... 401
Gibhonsia evides ..... 402
Gilda suavis ..... 40
Ghossogohius brumeus ..... 135
(ilyptocephatus zachirus ..... 402
Ginathopogon iijimae ..... 128
Gobiesox strumosus ..... 397
Gobiomorus gronovii ..... 395
( cob iosoma bosci. ..... 391
Gonypeta borneana ..... 35
Grammadera chapadensis ..... 264
rostrata ..... 264
Gratiola ..... 144, 154
bogotensis ..... 154
Cuppya angasi ..... 3
brown ..... 3
calverti ..... 3
costaricana ..... 4
c. elatior ..... 5
selenkai ..... 3
trochulina ..... 3
Gymmothorax funcloris ..... 394
Haania lobiceps ..... 38
Habenaria blephariglottis ..... 118
ciliaris ..... 118
cristata ..... 118
grandiflora ..... 118
lacera ..... 118
peramoena ..... 115
psycodes ..... 118
Hadicheres bivittatus ..... 396
Haminea ..... 367
Hamincea ..... 367
aperta oahuensis ..... 369
crocata ..... 368
curta. ..... 369
olopana ..... 369
sandwichensis ..... 368
tomaculum ..... 370
Haplocochlias (Lophocochlias) minutissimus ..... 377
Harengula pensacole ..... 394
Helicina abbotti ..... 205
deppeana parvidens ..... 3
funcki ..... 3
oaxacana ..... 196
Hemibarbus latheo ..... 127
Hemilepidotus jordani ..... 102
Hemimyzon formosanus ..... 122
Hermetica advena ..... 218
scrobiculata ..... 218
Heteroglypta kanaka ..... 380
Hierodula ..... 52, 53, 63
aruana ..... 59
denticulata ..... 6.
gracilicollis ..... 54
laevicollis ..... 52, 60
obiensis. ..... 53, 60
patellifera ..... 58
rajah ..... 58
sorongana ..... 52, 62
-plendida ..... 65
venosa ..... 53, 57
vitrea ..... 53, 55
Histrio histrio ..... 397
Homotroicha fuscopunetata ..... 256
Hyalinia (Steropus) angasi ..... 3
Hybognathus nuchalis regins ..... 390
Hydatina (Aplustrum) amplustre ..... 371
physis stamine: ..... 371 ..... 371
IIydranthelium ..... 145,158
bramii ..... 15 s
Hydrolagus colliei ..... 100
Hymenopus coronath ..... 77
Itypalopeza tigrina ..... 19
Hyperophora brasiliensis ..... 250
peruviana ..... 251
Hyerophrona signata ..... 258
Hypopitys americana ..... 99
lanuginosa ..... 99
Hypoprion brevirostris, ..... 386
Iehthyomyzon concolor ..... 398
Hysanthes ..... 146, 164
inaequalis ..... 164
Ischnoptera amazonica ..... 215
Ischyra punctinervis ..... 275
Jordanella florida ..... 395
Kahnia angustifolia ..... 101
latifolia ..... 101
Kongobatha ..... 22
diademata ..... 23
Kuhlia marginata ..... 134
Labeo jordani ..... 123
Labia areuata ..... 348
dorsalis ..... 348
Labidesthes sicculus. ..... 398
Labidura riparia ..... 340
xanthopus ..... 340
Lagodon thombrides ..... 396
Leiostomus xanthurns ..... 386, 390, 391, 396
Lendneria ..... 145, 161
angulata ..... 161, 162
humilis. ..... 161
Lepisosteus platostomus ..... 398
Lepomis auritis. . . 387, 388, 390, 391
humilis: ..... 399
incisor ..... 387, 396
megalotis ..... 394, 396, 398
punctatus. ..... 396
Leptomantis albella ..... 40
fragilis ..... 41
lactea ..... 42
tonkine ..... 42
Leptothyra ..... 377
balnearii ..... 378
cantida percostata ..... 378
verruca manti ..... 378
viaria. ..... 379
Leucichthys nigripinnis ..... 398
prognathus ..... 398
Leucisculas ..... 128
fuscus ..... 129
Leuciscus intermedius. ..... 399
lineatus ..... 399
medius. ..... 190
phlegethontis ..... 399
sehisturns ..... 189
Leucocarpus ..... 147, 165
perfoliatus ..... 166
Ligocatinns minutu ..... 254
sordidus ..... 252
spinatus ..... 256
Lilimm canadense ..... 117
superbum ..... 117
Liloa ..... 370
Limodorum tuberosum ..... 119
Limaria ..... 117
texalla ..... sis
Liobagrus formosanus ..... 121
nantoensis ..... 121
Lissochilichthys ..... 124
matendai ..... 124
Listrocelis atrata ..... 2イン
Liza troscheli ..... 134
Lobophyllus reversus: ..... 272
Loripes (P'illuema) spaldingi ..... 381
lueania parva ..... 389
Lutjanus aya ..... 396
Macuillamia ..... 145,157
limosa. ..... 158
Mantoida burmeisteri ..... 219
Mecardonia ..... $14+, 145$
ovata. ..... 148
procumbens. ..... 149
Membras vagans ..... 395
Menidia beryllina...... 349, 391, 395menidia notata..... 387, 389, 391
Menticirrhns amerieanus. ..... 396
saxatilis ..... 386
Menyanthes trifoliata ..... 119
Menziesia pilosa ..... 100
Meroneidius flavolimbatus ..... 276
marginatus ..... 276
Mesogonistius chatodon. ..... 357, 390
Mesopteryx alata ..... 51
Metallytious violaceus ..... 18
Mierocentrum lanceolatum ..... 272
Micromelo guamensis ..... 371
Micropogon undulatus. . $386,390,391$
Mieropterus dolomieu. . . . . . 388, 397salmoides. . . . . . . . . . . . . 357, 398
Nicrostomus pacificus ..... 402
Microvostox chopardi ..... 346
ghilianii ..... 348
parvus ..... 346
Mimulus ..... 146, 165
glabratus ..... 165
Miopteryx ..... 225
Misgurnus anguillicaudatus ..... 122
decemeirrosus ..... 122
Mitra coronata aurora ..... 314
emersoni ..... 316
kawehameha ..... 313
langfordi ..... 315
lugubris ..... 314

1. honoluluensis ..... 314
olivellaeformis. ..... 315
ostergaardi. ..... 314
thaanumiana. ..... 313
ticaonica vagans. ..... 314
waikikiensis ..... 316
Mnestia pusilla. ..... 366
Modiolus matris. ..... 321
peasei ..... 321
Mollienisia latipinna ..... 395
oceidentalis ..... 399
Momantria higuttata ..... 217
rassidea ..... 218
Momomarilia ..... 144, 155
albidit. ..... 155, 157
humilis ..... 15\%, 157
lilacina ..... 156
violarea ..... 1.5. 156
Monotropat uniflora ..... 99
Morone americana ..... 391
Mugil cephatus ..... 1:3, 395
oeur ..... 134
Murex cyelostoma baldwiniana. ..... 373
pele ..... 318
torrefactus insularum. ..... 319
Musomisa costalis. ..... 226
Musoniella chopardi ..... 225
Mustelis canis. ..... 386, 390
Xycteroperea falcata phenax. ..... 396
Mytilus crehistriatus ..... 322
Nanomantis australis ..... 28
Nemobius hehardi ..... 283
Neoblatella conspersa ..... 215
Neocmocephalus irroratus ..... 281
vicinus ..... 281
Neonomiella atrata. ..... 352
Neoksophorat ruficeps ..... 352
Neomantis australis. ..... 21
Neopieris mariana ..... 102
Nephronaias aztecorum tolimanen- sis. ..... 194
tempisquensis. ..... 9
Nessa vectis ..... 288
Notolampra gibba ..... 215
Notropis atherinoides ..... 397
bifrenatus ..... 391
chalybeus ..... 389, 393
cornutus. ..... 388, 391, 397-399
heterodon. ..... 398
hudsonius amarus ..... 389, 391
photogenis amcenus ..... 388
zonatus ..... 399
stonei ..... 391
whipplii analostanus ..... 388, 391
Nucula hawaiensis ..... 327
Odontomantis javana euphrosyne ..... 77
j. javana ..... 76
Odontosagda havanensis ..... 203
Odostomia (Chrysallida) hiloensis ..... 299
Oecanthus minutus ..... 283
Oleyphides tithonus ..... 237
Oligomantis orientalis ..... 69
Opeas beckianum. ..... 5
Ophicephalus tadianus ..... 134
Opisthosiphon maynardi ..... 204
Opsanus tau ..... 397
Opsomantis tumidiceps ..... 36
Orchidaceae. ..... 110
Orthodera ministralis ..... 19
Orthopristis chrysopterus ..... 387
Oryzias latipes ..... 133
Oxydentrum arboremm ..... 10.3
Oxyjulus californicus ..... 402
Oxyopsis lobeter ..... 231
oculea ..... 231
Oxyprora flavicornis ..... 278
Oxystyla fermsaci tricineta ..... 5
princeps ..... 5
Pachyohilus ..... 201
Panchlora prasina ..... 217
Paramosonia ..... $2 \cdot 6$
Paraosypilus verreauxii ..... 17
Paraphasma marginale ..... 238
Parasilurus brevianalis ..... 121
Parasparatta dentifera ..... 351
guy:anensis ..... 349
Parastagmatoptera glauca ..... 235
Paratenoklera ..... 50
Parliemorlula ..... $52,53,63$
Parophrys vetulus ..... 402
Perca flavescens ..... 387, 385, 391, 397, 398
Pereina raprodes ..... $3!97$
Peruvia ingromarginata ..... 245
Petasoles dominicana ..... 217
Phasma radiatum. ..... 237
Phegopteris dryopteris ..... 117
Phoraspis picta ..... 215
Photina brevis ..... $\because 19$
Phoxiscus kikuchii ..... 123
Phylloptera cognata ..... 268
ovalifolia ..... 269
phyllopteroides ..... 26.5
quinque-matulata ..... 264
spinulosa ..... 270
tenella ..... 265
tripmotata ..... $26!$
Physa solidissima ..... 193
Pillucina ..... 382
Pimephates notatus ..... 399
Pinns echinata ..... 117
rigida ..... 117
virginiana ..... 117
Planorbis caribaeus ..... ;
contrerasi ..... 193
hondurasensis ..... (
temuis ..... 6
t. chapalensis ..... 192
Plecoglosins altivelis ..... $1: 1$
Plesiacanthops ..... 231
Postoscirtus americanus ..... 245
Porilichthys mateus. ..... 397,399
flabellaris ..... 397
Pogomias rommis ..... 386
Pogonichthys microlepidotas ..... 401
Polistotrema stouti ..... 400
Polyacanthopen ..... 25
mantispordes ..... 26
Polyacanthus operonlatus ..... 134
Polycodium staminetum ..... 115
Polygyra matermontana jaliscoen- sis. ..... 192
ventrosula. ..... 192
Polyodon spathula ..... 398
Pomatomus saltatrix ..... 386
Pomolobus pseudoharengus ..... 386, 390
Pomotis gibbosus. . $387,388,390,391$
Pomoxis sparoides ..... 387, 398
Porichthys notatis ..... 402
Prionotus tribulus. ..... 397
Prisopus horstokkii ..... 239
Prolahia midentata ..... 348
Promicrops guttatus ..... 396
Proseopia scabra ..... 244
Psalis americana ..... 338
Pseudobagrus tawanensis ..... 121
Psemdopleuronectes americanus. ..... 390
Pseudorastora parva ..... 128
Ptychocheihas grandi ..... 401
Puntins suyderi ..... 127
Pupa pearliensi ..... 362
thaanomi ..... 362
Parex formosis ..... 340
Pycnopalpa bicordata ..... $-970$
rubiginosa ..... 270
Prgidicrana hivittata ..... 337
Pyragra brasiliensis ..... 335
flasmata ..... 338
Pyragropsis paraguayensis ..... 335
Pyrola americana ..... 97
elfiptica ..... 97
secumda ..... 98
Pyxidanthera barbulata ..... 108
Raja binoculata ..... 400
eglanteria ..... 390
ocellata ..... 3819
Rasborinus ..... 130
formosiae. ..... 131
takakii ..... 130
Rhinichthys atromasus ..... 385
Rhinogobius camdidus. ..... 134
formosathus ..... 134
gíurinus ..... 134
taiwamos. ..... 134
Rhododendron maximum. ..... 100,119
Rhombodera ..... $52,63,66$
basalis ..... 68
extensicollis ..... 67
satussurei. ..... 69
stalii ..... 67
vallida ..... 68
Rhomboderella ..... 52
Rhomboderuka ..... $52,63,66$
Rissoina striatula hawaiensis ..... 321
Roccus lineatus ..... 386, 391
Roxaniella ..... 370
Russelia ..... 147
colombiana ..... 186
Nalmo formosanus ..... 120
Salvelinus fontinali- ..... 398
sarda sarda ..... $30 \%$
scaphesthes tamusiensis ..... 12.5
Scaphiodontella ..... 125
alticorpus ..... 126
Scaphirhymehus phatorymelus ..... 395
scaphura nigra ..... 257
Scapteriselus vielmos ..... 2が;
Sceptuchus ..... 27
simplex ..... 28
schilbeodes gyrinus ..... 34:, 305
insignis. ..... 357
Achistophragma ..... $141,16.5$
pusilla ..... 16.5
Schizaea pusilla ..... 116
Sciaenops ocellatus ..... $3 \times 6$
Scolodonta zeteki ..... 195
Scoliodon terra-novar ..... 394
scombermorus maculatus. ..... 395
Scoparia ..... 145,159
dulcis ..... $15!$
scorpenichthys marmoratis ..... 40
rebastodes elongatus ..... 412
patucispinus ..... 402
Selar crumenophthahmas ..... 39.5
Sclene vomer. ..... 39.5
Semotilus atromaculatus $3 \times 7.397,398$
bullaris ..... $30 \times 5$
Seriola dorsalis ..... 402
Seserinus paru. ..... $387,3!1,3!5$
Sicyopterus japonictio ..... 1:34
Siphonaria amara ..... 379
crebricostata. ..... $37!$
funiculata ..... $37!$
normalis ..... $37!$
muttalli ..... $37!$
Sistrum vitichse ..... 319
skalistes inopinata ..... $35 \pm$
lugubris ..... 351
Smaragdinella viridis, ..... $36 \%$
solecarlia bryani ..... 324
chaseas ..... 326
hawaiensis. ..... 324
h. obesior ..... 325
stigmatica ..... 325
thaanumi ..... 326
Sparatha semiruf: ..... 349
Spathalium klugi ..... 245
Sphodropoda quinquedens ..... 18
tristis. ..... 4
sphyrna zygaena ..... $3 \times 6$
Spinibarbus elongatus. ..... 127
hollandi ..... 127
Spongovostox asemus ..... 344
berlandi ..... 343
Statilia maculata ..... 48
nemoralis ..... 45
Stemodia ..... 145,159
durantifolia ..... 159
Stenomantis novae-gumeat ..... 130
Stenopus guildingi ..... 3
Stereolepis gigas ..... 102
Stilpnochlora margincla ..... 2.57
stizostedion canardense. ..... 395
vitreum ..... 395
Stosstoma domingensis ..... 206
Stomatella concima inconcima. ..... 380
Streptostrla viridula ..... 3
Strombus ostergatardi ..... 320
Strongylura motata ..... $3!5$
timuen ..... $39 \%$
Stylifer deformis hawaichais ..... 296
d. remotissimus. ..... 297
mittrei ..... 297
robustum ..... 299
thatnumi ..... 298
Subulina octonat ..... $\bar{j}$
Succinea guatemalensis ..... (i)
recisa ..... 6
Tagalomant is ..... 38
manillensi, ..... 38
Tanusia angulatatocellatat ..... 27
Taranichthys filamentosus ..... 102
Tautoga onitis ..... 357
Tenodera aridifolia ..... 50
attemuata ..... 51
blanchardi ..... 51
sinemsis. ..... 50
Terebra argus brachygyra ..... 304
chappi ..... 306
dussumieri hiradoensis. ..... 309
flavolasciata ..... 306
lanceata oahmensis ..... 307
langfordi ..... 303
mediparifical ..... 308
m . melior ..... 308
peasel ..... 304
xallingi ..... 308
thitanumi ..... 305
remeansi ..... 307
wakikicnsis ..... 305
Tetrapturus mitsukurii ..... 402
Thecodonta (?) symmetricat ..... 327
Theopompa burmeisteri ..... 18
Theopompula ocularis. ..... 18
Theopropus clegans ..... S1
Thespis ..... 37
Thesprotia fiscipemis. ..... 209
Thumnus themnts ..... 401
Thysanophora textili ..... 196
Topana cincticornis ..... 271
Torenia ..... 146,163
crustacea ..... $1 t 53$
thonarsii ..... 16:3, 1 tit
t. nivea ..... 163,164
Torpedu califomic:a ..... 104
Trachinotus carolimus ..... 389
falcatus ..... 395
Trachymiopterys ..... 220
tuberculata ..... 220
Tropidomantis tenera ..... 21
Cberaba brevicauda ..... 251
Cmbra limi ..... 398
pygmea ..... 386, 389
U'namuea. ..... 145,160
dentata ..... 161
Uncancrelus ameliae ..... 9
calverti ..... 7
Yaccinium atrorocerm ..... 107
('orymbosum ..... 107
erythrocarpum ..... 108
macrocarpon ..... 108
oxycoceos ..... 108
pemasylvanicum ..... 106, 118
stamineum ..... 106
vacillaths ..... 107
Vandellia ..... 146,162
diffusa ..... 162
Vanikoro hawaiensis ..... 373
kanakarum ..... 374
Vexilla thaanumi ..... 372
Vexillum micra ..... 317
thaanumi ..... 316
turben kanaka ..... 318
xenium ..... 317
Volvatella fragilis ..... 375
Vomer setapinnis ..... 395
Vostox punctipennis ..... 342
Xanthomantis flava ..... 24,26
Xiphidion rupestre ..... 402
Xolisma ligustrina ..... 102
Zacco pachycephalus ..... 130
platypis ..... 130
temminckii ..... 130
Zalembius rosaceus ..... 402
Zoniopoda collaris ..... 246
fissicauda ..... 246
Zonitoides bregyi ..... 203
hoffmanni ..... 5

## GENERAL INDEX

$$
1920
$$

Ashhurst, Astley P. ('., elected a member, 83.
Bartram, Edward B., clected a memher, 295.
Beach, IV. S., elected a member, 112.
Biddle, $\mathrm{W}^{*}$. Lyman, amouncement of death of, 295
Bower, Frank B., elected a nember, 83.

Bower, Charles P., elected a member, 112.

Bradley, Thomas, announcement of death of, 112.
Bradshaw, Mamilton, elected a member, 1.
Brown, John A., Jr., amnouncement of death of, 11.
Brown, T. Wistar, 3rd, elected a member, 83.
Buckenham, J. E. B., elected a member, 1.
Cadwalader, John, Brd, elected a member, 295.
Carpenter, A. Sidney, amouncement of death of, 11
Chamberlin, Thomas Chrowder, awarded Hayden Memorial Medal, 11.

Cheston, D. Murray, announcement of death of, 1.
Colton, Salvin W., Jr., elected a member, 1 .
Committee on Policy, 1.
Crawley, Howard. Statistical observations on the Texas fever parasite, 331.

Dixon, Edwin S., announcement of death of, 1.
DuPont, Francis I., elected a member, 295.

Erskine, Richard, elected a member, 295.

Fernald, Merritt Lyndon, elected a correspondent, 112.
Figaniere, Alfonso de, announcement of death of, 384.
Fowler, Henry W. Description of a new cyprinoid fish (Notropis stonei) with notes on other fishes obtained in the United States, 385.

Fox, Joseph M., announcement of death of, 11.
Frick, Childs, elected a member, 1.
Gadow, Hans Friedrich, elected a correspondent, 112.
Cibsom, Rebceea, announcement of death of, 1.
Gordon, simuel (i., elected a member, 295. Ordovician basalts and quartz diabases in Lebanon County, Pennsylvania, 354.
Grant, James L., announcement of death of, 83.
Haines, Reuben, amouncement of reath of, 83.
Harrower, DavidE., elected a member 1.

Hayden Memorial Award, C'ommittee on, 1. Report of Committee, 11.
Hebard, Morgan. American Dermaptera of the Nusêum National d'Histoire Naturelle, Paris, France, 337. Stulies in Malayan, Papuan, and Australian Mantidee, 14.
Hephurn, Joseph, elected a member, 112.

Neeley, F. J. Additional note on the Deal meterite, 358.
Lotsy, Joham Paul, elected a correspondent, 112.
Lovering, Joseph C., elected a member, 83.
Lyman, Benjamin smith, announcement of death of, 295.
MreDaniel, W. Ci., elected a member, 13.

MeFadden, J. Franklin, elected a member, 83.
MacDougal, Daniel Trembly, elected a correspondent, 112.
MeKean, Thomas, elected a member, 112.

Mason, Frank R., elected a member, 112.

Matos, William W., elected a member, 1.

Meredith, Hugh Bradshaw, elected a member, 13.
Monks, Sarah l' Notes on Arachnoidiseus, 207.

Morris, Lawrence J., elected a member, 83.
Dunro, Hugh F., elected a member, 83.

Nolan, Edward J., Recording Secretary Emeritus, 383.
Officers, Councillors, and Committee on Accounts, 383.
Oshima, Masamitsu. Notes on freshwater fishes of Formosa, with descriptions of new genera and species, 120. Two new cyprinoid fishes from Formosa, 189.
Osler, William, announcement of death of, 1.
Pearl, Raymond, elected a correspondent, 112.
Peary, Robert E., amouncement of death of, 83.
Pennell, Francis W. Scrophulariaceae of Colombia-I.
Pennock, Naomi, elected a member, 112.

Pilsbry, Henry A. Costa Rican land and freshwater mollusks, 2. Marine mollusks of ILawaii, VIII-XIII, 296. A Colombian pupillid snail. 329. Marine mollusks of Hawaii, XIV, XV, 360. Mollusks from Lake Chapala, State of Jalisco, and vicinity, 192. Mollusea from Central America and Mexico. 195.
Potter, Julian K., elected a member, 295.

Ramborger, William K., announcement of death of, 11.
Rehn, James A. G. Records and descriptions of Brazilian Orthoptera, 214.

Ritter, William Emerson, elected a correspoudent, 112.
Roland, Conrad'k., elected a member, 13.

Rush, Benjamin, elected a member, 13.

Schaus, William, elected a correspondent, 112.
Sclater, William Lutley, elected a correspondent. 112.

Scott, William Berryman, elected a correspondent, 112.
Search, Theodore C., announcement of death of, 384.
Spencer, Arthur R., elected a member, 1.
Steckbeck, D. W., elected a member, 295.

Stellwagen, Thomas C., announcement of death of, 11.
Stewart, George H., 3rd. elected a member, 13.
Stewart, Henry Carlisle, elected a member, 13.
Stikeman, Henry F. C., elected a member, 295.
Street, J. Fletcher, elected a member, 112.

Tobias, C. E., Jr., elected a member, 13.

Trudell, Harry W., elected a member, 1.
True, Rodney H., elected a member, 295.

Tyler, George F., elected a member, 13.

Tamatta, E. G. New land shells, 203.
Wardle, H. Newell. Iron ore artifacts from Alabama, 209.
Welsh, Robert F., elected a member, 13.

Wetherill, William Chatten, elected a member, 295.
Wherry, Edgar T. Observations on the soil acility of Ericaceae and associated plants in the middle Atlantic states, S4. Correlation between vegetation and soil acidity in southern New Jersey, 113.
Windrim, James H., announcement of death of, 112.
Wood, Edward R., Jr., elected a member, 83.
Wood, Horatio C., announcement of death of, 1.
Woolman, Anua, elected a member, 112.

Woolman, Edward, elected a member, 13.



[^0]:    ${ }^{1}$ Calvert, Amelia S. and Philip P. A Year of Costa Rican Natural History New York. The Macmillan Company, 1917. Besides details as to the localities where collecting was done, this interesting book contains a map and a bibliography of Costa Rican natural history, and related subjects.
    ${ }^{2}$ Biolley, $P$. Moluscos terrestes y fluviatiles de la meseta central de Costa Rica. San José. Tipografia Nacional, 1897. Fifty-nine species are listed, with localities and comments.

    The material collected by Biolley and Pittier was determined and the new forms described by Professor E. von Martens in his fine volume on land and freshwater mollusks in the Biologia Centrali-Americana, 1890-1901.

[^1]:    ${ }^{3}$ Stenopus guildingi Angas, Proc. Zool. Soc., 1879, p. 284, not of Bland, 1865. Renamed Hyalinia (Stenopus) angasi Tryon, Manual of Conchology (2) II, 1886, p. 182; and again, Guppya angasi v. Martens, Biologia CentraliAmericana, Moll., 1592, p. 120.

[^2]:    ${ }^{4}$ BIomumia, 1). 120.

[^3]:    ${ }^{5}$ Cf. Biolley, Moll. terr. y fluv. de la meseta central de Costa Rica, 1897, p. 13 .

    6"An Aroid plant with gigantic arrow- or heart-shaped leaves and strong, partly recumbent stems three to six inches thick." A Year of Costa Rican Natural History, pp. 167, 334.
    ${ }^{7}$ A Year of Costa Rican Natural History, p. 469.

[^4]:    ${ }^{8}$ The Zoological Journal, III, 1828, p. 536, suphl. pl. 26, figs. 7, 8, 9. On dead leaves in ditches, St. Vincent.
    ${ }^{9}$ Proc. A. N. S. Phila., 1913, p. 671.

[^5]:    ${ }^{1}$ Rull. Sire. Ent. Itatiana, NLIX, pp. 50 to st (1910).

[^6]:    ${ }^{2}$ The subfamilies and groups as given by Giglio－Tos are indicated throughout the present paper．This does not mean that we indorse his system．We do believe，however，that it is the most satisfactory to date and should be followed pending further comprehensive revisionary work．
    ${ }^{3}$ Gen．Ins．，Fasc．144，Ortl．，Mantidæ，Perlamantinæ，pl．figs．2a and 2b （1913）．

[^7]:    ${ }^{4}$ This may be due to a typographical error. The genus is described by that author as having the pronotum broader than long, but the dimensions for borneama are given as length 3 , wilth 2.5 mm .

[^8]:    ${ }^{5}$ Somewhat crushed out, this dimension having probably been less in life.

[^9]:    ${ }^{6}$ Rev. Ins. Fam. Mantidarum, p. 40, (1889).
    ${ }^{7}$ In Grandidier, Hist. Nat. Madagascar, XXIII, Orth., p. 177, (1895).
    ${ }^{8}$ Bull. Sor. Ent. Italiana, XLVI, p. 47, (1915).
    ${ }^{9}$ This violates the group character given by Giglio-Tos, "metazona del pronoto munita di una carena ben distinta che si estende in parte anche sulla prozona." We are, however, satisfied that this remarkable species is an aberrant member of the Tropidomantes.

[^10]:    10 We would here note that the spine formulae of the cephalic femora and tibiae is most important in the Mantidæ and not always easy to record accurately. For the femora we find on the ventro-external margin a few, usually long, spines; on the veutro-internal margin more numerous spines, usually alternating in length proximad, and in addition to these should be noted separately the usually minute genicular spines, when present, and the rery important discoidal spines, which proximad run in an oblique line across the ventral surface of the femur. Three or four of these occur and it is particularly important not to confuse one or two of these nearest the margin with the marginal spines proper. In the tibiae the formulae are more simple. All of the external spines must be counted, but in counting the rentro-internal spines great care must be taken not to include the apical claw, which is much larger and longer than any spine and projects from the dorso-distal portion of the tibia, but might easily be mistaken for the terminal spine of the ventro-internal series.

[^11]:    ${ }^{11}$ One of the ahoriginal tribes of (queensland.
    ${ }^{12}$ Expepting, as to this feature, the aberrant Epsementis tortriondes (Haan).
    ${ }^{13}$ Evidently a high speredalization of the type shown by Tropidomutis.

[^12]:    ${ }_{14}$ The feet are greenish, which leads us to believe that, in life, this insect may be pale green.

[^13]:    ${ }^{15}$ In the female of X . flate at hath these margins are feebly contare and rather deededly divorgent dorsid, while in that suerimen a minute but well devoloped tuberele is found on earbl side between the dutennal sorkets and the ocular margins.

[^14]:    ${ }^{16}$ so numerons and elongate are the spines of the opposed margin of the rephatir tibia when the limb is flexed that the present specimen shows the majority of the longer spines of this margin to have been broken, apparently by contart with these.
    ${ }^{17}$ The difference indicated here for the two limbs is due to the fact that one limb has one less of the minute proximal spines than the other.
    ${ }^{18}$ Wand Bearer, in allusion to the manner in which the Mantidar point with their rephatic limbs.

[^15]:    ${ }^{19}$ Saussure gives for Namomantis anstralis, the qenotype, seven spines on the ventro-external margin of the cephalic femora in his key. In his supplementary diagnosis, however, he gives seven spines for that margin and ten for the ventrointernal margin, leaving some doubt as to the accuracy of this count.
    ${ }^{20}$ Mélang. Orth., I, pp, 26t and 435, pI. VII, figs. 6it, 6ta, 64b, ( 1870 and 1871).

[^16]:    ${ }^{*}$ We are unable to determine whether shiraki's references are to actual publications.
    "Gonipeta maculata Shiraki, Matsumura, 1907, Ekichiu-Mokuroku.
    Gonipeta mawai shiraki, 1908, Konchiusekai."
    ${ }^{2}$ 2 The Aetas, or Negritos, are the aborigines of the Philippines.

[^17]:    ${ }^{23}$ The dorsal margin of the facial scutellum is seen in the series to vary from very weakly convex, as in reticulata, to very broadly ohtuse-angulate.
    ${ }^{24}$ Probably very pale green in life, as is indicated in several specimens by small areas where the chlorophil has settled in drying.

[^18]:    ${ }^{25}$ The green in these dried specimens is pronounced, though they have evidently faded considerably in drying from the living coloration.
    ${ }_{26}$ Missing in the type, these proportions shown by a paratypic female.

[^19]:    ${ }^{27}$ This name falls, as Thespis, properly defined, is a member of the group Musonia, which we believe best assigned to the subfamily Iridopterygina (not as understood by (iglio-Tos). We are not satisfied that this ninth division of Giglio-Tos is homogeneous or that it is worthy of recognition as a subfamily. We consequently do not propose a new name to take the place of the Thespine of Ciglio-Tos.
    ${ }^{28}$ The female described and figured as this species, p. 78, pl. XVIII, fig. 2, represents a different species.
    ${ }^{29}$ The tegmina are well described by saussure as " Membraneux, d'un brunferrugineux nuageux, marbrés de taches plus hyalines."

[^20]:    ${ }^{30}$ The 'Ta-Gala are the most civilized native race of the Philippines.

[^21]:    ${ }^{31}$ Bull. Soc. Ent. Italiana, XLVI, p. 198, (1915).

[^22]:    ${ }^{32}$ Burmeister's type was in such condition, or this feature was either naturally obsolete or wholly overlooked.
    ${ }^{33}$ Compare Saussure's comments on a Javanese female, at the time he phaced his lactea under atbella, Mélang. Orth., II, p. 72. (1872).

[^23]:    ${ }^{34}$ Apparently these markings are sometimes absent, possibly due to discoloration. Westwood makes no mention of this feature in describing the type of fragilicr, but describes it in full for the type of bilineata.
    ${ }_{35}$ See additional remarks under albella.

[^24]:    ${ }^{36}$ On one limb a single very small spine is found on the ventro-internal margin before the first discoidal spine. This is apparently an abnormality.

[^25]:    ${ }^{37}$ The form of the tegmina and wings when at rest, with apices of the latter considerably surpasing those of the former, and the distal, margimal, more strongly colored areas along the costal margin, gives the species before us of the genera Aarthomantis, Polyacanthopus, Leptomantis and Aetaella a distinctive and rather similar general facies, suggesting that shown by species of the Neuropteroid genus Mantispa.
    ${ }^{33}$ From Aeta + ella. The Aetas, or Negritos, are the aborigines of the Philippines.
    ${ }^{39}$ Bull. Soe. Ent. Italiana, XLVI, p. 87 , (1915).
    ${ }^{40}$ Except for the smatlest distal spines of the ventro-internal margin of the cephalic femora, which in Aetacllo individually vary from three to five.

[^26]:    ${ }^{41}$ We take pleasure in naming this interesting Mantid in honor of Mr. (. F. Baker, through whose efforts a large portion of the material at present under consideration has been assembled.

[^27]:    ${ }^{42}$ The majority of the specimens of the present series have faded to yellowish brown.
    ${ }^{43}$ In the specimens before us in which the coloration apparently shows the best preservation, these organs are faintly tinged with green, the veins green. In the others of the series all trace of green has disappeared, the veins being yellowish brown.

[^28]:    ${ }^{44}$ A large Japanese series of the speries, in the Acarlemy and Hebard Collertions, is before us.

[^29]:    ${ }^{45}$ In the Academy collection. Recorded by Rehn, Notes Leyden Mus. XXXV, p. 123, (1912). The female from Goenong Soegi, Lampong, Sumatra, referred at that time to memoralis, we assign to maculata, as originally recorded by kehn, Proc. Acad. Nat. Sci. Phila., 1903, p. 704, (1903).

[^30]:    ${ }^{43}$ Recorded by Rehn as T. superstitiosa (Fabricius), Notes from Leyden Mus., XXXV, p. 124, (1912).

[^31]:    ${ }^{49}$ Indeed Giglio-Tos himself evidently was obliged at times to switch to this point of view, for otherwise he would have no grounds for erecting the related genus Prigomantis.
    ${ }^{50}$ We here select Rhomboderula [Rhombotera] saussurei (Kirby) as genotype of Rhomboderula Giglio-Tos. For a discussion of the species which Giglio-Tos assigned to his Rhomboderulu, see page 0 O.

[^32]:    ${ }^{51}$ Giglio-Tos takes this to mean that two distinct sources are represented, one Asiatic, the other Australasian. The probability is, in our opinion, that the Asiatic phylum is the original source, the other a derivative from it. This opinion is strengthened by the realization that the forms with tegminal margins serrulate reach much their greatest numerical abundance in Papua and in few cases is their distribution extended to Australia, while none are known peculiar to that continent.

[^33]:    ${ }^{52}$ Prow Acad. Nat. Ari, Phila., 1903, p). 70s, (1903).

[^34]:    ${ }^{53}$ Interspaced with a few very small nodiform spines, so that the full count would be given as twelve to fourteen.

[^35]:    ${ }^{54}$ Interspaced with additional very small nodiform spines.

[^36]:    ${ }^{55}$ In this respert the contrast between the sexes is exactly as in luevicollis.
    ${ }^{56}$ Apparently decidedly faded from the coloration in life.

[^37]:    ${ }^{57}$ The following features of coloration have been extensively used by GiglioTos in characterizing the species of Hierodula and its allies. In the present group we feel that individual variation occurs in at least some of the species and must be taken into consideration.
    ${ }^{58}$ Selected by Kirby, Syu. Cat. Orth., I, p. 248. (1904).

[^38]:    ${ }^{59}$ Notes from Leyrlen Mus., XXXV, p. 125. (1912).
    ${ }^{60}$ Notes from Leyden Mus.. XXXV, p. 125, (1912).

[^39]:    ${ }^{61}$ Bull. Noc. Ent. Italiana, XLVIlI, p. (i5), (1917).

[^40]:    ${ }^{62}$ Notes from Leyden Mus., XXXV, p. 126, (1912).
    ${ }^{63}$ One of the most unsatisfactory features of Giglio-Tos' work lies in the fact that in his revisionary studies of the Acromantinæ he has almost invariably failed to give any additional data for previously described species. Under $A$. oligoneura (Haan) he places A. parmula Westwood as a synonym, records material from Java and Borneo, but gives no data whatever concerning the specimens recorded or reasons for the synonymy indicated. The fact that the apex of the anterior field of the wings as figured by Westwoor shows no truncation whatever causes us to believe parmula to be a valid species, which we here rerognize. Westwood's description is unsatisfactory, but with his figure far more useful than the descriptions of new species of the genus Acromantis given by Giglio-Tos.

[^41]:    ${ }^{64}$ As noted under meleagris, lack of material of C. urbana (Fabricius) prevents comparison, which species, from the literature, appears to be more nearly related to C. gramulicollis (Saussure) in pronotal form, with lateral margins more evenly expanding and in consequence decidedly less cruciform, though agreeing with labuanue and meleagris in having a well developed spine above the ocelli.

[^42]:    ${ }^{65}$ Males of these species are compared. We have no material to show the differences which exist between the sexes in the various structural and color features.
    ${ }^{66}$ From Saussure's description of the female sex of granulicollis, we believe that the pronotum in females of these species will be found to be more heavily granulate, with margins distinctly denticulate.

[^43]:    ${ }^{1}$ Rhodora, $21: 33-49,1920$.
    ${ }^{2}$ The use of indicators for this purpose has been described in Journ. Wash. Acad. Sci., $10: 217-233,1920$. Sets of indicators for field work are now on the market.
    ${ }^{3}$ Southern New Jersey will be discussed in these Proceedings at a later date.
    ${ }^{4}$ The terins used for describing soil reactions have been defined in Journ. Wash. Acad. Sci., 9:305, 1919. Specific acidity is the amount of acid, and specific alkalinity the amount of alkali, present in a given solution, with reference to pure water as the unit. Specific acidity between 1 and 10 is called minimacid, between 10 and 100 subacid, between 100 and 1000 mediacid, and above 1000 superacid. Corresponding terms are used on the alkaline side. In addition, minimacid, neutral and minimalkaline reactions are grouped together as circumneutral.

[^44]:    ${ }^{5}$ The Plants of Southern New Jersey.

[^45]:    ${ }^{6}$ Compare Harper, Bull. Torrey Bot. Club, 37: 426, 1910; Bull. Geogr. Soc. Phila. 16: 14, 1918.

[^46]:    ${ }^{7}$ IncAtee, W. L. A sketch of the Natural History of the District of Columbia, Bull. Biol. Soc. Wash., 1:142 pp., 1918.

[^47]:    ${ }^{8}$ Rhodora, 21: 431920.

[^48]:    ${ }^{9}$ In the succeeding tables these names are omitted for brevity. Their use in the text will be understood to imply the same degree of acidity here indicated.

[^49]:    ${ }^{10}$ Rhodora, 9: 163, 1907.
    ${ }^{11}$ Das Pflanzenleben der Alpen, Zürich, 1908; p. 156.
    ${ }^{13}$ Oecology of plants, Oxford, 1909; page 211.
    ${ }^{14 " T h e ~ M a i n e ~ W o o d s . " ~}$

[^50]:    ${ }^{15}$ Science, 50: 30-34, 1919.

[^51]:    ${ }^{16}$ Journ. Wash. Acad. Sci. 8, 590-598, 1918.

[^52]:    ${ }^{1}$ Bonsteel, J. A. Soils of southern New Jersey and their uses. U. S. Dept. Agr. Bull. 677, (1918).
    ${ }^{2}$ Journ. Wash. Acad. Sci. 10: 217-223. 1920.
    ${ }^{3}$ Ecology, 1: 1920.

[^53]:    ${ }^{1}$ Post Jurassic history, etc. (Abstract). Bull. Geol. Soc. Am., 24: 691. 1913. The Piedmont terraces of the northern Appalachians. Amer.Journ. Sci., 49: 227-258, 327-362, 407-428, (1920).
    ${ }^{2}$ A sketch of the natural history of the District of Columbia. Bull. Biol. Soc. Wash., 1: 86. 1918.
    ${ }^{3}$ A forest reconnaisance of the Delaware peninsula. Journ. Forestry, 17:551. 1919.

[^54]:    ${ }^{1}$ The warning must be given that the keys to tribes and genera are prepared for Colombian species, and contrasts may not hold for extra-limital genera and species.

[^55]:    ${ }^{2}$ To be considered in a second paper.

[^56]:    ${ }^{3}$ Bramia monnieri (L.) Pennell, a repent herb, with broadly rounded entire leaves, corolla with distinct posterior lobes, and outer sepal seareely longer than the innermost, is widespread in Tropical America, and must surely oreur on moist semi-brackish sands along the Colombian coast. Sce, Proe. Acad. Nat. Sci., Phila. 1919: 243, 1920.

[^57]:    ${ }^{4}$ This state has been described also as C'aprarin lameotata Yahl, and C. srmi-
     from Mexion, ant as C. biflora $\beta$ pilosa Griseb., Fl. Brit. W. I., 427, 1s61, from the Bahamas. The first name should be used if this be aecounted a distinet species, the last if a variety, and hirta if a form.
    ${ }^{5}$ Mecardonia ovatu Ruiz \& Pavon, Syst. Yeg. Fl. Peruv. et Chil. 164. 1798. "Habitat in Peruviae plateis ad Chinchao et Cuchero vicos." Description appears to be certamly that of $M$. procumbens (Nill.) Small, a wicle-spread plant to be expected in Peru. The only discrepancy is in describing the calys as heptaphyllous, although it is stated that the two small outer leaves are decidhous. Possibly the bractlets at the base of the pediecl were noted approxinating the flower in very young buds, or nore probably an error of vision was made, and becatse later it could not be ehereded the inagined bractlets were considered to be ileciduons.

[^58]:     date sepal.

[^59]:    ${ }^{4}$ Angelonia angustifolia Benth.
    Specimens collected from plants cultivated at "Medellin," on the bank of the Rio sinu, Bolívar, Pennell 4141 ( $\mathrm{Y}^{*}$ ) appear to be this eommonty cultivated species of Mexico. The two plants are readily distinguished:

    Herbage densely glandular-pubescent. Leaves lanceolate., clasping at base.

    1. 2. salicariaffolia.

    Herbage glabrons or sparsely glandular-pubescent. Leaves linear-lanceolate, narrowed at base. 2. 1. angustifolia.

[^60]:    ${ }^{1}$ These Proceedincis for 1s91, p. 32t.

[^61]:    ${ }^{1}$ A boat stone of ferruginous rock or limonite, resembling the specimen show in Plate VII, fig. 1 was foumd by Mr. Clarence B. Moore, in the Nound near Chandler Landing, Prairie County, Arkansas. Moore, "Antiquities of the St. Francis, White, and Blark Rivers, Arkansas." Journ. Acud. Nat. Sciences, Philadelphia, Vol. NIV, p. 346 .

[^62]:    ${ }^{2}$ Vol. II, p. 314.
    ${ }^{3}$ Nilsson, The "Primitive Inhabitants of Standinavia" (Nilsom on the Stone Age, edited by Sir John Lalbook), pp. 14, 15, I'. I, fig. S.
    ${ }^{4}$ Op. cit. II, p. 306, fig. 700.

[^63]:    ${ }^{1}$ Entom. News, XXII, p. 248 (1911).
    ${ }_{2}$ Proc. Acad. Nat. S'ci. Phila., 1913, p. 293, (1913); Ibid., 1915, p. 275, (1915).

[^64]:    ${ }^{3}$ We have recently had occasion to examine the type of sendere's Iormetica whern (Proc. Davenp. Acad. Nat. sci., VIII, p. 94) deseribed from a specimen, unquestionably introducod, taken at Behmont, Massachusetts. It is a well marked species, characterized by lateral tegmina such as are found in Parahormeticu, but having strongly developed tarsal arolia as in IIormetirn. Its closest relationship is, however, not with rerucose as stated by foudder, but with subcinctu Walker, from which it differs in the tequina being lateral insteat of quadrate and attingent, in the pronotal "horse-shoe" being of relatively less area, less pronounced and differently colored, and in the pronotum being in general less compressed and less vaulted. Both species have shining bark abdomens. margined laterad with odhraceous and the tegminal color similar.
    ${ }^{4}$ Trans. Amer. Entom. Soe., NLIIl, pp. 341-342, (1917).

[^65]:    ${ }^{5}$ From こち\%\%

[^66]:     tat of many of these small Neotropical Mantidae.
    ¡ Bull. Soc. Entom. Ital., NLVI, p. 138. (1915).
    ${ }^{8}$ Proe U. S. Nat. Mus., NXVII, p. 566 . (February, 1904).
    ${ }^{9}$ Syn. Catal. Orth., I, p. 274, (not carlier than November, 1904).
    ${ }^{11}$ We find that Chopard in his recent key to the species of the genus. Mioptery. as understood by him (Ann. Soce Entom. France, LXXXII, pp. 760 ) and 761, (1913)), has misplaced certain of the features of the species rustica and argentina; the number of tibial spines given for argentina does not agree with the comments of the describer, Saussure, while the color features given for the same form are not those originally described, but instead those found in rustica. We have, tentatively. separated as ciligta the Misiones male taken April 19. 1910, and recorded by us (Proc. Acad. Nat. sici. Phila., 1913, p. 294), from the other specimens there referred to rustica. It is the more infumate individual mentioned in the eomments in that paper.

[^67]:    ${ }^{11}$ We have nothing to add to our previous remarks regarding the generic name Paramusoria (Proc. U. S. Nat. Mus., XXVII, p. 5ti7, footnote. (1904)), the imdi-
    
     know the genotype, but we have a male of his species media from Caparo, Trinidad (April, 1913, S. M. Khages, [Hobard Cln.]) before us. However, the generic name canmot be maintained, as in February, 1904, the present author first definitely designated (Proc. L's. Nat. Mus., XXVII, p. 565, footnote), the type of Thespis herville as Mantis purva. In conserquence the name Diamusonia must give plare to Thespis sorville. Our speries Paramusomiu sechusa (Proe. Acad. Nat. S‘i. Phila., 1913, p, 295, fig, $7,(1913)$ ), from Alto Pencosa, Argentina, has been referred by (itgho-Tos (Bull. soc. Entom. Ital., NLVII, p. 6, (1916)), to his genus I'romisomin ( $=$ Musomiastal), but a re-exammation of the type shows no reason for us to change our assigmment, as it does not appear generieally separable from cubensis, the genotype of Paramusomia.
    ${ }^{12}$ Virle Rehn, Proe, Acad. Nat. Sei. Phila., 191s, p. 167, footnote 27. (1918).
    ${ }^{13}$ Amn. Noe. Entom, Franer, LAXIX, p, 333, (1911). [St. Lamrent, La Forestiere and Nomvean ('hantior, French (tuiana.]

[^68]:    ${ }^{14}$ Bull. Sor. Entom. Ital., SLVII, p. S, (1916).
    ${ }^{15} \mathrm{H}$ hid., pp. 4, 5 and S .

[^69]:    ${ }^{16}$ Journ. N. Y. Entom. Soc., NII, p. 1s4, (1904).
    ${ }^{17}$ Proc. Acad. Nat. Sci. Phila., 1907, 1, 158; Ibid., 1913, p. 205.
    ${ }^{18}$ Bull. Soc. Entom. Ital., XLVII, p. S, (1916).
    ${ }^{19}$ This is the speries recorded by us from Paraguay as Acanthops simuate (Proc. Acad. Nat. Sci. Phila., 1907 , p. 159). We are enabled to correct this determination by the acquisition of true simata ( $=$ falcataria) from the Guianas.

[^70]:    ${ }^{2: 4}$ Am, Noe, Entom. Franee, J.NXXV, p. 179, (1916).

[^71]:    ${ }^{21}$ Bollett. Mus. Zoolog. Anat. Comp. Torino, XXIX,no. 684, pp. 20, 21, (1914.)

[^72]:    ${ }^{22}$ Apmoximate, as the ape of the abdomen is twisted out of its nomat plane
    ${ }^{23}$ Wr have examined the mique type of Phasma radinhmm hodder Prow. Bost. Sor. Nat. Hist., XXVII, 1. 279, (1875)), and find that Redtenbarher (haarkth. Phasm., 1. 105. (1906) , has property placed this species in the genus stratorles, and has correetly interpreted the features of the sperises. Althongh the material examined by Redtenbacher was of the femate sex amd the trope is a male, the characters assigned by him are all those of the type, execpt for relatively minor oncs of the alolominal and limb coloration, and these may be sexalal features. In the type the apex of the abdomen is solidly bhakish, without any indieation of the lateral ferruginous and the marginal greenish mentioned by Redtembacher. The caudal tibiae in the type have the dorsal wirface lined with fermginons except moximad and distad, where the gencral blackish-color is found. Redtenbacher saye the tibiae are uniformly fuscous-black, along with the tarsi. The caudal tarsi are pale ferruginous in the type. while those of the other limbs are as deseribed by him.

[^73]:    ${ }_{24}$ The Entomol．，XLV，1．54，fig．，（1912）．

[^74]:    ${ }^{25}$ For remarks on this name see Rehn. Trans. Amer. Entom, Noc.. NLII, 1. 280, (1916).
    ${ }^{26}$ Ann. Carneg. Mus., VIII, p. 23, (1911).
    ${ }^{27}$ Proc. U. S. Niat. Mus, NXXV1, p. 110, (1909).
    2s Proc. Acad. Nat. Sor. Pılla., 1913, p. 329; foomote, (1913).

[^75]:    ${ }^{29}$ We feel that the correctness of this locality is open to question, as all the material seen since the original description came from South America. The type had been dried from alcohol and labelled a number of years ago, by whom we do not know.

[^76]:    ${ }^{30}$ Biol. Cent.-Amer., Orth., II, p. 264; Amn. C'arneg. Mus., VIII, p. 90.

[^77]:    ${ }^{31}$ Proc. Arab. Nat. Act. Phila., 1907, p. 371, (1907).
    ${ }^{32}$ Ibid. . 1?. 371 , fige 2 and 6.
    ${ }^{33}$ A revision of our previous records of $H$. mujor Brunner, and a careful examination of the few points given by Bruner for the separation of $H$. mazor and $H$. pormiant have convinced us that we have examined but a single sperimen of the former species. This is the female from Embareacion, Salta, Argentina, recorded by us as a member of the Argentina series of major (Proc. Acad. Nat. Sct. Phua., 1913. p. 360, (1913)). The remainder of the series there recorded, the series from Sapucay, Paraguay (Ibid., 1907. p. 37:3, fig. 3, (1907)) and the male from Suto. Argentina (Ibid., 1915, p. 287, (1915)), all recorded as major, are instead perariana as we now understand it. It is possible true permbant may be different but these specimens are in accord with the very insufficient original description. Perurianu as we understand it is a more elongate, more uniformly narrower winged species than major, with more elongate limbs.

[^78]:    ${ }^{34}$ This is not clearly separated from the disto-dorsal abdominal segment, so the term is used in an analogous, not a strictly homologons, sense.

[^79]:    ${ }^{35}$ Ann. (arneg. Mns., IX, p, 309, (1915).
    ${ }^{36}$ Proc. Acad. Nat. Sor. Phila., 1907, p. 376 , fig. 9. (1907).
    ${ }^{37}$ Amm. Carneg. Mıs., IX, p. 309 , (1915).

[^80]:    ${ }^{38}$ Entom. News, NXVIII, pp. 10s-110, (1917).

[^81]:    
     Paraguay, is not a member of that genus, but instead an aberrant A matacomera, more nearly related to A. brevicuula. From the latter species signata differs in the proportionately broader tegmina, which are regularly elongate wate, in the hess stender limbs, the more sharply hooked rereal apices and the distinctly beoder trmpanal fiedd of the male tegmen.
    *1 Ann. ('arneg. Mus., IX, p. 319. (1915).

[^82]:    ${ }^{41}$ Pror. Acad. Nat. Sci. Pmhad, 1907, P. 377, [Aapucay, Paraguay]; Ibid., 1913, 1. 371, [Misiones, Argentina]; Ibid., 1915, p. 287, [Misiones, Argentina].

    42 Ann. Carneg. Mus., IX, p. 322. [Puerto Suarez, Bolivia.]
    ${ }^{43}$ At this writing we have before us the mique female type of Phylloptera tripumetuta Soudder (Proc. Bostonsioc. Nat. Hist.; SVII, p. 261, (1575)), deseribed

[^83]:    from the "Eastem slopes of the Peruvian Andes." Brumner, in 1878 (Monogr. der Phaneropt., p. 314), suggested the possibility of the species being the same as his there described $P$. serea, while, in 1896 , Seudder (Proc. Boston Sor. Nat. Hist., NXVII, p. 213) stated it appeared to be a Homotoicha. Kirby in his catalogue (Syon. Catal. Orth., II, p. 450, (1906)), placed tripunctata in Paroscudderia. As a matter of fact the species is a Phylloptera, rather aberrant in certain features it is true, but it is the same as either P. nigro-antriculato or breviramulosa Brunner (Verhand.k.-k. Zool.-botan. Gesell. Wien, XLI, p. 162, (1891)), from the Upper Amazons. It agrees in structure and coloration rery fully with breviramulosa, but in addition has the tegminal margins and cephalic tibiae colored as in nigro-anmulata. The safer course appears to us to be the symonymizing of breviramulosa under tripunctata. The type is in bad condition, having been dried from alcohol.
    ${ }^{+4}$ Proc. U. S. Nat. Mus., NXX, p. 238. (1906).

[^84]:    ${ }^{45}$ Proc. L. S. Nat. Mum., NXX, p. 238. (1906).

[^85]:    ${ }^{46}$ Ann. Carneg. Mus., IX, p. 330. (1915).

[^86]:    ${ }^{47}$ This measurement is unnaturally small, as the abdomen is shrunken.

[^87]:    ${ }^{48}$ Amm. Garneg. Mus., LX, p. 389, (1915).
    ${ }^{49}$ Boll. Mus. Zowl. That. Comp. Torino, XV, no. 377, p. 7. (1900).

[^88]:    ${ }^{50}$ Apices damaged. Measurement approximate.
    ${ }^{51}$ Exclusive of ovipositor.

[^89]:    ${ }^{52}$ Ann. Carneg. Mus., IX, p. 395, (1915).
    ${ }^{53}$ Scudder's Conoccphalus clausus (Proc. Boston Soe. Nat. Hist., XX, p 94, (18i8)), from Jaliseo (in error, Jalaseo), Mexico, we find, on examination of the unique type, to be a Bucratcs. It differs from capitatus in the more compressed form, more elevated fastigium, shorter lateral lobes of the pronotum, the greatly elongate tegmina, while the ovipositor is shorter, decurved in distal half and there quite broad, distinctly broader than proximad. A number of other features of difference in clausus, such as more prominent eyes, less deeply emarginate subgenital plate, more deeply impressed transverse sulcus of the pronotum, different arcolation of the marginal field of the tegmina, etc., are also present. The species has the caudal tibiae strongly expanded laterad. No close affinity to Parabucrates is notieed, while it has no affinity with Homorocoryphus, or the species IF. laticeps, as suggested by Karny (Cien. Insect. Orth., Copiphorinae (fase. 139), p. 38).

[^90]:    st Vide supra.

[^91]:    ${ }_{55}$ Mél. Orth., II, fasc. VI, p. 620, (187S).

[^92]:    ${ }^{56}$ For comments on the characters separating Cyrtoxipha and Anaxipha, see Rehn and Hebard, Entom. News, XXIII, pp. 411 and 412; Proc. Acad. Nat. Scl., Phila., 1916, pl, 300 to 302.

[^93]:    ${ }^{57}$ Proc. Acad. Nat. Nof. Phila, 191s, p, 230, pl. II, fig', 71, 72, 73 and 74, (1918).

[^94]:    ${ }^{1}$ Proc. A. N. S., Phila., 1917, p. 226.

[^95]:    ${ }^{1}$ siboga-bxpeditie, Parasitisehe Prosobmanchier der Niboga-Experlition, !. :

[^96]:    ${ }^{2}$ The specimens appear to be intermediate between mitida Minds and plicrtella Desh., possibly referable to the latter.
    ${ }^{3}$ This is quite distinet from T'. Aratilis Ilinds, with which Tryon unites it.

[^97]:    ${ }^{4}$ Also by Melvill and Standen in their revision of Persian Ciulf Terebridae, Journ. of Conch., XV, 212.

[^98]:    ${ }^{5} V^{*}$. baldwimi has been wollerted at Honolula by Ostergaard and Bryan. It may prove to be indentical with $V$. flemmulata Pse, of which I have not seen specimens. 1 . balduini and $\bar{V}$. lurbrn form a peculiar section to be called Idiochila, the type being $V$. turben Reeve.

[^99]:    "\%oological Illustrations II, second series, 1S31, Mitrimae, pl. 6, fig. 3.

[^100]:    ${ }^{7}$ Which perhaps $=M$. cluthrms (Cmelin), but the figure of that is very unsatisfactory.

[^101]:    Wholngy of the Voyage of the silphur, II, 184t, p. 11, ph. 4, figs. $1,2$.

[^102]:    ${ }^{10}$ Amer. Journ. Conch. III, 1s67, p. 296, pl. 24, fig. 31.

[^103]:    ${ }^{11}$ U. S. Expl. Exped. Mollusca, p. 401, pl. 44, fig.s. 387-387b. Sandwich Lslands.

[^104]:     Independemoia，Parahyba，Brazil，are fomed to represent individuals of the pres－ fant seedes in the instar preereding maturity．Adults from that locality were at the same time correctly assigned by hat author．（Trans．Am．Ent．Soce， NLII，1，21s，1916．）

[^105]:    ${ }^{3}$ Is l'sulis scudheri with a query. Trams. Am. Ent. Sor., NLII, p, 21s, (1916).

[^106]:    ${ }^{4}$ As elsewhere in this paper, the borly length given does not include the length of the forceps.

[^107]:    ${ }^{5}$ We take pleasure in naming this interesting species in honor of Monsieur Lucien_Berland, Curator of Insects of the Muséum National d'histoire Naturelle, Paris.

[^108]:    ${ }^{6}$ The measurements of the type are given first.
    ${ }^{2}$ From ${ }^{\circ}$ öriuos $=$ insignificant.
    ${ }^{8}$ Ann. k. k. Naturhist. Hofmus. Wien. XXVI, p. 335, fig. 9, (1912).

[^109]:    ${ }^{9}$ The type is given as 3.5 mm . long, the forceps 1.5 mm . It is poss ${ }^{2}$ ble that when comparison with the type of parvus can be made, the specimen here recorded may prove to be specifically distinct.
    ${ }^{10}$ We take great pleasure in naming this handsome little species in honor of our distinguished friend Monsieur Lucien Chopard, whose excellent contributions to the literature treating of Orthoptera are a constant source of pleasure to us.
    ${ }^{11}$ Though that species has been referred by Burr to the genus Vostox, we believe that examination of the type will show it to be a member of our subsequently described genus Microvostox.

[^110]:    ${ }^{12}$ Selected as the type locality on page 345 , under the discussion of Spongovostox asemus new species. It would appear very probable, from the literature and Burr's figure, that the material recorded by Dohrn represented more than one species.

[^111]:    ${ }^{13}$ Either Kirby mistook a female for a male when describing semirufa, or the material before us represents a distinct species. We do not believe the latter to be true.
    ${ }^{14}$ See Borelli's excellent comparison of these species in Boll. Mus. Zool. Anat. comp. Univ. Torino, NXX, No. 699, p. 3, (1915). Also discussion by Hebard, Trans. Aın. Ent. Soc., NLIII, p. 420, (1917).

[^112]:    ${ }^{15}$ See discussion by Hebard, Trans. Am. Ent. Soc., XLIII, p. 424, (1917).

[^113]:    ${ }^{1}$ The district was visited during the latter part of August, 1920. The writer is indebted to Mr. Frank J. Keeley for the privilege of examining his sections of other Pennsylvania diabases, and to Dr. Edgar T. Wherry for a critical examination of this paper.
    ${ }^{2}$ Basic breccia (ouachitite) and dikes of nepheline syenite, leucite tinquaite, and camptonite of Post-ordovician age occur in the northwestern corner of the Framklin Furnace quadrangle, New Jersey. U. S. G. S. Franklin Furnace Folio, 162, 1908.

[^114]:    ${ }^{1}$ Proc. A. N. S. Phila., 1917, p. 214.

[^115]:    ${ }^{2}$ For descriptions and figures of the three species enumerated, see Proc. A. N. S. Phila., 1917, pp. 215, 216; 1920, p 300.

[^116]:    ${ }^{3}$ Iredale has shown that the earliest spelling of "Haminea" was Haminaa. Proc. Malac. Soc. Lond. XI, p. 172.

[^117]:    ${ }^{4}$ Donum Bismarckianum, p. 53.

[^118]:    ${ }^{5}$ Damomiella Iredale, Proc. Malac. Soc. Lond. XIII, p. 37, new name for Roxaniu Leach, not Roxana Stephens. Type Bulla cranchii.

[^119]:    ${ }^{6}$ Doridium (Aglaia) pilsbryi, Eliot. Proc. A. N. S. Phila., 1899, p. 512, pl. 19, figs. $1 a, 1 b$. Reef at Apia, Samoan Is. The type specimen is No. 47422 , A. N.S.P.

[^120]:    ${ }^{7}$ Perhaps this name should yield place to Anadema A. Ad., but the type of that group is imperfectly known. It is larger than the known Leptothyras. See Man. of Coneh. X, p. 255.

[^121]:    ${ }^{1}$ The only Virginia fishes received reeently are a number of Fundulus heteroclitus macrolepidotus from the Warwick River, from partly salt water. They were ohtained by Dr. Henry Tueker, March 5, 1919.

[^122]:    ${ }^{2}$ Copeia, September 15,1914 . No. 10.

[^123]:    ${ }^{3}$ Mr. Hebard secured an example of A pogonichthys stellatus Cope, 43 mm . long, at North Bimini Island, Bahamas, March 13, 1920.

[^124]:    ${ }^{4}$ Ann. N. Y. Acad. Sci., 3, 1883-5 (1885), р. 308.
    ${ }^{3}$ Also several examples of Semotilus atromaculatus and Perca flavescens from Wawasee, Indiana, obtained July 12, 1913.

[^125]:    ${ }^{6}$ Mr. S. N. Rhoads obtained the following in the fresh waters of the Colorado River delta, in the vicinity of the Hardy Piver, Mexico, in the early spring of 1905; Ameiurus nebulosus, Xyrauchen texanus, Gila elegans, Cyprimus earpio and Mugil eephalus.

