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PROCEEDINGS 

OF THE 

Cambridge Philosophical Society. 

A self-recording electrometer for Atmospheric Electricity. By 
W. A. Dovetas RupcE, M.A., St John’s College. 

[ Recewed 18 October 1915.] 

In the course of the writer’s work on the local variations of the 
atmospheric potential gradient, the need was felt for a simple self- 
recording electrometer. Most of those in use are costly and at the 
same time rather elaborate in construction. A new arrangement 
has therefore been devised which has answered the purpose in view, 
and as the apparatus may be useful in other directions a description 
is Now given. 

It has been shown* that very considerable variations of the 
normal potential gradient are produced by clouds of dust raised by 
the wind, etc. ; and also by clouds of steam escaping under pressure 
from steam boilerst. These variations are very sudden and do not 
last for a long time, so that an instrument used for recording them 
must be fairly quick acting. After a considerable amount of 
preliminary work, the type of instrument adopted was a modified 
form of the quadrant electrometer, the record being photographed 
upon a piece of bromide paper attached to a revolving cylinder. 
One special use to which the electrometer was to have been applied 
was to find the relation between the potential gradient and the 
altitude of the place of observation, and for this purpose it was 
proposed to construct ten or more instruments, so that a number 
of observations could have been carried out simultaneously. Some 
work of this kind has already been done in South Africa from 
which it appears that the potential gradient near to the ground 
diminishes with the height of the place of observation above sea 
levelf. In order to get satisfactory results it is necessary for the 

* Proc. Roy. Soc. A, Vol. 90. + Proc. Roy. Soc. A, Vol. 90. 
t Trans. Roy. Soe. South Africa, Vol. v1, part 5. 

VOL. XIX. PT. I. | 



2 Mr Rudge, A self-recording electrometer 

stations to be chosen as far removed as possible from the disturbing 
influence of manufacturing operations, and of railways, and it was 
intended to have taken a set of observations in the neighbourhood 
of the Dead Sea, as in that district, stations for the instruments 
might have been chosen with altitudes varying from 1400 ft below 
sea level to 3000 ft above, and in an open country. As a number 
of instruments were required it was necessary to keep the cost of 
construction low, and this has been achieved in the instrument to 
be described, so that the cost of material is less than ten shillings 
and a moderate amount only of mechanical skill is requized in the 
construction. 

The complete apparatus consists of: 

(1) The Electrometer. 

(2) The recording cylinder. 

(3) The illuminating arrangement. 
(4) The charging battery. 

(5) The collecting system. 

(1) The Electrometer. ‘This consists of four curved pieces of 
brass cut from a tube of 3 cm. diameter, and attached to a block of 
ebonite. The alternate pieces were connected together in the usual 
way. Each conductor subtended an angle at the centre of the 
mirror of about 60°, and the adjacent conductors were about 
1 mm. apart. The “needle” was formed from a piece of silvered 
paper, 25 x 1:5 cm. carrying a small mirror, or a piece of silvered 
thin “cover” glass could be used for both needle and mirror. A fine 
wire was attached to the needle to support a piece of wire gauze 
which was immersed in a small bottle contaiming paraffin oil, for 
damping the motion of the needle. ‘The system was suspended by 
a fine phosphor bronze wire by means of which the needle could be 
charged, Fig. 1. The whole was enclosed in a thin wooden case 
having a small window in front, and ebonite plugs to allow of 
connection being made to the quadrants. 

(2) The recording cylinder. This is the most novel feature of 
the instrument, and is constructed from one of those small round 
clocks which may be bought from a shilling upwards. Two sizes 
of clock-case are common, of diameters 10 cm. and 6 em., and both 
of these sizes have been used. A brass tube is substituted for the 
hour hand at the front of the clock, and a similar piece of brass 
tubing is attached to the arbor at the back of the clock, which is 
attached to the minute hand and used for setting the clock. These 
two tubes are in the same straight line and furnish a convenient 
axis about which the clock as a whole can rotate. If the tube 
attached to the hour hand is fixed, the clock-case will turn round 
once in twelve hours, whilst if the minute hand is fixed, the clock 
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rotates once in one hour. Two scales of measurement are thus 
possible and both have been employed. No difficulty was found in 
taking twenty-four, or two hour records, for although the records 
overlapped it was quite easy to distinguish one part from the other. 
A light zinc tube was slipped over the clock-case to give a good 
support for the bromide paper which was wrapped round outside. 
The whole clock was made to balance by fastening small pieces of 
lead to the inside of the case, but during the working a little 

cous | as eee AAR Sela Pte cs) Salaioe WISE I hm 

Fig. 2. Fig. 1. 

A, hour hand arbor fixed by the pin P. The electrometer. 

irregularity occurs as a consequence of the unwinding of the spring; 
this however is not very great and a number of clocks could be 
made to keep time together. The recording cylinder was enclosed 
in a light tight case with a long narrow slit in front, Fig. 2. 

(3) Illuminating system. As the apparatus was used out of 
doors, a lamp was unsuitable as a means of illumination, so that 
daylight was used and found to be very suitable. The electrometer 
and recording cylinder were placed at the opposite ends of a light 
tight box measuring 20x17 x14cem. <A hole was made in the 

|—2 
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for Atmospheric Hlectricity 5 

top of one of the ends of the box, and covered over with a piece 
of silvered glass, upon which a fine vertical scratch—to serve 
as a slit—had been made. A lens, which could slide upon 
a rod inside the box, was employed to project the light upon 
the electrometer mirror, whence after reflection it was returned 
to the same end of the box as the slit, but at a lower level, 
and fell upon the horizontal slit in the case of the recording 
cylinder. By this means a point of light impinged upon the 
bromide paper, and as the latter rotated, traced out the curve 
which appears after developing the paper in the usual manner. 

Fig. 3. 

To Collector 

Fig. 4. E electrometer. R recording apparatus. S slit. 

(4) Charging battery. In using the electrometer the opposite 
pairs of quadrants were kept charged to a fixed potential by means 
of a battery of the small Leclanché cell used for “flash” lamps. 
These cells are sold in sets of three and a batch of eight, giving 
about 35 volts, is quite sufficient for atmospheric observations. The 
centre of the battery was earthed. The complete apparatus is 
shown in Fig. 4. , 

(5) The Collector. This consisted of a small plate of brass coated 
with a radioactive preparation. The plate was fixed in the centre 
of a very short piece of brass tubing and the open ends of the 
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tubing covered over with wire gauze, so as to prevent loss of radium 
by rubbing, etc.; whilst allowing it to take up the potential of the 
air. The collecting plate was supported at the end of an insulated 
wire, and at such a height above the ground as would give a 
deflection suitable to the sensibility of the electrometer. 

Up to the present time the apparatus has been used for the 
purpose of taking records of the variations in the potential 
gradient, due to the presence of clouds of dust raised by traffic on 
the roads, or to the variation caused by the steam escaping from 
passing trains. A number of representative curves are given. 

No. 1. This is a twelve hour record, taken at a station on the 
Gog Magog Hill about four miles from Cambridge, and so far from 
the railway and roadway that traffic had no disturbing influence. 

No. 2 is a simultaneous record taken in Hills Road at a distance 
of less than a quarter of a mile from the railway, so that every 
passing train shows its influence in increasing the positive potential. 

Nos. 3 and 4 are a pair of simultaneous hour records, three 
being taken at Cherryhinton reservoir, and four at about 300 yards 
from the railway. The “ peaks” in the latter indicate the passing 
of a train. 

No. 5 is a one hour record taken on Hills Road and shows the 
remarkable influence of the dust raised by passing vehicles. Every 
vehicle, even an ordinary bicycle, if it raises dust, disturbs the 
normal electrification. Nos. 6 and 7 are simultaneous records 
taken at some little distance from the road. Nos. 8 and 9 were 
taken near the “Long” road railway crossing and show the 
influence of passing trains. Nos. 10 and 11 are a pair of simul- 
taneous records, 10 being taken in the Railway yard, and showing 
the effect of passing train and “shunting” operations; 11 was taken 
about a mile away from the line. 

All the potentials indicated are positive and the records are 
reduced in reproduction, but an equal range of negative potentials 
could be recorded, as only one half of the width of the photo- 
graphic paper was used in the records given. The sensibility of 
the instrument may be changed by varying the number of cells of 
the charging battery. 
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Yo. 5. Variation in positive potential due to the clouds of dust raised by traffic on the roads. 

1 P.M. 2 P.M. 
No. 6. Taken simultaneously with 5. 

1 PM. 2 P.M. 
No. 7. Taken simultaneously with 5. 
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No. 9. Variation in potential due to steam from passing trains. 
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No. 11. Taken simultaneously with No. 10, but at a distance of more than a mile from 
the railway. 
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On the expression of a number in the form aa? + by? + cz? + du’. 
By S. Ramanusan, B.A., Trinity College. (Communicated by 
Mr G. H. Harpy.) 

[ Received 19 September 1916; read October 30, 1916.] 

1. Jt is well known that all positive integers can be expressed 
as the sum of four squares. This naturally suggests the question : 
For what positive integral values of a, b, c, d can all positive 
integers be expressed in the form 

GP ree SALI AC) 2 OA (ca ee al) 
I prove in this paper that there are only 55 sets of values of 

a, b, c, d for which this is true. 
The more general problem of finding all sets of values of 

a, b, c, d, for which all integers with a finite number of exceptions 
can be expressed in the form (1'1), is much more difficult and 
interesting. I have considered only very special cases of this 
problem, with two variables instead of four; namely, the cases in 
which (1:1) has one of the special forms 

OEE eS) OU? 2 sees weak bowve ss (1:2), 

and Ay Cenmera) mn ce S/o) Eee C3): 

These two cases are comparatively easy to discuss. In this 
paper I give the discussion of (1°2) only, reserving that of (1:3) 
for another paper. 

2. Let us begin with the first problem. We can suppose, 
without loss of generality, that 

TRU PATO MRO Oe red GL (20): 

If a>1, then 1 cannot be expressed in the form (1:1); and so 

ond UR Eat OSS is eee (2:2). 

If b> 2, then 2 is an exception; and so 

BION SR go nar taitenee oie (2°3). 

We have therefore only to consider the two cases in which (1:1) 
has one or other of the forms 

ety +ce+du’, a + 2y? + c2?+ du’. 
In the first case, if ¢ > 8, then 3 is an exception; and so 

(U2 fei 3 SU co a (231). 
In the second case, if c > 5, then 5 is an exception; and so 

Re Cle Chena oscails dae wanes (2°32). 

We can now distinguish 7 possible cases. 
(241) 2+y4+2+du* 

If d >7, 7 is an exception; and so 

LAS CC et RT oS (2°411). 

(2°42) a+ y? +2274 du’. 
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If d> 14, 14 is an exception; and so 

Ded Vas Ns Ek Re (2°421). 

(2.43) a + y?+ 327+ dw’. 

If d> 6, 6 is an exception; and so 

Sed <0. ses. 3 eee eee (2°431). 

(2°44) aw + Qy?+ 22? + du’. 

If d >7, 7 is an exception; and so 

D <i (oss w ccabeaeran easter (2°441). 

(245) a? + 2y?+ 32 + du’. 

If d > 10, 10 is an exception ; and so 

Si O-< ORE. Behe ale sana (2°451). 

(2°46) a? + 2y? + 42?+4+ du’. 

If d> 14, 14 is an exception; and so 

AV NAG ie eee (2°461). 

(247) a? + 2y? + 52? + du’. 

If d> 10, 10 is an exception; and so 

Bie dc WOU Fess aaa, Oi eiee (2°471). 

We have thus eliminated all possible sets of values of a, 0, ¢, d, 
except the following 55: 

TM NLA oa iL vay Ol 4 ee 
LT Ee Thy es LOR eae 
1 one 1 D5 5 1 1 299 
Th D1 Gh Sy Le SilclnG 1 22,3009 
paleenteess TOT Oe 1 Daa eG 
il 29.06 1, 20 eno 
1 D8 i, 26 Tae D1 
eal S18 1, 2 2 6 OOS 10 
Tacs yh AG 1) A 0 
a iy TL 1, 2,5, 6 Ie 110) 
ye hk Paras 1 en 
1 Ove dy 7 1) 24e ne 
i ie 4 LO TO 1 os 
1 Ohi ys Hee al 1 
1,2, 4, 4 AN oN as 
ite ate Tes OMe i Ole 
15 Hails eters bla oe aa 
PMD 49005 Then Seah 1,2 414 
TE Shy 



in the form aa + by? + cz? + du 18 

Of these 55 forms, the 12 forms 

Piri Pr a4 eas avrg 
t 1/29 ipgp har aae! Ty La eG eye: 
1, 2, 2,2 1, 2, 4, 4 119s 3106 
Ot 4 Tater Rash a 1, 2, 5, 10 

have been already considered by Liouville and Pepin*. 

3. I shall now prove that all integers can be expressed in each 
of the 55 forms. In order to prove this we shall consider the seven 
cases (2°41)—(2°47) of the previous section separately. We shall 
require the following results concerning ternary quadratic arith- 
metical forms. 

The necessary and sufficient condition that a number cannot be 
expressed in the form 

DPN ace ona ons Raa aielale katate (3:1) 

is that it should be of the form 

RE Tis (NH ORR ee Or oes (STL): 

Similarly the necessary and sufficient conditions that a number 
cannot be expressed in the forms 

GP he A i 2 12 ee acted Bi a ae (3:2), 

DT 9G i me. s:are asin cheay slcsie re" (3°35), 

iors A aes 4 Se RO ee (3°4), 

Meee ER AU ARAL enc otlnrlge ty fen k tite (35), 

eI EAN? dh ee aie mee sen ss: (3°6), 

eed Ur to Macetnciaece lortieetete >.< (3°7), 

are that it should be of the forms 

- APUG AEA) ies ee cena sek secten es (3:21), 

as guile Oh) res eters at ated (3°31), 

AP ER al is < acianis <sieaes ses « 07 (3:41), 

AN CUCL ie ae vent Saat waited oi (3°51), 

Aes OMG eH AN) Se ely tas ota voles cle (3°61), 

BY (Qbe2)/10)) 07 25°25 4+.15)7 ......-. (3°71). 

* There are a large number of short notes by Liouville in vols. v—vir of the 
second series of his journal. See also Pepin, ibid., ser. 4, vol. v1, pp. 1-67. The 
object of the work of Liouville and Pepin is rather different from mine, viz. to 
determine, in a number of special cases, explicit formulae for the number of 
representations, in terms of other arithmetical functions. 

+ Results (3°11)—(3-71) may tempt us to suppose that there are similar simple 
results for the form ax?+ by?+cz?, whatever are the values of a, b, c. It appears, 
however, that in most cases there are no such simple results. For instance, 
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The result concerning a + y?+ 2 is due to Cauchy: for a proof 
see Landau, Handbuch der Lehre von der Verteilung der Prim- 
zahlen, p.'550. The other results can be proved in an analogous 
manner. The form a?+y?+ 22 has been considered by Lebesgue, 
and the form «+ ¥°+32 by Dirichlet. For references see Bach- 
mann, Zahlentheorie, vol. Iv, p. 149. 

4. We proceed to consider the seven cases (2°41)—(2°47). In 
the first case we have to show that any number NV can be expressed 
in the form 

IN = oP ENE EOE eek eee ere (i) 

d being any integer between 1 and 7 inclusive. 
If N is not of the form 4°(84+7), we can satisfy (4:1) with 

u=0. We may therefore suppose that V = 44 (8u + 7). 
First, suppose that d has one of the values 1, 2, 4, 5, 6. 

Take w= 2’. Then the number 

Node (Bue 7 a) 
is plainly not of the form 4*(84+7), and is therefore expressible 
in the form a?+4 7? +2. 

Next, letd=3. Ifp=0, take u=2* Then 

N — dw = 4", 

the numbers which are not of the form #?+2y?+10z2? are those belonging to one 
or other of the fowr classes 

Oo (Sa 7), 2b (25u-5), | 254 (25-15), 25" (25p aoe 
Here some of the numbers of the first class belong also to one of the next three 
classes. 

Again, the even numbers which are not of the form «+ y?+ 102° are the numbers 

4* (164-6), 

while the odd numbers that are not of that form, viz. 

Bis QL, aL, 30,143, 67,09, 87, dod. 21a 219% 223.0203, 50 lem eee 

do not seem to obey any simple law. 

I have succeeded in finding a law in the following six simple cases: 

a yp? 422, 
U4 yr? +527, 
x+y? +627, 

vt y2+82?, 

xu? + Qy? + 622, 

x24 Qy? 4822. 
The numbers which are not of these forms are the numbers 

4° (8u+7) or (8u+3), 

4* (8u +3), 
9 (9u +3), 

4° (164+14), (16u+6), or (4u+3), 

4% (Su “5 5), 

4X (8u+7) or (8u+ 5). 
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If w>1, take w=2*", Then 

N — du? = 4 (8 — 5). 

In neither of these cases is N—du? of the form 4 (8u+7), 
and therefore in either case it can be expressed in the form 
+? + 2°. 

Finally, let d=7. If pw is equal to 0, 1, or 2, take w= 2". 
Then N—dvw? is equal to 0, 2.44, or 4. If w>3, take 
met? Then 

N — dw = 44 (8u — 21). 

Therefore in either case N— du? can be expressed in the form 
a + yf? + 2°. 

Thus in all cases V is expressible in the form (4:1). Similarly 
we can dispose of the remaining cases, with the help of the results 
stated in § 3. Thus in discussing (2°42) we use the theorem that 
every number not of the form (3°21) can be expressed in the form 
(3'2). The proofs differ only in detail, and it is not worth while 
to state them at length. 

5. We have seen that all integers without any exception can 
be expressed in the form 

TAGE Pe AY ne? oss ages» Metesiie (5:1), 

when eo hams 1, 

and i= k= LV, 

We shall now consider the values of m and n for which all 
integers with a finite number of exceptions can be expressed in 
the form (5:1). 

In the first place m must be 1 or 2. For, if m>2, we can 

choose an integer v so that 

nu? = v (mod m) 

for all values of uw. Then 

(mp + v) — nu? : = 

where w is any positive integer, is not an integer; and so mp + v 
can certainly not be expressed in the form (5:1). 

We have therefore only to consider the two cases in which m is 
1 or 2. First let us consider the form 

AE EPA BA MU Ma aba, cee ude ces (5:2). 

I shall show that, when » has any of the values 

DART) 25360 GS, :N00.....0- +00. (5-21), 
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or is of any of the forms 
4k+2, 4kh48, 8k+5, 164412, 32k+4 20 ...(5'22), 

then all integers save a finite number, and in fact all integers from 
4n onwards at any rate, can be expressed in the form (5°2); but 
that for the remaining values of » there is an infinity of integers 
which cannot be expressed in the form required. 

In proving the first result we need obviously only consider 
numbers of the form 4*(84+7) greater than n, since otherwise 
we may take w=0. The numbers of this form less than n are 
plainly among the exceptions. 

6. I shall consider the various cases which may arise in 
order of simplicity. 

(6:1) n=O (mod 8). 

There are an infinity of exceptions. For suppose that 
N= Sw +7. 

Then the number 

N —nw=7 (mod 8) 

cannot be expressed in the form a+ y? + 2. 

(62) n=2 (mod 4). 

There is only a finite number of exceptions. In proving this 
we may suppose that N=4'(8u+7). Take w=1. Then the 
number 

N-me?=4 (84+ 7)—n 
1s congruent to 1, 2, 5, or 6 to modulus 8, and so can be expressed 
in the form # + 9 + 2. 

Hence the only numbers which cannot be expressed in the 
form (5:2) in this case are the numbers of the form 4’ (8m + 7)-not 
exceeding n. 

(6:3) n=5 (mod 8). 

There is only a finite number of exceptions. We may suppose 
again that NV = 4\(8u4+ 7). First, let ¥+=1. Take w=1. Then 

N —nw=4(8u4+ 7) -—n=2 or 3 (mod 8). 

If X =1 we cannot take w= 1, since 

N —n=7 (mod 8); 

so we take w=2. Then 

N—nw = 44 (84+ 7) — 4n = 8 (mod 32). 

In either of these cases NV — nw? is of the form x + y? + 2. 
Hence the only numbers which cannot be expressed in the 

form (5:2) are those of the form 44(84+7) not exceeding n, and 
those of the form 4 (Sw + 7) lying between n and 4n. 
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(64) n=8 (mod 4). 

There is only a finite number of exceptions, Take 
N=4 (8u + 7). 

IfX>1, take w=1. Then 

N—nwu?=1 or 5 (mod 8). 

If X=0, take u=2. Then 

N —nvw= 5 (mod 8). 
In either case the proof is completed as before. 

In order to determine precisely which are the exceptional 
numbers, we must consider more particularly the numbers between 
n and 4m for which X=0. For these w must be 1, and 

N —nw?= 0 (mod 4). 
But the numbers which are multiples of 4 and which cannot be 

expressed in the form .«?+ y? + 2’ are the numbers 
4« (8y +7), (ee Boa. tO aces) 

The exceptions required are therefore those of the numbers 
(AEST re SY (cart Be ec ece eas (6°41) 

which lie between n and 4m and are of the form 

STE hy epee abe Sie ee (6°42). 

Now in order that (6°41) may be of the form (6°42), « must be 
1 if n is of the form 8/+3 and « may have any of the values 
2,3, 4,... if n is of the form 8k+7. Thus the only numbers 
which cannot be expressed in the form (5:2), in this case, are those 
of the form 44 (8u + 7) less than n and those of the form 

n+4« (8yv + 7), (=O 2535753; 

lying between n and 4n, where «=1 if n is of the form 8k +3, 
and « >1 if n is of the form 8k +7. 

(65) n=1 (mod 8). 

In this case we have to prove that 
(i) if n > 33, there is an infinity of integers which cannot be 

expressed in the form (5:2); 
(ii) if n is 1, 9, 17, or 25, there is only a finite number of 

exceptions. 

In order to prove (1) suppose that N=7.4*. Then obviously 
wu cannot be zero. But if w is not zero wv? is always of the form 
4« (8v+1). Hence 

N-—-ne=7.4—n.4*(8v + 1). 

Since n>33, X must be greater than or equal to « + 2, to ensure 
that the right-hand side shall not be negative. Hence 

N — nu? = 4* (8k + 7), 
VOL) XIX, PT. I. 2 
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where b= 14. 44-7 — nv —E (n+ 7) 

is an integer; and so V — nu? is not of the form a? + y+ 2. 
In order to prove (11) we may suppose, as usual, that 

N = 44 (84+ 7). 

TfixX=0, take w=1. Then 

N—-nv’=8u4+ 7—n=6 (mod 8). 

TfX >1, take w= 2". Then 

N—-we?= 4 (8k + 3), 

where k=4(uw+1)—-1(m+7). 

In either case the proof may be completed as before. Thus the 
only numbers which cannot be expressed in the form (5'2), im 
this case, are those of the form 84+7 not exceeding n. In 
other words, there is no exception when n=1; 7 is the only 
exception when n=9; 7 and 15 are the only exceptions when 
n=17; 7, 15 and 23 are the only exceptions when n = 25. 

(66) n=4 (mod 32). 

By arguments similar to those used in (6°5), we can show that 

(i) if n> 182, there is an infinity of integers which cannot 
be expressed in the form (5:2) ; 

(1) if 2 is equal to 4, 36, 68, or 100, there is only a finite 
number of exceptions, namely the numbers of the 
form 4° (84+ 7) not exceeding n. 

(67) n=20 (mod 382). 

By arguments similar to those used in (6'3), we can show that 
the only numbers which cannot be expressed in the form (5:2) are 
those of the form 4’ (84 +7) not exceeding n, and those of the form 
42(8u4+ 7) lying between x and 4n. 

(68) n=12 (mod 16). 

By arguments similar to those used in (6°4), we can show that 

the only numbers which cannot be expressed in the form (5:2) are 
those of the form 4°(84+7) less than n, and those of the form 

n+ 4* (Sv +7), (vy =0) 12a 

lying between n and 4n, where « =2 if n is of the form 4(8k +8) 
and « > 2 if n is of the form 4 (8k + 7). 

We have thus completed the discussion of the form (5°2), and 
determined the exceptional values of VV precisely whenever they 
are finite in number. 

7. We shall proceed to consider the form 
PK Co es ca) ep OC Fa eR eo, Cia): 
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In the first place n must be odd; otherwise the odd numbers 
cannot be expressed in this form. Suppose then that n is odd. 
I shall show that all integers save a finite number can be expressed 
in the form (71): and that the numbers which cannot be so 
expressed are 

(i) the odd numbers less than n, 
(ii) the numbers of the form 4 (164 + 14) less than 4n, 
(111) the numbers of the form n+ 44(164+4 14) greater than 

n and less than 9n, 
(iv) the numbers of the form 

on +4*(16v+14), (v=0, 1, 2, 3, ...), 

greater than 9n and less than 25n, where c=1 if 
n=1 (mod 4), c=9 if n=8 (mod 4), « =2 if n?=1 
(mod 16), and «>2 if n?=9 (mod 16). 

First, let us suppose V even. Then, since x is odd and WV is 
even, it is clear that w must be even. Suppose then that 

i 20s N= 2M. 

We have to show that M can be expressed in the form 

BN te Ze ANU iuia'ye siastilels gis danse (72). 

Since 2n = 2 (mod 4), it follows from (6'2) that all integers except 
those which are less than 2n and of the form 4° (Su 7) can be 
expressed in the form (7:2). Hence the only even integers which 
cannot be expressed in the form (71) are those of the form 
4°(164+14) less than 4n. 

This completes the discussion of the case in which WN is even. 
If NV is odd the discussion is more difficult. In the first place, 
all odd numbers less than n are plainly among the exceptions. 
Secondly, since n and WN are both odd, w must alka berodds «We 
can therefore suppose that 

N=n4+2M, w=1+48A, 

where A is an integer of the form $4(k+1), so that A may 
assume the values 0, 1, 3, 6, ..... And we have to consider 
whether »+2M can be expressed in the form 

2(@+y?+2)+n(1+8A), 

or M in the form 

eg BF AION oe vciasisjos enn ns os os (7°83). 

If M is not of the form 4° (84+7), we can take A=0. If it is 
of this form, and less than 4n, it is plainly an exception. These 
numbers give rise to the exceptions specified in (iii) of section 7. 
We may therefore suppose that M is of the form 44 (8+7) and 
greater than 4m. 

bs 
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8. In order to complete the discussion, we must consider 
the three cases in which n= 1 (mod 8), n=5 (mod 8), and 
n= 8 (mod 4) separately. 

(81) n=1 (mod 8). 

If X is equal to 0, 1, or 2, take A=1. Then 

M —4nA = 4 (8p + 7) — 4n 

is of one of the forms 

Sv+3, 4(8v+3), 4(8y +6). 

If X>3 we cannot take A=1, since M—4nA assumes the 
form 4(8v +7); so we take A=3. Then 

M— 4nd = 4 (84 +7)—12n 

is of the form 4(8y +5). In either of these cases M —4mA is of 
the form a+ y?+2. Hence the only values of MW, other than 
those already specified, which cannot be expressed in the form 
(7:3), are those of the form 

4 (8p + 7), (vy =0, iF REE (2 >) 

lying between 4n and 12n. In other words, the only numbers 
greater than 9n which cannot be expressed in the form (7:1), m 
this case, are the numbers of the form 

n+A*(8p-+7), @= 0; 1, 2) ok 

lying between 9n and 25n. 

(8:2) n=5 (mod 8). 

NS ebake yA —alenebiven 

M — 4nA = 4 (84 + 7) — 4n 

is of one of the forms 

8v+3, 4(8v+2), 4(8y+4+3). 

If } = 2, we cannot take A=1, since M—4nA assumes the 
form 4(8y+7); so we take A=3. Then 

M—4nA = 4 (84 +7) —12n 

is of the form 4(8y+ 5). In either of these cases JJ — 4nA is of 
the form a?+y?+z2?. Hence the only values of M, other than 
those already specified, which cannot be expressed in the form 
(73), are those of the form 16 (8u + 7) lying between 4n and 12n. 
In other words, the only numbers greater than 9n which cannot 
be expressed in the form (7:1), in this case, are the numbers of the 
form n + 47(16u + 14) lymg between 9n and 25n. 
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(83) n=3 (mod 4), 

If 7X+1, take A=1, Then 

M —4nA= 4 (8 +7) —4n 

is of one of the forms 

8v+3, 4(4v 41). 

If X=1, take A=3. Then 

M—4nQ=4(8u+ 7) —12n 

is of the form 4 (4v +2). In either of these cases M— 4nA is of 
the form a + y? +.2. 

This completes the proof that there is only a finite number of 
exceptions. In order to determine what they are in this case, we 
have to consider the values of M, between 4n and 12n, for rhe 
A=1 and 

M—4nA = 4(84+ 7—n)=0 (mod 16), 

But the numbers which are multiples of 16 and which cannot be 
expressed in the form a+ y? + 2? are the numbers 

AN(SpyeM ae (a 2) 3, 4, . 55 = Oy Ie DY.) 

The exceptional values of M required are therefore those of 
the numbers 

ANE (Sy VY vorcoSsaaitien vac (8°31) 
which lie between 4m and 12n and are of the form 

Su [(ee) Foes SF) Soa ge eee ie are (8:32). 

But in order that (831) may be of the form (8°32), « must be 
2 if n is of the form 84+ 3, and « may have any of the values 
3, 4,5,... if nm is of the form 8k+7. It follows that the only 
numbers greater than 9n which cannot be expressed in the form 
(7:1), in this case, are the numbers of the form 

9n + 4« (16 + 14), Cy ln, ee): 

lying between on and 25n, where «= 2 if n is of the form 8k +3, 
and « > 2 if 7 1s of the fac 8k + 7. 

This completes the proof of the results stated in section 7. 
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An Aaiom in Symbolic Logic. By C. E. Van Horn, M.A. 

(Communicated by Mr G. H. Harpy.) 

[Received 30 August 1916: read 30 October 1916.| 

Philosophy’s task is a search for the primal and fundamental 

elements of the world. Its face is turned in the opposite direction 

to that of science and mathematics. Philosophy hands back to 

them its results, and they as best they can construct systematic 

bodies of doctrine that purport to show us what the world may be 
on the one hand (science) and what the world might be on the 

other (mathematics). As philosophy advances in the pursuit of its 
task it is continually vacating old ground to science and mathe- 
matics. The history of this change of boundary can be traced in 
the changes in the nomenclature of human knowledge: Natural 
Philosophy has become Physics; Mental Philosophy has become 
Psychology; Moral Philosophy is becoming the inductive science 
of Ethics. Thus (paradoxically speaking) philosophy’s advance is 
to be marked by the retreat of her boundaries. 

It is interesting to watch this retreat in a field occupied by 
philosophy from its very beginning, and until recently supposed to 
be its permanent possession. I refer to the field of the foundations 
of mathematics. Here large areas once occupied by philosophy by 
sovereign right of long control are slowly passing into the possession 
of pure mathematics; and by the way both are gainers by the 
transfer™*. 

To facilitate the mathematical treatment of these new areas a 
new instrument of investigation had to be invented, namely, Mathe- 
matical, or Symbolic, Logic. This new logic, which is infinitely 
more powerful than the traditional logic, and which embraces all 
that is really self-consistent in the old logic, makes possible a 
precise and easy handling of all the highly abstract and complex 
ideas occurring in the new fields. For example, both philosophy 
and the old logic found themselves involved in many a tangle on 
questions concerning classes and relations because neither possessed 
the requisite instruments of analysis. Again, philosophy had 
wandered into a veritable labyrinth of difficulties concerning 
infinity, quantity, continuity, and so on. Here too the secret of 
the trouble lay in the inadequacy of the instruments of analysis 
afforded by the traditional logic. : 

* Much valuable light is thrown upon the details of this process in the writings 
of Bertrand Russell, especially in the preface and introductory chapters of the 
Principia Mathematica, Vol. 1.1910; and more recently in his Scientific Method in 
Philosophy, 1914. 
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Now however the matter is all changed. _ Philosophy, equipped 
with the latest instruments of mathematical logic, is able to deal 
successfully with the problems of these fields. In fact so fully have 
these ideas been analysed that at last philosophy as such has 
relinquished these fields to pure mathematics. Even more, the 
whole field of deduction has now become the foundation-branch of 
mathematics and has developed into a precise Calculus of Pro- 
positions. Out of it grow by easy stages the Calculus of Classes 
and the Calculus of Relations, and these in turn grow by equally 
easy stages into all the manifold branches of pure mathematics as 
more commonly known. It is in these and similar ways that 
philosophy and pure mathematics are both gainers by the transfer 
of the fields recently acquired by mathematics from philosophy. 

It is now easy to understand why the axioms of mathematical 
logic (and so of all pure mathematics) lie in the borderland between 
philosophy and mathematics, and are thus the concern of the 
philosopher equally with the mathematician. To depart entirely 
from our figures and adopt others, the rootage of mathematics is in 
philosophy. It is here too that we meet the innovations of mathe- 
matical logic that appear so fantastic to the philosopher trained 
only in the old logic. Its definitions and treatment of some of the 
common terms of language seem so at variance with what the 
traditional logician is familiar with that he often views the new 
logic as the victim of some delusion. It appears however from the 
nature of the case itself that many of those peculiarities, which 
from the view-point of traditional logic would be described as 
abnormal, do not deserve to be so described; that in fact it is in 
the theories of the traditional logician and philosopher that the 
abnormalities really occur*. 

In order to indicate what seems to me a possible simplification 
of the axiomatic basis of mathematical logic I wish to introduce in 
a new form an idea advocated by Sheffer. Its importance les in 
the fact that in terms of it Sheffer was able to define the four 
fundamental operations of logic, namely, Negation, Disjunction, 
Implication, and Conjunction or Joint Assertion. It is a familiar 
fact that Kronecker found the use of certain auxiliary quantities 
(let us call them ‘parameters’) of great value in his algebraic 
investigations, the chief value lying in the fact that their dis- 
appearance led to desired relations among numbers essential to his 
investigations. It is a precisely similar use of Sheffer’s idea that 
I desire to make in the field of the philosophy of logic. In terms 
of it I define, after him, the four fundamental operations of logic. 
Then, unlike him, I work by means of an a#iom to eliminate that 
idea from the formulae, and in so doing to arrive at the desired 

* Cf. Russell, Scientific Method in Philosophy, chap. 1. 
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properties and relations of the four fundamental operations. The 
chief excellence of my method seems to reside in the fact that 
proceeding as indicated above I have been able to prove as pro- 
positions of mathematical logic some of the axioms hitherto laid 
down at the basis of this logic. 

In its most satisfactory form the axiomatic basis of mathe- 
matical logic has been stated by Bertrand Russell in the first 
volume of the Principia Mathematicat. In *1 of Vol. 1, pp. 98-101, 
of the Principia will be found the primitive propositions required 
for the theory of deduction as applied to elementary propositions. 
I confine myself to these purposely, for it is here that I have 
succeeded, I believe, in simplifymg the axiomatic basis of 
mathematical logic. 

Let p and gq be any two elementary propositions. The four 
fundamental operations give us (1) ~ p (not-p), (2) pv q (either p 
or g), (3) p> ¢ (p implies qg), and (4) peg (both p and q). After 
Sheffer, I define these four results in terms of a single undefinable 
operation. I will call this undefinable operation Deltation. The 
result of performing this operation upon two elementary propositions 
p and q is symbolized, after Sheffer, ‘p Aq’ (read ‘p deltas q’). 
The four fundamental operations of logic can be expressed as 
logical functions of this parameter thus: 

Negation : ~pe—e pup Df. 

Disjunction : DN Ge —n wo pi Gio 

Implication : (DOG 5 o/0VN SH) Df. 

Conjunction : Deg-—.~(pAg), Die 

These definitions of the four fundamental operations of logic 
as functions of the one undefined parameter, Deltation, are made 
relevant to our discussion by means of the following axiom. 

Axiom. I[f p and q are of the same truth-value, then ‘p Aq’ 
is of the opposite truth-value ; but of p and ¢ are of opposite truth- 
values, then ‘p Aq’ ts true. 

For convenience of reference it- might be well for me to state at 
this point Russell’s primitive propositions concerning elementary 
propositions as he enunciates them in *1 of the first volume of 
the Principia. 

*1.1 Anything implied by a true elementary proposition 
is true. Ppt. 

+ Whitehead and Russell, Principia Mathematica, Vol. 1. 1910, Vol. m, 1912, 
Vol. 11. 1913 (Cambridge University Press). 

+ Russell uses the letters “Pp” to stand for ‘‘ primitive proposition,” as does 
Peano. 
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*1.11 When ¢2 can be asserted, where w is a real variable, 
and ‘¢ # Da’ can be asserted, where « is a real variable, then wa 
can be asserted, where « is a real variable. Pp. 

#12 EBV lo. 7 Pp. 

is | Fg. Dspvg Pp. 

se PspVvg. gv p Pp: 

plore or: pV(gvr)-o-gv(pvr) Pp. 

meee Fs. gor. pvg.d.pvr Pp. 

*1.7 If pis an elementary proposition, ~ p is an elementary 
proposition. Pp. 

*1.71 If p and q are elementary propositions ‘pvq’ is an 
elementary proposition. Pp. 

*172 If dp and Wp are elementary propositional functions 
which take elementary propositions as arguments, ‘¢ pvp’ is an 
elementary propositional function. Pp. 

These are all the primitive propositions that are needed for the 
development of the theory of deduction, as applied to elementary 
propositions, according to Russell’s method of treatment. 

It is my purpose to show that by means of my axiom 
Russell's primitive propositions *1.2 to *1.71 can be demon- 
strated. I do this by starting at the very beginning and 
developmg the immediate consequences of three of the axioms 
which I lay down as the basis of the theory of deduction as applied 
to elementary propositions. The resulting deductive development 
at length reaches a point where it includes among its theorems 
Mr Russell’s seven primitive propositions and two others that can 
take the place of his definitions of Implication and Conjunction. 
Altogether I prove seventeen theorems. Some of these theorems 
occur as propositions in the first volume of the Principia. Al- 
though many more theorems can be proved as simply as the ones 
given, to economize space I shall stop at the poit where my 
development of Mathematical Logic includes the nine theorems 
mentioned above. 

I will now state the three axioms used in this paper. The 
first is *1.1 given above, the last is my axiom as already enunciated. 

Axiom 1. Anything implied by a true elementary proposition 
us true. 

Axiom 2. If p and q are elementary propositions, then ‘p Aq’ 
is an elementary proposition. 

Axiom 3. If p and q are of the same truth-value, then ‘p Aq’ 
is of the opposite truth-value ; but if p and q are of opposite truth- 
values, then ‘pq’ ts true. 
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THEOREM 1 

Lf p is an elementary proposition, ~ p is an elementary pro- 
position. 

Dem. 
Axiom 2 gives us ‘pAp’ elementary when p is elementary ; 

‘pAp’ is ~ p, by Definition of Negation. Hence the theorem. 

This is a proof of Mr Russell’s primitive proposition *1.7 given 
above. 

THEOREM 2 

If p and q are elementary propositions, ‘pv q’ is an elementary 
proposition. 

Dem. 
By Theorem 1, if p and g are elementary so also are ~ p and 

~q. Therefore, by Axiom 2,‘~p A ~q’ is elementary; but this, 
by Definition of Disjunction, is ‘pvq’. Hence the theorem. 

This is Mr Russell’s primitive proposition *1.71 quoted above. 

THEOREM 3 

The propositions p and ~ p are of opposite truth-values. 

Dem. 
Two possibilities can occur : 
1°: p true. By Axiom 3, ‘p Ap’ 1s false; but this by 

Definition of Negation is ~ p; hence in this case p and ~ p are 
opposite in truth-value. 

2°: p false. By Axiom 3, ‘pA p’ is true; but this by 
Definition of Negation is ~ p; hence in this case also p and ~ p 
are opposite in truth-value. Hence the theorem. 

This theorem states in precise form the information usually 
given in text-books on logic in more or less vague statements that 
are called ‘definitions’ of negation. 

THEOREM 4 
Ff) 2) 7p: 

Dem. 
[Th. 3] F. p and ~ p of opposite 

truth-values (1) 

(ys; Asx.) 3] rE pA ~p (2) 

[(2). Def. of Implication] F. theorem, 

This is proposition *2.08+ of the Principia. 

+ Op. cit. Vol. 1. p. 105. 
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THEOREM 5 

If p ws false, ‘p A q’ ts always true. 

Dem. 
Two possibilities can occur: either g true, or g false. In either 

case ‘p A q’ is true by Ax. 3. 

THEOREM 6 

If ¢ is false, ‘p A q? ts always true. 

Proof similar to that of preceding theorem. 

THEOREM 7 

The propositions ‘p A q’ and ‘q¢ A p’ have the same truth- value. 

Dem. 
If p and q ave of the same truth-value then, by Ax. 3,‘p A q’ 

and ‘q A p’ are both of the opposite truth- value, If p and q are 
of opposite truth-values then, by Ax. 3,‘p Aq’ and ‘qg A p’ are 
both true. Hence the theorem. 

THEOREM 8 

The proposition 
~pAah~(~qArr) 

us true if any one or more of the propositions p,q, r are true; but 
uf all of these propositions are fulse then the proposition 

apa ~(~q A ~71) 
is false. 

Dem. 
Eight possibilities can occur : 
1°: p,q, 7r all true. Then (Th. 3) ~p,~q, ~7 are all false. 

Hence (Ax. 3)‘~q A ~r’ is true. Hence (Th. 3) ~(~q A~r) 
is false. Hence (Ax. 3) the proposition ‘~pAw~(~qAwr)’ 
is true in this case. 

2°: p and q true, but 7 false. By a 3, ~p and ~ q are 
false, while ~r is true. Hence (Ax. 3) ‘~qAw~r'’ is true. 
Hence (Th. 3) ~(~qA-~r) is false. Hence (Ax. 3) the 
proposition is true in this case. In a similar manner in the 
following cases : 

3: p true, q false, r true; 
4°: p false, g, r true; 
5°: p true, q, r false ; 
6°: p false, q true, 7 false ; 
7°: p,q false, r true ; 

we have‘~pA~(~qAwr)’ true. 
But in 8°: p, q, false, we have ~ p, ~q, ~ 1 all true, by 
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Th. 3. Hence (Ax. 3)‘~ q A~r’is false, making ~(~ qg A ~r) 
true (Th. 3). Hence (Ax. 3) in this case the proposition is false. 

Hence the theorem. 

THEOREM 9 
The propositions 

‘~w pA ~(~qA ~7r), ‘~ GA ~(~ pA ~Tr)’, 

always have the same truth-value. 

This follows at once from Th. 8. 

At this point I introduce Mr Russell’s definition of Equivalence + 
as 1t occurs in the Principia. 

Equivalence : pH=q-=-PpIqG-¢Ip Df. 

THEOREM 10 
bh p=~(~ p). 

Dem. 
We first prove -. p) ~(~p). Two cases arise: 
1°: p true. By Theorem 3, ~ pis false, ~ (~ p) is true, and 

~[~(~ p)] is false. Hence 

[Ax. 3] tk. pA ~[~(~ p)] @) 

[(1). Def. Implica. | r. pI~(~ p) (2) 

2°: p false. By Th. 3, ~p is true, ~(~>p) 1s false, and 
~[~(~ p)] is true. 

[Ax. 3] ke pO ~[~(~ pl) 
[(1). Implica. ] Fr. pd) ~(~ p) (4) 

Hence in all cases we have 
Fr, p2~(~ p) (5) 

We now prove Fk. ~(~ p)Dp. 

[Th. 3] F. g and ~ q of opposite 
truth-values (6) 

[(6). Ax. 3] re OA G (7) 

(ed tL ~(~p)d~p 6) 
[(8). Def. Implica.] bk. ~(~ p)Ip (9) 

[(5). (9). Def. Equiv. | F. theorem, 

This is proposition *4.13 of the Principia}. It is the Principle 
of Double Negation, and asserts that any proposition is logically 
equivalent to the denial of its negation. 

+ Op. cit. Vol. 1. p. 120, *4.01. 
18 Do Cation OIG ft. 1) NZX 
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THEOREM 11 

pvp... 

Dem. ; 
cx K~p and ‘~pAwp’ of 

opposite truth-values (1) 

[(1). Ax. 3] Ew pA ~ p. A xp! . (2) 

[(2). Def. Disjunc. Implica.] Ft. theorem. 

This is Mr Russell’s primitive proposition *1.2 given above. 

THEOREM 12 
fag. D-pv ¢: 

Dem. 
Two cases need only be treated : 
1°: q true. Then (Th. 3) ~q 1s false. Hence (Th. 6) 

‘~pAw~q’ is true. Hence ~(~p A ~ q) 1s false, by Th. 3. 
Hence 

[Ax. 3] Fig. A.~(~pAwgq) (1) 
2°: q false. 

= ~ Jgrwlr Aw~ p 
pie NPA a) Lg. A.~(~pA~q 2) 

P; fi 
[(1). (2). Def. Disjunc. Implica.] —-. theorem. 

This is Mr Russell’s primitive proposition *1.3 given above. 

THEOREM 15 
opv gq. >. gv p- 

Dem. 
LA F: $e pAN~rq and‘r~qA rp’ 

of the same truth-value (1) 

(by Th. 3. Ax. 3] HKi~ pArg.A.~(~qA ~p) (2) 
[(2). Def. Disjune. Implica.]  F: theorem. 

This is Mr Russell’s primitive proposition *1.4 given above. 

THEOREM 14 

F:pv(qvr).d.gv(pvr). 

Dem. 
[Th.9] fF: ‘~pAnr(~qArr) and‘~qA~(~pArr)’ 

of the same truth-value (1) 

fel). o The) 3.) Asx. 3] F: ~pAwr(~qArr) 

[(2). Def. Disjunc. Implica.] -: theorem. 

This is Mr Russell’s primitive proposition *1.5 given above. Pp prop g 
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THEOREM 15 

3A 0) Poe) Ce)o 2) oD VF 

Dem. 
ee are three cases to be discussed : 

: If p is true, or if 7 is true, or if both p and r are true, 
gq ee any elementary proposition. 

ee Paes bol ( Sp A) (1) 

a: ray Th: LO] Bee Thi ao (oS 7) (AN SAP) (2) 

~pi~q [@). —4 ; 1] I: opAng.A.n(~pA ~7r)@) 

(Gy Wing 3k Ans i 

Eg A wr Ao a pA aig. ho pee 
Taken together with the Definitions of Implication and 

Ey eee, (4) gives the theorem in this case. 

2°: If both p and ¢ are false, but ¢g true. In this case ~ p and 
~ rare true by Th. 3. Hence (Ax.3)‘~p A ~7r’ is false. The 
proof in this case proceeds as follows: 

[Th. 3] Pa RD AS) (5) . 
Since g is true, ~ q is false (Th. 3). 

[Th. 6] r ~pA~g (6) 
[(5). (6). Th. 3. Ax. 3] F: ~[~pArg.A.~(~pA~r)]| (7) 
By Ax. 3,‘q A ~ 7’ is in this case false. 

(7), Ax. 3] 
F:gAnrr.A.~[~pArg.A.~(~pAnr)] (8) 

As in the previous case this result gives the theorem. 
3°: All three false. Hence ~ p and ~r true as before. In 

this case ‘~ p A~q’ is false by Ax. 3. The proof in this last 
case proceeds thus: 

[Th. 3, as in 2°] F. ~(~pAnr) (9) 

[(9). Ax. 3] F: ~pAawg.A.~(~pA ~7r) (10) 

In this case g and ~7 are of opposite truth-values. 

[Ax. 3] Higher (11) 
on Th. 3. (uy) Ax. 3] 

As in the two ae cases, ine He together with the 
Definitions of Implication and Disjunction, gives the theorem, 

No other cases can arise. Hence the theorem. 
This is Mr Russell's primitive proposition *1.6 given above. 

Tt asserts that an alternative may be added to both premise and 
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conclusion in any implication without impairing the truth of the 
implication. 

This completes the list of Mr Russell’s primitive propositions 
that I proposed for proof by means of my axiom, on the basis of 
the definitions given in this paper of the four fundamental 
operations of logic. 

I now propose to prove two propositions which can take the 
place of his definitions of Implication+ and Conjunction, or Joint 
Assertion. 

THEOREM 16 
Ft: pdq.=-.~ pvg. 

Dem. 

[Th. 424~% RAC any Ares a (1) 
(Th. 10] I.~(~p)pArg| (2) 

[(2). Def. Implica. Disjunce. ] P pag.d.~pvg (3) 
ie). th. 10] Fi ~(~p)Ar~q.d.pAr~q (4) 

[(4). Def. Implica. Disjunc. ] rit pVvig...p>'¢ (5) 
[(3). (5). Def. Equiv. ] t: theorem. 

- THEOREM 17 

F: p.g-=.~(~pv~g). 

Dem. 

a | F: ~(pAq).9.~(pAq) (1) 

[Th. 10] a.~[~(~ p) A ~(~ q)] (2) 

[(2). Def. Conjune. Disjunc.]  -F: p.g.d.~(~ pv ~q) (3) 

[(1). Th. 10] Pe sl ~(~ py A ~(~9)|-9.~(p A 9) (4) 
[(4). Def. Conjune. Disjune.] +: ~(~pv~q).d.p.q (5) 

| [(3). (5). Def. Equiv. ] +: theorem. 

With these theorems established the development of the 
Principia Mathematica can proceed as given by its authors. 
All that I have done is to reduce the number of axioms needed 
for that development. 

Baptist COLLEGE, 
Ran@oon, Burma. 

+ Op. cit. Vol. 1. p. 98, *1.01. + Ibid. p. 116, *3.01. 
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A Reduction in the number of the Primitive Propositions of 
Logic. By J. G. P. Nicop, Trinity College. (Communicated by 
Mr G. H. Harpy.) 

[Received and read 30 October 1916.] 

Of the four elementary truth-functions needed in logic, only 
two are taken as indefinables in Principia Mathematica. These 
two have now been defined by Mr Sheffer+ in terms of a single. 
new function p|q, “p stroke g.” I propose to make use of Mr 
Sheffer’s discovery in order to reduce the number of the primitive 
propositions needed for the logical calculus. 

There are two slightly different forms of the new indefinable, 
for we may treat p|q as meaning the same thing as either 
~p.~q, OY ~pV oaks The definition of ~p is the same in 
both cases, namely p|p, while that of pv gq simply changes from 
pl | pla with the AN D-form into plp\q/q with the OR- form, 

ilo none, the best course is for us to define all the four truth- 
functions dir ectly in terms of the new. one. In so doing, we find 
that, while the definition of ~p remains the same, and those of 
pVq, p+ simply permute, as we pass from the AWD-form to the 
OR-form, the definition of pD¢q is simpler in the latter form. It 

1s pI ala as against p/p | | p/P | 4- 
he OR-form is therefore to be preferred. 
a Cina 

do aio Wye pvq-=-plp q/q Dt. 
prq-=-pi\qi/q Df. p-q-=-pla plq Df. 

REMARKS ON THESE DEFINITIONS. 

One ought not to aim at retaining before one’s mind the 
complex translation into the usual system, “~pv~q," as the 
“real meaning” of the stroke. For the stroke, in the stroke- 
system, is simpler than either ~ or v, and from it both of them 
arise. We may not be able to think otherwise than in terms of 
the four usual functions; it will then be more in accordance with 
the nature of the new system to think of the |, not as some fixed 
compound of ~ and v, but as a bare structure, out of which, in 
various ways, ~ and v will grow. 

+ Sheffer, Trans. Amer. Math. Soc. Vol. xtv. pp. 481—488. 
+ Sheffer, loc. cit., footnote +, p. 488. 
§ p|q thus corresponds to what is termed the Disjunctive relation in Mr W. B. 

Johnson’s writings. 
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The above definitions give clear expression to the symmetry 
between OR and AND; and this, notwithstanding the choice that 
we had to make between an OR-form, and an AND-form. This 
is of some interest, because, in general, the very symmetry forces 
upon us an arbitrary choice, which, in turn, quite obscures the 
symmetry. 

I shall use G for q|q whenever convenient. Observe that 
p|g], ie. pIgq, forms a natural symbol | for implication, 
allowing of permutation g|p. We may notice in general that 
the new system brings the four functions into relations far closer 
than those in Mr Russell’s system. For instance, in 

p/P | p/p + | « p[p 
the two propositions pvp.D.p ae ~ pvp coincide. 

Every stroke-formula falls into two parts on the right and left 
of a central stem. It will, therefore, add to clearness to use black 
type instead of dots to Penne the central symbol. Further, 
slanting strokes are covered by eo ones: thus p/q  p/q stands 

for (p|q)| (pq). 
The definition of the two primitive notions of the Principia 

in terms of a single new one tends to reduce the number of the 
primitive propositions needed. But how far does this reduction 
actually occur? Does it extend beyond the obvious substitution 
fot,“ If p and q are elementary propositions, p|q is an elementary 
prop.’ (Sheffer, p. 488) for *1‘7 and *1-71, stating the same for 
~p and pvgq respectively? The reduction goes, as we shall 
presently find, very much farther. 

It has first to’ be said, in order that we may be as precise as 
possible, that the whole amount gained in applying the stroke- 
definitions cannot with complete certainty be attributed to them. 
For Mr Russell’s system, as it now stands, has not said its last 
word in that matter. 

Incidentally, I found that *1-4,pvg.3.qvp, can be proved 
by means of the other four, with the unimportant change of * 1: 3, 
-q-2-pvqgintog.»d.qvp. In “Association,” *1'5, write p for r 

PV(GVp)«2.qV(pvp). 

_ The left-hand side, by the help of g.3.qvp and “Summation,” 
will be found to be implied in pvgq. The right-hand side, like- 
wise, by pvp. ).p, and “Summation,” will be found to imply 
qvp. The result then follows by using “ sea ” (obtained 

from “Summation ” with the transformation a P+) twice. 

i} By 7 or ’ , . ; I mean (following Mr Russell) the substitution of p for q or 

p, p’ for q,q’. By (e.g.) i I mean the result of effecting the substitution in P. 

9 
VOL. XIX. PT. I, ra) 
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Let us, however, take Mr Russell’s eight propositions in the 
form given in Principia. It 1s my object to reduce them to three 
—two non-formal and one formal—by means of the stroke-defi- 
nitions given above. 

It can be shown, as a first stage, that two formal propositions 
are enough, namely : 

(1) p| p/p. 
(2) p|a/qls/q pls. 

The first proposition is the form of “Identity” (p2p) in the 
stroke-system. It would, at first sight, appear more natural to 
adopt the order q/s|p/s in the left-hand side of (2), since 

p|q/q-2-4/s\pls 
is the syllogistic principle of the stroke-system, giving “Syllogism,” 
pIq-I:q¢gI8.).p Is when s|s is written for s. 

It will however be found that the inverted order, s/q | p/s, is 
much more advantageous than the normal syllogistic order, 
g/s|p/s. For, owing to this “twist,” Identity and (2) yield 
“Permutation,” s/p|p/s, which now enables us to eliminate the 
twist in (2), and revert to the normal order. From the three 
propositions thus obtained, the rest follow. 

This, by the way, illustrates the following fundamental fact. 
Which form of a given principle is the most general, and contains 
the maximum assertion, is a function of the symbolic system used. 
Thus, for instance, in Mr Russell’s system, 

prd-gvp (a) 

is more general than DD GD pir (0) 

since (b) is (a) with ~q for g. In the stroke-system, on the 
contrary, p|q/q| p/p, meaning the same thing as (a), is less general 

than pla | p/p, whose meaning is that of (b), since it is obtained 
from it by writing q|q for q 

A further step has to be made in order to be left with only one 
formal primitive proposition. It consists in adapting to better 
advantage the form of the primitive propositions to the properties 
of the stroke-symbolism where implication is concerned. We had 
above 

prq-=-pla/q Dt 
If we look for the meaning of the general form p | 7/q, we find this 
tobe ~pv~ (~rv~gq),ie. p»-.7r.g. We thus come to the 
fundamental property that, in the new system, pq is a case of 
p.2.s.q, whereas in Principia the contrary relation of course 
holds, 
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This leads us to substitute p|r/q for p|q/q in the “ left-hand 
sides” of both the non-formal rule of implication and the syllo- 
gistic proposition (2) above. The reform may be further extended 
to the proposition (2) as a whole, which might be given the form 
P\8S/Q instead of P| Q/Q, with the proviso, if the proposition is to 
remain true, that S must be implied in P. Now, for S, write the 
proposition (1) above, p|p/p; for (as we at this early stage know 
“unofficially ”) a true proposition will be implied by everything. 

We then have the three primitive propositions of the stroke- 
system : 

Non- |jelementary proposition, then p)q is an elementary pro- 
formal ae 

If. Ifp|r/q is true, and p is true, then q is true. 

| I. If p is an elementary proposition, and q is an 

This is the non-formal rule of implication, *1:1, with the modifi- 
cation just explained. 

Formal IIL. p\q/r|t\t/t.|.s/q|p/s. 

I shall call II “the Rule,” and III “the Prop.” 

REMARKS ON THESE PRIMITIVE PROPOSITIONS. 

Observe p|r/q in II, while p|q/r in III. This alternance will 
prove essential for the working of the calculus. ed 

In III, I shall use 7 for ¢|t/t, P for p|q/r, Q for s/q |p/s, and 
shall speak of III as P| 7/Q. 

P|7/Q, by the Rule, yields the same result as the syllogistic 
proposition (2) above, when the left-hand side P is a truth of 
logic. This restriction of the syllogistic form to its categorical 
use with an asserted premiss is a peculiar character of the first 
proofs to follow, and is of some philosophical interest. 

One feels inclined to think that HI merely asserts together 
(1) and (2) above. This view, whatever may be the amount of 
truth it contains, takes AND too much as a matter of course, 
and tends to lose sight of (a) the fact that III, as a structure, is 
simpler than (2) alone: for III is (2) with | t/t instead of s/q|p/s; 
and (8) the very real step from p.q to q, together with the philo- 
sophical difference between two assertions and only one. 

The main steps in the formal deduction are: 

1. Proof of “Identity,” ¢| t/t. 
2. Passage from P| 7/Q to the usual implicative form P| Q/Q. 
3. Elimination of the twist s/q|p/s in Q, and return to the 

normal order q/s | p/s. 

+ This is the proposition shown by Sheffer to imply the analogous propositions 
*1'7 and *1°71 in Principia. 

3—2 
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4. Proof of “ Association,” p|q/r. >. q | p/s. 
5. Theorems equivalent to the definitions of p.q, pq in 

Principia. 

PRooF OF IDENTITY, t|f¢| t. 

As this first proof from a single formal premiss stands in a 
unique position, I shall, without im any way obscuring the precise 
play of the symbols, expound it after a more heuristic order than 
is usually followed. 

We start with the Prop. P|7|Q, and the Rule enabling us to 
pass from the truth of P to that of @; and we have to prove 7. 
This can only be reached through some proposition of the form 
A|B\|z, where A is a truth of logic+. The proof will thus consist 
in passing from P|7|Q to A|B| a by some permutative process. 

A simple two-terms permutative law s\q|q|s, we do not yet 
possess. Our Prop. yields only a roundabout three-terms per- 
mutation, s|q]|p|s, subject to the condition of p|q|r being a 
truth of logict. This, however, is enough for our purpose. 

In the Prop., write ¢. for p, q, 7: 

(a) a|7| Qs, 

Q, being s|¢]¢|s. Write now m for p, q; Q, for r: then by (a) 
and the Rule, 

(b) | s\a|r|s. 
From (6), in the same manner, 

(c) w| w/s|s/a| u. 

This enables us to pass, by the Rule, from P|7| Q to 

(d) Q| | P. 
In order to complete the proof of 7, we need only find some 

expression which: (a) can be a value for P, i.e. is a case of p]q|r, 
and (8) is implied in some truth of logic, say 7. For, by T| P| P, 
the Prop., and the Rule, as above, 

(e) s|P|T|s. 

In (e), write Q|7 for s: first by (d) and the Rule, then by 7 | 
and the Rule, we obtain 7|Q 7, and so 

(f) T. 
+ This use of the Rule by anticipation, with still undetermined P’s and Q’s, is 

in truth contrary to the nature of a non-formal rule, which must never be used to 
build up the structure of an argument. It must always be possible to dispense 
with all such ‘ anticipated’ assertions in the final form of a proof. This will be 
seen to be very easy in the present case. 
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Now, Q, | | 7 fulfils (a) and (8). For co) am being the complex 
expression tlt] ¢, is a case of the form q/r, and (8) we have, by 
(c) above, 7 7/Q,| Q,/m | 7, and by (a) PACA Gs. 

To obtain the strictest de >velopment of the proof we have only 
to write Q,/7 | for P and w | 7/Q, for 7’ all through the preceding 
argument. 

PERMUTATION, s|p|pls 

me ; pyr ae .. by See | 

Dem.: Prop. 2 —*__—, Id., and Rule. 
iv : 

TAUTOLOGY, plp | p/p | p/p 

Le. pPVp.D.p 

Dem.: Id. ee , Perm., and Rule. 

ADDITION, s|p|s/s 

| Gives 2 EOEP Be pvs by ee | 

Dem.: By Perm. (twice), p | p | s/s|s/s |p (a) 

pe Sees By Prop. : z ; prt (a), dt p\s/s|s 

By Perm., result. 

RETURN FROM GENERALISED IMPLICATION P| 77/Q To P| Q/Q. 

Lemma, plp\s/p 

Dem.: By Perm. (twice), s/p | p/s (a) 

Sitsipy ps 
By Prop. eR F(a), 

w\pl sip \u 
Write p/p for w: by Id. and Perm. (twice), result. 

+ |-(a) means the use of the Rule to pass from a to b ina s/b. 
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Theorem, P\7r/Q(Q/Q\P 

Dem.: Prop. Q1Q 7/Q aN + Lemma, result. 
Pp akties 

Hence, by Perm., P| Q/Q, 1. 

plairlsjqipls — (8’) 
SYLLOGISM, p\q/r lo/s \p/s 

| Gives p20. 29 2)s- Dip >) stor “2 | 

Dem.: In this Dem., Permutation is used to correct the 
twisting action of 5’, ‘much as handwriting has first to be inverted, 
if it is to be seen right i in a@ mirror. 

iG erm and berms, py gala 
jo ar & 

qis|ululs/¢ (a) 
| ia : By sale alee Ge po 

Pp g, r BY 

qis|uls/q|u — (®) 

By gr blair slglels_a/slpis Lig’) b recule 

, Fa, and (Perm- 

P ED 

ASSOCIATION, plarl¢ lpr 

The structure of the proof is this: 

Syl 2 ae 
BT EER 

gives pl gir. >: g/r|r.[plr. 
We now need only the Lemma q|q/r|r for our result to 

follow by Syll. twice. 

Lemma, q| a/p 'p 

The proof of this lemma—call it Z—is as follows: We prove 
(a) q| L/L, (6) L/L\ q/q. From this, by Syll. and Tautol., the 
result follows. 

%P Dem.: (a) By Syll. Ge 

pla/q->-q/plpip =) 
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By Add., Syll., - (1), 

q-2:q/p\pip (2) 
The right side of (2) implies, by Syll., 

pip|p->-q/p\p — (3) 

By Id., Perm., dd Oe 
P; q 

g-2:p/p!|p (4) 

By Syll. twice, F (2), (8), # (4), 

| qg>:q.2.q/p 
(b) By lemma to Syll., g/q]s/q; by Perm. and SylL, q/q ‘q/s. 

Hence, q/q| L/L; by Perm., L/L | q/¢. 
Now, by Syll.: 

L/L \q/q.3:¢q|L/L.5. L/L | L/L. 

p, i.e; q| L/L. 

By Fb, Fa, and Taut. <. result. We can now complete the proof 

~ of ‘ Association.’ 

Association, pi\qrlalpir 

Dem.: By Syll., p|q/r-D:q/r|r.|. pir 

By Syll. twice, F Lemma, result. 

SUMMATION, (oT pV. 2. pV Tr 

Dem.: By Syll., Assoc., 

Gq | sadiipig/riid.pls (1) 

Berg 2 PIP 
8, lite 

, result. 

THEOREMS EQUIVALENT TO THE DEFINITIONS OF pq, p-q, 
IN Principia. 

pr2q-I.~pvgq, and reciprocal theorem. 

That is, piqq->-plp| a4 
Dem.: Taut., and Syll. 

Reciprocal theorem by Add. art and Syll. 
s, 

Pp G-2.~pv~gyq, and reciprocal theorem. 

That is, plq->-p/p|q/¢. 
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Dem.: Taut. Syl; then, Perm., Taut., and Syll., or S’”. 

Reciprocal theorem by Add. ‘ [ f instead of Taut. 

p»G.2.~(~pv ~gq) and reciprocal theorem. 

That is, p-g-2.p/q| p/¢. 

Dem.: Id., Def. of ~, preceding theorem, and Syll. 

Reciprocal theorem in the same manner. 

APPENDIX. 

After the substance of this paper had been written, I was 
given the opportunity of seeing Mr Van Horn’s very interesting 
and original paper dealing with what is practically the same 
subject. Mr Van Horn recognises clearly the superiority of what 
has been called above the Of#-form over the AND-form chosen 
in Sheffer’s text. This deserves the more notice, as Mr Van 
Horn, I understand, had not Sheffer’s article at hand in the time 
he was writing his own paper. His A, as will be seen from the 
definitions he gives, is indistinguishable from |. I. was much 
attracted by the harmonious character of Mr Van Horn’s third 
Axiom. It seems to me therefore all the more desirable that 
certain objections, which Mr Van Horn’s proofs in their present 
form naturally suggest to the reader, should be dealt with. 

(a) It is not quite plain to me whether “of the same truth- 
value” (say S for short), “of opposite truth-values” (say O), are 
used as indefinables, or as abbreviations. If the former, we have 
no right to go, eg., from p Og, and ~p, to q, etc., without some 
axiom to that effect, connecting O and S with A. If, on the 
other hand, S and O are abbreviations—as it seems to me they 
are—the two parts of Axiom 3 stand for not less than four 
propositions : 

If p and gq, ~(pAq). 

If ~p and ~q, pAgq. 

oo bo If p and ~q, pAg. 

4. If ~p and gq, pAg. 

We cannot assert the first two, or the last two, or all four, 
propositions together, because we should then need p.g.)D. p, 
p-q]-2-q, betore we could make any use of such a synthetic 
Axiom. 
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This uncertainty as to the status of S and O is not without its 
effect upon the proofs. Consider, for instance, Th. 3. In the proof, 
“1°: ptrue. By Axiom 3, pAp false” will be seen to require pS p, 
concerning the origin of which, and the relation it has to pp 
(Th. 4), which it indirectly serves to prove, Mr Van Horn says 
nothing. 

(8) In his extensive use of the Principle of Excluded Middle, 
Mr Van Horn makes no explicit mention of the last steps, that 
lead from pIg, ~p Iq, tog. These steps would seem to require 
several propositions: (1) those carrying us from ~pvp toqvq 
—“Summation,” plus “ Permutation,” presumably—and (2) “'Tau- 

tology” qvq.2.q. As Mr Van Horn uses the principle of 
Excluded Middle in this particular way in the first formal proof 
given—that of Th. 83—both the principle itself and the proposi- 
tions required for its use ought, I think, to be deduced immediately 
from Axiom 3; and I do not see how this is possible. 
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Bessel functions of equal order and argument. By G. N. 
Watson, M.A., Trinity College. 

[Recewed 1 November 1916: read 13 November 1916.] 

1. A proof of the approximate formula 
all 

Tula) 
a 2 36 ns 

p) 

(the order and argument of the Bessel function being equal and. 
large) was apparently first published by Graf and Gubler*, 
although the formula had been stated by Cauchy+ many years 
before. The formula has been discussed more recently by 
Nicholsont and by Lord Rayleigh§, while Debye) has given a 
complete asymptotic expansion of J,(n) im descending powers 
of n; this expansion is obtained by the aid of the elaborate and 
powerful machinery which is provided by the mode of contour 
integration known as the “ Methode der Sattelpunkte” (Méthode 
du Col, method of steepest descents). 

The earlier writers, just mentioned, employed Bessel’s formula 

IG) = ~ | cos (n@ — x sin @) dé, 

valid when n is an integer, and it is by no means obvious to what 
extent their methods of approximating are valid**. 

As the correctness of the approximation can be established 
without the use of contour integration on the one hand and 
without appealing to physical argumentst} on the other hand, 
it seems to be worth while to write out a formal and rigorous 
proof (based on comparatively elementary reasoning’) that, when 
n 1s large and real, then 

* Hinleitung in die Theorie der Besselschen Funktionen, t. (1898), pp. 96—107. 
+ Comptes Rendus, xxxvitt. (1854), p. 993; Oeuvres (1), xu. p. 163. 
+ Phil. Mag., August 1908, pp. 273—279. 
§ Phil. Mag., December 1910, pp. 1001—1004. 
|| Mathematische Annalen, uxy1t. (1909), pp. 5835—538. 
{| This method of discussing { e”/s)(s)ds consists in choosing a contour on 

which If (s) is constant, and so Rf(s) falls away from its maximum as rapidly as 
possible (f(s) being monogenic); it is to be traced to a posthumous paper by 
Riemann, Werke, 1876, p. 405. 

** See § 4 below. 
tt For example Kelvin’s ‘“‘ Principle of stationary phase” (Phil. Mag., March 

1887, pp. 252—255; Math. Papers, tv. pp. 303—306) is really based on the theory 
of interference. See also Stokes, Camb. Phil. Trans. 1x. (1850), p. 175, foot-note 
(Math. Papers, 11. p. 341). 
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Inyo LO _ 2#8T®@ Fi mah O n-*), 
r2338ns = 140rn? oe 

male C9, tea 
Or cree agra OM" 3). 

2. In order not to restrict ourselves to the case in which n 
is a positive integer, we take the Bessel-Schlafli integral *, namely 

J), (@) = it = | eos (n@ — x sin @) dé — a | oi es 
J 0 

(which is valid whether n be an integer or not), and, after writing 
n for w, we integrate by parts. This process gives 

PA | Divas. shat 
th) — — | escao ae {sin n (@ — sin @)} dé 

sin nr i) d 
le —n(0+sinh @) 

“i 7 an 1+ cosh 6 dé | 
} dé 

— 1 [sinn(@—sin @) | i sin no [e oe 9)7 2 

mr\| 1—cosé 0 T 1+ cosh @ 

I sin n(@—sin 0) 
=|" al eG s 0) n 0dé@é 

sinna[*~ sinh @ 

a Jo (1+ cosh 6P 

The integrated parts cancel; and 

mote ein? : 

0 (1+ cosh 0) 

—n(é+sinh 9) dé. 

emorsion Nag < | (1 + cosh 9) ¢~ 2 (8+sinh 6) Wg 

0 

=1/n; 

and so, when 7 is Bat and real, 

7 sin @ sin np ¥ 

fat) na} (1 —cos 0)? eee oS) 

where ¢ has been written in place of @—sin 6. It is obvious that 
increases steadily from 0 to 7 as @ increases from 0 to 7. 
When @ is small, 6 ~ 46 and sin 4. (1—cos 0)? ~ 86-. Hence, 

as 0-0, 

d'sind 8 
(1 — cos 0)? 

Now write $(6)' sin @.(1 —cos 0)? = fi(¢): 

* Schlifli, Math. Ann. m1. (1871), p. 148. 
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then it is fairly evident* that when 0<@<7 (ie. when 0<¢<7), 
Ji(p) is bounded and has only a finite number of maxima and 
minima (and therefore it has limited total fluctuation). Con- 

sequently, since + ies w-# sin dap is convergent, we havet 
10 

Limin-# | tain (ng). f,(@) d=. (0))|| ah gine 
NSD 

Therefore, since f,(0)=1, we have 

n8 | “bE sin (ng) A (6) = 
and so Ha a 

To obtain the second approximation to J,(), we observe 
that, when @ is small, 

(6p) sind —»_A-s@ + rho F—. --) (A — C+ sho ee 
8 (1 —cos 0)? ee See )e 

Lue 
P (3) +0(1), 

Pt (hs Seay 
Consequently, if @* toa _ at =—/f,(9), 

we have f,(0)=6~ *+385. Also, as in the case of f, (¢), we assume§ 
for the moment that /,() has limited total fluctuation in the 
range (0,7). The application of Bromwich’s theorem is therefore 
permissible, and we deduce that 

Lim n? ef dt sin (nd). f2(b)d = 3% 2-* T (2)/35, 
NFO 

* A formal proof will be given in §5a that f,($) is, in fact, monotonic and 
decreasing (we use the term decreasing to mean non-increasing). 

+ Huler’s result that | yl sin pdw=T (m) sin (bm), when -—1<m<l, is 
0 

well known. 
+ Bromwich, Injinite Series, p. 444, proves that, if f() has limited total fluctua- 

SID. (4) dq, then 
~ sin y 

tion in the range (0, b), where b>0, and if U,,= 

Tiiva W)cattpin: (| ERY 
uo >a 0 

F(v{n)ay =F (0) 4 ioe 

but his analysis is equally applicable to the more general integral 

=e | gn sin (nd) .f (¢) dd (-l<m<l), 
0 

» and hence 
~ nb a) 

Lim V,, = Lim | py" sin Wy. f (w/n) dv=f (0) | y™—1 sin ydy. 
n>x nao J 0 0 

g A formal proof will be given in § 58 that /) (¢) is monotonic and increasing. 
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that 1s 

Bf e * sin (np). Sa(p)dg= 933 9 - $n-3T (2)/85 + 0(n-3), 

and so 

ne Banat a 
-=|" ~* fo(o)ysin (np). dd + O(n)

 

: a ats) 8 ie sin 
n= (Op)! 125 1407n? = onto 

Now, by the second mean-value theorem, there exists a number a 
exceeding na such that 

ten a, v= 1 Fi 

Nir (nary? 

and so we Ng at once that, when n is large and real, 

I“(4) 93 38 I (2) 
J,(n)= Bo 

we) 12% 33 nt 1407 

- d+ o(n-*), 

el | 

| sin yy dyp <2 (nm) §, 
WT | 

+0 (n-# )) 

which is the result to be established. To obtain a closer approxi- 
mation by these methods would necessitate some very tedious 
integrations by parts. 

3. We next consider the approximate formula for J,’(n). It 
is inmediately deduced from the Bessel-Schliifli integral that 

oR) = = Me sin @.sin n(@— sin @).dé 

sin 777 
=P ic sinh 6 e~” (8+ sinh 4) Wg. 

0 

Now we get, on integrating by parts, 

i sinh @ e-” + sinh 6) q@ 

0 

sinh dg: cd 

1+ cosh 6’ dé 
fe-™ (@+sinh 6) dé 

=— © 9-n(0+sinh) 4 sech? 4 d0 nd D} 2 

< | e- "9 d0=0 (n-). 
0 
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Hence Jn (n) =< [ ae sin nf dd + O (n-?), 
/ 0 fa 

- where @, as previously, stands for @ — sin @. 

Now, if 4,()= ¢' sin 6. (1 — cos 6)-}, then f, (0) =2? 37 * and 
F.(¢) has limited total fluctuation* in the range (0, 7). 

Hence, applying Bromwich’s theorem we have 

A iT ee (6) db =f, (0) is a diy + 0 (1), 

#3tT@) 
2 
3 

and so In (2) = +o(n~#) +0 (n-), 

when n is large and real; and this is equivalent to the result 
stated in § 1. The approximation could be carried one stage 
further (as in § 2), but it seems hardly necessary to give the 
analysis. 

4. As an example of the necessity for the caution which has 
to be taken in approximating to integrals with rapidly oscillating 
integrands, it may be remarked that some of the earlier writers 
mentioned in § 1 assumed that when # and n are large and nearly 
equal [in fact, when | #—n| = o (n=), then Airy’s integral 

AN : | Gon md) 2 (6 Se yide 
0 

is an approximation to Bessel’s integral for J, (#). This assumption 
is correct, and it happens that the first two terms in the asym- 
ptotic expansions of A, (#) and J, (#) are the same. 

But Airy’s integral for A, (na) is not an approximation? to 
J, (na) when a is fixed and 0<a<1, whilenraoo. 

To establish this statement we use Carlini’s formula? 

qi? et (1 — a?) 

{1 +/(1 —a2)}". (1 — 02)# /(2arn) 

(valid when 0<a< 1), and after observing that we may write 

J, (na) ~ 

PPS rah ad phrase Sea 
A, (na) = — a cos {dar (mw + w*)} dw, 

0 T \na 

* A formal proof will be given in § 5c that f, (¢) is monotonic and decreasing. 
+ For example, the arguments givenin the Phil. Mag., August 1908, p. 274, 

to justify the approximation seem to me to be as applicable to the second case as 
to the first. 

+ A translation of Carlini’s memoir (published at Milan, 1817) was given by 
Jacobi, Astr. Nach. xxx. (1850); Ges. Werke, vu. pp. 189—245. See p. 240 for 
the formula quoted. 
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se : 4 

_ where m= 2n (1 — 2) (=) B34 sy 8, 

7 na 3 

we use Stokes’ asymptotic formula* 
Lo a} 

ee ee! 3 

cos {dar (mw + w*)} dw ~ 2~2 (8m)~ *exp | — m (4m)*}, 
0 

valid for large values of m. 
This process gives 

—1n 2? q~2(1—a)? Viger exp {—4n2 aa (1—-a) 3% 

{2a(1 —a)}* /(27n) 

Jn (na) Qa \2 ae 
Hence Ain) G = | e€ , 

where 

x (a) = /(1 — @&) + log a— log {1 + (1 — @)} +4a-4(2—2a)?, 

Since 
x (4) 23 ‘02047, 

a rough approximation t0 Sy (500)/A yo (500) is (2) cael 

5. We now prove the monotonic properties (valid for 0 <@<7) 

stated in § 2, 3: 

(A) To prove that f,(¢)=4}(6¢)' sind. (1 —cos @)-* is a 
decreasing function, we have 

d 3, (3+2 cos 0) 6? 9,(0) 
at eee pape aE ee AEN EL 
dé BrAOVIS™) (1 — cos 6)? 

where g,(@)=[5sin 8 (1 — cos @)/(9 + 6 cos 8)| —84+ sin 8, 

so that 

gi (0) =—6 (1 —cos 097/(9 + 6 cos 0 <0, and g(0)=0. 

We now see that g,(@)<0, and so fi’(¢) <0, which is the 
result stated. 

(B) To prove that 

Fa($) = & *[(8/6?) — {pF sin O/(1 — cos 8)*\] 
is an increasing function, we first prove two subsidiary theorems, 
namely : 

B (i). If c=cos 0, -s=sin 8@, then the function 

gs (0) = (85 + 163c + 84c? + 18c*) 6 — 4s (1 — ) (149 + 157 + 44c*) 

is not positive. 

* Math. Papers, u. p. 343. The result may also easily be derived from 
Nicholson’s expression of Airy’s integral in terms of Bessel functions of order +}, 
Phil. Mag., July 1909, pp. 6—17, 
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B(u). The function 

gs (0) = 28 (7 + 3c) #? —3 (8 + 2c) (1 —c)?? $+ $s (1 —c) 

is not positive. 

To prove B (i) we observe that 

a 
dé 

=— s?(1 — c)? (644 + 416¢ + 60c?)/(85 + 163c + 84c? + 18¢*)? 

< 0. 

{9s (9)/(85 + 163¢ + 84c? + 18c*)} 

The denominator may be written in the form 

184° + 309? + 49y — 12 

where y=1+c, and so the denominator changes sign once only 
when 0<@<7, say at 0@=@. Hence 

gs (0)/(85 + 168c + 84c? + 18c*)
 

decreases from 0 to — and then from + % to 7 as @ increases 
from 0 to 8 and then from 8 to 7. .Hence g,(@) cannot be 
positive. 

To prove B (i1) we observe that 

[dg (@)/{s (7 + 8e)}] = (1 — 0) gu (B)/(2 (1+ 0) (7 + Be) <0, 
by Bq); and so g;(@) <g; (0) =90, as was to be proved. 

To prove the main theorem, we have 

PAP) _ | (64/63) + 9 (0) @-# (1 — c0s 8), 
where g (0) = {(8 + 2c) db* —s (1 —c) H3} (1 —0)-4. 

Now g (0) =— 95 (0) ' (1 —c)* >0, 
so that g (0) > (0) = 64/6, 

and so f; (f) > 0, as was to be proved. 

(C) To prove that f,(¢) = ¢? sin 6.(1—cos @)-! is a de- 
creasing function, we have 

UlP) _4g-8 (= Cas Oy on@. 

where g; (9) = sin 6 (1 — cos 0) — 3(6 — sin 8). 
Since g; (@)=—2(1—cos 6)? we may use the arguments of (A) 
to prove the truth of theorem (C). 
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The limits of applicability of the Principle of Stationary 
Phase. By G. N. Watson, M.A., Trinity College. 

[Received 22 November 1916.] 

1, The method of approximating to the value of the integral 

u= | , 008 [m {vw —tf(m)}] dm, 

where # and ¢ are large, by considering the contribution to the 
integral of the range of values of m in the immediate vicinity 
of the stationary values of m ja —t/(m)}, is due to Kelvin*, though 
the germ of the idea may be traced ina paper published nearly 
forty years earlier by Stokest. 

Kelvin’s result is that, if m {a —tf(m)} has a minimum when 
m=p>O, then, asta a, 

1 1 

uw (Ant)? (— wf” (mw) — 2f’ (u)}” ? cos [turf (w) + 7} 5 
and this result has important applications im connexion with 
various problems of mathematical physics. 

Kelvin, in his analysis of this interesting asymptotic formula, 
takes for granted, on physical grounds, the validity of a certain 
passage to the limit. This process requires justification from the 
purely mathematical point of view; and the necessary justification 
is afforded by a convergence theorem due to Bromwich§. This 
theorem plays the same part in dealing with integrals as an 
analogous theorem, due to Tannery||, plays in connexion with 
series, 

The special form of Bromwich’s theorem, which is required in 
the rigorous investigation of Kelvin’s theorem, may be enunciated 

_as follows: 

If f(a) be a function of « with limited total fluctuation in the 
range «>0, and if y be a function of n such that nyo as 
n—»o, then, ff —-1l<m<l, 

* Phil. Mag., March 1887, pp. 252—255 (Math. and Physical Papers, tv. 
pp. 303—306). 

+ Camb. Phil. Trans. 1x. (1851), p. 175 (Math. and Physical Papers, 11. p. 341). 
{ See Macdonald, Phil. Trans. 2104. (1910), pp. 134—145. 
§ Bromwich, Theory of Infinite Series, p. 444, In the special case m=0, which 

is explicitly considered by Bromwich, the result is important in the investigation 
of Fourier series by the method of Dirichlet. The theorem given by Bromwich on 
p- 443 is equally applicable to the more general case. 

|| Fonctions dune variable, p. 183. 

VOL, XIX. PT, TI, 4 
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Y : 2 
ni” i a”! f(x) sin nada — f (+0) | t’”’— sin tdt 

0 Jo 
=f (+0)T(m) sin mz. 

[Jf 0<m<1, the sines may be replaced throughout by cosines ; 
and, if ny—aasn— 0, where a rs finite, the infinity in the upper 
limit of the integral must be replaced by a.] 

As the formal analytical proof of a theorem* slightly more 
general than Kelvin’s theorem is quite simple, and as sufficient 
general restrictions to be satisfied by the function f(m) are 
apparent in the course of the investigation, it seems to be worth 
while to place the theorem on record. It is applicable to all 
kinds of stationary points, whereas Kelvin considered only cases 
of true maxima or minima of the simplest type. 

2. The main theorem which will be proved in this paper is 
as follows}: 

Let a, B be any numbers (infinity not excluded), possibly depending 
on the variable n, such that the real function bt — tf (t) has only one 
stationary value in the range a<t< PB, att=p, b being independent 
of n. Let the first r differential coefficients with regard to t of 
bt — tf (t), be continuous; in a range of values of t of which t= p ts 
an interior point, it being supposed that the last of them is the lowest 
which does not vanish at t= pw, so that r >2. 

Let F(t) be w real function, continuous when a<t< , eacept 
possibly at t=, and let 

Lim F(@).@—-—p)=A, Lim F(t).(u—t)=A,, 
t>p+0 t>p-0 

where A, A, are not zero; for brevity, let (1 —X)/r = m.. 

Then, if the function 

F(t). | bt 6f (6) — wf" (uw) Po. b-f' O-F(H> 
has limited total fluctuation§ in the range a<t< 8, and if 

/nbB —nBF(8)— nprf"()|, | nba — naf (a) — nu?’ (w)| 
both tend to infinity with n, the approwimate value of the integral 

1 B 
T= oa i F(t) cos {bnt — ntf (t)} dé, 

* For the connexion between this theorem and a problem, due to Riemann 
(Werke, p. 260), which has been discussed by Fejér (Comptes Rendus, November 
30, 1908, and a memoir published by the Academy of Budapest in 1909) and by 
Hardy (Quarterly Journal, xurv. 1913, pp. 1—40 and 242263), see § 4 below. 

++ It is convenient to modify Kelvin’s notation. 
+ Tt is necessary for f(t) to have a continuous first differential coefficient when 

a<t<f. 

§ if the fluctuation depends on n, it must be a bounded function of n as no, 
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when n is large, ts 

r—1)(r!y" 7 P(m)[A cos (np? f’ (wu) + Sema} + A, cos [np?f’(u)+ 3 pine} | 
2arn™ {| wf (w) + rf" (w)|}™ 

provided that 0<1—X <r; where e=+1 according us bt —tf(t) 
| increasing 

decreasing 
is an Junction when t>p, and n= +1 according as the 

decreasing 
imereasing 

such values that cos {np?f’ (w)} is always zero, % may le in the 
extended range —r<1—r<r. And, finally, F(t) and bt—tf (t) 
may be infinite at t= a, B, provided onli y that the integral converges 
for all sufficiently large values of n. 

same function is when t<p. When nx by only 

3. For brevity, write tif(t)=¢(t). Then w is given by the 
equation 

b— $'(u)=0, 
so that, when ¢— ju is sufficiently small, 

bt — tf (t) = th’ (uw) — $ (t) 
= {uh’ (uw) — b(m)} —(t— wo (E)/r I, 

where, by Taylor’s theorem, ¢’ lies between mw and t. 
Now define a new variable w by the equation 

bt — tf (t) = wh’ (wu) — 6 (H) +, 

and let y, [ be the values of y corresponding to t=a, t= B. 

Noticing that pq! (w)— $() = nf (4), we have 
fa 2 f! ne 

(=e [ F (t) cos napdt 

— Sar teh F (t) sin mpd ; 

also [° F (t) (rap) dt = = ile 6 a F(t) (np) - dy, 

ay being a monotonic function of t when a<t< and also when 
be<t< 

Now e, » have been so chosen that ey and ny are positive 
when ¢t > w and ¢< pw respectively ; hence, when t > w + 0, we have 

FO) gy ~~ A= wer =D 6H), 
ey ~ (t— py |" (uw) | ark. 
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It follows that 

F(t) ay 1p / OS A-r+Dir_» AK, 

as t—> 4 +0, where 

te Cee ae 

~ GP (H) {LB Gu) Jr 
Since | nI'|— 00 with n, by hypothesis, we deduce from Bromwich’s 
theorem that 

I. F() 7 ny a typ ~ n-™ AK a (xen * xd. 

Writing ye = ow, we get 

vi (xe) 1 cos xdx = € {: wo” cos oda = el’ (m) cos $m, 
0 

and similarly 

| a (xe) sin ydy = [' (m) sin mr. 
0 

In hke manner, ae t—> p- 0, 

Fog, [a AK 
and so, since a |—» «© with n, we have 

It ne i FO) SY gp OY Ake [cen Onc 
eee our results, we see that the first approximation to 

I is 

I~ [{AKe+(—)' A, Kn} cos $m cos {np?f’ (w)} 

— {AK +(—-) A,K} sin $mz sin {np?f’ (w)}] 

= A [cos {np?f’ (mu) + Sem} + A, cos {np?f’ (mw) + 5 nmr} ] 

ye @aDi@ hes Pm) 
Zan |) (mw) jm’ 

sin 

and this is the result stated. 
The formula fails to be effective in the neighbourhood of those 

values of n for which the expression in [ ] vanishes, as the error 
in the approximation then becomes comparable with the approxi- 
mation obtained. 

[It is evident that if the cosine in the integral defining Z may 
be replaced by a sine, then the cosines in the approximation are 
replaced by sines. | 
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Cases of practical importance are those in which A = A, and 
t= is a true minimum or maximum of bt — tf(t), so that ¢ and » 
are both +1 or both -1. The formula then is 

es A cos {np2f'(u) + 4m}. (r—1)!(r "7 Tm) 

mu (1 6 (u) |" : 
If nI or ny tend to finite limits, the gamma functions have to 

be replaced by incomplete gamma functions; and if one or other 
tends to zero, we modify the approximation by writing zero for 
A or A, respectively in the general formula. 

The general result reduces to Kelvin’s formula when 7 = 2, 
X= 0, m= $, and e=7=1, provided that (with Kelvin’s notation) 
a/t is constant. In that case, a sufficient condition for the validity 
of the formula is that 

[{(onat) — mf (m) — wef” (uP 
should have limited total fluctuation when m > 0. 

If # were a function of t, Bromwich’s general theorem (loc. cit., 
p- 443) would have to be used, and the enunciation of sufficient 
conditions (even in their simplest form) for the validity of the 
formula, would be exceedingly laborious. The reason for this is 
that (with the notation employed in this paper) w and F'(¢) dt/dw 
would both be functions of n. 

4. The problem of Riemann (see § 1 above) essentially consists 
in obtaining an approximation for integrals of the type 

s cos sin nt 

I, p an” ii aC 

when n is large and ao’ (t)—»0 as t 0. 
These integrals are expressible by integrals of the type 

nee COS ;, 
(h fa (6) aa (nt + ao (t)} dt, 

so that the problem is, at first sight, very similar to that discussed 
in §§ 2—3. 

There is however an essential difference, namely that, in the 
problem we have discussed, ntf(t) owes its large rate of increase 
(which balances the rate of increase of nbé at the stationary point) 
to the large factor n, whereas, in the problem attacked by Fejér 
and Hardy, the function o (¢) owes its large rate of increase to the 
infinity of o’(t) at ¢=0. In our problem yp is jiwed, whereas in 
the other problem the stationary point of nt — a(t) tends to zero 
asn—»co. It seems to be this difference which accounts for the 
somewhat elaborate investigation given by Hardy and which 
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makes the theorems of Fejér and Hardy rather deeper than the 
theorem of § 2—3. 

It should be pointed out that there is one integral which can 
be regarded as coming under either head, namely*, 

Bs i 
sin 

i Hoe a (Cis OE) yale 
0 cos 

where 1 is large, a, X, and r are positive and X and r are chosen so 
that the integral converges. [For the sine-integral, the conditions 
for convergence are 0<X<r+1.] As the integral stands it is 
of the type discussed by Fejér and Hardy, with a variable 
stationary point where z’+!=ar/n. But if we make the sub- 
stitution 

ne = Ge 

and then write v for n’/"*», it becomes 

le Sn (A—1) /r Ey —r)) dt vy [ cog E+ at )} dt, 

_ which is of the type discussed in this paper, having a fied 
stationary point where ¢=(ra)/"*), The reader will have no 
difficulty in deducing the approximate formula by either method. 

5. As an example of the apparent inapplicability of the 
methods of this paper consider the integral of Bessel for J,;(x) 
when n and w are both large and #—n is O(n). 

The integral is 

Jn (a) == | : eos (1d eine) ao) 

and the stationary point is given by cos@=n/z; let the root 
of this equation be 0= pu, and let z=n-+an® where a> 0; when 
n is large we have 

wr (2a)? n>, 
is . 

In considering i cos (nf — «sin 0) d@, we write 
0 

X= nd —« sin 6 —(nu— wsin pw), 

and the last integral is expressible by integrals of the type 

INSTI Oe) 1) ake) 
| 0 sin * dy * 

* I am indebted to Mr Hardy for suggesting that the integral in which o (t)=1/t 
can be reduced to an integral of Kelvin’s type. 
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N dx ow 6 Th eos Ow aw (9 — pf) SID p, 

when 0~yp and y~dasin p. (0 — pw)’. 
Hence, as y > 0, 

1 d0 aie ae | 

x dy /(2@ sin p)’ 

and 

n(tanu—n) egg dé 

~ (Qe sin a . "[vex ae he it rot ch ms aX 

Now, as no, n(tanue—p)—>t (2a)? and so the limiting 
range of integration is of finite length. 

Sead 
Moreover, /(2wsin p). x? a —>—las no when x 1s zero, 

4 ; Mae : 1 dé 
that is, when @ =p. But, when @— 0, the limit of /(2@ sin p). x! ay 

1s 
1 

— {2 sin w (sin w — wos p)}2/(1 — cos p), 

and, as n—>%, the limit of this 1s not —1 but — 2/(#); and so 
we cannot infer that 

eXtan et) id@) _1¢0s Ur =e Os 
a5 if {vee sin“). x a 1 le xy dy~ ie x dx, 

where b is Lim n (tan u — p). 
The evaluation of the approximate formula for J,(#) im the 

circumstances under consideration consequently seems to require 
more elaborate analysis than is afforded by the methods contained 
in this paper. 
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On the Functions of the Mouth-Parts of the Common Prawn. 
By L. A. BorrapatLe, M.A., Selwyn College. 

[Read 30 October 1916.] a 

The food is seized by either pair of chelipeds, or by the 
third maxillipeds, and is usually placed by them within the 
grasp of the second maxillipeds, though sometimes it is passed 
directly to deeper-lying structures. The second maxillipeds are 
the most important of the food-grasping organs. They have three 
principal movements; in one, the broad flaps in which they end 
open downwards like a pair of doors, and with their stout fringes 
gather up the food ; in another, they rotate in the horizontal plane 
to and from the middle line of the body, and thus narrow or widen 
the gap through which the food passes; in the third, the bent distal 
part of the limb tends to straighten, so as to brush forward any 
object which lies between them. Frequently these movements are 
combined. Owing to the facts that the second maxillipeds cover 
the mouth-parts anterior to them, and that if they be removed 
feeding is not properly performed and usually not attempted, it is 
difficult to trace the food beyond them, but the following seems to 

- be its fate. If it be small in bulk, or finely divided, or very soft, 
it is passed to the maxillules, by whose strong, fringed laciniae it is 
swept forwards, and probably caused to enter through the slit 
between the paragnatha, into the chamber which is guarded by 
the upper and lower lips. If it be tough or in large masses, the 
second maxillipeds and maxillules brush it forwards towards the 
incisor processes of the mandibles. The action of the latter is, by 
rotating in a vertical plane, to tuck the food into the gap between 
the paragnatha and the labrum. If the mass be large, pieces are 
torn off it by this action. Finally, to enter the gullet, the food 
must pass between the molar processes and be pounded by them. 

The mandibular palps, maxillae, and first maxillipeds appear 
to play parts of little importance in regard to the food. The 
palps are present and absent in closely related genera, and appear 
to be disappearing in the higher Carides. The same is true of the 
lobes of the maxillae, which are in constant regular motion to and 
from the middle line, and probably serve to restrain the action of 
the scaphognathite. The large laciniae of the first maxilliped 
may have as their function the covering of the maxillae and 
protecting them from the food. The labrum undergoes active 
movements, whose function is probably to aid in keeping the 
food under the action of the mandibles. The exopodites of the 
maxillipeds set up a strong current forwards from the mouth. 
No doubt this aids in carrying away the exhausted water from 
the gill chamber and the excreta from the tubercles of the green 
glands. Into the same current particles which have been taken 
as food are from time to time rejected by the forward kicking 
of the second maxillipeds. 
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The Direct Solution of the Quadratic and Cubic Binomial 
Congruences with Prime Moduli. By H. C. Pockutineton, M.A., 
St John’s College. 

[Received 22 January 1917: read 5 February 1917.] 

1. The solution of congruences by exclusion methods, 
although easy enough when the modulus is moderately large, 
becomes impracticable for large moduli because the labour varies 
as the modulus or its square root. In a direct method the labour 
varies roughly as the cube of the number of digits in the modulus, 
‘and so remains moderate for large moduli. The object of this 
paper is to develop the direct method. We take 2?= a, mod. p, 
first, discussing the cases where p=4m+3 and p=8m+5 in 
§ 2 and that where p=8m+1 in §3. We next take #=a and 
discuss the cases where p=3m+2, p=9m+4 and p=9m+7 
in § 4 and that where p=9m+1 in § 5. 

2. Throughout the paper we suppose the modulus to be 
p where p is prime*. If p is of the form 4m +3 the solution of 
e=oais c=+u™. If p is of the form 8m+5 the solution is 
“2=+a™ provided that v""=1. But if not, a" =—1, and 
as 2 is a non-residue 4°"+!=—1; so that (4a)"*!=1 and we have 
y= +(4a)"* as the solution of y?=4a. Hence 

w=ty/2 or ex=+(pty)/2 

is the solution of #2=a. These values of « can be calculated 

without serious difficulty by repeated squaring (followed by division 

by the modulus to find the remainder) and multiplication of the 
numbers so found (again followed by division). 

* Hence if it is composite we must factorize it and solve the congruence for 

each of the different prime factors. 

VOL, XIX, PARTS. IL., IT. 5 



58 Mr Pocklington, The Direct Solution of the Quadratic 

3. Put D=—a, so that we have to solve 22+ D=0 where D 
is positive or negative but not divisible by p. Let ¢, and wu, be so 
chosen* that t,?—Du,,=N is a quadratic non-residue of p, and 
let 

tr = (4 + VD)" + (& — uy DY") /2, 

Un = {(t + U,V DY” — (t) — Uy f DY} /2 / D. 

These numbers are clearly integral. Also 

tn+n = tmtn, ah; Dit, Un, Unin = tn Un + tn Uns 

by use of which (at first with m =n) we can find the remainders 
of ¢, and uw, to our modulus without serious difficulty even when 
nis large. We also have ¢,?— Du,? = N”. ; 

Supposing that p is of the form 4m +1, we have Da quadratic 
residue of p, and t, =t?=t, up=u’D!"2=u,; and now 

bh =bhoht+ Digi, %=tamt+hupa 

give on solution t, ,=1, u,_=0. Let p—1=2r. Then 

Oy a 26a 

shows that either ¢, or u, is divisible by p. If it is u, we put 
r = 2s and proceed similarly. We cannot have every u divisible 
by p, tor w 1s not. We cannot be stopped by having uw,» =0 with 
m odd, for we always have t,?— Du,_?= N™, and this would then 
give ¢,,° congruent to a non-residue. But if m is even we can 
proceed further. Hence when we are stopped we must have 
tm=0. This gives — Du,,2= N™, and as — D is a residue m must 
be even. Putting m= 2n we have 0 =¢,, = t,2 + Du,?, so that the 
solution of 2*+ D=0 is got by solving the linear congruence 
Une = +t. 

In applying the method, if n is the largest odd number con- 
tained in p—1 we first work to get the suffixes n, and then the 
suffixes 2n, 4n, 8n, etc. Thus in the case of 2242 =0, mod. 41, 
we see that ¢,= 3, u,=1 is suitable, and we find iZ=11, w.=6; 
y=29; u,=9; t;=23, u,=15- bo = 36, Uy=34; t)=0. The 
solution of 347=36 is «=30; and so the two solutions of 
a’+2=0 are «= +30, mod. 41, 

4. It p is of the form 3m +2 the only solution of a®=a is 
w=1/a". If p is of the form 9m + 4 one solution is z= 1/a”, and 
if of the form 9m +7 one is =a", The other solutions are 
got from this by multiplying by (— 1+ 6)/2 and (— 1—6)/2, where 
@ + 3=0, a congruence which we have shown how to solve. 

Wie have to do this by trial, using the Law of Quadratie Reeiprocity, which is a defect in the method. But as for each value of u half the values of ¢ are suitable, there should be no difficulty in finding one. 



and Cubic Binomial Congruences with Prime Moduli 59 

5. Let 6 be the arithmetical cube root of a, which we 
assume* not to be a cube. Find+ &,, «4, v, such that the norm 
N=t+aui+ ev? —3at,uv, of the algebraic number 

U=t,+u,6+,8 

is a cubic non-residue of p. We see that as a is a cubic residue 
of p we have U?=t,+ u,6 + 2,8", so that if 

UP = ty_, + Up 19 + Up 

we have w,,=%1=90. Now taking U™ where m is in turn 
(p—1)/3, (p—1)/9, ete. we see that we cannot always have 
Um =Um=0. Let U™ be the last of this series for which this 
happens. Then m is divisible by 3, for otherwise the norm of U™, 
which reduces to ¢,,°, would be congruent to the non-residue V™. 
Putting m=3n we have 

bon = tn? 4- QUy? + A? U)? + 6AtnUnrn, 

0 = Usn = 8 (tn? Un + Abn Vn? + AUn?Un), 

0 = Vs, = 3 (tn Un? + tn? Un + UUn Un’). 

The last two give t, (av,* — u,°) = 0; so that if ¢, is not divisible 
by p we have # = u,/v, as one solution of «=a, for as wu, and v, 
are not both divisible by p this shows that neither is. They also 
give v, (au,’ — t,?) = 0, and so #= t,/uUp, 1s a solution. Eliminating 
a from the same two congruences we see that the ratio X of the 
two w’s satisfies ?+A+1=0, so that they are distinct. The 
third solution follows immediately. 

_ If however f, is divisible by p the two congruences show that 
either w, or Vp, 18 divisible by p. We now have au,?= N” or 
a?v,?= N”. In either case n must be divisible by 3 as before, and 
we have as one solution «= N"/u, or v=av,/N" respectively, 
where r= n/3. 

* Simply because of the way in which for the sake of shortness we are stating 
the method. 

+ This again must be done by trial. In order to use the Law of Cubic 
Reciprocity we must express p in the form u?+wv+v?, which requires the solution 
of 6?+3=0. 
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On a theorem of Mr G. Pélya. By G. H. Harpy, M.A, 
Trinity College. 

[ Recewed and read 5 February 1917.] 

1. Mr G. Pélya has recently discovered a number of very 
beautiful theorems concerning Taylor’s series with integral co- 
efficients and ‘ganzwertige ganze Funktionen’. The latter 
functions are integral functions which assume integral values for 
all integral (or for all positive integral) values of the independent 
variable. One of the most remarkable of these theorems is the 
following*: 

Suppose that g(x) is an integral function, and M(r) the maximum 
of |g(a)| for |x\<r. Suppose further that 

9(9), 91), 9 (2), 
are integers, and that 3 

Niwa s2: 2a) 77>) Oe Sos. oer (1). 

Then g(x) ts a polynomial. 
Mr Pélya observes that, if it were possible to get rid of the 

factor /r from the equation (1), the theorem could be enunciated 
in a notably more pregnant form, viz. : 

Among all transcendental integral functions, which assume 
integral values for all positive integral values of the variable, that 
of least increaset is the function 2". 

Mr Polya states, however, that he has not been able to effect 
this generalisation. And my object in writing this note is to 
show that the generalisation desired may be obtained by a slight 
modification of Mr Pélya’s own argument, and without the 
addition of any essentially new idea to those which he employs. 

2. Mr Polya} reduces the proof of the theorem to a proof 
that the integral 

n! [ (x) dx: IO=s-| ~ 
(@) 271 J «(«@—1)(a@—2)...(a@—n)’ 

extended over the circle |w =r =2n, tends to zero when no. 

* G. Polya, ‘Uber ganzwertige ganze Funktionen’, Rendiconti del Circolo 
Matematico di Palermo, vol. 40, 1915, pp. 1—16. See also ‘ Uber Potenzreihen 
mit ganzzahligen Koeffizienten’, Mathematische Annalen, vol. 77, 1916, pp. 497— 
513, where Mr Polya refers to a third memoir (‘ Arithmetische Higenschaften der 
Reihenentwicklungen rationaler Funktionen’, Journal fiir Mathematik) which L 
have not been able to consult. 

+ Croissance, Wachstum. 
36 JLo, Clticg 105 Ue 
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‘This he proves by observing that the modulus of J, does not 
exceed 

n! M(r) Gest) Em) 

(r—1)(r—2)...(r—n) = T'(Q2n) 

and by an application of Stirling’s Theorem. In order to com- 
plete the proof in this manner it is necessary to assume the 

- condition (1). 

If however we suppose only that 

M (r), 

lerraena MEE) OR cap epesinccsccatess: (2), 

or AIG —SOi028 is *Yacn.ccame Weee ae onae aes (29h 

the proof may be completed as follows. We have 

7 dé = 1 Jon 

os Set \n! 2 las (a — ese 

where #=2ne'®. Now 

|a—s|=/(4n? — 4ns cos 6 +s?) > 2n —s cos 0 

for 1 <s <n, so that 

[Ie—s) > IT (2n — s cos 8) = (cos 6)" II (2n sec 6 — 8) 
n 1 1 

if cos@>0, and 

I (@—s) > II (2n —s cos 8) =| cos 6 |" I (2 sec 0| +s) 
1 1 1 

if cos8<0. Hence 

ln —10 (K,,) tO CEA), 

a™ T'(2no —n) a 
Mimirensy % 

tia ge [i _PQne+I) | 
te [(2no +n +1) 

where i eee 

ao’ dé, 

and o = sec 0. 

A straightforward application of Stirling’s Theorem shows that 

s [\(2no —n) } ( 2Qno Dt nl Pan - a Pes n 
eae [ (2nc) 0 \ ve Qa0—1/)’ 

_ DP (2Qne +1) er val 2no )t 
! 92n n : a n ; 

Bo” i [ (2Qno+n+1) 0 ‘ 20+4+1/) 

uniformly in @, where 

® = P (6) =(26 — 1) log (2a — 1) — 2 log 20 + log o + 2 log 2, 

W = (0) = 2c log 20 — (2c + 1) log (20 + 1) + log a + 2 log 2. 
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3. When @ increases from 0 towards $7, or decreases towards 
—1m, o increases from 1 towards 0. Also 

d® 
aes =2log (20-1) — 2log 20 +2 = 2 log € = 5c) 20 

ON = 2log 20-2 log (2e+1) + =~ = 2 log (1+, + : ;)>0 

Thus ® steadily decreases and V steadily increases. Moreover 

®(0)=0, W(0)=4 log 2-3 log 3; 

and it is easily verified that both ® and Y tend to the limit 

log 2—1 
when @ tends to $77. 

We thus obtain, in the first place, 

Jy=0 {enter yal” /(22)aah—oay 
Secondly, we observe that, if 6 is any positive number, we have 

@(0)< P(6)=—-7<0 

for 6<0<hn, -—t7<0<-6. 

Hence we may replace the limits in K, by - 6 and 6, the re- 
mainder of the integral Dems of the form 

Oe om in| al es ne og 1) Uf = 0) 

4. All that remains, then, is to prove that 

rf) I (2no — n) 
=n! 22” o” io! ie Ona) 28d8=0(0): 

and we have 

1,=01 in I. gn ve (5-7 id g} =0 (vn i ef" dé). 

The function ® (6) may now be expanded in powers of @. We 
find without difficulty that 

D = — A@? + O (64), 

where Al = log 2 = 35 (O, 

It follows that 
~O 

I,=0 iwi" | @ Ane + O(nb") a 
Jd 

= (0) (vin (ee a6) = (il). 

| 

| 
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The proof of the theorem conjectured by Mr Pélya is thus 
completed. 

5. Mr Polya has also proved an analogous theorem concerning 
integral functions which assume integral values for all integral 
values of 2, viz.: 

If 4 (2), F(—D, gO), GD), 9 2)» 
are integers, and 

lim (- si ae eM y 0a Tee: (3), 
TD 2 

then g(a) is a polynomial. 

His proof applies, as it stands, to odd functions only, its appli- 
cation to a completely general function demanding the more 
stringent condition 

s 3 fr Vd af fe , tim (“aS ) PANAG NOE, bose (3’). 

He states that it is possible to replace the index 3 by 4 in all 
cases, but that, as he has not been able to reduce the condition to 

A 34+/5\* ay tim C+) MC seas (3”, 

he has not thought it worth while to publish the details of his 
work. 

A modification of Mr Pdélya’s argument, in every way similar 
to that which I have made in the proof of his first theorem, 
enables us to replace (3) by (8”) when g(x) is odd. The same 
modification in his unpublished argument would, I presume, be 
equally effective in general. 

That the number 

3+/5 

2 

cannot be replaced by any larger number, and so really is the 
number which ought to occur in any theorem of this character, 
is shown by Mr Polya by the example of the function 

ee eae, 
/5 2 2 

which assumes integral values for all integral values of 2. 
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Submergence and glacial climates during the accumulation of 
the Cambridgeshire Pleistocene Deposits. By J. E. Marr, Sce.D., 
F.R.S., St John’s College. 

[Read 5 February 1917.] 

A. Introductory. 

The sequence of events during palaeolithic times is still a 
subject surrounded by much uncertainty. The area of the Great 
Ouse Basin is one in which considerable light has already been 
thrown on vexed questions, and as the examination of the area is 
carried out in greater detail, important results will be obtained, 
for in this area we get evidence of the relationship of the palaeo- 
lithic deposits to those which were formed durmg a period of 
submergence and re-emergence, and also to accumulations which 
give evidence of the occurrence of more than one cold period. 

The general distribution of the palaeolithic deposits of the 
district around Cambridge, and their main characters, have long 
been known, and an account of the deposits, with references to 
the previous literature, is given in the Geological Survey Memoir 
The Geology of the Neiyhbourhood of Cambridge, published in 
1881. 

Since that memoir appeared, further light has been thrown 
on the deposits, especially by Professor Hughes, who has given his 
latest. views in a paper entitled The Gravels of Kast Anglia 
(Cambridge University Press, 1916). 

I have devoted much attention to this subject during the last 
six years and hope to describe my detailed results elsewhere. 
The present paper is concerned with a discussion of the main 
problems involved, in hopes that it may direct the attention of 
workers to the importance of further observations, for the deposits 
with which we are concerned are only exposed temporarily during 
the working of gravel-pits and the digging of foundations and 
drains, and it is desirable that all temporary excavations should 
be carefully studied, and the objects obtained rendered available 
for study by deposit in Museums, for isolated specimens in private 
collections are usually mere objects of curiosity devoid of scientific 
value. 

B. Submergence and its effects. The actual sequence of deposits. 
In the fenland and on its borders we meet with marine deposits 

above sea-level, which have long been known around March and 
Narborough. They occur above and below fen-level at March 
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and undoubted marine deposits containing sea-shells are found 
to a height of at least 50 feet above sea-level in the Nar Valley, 
and deposits up to 80 feet above sea-level have been claimed as 
marine. Unfortunately no exposure of these Nar Valley beds 
has been seen for a very long time, and their exact upward limit 
is a matter which must remain unsettled until new excavations 
are made. It is held, with good reason, that the beds of March 

and the Nar Valley are geologically contemporaneous in the sense 
that they belong to the same period of sea-invasion, which was 
subsequent to the accumulation of the chalky Boulder Clay; and 
as there is good evidence that much of the fenland was low-lying 

Fig. 1. 

AB. Slope of ground before marine gravels were deposited. 
CD. ” 29 after ” ” ” 

a. Tract of marine gravels. 
b. Pe interdigitating marine and fluviatile gravels. 
ce 5 fluviatile deltaic deposits. ; 

d. as erosion in valley towards its head, during period of deposit of 

@, 0,16 

1, 2,3. Order of formation of deposits in tracts c and d respectively. (1 is oldest.) 

Vertical scale greatly exaggerated. 

ground after this boulder-clay was formed, it would appear prob- 

able that the March gravels are earlier than those of the Nar 

Valley, and therefore that a gradual silting up of a bay of the 

sea took place, until the sediments reached a height of at least 

50 feet above present sea-level. 

During this period of silting the rivers Ouse, Cam and others 

would build delta-deposits along the lower parts of their courses, 

with interdigitation of marine and fluviatile deposits in an inter- 

mediate belt of ground as shewn in figure 1. In this delta- 

-material, the chronological sequence of deposit would be from 

below upward, as shewn by 1, 2 and 3 in the belt c. The upper 

waters of the rivers would still be eroding, and the sequence 

would be from above downwards (see figs. in tract d). 

After submergence had ceased, it would be replaced by re- 

emergence, as shewn by the erosion of the rivers to their present 
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levels, and new deposits 4, 5,... (not shewn in the diagram) would 
be banked against or laid down upon those formed during the 
period of subsidence and general accumulation in tracts ¢ and a, 
It will be seen therefore that relative height of deposits above 
the present river-level is not in itself a necessary indication of 
age. 
F The geological surveyors gave the following classification of 

the Cam gravels: 
f Lowest Terrace 

Gravels of the Present River System , Intermediate Terrace 
|Highest Terrace 

Gravels of the Ancient River System. 

I shall treat of three of these, leaving out of account the gravels 
of the Intermediate Terrace, which I have not studied extensively 
owing to poor and infrequent exposure of recent years. I shall 
speak of the gravels of the ‘ Ancient River System’ as the Obser- 
vatory gravels, those of the highest terrace of the ‘present river 
system’ as the Barnwell village gravels, and those of the lowest 
terrace as the Barnwell Station gravels. The ages of these 
deposits will ultimately be accurately determined by an exami- 
nation of the fossil evidence, including implements of human 
manufacture. So far, the evidence of this kind points to the 
Barnwell village deposits being of two ages, the older formed 
during the period of delta-growth, the newer during the period 
of re-emergence and erosion. At the end of the period of delta- 
growth, and therefore of an age intermediate between those of 
the supposed two Barnwell village deposits, I would place the 
Observatory gravel, and certain loams, to be referred to later, 
and after all of these, the Barnwell Station gravel marking the 
culmination of the period of re-erosion, for there is evidence of a 
later period of sinking and deposit after this was formed. This 
succession 1s represented in Fig. 2, which shews a section across 
the Cam valley at Cambridge, before the edges of the valley sides 
had been destroyed leaving the Observatory gravels as a ridge 
with lower ground on either side. 

In the figure the terms Upper, Middle and Lower Palaeolithic 
indicate the ages of the various gravels as inferred by me from 
the palaeontological evidence. Iam using the term Middle Palaeo- 
lithic in the sense in which it was used by Prof. Sollas in the 
first edition of Ancient Hunters as equivalent to Mousterian. 
I believe therefore that the older Barnwell village gravel is pre- 
Mousterian, that of the Observatory (in part at any rate) Mou- 
sterian, and the newer Barnwell village gravel and that of Barnwell 
Station post-Mousterian, the former being of earlier date than 
the latter. 

Mr Jukes-Browne, in an essay on the Post Tertiary Deposits of 
\ 
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Cambridgeshire, advocated a change in the direction of the rivers 
near Cambridge between the formation of the Observatory gravels, 
and those which he regarded as belonging to the ‘present river 
system.’ That such a ‘change occurred is admitted, but the evi- 
dence points to all the deposits save those of the Barnwell Station 
terrace having been formed before the river diversion occurred. 

I may now pass on to consider briefly the palaeontological — 
evidence in favour of the order of age indicated above, leaving 
details for a future paper. 

In the pits of Barnwell village, and of the Milton Road near 
Chesterton, loams are sometimes exposed at the base of the over- 
lying gravels. These loams contain Corbicula fluminalis, and with 
it are associated Unio littoralis, Belgrandia marginata, and Hip- 
popotamus. On the continent this is recognised as an early 

W 

Fig. 2. 

Section across Cam N. of Cambridge, with higher valley-slopes restored. 
The figures shew the suggested order of formation of the deposits. Cross- 

hatching represents modern alluvium of Cam. : 
5. Barnwell Station gravels (Upper Palaeolithic 2). 
4. Newer Barnwell village gravels (Upper Palaeolithic 1). 
3. Loams of Huntingdon Koad area. 
2. Observatory gravels (Middle Palaeolithic). 
1. Older Barnwell village gravel and loam (Lower Palaeolithic). 
X= Buried channel. 

Vertical scale greatly exaggerated. 

palaeolithic fauna of Chéllean or pre-Chellean date, and there 
seems to be no evidence of the reappearance of this fauna at a 
later date. 

In the Geological Magazine for 1878 (p. 400) Mr A. F. Griffith 
described the occurrence of a palaeolithic implement from one of 
the Barnwell pits. A cast of this is in the Sedgwick Museum, 

and it appears to be of Chellean type. 
Further afield, the occurrence of similar implements at or near 

fen-level in Swaffham and Soham fens, and at West Row near 
Mildenhall, and at Shrub Hill near Feltwell, indicates that rivers 
had excavated their channels to fen-level in those times. 

There are patches of gravel between the higher Chesterton 
terrace which corresponds to the Barnwell village terrace and the 
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Observatory level, but no sections are now seen in them, so we 
may pass on to the Observatory deposits. In these shells and 
mammalian bones are very rare, though the former have been 
found in concretions, indicating that they once lay in the gravels, 
but have since been dissolved. Implements are relatively abun- 
dant, and I have found a large number during recent years. 
Many of them are of Chellean type, others probably Acheulean, 
but there are a large number of Mousterian type, some having 
the facetted platform which, as shewn by M. Commont, came into 
use in Northern France in Mousterian times. It may be noted 
that the implements of Mousterian type are patinated differently 
to and in a less degree than those of Chellean type, and I regard 
the two series as of distinct ages. Either the deposits, which are 
thick and varied in character, are of two dates, or implements 
of different ages lying upon the surface were washed into the 
deposits contemporaneously. This can only be settled by finding 
a number in situ, a work of great difficulty, but the evidence is 
in favour of the latter view. 

I may note that when a valley is bemg deepened implements 
of one age only are likely to lie in abundance near the spot where 
the gravels were accumulating, but when there is general aggra- 
dation, the highest deposits of the delta-growth are likely to 
receive washings of implements of various ages which have been 
lying together, at or near the surface. In any case the age of the 
newest gravel of a terrace will be determined by the implements 
of latest date. 

Lying on this gravel in channels are reddish sandy loams, 
which must have spread over the gravel, but have since been 
destroyed by erosion except where so preserved. There is also 
a deposit of somewhat similar loam but of a lighter colour flanking 
the gravel at a lower level on either side. It is rarely exposed, 
and only in shallow sections, but I believe it may be of the same 
general date as that lying on the gravel. 

No relics have been found in it, though two implements of 
possible Upper Palaeolithic date were found on the loam when 
draining the Christ’s Cricket Ground, but they may well have 
been surface finds. Many other surface finds, some of apparent 
palaeolithic type, are found on this loam belt, and will be referred 

to later. 
Those gravels of the terraces of Barnwell village age, which 

I would refer to a date later than that of the Corbicula gravels, 
are now exposed in a pit near the Milton Road and in another 
on the Newmarket Road near Elfleda House, 24 miles from 
Cambridge. These contain a fauna differing from the Corbicula 
fauna, and including the mammoth, woolly rhinoceros, horse and 
red deer, the horse bemg abundant. 
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Implements are scarce, but in both pits I have found some 
suggestion of upper palacolithic forms, and in each pit a water- 
worn pot-boiler has been discovered. 

In the Barnwell Station pit the common mammal is the rein- 
deer, associated with the mammoth, tichorhine rhinoceros and 
horse. In the Geological Magazine for 1916 (p. 339), Miss E. W. 
Gardner and I recorded the occurrence of an arctic flora in this 
deposit,. with abundance of leaves of Betula nana. A long pre- 
liminary list of the other plants which indicate arctic conditions 
was made by the late Mr Clement Reid, F.R.S., but has not yet 
been published. A few worked flints of undeterminable date 
have been found, but the fauna indicates the late palaeolithic 
period, and the late date of these deposits seems to be shewn by 
the fact that whereas all the others are apparently connected 
with the old drainage line extending from Cambridge to Somers- 
ham, these are almost certainly parallel’to the present course of 
the Cam: they appear indeed to be the upper portion of the 
deposits filling an old buried channel of the Cam, evidence for the 
occurrence of which is borne out by certain observations made by 
Prof. Hughes in the paper to which reference has been given. 

C. Climatic Changes. 

There is much difference of opinion as regards the occurrence 
of alternating glacial and interglacial periods in Pleistocene times, 
and it would seem that some light is thrown upon this question 
by the Cambridgeshire deposits and those of adjoining counties. 

I take the prevalent view that the implement-bearing deposits 
from the beginning of Chellean times post-date the period of the 
Chalky Boulder Clay, though others hold a different view, but as 
the local evidence bearing upon this question has already been 
recorded I need not enlarge upon this point. 

If the succession as outlined above be correct the following 
climatic changes seem to have occurred after the cold period 
marked by the accumulation of the Boulder Clay: 

(a) A warm period during the formation of the Corbicula- 
bearing strata. Arguments in favour of this are well known. 

(b) A cold period during the accumulation of the Observatory 
gravels(?) and the newer loams. No evidence of this has been 
advanced in this area, and a few remarks are necessary. 

The fauna of the Observatory gravels tells us nothing, and 
the loams have hitherto furnished no organic remains, but a 
widespread development of loam marks the Mousterian period, 
and N.W. Europe is believed to have been subjected to a cold 

) climate during part of the period. 
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The sections recently seen near Cambridge tell us little, but 
a brickpit in stratified loam with ‘race’ nodules similar to those 
found in the Cambridge sections has long been worked near the 
railway between Longstanton and Swavesey. It contains boulders, 
and is actually mapped as boulder-clay. A somewhat similar 
loam with boulders at High Lodge near Mildenhall has long been 
known for its implements of Mousterian type. ‘These deposits 
are at an elevation just below that of the highest palaeolithic 
gravels, as are those of Cambridge. 

Further afield there is the very significant section at Hoxne, 
described in detail in a paper drawn up by the late Clement Reid, 
F.R.S., and published in the Report of the British Association tor 
1896. 

At that locality we have a stratigraphical sequence. Above 
the boulder-clay lies an aquatic deposit marked by a temperate 
fauna. It is succeeded by loams with an arctic flora, and above 
that are loams with palaeolithic implements. They have been 
usually regarded as Acheulean, but there is one specimen in the 
Sedgwick Museum which is of a distinct Mousterian type. Taking 
these facts into consideration, a period of cold climate in this 
country in Mousterian times seems probable. In any case, the 
evidence points to a difference of date of the arctic plant-beds of 
Hoxne and Barnwell Station. 

(c) The fauna of the beds of the Barnwell village terrace 
claimed here as of newer date than those containing Corbicula 
suggests an amelioration of the climate, but in the absence of a 
well preserved flora, this is doubtful. 

(d) The Barnwell Station flora, as before observed, is distinctly 
arctic, and when this flora lived here, we can hardly suppose that 
our higher hills escaped glaciation. The same remark may be 
made of the Hoxne flora. 

This series of changes would accord with the classification of 
the beds on the continent thus: 

European Continent Cambridgeshire 

Pleistocene 
Wiirm glaciatton Barnwell Station beds. 
Warm period Newer Barnwell village deposits. 
Riss glaciation Observatory gravels and loams. 
Warm period Corbicula gravels. 
Mindel glaciation Chalky Boulder Clay. 

Pliocene 
Warm period Cromer ‘Forest’ series. 
Giinz glaciation Chillesford beds. 

I merely put this forward tentatively, claiming however that 
we have in Cambridge proofs of two if not three Pleistocene cold 
periods. 
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D. Surface Implements. 

Implements of all ages from earlier palaeolithic to recent 
times are found lying together on the surface. Some no doubt 
have got there from the erosion of deposits which contained them, 
others belong to the surface. My object is to insist on their 
careful collection, with exact records of their localities, even to 
the particular position in a field where they lay. 

If they can be shewn to be limited to heights above those of 
a particular deposit, they may yield valuable information as to 
geological changes. 

Two areas in which surface implements are abundant are 
found very near Cambridge, one on the tract between Castle End 
and Girton on either side of the Huntingdon Road, on the ground 
occupied by the Observatory gravels and loams, the other a little 
south of Fen Ditton, between the railway and the river, and at 
no great height above the latter. They have not been yet 
sufficiently studied to enable one to draw definite conclusions, but 
the former group does not seem to occur below the level of the 
Barnwell village terrace, which suggests that the river may have 
eroded its valley below that level to its present position since 
those implements were made. The other set marks the position 
of a site on a terrace, which is I believe the terrace of the 
Barnwell Station deposits, and would indicate the formation of 
that terrace before this set of implements was manufactured. 

As the above is merely a preliminary account of these deposits, 
I have not burdened it with references, nor have I acknowledged 
the many friends who have helped in the collection of implements 
and other objects. 

The bulk of the implements on which my conclusions are 
based were collected by myself, and the rest by friends chiefly 
under my supervision, and in no case has any implement been 
purchased from workmen, so that the collection, which will be 
deposited in the Sedgwick Museum, is of value, inasmuch as each 
implement is known to have been obtained from the locality 
assigned to it. 
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On the Hydrodynamics of Relativity. By C. E. WEATHER- 

puRN, M.A. (Camb.), D.Sc. (Sydney), Ormond College, Parkville, 

Melbourne. 

[Received 15 December 1916: read 5 February 1917.] 

TI. THe Equations OF MOTION. 

§ 1. Relativistic equations for the adiabatic motion of a 

frictionless fluid have been found by Lamla* and Lauet in the 
form 

dea ae EO ee By ae ag, aa) ae 2 a) 0 a et) = oe 

0 Ones 0 0 1oP : 
Ot (Kv) + iar (Kv) + vu oy (Kv) + w = (Kv) aF y oy Ve Bea Gl). 

0 One rf) a) ae 
sgt ot a, CE Ol a et) ta Ce 

where u, v, w are the components of velocity at the point (a, y, 2) 
relative to a definite system of reference S; XY, Y, Z those of the 
impressed force per unit of normal rest-mass; and 

ee, ¢ 

my Vc? — (u2 + v? + w) 

c being the constant velocity of light. The significance of the 
symbols P and « is as follows. 

Since the motion is adiabatic the rest-mass of an element of 
fluid is determined by one variable only, say the pressure p. 

If we choose some definite pressure p, as the normal or 
standard pressure, the element has a definite constant normal 
rest-mass dm). If the element occupies a volume 6V relative to 
the system of reference S, the density k relative to that system is 
defined by 

dM 
k=. 

éV 

* Ann. der Physik, Vol. 37, p. 772 (1912). 
+ Das Relativitdtsprinzip, § 36 (2nd ed. 1913). For a more general discussion of 

the mechanics of deformable bodies from the standpoint of Relativity, ef. Herglotz, 
Ann. der Physik, Vol. 36, p. 493 (1911); also a paper by Ignatowsky, Phys. Zeit., 
Vol. 12, p. 441 (1911). cae 
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Using a dash to refer in every case to the rest-system S’, we 
have for the rest- -density 

OM Oty ke ee 
k: WikeChee ics (3). 

The function P is defined by the integral 

p 
P= [ SEN A sls aes (4), 

/ po k 

and in terms of this function « is given by 

Ji 
Katy. (1 =F a Poor meee teres se eereenes (ye 

For the rest-system S’ the quantity y has the value unity, 
while « becomes 

Te e 
Ke =1 SP SS oooccoopcosocouagonsosecdde (0) oe 

The constancy of normal rest-mass leads, as in the classical 
theory, to an ape of continuity 

Ok 
oF © (ho Wm (i) + 2 7 (hw) = 0 et st rie oe (6). 

§2. Using F and v for the force and velocity vectors, we 
may write the equations of motion more conveniently 

eG eovr =F Fafa ied eieanes (ay. 
ot Y 

Then because the gradient of the scalar product of two vectors is 
given by 

V(aeb)=beVa+aeVb+b x curla+a x curl b, 

the second term of (7) is equivalent to 

a V (x?v?) — v x curl (cv), 
2K 

while, in virtue of (5’), VP =c’Vx«’. Hence the equation may be 
expressed in the form 

0 
ot ( 

But again the second term is equal to 

1 2 2 c Mi 2— 2 
a, c (v +o) tga Ve = V«, 

VOL. XIX. PARTS IL, III. 6 

KV) +5 =e (rev? + Cx?) — Vv X curl (Kv) = 
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and the equation of motion takes the very convenient form 

{ (ev) + Ve + 2w xv=F 133 shee Re (8), 

where we have written 

2w = curl (ev). 

In cases where the impressed force F admits a potential, so 
that F =— VV, our equation reduces to 

Sev) + V (ce +0) + 2w xv — 0. (8). 

§ 8. Clebsch’s transformation*. The equation of motion may 
be expressed in terms of functions analogous to those of Clebsch 
if we write 

FEW NCE fs eins ee yy 
, X, w being three independent functions of x, y, 2 and t. Taking 
the curl of both members we find immediately that 

DW SIN A Vie ae er (10). 
The function w= }curl(«v) plays the same part in the present 
analysis as } curl v in classical hydrodynamics. It will therefore, by 
analogy, be called the vorticity; and a line whose direction at any 
point is the direction of w at that point, a verter line. Since 
by (10) w is perpendicular to both VX and Vy it is clear that the 
vortex lines are the intersections of the surfaces 

X=const., js =const. 

Using then dots to denote partial differentiation with respect 
to ¢, and assuming the existence of a force potential, we may write 
(8’) as 

—V(V + ee) =V (6 +o) + Ve — BVD 

+ (ve VA) Vu—(ve Vu) Vr 

nls . , dx du mG NO ee VA, 

which may be neatly expressed in the form y 

dn du ap Vie VE 10) ee AR oe NaN 0) Cit): 

where the function 77 is given by the equation 

EL PVE Ne VA Eee Ok ee (12). 
* Cf. Basset, Treatise on Hydrodynamies, Vol. 1, p. 28; also Silberstein, Vectorial 

Mechanics, p. 146. 
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On scalar multiplication of (11) by w, it follows in virtue 
of (10) that 

w-VH=0, 

showing that H is constant along a vortex line. It can also be 
shown that H is independent of a, y, z and is therefore a function 
of tonly. For taking the curl of (11) we deduce 

0 (R) x Tn —0 (SB) x Va =o, 

On scalar multiplication by VX it follows, by (10), that 

and similarly that 
ds 

my i hi 

From these we deduce as in the old theory* that 

dn dp 
ade CO), SPE oat cro (13) 

Thus the first two terms disappear from (11), which becomes 
simply Vi =0, showing that H is constant in space and is 

therefore a function of t only; or 

ec EW Ce (LE)! stan cewndse eset (14). 

From (13) it is clear that the surfaces )=const. and p= const., 
and therefore also the vortex lines which are their lines of inter- 

section, are always composed of the same particles of fluid. 

§ 4. Steady motion. When the motion is steady partial 
derivatives with respect to ¢ are zero. If then the impressed 
force is derivable from a potential V, (8’) becomes 

DG IN CVA CE i cheeeen nee sia e-s Gis}. 

and the equation of continuity 

RO east cokdis vac aang sys (16). 

If we multiply (15) scalarly by v the first member vanishes, 
showing that 

ve V( V+e%«)= 0. 

Thus the function V+c« ts constant along a line of flow. 
Similarly scalar multiplication of (15) by w gives 

weV(V4+c7x)=0, 

* Cf. Basset, Joc. cit. p. 29. 

(ee eS) 
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and therefore V+ c’« is constant also along a vortex line. This 
is a particular case of the more general theorem, proved in the 
preceding section, that H is constant along a vortex line. Thus 
the surface 

V + cx = const. 

is composed of a double system of vortex lines and lines of flow. 

II. Trrorarionan Morton. 

§ 5. When the vorticity 4 curl («v) is zero the motion will be 
termed trrotational or non-vortical, being analogous to the motion 
of that name in the older theory. In this case «v can be expressed 
as the gradient of a scalar function ¢, which may be called the 
velocity potential : 1.e. 

The lines of flow are orthogonal to the surfaces of equal velocity 
potential. 

The equation of motion can always be integrated when a force 
and a velocity potential exist. For (8’) then becomes 

Vidto%x+V)=0. 

The function in brackets is therefore constant throughout the 
hiquid, and will be a function of ¢ only; we. 

Piece Va). | ee (18). 
This is the required integral of the equation of motion. An 
arbitrary function of ¢ may, however, be incorporated in the 
velocity potential ¢, and this equation then written withous loss 
of generality 

Ot.Ce + Via 0. (18’). 
When the irrotational motion is steady (c+ V) is constant 

throughout the liquid, and is also invariable in time. In the 
preceding section, where w was not assumed to be zero, this 
function was only proved constant along vortex lines and lines of 
flow. 

The equation of continuity (6), or as it may be written 

ate uvv=0, 

may be expressed in terms of ¢, if we write «v/« for v, and expand 
the divergence of the quotient. The equation then becomes 

d 1 im i OSk+V (2)+ Vb + vg =0 Ao (19), 
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This form is not so short as in the ordinary theory, nor can we 
obtain Laplace’s equation, as there, by assuming the fluid incom- 
pressible, for such an assumption is inconsistent with the theory 
of relativity *. 

§ 6. Steadily rotating fluid. Suppose that the fluid is in 
a state of steady rotation about the z-axis, and that the angular 
velocity of rotation 0 is a function of the distance r from that 
axis. We shall now determine what must be the form of this 
function in order that a velocity potential may exist?. Ifi,j, k 
are unit vectors in the directions of the coordinate axes 

v=—i0y4+jOz, 

v=r. 

For irrotational motion this velocity must satisfy the equation 

curl (xv) = 0, 

that is 2«kO+7r a («Q,) = 0, 

the integral of which is 

KOr? = const, = p, 

say, so that KO =" pee tS cocina rere (A). 

The velocity potential ¢ is then given by 

dp _ Lap Oe 

aay ae p: 
showing that BE NCONG cages. tod ecttsase Sean (B), 

which is an example of a cyclic velocity potential. The integral 
of the equation of motion is by (18’) 

But « involves v? and therefore ©, which is itself expressed in 
terms of « by (A). This equation however gives 

ae ea Me AOE) 
2 iD) con , 

KC” 

whence iL 
Cue 707K *) 

* Cf. § 10 below. It will be shown, howeyer, in § 11 that V2#=0 is the 
equation of continuity for the steady irrotational motion of a fluid of minimum 
compressibility. 

+ Cf. Lamb, Hydrodynamics, § 28 (1st ed.). 
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x’ being given by (5’). On substitution of this value in (C) the 
integral of the equation of motion, viz. 

becomes V+ : Ve eek? 0). .2. gee (D). 

§ 7. Flow and circulation. We define the flow from a point P 
to another Q, along a path of which ds denotes an element, as the 
quantity 

Q 
| eds. 

Whenever a velocity potential exists this is equal to ¢g— gp. The 
circulation round a closed curve is the line integral 

T=| x. GS) sia tee iit eee (20) 
0 

taken round that closed curve. This, by Stokes’ theorem, is equal 
to the surface integral 

IT = | Curl (eV) ° GS. )s.2) eee (20’) 

taken over any surface drawn in the region and bounded by the 
closed curve. When the motion is irrotational the mtegrand is 
zero, and the circulation round the closed curve vanishes. It 
follows that, for a simply-connected region, the velocity potential 
is single-valued. 

TI. Vortex Morton. 

§ 8. When the vorticity w is not zero the motion will be 
called vortical or vortex motion. A vortex tube is one bounded by 
vortex lines. Considering the portion of a vortex tube between 
any two cross sections, we find as usual on equating the volume 
and surface integrals 

om | div curl («v)dr=| 2wendS, 
dl BAS 

that the moment of the vortex tube | we nas, where the inte- 

gration is extended over the cross section, is the same for all 
sections. And hence, as in the classical theory, the vortex lines 
either form closed lines, or else end in the surface of the fluid. 
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I shall now show that, on the assumption of a force potential, 
Kelvin’s theorem* of the constancy of the circulation in a closed 
filament moving with the fluid is true in the present case also. 
Consider a closed filament consisting always of the same particles, 
and let ds be a vector element of its length and ds the correspond- 
ing scalar. Then the circulation round it is 

T=[ «veds. 
- 0 

The time rate of change of this is 

ak E (xv)eds+Kve (a) 

=| ‘ds . i= VV VP tev s(ds+¥)¥) | 

0 ov f (C2 _ kK == eae ie oeiedete| owe | ony il 5 VtKV | ds | as Ee ] (21) 

Now the last integral is 

| ds e Is Ve =. 7 2 Vv? 

0 Lye 2y Vo? — 

On substitution of this value in (21) that equation reduces to 

v= Eve EG aga a2 1 

dt ran Os Os O08 a) aa 

Hence, since the path of integration is closed and x, V, and «v? 
are single-valued functions, the integral vanishes, showing that 

Thus the circulation does not alter with the time. 

Corollary. If I is zero at any instant it will remain zero. In 
particular, if the motion 1s irrotational at any instant 1t will remain 
so, provided that the impressed forces have a potential. 

$9. Helmholtz’s theoremst+. That these theorems are true in 
the present theory also follows without difficulty from the form (8’) 

-of the equation of motion. For taking the curl of both members 
we have 

ow 
= + curl (w xiv) = 0. 
ot 

* Cf, Silberstein, loc. cit. p. 161, for the proof of the ordinary theorem. 
+ Ibid. pp. 163—65. 
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Expanding the second term and using the equation of con- 
tinuity, we find 

dw wdk 

Ge de ee 
which, after division by /, may be written 

d (w\ w : 
dt (=) = ip e Vv Cece e cece sewer eecene (23). 

Differentiation with respect to ¢ gives 

d? jw dw w /d 

Fa a Eye te (Gy. 
If then w vanishes at any instant it follows from (23) that the 

first derivative of w/k also vanishes, and from the next equation 
likewise the second derivative at that instant. Similarly all the 
derivatives with respect to ¢ vanish at that instant, and the 
quantity w/k remains permanently zero, so that the motion con- 
tunues wrrotational. 

Further, the moment of u vortex filament does not vary with the 
time. For if ds is an element of such a filament moving with the 
fluid 

ds = wds/w, 

d ds 
and ap 08) Ae IM, ar el 

so that (23) 1s equivalent to 

d (w wd «(%) — ae + (ds) (24). 

Now if uw is the moment of the filament, dm, the constant 
normal rest-mass of the element considered, and a the cross- 
sectional area 

w=aw, dm = kads, 

so that Tah A eee nee eG us obo de (25). 

Substituting this value in (24), and remembering that dm, is 
constant, we have 

d l 
dt (uds) == (eH dt (ds), 

dpe and therefore rE 0, 

showing that the moment of the filament remains constant. 
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It has been proved already that «a vortex filament consists 
always of the same particles of fluid, though this can also be now 
deduced from (24) and (25), using the invariability of p. 

TV. FxLurp oF MIntMumM ComPRESSIBILITY *. 

§ 10. According to the theory of Relativity no velocity can 
exceed that of light. Hence there is no such thing as an incom- 
pressible fluid; for such a fluid would admit a wave propagation 
with infinite velocity. A fluid of mimimum compressibility 1s one 
in which a wave can attain a velocity equal to that of light; and 
for such a fluid the quantity « is directly proportional to the 
density + 

TEACHERS. Vek Shel Mec aston Anes ent (27), 

where k,’ is a constant representing the normal rest-density, ze. the 
rest-density corresponding to the normal pressure py. 

For a fluid of minimum compressibility the equations of motion, 
| energy and continuity may by (27) be expressed in terms of the 

velocity v and the rest-density &’. The equation of motion, viz. 

d 1 

becomes on substitution 

Dividing by y and using the equation of continuity to transform 
the second term, we have at once 

ki (F —vdiv v) HCH WO) VAT = ky Bly ose oe) 
which is the equation of motion in the required form. 

Multiplying this equation scalarly by v, and transforming 
veVk’, we obtain 

PA a ee (aie ORNS hy Bey 
k (5 ape 2) div) +(c¢ v) (Fr ran =) ¥ nee = 

dki d (kVe—v? 

mer ae al C 4) 

_dede=@ ka 
nik@eak ave IcV 2 — y? dt 

igi ennace 1 yk’ dv? 
= ON eae merase rar 

* Lamla, loc. cit. p. 788; Laue, loc. cit. § 37. + Laue, loc. cit. p. 241, 



82. Mr Weatherburn, On the Hydrodynamics of Relativity 

in virtue of the equation of continuity. On substitution of this 
value in the last Semi aics it becomes simply 

ee i a MR 
kh’ div v 

: ce Cr Chm Ved 

which is the energy equation in terms of k’ and v. These equations 
(28) and (29) are identical with those found otherwise by Lamla* 
and Lauet. The equation of continuity is as before 

dk 
a ei diviy; =O"... 252550 (30), 

which takes the required form if k is replaced by yh’. 

§ 11. Steady irrotational motion. In virtue of (27) the 
equation of continuity may also be written 

ss ali, (WV) =O eee ee ee (31), 

and therefore when the motion 1s irrotational 

0 L ; Fee) lee eeacose 2. (31’). 

If it is also steady ie first term is zero, and we have (as in the 
older theory for the case of an incompressible fluid) 

W800 ee (31). 

Thus for steady irrotational motion of a fluid of minimum com- 
pressibility the velocity potential satisfies Laplace’s equation. 

It follows immediately that for such a fluid, filling a simply- 
connected region within a hollow shell, which is fixed relative to 
some system of reference S, steady irrotational motion relative to 
that system is impossible. For by Green’s theorem 

[evar -| (Vo)? dr = -| Peve nds — | pv’ pdr. 

Now the last integral vanishes by the equation of continuity. 
So also does the last but one: for v+n is zero, being the normal 
velocity at the surface of the fluid. Hence 

| oar — 

showing that v must vanish identically throughout the fluid. 

2 OCs CEs De TOBs 
+ Loc. cit. p. 244. 
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In the present case* the integral of the equation of motion 
found in § 5, viz. 

ex«+V=0, 

takes the form 
cht ky V = 0! 

or, in terms of the rest-density k’, 

ek’ +Vk/ Ve — v2 =0. 

$12. Steady motion in two dimensions. Supposing the fluid 
of minimum compressibility, let its steady motion be parallel to 
one plane—the plane ay. Introduce a function w satisfying the 
relations 

cu= — 2) 
ai Sse ORE NMEO, SO OL Te (32), 

Kv = | 

u, v being, as in § 1, the components of velocity parallel to the 
axes of w and y respectively. Such a function wW exists, the 
equation of continuity 

div (cv) = 0 

being satisfied identically. The function y is proportional to the 
flux of matter across a line AP drawn from a fixed point A to the 

variable point P(x, y). For owing to an infinitesimal displacement 
dx of P the increment in the flux of matter is 

kvéa =k xv da = k,! oye Ox. 
. | Ox 

Thus-if VY denote the flux 

Die by 
v ou 

oe GE i, ONT 
Similarly oi Oi ie; ay dy, 

showing that Phy vr, 

as stated. ‘The part played by this function y is exactly similar 
to that of the stream function in the two-dimensional motion of a 
liquid in the classical theory. The present function also is a true 
stream function. Its value is independent of the path chosen from 
A to P provided the region is simply-connected. For, if ABP and 

* Lamla considers only the case of free motion (V=const.) ; loc. cit. p. 795. 
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ACP are two different paths, the flux across the complete boundary 
ACPBA 1s 

Dee orn = | div (kw) dr = 0, 

as 1s also obvious because the motion is steady. The lines 
vr = const. are the actual stream lines: for if P moves subject 
to this condition there is no flux across the path traced out by 
that point. 

The above is true whether the motion is irrotational or vortical. 
The vorticity w is equal to 

1 (Op Op : —1V2 
2 Ge a a A Re 

and therefore for crrotational motion yr must satisfy Laplace’s 
equation 

Vide = 01a, ee aeenne Lec (B3)) 
If this relation is satisfied there 1s a velocity potential ¢, and (32) 
may then be expressed in the form 

) f) 

| 
| (34) ieee ingest de : 

oy 0x 

These are identical with the relations subsisting between the 
stream function and the velocity potential in the classical theory 
of the two-dimensional irrotational motion of a liquid. They are 
the conditions that @+% should be a function of the complex 
variable «+ iy. The theory of such functions. may then be used 
as in the theory referred to*, to give various possible forms of 
stream lines and lines of equal velocity potential. 

§ 13. Source, sink and doublet. Similarly the irrotational 
motion of a fluid of minimum compressibility defined by the 
velocity potential 

i Ab Se ig ee retrea sso m: (35), 

where r is the distance from a fixed point O, corresponds to the 
assumption of a continual creation of matter at the point 0, 
of amount 47m per unit time. For , 

so that ky = —. 

* Cf. Lamb, loc. cit. chap. Iv. 
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The velocity is therefore radial from O, and kv is inversely 
proportional to 72. The flow of matter per unit time across the 
surface of a sphere of radius 7 is 47m, equal to the rate of creation 
of matter at O. Such a motion is then that due to a source 
of strength m at the point O. If the negative sign in (35) were 
replaced by a positive one, we should have the motion due to 
a sink at O of strength m. And finally the velocity potential 
representing a doublet at 0 of moment M and with its axis along 
the unit vector n is 

M 1 
) = k.’ ne V @ . 

“() SS 
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On the convergence of certain multiple series. By G. H. Harpy, 
M.A., Trinity College. 

[ Recewed 15 May 1917.] 

1. In a paper published in 1903 in the Proceedings of the 
London Mathematical Society*, and bearing the same title as this 
one, I proved a theorem concerning the convergence of multiple 
series, of the type 

Sah ig, HU ty, ... th 

which is given (with an improvement in the conditions) on p. 89 
of Dr Bromwich’s Theory of infinite series. This theorem is one 
of a class of some importance; and I propose now to state and 
prove the leading theorems of this class in a form more systematic 
and general than has been given to them before. I shall begin by 
recapitulating, with certain changes of form, some known theorems 
concerning simply infinite series; and I shall then obtain the 
corresponding theorems for double series in a form as closely 
analogous as possible. The generalisation from double series to 
multiple series of any order may well be left to the reader. 

Simply infinite series. 

2. I shall say that a function a,,, real or complex, of a positive 
integral variable m 1s of bounded variation if 

i: : 
H 
| 
| > | Am — Um-+i | 

is convergent. It is plain that this condition involves the existence 
Ol ai— lnmmnaes 

THEOREM 1. The necessar y and sufficient condition that ayy, 
should be of bounded variation is that its real and imaginary parts 
should be of bounded variation. 

This follows at once from the inequalities 

| am a Ant es Am iets Qm+i I. | Bin [Sina | | < <| in — Am+1 ? 

| | 
| Om — Om4+1 I< | Am — Ama | ath | Sin Has [Srneten |> 

where Cpt tO Soe 

* Ser. 2, vol. 1, pp. 124128. See also ‘Note in addition to a former paper on 
conditionally convergent multiple series’, ibid., vol, 2, 1904, pp. 190—191. 
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THEOREM 2. The necessary and sufficient condition that a real 
function a, should be of bounded variation is that it should be of 
the form A,,—A,,, where Am and A,’ are positive and decrease 
steadily as m increases. 

The sufficiency of the condition follows at once from the 
anequality 

| Am — Omi < (Gals a A ene) a (A be rat aly ev) 

In order to prove that it is necessary, let us suppose that a,, 1s 
of bounded variation, and let us write 

Pin = | Om — Om+1 | (Qin a) Am+1 2 0), Pin = 0 (Gs a On+1 < 0), 

| 

| 

y, 7 2 

Pm = | Gn 4m | (Gm — Omi S 0), Pm = 0 (Gin = Onin > 0), 

wD (0.0) 

SEES, apes / By= Pn; Bm => pr. 
m m 

Then B,, and B,,’ are positive and decrease steadily as m in- 

creases; and 
fo a] 

Br FF By a z (Cm a ipa) = Amn — a. 
m 

We may therefore take A,,= B,,+C and A,,’=B,, + C’, where 
C and C” are suitably chosen constants. 

THEOREM 3. Jf a,, is of bounded variation, and Su,, 1s con- nL VW 

vergent, then Laj,Um is convergent. 

Theorem 1 shews that it is enough to prove this theorem 
when @,, is real. Theorem 2.shews thi at it is enough to prove it 
when @,, is positive and steadily decreasing. In this fori the 

theorem is classical *. 

Lemma a. If Xc,, is a divergent series of positive terms, we 
can find a sequence of positive numbers €,,, tending steadily to the 
limit zero, such that Sen, is divergent. 

Lemma 8. If Sc, is a divergent series of Bosmne ter ms, we 
can find a sequence of integer sm, such that the series Xc,,', where 

= 0 Mm —M,; ANA Cy, = Cy, enn is divergent. 

Lemma a is due to Abel+. Lemma £ is quite trivial, and the 
proof may be left to the reader. 

* See Bromwich, Infinite Series, p. 48. Theorem 3 is given by Dedekind in his 
editions of Dirichlet’s Vurlesungen iiber Zahlentheorie: see e.g. p. 255 of the third 
edition. The central idea of all such theorems is of course Abel’s. The line of 
argument followed here is due substantially to Hadamard, ‘Deux théorémes d’Abel 
sur la convergence des séries’, Acta Mathematica, vol. 27, 1903, pp. 177—184. 

t ‘Sur les séries’, Guvres, vol, 2, pp. 197--205. 
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THEOREM 4. Jf Ya, uw, is convergent whenever Lu, is con- 
vergent, then a, 1s of bounded variation. 

This theorem is due to Hadamard*. We have to shew that, 
if &|@m—Gm4i| 1s divergent, u,, can be so chosen that Sw,» is 
convergent and a,,u,, 1s not. By Lemma a, we can choose a 
sequence of positive and steadily decreasing numbers e,, so that 
€m — 0 and Sc,,, where 

Cm = Em | Um = Am+i i 

is divergent. By Lemma £, we can then choose the sequence m; 
so that =c,,' is divergent. We take 

Uy = One Un = (Oe ae (Dries (m > iD) 

where On, = 0; 
| | Den Oras | | “m m-+1 | 

and hn = Gg 
Amn — Om 

if m+m;, the last expression being interpreted as meaning €,, 
if Gm =QGmi4. We have then 

euity m—1 Til 
/ 

LAm Um = > (Gm or Dae) Om, + Am; Ur = = Cn, 
1 1 4 1 

which tends to infinity with 7 Thus Ya,,2,, 18 not convergent, 
while Sw, converges to zero. 

We may call a,, a convergence factor if Ya,,u, 18 convergent 
whenever Xw,, is so. Theorems 3 and 4 may then be combined 
concisely in 

THEOREM 5. The necessary and sufficient condition that a, 
should be a convergence fuctor is that it should be of bounded 
varvation. 

Double series. 

3. The convergence of a double series, in Pringsheim’s sense‘, 
does not necessarily involve the convergence of any of its rows or 
columns {. In this paper I shall confine my attention to con- 
vergent series whose rows and columns are convergent separately : 
in this case I shall say that the series is regularly convergent. 
A regularly convergent double series is also convergent when 
summed by rows or by columns, and its sum by rows or by columns 
is equal to its sum as a double series. 

Similarly I shall say that a,,,, tends regularly to a limit if 

Itt Chemie, IN Ch = hey 
MSD UuS>n 

* Loe. supra. + Bromwich, Infinite Series, p. 72. 
+ Bromwich, ibid., p. 74. § Bromwich, ibid., p. 75, 
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and the double limit 
lim: {tn n= @; 

mM, 2 co 

all exist. In this case a,, and a, tend to a when m and n tend to 
infinity. 

LemMA xy. [f 2Etn,» is regularly convergent, to the sum s, and 

mn 
aS: 

Sm, n i pap Unvs 
Lied 

then, given any positive number e, we can find w so that 

| Sm, 1 Ss << € 

af either m or n is greater than ow. 

We may suppose s =0 without loss of generality. Since the 
double limit exists, we can choose @, so that | s,,,|< ¢ if mand n 
are both greater than @,. When a, 1s fixed we can choose @, and 
w, so that the inequality is satisfied for 1 <m<@,, n >@, and for 

M>o,1<n<a@,. We can then take o to be the greatest of @,, 
@,, and as. 

Lemna 6. In the same circumstances, we can choose w so that 

D4 

Zp,» <€ 
mn 

if p>m, q>n, and either m or n is greater than w 

This follows at once from Lemma y and the identity 

papa Up, v = 8p,q — Sp,n—1 — Sm—-1,q + Sm—,n—1+ 
mn 

4. I shall say that am,» is of bounded variation in (m, n) if 

(1) Qm,n 18, for every fixed value of m or n, of bounded 
variation in n or ™, 

(2) the series 

=> | Amn — Amn — Im4in + Ams, n41 | 

is convergent. And I shall say that a,,,, 1s a convergence factor if 
LZAm,n Um,n 18 regularly convergent whenever YZum, is regularly 
convergent. My main object is to prove the analogue of Theorem 5 
for double series, z.e. to establish the equivalence of these two 
notions. 

VOL. XIX. PARTS II., III. 7 
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It will be convenient to write 

Nn Om,n = Amn, n — Am-+i,ns An Om,n = Um, n — Un, n+15 

rn, n Cm, (On a Gm, (Dh ee Gm, n+1 Am-+1,n = Om, n-+1+ 

The condition fined Gna es be of bounded variation is then 
that the series > | NS Gini 2 AnGrin) and. =a vee Am, sl 
should all be convergent. It is clear that these conditions in- 
volve the regular convergence of d@,,, to a limit a. 

THEOREM 6. Jf the condition (2) is satisfied, and Ajp,, and dy, n 
are of bounded variation in m and n respectively, then Cen aphes 
of bounded variation in (m, 1). 

m—1 

For Ay dysn = Apu, — S Aur Gy», 
yv=1 

Hee = is ies 1 

= | Ayvayun|< S| A,as| 4 D3 S| Nae Cpe 
p=l pal B= ie i 

so that SL AVa Gini | 

is convergent. 

THEOREM 7. If Gn,» ts of bounded variation in (m, n), then 

Op IUCN Chin a. Oy = INT Chap, op 
n> mM > 

are of bounded variation in m and n respectively. 
loa) 

For p= iby =n NaI os 
wal 

io 2) 

Ay — Ay = Ay ay, — 2 Any Gp, v> 

n-1 n-1 ao n—-l 

23 dip = Coral & = PAvons|| te > | Ay v Gy, » ) 
v= v= pl pS 

and so > | Cy — Ay+4 

1s convergent. 

THEOREM 8. The necessary and sufficient condition that dm,n 
should be of bounded variation is that its real and imaginary parts 
should be of bounded variation. 

This follows from Theorem 1 and the imequalities 

| Name Hom |< | am Am,n if | Dine alean | < | An, nm, n |> 
| 

| Ainjn Gm, n | < | BN nOm,n | + | Nia n [Syaeh [> 

where Ann = %,n 1 1Bm, n° 
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THEOREM 9. The necessary and sufficient condition that a real 
function Am,» should be of bounded variation is that it should be of 
the form Amn — A’m,n, Where 

oa = 0, aE n= 0, An Amn 2 0, pa Ta Page = 0, 

and A'n,» satisfies similar conditoons. 

Suppose first that a@,, 18 of the form indicated. It is plain 

that the series 

Bi Anns Ann, > ESAS. n Vay oes 
n ™m 

and the corresponding series formed from A’;,,,,, are all convergent. 

Further we have 
/ 

| inielinen | < Ninn n+ AnA Mm, n> 

and similar inequalities for Ajdmn and An n@mn- Hence dm,n 18 
of bounded variation. 

Next suppose that A,,,, 1s of bounded variation, and let 

Pnn = | ae nm, n Cana n= 0), Pmn = 0 (ie nam,n S 0), 

/ 

Pmn= | ia nm,n | (An, ndm,n S 0), nen ==) (Ae > 0). 

Suppose also that 
mo @ oo 

a ys f SES 734 
Brn = 2% 2 Devs Brae De pe 

m nr m nr 

Then it is plain that 

Ae ae OM Wain e's)! Sinn Bain & 0; 

and that Bn,» satisfies similar conditions. 

Also 
ao co 

Bia at Bien — DAL v Oy, v =Am,n — Im — On +a, 
mn 

On, n = Dora 7 Bes + Am + An — a. 

But, by Theorems 7 and 2, we have 

dm = Cn va Cas An = Dr ae De 

where Cn, On’, Dn, and D,/ are positive and steadily decreasing 

functions. Thus 
/ 

An, n = Aun Pia A M,N 

where 
/ / / / 

Bonn ae Bin 2 Cn a5 Dy An E, A’ n,n= BL m,n + Oe =F Dy, =e E > 

E and E’ being suitably chosen constants; and it is clear that 

Amn and A’m,, will satisfy the conditions of the theorem if 

E and E are sufficiently large. 
i—2 
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THEOREM 10. If Gm,» 1s of bounded variation, and LDum,n 1s 
regularly convergent, then LZdin,nUin,n U8 regularly convergent. 

In virtue of Theorem 8, it is enough to prove this when a@m,n 
is real. In virtue of Theorem 9, it is enough to prove 1t when 

m,n 2 0, [NT m,n 2 0, A, Amn,n 2 0, An,n Cin, n 2 0. 

In the first place, by Theorem 3, every row and column of the 

series 2 2@m,nUm,n 18 Convergent. 

In the second place, we have 

pd p=1q=1 KY 
Dales eis 12 Nea lon Pah 
mn m “2 mn 

pal ie qzal py Pg “ 
PS AL yg 2 taj +, Al Gp) 2m Ung eg eee 

m mn wv mn mM 

It follows that, if p>m, q>n, we have 

Ra 
> Cn, vy Ug, v 
mn 

<An,n Jel | n> 

where Hy,» is the upper bound of 

mY | 

| DP; | (i 0, i SD) 
mM nN 

pg mn p q p n me gh 

Ply Cy aPC OIE ( SSS ) ease 
11 yah m+1 n+1 m+1 1 if opik 

pa m 2 
Slap e S Sain 
11 ia 

< (Qm-1,n-+1 + Om4i,1 + Cisne) lie, n> 
| 

where hin,» 18 the upper bound of 

wv 

>> Us,j 
bl 

2 

for all values of k, l, w, and v such that p>k, vel, and k>m 

or l>n. 

* See pp. 124125 of my paper quoted in § 1, where the general form of this 
identity, for multiple series of any order, is given. Similar transformations of 
double series were given independently by M. Krause, ‘Uber Mittelwertsatze im 
Gebiete der Doppelsummen und Doppelintegrale’, Leipziger Berichte, vol. 55, 1903, 
pp. 240—263. See also Bromwich, ‘ Various extensions of Abel’s Lemma’, Proc. 

London Math. Soc., ser. 2, vol. 6, 1907, pp. 58—76, where further interesting 
applications of the identity are made, 
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Hence, by Lemma 6, we can choose @ so that 

Pp mn 

$2a,, yy,» — ZB ay, vUpy |< (Qing1, nH + Om+i,n + 1, n+1) aS Dy, €, 

if m and n are greater than w. Thus the double series is con- 
vergent, and, since its rows and columns are convergent, it is 
regularly convergent. 

When a,,,,, and its various differences are positive, this theorem 
is nearly the same as that referred to in § 1. It is related to the 
latter theorem, in fact, as what Dr Bromwich calls ‘Abel’s test’ for 
ordinary convergence is related to ‘Dirichlet’s test’.* The more 
direct generalisation is as follows. 

THEOREM 11. If dy» ts of bounded variation and tends 
regularly to zero, and : 

mn 

> Duy, v 
i 

is bounded, then YXAmnUnjn ts regularly convergent. 

The proof is similar to that of Theorem 10, and I need hardly 
write it out at length. The theorem shews, for example, that 
the series 

cos (m@ + nd) 
(a+ mo + no’)’’ 

where 6 and ¢ are real, w’/@ is positive or complex, and the real 
part of s is positive, is regularly convergent except for certain 
special values of 6, ¢, and a; or again that the series 

sy 008 (m0 + nd) 
~ (am? + 2bmn + en?)*’ 

* Theorem 10 itself does not seem to have been enunciated before, even in the 
specialised form. The nearest theorem which I have been able to find is one 
given by C. N. Moore, ‘On convergence factors in double series and the double 
Fourier’s series’, Trans. Amer. Math. Soc., Vol. 14, 1913, pp. 73—104. Moore’s 
theorem (a particular case of a theorem concerning Cesaro summability) is as 
follows: if 

(1) ZZw,,, , iS convergent as a double series in Pringsheim’s sense, 

mn 

(2) 22 uy,y | <K 
(3) Am, n > 9, 

fe 9) fo 2] 

(4) Pea Meee =O) lem Sy |.a.. 5 | =O, 
M>no n=l 2 >So m=1 

(5) zz | Um, n Gn, n | 

is convergent, then DZap n Um, » tS convergent. 
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where 0, ¢, a, b, and ¢ are real, and a, ac — b?, and the real part of s 
are positive, is regularly convergent except for certain special 
values of @ and ¢. In either of these series, of course, the cosine 
may be replaced by a sine. 

In order to prove the converse of Theorem 10 we require two 
lemmas analogous to Lemmas « and 8. 

Lemma « If [Sem is a divergent series of positive terms, 
we can find En,» so that (1) &m,, decreases when m or n increases, 
(2) €m,n tends regularly to zero, and (3) the series > > Ga ACs 
dwergent. 

(1) Suppose first that at least one row or column of the 
original series, say the vth row =c,,,,, 18 divergent. By Lemma a, 
we can choose a steadily decreasing sequence 7, with limit zero, 
so that LnCm,, 1s divergent. We take 

Em,n = Nm (n < v), Em, n = 0 (n > v), 

and it is plain that the conditions of the lemma are satisfied. 

(2) Suppose that every row and column is convergent; 
and let 

»S Cm,n = Yn> 2 Cn,n = Ym: 
(m) Nn 

Then Sy, is divergent. We choose a steadily decreasing sequence 
Mm 80 that Lamm 1s divergent. Then > Xc'p,,, where 

’ thie 
Cm,n = 1m Cm,n> 

is divergent; and so Syp’, where 

. 

Yn. aa Se Nm m,n > 
m 

is divergent. We now choose a steadily decreasing sequence ,, 
with limit zero, so that &€,y,' is divergent. It is clear that, if 
we write 

" 
C mn = Nm GaGan op = Em,nem,n> 

all the conditions of the lemma will be satisfied. 

Lemma 6 If =Sem, is a divergent series of positive terms, we 
can choose w sequence of pairs of integers (m;,n;), tending to infinity 
with 1, so that the series TEC%m,n, where Cmn=0 if mM=mMm, n<n; 
or M<M;, N= Nj, ANA Cnn = Cn, n Otherwise, is divergent. 

The modification to be made in the series is effected by 
drawing perpendiculars on to the axes from the points (m,, nj), 
and annulling all terms which correspond to points on these 
perpendiculars. Let o, denote the sum of the terms whose 
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representative points le on the perpendiculars from (m, m) o 
to the axes. Then Xo, is divergent. Applying Lemma 8 to this 
series we obtain the construction required, m; being in fact 
always equal to 7. 

THEOREM 12. If 2dinntm,n ts regularly conver gent when- 
ever LXUm» is regularly convergent, then dm,» ts of bounded 
variation. 

In the first place it follows from Theorem 4 that wn», is, for 
every value of n (or m), of ghounder variation in m (or n). It 
remains only to shew that >>| An, n@m,n | is convergent. 

Suppose, on the contrary, that it is divergent. By Lemma e, 
we can choose a sequence of positive numbers €,p,», tending 
regularly to zero, so that Yen», where 

Cm,n = Em, n | aye nm, n > 

is divergent. We can then modify this series as in Lemma ¢ 
without destroying its divergence. 

Now let 
mn 

Uy Dias >> Up, v 
; NE 

and suppose that 

Cex (ae 0 

if m=M;,n <n; Or M<m;, N= n,;, and that otherwise 

| (ayaa Onn | 
Diss = €n,n WAR an ae : 

min Am, 

this last formula being interpreted as meaning €,,,,, if 

jae n On, n= 0. 

These equations define w,,,, uniquely for all values of m and n, 
and it is plain that U,,,, tends regularly to zero, so that 2X wp,» 1s 
regularly convergent. On the other hand 

Ming mi—1 nj-1 mi-1 nj-1 
~ ih BA! v 
> > Om, n Un, Divan > Ann Am, n Om; Uae > >> C m,19 
he 1 1 1 i 

which tends to infinity with 7. Thus 2S@in,n%m,n 18 not convergent. 
This proves Theorem 12. Combining it with Theorem 10 we 

obtain the analogue of Theorem 5, viz. 

THEOREM 13. The necessary and sufficient condition that dm,» 
should be a convergence factor is oe it should be of bounded 
variation. 
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2 

Bessel functions of large order. By G. N. Warson, M.A., 
Trinity College. 

[Received 14 June 1917.] 

1. When the order of a Bessel function is large, the asymp- 
totic expansion of the function assumes various forms depending 
on the values of the ratio of the argument to the order of the 
function. The dominant terms of the asymptotic expansions are 
given by the formulae: 

(i) When n is large, # is fixed and 0<#< 1, then © 

Jn (nee) ~~ (20n) 2 (1 — a2) Fa {1 + (1 — 2) exp {nV — 2°}. 

(ii) When n is large, a is fixed and «>1, then 

Jn (nz) ~ (han)? (a — me cos {n /(a? — 1) — nsec a — $7}. 

(ii) When n is large and e =O (n- 8), then 

In (n + ne) ~T (4)/{r2! 3? n3}. 
The corresponding complete asymptotic expansions, valid for 

general complex values of » and a, have been given by Debye*. 
Accounts of the history of the approximate formulae are to be 
found in Debye’s memoirs and also in two papers} which I have 
published recently. 

It is evident that there are transition stages between the ° 
domains of validity of the three formulae quoted; and not much 
is known about the behaviour of J,, (na) in these transition stages. 
Consequently I propose to establish approximate formulae (involv- 
ing Bessel functions of orders} +4) which exhibit the behaviour 
of the Bessel function right through the transition stages. These 
formulae are more exact forms of some approximations which 
Nicholson§ obtained some years ago without estimating the 
margin of error or the precise ranges in which the results were 
valid. 

* Math. Ann., txvit. (1909), pp. 585—558. Miinchen. Sitzungsberichte [5], 1910. 
+ Proceedings, x1x. (1916), pp. 42—48. Proc. London Math. Soc. (2), xvi. (1917), 

pp. 150—174. ; 
+ These functions have been tabulated by Dinnik, Archiv der Math. und Phys., 

xvii. (1911), p. 337. 
§ Phil. Mag., Feb. 1910, pp. 228—249. 
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The approximations which I shall obtain are derived by 
shewing that certain integrals of Airy’s type* are effective 
approximations to the integrals which occur in Debye’s analysis. 
It will be assumed that the reader is familiar with Debye’s 
memoirs, although it seems desirable to modify the notation to 
a considerable extent. The formula for J, (nx), when «>1, is 
of importance in connexion with the maxima of the Bessel 
function f. 

The two formulae which will be obtained in this paper are as 
follows : 

(I) When a30, 

J, (nsech a) ~ 2771 372 tanh a 

x exp {n(tanh a+ $tanh*a—)}. K, (4n tanh a), 

where the error is less than 3x7! exp {n(tanha—a)}, and KX, (z) 
denotes the Bessel function of Basset’s type (see § 6). 

(I) When0 <8 <}i7, 

Jy, (nsec B)~1 tan B cos {n (tan B — } tan’ B — £)} 

x [J_, (4m tan® 8) + J, (fn tan’ 8) 
+3°* tan Asin {n(tan 8 — 4 tan* 8 — B)} 

x Pes (4n tan’ 8) — J, (4n tan’ 8), 

where the error is less than 24/n. 

Part I. Yhe value of J, (nz) when O<a<l. 

2. We take Sommerfeld’s integral 

ff (nav) 5 \ ie he (%sinh w-w) dw 

- Qa O — 77 7 

The stationary points of w#sinhw—w, qua function of w, are 
given by cosh w= 1/x; accordingly we replace # by sech a, where 
a>0; and then, putting w=a+t, we have 

oo + 1e 1 et 
eas) — oe 9 | exp {n tanh a (cosh ¢ — 1) 

270 | O—T7 

+ n(sinh ¢ — t)} dt. 

The exponent has a stationary point at ¢=0, and the method 
of steepest descents provides us with the contour whose equation is 

I {tanh «(cosh ¢ — 1) + (sinh¢ —#)} = 0. 

* These integrals have been expressed in terms of Bessel functions by Nicholson, 
Phil. Mag., July 1909, pp. 6—17, and by Hardy, Quarterly Journal, xu1. (1910), 
pp. 226—240. 

+ Proc. London Math. Soc. (2), xvi. (1917), p. 169. 
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The portion of this curve which is suitable for our purposes | 
consists of an arc* on the right of the imaginary axis in the ¢-plane | 
with its vertex at the origin and with the lines /(t)=+7 as 
asymptotes. 

If we write t= u-+ 1, where wu, v are real, the equation of the 

curve becomes 
cosh (a + uw) = vcosec v cosh a. 

We shall put 

tanh a (cosh ¢ — 1) + (sinh t — t) = —7, 

so that as ¢ traverses the contour t diminishes from + 2 to 0, and 
then increases to + 0; and therefore 

ry pee) ‘ 

sn) — =a ge ealaa=e) \| ar I e—™ (dt/dr) di; 
io 2) 

in the first integral v <0 and in the second integral v > 0. 
Now define 7 by the equation + 

4T? tanha+ 47° = — 7. 

A contour in the 7-plane on which 7 is real is a semi-hyperbola 

touching the imaginary axis at the origin and going off to infinity 
in directions inclined +47 to the real axis. If we write 

T=U+1V, 

where U, V are real, the equation of the hyperbola becomes 

U tanh a + 4U2=4V*. 

Taking the semi-hyperbola as the 7-contour, we shall shew 
that an approximation to 

wo +72 i roo exp (472) 

| e—™ dt 1s eA T. 
wo — 1d / o exp (— 4772) 

It is easy to see that the difference of these integrals is 

ic +{ ow tha 

Fa 0 SW iilde del oe 

and so the problem before us is reduced to the determination of 
an upper bound for | d(¢ — 1')/dz 

* This curve is derived from the curve shewn in fig. 4 (p. 541) of Debye’s first 
paper by turning it through a right angle and taking the origin at the vertex. The 
degenerate case when a is zero is shewn in fig. 5. 

+ Since r=4¢? tanha+423+ 0 (t4) when |t| is small, the curve in the 7-plane 
closely resembles the curve in the ¢-plane near the origin; and, the parts of the 
curves near the origin being the most important when n is large, we are obviously 
able to anticipate that the integrals under consideration are approximately equal. 
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3. We shall now shew that, whenever t>0 and when, corre- 
sponding to any given value of 7, we choose V to have the same 
sign as v, we have the inequality 

|\d(t¢— T)/dr| <3. 

Since, corresponding to any value of 7, the two values of ¢ are 
conjugate complex numbers (and similarly for 7’), it is evidently 
sufficient to prove this inequality when v and V are both positive. 

On comparing the values for + in terms of t and 7, we perceive 
that 

"(2 —t){$ (7 +1) tanha+4(7?+ Tt + #)} 

= tanh a (cosh ¢ — 1 — $@) + (sinht — t — 1#°). 
Also 

d(t— T')/dr = {T tanha + $7?|" — {sinh ¢ tanh a + (cosh ¢ — 1)}7 

1 t—T . 
~ T {sinh ¢ tanh a + (cosh ¢ — 1)} 

$¢(¢—T) + (sinh ¢— ¢) tanh a + (cosh ¢t— 1 — $#) 
—T (tanh a+ $7) {sinh ¢ tanha + (cosh t — 1)} 

Now 

| sinh ¢ tanh a + (cosh t — 1)| ) 

=sech a y[(cosh wu — cos v) {cosh (2a + uw) — cos v}]5 

and since 

{eosh (2a + w) — cos v} — cosh? a (cosh w — cos v) 

= sinh? a (cosh uw + cos v) + sinh 2a sinh u 

20, 

and 

{cosh (2a + %) — cos v} — sinh? a (cosh wu + cos v) 

= cosh? a (cosh w — cos v) + sinh 2a sinh u 

> 0, 

we see that | sinh t tanh a + (cosh t — 1)| exceeds both 

cosh wu — cosv = | cosh¢— 1} 

and also tanh a /(cosh? w — cos’ v) = tanh a| sinh ¢). 

We now divide the range of integration into two parts, namely 
r>landO0<r<l. 

4, Consider first what happens when 7 > 1. 
If | 7\ <1, we have (on the 7-contour) 

7 =|4$7? tanha+{T?|<$+4<1. 
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Also, if || <1, we have (on the ¢-contour) 

tr =|(cosh¢ — 1) tanh a+ (sinht—t)|< > |¢t|"/m!<e—2<1. 
m=2 

Hence, when + >1, we must have both |T'|>1 and also |\t|>1 

But, when | 7'|>1, sce U > 0, we have 

|\(dr/dT)| =| T tanh a+47?|>| tanha+47|>3 

Also, when |¢|>1, we have w or v (or both) greater than 1/,/2, 
and we always have v less than zr. 

Hence, by the result of § 3, ; 

| (dr/dt) | =| sinh ¢ tanh a + (cosh ¢ — 1) | > 2(sinh? $u + sin? $v), 

and this exceeds the smaller of 

2 sinh? (1//8), 2 sin? (1/4/8). 

Consequently 

| (dt/dt) | < 4 cosec? (1//8) = 414 < 2a — 2. 

Therefore, when t>1, we have |d(t — T)/dr| < 2. 

We shall make use of this inequality in § 6. 

5. Consider next what happens when 0<7<l. 

If | 7'| > 2, we have (on the 7-contour) 

7=|s7? tanha+47?|>4|4tanha+47|>2|T|>4. 

Also noting that uw and v increase together, when v 
have (on the ¢-contour) 

7 =wu-+ tanh a — cosv sech a sinh (a + uz) 
>u-+tanha 

> tanh a — a + log {4a cosh a + \/(47? cosh? a — 1)}, 

on expressing w in terms of v and noting that v cosee v exceeds $7. 
This function of « increases with a and so it exceeds 

log {7 + /(Gm —1)} >1. 

Hence, when t <1, we must have both | T| <2 and also v<}m. 

Further, when .v<47, we have 

cosh w <sech a cosh (a + wu) = vcosecv < $7 < cosh I'l, 

< 4m’? + (1:1) < 4, and therefore |t| < 2 
That is to say, when t <1, neither | T| nor |t| aieeedle 2 

Also, for all values of ¢, 

du/dv = (1 — vcot v)/s/(v? — sin? v sech? a) 

> (1 — veotv)/v > hv 
and so uw>4v% 
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Further, when v<47, we have* 1 —veotv< /(v? — sin? v), and 
so du/dv <1,1e.v>4u, uhenie at once we have v./2 >|t|. 

Next, when |t| <2, we have 

|sinh ¢| >|¢|/{1—-% a0 [tf —...} 
2 \t\{L—-4d + Lt ast. | 

In like manner we may prove that, when |t| <2, 

|cosh ¢—1|> 4 |¢/2/13 > 4 |cosh é— 1 — 42] <|t|*/20, 
jsinh¢—t¢|<5|¢|?/24, |sinhé¢—¢— | <|t|5/108. 

We are now in a position to obtain an upper bound for | 7’—¢}. 
It is first evident that 

|4(7'4+ t) tanha+1(7°4+ Tt+?)| 

>J{¢(7 +t) tanha+1(7°+4+ Tt + #)} 
>t vtanha + tu 

> 4v(tanh a + 4°) 

oe slél yy8 

(4 tanh a + 44 | t|)//8. 

Hence, by the result ae in § 3, 
, (tanh «)/20 + | t|/108 

[Pt] <8*|¢) dtanha+ |¢|/18 “5 *" 

To obtain a stronger inequality, we write the equation of § 3 
in the modified form 

(7 —t)(7 +1) {h tanha+43(7+ 0} 

= —(T — t)/24 + tanh a (cosh ¢ — 1 — $#) + (sinht —¢ — 1#). 

The expression on the right does not numerically exceed 

|¢|8/192 + tanh a.|¢|4/20 +|¢|?/108 < tanh a.|¢|*/20 +|¢|5/48; 

and since | (7'+ ¢) {4 tanha+4(7'+#)!| exceeds both 4/t¢|tanha 
and also 4|t|?, we see ie 

|P—t)<Got+ a lel =4/6/%/15. 
_ Lf we now further restrict t so that |t| <1, the last equality 

gives 

| {—(7 — t)*/24 + tanh a (cosh ¢ — 1 — $2) + (sinht —t—3#)} | 
< 4° | ¢)9/(24. 15°) + tanh a.|¢|4/20 + | ¢|°/108 
< tanh a. | ¢|4/20 + | ¢|>/104, 

t/?<4$/¢/2 

* Since a {sin? v (1 — v cot v)? — sin?v (v2 — sin? v)! = — 2 sin 2v . (v?-sin?v) <0 

when O0<v<hr, 
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and this inequality, combined with the modified form of the 
equation of § 3, gives 

|\T —t| <(1/10 + 1/13) |t|° < | #|3/5. 

Hence, when |t| <1, |7—#|<4|¢|, and so |7|>4|t|; and 
therefore, when |¢| > 1, | 7'| exceeds the value which it has when 
aol and so, a fortiori, | Z'| > 4. 

It now Ralllones that, when wheal 7 and |¢| do not exceed 1, 
we have | 

| dt _ al 

dr dt 

1|¢\3 

> 4\¢|.|{sinh¢ a = (cosh ¢ — 1)}| 

ee 4/10 + 5 tanh a | ¢|*/24 + |¢|#/20 
(8 | ¢ |?/25) | {sinh ¢ tanh a + (cosh ¢ — 1)} | 

= {23 |¢|?/32 + 125 tanh a|¢|/192} 
~ | {sinh ¢ tanh a + (cosh ¢ — 1)} | 

Since the denominator exceeds both 2|¢|tanha and 4/¢|*, we 

see that 

|d(t — T)/dr| < (23/8) + (125/128) < 27. 

If 7 <1 and 1 <j|#| <2 we use the second expression of $3 for 
a(t — T) dr. Replacing | 7—t| in the numerator by 4|¢|8/15 
and | 7’| in the dena atton by 4, we get in a similar manner 

d(t—T)/dt|\< ul ¢ |°/3 + 125 tanh a.|¢|?/192 + 11|¢|4/60} 

~ | {sinh ¢ tanh a + (cosh t — 1)} | 

4f\t|/3 1/13 + 125 |4|2/128 
< 37. 

6. It is obvious, from the results of §§ 4, 5, that, whenever 
7 >0, we have 

|d(¢—T)/dr| < 37; 

and from this result we have 

1 0, ea d dT 

a 
} oo exp ($7?) J : 

The evaluation of e-"* dT presents no special points 
mex bay : 

of interest; the simplest procedure is to modify the contour into 
two rays, starting from the point at which 7’ =—tanha and 
making angles + 47 with the real AXIS, 

< 3| e™dr= 3/n. 
0 
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If we write 7’ = — tanha+ €e*!" on the respective rays, the 
integral becomes 

ie.) 

e'™ exp (4n tanh? a) f exp {— dn&* — Ene} tanh? a} dé 
0 

ie.) 

—e—*™ exp (4n tanh? a). | exp {[— 4n&* — in€e—* tanh? a} dé. 
J 0 

These are integrals of Airy’s type; on expanding 

exp (— }n€e**" tanh? a) 

in powers of tanha and integrating term-by-term 
which is easily justified—we get on reduction 

a procedure 

smi tanha.exp(4n tanh*a).[Z_, (4n tanh*a) — J, (4n tanh’ a)], 

where, in accordance with the ordinary notation, 

Ue (z) a is Din (22). 

On introducing Basset’s function XK, (z), defined as 

400 cot m7 Waits (2) a Ly (z)], 

we obtain the final formula 

2 
73 [tanh a exp {n (tanh a + + tanh? a — a)} 

xs Ky (37 tanh? a)| + 30,n~ exp {n (tanh a — a)}, 

Jn (nsech a) = 

where | 0,|< 1. 
When n is large the ratio of the error term to the dominant 

term is of order n~® s/tanh a, n- 2, nf, according as ntanh*a is 
large, finite or small. 

The formulae (1) and (111) of § 1 agree with this result when a 
is finite and when n tanh’ a is small, respectively. 

Part II. The value of Jn(nx) when «>1. 

7. It is convenient to regard Hankel’s solutions of Bessel’s 
equation, H,,”) and H,,°, as fundamental. The ordinary solutions 
are expressed in terms of these functions by the equations 

Jn (nx) = 4 {H,” (ne) + H,? (na)}, 

J_n (nx) = 4 {e"" HH, (nv) + e~ "HH," (na). 

The integral formulae of Sommerfeld’s type are 

1 o+n7 , 
H,,” (na) ae | e” (xsinh w—w) dw, 

TU 

if oO —m 

H,,® (nx) payee cm | e” (x sinh w—w) dw. 

T1. 
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The stationary points of «sinh w—w, qua function of w, are 
given by coshw=I/a. As 0<1/a<1, we put «=secB8 where 
0<8<47; and two stationary points are given by w= + Bz. 

Now it has been shewn by Debye that a branch of the curve* 

I («sinh w — w) = 1 (asinh 78 — 78) 

is a suitable contour for H,,”, and the reflexion of this contour in 
the real axist is a suitable contour for H,,. 

On making a change of variable by writing w=t+78, we 
have 

Take 2 t+ni-iB 
H,® (nx) = — em (tan B - B) | ent dt, 

7 —«o—ip 

where itan 8 (cosh ¢ —1)+smnht—t=—rT. 

If we put =u +, where u,v are real, the equation of the 
contour 1s 

cosh u = (sin 8 + vcos 8) cosec (v + B), 

and, on the contour, 

T=u—sec Psinh wu cos (v + £). 

When » is given, cosh w is given and the sign of w is ambiguous ; 
we take u to have the same sign as v, in order that the contour may 
be of the requisite type. 

Next define 7 by the equation 

1777 tan 8 + 47? = — 7. 

We write 7=U+(V, where U, V are real; a contour in the 
T-plane on which 7 is positive is that branch of the cubic;, whose 
equation 1s 

(U2 —V*) tan B + 4V (302 — V2) =0, 
which passes from — 2 —7 tan @ through the origin to » exp ($77). 

Taking this curve as the contour, we shall shew that an 
approximation to 

wo +ni—ép _  [2exp Gri) 
Cn Tt as | Carole 

| -o-4B —o-—cztanp 

* This curve is derived from the curve shewn in fig. 2 (p. 540) of Debye’s first 
paper by turning it through a right angle and taking the origin at the node. The 
reader will observe that the character of the contour has changed with the passage 
of « through the value unity. 

+ Since H,,, H,,@) are conjugate complex numbers when m and @ are real, it 
will be sufficient to confine our attention to H,(1). 

+ Of course 7 is real on the whole cubic; as T' traverses the specified portion of 
it, 7 decreases from + to 0 and then increases to +”. 
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8. Before proceeding further, we shall shew that the slopes of 
the contours in the t-plane and in the T-plane never * exceed 1/3. 

If we write 

(sin 8 + v cos 8) cosec (v + 8B) = Wr (v), 

[iy -17 
0) 

dy sinhw 

du~ (0) 
we have 

Now 

wy’ (v) = cosec (8 + v) {cos B — cot (8B + v) (sin B + v cos B)}, 

and sow’ (v) is positive when 8+ is an obtuse angle. When 
0<B+u<47, however, we find that 

cos 8 tan (8 + v) — (sin 8 + vcos £) 

is an increasing function which vanishes with v. Hence W’ (v) 
has the same sign as v (and therefore the same sign as w), and 
consequently 

=+ 

dv _ [l= 1F 
du ly’ ()| 

It is therefore necessary to prove that 

ih @)P-1<3 {wo}, 
i.e. that xv (v) = 3 {W’ (vo)? - {ww P+ 120. 

Now x(0)=0, and it is consequently sufficient to shew that 
x’ (v) has the same sign as v. Since 

x (¥) = Bap" (v) [By (v) —  )} 
and w’(v) has the same sign as #, it is sufficient to prove that, 

By” (v) — (0) > 0. 
Since y(v)sin(v+) reduces to a linear function of », its 

second derivate vanishes, and so the inequality to be proved 
reduces to 

wy (v) — 3xp' (v) cot (v + 8) > 9, 
1e. to 

(sin 8 + vcos B) {1 + 3 cot? (v + B)} — 3 cos B cot (v + 8) >0. 

But 

sin 8 + vcos 8 — 3 cos @ cot (v + 8)/{1 + 3 cot? (v + B)} 

has the positive derivate 4cos 8 {1 +3 cot?(v+)}*, and is 
positive when v= — £8; hence it is positive throughout the range 
—B<v<a-—8. And this is the result which had to be proved. 

* In the limiting case when 8=0, the t-contour has slope ,/3 immediately on 
the right of the origin, and the T-contour consists of the rays arg T=0, arg T7=4r ; 
so there is no better inequality of the form stated. 

VOL, XIX, PARTS II, III, 8 
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In like manner, we find that 

0 dV (tan B+ Vy? (tan B + yVy 

SdU° tan’ +VtanB+iv® ’ 

and it may be proved by quite simple algebra that the square of 
this last fraction does not exceed 3. 

From the results just proved it follows on integration that 

lol<lulv3, |Vi<|U 1/3, 
and hence 

Jul>dlel, [al<dlt(v3, |U|S4ai7\|, |V|/<4|T lve. 
9. We now return to the integrals of §7. As in the corre- 

sponding work of §§ 2—3, we have to obtain an upper bound for 
|d(T’—t)/dr|; we shall in fact shew that this function does not 
exceed 127. 

We notice that formulae corresponding to those given in § 3 
are 

(T—t) {4 (T+ t)itan8+1(7?+ 7t+?)} 
=ztan 8 (cosht—1—4f)+smht—t—128, 

d(t—T)/dr 

= {eT tan 8 + 17°} — {i sinh ¢ tan B + (cosh t — 1)}7 
cdl t—T 
~ Ti sinh t tan B + (cosh ¢ — 1)} 
is 3¢(¢ —T) +2(sinht — t) tan 8 + (cosht—1—3#) 

T(itan 8 +47) {7 sinht tan B + (cosh t — 1)} 

Now 

|7sinh ¢tan 8 + cosh¢— 1} 

= sec 8 \/[(cosh u — cos v) feosh wu — cos (28 + v)}], 

and since 

{cosh wu — cos (28 + v)} — cos? B (cosh u — cos v) 

= sin? 8 (cosh wu + cos v) + sin 28 sin v 

> (1 + cos v) {sin? 8 + sin 28 tan $0} 

>(1 + cos v) {sin? B — sin 28 tan £8} 

> 0, 

we have 

_|¢sinh ¢ tan 8 + (cosh t — 1)| > cosh w — cos v =| cosht—1). 

Also 

cosh wu — cos (28 + v) >2 sin? (8 + 4v) >2sin248, 
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and so 

|7 sinh ¢ tan B + (cosh t — 1)|>sin 3 sec B »/{2 (cosh u — cos v)} 
> tan 8|sinh 4¢|. 

That is to say |7sinht tan 8 + (cosh ¢ — 1)| exceeds both | cosh t — 1 | 
and also tan 8 | sinh $¢}. 

In order to simplify the subsequent analysis, it 1s convenient 
‘to place a restriction on B. We pn consequently assume in 
future that 0<B <7, so that tanB<1. This restriction is not of 
importance so far as the final result is concerned, because Debye’s 
formula, quoted in § 1 (ii), is effective whenever secB>1+46, 
where 6 is any positive constant; and so it is certainly effective 
when sec 8>/2. The importance of the analysis in the present 
investigation is due to the fact that it is valid for smali values 
of £. 

10. Consider what happens when 7 >4, whether v, V are both 
positive or both negative. 

When | 7"| < #, we have (on the 7-contour) 

vT=|417? tan6+47"|<|7?\|44+4|T\|)<34, 

and if |¢| < #, we have (on the ¢-contour) 

T =| {a tan 8 (cosht¢ — 1) + (sinh¢ — #)} | 

< > |t\"/m!<e#-1—-8 = 212-175 <4. 
m=2 

Hence, when t > 4, we must have both | T| >? and |\t| >? 
But, when | 7'| > ?, we have 

|(dr/dT)|=|7|.|itan 8+47|>|T|.\4AR(L)|>4/TP>& 
Also (as in § 4) when |t¢| > %, we have 

| (dr/dt) | =|¢sinht tan 8 +(cosh¢— 1) 

>| cosh t — 1| = cosh u— cos v > 2 sin? (,3, 2) = 0°187, 

and so | (dt/dr)| < 73 
From these results we see that, when 7 >4, 

|\d(t— T)/dr|< 15 < 52. 

We shall make use of this inequality in § 12. 
11. Consider next what happens when 0 <7 <4, whether v, V 

are both positive or both negative. 
When | contour) 

r=|T?.|47tan@+417|>|T|?.|A4R (LP) |>4/T|* >4. 

Also, when |t|>2 and v+ 8>47, we have u>47¥/3, and 
then 

T=u-—sec 8 sinh weos(v + 8)>u>1. 

8—2 
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Next, when |t|>2 and 8<v1+8<47, we have 

cosh wu = (sin 8 + v cos 8) cosec (v + 8) 
<sin8+(4a7—£)cos8 <47< cosh I'l, 

since sin 8 + (4a — 8) cos £ is a decreasing function of ~. 
This gives 2 <|t¢|<4/{(47r)? + (1'1)?} < /3°7, which is impossible ; 

so that, when |t|>2, we cannot have 8 <v+B<}7. 
Lastly, when |¢| >2 and 0 >v >— 8, we have wu <0, and so 

—u>VJ(4—f) > V{4— Gr)? >18, 
and 

Tt =sec 8 sinh (— w) cos (v + 8) — (— wu) 
> sinh (— wu) — (— vw) > 4 (1'8)* > F. 

Therefore, whenever |t| >2, we have r>4. 
Hence, when 0 <7 <4, we must have both |t| <2 and |T| <2. 
Next we shall shew that & {4¢+ 7?/(7'+ t)} has the same sign 

as u and U. 
The function under consideration is equal to 

[du ((U +uP+(V + oP} +(U?—-V?) (0 +x) 
+2UV(V40))+[((U+uyr4+(V +29]. 

Taking U, V, u,v positive for the sake of definiteness, we see 
that the numerator of this fraction exceeds 

gu(U?4+V?) + u(U?—V?) =4u(8U?—-V?) 50. 

_ Similarly we can prove that the numerator is negative when 
U,V, u, v are all negative. It follows from this result that 

Rut PL +0; |>a|RO|> sel. 
We are now in a position to obtain an upper bound for | T —t| 

when |\t| and | T'| are both less than 2. 
First suppose that |t| < }. 
Then, from the formula quoted at the beginning of § 9, 

(P—|.|(L+0|.|(gitan B+ 44 +4 PT +9} | 
=|7 tan 8 (coshé — 1 — 4#) + (smht—¢t—28)| 

(o.0) 

Se She x ayllia || 
m=4 

But |7+2|>|¢| and 

| fetan B+ A+ APL +H} |> a/R let P+} > asl tl. 
2/119, Hence, when |t| <4, we have | (7’— t)| <120/¢ 

Next, keeping |t| <4, we take the formula 

4(7-t)(T +14) {itanB+4(7T+)} 

=— (7 — 1) +7 tan @ (cosh t— 1 — $#)4 (sinht—t—2#) 
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and observe that 

jttanB+32(7+t)|>h| R(T +t)|>h\t]; 
and also, in view of the fact that, as + varies through positive 
values, ¢+ 7 traces out in the Argand diagram a curve, through 
the origin, whose slope obviously never exceeds 1/3, the distance 
of all points of this curve from — 4¢ tan 8 must exceed 2 tan £. 
Hence |i tan 8+ 4(7'+1)|>4 tan 8. 

Using these two inequalities, combined with the fact that 
|(7’— t)| <120|#|*/119, and the obvious inequalities 

|%+¢|>|¢|, |coshé—1— 42) <|t|+/28, 
| sinh ¢ — ¢ — 348| <|¢|5/119, 

we deduce from the last equation for 7’ —¢ that 

|Z —t| <2 |¢| {120|¢|/119}* + 4) ¢|?/23 + 16 |¢|3/119 <|é|% 

Using now the inequality | 7’—¢|<|t|* in place of 

| 7 —t| < 120|¢|?/119, 
we get 

|\7—t| <2|¢|7+4|¢|?/23 + 16|¢|#/119 

S (1/24 + 4/23 + 16/119)|t/? <4 e]% 

Using now the inequality 7 —t|<4|t|°, we get, in place of the 
last result, . 

| 1 —t|< (1/192 + 4/28 + 16/119) |¢/? <4] ¢]* 
From this result it follows that, when |t|<4, |7—t|<4|¢|, 

and so | 7'|>44|¢]. ; 
Consequently, from the formula for d(¢— 7')/dt given at the 

beginning of § 9, we see that, when |¢| <4, 

jae a) _ ae (? 

lde dr |< ih]é].|(cosht —1)| 
lé|*+5[t/* tan 8 + 5 |t/* 

rie sar | {¢ sinh ¢ tan 8 + (cosh ¢— 1)} |’ 

Now, when |t¢| < 2, 

|cosht—1|>4|t?f—-4A-AS-...] 24] e/3, 

and |sinh¢| >|¢|[1 —4-—45—-...] 24141; 

and so, using the results of § 9, we get 

|d(t — T)/dr| < 16/11 + (576/121) [4 (1/6 + 1/23) + 6/5] 
< 12, 

when |t| <4. 
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Lastly, when }<|t|<2, we have | 7'|>11/24, and so, by the 
method of § 10, we get 

|d(t — T)/dr| <4(24/11)? + 4 cosec? (4/2) 
< 35°3 < 127. 

12. It follows from the results of §§ 10,11 that, for all positive 
values of 7, 

|d(t — T)/dr| < 120, 
and consequently 

0 7 OO dt 

Hl. a a tae x | ar ca 
so that 

1 ; : ~ exp (477) 
HH, (n sec B) pl a ent ee ew dT + 240,/n, 

5 7 —o-—ztanp 

where | 0,| < 1. 
To evaluate this integral, where —7r =47? i tan B + 4T?, we 

take the contour to consist of the two rays arg (Z7'+7tan 8)=7, 
dar; on writing 7'=—v tan 8 — &, —7 tan 8 + Ee’ on the respective 
rays, expanding the integrand in powers of € and integrating term 
by term we find that 

oo exp (4772) 
: | ear dT 

i ile tan 8 exp (— nz tan’ 8) 

<les tt Ji 1 (gm tan? 8) + eam! J, (3n tan’ 8)] 

= 37> *ai tan B exp (tai — 4nz tan*B) H 4” (gn tan’ 8). 

Since Jn (nsec 8) = R| H,, (nsec 8)], 

J_, (nsec 8) = R[e"™ H,, (nsec B)], 

it follows at once that, when 0< 68 <1ia7 

Jn (msec 8) = 37 tan B cos {n (tan 8 — 5 tan* B—6)} .[J_4 + J] 

+ 37? tan 8 sin {n(tan B —4 tan? —£B)}. [J_4—J4] + 240/n, 

J_, (nsec B)=3™ tan Boos {n(w + tan B— 4 tan® 8 — B)}.[J_y+J4] 

+372 tan B sin {n(7 + tan 6 —1 tan® 8 — B)}.[J_ Uae J] “i 246'/n, 

where the arguments of the Bessel functions J, , on the right are 

all equal to 4 tan’ 8, and | @|, | @’| are both less than 1. It is easy 
to see that, except near the zeros of the dominant terms on the 
right, the ratios of the error terms to the dominant terms are of 

orders /(n7tan 8), 7 —3, a7 3, according as n tan’ @ is large, finite 
or small. 
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A particular case of a theorem of Dirichlet. By H. Topp, B.A., 
Pembroke College. (Communicated, with a prefatory note, by 
Mr H. T. J. Norton.) 

[Received 14 June 1917.] 

[The following note is an extract from an essay submitted to 
the Smith’s Prize Examiners. 

It will, perhaps, be convenient if I preface Mr Todd’s argument 
by explaining its relation to the theory of algebraical numbers. 
The principal theorem is a famous one of Dirichlet’s on the unities 
of an algebraic corpus or order. It will be remembered that if § 
is a root of an irreducible equation of the nth degree, the coefticients 
of which are integers, then, ifthe coefficient of the nth power of 
the unknown is 1, $ is an algebraic integer, and if in addition 
the absolute term is + 1, is a unity; and further, that if S is an 
integer of the nth degree, then the order of S is the aggregate of 
numbers w of the form 

Bye Py wet oes Cee, 

where a...%_, are rational whole numbers, every member of the 
order of 3 being an integer of the nth or some lower degree. 
Dirichlet’s theorem *, as modified by Dedekind and others, asserts 
that if the irreducible equation satisfied by S has 7 real and 2s 
imaginary roots, then the order of § contains r +s — 1 fundamental 
unities, €, ..., €-4s-1, which are such that every unity contained in 
the order is expressible in one and only one way as a product 

my m., 
ac Spey aca 

ia r+s—1’ 

where 7 is a root of unity contained in the order and mj, ..., Mp+5—1 
are rational integers; and that, conversely, every such product 
is a unity and a member of the order. The simplest cases of 
this theorem are those in which the equation satisfied by S is 
(1) a quadratic with two imaginary roots, (11) a quadratic with two 
real roots, (111) a cubic with one real and two imaginary roots and 
(iv) a quartic of which all the roots are imaginary. In the first 
case, and in this alone, there are only a finite number of unities in 
the order, and they are all roots of unity; in the other cases 

* The theorem, when stated completely, has a wider scope, corresponding to a 
wider definition of an ‘order’ than is given above: what is there defined is more 
properly called a ‘regular order’. A general statement and proofs are given in 
Bachmann, Zahlentheorie, vol. v., ch. 8. 
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mentioned there is one and only one fundamental unity and in 
cases (11) and (i111) + 1 are the only roots of unity which the order 
contains. In case (i) the theorem is easy to prove. In case (ii), 
if + 2b¢ +c=0 is the equation satisfied by S$, the unities of the 
order are essentially the same as the solutions of the Pellian 
Equation 

C—O £y 
and Dirichlet’s results can be deduced from the theory of this 
equation. In other cases the proof of the theorem is much more 
difficult. Mr Todd is concerned with the case in which $ is the 
cube root of an integer—which comes under the heading (iil) 
above. If S8=n, the general theorem asserts («) that the order 
of S contains an infinity of unities, (>) that they are all expressible 
in the form 

ste Vine 
where y is a particular one among them and m is a positive or 
negative whole number, and (c) that every number of this form is 
a unity of the order. Mr Todd’s essay contained an elementary 
proof of (6) and (c); the proof of (c) does not essentially differ from 
that given in text-books, though this was not known to him at 
the time, but the proof of (b) appears to be new and forms the 
subject of the following note.—H. T. J. N.] 

If %=n, and l=2+y3+4 23? is a member of the order of $, 
then 

DS = nz + a3 +4 yS?, 

DS? = ny + nzd + a2, 

so that I satisfies the cubic equation 

|e  O iz, 

Og ee Po (0) 3 

ny, Nz, L£—t| 

hence it follows that P is a unity of the order if and only if a, y, 2 
satisfy the Diophantine equation 

SoA HP 
DEAS ABS SO 
UE A 6p 

Ste UU) apes — vies = Se I (i), 

It will be the object of this short note to give a simple elemen- 
tary proof of the fact that, if the existence of unities is assumed, 
then every unity of the order of $ can be expressed in the form 

ae DYE, 
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where I’ is one particular unity of the order, and m is a positive 
or negative integer or zero. 

In what follows we shall restrict ourselves to the positive sign 
on the right-hand side of equation (1), since the negative sign 
merely replaces («, y,z) by (—2,—y,— 2). Also when a, y, z are 
all positive, we shall refer to (w + yS + 23”) as a “ unity of positive 
integers ”. 

Suppose that 

Peat ySt+ 24 

is any unity of the order of S: we shall first prove the following 
inequalities, viz. : 

legs |) (gS = 29? |, | 28?— a < 2/V/GP).......1.0.. (11). 

For, if we write a=x2—y%s, 

B=yS — 25°, 

and = 2 — 7, 

we see that the equation satisfied by #, y, z can be thrown into 
the form 

T (a+ 6? +*)=2: 

so that we have 

Sa as 
and a+B+y=0 J" 

From these two equations, assuming [° to be constant, we find 
that the maxima and minima for each of a, 8, y are 

+ 2//(8P) ; 
from which the truth of the statement (11) follows immediately. 

Further, we have the fact that if fT =#+ y+ 23° 1s any unity 
of the order and ['>1, then a, y, z will be positive. 

For, since > 1, we have the inequalities 

|x —yS|, | ys— 292], | 2-2 |< WV3< 115. 
But, I’ being positive, the only possibilities of negative signs 
occurring amongst #, y, z are either (a) one negative and two 
positive or (b) two negative and one positive; and in each case 
two of the inequalities given would take the form 

[A+ pd |< 1°15, 

where A and p are positive integers and ¢ > 4/2, which is obviously 
impossible, except in the trivial case of one or more of the quantities 
x, y, 2 vanishing: it will be seen, on examining the inequalities, 
that the only possibility is e=1, y=0, z=0, which gives ['=1 
and so is excluded. Hence «, y, z must be positive. From this 
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we can easily shew that if there exists any unity in the order 
other than +1, then there exists a unity of positive integers other 
than +1 of which any other unity of positive integers is a positive 
integral power. For suppose that I‘ is any unity of the order 
other than +1: then by definition of a unity it follows that the 
three numbers 

se Ream A a by 

will be unities of the order also: and of these four it is plain that 
one will be positive and greater than 1, z.e. it will be a unity of 
positive integers. 

Now take any number «>1; then there will be only a finite 
number of I’s for which « >I'>1, since for any such [ we must 
have e>a>0,«>y>0,«>z2z>0. Hence there must be a unity 
of positive integers which is greater than +1 and less than any 
other; let this one be y. 

Suppose that I’ is any unity of positive integers which is, if 
possible, not a positive integral power of y. Then we shall have 
[ >.y, so that we can assume that I is intermediate in magnitude 
between vy? and y?t, where p is some positive integer. But by 
the last part of Dirichlet’s Theorem we know that 

D/y? 

is also a unity of the order, «.e. we have found a unity of the order 
which is less than y and greater than +1, which contradicts the 
assumption that y was the least unity greater than+1. Hence 
T must be a positive integral power of y. Finally we have the 
result that, if [is any unity of the order, it can be expressed in 
the form 

a bie 

where y has its previous significance and p is any positive or 
negative integer or zero. For if is any unity of the order, other 
than + 1, the numbers 

= 1/P,) =1/t 

also will be unities, and one of these will be positive and greater 
than 1, and so will be expressible in the form 

8; 

where gq is a positive integer. Hence I can be expressed in the 
form 

ayes 

where p is some positive or negative integer or zero. 
The result obtained can be put into an interesting geometrical 

form as we shall proceed to shew. 
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It is evident that any rational point (#, y, z) in space of three 
dimensions can be regarded as being determined by its affix 
T=2+ y+ 2S’, where S$ is the real root of the equation S’=n: 
also the affix of any point determines a plane through that point 
and parallel to the asymptotic plane of the surface whose equation 
is A=a+ ny? + nz8—3nayz=1; such a plane we shall call a 
“T-plane ”. 

We shall now prove the following proposition : 

The V-planes of any two consecutive integral points on the 
surface A=1, together with the surface itself, enclose a space of 
constant volume. 

The equation A=1 can be written in the form 

{@-+yS + 23} {(a— yS) + (YS — 2 + (29? a) =2; 

so that the section by the [-plane of the point (&, , £) will be 
given by the equations 

e+ PS? + nde? — nyz — Sze —-Say=1/T......... (1) 

and atyS +2 = 1. 

Evidently the quadric (1) and the surface A=1 are cut in a 
common section by the I-plane of the point (& 7, &). It is this 
quadric that we shall now examine. 

If by any rotation of axes it becomes aa? + by? + cz?=1, we 
shall have (from the usual properties of invariants) 

ab + be + ca = ZIPS? (1 + m3 + 9°), 

a+b+c=T(1+n784+9°),  } 

abe—0- 

so that the quadric is evidently a cylinder, and the direction of its 
axis is the line x = y3 = 23”. 

Suppose that c=0; then the area of a right section of the 
cylinder will be 

by = 2" (VE 4 nS 4 a//(a )=ap/ (1+ nS +$°). 

But the angle between the normals to the right section and the 
I’-plane is the same as the angle between the two lines 

as 2 

and PIS aig Se 

1.€., 18 cos? {3897/4 + n3 +S): 
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hence the area of the section made by the I'-plane will be 

Qa /(1 + n& + $?)/3nV3 T. 

Now the perpendicular distance between two near [-planes, 
land + 6P, is 6P//(1 + x3 + 32), and so the element of volume 
enclosed by these two planes and the surface A=1 will be, to the 
first order, 

27 OL 

3nV3 TY 

Integrating this between the limits [ = y?" and l= y? (we. the 
I-planes of any two consecutive integral points), we find that the 
volume of the space enclosed is 22 log y/8nV3; and since this is 
independent of the integer p, our proposition is proved. 
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On Mr Ramanwans Empirical Expansions of Modular 
Functions. By L. J. MorpdeELL, Birkbeck College, London. (Com- 
municated by Mr G. H. Harpy.) 

[ Received 14 June 1917.] 

In his paper* “On Certain Arithmetical Functions” Mr 
Ramanujan has found empirically some very interesting results 
as to the expansions of functions which are practically modular 
functions. Thus putting 

ae (@,, @») — aie [1 _ r) qd pi. yr?) (1 te 7?) ee = = T(n) rn, 

he finds that 

Pn) =D (nay Tot irae coe vasesdauceayr (1) 

if m and n are prime to each other; and also that 

Sa 
= = y_ D/C —F (p) pe pee ince teens (2), 

where the product refers to the primes 2,3,5,7.... He also gives 
many other results similar to (2). 

My attention was directed to these results by Mr Hardy, and 
I have found that results of this kind are a simple consequence 
of the properties of modular functions. In the case above 

(Gin@a i — C72). a) = ay) ers) 

is the well-known modular invariant of dimensions — 12 in @,, @s, 
which is unaltered by the substitutions of the homogeneous 
modular group defined by 

@, = 00,+ba,, w, = co,+ dar, 

where a, b,c, d are integers satisfying the condition ad — be = 1. 
Theorems such as 7’ (mn)=T7'(m)7T(n) had already been 

investigated by Dr Glaishert for other functions; but the 
theorems typified by equation (2) seem to be of a new type, and 
it is very remarkable that they should have been discovered 
empirically. The proof of Mr Ramanujan’s formulae is as follows. 

Let f(@,, @,) be a modular{ form of dimensions — « in @,, @2, 
which is a relative invariant of the homogeneous modular group, 
so that f(@,', w,')/f(@,, @:) 18 a constant independent of @,, a». 

* Transactions of the Cambridge Philosophical Society, vol. xx11., no, ix., 1916. 
+ See, for example, his paper ‘‘ The Arithmetical Functions P (m), Q(m), Q (m)”, 

Quarterly Journal of Mathematics, vol. xxxvit., p. 36. 
+ For an elementary introduction to the modular functions, see Hurwitz, 

Mathematische Annalen, vol, 18, p. 520, 
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Let also p be any prime number; then we may take 

(@,, P@2), (@ + @2, PO) ...(@:+(p—1) ws, pa.), (pa,, o.) 

as the reduced substitutions of order p. Then for many modular 
forms* it is well known that unities &, &, &,...,& , can be 
found so that 

o= Ef (po, @>) 57 E, f (@,, pas) ie 

+ & 1 f (@, + (p — 1) @,, pos) 

is also a relative invariant of the modular group. 
This is also true of the quotient @ = ¢/f(@,, @.), which is a 

modular function of w. @Q is really an automorphic function whose 
fundamental polygon (putting = # + vy) is that part of the upper 
@ plane bounded by the lines x=+4% and external to the circle 
a +y?=1, but we reckon only half the boundary as belonging to 
the fundamental polygon. The only infinities of @ are given by 
the zeros of f(@;, @,)=0, and if these zeros are also zeros of the 
numerator of at least the same order as of the denominator, 
it follows that @ has no infinities in the fundamental polygon. 
Hence @ is a constant, so that 6=Q/f(@, o.). 

Suppose now that 
S) K 

f (@,, @2) = ( ) De VAs 
; @o/ s=1 

where A,=1. Then 

Ef (a, ps) ay Ef (a: + @2, Po») 
+... 

2 Kk © pl 

P@2/ s=1rA=0 

and in the examples with which we are concerned all the terms 
will vanish, because of the summation in X, except those for which 

s= 0 (mod p), and then the sum will become | 

2m \* & é 
( See ; 

Hence we have | 

K ao K @ 9 K 
(“) é > A,r? +( =| S pAgpr* as Q ( ) 

S A,r’. | 

Wo gsi Pe s=1 2 s=1 

Equating coefficients, we find, if s is prime to g, 

pAsy Ta Qp* As. 

* This fact is intimately connected with the transformation equations in the 
theory of the modular functions. We may note that it is often more convenient to 
select the reduced substitutions in different ways. 
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Taking s= 1, pAn = Qp*, 

so that Ur) eh Mag) < ald <b aa aI Alas bk alsble (3). 

If no restrictions are placed on s we find, by equating coefficients 
of 1%, 

1 
EA, + A ge = OAL. 

From this 

Bee AA ie AO i (4). 

From equations (3) and (4), we can prove that A». = AnAy 
if mand n are prime to each other. For all we really have to shew 
is that, if p is a prime and s is prime to p, then A, = A,A,, 
But from equation (4), we have 

A gprt2— Ay Agar+i + Ept Aga = 0, 

and A,ate= A,A Ati + Ep" A,r =0...05..0.08 (4a). 

Hence the theorem follows by induction, for if it is true for X 
and 7+ 1 it is true for %+2. But it is true for X\=0 and for 
X= 1 (equation 3): hence it holds universally. 

We notice also that equation (4q) is a linear difference equation 
of the second order with constant coefficients*. Hence, since 
v8 = li 

14 A,24+ Apa? + Apa? +... =1/(1— Ap,xt Ep* 2%), 

from which, by putting « = 1/p’, 

143484 ste i o ae) 

Putting for p in succession the primes 2, 3, 5 ..., multiplying 
together the corresponding equations, and remembering that 
Amn =AmAn if m and n are prime to each other, we have 

a , Ae Ae hele, + 
ee +-emi/(i-4 TF) ooo) 

4 

where the product refers to the primes 2, 3, 5.... 
The simplest application of these results is given by the 

function 

12 a/12 

va (@,, @5) = E (= @), o») ’ 

* This is obvious if we put «= 4,A, 
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where a is a divisor of 12. Its expansion in powers of r involves 

only positive imtegral powers of r and starts with (= ) 7 
9 2 

fa(@:, 2) is not however an invariant of the modular group. 
We can avoid this difficulty by taking f(@,, a.) =[A(@,, @,)|7”. 

In this case* 
xpri 

E, f (@, + K@:, PW») = ler aay VA (@, + Ko, po.) |", 

Died Soar. ho sae 
Ef(po,o:)  — =[(-1) ? YA(pa,, o,)]", 

provided we exclude p=2 and p= 3. Putting for the moment 

@2\" rp Gat = pt? ($2) WA. a) => BrP™, 
we find 

Wo a ao 

77 akpTe a Qere j 1 

aS ES é +(5 +0) p lets) 5 
s=0 e=0 

But since p + 2 or 3, p?— 1=0 (mod 12). Hence 
2, —ap? p—1 2K«m (7 ap +s) 

Sele) \ een =, 
k=0 

unless a (1 — p?)/12 +s = 0 (mod p), that is a+ 12s = 0 (mod p), and 
is then equal to p. Hence @¢ isa power series in r¥? (really of the 
form 742(A + Br + Cr? ...)), starting with r@+s)/2p where s is 
the smallest positive integer for which a+ 12s =0 (mod p). Now 
the only zeros of f(@,, ,)= 0 in the fundamental polygon are at 
@=.10 or r=O0, and 

T VOL Oe (==) gC Dp aS) 

But putting a = 12/b, so that 6b is an integer, 

a+i2s l+bs_1_ a 
12p  — bp eh ey 

since 1 + bs = 0 (mod p). F 

Hence ¢/f(@,, @) is a constant, and equations (3), (4), (5) 
apply to the function 

afi\2 

E (2 ,, o,)| p 
a 

We note also that E=(—1)2?-DP, 

* Hurwitz, l.c., p. 572, or Weber, Lehrbuch der Algebra, vol. 3, p. 252. 
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When p=2, these theorems hold if a=4 or 12. For the 
functions &f,* are selected as before, and it is clear that the 
argument above applies, as a (1 — p?)/12 is an integer. 

Lastly, when p = 3, these theorems hold if a=3, 6, 12, and the 
functions &, f,* are selected as before. 

Hence, altering our notation, we have the following theorems. 
If a is a divisor of 12 and 

36 12 24 2a ee) 

r[(1—re) (1—ra) (1—re) J => fa(n)om, 

then TEENS TD hes AAI) ve seins Lathe etbaicewes (6), 

if m and n are prime to each other; and 

Ply 
oe @) See) Gln Oe 2 an /( at ae ee: (7). 

The ae refers to the primes 2, 3, 5, etc., except that 

p = 2 1s excluded except when a = 4, 12, 

and p =3 1s excluded except when a =3, 6, 12. 

We notice that when a =1, 2, 3, or 6, p=2 is not excluded 
as a factor of say m in (6), as in this case f,(m) and f, (mn) are 
both zero. Similarly for p= 3 when a= 1, 2, 4. 

The result (6) is given by Mr Ramanujan whén a= 12, as are 
most of the cases of (7). We shall now shew how in many cases 
we can find simple expressions for fi, (/). 

If a =1, it is known that, by a result due to Eulert, 

a) (6n+1)* 2 

r[(a-ry(—r)...R=[S(-1pr * | 
a (6m+1)?+ (6n+1)? 

ae (— Baas r 2 

= >> (- 1)"r 02+ 97? 

where £€=3(m+n)+1, n=n—~™, so that £ n take all integer 
values satisfying € = 1 (mod 3), & + »=1 (mod 2). 

Hence f, (p) =2 (— 1)"if p = & + 97? and we take both & and » 
to be positive. If p=—1 or +5 (mod 12), f,(p) is obviously zero. 
This is Mr Ramanujan’s result (118). 

If a = 2, it is known (Klein-Fricke, vol. 2, page 374) that 

r[((l —r%) (1—r®)... 8 =42 (— 1)f Er? t8én tan? 

where &, 7 take all integer values satisfying 

—=2 (mod 3), n= 1 (mod 2). 

* Hurwitz, l.c., vol, 18. 
+ See also Klein-Fricke, Modulfunktionen, vol. 2, p. 374. 

VOL. XIX, PARTS II., ITI, 9 
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Hence fo (p) =24(— 1 E 

extended to the solutions of p= & + 3&n + 3? for which 

£=2 (mod 3), 7=1 (mod 2). 

This* can be written as f.( p) = 2v, where p = 3u? + v*, wu is positive 
and v=1 (mod 8). Also f.(p)=0 if p=—1 (mod 3). This is 
Mr Ramanujan’s result (127). 

If a=8 we have, from Klein-Fricke, vol. 2, page 377, 

i Ole aa) eel eI ie 
where & takes all even values and 7 all odd values. Hence 

Say = (Ee i) 
if p=& +7, — is even, 7 is odd, and both & and 7» are positive. 
Also: f;(p)=0 if p=8 (mod 4). This is Mr Ramanujan’s result 
(123). 

If a= 4, then by Klein-Fricke, vol. 2, page 373, 

r[(l—7)(1—r?)... B= £DE8 Pt 3int or, 

where &, 7 take all values for which & = 2 (mod 3). 
Hence f, (p) =42&* extended to all the solutions of 

p= & + 3& + 37", 
where & = 2 (mod 3). This} can be written as /, (p) = 2 (v® — 9vu?), 
where p=3u?+v%, w is positive, and v=1(mod 3). This is 
Mr Ramanujan’s result (128). 

When a=6, f(n) is known by means of the representations of 
n as a sum of four squares. Mr Ramanujan has overlooked the 
fact that in his result (159) 2c, is —f;(p). The theorem 

fam) fy (n) = fo (mn), 
is due to Dr Glaisher. 

When a=12, we have Mr Ramanujan’s results given as 
equations (1) and (2) in this paper. 

He also gives results when a= i 

ee Ue re) (p=8,5,7..) 

st aa m1/(1- Sos) (p = 3, 5, 7...), 

* When é is even put £=2v, n=w-v, and when ¢ is odd put £=3u—v, n=v—u. 
Both these cases are admissible, and we find that p=v?+3u? and v=1 (mod 3). 

Also = (- 1) £=2v + 2v — (3u - v) — (— 3u—v)=6v, where now uw is taken as positive. 
+ See the last footnote. In addition to the two cases there considered, 7 even 

is admissible. Put then yn=2u, €=—v—3u, from which p=v?+3u2 and v=1 
(mod 3). : 
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3) =1 Riri 
where C) and a are symbols of quadratic reciprocity, so 

—1 es 3 . 
that (— =(—1)?2 , =\=1 if p= +1 (mod 12), and (“)=-1 ‘ a (—1) (F oe ( ) 5 

p= +5 Gnod 12). pe 3, (;) +0, 

These are particular cases of Euler’s theorem that 

— ns p 

if the function / satisfies the condition 

Sf (mn) = f (m) f(n), 
the product refers to any group of primes, and the summation to 
all numbers whose prime factors are included in the group. Thus 

r(l—r)(l—r#)...= 3 (-1eretyre S (=) ye 
1355). J NIU 

roe) m1 ea) = | 

and r[(I—7*)(1—r®)...P= % (-1)2 w= & (==) nr 
1325.5 TB uit wy UC 

Finally, Mr Ramanujan gives two results, equations (155) and 
(162), of which the first is 

S 
(es 

D> So (») as L t I 1/1 — 26, Ba ae C= 1) 2 pi), 

ee ae Se OPE 
ve 

(prance), 

where c, = vu? — (4v)? and wu and v are the positive integers satis- 
fying uw? +(4v)?=p2 But if p=3 (mod 4), c, is taken to be zero. 
Fo (n) is defined * by 

S fio(n) 7 
1 

=r [(l—7?)(1—r*)(1—r')...4/[d4+r)a-7)(14+7r)—r)...35 

and this is equal tot 

4D (ety) re, 

The second result is 

co n 1 
2s é 

5 ft es 14258 1/(l—-2ep,p*+p" se’), (p=3,5...), 

* 'The functions fi (), fig (n) arise in finding the number of representations of 

nasasum of 10 and 16 squares respectively and the series = = (x + y)* rv ty" is 
well known in this connection. 

+ From this, it follows that the result can be also proved as a particular case 
of Euler’s product. 
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where f,; (”) is defined* by 

5 VEO ee 
1 

=r[(1+7r)(—7?)(147°)(1—74)... 8/[(1—77) 1—7*)(1—1°)... 

Mr Ramanujan overlooks the fact that c, = +f, (p). 
These results can be proved by aid of the “principles used in 

finding equations (3) and (4). We should however have to consider 
now invariants of a sub-group of the modular group, and it seems 
hardly worth while to go into details. 

* The functions fi (7), fig (”) arise in finding the number of representations of 

nas asum of 10 and 16 squares respectively and the series 2 > (x+vy)? prety ig 
well known in this connection. 



PROCEEDINGS AT THE MEETINGS HELD DURING 

THE SESSION 1916—1917. 

ANNUAL GENERAL MEETING. 

October 30, 1916. 

In the Comparative Anatomy Lecture Room. 

Proressor NEwALL, PRESIDENT, IN THE CHAIR. 

The following were elected Officers for the ensuing year : 

President: 

Dr Marr. 

Vice-Presidents : 

Dr Fenton. 

Prof. Eddington. 
Prof. Newall. 

Treasurer : 

Prof. Hobson. 

Secretartes - 

Mr A. Wood. 
Mr G. H. Hardy. 
Mr H. H. Brindley. 

Other Members of the Cama : 

Dr Duckworth. 

Dr Crowther. 
Dr Bromwich. 
Dr Doncaster. 

Mr C. G. Lamb. 

Mr J. E. Purvis. 

Dr Shipley. 
Dr Arber. 
Prof. Biffen. 

Mr L. A. Borradaile. 

Mr W. H. Mills. 
Mr F. F. Blackman. 



126 Proceedings at the Meetings. 

The following was elected an Associate of the Society : 

W. Morris Jones, Emmanuel College. 

The following Communications were made : 

1, Methods of investigation in atmospheric electricity. By 
C. T. R. Winson, M.A., Sidney Sussex College. 

2. On the functions of the mouth parts of the Common Prawn. 
By L. A. Borrapaire, M.A., Selwyn College. 

3 On the growth of Daphne. By J. T, Saunprers, M.A., Christ’s 

4. A self-recording electrometer for Atmospheric Electricity. By 
W. A. D. Rupes, M.A., St John’s College. 

5. An axiom in Symbolic Logic. By C. E, Van Horn. (Com- 
municated by Mr G. H. Hardy.) 

6. On the expression of a number in the form aa? + by? + cz* + du’. 
By 8S. Ramanuyan, Trinity College. (Communicated by Mr G. H. 
Hardy.) | 

7. A reduction in the number of primitive propositions of Logic. 
By J. G. P. Nicop, Trinity College. (Communicated by Mr G. H. 
Hardy.) 

November 13, 1916. 

In the School of Agriculture. 

Dr Marr, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society : 

F. W. Green, M.A., Jesus College. 
R. I. Lynch, M.A. 

The following was elected an Associate of the Society : 

N. Yamaga, Fitzwilliam Hall. 

The following Communications were made: 

1. The surface law of heat loss in animals. By Professor Woop. 

2. Inheritance of henny plumage in cocks. By Professor PuNNETT 
and Capt. P. G. Barney. 



Proceedings at the Meetings. 127 

3. On extra mammary glands and the reabsorption of milk sugar. 
By Dr Marsuatt and K. J. J. Mackenziz, M.A., Christ’s College. 

4, Experimental work on clover sickness. By A. Amos, M.A., 
Downing College. (Communicated by Professor Biffen.) 

5. Bessel’s functions of equal order and argument. By G. N. 
Watson, M.A., Trinity College. 

February 5, 1917. 

In the Sedgwick Museum. 

Dr Marr, PRESIDENT, IN THE CHAIR. 

The following was elected a Fellow of the Society : 

F. W. H. Oldham, B.A., Trinity College. 

The following Communications were made: 

1. Submergence and glacial climates during the accumulation of 
the Cambridgeshire Pleistocene Deposits. By Dr Marr. 

2. Glacial Phenomena near Bangor, North Wales. By P. Laxg, 
M.A., St John’s College. 

3. The Cretaceous Faunas of New Zealand. By H. Woops, M.A., 
St John’s College. 

4, Exhibition of the Fruit.of Chocho Sechiwm edule: remarkable 
in the Nat. Order Cucurbitaceae, native of the West Indies and culti- 
vated also in Madeira as a vegetable. By R. I. Lyncn, M.A. 

5. The limits of applicability of the Principle of Stationary Phase. 
By G. N. Watson, M.A., Trinity College. 

6. The Direct Solution of the Quadratic and Cubic Binomial 
Congruences with Prime Moduli. By H. C. Pockuineton, M.A., 
St John’s College. 

7. On the Hydrodynamics of Relativity. By C. E. Wraruer- 
BuRN, M.A., Trinity @ollege. 

8. The Character of the Kinetic Potential in Electromagnetics, 
By R. Harcreaves, M.A., St John’s, College. 

9. On the Fifth Book of Euclid’s Elements. (Fourth Paper.) By 
Dr M. J. M. Hitt. 

10. On a theorem of Mr G. Polya. By G. H. Harpy, M.A., 
Trinity College. 



128 Proceedings at the Meetings. 

February 19, 1917. 

In the Botany School. 

Dr Marr, PRESIDENT, IN THE CHAIR. 

The following Communications were made : 

1. (1) Onan Australian specimen of Clepsydropsis. 

(2). Observations on the Evolution of Branching in the 
Ferns. By B. Sanni, B.A., Emmanuel College. (Communicated by 
Professor Seward.) 

2. On some anatomical characters of coniferous wood and their 
value in classification. By C. P. Durr, B.A., Queens’ College. (Com- 
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INTRODUCTION. 

Abel proved in 1826 the theorem : 

n 

“Tf lim Ya, exists and is finite, then 
el? | 

a0 nv . tie ee 
lim >a,2* = lim > a,. 
“a >1 1 n>o 1 

Let us write 
it 

Sn = D x 
1 

WL Natl ay ERS Se 

~ ny SIR ree tet! Oy ahG acts (1) 

(A+1) ee {% 
n n K 

Then Hélder* proved in 1882 

Theorem 1. // lim ¢” eaists und is finite, then 
n> 

Ss @) lim + a@,«* = lim ¢,’. 
al ND 

* Bromwich, Infinite series, p. 313. 
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In 1897 Mr Tauber, and in 1900 Mr Pringsheim, published the 
following converse of Abel’s theorem : 

Theorem 2. Zhe two conditions 

io.2) 

lim 2a,e*=1 (finite), 
“x—>1 1 

are each necessary for the convergence of & dx, v.e. for the existence of 

n 

lnm Sa. = 
no 1 

and, taken together, they are sufficient*. 

In the present paper I replace the means (1) by 

pee Signe Gn mo mes 
ul 

(ay, ee ii eC | Q 
eeseereceee eee ese ees 

1 =! : == Sis (n= A ee 
M41 

rae, A) 

Defining r,” by 
n 

en => Kx (i 1 S50) 
1 

->-r (= 2, B, oan) 

(n=A+1,rX+2,...) 

I prove, in Part I, 

Theorem 8. he two conditions 

oo) 

limi ia.28 — Te (juntas 
vw >1 1 

Hoye keane 
hm 0) 
n>ow I te 

~*~ Bromwich, Infinite series, p. 251. 
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are euch necessary for the existence of 
2 A 
lim 3 = De 

n 
> ow 

and, tuken together, they are sufficient. 

This theorem includes the analogue of 1: 

Theorem 4. Jf lim ce =I exists and is finite, then 
NV >n 

ie 2) 

hm Sana" =. 
cil i 

It is easy to verify that lim ¢’ = lim sg if N=1 or 2; for 
| el) LSD 

higher values of A this relation certainly holds if both limits exist, 

as follows from Theorems 1 and 4. 

In Part II, I propose to extend Theorem 3 to certain other 
mean values; and Part III contains some general remarks about 

the converse of Abel’s theorem. 

PARW a 

1. In the résearches which follow I have to make use of the 

following theorems. 

Vd 

Theorem 5. /f lim Ya,= lim s,=/ (fite), 
n>wo 1 nN >on 

and b, 1s positive and 
nv 

iim 2) Oe — lint, = 00., 
nro il >a 

A ene nee é 
then [Th Den set pee all sn = A anaeeee See ce (4). 

nan ’n 1 >on 

This theorem is due to Stolz*. 

Theorem 6. Suppose that b, is positive and Xb, divergent ; 
and let D be the region defined by . 

p<2cosyp (\w|<Wo<in), 

where 1—a=pe-™. Further suppose that 

PDE ee Vi) > Dee" |< Ge, 

where G is a finite constant, for all values of « inside the region D. 

* Bromwich, Injinite series, p. 378. ’ > 

10—2 
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Finally suppose that a,/b, tends to the limit | when nw tends to 
infinity. Lhen 

bean 2aanees 2d) eal Manenannnechn scan. (5), 
al 

when « approaches 1 along any path inside D. 

This theorem is due to Pringsheim™*. It is to be supposed 
throughout this paper that, when « tends to 1, its approach to 1 
is along some path inside D. 

Theorem 7. /f the radius of convergence of P(#2)= s Git 
1 

is 7, then | 
lin rane — Oe ce) 

nu >on 

If the radius of convergence of Q(x) = s a,.2* 1S unity, it will 
1 

remain unchanged if @(«) be transformed in any of the following 
ways : 

(i) by suppressing a limited number of terms, 

(ii) by multiplying by «?, o being an integer, 

(iii) by multiplying by i 2 he 3 4a, 

(iv) by integrating term by term, 

(v) by differentiating a limited number of times. 

Using in succession one or other of these operations, there 
result the following power-series, all with radius of convergence 
unity : 

D 

IE (6D) = 2201S, 
1 

co 0) | Lian K 
Pi (#) =, —, [#P @)I= = De 

Pee ees eeseesrecer essere esse eee ese seseserteeeeeerereeeeses 

* Acta Mathematica, yo]. 28, p. 7. 
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foo) 
. = (A A-2 Thus the series & ri a conver same 

=i 

is the case with x 
yer) pe tr-K-2 

p=ktl p+aA—K-1° 

ie. 2) 

4 (A+k) pta—2 
o1 page wv ; 

Pee pta-l 

Differentiating the last series (A — 2) times, we obtain 

Sp + ie). (ah — 2)” a; 
which gives 

< 

Theorem 8. [f the radius of convergence of P(a)= > a,x ts 
1 

unity, then for every |x| <1 
: MQM) = eka RN PA 

— aera a Os 

lim — 17") 9” = 0), 
non ™ 

lim (+1) (2 +2)... (wv +n — 2)?" a” = 0. 
n> ie i 

2. The demonstration of Theorem 38 depends on certain 
identities. The formula 

1 TG pn Sc) 
" nN 7) 

leads, by successive summation, to the series of equations 

n i Wag 

Bee) a S| Vee aie! 26%, 
ae Es Soe tf - re | 

If hm s. ) — ] exists, then, by Theorem 5, lim Be ) also exists 
USD nun >D 

and is equal to J, and therefore one of these identities gives 

Ae ok soar 
lime = 0. 

iL sa n i 

(A) 
Theorem 9. // lim s‘ =/ exists and is finite, then +) 

NSD 

: a 
lim — r“t? = 0. 
pees ie 

Thus the second condition of Theorem 3 is necessary. 
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3. I proceed to prove some other identities. We have 

nr 

= Sas Op { @) _ 
n 1 K nN 2 n—1 

(1) 
n—-1 Lf. 2 2 

yr?) > : ie - pte 
te Teas i OE 2 oo (7) 

A) 
eri) 2 sey Ces aC) 
n 1k ? n ~ n+l n 

and by successive substitution we find 

4 LE py =p) SOE ayes e3e) 7) } 
a a n a) Fe (pail Oe ae cp m—-1' yl n ee 1 

=(n+ lr? - ann +3(n— I) ie a(S 2) i, ee 

as F EGA) (3) 
ti n rn lei oF 

Writing 

es = (-1) (n+ 1l—p)(n+2=— yp)... 

slits i (A+«) K 
sN(U EN Ve oa ga —e ag AK, 77> 

we (2+«) ig ane (2+) 

Cr em = 0, G, sk, 1 Se ey ee — 27" a Vine 12, 

we can easily verify that 

Ge = Gia —(A’-1) Galas ieee (8). 

Moreover 

©) 2 ) 1 / Wp WE) ea (ccs) i rAanmu) a Oj ee =e Gin eal ah 7 {vr PRE foo: 2(9): 

Developing a, in this way we obtain, after a finite number p 
of steps, the formula 

C= See G: 
Xr Xr Nie — py 2S lee 4 yaaneeee 

The upper index of all the 7’s is the same throughout this expres- 
sion. For the present purpose it is not necessary to determine the 
coefficients c, ., which are integers. 

ee In sonsermenee of the definitions of ae) and 7 we have 

r™ — 0 (n >m). 
vn 
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But it is not difficult to see that the recurrence formulae (8) and 
(9) still hold, if the number p of steps exceeds the index n._ It is 

only necessary to put jh 0 whenever n>m. The form of the 
relations (7), viz. 

A) 
Ue A AQSEDY) (OD 
CATO Oe ae Vn ? 

is the cause why the coefficients of the remaining terms are not 
influenced by the fact that some terms disappear. Thus 

Mm ne 

SS apt == SS n > a,x > G5) G,. ent 
1 A+k=p nl 

nm 

ue 2 So fern tere ceed: Gal) 
n= 

To evaluate the first of Aas sums we have 

ay" Sm bn a2) 102 
m A 

=>G,,,0+ 3D oe 
wel A,K,n Fete A,K, +p 

say. Each of the }X(X+1) terms contained in the second sum 
has the form 

K (p+ 1)(p+2)...(p+r—-2)7 te)
 pte 

p+a— m2 

TTD so el Sey a aed WAR, ety A ie i ae 8 

Therefore, by Theorem 8, we have, for every |#/<1 and any 
finite X, 

= oo 

im 2 G,,,¢ =( ay Gu hl) Gat 2)as. eA =r oe 
1 n+aA— 

m>o 1 cs 

The second sum in (11) gives 

m 1 ‘ n—-1 1 pele 1 ; 1 

> - ie? i pid a“ = > y?) E SG a" =- == fo a 
a ante Ree sl n moe 

=I = 
=(1= 2) "S Weaean(o) oe men i 1 (p) i (po), m 

4 et » n(n+1) eee 
ee ee Gi): 

and again, by Theorem 8, we have, for every |#)<1 and any 
finite p, 

OUT a 1 2) 1 
5 A ) n 
ma ae WG eS ee Bl 

ee Oe a Sn(n+1) m>xn p Il 
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Thus we have established 

Theorem 10. Jf > a,a* has unity as radius of conver ‘gence, 
then 

S a,a"= > e[( — x)* S (n+1)...(n+r— 2) ee a 
1 A+k=p n=1 

SO) cn 1 pales (Pp) .m (|#|<1) 

asi pu(n+i1) , 

eee (13) 

4, Equation (13) has now to be considered when «1. To 
the first terms on the right-hand side we apply Theorem 6, which 
gives 

(oo) 

= (n+1)...a7+r—=2) rent ne pl) 
lim Ean ae ee binge) ESE 
eS) 

a tea 0 =F A— it ; 

eos =o (n+1)...(n+r%—1)@ 

Again, by Theorem 6, 

lim (1 -) 3 4 7?) gl — lim =r"). 
w>1 n+ oh Nao NW ” 

and finally Theorem 8 gives 

Theorem 11. Jf Sa,«* has unity as radius of convergence, 
and if 

bret 
lim = 7?) — = ((), 
nan ” 

os ina (e) then lim = a, 2* = lim > ———— x 
21 1 Z>1 p (n spdl) eae 

5. Furthermore, equations (7) and (12) lead to 

< 1 = fy (p) = 73?) We oS 1 ple) ntl 
‘ ~~ n n n—1) an a n (n oe iD) n 

a(i-2) 3 oO, Ss ol ee Aveta A Goss Ice Titans 

Putting #=1, it follows that 

ae ili pt mes 1 
(@aedy pet) 

me n(n+1)" Oa i n(n +1)" ib we uf 
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Hence 

Theorem 12. /f Yaxa* has unity as radius of convergence, 
and if 

Oa 
lim — rt) = 0, 
weeeten 

: m—-1 1 m-1 1 

then na > re ei r, one 
m>n p I (n + 1h Te m—>x p+1 i (n 5p LN es 

(p) Another identity is acquired by developing s, (“=p 4 t, 

p+2,...) in the form 

ge 

(P—1) = 
ae < De) ay ao) 
—_—_— — a + pay == Ss = J 7 kant Ss 

Gis TEE) Sanath), oS ee 

ey ote ae (0) 

p m(m+l1) 

Theorem 13. /f si ) and p\?) are defined as in (2) and (3), 
then 

(Byio = , eee eae 2. 
n a m (m a 1) m 

. A . e . a Me ~ 

If lim s ) — ] exists and is finite, then, by Theorem 5, 
i a 

hm st he 
uLSrD 

and by Theorem 13 

Ms 
— 

2s 
E 

~~ 

Therefore by Abel’s theorem 

1 ree — i A+1 
Tae rie => pF) = 1. 
2 ey a aE ayer xa m (m <7) 

. . ea er esh On the same assumption, Theorem 9 gives lim —7)"""=0: 
>a 

and therefore Theorem 11 gives 
oO < ill 

. is ine ie, gt aE 
al 1 esiarin(n +1) ’ 
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Thus we obtain 

Theorem 4. Jf lim so =/ exists and is Jinite, then 
>a 

i ioe) 

lim > a,a* = 1. 
21 1 

The first condition of Theorem 3 is therefore necessary. 

6. To demonstrate the rest of the assertion in T heorem 3, it 
ck sees | 

follows from the hypothesis lim = 0 that Theorem 11 is 
NSD 

applicable. Thus the assumptions are transformed into 

: 1 SEL) 
[lina | 53) a ON) a 
Rae 2 n(n+1) ” f 

lim L ? 
n> I 

AGS) 

n =0. 

From this last equation follows 
(A+1) eat es rea tee 

[bhi =) SS) = in 2 = 
nao M411, K + Ieee i emiey UW, 1 

(A+1) 
Hence Theorem 2 can be applied to the series 5 — ae 

n(n + 1) 
and the conclusion is that 

(A+) 
lim > —* I im > —*—_ =], 
n> At K (kK at 1) 

Theorems 12 and 13 now yield 

. lim ge = |, 
1] eo 8) 

with which the proof of Theorem 3 is completed. 

7. The foregoing deductions are valid for x = 1; 2, 233.or 
X= 0 they still hold, except those in § 6. This case requires the 
proof of the following special case of Theorem 2: 

Theorem 14. /7f 

aS 1 (1) 
lim Ss Se 

0” an i 

a>11 n(n+ 1) 

A ae 
uray = i = (0), 
1 >D n 
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22 1 
then SS Cae ————— ihe = 

1n(n+1) ” 

This proof is actually given by Mr Tauber, and is therefore 
the basis of the theorems of this paper. 

Part IL. 

8. Let b, denote the terms of an infinite sequence of positive 
real numbers, which have the properties 

(1) hm > bh. —llim-¢,, = co | 
n>o 1 n>n 

Sar ae (14), 
| gy Pre | 2 a > K+1 K 

( ) nN 4 - be | 

tends to a limit or oscillates between finite limits. Then 

Theorem 15. The two conditions 
[e.2) 

lm2a.¢°=1 (finite), 
x >11 

1 n 

lim — > f, a, ="0, 
n >on npn 1 

are each necessary for the convergence of & a,,7.e. for the existence of 

Ve 

lim Sa,=1; 
n>n | 

and, taken together, they are sufficient. 

Abel’s theorem states that the first of these conditions is 

necessary. 

If lim s, =/, then lim a, = 0, and by Theorem 5 
NSD SD 

: af n ‘ ik n it n 

lira sy liga ee Sy — =O, aa =o 
n >on n 2 urn nl n I 

The identity 
12 ge 
es basa) == 997) a = Ey Ay 

tn 2 im 1 

now gives, as a consequence of lim s, = /, 
NSD 

i 1 n 

lim —>t*,a, = 0. 
nao nl 

Therefore the second condition is necessary too. 
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9. ‘To prove the converse, we require two identities ies. If 

i S we ae : = LO =i, On = al Dn Dear 

we have 

nN pr n 1 

> At = aa +> ae | Px — Pe—a} a 

nm—1 
Pr K+1 4 Da 

[ts =i Be n 
a) Seo ees beta — be De, 

t 1 
—_ OB seo akene 15). 

K+1 1 bre bet t ( ) 

= 1, this gives the identity 

=> 
1 

Putting « 

n—-1 eile 

Sy SS eens Ee (16). 
1 be bey tn 

If we suppose lim Dn 
nSwo 

= 0), it follows that 

lim 22 a0) 
No YN 

for every |w|<1; and, by Theorem 6, 

ie a) p 
* K 

him (1 — 7) } 4“ a« = 0, 
x >t) 1 “+1 

Now passing in (15) to the limit (first »—»0co and then 

x—>1 we find that 7f lim Le = (0), then 
NSwm IN 

Saas eek cobain nb ay ; an > egy Mitra 53 Ee IES, 1 peees Soe (17). 
a>1 1 Dot Ge bees 

Theorem 15 starts from the assumptions 

lim 22 = (0) 
Nn >So YN 

5 D 

lim = a,a* = 1. 
x>1 1 

The first assumption shows that (17) is available: and this equation 
gives, with the second assumption, 

lS cree ey 
x>1 1 be besa 
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: i tg Nahe ae 
Now Theorem 2 can be applied to the series =~ au ria a 

, K K+1 

provided that 
: Wt, iy OP ‘ 

[ise Sy Se alae (18) 
uD n 1 bre beta 

Assuming for a moment that this condition is satisfied, 
Theorem 2 leads to 

: LAN Feats IP Oe 
lie ee a 
n>o 1 tk bess 

and (16) gives finally 
hint Sa 
Son 

proving the theorem, which is the analogue to Theorem 2. 

Condition (18) depends on the b’s as well as on the a’s; but 
; aD, eae 

since lim 2 = 0, it will certainly be fulfilled when 
K+1 

re beta = be pene 
My Ee 

tends to a limit or oscillates finitely. For, e being given, we can 
choose « so that 

Vo, fnck Pal LS) bach Pe ES bah 
Ny th tata poy ty A+1 Nk oN 

We may suppose, for example, that 

tas, Logs log loom... 

10. Adding to the notations used hitherto 

and restricting the choice of the numbers b, not only as done in 8, 

but further by supposing that the two limits 

lim ee lim Pata — Ona nts (19) 
n>Sn n af 1 De ; el) are Ons 

see ee eeee 
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shall exist, or at any rate that the functions under the limit sign 
shall oscillate finitely, I proceed to prove 

Theorem 16. Zhe two conditions 

oO 

lim ya,2*=l (fiite), 
w>1 1 

Banal 2 pee 
ina = S > bx pe = ((), 
nan N 2 tray 

are euch necessary for the eaistence of the limit 

; 1 lim s? =1; 
nN 

>a 

and, taken together, they are sufficient. 

It is not possible to demonstrate this theorem for every set of 
numbers 6,. The following example shows this. 

Mr Riesz has pointed out* that 

: Zell, 
ing 
pce OB Aa TK 

exists and is finite in the ease of 

Vv 

Sy SS, TT, 
1 

However, Abel’s limit 

co 

lim > «71-*t x 
ew >11 

does not exist, as the function behaves like 

r : 1 at 

ar) | log — ( i)( g=] 

when #1. 

11. The demonstration depends on some identities analogous 

to those employed in the case of the arithmetic means, viz. 

Oe te a ele 
Sn Se zp Pn 

1 

2 1 i A) Se bs Pro 7 
2 

nu Ww Chea 

* See G. H. Hardy, ‘ Slowly oscillating series’, Proc. London Math. Soc., ser. 2, 
vol. 8 (1910), p. 310. 
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They show (in con- which series of relations might be continued. 
. . . . (2 . 1 

junction with Theorem 5) that lim s = 1 whenever lim Se 2ai/6 

from which we deduce 

Theorem 17. Jf lim s\” =1 ewists and is finite, then 

qa a 
lim ES pees = Oy 
n> tn 2 tra 

Thus the second condition of Theorem 16 is necessary. 

12. We have also ame 

n 
tr 

and thus 

n WL 7 MW — 

SS aa“ = > Yeti Y« rk — > bet (x Gne—1 ok Pe — Al w 
1 i Oe, a be b, 

—l,f | 

Ss demimGe ey Mee a iy eet Pe Ge 
1 Bess ] Bae 2 bre b. 

n—I ¢ ( 6 pie 0 an grr 
as (1 x) NS Ge+i Vices ue Une Gn ne Yn ; 

1 De On+1 One Ones 

ate ~ te aor be—1 Y« Lae C«—1 ak 
— np a Be a En, ee Ly 

2 te b, 

n-1 n—-1 paw * 

=(1— 2) la Sy See SS Pete Pats Gat ye 1) as =~ = 

1 re 1 Deis De +s b, | 

4 dnt" at qnv”™™ oh < tr om be—1 om pk 

Dna Onan 2 be b. 

Now the series 

= dP gn — ym ( = 4) (n—1) a” 
b,, tn \n — 1 Dy 

has a radius of convergence at least as great as 1, since lim 8 = () 
‘N—1 

Thus 
1 We ag Oe Bs ' Lire 

“— tends to a limit or oscillates finitely. and Aas 

lim £2 gn —0 
Wren YN 



144, Dr Kienast, Extensions of 

for every «| <1, and therefore 

iB \ ( — On G Se Susp Ss (i —2)% Pate = Pett Pett ay 
1 1 pee Obert oe 

He 2 le — Vx 
= (lig) 2s ae | 

2 5 bre 

Taking account of the conditions (19), it follows from Theorem 6 
that 

5 % q 

lim (1 — #)? > 2! a = 0, 
rl 1 Yets 

and lim (1 — =) Dats i ets Ye ak = 0), 
x1 k+1 De+s 

x 

so that eS que lis ees Ta (20). 
ex >1 1 “S11 «+1 

13. Lastly we have the identity 

a brea ee z 2 (De Se oie (€0) 2 Yee S a gu S, = Ort) 2 aie I 8 +3[s? — 5) ]= FS Saneue (; ) n te 3 
3 \ be se, nt te 

= < Dei Pr _— S e+ ~ 4 i ee a a 2) (21) 2 beta Ge 1 beta 

: 5 me oa 2 Jeti — Yr ele ite lan si? =/ exists and is finite, then, by (21), © 1 = a 
>on 1 ‘K+1 

converges to the sum /. Therefore by Abel's theorem 
a) 

: Vet 
lim Ss Decide gst = l, 

diet) A K+] 

ree 
and since (Theorem 17) lim wae 0, equation (20) is valid, and 

USD “IN 

thus 
ies) 

lim > a,a* =. 
rel 1 

We have therefore 

Theorem 18. Let the vegies b, be chosen so as to satisfy 
the conditions (19). Then, ¢f lim s‘ ” =] exists and is Jinite, 

Sv 

7.2) 

lim > a,a* = 1. 
cyl i1 

The first condition of Theorem 16 is consequently necessary. yi y 
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15. The proof of the converse begins with equation (20), which 

is valid since lim 2% = 0. Therefore 
USD a 

cstee G _ 
inn Se Ee l. 
ue >1i ‘K+1 

This is equivalent to the first condition of Theorem 15. But the 
second is satisfied too, viz. 

sl eee i) pa : 
him = > ¢, ae Ce A [(q2—-0) +... + (Gn — Yn) | 
nao n 2 le n> tn ; 

dn _ 
= lim =0. 

NSD “nN 

: LAD — ¢ 
Thus ges ete l, 

n>owo 1 K+1 

and, by equation (21), 
: 1 
lim st y=] 
FD 

which completes the demonstration. 
The conditions (14) and (19) imposed on the numbers 0, are 

not necessary but only sufficient. The conditions necessary and 
sufficient would depend also on the coefficients a, of the power 
series considered, so that for a given series Da, x* a given set by 
may be admitted which must be excluded for other series = c,a*. 

Parr LT 

16. Theorem 2 is in a sense a perfect converse of Abel’s 
theorem, from which all these researches originated. 

Series for which Abel’s limit exists may be divided into two 
classes, those which are convergent and those which are divergent, 
series for which the limit does not exist being excluded. 
Theorem 2 shows that the first class consists of those, and those 
only, which satisfy the condition 

Nl asic 
TV iGO ep Orth tts fe Sosa ay el ole (22); 
n>o ly 

The second class consists of those, and those only, which do not 
satisfy the condition. 

The condition (22) is satisfied, in particular, if 

Hien ny—— OGe eek see ao eee eee cae (23) 
1 a Oi 

VOL. XIX. PART IV. iil 
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But this condition, unlike (22), is not a necessary condition for 
convergence. 

Recent investigators have generalised the condition (23) ma 
different manner. Thus Mr J. KE. Littlewood proved* the theorem : 

“> de 1s convergent, provided lim Sa,2*=A and |nadn»|< K.” 
1 “>1 1 

And still more recently Mr G. H. Hardy and Mr J. E. Littlewood+ 
proved 

i ebsr i Theorem 19. Jf lim Sa,2"= A, and a,>— a K, then Say, 
“—>!1 

converges to the swum A. 

But however interesting in themselves these two theorems and 
their proofs may be they are less perfect than Theorem 2, For 
the conditions |na,|< K and na, >—K are neither necessary for 
convergence nor is either, together with lim 3 a,a* = A, necessary, 

x>t1 
nor do they characterise the non-converging series for which Abel’s 
limit exists. Their interest is in fact of a quite different character 
from that of Theorem 2. 

It is not difficult to state similar theorems which are open to 
the same objection but which give information in cases where the 
last two theorems fail. 

17. The terms a, of any sequence can be written in the form 
c ae th = a , Where ¢, is subject to the same conditions as in Theorem 15. 

This theorem then shows that 

io.) (ee) 4 Ga apes AG ape Ee “> = is convergent, provided lim > ““ a* =1 and lim — > 6.20" 
1 be c>~1 1 “« N>w 7 1 

nN 

Now the second condition is certainly satisfied if lim Sc, tends 
no 1 

to a limit or oscillates finitely. The only limitation thus imposed 
oa upon the order of magnitude of a, is that |Ce|<K, te. that the 

order of «| a, | does not exceed that of = Instead of the condition 
K 

* J. EH. Littlewood, ‘The converse of Abel’s Theorem on power-series’, Proc. 
London Math. Soc., ser. 2, vol. 9 (1911), p. 438. 

+ G. H. Hardy and J. E. Littlewood, ‘ Tauberian theorems concerning power- series and Dirichlet’s series whose coetlicients are positive’, Proc. London Math. Soc., ser. 2, vol. 13 (1914), p. 188. See also BE. Landau, Darstellung und Begriindung einiger newerer Hrgebnisse der Funktionentheorie (Berlin, 1916), pp. 45 et seq.: the actual theorem is stated in § 9 and finally proved in § 10 (Die Hardy-Littlewoodsche Umkehrung des Abelschen Stetigkeitssatzes). 
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wu 

Kd, >— W ot Theorem 19 we have St,a, < K, a condition which 
1 

allows xa, to tend to infinity in either direction. 
That such cases exist, in which ¥ a, is convergent, is shown by 

the fact that 
ip 

> (O<e<@<27—-e) 

is convergent if t is any function of « which tends steadily to 
infinity with x. 

18. A similar result can be obtained from another theorem of 
Messrs Hardy and Littlewood, viz. : 

Theorem 20. If f(2)=a,a* is a power series with positive 
: ; 1 

coefficients, and f (x) ~ toa x—1, then 

n 

Ta~n.* 
1 

From this theorein it is possible to deduce Theorem 19 (see 
above) of the same authors. 

Now the hypothesis is equivalent to 

lim (1 — 2) f(#) = lim 3 (a, —a.4)0" = 1 
rl x>11 

and the conclusion is 

gpg Raph hacer 
lim — +a, = lim -2 {3 (a, — a)| = 1. 

1 nan ly nao ll 

Thus Theorem 20 is equivalent to 

Theorem 21. Jf lim S Bet LOR y GUC SUNS, “Sg —  b, 
aes e>11 

are all positive, then 

Here again is a condition which, in case the series converges, 
does not prevent the real numbers «b, from tending to infinity in 
both directions. 

* G. H. Hardy and J. K. Littlewood, l.c. See also KE. Landau, /.c., § 9. 

11—2 
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Sir George Stokes and the concept of uniform convergence. By 
G. H. Harpy, M.A., Trinity College. 

[Recewed 1 Jan. 1918. Read 4 Feb. 1918.] 

1. The discovery of the notion of uniform convergence is 
generally and rightly attributed to Weierstrass, Stokes, and Seidel. 
The idea is present implicitly in Abel’s proof of his celebrated 
theorem on the continuity of power series; but the three mathe- 
maticians mentioned were the first to recognise it explicitly and 
formulate it in general terms*. Their work was quite independent, 
and it would be generally agreed that the debt which mathematics 
owes to each of them is in no way diminished by any anticipation 
on the part of the others. ach, as it happens, has some special 
claim to recognition. Weierstrass’s discovery was the earliest, and 
he alone fully realised its far-reaching importance as one of the 
fundamental ideas of analysis. Stokes has the actual priority of 
publication; and Seidel’s work is but a year later and, while 
narrower in its scope than that of Stokes, is even sharper and 
clearer. 

My object in writing this note is to call attention to and, so 
far as I can, explain two puzzling features in the justly famous 
memoir in which Stokes announces his discovery. The memoir 
is remarkable in many respects, containing a general discussion of 
the possible modes of convergence, both of series and of integrals, 
far in advance of the current ideas of the time. It contains also 
two serious mistakes, mistakes which seem at first sight almost 
inexplicable on the part of a mathematician of so much originality 
and penetration. 

The first mistake is one of omission. It does not seem to have 
occurred to Stokes that his discovery had any bearing whatever on 
the question of term by term integration of an infinite series. The 
same criticism, it is true, may be made of Seidel’s paper. But 
Seidel is merely silent on the subject. Stokes, on the other hand, 
quotes the false theorem that a convergent series may always be 
integrated term by term, and refers, apparently with approval, to 
the erroneous proof offered by Cauchy and Moignof. 

Of this there is, I think, a fairly simple and indeed a double 

* The idea was rediscovered by Cauchy, five or six years after the publication of 
the work of Stokes and Seidel. See Pringsheim, ‘Grundlagen der allgemeinen 
Funktionenlehre’, Encykl. der Math. Wiss., Il A 1, §17, p. 35. 

+ ‘On the critical values of the sums of periodic series’, T’rans. Camb. Phil. Soc., 
vol. 8, 1847, pp. 533-583 (Mathematical and physical papers, vol. 1, pp. 236-318). 

+ See p. 242 of Stokes’s memoir (as printed in the collected papers). 



concept of uniform convergence - 149 

explanation. In the first place it must be remembered that Stokes 
was primarily a mathematical physicist. He was also a most acute 
pure mathematician ; but he approached pure mathematics in the 
spirit in which a physicist approaches natural phenomena, not 
looking for difficulties, but trying to explain those which forced 
themselves upon his attention. The difficulties connected with 
continuity and discontinuity are of this character. The theorem 
that a convergent series of continuous functions has necessarily 
a continuous sum is one whose falsity is open and aggressive: 
examples to the contrary obtrude themselves on analyst and 
physicist alike. The falsity of this theorem Stokes therefore 
observed and corrected. The falsity of the corresponding theorem 
concerning integration lies somewhat deeper. It is easy enough, 
when one’s attention has been called to it, to see that the proof 
of Cauchy and Moigno is invalid. But there are no particularly 
obvious examples to the contrary: simple and natural examples 
are indeed somewhat difficult to construct*. And Stokes, his 
suspicions never having been excited, seems to have accepted the 
false theorem without examination or reflection. 

This is half the explanation. The second half, I think, lies in 
the distinctions between different modes of uniform convergence 
which I shall consider in a moment. 

Stokes’s second mistake is more obvious and striking. He 
proves, quite accurately, that uniform convergence implies con- 
tinuity+. He then enunciates and offers a proof} of the converse 
theorem, which is false. The error is not one merely of haste or 
inattention. The argument is as explicit and as clearly stated in 
one case as in the other; and, up to the last sentence, it is perfectly 
correct. He proves that continuity involves something, and then 
states, without further argument, that this something is what he 
has just defined as uniform convergence. It is merely this last 
statement that is false. 

®tokes’s mistake seems at first sight so palpable that I was for 
some time quite at a loss to imagine how he could have made it. 
A closer examination of his meioir, and a comparison of his work 
with other work of a very much later date, has made the lapse a 
good deal more intelligible to me; and my attempts to understand 
it have led me to a number of remarks which, although they 
contain very little that is really novel, are, I think, of some 
historical and intrinsic interest. 

2. There are no less than seven different senses, all important, 

in which a series may be said to be uniformly convergent. 

* See Bromwich, Infinite series, pp. 116-118; Hardy, ‘ Notes on some points in 
the integral calculus’, XL, Wessenger of Mathematics, vol. 44, 1915, pp. 145-149. 

+ p. 282. LI use ‘uniform’ instead of Stokes’s ‘ not infinitely slow’. 
+ p. 283 + P- : 
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I shall write the series in the form 

>I (HA) 2 
1 

and I shall suppose, for simplicity, that every term of the series is 
continuous, and the series convergent, for every « of the interval 
a<uw<b. I shall denote the sum of the series by s(#); and I shall 
write 

Sy (@) = Uy (@) + Us (#) +... Un (2), 5 (@) = Sn (x) +7 (2). 

The fundamental inequality in all my definitions will be of the type 

1:99 (BY | SE cons om acieaiele nce te eee (A). 

I shall refer to this inequality simply as (A). 
When we define uniform convergence, in one sense or another, 

we have to choose various numbers in a definite logical order, those 
which are chosen later being, in general, functions of those which 
are chosen before. I shall write each number in a form in which 
all the arguments of which it is a function appear explicitly: thus 
ny (&, €) is a function of & and e, m(e) one of ¢ alone. 

It will sometimes happen that one of the later numbers depends 
upon several earlier numbers already connected by functional rela- 
tions, so that it is really a function of a selection of these numbers 
only. Thus 6 may have been determined as a function of €; and 
m mInay have to be determined as a function of &, e, and 6, so that 
it is in reality a function of & and ¢ only. I shall express this by 
writing 

iy = Wy lS, GO) Son CZ @)5 

and I shall use a similar notation in other cases of the same kind. 

3. The first three senses of uniform convergence are as follows. 
A1: Uniform convergence throughout aninterval. The 

series is said to be uniformly convergent throughout the interval (a, b) 
of to every positive e corresponds an n,(€) such that (A) 2s true, for 
n>n(e)anda<ca<b. 

This is the ordinary or ‘classical’, and most important, sense, 
the sense in which uniform convergence is defined in every treatise 
on the theory of series. 

A2: Uniform convergence in the neighbourhood of a 
point. The series is said to be uniformly convergent in the 
neighbourhood of the point & of the interval (a, b) if an interval 
(E—8(&), &+6(E&))* can be found throughout which itis uniformly 
convergent ; that 1s to say if a positive 6(E) exists such that (A) 
is true for every positive e, for n>n(£, 6, €)=n(E, ©), and for 

E&—8(E)<a<E&+6(E). 
* A trivial change is of course required in the definition if =a or £=b. The 

same point naturally arises in the later definitions. 
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AS: Uniform convergence at a point. The series is 
said to be uniformly convergent at the point «=€ (or for x=&) 
uf to every positive e correspond w positive &(£,¢) and an 
no (E, €, 6) = (&, €) such that (A) is true for n>n(&, €) and for 

Be (6,6)<27<F+5¢, ¢). 
4. Before proceeding further it will be well to make a few 

remarks concerning these definitions and their relations to one 
another. 

The idea of uniform convergence in the neighbourhood of a 
particular point (Definition A 2) is substantially that defined by 
Seidel in 1848*. It is clear, however, that definitions A 1 and 
A 2 were both familiar to Weierstrass as early as 1841 or 1842+. 
It is obvious that a series uniformly convergent throughout an 
interval is uniformly convergent in the neighbourhood of every 
point of the interval. The converse theorem is important and by 
no means obvious, and was first proved by Weierstrass{ in a memoir 
published in 1880. This theorem would now be proved by a 
simple application of the ‘ Heine-Borel Theorem’, and is a par- 
ticular case of a theorem which will be referred to in a moment. 

Definition A 3 appears first, in the form in which I state it, in 
a paper of W. H. Young published in 1903§; but the idea is 
present in an earlier paper of Osgood||. The essential difference 
between definitions A 2 and A@ is that in the latter 6 is chosen 
after e and is a function of & and e, while in the former it is chosen 
before ¢ and is a function of € alone. In each case m, is a function 
of two independent variables, € and e. It is plain that uniform 
convergence in the neighbourhood of &€ involves uniform conver- 
gence at &, and at (and indeed in the neighbourhood of) all points 
sufficiently near to & But uniform convergence at & does not 
involve uniform convergence in the neighbourhood of &. 

It is important, however, to observe that wniform convergence 
at every point of an interval involves uniform convergence throughout 
the interval. This important theorem is proved very simply by 

* «Note iiber eine Higenschaft der Reihen, welche discontinuirliche Functionen 
darstellen’, Miinchener Abhandlungen, vol. 7, 1848, pp. 381-394. This memoir has 
been reprinted in Ostwald’s Klassiker der exakten Wissenschaften, no. 116. The 
reference there given to vol. 5, 1847, is incorrect. 

+ For detailed references bearing on this and similar historical points, see 
Pringsheim’s article already quoted. 

+ See the memoir ‘Zur Functionenlehre’ (Abhandlungen aus der Funktionen- 
lehre, pp. 69-104 (pp. 71-72)). : 

§ ‘On non-uniform convergence and term-by-term integration of series’, Proc. 
London Math, Soc., ser. 2, vol. 1, pp. 89-102. 

|| ‘Non-uniform convergence and the integration of series’, American Journal of 
Math., vol. 19, 1897, pp. 155-190. See Prof. Young’s remarks on this point at the 
beginning of his later paper ‘ On uniform and non-uniform convergence of a series 
of continuous functions and the distinction of right and left’, Proc. London Math. 
Soc., ser. 2, vol. 6, 1907, pp. 29-51. 
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Young, in his paper already quoted, by means of the Heine-Borel 
Theorem*; and it plainly includes, as a particular case, Weierstrass's 
theorem referred to above. 

5. It seems to me that the definition given by Stokes is not 
any one of Al, A2, A8; and that, if we are to understand him 
rightly, we must consider another parallel group of definitions. 
These definitions differ from those given above in that (A) is 
supposed to be satisfied, not for all sufficiently large values of 1, 
but only for an infinity of values. 

B1: Quasi-uniform convergence throughout an interval. 

The series is said to be quasi-uniformly convergent throughout (a, b) 
of to every positive e and every N corresponds an n,(¢, NV) greater than 
N and such that (A) is true for n=n (e, VN) anda<sa<b. 

B2: Quasi-uniform convergence in the neighbourhood 
of apoint. The series is said to be quasi-uniformly convergent in 
the neighbourhood of & if an interval (E—6(E), E+6(E)) can be 
found throughout which tt is quasi-uniformly convergent ; 2.2. uf a 
positive 6(£) exists such that (A) 1s true for every positive e, every N, an 
ny (E, 6, e, V) = % (&, ¢, W’) greater than N, and E—8(&) <#7<&+6(E€). 

B38: Quasi-uniform convergence ata point. The series 
is said to be quasi-uniformly convergent for x = — if to every positive 
e and every N correspond a positive 6(&,¢, NV) and an 

ng (&, €, 6, V) =n (&, €, NV), 

greater than N, such that (A) 1s true for n=n) (&, €, N) and for 
ESO, €, IN) a OG €, NV). 

Definition BI is to be attributed to Dini or to Darbouxt. 
Another form of it has been given by Hobson}. As Arzeli and 
Hobson§ have pointed out, a series is quasi-uniformly convergent 
throughout an interval if, and only if, it can be made uniformly 
convergent by an appropriate bracketing of its terms. 

Definition B 2 is for us at the moment of peculiar interest, 
for (as I shall show in a moment) it is really this definition that 
is given by Stokes. 

. Definition B 8 is also of great interest, both in itself and in 

* Choose ¢ and determine 6 (é, €) and 1) (é, €), as in definition A&, for every é of 
the interval. Every point of (a, b) is included in an interval (€— 6, +6). By the 
Heine-Borel Theorem, every point of (a, b) is included in one or other of a finite 
sub-set of these intervals. If N (e) is the largest of the n,’s corresponding to each of 
the intervals of this finite sub-set, then (A) is true forn>N anda<a<b. 

This is the essence of the proof, though, like all proofs of the same character, it 
requires a somewhat more careful statement if all appearance of dependence upon 
Zermelo’s Auswahlsprinzip is to be avoided. 

+ See Pringsheim, 1. c. 
+ ©On modes of convergence of an infinite series of functions of a real variable’, 

Proc. London Math. Soc., ser. 2, vol. 1, 1903, pp. 373-387. Hobson (following Dini) 
uses the expression ‘simply uniformly’. 

§ L. ¢., p. 375. 
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relation to Stokes’s memoir. For the necessary and sufficient con- 
dition that s(a#) should be continuous for «=& is that the series 
should be quasi-uniformly convergent for «=& This theorem is 
in substance due to Dini*. I give the proof, as it is essential for 
the criticism of Stokes’s memoir. 

(1) The condition is sufficient. For 

| $ (a) —8(E) |<) 8 (#) — 8 (E)| +] tn (w) | +| 7 (E) | 

Choose ¢, V, 6 (é,¢, NV), and n=n, (&, e, N) as in definition B83. Then 
mn (a)|<e for E—S<a<&+6. Now that n is fixed we can choose 
6, less than 6 and such that | s, (v7) —s,(&)|<e for E-8,<a#<&+6,. 
And thus 

's(w) —8(&)| < Be 
for £—6,<a#<&+6,, so that s(#) is continuous for «= €. 

It is plain that this argument proves, a fortiori, that A 2, AS, 
and B 2 all furnish sufficient conditions for continuity at a point, 
and Al and B1 sufficient conditions for continuity throughout an 
interval. 

(2) The condition is necessary. For 

| ’n(@)| <| 8 (#) — 8 (E)| +] 4 (E)| +1 Sn (@) — Sn (€) |: 
Suppose that « and WV are given. Then we can choose 6(€, e) 
so that |s(z)—s(£)|< e for €—d <x < E+ 6, and n, (E,¢, V) so that 
ny > WN and | 7, (&)|<e. And, when n has thus been fixed, we can 
choose 6, (&, €, m) = 6, (&, €, W) so that 6, < Sand | sy, (@) — Sy, (E)| < € 
for &— Beene fh. Thus Ir, (a) |< Be for n=%,>N and 
E—6,<47<£&+4+6,, so eae the series is quasi-uniformly convergent 
for 7= €. 

6. If a series is uniformly convergent at every point & of an 
interval, it is (as we saw in § 4) uniformly convergent throughout 
the interval: definition A 8 (and a fortiori definition A 2) passes 
over, in virtue of the Heine-Borel Theorem, into definition A 1. 
It is important to observe that this relation does not hold between 
B8 (or B@2) and B1: a series quasi-uniformly convergent at 
every point of an interval (or in the neighbourhood of every such 
point) is not necessarily quasi-uniformly convergent throughout 
the interval. We can apply the Heine-Borel Theorem in the 
manner indicated in the first sentences of the footnote * to p. 152; 
but the last stage of the argument, in which every one of a finite 
number of different integers is replaced by the largest of them, 
fails. What we obtain is the necessary and sufficient condition that 
s(x) should be continuous throughout the interval; and this is not 

* Fondamenti..., p. 107 (German translation, Grundlagen..., pp. 143-145). 
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the condition B 1 but a condition first formulated by Arzela*, 
Viz. : 

C: Quasi-uniform convergence by intervals (convergenza 
uniforme a trattr). The series is said to be quasi-uniformly con- 
vergent by intervals if to every positive e and every N correspond a 
division of (a, b) into a finite number v (¢, N) of intervals 8,(e, N ‘, 
and a corresponding number of numbers n,(e, N), all greater than N, 
and such that (A) ts true for n=n,(r=1, 2, ..., v) and all values 
of « which belong to 6... 

The deduction of Arzela’s criterion from B 8, in the manner 
sketched above, was first made by Hobson +. 

There is one further point which seems worth noticing here, 
although it is not directly connected with Stokes’s memoir. Dinit 
proved that if w,(x)>0 for all values of n and «, and s (zx) is con- 
tinuous throughout (a, b), then the series is uniformly convergent 
throughout (a,b). This theorem is now almost intuitive. For it 
is obvious that, for series of positive terms, quasi-uniform conver- 
gence in any one of the senses B 1, B 2, or BB involves uniform 
convergence in the corresponding sense A 1, A 2,or AS8. If then 
s (a) is continuous throughout (a, b) it is continuous for every & of 
(a, b); and therefore the series is quasi-uniformly convergent for 
every €; and therefore uniformly convergent for every £; and 
therefore uniformly convergent throughout (a, 6). 

7. Let us now consider Stokes’s definitions and proofs in the 
light of the preceding discussion. 

It is clear, in the first place, that Stokes has in his mind some 
phenomenon characteristic of a small, but fixed, neighbourhood of 
a pownt. 

‘Let m+ + ... (66), he says§, ‘be a convergent infinite series 
having U for its sum. Let v,+,+... (67) be another infinite 
series of which the general term », is a function of the positive 
variable h and becomes equal to wu, when h vanishes. Suppose 
that for a sufficiently small value of h and all inferior values the 
series (67) 1s convergent, and has V for its sum. ‘It might at first 
sight be supposed that the limit of V for h=0 was necessarily 
equal to U. This however is not true.... 

‘THEOREM. The limit of V can never differ from U unless 
the convergency of the series (67) becomes infinitely slow when A 
vanishes. 

* “Sulle serie di funzioni’, Memorie di Bologna, ser. 5, vol. 8, 1900, pp. 131-186, 
701-744. 

+ L. ¢., pp. 380-382. 
.¢. (German edition), pp. 148-149. See also Bromwich, Infinite series, p. 125 
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‘The convergency of the series is here said to become infinitely 
slow when, if » be the number of terms which must be taken in 
order to render the sum of the neglected series numerically less 
than a given quantity e, which may be as small as we please, n 
increases beyond all limit as ) decreases beyond all limit. 

‘DEMONSTRATION. If the convergency do not become in- 
finitely slow it will be possible to find a number n, so great that 
for the value of h we begin with and for all inferior values greater 
than zero the sum of the neglected terms shall be numerically less 
than e.... 

Stokes’s words, and in particular those which I have italicised, 
seem to me to make two things perfectly clear. 

(1) Stokes is considering neither a property of an interval 
(a, b) im Grossen (such as is contemplated in Al or B1), nor a 
property of a single point which (as in A3 or B8) need not be 
shared by any neighbouring point, but a property of an interval 
um Kleinen, that is to say a small but fixed interval chosen to in- 
clude a particular point. His definition is therefore one of the 
type of A 2 or B2. 

Stokes’s failure to perceive the bearing of his discovery on 
problems of integration is made much more natural when we 
realise that he is considering throughout a neighbourhood of a 
point and not an interval im Grossen. And this remark applies 
to Seidel as well. 

(2) Stokes is considering an inequality satisfied for a special 
value of , or at most an infinite sequence of values of n, and not 
necessarily for all values of x from a certain point onwards. In 
this respect there is a quite sharp distinction between Stokes’s 
work and Seidel’s. What Stokes defines is (to use the language 
of this note) a mode of quasi-uniform convergence and not one of 
strictly uniform convergence. 

It seems to me, then, that what Stokes defines is what I have 
called quasi-uniform convergence in the neighbourhood of a point 
(B 2). 

8. If we adopt this view, Stokes’s mistake becomes very much 
more intelligible. He proves, quite correctly, that uniform con- 
vergence in his sense implies continuity: his proof, stated quite 
formally and by means of inequalities, is substantially that given 
in §5, under (1). He then continues* as follows. 

‘Conversely, if (66) is convergent, and if U= V,+, the con- 
vergency of the series (67) cannot become infinitely slow when h 

* p. 282. The italics are mine. 
+ V, is what Stokes calls ‘the value of V for h=0’, by which he means, of 

course, its limit when h tends to 0. 
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vanishes. For if U,’, V,’ represent the sums of the terms after 
the nth in the series (66), (67) respectively, we have 

Vs V;, ote Won = Un+ Ofpigie 

whence 

Vie =V-U- (V,, ae Un) ats Uae 

Now V—U, V,— Un, vanish with h, and JU,’ vanishes when n 
becomes infinite. Hence for a sufficiently small value of h and 
all infervor values, together with a value of n sufficiently large and 
independent of h, the value of V,,’ may be made numerically less 
than any given quantity e however small; and therefore, by 
definition, the convergency of the series (67) does not become in- 
jinitely slow when h vanishes.’ 

Now this argument is, until we reach the last sentence, perfectly 
accurate, and indeed, if we translate it into inequalities, substantially 
identical with that given in §5, under (2). Stokes proves, in fact, 
that continuity at &€ involves quasi-uniform convergence at E. 
Where he falls into error is simply in his final assertion that this 
property is that which he has previously defined, the mistake being 
due to a failure to observe that his intervals of values of h depend 
upon a prior choice of e. In a word, he confuses, momentarily, 
B2 and BS. The ordinary view that Stokes defined uniform 
convergence in the same sense as Weierstrass compels us to suppose 
that he confused B 8 with A 1, or at any rate with A 2: and this 
is hardly credible. 

I add one final remark. If we could identify Stokes’s idea with 
B 8, instead of with B 2, we could acquit him of having made any 
mistake at all, since B8 really is a necessary and sufficient con- 
dition for continuity. We could then regard Stokes as having 
anticipated Dini’s theorem. This view, however, does not seem to 
me to be tenable. 
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Shell-deposits formed by the flood of January, 1918. By Pxtutp 
LAKE, M.A., St John’s College. 

[Read 18 February 1918.] 

The heavy snow of the third week in January 1918 was followed 
by a very rapid thaw and a considerable fall of rain, and the Cam, 
in consequence, rose to an exceptional height. In the neighbour- 
hood of Cambridge the floods were the most extensive of recent 
years, the water reaching its highest level on Sunday, Jan. 20. 

The traces of the flood remained visible for several weeks, its 
limits being marked in most places by straws, twigs, silt, ete., with 
a sprinkling of land and fresh-water shells. But below the town, 
near the railway-bridge, the shells were so abundant as to form a 
remarkable deposit, which seems to deserve a special record. It 
was not till the 25th Jan. that I saw it, and the following notes 
are drawn up from the observations made on that day and on two 
or three subsequent visits. 

The deposit lay partly upon the tow-path and partly in the 
shallow ditch on the inner side of the path, and it extended with 
little interruption from the immediate neighbourhood of the ‘Pike 
and Eel’ to a point about 350 yards below the railway-bridge, a 
total distance of approximately 850 yards. Occasional patches 
occurred still farther down, and scattered shells even as far as 
Ditton Corner. Beyond Ditton the tow-path was in several places 
covered with a thick layer of silt, but I saw no more shells until 
within sight of the lock at Baitsbite. 

The deposit was somewhat irregular and it was difficult to form 
an estimate of its average width, but this can hardly have been 
less than a foot, and was probably much more. 

Above the railway-bridge the shells were mixed with silt, 
especially in the ditch on the inner side of the path; but even 
here the proportion of shells was large, and in places they formed 
the bulk of the deposit. Below the railway-bridge the deposit was 
free from silt and consisted entirely of shells. In the shallow 
hollows formed by the irregularities of the surface, it was often an 
inch or two deep, so that it was possible to scoop up the shells by 
the handful. Owing to its colour it showed conspicuously as light 
streaks upon the slightly darker path. 

By far the greater part of the deposit consisted of Lamnaea, 
L. stagnalis and L. peregra being the most abundant species ; but 
other fresh-water shells also occurred and land-snails were by no 
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means rare. Mr C. E. Gray, of the Sedgwick Museum, went down 
shortly after my first visit, and in a very short time obtained most 
of the following species, but a few names have been added to the 
list from specimens collected subsequently : 

Sphaeriwin corneum (1.), 
EBithynia tentaculata (1.), 
Vivipara contecta (Millet), 
Valvata piscinalis (Miiller), 
TInmnaea stagnalis (L.), 

, peregra (Miiller), 
si auricularia (L.), 

Planorbis corneus (1), 
umbilicatus Miiller, 
carinatus Miiller, 

a vortex (L.), 
Al contortus (L.), 

Physa fontinalrs (L.), 
Helia nemoralis L., 
Theba cantiana (Mont.), 
Hygromia striolata (Pfr.), 
Vitrea draparnalds (Beck), 

cellarva (Miller). re) 

Even now the list is probably far from complete, and a closer 
examination would no doubt reveal the presence of many other 
forms. 

The last five species are land-shells, and, with the exception of 
Vitrea cellaria, they occurred in Mr Gray’s first collection and were 
identified by Mr Hugh Watson. Vitrea draparnaldi does not 
appear to be a native of the county, but is found in and near green- 
houses ; for instance, in the Botanical Gardens. In Mr Gray’s first 
collection, which was made below the railway-bridge, it was repre- 
sented only by a single specimen, which we supposed to have come 
from the florist’s greenhouses close by. But at a later date he 
found it to occur abundantly at the beginning of the tow-path, 
some five or six hundred yards above the greenhouses. In order 
to make sure that the specimens really belong to this species they 
were sent to Mr Watson, who agreed with the identification. 

Since there were so many specimens of Vatrea draparnaldi at 
the beginning of the tow-path, and so few (at least comparatively) 
below the railway-bridge, it seems clear that they cannot have been 
carried far, for otherwise they would have been more evenly dis- 
tributed. It is most probable indeed that there was a colony of this 
species in the immediate neighbourhood. The nearest greenhouse 
that I have been able to find above the locality where the species 
was so abundant is five or six hundred yards off, and stands well 
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away from the river. The specimens can hardly have come from 
there, and it is more likely that the colony lived out of doors and 
nearer to the river. Nevertheless its progenitors may have been 
‘escapes’. The greenhouses beiow the railway-bridge have now 
been out of use for some time, and the snails that were in them 
must have been forced to seek new quarters. 

Most of the shells, both land and fresh-water, were perfect or 
nearly so, and all of them were empty. Neither Mr Gray nor myself 
found a single specimen with any remains of its former inhabitant. 
The greater number were very fresh in appearance, but some of 
the land-shells had evidently been exposed to the weather for some 
time, and some of the fresh-water shells had lain in the mud long 
enough to become discoloured or incrusted as if the process of 
fossilization had begun. ‘The specimens of Vitrea draparnaldt, it 
may be noted, were all fresh-looking. 

Apart from the extent of the shelly deposit, its freedom from 
silt below the railway-bridge was perhaps its most important feature, 
for it shows that even a muddy river like the Cam may produce a 
purely calcareous deposit. 

The fact that the shells were all empty indicates that those 
belonging to the river must have lain in its bed for some time; and 
in this connection an observation made by Mr Gray is of interest. 
Some years ago at Bottisham, when dredging operations were going 
on, he noticed that the mud brought up by the dredger was full of 
fresh-water shells. 

During floods the river digs up its bed and, as on the occasion 
here described, it may deposit the shells in one place and the silt 
in another. In the case of an artificially controlled stream like the 
Cam, floods are comparatively rare; but in an unrestrained river 
we may reasonably expect them to be both more numerous and 
more extensive. It seems quite possible therefore that neither the 
clayey fresh-water limestones of the Wealden nor the purer fresh- 
water limestones of the Purbeck series required lagunary conditions 
for their formation. 
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Is the Madreporarvan Skeleton an Eatraprotoplasmic Secretion 
of the Polyps? By G. Marruat, M.A., Emmanuel College, Cam- 
bridge. (Communicated by Professor Stanley Gardiner.) 

[Read 18 February 1918.] 

In 1881 von Heider (5) suggested that the calcareous skeleton 
of the Madreporaria is formed by the deposition of carbonate of lime 
within certain specialised ectodermal cells (calicoblasts*) consti- 
tuting an outer layer, and repeated this conclusion in a subsequent 
paper (6). In 1882 von Koch (8) inferred from embryological obser- 
vations that the skeleton is deposited outside the living tissues, 
1.€. 1S extraprotoplasmic in origin. In 1896 Ogilvie (9) supported 
von Heider’s view and argued that, by repeated calcification of 
“cells” of the calicoblastic layer of ectoderm, successive strata of 
calcareous “scales” are formed, and shghtly modified her opinion 
in 1906 (10). Fowler (4) had previously accepted von Koch’s view. 
In 1899 Bourne (2), from his studies on the Anthozoan skeleton, 
supported von Koch's conclusions and entirely disagreed with 
von Heider and Ogilvie. He further held that, whilst in Heliopora 
and the Madreporaria the corallum is formed outside the living 
calicoblastic layer, the spicules of the Aleyonaria are formed within 
certain ectodermal cells or scleroblasts which either remain in the 
ectoderm or wander into the mesoglea (2, p. 506). Following 
von Koch and Bourne, it 1s now generally believed that the 
Madreporarian skeleton is an extraprotoplasmic formation and that 
Alcyonarian spicules are entoplastic products. 

After a ground-down section of an Astreeid corallite has been 
slowly decalcified on a slide, somewhat homogeneous organic 
remains (distinguishable from algal filaments penetrating the 
skeleton) are left which react to any of the common stains. This 
is clear indication that the calcareous matter has been deposited 
in an organic matrix. Bourne regards this matrix as due to the 
“disintegration of calicoblasts” (2, pp. 520 and 521, fig. 21), 
assuming that the organic basis was not part of the living ‘calico- 
blastic ectoderm. Huis view is that carbonate of lime is secreted 
by the calicoblastic layer and is passed through its outer border 
(the “limiting membrane ”) into the decaying part outside, exactly 
as the Alcyonarian spicule is “from its early origin, separated 
from the protoplasm which elaborated the material necessary for 
its further growth by a layer of some cuticular material” (2, p. 537), 

* Von Heider’s original rendering of this word is chalicoblast, of which the first 
half, I am informed, is derived from the Greek ya\é, which in Roman characters 
should be spelt chalix. Subsequently, Fowler changed the spelling to calycoblast, 
and in 1888 both this author and Bourne adopted the present form calicoblast. 
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viz., the spicule-sheath. At the same time, Bourne contends that 
the spicule is entoplastic in formation whilst the Madreporarian 
corallum is exoplastic. To be consistent, both the spicule and the 
corallum would have to be regarded as formed either within living 
protoplasm or outside it, but spicules could not be viewed as intra- 
protoplasmic products whilst assuming the extraprotoplasmic origin 
of the corallum. 

Duerden (3) held that the organic basis of the corallum of 
Siderastrea radians is a “secretion” of the calicoblastic layer of 
ectoderm to which it is closely adherent (pl. 8, fig. 45) and is “a 
homogeneous, mesogleea-like matrix within which the minute cal- 
careous crystals forming the skeleton are laid down” (p. 34). 
Since he refers to the skeleton as “ ectoplastic” in origin (p. 113), 
it is evident that he agrees with Bourne in the view that the 
organic matrix was not part of the living tissues when calcareous 
inatter began to be deposited in it. But in the account of these 
authors there is no more evidence to show that, in the Madre- 
poraria, the organic ground substance or “colloid matrix ” (2, p. 539) 
was non-living at every phase of skeleton formation than that the 
areas of the scleroblasts of the Alcyonaria in which the deposition 
of spicular matter took place had not, at least at the initial stages 
of this process, formed part of the living protoplasm. 

Further if, in the Madreporaria, the calcareous matter were 
deposited outside the living calicoblastic ectoderm, it is difficult 
to understand how the manifold patterns of coralla so charac- 
teristic of this group of organisms can have been built up*. But 
if the matrix in which carbonate of lime is laid down is part 
of the living calicoblastic sheet, it follows that the protoplasm 
must regulate the arrangement of the calcareous matter into the 
various skeletal types which, in large measure, maintain their re- 
spective form independent of changes in environmental conditions. 
Similarly, the formation of the various kinds of spicules of the 
Alcyonaria can be adequately explained only if calcareous deposition 
takes place within living protoplasm, and indeed, Bourne has drawn 
attention to the phenomenon that “the spicules of the Alcyonaria 
show a definite and complex crystalline structure, the details of 
which are, indeed, moulded upon and dominated by an equally 
complex organic matrix...” (2, p. 517). 

The intraprotoplasmic origin of spicules in the Aleyonaria might, 
without difficulty, be ascertaimed since sections can be made with- 
out decalcification, whereas in Heliopora and the Madreporaria 
possessing massive coralla, satisfactory sections are possible only 
after decalcification, and in this condition the skeleton may appear 

* In explanation of this phenomenon, Bourne suggests that ‘‘the general 
arrangement of the fasciculi of crystals is dominated, in some manner of which we 
are ignorant, by the living tissues which clothe the corallum ” (2, p. 539). 
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as though formed outside the living tissues. A further difficulty 
with regard to the Madreporaria is that, except perhaps at the 
growing points, the skeleton would secondarily lose its intraproto- 
plasmic character and appear to be external to the living tissues by 
having displaced most of the protoplasm in which it was deposited, 
just as the discrete condition of fully developed Alcyonarian 
spicules is due to the increase of calcareous matter at the expense 
of the protoplasm in which it was formed. 

From the above considerations it would appear to be highly 
probable that von Heider was right in regarding the Madreporarian 
skeleton as formed within the calicoblastic protoplasm. Bourne 
directs much of his criticism to von Heider’s suggestion that the 
strize in the calicoblastic layer (1.e., in the processes of attachment) 
are calcareous fibres, but 1t is not improbable that, in the unde- 
calcified condition, some of these processes of attachment might 
be partially calcified. 

When thin sections of Astrzeid coralla are examined under a 
microscope, they frequently appear to consist of calcareous pieces 
united by sutures resembling the “laminee” or “ trabecule ” of the 
skeleton of Helvopora (1, p. 463, pl. 11, figs. 7 and 8) and the “ tra- 
becular parts” of the Madreporarian skeleton as figured by Ogilvie 
(9, p. 124, figs. 13, 19, etc.). Each piece is composed of calcareous 
strands radiating from a dark centre or line which, as Ogilvie sug- 
gested, appears to be the organic remains of the protoplasm in which 
the calcareous needles were laid down. There is some similarity 
between these elements and the spicules of Tubipora (7, figs. 9 
and 10) which, according to Hickson, are not fused together but 
dovetailed into one another as in the membrane bones of Mammals 
(p. 562). The resemblance is also marked in the case of the scale- 
like spicules of Plumarella (2, figs. 6 and 7) containing dark centres 
from which calcareous fibres or rods radiate. 

It is difficult to gather from Bourne’s account what he considers 
to be the unit of skeletal structure in the Alcyonaria. Are 
spicules such units*? But spicules are not all homologous elements 
since they are formed in protoplasmic areas containing one or more 
nuclei and no limit can be set to their size in the various genera 
(2, pp. 508-517), an extreme case being the scale-like spicules of 
Primnoa and Plumarella, each of which is “formed by several 
cells, or at least by a comparatively large coenocytial investment 
containing many nuclei” (p. 510). Or, 1s a spicule a calcareous 
piece which behaves like a single crystal when examined under 
crossed Nicols? The same confusion prevails with regard to ske- 
letal units in the Madreporaria—whether they are represented by 
“fibro-erystals ” (Bourne), “ crystalline spheroids” (von Koch) or 

* Bourne applies the term spicule to ‘‘an entoplastic product of a single cell or 
of a cenocyte” (2, p. 504). The italics are mine. 
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“calcareous scales” (Ogilvie). The latter are not calcified calico- 
blastic “cells” as Ogilvie contended since the calicoblastic ectoderm 
is now found to be a multinucleated sheet of protoplasm devoid of 
cell-limits, i.e., a syncytium. 

In fact, there 1s hardly any evidence to show that the skeleton 
of the Anthozoa is made up of homologous units just as it is highly 
doubtful if their soft parts are composed of uninucleated units or 
cells. The significance of the Anthozoan skeleton would consist in 
its probable formation within syncytial protoplasm according to 
physical laws under the presiding activity of the living protoplasm 
which would direct the complex skeletal architecture. The cal- 
careous deposit further appears to be differentiated into elements 
which remain separate as spicules in most Alcyonarians but are 
united to form a compact skeleton in certain Alcyonarians, e.g., 
Tubipora, Corallium, Heliopora, and in all the Madreporaria (in 
which the calcareous matter may undergo subsequent rearrange- 
ment). From this point of view, a separate calcareous piece of an 
Alecyonarian might be regarded as a diminutive corallum, and the 
corallum of a Madreporarian as a massive spicule, and finally, the 
formation of the Anthozoan skeleton would be essentially similar 
to the formation of membrane bone in Vertebrates *. 
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On Reactions to Stimuli in Corals. By G. Marruat, M.A., 
Emmanuel College, Cambridge. (Communicated by Professor 
Stanley Gardiner.) 

[Read 18 February 1918.] 

The following is a brief record of feeding-experiments made on 
living Astreid colonies during a short stay at the Carnegie Bio- 
logical Station at Tortugas (July 16—Aug. 2) and at the Bermuda 
Biological Station on Agar’s Island (Aug. 20—Sep. 14) in the 
summer of 1915, which, though necessarily incomplete as they had 
to be undertaken in the midst of other work, gave some indication 
of the nature of reactions to stimuli in the Madreporaria. In order 
to watch the behaviour of living Corals, colonies of most of the 
recent species recorded from those localities were kept in aquaria 
of running sea-water, viz.: 

Meandra labyrinthiformis (Linn.), Mewandra strigosa (Dana), 
Meandra clivosa (Ell. and Sol.), Manicina areolata (Linn.), Colpo- 
phyla gyrosa (Ell. and Sol.), [sophyllia dipsacea (Dana), Isophyllia 
fragilis (Dana), Dichocenia Stokesi, Kd. and H., Husmilia aspera 
(Dana), Fava fragum (Esp.), Orbicella cavernosa (Linn.), Orbicella 
annularis (Ell. and Sol.), Stephanocenia interseptu (Esp.), Oculina 
diffusa, Lam., Mycetophyllia lamarckana, Ed. and H., Siderastrea 
radians (Pallas), Srderastrea siderea (Ell. and Sol.), Agaricia 
purpurea, Les., Porites astreoides, Lam., Porites furcata, Lam., 
Porites clavaria, Lam., Madracis decactis (Ly.), and Acropora 
muricata (Linn.). 

In Lsophyllia dipsacea (Dana), when a particle of meat was 
placed on the oral disc with contracted mouths, the oral lip 
was slowly directed towards the particle and the mouth became 
dilated, to an extent depending on the size of the food-particle. 
The latter was, in the meantime, slowly moved into the oral open- 
ing by ciliary action. To facilitate this event, the periphery of the 
oral disc was drawn over towards the dilated mouth and the dise 
itself was somewhat depressed, thus deepening the peristomial 
cavity. During distention of the mouth, the stomodeum was everted 
and, consequently, the ccelenteric cavity with its convolutions of 
mesenteries became exposed. After the food-particle had passed 
into the ccelenteric cavity, 1t was caught in the mesenterial coils. 
If the fragment of meat was large, the mouth remained widely open 
till the former had been reduced in size by the digestive action of 
the mesenterial filaments. The stomodzeum was subsequently with- 
drawn and the mouth opening gradually narrowed. But if, before 
this, the oral lip was touched with a glass needle, it did not contract 
as 1t would do instantaneously if no food-particle had previously 
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been swallowed. Every mouth that was tested could thus take in 
particles of meat. The touch of the food-particle on the oral disc 
was also a stimulus for the expansion of the tentacles around the 
mouth and of those around the neighbouring oral openings. 

When a particle of meat was placed on the tentacles of a colony 
of Meandra labyrinthiformis (Linn.), it was slowly passed on to the 
oral disc, but the tentacles did not show any sign of contraction. 
At the same time, the oral disc was depressed and arched over the 
mouth opening till finally its margin closed over the peristome. In 
the meantime, the tentacles were fully distended, the entoccelic 
ones were directed obliquely towards the oral opening, those of 
one side passing between those of the opposite side. The food- 
particle was now hidden from view. After it had passed into the 
ceelenteric cavity and had presumably undergone partial digestion, 
the periphery of the oral disc gradually moved outwards carrying 
the tentacles with it, thus again exposing the peristomial cavity. 

The principal movements in these two cases are: 
(1) Cihary movement passing the food-particle into the nearest 

oral aperture. 
(2) The direction of the oral lip towards the food-particle para 

passu with the dilatation of the mouth. 
(3) The narrowing and deepening of. the peristomial cavity, 

which help to roll the food-particle into the oral opening. 
(4) The expansion of the tentacles of the affected oral disc and 

of those of adjacent oral discs. 
(5) The eversion of the stomodzum and consequent exposure 

of the ccelenteric cavity and mesenterial coils. 
(6) The return of the soft parts to their original condition by 

the retraction of the stomodzum into the ccelenteric cavity, recoil 
of the oral lip to its normal extent, shortening of the tentacles, 
flattening of the oral disc and withdrawal of its periphery carrying 
the tentacles outwards. 

When a drop of meat-juice was gently placed on a colony of 
Favia fragum (Esp.), the oral apertures in the neighbourhood were 
slowly distended after a short pause. The inner or entoccelic row of 
tentacles was then extended and directed over the oral disc, meeting 
or intercrossing over the mouth as had been noticed in the case of 
Meandra labyrinthiformis (Linn.), thus hiding the oral region, 
whilst the exoccelic tentacles were arched outwards. Similar move- 
ments were observed in Meandra strigosa (Dana). 

When meat-juice was spurted by a pipette on sea-water con- 
taining a colony of Orbicella cavernosa (Linn.), strong contraction 
of the soft parts was set up in the neighbourhood, the polyps en- 
tirely closing up. This was followed by the protrusion of convolutions 
of mesenteries through mouth openings, oral discs and especially 
through edge-zones, combined with secretion of mucus over the 
polyps, the former obviously to paralyse prey and the latter to 
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entangle food-particles. Shortly afterwards, the oral apertures were 
widely distended to let in the meat-juice but the process was un- 
accompanied by eversion of stomodzea. Similar events were observed 
in Manicina areolata (Linn.). 

When finely powdered carmine was scattered in sea-water con- 
taining a colony of Manicina areolata (Linn.), it was partly taken 
into the stomoda, the oral lips becoming conspicuously stained. 
The carmine was, however , subsequently passed out of the stomodea, 
showing thereby, that the mouth openings could function as in- 
halent and exhalent apertures. 

When a tentacle of any of the Astraeid colonies was touched 
with a fine glass needle, it was suddenly withdrawn in a manner 
resembling pseudopodial movement and the neighbouring tentacles 
were also retracted. In Porites and Madracis, whose soft parts are 
composed of small polyps, the instantaneous contraction of a polyp 
due to mechanical stimulation caused the contraction of its neigh- 
bours as well. In all these cases, the wave of contraction started 
from a centre, viz., the point of stimulation, but remained local and 
did not spread over the entire colony. 

Series of movements such as the above, made in response to 
chemical and tactile stimuli, are reminiscent of amceboid or stream- 
ing movement of protoplasm, the soft parts of the colonies appearing 
to serve as the medium for the transmission of stimuli*. If the 
initial stimulus be too strong, the sudden contraction of the soft 
parts, due to the mechanical impact, is followed by slow purposive 
movements. 

The ameeboid character of the movements of the soft parts of 
Astreid Corals is in conformity with their histological structure 
which, on examination, revealed neither a muscular nor a nervous 
system, although a neuro-muscular apparatus has been supposed 
by most authors to exist in Madreporaria. The so-called muscular 
fibres at the base of the ectoderm and endoderm seem to be of the 
nature of specialised connective tissue fibres, for in both teased 
preparations and in sections of 410 thicknesses these are found 
to be without nuclei and to form part of the middle lamina (= meso- 
gleea) which is itself composed of fine fibres cemented together by 
a homogeneous matrix containing a few scattered nucleated cells. 
Fibrils pass into the middle lamina through the granular stratum 
present at the base of the ectoderm (and less frequently at the base 
of the endoderm), but these fibrils do not show any histological 
differentiation which would justify us in regarding them as belong- 
ing to nerve elements. 

* Carpenter regarded the feeding reactions of Isophyllia as muscular in nature 
and as brought about by the transmission of impulses of a “ nervoid character,” 
but he had not investigated the histological structure of its soft parts (vide Con- 
tributions Bermuda Biol. Station, No. 20, Cambridge, Mass., U.S.A., p. 149, 1910). 

+ For a detailed account of the minute structure of coral polyps vide ‘‘The 
Histology of the Soft Parts of Astrid Corals ” to be published shortly. 
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Notes on certain parasites, food, and capture by birds of the 
Common Earwig (Forficula auricularia). By H. H. BRINDLEY, M.A,, 
St John’s College. 

[Read 18 February 1918. | 

(a) Effects of parasitism. 

In a paper entitled “The effects of Parasitic and other kinds 
of castration in Insects” (Jour. Exper. Zool. vitt. Philadelphia, 
1910) Wheeler expresses the opinion (p. 419) that Giard has given 
good reasons for supposing that the dimorphism exhibited by the 
forcipes of male earwigs from the Farn Islands, Northumberland 
(Bateson and Brindley, “On some. cases of variation in secondary 
sexual characters statistically examined,’ Proc. Zool. Soc. Lond. 
1892, p. 585), is due to “differences in the number of gregarines 
they harbour in their alimentary tract.” The reference to Giard 
is C.R. Acad. Sev. CXVuI. 1894, p. 872, where he writes “J’ai tout 
lieu de croire qu'une interprétation du méme genre (referring to 
the changes evoked in Carcinus by the action of parasites) peut 
s'appliquer pour la distribution des longueurs des pinces des 
Forficules males. I] est possible, en effet, d’apres la longueur de 
la pince, de prévoir qu'une Forficule male possede des Grégarines 
et quelle en posséede une plus ou moins grande quantité.” 

In criticism of the above statements Capt. F. A. Potts and 
myself published a letter in Science, Philadelphia, Dec. 9, 1910, 
p. 836, in which we gave reasons for disagreeing with Wheeler’s 
conclusion: viz., (1) that in the absence of any further account by 
Giard the above passage could not be taken as direct evidence 
that he had examined the intestine of Forficula for gregarines and 
found a correspondence between their presence and the condition 
of the male forcipes; (11) that out of several thousand earwigs 
collected by us on the Farn Islands in 1907 over 50 males of 
different forceps lengths were carefully dissected with the results 
that the gregarine Clepsydrina ovata was found to occur commonly 
in the alimentary canal, that it occurred indifferently and was 
absent indifferently in “low” and “high” males, and_ that 
no correlation could be traced between the number of parasites 
and the length of its forcipes. Moreover, no difference in the 
development of the testes or other internal sexual organs could 
be detected in low and high males respectively. 

Since the above was written I have (August 1917) examined 
the alimentary canal of 51 earwigs out of a large batch obtained 
at Portheressa, St Mary’s, Isles of Scilly, where the males exhibit 



168 Mr Brindley, Notes on certain parasites, food, and capture 

well-marked dimorphism (Camb. Phil. Soc. Proc. XvU. part 4, 1914, 
p. 331). 

The results summarised are as follows: 

Infection by Clepsydrina ovata. 

Average number Number of 
Number Not of gregarines in 
examined | infected | Infected ore cS the infected 

individuals 

y 

Low males 23 1 11 323 29 

High males 23 11 12 238 20 

Females 5 1 4 53 13 

Thus the evidence so far obtained is that the dimorphism of 
the forcipes in Ff. auricularia § is not a result of or influenced by 
gregarine infection—though in view of the well-established effects 
of such parasitism on the secondary sexual characters of another 
arthropod in Geoffrey Smith’s case of Inachus dorsettensis modified 
by the gregarme Aggregata (Mitt. Zool. Stat. Neap. xvi. 1905, 
p. 406), the absence of positive evidence to the contrary at the | 
time Wheeler wrote, but now obtained, certainly afforded ground 
for his support of Giard. 

In this connection I may quote a letter from Geoffrey Smith, 
whose recent death at the battle front brmgs us into common 
mourning with Oxford zoologists for a friend and colleague. 
Writing to me about 1907 he said, “ Have you noticed that Giard 
attributes all cases of High and Low Dimorphism to parasitic 
castration? I am sure this is not right, but there is no doubt 
that parasitic castration is a much more frequent occurrence than 
is commonly supposed.” ‘These words, and a footnote to the same 
effect in his paper “ High and Low Dimorphism ” (Mitt. Zool. Stat. 
Neap. xvil. 1905, p. 321), are typical of the writer’s insight and 
balanced judgment. 

It may be stated that the gregarines in the Porthcressa earwigs 
fell roughly into categories of small, medium, and large, but they 
all seemed to be C. ovata. Rather more than half were small 
individuals, and those of medium size were slightly in excess of the 
large, but the sizes were not recorded in the case of the first few 
earwigs examined. Very large numbers were found in syzygy, 
and such associated individuals were of all three sizes. One 
instance of syzygy of a large with quite a small individual was 
observed. There was no noteworthy difference between the 
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numbers of gregarines of different sizes or between the proportion 
of free gregarines to those in syzygy in their low and high male 
hosts respectively. 

During our stay on the Scilly Islands in 1912 Capt. Potts and 
myself, in company with Capt. J. T. Saunders, found in St Martin’s 
several earwigs parasitised by a gordiid larva (sp. incert.), the coils 
of which, though projecting between the terga of the abdomen, 
seemed to have no effect on the health and activity of their hosts. 
The same apparent absence of deleterious effects was noticed in 
three of the Porthcressa batch of 1917 which were found to be 
similarly infected. In one, a low male, a large gordiid occupied 
most of the body, and no portion of the alimentary canal posterior 
to the crop could be found; in a high male similarly infested by a 
large gordid there was very little of the hind gut left; and an adult 
female contained three or four gordiids of various sizes, the gut in 
this case being intact and apparently healthy. A fourth individual, 
a low male, was not parasitised when examined, but as the gut was 
partially atrophied, it had probably been recently deserted by a 
gordid. All these infected individuals seemed as active and 
healthy and to possess fat bodies as large as those not infected ; 
the earwig’s resistance to such extensive destruction of internal 
organs 1s very noteworthy. As Clepsydrina ovata inhabits the 
chylific ventricle and hind gut and as the presence of gordiuds 
evidently often results in destruction of these portions of the 
alimentary tract, the latter parasite is likely to be exclusive of 
gregarines, and these were absent in all three of the males 
mentioned above (including that with the hind gut intact), while 
only two were found in the female. 

That the presence of parasitic worms has sometimes serious 
effects on the insect’s health is suggested by the recent observations 
of Jones recorded in “The European Earwig and its control,” 
a report on the invasion of Newport, R.I., in 1911 by Forficulu 
auricularta and its subsequent spread (U.S. Dept. Agric. Bull. 566, 
Washington, June, 1917), from which it appears that 10 per cent. 
of earwigs kept in the laboratory were killed by the infection of a 
worm identified as Filaria locustae, whose average length is given 
as 83mm. This however is a size exceeding considerably that of 
the gordiids in the Scilly earwigs, which I have called “large” 
when attaining a length of 50 mm. 

In southern Russia Forficula tomis, Kolenati, is parasitised by 
the tachinid fly, Rhacodineura antiqua (Pantel, Bull. Soc. Entom. 
France, No. 8, Paris, 1916, p. 150), but I do not know if it attacks 
the common earwig. The paper quoted mentions the capture of 
the adult fly in Holland and Portugal. 

Lucas (4ntom. Xxxvil. 1904, p. 213) reports #. auricularia 
(or ?lesnev) attacked by scarlet acarine mites. 
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Among fungoid parasites, Hntomophthora forficulae diminishes 
the number of earwigs (Picard, Bull. Soc. Htude Vulg. Zool. Agric. 
Bordeaua, Jan.—April, 1914, pp. 1, 25, 37, 62). It is possibly this 
species which has caused heavy mor tality among the earwigs which 
I have kept in captivity in the Zoological “Laboratory during 
recent years. Infection by the above or other fungus is a very 
frequent result of damp in the soil-or in the plaster of Paris cells 
bedded with coco fibre which I have employed. The most effective 
preventive of fungus has so far been keepmg the earwigs in 
roomy glass dishes lined with virtually dry sand and supplying 
water only by wetting the vegetable food given. 

(b) Food. 
In “The Wild Fauna and Flora of the Royal Botanic Gardens, 

Kew,” 1906 (Kew Bull. Add. Series V), Lucas writes (p. 23) of the 
Common Harwig, “It is an animal feeder. Does it do as much 
damage as is supposed?” And Ealand in “Insects and Man,” 
1915, p. 266, states “most gardeners would assert that the insect 
is destructive to cultivated plants. Careful observation and 
experiment, however, show that it 1s carnivorous and that it 
devours caterpillars, snails, slugs, etc....1ts habit of hiding in such 
flowers as the sunflower and dahlia have earned it an undeserved 
reputation for evil.” 

I find that seven out of nine recent and more or less compre- 
hensive manuals of Economic Entomology do not mention earwigs 
at all, which is fair evidence for considerable doubt as to their 
being harmful insects. Of the two works in which earwigs are 
mentioned one speaks of them as destructive to mangolds, turnips, 
cabbage crops, and plant blossoms, while the other states dahlias 
as attacked, “but nearly all plants suffer.” Virtually every fruit 
grower and horticulturist of whom we make enquiry assures us 
that earwigs are most destructive pests, but is the general belief 
thus expressed really well founded ? 

Recent literature leaves the impression that in certain localities 
earwigs may be specially harmful to plants of economic value, 
though an explanation of this capriciousness is wanting. Theobald 
(ep. on Econ. Zool., South-Eastern Agric. Coll., Wye, April 1914) 
gives hops as attacked by F. auricularia. Lind and others in a 
summary of the diseases of agricultural plants in 1913 (79 Be- 
retring fra Statens Forsdgsvir ksamded 1 Plantekultur, no. 30, 
Copenhagen, 1914) state that in one locality in Denmark cauli- 
flowers were completely destroyed by the Common Earwig, which 
seems a very exceptional event. Schdyen in Beretning om skadein- 
sekter og plantesygdommer 1 land og havebruket 1915 (Report on the 
injurious insects and fungi of the field and the orchard in 1916), 



by birds of the Common Earwig (Forficula auricularia) 171 

Kristiania, 1916, mentions that in many parts of Norway different 
vegetables, cabbage in particular, were extensively damaged by 
F. auricularia. Tullgren, in a report on injurious animals in 
Sweden during 1912—1916 (Meddelande fran Centralanstalten 
for Jorsbruksforsék, no. 152; Entomologiska Avdelningen, no. 27, 
p- 104), records damage by F. auricularia to ornamental plants, 
barley, wheat, and cabbage. In the case of the invasion of New- 
port, R.L, by the Common Karwig, Jones (op. cit.) reports that the 
quite young individuals eat tender shoots of clover and grass, and 
possibly grass roots; while later on shoots of Lima Bean and dahlia 
and (Se of Sweet William and early roses are attacked, with 
a general preference for the bases of petals and stamens rather 
than for green shoots. Adults are recorded as feeding almost wholly 
on petals and stamens, though clover, grass and terminal buds of 
chrysanthemums and other “fall flowers” are also devoured. Sopp, 
“The Callipers of Earwigs” (Lancs. and Ches. Hntom. Soc. Proc. 
1904, p. 42), records having seen a female earwig using her forcipes 
to repeatedly pierce damp decaying seaweed on which she was 
apparently feeding. Liistner (Centralbl. Bakt. Parasit. u. Infektions- 
krankheiten, XL. nos. 19-21, Jena, April 1914, p. 482) has summa- 
rised the work of over thirty observers of the contents of the crop 
of the Common Earwig. Altogether 162 individuals were thus 
examined, and the conclusion was arrived at that earwigs normally 
feed on dead portions of plants and on fungi such as Capnodium, 
living leaves and flowers being attacked when circumstances 
favoured the change. Dahlia leaves and petals were very readily 
devoured. How far earwigs are a pest to ripe fruit seems not to 
have been investigated, but it was concluded that as a rule they 
may be regarded as harmless save in special cases. It was admitted 
however that the further the enquiry went the less definite were 
the results. 

In view of the diversity of reports as to the favourite food 
plants of earwigs and the general want of exact information as to 
the damage likely to be done by earwigs in a flower or kitchen 
garden I carried out a small series of observations on the earwigs 
obtained last August from St Mary’s, Isles of Scilly, which were 
kept in captivity in the Zoological Laboratory for some weeks, 
primarily for the purpose of examining their alimentary canal for 
parasites. These earwigs, several dozen in number, were kept in 
a large glass dish bedded with sand slightly damped occasionally. 
They had no animal food save that afforded by those which died. 
In order to obtain information as to preference for one kind of 
plant above another they were given three different species, taken 
haphazard, at a time for a period of two days or more. 

A summary of the results is as follows :— 
Aug. 20 and 21. Vegetable marrow leaves were very much 
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eaten ; horse-radish leaves very little touched; Michaelmas Daisy 
leaves and flowers hardly, if at all, touched. 

Aug. 22 and 23. Beetroot leaves were much eaten, the leaf 
stalks in particular, these being opened out and the pith taken : 
white phlox leaves and flowers, the petals much gnawed and pollen 
grains were found in the gut: dwarf bean leaves, little touched. 

Aug. 24 to 26. Blue Anchusa leaves and flowers, the petals 
were much eaten but the leaves neglected: white rose leaves and 
flowers, petals devoured but leaves untouched: golden rod (Solidago) 
leaves and flowers, leaves nibbled at sides here and there but 
flowers apparently neglected. 

Aug. 27 to 29. Yellow Oenothera flowers and pods, the petals 
were much eaten but the pods remained untouched: white J apanese 
anemone leaves and flowers, petals eaten to some extent, leaves 
neglected: raspberry foliage, the leaves were not nibbled, but the 
earwigs congregated in numbers on their hairy undersides, an 
action much more pronounced than in the case of any of the other 
plants given throughout the observations. 

Aug. 30 and 31. Cabbage leaves were destroyed by the blade 
being gnawed down between the veins to the midrib, while the 
ends of the veins were shorn off: rhubarb leaves, eaten a good 
deal: scarlet runner leaves, fowers, and pods, apparently quite 
neglected. 

Sept. 1 to 3. Plum fruit unskinned was much attacked: 
potato tuber and rather unripe apple, both unskinned, were not 
touched at all. 

Sept. 4 to 10. On the 4th the plum was removed, but the 
apple and potato were not attacked during the seven days. 

Sept. 11 to 15. On the 11th the apple was cut across, with 
the result that it was slightly gnawed during the five days: the 
potato remained untouched. 

Sept. 16 to 23. On the 16th the potato was cut across, which 
was followed by its being very thoroughly attacked, though the 
apple was not entirely deserted. 

Of the 51 earwigs whose alimentary canals were examined for 
gregarine 7 contained spores of Puccinea graminis (one had as 
many as 180 and another 100), while the food of another individual 
included numerous unidentified engfomophilous pollen grains. 
Both spores and pollen grains appeared to be very slightly if at all 
digested. It is hoped to extend the observations in the coming 
summer, as those recorded above were limited to only a few of the 
possible food plants and only adult earwigs were kept. It may 
well be that there are differences in the preferences of nymphs 
and adults, and as the former are in the majority till about the 
end of July, it is possible that they may be harmful to certain 
plants in particular, as Jones’s observations (op. cit.) suggest. 
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It seems established that a large number of ordinary garden 
species are liable to serious attack by earwigs, and that the latter 
can continue healthy on a purely vegetable diet. But much further 
information of a detailed kind is required before we can explain 
why in a given locality a particular kind of plant is attacked 
while in another it is neglected. Does it mean that the presence 
or absence of suitable animal food is a factor ? 

As regards animal food, there is a considerable amount of 
evidence that earwigs are often carnivorous by choice, very 
possibly they are so usually (cf. Riihl, W.7. Schweiz. Ges. vu. 
1887, p. 310). In respect of eating dead animal matter I have 
found that when kept in captivity they devour the soft parts 
of their fellows who have died even when fresh vegetable food 
is available. In this necrophagous habit they resemble cock- 
roaches. Jones (op. cit.) states that dead flies and dead or dying 
comrades are devoured. Liistner (op. cit.) finds that only dead 
animal matter is taken. This conclusion points to too limited an 
inquiry and want of taking into account the possible presence of 
food plants which were more attractive than available living prey. 
In any case his opinion that earwigs should not be regarded as 
beneficial is traversed by the records of their killing certain insect 
pests of plants. 

Round Island, the northernmost islet of the Scilly group, is 
swarming with earwigs, and they congregate in vast numbers in 
the light-keepers’ midden inside the discarded pressed beef tins. 
If, as seems probable, they reached the islet before the lighthouse 
was built a change of diet seems to have occurred, as the indigenous 
vegetation 1s chiefly Armeria maritima, Cochlearia officinalis and 
Mesembryanthemum edule. There is no turf. It is of course 
possible that they seek the potato peelings also thrown into the 
midden and that their numbers inside the discarded tins mean 
that the latter are frequented partly for shelter. If the Round 
Island earwigs have really turned during comparatively recent 
years from a herbivorous to an extensively carnivorous diet, 
Rosevear, another islet of the Scilly group may, in a sense, be a 
converse case. It is the other locality in the Scilly group in which 
(as far as I know) the earwig population is densest. Like Round 
Island, it is very small, but differs from it in being uninhabited. 
But from 1850 to 1858 it was occupied by the builders of the 
Bishop Rock Lighthouse, so is it possible that the abundance of 
earwigs 1s due to the animal food available in the past ? However 
this may be the present diet of the Rosevear earwigs appears likely 
to be vegetarian in the main, unless the islet harbours some insect 
or other small arthropod suitable for food. The commonest plants 
are Armeria maritima and Lavatera arborea, the latter growing 
luxuriously. But before the abundance of earwigs on Rosevear 
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can be discussed adequately something rust be known of the con- 
ditions obtaining on Rosevean and Gorregan, its small and only 
immediate neighbours. Of these islets I possess no information 
at present. Also, there are other peculiarities as regards the 
earwigs of Rosevear and Round Island which are beyond the 
scope of the present paper. 

There is no doubt that earwigs sometimes kill and devour 
other insects larger than themselves, though the event is probably 
somewhat exceptional. Chapman (“Notes on Early Stages and 
Life History of the Karwig,’ E’ntom. Record, xxtx. no. 2, Jan. 
1917) states that “animal food, such as dead insects, seemed always 
acceptable ” to earwigs in captivity. Sopp (op. cit. p. 42) regards 
earwigs as probably “omnivorous feeders, largely carnivorous by 
choice, but often phytophagous, frugivorous, or even necrophagous 
of necessity.” Whether attack on living animals as prey is 
common I cannot say, I have no observations of my own to 
record; but it appears that occasionally the forcipes, organs of 
much disputed function, are used for this purpose. Sopp (op. cit.) 
has seen them employed to seize and crush large flies which were 

. Subsequently devoured and quotes an instance of a larva similarly 
attacked from the records of another observer. Burr (Zntom. 
Record, Sept. 1903) saw a blue-bottle seized by the forcipes of a 
male Labidura riparia kept in captivity. Lucas (Entom. XXXVIII. 
1905, p. 267) records a female of this species as using the forcipes 
to capture a cinnabar moth larva, which was afterwards devoured. 
Jones (op. cit.) records that the Newport, R.I, earwigs attack and 
devour “certain sluggish unprotected larvae.” 

There are many observations which show that earwigs Im some 
localities prey upon small insect larvae, and in certain instances 
they have been recommended as a means of diminishing plant 
pests. Thus the following references, as also others quoted in this 
paper, have appeared in issues of The Review of Applied Entomo- 
logy, 1913—1918. Bernard (Technique des traitements contre les 
Insectes de la Vigne, Paris, 1914) states that they devour the 
pupae of one or more of Clysia ambiguella, Polychrosis botrana, 
and Sparanothis pilleriana (v. also Kirkaldy, Entom. XXXII. 
1900, p. 87). Dobrodeev (Mem. Bur. Entom. of Cent. Board 
of Land Administration and Agric., Petrograd, X1. no. 5, 1915) 
makes a similar report as regards the destruction of the first two 
Tortricidae named above by earwigs. Molz (Zeits. Angewandte 
Chenue, Leipzig, XXVI. nos. 77, 79, 1913, pp. 533, 587) speaks of 
earwigs as natural enemies of the vine moth. F eytaud (Bull. 
Soc. Etude Vulg. Zool. Agric. Bordeaux, xv. nos. 1—8, Jan.—Aug. 
1916, pp. 1, 21, 48, 52, 65, 88) states that earwigs destroy the 
eggs and larvae of the coccid vine pests Hulecanium persica and 
(probably) Pulvinaria witis. Harrison in “An unusual parsnip 
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‘pest ” (Hntomologist, xLvi. Feb. 1913, p. 59) reports them as 
most effective in killing and eating Depressaria heracliana, the 
“parsnip web-worm.” Brittain and Gooderham (Canad. Hntom., 
London, Ont., XLV. no. 2, Feb. 1916, p. 37) make a similar state- 
ment. 

There is no doubt that our knowledge of the bionomics of 
the earwig is at present very imperfect. As in the case of other 
very common animals far too much has been taken for granted. 
The earwig’s nocturnal habit, its tendency to assemble in great 
numbers between two closely apposed surfaces, and its “frightening 
attitude” of flexing its abdomen dorsalwards with opened forcipes 
all tend to give it a reputation for evil which very probably is 
but partially deserved. We all know how the habit of entering 
crevices is responsible for the belief that it gnaws through the 
tympanic membrane with the result of mania or even death. 
Perce-oreille speaks for itself. It seems fairly established that 
its universally bad reputation among gardeners is founded on 
tradition and want of judgment combined with neglect of the 
increasing evidence that its presence is sometimes beneficial by its 
destructiveness to more harmful insects than itself. That it eats 
the petals of dahlias and chrysanthemums to some extent is true, 
but as far as my own observations go the outlay of time and 
material devoted to the traditional protection of the flowers by 
inverted flower pots stuffed with straw seems hardly worth while. 
The great attraction which the flowers have for earwigs seems to 
be the closeness and number of their petals, which provide a 
daytime shelter whence nightly excursions for feeding are made. 
Anyone possessing a garden may greatly add to our knowledge of 
favourite foods; observation at night is particularly needed. As 
regards garden varieties of roses the case against earwigs is 
probably more severe. 

(c) Capture by birds. 

During the last decade systematic investigation of the contents 
of the alimentary canal of British wild birds by several observers 
has resulted in most useful information as to which should be 
regarded as harmful and which as neutral or beneficial to agri- 
culture. It is manifest from the laborious and painstaking work 
now at our disposal that many of the reputations, good or evil, 
which certain common birds have in the eyes of farmers and 
gardeners need considerable revision, in some cases even reversal. 

As regards the capture of earwigs by birds, it appears that 
they are not a favourite food when we bear in mind how numerous 
they are sometimes and that they are large enough to be easily 
seized. No doubt their nocturnal habit affords much protection 
from capture. é 
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Collinge in “The Food of some British Wild Birds” (London, 
1913) reports on the contents of the crop, ete., of 29 of the com- 
monest species, among which only four contained earwigs, and 
these were very few in number. Thus in 404 House Sparrows 
2 earwigs were found, 1 in each of 2 birds; in 721 Rooks 2 ear- 
wigs were found, 1 in each of 2 birds; in 40 Skylarks 3 earwigs 
were found among 2 birds; in 64 Song Thrushes 7 earwigs were 
found among 2 birds. 

Newstead in “The Food of some British Birds” (Supp. to Journ. 
of Board of Agric. no. 9, Dec. 1908) records observations on the 
swallowed food of 128 species, the outcome of 871 post-mortem and 
pellet examinations carried out in various years from 1894 to 1908. 
He finds that 10 species had eaten earwigs, the numbers of birds 
examined and the numbers of earwigs found being: 1 Whimbrel, 
40 earwigs; 2 Green Woodpeckers, 24 earwigs; 2 Starlings, 3 ear- 
wigs; 1 Nuthatch, 3 earwigs; 1 Chaffinch, 1 Great Titmouse, 
1 Peay 1 Song Thrush, 1 Whinchat, 1 Woodcock, 1 earwig 
each. 

Theobald and McGowan in “The Food of the Rook, Chaffinch 
and Starling” (Supp. to Journ. of Board of Agric. no. 15, May 
1916) put on record a particularly valuable and interesting series 
of observations, as they examined the food month by month 
during nearly 24 years, viz., from Jan. 1912 to May 1914, the 
inquiry covering 277 Rooks, 748 Starlings, and 527 Chaffinches. 
An analysis of their results as regards earwigs for the 24 years is 
as follows: 

a stots Average number of | 
Birds Harwigs earwigs taken by 

examined found eachibnd 

o § | Starling 372 154 “41 
2S 

‘= S$ | Chaffinch 277 7 025 

2 | Rook 121 3 025 

=. | Starling 376 99 - 53 
. SS 
Ss S 

S 8 | Chaftinch 248 5 ‘020 
3s = 

Rook 156 3 019 

I have divided the year into two periods of six months con- 
formably with the seasonal presence or absence of earwigs on the 
surface of the ground. From October to March most male earwigs 
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die and the females are hibernating. In view of this it is curious 
that earwigs should be taken as numerously during this period 
as during the six months when both nymphs and adults can be 
found easily. The numbers recorded for Rook and Chaffinch are 
small, though a large number of birds were examined. The Starling 
is a great insect eater ; is it possible that it habitually searches 
for buried insects during the colder months and devours earwigs 
found with the rest? This action may be true for the other two 
birds also. The figures for all three are certainly curious. 

So we find only 13 species of birds reported as having captured 
earwigs, and most of them as very sparingly. The Starling is not 
recorded by Collinge as an earwig eater. 

The above quoted reports certainly suggest that wild birds 
cannot be relied upon to diminish earwigs in a garden. Many 
of the most insectivorous are not reported as feeding upon 
earwigs at all. They may be distasteful, and a large number 
together emit a well-defined odour, and the same is true of a 
number preserved in alcohol. Be this as it may, domestic fowls 
always eat them readily, a fact which is noted by Jones (op. cit.) 
in the case of the invasion of Newport, R.I. He also mentions 
that toads will eat them. 

Miss Maud D. Haviland, Hon. Mem. B.O.U., to whom I am 
indebted for assistance with regard to the literature of the subject 
and for kind advice in the preparation of these notes, informs me 
that she has noticed a Redbreast take earwigs in preference to 
earthworms, 

ADDENDA. 

Under (0). 

Mr H. Ling Roth informs me that he has found earwigs very destructive to iris 
pods, with resulting premature fall of seeds, in a garden at Halifax, Yorks. 

Under (c). 

Gurney, in ‘“ Ornithological Notes from Norfolk for 1916” (British Birds, x. 1917, 
p. 242), records that his father in October, 1843, found several earwigs in a Stone 
Curlew. 

13 VOL, XIX. PART IV, 
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Reciprocal Relations in the Theory of Integral Equations. By 
Major P. A. MacManon and H. B. C. Darina. 

[Recewed 1 February 1918. Read 4 February 1918.] 

rh foe | eye (aoids =a 

and [Ae «(on Gai alen (ih): 

then, if we suppose the functions f,, f; and « to be such that the 
order of integration is indifferent, we have 

- bs Bs 1 > [A@ weed =|" ay [AeA elomae 
bs 

=|[ “AW wyidy, 
or, aS it may be written, : 

b, be 
i Fo aide = | TOKO COVE ces (1). 

In the Messenger of Muthematics, May 1914, p. 13, Mr Rama- 
nujan has employed this result to deduce a number of interesting 
relations between definite integrals. The method is very suggestive 
and appears capable of considerable extension. For examplé, if 

b, [,A@)€ 18(0, 0} de= (0) 
? Caner (2), 

and i for) « (B(x, t)} de = pal) 
by : rb, 

then | Si (&) Wro {0 (a, t)} dar =| f(2) Wri {0 (a, t)} da ...(3), 

provided that fa, A (y, #)} = 8 {y, 0 (2, Dheeceeccecseccees.. (4). 
The functional equation (4) is satisfied by 

O(a, t) han pie) h(E) ae ee (5), 
where f and ¢ are arbitrary functions; which is a general form of 
solution and includes among others such solutions as 

Ga N= b= (f@ -b@). eee (6), 

eye LOO | c O(a, th=¢ onsen fcc (7), 

O(@, N= $7 {f(@)+O(O4+f(b@} 2... (8). 
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Thus, to derive (7) from (5) let 

f (#) = coth™ {F(x)}, (t)=coth™ {¢,(4)}: 

then (5) becomes 

@[coth {F (x)} + coth™ {¢, (t)}]. 

Now let go (z)=4, 

then z= (u)=coth™ |g, (w}, 

whence d, (wu) = coth z, 

and u=d, 1 (coth z); 

that is g-1(z)= 1! (coth 2), 

and therefore (5) reduces to 

pi 

which is of the form (7). 

sh eae 
LF@+h@$’ 

As an example of the use of (2) and (3) in the determination 
of relations between integrals, let 

fi(a)=smn2, f,(@)=cosa, 

and, using the form (6) for @, let 

Cen) —e7ne 

and (2) = a. 

Then, putting eo. 2, — 0 — 0; 
a 

we have from (2) wy, (t) =) sin @. e718? dx 
0 

_ (log ¢.sin 4 — cos a) e784 + 1 

wy. 1 + (log t) : 
a 

and." w, (#) = cos 7. et 18? da 
0 

- (log t. cos a + sin a) e*'8! — log t 
1+ (log ty? — 

Substituting these values in (3), and then putting log¢=1/r 
for brevity, we obtain 

; | * (w sin (w — a) + 7 cos (w — ay} er 
0 7? + Py pes Ee 

A4amnw 7 ; 
“e2snaz2z+recos @ Bees es | = 0, 

/ 0 [fe + De 

13—2 
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so that, provided 7 is not zero, we have 

“ ‘av sin (w — a) +1 cos (a — a)} ew" 
- -———- — — da 

0 A a= At 

i “sin v+r cos x 
= craks ore Ties » wi - al M 

0 Te ape 

an identity which may be verified by differentiation with respect 
toa. Putting «=r tan € and then replacing € by a, (9) becomes 

d 

da 

=i . 

ie HG as(GA aS ah =p TOA) ane 
= = é - 

0 COS & 

Sy A sla) a = : 
COs. |). 

which admits of ready verification by differentiation with respect 
toa. The identities (9) and (10) hold generally, provided that 
the constants are finite; we have seen that r must not be zero. It 
will be noticed that both (9) and (10) are of the form 

i 50 (GB, Cha — | x (2, 0) da, 
0 J0 

where the upper limits of integration involve a. 

2. Asanother illustration of how the method admits of genera- 
lisation, let 

iE fila) « {0 (a, t)} dx =, (2). 

and ie (2) « {0 (a, )} da= Wh, ©); 

| then i Fi (2) We {r (a, t)} da = ie So (a) Wh {r (a, t)} dx 

when rN (a, t) = 627 { f (2) + di} 

and A(x, =9 (f() + dO} 
tg, ¢: and ¢, being any functions. It should be observed that » 
becomes @ when ¢,=¢, and g=¢,. Other corresponding pairs 
of functions are . 

A (a, t= bo [f(a) bi OI, 
0 (2, t) aa (f (2) - pe ()}, 

a 1) 

and A(z, th= 7} ie) gO OPE TE Mato | 
( (2) s(t) + 1) 

(F@)+ be J 
OG, )=G 
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3. <A further extension is obtained when the kernel « includes 
more than one parameter t; thus let 

b, 

i) Pen te) dan (sf): 

[Pole «(0 (eb, 1) do = allt) 
so that if 

[A W10 ly, mle, t&), mle t thay 
i =r {u (@, ty, t), » (a ty, b)| 

and 

PAC) 14 fn wlan tas), 9 (x t, BD) dy 
oF = wp, (uw (@, ty, t.), v (@ ty, th. 

Now consider 

by a / \ 

[ Fs (x) We | (a, hh, ta), v Ge hy t.)} dav 

db, r De Q 

=| Ai (x) ( | hY)K« [0 {Y, pw. (a, t, te), v (@, tr, te)}] dy) da. 

This double integral 1s equal to 

Mes , by a 7 [AO (f AG «(0 ly wt, &), ole tO] dy ae 
BEE ILL, ty, te), D(a ty, la) — O 1x, ey, ty, to), V(Y; tr, te)}- 

Now suppose 

(2%, th, ty) = pit Lf («) + di (t,) + Pi (t.)}, 

p (a, ty, t) = po! {f (w) + do (th) + bo (te)}, 

O(a, ty, te) = $7 [2 f (a) + oi (th) + ba (tf; 
then @ {y, (a, t, t), v (a, t, t)} 

=P {2h (y) + 2f (a) + br (h) + hr (te) + hah) + f. (I. 
This is symmetrical in # and y, so that we may write 

fe (#, ty, te) = br [fa (w) + Os (h, te)}, 

v(x, ty, te) = by" | fs(v) + Gah, be), 

O(a, th, t)=9 {fe(~) + fi(@) + bi (h) + he (B)I, 
leading to 

IS +S(y) + fi@) + falw) + bs (ty be) + ba (hr teh, 
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which is symmetrical in # and y; and hence it follows that 

by 

LA Co) telwlo, ty t), va byt) de 
by 

=| FOV (ale, t,t), »(@ 6, t)} den 

As a particular case we may write 

(a, ty, ty) a di { f(x) ar pi (t,) + fi (te)}, 

V (@ th, ts) a ds? { f (2) atk dy (¢;) AF Pp» (é2)|, 

(a,b, b)=p7 (af (#) +$(h)+¢ (t)}, 

=p(a,h, ts) = {3 f(«)+ 6(4)+ o(b)j, 

O(4, th, b) = Om { f(#) + 6(&)+ co) (t)}, 

the case where =v and each resembles @ as much as possible. 
It is evident that the case in which the kernel includes any number 
of parameters may be treated in the same manner and presents 
little difficulty. 

and again 

4. The method may also be extended to double integrals. 
Thus let 

by axe 
| i jh (a, y) K {0 (a, Y, hy, t,)} dady = Wy (G, ie) 

a 

Dn (oR 
i | ee (a, y)K {@ (x, y, h, t»)} dudy = Wo (bh, te) ; 

Oy (Pox! : 
then | i Silt, Y) ro |e (&, Y, th, te), v(&, Ys h, t)! dady 

Rei 
i | | So(2, Wi [Mm (@ yp tr te), v (a, y, br, t)} dedy 

if OVA, OG, Uy thy Ua) DCB, Ob Un, I) 

Ie) ay Op (Ay OW re, Ua) (Gy bh ay Cas 

It A, B, C, D, E be functional symbols, one solution is 

ABET), (iy Ua) = Yale enw, 0) SECM Gn, th) 

Y (2 Ys tas ts) — Dat Bay) + (hs ts) 

O(a, y, ty, t) = B(a, y) +44 ()+4DG@). 



in the Theory of Integral Equations 183 

5. Let us next consider the case of three integral equations 
dv, 

[ Fi (#) € {0 (a, t)} dar =r, (6), 

by 

[fe «Ol, 0) de= WO, 
b, 

[Ae (OC, | de = YO. 
We have ss oe 

[ Go) pe 10 (a, 0} hs (0, 0} de 
by 

ia 3 Pole) ee. (2: Cro (a; b)bdae - ads<03. ( 

b; 

=i Is (a’) Wi 10 (a, t)} ry {0 (x, t)} du | 

if certain conditions are satished. For 

db 

[° flere {0 Ge 0) Ys (Oe, 0} de 
by : Dy : b; 3 : 

=[" AO] AK (OM Ol dyf Ke (Ol, 1)! dede, 
and the equalities (11) will hold good if, for example, « (w) = «* and 

Oty, O(a Tt). 012.0 (a, t) 

is unaltered by the circular substitution (wyz). 

Now suppose that 
IGog) 34) (EE Oe Cane ae (12); 

then Ay, O(a, )} 0 {z, O(e, D}= KF) 4 (a, t) 
= fo (YSoOl. 

Hence if «(#)=.2* the relation (12) satisfies the conditions. The 
generalisation to the equality of n integrals is apparent, and in 
that case 

1 

O(a, t)=f(a)t”-? 
is a solution, 

We have also 
b, 
: Fi (&) Wo {r (a, t)} vrs {A (a, t)} da 

as 
a Sa(@) Wes {r (a, t)} Wr {[r (a, £)} da 

#5 
i Fs(@) Wr [A (a, £)} Wr {A (a, t)} da 
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if DCE) — Dea ee) ye) 

and in particular if 

N(a, t)=f(a)t?, O(a, t) = {A(a, t)}” 
A solution may also be obtained when « (#) = p*, in which case 

«(0 fy, O(a, d}]. «[O {z, O(a, t)}] = e919 9 OF +012 6 (OF, 

Putting O(a, t) =f (x) + 4t, 

we have 

Oly, O(a, Hh + 8 [z, O(a, Hi =f(y) +f(2) + fe) + ot 
which is of the symmetrical form required. 

6. In the cases investigated above the kernels of the several 
integral equations have been functions of the same form. It is, 
however, easy to extend the method to the case where the kernels 
are functions of different form. Thus if 

[ Ale)e,(0(e, Oh de= nl, 
[ AO) e (le, 0) de=W(O, 

we are led to the condition 

[0 ly, XC, th] = [8 [a, r(y, th]. 

Case 1. Let «,(z)=2, «,(1/2)=z; then the condition becomes 

Oly, r(x, t)}. 0 {w, r(y, )}=1; 
a solution of which is 

O(#, t= x (F(@), 6} =X (OO, FP), 
where NaS) — ba HG): 

and y 1s any function. 

Case 2. Let «,(z)= 2, «.(—z) =z; then the condition is 

d ly, X(a, t)} +O fw, X(y, t)} =0; 
a solution of which is 

O(4, N= x {F (2), 6} -—xX{dO, FI. 
Case 3. Let x, (z) = 2, «.(z)=(1 — z)"*; then the condition is 

[A ty, X(a, tPF +(8 {w, r(y, OP = 1; 
a solution of which is 

(4% =X F@), $O}=(XF@), GOV + lOO, F@)}*. 
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F wsh-freezing. By Professor STANLEY GARDINER and Professor 
NUTTALL. 

[Read 18 February 1918. ] 

Fish-freezing commenced in 1888, in connection with Western 
American salmon. It was started to preserve the excess of fish 
caught during the runs for canning in the slack season. The busi- 
hess proved so profitable that fish began to be distributed all over 
North America and exported to Europe, the chief market in the 
latter being Germany. The fish are, as soon as possible after catch- 
ing, brought to the refrigerator, frozen dry on trays at about 10° F., 
this process taking about 36 hours. The fish then are drawn into 
a room at 20° F., where they are dipped into fresh water, their sur- 
faces being thus covered with a glaze of ice. They are then packed in 
parchment paper in strong wooden cases and exported to Europe 
by refrigerator cars and cold storage steamers. The process is also 
applied to halibut, haddock, cod, pollack and various flat fish in 

America. It succeeds in preserving the fish for an indefinite period 
of time, but the product breaks up in cooking, tending to become 
rather woolly and loses flavour and aroma. 

To meet this a fresh process has now been developed, freezing 
the fish in brine consisting of about 18 per cent. of salt at a tem- 
perature of 5° to 20°F. The brine is an excellent conductor of 
heat and cold. A large fish freezes thoroughly in three hours, a 
herring in twenty minutes. After freezing, the fish returns to the 
same condition as it was when placed into the brine; there is no 
woolliness, no loss of flavour or aroma. The difference is due to the 
fact that, whereas in dry freezing there is a breaking up of the 
actual muscular fibres, due to the formation of ice erystals, in brine 

freezing the ice crystals are so small that the muscular fibres are 
entirely unaffected and on thawing return to the normal. In neither 
form of freezing is there danger from moulds or putrefaction if the 
fish is stored below 20° F. 

The authors advocate the creation of a vast store of frozen her- 
rings against time of scarcity, instead of the herrings being pickled 
and exported. The value of fish as food is weight for weight about 
the same as meat, containing the same constituents. If the excess 
of the herring catch were stored in this way, there would be, on 
pre-war figures, a store of herrings in this country to meet the 
necessity for-albuminous food in the British Isles for at least eight 
weeks. 
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On the branching of the Zygopteridean Leaf, and its relation to 
the probable Pinna-nature of Gyropteris sinuosa, Goeppert. By 
B. Saunt, M.A., Emmanuel College. (Communicated by Professor 
Seward.) 

[Read 20 May 1918.] 

(1) The supposed quadriseriate “pinnae” of forms like Stawrop- 
teris and Metaclepsydropsis are tertiary raches, the vascular strands 
of the secondary raches (pinna-trace-bar, Gordon) being completely 
embedded in the cortex of the primary rachis. All Zygopterideae 
therefore have a single row of pinnae on each side of the leaf. 
(2) This revives the suggestion that Gyropteris sinuosa Goepp. is 
a free secondary rachis of a form like Metaclepsydropsis. (3) The 
genus Clepsydropsis should include Ankyropteris because: a. A 
fossil described in 1915 (Mrs Osborn, Brit. Ass. Rep., p. 727) com- 
bines the leaf-trace of Clepsydropsis with the stem of Ankyropteris, 
the leaf-trace in both arising as a closed rng. 0b. In C. antiqua 
Ung. also the leaf-trace arose similarly, as shown by a section 
figured by Bertrand (Progressus 1912, fig. 21. p. 228) im which a 
row of small tracheides connecting the inner ends of the peripheral 

_ loops represents those lining the ring before it became clepsydroid 
by median constriction. 

The Structure of Tmesipteris Vieillardi Dang. By B.SAHNI,M.A., 
Emmanuel College. (Communicated by Professor Seward.) 

[Read 20 May 1918.] 

The most primitive (least reduced) of the Psilotales. Specifically 
distinct from 7. tannensis in (1) erect terrestrial habit, (2) distinct 
vascular supply to scale-leaves, (3) medullary xylem in lower part 
of aerial stem. 

On Acmopyle, a Monotypic New Caledonian Podocurp. By 
B. Saunt, M.A., Emmanuel College. (Communicated by Professor 
Seward.) 

[Read 20 May 1918.] 

Indistinguishable from Podocarpus in habit, vegetative anatomy, 
drupaceous seed, megaspore-membrane, young embryo, male cone, 
stamen, two-winged pollen and probably male gametophyte. Chief 
differences: (1) seed nearly erect; (2) epimatium nowhere free from 
integument, even partaking in formation of micropyle; (3) outer 
flesh with a continuous tracheal mantle covering the basal two-thirds 
of the stone. 
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3. A particular case of a theorem of Dirichlet. By H. Topp, B.A., 
Pembroke College. (Communicated by Mr H. T. J. Norton.) 

4. On Mr Ramanujan’s Empirical Expansions of Modular Functions. 
By L. J. Morpett. (Communicated by Mr G. H. Hardy.) 

5. Extensions of Abel’s Theorem and its converses. By Dr 
A. Kienast. (Communicated by Mr G. H. Hardy.) 

November 12, 1917. 

In the Comparative Anatomy Lecture Room. 

Proressor Marr, PRESIDENT, IN THE CHAIR. 

The following Communications were made to the Society : 

1. Some experiments on the inheritance of weight in rabbits. By 
Professor Punnett and the late Major P. G. Barry. 
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crosses. By A. Sr Chair Caporn. (Communicated by Professor 
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2. (1) Sir George Stokes and the concept of uniform convergence. 

(2) Noteon Mr Ramanujan’s Paper entitled : On some detinite 
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Warson, M.A., Trinity College. 

4. (1) On certain trigonometrical sums and their applications in 
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By S. Ramanusan, B.A., Trinity College. (Communicated by Mr 
G. H. Hardy.) 
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February 18, 1918. 

In the Comparative Anatomy Lecture Room. 
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E. Lindsay Ince, B.A., Trinity College. 
8S. Ramanujan, B.A., Trinity College. 
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1. Fish-freezing. By Professor STANLEY GARDINER and Professor 
Nutra. 

2. Shell deposits formed by the flood of January 1918. By 
P. Lake, M.A., St John’s College. 

3. (1) Reactions to Stimuli in Corals. 

(2) Is the Madreporarian Skeleton an Extraprotoplasinic Secre- 
tion of the Polyps ! 

By G. Marrmat, M.A., Emmanuel College. (Communicated by Professor 
Stanley Gardiner.) 

4. Notes on certain parasites, food, and capture by birds of Forfiewla 
auricularia. By H. H. Brrypury, M.A., St John’s College. 
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Proressor Marr, PRESIDENT, IN THE CHAIR, 

The following was elected a Fellow of the Society : 

C. Stanley Gibson, Sidney Sussex College. 

The following Communications were made to the Society : 

1. (1) On the branching of the Zygopteridean Leaf, and its relation 
to the probable Pinna-nature of Gyropteris sinwosa, 
Goeppert. 

(2) The Structure of 7’mesipteris Vieillardi Dang. 

(3) On Acmopyle, a Monotypic New Caledonian Podocarp. 

By B. Saunt, M.A., Emmanuel College. (Communicated by Professor 
Seward.) 

2. Asymptotic Satellites in the problem of three bodies. By 
D. Bucuanan. (Communicated by Professor Baker.) 
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On Certain Trigonometrical Series which have a Necessary and 
Sufficient Condition for Uniform Convergence. By A. E. JOLLIFFE. 

(Communicated by Mr G. H. Harpy.) 

[Received 1 June 1918; read 28 October 1918.] 

1. The series Ya, sin nO, where (a,) is a sequence decreasing 
steadily to zero, is convergent for all real values of 6, and it has 
been proved by Mr T. W. Chaundy and myself* that the series is 
uniformly convergent throughout any interval if na,—>0, this con- 
dition being necessary as well as sufficient. 

A generalization of this theorem is as follows: 
Tf (An) is a sequence increasing steadily to infinity and (an) is 

a sequence decreasing steadily to zero, then the necessary and suffi- 
cient condition that the series X dn+1 (COS An O — COS An+1O)/O, which is 
convergent for all real values of 0, should be uniformly convergent, 
throughout any interval of values of 0, 18 Andn—> 0. 

I shail prove rather more than this, viz. that the condition is 
sufficient for uniform convergence and necessary for continuity. 

When @=0, it is understood that the value assigned to any 
term of the series is its limit as @ tends to zero, so that for @=0 
the sum of the series, which I shall denote by Yw,, is zero. Since, 
by Abel’s lemma, 

| Unga +... + Up | < 2dn44/0, 

it is evident that there is continuity and uniform convergence 
throughout any interval which does not include @=0, so that it 
is only intervals which include 6 = 0 that we have to consider. 

* Proc. London Math. Soc. (2), Vol. 15, p. 214. 

VOL. XIX. PART V. 14 
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A very trifling modification of the analysis which follows will 
show that, so far as an interval which includes @ = 0 is concerned, 
‘the same results hold for the series 

LAn1 (COS An — COS An+14) cosec LO, 

where b is any fixed number. If either (Ani: — Xn) OF F(Angi + An) 
is always an integral multiple of some fixed number 6, then A, 
differs by a constant from an integral multiple of 2b, and the series 
is periodic with a period 7/b. In this case the results which are 
true for an interval which includes 6 =0 are true for any interval. 
The particular series 2a, sin nO corresponds to b=}, A»=N +4. 

2. Since the sum of the series when @=0 is zero, it follows 
that, for continuity at 0=0, the sum of the series, when @ is 
different from zero, must tend to zero as @ tends to zero in any 
manner. In particular, the sum when @=7/2A, must tend to 
zero, as n tends to infinity. 

When 0=77/2),, let m be the integer such that 

Ne rr) aN Os 

It should be noticed that we may have m —1=n, and that 

Xm > 2rn- 

When m—1 >n, cos Ay»_,4 — cos ApA Is positive, so long as p is 
not greater than m — 1, and consequently 

O (uy + Uy + oe + Um) 
> Mn (COS AO — COS AO) + Ay—1 (COS Ay — COS Am—1 A). 

Also, by Abel’s lemma, 

O (Um + Umtr + ++ + Um+g) > Im (COS Ay» — 1) 

for all values of q. 
Hence the sum of the series is greater than 

} 

{Qn cos 6 al (Gn = Gm) COs eaeale) = Am} /0, 

which, since @,_, >@m and COS Am_, 1s negative, is greater than 

(Qn COS d@ ae An)/O = 2rn (Qn am Cyy)|7 + dn, 

where b,, denotes a, (1 —cos ),9)/@ and consequently tends to zero 
as n tends to infinity. 

When m—1=n, we can divide the series up into 

(Uy + Ug + 0. Un) + (Um + Umit ---); 

and, noticing that cos A,» @=0, we see that the sum is greater 
than (dp cos A, 6 — a»)/0, as before. 
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Hence the sum of the series, when 6 = 7/2X,, can in no case 
tend to zero, as tends to infinity, unless rj (Ay, — An) > 0. 

If An (an — An) > 0, then, given any positive number e, we can 
find v such that rz (a,—d,)<e for n>v. Denote m by (n, 1) 
and let (n, 2) be the integer formed from (n, 1) in the same way 
that (n, 1) is formed from n, and so on. Then 

An — Anyi < €/Xny Un,1— An,e< €/An,1; seeeee ) 

for n > v, and by addition 

On < € (LfAy + 1/Xna +... + 1/Xn,p) + On, p- 

Now An,1 > 2An; An,z > 2An,1, and so on, so that a, < 2e/An + An, p- 
Also when n is fixed we can choose p so that ay,,< €/An, and we 
shall have therefore 

Andn < 8e (n> v). 

Hence X,,d@, > 0 is a necessary condition that the sum of the 
series should be continuous at @=0, and @ fortiori that it should 
be continuous throughout any interval which includes 6 =0. 

3. To show that this condition is sufficient for uniform con- 
vergence in any interval, and @ fortiori for continuity at any point, 
it is sufficient to show that 

| Undit---+Uy|< AM, 

for all values of 0, where A is some fixed number and JM is the 
greatest value of X,a, for r>n+ 1. 

Since the value of the series is changed in sign only by changing 
the sign of @, it is sufficient to consider positive values of @ only. 
By Abel’s lemma 

| Unga tr elen e Up |< 2Onir/O < Qn nia], 

if OS>a7/Any-. If O<a/Ny, every term of uni, +... + Up is positive; 
and, if w, 1s one of these terms, 

u, < M (cos +, 8 — cos X,8)/r,8 

< 2M sin 3(A,—A,_,) @ sin $(A, + Ay) O/N,O < MO (A; — Ay), 

so that Uniti + +. + Uy < MOA, < 7M. 

If m/rA»<O< T7/Amir, let w/Agii<O<7/Xy, and divide 
Unt + .. + Up UP INGO Uni, +... Ug ANd Ugy; +... + Up. 

Then | tnii +... + Uq|< 7, and 

| gpa + --e + Up | << 2dgyy/O < 2dg4iNg4i/7 < 2M/a. 

Therefore | Unga +... + Up | < (mr + 2/a7) M. 

14—2 
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Hence for all values of 6 

| Unga +... + Up | < (7 + 2/7) UM, 

and therefore the condition X,,a@, ~ 0 is sufficient for uniform con- 
vergence and @ fortiorz for continuity in any interval. 

4. If 2, tends to infinity more rapidly than n, the series does 
not seem to be capable of any modification. If, = An+ B, where 
A and B are fixed, we obtain practically the series 2a, sin n@ and 
nothing more. But when X, tends to infinity more slowly than n, 
and with a certain measure of regularity, the theorem can be 
transformed in an interesting manner. We have, in fact, the 
following theorem : 

If Xr» tends steadily to infirnty and Xn1— An tends steadily to 
zero, then the necessary and sufficient condition for the uniform 
convergence of 

Lan (Anta — An) SIN AnO 
48 AynAn = O. 

As before, I prove rather more, viz. that the condition is sufti- 
cient for uniform convergence and necessary for continuity. 

This theorem will follow at once from the theorem just proved, 
if we can show that the series 

Yan {(COS An O — COS An419)/O — (Anta — An) SID Ay P} 

is uniformly convergent throughout any interval. Here the con- 
dition Anii@n > O is equivalent to Ad, > 0, since An+1 — Ayn > O. 

We can verify immediately that 

cos y — cosa — sin y sin (w— y) 

= sin?4(#— y) (cosy — cosx) + $sin (w—y) (sinw# —siny). 

It follows by Abel’s lemma that, if X,4; — A, decreases steadily, 
so that sin (Any; — An) 9 and sin d(Any;—An) 8 decrease steadily, 
then 

p 
= {COS An 8 — COS Angi — SID (Ani — An) Bin Xp», FI | 

n H 

< 2 sin? $ (Ani — An) +810 (Ansa — An) O. 

Also, given any e, we can choose v so that Xny4—An< € for n>v. 
Hence, for n >v, we have 

|) 2 
> {COS An@ — COS Ani 4 — SIN (Any — An) SIN Ay G} 

n+1 \ 

< 2°@?+ 60 < 30, 

for any interval of values of 0, if € is sufficiently small. 
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It follows also that 

waives : ; 
> sin (Ans: —An)O sin AnO | < 24+ 30 < 8, 

n+1 

forn>v. Now 

(An41 — An) 8 cosee (Angi — An) 9-1 

decreases steadily to zero, and is less than 

3 (Anti — An)? < 42? (n> v). 

Therefore 

p ; & 
> (Anz — An) SIN AYO — SIN (Nazi — An)O Sin AnO | < &@. 

|nm+1 os 

Hence 

S. {(cos kn — 08 Xn419)/O — (Anti — Xn) SiN An} | 
n+1 | 

<38e+&A<4e (n>r). 

Hence the series 

Lain {(COS Xn O — COS An419)/O — (Ania — An) SID Ay O} 

is uniformly convergent throughout any interval, and hence the 
result enunciated follows. 

5. If instead of a sequence (,,) we have a function » (x) such 
that, as oo, d(«) increases steadily to infinity and X'(«) de- 
creases sheet ly to aie then Ani — An decreases steadily to zero. 
The series © (Xn — Anzai t+ An), Where 2’, denotes the value of X’ (a) 
when #=n, is convergent and is moreover absolutely convergent, 
since 2’ n Ba +X, 1s positive. Hence, by Weierstrass’ M test*, 
the series Yap (An — Angi t An) SIN Ay is uniformly convergent 
throughout every interval. It follows then that a,’ > 0 is the 
necessary and sufficient condition that the series Ya,X', sind,@ 
should be continuous at every point and uniformly convergent 
throughout every interval. 

In particular the series 2a,n' sin (n‘@), where ¢ is any real 
number not exceeding 1, is continuous at every point and uniformly 
convergent throughout every interval if n'a, —0, this condition 
being necessary as well as sufficient. 

* Bromwich, Injinite series, p. 113. 
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Some Geometrical Interpretations of the Ooncomitants of Two 
Quadrics. By H. W. TURNBULL, M.A. 

(Communicated by Mr G. H. Harpy.) 

[ Received 6 July 1918; read 28 October 1918. ] 

§1. In the Mathematische Annalen, Vol. Lv1, Gordan has given 
a system of 580 invariants for two quaternary quadratics. It appears 
that by carrying out the processes of reduction a little further, the 
irreducible forms can be shewn to number 123 at most. That is to 
say, the system is about as complicated as the ternary system for 
three conics which Ciamberlini* first established. It is therefore 
worth while to give geometrical interpretations to members of the 
system for two quadratics. In the following pages about a hundred 
of them are shewn. The geometrical significance of the residue 
appears to be remote. 

Using the classification introduced by Gordan, the numbers of 
forms of each type J which have not been reduced are shewn in 
the subjoined Table. The rows of the Table give the numbers of 
forms of each particular order in the three sets of coordinates a, 
p, u, which define points, straight lines, and planes respectively. 
Detailed lists of these forms will be found at the heads of the 
paragraphs which deal with separate types. 

| 
References | Order in a, p, w 7 2 ae 4 ye Total | 

| ean | 
Hie Seo Invariants 5 | 5 
LeLs@ Covariants Ag le fees 

3 Contravariants | 4 | ik) a | 
§§ 7-14 | Complexes Bi tT Rei 40a ane tiem 
$15 Mixed (1, 0,1) | 1 | 2 | anal 
§ 21 (1, 0, 3) | 4 | eee 
a) (3, 0, 1) | ab ap 

| § 22 CEO, Dj | 6 eet 
| $$ 17-20 (@, 1, 3) Watts Gta aL Paleo oo 

ot CL, 1) teal ANG cls Sai aoe 
$18 (0, 3, 2) eal 1 
i (2, 3, 0) 1 | 1 
§ 23 (0, 2, 2) 4 4 

» (2, 2, 0) aes can 
§ 16 Glo Te ABN he ae si 
& 93 Goo my PIS 406 1), Gijq eam 
esi) | 4 oe 
” | (3, 0, 3) | | 2 2 | 

| | | | 

Motalse 2s | 71 | 12 | 12 | 123 

* Ciamberlini, Giornale di Matematiche, Vol. xxrx. 
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Notation. 

§ 2. Let uw, ws, us, us be plane coordinates; and let v, w be 
cogredient with wu. We may then typify line coordinates by 

py = (ur) = uj — vy, (i J=1, 2, 3, 4); 

and a or point coordinates by «#,=(wvw),3;, and three similar ex- 
pressions for #, 2, #,. Then the symbolic system of Gordan can 
be exhibited as follows. 

Let the point equations of the quadrics be 

i — ee co: 

and NS a ree 

Let the line equations be 

Il =(Ap)=(A'py=..., 
(Bp)? (By... 

Let the tangential equations be 

D = Ug? = Ug? = oss, 

y =? =t,"=.... 

Then the connections between the symbols are 

A=aa, B=00', a=aaa’, B=bb’b". 

And all concomitants of the system can be expressed in terms of 
factors 

dz, (dd’p), (dd’d’u), (dd’d’a’”), 
where d signifies a or b. But the irreducibles can be shewn to be 
composed of the following types, 

Ga?, Og”, Ax, bx, (Ap), (Bp), wa, Ug, (abp), (Abu), (Bau), (AB), 

dg, ba, (ABx), (Bax), (aBp), (ABY’, Fi, Fa; 

where (A Bx) = dgdy’ — Ag'Az = Ape , 

say, and (aBp) = Uap — UpVa = Wade ; 

(ABY =(Abu) by’, 

F, =(abp) ag’ — (a’bp) ag = (A bpp). 

Reciprocation. 

§ 3. By interchanging the symbols (a, a), (b, 8), (uv, #) without 
altering A, B or p, we obtain from any given concomitant the 
reciprocal form. Thus the bracket factors (A@«) and (Abu) are 
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reciprocals. So also would be (abew) and (aByx), the latter being 
of a type not arising for less than three quadrics. Though the 
process by which Gordan arrived at such symbols as (A @) and 
(a8p) was purely analytic, it is interesting to observe that from 
the geometrical point of view such analytical results were almost 
inevitable. Below will be found several examples of the use of 
this principle of duality. 

The fundamental forms. 

§ 4. A brief investigation would reveal the importance of the 
following forms, to which special symbols are therefore attached. 

Let f denote a,7, f' denote b,?, 

Duara RES SE ate ‘ige 

De Cap) le ae Cp) e 
k won walfeuaey 1: oon. (WaakaP 

SO oy (CALDER, oy. 5 (Uae) 

ae yy (GOD Whe oe Gieyor, 

and C oy (valle) (Cale) Clava) 

Some account of these forms may be found in Salmon, Analytical 
Geometry of Three Dimensions (revised by Rogers), Vol. 1, Ch. rx. 
There &, y, x’, &' are denoted by o, 7, 7, a’ (§ 214): &, k’ are the 
LE ot Sls: aru liane sbhie Ye ion Silke 

Invariants. 

§ 5. The irreducible invariants are a,”, b,?, (AB), ag’, 6.” or 
the A, ©, ®, 0’, A’ of Salmon, § 200. In fact, there are no other 
types, for two quadrics of any dimension n, than the n+1 co- 
efficients of X in the discriminant of 

+f. 

The fiwe covariants and contravariants. 

§ 6. The covariants (n+ 1 in the case of n-ary forms*) are the 
four quadrics f, k, k’, f’ and the quartic J defined by 

Ap0algd, (AB) (A Bx) (Baz). 

This is indeed the jacobian of the four quadrics, and represents 
the four planes of the self-conjugate tetrahedron (cf. Salmon, § 233). 

* Cf. Turnbull, ‘ Quadratics in nm variables’ (pp. 235-238), Camb. Phil. Trans., 
Vol. xxi, No. viii. 
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Correlatively, =, x, x’, =’ are the four quadrics in w which make 
the system of contravariants together with 

= Upbatiauig (A B) (Abu) ( Ban). 

This latter represents the four vertices of the same tetrahedron. 
In fact, the jacobian of u,?, ug, (Abu), (Bau)? is 

(a8 Ab Ba) uauig (Abu) (Bau), 

where A =a”, say; expanding the first bracket this becomes 

a,’ dg” (bBa) M — a,’ bg (a Ba) M + 6,a,' (a Ba) M, 

where each term represents two, with a’, a” permuted, and M is 
short for waug(Abu)( Bau). But the factor a,’ is reducible to a,’ 
(Gordan, U1, § 6); which means in this case that the symbols wu of 
the factors u., (Abu) would be bracketed. Hence the product in- 
volving a,’ is zero, Thus the jacobian is equal to 

b, dg (a Ba) M, 

=b, ap (a Ba’) M + babe’ (a’a' ba) M (if B= 0’) 

=—b, dg (aa B) M (as before) 

— 

A correlative reduction applies to the case of J. 

The complexes. 

§7. A complex is a function of p, or line coordinates, but not 
explicitly of w or «. There are eight quadratic and eight cubic 
complexes in the system. The quadratics are 

(Ap) or II, (Bp) or Il’, (abp)? or my», (a8p)? or Ip, 

(AB) (Ap) (Bp) or C, (abp)(a8p)agb., Fy’ and FY. 

Differentiation. 

§ 8. Let p be any symbolic product belonging to the whole 

system; then aa (¢=1, 2, 3, 4) would be composed of terms each 

with one odd symbol a; or 6; left over. Thus the four symbols 

= may be considered as the coordinates of a certain plane. For 

example the coordinates of the polar plane of a point (7) with 
AMEE) 

regard to a,” are (Az), AzMz, AzA3, zd). Likewise an would give 
L 

a set of point coordinates, 
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Again, oo would give six quantities which would symbolise 

the coordinates of a certain linear complex: and, in some special 
cases, the coordinates of a straight line. For example, 

10(Ap) _ 
5) Op = (Ap) (A) 

is a useful way of denoting the six quantities (Ap) Ay (7, ) = 1, 2, 3, 4), 
which represent a straight line, smce they satisfy the identical re- 
lation existing between the six p-coordinates of a straight line. 

Inne coordinates. 

§ 9. This identity satisfied by line coordinates (j) 1s 

Spipm = Opel deeds Soureu ae se eee chy 

which we denote by #(p)=0. Symbolically, the condition that 
two lines p and q should intersect is (pqg)=0. If p is the line 
common to two planes u, v, and q is that common to w’, v’, then 
this condition is (wow'v’) = 0. ; 

If two lines p, qg intersect, then «p;;+2qi; represents the co- 
ordinates of any line of the plane p, g passing through the common 
point of p,q. Since the line p touches the quadric / if (Ap)?=0, 
it follows that the line (x, X) touches this quadric if 

«(Ap)y + 2«r (Ap) (Ag) + (Ag)? =. 
Hence (Ap) (Aq) vanishes if p intersects the conjugate of gin /; 
for then p and q are harmonic conjugates of the two tangents to f 

in this pencil of lines (x, X). This shews that the coordinates ea . 

1.€. (Ap) A,;, are those of the line conjugate to p in the quadric f- 
Analytically it is evident that these coordinates represent a line 
and not a linear complex, since they satisfy the required condition 
(LD) in fact 5 

(Ap) (A’p) (44) =3(AA4’) @ (p)*. 
But the left member of this equation is the symbolic equivalent of 
substituting (Ap) A,; for p in (1): which proves the statement. 

Complexes and their polars. 

§ 10. Let (Dp)?=0 represent one of the quadratic complexes 
of §7. Then (Dp) Dj gives the coordinates of a linear complex 

* Cf. Gordan, 11, § 6. 
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polar to (p) in (Dp). If (p) is a member of the complex (Dp/, 
the polar is called the tangential linear complex. 

The complex (Dp) D, is not usually a special lmear complex. 
The preceding case was exceptional. For in that case the quad- 
ratic complex was (Ap)? = 0, and all the rays touched the quadric /. 

The complees tr, UW, C, (abp) (ap) apba. 

$11. The principal quadratic complexes which occur are 

T= (abpy, The=(aBp), C=(AB)(Ap) (Bp). 

The two former are well known, 7. being the aggregate of lines 
cutting the quadrics harmonically, and H,, being the correlative 
complex. The third, C, is the complex of lines whose conjugates, 
in fand /’ respectively, intersect. For the conjugate of p in f is 
(Ap)(A) and in /’ is (Bp)(B). Again, C is satisfied too by the 
singular lines of the complex w,. For if p is a line of (abpP=0, 
its tangent linear complex (§ 10) is (abp) (abq) =0, ¢ representing 
current coordinates: further, p is a singular line if this tangent 
linear complex is special, .e. if 

(abp) (aba'b') (a'b’p) = 0, 

which reduces to (A.B) (Ap) (Bp) =0. Correlatively C also contains 
the singular lines of the complex I],.. 

Again, the singular lines of the complex C belong to the com- 
plex (abp) (a8p) dgb.. This follows in the same way as in the above 
case. But a more direct interpretation of this last form arises from 
the apolar* condition for two linear complexes; if the polar linear 
complexes of a line (p) with regard to 7, and IT, are apolar, then 
(abp) (a8p) agb, vanishes. 

The complexes F?, PY. 

§ 12. Besides the original complexes (Ap) and (Bp)’, and the 
four complexes of § 11, there remain two more quadratics, f° and 
F2. Just as (abp)? is the harmonic complex between f and /’, so 
FY is the harmonic complex between f’ and k, while FY 1s that 
between f and k’. To prove this we build up a form (/’, ky? from 
f’ and k, in the same way as (f, f'), ve. (abp)’, is built from f and 
eh ten 

(7, k= (be, (AB) 
= (b,7, 2ag? dz? — 2agds'AzAe 

= 2ag?(a’bp)? — 2agag’ (abp) (a’bp) 

=[(abp) ag’ —(abp) ag =F? G2). 
* The linear complexes (Dp)=0, (Ep) =0 are apolar if (DE)=0. 
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The eight cubic compleces : 

I, (abp) ba (Bp), F, (ap) ap (Bp), 
F, (abp) ba (AB) (Ap), F2(a8p) ap (AB) (Ap); 

and four involving F,. 

$13. Ifa,?, b,?, c,? are three quadrics, the lines p cutting them 
in involution are given by the cubic complex 

(bcp) (cap) (abp) = 0. 
Let us denote this complex by the symbol (a,?, b,?, ¢,”). Then 
(f, f’, k') may be formulated, and we shall have 

(ay, 6,7, k') =((abp) axb,, (Bax)? 

=((abp).dzbz, — 20a bz” ba’ by’ + 2bzbq'”)? 
= — 2 (abp) (abp) (bb’p) ba’b.” + 2 (abp) (ab’p) (bb’p) ba. 

The second term is zero, since b, b’ are interchangeable. The first 
term is F',(abp)b, (Bp) to a constant coefficient. 

Reciprocally (=, >’, x’) represents F, (a8p) az (Bp); and there 
are two like forms involving fF’. 

§ 14. This leaves four complexes such as F,(abp) b, (AB) (Ap) 
to be interpreted, but the geometrical significance is not at all 
immediate.. If however we write (f, f’, k’) as (Dp), then the line 
(p) has a polar linear complex 

(Dpy (Dq) = 9. 
And if ¢q=(Ap)(A), we. if q is the conjugate line of p in the 
quadric f, then 

(Dpy'(DA)(Ap) =0. 
This latter form is equivalent to F,(abp) b,(AB) (Ap): and similar 
results follow for the other three forms, as in § 13. 

The mixed concomitants. 

§ 15. To denote the order of a form, let (7, j, &) mean that the 
order is 7 in #, 7 in p, and k in wu. Then there are three linear 
forms (1, 0, 1) and sixteen linear forms (1, 1, 1). 

° The three twnear forms (1, 0, 1): 

pO, Mller, (4s) Calon) Oe 

If (v) is the polar plane of a point (x) in f, then (v) =a, (@). 
Hence ugdgd~= 0 is the condition that a conjugate plane of win f” 
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should be the polar of # in f Similarly for wibby. Again, 
(AB) (Abu) b,' vanishes if the polar of # in f’ is conjugate to w in x, 
ue. in (Abu)? =0. 

The sixteen forms (1, 1, 1): 

two like a, (Bau) (Bp), two like ua (Bax) (Bp), 

ens . Ona (Ep) (a's es (ann) Os, 

» » Gz(Bau)(AB)(Ap), tte (Baw) (AB) (Ap), 
» » (abp)(Abu)(ABx)ag, ,, ,, (aSp)(Abu)(ABzx) d,. 

$16. The polar plane of a point («), with regard to f, meets 
a plane (w) in a straight line whose coordinates are (aw)a,. If 
a, (aBu) (Bp) = 0, this line cuts the conjugate of p in f’. Let us 

_ denote this relation by (f;, II’). The significance of the reciprocal 
of this, viz. (>, H1’), is obvious. This accounts for four forms since 
either f or f’ can be employed. 

Suppose we word this relation differently and say that the 
plane (w) cuts the polar of (x) in fin a line which lies in the linear 
complex polar of (p) in II’: then a like meaning attached to 
(fz, Uh.) mterprets a,ag (aBp) u.. So also 

(Lu, Me) = dz (abp) bata; 
(fe, (AB) (Ap) (Bp)) = az (aBu) (AB) (Ap), 

with reducible terms, and 

(Sy, (AB) (Ap) (Bp)) = we (Bav) (AB) (Ap), 
while (kz, 2), (Xu, U2) denote the remaining two forms of the 
above list. To complete the set of sixteen forms we merely write 
>’ for >, k’ for k, and so on. 

The polar quadrics (0, 1, 2) and (2, 1, 0). 

§ 17. There are nine forms of order (2, 1, 0), any one of which 
represents a quadric associated with a given line (p); or, from 
another point of view, represents a linear complex associated with 
a given point (x). The simplest of these is (abp) a,b. Let this 
denote the polar quadric of the line (p) with regard to the system 
f+ rf’. It is convenient to use the symbol p ( ff’) for this relation. 

The equation (abp) a,b, = 0 is the analytical condition required 
when the polar planes of a point (#) with regard to f and /’ meet 
in a line which intersects (p). For the coordinates of these polar 
planes of x are denoted by ajdz, bib, ((=1, 2, 3, 4). Hence the 
coordinates of their line of intersection are a,b,(ab);; and this 
line cuts (p) 1f (abp) a,b, = 0. 



204. Mr Turnbull, Some Geometrical I nterpretations 

Forming the invariant of the polar quadric, we obtain an ex- 
pression which reduces directly to {(AB)(Ap) (Bp). Hence if p 
belongs to the complex C;, its polar quadric is a cone. 

18. Again, the tangential equation of the polar quadric 
(abp) a,b, =0 is formed in the same way as w,° is formed from a,”. 
A simple reduction leads to 

(Ap) (Bp) (abp) (a Bu) (bAu). 

Likewise the point equation of (a@8p) u.ug involves the form 

(Ap) (Bp) (ap) (ABx) (Bair. 
This interprets the two forms of orders (0, 3, 2) and (2, 3, 0). 

§19. Again, if we form the polar quadric of (p) with regard to 
each pair of quadrics f, f’, &, k’, we obtain the following results : 

p(f,k) equivalent to (Ap) (A 6a) agaz, with a lke form for p(/’, k’), 

PAE) : Pd, (Bax), , » p(f,k), 
pk, Kk’) rs (A Bx) (a8p) (Bar) (AB). 

If, further, (q’) 1s the conjugate line of (p) in (Bpy, te. nf’, 
then 

q' (f,k) is equivalent to a,a,(ASx) (AB) (Bp), 

and g Ch 3k) M bx ba (Bax) (AB) (Ap). 

All these equivalences are readily verified, but we give a 
special proof for the case of p(k,k’). In fact, the polar plane of 

z in k=0, we. in (ABx)??=0, has coordinates which may be 

symbolised as (A@x)(A8)*. So also the coordinates of the polar 
of « in k’ are denoted by (Bax)(Ba). Hence the line of inter- 
section of these polars is denoted by (A8z) (Bax) [A BaB], which 
is equal to (Ax) (Bax) (AB) (a8)*; and the line cuts p if 

. 5 (A Bx) (Bax) (AB) (aBp) = 0. 

§20. These eight polar quadrics now enumerated, viz. p(f, f’), 
p(f, k), .., YF, ©), must be supplemented with one more form, 
(aBp) agb.dzbz, to complete the set of nine forms (2, 1, 0) belonging 
to the irreducible system of two quadrics f and f’. The geometrical 
significance of this last form is as follows: the line joming the 
two points, 2, and #2, cuts p; a, being the pole in f of the plane 
whose pole in /’ is 2, and «, being the pole in /’ of the plane whose 
pole in f is @. 

* (48) =a,a'—a’,a, and the combination of (48) with (Ba), as a transvectant, 

into [A Ba] is essentially the reduction of Ch. 11, § 15 in the paper of Gordan. 
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Correlatively there are nine forms (0, 1, 2), quadratic in w, 
exactly parallel with the above, of which (a@p) u.ug 1s the simplest. 

The four forms (3, 0, 1) and their correlatives : 

(Abu) (A Bz) apay bz, (A Bx) (Abu) bauaus, 

(AB) (AB) (Bax) agdz., (AB) (Abu) (Ban) battade, 

and four similar forms interchanging f and f’. 

§21. If a,’, b,’, c,? signify any three quadrics, then (abcw) az byCy 
vanishes when the common point of the polars of (x) in the three 
quadrics lies on the plane (u). Applied to the quadrics f, f’, k, k’ 
taken three at a time, this condition involves the four forms (3, 0, 1) 
indicated above. The correlative condition, applied to each set of 
three from among &, >’, y, y’, gives rise to the four forms (1, 0, 3). 
For example, if we select f, 7’, k as the three quadrics, then the 
condition is (Abu) (A Bx) agazb, = 0. 

The polars of (#) in all four quadrics f, f’, k, k’ meet in a point 
if (w) les on any face of the self-conjugate tetrahedron 

(A Bx) (Baz) agbadzb, = 0. 

The remaining forms of the system. 

§ 22. None of the remaining forms appear to have any special 
geometrical importance: but we give a few examples. First, as to 
the forms of order (2, 0, 2), we may exhibit them as follows: 

dy (aBu) (Bax) wa and a similar form, 

(Abu) (AB2) badgtate 5; a Y 

(A B) (Abu) (Baw) a,b, and a correlative form, 

and [(A BY. 

Suppose (q) to denote the common line of the plane (w) and 
the polar of (x) in f, and (q’) to denote the line joining (#) to the 
pole of (u) in f. Then the condition that qg, qg' should satisfy 
the harmonic relation (Bq) (Bq’)=0 becomes on substitution 

a, (aBu) (Bax) u, = 0. 

Thus the first in the above group of forms is interpreted. The 
second form vanishes if two lines (q), (q’) satisfy the harmonic 
relation (abq) (abq’)=0, where (q) now denotes the intersection of 
the plane (w) with the polar of (x) in k, while (q’) is the same as 
before. 

Again, the third form of the set vanishes if the lines in which 
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the polars of (#) im f and f’ cut the plane (w) satisfy the har- 
monic relation for the complex C=(AB) (Ap) (Bp). 

Finally the last form [(4 8B)’, which is equivalent, except for 
reducible terms, to (Abw) b,’ (Ab’u) bz (§ 2), is involved in the con- 
dition that the line common to (w) and the polar of (x) in f’ should 
touch 7. 

23. Next there are four forms of order (0, 2, 2), such as 
(Ap) (Abu) (abp) agug, (Ap)(AB) (Bau) (aBp)agu., and four cor- 
relatives of order (2, 2,0). All of these have obscure geometrical 
properties, though they present no difficulty to identify. 

After this there are twenty-four forms of order (1, 2, 1). The 
simplest of these is (Abu) b;’(Ap) (Bp), which vanishes when 
u, x, p satisfy the following conditions: if the polar of (#) in /’ 
meets (p) at a point (y), and if the polar of (y) in f’ cuts the plane (wu) 
in a line (q), then p, q satisfy the harmonic relation (Ap) (Aq) = 0. 
The remainder of these (1, 2, 1) forms are of like nature. 

Beyond this there are four forms (2, 1, 2), and two forms (3, 0, 3), 
none of which present concise geometrical interpretations. 
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Some properties of p(n), the number of partitions of n. By 
S. RAMANUJAN, B.A., Trinity College. 

[| Received 3 October 1918: read 28 October 1918.] 

§ 1. A recent paper by Mr Hardy and myself * contains a table, 
calculated by Major MacMahon, of the values of p(n), the number 
of unrestricted partitions of n, for all values of x from 1 to 200. 
On studying the numbers in this table I observed a number of 
curious congruence properties, apparently satisfied by p(n). Thus 

mp), pO). pala), pag), ...= 0 (mod: 5), 

i ps), p(i2): pag). p(26);°..2 = 0Kmeds7): 

(a) (6), pli), p28), p(89), ...=0 (mod. 11), 

(4) p(24), p(49), p(74), p(99), ... =0 (mod. 25), 

(5) p(19), p(54), p(89), p(124),... =0 (mod. 35), 

(6) p(47), p(96), p(145), p(194),... = 0 (mod. 49), 

iy (39), o(94),- (149), ..: = 0 (mod. 55), 

toe p(6L), <p (138); ... = 0 (mod. 77), 

Coy op (116))+... = 0 (mod. 121), 

CLONE (99), x. = 0 (mod. 125). 

From these data I conjectured the truth of the following 
theorem : 

If &=54¢7° 11° and 24 = 1 (mod. 6), then 

pr), p(rats), p(rA+ 28), ... = 0 (mod. 6). 

This theorem is supported by all the available evidence; but 
I have not yet been able to find a general proof. 

I have, however, found quite simple proofs of the theorems 
expressed by (1) and (2), viz. 

Gb) p(d5m + 4) = 0 (mod. 5) 

and (2) p (7m + 5) = 0 (mod. 7). 

* G. H. Hardy and S. Ramanujan, ‘Asymptotic formulae in Combinatory 
- Analysis’, Proc. London Math. Soc., ser. 2, vol. 17, 1918, pp. 75—115 (Table IV, 
pp. 114—115). 

VOL. XIX. PART V. 15 
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From these 

(5) p (85m + 19) = 0 (mod. 35) 

follows at once as a corollary. These proofs I give in §2 and §3. 
I can also prove 

(4) p (25n + 24) = 0 (mod. 25) 

and (6) p (49n + 47) = 0 (mod. 49), 

but only in a more recondite way, which I sketch in § 3 

§ 2. Proof of (1): We have 

Ql) #{d—2)1—#2)a—4#)...}? 

=a(1—32+4+ 5a —TaS+...)\dl—-#-#+a +...) 
= 3 (— Let (Qu + Lat tieety thy erty), 

the summation extending from 4 =0 to ~= 2% and from »=— = to 
p= 00 | UNOW) TE 

1+dy (e+ 1) +4v(38v + 1) = 0 (mod. 5) 

then 8+ 4u(w+1)+4v(38v +1) = 0 (mod. 5), 

and therefore 

(12) (Qu +1)?+2(~+1)=0 (mod. 5). 

But (24 + 1)? is congruent to 0, 1, or 4, and 2(v +1) to 0, 2, or 3. 
Hence it follows from (12) that 24+1 and v + 1 are both multiples 
of 5. That is to say, the coefficient of «” in (11) is a multiple of 5. 

Again, all the coefficients in (1 — #)~ are multiples of 5, except 
those of 1, 2°, «, ..., which are congruent to 1: that is to say 

1 1 fs 
(aise (mod. 5), 

1l—«a 
or qo =1 (mod. 5). 

Thus all the coefficients in 

(1 — a’) 1 —2”) (1-2)... 

{1 — #) (1 — #) (1 — @) ...15 

(except the first) are multiples of 5. Hence the coefficient of #” in 

do Ge) (UE) coe ey (1 =) Cee 

(702) 027 ae (Loe?) qj) =e 
is a multiple of 5. And hence, finally, the coefficient of 2” in 

x 

(U3) (a) UE nee 

is a multiple of 5; which proves (1). 
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§3. Proof of (2). The proof of (2) is very similar. We have 

(18) a{(l—#)(1 — 2) (1 —2*)...}° 

= (1 —3a + 5a*—Ta'+...) 

= > (—1)t+" (Qu +1) (2v +1) get tele ty) thy +) 

the summation now extending from 0 to o for both w and vy. If 

2+4u(u+1)+$v(v+1) = 0 (mod. 7), 

then 164+4u(u+1)+4v(v4+1) =0 (mod. 7), 

(2u +1)? + (2v +1)? = 0 (mod. 7), 

and 24 +1 and 2v+1 are both divisible by 7. Thus the coefficient 
of 2 in (18) is divisible by 49. 

Again, all the coefficients in 

(1 —«)(1 — x4)(1 —a)... 

(except the first) are multiples of 7. Hence (arguing as in § 2) we 
see that the coefficient of #7” in 

ee = a ———— - 

(l—2)(1 —a*)(1 — 2%)... 

is a multiple of 7; which proves (2). As I have already pointed 
out, (5) is a corollary. 

§ 4. The proofs of (4) and (6) are more intricate, and in order 
to give them I have to consider a much more difficult problem, 
viz. that of expressing 

p(A)+tp(r+ dat p(X4+ 26) a+... 

in terms of Theta-functions, in such a manner as to exhibit ex- 

plicitly the common factors of the coefficients, if such common 
factors exist. I shall content myself with sketching the method 
of proof, reserving any detailed discussion of it for another paper. 

Tt can be shown that 

Qe) ae) 1 

(1—a°)(1—#*)(1—<2°)... £4 _ 9? _ Ex? 

_ E+ BwE + a8 (E+ Qa) + 8 (QE? — 8) + 8 (BEM + 4) $50 
is E> — lla — aw 

ey ee 26 ma tysg = ae p_Gd=a)(.- 2) (1- af)(L— at)... 
(1 = 27) (1 — 2°) (1 — 2) —2*)... 

the indices of the powers of #, in both numerator and denominator 

15—2 

(14) 
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of £, forming two arithmetical progressions with common difference 
5. It follows that 

(15) (1—2#*) (1 —a®)(1— a)... {p(4)+ pQ)a+ p4)a*+...5 
OL ne 

7 = Tle ee 

Again, if in (14) we substitute wx”, wn, wx, and w*a*, where 

w =1, for w*, and multiply the resulting five equations, we obtain 

16 eee ee 1 

Go) Ce) CSE CUS ay ie 

From (15) and (16) we deduce 

(17) p(4)+p(9)e+pCA4) 2’ +... 
tie {1 —#)0 —a")1 —a@)...)° | 

a a?) 8) ee 

from which it appears directly that p(5m + 4) is divisible by 5. 
The corresponding formula involving 7 is 

(18) p(5)+p(12)c+ p(19)a+... 

oe {((1 — #7) (1 — a) (1 — a”)... 
{1 —#) (1 — a?) (1 — a)... 

i (1 — a”) (1 — #4) (1 — 2) ...}7 
+ 49x! ; 

{(1 — #) (1 — a) (1 — a’)... }8 

which shows that p(7m + 5) 1s divisible by 7. 
From (16) it follows that 

p(4)a+p(9) 2+ pls)at... 

Te LES (ea) Sole 
ve L eg CeO ee =) 2. 
(1—#)(—2*)(1—2?)... {@—a#)(1—a) dd —2')...P 

As the coefficient of w” on the right-hand side is a multiple of 5, it 
follows that p (25m + 24) is divisible by 25. 

Similarly 

p(5)a+p(12)e+p(19) a+... 

Cl Sa) eae) 9) oa) 

(eel = @) ..: 

(1—«#)(1—2#*)...17 
p= BCL Se) coel 

12 ear en 
from which it follows that p (49m +47) is divisible by 49. 

[Another proof of (1) and (2) has been found by Mr H. B.C. Darling, to whom 
my conjecture had been communicated by Major MacMahon. This proof will also 
be published in these Proceedings. I have since found proofs of (3), (7), and (8).| 

= a(1—3a+ 5a°— Ta’ +...) 
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Proof of certain identities in combinatory analysis: (1) by Prof. 
L. J. RocEers; (2) by S. Ramanuyay, B.A., Trinity College. (Com- 
municated, with a prefatory note, by Mr G. H. Hardy.) 

[Recewed 3 October 1918: read 28 October 1918.] 

[The identities in question are those numbered (10) and (11) in 
each of the two following notes, viz. 

q ¢ g° 

j) ee ee a oe a ees © 
i ge Cl — 9) Cb") (1 9g) (2) ig*) 

! eee (1) 
~(l-g0-0-q)0-@) G-ga-¢) 

and 

q Ree at GE 

[eee es ae bee Da ee ae 
1-¢' d-g(Q-@) *d-90-#0-@) 

2) 
CC ae) a) ae) 9") lS e")y 

On the left-hand side the indices of the powers of qg in the 
numerators are n’ and n(n +1), while in each of the products on 
the right hand side the indices of the powers of q form two arith- 
metical progressions with difference 5, 

The formulae were first discovered by Prof. Rogers, and are 
contained in a paper published by him in 1894*. In this paper 
they appear as corollaries of a series of general theorems, and, 
possibly for this reason, they seem to have escaped notice, in spite 
of their obvious interest and beauty. They were rediscovered 
nearly 20 years later by Mr Ramanujan, who communicated them 
to me in a letter from India in February 1913. Mr Ramanujan 
had then no proof of the formulae, which he had found by a process 
of induction. I communicated them in turn to Major MacMahon 
and to Prof. O. Perron of Tiibingen; but none of us were able to 
suggest a proof; and they appear, unproved, in Ch. 3, Vol. 2, 1916, 
of Major MacMahon’s Combinatory Analysis. 

Since 1916 three further proofs have been published, one by 

* L. J. Rogers, ‘Second memoir on the expansion of certain infinite products’, 
Proc. London Math. Soc., ser. 1, vol. 25, 1894, pp. 318—343 (§ 5, pp. 328—329, 
formulae (1) and (2)). 

+ Pp. 33, 35. 
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Prof. Rogers* and two by Prof. I. Schur of Strassburg+, who appears 
to have rediscovered the formulae once more. 

The proofs which follow are very much simpler than any pub- 
lished hitherto. The first is extracted from a letter written by 
Prof. Rogers to Major MacMahon in October 1917; the second 
from a letter written by Mr Ramanujan to me in April of this year. 
They are in principle the same, though the details differ’. It 
seemed to me most desirable that the simplest and most elegant 
proofs of such very beautiful formulae should be made public with- 
out delay, and I have therefore obtained the consent of the authors 
to their insertion here. 

It should be observed that the transformation of the infinite 
products on the right-hand sides of (1) and (2) into quotients of 
Theta-series, and the expression of the quotient of the series on the 
left-hand sides as a continued fraction, exhibited explicitly in Prof. 
Rogers’ original paper and in Mr Ramanujan’s present note, offer no 
serious difficulty. All the difficulty lies in the expression of these 
series as products, or as quotients of Theta-series.—G. H. H.] 

1. (By L. J. Rogers.) 

Suppose that |q|< 1, and let V,, denote the convergent series 
(il wate att) — ar Chee GQ — yim Gan) OF 

+ yn Ge eae (1 — wm One) G aS cee Hake (1), 

where 

(US Ce a) US ae) ae) 
(CE OD) (OR a) ae (I ae) 

the general term being 
Ee 1" an’ OE eRe dd — 7 gr) Ox 

Ce 

Then 

Vin — Vn =e" 11 — a) — argh ™ (1 —@q)+ gm gan (1 — xq)} C 
Sera ers MeN ge) te tegen ee eee (2). 

Suppose now that the symbol 7 1s defined by the equation 

nf (@) =f (29). 
Then (1—q’)C,=(1—«@2)nC,4, (l—a9q") C,=(1 — 2) 9 C,. 

* L. J. Rogers, ‘On two theorems of Combinatory Analysis and some allied 
identities’, Proc. London Math. Soc., ser. 2, vol. 16, 1917, pp. 315—336 (pp. 315— 
317). 
i J. Schur, ‘Ein Beitrag zur additiven Zahlentheorie und zur Theorie der 

Kettenbrtiche’, Berliner Sitzungsberichte, 1917, No. 23, pp. 301—321. 
+ I have altered the notation of Mr Ramanujan’s letter so as to agree with that 

of Prof. Rogers. 
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Hence, arranging (2) in terms of 7C,, nC,, ..., we obtain 

Vin a= ie 

l-a 

= Cons = Brg) es gurm-1 Qa (1 pe gmt Gees) nC, a 

= git {(1 =a gn-msri Oia ze, eq el con gr—m+y1 Gd nC, ae .} 

— Yi n | enreeats ee (3 yi 

If we write (ipl ict ll r= 879) Fam Apne aie a an teeter (4), 
r=0 

EDC COMMES 1 — Ujne— OS YU sayy) cence e/se woe asedun (5). 

It should be observed that V, and v, vanish identically. 

In particular take n=2,m=1, and n=2,m=2. We then 

obtain UV, = NV, Ve—V,= LN); ; 

and so Df = Up MAGE Cy vot bee bck cic a sald: Eee (0) 

Now let D5 PENS OE cao es cence ae (7). 

Then from (5) 

l+aet+aa’t+...—1+a,09¢ + a0q? 4+...) 

= aq (1+ a, xq? + an.2°gt+ ...); 

rant in a= ad rege ies tg (8). 

But when #=4q, C,=1; and so 

Vi=(1-g¢) -g(l—@)+qhe(l—@)—... ... (9). 

From (4), (6), (7), and (8) it follows that 

q q 
Negra aaa 
*1-q' d-90-®% 

el ng Ug!) 
Gd-—gd—¢@)U—9)... 

and so (ly 

Similarly we have 

: 1 x Cal 
(na ag 2+... 

gl |) 
and, when «=4q, 

q q + adie 
beg) tg) 

and V,=(-@)-PAd-q4+Q@da-_P) --: 

Vo = 1+ 
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Thus 

q q* 144-44 __4 
ci (lg) Cron) 

_Q-@-@0-9)+@0-¢)--. is 
dH == e ie So 

2. (By S. Ramanujan.) 

Let 

G@)—1 
ee . (1 — aq") 

—Q(l—@) C9) ae 
+3(- ID a5 Be gee (5y—1) )1— nD 

= | —49q?(1 — 29") oe 
Tad 

1 90) 
+a¢ 1 —aq oe ae eee Ny: 

a a= pU-@) : 
If we write 1 —aq” =1—q’+q’ (1 - 29”), 

every term in (1) is split up into two parts. Associating the second 
part of each term with the first part of the succeeding term, we 
obtain 

CT) Ih GO) (Ch eh) a. q 
l-«@ 

+e'qil—-# gy =a = ee ea 

Now consider ah Ge) = ae SG LG). oe Senne (3). 

Substituting for the first term from (2) and for the second term 
from (1), we obtain 

H (a) =aq— 7" (1-9) + aga?) 
Gop (Cl = an07?) i 3 

+—— ft {1 —¢@?) +aq' (1 — 27g)! ee iap eda) 
av aq ( as i) dl a ug") =o BB xg (1 — ag 
G= are a@=en 4 q’) + 2q e! agq*)} + 
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Associating, as before, the second part of each term with the first 
part of the succeeding term, we obtain 

HT (x) = «gq (1 — 29) [lnee (Ra) aes 

1—a¢ 

(1-9) (1 — 9") 
ae (1 — xq) (1 — xq") j ) 

r= ede) 
ARR Me — LLG Vas atnaicie cise clan a= s\n tein —jonia® (4). 

If now we write K (a)= a sa 

we obtain, from (38) and (4), 

+ aq" (1 —2q°) 

— aig (1 og 

Teo) — ol + tag)’ 

and so K(#)=1+ BOD es BAN lok Leet (5). 

In particular we have 

ee ee EY pels: 2) Gg) (6): 
1+1+1+... fee Cy a ae 

or Bren EV eCah Bun eke (7). 
1+14+1+... =i2 g-PGrtyYtq-—.. 

This equation may also be written in the form 

eo Od ga-ga @q)d=@): a 

ee ea edgy) a). 
ene (8) 

If we write 
G (a) 

LTR Sy ee ee 
(2) (1 — xq) (1 — aq?) (i — xq’) ..- 

then (4) becomes F(2)= F' (xq) + xqF (2q@), 

from which it readily follows that 

Riayepe fe oa (9). 
l-q * G=ga— “d= G—-q)0—4 7 
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In particular we have 

cling Lipa ada ae I-¢' d-p9d-@ @—g0-gd—@)... 
OS ines fon 0) ae Oro sp cee 
(Sg) a Cea ies 

aft 
als Se eee Meese 10), 
G=9)0-)d=-90d_pG.e).. ae 

T+ 

and 

9 

Lee Otel ea oe ee eae 
“1-97 d=) 0-@)" d-9 0-0-9). 

oy ee as Cl in li ana 

GG gg). 
1 

~ d=-@d-A0-g) 1-1 -@”)... ney 
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On Mr Ramanujan’s congruence pr eg ties of p(n). By H. B.C. 
Darina. (Communicated by Mr G. H. Hardy.) 

[ Received 3 October 1918: read 28 October 1918. ] 

1. Proof that p(5m + 4) = 0 (mod 5). 

Let u=(1l—2#)(1—2*)(1—2*’)...; 

then by Jacobi’s expansion 
Wee 1 i 

w= S —1y'Qn4 1)". 
n= 

so that in G?w*, where d denotes differentiation with respect to «, 
the Bee ents are of the form 

d(n—1)n(n4+1) (n+ 2) {2 (n+ 3) — 5}, 

and therefore 
shai ee OE G 200010 MES) Wenpae hahaa SRN eae (Gis: 

Again, in 0‘u’ the coefficients are of the form 

qk (nv? + n — 4) (n — 2) (n—1) n(n +1) (nr 4 2) {2 (+ 4) — TH, 

and therefore 
dtu? = 0 ae Lea cb acne ee ae (2). 

Now OC? (=) =— — ee u += = (eu ee 

also du’ = 8u?du, and Oui = 31? a + 6u or Hence 

Ce (5)=- Ta + 9 — = (08 peek bet tate (3); 

and thus, by (1), we au 

oe @ =— “= = aus Pou = —- —, (eu*)® (mod 5); 
u 

so that ot (=) =|) Uf (Yt 0 ta) ea ne eee (4). 

Again if 1/w be expanded in powers of w, and the operator 0+ 
be applied to the resulting series, it is evident that the coefticients 
of all powers of w of the forms 5m, 5m+1, 5m+2 and 5m+3 will 
be multiplied by a factor divisible by 5; but that the coefficients 
of the powers of x of the form 5m + 4 will be multiplied by a factor 
which is not divisible by 5. Hence it follows at once from (4) that 

p (bm + 4) = 0 (mod 5). 
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2. Proof that p (7m + 5) = 0 (mod 7). 

Differentiating (3), we an 

0° (“= ee Ou? + = hnie w + a7 *0 (ou ) (mod 7) 
uu) Bus * Bu 

os ue + ou*)? (mod 7) 
Se coda 

Similarly, having so to (2), 

oh () =— B 2 BuO + 5 70 (du)? (mod 7), 

e () =o # peutoou +o 8 Gi Gaodl |) ae (5), 

ae ue)? + a9 ° 08 (Game (Gael 7) eeoasas 2-5: (6). 

a 5 = 7 ies aval : 

so that, by (5) and (6), 

ae (=) ball = [40 (aS? WF U?) + 60 {ao (du®)?} | Bese (7). 
U 

SS 

RE OE 
218 Sle 

Se 
Il 
© oe 

Again 0° 

Now 0 (0u?)? = 20? Wau’, 

0? (Ou?)? = 20° uF du? + 2 (Pu?) 
Thus, by (2), 

0? (u®)? = 60? ud? u? (mod 7); 

and therefore, by (7), we see that 

08 (") = 0 {a°d?u?0?u*} (mod 7); 

that is, by (2), 

0° (“) = 0HPwWEP UW + 6a70* wd? u? (mod 7) 

== O00) (GCLOR)) (NOE) Mode sotsnceessc050-- (8). 

But the coefficients in 2 (#%6?u*) are of the form 

4(n—1)n(v +1) (mn + 2) {2 (m — 8) + 7} {(m — 2) (mn + 8) + 14, 

and are therefore divisible by 7; and therefore, by (8), 

0° (-) = 0 (mod 7). 

Hence, by considerations similar to those in the latter part of § 1, 
we see that 

p(im + 5)=0 (mod 7). 



Miss Wrinch, On the exponentiation of well-ordered series 219 

_ On the exponentiation of well-ordered series. By Miss DororHy 
WrincH. (Communicated by Mr G. H. Harpy.) 

[Read 29 October 1918. ] 

The problem before us in this paper is the investigation of the 
necessary and sufficient conditions that P” should be Dedekindian 
or semi-Dedekindian when P and Q are well ordered series. 

The field of P® is the class of Cantor’s Belegungen and consists 
of those relations which cover all the members of the field of Q 
with members of the field of P: several members of the field of Q 
may be covered with the same member of the field of P, but every 
member of the field of @ is covered with one member of the field 
of Pandone only. In order to prove that P® is Dedekindian it is 
necessary to prove that every sub-class of the field of P® has a lower 
limit or minimum with respect to P®. If there is a last term of 
the series P® it is the lower limit of the null class. Unit sub-classes 
have their unique members as minima. It remains, then, to con- 
sider sub-classes with two or more members. 

Now the relation P® orders two relations R and S by putting R 
before S, if R covers the first Q-term, which is not covered with the 
same P-term by both & and S, with a P-term occurring earlier in 
the P-series than the term with which S covers it. Suppose 2 is a 
sub-class of the field of P® with at least two members. We will call 
(Q),,‘ the first Q-term which is not covered with the same P-term 

by all )’s; and 7’, that subset of \ which consists of those members 
of ® which cover Q,,‘X with that term, in the class of P-terms with 
which various Xs cover Q,,‘X, which occurs earliest in the P-order. 

T,*X will therefore be contained in X and not identical with it. It 

will be seen that P®-terms belonging to 7'p‘X come earlier in the 
P*-order than terms of \ not belonging to it. Constructing 

J Vv 

we get a smaller subset of ): members of this subset occur earlier 
in P® than other members of XA. Continuing this process with 

Vv Vv Vv i VY a 

nN, Tp", yi TX, TT ST pn, cee My eee Vy oes, 

we obtain smaller and smaller sub-classes of X: if « precedes vy in 
this order, members of v occur earlier in the P®-order than members 

of « which are not members of v. We take the common part of 
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all these subsets of 2, i.e. the class of relations which belong to all 

the sets 
vv 7 i 

NOON een ees 

and get a subset of X 
<< 

PU Tp) 

which, again, consists of members of % which come earlier in the 
P®-order than members of 2% not belonging to it. Repeating the 
original procedure we get 

Vv < Vv Vv < 

Dp Cl py siNy lip Lp Dil pst anes 

and so obtain a series of sub-classes of X ordered by the serial 

relation 

A ies dr), 

where A is the relation between » and v when v is contained in w 
but not identical with it. And this is a well-ordered relation: 
consequently it will have an end, viz. 

p(TpxA)*nr. 

If this is not null, it consists of a single member, which will be 
the minimum of \ in P®. But if it is null we will put 

A =D 

PQOX.=SN {qu . we (TpxrA)r. N= (pip) PO On}. 
Then PQ is a relation covering a certain section of the Q-terms 
with P-terms: PQ‘) agrees in the way it covers the (-spaces with 
each member pw of A (7p, dX) as far as ‘wu. PQ‘X will therefore 
cover @-spaces up to z, if there is a w which is a member of the 
field of 

A (Lp, ») 
such that z precedes Qm‘u in the Q-order. If no member of the 
field of A (Tp, X) agrees in the covering of Q-spaces beyond a cer- 
tain member z of the field of Q, PQ‘ covers no spaces beyond z 
with P-terms and for this reason is not a member of the field of P®. 

If R is a P®-term which agrees with ?Q*‘X in the covering of 
Q-spaces as far as it goes, R precedes all the members of X in the 
P®-order ; further, any member of the field of P®, following R and 
all relations agreeing with PQ‘) as far as it goes, follows at least 
one member of X. Hence, if there were a maximum in the P®- 
order in the class p of members of the field of P® which agree with 
PQ as far as it goes, this relation would precede all ’s and any 
relation following it would follow at least one member of A. If the 
class consists of one term &, it will have a maximum, namely & 
itself: R will then be equal to PQ*‘r and PQ‘X will, therefore, be 
the lower limit of X. But p is a unit class only when PQ‘ covers 
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the whole of the Q-terms with P-terms. When PQ‘ does not 
cover the whole of the Q-terms, but covers Q-terms only up to 
z (say), all p’s will agree in their covering of Q-spaces up to z, and 
the remaining @-spaces will be covered differently by different 
members of p. To get a maximum of the p’s with respect to P2, 
we want a relation S which is a p such that no member of p comes 
later in the P®-order. Now, if P has no last term, every P-term 
is followed by other P-terms. However S covers z and the Q-spaces 
after z, by replacing the term covering any member of the field of 
Q after z by a member of the field of P following it in the P-order, 
we obtain a relation 7’ which is a p and follows S in the P®-order, 
S is, consequently, not the maximum of p in the P®-order. Now 
if z in the field of Q is covered by PQ, the term immediately 
following z will also be covered by PQ‘X. Therefore, if Q is a finite 
series or an @, PQ will always cover the whole of the @-terms; 
since, as X has at least two members, it will always cover one Q- 
term. Any » will then have a lower limit or minimum with 
respect to P®, In such cases, P? will certainly be Dedekindian 
with the addition of a last term, whether P has a last term itself 
or not. : 

But if Nr‘@ is greater than o, it is possible to find a subclass 
» of the field of P® which is such that PQ does not cover the 
whole of the field of Q. 

For, let 1 and 2 represent the first and second terms in the P- 
series and let (e.g.) 

liscat a ide Wane 3) ANG alae 

represent a relation which covers the first € Q-terms with 1, sub- 
sequent terms up to (but not including) the &th term with 2, and 
all remaining terms with 1. Such a relation is clearly a member 
of the field of P®. Consider the class of relations X which cover 
all Q-spaces up to z with 1, and all the @-spaces following z with 
2, as z1s varied from the second Q-term to the €th, where ¢ is an 
ordinal number with no immediate predecessor. We will arrange 
this class of relations in the P®-order. 

1... E1(w) 2...F 2(), 22.... (<Q 
Ce 

MERI: Pay OO cis ON. 3 
mince tae CAE aa 
PUP Boe eee hs 
HOB ADr csitk I. oii Oo bell 

This class has no minimum in the P®-order, and PQ*X covers all 
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the Q-places up to the th with 1 and does not cover the subse- 
quent @-places at all. It is therefore not a member of the field 
of P®. But, as we have seen, every relation which agrees with 
PQ as far as it goes, and covers the other Q-places with any P- 
terms whatever, precedes all \’s: and any member of the field of 
P® following this relation, and all relations agreeing with PQ as 
far as it goes, follows at least one member of X. Thus, e.g., the 
relation 

DE edhe she(G) a2 ee 

precedes all 2’s, and any relation following it and all relations 
agreeing with PQ‘ as far as it goes (as e.g. the relation 

ITU esl ALG), ATEN) 

follows at least one relation belonging to X, e.g. the relation 

2. ele o(@) 22 2ece 

Thus 2X will have a lower limit if and only if there is a maximum 
among the relations covering all places up to the ¢th with 1. 
And this is the case when and only when P has a last term wu (say). 
For then the relation 

1S Ud ae bpeli(G) ceuauee 

will be the lower limit of A. Thus if Nr‘Q is greater than a, it 
will be the case that all existent sub-classes of the field of P® will 
have a lower limit or minimum when and only when P has a last 
term. <A non-existent subclass (i.e. a subclass with no members) 
will have a lower limit or mimimum when and only when P has a 
last term. If Nr‘@ is greater than w, P® is Dedekindian when P 
has a last term, and if P has no last term P® even with the addition 
of a last term is not Dedekindian. We thus arrive at the following 
conclusions. When P and Q are well-ordered series, (1) P® is 
Dedekindian when and only when P has a last term; (2) if Nr*Q 
is greater than w, P® with the addition of a last term is Dede- 
kindian if and only if P has a last term; (8) 1f P® is made Dede- 
kindian by the addition of a last term when and only when P has 
a last term, Nr‘@ is greater than o. 

These propositions will now be established. 

[The symbols used are those of Principia Mathematica. Among 
the propositions referred to, those whose numbers are greater than 
1 are proved in P.M., while the others are established in the cowrse 
of this paper. | 

—_ = 

*01. QA = ming (SAY ~ €0U 1) Df 
2 A = 

#02. Tpr=ANn M (MQ, SD = minps‘A‘ QD) Dt 
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#03. A=AR(uCr.p+2) Df 

€04. PQ=6 MT (qu. we(PreAYr. N= (pn) POQntu) DE 

x1. +: P,QeQ.re0.>. BCnv‘Pe=min(P%r [207-17] 

#11. +: P,QeQ.re1. XC OfP?. 30 = min(P%)r 
Dem. 

b. #17619. Dt: Re CP?.D_n.~(RPPR) (1) 
F.(1).*20518. OD. Prop 

#201. £:P,QeQ.rC C&P? ENT. Dd. p(TpeAyr 
= BCnvia io A r) oA he r) eQ 

Dem. 

[02] F.Tpe RISA nCls— 1 (1) 

mach) .*258°'231' / DF. Prop 

#202. F: ET X.D.p(TpkA)r~e DT, [*201] 

#208. £:P,QeQ.rCOP?.r~weOUl. Dd. EL Tyr 
Dem. 

GOP! Bo Sch .neQ'R. po. Re=S'e:D.rc0ul:. 
[Transp | Di Deo EN aie. hee se ve CL =. 

[*250°121 | PEP wos B lining Gay ~ 60 1): 

[*01-02] Dk:.Hp.d:E!Q,A.E!7,A 
#2081. b:E!Tp'r.D.E!Q,% [02] 

PAE P Oe NCOP? 7AoeD'Ts-DireOul 
[*203 . Transp | 

#205. +. Hp#*203.3.p(lpxA)XeOUl — [202-203-204] 
—> 

edhe DS AO. Awe Ou 1 [x O01] 
—> 

ate hen i OAs Ds (SA), OO. Ael > Cle: Rex. 

>; Re l—-3Cls 
Dem. 

— 

[*176°19 | eaten Core) = 2 C6O Dh tz wie Os. (1) 

Fath) aa02)4 |). Prop 
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Sada) te Sie > Ole eple eo reo Olay 

Dem. 
F.qu,v.wSv.veQd‘R.~(uRv).d.qu,v,w wu. 

uSv.u Rv.~(ukv).veCU‘th: 

DF:.RES.D:qu,v.uSv.vedT‘R.~(uhv). 

>. qu, 0,0 .uw +u.uSv.wsv: 
DF: RES.Sel3Cls.d:~ {qu,v.uSv.veCsh. 

~ (ukv)} 

DF:iHES.Sel5Cls.D:uSv.veCh. 3, who: 

Dip eeu CpS iSedi—> Olea D=)S [Ge v—vhi 

#2131. Fi.q!o.aCd‘s'a.(sa) facloCls:3:Rea.d. Rha 
= (sa) fa=(pta) fa 

Dem. 

F.x4013.*41-44. DE: Rea. d:c2hy.d.4(so)y: 

G‘R C d“(s*a) :. 

a) aGash . hi ea|. D ihe G(s) ean 

Fe213.(1). DhF:iaCQdh. Rea. (sa) faceloCls. 

>.Rfa=(s'a)fa (2) 

F:.qio.Rea.D,.chy.yea: 

I:qS.Sea.aSy.yea (3) 

F.(3). DIb:q!ia.d.(pia)faG (sa) fa (4) 

F.(4).#213. Dh: q!o.9:(a)facl5Cls.). 

(so) Pa=(pfa)Pa (5) 
(2) ei(Oy) i D+. Prop 

=> — 
214) bu Hp *203: D9: Rer.D. ROO N— Goo emas 

~~ 

= (PRP QQ mn [#40°13 . x41-44. 2131] 
4215, bz. Hp*203:D:Rerx—Tpr.SeTpr. dD. 

me: aay y 
REO Om? =STOOm A « SQ) P (BQ) 

Dem. 

[02] BAS ON) Sen (1) 

[01-02] BIA GNGN AIAN Be TI 
. ae . ILA 

2) S1Q. A mim p (Ss AQE Nh ROS mins eee) 

hal) c(2) 2140) rop 
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€216. bs. Hp¥203:3:Rer—Tpr.Se Tr. Dd. SPER [215] 
*217. |:. Hp*208:3:we(TpeA)r.Rerx-—p.Seu.d.SP°R 

Dem. 

F, #4023. DIF: pC(TpeA)rA.q!p:wep-Sew.Rer—p. 

DSP hse pp. ek pp Ong. SEE | (A) 
F. (1). #216.*258°241 . D+. Prop 

#218. -: Hp*203.q!p(TpxA)Xr.)9. Up(LpeA)r = min (P?)*r 

Dem. 

F.**217201. DF: Hp.d:Ser.—p(TpxA)ar. 

Rep(TpeA)rX..D.RPY%S (1) 

anit). oP a erop 

Sai 
Col, Fi.Sen? Dik=p (TA) vane S|... 

ke (TxA) . Sre Tk 

— 

[*22°43 | Pa Soko se lke) e Ss} 1D. 
to 

mp-pC(Tp*ed)rA.q!p.p={(TpeA) ra &S} .k=p‘p 

< 

[4257125] DF:.Ser.-dD:k=p'\(TpeA)rneS}.2. 
~— 

up -ltafpe(TpxA)X. p= {(TpkA) rn S| .k=p‘p 

ee 
[e2pe2tl) Dr: Sert.d.4=p{((Tped)r a eS}. 2. 

ke (TpxA)X (1) 

Paci ne2o0 125. 
ogi 

Die Sie Wee k= p'\(TpkA)r nN eS} Bae es 

The (TpeA)r (2) 
ee 

[x4012] Dk: Ser.D.b=p{(TpxA)aneS}.d. 
ee 

@we(TpkA)AnES.Ig+kCa: 

, 

[Transp] DrsSeX.D.h=p*{(TpeA)rAn eS} .9- 

*  we(TpkA)X.~ (KC o).D.Sxreo (3) 
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F .*22°43 .*04. (2). 
<< 

DE: Ser.D.k=p*{(TpxA)r n eS} 2D. 

~ (ik C Teh) . Tpke  (LpeA Yn (4) 
co 

F.(3).(4). Des SeA.D-6=p\(Tped)2 n eS} . 3: 

~ (Se Tk) (5) 
RS) Ao) e Dies Ero, 

x32. - A Hp * 203 ob TN . E Y Taku . D) . (Qm‘X) Q (Qnn‘) 

Dem. 

[#212] F:Hp*203.hevA.>).2Q0(Q,A))- Bzela a) 

[x 02-2038] bem Tas 3) per (2) 

A(t), ye Dest Hp 208 Den. Sie 
D2 0 (QUtn)« D Sezer) 

[*02 | b:Hp*2038.~Tpr.Sepm. 
— 

>. SQA = minpG| [srxtyrweOul} (4) 

b.(8).(4). bs: Hp #203. 2 Tpr. Sep. 
Daz it (OR W) O21 W072 ais cena) 

Gat b: Hp 203. Tpr. B! Tofu. Dd. (Quid) @ (Que) 

4321, b:Hp*208.(A (Tp, r))v. EB! Te D- (Quis) OCQnv) 
Dem. 

[«*'02°203 | ts) KAN) ON Te) Ou aos 
eer J 

). sp*p°O. Dp pe Lonny) 

[40°12 | Gyo e) DY fabeyo\GN (2) 

ric EECA) as Dip Hoa Gi lees ON wren res ep uals 2 

DG ME jO4 2) 4 PON 1 COG) 

F.(3).*02. DE:.p C(TpxA)rA.q!p-q! pp. 

u Dara, ens 
D: Ted, rep. Dd. KT pM Qn AE 1. Te Qypprel v0: 

Dm aE eval Os nap (y algiy yoo) 3 

D:TpAjrep.d.QnAa+Qnpip 4) 
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F.(1).*01.(4). Dh p tie Atp-aip‘p- 

i We ep. 2. Qn'p'p+ Qin‘ « 

Qnip*p € 4 9 156 AYyreN Ul}. QnA=minsFreOul (5) 

BNCO). Drip C(LeeA)r.q!p-q! pp. 

Trd,Nep-D+ (Qn) QQm*pp) (6) 
F.(6).*32 .*#258°241.>5. Prop 

#33. F:Hp*208.3.PQX%e1>Cls 

Dem. . 

[*'04] F:Hp.o=—p {qm.me(TpkA)r. 

N= ppl OQniu} 2. PQX=Ke (1) 
Beal) sierra ag tye 

muy. m,ve(TpkA) rx. N = py r OQ, -_M= ppt QQnku = 

Pe2oe250 113) Dre Hp(l).3: MU, New. Dy x ae v 

Dp PO Om « Vi pul eat: 

Ae rv. Vv. v{A (Tp, r)} uw 

[#321214] Se ekin(h) =: D200 New. Dy 

pv: pve(TreA)r. N= (p OPO On 1M = (pe) OQ: 
ae 1) O( Qin‘ Vv)» (ps nrg: aan =(p see. Qs Qm* pes Vv: 

— 

(2..* v) Ons ove (ps "Mt Oa p= (p* u)f 0) Cis 

D+: Hp(1):>.M,Neu.D. Cem Caen. 
i My. le Say «MLSs, 

oc. Hp) =D. WN ee. 

Dee UM a GN: Do Mey Ny. (2) 

meets >. Prop 

al 

34, bipe(TpeA). ELT pr. Hp *203. 

> (PQODP OE Qntu = (PW) PO nk 
Dem. / 

[#04] b.Hp*203.E! Tew. pw c(TritA) 

2. (p* rag Ym’ C PQA (1) 
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[*33] F.Hp.3.PQre1—>Cls 

b.(1).(2).*213. D+. Prop 
4341. b:we(TpeA) 2. Hp 208. p'(TpeA) . 

= = 
D>. POP OOnfu = put Ont 

Dem. 
—S 

[x 201] eb One) ava Cray val (flan 8) ANE 

SE: Hp.d.E! Tou (1) 
F.(1).#*#34. D5. Prop 

#35. Ff: RPO PON= POX. Hp *208. (Peed) X=Ae 

Bie CCP! = D2 0S en Dees) 

Dem. 
ee 

[x*34°31 | E Hip) Sen. b= pred) Nin ess): 
=> = 

Dy, + eT OS O sn — S| Oro ommmals) 

— 

[e3402] +. Hp.Ser.k=p'((Tpkd) aa ets}. 

>, GT. Te Tok. RQm d= TQe'r- 
(P°Qm) P(S;Qm) (2) 

Po) Mar) rea lal od Daas es soe nvele 4s 

— 

* 4, F:: Hp* 203. p(TpxA) X= A. zeU*PQX:.3:. Sh QZ 
=> 

= (PO=N) i) O'2- CROIX) (Siz) > Une emily 

Dem. 

[04] bezel POND que Che Aye OnOmene 

34] | Dba Hp. Daw y= fe. D, (ROm) Naame 

= (PLE) EQmtv « 2Qx (Qmkr) 2 
[e341] Dk: Hp.d.qu,U. Ve Tew.(PQA)P O On Tou 

= UNO Qn’ Pov « 2Qye (Ont) 
= = 

Eo 2) malathion Sais) py Jeo Oi 

(POK2) P82) =D om UU cee 
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*41. +:.Hp*2038.p(TpeA)rA=A.ReEC*P2. 
BPGSPOX. = POW. 2. BRPEV sD rqS. Ser. SP2V 

Dem. 

Proto, Fs Hp: Do. ov aPOX= POX): 
— 

PerrG19) Db: Hp.d\.4q2.2¢ A POn VE Qe 
— 

CE ey Gea Cl Qe) te OMee) 

[*'4| Pico Dems eS ek. SPeV 

#42, F:.P,QeD.r~cOVlL.ACOSPY. p(T pKA)X: 
= A 

= 

Bao foauney OPO N= POn) >): p C poPeon,. 
foes << 

Vide a dab G gf POY, [35°41 | 

==) mica 

£43. F:EYQaA-D.sArAQnA~ el. ST pA Qn rAe1 [01:02] 

e4dl, F: 7p A.(Tp),,EA 

Dem. 

F.*43. Beant ip ae Sey ot Sip Weg = (1) 

pel) a*20l18 . DF. Prop 

aaa, 
*432. F:Hp*203.3.min(P2)AC pi Tp*dA)r 

Dem. 

[* 217] F:.Hp.Rew.pe(TpkA)r.u{A (Tp, r)} v. 
wens ys Dao oS hee 

Dt: Hp. Rew.pwe(TpeA)rA.Rmin(P%)r: 
Dip {A (Tp, rA)}v-qlv.2.hev (1) 

[*431 | F:Hp.Repw.v{A(Tp,r)} w.d. Rev (2) 

F.(1).(2). Dk: Bp.>. Remin P&A: 3: we(TpeAYN. 
DH ewasyTey (0) 

bea (ed) DikiProp 

#433. b: Hp*42.p=C'Pen R(REAPQX = PQA). 
ae = 

Di, max Ce? io — they x 
Dem. 

Gps wes Sie Core = Dis iS fh CP Orn = POD. 
> + 

v.92. ze POD. Sf Q%e=PQrl Oz. 

(Si2eP (POR) avi OA) PS): 



230 Miss Wrinch, On the exponentiation of well-ordered series 

[e4q)) Dire: Hip. De. SeC2P? os S coe wv: ep. a. 
SPoLT sviqgU.U exe UPS 

Di Gins Ely. Dyzs ie Wa Dip eis ea eS el oie 

D2 Sep“. Lep. D7. Sie 

Dye Hedelia >) her T (Ver. Dd, UP®V)— max (P2)p. 

Seq: 5):/B))max(P?)'o. 5). SPe (max) eae 
— 

max (P®)‘pep:v:max‘P“p=—A.D.q?. SPT. Tepe 

Dhi:Hp.d:.c—0 (Ver. Dy. UP°V)— max (Pep. 
Do CR eae 

b.(1).*205193. Dk:Hp.d:c=U(Ver.d,. UP) 
— —- a | 

— max (P®)‘p. >. max (P®)'o uc =max(P%)*p Q) 

— 
r.*20602. >| pelo). Diporec CAeEN 

De NIL 

=< mmx iU\((Vi ek’, 5). Vues) waa ten) 

F.(3)- Db: Hp.d:¢=U(Ver.d,.UPV) 
eS — — 

—max(P®)‘p.3. prec (P®)'r = max (P®) (fp ua): 

. (2). Dt: Hp.d:co=U(Ver.d,- UP®8V) 
— —— — 

—max(P®)‘p9.3. prec (PP?) = max (P®)fp (4) 

Wea 
b. #432. Dy ip ridale) 4D) qramoa( Ue Nia Je (5) 

ay = 
L. (4). (5) #20702. Dt: Hp. dD. max (P%p = tl (PYA 

444. +: Hp¥42.p=C'Pea R(RPAPQA= POA). pel. 

Dip =th(P%YA [205-18 . 433] 

¥45. +: Hp¥42.p=0*P?n R(RP O'PQX= PQA): 
Ds GCePON — C60 =o — wae 

Dem. 

enlslo wD OOO WOK) DAGON a OMIP'? - 
f cia D)- Ch — Cie antes 

Di: Ap. DE G@POn 00D. POA ee 
ibaa oy D) hy RO ONE DYE TE OEM o. 
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[¥17619]. DF:.Hp.d:p=e°PQXA.93.0°PQXA=CQ (2) 

Peachy. (2). at. Prop 

#451. F:.P,QeQ.rC OCP? . AvcOV1.p(TpeA)A=A. 
>. OPQA=C°V:D. EY tl (Per = [45°44] 

#46. F:.P,QeQ.rACCPe.A~mcOVUl. p(TpeA)rA=A. 

Dd, ATOR =CQ:d:p~¢c0.n~C0?Pe, 

D, Et limin (P®){u — [«'11:218'451] 
— 

*5. F. Hp*42.3.max)A°PYO‘A= A 

Dem. 

[*04] bakin 2 eC POrNs 

| D. qu. me(TpeA).2Q(Qm‘e) (1) 
[*04] F.Hp.we(Tp*edA)r. 

Di a = Tek Oat iG ERO (2) 
F.*216.(1).(2). Db. Hp.zeQ*PQn. 

De’. 2Qe'.z eC'PQX (3) 
F.(8). Dir brop 

Pel skip #42 2D UPON = CQ. 

v.qz.zeCQ—AQ,.TPQA wae [*'5] 

eae Oe COCHAO, D2 a~a¢60.2CCP2. 

| 5, .E!limin (Pp [#4651] 
Pas se, Oe. COCO, EY B'CnviP?. >, P* «Ded 

[5 2°1] 

4581, b:P,Qe.0QCUQ,. BCnv'Pe= A. 
>. P®esemi-Ded  [#*'52'1] 

#5401. F:. P,QeQ: ea Cay Pe = Rep. 

»,.D‘R=UBP [x176-19] 

"541. £:.P,Qe0.3:E! BCnv'P?.=.E! BP [«5401] 
*55. &:.P,Q@eQ.0°QC AQ: 3: P? esemi-Ded: 

PeDed.=.E! BOP [¥«541°53531] 
*56. F:.P,QeQ.NrQ<o.)D: P® esemi-Ded: 

PeeDed.=.E!BP [¥55] 
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* 6. bs. Hp*42.p=C'P?a R[RPO‘PQX= PQA]. prel: 

>:H! BP .=.E!max(P*)'p 

Dem. 

[*176°19] Perlshon 2) avi OIA ely Ci O4!) 

er lye 

*'61. 

i 

D( RP —APQA) = BSP. =,.R=max(P®)p (1) 

Dileep): EIB. =.E!max(P%)‘p 

EP OeO 1a) 
Si) R ee = 

N= Kh (qz- 20a: H=clp) O'zue2, ) Cee). 

ae CO — GO, DEV limin CP2)oo. =— ee BP 

Dem. 
—- 

First 2D) sco (Gil, S . 8. iS eos 1S een eee 
—_ 

= Sip Qesen 
celal ne) ae Wiesel ius ©) Oral a) (1) 

—> 

ene OA 2) Fecal) COON Oia (2) 

piel aly Dig RiahoysD) sje (3) 

F.*k6433. D6:.Hp.3:E!limmn(P%)..=.E! BP 

*'62. 

*'63. 

a 

*'8. 

Dem 

F.*'56. 

ma (ib) xt 

HOP, Oe a! C10” CKO NIG Core one 

>:E!limin(P9”.2.E!BP [x61] 

be Pl Oe O. NEOs ot D 1PeeWcde  nBaee 
SV 

BeP=A.=.P®~esemi-Ded_ [** 611] 

b:, P,QeQ.D:. PecDed.=.E! BP [sek'56°63] 

bi: P.QeQ.D:. Peesemi-Ded.=. BY BP:=: Nese 

F . *'63> Wa Dieta Je, Oe O) . D) Bg INTEL) Ss (ay 

>: P®esemi-Ded. =. E! BP (1) 

De Be Oa i-siINiri@ <a: 

5)? semi edi BePey | Ocem (2) 

2) Olas Ole OeNr Osten 

= P? ecomiDedy =. Hiner 
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The definitions and method used in the earlier part of this paper 
(**'01—341) are suggested in Principia Mathematica *276. There 
it is stated tentatively that 

- qt p(T A) XD. p(Tpe A) = min (P%)r 
~ a! p(TpxA)r. 2. PQA= prec (P®)Ar 

The first of these propositions is established in **1—‘218: the 
second seems to be untrue. If in the field of Q there is a term a 
with no immediate predecessor (as for example the term @ if @ 
were the series of ordinals less than w + 4), there is a X, a subclass 
of the field of P®, for which PQ*X is a relation covering with P-terms 
only the @-terms which precede a (cp. *61). In such a case PQX 
is not a P® term and so 1s not prec(P®)A. If P has a last term z, 
the relation agreeing with PQ as far as a and covering a and 
all subsequent @ places with z will be prec (P®)‘X, and therefore 
the lower limit of X with respect to P®. 

Thus, while agreeing with the proposition 7f P and Q are well- 
ordered series and P has a last term, P® is Dedekindian, and ex- 
tending it to the proposition if P and Q are well-ordered series, 
P® is Dedekindian when and only when P has a last term, we dis- 
agree with the conclusion that if P and Q are well-ordered sertes, 
P® with the addition of a term at the end is Dedekindian even if P 
has no last term. Instead we would substitute the propositions 
when P and Q are well-ordered series, and Nr‘Q <o, P® with the 
addition of aterm at the end is Dedekindian whether or not P has 
a last term, and if Nr‘) >, P® with the addition of a term at 
the end is Dedekindian when and only when P has a last term. 
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The Gauss-Bonnet Theorem for Multiply-Connected Regions of 
a Surface. By Eric H. Nevitue, M.A., Trinity College. 

[ Received 1 Dec. 1918: read 3 Feb. 1919.]} 

Among the most delightful passages of differential geometry is 
the use of Green’s theorem to prove the relation discovered by 
Bonnet between the integral curvature of a bounded region on 
any bifacial surface and the integrated geodesic curvature of the 
boundary. The fundamental equation is 

feqds + | [Kas = [SF as 

where the line integrals are taken round the whole boundary and 
the surface integral over the region contained, «, is the geodesic 
curvature of the boundary, K the Gaussian curvature of the 
surface, and & an angle to the direction of the boundary from the 
direction of one of the curves of reference. Though there is no 
allusion to curves of reference on the left of this equation, not 
only do these curves appear explicitly on the right, but the use 
of Green's theorem implies that there does exist some system of 
curvilinear coordinates valid throughout the region and upon the 
boundary, an assumption of which it is difficult to gauge the exact 
force. The primary object of this note is to express Bonnet’s theorem 
in a form purely intrinsic. 

In the case of a stmply-connected region not extending to 
infinity, whose boundary has continuous curvature at every point, 
the value of [(d&/ds) ds is 27*. If the region is simply-connected 
and does not extend to infinity, but the boundary is a curvilinear 
polygon, formed of a finite number of ares of continuous curvature, 
the sum of the external angles must be added to the mtegral to 
make the total of 27; in other words, /(d&/ds)ds is then the 
amount by which the sum of the external angles falls short of 27. 
In the particular case of a curvilinear triangle, the amount by 
which the sum of the three external angles fails short of 27 is the 
amount by which the sum of the three internal angles exceeds 7, 
and is called the angular excess of the triangle. The name is 
adopted to serve a wider purpose: whether a connected region of 
a surface is bounded by a single closed curve or by a number of 

* See a paper by G. N. Watson, ‘“‘A Problem of Analysis Situs”, Proc. Lond. 
Math. Soc., ser. 2, vol. 15, p. 227 (1916). 
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curves, the amount by which the sum of all the external angles 
ot the boundary falls short of 27 is called the angular excess of the 
boundary. 

Whatever the number of curves forming the boundary of a 
region, the addition to the boundary of a simple cut, joining a 
point of the boundary either to a point of the cut or to a point of 
the boundary and described once in each direction, increases the 
sum of the external angles by 27. If the cut divides the region 
into two parts, the angular excess of each part is the amount by 
which the sum of the external angles of that part falls short of 277, 
and therefore the sum of the two angular excesses is the amount 
by which the sum of the external angles of the composite boundary 
falls short of 4a; this, being as we have just seen the amount by 
which the sum of the external angles of the original boundary falls 
short of 27, is the angular excess of the original boundary. If on 
the other hand the cut leaves the region undivided, there is an 
actual decrease of 27 in the excess. It follows that if by a 
succession of 7 simple cuts the region is divided into m distinct 
parts, the sum of the angular excesses of the boundaries of the 
parts is less than the angular excess of the original boundary by 
2(n—m-+1)7. Suppose now that each of these parts is simply- 
connected and that there are no singular points of the surface in 
the original region or upon its boundary. Then since Bonnet’s 
theorem in its simplest form is applicable to each of the parts, 
addition of the sum of the integral curvatures of the parts to the 
sum of the integral geodesic curvatures of the boundaries of these 
parts gives the sum of the angular excesses of the individual 
boundaries. But the sum of the integral curvatures of the parts 
is the integral curvature of the original region, and the sum of the 
integral geodesic curvatures of the boundaries of the parts is the 
integral geodesic curvature of the original boundary, since an are 
described once in each direction adds nothing to Jxgds. Hence 
the sum of the integral geodesic curvature of the original boundary 
and the integral curvature of the bounded region is less than the 
angular excess of the original boundary by 2(n—m-+1)7. ‘This 
result affords a proof that if only the dissection has reached a stage 
at which every part is simply-connected, the difference n —m 1s 
independent alike of the form of the cuts and of their number. 
Since a simply-connected region is divided by one cut into two 
pieces, the integer used to measure connectivity 1s not n— ia but 
n—m-+2, and Bonnet’s theorem in its most general form asserts 
that 

If a bounded bifacial region of any surface hus finite con- 
nectivity k and neither eatends to infinity nor includes within wt or 
upon its boundary any singularities of the surface, the sum of the 
integral geodesic curvature of the boundary and the integral curva- 
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twre of the region bounded is less than the angular excess of the 
boundary by 2(k —1) mr. 

In other words, the sum of the two integrals and the external 
angles of the boundary is 2(2—h) 7. 

Gauss’ famous theorem on the integral curvature of a geodesic 
triangle, which may be regarded either as the simplest case or as 
the ultimate basis of Bonnet’s theorem, is in no less need of modi- 
fication if the region contemplated is multiply-connected. 

Tf a geodesic triangle on any surface has internal angles A, B, C 
and connectwity k, and if the surface is regular throughout the 
triangle and on vis perimeter, the integral curvature of the triangle 
is A+ B+ C—(2k—1)7. 

The application to the whole of a surface which, like a sphere 
and an anchor-ring, does not extend to infinity, but has no 
boundary, is interesting. A simple closed curve can always be 
drawn to divide such a surface into two distinct parts, and since 
its direction as the boundary of one part is opposite to its direction 
as the boundary of the other part, the sum of the external angles of 
the two boundaries is zero, and so also is the sum of their integral 
geodesic curvatures. It follows from Bonnet’s theorem that, if 
there are no singular points on the surface and the connectivities 
of the two parts are 2, 7, the integral curvature of the complete 
surface is 2(4—7—J7)7. Hence 7+ 7 is constant; in order that a 
surface which, like a sphere, is cut by any simple closed curve into 
two simply-connected parts may be described as of unit con- 
nectivity, the connectivity 1s measured by the integer 1+ 7 —1, 
and 

If the connectivity of a bifacial surface which has no boundary 
and no singular points and does not extend to infinity is k, the 
integral curvature of the surface 1s 2 (3 — k) 7. 

A striking deduction made by Darboux from Bonnet’s theorem 
may be mentioned here. If on a complete surface there is any 
family of curves such that the surface can be divided into a finite 
number of parts throughout each of which this family provides 
one set of curves of reference, the angle & of our first paragraph 
can be measured from the curve belonging to this family, and 
f(d&/ds)ds taken once in each direction over every part of an 
imposed boundary is necessarily zero. Hence 

For there to exist on an unbounded bifacial surface, which does 
not eatend to infinity and is everywhere regular, a family of curves 
which covers the surface and is wholly without singularities, the 
surface must have integral curvature zero and must therefore be 

triply-connected. 
In conclusion the subject may be presented in another form. 

Let the angular excess of the boundary of a region of connectivity 
k reduced by 2(k—1)7 be called the effective angular excess. If 
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a simple cut which is added to the boundary does not divide the 
region, the angular excess is reduced by 27, and, since the con- 
nectivity is reduced by unity, the effective angular excess is 
unaltered. If, on the other hand, the cut divides the region into 
parts of connectivities 7, 7, not only is the sum of the actual angular 
excesses of the boundaries of the parts the actual angular excess 
of the original boundary, but, since / is 7+ 7 —1, the sum of 7 —1 
and 7 —1 is k—1: the effective angular excess of the boundary of 
the whole is the sum of the effective angular excesses of the 
boundaries of the parts. Effective angular excess is therefore 
additive in precisely the same way as the surface integral of a 
single-valued function. If then Bonnet’s theorem for a simply- 
connected region is expressed in the form that the sum of the 
integral curvature and the integral geodesic curvature is the 
effective angular excess, the restriction on the connectivity is seen 
at once to be superfluous. But to take this course implies a 
previous acquaintance with the theory of connectivity, whereas it 
is arguable that if Bonnet’s theorem is used to establish the theory 
of connectivity the extent to which there is an appeal to intuition 
is materially reduced. 
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On an empirical formula connected with Goldbach’s Theorem. 
By N. M. Suau, Trinity College, and B. M. Witson, Trinity Col- 
lege. (Communicated by Mr G. H. Hardy.) 

[ Received 20 January 1919: read 3 February 1919.] 

§1. The following calculations originated im a request recently 
made to us by Messrs G. H. Hardy and J. E. Littlewood, that we 
should check a suggested asymptotic formula for the number of 

ways v(n) of expressing a given even number n as the sum of two 
primes. The formula in question is 

n)~ = iy ad ls y(n)~XA(n)=2A (ceny p22 p22 ae (1), 

where Ti oh (opal) 

and A denotes the constant 

i 1 
I +1 -—. 
p=3 (Or 7 

p assuming, in this product, the odd prime values 3, 5)i/, bla 
The formula (1) was deduced from another conjectured asymp- 

totic formula, namely 

> A(m)A(m)~ 4, Coeds ae (2) 
m+m =n Ore 2 O) 2 

where A(m) is the arithmetical function equal to log p when m is 
a prime p, or a power of p, and to zero otherwise, and the summation 
on the left is extended to all pairs of positive integers m, m’ such 
that 

m+m' =n. 

Formula (1) arises from (2) by replacing in the latter A (m) and 
A(i’) each by logn. It is natural, however, to expect a more 
accurate result if we replace A (m) and A (m’) not by logn but by 
log $n, or, better still, if we replace the left-hand member of (2) by 

Vv | i log v log (n — x) 0) AU ee (3). 

The exact value of the expression (3) is found to be 

y(n) {((logn)?—2logw+2—A7} oo... (4). 

The various formulae thus obtained from (2) are, of course, all 
asymptotically equivalent ; but the modified formulae are likely to 
give more accurate results than (1) for comparatively small values 
of n. We used the formula 

n p—lq-Il 
n)~ p(n) =2A <4, 

Beat) (log n)?— 2 logn p—2 q—2 
UG); 

obtained by ignoring the constant 2 — 42? in (4). 
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§2. For the numerical data used we are indebted to two 
different sources. The most complete numerical results are con- 
tained in the tables compiled and published * by R. Haussner, which 
give the values of y(n) for all values of n not exceeding 5000. 
Tables extending up to 1000 and 2000 had been calculated earlier 
by G. Cantor and V. Aubry. Further data, less systematic, indeed, 
than those of Haussner, but extending to considerably larger values 
of n, were given by L. Ripert} in a number of short papers in 
UIntermédiaire des mathématiciens. 

The values given for » (7) in the accompanying table differ, in 
several respects, from those given by Haussner or Ripert. In the 
first place, m +m’ and m’+m are here counted as different decom- 
positions, whereas the above two writers regard them as identical ; 
secondly we do not (as do Haussner and Ripert) regard 1 as a 
prime ; and thirdly we increase the values of y(n) obtained from 
their tables by addition of the number of ways in which n may be 
expressed as the sum of two powers of primes, ¢.e. the number of 
ways in which 

n=p*+q’, 

where p and q are primes, and either a or b is greater than unity. 
The last two modifications make, of course, no difference to the 
asymptotic formula, but it seems natural to make them when the 
genesis of the formula (1) or (5) is considered. 

As regards the choice and arrangement of the numbers n in the 
table, the smaller numbers—z.e. the numbers not exceeding 5000 
—are intended to be “typical”; that is, they are specially selected 
numbers, taken in groups so as best to test or illustrate the accuracy 
of formula (1). Thus, for example, if the formula in question is true, 
a multiple of 6 may be expected, in general, to allow of an unusually 
large number of decompositions}. On the other hand a power of 2 
may be expected to allow of an unusually small number. The 
numbers below 5000 have therefore been selected in groups of four 
or five, all the numbers of each group being as nearly equal as 
possible; and each group of numbers contains, in general, one 
highly composite number (z.e.2.3.5.7.11....), one power of 2, 
and one number which is the product of 2 and a prime. 

For values of n exceeding 5000, such choice of “ typical ” numbers 
was, unfortunately, impossible without a large amount of fresh 
calculation. Ripert, indeed, selected his numbers according to a 
system, and they, too, occur, in general, in groups of approximately 
equal magnitude; but he selected them with different objects, so 
that his numbers are, from our point of view, neither “typical” nor 
arbitrary. 

* Nova Acta der Akad. der Naturforscher (Halle), vol. 72 (1897), pp. 5-214. 
+ See, for example, vol. 10 (1903), pp. 76-77, 166-167. 
+ It was first pointed out by Cantor, on the evidence of his numerical results 

previously mentioned, that this is actually so. 

VOL, XIX. PART V. 17, 
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The accompanying table gives the number of decompositions— 
actual and theoretical—for thirty-five numbers; the value found 
for the constant A was 0°66016. In the second column the first 
number is the number of decompositions, using prime numbers only, 
and the second the number of decompositions involving powers of 
primes higher than the first. 

§ 3. Table of decompositions. 

n y (n) p(n) y(n): p(n) | 

30 ONe ns GAO 22 45... | 
32 = 25 Ahern hs! 8 ICS Geen 
Bye Oy Nl) Te Gls 9 1:44... 
36 =2?. 3? 8+ 8= 16 17 =O in 

210=2.3.5.7 494+ O0= 42 49 “85 
214=2.107 EEO lun 16 1:07 
216 = 23. 33 28+ 0= 28 32 ‘88 
256=28 16+ 3 19 17 1:10 

2,048 = 211 50+17= 67 63 1:06 
2,250 =2.. 32.53 1744+26= 200 179 Tee 
2,304 = 28. 32 13442) 8 = 4D eis 1:04 
2,306=2. 1153 67+20= 87 69 1:26 
2310203 1on jem 298+16= 244 244 1-00 

3,888 = 2! . 35 186+24= 210 197 1:06 
3,898 =2.. 1949 99+ 6= 105 99 1:06 
3,990=2.3.5.7.19 3284+20= 348 342 1:02 
4,096 =2!2 1044+ 5= 109 102 1:06 

4,996 =2?. 1249 124+16= 140 119 1:18 
4,998=2.3.72.17 288+20= 308 305 1:01 
5,000 =23 . 54 1504+26= 176 157 1:12 

8,190=2.32.5.7.13 578+26= 604 597 1:01 
8,192 = 218 1504+32= 182 171 1:06 
8,194=2.17.241 1924+10= 202 219 “92 

10,008 = 23 . 32. 139 388+30= 418 396 1:06 
10,010=2.5.7.11.13 384+36= 420 384 1:09 
10,014=2.3. 1669 408+ 8= 416 396 1:05 

30,0830=2.3.5.7.11.13 1,800+54=1,854 | 1,795 1:03 
36,960=25.3.5.7.11 1,956+38=1,994 | 1,937 1:03 
39,270=2.3.5.7.11.17 2,152+36=2,188 | 2,213 “99 
41,580=2?.33.5.7.11 2,140+44=9184 | 2195 1:03 

50,026 = 2. 25013 702+ 8= 710 692 1:03 
50,144 = 25. 1567 674432= 706 694 1:02 

170,166=2.3.79. 359 3,734+46=3,780 | 3,762 1:00 
170,170=2.5.7.11.13.17| 3,784+ 8=3,792 | 3,841 “99 
170,172 =2?. 32. 29. 163 3,732 +48=3,780 | 3,866 “98 
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§4. Goldbach asserted that every even number is the sum of two primes, and this unproved proposition is usually called ‘Gold- bach’s Theorem’. It is evident that the truth of Hardy and 
Littlewood’s formula would imply that of Goldbach’s theorem, at any rate for all numbers from a certain point onwards. 

Previous writers, from Cantor onwards, had noted that the irregularity in the variation of y(n) depends on the structure of » as a product of primes. In a short abstract in the Proceedings of the London Mathematical Society, Sylvester* suggested the formula 
2n _p—2 

4 era : Bee L iitttetstesesenees (6), 

where, in the product on the right p assumes all prime values from 3 to /n, except those which are factors of 7. Sylvester gives but 
little indication as to how he arrived at the formula, and indeed there is much in his paper which is not very clear. It is at once obvious that if n, n’ are two large, but approximately equal, even numbers, the values furnished for the ratio v(n):v(n') by formulae (1) and (6) will be the same. For if 

We Dee Po, 

and N= DY ge of 0, 
both formulae will give, as an approximate expression for this ratio, 
the quotient 

Pa Oe iP cal cr a pao poe 

The actual values of v(m) would however be different. For from 
formula (6) we should deduce 

2 ig h—-2 
USS are so mn ae ea 

ED ae NK comer PA) 
pévnP—1 peynp(p—1) 

et irehycul I (1-2) 
Ue Uierae aes pP 

ee (1-5), 
p<vn Pp 

where A is the same constant as in formula (1). Also it is known+ 
that 

Qe- Ww (1-7\a 
P<Kvn 

* Proc. London Math. Soc., vol. 4 (1871), pp. 4-6 (Math. Papers, vol. 2, pp. 709- 711). See also Math. Papers, vol. 4, pp. 734-737. 
t+ Landau, Handbuch der Lehre von der Verteilung der Primzahlen, p. 140. 

17—2 
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so that (6) is equivalent to 
Neh MDs gic tl u 

v(n)~ 4Ae Gene 3 ge tan (7). 

Hence the asymptotic values furnished for v() by (6) and by (1) 
are in the ratio 2e-7 : 1, z.e. in the ratio 1:128: 1. 

A quite different formula was suggested by Stackel*, viz. 
n° 

p(n) ~ ——.—— 0 Clog. n)$ (n) 
where $(n) denotes, as usual, the number of numbers less than n 
and prime to n. This is ae to 

LY Zl y(n)~ ie Wipcl gol’ eae (9). 

Since p/(p—1) is nearer to unity than (p—1)/(p—2), the 
oscillations of v(n) would, if Stickel’s formula were correct, be 
decidedly less pronounced than they would be if (1) were correct. 
As between the two formulae, the numerical evidence seems to be 
decisive. Thus the ratio v(8190) : v(8192) is 3:32, whereas ac- 
cording to (1) it should be 3°48, and according to Stiickel’s formula 
it should be 2°37. Stéickel’s result is obtaimed by considerations of 
probability which ignore entirely the irregularity of the distribution 
of the primes in a given interval n <JV, and it is not surprising, 
therefore, that 1t should be seriously in error. 

On the other hand it should be observed that Sylvester's for- 
mula (7) gives, within the range of the table on p. 240, very good 
results, not much worse than those given by (5), and decidedly 
better than those given by (1). This is shown by the table which 
follows, in which decompositions into powers of primes higher than 
the first are neglected. 

Formula (7) Formula (1) 

i y(n): 2e-Y X(n) v (n) : d (n) 

2,048=2" "95 1:06 
22590 — 24 32155 Ieakg) 1°31 
2,304 = 28 . 3? 1°18 1°33 
2,306=2. 1153 isi 7 1°31 
2,310=2.3.5.7.11 sik) 1°26 | 

10,008 = 2° . 32. 139 111 1°25 
10,010=2.5.7. 11.13 1:12 1°27 
10,014=2.3.1669 IeIhy 1°32 

170,166=2.3.79. 359 1:06 iI) 
WON TO =2ro at lets ela 1:05 1:18 
170,172 = 22. 32. 29 . 163 1°04 1°16 

* Géttinger Nachrichten (1896), pp. 292-299. 
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§5. It has been shown by Landau* that 

3 des 2 deny ny 

and that Stiackel’s fats (8) is inconsistent with (10), and ac- 
cordingly incorrect. 

The same test can be applied to the formula (1) and Sylvester's 
formula (7). In fact Messrs Hardy and Littlewood have shown+ 
that (10) is a consequence of (1): from which it follows, of course, 
that the asymptotic formula of the type of (10), furnished by 
Sylvester’s formula, would be in error to the extent of a factor 
2e-¥ = 1123; that Sylvester’s formula is therefore also incorrect ; 
and that if any formula of this type is correct, it must be (1). 

It may seem at first surprising that, in these circumstances, 
Sylvester's formula should give, for fairly large values of n, results 
actually better (as is shown by the results in the table on p. 242) 
than those given by (1). The explanation is to be found in the 
nature of the error term in (1). The modified formula (5), which 
we have already shown to be likely to give better results than (1), 
for moderately large values of n, differs from (1) by a factor of the 
type 2 

Sa ea t 
ogn 

This factor does not affect the asymptotic value of y(n), but it 
makes a great deal of difference within the limits throughout 
which verification is possible: thus when n= 170,170 it is equal to 
1166. When n=10", it is equal to 1087, and its difference from 
unity is negligible only when n is quite outside the range of 
computation. It is only such values of n that would reveal the 
superiority of the unmodified formula (1) over Sylvester's formula. 

§6. Shortly after the writing of the preceding sections had been 
completed, Mr Hardy informed us of the existence of a third pro- 
posed asymptotic formula for y(n), given more recently by V. 
Brun?. The formula to which Brun’s argument leads is 

tial »(n) ~ 2Bn 5 9 aie Mette ate (11), 

where B=(1-5) (1-:) (1-7)... (1-7) 
h<Vn ( )\ 

h=3 

* Géttinger Nachrichten (1900), pp. 177-186. 
+ See their note which follows this paper. 
+ Archiv for Mathematik (Christiania), vol. 34, 1917, no. 8. See also § 4 of 

Hardy and Littlewood’s note. 
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By an argument similar to that used in §4, in the reduction of 
Sylvester’s formula, it may be shown that this is equivalent to the 
formula 

3 Ae? 1 Dick ire — 4-2 v(n)~ 8AeY los pa eae =4e~yrX (n) (12). 

Thus this asymptotic value for v(m), and the Hardy-Littlewood 
value, are in the ratio 4e~Y : 1 =1:263...: 1. Sylvester’s is their 
geometric mean. 

The formulae (11) and (12) would furnish a quite close ap- 
proximation for y(n) for those values of m on which it could be, in 
practice, tested. Thus, for n = 170,170, we find that 

vy (n)/4e7A (n) = "93 . 

But the ultimate incorrectness of the fone may be proved in 
the same way as that of Sylvester's formula, namely by use of 
Landau’s asymptotic formula (10). 

Brun knew of the memoirs of Stickel and Landau, but ape 
to have been unacquainted with Sylvester’s work. 
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Note on Messrs Shah and Wilson’s paper entitled: ‘On an 
empirical formula connected with Goldbach’s Theorem’. By G. H. 
Harpy, M.A., Trinity College, and J. E. LitrLewoop, M.A., 
Trinity College. 

[ Received 22 January 1919: read 3 February 1919.] 

1. The formulae discussed by Messrs Shah and Wilson were 
obtained in the course of a series of researches which have occupied 
us at various times during the last two years. <A full account of 
our method will appear in due course elsewhere*: but it seems 
worth while to give here some indication of the genesis of these 
particular formulae, and others of the same character. We have 
added a few words about various questions which are suggested by 
Shah and Wilson’s discussion. 

The genesis of the formulae. 
2. Let 

f@)=2A (a) 2*=2A (n)e*" = Fy) 

and ic QE AM) — Kem) Aoi) ent, 

where A (7) is equal to log p when n is a prime p, or a power of p, 
and to zero otherwise, and x, (m) is one of Dirichlet’s ‘characters to 
modulus q’+. Also let 

z= KePrg 

where p is positive, less than qg, and prime to q; and suppose that 
x tends to unity by positive values. 

It is known that 

xe (0) A (2) = 0(n) 
unless y, is the ‘ principal’ character y,, in which case 

Lx. (v) A (v)~ ZA (v)~n. 
1 1 

It follows that 

(21) AO 
and 

(22) felx)=0(;=5) (>). 
* An outline of one of its most important applications is contained in a paper 

entitled ‘A new solution of Waring’s Problem’, which will be published shortly in 
the Quarterly Journal of Mathematics. 

+ See Landau, Handbuch, pp. 391 et seq. 



246 Mr Hardy and Mr Littlewood, Note on 

Now 

(2:3) f(a) =SA(n) xr emia = S evra SA (n) x. 
If7 is prime to g, we have* : a aa 

(2-4) SA@P= 782 ILE 
where x, 1s the character conjugate to y,, and ¢(q) is the number 
of numbers less than and prime to gq. It follows from (2‘1) and 
(2:2) that 

1 Ul 1 
29 > A(n)x?~ Xi(I) To eat e@ lee eae 
If on the other hand 7 is not prime to q, the formula (2°4) is 

untrue, as its right-hand side is zero. But in this case A (n)=0 
unless 2 1s a power of G so that 

1 
ae Wh (2°6) hel SS (Oe =o er 5) 

From (2°3), (2°5), and (2°6) it follows that 

4 
val 

(2 0) J (@) ~ Te 

where 

Qi) Av = On Sever — — 1 Leu iq 

eas (Yq) j 

the summation extending over all values of 7 less than and prime 
to g. The sum which appears in (271) has been evaluated by 
Jensen and Ramanujan‘, and its value is w(q), the well-known 
arithmetical function of g which 1s equal to zero unless q is a product 
Pips --- Pp of different primes, and then equal to (—1). Thus 

: cou 

3. The sum 

(3:1) a(n)= > AN) Nn’), 
mt+m =n 

* Landau, l.c., p. 421. 
m 

+ J.L.W.V.Jensen, ‘Et nyt Udtryk for den talteoretiske Funktion Sy (x)= W(m)’, 
1 

Saertryk af Beretning om den 3 Skandinaviske Matematiker-Kongres, Kristiania, 
1915; 8. Ramanujan, ‘On certain trigonometrical sums and their applications in the 
theory of numbers’, Trans. Camb. Phil. Soc., vol. 22, 1918, pp. 259-276. 

+ If « (q) is zero, this tormula is to be interpreted as meaning 

f (v)=0 (3) ° 
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which appears on the left-hand side of Shah and Wilson’s equation 
(2), 1s the coefficient of #” in the expansion of { f(x)}*. And 

(gy? 1 #(q)* fi r)2~ ie = Snxre—2nprt/g 

Os @s A= 6) 
when we”? along a radius vector. Our general method ac- 
cordingly suggests to us to take 

OQ (n)=n> eeor ag ee 
$(q) 

_where the summation extends over q=1, 2, 3, ... and all values 
of p less than and prime to q, as an approximation to w(n). Using 
Ramanujan’s notation, this sum may be written 

(u(Ql? 
hp. Oman eZ Co (Nn). 

The series (3°2) can be summed in finite terms. We have 

(33) Cq (nm) = Zon (7) ‘ 

the summation extending over all common divisors 6 of g and n*; 
and it is easily verified, either by means of this formula or by means 
of the definition of c,(m) as a trigonometrical sum, that 

Coq (n) = Cg (n) Cg (n) 

whenever g and q’ are prime to one another. We may therefore 
write 

O(n) =n2A, = ullye; 

where the product extends over all primes a, and 

ye At Age + Ags. = LEAS, 

since A, contains the factor 4 (q) and Ag, Ags, ... are accordingly 
zero. 

If n is not divisible by a, we have c,,(n) = w (a) =— 1 and 

1 He 
Ae=— pet = 

while if » is divisible by a we have 

Ce (n)=p(o)+on(1)=a—-1, 
i 

A.7 = ae 

/ 1 dy 1 a O(n) = all (a a —-,) I {1 nee mit 

* Ramanujan, l.c., p. 260. 

Hence 
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where II’ applies to primes which divide and II” to primes 
which do not. 

It is evident that Q (n) 1s zero if n is odd. On the other hand, 
if n is even, we have 

noosa fag} 
= Onl {1- naan “TH I i = 5). 

where » now runs through all odd primes and p through odd 
prime divisors of n. 

The formula @(n)~ O(n) 

is formula (2) of Shah and Wilson’s paper *. 

The incorrectness of Sylvester's formula. 

4, It is easy to prove that if any formula of the type 

(4:1) w (n) ~ CO (n) 

be true, then C must be unity. In other words, our formula is the 
only formula of this type which can possibly be correct. This 
may be shown as follows. 

Let 

(42) J (s) = 

where » runs through all even ee and let s—1=¢. The series 
is absolutely convergent if s>2,¢>1. Replacing O(n) by its 
expression in terms of the prime divisors of n, and splitting up 
f(s) into factors in the ordinary manner, we obtain 

Dal ome Maori a Wien) 
f= pa (+ +e a)" ]_—9-= ? 

say, where A is the same constant as in Shah and Wilson’s paper, 
and @ runs through all odd primes. 

Let 
aa en iy Oe | ee 

and suppose that 1. Then 

Sa can ee 
om {(1+5>5)/0+a=a)f 
ae) CC a 
ee Df Wea a: 

* When & (x) =0, the formula is to be interpreted as meaning w (1) =0 (n). 

3 — 
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and so 
1 1 

(43) f(s)~2Ay()~2(1-2~) S(t) ~ Teal bane a 

This is a consequence of our hypothesis: the corresponding 
consequence of the hypothesis (4°1) would be 

C 
(4°31) f(s)~ ay 

On the other hand, it is easy to prove* that 

(4°4) w(1)+@(2)4+...+0(n)~ $n’; 

and from this to deduce that 
w (”) 1 

eal Gy ee 
when s—2. This equation is inconsistent with (41) and (4°31), 
unless C = 1. 

It follows that Sylvester's suggested formula is definitely 
erroneous. 

It is more difficult to make a definite statement about the 
formula given by Brun. The formula to which his argument 
naturally leads is Shah and Wilson’s formula (12); and this 
formula, like Sylvester’s, is erroneous. But in fact Brun never 
enunciates this formula explicitly. What he does is rather to 
advance reasons for supposing that some formula of the type (41) 
is true, and to determine C' on the ground of empirical evidencet. 
The result to which he is led is equivalent to that obtained by 
taking CO = 1°5985/1°3203 = 1:2107 {. The reason for so substantial 
a discrepancy is in effect that explained in the last section of 
Shah and Wilson’s paper. 

Further results. 

5. The method of § 2 leads to a whole series of results con- 
cerning the number of decompositions of n into 3, 4, or any number 
of primes. The results suggested by it are as follows. Suppose 

* Since DA (n) 2 ~ Tae 

— 1 = Ne 

(1- ap j 

and the desired result follows from Theorem 8 of a paper published by us in 1912 

(‘Tauberian theorems concerning power series and Dirichlet’s series whose coefficients 
are positive’, Proc. London Math. Soc., ser. 2, vol. 13, pp. 174-192). This, though 
the shortest, is by no means the simplest proof. 

The formula (4:4) is substantially equivalent to Landau’s formula (10) in Shah 
and Wilson’s paper. 

+ Evidence connected not with Goldbach’s theorem itself but with a closely 

related problem concerning pairs of primes differing by 2. See $7. 
+ 1:5985 is Brun’s constant, while 1°3203 is 24. 

as «—>1, we have Zw (n) 2” = {DA (n) 2”? ~ 
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that v,(n) is the number of expressions of n as the sum of 7 primes 
Then if 7 is odd we have 

(5:11) A Ge) =O Gi) 

if n is even, and 
2B —1)'-(p-1 

(5:12) pv, (n)~ Ga (ea Ul {Pa J = ie ‘ 

if n is odd, p being an odd prime divisor of n, and 

1 
5:13 os) — 90 ae 7 anil) ee li ew 

where @ runs through all odd primes. On the other hand, if r is 
even, we have 

(5:21) v, (mn) = 0 (n™) 

if 2 is odd, and 
KOM cain eae 

. ) bat (G ~s v1 share BE: pa =a (5)22))) 7 y;.1@o) Expl ti Gate > 

where 
1 

52 = — = (5°23) G=M 1-7, 
if nis even. The last formula reduces to (1) of Shah and Wilson’s 
paper when r= 2. 

We have not been able to find a rigorous proof, independent 
of all unproved hypotheses, of any of these formulae. But we are 
able to connect them in a most mteresting manner with the famous 
‘Riemann hypothesis’ concerning the zeros of Riemann’s function 
f(s). The Riemann hypothesis may be stated as follows: €(s) has 
no zeros whose real part is greater than 4. If this be so, it follows 
easily that all the zeros of €(s), other than the trivial zeros s = — 2, 
s=—4,..., lie on the line c=R(s)=4. It is natural to extend 
this hypothesis as follows: no one of the functions defined, when o >1, 
by the serves 

b) Beas 2 
n 

possesses zeros whose real part is greater than}. Wemaycallthis | 
the eatended Riemann hypothesis. This being so, what we can prove 
is this, that af the extended Riemann hypothesis is true, then the 
formulae (5:11)—(5:23) are true for all values of r greater than 4. 

The reasons for supposing the extended hypothesis true are 
of the same nature as those for supposing the hypothesis itself 
true. It should be observed, however, that it 1s necessary, before 
we generalise the hypothesis, to modify the form in which it is 
usually stated; for it is not proved (as it is for €(s) itself) that 
£(s) can have no real zero between $ and 1. 
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6. A modification of our method enables us to attack a closely 
related problem, that of the existence of pairs of primes differing 
by a constant even number &. 

We have 

DA (n) A (n+ k) rntk = os ie Ware?) exe? aC} 
/ 0 2 

where f(a) is the same function as in § 1, and 7 is positive and less 
than unity. We divide the range of integration into a number of 
small ares, correlated in an appropriate manner with a certain 
number of the points e”77, and approximate to | f(7e"*) |? on each 
are by means of the formula (2°8). The result thus suggested is 
that 

) ag 

LTA(npA(n+kh)r"~ ee It (2=5) 

where A has the same meaning as in §2 and p is an odd prime 
divisor of k. From this it would follow that 

(6-1) S Awwas b)~2Antl (P—) 
vin p ata 2 

and that, if V;,(n) is the number of prime pairs less than 7, whose 
difference is k, then 

x 2An p— 1 
(6-2) Mi ()~ Gee ny 2 (==) 

This formula is of exactly the same form as (1), except that p is 
now a factor of & and not of n. In particular we should have 

QAn 

(6 3) N, (n) ona (log ny ’ 

and 
4An 

(64) Ng (n)~ (log ny? 

We should therefore conclude that there are about. two pairs of 
primes differing by 6 to every pair differmg by 2. This conclusion 
is easily verified. In fact the numbers of pairs differing by 2, below 
the limits* 

100, 500, 1000, 2000, 3000, 4000, 5000, 
are 

9, 24, 35, 61, 81, 108, 125; 

while the numbers of pairs differing by 6 are 

TG 47.) 73, 125, 168), 200, 241. 

* To be precise, the numbers of pairs (p, p’) such that p’=p+2 and p’ does not 
exceed the limit in question. 
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The numbers of pairs differing by 4, which should be roughly the 
same as those of pairs differing by 2, are 

D726; Als moor LOn. whole 

7. Brun, in his note already referred to, recognises the corre- 
spondence between the problem of §§ 2—4 and that of the prime- 
pairs differing by 2, and realises the identity of the constants in- 
volved in the formulae ; but does not allude to the more general 
problem of prime-pairs differing by &. He does not determine the 
fundamental constant A, attempting only to approximate to it 
empirically by means of a count of prime-pairs differing by 2 and 
less than 100000, made by Glaisher in 1878*. The value of the 
constant thus obtained is, as was pointed out in § 4, seriously in 
error. The truth is that when we pass from (6:1), which, when 
k =2, takes the form 

> A@)AW+2)~2An, 
von 

to (63), the formula which presents itself most naturally is not 
(6°3) but 

TGC cei (7-1) W.(n)~24 | Tae: 

This formula is of course, in the long run, equivalent to (6:3). 
But 

USO U Mea 2! i 3! i 
a tea logn " (lognypt *) ? 

and the second factor on the right-hand side is, for n = 100000, far from negligible. Thus (6:3) may be expected, for such values of n, to give results considerably too small. 
If we take the lower limit of integration in (7:1) to be 2, we find that the value of the right-hand side for n = 100000 is, to the 

nearest integer, 1249, whereas the actual value of NV.(n) is, accord- 
ing to Glaisher, 1224°. The ratio is 1:02, and the agreement seems to be as good as can reasonably be expected. 

The calculation of prime-pairs has been carried further b Mrs Streatfeild, whose results are exhibited in the following table: 

* J. W. L. Glaisher, ‘An enumeration of prime-pairs’, Messenger of Mathematics, vol. 8, 1878, pp. 28-33. The number of pairs below 100000 is 1225, t The series is naturally divergent, and must be closed, after a finite number of terms, with an error term of lower order than the last term retained. + Glaisher reckons 1 as a prime and (1, 3) as a prime-pair, making 1225 in all. 
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n N, (n) a {? dz | Ratio 
2 (log x)? | 

| 
100,000 | 1224 1249 | 1-020 

200,000 | 2159 2180 | 1-010 

300,000 | 2992 3035. | 1-014 

400,000 | 3801 3846 | L012 

500,000 | 4562 4625 | 1-014 

| 600,000 | 5328 5381 | 1-010 | 

8. In a later paper* Brun gives a more general formula relating 
to prime-pairs (p, p’) such that p=ap’+2. This formula also 
involves an undetermined constant &. It is worth pointing out 
that our method is equally applicable to this and to still more 
general problems. Suppose, in the first place, that v(m) is the 
number of expressions of n in the form 

n=ap + bp’, 

where p and p’ are primest. We may suppose without loss of 
generality that @ and b have no common factor. 

The results suggested by our method are as follows. If m has 
any factor in common with a and 6, then 

70) = lace ap 
and this is true even when n is prime to both a and b, unless one 
of n, a, bis event. But if n,a and b are coprime, and one of them 
even, then 

2A 7 —1 Oe ae 
ab (log n) p-—2 

where A is the constant of § 2, and the product is now extended 
over all 6dd primes which divide x or a or b. 

* «Sur les nombres premiers de la forme ap+b’, Archiv for Mathematik, vol. 
24, 1917, no. 14. 

+ We might naturally include powers of primes. 
+ These results are trivial. If n and a have a common factor, it divides bp’, 

and is therefore necessarily p’, which can thus assume but a finite number of values. 
If n, a, b are all odd, either p or p’ must necessarily be 2. 
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Similarly, suppose WV (n) to be the number of pairs of solutions 
of the equation 

ap —bp=k 

such that p’<n. It is supposed that a and 6b have no common 
factor. Then 

can ppl 

unless & is prime to both @ and b, and one of the three is even. 
If these conditions are satisfied 

: DUA Ie p-—l 

TO a (log n)? H E = >) : 

where p is now an odd prime factor of k, a, or b. 
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The distribution of Electric Force between two Electrodes, one of 
which is covered with Radioactive Matter. By W. J. Harrison, M.A., 
Fellow of Clare College. 

[Read 17 February 1919.] 

It has been shown by Rutherford* that it is probable that the 
ionisation due to an a@ particle per unit length of its path is in- 
versely proportional to its velocity, provided the velocity exceeds 
a certain minimum necessary to effect ionisation. It follows that 
the ionisation per unit time is constant at all points of the path. 

Suppose radioactive matter distributed uniformly over the sur- 
face of a large plane electrode assumed to be infinite in order toobtain 
simplicity in calculation. Consider the « particles projected from a 
point P of the electrode. These particles are projected equally in all 
directions, hence the rate of ionisation per unit volume at a point 
Q will be proportional to 1/PQ", provided PQ< R, where RF is the 
range of the particles. The total rate of ionisation at a point Q 
distance x(x < R) from the electrode will be proportional to 

NRE act 2ardr 

Jo ie ee 

where 7 is the distance of a point P on the electrode from the foot 
of the perpendicular from Q. Now 

JR? 2 Qrdr ( is J R= 22 

ee (eer, 
=log—. 

Hence rate of ionisation 
R 

q=q log”. 

The equations determining the distribution of electric force are 
given by Thomson, Conduction of Electricity through Gases, 1906, 
chap. 11. The notation of this book is adopted as being sufficiently 
well known. The differential equation for the electric force X is of 
the form 

qa = equlog Greil 18 
ax” a (“) + b 

dx?  X?\dax 

d2xX? 
at 0, a>. 

* Radioactive Substances and their Radiations, 1913, p. 158. 

VOL. XIX. PART V. 18 
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The numerical solution may be obtained for any particular 
values of the constants a, b, ¢, q,, R by approximate methods. In 
the absence of any definite experimental results with which to 
compare the calculations, the labour involved in integration is not 
worth undertaking. 

The case, however, of the saturation current is the most impor- 
tant, and the integration is simple. It is assumed that recombi- 
nation of ions does not take place in this case, and therefore the 
equations reduce to 

d?X? I aa R a =8re(- +7) qlog =, Ciera 

= (0), Apes Ji, 

Writ Srem (7+; )=K rite Teo z+q)- . 

Then, for «< R, ‘ 
a Girone ae i 
2— K 9 log. tie + Ba +C ? 

for x > R, 

(wde Rutherford, Radioactive Substances, etc., p- 67), A, B, C are 
constants of integration. 

Now the conditions are 

(1) at x=0, n,=0, if x=0 be the positive plate, 
(2) at «= R, n,=0, 

(3) at «= R, n, 1s continuous, 
(4) at a= R, X is continuous. 

O18) CXC 
From (1) xy ate Tee ar 

(vide Conduction of Electricity through Gases, chap. I1.). 

xe _ 8m 

A a 

% IK lei 

0 

8771 

[fis 
(2) and (8) lead to the same condition, which is the same as 

1), if ? 

1=eRq. 

Now since there is no recombination 

R 
iI CG ee dle =eRq. 

0 x 
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Hence conditions (1), (2), (3) are identical and determine B. 
Condition (4) supplies a relation between C and A, 

A=K(C-iR?’) 
Hence 

At=K Weslo ee ues hy Ra+ DR? 2 og 4 eee ? 

0<a< R, where DR?=C, 

k Peers 2s 9 2 seion |i Xe — Ki lag Retr (D D|, x2> R. 

The constant D can be determined when the potential differ- 
ence between the electrodes is given*, 

The general character of these results can be shown by numerical 
calculation for the cases k,=k,, 1:25k,=h,, i= 125k, (corresponding 
to the case in which the positive ion moves more slowly, as usual, 
than the negative ion, and the radioactive matter is spread on the 
negative plate), and for distances R, 2R, 3R between the electrodes, 
and for D = 0:1, 0°5, 1:0. In order that the current may be the satu- 
ration current it is necessary in practice that D should exceed 
a certain limit. This limit is dependent on the particular conditions 
of any given experiment. 

The distribution of the electric force X is shown on the graph 
below. The curves marked (1), (2), (3) are for the cases 

k,=1:25k., ky=ky, ky =1:25h,, respectively, 
The potential difference V between the electrodes is given in 

the following table, d being the distance between the plates. 
y 

R?. Kt 

ky=1:25 ky ky=ky kg =1-25 ky 

D=0'1 d=R :343 379) | “419 | 
d=2R | 1:056 1°147 1-232 
d=3R 2034 2°193 2°343— | 

D=0°5 d=R “725 743 762 
d=2R 1°676 7A 1°800 
d=3R 2°841 2963 | 3:078 

0) ah 1-014 TOQ VT) WOaT. S| 
d=2R 2-203 ZJoMe nay 012-298) 
d=3R 3°566 S663) | . 37759 -. | 
ee 

* These forms of X are not strictly valid in the immediate neighbourhood of the 
electrodes, as the natural agitation of the ions has been neglected in this theory. 
Vide Pidduck, Treatise on Electricity, 1916, p. 505. 

18—2 
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The conversion of saw-dust into sugar. By J. E. Purvis, M.A. 

[Read 17 February 1919.] 

The production of sugar from wood is well known. In the 
Classen process, saw-dust is digested in closed retorts with a weak 
solution of sulphurous acid under a pressure of between six and 
seven atmospheres. The products contain about 25 °/, of dextrose, ‘ 
and other substances are pentose, acetic acid, furfurol and formal- 
dehyde. Cellulose material can also be converted into sugar by 
other acids. 

The following results were obtained by digesting saw-dust 
from ordinary deal with different acids of varying concentrations ; 
estimating the amount of sugar in the liquid in the usual way 
from the amount of cuprous oxide precipitated from Fehling’s 
solution, and converting this oxide of copper to cupric oxide. The 
numbers were then calculated in terms of dextrose. 

(1) 25 grams of saw-dust were digested with 300 c.c. distilled 
water and 50 cc. strong H,SO, (1 «ce. H,SO,=1°78 grms. H,SO,) 
for 54 hours in a sand bath at a temperature just below the 
boiling point and the mixture was constantly stirred. This was 
then filtered; the residue well washed and the filtrate made up to 
a litre; 10 cc. of the filtrate were neutralised with sodium 
carbonate and the cuprous oxide from Fehling’s solution was 
precipitated, filtered, dried and ignited to cupric oxide. This gave 
0-215 grm. CuO which is equivalent to 39°/, of dextrose on the 
original amount of saw-dust. 

(2) 25 grams of saw-dust to which were added 500 cc. of 
distilled water and 25 c.c. of strong H,SO, of the same strength as 
in experiment (1) and digested for 5 hours under the same 
conditions. This gave 13°/, of dextrose. 

(3) 50 grams of saw-dust were digested with 500 cc. of 
distilled water and 50 cc. of the strong H,SO, for 52 hours. The 
yield was 11°5 °/, dextrose. 

(4) 25 grams of saw-dust were digested with 250 cc. of tap 
water and 10 cc. of strong H,SO, for 2 hours. This yielded 10:5 °/, 
dextrose. 

(5) 25 grams of saw-dust were digested with 720 cc. of tap 
water and 10 cc. strong H,SO, for 2 hours. This produced 3°35 °/, 
dextrose. ; 

(6) 50 grams of saw-dust were digested with 500 c.c. water 
and 50 cc. N/1 HCl (=1:825 grms. HCl) for 3 hours. This gave 
3°35 °/, dextrose. 
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(7) 50 grams of saw-dust were digested with 500 c.c. water 
and 100 cc. N/1 H.SO, (= 2°45 grms. H,SO,) for 2 hours. This 
produced 1°82 °/, dextrose. 
(8) 25 grams of saw-dust were digested with 700 c.c. water 

and 5 grams P.O, for 12 hours at the temperature of the room 
(about 15° C.), and then for 3 hours just below the boiling point. 
This gave 12°66 °/, dextrose. 

The results show that thé amount of sugar which can be 
obtained depends on the nature of the acid and its strength relative 
to the amount of saw-dust, and on the time of digestion. The 
greatest amount was obtained when the strongest sulphuric acid 
acted for a considerable time. In the other experiments not so 
much was obtained as by the Classen process. For the commercial 
production of sugar from such a cheap material as saw-dust the 
question to be decided would be the relative cost of the Classen 
process compared with the cost under the conditions of these 
experiments. That would include a comparison of the cost of 
the various acids and the recovery of these acids for further use. 
The conversion of sugar into alcohol and acetone presents no 
difficulty ; and it would be important to consider whether such 
useful chemical substances could not be produced from a waste 
product like saw-dust at a cheaper rate than by the present costly 
methods. 
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Bracken as a source of potash. By J. EK. Purvis, M.A. 

[Read 17 February 1919.] 

The Master of Christ’s College, Cambridge, in the autumn of 
1917, had some correspondence with Mr J. A. A. Williams of 
Aberglaslyn Hall, Beddgelert, in regard to the use of bracken as a 
fertiliser. Mr Williams had burnt the bracken growing on a peaty 
soil on his estate at Beddgelert, ploughed in the ashes and obtained 
highly satisfactory crops of potatoes. It seemed to be of some 
importance to find out what amount of potash could be obtained 
from the ash; and in October 1917 a sample of bracken from the 
Botanic Gardens, Cambridge, was analysed. This grows on a poor 
sandy soil. 

It is known that bracken contains larger quantities of potash 
in the summer months than in the autumn and more complete 
investigations were deferred till the summer of 1918. Meanwhile 
in the April (1918) number of the Journal of Agriculture (vol. 25, 
no. 1, p. 1) Messrs Berry, Robinson and Russell published an 
article on “ Bracken as a source of potash” which contained the 
results of the analyses of material collected from various districts 
in England, Scotland and Wales from May to October 1916, and 
from June to October 1917. The numbers show that the amount 
of potash is much higher in the summer months than in the autumn. 
For example, bracken gathered June Ist, 1917, from Harpenden 
Common, Rothamsted, which is mainly gravel and clay, produced 
41 °/. of potash (K,O) on the dried material and only 1:8 °/, when 
gathered September Ist, 1917. The authors also considered that 
their evidence indicates a more rapid falling off of the potash from 
bracken growing on sandy and peaty soils than on heavier soils 
rich in potash: and that, therefore, its chances of success as a 
fertiliser would be greater in these heavier soils. 

In view of these results the investigations were continued with 
the bracken growing in the Botanic Gardens, Cambridge, and also 
with that on Mr Williams’s Welsh estate. The following tables 
summarise the results. 

Generally, the numbers are of the same order as those obtained 
by Messrs Berry, Robinson and Russell, and confirm the opinion 
that in the summer months there is more potash than in the later 
months. Also there is a clear indication that, on an average, the 
Welsh peaty soil yields more potash than the Cambridge poor 
sandy soil. 
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CAMBRIDGE BRACKEN. 

Percentage of | Percentage of | 
PENS iousenienn i dry matter in ash = 
i sammie fresh bracken | dry matter 

16 October, 1917 27°60 eoilt 
1 June, 1918 15°34 6°81 
2 July, 1918 21°58 5°02 
1 August, 1918 30°26 5°96 | 

31 August, 1918 26°50 7:86 
1 October, 1918 29°06 1:93 

3 June, 1918 
4 July, 1918 

31 July, 1918 
1 September, 1918 
3 October, 1918 

WELSH BRACKEN. 

24°4 
25°8 
40°7 
30°97 
34°54 

6°55 
5°78 
3°84 
7:02 
4°82 

Percentage of potash (K20) in 

fresh bracken 

eooooeo Wo & Or Ore bo WOoOoOonwa ds 

coooc°o HS OVS OO <7 Or BO Wo ~T 

dry bracken 

eee bw O HSAKRSH w-alouno bw 

eee ww oo TS bd LH OL © 

To estimate the cost of collection is difficult as the conditions 
of transit and labour are variable and estimates for one locality 
would be useless for another. It is evident, however, that bracken 
is a valuable source of potash: but its economic application as a 
fertiliser will be controlled by the requirements and conditions of 
the neighbourhood where it grows. 

I have to thank Mr Williams for supplying the Welsh bracken, 
and Mr Lynch, of the Cambridge Botanic Gardens, for samples 
from the gardens. 
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The action of electrolytes on the electrical conductivity of the 
bacterial cell and their effect on the rate of migration of these cells 
mm an electric field. By C. SHEARER, Sc.D., F.R.S., Clare College. 
(From the Pathological Laboratory, Cambridge.) 

[Read 17 February 1919.] 

If a thick creamy emulsion of the meningococcus or B. coli is 
made up in neutral Ringer’s solution (that is, one in which the 
sodium bicarbonate is left out), and the conductivity measured by 
means of a Kohlrausch bridge and cell; it is found that its resistance 
is more than treble that of the same solution without the bacteria: 
that is the greater part of the resistance is due to the presence of 
the bacteria. 

This determination was made as follows: a 24 hour culture of 
the meningococcus or B. coli on trypagar (24 plates) was washed 
off in a considerable quantity of Ringer’s solution, centrifuged down 
and rewashed several times in a similar manner to remove all traces 
of serum or any salts derived from the culture medium. The centri- 
fuged deposit was then made up to standard strength in neutral 
Ringer’s solution, so that it was not too thick to be sucked up in a 
medium sized pipette and transferred to a Hamburger cell and its 
conductivity determined. It was found that the conductivity of 
such standard emulsions when measured under similar conditions 
of temperature was fairly uniform*. When sufficient care was 
taken to get the emulsions of the right thickness, resistances of 
110 ohms could be pretty constantly obtained. The same quantity 

. of Ringer’s solution alone had about 26°7 ohms resistance under 
the same conditions. 

If, however, in place of the Ringer’s solution we make up the 
bacterial emulsions in pure sodium chloride of the same conducti- 
vity as that of the Ringer’s solution, ¢.e. one in which the resistance 
is 26°7 ohms (which corresponds to a NaCl solution of about 0°85 °/.), 
we obtain as in the case of the emulsion in Ringer’s solution an 
initial resistance of 110 ohms. Within a few minutes, however, this 
gradually drops and at the end of 30 or 40 minutes the emulsion 
now has the same conductivity as that of the bare sodium chloride 
solution without the bacteria, ¢.e.26'7 ohms resistance. Thus pure 
sodium chloride of about the concentration as that present in the 
blood gradually destroys the resistance of the bacterial cell. If the 
bacteria are allowed to lie in this solution for several hours it will 
be found that at the end of this time, on subculture, they are 

* All measurements were made at constant temperature 25°C. Resistance con- 
stant of conductivity cell=29°'8 x 1071. 
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dead. If they are only allowed to remain in the NaCl for a short 
time and then transferred to neutral Ringer again they immediately 
return to their normal resistance and grow freely on subculture. 

If when the resistance of the bacterial emulsion has fallen in 
NaCl solution a little CaCl, is added it again regains its normal 
conductivity and is uninjured. Thus we get the usual antagonistic 
action of CaCl, to NaCl. It was found that KCl, LiCl, MgCl, 
acted like NaCl in reducing the resistance offered by the bacteria, 
while BaCl,, SrCl, have no action on the resistance but act like 
CaCl,. Thus it is clear that in the bacteria as with so many other 
plant and animal cells the entrance of the ions of NaCl, KCl, 
LiCl, MgCl, is prevented by the presence of very small quantities 
of CaCl,, BaCl, or SrCl,. Bacterial emulsions made up in BaCl,, 
SrCl, and CaCl,, having the same conductivity as Ringer's solution, 
showed no change in resistance on being kept in these solutions 
for some time, invariably remaining normal. 

The interest of these experiments consists in that they agree 
completely with the results obtained by Loeb, Osterhout and a 
large number of other workers on animal and plant cells. 

In Laminaria, Osterhout finds with CaCl, and presumably also 
with BaCl, and SrCl, there is invariably a brief temporary rise in 
resistance when placed in these solutions of the same conductivity 
as sea-water which is followed by a gradual fall. With the bacterial 
cell no such preliminary rise can be distinguished, while the fall 
due to the toxic action of the solution is much delayed and slower. 

Tn view of the remarkable action of tri-valent ions on artificial 
membranes as shown by the work of Perrin, Girard and Mines, and 
the action on the permeability of cell wall as shown by the work 
of Mines, Osterhout and Gray, it is of great interest to consider 
their action on the bacterial cell. 

While the tri-valent positive ion of lanthanium nitrate brings 
about a rapid rise of resistance in Laminaria according to Osterhout 
and in the Echinoderm egg according to Gray, when this salt is 
used in such dilution as not to affect the conductivity of the solu- 
tion itself, no such action can be distinguished in the case of 
bacteria by means of the Kohlrausch method. The resistance 
remains unchanged until it begins to fall on account of the in- 
creasing strength of the salt added. In the same way the positive 
tri-valent ions of CeCl,, neo-ytterbium chloride and the tri-valent 
negative ions of sodium citrate appear to have no action in in- 
creasing or decreasing the resistance of the bacterial cell as deter- 
mined by the conductivity method. It should be pointed out that 
these salts can only be used in very dilute solutions. In the case 
of lanthanium nitrate this salt readily flocculates living bacteria 
when used in stronger solutions than 5,4, M. SE, SOND 

It would seem remarkable in view of the sharp action of La on 
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the Echinoderm egg when used in a strength of 5755 M. that some 
similar action should not be found with bacteria, but repeated 
experiments with centrifuged solid bacterial deposits of both the 
meningococcus and B. coli using the same type of electrodes used 
by Gray for the Echinoderm egg and obtaining resistances as high 
as 150 ohms failed to show any initial rise of resistance. It was 
possible that in the case of bacteria, their enormous surface would 
render the preliminary rise of resistance so temporary that, before 
the electrodes could be placed in position and the bridge readings 
adjusted, it would be over and passed. To test this point a small 
quantity of La was added while the bridge telephone was kept to 
the ear, but in every instance no change could be detected. It 
would seem that the bacterial cell is normally in a state of 
maximum impermeability and that this can not be further increased 
by the presence of CaCl, and the tri-valent salts. 

In distinction to the absence of effect of the tri-valent salts on 
bacteria as demonstrated by the conductivity method, is the marked 
action of these salts and especially lanthanium nitrate in changing 
the rate of migration of these cells in an electric field. This can 
be determined by the ultramicroscopic or still better the U tube 
method. 

If 10 ce. of a thick growth of B. coli in spleen broth be run 
into a U tube under neutral Ringer’s solution of the same conducti- 
vity as the broth, then on passing an electric current through the 
tube, the temperature being constant, an even rapid migration of 
the bacteria takes place towards the anode. 

That practically all bacteria carry a negative charge and migrate 
to the anode has been repeatedly confirmed by numerous workers, 
but what is of interest here is that this charge can be materially 
modified by various tri-valent salts, especially La. If to the 10 cc. 
of B. coli emulsion in spleen broth run into the U tube in the 
above experiment 1 c.c. of a sg45 M. lanthanium nitrate solution 
is added, it will be found that the rate of migration of the 
bacilli under the same conditions of electric field and temperature 
is now halved. If 2c.c. of the solution is added, little or no migra- 
tion takes place and the emulsion soon flocculates and is preci- 
pitated to the bottom of the tube. 

In terms of the Helmholtz-Lamb theory of the double electric 
layer the addition of the La has considerably altered the nature of 
the charge on the bacterial cell wall. The conductivity method 
however fails to show any change under this condition. This result 
is possibly of some interest in view of Mines’ theory of the polarising 
action of certain ions on the cell membrane. It is of course possible 
that the resistances obtained in the conductivity experiments were 
too low to bring out the real changes taking place. 
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The bionomics of Aphis grossulariae Kalt., and Aphis viburni 
Schr. By Maup D. Havitanp, Bathurst Student of Newnham 
College. (Communicated by Mr H. H. Brindley.) 

[Read 17 February 1919.] 

Aphis grossulariae Kalt. is a serious pest “of currant and goose- 
berry bushes in this country. It attacks the young shoots in May, 
and when present in numbers, it distorts them to such an extent 
that growth ceases and a dense cluster of leaves is formed, under 
which the aphides swarm. 

The bionomics of this aphis are incompletely known. It appears 
on red currants in May, and remains there until the middle or end 
of July. The sexuales have never been found. In 1912 Theobald 
(Journ. Econ. Bicl., vol. vit. p. 100) first pointed out its resemblance 
to Aphis viburni Schr., a common species, which is found on the 
guelder rose (Viburnum opulus) in spring and summer, while the 
sexual forms have been recorded from the same plant in the autumn. 
Aphis viburni has a very characteristic appearance, owing to the 
row of lateral tubercles on the abdomen. Such tubercles are not 
very common among the Aphidinae, but they are prominent like- 
wise in Aphis grossulariae. In fact there seems to be no structural 
difference between the two species; though in spirit specimens, the 
guelder rose aphis frequently stains the alcohol dark brown, while 
the currant form has no such property. 

In May 1918, I had under observation some red and black 
currant bushes, and two guelder rose shrubs, which all grew close 
together. Early in the month all were free from aphid attack, but 
on May 31st three colonies, each consisting of a single winged 
female with a few new-born young, appeared on the guelder roses, 
and the same evening four sprigs of currant were likewise each 
infected. During the following week, numerous other winged forms 
appeared both on the guelder roses and on the currants. The 
method of attack was the same in both cases. The migrant crept 
into the axil of a leaf, and from thence her progeny gradually spread 
up the stem and along the midrib. About the same time, I found 
a Viburnum tree swarming with winged females of Aphis viburni 
in a shrubbery a hundred yards away; and as these were in- 
distinguishable from the migrants on the Viburnum and currants, 
I have little doubt that this was the source of infection. 

Assuming that A. viburni and A. grossulariae are identical, I 
began experiments to test how far the host plants were interchange- 
able. Unfortunately, owing to heavy rains, the experiments eh 
the original winged migrants were all inconclusive, and during 
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June and July I worked with alate and apterous individuals of later 
generations. The results are set out in the accompanying tables 
from which it will be seen that out of thirteen attempts to transfer 
A. wiburn to Ribes rubrum, in only two cases did the resulting 
colonies survive more than ten days, while reproduction was very 
feeble and never occurred beyond the third generation. In one 
case (Table A, Number IX) an attempt was made to re-transfer the 
third generation back from the currant to the guelder rose, but 
the result was that the aphides all died within twenty-four hours. 

Similar attempts were made to transfer A. grossulariae from 
currant to guelder rose, but the colonies never survived more than 
six days, and reproduction was very feeble. Meanwhile the natural 
colonies on guelder rose and currant flourished from the end of 
May to the middle of August and end of July respectively. 

Aphis grossulariae has not been recorded from other food plants, 
but during June I observed three instances where winged migrants 
had established themselves on the flower heads of the Canterbury 
Bell (Campanula) and the resulting colonies persisted for two or 
three weeks. 

The conclusions suggested by the foregoing observations are 
that, as Theobald points out, A. grossulariae is probably identical 
with A.vburni. The first migrant from the birth plant ( Viburnum) 
can form colonies either on Viburnum, which is the natural host, 
or else on Ribes. The descendants of the migrants to Viburnum 
may with some difficulty be established on currant although the 
resulting colonies are not so strong as those derived from an early 
migrant. On the other hand the descendants of the migrants to 
currant cannot be re-established on Viburnum. It seems as if in 
two or three generations some change takes place in the currant 
form which prevents it from flourishing on the guelder rose. One 
explanation is that there is some change in the constitution of the 
guelder rose plant—an increase of tannins for instance—and that 
the strain on guelder rose can gradually adapt itself to altered 
conditions which the newly transferred currant reared stock cannot 
tolerate. But this explanation is not wholly satisfactory because 
the dates show that unsuccessful transferences took place in the 
second and third generations while the plants were still young, 
while the most successful attempt was made in July when the 
shoots were mature. It is also worth noticing that while the more 
successful attempts were made with winged parents, yet in several 
of the Viburnum-to-currant experiments, wingless females were 
found to feed and reproduce on the new host. 

Theobald (op. cit. p. 100) suggests that A. grossulariae may be 
the alternating form of A. viburni, but says that he has twice 
failed to transfer the former to Viburnwm—a result confirming my 
own experiments in Table B. On the other hand, it is possible that 



TABLE A. 

Results of transference of Aphis viburni from Viburnum 
opulus to Ribes rubrum. 

Date of Death of pigment Number ene NS. Forms transferred Takk Guesices Generations born 
on new host 

I 12. v1.18 | alate and apterous |} 21.v1.18 22 

II 13. v1. 18 alate 7 eva. 18 1 

IIl 17. v1.18 | alate and apterous | 22.vr.18 22 

IV 24.Vv1.18 apterous 29.v1.18 1 

Vv 29.v1.18 apterous 2. vir. 18 0 

VI 13.v1.18 | alate and apterous | 26. v1.18 i) 

Vil 5.vi. 18 apterous 6. vir. 18 1 

VIII 30. v1.18 — i) At Lis) 2 

IX 9.viIt.18 | alate and apterous | 25. vir. 18 3 

Xx Gavin. 18 apterous 12.vu.18 2 

XI Dh VES apterous Gr vies 0 

XII 6. vir. 18 — a hats ls) 0 

XIII 9. vin. 18 _- 13. vir. 18 21 

TABLE B. 

Table of transference of Aphis viburni, self-established on 
Ribes rubrum, to Viburnum. 

Number mee oe Forms transferred jaan teaeesh 

I Bye yany LG) apterous 12.v1.18 

II 2.vI.18 | alate and apterous | 8.v1.18 

II Syivces — LOL Vi LS 

IV 10. v1.18 — 14.v1.18 

V 22. v1.18 apterous 24.v1.18 

VI 30.vri.18 | alate and apterous | 1. v1.18 

Vil Ibs vuge 1s} apterous Pa Vt iis} 

VIII | 24.vm.18 | alate and apterous | 25. v1.18 

Number of 
Generations born 

on new host 
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A. grossulariae is not the natural summer form of A. wiburni, but 
is merely a casual parasite of the currant. In those of the Aphidinae 
which have a regular migration between two plants, the change is 
usually from a woody stemmed primary, to a herbaceous secondary, 
host ; and if in the case of A. viburni, the currant should be found 
to be the normal second host, it would be a remarkable exception to 
this rule. Perhaps we have here a form that has not yet adapted 
itself to the conditions of modern fruit growing. In a natural state, 
the aphides are probably able to follow the whole life cycle on 
Viburnum, but the spread of the cultivated currant has presented 
them with an increasing supply of alternative food which induces 
a change that makes a return to Viburnum impossible. Whether 
sex-producing forms can arise from the currant stock, and thence 
return to the guelder rose, is not known. If not, and the early date 
of the disappearance from the currant is against this view, we must 
consider that the infestation of the currant is an unfortunate 
accident in the history of the species, which entails a waste of 
migrating individuals upon a cultivated plant that might otherwise 
have perpetuated themselves on the natural host. However this 
does not mitigate the danger of the pest from a fruit grower’s point 
of view, and infected Viburnum ought not to be allowed in the 
neighbourhood of currant bushes. 

Note on an experiment dealing with mutation in bacteria. By 
L. DoncastTER, Sc.D., King’s College. 

[Read 17 February 1919.] 

(Abstract.) 

It was noticed that the recorded ratio of occurrence in cases of 
meningitis of the four agglutination-types of Meningococcus corre- 
sponded very closely with the ratio of occurrence of the four iso- 
agglutinin groups of blood in a normal human population. It 
seemed possible, therefore, that by growing Meningococcus of one 
type in media containing human blood of ditferent groups, mutation 
to other types might be induced. Experiment showed that con- 
siderable differences in type of agglutination resulted, but 1t was 
concluded that this was caused by the sorting out of races of 
different agglutinability from a mass culture, rather than by true 
mutation. 







CONTENTS. 
° 

On Certain Trigonometrical Series which have a Necessary and Sufficient 
Condition for Uniform Convergence. By A. E. JOLLIFFE. (Com- 

- municated by Mr G. H. Hardy) — 5; 

Some Geometrical Interpretations of the Concomitants of Two Quadrics. 
By H. W. Turnputt, M.A. (Communicated by Mr G. H. Hardy) 

Some properties of p(n), the number of partitions of n. By S. RAMANUJAN, 
B.A., Trinity College : 

-Proof of certain identities in combinatory analysis: (1) -by Professor 
L. J. Rogers; (2) by 8S. Ramanugan, B.A., Trinity College. (Com- 
municated, with a prefatory note, by Mr G. H. Hardy) . 

On Ur Ramanujan’s congruence properties of p(n). By H. B.C. DaRuine. 
(Communicated by Mr G. H. Hardy) : ; 

On the exponentiation of well-ordered serves. By Miss DonotHy WRINCH. 
(Communicated by Mr G. H. Hardy) Soe? 

The Gauss-Bonnet Theorem for Multiply-Connected Regions of | a ge 
BY Eric H. Nevins, M.A., Trinity College 

On an empirical formula connected with Goldbach’s Theorem. By N. M, 
SHau, Trinity College, and B. M. Wizson, oe ee (Com- 

municated by Mr G. H. Hardy) scape ; — 

Note on-Messrs Shah and Witson’s paper entitled: ‘On an empirical 
formula connected with Goldbach’s Theory’. By G. H. Harpy, M.A., 
Trinity College, and J. E. Lirr.ewoop, M.A., Trinity College 

The distribution of Electric Force between two Electrodes, one of which is 
covered with Radioactive Matter. By W. J. Harrison, M.A., Fellow — 
of Clare College 2 : 4 : ; : 

The conversion of saw-dust into sugar. By J. E. Purvis, M.A. 

Bracken as a source of potash. By J. . Purvis, M.A. . 

The action of electrolytes on the electrical conductivity of the bacterial cell 

~ and their effect on the rate of migration of these cells in an electric 
field. By C. SHBARER, Sc.D., F.R.S., Clare College © 

PAGE 

191 

196 

207 

263 

The bionomics of Aphis. grossulariae Aalt., and Aphis viburni Schr. By . 

Mavp D. Havitanp, Bathurst Student of } ere — see 
municated by H. H. Brindley) . 266 

Note on an experiment dealing with mutation in bacteria. By L. Don: 
CASTER, Sc.D., King’s College. (Abstract) 269 



See “Cambridae | oF 

: an THE UNIVERSITY PRESS Wogce! 

ie AND SOLD BY © oe 

, BELL. & £0, LIMITED, 

FO 



NOTICES. 

1. Applications for complete sets of the first Seventeen 
Volumes (in Parts) of the Transactions should be made to the 

- Secretaries of the Society. 

2. Separate copies of certain parts of Volumes 1.—xI. of the 
- Transactions may be had on application to Messrs BowEs & 
Bowers or Messrs DEIGHTON, BELL & Co., Limited, Cambridge. 

3. Other volumes of the Transactions may be obtained at 
the following prices: Vol. x11. £1. 10s. 6d.; Vol. x1m. £1. 2s. 6d. ; 

Vol. xv. £1. 17s. 6d.; Vol. xv. £1. 12s. 6d.; Vol. xvi. £1. 10s. Od. ; 

Vol. xvi. £1. 2s. 6d.; Vol. xvut. £1. 1s. Od.; Vol. x1x. £1. 5s. Od. ; 

Vol. xx. £1. 10s. Od.; Vol. xx1. £1. 14s. Od.; Vol. xx11. No. 1, 1s. 6d.; 

No. 2, 2s.; No. 3, 1s. 6d.; No. 4, 1s. 6d.; No. 5, 2s.; No. 6, 1s. 6d.; 

No. 7, 2s.; No. 8, 2s.; No. 9, 2s.: No.10, 1s.; No. 11,2s.; No. 12, 3s. 6d.; 

oi 13, a ; No. 14, 3s. 6d.; No. 15, 3s. 6d.; No. 16, 2s. 6d,; No. 17, 

») No. 18, 2s. 6d. 

A, Complete ‘sets of the Proceedings, Volumes~ 1.—XIX., 
may also be obtained on application to the Secretaries of the 

_ Society. : 

5. Letters and Communications for the Society should be 
_ addressed to one of the Secretaries, . 

Prof, H. F. Baker, St John’s College. [Mathematical.] 

_ Mr Axex. Woop, Emmanuel College. [Physical.] 

Mr H. H. BRINDLEY, St John's College. [Biological.] 

6. Presents for the Library of the Society should be ad- , 

dressed to 
; ~The Philosophical Library, 

New Museums. 

Cambridge. 

7. Authors of papers are informed that the Illustrations and . 

‘Diagrams are executed as far as possible by photographic “process” 
work, so drawings should be on a large scale and on smooth white __ 

si Bristol board in Indian ink. 

Wee 

8. Members of the Society are requested to earns the 

Pe oleteries of any eee of ae 



PROCEEDINGS 

OF THE 

Cambridge Philosophical Society. 

Colourimeter Design. By H. Harrriper, M.D., Fellow of 
King’s College, Cambridge. 

[| Received 7 October 1919; read 10 November 1919.] 

In a previous paper (1) I have described certain factors which 
affect the efficiency of the spectrophotometer. The colourimeter 
has been found to be similarly affected, so that various modifica- 
tions in the usual designs are indicated. 

The comparison field is in most instruments divided at a 
diameter, so that one half receives light which has passed through 
one limb, and the other half light that has passed through the other 
limb of the instrument. In a few designs the bull’s-eye and the 
central strip fields have been employed. All these fields have 
the disadvantage that local stimulation of the retina may occur that 
sets up after image phenomena greater in degree in one part than 
in another, thus preventing accurate determinations. And, further, 
they do not make the best use of the effects of simultaneous contrast. 
A better type of field is the one which I have previously described 
in connection with the spectrophotometer, namely, one which is 
subdivided into a number of strips, of which alternate numbers 
receive light from the two limbs of the instrument. With this field 
the eye does not select any one part for examination, but tends rather 
to judge of the field as a whole. When the adjustment of intensity 
has been correctly made the whole field should become uniform. 
The effects of retinal fatigue therefore tend to become uniformly 
distributed. The contour of this type of field is of considerable 
length compared with its total area; the conditions are therefore 
beneficial for the development of contrast. The absence of visible 
lines of junction still further increases this effect. 

The prisms A and B by which the beams of light through the 
two limbs of the instrument are combined at the compound field 
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described above, are similar in shape to those used in the spectro- 
photometer. They are shown in the diagram of the apparatus. It 
will be observed that the imterface of the prisms is silvered, the 
metallic film being removed by means of a simple ruling machine, so 
that narrow strips of the silver alternate with strips from which the 
whole of the silver has been removed. Examination of the diagram 
will show that by this arrangement the field seen on looking down the 
eyepiece is formed of alternating narrow beams which have either 
been transmitted from one limb of the instrument through the 
spaces between the silver strips, or reflected from the other limb 
by the silver strips themselves. The lengths of the prisms A and 
& should be such that the two entering beams have passed through 
equal lengths of glass. 

The troughs are adjustable on both limbs of the instrument, 
in colourimeters of usual design. This arrangement has the dis- 
advantage that if there should be any backlash in the micrometer 
mechanism which is used for adjusting the position of the movable 
troughs, or error in the setting of the scale, these will affect both 
the thickness of the pigment solution to be estimated, and also 
that of the standard. Such errors can be eliminated so far as the 
standard is concerned by the use of a special cell, the distances 
between the sides of which are determined by accurately ground 
distance pieces, which may be made of either glass or metal. 
Rustless steel would appear to be a suitable metal because it resists 
the corrosive action of ordinary solvents. 

I have shown that in the case of the spectrophotometer there 
are important reasons for the use of troughs with double compart- 
ments on both limbs of the instrument. In both troughs the com- 
partment near the light source should contain the solvent only, 

the other being filled with the solution of the pigment. Double 
troughs should be used with the colourimeter for similar reasons, 
namely, (a) in order that absorption by the solvent may be com- 
pensated, since the thickness is the same on both sides of the 
instrument; (b) that pigments accompanying the one under esti- 
mation may be compensated for; (c) that specitic surface reflection 
at the sides of the troughs which contain pigment may be similar 
on both limbs of the instrument. With regard to the type of 
trough that should be employed I have previously considered the 
advantages of the double wedge trough in conjunction with the 
spectrophotometer. In the case of the colourimeter the plunger 
type usually employed has the advantage of not requiring calibra- 
tion with a micrometer microscope as wedge troughs do. The 
method of employing double compartment plunger troughs and 
standard troughs is shown in the diagram. In some colourimeters 
the troughs are bell mouthed, and are manufactured from black 
glass. These points are to be recommended. It should be noted, 

19—2 
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however, that reflection can still take place at the sides of the 
troughs, so that it is necessary carefully to restrict the light illu- 
minating the troughs to narrow vertical pencils of just sufficient 
diameter fully to illuminate the comparison fields. Since scattered 
or reflected light may increase the apparent brightness of one of 
the fields it is essential that this be reduced toa minimum. Special 
care should therefore be taken in designing the instrument to pre- 
vent the entrance of stray light, and to employ an illuminating 
system that will limit the entering beams to the narrow pencils 
above referred to. 

The illumination in the majority of colourimeters is obtained 
from the sky by means ofa plane mirror. In some instruments this 
may be replaced at will by a finely matted white surface. The 
iUlumination therefore in either case consists of a Jarge number of 
divergent pencils, which enter the lower ends of the troughs im all 
possible directions. Scattered light is therefore at a maximum. In 
the case of the microscope a similar practice used to be in vogue, but 
it has given way to the use of illuminating lens systems in which 
the corrections and alignment are well nigh as perfect as those 
used in the objective and eyepiece. Now, in the case of the spec- 
trophotometer I have shown that the beams illuminating the two 
limbs of the instrument should proceed from identical parts of the 
light source. This condition should be realised in the case of the 
colourimeter also. The arrangement of the illuminating apparatus 
is shown in the diagram. 

The light source 1s similar to that which I have applied to the 
microscope (2), consisting of a slab of white opal glass finely 
ground on both sides. This is lit from behind by means of a small 
half watt electric lamp, which obtains its current from a small 
accumulator or dry cell, or from the town supply through a suit- 
able resistance. The lamp is enclosed in a brass box, which is 
silver plated inside, and is finished dead-black outside so as to 
radiate heat. The life of the lamp is increased by connecting it 
with a press switch so that it is in circuit during observation only. 
The lamp box is attached to the tail-piece of the instrument so 
that it forms an integral part of the apparatus. The whole may 
thus be tilted or moved from place to place without requiring re- 
adjustment. Immediately above the opal glass is a metal dia- 
phragm, the aperture in which limits the surface exposed to a 
disc 4 mm. in diameter. Attached beneath the stage of the in- 
strument and 60 mm. above the diaphragm of the light source is 
a plano-convex achromatic lens of 26 mm. diameter and 60 mm. 
focal length. The divergent rays from each point of the source 
are rendered parallel by this lens, and at once pass through two 
achromatic plano-convex lenses of 18 cms. focal length and 14 mm. 
diameter. ‘These lenses have a clear aperture of 12 mm. and form 
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a focussed image of the diaphragm of the light source, which is 
magnified in the ratio of the focal lengths of the lenses; since the 
ratio 1s 3 to 1 this image has a diameter of 12 mm. 

The beams that emerge through the lenses 7'1 and 72 do not 
therefore anywhere exceed 12 mm. and the light does not spread, 
for this reason, to the sides of the troughs during its passage 
and therefore stray light is reduced to a minimum. The beam 
from the lens 72 passes vertically upwards through a hole in 
the stage to the standard trough which rests upon it. Having 
passed through both the layer of solvent and also that of the 
solution of pigment, the beam enters prism J’, and is totally inter- 
nally reflected at its inclined surface on to the silvered strips of the 
comparison field. The beam that has passed through 7’'1 is deflected 
by internal reflection at the right angled prism C which is cemented 
to it, and falls on the silvered surface between the two halves of the 
prism D, so that the beam is directed vertically through a second 
hole in the stage on to the lower fixed cup of the adjustable trough, 
which is filled with solvent. It then passes through the movable 
cup which contains the pigment, and enters the prism A to fall on 
the silvered strips of the comparison field. The passage of this 
beam through the intervals between the strips, and the reflection 
of the beam from the other limb of the instrument at the strips 
themselves, has already been described. It will be noted that the 
reflection of the one beam by internal reflection within the prism 
C, and by ordinary reflection within the prism D, causes this beam 
to compensate for the internal reflection and reflection at a silvered 
surface which occurs within prism B in the case of the other beam. 
As it has been found that silvered surfaces vary in the intensity 
of rays of different wave-length which they reflect, it is advisable 
that both mirror D and prism B be silvered with the same solution 
at the same time. 

The lengths of the paths of the beams through the instrument 
are found to be in the case of the left-hand beam an actual dis- 
tance of 19°5 ems., that is an effective distance of 18 cms. since 
22 cms. of glass is passed through; in the case of the mght-hand 
beam the total and the equivalent lengths are the same as those 
on the left. 

The comparison field therefore is illuminated by two super- 
posed images of the diaphragm of the light source, one of which 
has passed through the standard trough and the other through the 
adjustable trough. When the instrument is in correct adjustment 
these two images exactly coincide, so that if there should be any 
slight inequality between the intensity of illumination of different 
parts of the light source both images will be similarly affected, 
and therefore the match between their different parts will remain 
unchanged. Such a condition is not secured in the usual forms of 
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colourimeter, since it is due to the particular method of illumina- 
tion described above. 

The eyepiece used in the du Bosq type of colourimeter consists 
of a Ramsden lens system, at the upper focal plane of which has 
been placed a diaphragm pierced with a small aperture. This has 
the effect of limiting the rays reaching the eye to those which 
have passed as approximately parallel bundles up the limbs of the 
instrument. To be effective the aperture has to be small, and this 
has the disadvantage of making the intensity of illumination of 
the fields somewhat low. When this type of eyepiece is in use it 
is found that the eye has to be inconveniently close to the aperture 
in order that the whole field shall be seen at one and the same 
time. This is due to the fact that the diaphragm is a considerable 
distance below the effective pupil of the eye, even when the eye 
has been placed as close as possible, and as a result some of the 
rays which spread out from the diaphragm may not enter the pupil. 
The difficulty is in fact similar to that met with in high power 
microscopic eyepieces of the Huygenian type. To avoid this diffi- 
culty a more elaborate type of eyepiece has been devised, in which 
an erecting lens system has been placed above the Ramsden ocular 
and its diaphragm (3). This causes a sharp image to be seen on 
looking down the eyepiece, and at the same time the image of the 
small aperture is formed at a considerable distance above the top 
lens, so that the eye does not have to be placed inconveniently 
close to the eyepiece in order to obtain a full view of the field. 
These improvements are obtained, however, at a certain sacrifice 
of definition, which is unimportant in the usual types of colouri- 
meter in which the fields are of simple design, but is of relatively 
greater importance if the more detailed type of field be used which 
has been described above. It will have been observed that in the 
colourimeter which I have described above the illuminating beams 
are formed by the special method of illumination employed. Under 
which circumstances it is found that the Ramsden disc of the ocular 
contains the overlapping focussed images of the restricting aper- 
tures of the lenses 71 and 72, which when the instrument is in 
correct adjustment exactly overlay one another. It is therefore 
unnecessary that the eyepiece should contain any diaphragm to 
restrict the beams, and therefore the difficulties imtroduced by 
such a diaphragm are not met with. The eyepiece itself should 
be achromatic and should slide in a tight-fitting jacket so that the 
observer may set it at the best focus. It should magnify about 3 
diameters. 

The angle at which the comparison field hes will be seen to be 
45 degrees. But since it is enclosed between two pieces of glass, 
the apparent angle to the eye is reduced in the ratio of the refrac- 
tive indices of glass and air. The apparent angle would therefore 
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be about 29 degrees. Now, the dimensions of the field seen by the 
eye are 8mm. by 6 mm., the latter being in the direction of the 
slope. The apparent difference of focus is therefore less than 4 mm., 
which would be equivalent to 12 mm. at a distance of 25 cms. 
Such a small change of focus would be at once met by a trifling 
change in the degree of accommodation of the eye, which would 
be effected subconsciously and involuntarily. No difficulty is to be 
met with therefore from this cause. 

THE MECHANICAL SYSTEM. 

The metal work of the colourimeter follows closely that of the 
microscope. The horse-shoe foot, stage and coarse adjustment all 
resemble those used in that instrument. The adjustment has a 
range of 40 mm. only, because, as will be shown later, the use of 
standard solutions of 20 mm. thickness makes a bigger movement 
than this unnecessary. An accuracy of one-quarter per cent. should 
be sufficient, and this is readily provided by a scale graduated in 
half mm. and reading by a vernier to one-twentieths. The adjust- 
ment should have long, well-made V slides so as to eliminate lost 
motion. The scale should be attached to the moving member, the 
vernier being attached to the fixed. A simple lens and 45 degree 
mirror should make a magnified image of this visible to the ob- 
server. To the moving member is first screwed and afterwards 
sweated with soft solder a strong brass ring. To this is attached 
by means of a three-prong bayonet catch the ring fixed to the 
upper lip of the movable trough. The trough is cemented into a 
groove turned in this ring by means of plaster of Paris or Caemen- 
tium. Where plaster has been used the joint should be covered 
by a thin coat of Robiallac. The prisms and eyepiece are attached 
to a strong projection at the top of the pillar which forms the 
handle of the instrument. 

The removal of the troughs for filling and cleaning and their 
replacement is a simple process which should not take more than 
a few seconds. To remove the adjustable troughs, first swing the 
substage to one side; this allows the lower trough to drop verti- 
cally through the hole in the stage until it can be removed. The 
upper trough is now gripped between the finger and thumb, and 
the trough rotated so as to free the bayonet catches; this trough 
is then lowered through the hole in the stage and removed. The 
plunger and the troughs can now be cleaned, refilled and returned. 
The standard double trough simply rests on its side of the stage, 
so that its removal takes but a moment. 
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THE COLOURIMETER IN PRACTICE. 

Experiment has shown that if two solutions of the same colour 
contain different pigments in solution, then the thicknesses re- 
quired for a match vary not only with the observer and with the 
quality of the light, but also with the same observer from time to 
time. It is for this reason that the technique has been introduced 
of using the same pigment for the standard as that required to be 
estimated. Thus creatinin is no longer estimated by comparing the 
colour which develops when picric acid and soda are added with the 
colour of a solution of potassium dichromate ; but a standard solution 
of creatinin is used, picric acid being added to it at the same time as 
it is added to the solution to be standardised. If, then, the thick- 
ness of the standard is 20 mm. and that of the unknown 17 mm., 
it is assumed that the strengths of the solutions are in the inverse 
ratio of those numbers. Such is not the case however, because 
the sodium picrate itself absorbs rays from the same part of the 
spectrum as does the sodium picramate, and therefore, although 
the light may encounter the same number of coloured radicals in 
both limbs of the instrument, yet the sodium picrate absorption is 
greater on one side than the other, because the fluids are not of 
the same thickness. It is principally for this reason that I have 
adopted an instrument in which double troughs are used, on both 
sides of the instrument; the lower pair on both sides being filled 
with sodium picrate solution in the case taken above as example, the 
upper pairs containing the picric acid plus creatinin. In this way 
the number of picrate radicals is kept approximately constant, since 
the total thickness of sodium picrate solution is the same on both 
sides of the instrument. The balance is not perfect however, because 
a certain amount of picric acid is used up in forming the sodium 
picramate, and this amount cannot be ascertained without assum- 
ing that the estimation to be done has already been accurately 
performed. The problem is, in fact, represented by a simultaneous 
equation involving two unknowns. I find that the matter can be 
solved in the following manner. Having diluted both the standard 
and the unknown solutions with equal amounts of standard picric 
acid and soda solutions, and having allowed the colour to develop in 
the ordinary manner, an estimate is made of the relative strengths of 
the solutions in the colourimeter. Having found that, say, a 20 mm. 
thickness of the standard has the same tint as 13:4 mm. of the 
unknown solution, a fresh sample of the unknown is taken and 
13°4 cc. of it diluted with water to bring the total to 20cc. The 
solution of the unknown has thus been brought to approximately 
the same concentration as the standard. (Where the approximate 
strength is known a preliminary dilution before making the initial 

- estimation is beneficial.) The correctly diluted solution of the un- 
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known is now treated, ab initio, with fresh picric acid solution and 
soda, and is then estimated against the standard in the colourimeter. 
It is now found that a 20 mm. thickness of the standard has the 
same tint as one of, say, 19°85 of the unknown after dilution. The 
strength of the unknown is thus ascertained, with considerable 
accuracy, because the conditions of equilibrium under which the 
sodium picramate develops and exists, and the quantities of picric 
acid used up in the determination are approximately constant. 

It should be pointed out that the above technique presents no 
difficulties, and takes little longer than the ordinary method. The 
principle may with advantage be applied to all estimations made 
with the colourimeter. 

THE ACCURACY OF THE COLOURIMETER. 

Since colour is due to absorption the colourimeter depends for 
its utility on the fact that a change in the number of coloured 
radicals encountered by light causes a change in the retinal stimu- 
lus when that light falls on the eye. We may, therefore, arbitrarily 
state that the accuracy of the determinations depends, firstly, on 
the rate of change in the quality of the light which is passed 
through the pigment, and, secondly, on the acuteness of the per- 
ception of the eye for the change in quality of the light. The 
greater the rate of change and the greater the acuteness of percep- 
tion of that change, the greater will be the accuracy. Many bodies 
which absorb light do so selectively, that is, they have a greater 
effect in one part of the spectrum than in another; they therefore 
show colour, that is, they are pigments. Under ordinary circum- 
stances the greater the absorption the stronger the colour and the 
less the intensity of the transmitted light. As the concentration 
of a pigment is altered, and therefore the degree of absorption, the 
strength of colour and the brightness of the transmitted light both 
vary. The colourimetric determination, therefore, depends on the 
simultaneous occurrence of both these changes. The important 
questions that arise are: (1) on what do the magnitudes of these 
changes depend? (2) which is the more important? and (3) how 
can the changes be increased for a given alteration in concentra- 
tion? A study of absorption band formation gives a definite answer 
to each of these questions as follows: (1) The changes for a given 
alteration of concentration are greater the flatter and broader the 
absorption band. If, therefore, there were two pigments of the same 
concentration and the same colour, one of which had a sharp well- 
defined band, while that of the other was broad and flat, the latter 
pigment would be found to give the more accurate readings in the 
colourimeter. (2) Of the two changes, that of colour is usually the 
more important, particularly with pigments showing single absorp- 
tion bands. In pigments with multiple bands the intensity change 
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may be the more important: for example, a pigment absorbing to 
an equal extent in two complementary parts of the spectrum will 
cause the light to suffer no change in colour at all, while the in- 
tensity is altered. (3) The changes in the case of any one pigment 
can be increased by increasing the intensity of that part of the 
spectrum which is suffering change or by decreasing that of parts 
which do not show alteration. Of the two methods the latter is 
the easier to carry out and the more efficient. If colour filters are 
used they must be carefully adjusted according to the position in 
the spectrum of the absorption band of the pigment to be estimated. 
If a spectral illuminator is used the apparatus virtually becomes 
a spectrophotometer, and this elaboration is hardly necessary for 
ordinary work. The possibility should not be overlooked of the 
existence of alternative colour reactions to those at present in use 
in which pigments having less steep absorption bands are used and 
which therefore permit greater accuracy in their colourimetric 
estimation. 

The factors which influence the acuteness of perception of the 
eye remain for consideration. Firstly, it is clear since the accuracy 
of the determination depends on the correctness of the match ob- 
tained, that the eye should not be suffering from fatigue. The 
reading of small print and the exposure of the eyes to excessive 
light should, therefore, be avoided for a reasonable time before the 
determinations. The absence of refractional errors, eye strain, want 
of eye-muscle balance and the possession of good general health are 
all factors of importance. In my own case the period after tea is the 
best, provided that the morning’s work has not been arduous. The 
presence of after images is most harmful for accurate estimations ; 
the best method of eliminating them is, I find, to look for a few 
moments at a uniformly lit grey surface. All the above points may 
seem obvious; it is however my experience to find that they are 
sometimes overlooked. The apparatus itself is best placed in a dark 
room, or at all events where the full light of a window cannot fall 
on the eye of the observer. In the latter case the eyepiece cup 
may be made deep with advantage, so as to protect the periphery 
of the retina from stimulation and thus bring about an increase in 
the diameter of the pupil. 

With regard to the use of colour filters, experiment shows that 
the theoretical conclusions arrived at above are amply justified, 
namely, that the accuracy of the determinations is increased if 
either the rays absorbed by the pigment are increased in intensity, 
or those not absorbed are decreased or removed altogether. The 
removal by means of colour filters is however usually attended by so 
great a diminution in the intensity of the light that a powerful 
source such as an arc lamp becomes necessary. It is a fortunate 
circumstance, therefore, that the retina should be even more sensi- 
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tive to change in shade than it is to change in intensity. I have 
found, further, that the point of greatest sensitiveness is obtained 
when the fields are nearly neutral in colour. Such a condition is 
obtained by the use of a suitable colour filter which absorbs in that 
part of the spectrum which is occupied by the complementary 
colour to that absorbed by the pigment. Suppose, for example, a 
yellow pigment is to be estimated, then a blue solution of a dye is 
placed in the path of the light from the source of such a thickness 
and concentration that the comparison field seen in the instrument 
is of a neutral grey colour. Permanent colour films between glass 
should be used if much work is likely to be done with any given 
pigment. Such a technique is very simple, and I find that in my 
hands it increases the accuracy of the determinations by about 
three times (when estimating sodium picrate), the method of mean 
squares being used to calculate the average error of the experi- 
mental determinations both with and without the complementary 
filter. The probable error of the determinations was found to be 
0°8 per cent., using home-made apparatus and the complementary 
screen. It should be possible to halve this amount if the precau- 
tions outlined above be taken and well-designed apparatus be used. 

SUMMARY. 

(1) The comparison field seen on looking down the instrument 
should cause the greatest contrast and at the same time should not 
produce after images. 

(2) On both limbs of the instrument double troughs should be 
used, so that the thickness of pigment to be measured may be 
varied at will, while the absorption caused by other pigments 
remains constant. 

(3) An artificial light source should be used, and the lighting 
system be so designed that narrow beams are produced of just 
sufficient width as to completely illuminate the comparison field. 
The amount of reflected and scattered light may thus be reduced 
to a minimum. 

(4) If experiment shows that the change in colour produced 
by a given change in thickness or concentration of the pigment 
can be increased by modifying the relative intensity of different 
parts of the spectrum of the light source, then suitable colour filters 
should be prepared for use during the determinations. It was 
found in a test case that this modification alone increased the 
accuracy by three times. 

(5) The general design of the instrument should conform to 
microscopic practice, fixed troughs being supported by the stage 
and the movable trough actuated by the rack and pinion course 
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adjustment screw. The illuminating system should be fitted 
beneath the stage so that the instrument may be tilted or moved 
from place to place without disturbing the alignment. 

For certain purposes it may be found beneficial to employ 
smaller quantities of liquid than those required in the ordinary 
colourimeter. I find that a modification in the design of the 
troughs should make 1 to 2 ¢.c. of liquid sufficient ; and further, by 
modifying the optical system as well, as little as ‘001 c.c. could be 
worked with. It should be pointed out however that such quantities 
could only be employed with solutions of considerably greater con- 
centration than those usually estimated; e.g. about ten times the 
usual concentration for 1 c.c., and one hundred times for ‘001 c.c. 
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The Natural History of the Island of Rodrigues. By H. J. SNELL 
(Eastern Telegraph Company) and W. H. T. Tams'. (Communi- 
cated by Professor STANLEY GARDINER.) 

[Read 10 November 1919. ] 

Rodrigues lies some 350 miles east of Mauritius, and is a rugged 
mass of volcanic rock closely resembling Mauritius and Réunion. 
It is surrounded by a coral reef, the edge of which at the eastern 
end is within 100 yards of the beach, whilst on the north and south 
it extends outwards to a distance of three to four miles, and on the 
west to two miles. There is an irregular channel inside the reef 
close to the shore, extending round most of the island, sufficiently 
deep for boats at any state of the tide, and at the south-east end 
a small lagoon of three to ten fathoms, with a passage through 
the reef. The usual anchorage is Mathurin Bay, in the reef to the 
north. The reef is studied with islets, those nearer the shore being 
mostly of volcanic nature, and situated on the north and west, 
whilst the rest are of limestone, modern accumulations of débris, 
and situated on the south. 

The island itself is eleven miles long by five miles broad, and 
has an area of just over forty square miles. There is a central 
lofty ridge extending from east to west, with a break about one- 
third of its length from the west. The western bastion of the range 
is Mount Quatre-Vents, 1120 feet high, while at the eastern end 
is Grande Montaigne, 1140 feet. The highest point is Mount 
Limon (1300 feet), which lies with two other peaks a little out of 
the general line of mountains. The sides of these peaks are cut 
into numerous ravines, these being deeper and more frequent on 
the south side than on the north. At their upper ends these ravines 
are often bordered by perpendicular columnar basaltic cliffs, 
sometimes exceeding 200 feet in height, extensively cut into many 
coulées by small streams which often descend in a series of cascades. 

The volcanic ridge descends on the south-west gradually, and 
passes into a broad coralline limestone plain, with occasional hills 
up to 500 feet high, indicating a comparatively recent elevation 
of at least a like amount. This tract of limestone is honeycombed 

with caves, in which stalactites and stalagmites are abundant. 
There are many holes and fissures, and often deep hollows occur, 

at the bottom of which lie large fragments of limestone in irregular 
heaps; these are apparently old caves, the roofs of which have 

fallen in. The floors of these hollows are covered with soil, often 

1 The second author is solely responsible for the names of the insects herein 

recorded. 
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with lumps of volcanic rock on the surface. The limestone is not 
found along the northern or southern shores, except at their eastern 
extremity, where patches occur at the mouths of the valleys, 
occasionally at some distance from the shore. Some of the patches 
of limestone found in the volcanic region indicate an elevation of 
perhaps 500 feet, and the raised beaches on the south shore, some 
20 feet in height, may point to a further subsequent change of 
level. The position of old volcanic craters has not been accurately 
determined, but the main ones appear to have been situated 
about the Grande Montaigne and Mount Malartic. 

The island is comparatively dry, and during the warm season 
many of the streams are dried up, though they assume in the 
rainy season torrential proportions. The climate is like that of 
Mauritius. The rainfall is very irregular; during the north-west 
monsoon from November to April the weather is wet and warm, 
and early in this season there are frequently severe hurricanes. 
From May to October the south-east monsoon prevails, and the 
weather is then cool and dry. Fogs are rare, and climatic conditions 
render the island healthy to live in. 

Rodrigues was discovered in 1510, by a Portuguese commander, 
whose name it bears. In 1691 the Dutch landed several fugitive 
French Huguenots there, among whom was M. Frangois Leguat, 
who wrote an account of the island in 1708. The island was later 
cultivated by the French East Indian Company, and maize and 
corn were grown; these, with dried fish, turtles and land tortoises, 
were exported to Mauritius. It was occupied by the British in 
1809, and made the base of operations against Mauritius. It is 
still cultivated as a garden for Mauritius, its main exports being 
beans, acacia seed, maize, salt fish, cattle, goats and pigs. The 
population is about 5000, mostly settled around Port Mathurin, 
the only town in the island. The people are mainly French Creoles, 
with a few Chinese and Indians, and are subject to the Government 
of Mauritius, which supplies a Resident Magistrate. The island is 
a station of the Eastern Telegraph Company, connecting to Cocos- 
Keeling. 

Kach family usually cultivates an acre or several acres of land, 
whereon they grow maize, sweet potatoes, haricot beans, pumpkins, 
various herbs, onions, etc. They depend, in fact, largely on their 
own plantations for food. At one time a species of mountain-rice, 
which does not require an abundance of moisture, was grown in 
large quantities, but its cultivation was abandoned owing to the 
depredations of small birds. Tobacco grows well. Haricot beans 
are still exported. There have lately been, however, only five ships 
per year, and these small sailing ships of 500 tons down to 100 tons 
register; this makes it very difficult to market the produce of the 
island. The maize grown is barely enough for local consumption. 
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One of the most profitable products of this island is acacia 
seed, which is exported to Mauritius for cattle feeding. The acacia 
(Lucaena glauca), which was introduced about seventy years ago, 
now grows wild and flourishes everywhere, covering the ground 
for acres, and forming a dense almost impenetrable scrub, beneath 
which nothing will grow. The cattle and goats are exceedingly fond 
of the leaves and pods, and this is probably the reason for its 
spreading so extensively, the original plantation having been in a 
valley near Port Mathurin. Amongst other things which have been 
successfully grown may be mentioned coffee, vanilla, sugar-cane, 
oranges and lemons. Bananas and plantains, custard apples, 
strawberries and raspberries are found wild. Many other com- 
modities such as ginger, safran (turmeric) and arrowroot have also 
been grown. 

There is very little real pasturage in Rodrigues, the largest 
area being in Malgache Valley. Besides this there are barren tracts 
round the coast covered with coarse grass, which provides in- 
sufficient subsistence for the stock. Most of the inhabitants own 
goats and pigs, on which they rely for their milk and meat supply, 
and which are also exported. They were allowed to run wild, but 
measures have now been introduced by the Government to control 
them. Poultry, ducks and geese also thrive in the island. 

Rodrigues was originally covered with dense forests of lofty 
trees, with corresponding undergrowth. Indeed, according to 
early descriptions its vegetation partook of the nature of a regular 
tropical moist woodland. Here were to be found flightless birds, 
the Solitaires, and giant land tortoises. When Leguat saw this 
island first, the scenery was such as to call forth from him such 
designations as “a lovely isle,” “an earthly paradise.” To-day its 
grandeur and beauty have vanished. There remains a bare parched 
pile, on which it is difficult if not impossible to discover any corner 
in its original condition. Many agencies are responsible for this 
destruction and denudation. It has been swept by fire many 
times, accidentally and intentionally. The goats devour the young 
shoots and leaves of any vegetation within their reach. Pigs have 
done their share, especially with regard to the Latanier Palm 
(Pandanus), of the nuts of which they are very fond. Then there 
are the introduced plants, which have in many cases crowded out 
the native vegetation. A notable example is seen in the acacia, 
previously mentioned, which has spread into almost every valley 
in the island. A certain amount of destruction has been done by 
the inhabitants, who have cut timber over large tracts without 
discrimination. Though a check has been placed on this by the 
government, there still remains a source of destruction, in that the 
inhabitants are in the habit of acquiring year by year fresh tracts 
of woodland, the undergrowth of which they cut down and burn, 
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and here they plant their haricot beans. They utilise a tract of 
land for one season, and abandon it the next. Thus the work of 
destruction continues. Many of the older inhabitants, at present 
living on the island, say that they remember large tracts, which 
are now almost bare except for a few Vacoas (Screw-pines), being 
originally covered with almost impenetrable forest, but nobody 
remembers the large expanse of coralline limestone at the south- 
western end of the island in any other than its present state, 
though there are unmistakeable traces, in roots and stumps em- 
bedded in the ground and charred by fire, showing that this region 
was also at one time completely afforested. The large rifts are often » 
thirty feet or more deep, and fifteen to twenty yards wide, and 
contain many fine old indigenous trees which have escaped destruc- 
tion. The Valley of St Francois, at the north-east end of the island, 
is perhaps the only other tract which has escaped destruction. 

The commonest trees in the island are the Vacoas or Screw-pines 
(Pandanus), of which there are two species, both endemic. Three 
other species have been recorded by various authorities, one being 
a native of Asia, and the other two Madagascar species. None of 
them occurs in Mauritius or Réunion, and the evidence of their 
occurrence in Rodrigues is faulty. There are three species of 
endemic palms, belonging to three genera, which are all Mascarene. 
Probably half the plants have been destroyed, but from what is 
left—297 species of Phanerogams, and 175 species of Cryptogams 
(excluding Marine Algae)—it is clear that the endemic flora was 
large and of Mascarene affinities. There are only about twenty 
species of ferns, the scarcity of this group being accounted for by 
the present dryness of the island, in confirmation of which it may 
be remarked that the tree-ferns of the other Mascarene islands 
are not represented. 

The present day fauna is not large. The extinct fauna has proved 
to be of very great interest, particularly in the case of the Solitaire 
(Pezophaps solitarva, Gmel.), the extinct Didine bird related to the 
Dodo of Mauritius. Considerable collections of the remains of this 
bird have been made from the limestone caves, where also the 
remains of other extinct birds and of the giant Land Tortoise have 
been found. Our main knowledge of the recent fauna is due to the 
labours of the naturalists attached to the Transit of Venus Hx- 
peditions carried out in 1874-5. 

The marine fauna is in general of the Indo-Pacific type. 
The only indigenous mammal found in the island is a fruit-bat, 

Pteropus rodericensis, Dobson, which is peculiar to Rodrigues. The 
introduced mammals, other than those already mentioned, are 
deer, rabbits, rats, mice and cats, the latter beimg left by the 
Dutch to destroy the rats. 

Sir Edward Newton, K.C.M.G., published a lst of Rodrigues 
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birds in his “List of the Birds of the Mascarene Islands” (Trans. 
Norfolk and Norwich Naturalists’ Society, vol. Iv, President’s 
Address). 

The Fresh Water Fishes, as far as known, belong to species 
which inhabit the fresh waters of the Mascarene Islands generally, 
with the exception of two Grey Mullets, which were collected by 
the Transit of Venus Expedition, and were described as new. 

Further collections in certain groups have recently been made 
by Mr H. P. Thomasset and Mr H. J. Snell, who visited the island 
during the period August to November, 1918, with a view to im- 
proving our knowledge of the insect fauna. 

Mr Snell visited practically every part of the island, with the 
exception of the valley of St Frangois, and a small district round 
the Riviére Coco. The best collecting ground he found to be un- 
doubtedly the Grande Riviére Valley, which he worked right up to 
Mount Limon. The islands on the reef were also visited, but con- 
tained very little of interest, as they have been burnt over in recent 
years, and are now covered with rough coarse grass and short 
scrub (Tournefortia, Pemphis, etc.). These islands, particularly 
Gombranil and Flat, were formerly nesting places for sea-birds, 
which seem to have disappeared, only a few white terns and 
boobies being found on Sandy and Coco Islands, which were some 
years ago planted with firs. 

In the deepest ravines were commonly seen the fruit-bats or 
flying-foxes, feeding on the flower of a kind of aloe, of which they 
seem very fond, and also on wild figs, mangoes, etc. Geckos were 
abundant in warm and sheltered spots, particularly in all habita- 
tions. Their eggs were frequently found in nests (usually composed 
of dry Sow-thistle bloom) under rocks and in crevices. Two species 
only have been recorded: Gehyra mutilata, Gray, and Phelsuma 
cepedianum, Gray; the latter is common in Madagascar, Mauritius 
and Réunion, but is rare in Rodrigues. Freshwater fishes were 
found in many of the streams, in which also eels were quite 
common. 

There are in the island a Land Planarian, Geoplana whartoni, 
Gull., and a Land Nemertean, Tetrastemma rodericanum, Gull. 
Both are peculiar to Rodrigues, but the former has not been ade- 
quately described. (Mr Thomasset subsequently obtained a Land 
Planarian from Mauritius, a new locality for these.) They were 
found under decaying logs, sometimes on the bark, under the 
bark, or in the wood; the Nemertean appeared to exist in far 
greater quantities than the Land Planarians, but they often live 
together in the same situation. Earthworms were not abundant. 
Amongst the Crustacea collected, large numbers of an Amphipod 
were found under stones, dead leaves, etc., wherever the ground 
was moist. In all the streams were to be found freshwater shrimps 
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and a crayfish. Woodlice were abundant in decaying vegetable 
matter, the largest specimens being obtained from rotting banana 
stems. 

Myriapoda were common throughout the island. Large centi- 
pedes live on the corals on the west side of the island, attaining 
sometimes a length of twelve inches. Hardly a lump of débris can 
be turned over without disclosmg one or more of these creatures. 
The Transit of Venus Expedition obtained twelve species of 
Myriapods, of which eleven were new. There is a single species of 
scorpion, Tityus marmoreus, Koch, and in addition the Transit of 
Venus Expedition obtained twenty-seven species of Arachnida, 
eleven being new; unfortunately Mr Snell could not obtain a supply 
of alcohol adequate to preserve these. 

In the Insect collections among the Orthoptera, the Forficulidae 
are represented by eleven specimens, probably Anisolabis varicornis, 
Smith. Of the Blattidae, Periplaneta americana, Linn. and Leu- 
cophaea surinamensis, Fab. are among the five species previously 
recorded, whilst there are two other species in Mr Snell’s collection 
at present undetermined. One species of Mantidae occurs in the 
island, viz. Polyspilota aeruginosa, Goeze, of wide distribution. Of 
the Gryllidae there are three species in the present collection: 
Acheta bimaculata, de Geer, found also in Africa and 8. Europe; 
Curtilla africana, Beauv., found also in Africa, Asia, Australia, and 
New Zealand (introd.?); and a species of Ornebius near syrticus, 
Bolivar, but larger and more brightly coloured than the Seychelles 
specimens of this species. Besides the first of these, the Transit of 
Venus Expedition obtained three other species. Among the 
Phasgonuridae we have Conocephaloides differens, Serv. .and 
Amsoptera iris, Serv., both previously recorded by the Transit of 
Venus Expedition. In addition the present collection contains a 
specimen of apparently another species of Anisoptera, resembling 
A. conocephala, Linn., which occurs in Spain, Africa, and the 
Seychelles. There are two species of Locustidae: Locusta danica, 
Linn., a cosmopolitan species, and Chortoicetes rodericensis, Butl., 
described from Rodrigues, and not found elsewhere. 

The Neuroptera comprise a few specimens of a Termite, and 
specimens of one species of Hemerobiidae and of one species of 
Chrysopidae. It may here be mentioned that Dr H. Scott found a 
species of Termite working in the wood at the bottom of a lighter 
in Victoria harbour, Mahé, Seychelles. This indicates a possible 
explanation of the existence of Termites in such a locality as 
Rodrigues, where any indigenous Termites would probably be 
exterminated by the fires which have repeatedly devastated the 
island. Until the Termites in Mr Snell’s collection have been 
identified, no statement of course can be ventured regarding the 
distribution of this species. Mr Gulliver, on the Transit of Venus 
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Expedition, secured one specimen of Myrmeleon obscurus, Rambur. 
This species was described from Mauritius, and is widely distributed 
in Africa. 

The Odonata consist of six species, as follows: 
Pantala flavescens, Fab., occurs in all the warmer parts of the 

world, but not in Europe. 
Tramea limbata, Desj., a very variable species of wide dis- 

tribution, described from Mauritius. 
Orthetrum brachiale, P. de Beauv. Found elsewhere in Zanzibar, 

Congo, etc. 
Anaz imperator mauricianus, Rambur. Agrees with a specimen 

in the Museum of Zoology, Cambridge, named by Campion. The 
species was also taken by Gulliver, on the Transit of Venus Ex- 
pedition. 

Ischnura senegalensis, Rambur. Widely distributed in tropical 
Asia and Africa. 

Agrion ferrugineum, Rambur. One specimen was taken by 
Gulliver. The present collection contains several specimens. 

The collection of Hymenoptera, exclusive of Ants, contains two 
species of Tubulifera, eleven species of Aculeata, and approxi- 
mately 170 specimens (of about twenty species) of Parasitica. The 
two species of Tubulifera, for the identification of which I am 
indebted to Mr F. D. Morice of the British Museum of Natural 
History, are Chrysis (Pentachrysis) lusca, Fab., found also in India, 
Ceylon and Mauritius, and Philoctetes coriaceus, Dahlb., known 
also from East and South Africa. Of the Aculeata, the Formicidae 
are not yet determined, and a species of Halictus is at present 
unidentified. The remainder of the Aculeates are as follows: 

Megachile disjuncta, Fab. Common in India; recorded also 
from Mauritius. (M. lanata, Fab., is recorded by Smith as having 
been taken by Gulliver on the Transit of Venus Expedition.) 

Megachile rufiventris, Guér. Found elsewhere in Kast and South 
Africa, Mauritius and Seychelles; previously taken in Rodrigues 
by Gulliver. 

Apis unicolor, Latr. Previously taken in Rodrigues by Gulliver. 
Found in the Seychelles, Amirantes, Chagos (Diego Garcia, Peros 
Banhos). Commoner in Madagascar. 

Odynerus trilobus, Fab. This species has not been previously 
recorded from Rodrigues. It is common and widely distributed, 
being known from Madagascar, Mauritius, Réunion and South 
Africa. 

Polistes macaensis, Fab. Previously taken by Gulliver and 
listed as P. hebraeus, Linn. There seems to have been considerable 
confusion over these names, as Cameron (Trans. Linn. Soc. (2), 
vol. x11, p. 71) lists this species as P. hebraeus, Fab., stating that 
it is known from Rodrigues. Dr R. C. L. Perkins has, however, 
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demonstrated the differences between the male P. macaensis and 
male P. hebraeus. (See Ent. Mo. Mag. (2), vol. x11, 1901, p. 264.) 
P. macaensis is known also from Seychelles, Amirantes, Chagos 
(Salomon Islands, Diego Garcia), and Mauritius. 

Scolia (Dielis) ‘grandidieri, Sauss. I am indebted to Mr Rowland 
E. Turner of the British Museum of Natural History for the 
identification of this species. He states that the specimens under 
review are of “a form of D. grandidieri, Sauss. from Madagascar, 
with a few more punctures on the abdomen than in that 
species.” 

Ampulex compressa, Fab., not previously recorded from 
Rodrigues. Common from Eastern Europe to China, and also in 
Africa. 

Passaloecus (Polemistus) macilentus, Sauss. Mr R. KE. Turner has 
kindly identified this species for me. He states (in litt.) that “Mr 
Morice considers that Philoctetes coriaceus, Dahlb. is probably 
parasitic on this, as species of Passaloecus are often attacked by 
small Chrysids.”’ The species was described from Madagascar. 

Sceliphron bengalense, Dahlb. (= Peolpaeus convexus, Sm.). 
Mr Turner has confirmed my identification of this species. He 
adds: “This is probably an imported species, as species of the 
genus build mud nests on ships and are carried in that way from 
place to place.” 

Trypoxylon errans, Sauss. Not previously recorded from 
Rodrigues. Found also in Mauritius and the Seychelles. 

There are approximately 750 specimens of Coleoptera, of pos- 
sibly 100 species; 640 specimens of Diptera, of at least seventy 
species; and 360 specimens of Hemiptera, of some forty-five 
species. These have not yet been critically examined. 

In the Lepidoptera, seven species of Butterflies were collected 
by Mr Gulliver on the Transit of Venus Expedition. Of these one 
species is not represented in Mr Snell’s collection, viz. Hesperia 
forestan, Cr. The list of Butterflies is as follows: 

*Melantis leda, Linn. + *Zizera lysimon, Hiibn. 
*Danais chrysippus, Linn. +*Polyommatus boeticus, Linn. 
Precis rhadama, Boisd. *Tarucus telicanus, Lang. 
*Hypolimnas misippus, Linn. Parnara borbonica, Boisd. 

1 *Atella phalantha, Drury 

Among the Moths (Heterocera), exclusive of the Pyralidae, 
Tortricidae, and Tineidae, though Gulliver’s collection contained 
only twelve species, five of these were species not represented in 
Mr Snell’s collection. Mr Snell obtained three species of Sphingidae, 

* Of wide distribution. 
+ Not previously recorded from Rodrigues. 
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one species of Arctiidae, twenty-five species of Noctuidae, and 
two species of Geometridae, as follows: 

* Acherontia atropos, Linn. t*Hrias insulana, Boisd. 
+*Herse convolvuli, Linn. * Anua tirhaca, Cr. 
+ Hippotion aurora, Roth. & Jord. Achaea trapezoides, Guén. 
+*Utetheisa pulchelloides, Hamps. Achaea finita, Guén. 
+*Chloridea obsoleta, Fab. *Parallelia algira, Linn. 
t*Agrotis ypsilon, Linn. *Chalciope hyppasia, Cr. 
+*Corphis loreyr, Dup. t*Mocis undata, Fab. 
+ Cirphis leucosticha, Hamps. *Phytometra chalcytes, Esp. 

( = wmsulicola, Saalm.) *Cosmophila erosa, Hiibn. 
+ *Perigea capensis, Guén. t* Dragana pansalis, Walk. 
+*Eriopus maillardi, Guén. t*Magulaba imparata, Walk. 
*Prodenia litura, Fab. +*Hydrillodes lentalis, Guén. 
*Spodoptera abyssinia, Guén. t*Hypena masurialis, Guén. 
Athetis expolita, Butl. +*Hyblaea puera, Cr. 

tHublemma apicimacula, Mab. +*Craspedia minorata, Boisd. 
*Amyna octo, Guén. t*Thalassodes quadraria, Guén. 

The five species collected by Mr Gulliver and not represented 
in the present collection are as follows: 

*Argina cribraria, Clerck. (Hypsidae). 
*Nodaria externalis, Walk. (redescribed as Diomea bryophiloides, 

Butl.) (Noctuidae). 
Pericyma turbida, Butl. (Noctuidae). Peculiar to Rodrigues. 
* Achaea catella, Guén. (Noctuidae). 
*Mocis repanda, Fabr. (Noctuidae). 

Butler listed a species as Laphygma cycloides, Guén., apparently 
in error, as Sir George Hampson has in his Catalogue placed the 
record under Spodoptera abyssinia, Guén. 

There are about 180 specimens, of some thirty species, of 
Micro-lepidoptera. These have not yet been worked out. 

The collections made by Mr Snell are of importance as showing 
more definitely the relations of Rodrigues with the other islands 
in the vicinity. Undoubtedly the fauna has, with the flora, suffered 
considerably from the devastating effects of the fires which have 
so frequently swept the island, but investigation of the collections 
of the groups not yet worked out, will undoubtedly show that con- 
siderable traces of the indigenous fauna still exist, and will serve 
to indicate with greater accuracy the affinities of Rodrigues with 
the neighbouring islands. 

* Of wide distribution. 
+ Not previously recorded from Rodrigues, 
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Preliminary Note on the Life History of Lygocerus (Procto- 
trypidae), hyperparasite of Aphidius. By Maup D. Havitanp, 
Fellow of Newnham College. (Communicated by Mr H. H. 
BRINDLEY.) 

[Read 10 November 1919.] 

Plant lice are frequently parasitized by ‘certain Braconidae of 
the family Aphidiidae. The parasite oviposits in the haemocoele 
of the aphis, and the larva, during development, consumes the 
viscera of the host. At metamorphosis nothing remains but the 
dry skin, within which the Aphidius spins a cocoon for pupation. 

At this stage, the Aphidius itself is liable to be parasitized in 
turn by certain Cynipidae, Chalcidae, and Proctotrypidae. The 
two former are known to be hyperparasites, but the Proctotry- 
pidae have hitherto been considered doubtful, although some 
writers have suspected that they are hyperparasites of the A phidius, 
and not parasites of the aphis. Gatenby in his paper: “ Notes on the 
Bionomics, Embryology, and Anatomy of certain Hymenoptera 
Parasitica” (Journ. Linn. Soc. 1919, vol. xxx, pp. 387-416) says: 
“*,.-I am inclined to support the view that the Proctotrypid is a 
parasite, and not a hyperparasite.” 

The following is a summary of some observations made in the 
summer of 1919, on two Proctotrypids of the genus Lygocerus. 
I am much indebted to Professor Kieffer, who has kindly identified 
them for me as L. testaceomanus, Kieff., hyperparasite of Aphidius 
salicis, Hal., parasite of Aphis saliceti, Kalt., from the willow; and 
L. cameron, Kieff., hyperparasite of Aphidius ervi, Hal., parasite 
of Macrosiphum urticae from the nettle. The following notes 
probably apply to both species, but the observations were made 
more especially upon the latter. It was found also that in cap- 
tivity L. testaceomanus would oviposit on Aphidius ervi. The 
Proctotrypids do not confine their attacks to the Aphidiidae, but 
their larvae may also be found feeding on the larvae of other 
Chaleid or Cynipid hyperparasites of that family; and indeed once 
or twice were observed upon dead pupae of their own species. One 
remarkable instance of hyperparasitism came under notice. An 
aphis (Macrosiphum urticae) was parasitized by an Aphidius (A. 
ervt). The latter had been hyperparasitized by a Chalcid, of species 
unknown, which immediately after pupation had been attacked 
by another hyperparasite, either Chalcid or Cynipid, whose identity 
is not yet determined. This second hyperparasite in turn had been 
attacked by Lygocerus cameroni, and the larva was in the second 
instar when the cocoon was opened. We may ask, where are the 
limits to this hyperparasitism ? 
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Lygocerus cameroni was fairly common round Cambridge in 
1919, from mid-July to the end of August. The female selects an 
aphis-cocoon containing a full-grown larva or newly transformed 
pupa of Aphidius, and runs round it with much excitement, 
tapping it with her antennae. Oviposition takes from 30-60 
seconds, the insect meanwhile standing either on the top of the 
cocoon facing the anterior end, or on the leaf behind, with her back 
to it. Either way, the ovipositor is brought into the angle of the 
host’s body, as it lies curled inside. Sometimes two or three eggs, 
the result of successive ovipositions by different females, are 
found on the same host. 

The ege, which is laid on the upper surface of the abdomen of 
the Aphidius, measures -25 x -10 mm. It is translucent, white, 
and elliptical, with marked longitudinal striae of the chorion, and 
a minute stalk at one end. Treatment of the egg with lacto-phenol 
and cotton-blue showed the presence of bodies resembling the 
symbiotes from the pseudovitellus of Aphides. The egg hatches in 
about twenty hours. 

The larva of the first instar is a maggot shaped form, with 
thirteen body segments and a head furnished with two minute 
papillae. The mouth, which is circular and very small, contains 
two simple chitinous mandibles set well behind the hood-like 
labrum and the labium. The mid-gut, which at this stage does not 
communicate with the rectum, is large and globose, and its con- 
tents tinge the transparent body pale yellow. Later on, when the 
host dies, they become brown. The tracheal system consists of two 
lateral longitudinal trunks, united by an anterior and posterior 
commissure. When newly hatched, there are two open spiracles 
between the first and second and on the fourth segments, but 
soon afterwards the spiracles of the third and fifth segments 
become functional. The larva is active and crawls over the host’s 
body. This instar lasts from twenty to twenty-four hours, and the 
dimensions are about -45 x -22 mm. 

The larva of the second instar differs from that of the first 
chiefly in the size, which is -70 x -35mm., and in the tracheal 
system. The ramifications of the latter are more numerous, the 
dorso-ventral branches of the second segment become visible, and 
the spiracular trunks of segments six, seven, and eight appear, 
though their spiracles are not open. The duration of this instar is 
about thirty-six hours, and at this time the host usually dies, and 
its body becomes blackened and shrunken. 

In the third instar, the papillae on the head disappear, the body 
becomes more globose, and the greater proportionate development 
of the three first segments causes the head to be bent round to the 
ventral side. The dimensions are about 1:00 x -75 mm. The spiracles 
of the sixth, seventh and eighth segments open, and the spiracular 
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trunk of the second segment becomes visible. In addition, two 
short spiracular trunks can be made out on the ninth and tenth 
segments; but these never become functional, and they disappear 
in the later stages of development. This instar lasts from about 
thirty-five to forty hours. 

In the fourth instar, which lasts about two days, the Procto- 
trypid grows rapidly, and when mature measures 1-67 x -83 mm. 
The remainder of the host is quickly consumed, and, just before 
metamorphosis, the mid-gut opens into the rectum, and its con- 
tents are voided into the cocoon. The larva is active and wriggles 
about freely inside the aphis skin, aided possibly by a curious 
caudal appendage; and by these movements the faeces, together 
with the host’s skin, are kneaded into a moist compact pellet on 
the ventral side of the body. 

The full grown larva is yellowish white, and each segment has 
a double row of short chitinous spines. The thorax is large and 
broad, while the abdominal segments taper away somewhat to the 
eleventh, which bears a short stout appendage furnished with 
spines. The head is turned completely under the thorax, and the 
tracheal system does not differ essentially from that of the pre- 
ceding instar. No larval antennae nor maxillary nor labial palpi 
seem to exist at this stage. 

Lygocerus does not produce silk, but pupates in the cocoon made 
previously by the Aphidius inside the skin of the aphis. The period 
of pupation is fourteen to sixteen days. When ready to emerge, 
the imago gnaws a hole somewhere on the upper side of the cocoon, 
and creeps out. So far, no parthenogenetic ovipositions have been 
observed, and two broods, certainly, and possibly more, may occur 
in the season. The life of the imagoes is generally five or six days, 
but they may live as many as ten. Examples in captivity were 
observed to feed on the sap oozing from cut leaves, and on honey- 
dew dropped by the aphides, but they seemed to live as long and to 
remain as vigorous when no food was supplied. 
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Note on the solitary wasp, Crabro cephalotes. By CrcIL 
Warburton, M.A., Christ’s College. 

[Read 10 November 1919.] 

Last summer a small colony of C. cephalotes took possession in 
my garden of a log of elmwood which was kept as an example of 
a woodpecker’s nest. The entrance hole of the woodpecker was 
there, and just below it the log had been sawn through so that the 
internal cavity could be examined. 

The first advent of the wasps was not noticed, but in the first 
week of August a wasp was observed entering the hole, and this 
led to an investigation of the log, which presented signs of boring 
in the half-decayed heart-wood. One of the wasps had attacked 
the log from the top and its operations could be noted with more 
or less exactness, but the others passed in and out by the wood- 
pecker’s hole, and it was impossible to recognise individuals or to 
follow their work without constantly disturbing it by opening up 
the log, with the risk of inaccurately replacing the two halves. 
The log was nevertheless opened several times during the first half 
of August, but it was then thought better to let the wasps finish 
their work without further disturbance. 

That the wasps are not easily diverted from their labours the 
following facts sufficiently demonstrate. The log was moved several 
yards, to a spot more convenient for observation. The wasp 
working on the top (hereafter referred to as wasp No. 1) was 
captured in a glass tube and examined for identification, but on 
being liberated continued working as before. Close observation, 
with a hand lens, did not deter this wasp from entering its burrow 
without hesitation in the course of its operations, nor were the 
other wasps disconcerted by the removal of the lid on several 
occasions at an early stage of their work. As a rule no attention 
was paid to anyone sitting silently near the log, but it must be 
recorded that on one occasion a wasp returning with a fly appar- 
ently objected to the dress—light with dark spots—of a lady sitting 
near at hand, and after a close investigation from many points of 
view, retired instead of entering the log. To ascertain if wasp No. 1 
were at home or not I was in the habit of placing a stout straw in 
its burrow—protruding an inch or more. One would have thought 
that on returning home and finding such an object impeding its 
entrance the insect would manifest some perturbation and either 
refuse to enter or take some measures to remove the obstacle. It 
did nothing of the kind, but absolutely disregarded the straw, 
pushing past it even when laden with a fly. It was several times 
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ejected together with the frass from new tunnelling operations, 
but never otherwise. 

Continuous observation of work that went on for many hours 
a day for about three weeks was, of course, impossible, but on 
several days, especially during the week Aug. 18—25, operations 
were watched for spells of an hour or two at a time, and the exact 
times of ingress and egress carefully noted. The notes which 
immediately follow especially concern wasp No. 1. 

_ The hole was sometimes clear, sometimes choked with ‘‘saw- 
dust.” After watching for a time the “sawdust” would be seen to 
heave up and form a mound over the hole. Then the wasp would 
emerge and proceed to remove the frass, butting it away from the 
neighbourhood of the hole with its head. Sometimes in the course 
of its excavations the wasp would emerge, fly away for a time, and 
return empty handed to resume its digging. 

On Aug. 19 it was seen to be carrying home flies, and the per- 
formance was watched for an hour, and the following times were 
noted: 

Returned with fly, 9.37, 9.48, 10.18, 10.31. 
Emerged, 9.40, 9.55, 10.25, 10.39. 

Thus four flies were caught in the hour, and the times spent in 
capturing three of them were 8’, 23’ and 6’ respectively, while 
3’, 7’, T’ and 8’ were occupied in packing the four flies into the 
burrows. To find, capture, paralyse and bring home the right kind 
of fly in six minutes strikes one as a remarkable feat. From further 
observations it appeared that the operation usually occupied about 
a quarter of an hour. None but “hover flies” (Syrphidae) were 
taken by any of the wasps, and the prey was generally Syrphus 
balteatus, a species almost as large as the wasp itself. It was, 
nevertheless, carried with perfect ease, arranged longitudinally, 
head foremost beneath its captor, and, I believe, venter to venter. 
No preliminary examination of the hole was ever made before 
carrying the fly in, such as Fabre has recorded in the case of some 
wasps. About noon on Aug. 21 this wasp apparently ceased 
working. There were no signs of activity that afternoon nor the 
following morning. 

On Aug. 22 about 3 p.m. a wasp (wasp No. 2) was seen to come 
out of the woodpecker’s hole and alight on the top of the log, 
which it proceeded to explore. It found No. 1’s burrow and 
entered it for a short distance, after which it flew away. Nothing 
further was noted till the evening of Aug. 23, when on returning 
home at 5.30 I noticed a heap of frass on the top of the hole. At 
6.20 a wasp arrived and after pointing at the main entrance, 
seemed to change its mind and alighting on the top, entered No. 
l’s hole. Its behaviour convinced me that it was not No. 1, but it 
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might very well be wasp No. 2. Anyhow it entered the burrow, 
and by 7.50 it had turned out more “sawdust” containing several 
of the flies so carefully stored up by wasp No. 1! The explanation 
that first occurred to one was that the wasp wanted to dig, and 
naturally found it easier to work where someone had been before. 
Such a defective instinct would, however, militate against the 
preservation of the race. Moreover there were no further develop- 
ments, and No. 2 remained satisfied with undoing some of No. I’s 
work. A wild suggestion did occur to me, which I will give for 
what it is worth. Is it possible that one of those working from the 
interior became aware of operations from the outside which might 
imperil the results of its own labours, and proceeded to put a 
stop to them? 

With regard to the remaining wasps, which entered by the 
woodpecker’s hole and worked from the inside, the following notes 
may be given. 

The earlier hasty inspections of the interior showed that the 
cavity of the woodpecker’s nest was being gradually filled with the ~ 
“sawdust” of their workings, and conspicuous on the “sawdust” 
were a number of Syrphid flies, apparently dead. At the final 
investigation at the beginning of October about a hundred and 
twenty of these derelict flies were found in the central cavity, and 
as there were certainly not more than six wasps at work at any 
time, and as two were early captured and retained for identification, 
it is probably safe to estimate the average numbers of the wasps 
responsible for discarding them at five. This allows twenty-four 
discarded flies to each wasp—about six hours strenuous labour by 
each insect entirely wasted! As wasp No. 1 was never seen to 
discard a captured fly this phenomenon was apparently attributable 
to the conditions prevailing inside. There all the burrows com- 
menced with a horizontal boring at the junction of the two sections 
of the log, at some little distance from the main opening. After 
alighting at the main entrance they had, therefore, either to fly 
across or to crawl round the central cavity, and it seems as though 
a number of flies had been accidentally dropped. It would be 
quite in keeping with what has been observed in the case of allied 
insects that a wasp which had accidentally dropped a fly should 
make no attempt to retrieve it, but should simply go away and 
catch another. These discarded flies were in any case very useful 
as evidence of the particular prey selected by Crabro cephalotes. 

At the beginning of October some of these flies had been 
reduced to fragments by other predaceous creatures, but of 113 
recognisable specimens 60 were S. balteatus. 

My friend Mr N. D. F. Pearce very kindly undertook to identify 
the remainder for me and he finds among them five species of 
Syrphus, three of Platychirus, two of Melanostoma, and one of 
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Rhingia, Catabomba and Helophilus respectively. No family of 
flies except the Syrphidae was represented. The complete list is as 
follows: 

Syrphus balteatus 60 
. luniger 5 
. vitripennis 
. corollae 
. auricollis 
. albistrictus 

Platychirus albimanus 9 
P. scutatus ? 
P. peltatus 
Melanostoma mellinum 
M. scalare ? 
Rhingia campestris 
Catabomba pyrastri 
Helophilus pendulus 
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Early in October the log was thoroughly explored, and an 
attempt was made to follow out the windings of the galleries, 
but the extreme friability of the decaying heart-wood made this 
very difficult. 

The first thing that struck one was the absence of any attempt 
to seal or mask the tunnels which were entirely open to any 
chance intruder. Indeed a family of wood-lice was found three 
inches down the tunnel of wasp No. 1. There was nothing to prevent 
any enemy from entering. While at work the wasps had never 

~ manifested any interest in other insects in the neighbourhood of 
their burrows, nor did they finally make any provision for keeping 
them out. While watching the operations of wasp No. 1 a few 
insects had been seen to enter the tunnel, including Phoridae, one 
of which was secured, and a Muscid fly (? Tachina) and an Ichneu- 
monid which unfortunately evaded capture. 

The main tunnels were clear, and penetrated the wood for 
several inches, with abrupt turnings on no definite plan. From 
these proceeded side galleries in which were found “sawdust,” the 
débris of flies, and the brown cocoons containing the fully-fed wasp 
larvae. Sections of the log showed that these were dotted here 
and there throughout the soft heart-wood precisely like the raisins 
in a Christmas pudding. 
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Neon Lamps for Stroboscopic Work. By F. W. Aston, M.A., 
Trinity College (D.Sc., Birmingham), Clerk-Maxwell Student of 
the University of Cambridge. 

[Read 19 May 1919.] 

For the accurate graduation and testing of revolution indicators 
and similar technical purposes the stroboscopic method is probably 
the most reliable. This depends on the fact that if a rotating disc is 
illuminated N times per second by very short flashes, a regular 
figure drawn symmetrically on the disc will appear at rest when 
the number of revolutions of the disc per second is some exact 
multiple or submultiple of N depending on the number of sides of 
the regular figure. 

The value of N—in practice 50—can be set and easily kept 
extremely constant by the use of an electrically driven tuning-fork 
so that the success of the method rests principally upon the 
illuminating flashes; its accuracy will depend upon their shortness 
of duration and brightness; its convenience as a practical method 
upon their brightness and quality as affecting the eye of the 
observer. 

The first experiments were tried with naked Leyden jar sparks 
obtained from the secondary of an ordinary ignition coil, the 
tuning-fork being introduced into the primary circuit as an 
interrupter. These showed the principle of the method to be 
excellent but spark illumination left much to be desired; it was 
noisy, feeble in intensity, and being mostly of short wave-length, _ 
caused rapid and excessive eye-strain even when used in a dark 
room. 

The remarkable properties of Neon seemed to offer an almost 
ideal solution of the illumination problem. A form of lamp to 
replace the spark was therefore devised which appeared likely to 
give good results and several of these were filled from the author’s 
stock of Neon at the Cavendish Laboratory. The success of these 
lamps was immediate, eye-strain disappearing completely. The 
present paper is a description of the lamps and their behaviour 
during continuous use. 

The Form of Lamp. 

The original form of the lamp, which it has not been found 
necessary to alter materially, is shown in the sketch. As, in the 
discharge in Neon, nearly all the light is in the “ Positive Column” 
and its brightness increases with the current density, the lamp 
was designed to give a positive column as long and narrow as 
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possible consistent with the potential available in the spark, and 
consists essentially of two relatively large spaces containing the 
electrodes connected by a very long capillary tube which is the 
counterpart of the filament in an ordinary glow lamp. In the lamps 
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Neon vacuum lamp for Stroboscopic work. 

Two-thirds actual size. 

in use the filament is about 60 cm. long by 1 mm. diameter and is 
coiled up inside the space containing the anode. This was done for 
convenience and strength, but it has another and important 
advantage, for this type of construction is strongly unsymmetrical 
to the discharge, allowing it to pass much more easily in the direc- 
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tion indicated in the figure than in the opposite, hence it effectually 
stops the “reverse” current from the secondary of the coil. 

Other important results depending on the length of the fila- 
ment will be discussed later, it should be roughly one hundred 
times the length of the spark the coil is capable of giving in air 
when running on the tuning-fork break. 

It is hardly necessary to state that the shape into which the 
filament is wound is not in the least essential and could be varied 
to any extent in lamps for special purposes. 

The electrodes are of aluminium and may be of any form so 
long as they are not too small. 

Method of Filling Lamps. 

As Neon, like the other gases of the Helium group, has the 
remarkable property of liberating gas from aluminium electrodes 
which have been completely run in for other gases, the operation 
of filling necessitates the contamination of a comparatively large 
volume of Neon, so that this can only be done economically and 
conveniently where liquid air is available for re-purifying. 

So far all the lamps have been filled on the author’s Neon 
fractionation apparatus at the Cavendish Laboratory!. The gas 
for filling is contained in charcoal cooled in liquid air. A quantity 
is admitted to the exhausted lamp which is then sparked at a 
pressure of 1 to 3 mm. with a small coil for a time. The dirty gas 
is then pumped off with a Toepler mercury pump, a fresh supply 
of pure gas admitted and the tube run again. These operations 
are repeated until spectroscopic and other observations show the 
desired conditions of purity have been reached and are not altered 
seriously by prolonged running. The full charge of 5 to 10 mm. of 
gas is now let in and the lamp sealed off. The whole operation takes 
about 3 hours, three lamps being filled at once. The pressure, 
purity and time of running in are all matters of some nicety as 
will be seen from consideration of the life of the lamp. 

Life of the Lamps. 

Apart from accident the lamps are serviceable until the pressure 
of gas within them becomes too low for the spark to light them 
adequately. Their lite appears to consist of two distinct periods, 
the first during which chemically active impurities derived from 
the electrodes and walls of the tube are being slowly and completely 
eliminated (at least as far as a spectroscopic observation goes) and 
the second during which sputtering of the cathode takes place and 
the inactive Neon itself slowly disappears until the pressure gets 
too low for use. During the first period the luminosity steadily 

1 y. Lindemann and Aston, Phil. Mag. xxxvu, May 1919, p. 527. 
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improves, remaining almost constant afterwards till near the end 
of the second period when it rapidly decreases. 

The first set of lamps were filled with very carefully purified 
Neon at 1-2 mm. pressure and run till sputtering had commenced 
before being used; they may therefore be considered to have had 
no first period at all. These lamps had a life of 500-1000 hours. 

Experiments soon showed that the less preliminary running 
and the higher the pressure of filling the longer the life would be, 
but on the other hand, if the preliminary running is not sufficient 
the impurities derived from the electrodes turn the light of the 
lamp a dull grey and render it absolutely useless and pressures 
above 10 mm. are not advisable as these increase the spark 
potential of the lamp too much. 

One lamp was actually so nicely balanced in these respects 
that though it became grey and useless after about 1 hour’s use it 
completely recovered its original brightness after a day’s rest. This 
is clearly a case of carbon compounds being given off by the elec- 
trodes while running, which are reabsorbed on standing and there 
is little doubt that were it worth while very prolonged running 
would render this lamp quite satisfactory. Very slow production 
of gases from the electrodes is advantageous, as prolonging the 
first period of the life, so that these should be of a fairly solid 
pattern. 

So far, the best results have been obtained from a batch of 
lamps filled at about 10 mm. pressure, some with pure Neon, 
some with a mixture of Neon and about 10 per cent. Helium. 

One of the latter had a working life of well over 3000 working 
hours, Helium disappearing from its spectrum after the first few 
hundred. 

As there is every reason to assume that for any given lamp the 
life is determined by the total number of coulombs passed through 
it, the light obtained per coulomb should be arranged to be a 
maximum. This will be the case when the filament is made as long 
as possible, consistent with the potential available from the coil. 

Cause of Disappearance of Gas from the Lamps. 

The exhaustion of gas by continuous running has long been 
observed in the case of spectrum discharge tubes. It is doubtless 
allied to the phenomenon of “Hardening” in X-ray bulbs, but 
differs from the latter in that under the relatively high pressures 
in spectrum tubes, and the Neon lamps under consideration, the 
mean free-path of a charged molecule is so small that it can only 
fall freely through a potential of a few hundred volts and so never 
attain the very high velocities reached in the X-ray bulbs which 
are supposed to cause the gas molecules to become permanently 
embedded in the glass walls. 

VOL, XIX. PART VI. 2 
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The disappearance of gases of the Helium group in spectrum 
tubes is invariably associated with sputtering of the electrodes 
which, at high pressures, only takes place when the gas is spectro- 
scopically free from chemically active gases. It is generally sup- 
posed that the gas so disappearing remains embedded or adsorbed 
in the layer of sputtered aluminium on the sides of the tube near 
the cathode, the idea of true chemical combination not being 
acceptable without very rigorous proof. 

In order to obtain information on this point, a completely run 
out specimen of the first batch of lamps, which was of course very 
heavily sputtered, was taken for test. First the sputtered cathode 
end was gradually heated to near the softening point of the glass 
(when it cracked) without any substantial or apparent increase in 
the internal pressure of Neon. The end was then cut off, broken into 
small pieces and heated in a quartz tube in a high vacuum apparatus 
provided with a spectrum tube. At a temperature about the 
softening point of the glass a good deal of gas was released which 
showed the hydrocarbon spectrum (but may nevertheless have 
contained some Neon as this is easily masked) ; this gas was pumped 
off and on heating further to a red heat, as the glass started to 
melt, Neon was given off, the spectrum showing quite clearly. 

Apparatus for measurement and analysis of the gas so released 
was not available, but it is hoped to repeat this interesting experi- 
ment, which shows definitely that the Neon is contained either in 
the sputtered aluminium or very near the surface of the glass so 
that it is released by heat. 

Use of other Gases instead of Neon. 

Ordinary chemically active gases give very feeble illumination, 
CO being about the best. Helium gives a bright discharge but not 
nearly so valuable in quality for visual work as Neon; its presence 
as an impurity in the latter gas renders the discharge more rosy 
red but up to 10 per cent. does not afiect its brightness seriously. 
Mercury vapour as used by C. T. R. Wilson in his photography of 
ionisation tracks would probably give very bright flashes, but the 
fact that the lamp has to be kept very hot is a serious objection. 

Reason for Superrority of Neon. 

The brilliant orange-red glow of the discharge in Neon is com- 
posed almost entirely of lines in the region 5700-6700 a.v. and is in 
such striking contrast to sunlight that stroboscopic observations 
can even be done in broad daylight if necessary, the ordinary 
appearance of the rotating disc having merely a grey background 
added, looking bluish by contrast. 

The actual amount of light radiated per unit of energy, Le. 
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the real efficiency of the discharge in Neon, is not markedly greater 
than that in e.g. mercury vapour, but the apparent efficiency is 
enormously enhanced by the fact that it consists so largely of red 
light. Victor Henriand J. L. des Bancels have shown (‘‘ Photochemie 
de la Rétine,” Jl. Phys. Path. x11, 1911) that the Fovea Centralis of 
the eye is immensely more sensitive to red light than the outlying 
portions of the retina1, thus a Neon lamp as a source of general 
illumination is very disappointing, but when viewed directly 
appears surprisingly bright. As the spinning disc of the stroboscope 
subtends a comparatively small angle the Fovea is the only part 
of the observer’s eye used in testing, which is probably the reason 
for the eye strain with the spark. 

Nature and Duration of the “Working Flash.” 

If one analyses the flash of a short spectrum type Neon tube in 
a rotating mirror it is seen to consist of two separate parts, an 
extremely short flash followed by a flame or “arc.” The first is 
probably due to the simultaneous ionisation of the gas throughout 
the whole length of the tube, the second to the further carriage of 
current by the ions formed during the first. The structure of the 
latter, which appears to consist of bright striations travelling from 
anode to cathode at velocities of the order of that of sound in the 
gas, is of great theoretical interest and is at present under investi- 
gation. Discussion of its nature is needless in the present paper 
for its duration being of the order of thousandths of a second it is 
useless for stroboscopic work and, by the employment of a suffici- 
ently long filament tube, it can be eliminated altogether. In a 
lamp properly proportioned to the power of the coil in use the 
whole energy of the discharge is absorbed in the first flash. In 
order to get some idea of the duration of this “working flash” the 
following experiment was performed. 

A plain mirror, silvered outside to avoid double images, was 
mounted vertically on the axis of a large centrifuge and the image 
in this of the Neon lamp at a distance of 3 metres was observed 
by means of a telescope with a micrometer eye-piece. Hach 
division in the micrometer subtended 4-2 « 10~4 radians and when 
the centrifuge was running at 3500 revolutions per minute corre- 
sponded to 5-75 x 10-7 seconds. 

The lamps were run with the tuning-fork attachment used in 
actual testing and were viewed directly and also through ground 
glass with a V-shaped slit to be certain of getting the effect of the 

1 The difference of retinal effect between red and green light can be easily ob- 
served by looking at an ordinary luminous wrist watch in the faint red light of 
a photographic dark room. On shaking the watch so sluggish is the green light in 
recording its position on the retina compared with the red that the figures seem 
to be shaken completely off the dial, giving a most curious and striking effect. 

21—2 
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total duration of the flash. In neither case was the fuzziness of the 
image of a measurable order. After careful observation under 
good conditions the conclusion of three observers was, that it was 
probably less than one-tenth of a division and certainly less than 
one-fifth. This gives the maximum duration of the working flash 
as one-ten-millionth of a second, so that it can be taken as perfectly 
instantaneous for the purpose employed. 

Other Technical Applications. 

Of the many uses besides measuring velocity of rotation to 
which Neon lamps may be put with advantage in engineering and 
other problems it is sufficient to mention two in which they have 
been very successful. Any rapidly rotating mechanism such as an 
airscrew, if illuminated by a lamp the break of which is operated 
mechanically at each revolution, will appear at rest, flicker being 
small at speeds well over 1000 R.P.M., so that strains or movement 
of parts can be examined with great accuracy under actual working 
conditions. 

A still more striking effect can be obtained by illuminating a 
high speed internal combustion engine by a lamp whose break is 
operated mechanically at e.g. 99 breaks per 100 revolutions of the 
engine shaft by the use of a creeping gear. The engine then appears 
to be rotating quite smoothly at one-hundredth its normal speed 
so that such instructive details as the movements of the valves 
and springs, the bouncing of the former on their seats, etc., can be 
studied with ease. 

It is of course necessary for the speed of rotation to be fairly 
rapid to give appearance of continuity to the eye and in conse- 
quence one cannot apply this method to the analysis of such a 
thing as the movement of a chronometer escapement. 

As the technical importance of Neon lamps is rapidly on the 
increase it is very desirable that liquid air engineers in this country 
should consider the erection of a fractionating plant for recovering 
the gas from the air (which contains -00123 per cent. by volume) 
such as has been used with such success by Mons. Georges Claude 
of Paris, to whom the author is indebted for the Neon with which 
these experiments were performed. 
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The pressure in a viscous liquid moving through a channel with 
diverging boundaries. By W. J. Harrison, M.A., Fellow of Clare 
College, Cambridge. 

[Read 24 November 1919. ] 

If non-viscous liquid is flowing along a tube having a cross- 
section which is increasing in area in the direction of flow, the 
pressure will also increase, in general, in the same direction. On 
the basis of this remark an explanation has been given of the 
secretory action of the kidneys. The author’s attention was drawn 
to this explanation by Dr Ffrangcon Roberts. The physiological 
aspect of the question and a more detailed numerical consideration 
will be dealt with by Dr Roberts and the author in a separate 
paper. 

In the present paper two problems are considered, viz. the flow 
of liquid in two and three dimensions when the stream lines are 
straight lines diverging from a point. 

Two-dimensional problem. 

Let the boundaries of the channel be 6 = + a, where (r, 0) are 
two-dimensional polar coordinates. The motion in which the stream 
lines are straight lines passing through the origin has been ob- 
tained by G. B. Jeffery!. With a slight change of notation the 
results of his solution are as follows. 

Let the velocity at any point be u/r, where w is a function of 6 
only. Then 

du 
ut = — dou —v ae + a, 

where p is the kinematic coefficient of viscosity, and a is a constant 
of integration. Whence 

u = — 2v (1 — m? — mk?) — 6vk?2m2 sn? (m, k), 

where & and m are constants, which may be determined from the 
conditions that w must vanish at 6 = + a, and that the total rate 
of flux may have a given value. Instead of the latter condition it 
is simpler to assume that the velocity is given for 0 = 0, Le. u = Up 
for 0= 0. 

Thus the conditions are 

— 2v (1 — m? — mk?) = uy, 

(1 — m* — mk?) + 3k?m? sn? (ma, k) = 0. 

1 Phil. Mag. (6), vol. Xx1x, p. 459. 
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These may be written 

= (1+ u9/2v)/(1 + 2), 
< {(: + ue)" i} = NE it 

1+ ‘ 3h? (1 + Qv/u,) ° 

If the values of uw, and a be given, the last equation serves for 
the determination of k. Writing k, = 1/k, the equation has the 
same form in k, as in k. Hence, if & is a solution, 1/k is also a 
solution. Therefore, of real values of k, it is only necessary to 
consider such that satisly O<k<1l 

1 + u,/2v 3 
Treat @ as small, and assume that ( ) a is also small. 

1+ Fe 

(Cl ke)s 
3k (2 + 2v/uUg + Up/2v) 

The least value of @ for a given value of u,/2v, if k is real, is given 
by & = 1. In this case, if u,/2v — 1, o? = 4, a — -58. This value of 
a is not small enough for the approximation to hold good. Put 
k = 1 and 2v/uy = 1 in the original equation, and we find a = -65, 
approximately. For smaller values of a, k will be a complex 
imaginary quantity. As u,/2v is either increased or decreased, a 
real value for k can be obtained for smaller values of a. 

It will be found sufficient for the purposes of the present paper 
to restrict the consideration of the solution to the ranges of values 
of a@ and u,/2v for which k has a real value. We proceed to discuss 

“the pressure variation in the case for which k is real; the variation 
in the case for which k is complex can be inferred by considerations 
of continuity. 

Let p be the mean pressure at the point (r, @) in the liquid, and 
p its density. We obtain from the two-dimensional polar equations 
of motion 

We have ot = 

we Lap, vA 
7 Vi) por has our 

i ee, a ayia 
pod r? 06 

Hence ac 453-55 sale) 

= ae, 
substituting for a 73 from the differential agen satisfied by wu. 

Also P _ ae h(n) 
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Hence Lp a = oe + C, where C is a constant. Now the lateral 

stress in the liquid i iS Pog, Where 

O11 15 TS a Pe 

= 3p + ©. 
Hence jg is independent of @, and is the normal stress (of the 
nature of a tension) exerted by the liquid on the boundary. If 
a is negative the normal pressure on the boundary decreases as 
the channel widens, and if a is positive the normal pressure 
increases. 

Now by substitution of the solution for uw given above in the 
differential equation satisfied by wu, we find 

a= 4v7[— 1+ m4 (1 — hk? + Fy] 

= 4y*[— 1+ (1 + w/20)? (1 + &)/G + Be)? ]. 

(1) Writing a = 0, we can immediately discriminate between 
those cases for which the pressure on the boundary decreases and 
those for which it increases. 

If a = 0, we have 

tee, = E ae)" [(1 + 8), 
and 1 + Qv/ty = es + Ke)? te i8)?y, 

Be .2)\2 __ 6)2 Hence eee ya, a = (a+ eP 
(1+ #)? 3k2 (1 + k2)?* 

The following diagram shows how the value of u,/2v for which 
Peo 18S independent of r varies with a, for those cases in which k is 

Uy 
2v 
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real. It clearly indicates that when a is small the critical value of 
U,/2v may be somewhat large. 

If «> 7/4, the lateral pressure increases for all values of u%. 
(2) Itisa simple matter to discuss the variation of the pressure 

when w,/2v is large. We have, approximately 

ae ‘( Up|2v Ye th ge Le 

1+2 ie Cae 

_ ug (L + #) 
oe eae 

k will be real provided k? > 4, and, corresponding to real 
values of k, a will be small. 

In the absence of viscosity, so that w= wy for all values of 8, 

+C. 

Ug? 17 
Pee —— D2 a C . 

Thus the lateral pressure i t a rate which is as u Pp nereases a a+ 3 

of the rate for a non-viscous liquid. 
The following table will indicate the character of the results 

when k is real. 

Uo/2v a (1 + &8)/(1 +42) 

100 10° 30’ 30 
9° 30’ 27 

1000 BY 30 
0° 57’ 27 

10,000 0° 6’ 28 
Lee eH aA: MAM EER cae 

For larger values of a than those given above, and for the corre- 
sponding values of u,/2v, k is unreal. 

When a@ is small there is apparently an approximation which 
Jeffery gives, viz. 

U= — 2v (1 — m2 — mPk?) — 6vk?m40?, 
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where 0 = — (1 — m? — mk?) — 3k?mi4c?, 

: 6ym? (1 — m?) 
leading to | aliens eS (62 — a?) 

= U, (1 ="0?/a2). 

This gives a = — 2vu,/a?, 

and fee uo +. 
p ar 

Thus the lateral pressure apparently decreases for all values of 
Up. But if 

Ug = — 2v (1 — m? — mk), 

and 0 = — (1 — m2 — mk?) — 3h? mia?, 

we have Up/2v = 3k?mite2, 

and therefore ma is not necessarily small. Hence the approxima- 
tion is only valid for values of u,/2v below some limiting value. 
If this condition be satisfied the expression for pg given above is 
an approximation to its value for small values of a. 

Three-dimensional problem. 

Let the boundary of the channel be 6 = a, where (7, 6, 4) are 
polar coordinates. This problem has been considered by Prof. 
A. H. Gibson!. In his solution Cartesian and Polar Coordinates 
are confused, and he assumes that the stream lines are straight lines 
diverging from the origin, a state of motion which is impossible if 
the inertia terms are retained in the equations of motion, as he 
retains them. One result of these errors is that in his solution p is 
a function of @ although the preliminary assumption is virtually 
made that p is independent of 6. His expression for the pressure 
appears to be quite wrong. 

Assume, in the first place, that the stream lines are straight 
lines diverging from the origin, so that u = f(0)/7?, v= 0, w= 0. 
The polar equations of motion reduce to 

yee = (hep aM 2 STE gy SUA 1 eu 2u 

dr op or. fort rr Or!) 6 00 Ober? |’ 

geal ep 2v du 
Melkie reO\ 72°00” 

US 
p ag 

1 Phil. Mag. (6), vol. xvutt, p. 36, 1909. 
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We have 

lop 2f? v 7 11 
Aue + 4 [cot A. f sheds 

LOD AD 5 
pao wt 

Hence eliminating 7, 

a = 5 Lf’ +f” cot 6 — f’ cosec? 6 + 6f’] = 0. 

Therefore ff’ = 0, and 

J’ +f" cot 6 — f’ cosec? 6 + 6f' = 0. 
Hence f’ (9) = 0, and the boundary conditions cannot be satisfied, 
since u becomes independent of 0. 

For slow motion, or any motion in which the inertia terms can 
be neglected, we have 

fii +f cove — fi cosect 0) +. 6/7 O-sa eee (1); 
A first integral is 

Wimp COM EMO Gta (Os = 10) Saab a sceot conc . (2). 
The solution of (2) suitable for the present purpose is 

f (0) = D(2 — 3 sin? 6) — 4 C. 
Let fOS% T=; 

(HO\=S=0, P= & 
We have D = u)/3 sin? a, 

C = 2 (2 — 3 sin? a) u,/sin? a. 
Hence U = Up (sin? a — sin? 0)/1r? sin? a. 

Integrating the equations of motion, we have 

Ee cate es 7 (8) p 373 

ly 9 

ong P ape Fy (0). 

Hence P= SiO+5a +B, 

Pee Lule and Fie cca B. 

The lateral pressure will continually increase as the channel 

widens if C be negative, that is, if sin a > (2)2, or a > 54° 45’. If 
a < 54° 45’, for sufficiently small values of wu, the pressure will 
continually diminish. 
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The Effect of Ions on Ciliary Motion. By J. Gray, M.A., 
Fellow of King’s College, Cambridge. 

[Read 10 November 1919.] 

The ciliary mechanism of the gills of Mytilus edulis has been 
described by Orton!. There are at least four distinct sets of cilia, 

_ whose movements form a complex but highly coordinated system 
by which food particles are filtered from the sea-water and passed 
up to the mouth. This coordinated system is entirely free from 
any nervous control and continues for many days in detached 
portions of the gill. These gill fragments therefore form an 
admirable material for the physiological study of ciliary motion. 

The effect of the hydrogen ion on ciliary action is very easily 
studied. Normal sea-water has a Py of about 7-8; when the con- 
centration of hydrogen ions is increased to about 6-5 rapid cessation 
of movement occurs. In sea-water of Py 6-7 the rate of ciliary 
movement is checked at first, but within 3-14 hours complete 
recovery takes place. If gill fragments whose cilia have been 
stopped by the more acid solution are returned to normal sea- 
water, complete recovery takes place in less than 20 minutes 
although the cilia may have been motionless for several hours. 
A large number of experiments have been performed from which 
it is clear that if the concentration of hydrogen ions is only slightly 
greater than normal, the cells can react to the environment and 
recovery take place in the acid solution. In stronger acid, however, 
recovery only takes place on removing the gills to a more alkaline 
solution. In still stronger acid the cells become opaque and are 
killed. 

Gills which are exposed to an abnormally high concentration 
of hydroxyl ions behave in a remarkable manner. In such solu- 
tions ciliary action is either not affected at all or proceeds at 
an abnormally rapid rate, but the individual cells of the ciliated 
epithelia break away from each other and move about in the 
solution owing to the movement of their cilia. Since such cells 
are no longer in their normal environment, it is impossible to 
determine any upper limit of hydroxyl ions which will permit 
normal ciliary action to go on. 

Since the hydrogen ion has a most marked effect on ciliary 
activity, it is necessary to adjust the hydrogen ion concentration 
of all artificial solutions during a study of the effects of various 
salts on ciliary action. In the case of the salts of the alkali metals 
this is satisfactorily performed by the addition of an appropriate 

1 Journ. Marine Biol. Assoc. vol. 1x, p. 444 (1912). 
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buffer such as sodium bicarbonate. In the case of the salts of the 
alkaline earths it is impossible to obtain pure isotonic solution of 
the same hydrogen ion concentration as sea-water, and it is there- 
fore necessary to compare the effects of the pure solutions with 
that of sea-water whose hydrogen ion concentration is abnormally 
high. 

A number of experiments have been performed which prove 
that sodium, potassium, calcium and magnesium are all necessary 
to maintain gill fragments in a normal state of ciliary activity 
for a protracted period, viz. four days. If one or more metals are 
omitted, the individual cells of the ciliated epithelia show the same © 
disruptive phenomenon as in sea-water of abnormally high con- 
centration of hydroxyl ions. Solutions containing only one metal 
show this phenomenon to a very marked degree although they 
may be more acid than normal sea-water; the effect of solutions 
containing two metals is less marked than that of solutions contain- 
ing only one metal, but more marked than that of solutions con- 
taining three metals. No evidence was obtained of specific ion 
action or of antagonistic action between monovalent and divalent 
ions. 

These experiments afford another example of the intense action 
of the hydrogen ion upon physiological activity and of its reversible 
nature if the acid treatment is not too severe. The same action of 
acids is found in the activity of the heart and in the movement of 
spermatozoa. 
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A Note on Photosynthesis and Hydrogen Ion Concentration. By 
J. T. SaunpERs, M.A., Christ’s College. 

| Read 10 November 1919.] 

Last April (1919) I was testing the hydrogen ion concentration 
of the water of Upton Broad, a small broad in Norfolk. I had 
determined the hydrogen ion concentration of the water of the 
broad itself to be 8-3 and I found this varied very little whether 
the water was taken from the surface or the bottom, from near the 
edge or the centre of the broad. The determination of the hydrogen 
ion concentration was made by the use of standard solutions and 
indicators as recommended by Clark and Lubs. 

When however the water in the shallow lodes and ditches 
surrounding the broad was tested, great variations in the hydrogen 
ion concentration occurred. The water became more acid as soon 
as the broad was left and the ditches entered. At one end of the 
broad where the water was shallow, not more than 18 inches deep, 
and when there was no wind to mix it with the open waters of the 
broad which was 6 feet deep, the hydrogen ion concentration 
would fall to 8°15. In the lode itself the hydrogen ion concentration 
was 7:65. After boiling and rapidly cooling, water from the middle 
of the broad and from the shallows both showed a hydrogen ion 
concentration of 8°4, while that from the lode after the same treat- 
ment was 8°15. 

At one point in the lode, however, I found surprising varia- 
tions. Dippings of water from the same place gave readings of the 
hydrogen ion concentration varying from 7-7 to 8-6. At this point 
there was a certain amount of Spirogyra growing and I found that 
if I took water from the centre of a mass of Spirogyra I could get 
a reading as high as 9-0. 

I took some of the Spirogyra back with me and placed it in 
test-tubes in tap-water which I coloured with indicator solutions. 
The hydrogen ion concentration was 7:2 at the commencement of 
the experiment. After standing the test-tube in a window in sun- 
light the hydrogen ion concentration rose after an hour to 8-6 and 
in two hours the phenolphthalein indicator had turned bright 
pink, indicating a hydrogen ion concentration of more than 9-0. 
I had no standard solutions with me which I could use to test 
higher values than 9-0 so that I was unable to determine accurately 
the ultimate result. I left the test-tubes until the next morning, 
when I found the hydrogen ion concentration had fallen to 7-6. 
After again placing the test-tubes in sunlight the hydrogen ion 
concentration rose above 9-0. 

On my return to Cambridge I repeated these rough experi- 
ments. It is easy to prove that the rise in alkalinity is not due to 
alkali dissolved out of the glass, nor is it due alone to the abstrac- 
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tion of the dissolved carbon dioxide out of the water. The hydrogen 
ion concentration of the Cambridge tap-water which I used for 
these experiments was 7-15 when the water was tested immediately 
after being drawn from the tap. On standing at a temperature of 
13° C. the hydrogen ion concentration rises to 7-4. After boiling 
and rapidly cooling the hydrogen ion concentration was 7-9 and 
bubbling through air free from carbon dioxide produced the same 
result. By incubating tap-water for 36 hours at a temperature of 
40° C. and then cooling the hydrogen ion concentration could be 
made to rise to 8-15, but in no case did the value of the control 
tap-water approach near that of the tap-water containing Spiro- 
gyra filaments. 

The following is a record of a typical experiment. The Spirogyra 
was placed in 25 c.c. of tap-water in a boiling tube and exposed to 
light at a window. Control boiling tubes containing tap-water 
only were used. All these tubes were half immersed in a glass bowl 
of running water so that the temperature was maintained fairly 
constant. 

Hydrogen Ion 
‘ concentration | 

Date Cac ) Temp. : Remarks 

Control | Spirogyra 

Mg ayo dky) 11-10 a.m. 14-0° C. 7-15 7-15 Dull day. 
Bn 12-10 p.m. 13-0° C. 7:4 8:3 
55 1.10 p.m. 12-5: C. 7-4 8-6 

2.10 p.m. 12-4 C. 7-4 8-6 
Bs 3.10 p.m. 1Be5? Ce 7-4 8:8 
bp 5.30 p.m. 1S -OmC: 7-4 8:5 

| 

I have tried using Elodea instead of Spirogyra and it gives 
much the same result. 

Both in darkness and in daylight the contents of the living cell 
of Spirogyra show an acid reaction when stained with neutral 
red. When Spirogyra is killed by heating to 40° C. and then placed 
in tap-water the hydrogen ion concentration falls considerably 
since the cell membranes are broken or dead and the contents of 
the cell are now free to pass out into the water. 

In a large pond the mass of the plants in proportion to the 
water is not sufficiently great to affect the hydrogen ion concen- 
tration very much. I have however found slight variations. On 
one occasion I noticed a fall in the hydrogen ion concentration of 
0-1 after several dull days and a subsequent rise of 0-2 after sunny 
days. This variation may possibly be due in some degree to the 
photosynthetic activity of the plants present. 
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The distribution of intensity along the positive ray parabolas of 
atoms and molecules of hydrogen and its possible explanation. By 
F. W. Astron, M.A., Trinity College (D.Sc., Birmingham). Clerk- 
Maxwell Student of the University of Cambridge. 

[Read 19 May 1919.] 

No one working with positive rays analysed by Sir J. J. 
Thomson’s method can fail to notice the very remarkable intensity 
variation along the molecular and atomic parabolas described by 
him under the term ‘beading.’ It will be sufficient for the reader 
to refer to Plate III of his monograph on the subject (Rays of 
positive electric, p. 52) to realise how striking these can be. 
Beadings at points corresponding to energy greater than the normal 
have been quite satisfactorily accounted for by multiple charges 
(l.c., p. 46), but the ones with which this paper is concerned have 
a smaller energy than the normal, actually half, and fractional 
charges are presumably impossible. Nevertheless they seem 
capable of a simple explanation and an opportunity of putting 
this to the test occurred recently while making some experiments 
to determine the best form and position of the cathode pre- 
liminary to the design of an apparatus to carry the analysis to 
higher degrees of precision. 

The observations were made with an apparatus essentially of 
the form now well known (l.c., p. 20) the discharge tube being 
arranged to be removable with the minimum trouble to change 
or move the cathode. As no camera suitable for photographic 
recording was immediately available or necessary a willemite 
screen and visual observation was employed. This form has many 
obvious disadvantages and in addition, owing to the enormous 
difference in sensitivity between the parabolas of hydrogen and 
those due to heavier elements the latter can only be seen with 
difficulty. It has however one notable advantage, namely that 
sudden and even momentary changes in intensity can be observed 
and correlated in time with changes in the discharge or in the 
intensity of other lines. As no accurate measurements were 
intended a large canal ray tube was employed so that the H, and 
H, parabolas could be easily seen even with the less effective types 
of cathode. 

It was soon realised that the appearance on the screen was in 
general the sum of two superposed effects which could be only 
unravelled like the writings on a palimpsest by eliminating one of 
them. This by good fortune it was found possible to do under 
certain conditions. For the sake of clearness it is proposed to 
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consider these two extreme types and their explanation before 
going on to describe the conditions under which they may be 
attained or approached. In the diagrams the fields of electric and 
magnetic forces are horizontal and such that positive ions will be 
deflected to the right and up, negative ones to the left and down. 
Brightness is roughly indicated by the width of the parabolic patch 
drawn. 

Fig. 1. Atomic Type. 

Atonuc type of discharge. 

Fig. 1 illustrates the first or ‘Atomic’ type in which apparently 
the whole of the discharge is carried up to the face of the cathode 
by ions of atomic mass. Those which pass through the fields 
without collision produce the true primary streak on parabola 
m= 1, the head of which corresponds in energy to that obtained 
by the charge e falling through the full potential of the discharge. 
Now the pressure in the canal ray tube is never negligible being on 
the average at least half that in the discharge tube, and the 
ionisation along its length very intense so that in passing through 
it a large number will collide with electrons, atoms or molecules. 
The collision and capture of a single negative electron will result 
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in a neutral atom striking the screen at the central undeflected 
spot O while the capture of two will cause the faint negative 
parabolic streak a, as has already been described (l.c., p. 39). 

But besides these forms of collision by which the velocity of 
the atom is practically unaffected there is distinct evidence that 
it may collide with and capture another hydrogen atom. If the 
atom struck is negatively charged the resulting molecule will 
strike the central spot but if it is neutral and the collision is 
inelastic the resulting positive ray will have the same momentum 
(the atom struck being relatively at rest) but double the mass so 
that it will strike the molecular parabola at a point the same height 
above the X-axis as would the atom which generated it. Molecular 
rays formed in this manner will therefore form the streak 6, 
which, allowing for the geometrical difference in the curves will 
show a similar distribution of intensity to a,. Collision with a 
positively charged atom will obviously be unlikely to result in 
capture and those with heavier atoms will be referred to later. 
It is to be noted in connection with the brightness of these 
secondary streaks a, and 6,, which may conveniently be called 
‘satellites’ to distinguish them from the ‘secondary lines’ already 
fully described (J.c., p. 32), that a, 1s always very much fainter than 
its primary but 6, can be equally bright. 

This atomic type of discharge with its pendant bright arc on 
the molecular parabola corresponding to similar momentum and 
half normal energy is most beautifully illustrated in Fig. 29 of 
Plate III already referred to. It was this photograph which 
suggested the above theory of its explanation. 

Molecular type of discharge. 

The extreme form in which the whole discharge is carried up 
to the cathode by ions of molecular mass is unattainable so far 
in practice and is probably impossible but its share in the illumina- 
tion of the screen can be deduced by eliminating the superimposed 
atomic type and is indicated in Fig. 2. 

The principal feature is a short and very bright spot of light 6, 
on the molecular parabola at the point corresponding in energy 
to a fall through the full potential of the discharge. It will be 
shown that all the ions causing this are probably generated in the 
negative glow. Besides this there are two symmetrical and equally 
bright positive and negative satellite patches a, and a, on the 
atomic parabola but of half the normal energy. The proposed 
explanation of these is somewhat similar to that considered by 
Sir J. J. Thomson (l.c., p. 94) and is as follows. The collision with 
and capture of a single negative electron by a positively charged 
molecule will not necessarily merely neutralise it and cause it to 

VOL. XIX. PART VI. 22 
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hit the central spot O but may result in it splitting into two atoms 
one with a positive one with a negative charge. The energy of 
impact may be itself capable of causing this, if not some other 
cause, e.g. radiation, may effect the dissociation. In any case it 
would give exactly the observed result, z.e. two bright patches 
lying symmetrically on the extension of the line joing the 
primary spot to the origin at twice its distance from the latter, 
corresponding to half the mass but the same velocity. 

ag q 

6, 

Fig. 2. Molecular Type. 

The general appearance on the screen when both types of 
discharge are present is indicated in Fie. 3. 

Effect of different forms of cathode. 

Experiments were performed with plane, concave and convex 
cathodes. Convex cathodes are the least efficient in producing 
bright effects but give the molecular type with the least atomic 
blurring. Concave ones are most efficient and throw the maximum 
energy into the atomic type which can be obtained practically 
pure with them under a moderate range of conditions. The original 
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shape of cathode (l.c., p. 20) may be said in a sense to combine 
both forms and was designed to give long and bright parabolas 
at the same time allowing the discharge to pass easily at very low 
pressures. The present results however lead one to recommend a 
concave cathode similar to those used in X-ray focus tubes but 
pushed further forward into the neck of the bulb, for though this 
form requires a rather higher pressure this objection is more than 
counterbalanced by the great increase in efficiency. Plane cathodes, 
as was expected, give effects midway between the other forms. 

Fig. 3. General Type. 

Under very exact conditions of pressure, etc. it is possible to 
obtain the pure atomic type with plane cathodes but no conditions 
have yet been found under which convex ones will give it. 

These results seem to indicate that atomic ions are formed by 
the passage of the stream of cathode rays through the Crookes 
dark space molecular ones tending rather to be formed in the 
negative glow. The axial intensity of the cathode stream is 
enormously increased by the concavity of the cathode while that 
of the negative glow does not appear to be affected to anything 
like the same extent. 

99__9 
a 
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Behaviour during change of pressure. 

The pressure in a freshly set up bulb always increases with 
running owing to the liberation of gas by heat etc. so that the 
changes due to gradual alteration of pressure can be observed 
most conveniently by exhausting highly, starting the coil and 
watching the events on the screen. Thus using a concave cathode 
of about 8 cms. radius of curvature set just in the neck of the 
discharge bulb the following sequence of events was observed. 
At very low pressures with a potential of about 50,000 volts the 
parabolas are very faint but correspond to the general type, the 
primary streak a, and spot 6, being much brighter than their 
satellites (doubtless due to few collisions). As the pressure rises 
the discharge becomes curiously unsteady the spots on the screen 
become much fainter and change with flickering into the pure 
atomic type (Fig. 1), b, having practically disappeared. This form 
of discharge which is evidently abnormal lasts for a certain time 
depending on the rate of increase of pressure. Then with absolute 
suddenness 0, flashes out intensely bright and with it appear at 
the same instant its satellites a, and a,. At the same time the 
current through the bulb increases, the discharge settles down and 
the negative glow makes its appearance. As far as it was possible 
to judge the satellites a, and a, are of equal brightness and generally 
much brighter than the negative atomic satellite a,. 

The appearance of the discharge bulb while the pure atomic 
type is shown on the screen is difficult to describe but quite 
characteristic and different from the general. Near its critical 
upper limit of pressure it was found possible to effect the change 
to the general type by bringing a magnet near the cathode and 
so disturbing the discharge. On removing the magnet the discharge 
at once reverted to the atomic type. This form of controlled 
change from the one to the other gave an excellent opportunity 
of testing the invariable association between the primary spots 
and their appropriate satellites. 

Possible cause of disappearance of primary molecular rays. 

It is unlikely that change of pressure is itself the determining 
factor in the disappearance of the molecular type. This seems to 
be due to some disturbance in the discharge by the cathode stream 
(not caused by the diffuse one given by a convex cathode) which 
makes the formation of the negative glow impossible. 

The facts so far may be brought into line fairly well by the 
somewhat speculative assumption that molecular rays can only 
originate freely in parts of the discharge where the electric force 
is very small, e.g. the negative glow, ionisation by more violent 
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means in strong fields tending to cause simultaneous disruption 
of the molecule into its atomic constituents. This agrees with the 
observed fact that in general molecular arcs, or at least true 
primary molecular ares, are shorter than atomic ones. It would 
also mean that a very short arc infers as origin a molecule capable 
of disruption. If this is so it offers interesting confirmatory 
evidence, if such were needed, that the substance X, is molecular 
as this body often makes its appearance on the photographic plate 
as a short arc. 

Effects with heavier elements. 

The inelastic collision of a hydrogen atomic positive ray with 
the atom of a heavy element would clearly result in the formation 
of a molecular ray of such low velocity that it might not be 
detected by a screen or plate and would in any case be deflected 
completely off the ordinary photograph. 

The visual evidence on the screen although faint leaves little 
doubt that the formation of satellite arcs also takes place by 
atoms of heavier elements colliding to form molecules. There is 
also some evidence of this in many of the photographs, thus in 
Fig. 26 (/.c., p. 46) taken with oxygen all four maxima are suggested. 
In Fig. 17 (p. 26) the satellite on the molecular parabola caused 
by the,capture of oxygen atoms by carbon atomic rays (or vice 
versa, but this is less likely) is unmistakable, in fact attention is 
called in the text to this remarkable increase in brightness. 

Should the above theory of collision with capture prove 
correct the formation of compound molecules by this means opens 
an extremely interesting field of chemical research. Another 
important question raised is in what form the energy of the 
collision is radiated off by the rapidly rotating doublet formed. 

In conclusion the author wishes to express his indebtedness to 
the Government Grant Committee for defraying the cost of some 
of the apparatus used in these experiments. 
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Gravitation and Light. By Str Joserx Larmor, St John’s 
College, Lucasian Professor. 

[Read 26 January 1920.] 

1. Newton’s provisional thoughts on the deep questions of 
physical science were printed at the end of the second edition 
of the Opticks in 1717. As he explains in the Preface “...at the 
end of the Third Book I have added some questions. And to shew 
that I do not take Gravity for an Essential Property of Bodies, 
I have added one Question concerning its Cause, chusing rather to 
preface it by way of a Question, because I am not yet satisfied 
about it for want of Experiments.” In the first and next following 
Queries he gives formal expression to the idea that “ Bodies Act 
upon Light ‘at a distance and by their action bend its Rays....” 

What was thus propounded in general terms as an explanation 
of the diffraction of light in passing close to the edge of an obstacle, 
assumed a more definite but different form in the hands of the 
physically-minded John Michell*; in Phil. Trans. 1767 he insisted 
that the Newtonian corpuscles of ight must be subject to gravita- 
tion like other bodies, therefore that the velocities of the corpuscles 
shot out from one a the more massive stars would be sensibly 
diminished by the backward pull of its gravitation, and thus that 
they would be deviated more than usual by a glass prism, a supposi- 
tion which he proposed to test by experiment. He also speculated 
that the scintillation of the stars might be due to the small number 
of corpuscles which reach the eye from a star, amounting perhaps 
to only a few per second. 

The forces, of molecular range, that would have to be con- 
cerned, on the lines of Newton’s Query, in the diffraction of heht 
would be of course enormously more intense than gravitation: but 
the other Newton-Michell theory of the gravitation of hght rays 
is paralleled in both its aspects with curious closeness in certain 
modern physical speculations. 

It will be observed that this notion of light being subject to 
gravitation makes its velocity exceed the limiting velocity c, which 
on electrodynamic theory could not be attained by any material 
body. But there need not be a discrepancy there: for the lmit 
arises because a material body is supposed to acquire more and 
more inertia, belonging to energy of its motion, without limit as 
its velocity increases, whereas the quantum of energy in the hypo- 
thetical light-bundle presumably would remain sensibly the same— 
at any rate we would be free to make hypotheses in absence of 
any knowledge. 

* See Memoir of John Michell (of Queens’ College), by Sir A. Geikie, Cambridge 
Press, 1918. 
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Forty years ago there was a phase of strong remonstrance in 
this country against the familiar uncritical use of the phrase 
centrifugal force. The implication was that the term force should 
be restricted to intrinsic unchanging forces of nature, which are 
determined physically by the mutual configuration of the system 
of bodies between which they act: these forces are then held 
responsibie for the accelerative effects specified by the Newtonian 
second law of motion. In this sense, centrifugal force so-called 
would not be a force of nature, but would be the reaction postulated 
in the scheme of the Newtonian third law to balance an imposed 
centripetal acceleration. 

This formative principle, the Newtonian third law, of balance 
everywhere between applied forces and reactions against palpable 
changes of motion, as amplified in the Scholium annexed to it— 
which so widely reached forward towards modern theory as 
Thomson and Tait especially have remarked—would then assert 
that the forces of nature that act on the framework of a material 
body and the forces of reaction that are thereby induced in it, 
form together a system of forces that preserve statical equilibrium 
wm relation to the constraints of that framework, as tested by the 
principle, also Newtonian in its origin, of virtual work. This 
became in time the Principle of d’Alembert (1742), who did not 
invent it, but exhibited its power and developed its method by 
applying it to a great dynamical problem of unrestricted form, 
that of the precession of the equinoxes. As a preliminary to its 
solution he had to develop in general terms the equations of static 
equilibrium of a system of forces considered as applied to a single 
rigid body such as the Earth, that is, to create a formal science of 
Statics: and it may be said to be the mode of development rather 
than the principle itself that constitutes his essential contribution 
to general dynamical theory. Cf. the historical introductions in 
Lagrange’s Mécanique Analytique. 

2. The principle of the relativity of force has recently become 
prominent again, and pushes along further on the same lines; it 
now even puts the question—Are there intrinsic forces of nature 
at all? May not all force, including universal gravitation, be ex- 
pressible as reaction against acceleration of motion, just after the 
manner of the obviously unreal centrifugal? On such a view, 
wherever there is a force of gravitation in evidence, its presence 
must be replaced by an acceleration common to all of the material 
bodies at each place and relative to our frame of measurement, 
of amount equal and opposite to the intensity of the force. That 
would be the end of the matter, if any frame of reference could 
be found to satisfy this condition. There being then no forces left, 
the Principle of Least Action would make orbits simply the shortest 
paths in the frame: Newtonian uniform space and time certainly 
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could not permit this transformation: nor could the fourfold 
uniform continuum of interlaced space and time of the earlier 
relativity theory be adapted to it. Will such a fourfold, deformed 
into a non-uniform and therefore non-flat heterogeneous space, 
permit it? This is the problem raised by Hinstein’s idea of the 
relativity of gravitational force. Perhaps it goes even further, and 
asks whether if this will not do, there can be some other corpus 
of abstract differential relations invented, that will transcend 
the notion of spacial continuity altogether but will in compen- 
sation for that formidable complexity succeed in effecting this 
object. 

In any case we may recognise that this merging of all the forces 
of nature into spacial relations satisfies one requirement which is 
not quite the claim that is explicitly made for it. The question 
is immediately insistent; why should intrinsic forces be measurable 
with Newton in terms of second gradients of type d?s/dt? and not 
by a more complex formula involving others as well? The answer 
supplied by the theory would be that the idea of the curvature of - 
a deranged space is expressed by a measure which does not involve 
higher gradients. 

It is interesting to reflect nowadays that in referring to the 
doctrines of action at a distance in the preface to the Electricity 
and Magnetism in 1873 Maxwell classifies them as “the method 
which I have called the German one,” and that notwithstanding 
Helmholtz’s very powerful critical work on Maxwell’s theory, be- 
ginning in 1870, that description remained substantially true until 
after Maxwell’s death in 1879. Though he lived for nine years 
longer he seems to have taken no part in these discussions with 
exception of a reference to Helmholtz in connexion with Weber’s 
theory (Treatise, § 254), but worked chiefly at the development of 
the theory of stresses in gases regarded as molecular media, and 
so in some respects parallel to his theory of an electric medium. 
He seems to have been content to leave his electric scheme to 
germinate and expand in the fulness of time. In connexion with 
the recent efforts to transcend both action at a distance and an 
aethereal medium, his explanations, in an Appendix to the Memoir 
on the determination of the ratio of the electric units, Phil. Trans. 
1868 and the critical chapter on ‘Theories of Action at a Distance’ 
in the Treatise, §§ 846—866, are far from being obsolete. 

This hypothesis as to gravitation, which asserts that it is 
essentially of the same nature as the apparent increase of weight 
which is experienced by an observer going up in a lift with ac- 
celerated motion, naturally involves many consequences, and 
raises questions regarding the relation of gravitation to physical 
agencies such as light, the answer to which may be ambiguous until 
yet further postulates intervene. : 
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Thus in the preliminary stage it occurred to Hinstein that the 
period of a train of light waves would be no longer uniform 
throughout its course. Let us consider a mass of hydrogen gas 
at P, say in the Sun, sending light-waves to an observer Q, both 
being situated in a region in which there is a field of gravitation 
of intensity represented by g, directed from @ to P. In terms of 
the postulate of the relativity of that force this statement would 
mean that the spacial frame to which the underlying events are 
referred is rushing as a whole from P toward @ with acceleration g. 
Let v be the velocity of the frame at the instant when a specified 
light-wave passes any intermediate point @Q’: by the time this 
wave has reached @ the velocity of the frame as a whole has risen 
to v +-9.Q’Q/c approximately, where g is mean intensity along 
the range from Q’ to Q. Thus to the accelerated observers the 
waves emitted become longer with distance traversed, in the ratio 
1+ 9.Q’Q/c, owing to this velocity of recession from the source: 
that is, the apparent wave-length undergoes change so that 
during the progress from Q’ to Q it is altered in the ratio 1 — 6V/c?, 
where 8V is the rise of potential (or fall of gravitational potential 
energy) along that path. 

The period of the light will thus appear to be increased to 
different observers on the line PQ, all of them travelling along 
with the same acceleration g, in different degrees according to their 
positions. This is what will happen if the observers and their space 
and optical instruments form a world of their own rushing past, 
or through, an underlying actual world, with this acceleration g, 
instead of the actual world rushing past them with the opposite 
acceleration produced by a force of gravitation. For these alter- 
natives are not now the same: the finite velocity of propagation c 
is constant with respect to the actual underlying world, not the 
observers’ moving space. If the radiating hydrogen belongs to the 
actual underlying world, and the spectroscopes of the observers 
belong to their own spacial scheme that is imposed on that world, 
this description is complete: the period of each wave as apparent 
to observers along its path will increase as the wave travels away 
to places of lower gravitational potential. The spectral lines of 
solar hydrogen as observed on the earth ought to be displaced 
towards the red, by the amount corresponding to the total fall 
of potential between Sun and Earth. But the postulate of two 
worlds seems to be here necessarily involved. Which of them would 
a mass of radiating hydrogen situated half-way to the Sun belong 
to?* The larger Doppler-Fizeau effect due to the motion of the 
source itself relative to the observers’ frame has not here been 

* All the bodies in the space, being subject to the same gravitation, would 
move along with it: the waves of light alone would seem to be regarded as inde- 
pendent: yet they have energy and so inertia. 
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mentioned: that is included satisfactorily in the earlier uniform 
relativity formulation. 

This relation of light to gravitation is thus one of the questions 
raised by the postulate of the relativity of that universal force. 
Einstein answered in 1911* in one way, that the spectrum of solar 
hydrogen, when compared with terrestrial hydrogen which is con- 
nected with the observer, should be displaced slightly towards the 
red: but it is a question whether the consistent development of 
that train of ideas would not rather require that it be not displaced 
at all. 

In connexion with his later formal theory of gravitation the 
same effect is described as due to varying local scales of time, 
which seem to be carried without change, by the pulsations of the 
rays, from the place of their origin to all the other parts of the 
universe: whereas in the above the apparent period + changes as 
the ray advances. The observers along the ray are supposed to 
be in communication with one another. In so far as their space 
moves forward as a whole it is not stretched or shrunk: in that 
case it can be only their scales of apparent duration of time that 
are lengthened locally by a factor, the inverse of 1 — V/c?. This 
involves that the scale of apparent velocity in the unchanged space 
will be altered in the direct ratio: and rays of light in a field of 
varying potential, if they were paths of stationary time, might be 
thought to be deflected. But fundamentally the path of the ray 
is determined by the number of wave-lengths in its course being 
made stationary, as compared with neighbouring courses: and this 
is, in the present case, not the same as minimum time of transit, 
for apparent time has lost its uniform scale while space has not. 

Thus the path of a ray would be determined by the condition 
that X%5s/A summed along it shall be stationary: but if there is 
correspondence between the two systems of reference which 
changes all lengths around each point in the same ratio then 8s/A 
will be everywhere the same in both systems. The circumstances 
of the path would thus not be altered by this change of view 
regarding gravitation, and there ought to be no special deviation 
of the rays involved in it. 

But if g is not uniform along the path 7 of the ray, is a 
shrinkage of the accelerated apparent space involved? The answer 

* His exposition which has here been paraphrased is in Ann. der Physik, 35, 
1911, § 3, p. 904. 

The argument of this and the next two parauraphs i is based on the implication 
that in a theory of transmission by contact, radiation like other things, the so- 
called clocks included, must conform to local measure: the alternative, described 
at the end of the paper,-that radiation is‘extraneous in so far as it imposes an 
absolute scale of space-time of its own on the whole cosmos, was here taken to be 
excluded in advance from this type of theory. 

+ Measured on a fundamental scale. 
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is given that, passing to the general problem, the demands of the 
universal gravitational correspondence (to be evolved immediately, 
infra) require that the apparent space of the observers must be 
constructed so that dr? — c’*dt? where c’ is a function of 7 shall be 
invariant. This requires slight warping of the fourfold space, so 
that the section in the plane r, ¢ is curved away from its tangent 
plane. But is the warped element of extension 657’.c’d¢ thereby 
altered only to the second order from its corresponding previous 
normal value 6r.cdé? If that be so, the scale of ¢ must be altered 
in the inverse ratio to the scale of velocity c’ or (what is the same 
in another aspect) of time ¢: and in fact it is partly this secondary 
change of scale of r that modifies the astronomical gravitation, as 
will presently appear. 

The answer to this question might at first be imagined to be as 
follows: any change in the element of surface may be made in two 
stages, a stretching on the original plane and a displacement along 
the direction normal to that tangent plane: it is only the former 
that can produce a first-order effect: but this is only an apparent 
change, a mere alteration of coordinates, because in it the curvature 
of the plane is conserved, so it cannot affect the concatenation of 
relations or events which alone counts: the latter does affect them, 
e.g. disturb the law of gravitation, but only to the second order. 

But as will appear presently this relation of conservation of 
extent is between coordinate systems that most closely correspond, 
so is a real imposed condition which cannot be adjusted by 
change to another set in the flat. It is the expression of, or at any 
rate is involved in, a restriction that in the containing fivefold 
the distance between corresponding points on the two systems is 
everywhere small, so that approximate methods can apply con- 
sistently throughout, of which otherwise, in making continuations 
in an uncharted extension, there would be no guarantee. 

3. Now let us survey this problem of transcending gravitation 
from the other side, on which it originated. With Minkowski the 
very incomplete relativity ot electrodynamics, referring only to 
uniform translatory convection, crystallised into the complete pro- 
position that events occur in a uniform fourfold of mixed space 
and time, determined by the constitutive spacial equation 

do? == dx? + dy? + dz? — (cdt)?. 

Here c has nothing to do with the velocity of radiation: it is simply 
the dimensional factor, prescribing a scale of measurement, that 
is needed to make time homogeneous with length and may be 
taken as unity. Gravitation remains outside this electrodynamic 
scheme, being formulated in the different Newtonian reckonings of 
space and time. Can it be forced in, either exactly or approxi- 
mately? 
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The complete circumstances of the orbits in a field of force of 
potential energy —V per unit mass (in a gravitational field V is 
Xdm/r) are condensed into the single variational Least Action 
equation of Lagrange-Hamilton, 

ffm CY + C2) = GY} wre 
with integration between limits of time fixed and unvaried. This 
suggests comparison with the equation for the shortest or most 
direct path in a modified fourfold involving Euclidean space com- 
bined with a measure of time varying from place to place: for 
that equation is 

dfdo =O where 607 = 627 + dy? + 62% — c60, 

in which c’ is a function of 2, y, z. Let us write 

6% = (il i), 

where Kis very small on account of the greatness of c. The 
equation is now 

af{— ea + my + (A) + CY + (2) \ Pe, 
or approximately up to the fourth order 

cao anes 1G) + CO Gia 
The time-limits being unvaried the first term — c? can be omitted: 
thus this variational equation of most direct path coincides with 
the previous orbital equation if 

aol DIK = - VP. 

Thus the forces are absorbed into a varying scale of time; and the 
motion being now free under no force, the orbit is, as was antici- 
pated, a geodesic or straightest path. The orbits have become 
however straightest paths, not in their original Newtonian separ- 
ated space and time, but in the uniform space-time fourfold of 
relativity as slightly deranged by the not quite constant scale of 
time. 

Thus the orbits in any field of attraction have actually been 
fitted into the mixed space-time frame of electrodynamic relativity, 
at the expense of doing slight violence to that frame, by making 
the measure of time vary from place to place while the positional 
specification remains uniform. 

But this transformation does more than is needed. It ought 
somehow to be restricted to the one universal force of nature, that 
of gravitation with its inverse-square law. It is here that the 
special feature of the Einstein theory seems to come in. For 
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velocities beyond actual astronomical experience, not small com- 
pared with that of light, mass comes to depend on speed; thus it 
is not any longer available as a definite dynamical constant. On 
the earlier uniform relativity it emerged however definitely in 
another way as a feature of every permanent collocation of energy 
and proportional to its amount £, equal in fact to H/c?. This 
follows immediately if Least Action is fundamental. Thus it is 
grouped energy that possesses located momentum: and it is this 
energy that has to gravitate, mass confined to matter alone having 
proved inadequate to a Least Action formulation in the mixed 
space-time of universal limited relativity. Dynamical principles 
had therefore to take the form of a theory of conservation of energy 
and of abstract momentum as they travel through a medium, at 
the same time receiving additions by the operation of an internal 
stress to which the medium is to be subject. In other words, 
general dynamics cannot be more detailed than a mere description 
of the migration of energy and of momentum in a medium under 
the influence of some internal system of stress adjusted to fit the 
equations as simply as possible. This stress is what has to stand 
for or represent the agencies of nature. The theory is borrowed 
and generalised from the Maxwellian theory of stress in the aether, 
which was an isolated, apparently rather accidental, feature that 
did not fit well into the substance of Maxwell’s scheme, because in 
fact 1t could not be connected with a strain expressive of its 
origin. Now however, inertia of bodies having failed as the standard 
measure of force, energy and momentum, and a postulated ad- 
justing stress entirely at our choice, are promoted to occupy the 
vacant place. Only it is not called a stress: the idea of a physical 
medium is avoided, so it is named an algebraic tensor. There is 
no law of elasticity involved, or relation of stress to strain, such 
as makes elastic problems determinate. Thus the scheme may 
have accidental features, is perhaps far from being unique. Another 
parallel to it is Maxwell’s theory of stresses in a gas due to varying 
temperature: but that continuous theory could never have been 
constructed in definite form without the foundation of the be- 
haviour of the individual molecules. 

When however the fourfold frame is very nearly flat, the rela- 
tions of energy-momentum-stress appear to fall in with the law of 
gravitation, with energy as the source of its potential instead of 
matter. 

When the deranged spacial frame nowhere differs much from 
the flat, it may be expected that the extent of its fourfold element 
will be altered from the value for coordinates of the corresponding 
type on the flat only to the second order, for the same kind of 
reason as applies in comparing a slightly deranged plane sheet with 
the original plane. In fact, if the displacement 1 is everywhere small, 
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this extent taken over a small region would have a stationary 
value for the flat, changing in the same direction on both sides 
of it. Cf. supra, p. 329. Thus for a spherically symmetrical field 
the constitution of the fourfold must be determined in polar 
coordinates by the equation 

607 = (c/c’)? dr? + (760)? + (7 sin 06d)? — c’6t, 

showing that the positional part of the extension is very slightly 
non-uniform and so not quite Euclidean. It appears to be this 
secondary feature, not the energy-momentum-stress tensor con- 
ditions, that modifies gravitation from the Newtonian law. 

The expositions of relativity do not mention an extended 
fourfold, which would be foreign to the cardinal idea that space 
is constructed from physical origins, only in so far as it is needed— 
even though it has to be implied that it is reproduced unerringly 
each time. But the instrument of such construction or continua- 
tion of a metric space is an infinitesimal linear measuring rod 
supposed to have complete free mobility without change of in- 
trinsic length: and it would seem to be a tenable view that such 
a mobile apparatus must determine an underlying flat space of 
higher dimensions* in which the physical system may be supposed 
imbedded. 

It is to be noted here that a surface defined intrinsically in the 
Gaussian manner by the distance relation on it 

6s = f dp + 2gdpdq + hdq?, 

remains the same surface when the coordinate quantities p, q are 
changed to others p’, q’ which are any assigned functions of them 
both, so that 

6s? = f’dp'* + 2q'dp'dq’ + h’'dq”, 

provided 6s is measured by the same infinitesimal unchanging 
measuring rod extraneous to the surface in both cases. These two 
equations represent the same surface, only the generalised co- 
ordinates of the same point on it are changed from (p, q) to (p’, q’). 
The intrinsic curvatures are the same from whichever form they 
be calculated: if one form represents a flat, so does the other. On 
this definition by an intrinsic differential relation surfaces are 
indistinguishable, if one can be bent to fit the other without 
stretching. So in the Riemann theory of spaces of more than two 
dimensions it is the functional forms of the coefficients in the 
quadratic function of differentials and the mobile absolute mea- 
suring rod that determine the nature of the space; any transforma- 
tion of coordinates changes the coefficients (or potentials in the 
gravitational formulation) but so that the space remains un- 

* For a radial field it need be of only one more dimension. 
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changed, being only referred as regards the same points to the 
other generalised coordinates. But the apparent extent dpdq does 
alter when the coordinates are changed, and it would be a limita- 
tion to keep it constant. See Appendix infra. 

The feature that remains unfathomed as yet is the fact that 
the velocity of transfer of energy of radiation in undisturbed regions 
of space is equal to the merely dimensional constant that renders 
time comparable with space on the fourfold frame of reference: it 
at any rate suggests a dynamical origin for that mixture of the 
effective relations of time with those of space *. 

The locus in the fourfold in which o never changes and so 8c 
vanishes has some claim to be called the ‘absolute,’ in a sense 
parallel to the ‘absolute’ of Cayleyan geometry which for Euclidean 
space is represented by the equation x + y? + 22 =0. Everywhere 
on this locus 6s = c’éd¢; thus velocity of displacement i is everywhere 
c’, and the rays in it are the paths of shortest time with this 
velocity. It separates the disparate regions in which do measures 
real distance when time is unvaried and in which cé6o measures real 
time when position is ana 

4. It would appear (as infra, p. 335) that if we are prepared to 
replace a field of potential energy of gravitation or any other type of 
universal force by a field of varying time-scale without change of the 
uniform scale of space, on the lines sketched above, this formal 
change ought not sensibly to affect radiation either as regards its 
path « or its period. To each element of extent there would be a cor- 
responding element, and all events and measures in one pass over to 
the other according to rule. 

But we now pass from kinematic discussion of frames of refer- 
ence to physical considerations. If we are to assert, in agreement 
with the doctrine of relativity plus Least Action, that inertia is a 
property of organised energy and proportional to it, therefore not 
solely of matter, and if we are to admit with Einstein, in the same 
and other connexions, that light is made up of small discrete 
bundles or quanta of energy, it would appear to follow that each 
bundle is subject to gravitation. Therefore if a bundle comes on 
from infinite distance with velocity c, when it has reached a 
place of potential V near the Sun its velocity c’ must be given by 

7 = 2c 

in other words, is increased in the ratio 1 + V/c?. It will swing 

round the Sun in a concave hyperbolic orbit, and as the result, 
the direction of its motion will suffer deflection away from the Sun 
by half the amount that has been astronomically observed. 

This reasoning would not be estopped by the principle that c is 
the upper limit of possible material velocities: for that is because 

* See final paragraphs, 
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a moving body acquires energy and therefore inertia without limit 
as its speed approaches c, whereas the energy of a light quantum 
is not supposed so to increase. 

This is all on the older notions: the velocity c is far too great 
for the new approximate gravitation analysis to be applicable. 
But the idea of wavefronts and phases must also be introduced 
somehow. If we imagine a row of these corpuscles of energy coming 
on abreast, the more distant ones would fall behind in swinging 
round the Sun and their common front would become oblique to 
their direction of motion, the exactly transverse directions being 
now the loci of equal Action not of equal time. If we superposed 
the Huygenian principle of propagation normal to the front, the 
orbital deflection would thereby be just cancelled by the swinging 
back of the front which would retain its direction: and there would 
be no deflection of direction of propagation. But such ideas are 
plainly incoherent. 

The earlier development of Einstein sketched above* was 
driven on other grounds to conclude that hght must gain energy 
in a field of gravitation, but the gain was named potential energy. 
In the finally developed theory there seems to be no longer energy 
of motion or other types: energy becomes a single analytic scalar 
in what is left of the field of interplay of momentum, energy and 
stress. 

These earlier considerations have doubtless crystallized into 
the formal theory of which also the result has been illustrated 
above, in a way which transforms the variational equation of free 
orbits in ordinary space and time into the variational equation of 
straightest lines in a non-uniform space-time fourfold given differen- 
tially. The coordinates are carried over unchanged in values, into 
this fourfold, but their differentials no longer express in it direct 
measurements of length and time; these are now imported in the 
Riemann manner as regards any element of arc or interval of 
time by the value of the absolute element 6c. As compared with 
the underlying absolute time determined by 6c, the element of 
apparent time 6¢ of a gravitational world, which is taken over into 
its expression is variable, proportional to ct, with locality. 

The quantities x, y, z, t which are the measures of space and 
time as apparent in the world of gravitation are now mere co- 
ordinate quantities in the new differentially given world in which 
there are elements of absolute length and time both measured by 
5c. The final expression for dc? with radial symmetry 

2 \2 
607 = a oye ae 45, ae (<) Cot? 

shows that the element of apparent time in the gravitational world 

* Ann. der Physik, 35, 1911, § 2. p. 902. 
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is the unchanging element of absolute time divided by c’/c, or that 
the scale of apparent time is variable with locality in the ratio ¢/c’ : 
also that the scale of apparent radial length is variable in the 
‘ratio c’/c: and therefore the scale of radial velocity is variable as 
their quotient c?/c’?. How then with respect to the velocity of 
rays of light whose absolute value is the same as the dimensional 
constant c? Referred to these variable scales its apparent value 
along any element of arc ought to be changed at the same rate 
as any other velocity along that element of arc would be changed, 
if rays are not to remain outside the correspondence between 
dx, dy, dz, St representing time-space in the apparent gravitational 
world and the same quantities, now elements of mere coordinates in 
a differentially given world in a curved space-time which has 
absorbed gravitation. This maintenance of correspondence is 
secured if we determine the ray-velocity along any element of arc 
by making 60= 0: and the modified theory of radiation for the 
apparent space of gravitation must be such as can accept this 
value of the velocity of propagation*. The correspondence takes 
over the same values of the coordinate differential elements. In 
the apparent gravitational world they represent its space and time, 
in the new world differentially specified, they belong to mere 
coordinates: absolute elements of space and of time are there ex- 
pressed by do, but a relation of scales can be established from the 
formula which expresses do?. 

The transformation which changes orbits into geodesics in the 
differentially given space-time does not turn rays into rays: their 
velocity is too great and moreover their minimum property is 

_ relative to their locus 6a = 0. But if the ray is supposed to have 
a constant underlying absolute period of pulsation and a constant 
absolute wave-length (and therefore to be a straight line in an 
auxilary uniform fivefold) its apparent period in the gravitational 
world must vary with locality as (c’/c)-1, also its apparent element 
of length inversely as the scale of length pertaining to its direction 
on that locality, and its apparent velocity as before specified. Its 
apparent path in the gravitational world will correspond to the 
true absolute path dfdo/A, = 0,-therefore will be given by 

dfds/A = 0, 

complications being avoided as fortunately ¢ is not involved ex- 
plicitly in these equations. But at the same place the scales of 
apparent ds and apparent A would alter on the same ratio owing 
to the presence of gravitation: therefore its influence is eliminated 
in the quotient, and the path is not affected by the gravitation, 
is the same whatever be its intensity. A ray passing near the Sun 
ought not to be deflected on this view: an observed deflection, 

* On this and the following paragraphs, cf. however the end of the paper. 
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which a priort was well worth looking for, would seem to await 
explanation on other lines. 

Again would there be an observable change of periods of 
spectral lines according as the vibrating source was at the Sun or 
at the Earth? The underlying absolute periods of radiating 
hydrogen molecules would be always and everywhere the same: 
thus the apparent period in the gravitational world would vary 
inversely as the local scale of time, and be longer at the Sun. 
But this is a local apparent period. The waves sent out from the 
solar molecule are observed at the earth: we have seen that their 
length changes as they progress, being inversely as the local scale 
of length, and their speed changes also, so that their period changes 
inversely as the local scale of time. Thus when they have reached 
the Earth their period conforms to the local scale and would agree 
with that of the radiation of a similar terrestrial molecule. In fact 
if complete correspondence is established*, element for element, 
as above, all periods or intervals of time measured at any element 
are changed in the same ratio depending on the locality alone. 
Any other conclusion would make the pulsating rays into signals 
establishing absolute time throughout the apparent universe, 
which could hardly be a result of a theory of relativity. 

The condition do = 0 prescribes a definite ray-velocity for each 
element of arc, the same forwards as backwards, only when do? 
involves 82 but no products of d¢ with other differentials: in 
other cases it gives two velocities, not equal and opposite, and 
this spacial scheme of rays seems to fail. If rays are to be pro- 
perties of the space a very severe restriction is thus imposed on 
the form of 602, but one which seems to be satisfied for the slight 
modifications that would be involved in the actual gravitation of 
experience. 

In the modifications of the expression for 60% which absorb 
gravitation the coefficients do not involve the time explicitly: 
therefore the ray-paths are fixed in the space, and it almost looks 
as if they were guides imposed by the nature of the space alone, 
as thus modified, for the alternating energies of radiation to run 
along. 

Any inference that because a ray is fixed in space, aS many 
waves must run in at one end as run out at another, would be at 
variance with the very notion of relativity, by providing a scale 
of absolute time throughout the universe. Such an argument 
seems to amount in more general form essentially to this: when 
the expression for 60? does not contain ¢ explicitly it will make no 

* As has been established for the more general case in a beautiful analysis by 
Prof. Th. de Donder, of Brussels, Comptes Rendus, July 6, 1914, Archives du 
Musée Teyler, Haarlem, vol. iii, 1917, pp. 80-180. [It is merely continuity with 
non-gravitational fields, and not correspondence, that is established. ] 
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difference to the cosmos if ¢ is everywhere increased by the same 
constant: therefore the scale of time must be everywhere the same 
—which excludes any possibility of local scales of time. A change 
of origin of measurement for time is not the same as progress of 
events in time, unless the scale of time is everywhere the same. 

The matter may be put from a different angle as follows. To 
obtain the time of transit of a ray from P to Q it is not possible 
to add elements of heterogeneous local times such as 6¢*. What 
can be done is to find the true underlying time of transit. If this 
homogeneous true time is delayed at the start, at one end of the 
path at P, it is delayed by an equal amount at arrival at the other 
end, as the equations of transit do not involve this time explicitly: 
hence apparent times at the two ends are delayed not by equal 
amounts, but by amounts inversely as their local scales, so that 
a ray cannot (as has been implied) transmit apparent time along 
its path. 

The alternative development is, as above, that do? being the 
underlying unchanging standard there are local scales of time, and 
local scales of length which may involve direction, and therefore 
also of velocity (including that of the rays) which is ‘their quotient. 
The path of a ray from point to point is determined by making 
the number of wave-lengths from the one to the other minimum, 
that is by dfds/A = 0: but ds and A are both altered to the same 
scale; thus there is no alteration due to gravitation in the varia- 
tional equation determining the ray-path, so that it would suffer 
no deflection. The essential feature in the argument is that, 
whether rays may be regarded as the limiting case of free orbits 
or not, their specification has been postulated so that the ray- 
velocities correspond in the same way as all other velocities in 
the two frames. 

APPENDIX.—On Space and Time. 

Let us try for a closer realization of these abstract positions. 
The Gauss-Riemann theory for an ordinary curved surface will be 
wide enough to serve as an illustration. The theory involves 
coordinates p, q: they must represent something. The very least 
we can do for them is to regard the surface as twofold extension 
dotted over with points, so that the coordinates express their 
order of arrangement according to some plan of counting them 
with respect to this extension in which they lie. There is no metric 
idea at all in this numeration, and nothing to distinguish one 
surface from another. Now bring i in an infinitesimal unchanging 

* Yet it is just such elements of quasi-time dx, that are added together, infra 
p. 343. It is the so-called shifting clock-time and absolute time running parallel 
that are the source of all this confusion. 
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measuring rod, which can make play in each element of extension 
represented by dp6q and also be transferred from place to place: 
and we can thereby impart or rather superpose metric quality on 
the twofold which hitherto was purely positional or rather tactical. 
The simplest plan is to follow Euclid, on the basis of the Pytha- 
gorean theorem, and expressing absolute length according to 
measuring rod by a symbol ds, to impose a scale-relation of form 

Ss? = Sp? + 872. 
But this metric cannot be applied consistently over a curved 
surface, unless it 1s of the very special type that can be rolled out 
flat: for other surfaces it is necessary to have the more general 
type of relation 

6s? = fdp? + 2gdpdq + hédq?, 

in which f, g, / are functions of the coordinates p, q. 
This specification of an imported metric thus determines the 

surface: starting from a given small region of it, the form of the 
surface in an outer threefold space can be gradually evolved by 
prolongation so as to fit in with consistent application of this 
metric. It is this idea of prolongation of a non-uniform manifold, 
equivalent to its geometrical continuation within a flat one of 
higher dimensions, that was Riemann’s contribution to the ideas 
of geometry. But the manifold itself is supposed to be given only 
tactically or descriptively; and it is the metric that is imposed on 
it that, by its demand for consistency in measurements, deter- 
mines for it a form, as located in a higher flat manifold. This form 
is expressed in detail analytically by the ‘curvature’ at each place, 
as specified by a set of functions (one in the case of a surface) of 
the successive gradients of the set f, g, h, .... If we keep the system 
self-contained by avoiding the immersion of it in a uniform 
auxiliary manifold of higher dimensions, our resource is to deter- 
mine the curvature as the simplest set of functions that are invariant 
for local changes of coordinates. But, in order of evolution at any 
rate, this invariance may be held to be only a derived idea. 

In any case the nature of the non-uniform manifold, as thus 
determined by a metric imposed on formless space, has nothing 
to do essentially with the coordinates p, q, ... to which it may 
happen to be referred: it is settled by the algebraic form of the 
functions f, g, h, ... expressed in terms of p, q, ..., or In geometric 
terms by the ‘curvature’ as so expressed. 

As a consequence, if we transform a surface from internal or 
intrinsic coordinates p, g, to others p’, gq’, which are assigned 
functions of the former, so that we obtain 

bs? = f'dp'" + 2q'dp'dq’ + h’dq’?, 

and construct the surface implied in this new equation by the 
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process of continuation, it will prove to be just the same surface 
as before. Whether it is expressed in terms of p’, q’ or of p, q is 
intrinsically of no consequence: the coordinates are of no account, 
it is only the functional forms of f, g, 4 that are essential. 

This last statement, developed in terms of the criterion of 
invariance in order to avoid a representation by immersion in a 
uniform geometrical manifold of dimensions higher than the given 
four of space and time, appears to cover the general relativity 
of Einstein. The/,g,h,... can be named the potentials which deter- 
mine the space. In the special relativity, before gravitation was 
absorbed into the metric of extension, all spaces were flat, so 
Ff, 9,h, ... were constants; which is all that is left, for that particular 
case, of these relations of invariance. 

In this flat fourfold, relativity implied merely that a physical 
system is determined by its own internal relations, so that the 
position that may be assigned to it in the fourfold is of no account, 
any more than is the position of a surface or a system of bodies 
in space. In the later general relativity the manifold must be 
supposed given descriptively by coordinates, which represent 
numerical counts arranged to suit the number of dimensions that 
are involved: it only gains internal form when a metric is imposed 
upon it. If the Euclidean metric 

ds? = dp? + dq? +4 ... 

is imposed it becomes a Euclidean space everywhere uniform and 
also flat, in which bodies are mobile without change of form. If 
a metric varying with position is imposed, the expressions in this 
manifold of the metric relations of nature will become complicated, 
and the relations so changed be described as a modified set of laws. 

The original non-metric continuum might be marked for 
instance by gradations of colour: the colour-scheme of Newton as 
developed by Young, Helmholtz, and Maxwell, is the standard 
example of a non-metric threefold extension. 

May we not here have refined down to the unresolvable essence 
of space, as the mere possibility of descriptive continuity of three- 
fold type which is an essential feature in our mental world? Within 
this a priori datum of threefold uncharted pure continuity we may 
construct types of charted spaces almost without limit, by imposing 
metrics of various types. Any particular space is not however 
determined by the system of coordinates of reference p, q, ... but by 
the variable coefficients /, g, h, ... of the imposed metric expressed 
as functions of them. But yet it is only under special conditions 
when it is uniform and flat that finite differences of these co- 
ordinates can be involved, this being part of the expression of the 
mobility of solid bodies in the space. It is in this narrower sense, 
that ‘the system of coordinates is accidental, that relativity has 
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now expelled general metric ideas of position. Would it be entirely 
wrong to assert that local or sectional relativity has been retained 
for nature, so far as this order of ideas extends, by transferring the 
laws of nature into a space-time frame which itself no longer 
possesses that quality? 

The distinction has thus been made between an ultimate idea 
of space as mere threefold continuity, marked but uncharted, and 
the metric that may be imposed on it by which it becomes a frame 
fit for the purposes of description of nature. There is only one 
space: but its practical aspect, whether Euclidean or elliptic or 
merely heterogeneous, depends on the metric that we choose to 
assign to it. The metric would thus appear to pertain more closely 
to the order of nature for which it is to form the most convenient 
frame for description, than to space itself. For space is primarily 
bare threefold continuity; though a set of descriptive coordinates 
Pp, 7, .-. 18 unavoidable as a foundation of thought, any set is as 
valid as any other. For ultimately, the count or census of the points 
or marks that pervade the continuity and render it descriptively 
given to us, is the same count however it be made. May we say 
that the insistent, originally uncritical, notion of relativity reduces 
itself ultimately into this postulate, that as nature is presented to 
us, it is such that in mental operations we need attend only to 
one portion of the spacial continuity at a time? This makes the 
onefold time, or rather mere temporal succession as representable 
by the dc of Minkowski, the fundamental feature*, which however 
diverges spacially into a manifold: according to Hamilton long 
ago, algebra was the science of pure time. 

In the above, space is given by a manifold array of points, of 
which the coordinates p, q,... express one of the varieties of 
numerical census. Is then space-time absolute, or is it continually 
being constructed by physical science as it ranges over the void, 
for its own purposes, just to the extent that it may be required? 
May we say that the formless manifold is the fundamental feature, 
that the array of points and their census do not need to be 
definite in any respect a priori, and that the metric which is 
imposed on it and makes it into a definite working type of space 
is related to the physical world and so is to be regarded as evolved 
in connexion with our organic description or mapping of nature, 
and to be just as permanent? 

What remains of the original notion of relativity after this 
sifting of ideas would then coincide with the principle of Newton, 
Faraday and Maxwell, originated by Descartes, that the operations 
of nature are elaborated in fourfold extension according to a scheme 
purely differential, that is by transmission from element to element 

* The spacial sign here attached to dc? is an accident of the order of exposition. 
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of the cosmos, in no case leaping across intermediate elements as 
action at a distance would imply. The early stage of formulation 
of the confused notion of relativity is the postulate that position 
and change of position are purely relative: the final solution is to 
abolish the idea of immediate finite change of position altogether. 
But that does not imply that a portion of the cosmos can evolve 
itself without constant interference from all the rest. 

To a question as to what is gained by absorbing gravitation in 
space an answer would be that it need make no difference as regards 
gravitation; but if other relations of an assumed space-time fourfold 
(e.g. stress-tensor theory) have to go in also in a simple way, it 
may be convenient or even necessary to assist them by choosing 
a space which requires some alterations of the recognised laws of 
gravitation and, if these suggested discrepancies are verified, that 
may presumably have a claim to be the real type of space. The 
aim is not primarily to reduce gravitation to a quality of space,— 
perhaps is not even relativity, which has evaporated,—but is to get 
it out of Newtonian space and time into the mixed space-time 
fourfold which was strongly suggested by the form of the Max- 
wellian electrodynamic relations of free space, and would make 
that scheme valid for great velocities of convection beyond ex- 
perience, even up to the speed of light. 

An expansion of the Einstein ideas on general relativity has 
been worked out by H. Weyl (Ann. der Physik, 59, 1919) mm which 
a further metric scale of vector character appears to be imposed 
on a non-uniform space-time, which has here been itself ascribed 
to the imposition of a Gauss-Riemann metric on the formless 
spacial threefold that is inherent in the mind. There would seem 
to be no formal obstacles to such piling up of metric upon metric, 
in an unlimited play of thought. 

The physical analysis perhaps not very remote to this new 
elaboration of metric is, as I think Prof. Schouten remarks, a 
theory of an elastic aether in which at each point p, q, ... a vector 
displacement €, y, ... of the element of the medium is supposed, 
involving a strain and an elastic stress determined in terms of 
the strain by assigned laws. Only it is to be remembered that 
time is now in a fourth dimension, in which the historical world- 
process is all spread out once for all; so that the feature of elastic 
wave propagation becomes a static relation. The idea that the 
single fundamental electric vector is represented by a superposed 
metric is thus correlative with the usual dynamical hypothesis 
that electric force is a stress in an aether. It thus affords another 
illustration of this kind of speculation: the interlacing of space 
and time for purposes of electrodynamics having upset the his- 
torical development of dynamical principles on a Newtonian basis 
of separate space and time, order has to be re-constituted by 
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piecing together a cognate analytical scheme on a symmetrical 
fourfold basis which tries to make no difference between them. 

It is not improbable that these remarks merely turn over 
ground that has already been explored by cultivators of hyper- 
seometry. But it may be claimed that the interest of this range 
of ideas extends far beyond the analytical technique, and that their 
naive expression in a form of language outside its conventions may 
prove to be helpful in other regions of speculation. 

The argument above has been based on the supposition that the 
mathematical analysis must establish a complete correspondence, 
element for element, between the activities in the new space-time 
and in the Newtonian space and time. That however is not the case. 
There is a gravitational correspondence into which radiation and 
its rays do not enter. As regards the latter no conclusions could be 
drawn at all, except in the special circumstances in which the 
coordinate x, that stands nearest to time* does not enter explicitly 
into the quadratic expression determining the space. If that is 
postulated the equations of propagation of radiation have their 
solutions periodic as regards x, treated as a quasi-time, therefore 
every beam of radiation carries with it a scale of x, throughout 
its coursey. Moreover, if the spacial quadratic contained 62, in a 
product term, the velocities of the waves of radiation in forward 
and backward directions would not be the same: their half difference 
would thus be the local velocity of the frame of reference in that 
direction. Where dx, does not occur in the first power, the frame of 
reference is thus fixed locally with respect to the waves of light 
and their assumed underlying uniform fourfold extension with 
regard to which they are propagated. 

Thus, under these postulated circumstances of x, not occurring 
explicitly i in 6o%, the mere fact that isotropic vibratory radiation 
exists with its absolute velocity ¢ is sufficient, not merely to de- 
termine absolute measurements both in space and time, at every 
locality in the extension, but also to determine the rate of motional 
change of the coordinates as referred to the uniform space-time of 
the radiation. It is gravitational correspondence, subject to this 
general control of the whole range of space-time by observations 
of light, with its isotropic and uniform qualities, that has led to 
verifiable conclusions. Cf. letter in Nature, Jan. 22, 1920: also 
Monthly Notices R. Astron. Soc. 

* That is the one coordinate the square of whose differential is affected in 6c2 
with a negative sign, which marks it off from the others. 

t Itis the alleged measurement of this abstract coordinate x, by a travelling 
clock, which connotes a physical system, that is a main source of confusion. 
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We have absorbed gravitation into space and time by distorting 
the latter from its essential Newtonian uniformity: but there can 
be no illusion about the matter either way, for the theoretical 
measuring bar of the differential spacial theory is not our only 
instrument; in the practical world rays of light provide the essential 
isotropic measures, and the spectroscope is always available to 
reveal to us what spacial adjustments have been made, in relation 
to the underlying frame with regard to which the propagation of 
light is isotropic and has its standard absolute velocity. Light, 
instead of conforming to local relativity, imposes its own absolute 
space-time *. 

The argument may be directed towards yet another type of 
conclusion, as follows. When change is made from Newtonian 
space and pure time to the uniform space-time fourfold, the 
equation of a straight path is altered from dfds = 0 to dfdo= 0. 
The free orbits in any field of force of potential energy function 
—V can readily be altered so as to preserve continuity with this 
change, as above, that is, so that where V becomes negligible they 
tend to straight lines: they are then given by 

Sf (do? + 2Vdt2)? = 0. 
The interpretation is at hand, to regard them as the analogues of 
straightest paths in a modified space-time, referred to a set of 
coordinates represented now by colourless symbols 2, 7, 73, %q 
and given in terms of them by 

60? = 621? + dx? + dx5? — c? (1 — 2c°2V) da,?. 

As 50? does not here involve x, explicitly, the differential equations 
of propagation of free radiation, as expressed in this space-time 
in terms of these coordinates, have solutions involving the quasi- 
time x, only in the form e'?": therefore the radiation from any 
source, however far it has travelled, retains the same period in 
regard to x, as it had at the start. Around a radiating molecule the 
extension can be taken as practically uniform: therefore the 
interval of absolute time is equal to (1 — c-?V) da. It follows thus 
from the periodicity as regards x, that the periodic time of a ray 
alters as it travels so as to be proportional to 1 — c?V. If the ray 
belongs to a definite molecular period at the Sun, it has changed 
when it reaches the Earth so as to agree no longer with that period 
as reproduced by a local vibrator. 

All this is true only to the first order, but it applies to any law of 
potential, and is irrespective of any special energy-tensor theory. 
The point to be brought out is that if influence of gravitation on 

* Prof. Eddington in a recent article, Quarterly Review, Jan. 1920, seems not to 
disagree with this conclusion: at any rate he contemplates the possibility of an 
aether. 
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spectral periods were definitely disproved, then it would appear 
that any hope of bringing orbits into direct relation with the 
electrodynamic space-time fourfold must be abandoned altogether*, 
on the threshold. This drastic conclusion is perhaps an argument in 
favour of the existence of the effect. 

The other two verifiable effects, the influence on the planetary 
perihelia and the deviation of light passing near the Sun, arise in 
part from first order and in part from second order causes. Unlike 
the previous one, their exact verification is thus a test of the special 
theory of Einstein, or the equivalent Least Action formulation. Its 
original recommendation was that it restricts the universal forces — 
of nature to the one type of gravitation: possibly it would be 
difficult to imagine ways in which there could be room for any 
different result. 

* A formulation of the original Nordstrém type, starting from 6{Vdo = 0, is to 
some degree an exception. 
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On a Micro-voltameter. By C. T. R. Witson, M.A., Sidney 
Sussex College. | 

[Read 19 May 1919.] 

Experiments were described with a mercury voltameter, in 
which one elctrode consists of a sphere of mercury deposited on 
the end of a fine platinum wire and measured by means of a 
microscope. Quantities of electricity varying from a few hundred 
electrostatic units to about one coulomb may be measured by it. 
The almost instantaneous change of size of the drop when a 
capacity of one tenth of a microfarad, charged to 1 volt, is dis- 
charged through the instrument is easily observed. A magnet 
inserted in or removed from a coil connected to the terminals of 
the voltameter produces an easily measured effect. Experiments 
were also mentioned which suggest the possibility of its application 
in measurements of much smaller electrical quantities. 
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The self-oscillations of a Thermionic Valve. By R. Waurp- 
pinGTON, M.A., St John’s College. 

[Read 19 May 1919.] 

( Abstract.) 

It has been found possible to produce oscillations of almost any 
frequency from a three electrode vacuum valve, without employing 
the usual capacity-induction circuits. Thus a valve with two 
suitable batteries, one in the anode circuit, another in the grid 
circuit, will produce quite powerful oscillations, whose frequency 
will be determined by the value of the grid potential. 

The phenomenon can be explained by supposing that the oscil- 
lations are due to surges of mercury ions closing in on the filament 
from the grid with a frequency given by the approximate formula 

Be 
where is the usual charge to mass ratio, d is the radial distance 

filament to grid and V is the positive grid voltage. 
Experiments conducted so far indicate that the monatomic 

Hg ion with one live charge is mainly responsible. 
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On the term by term integration of an infinite series over an 
infinite range and the inversion of the order of integration im 
repeated infinite integrals. By S. Potuarn, M.A., Trinity College, 
Cambridge. (Communicated by Prof. G. H. Hardy.) 

[Received 1 January, 1920. Read 8 March, 1920.] 

THE PROBLEM FOR INFINITE SERIES. 

1. The problem to be solved is that of determining conditions 
under which the equation 

> | Un (@) de = | Su, (a) az, (1) 
n=1la an=1 

is true. It is discussed in detail in Bromwich’s Infinite Series, 
pp. 452-455, where various conditions are given. All these con- 
ditions will be found to involve uniform convergence, the fact 
being that the infinite integrals there considered are obtained as 
limits of Riemann integrals and, in the theory of the latter, con- 
siderations as to the validity of the equation 

bm b © 

lim | Sea) de = | > Uy (x) da, (2) 
m>x/lan=1 /an=1 

almost always involve uniform convergence. Thus conditions for 
term by term integration over an infinite range, being built up 
from the conditions for term by term integration over a finite 
range, involve uniform convergence. _ 

Now the condition of uniform convergence is by no means a 
necessary one: it eccurs because of the lack of power in the 
methods of the Riemann theory. Much wider conditions can be 
obtained by the use of the Lebesgue theory. It is the object of 
this paper to give these. 

VOL, XX. PART I. 1 
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CONDITIONS FOR PASSAGE TO THE LIMIT UNDER THE SIGN OF 

INTEGRATION, THE RANGE OF INTEGRATION BEING FINITE. 

2. We give, for the sake of reference, the two principal 
elementary conditions. 

(C1) If u, (a) is positive fora<sax<b; n=1, 2, 3..., thenuf 
either side of (2) 1s finite the equation holds, and if either side is 
infimte both are. 

(C 2) iy. x Un (2) |< W(x) for asa<b, v=1, 2, 3, ..., where 

wis senna un a. b), then both sides of (2) exist and are fimte 
and equal*. 

RESUME OF THEOREMS OF DOUBLE LIMITS. 

3. As the use of double limits is fundamental in the theory 
about to be developed, we give a short summary of the results 
required. 

(a) If the double limt lim Sz, exists, and lim S, y eaists 
LPSo0, Yn rw Sc 

for all sufficiently large y; then lim (lim S,, ,) exists and is equal 
Yoru L>o 

to the double limit. Similarly for the mit lim (lim Sy, ,). 
L>no yo 

(8) If Sz, ts increasing in x and y, and any one of 

lim) iSy0,,,0 ued S27), ql (linawS ae) 
Lo, y>o Lao yoo Yu TSH 

exist; then all three exist and are equal. 

(y) If Sz,y can be empressed as the difference of two functions 
Se, yy Sx, y each of which 1s increasing in x and y and 

lim (S’, + Sy) 
L>0, Yo 

exists and is finite ; then 

Whigs Seyi, boar (barn (Sy apy Ihr (Cie Sz, ) 
LSD0,yYoru LSnod Yoru Yoru L>o 

all exist and are finite and equal. 

The condition (y) is especially convenient when 

x fy Snu= | [° &n) dédn. 
* De la Vallée Poussin, Cours d’analyse infinitésimale, t. 1., 3rd Ed., p. 264, 

theorems 11 and ft. 
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For if lim ffi midedn 
LO, y> 

exists and is finite, then S,,, satisfies the condition of (y). We 
have in fact 

Sau aa See a4 Diag 

7 oe y where Snu=| [FE m| dba, 
S'r=f [UG DI-LE m) adn, 

and both S’,,,, S”»,, are increasing in # and y and have a finite 
double limit—the former by hypothesis and the latter because 

Nore. The above results still hold when either or both of the 
variables x, y take only positive integral values. 

DEFINITION OF INFINITE INTEGRALS, 

4. Let f(a) be any function which is summable in (a, X) for 
all X greater than a. 

Xs 
If lim | f(x) da, 

X—>owo Ja 

where the integral is taken in the sense of Lebesgue, exists and 
is finite, we say that 

[ fea 
a 

converges and attribute to it the value of the limit. 
This definition is evidently consistent with and more general 

than that usually given, where f(«) is assumed to be integrable in 
Riemann’s sense in (a, X). It has the special advantage of not 
being restricted to functions which are bounded in every (a, X). 
And we lose nothing by adopting it, as the two theorems on which 
the theory of infinite integrals rests, the first and second mean 
value theorems, are still true when we abandon the restriction 
that f(#) is to have a Riemann integral and make only the 
assumption that f(z) is summable*. 

GENERAL THEOREMS. 

XK 
5. I. If thedouble init lim s Un («) dx earsts and 

mn, X>noJan=1 
co 

(a) | Un (x) dx converges for all n, 
a 

*\Toid. t. 1. 2nd Kid., p: 53. , 
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(b) = Un (x) converges for X >a, 
n=1 

Xx dE X ow 

Coy lien ee) | Sasa 
m>oJan=1 an=1 

exist and are equal for all X; then both sides of (1) eaist and are 
equal. 

x mM 

Proof. Write | Sin, (OVE Gin, Se 
an=1 

and let lina S77 x 0S 
M->n0, X>o 

co 

Since | U,(«) dx converges for all n 
a 

lim | Soy n(@) ax, 1.6. Va ge 
X>oJ/an=1 

exists for all m. Hence 

lim (lim Sim,x)=S (3), 
Man X>o 

by (@). 
Tn virtue of (6) and (c) 

lim as Un (x) dx 
M>ala n=1 

‘X © 

exists and 1s equal to Su, (@) dx: 
Jan=1 

Thus lim Sp, x exists for X >a. 
Mm >a 

Hence lim (lim Sj», x) exists and is equal to S. 
XSn MSO 

‘X 

Taking lim S,,,x in the form | > uw, (x) dx, we see that 
M>o an=1 

S ode 28 (4, 
an=1 

And (8) and (4) give us our theorem. 

IU, JEP > | u, (x) | converges for « >a and the double limit 
n=1 

lim [s ~ |B (x)| da 
M—>owo, X—>n / an= 

exists and is finite; then without fur a condition both sides of (1) 

exist and are finite and equal. 
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x 
Proof. By (ry), es r | : 2 ! Un (x) | dx exists, so does 

‘xX m 

> wu, (2) da, 
an=1 

lim | 

xm Also Sz SBE Wao 
an=1 

for all X and m. But S,,, x increases with X for each m. Hence 
x mM 

lim > | u,,(#)| dx 
X>o Jan=1 

exists for each m and is less than S. 
And therefore 

J ».¢ : ‘xX m xX m—-1 

lim | | u_ (a) | da = lim {{ > ju, (0) | de — | > [un (e)| del ; 
Sala X>n an=1 a n=1 x : 

exists for each m, te. | | un (v)| dw and therefore | Un (a) dx con- 
a a 

verges for each m. This is (a) of (1). 
Again, Sm,x Increases with m for each X. 
Hence lim S,,,x exists and is finite for each X. So from 

Cl x 
an [°S |g (2) | de 

an=1 

is finite. Thus > | u,(#)| 1s summable in (a, X). But 

[3 tn (#)1S 3 [ata (a) |< & [tn (@)) 
and so by (C 2) 

x Mm ‘X 0 

jin | Sede | Ser cade 
m>n/an=1 an=1 

exist and are finite and equal. This is (c) of (1). Now (6) of (1) 
is satisfied by hypothesis. 

Thus all the conditions of (1) are satisfied and so both sides of 
(1) exist and are equal. 

DEDUCTIONS FROM THE GENERAL THEOREMS. 

6 AL Tf tin (2) = 6 (#) fn (2), 

z Fn (@) converges for «>a, where 

| s Fn (“)|\< G, for «>a and all v, 
n=1 
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and | |} (aw)|dx converges; then both sides of (1) eaist and are 
a 

finite and equal. 

B. Uf ether of 

SE [lu @lids [3 lun laa 
exist and are finite; then both sides of (1) exist and are finite and 
equal. 

xXx m 

Co ta) iia es 
Mm Prono an= 

exist and are finite and equal, and 
xX 

=| Ma) ae 
a 

converges uniformly for a < x, and each 

| : Un (a) dx 
a 

X « 

Un (x) dz, DTH (GB) (hee. 
1 Jan=1 

converges; then both sides of (1) exist and are finite and equal. 

D. If |S u,(a)|<vx(e) for a<a<X and all v, where vx 
n=1 

is summable in (a, X), and 
Xe 

> | Un (x) dx 
a 

converges uniformly for a< X, X being arbitrary, and each 

[. U, (a) dx 

converges ; then both sides of (1) eaist and are finite and equal. 
D is a special case of C obtained by making use of (C 2). 

A, B, D may be regarded as generalisations of theorems A—C, 
pp. 452-455 of Bromwich’s Infinite Series. 

ROOF Se Acuali m' > m, 
’ 

aes SAS = Al Say 
n=m+1 yi n=1 n=1 

and therefore 

| = FO i es > f,(2)|< 2G. 
n=m-+1 n=1 n=1 
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Hence 
m’ > = De 

| Py un (w) de <| | =: h(x) f, (2)| dz 
xX n=m+1 X n=m-+1 

C4 m’ 

<[1$@| 5 [fi @)lde 
x n=™ 

ix’ 

< 26 Id (a) |do. 
x 

ny 

Now, given any positive number e, we can, since [ | p (x) | dx 
~ a 

converges, find X, such that 
, , 

| | b (x) | da<e 
x 

for X, X'’> X,. Hence 
moh [pean GUO 

| > Un (x2) dal<e 
xX n=m-+1 

for X, X’' > X, and all m, m’. Thus the double limit 
xk m 

lim x uy, (a) dx 
Y m>n, X>nlJan=1 

exists. Further 

| 2 ten (2) $1 (2) || 3 thy (0) |< |G (2) 
and G|¢(«)| is summable in (a, X) for all X greater than a. 
Thus by (C 2) 

x mM ic oo 

lim > up, (x) da, > u, (#) da 
i an=1 Ja n=1 

exist and are equal and finite. 
All the conditions of (I) are now satisfied, and our theorem 

follows. 

B. If we write xX m 
Sm, x= | San ele 

an=1 

then lim S,,, x exists and is either finite or positive infinity. 
mM >n, X>o 

In the first case our theorem follows at once by (II). 
In the second case, both the repeated limits 

lim (lim Sm,x), lim (lim Sp, x), 
M>rn X>o X>o mM—>n 

are infinite. Suppose now that 

= i | ttn (we) | da 
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exists and is finite. Then lim (lim S,, x) exists and is finite, 
MFrn LS 

and we get a contradiction. And if 

| S | Un (x) | dx 
an=1 

exists and is finite, then so does 
‘xX m 

| = jane) as 
Ja n=1 

for all X ay) than a. Hence as in theorem II 
xXx m 

aS | uy (x) |da= lim > | w, (x) | da, 
a@n=1 m>no Ja n=1 

and it follows that 

| 5 | uy, (2) )ice= | lim (lim Sjp, x), 
a@an=1 XS Y (ook 2) 

and we again get a contradiction. 
Thus the first case alone is possible, and this is the case in 

which our theorem is true. 

5x 
C. Write [ (a) cen ONG) 

Since > gn (X) converges uniformly for a < X, given e > 0 we 
n=1 

can find NV, such that 

PS GCOS) a Oia, tise: 
n-N+1 

Thus | Sin. — 2: In (X)\<e, (X2>a,m> NM). 

Henceif lim s glk )existsandisfinite,sodoes lim Sy», x, 
xX >w n=1 Mm >on, X—>20 

and the two are equal. Now 
a ce) N N 

[Gn (XI— gn (X |<) % In(X)— % Gn (¥")) 
n=1 

+i = Gn (A0)|| |) Sage 
n=N-+1 n=N-+1 

N / N fi 

< | > oS) gn )| + 2e. 

But since lim g, (X) (=| uy (x) dx) exists and is finite for 
es) 
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N 
each n, so does lim = g,(X) and we can find X, such that 

X<=o n=1 
N : N : 

| Biase Va i) |< = (XG X'S) 

Hence | > Gn (X’) — > gue) |<oe,) (XxX, x 22a) 
n=1 n=1 

and therefore, by the general principle of convergence 

limes® 9), (CX) 
X—>o n=1 

exists. Thus lim Sp, x exists. The other conditions of (1) are 
M>o, X20 

satisfied by hypothesis and our theorem follows. 

THE PROBLEM FOR INFINITE INTEGRALS. 

— 7. We have to determine conditions under which the equation 

i dw | fe, y) dy =| ay | f
(x y) da (5) 

is true. The methods adopted above apply almost without change 
and we get conditions almost identical with those already given. 
We quote them without-proof, as the proofs can be made up 
immediately on the lines of those already given. 

As regards the nature of f(x, y), we assume throughout that 
J (x, y) is summable in the region 

(a<xx<X, b<y<Y), 
for all X >a, Y>b; so that, by Fubini’s theorem*, the repeated 

Be 4 4 xX 
integrals | da F(a, y) dy, | dy | Ff («, y) de exist and are 

a “6b b a 

equal to the double integral. 

GENERAL THEOREMS. 
XG Gls 

8. I. If the double limit lim [| Fle. y) dedy exists 
X>w, Yeoda /b 

and 

(a) f SF (a, y) da, converges for y > b, ? 

(b) i Ft (a, y) dy, converges for x >a, 
b 

x Vi x ee 

(c) tim f de] sleyay, | def flo yay 
Yo 

* De la Vallée Poussin, Intégrales de Lebesgue etc., p. 53. 
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exist and are finite and equal for X >a; then both sides of (5) 
exist and are equal. 

IV. If the double limit lim ie {, \f (a, y)|dady exists 
xX>o, Y>n 

and is finite; then without further condition both sides of (5) east and 
are finite and equal. 

DEDUCTIONS FROM THE GENERAL THEOREMS. 

r¥ 
where | O(a, y)dy|<G fora >a, y 26, 

Jb 

| f(x, y) dy converges for x >a,’ 
b 

and | |b (x) |da converges; then both sides of (5) eaist and are 
a 

Jinite and equal. 

B. Lf either of 

I, de [lite y)| dy, [ave F(a, y)\ de, 
exist and are finite; then both sides of (5) exist and are fimte and 
_equal*. 

Sei |) ay xy 
Oe Up born. | alee | Fle, y)idy, | dix | F(a, y) dy, 

b a b Y>oJla 

east and are finite and equal, and 

[, ay | Fe wae 
converges uniformly for a< X, and 

[fe naw 
converges for y>b; then both sides of (5) east and are finite and 
equal. 

* This is de la Vallée Poussin’s theorem. See Bromwich, Infinite Series, p. 457. 
The hypothesis given by Bromwich to the effect that both the integrals 

i “ile ah de. i “f (ery) dy, 
are convergent is unnecessary, the existence of one (the one necessary to the 
existence of the repeated integral) is sufficient. That of the other is implied by 
the existence of the double limit, see Note 2. 
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Dy If if sa y) dy |< x(x) forasa< X, b< Y, 

where wx is summable in (a, X), and 

[, ey [Fy de 
converges uniformly for a < X, X being arbitrary, and 

| a (x, y) dx 

converges for y>b; then both sides of (5) exist and are finte and 
equal. 

10. Note 1. Results B are especially valuable, as they are 
easy to remember and convenient to apply. The power of the 
Lebesgue theory is shewn very clearly here in that by using it 
we are enabled to make the hypothesis which ensures the exist- 
ence of the double limit* ensure also the passage to the limit under 
the sign. 

Note 2. It is well to be precise as to the meaning of the word 
“exists” as used in connection with repeated Lebesgue integrals. 

Suppose f(, y) is measurable in a, y in the rectangle 

Coa) 

bsy< YY} 

We know that the function f(a, y) considered as a function of 
x, is measurable in (a, X) for each y in (b, Y) a set of zero measure 
being excepted. It may not, however, be summable in (a, X), we. 

| ip (x, y) dx 

may not exist, for all y concerned. But, if f(a, y) is summable 
over the rectangle, «.e., if the double integral 

BG fl 

{. [ fe y) dx dy 

exists; then it can be shewn that 

x a 

| FS (@, y) dx 
a 

exists for all values of y in (b, Y), save possibly those of a set of 
measure zero, 

o fa 

* The existence of ae | |u,, (x) | dx implies the existence of the double limit 
n= a 

by (y) of §3; and in addition, by the use of (C1) on | u, (x)|, it will be found to 
imply the validity of the passage to the limit under the sign. 
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Now in the Lebesgue theory the integral of any summable 
function over a set of zero measure is zero, and consequently we 
may neglect a set of measure zero without affecting the value of 
the integral. Hence when we are faced with the problem of find- 
ing the value of a function which is indefinite or infinite at the 
points of a set of measure zero, we simply neglect these points 
and find the value of the integral over the residue. This is taken 
to be the value of the integral over the original set. 

With the above convention it is true that, if 

Se (ple 
| | f(a, y) daedy 

a Jb 

Rene OX 
exists, so does l dy [ , F(a, y) dady, 

although there may be points in (6, Y) at which the single 
integral 

Firte.nae 
does not exist. 

It is always to be understood in dealing with repeated 
Lebesgue integrals (finite or infinite) that the inner integrals 
need only exist at all the points of the range of integration of the 
outer integral save those of a set of measure zero. 

Let us apply the foregoing remarks to theorem B’. Suppose 

[vf lf mide 
exists. Then we know that 

an r r f(a, y)| dady 
X >on, Y>n 

exists. It follows that 

[ae | Fan ay 
considered as a function of Y,is bounded as Y tends to infinity. 
Thus 

Pee ledini: d 
Jim 2] \f@n J 

exists and is finite. It follows that 

| fewlay 
converges at all the points of (a, X) save possibly those of a set of 
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measure zero, because if it did not the above limit would be 
infinite ; and so, for our purposes 

[ae fey dy 
exists. 

Our convention has enabled us to infer the existence of the 
inner integrals from the existence of the double limit. 

Note 3. A thorough treatment on different lines of the subject 
of this paper will be found in two papers by Prof. W. H. Young: 

(1) “On the change of order of integration in an improper 
repeated integral,” Trans. Camb. Phil. Soc., XX1. p. 361. 

(2) “The application of expansions to definite integrals,” 
Proc. Lond. Math. Soc., tx. (1910), p. 463. 

In this paper we content ourselves with giving simple 
generalisations of well-known results with proofs depending on 
comparatively elementary theorems. There is no attempt to 
obtain comprehensive results, 
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Note on Mr Hardy's extension of a theorem of Mr Polya. - 
By Epmunp Lanpav. (Communicated by Prof. G. H. Hardy.) 

[Received 10 December 1919. Read 26 January 1920.] 

In a recent note in these Proceedings* Mr Hardy has estab- 

lished an improved form of a theorem of Mr Pélya, viz.: 

Suppose that g («) is an integral function, and M (r) the mam- 

mum of |g («)\ for |a|<r. Suppose further that g (a) rs an integer 
for «=0, 1, 2, 3, ..., and that 

MING TON (27): 

Then g(a) is a polynomial. 

As Mr Hardy remarks at the beginning of his note, it is 
sufficient (after the analysis given already by Mr Polya), to prove 
the one formula 

n! a id | AAs = O (1). 

~” II (2n—s cos @) 
s=1 

Mr Hardy’s proof of this formula may be replaced by the following 
shorter proof. 

Since 
aly In! 

nam > ano" F227 = O(vn), 

II (2n—s) i 
s=1 

it is enough to prove 

" ¥(6,»)d0=0(—), 
where 

w 2n—s 

COM) = at = —scos 5) ; 

Now 
cut aioe ile 64 @? Un 1002 @& 

——4+,.2-—--—=—2 a = aS 

2 24 nO? ik, Didone 24 12 

for —7 <@<7, and 

es = e-¥thy?— byt... < em Ut’ < ey ty = ew 
1+y : 

* Vol. x1x. (1919), pp. 60-63. 
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for0<y<1. Hence 

AS 8 TONE a i SA 
1—7 cos 0 1+7% (1 - e086) 1+7(1—- cos 8) 

<e—mli—cos8) < en 2470? 

s 
=; Qn 62 nr 

—— s 

(0, n) = IT ng Bret = ove inter < en sane 

‘i= cose 

for —7 <@<7and n=1, 2,3, ..... Therefore 
ee} 

[ ve. n) dO <| _ eo trdd = 0 (=) 

GOTTINGEN, 4 December 1919. 
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Studies on Cellulose Acetate. By H. J. H. Fenton and 
A. J. BERRY. 

[Read 8 March 1920.] 

The enormous demand for cellulose acetate and the serious 
shortage of acetone and certain other materials used in the manu- 
facture of aeroplane dopes during the war originated a systematic 
research on cellulose acetate, especially as regards the behaviour 
of this material towards solvents and its chemical properties 
generally. The research has been pursued in a number of directions, 
the most important of which have been (a) substitutes for acetone 
as solvents, (6) the preparation of cellulose acetate and a study of 
the influence of the mode of preparation on the properties of the 
resulting product, and (c) the analytical chemistry of cellulose ace- 
tate. Most of our experiments, especially those relating to aeroplane 
dopes were necessarily of a technical character, but as a few results 
of general chemical interest have been obtained in the course of 
the work, we have thought it desirable to give a brief account of 
them in the present communication. 

Solvents. 

At the time of the difficulty caused by the serious shortage of 
acetone we were urged to discover efficient substitutes for this 
solvent for use in aeroplane dopes. It should, in passing, be 
observed that the properties of acetone make it an ideal solvent: 
its conveniently low boiling point, rapid solvent action on cellulose 
acetate, non-poisonous character, and, in normal times, cheap 
and abundant supply. All other liquids which have so far been 
suggested show a deficiency in some one or other of these 
particulars. 

In August, 1917, we suggested that in case of emergency the 
three following solvents might be employed, viz. acetaldehyde, 
acetonitrile, and nitrobenzene with certain additions. Quite early 
in the investigation (October, 1916) we suggested acetic acid and 
ethyl formate as solvents. We also suggested the use of cyclo- 
hexanone and of beechwood creosote as substitutes for tetrachloro- 
ethane or benzyl alcohol as high boiling solvents. We were never 
informed whether these solvents were actually employed. It is 
remarkable that at considerably later dates, patents have been 
taken out for the use of both acetaldehyde and cyclohexanone as 
dope constituents. (British Patent 131647, July 4th, 1918 (acet- 
aldehyde) and bid. 130402, February 15th, 1918 (Cyclohexanone). ) 
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Our experiments have demonstrated that the destructive effect 
of acids upon fabrics is dependent on the strength of the acid in 
the physico-chemical sense. Hitherto it had been supposed that 
esters were objectionable as dope constituents on account of the 
possibilities of free acids resulting from hydrolysis. This, however, 
we found not to be the case. As far as weak acids only are concerned, 
tensile strength determinations gave excellent results; and fabrics 
doped with acetic acid as the principal solvent compared most 
favourably with others. 

In our experiments a large number of liquids have been 
examined, not only from the purely practical point of view, but 
also from a desire to obtain if possible some information with 
regard to possible relationships between the nature of the liquid 
and its solvent action. It is of course impossible to define strictly 
the solubility of cellulose acetate in any given solvent owing to the 
colloidal nature of the products. The term “positive” is used in 
the following lists to imply that the liquid named has the property 
of gelatinizing cellulose acetate and subsequently converting it 
into a clear homogeneous “sol” without the aid of heat. All the 
results were obtained with a sample of the material which yields 
54 per cent. of acetic acid on cold alkaline saponification. 

Positive. 

Liquid ammonia, liquid sulphur dioxide, liquid hydrogen 
cyanide, acetaldehyde, benzaldehyde, salicylaldehyde, acetone, 
methyl ethyl ketone, suberone, acetonitrile, propionitrile, formic 
acid, acetic acid, butyric acid, formamide, ethyl formate, ethyl 
oxalate, ethyl malonate, ethyl acetoacetate, aniline, phenyl- 
hydrazine, ortho-toluidine, piperidine, pyridine, tetrachloroethane, 
nitrobenzene*, nitromethane, cyclohexanone, guaiacol, chloro- 
form*. 

Although cellulose acetate is insoluble in water and in absolute 
ethyl alcohol, a mixture of these two liquids dissolves it freely 
on boiling. On cooling, however, precipitation takes place almost 
completely. 

Negative. 

Liquid air, liquid ethylene, liquid nitrous oxide, liquid hydrogen 
sulphide, benzene, toluene, turpentine, carbon disulphide, carbon 
tetrachloride, alcohol, ether, ethyl chloride, acetal, dimethyl 
acetal, nickel carbonyl, and many other liquids. 

No general conclusion can be drawn as regards the chemical 
nature of a liquid and its solvent action on cellulose acetate. It is, 

* Nitrobenzene requires certain additions. Chloroform had only a partial 
solvent action on this specimen of the material. 

VOL. XX. PART I. 2 
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however, worthy of note that there appears to be some relation 
(with undoubted exceptions) between the dielectric constant and 
solvent action. 

Influence of methods of preparation upon the properties 
of cellulose acetate. 

The materials obtained by acetylating cellulose with acetic 
anhydride diluted with acetic acid in presence of various catalysts 
such as concentrated sulphuric acid, ferric sulphate, ortho tolui- 
dine bisulphate, may show considerable variations in properties 
depending upon the temperature, length of time of acetylation, 
and numerous other factors. When cellulose is acetylated and 
the product at once precipitated by water, it is nearly insoluble in 
acetone. Various methods have been adopted in order to convert 
the product so obtained into an acetone-soluble modification. The 
most widely used of these methods is that of Miles. This consists in 
heating the acetic acid solution of the cellulose acetate with water 
in rather greater quantity than that required to combine with the 
residual acetic anhydride. Sodium acetate may also be added to 
react with the catalyst if still present. The results are usually 
supposed to be due to chemical hydration. 

In our experiments, cellulose was acetylated under the influence 
of various catalysts, and the effect of treatment. by the Miles 
-process was subjected to a critical examination. The most marked 
effects of this process are the changes in solubility in acetone and 
chloroform, most cellulose acetates being soluble in chloroform 
and insoluble in acetone before the treatment. This change in 
physico-chemical properties was found to be accompanied by a 

fall in the acetyl number. In one case the untreated cellulose 
acetate with an acetyl number of 60-9, yielded a product after the 
Miles process carried out at 100° for 48 hours with an acetyl 
number of 46-7. In another case when the treatment was carried 
out at the same temperature for 23 hours, the acetyl number fell © 
from 60-5 to 50:4. The specific gravity of the cellulose acetate is 
also greatly reduced after the treatment. The influence on the 
heat test is not well marked but the decomposition point appears 
to be lowered somewhat. 

In our view these results are to be ascribed to partial hydrolysis 
of the cellulose esters, not to hydration as is commonly supposed*. 
Apart from the diminution of the acetyl number already mentioned, 
we have carried out a series of experiments which have demon- 
strated that cellulose acetate does not form a hydrate. These 

* Our view that the effect of the Miles process is essentially hydrolytic and not 
due to chemica! hydration has been expressed subsequently by Ost (Zevtsch. 
angew. Chem. 1919, xxxt, 66, 76, and 82). 
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experiments originated in connexion with our determinations of 
the water contained in commercial samples of cellulose acetate. 
As is well known, the water is readily expelled by exposure of the 
material over concentrated sulphuric acid in a desiccator or by 
heating to 100°. It has frequently been supposed that the approxi- 
mately constant proportion of 5 or 6 per cent. of water usually 
met with indicates a definite hydrate. In order to obtain positive 
information on this point, we determined the pressure-concentra- 
tion relationship in the manner originally adopted by van Bemmelen 
in his well known researches on silicic acid (Zeitsch. anorg. Chem. 
1896, x11. 233). Weighed quantities of the material were exposed 
in a series of exhausted desiccators over sulphuric acid of various 
determined concentrations, and the corresponding vapour pressures 
were found by reference to Landolt and Bérnstein’s tables. The 
weights were found to be constant after 24-48 hours, and the 
pressure concentration relationship showed that no chemical 
hydration occurs. The phenomenon is to be regarded as one of 
adsorption, probably with subsequent diffusion, and is precisely 
similar to the absorption of water by cellulose itself. (Compare 
Masson and Richards (Proc. Roy. Soc. 1906, Lxxvut. 421), Trouton 
and Pool (Ibid. 1906, Lxxv1i. 292) and Travers (Ibid. 1906, LXXvIII. 
21, and 1907, Lxx1x. 204).) 

Characterization and Analysis of cellulose acetate. 
In the technical analysis of cellulose acetate, it is usual to 

examine the product by the heat test, solubility, acidity, and 
viscosity of the solutions, in addition to the determinations of 
acetyl (as acetic acid), copper reducing power, water, ash, and 
impurities. We have made an exhaustive investigation of various 
methods of carrying out these determinations, especially of the 
acetyl number, and have also carried out many ultimate analyses 
for carbon and hydrogen in some commercial specimens of the 
material. 

The methods of determining the acetyl group may be classified 
under the two heads of alkaline saponification and acid hydrolysis. 
In the former the substance is saponified by excess of standard 
alkali, either at the ordinary temperature or at some higher tem- 
perature, and the excess of alkali determined by titration. In the 
latter, the substance is hydrolysed by strong acid, usually sulphuric 
or phosphoric, and the resulting acetic acid separated by steam 
distillation (Ost), or alcohol is added and the resulting ethyl acetate 
distilled off and collected in excess of standard alkali (Green and 
Perkin). The following is a summary of the principal results 
obtained in our experiments. 

(1) Cold alkaline saponification (Ost and Katayama, Zertsch. 
angew. Chem. 1912 (25), 1467). A known weight of the substance 

2-9 
ad 
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is soaked with alcohol, then a measured volume of normal alkali 
is added and allowed to stand for 24 hours. The excess of alkali 
is then determined by standard acid. The mean result was 54 per 
cent. of acetic acid calculated for the dry substance. 

(2) Cold alkaline saponification (Boeseken, van der Berg and 
Kerstjens, Rec. Trav. Chim. 1916, xxxv. 320). The substance is 
treated with strong aqueous potash for one or two days. A measured 
excess of normal hydrochloric acid is then added, the liquid then 
boiled for a moment to expel carbon dioxide and the resulting 
solution titrated with baryta water. The mean result calculated as 
above was 53-5 per cent. of acetic acid. 

(3) Hot alkaline saponification (Barthelemy, Moniteur Scienti- 
fique, 1913 (3), 1. 549). In this method the saponification is effected 
by heating the substance with normal soda for about 16 hours at 
85°. The excess of alkali is then determined by titration with 
standard acid. Several experiments were made in which the condi- 
tions were subjected to considerable variations as regards length 
of heating and amount of excess of alkali. The extreme variations 
in the acetyl number calculated as above were 60-0 and 62-1 per 
cent. 

(4) Hot alkaline saponification (Green and Perkin, Trans. 
Chem. Soc. 1906, 812). The saponification is carried out at the 
boiling point with semi-normal alcoholic soda and the excess of 
alkali titrated by standard acid. Our experiments yielded results 
of 60 per cent. of acetic acid, the extreme variations being 58-2 
and 61-9 per cent. These numbers are in agreement with those of 
Green and Perkin (loc. cit.). 

It is evident that the methods of hot alkaline saponification 
invariably yield results which are considerably higher than those 
obtained by cold saponification. There can be little doubt that 
the higher results are due to the action of alkali on the regenerated 
cellulose. Support to this contention was obtained by digesting two 
equal weights of filter paper with 50 c.c. of normal soda for two 
days, one at the ordinary temperature, the other at 85°. In the - 
former case no alkali was consumed, while the heated product 
showed a loss of nearly 2 c.c. of normal alkali on titration. 

(5) Acid hydrolysis (Ost, loc. cit.). The substance is first 
digested with 50 per cent. (by volume) sulphuric acid. After 24 
hours the liquid is diluted considerably and the acetic acid separated 
by steam distillation, and titrated with baryta water. In our 
experiments phosphoric acid was substituted for sulphuric acid in 
order to avoid error due to possible formation of sulphur dioxide. 
The results varied from 51-5 to 55-0 per cent. of acetic acid. 

(6) Acrd hydrolysis (A. G. Perkin, Trans. Chem. Soc. 1905, 107). 
In this method the cellulose acetate is treated with ethyl alcohol 
and sulphuric acid, and the resulting ethyl acetate distilled into 
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excess of standard alkali. The ester is then saponified and the excess 
of alkali determined by titration. In our experiments phosphoric 
acid was used instead of sulphuric acid for the reason already 
mentioned. The results varied from 52-2 to 54-4 per cent. of acetic 
acid. 

In our opinion, preference should be given to the method of 
cold alkaline saponification of Ost. Not only are the results more 
uniform, but they agree well with those obtained by acid hydro- 
lysis. The latter methods are exceedingly tedious to carry out. 
We have also carried out some experiments with the use of hot 
baryta water as a saponifying agent and subsequent gravimetric 
determination of the barium, the results averaging 57-58 per cent. 
of acetic acid. 

The materials met with in commerce known as cellulose acetate 
are most probably mixtures or solid solutions of various acetates, 
not definite chemical individuals. If, however, it were desired to 
represent cellulose acetate as a chemical individual, the results of 
our analyses of a number of specimens do not correspond with the 
formula of the triacetate C,H,0, (OCOCH;), which is commonly 
supposed. They agree better with the formula of a pentacetyl 
derivative of C,,H,)O,) and still better with that of a heptacetyl 
compound of C,.H5)0,;. 

Thus 
Carbon Hydrogen Acetie acid 

C,H,O, (OCOCH;), requires 50-0 5:5 62-1 per cent. 

C,.H,;0; (OCOCHS), _,, 49-4. 5:6 56-0 se 

C,,H,;0, (OCOCH,), ,, 49-2 5:64 53°8 i 

Our most reliable results average carbon 49-2, hydrogen 5-5, and acetic 
acid 54 per cent. 

Certain authors have stated that sodium ethylate may be used 
for the determination of acetyl in cellulose acetates. In investi- 
gating this reaction, we were surprised to find that ethyl acetate 
was always produced along with a yellow sodium derivative of 

cellulose. Quantitative experiments were performed in which the 
ethyl acetate was distilled into an excess of standard sodium 
hydroxide, and after saponification determined with standard 
acid. The residue was washed with alcohol to remove the unaltered 

sodium ethylate and this solution was titrated with standard 
acid. The residue was then treated with water to decompose the 

sodium compound and titrated also. It was found that the quantity 
of acetic acid converted into ethyl acetate to that becoming sodium 
acetate appears to depend to some extent on the proportion of 

sodium ethylate employed. The results can be explained, if the 
average commercial cellulose acetates are represented by the 
formula C,,H,;0;, (OCOCHS);, by the equation: 
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C,.H,;0; (OCOCH,); + C,H;ONa + 4C,H;OH 
= C,,.H,,0,0Na + 5CH,COOC,H, 

which may be taken to represent the main reaction. 
In support of this, the yellow sodium compound from a similar 

experiment, after thorough washing with alcohol, was digested 
for several hours in a reflux apparatus with excess of methyl iodide, 
and the methoxy group in the resulting product determined by 
Zeisel’s method. The result obtained was 9-2 per cent. of methoxy] , 
in agreement with that calculated for the formula C,,H,,O0,O0CHs. 

The adsorption of basic dyestuffs by cellulose acetate. 

Certain dyestufis, such as gentian violet are adsorbed in con- 
. siderable quantities from aqueous solution by cellulose acetate, 
the solid being coloured blue. Cellulose, it is true, also adsorbs 
the dye, but to a much smaller extent, and the solid becomes 
violet. This property may be utilized to identify unaltered cellulose 
in commercial preparations of cellulose acetate. Methyl orange 
gave negative results, but methyl red was adsorbed in considerable 
quantity, the solid becoming red. Free dimethylaminoazobenzene 
gave negative results, but the hydrochloride of this base was 
strongly adsorbed, the solid cellulose acetate assuming a pinkish 
yellow colour and the colour of the aqueous solution being almost 
completely discharged. 

The authors desire to express their grateful thanks to Mr J. W. 
H. Oldham, M.A., of Trinity College, for much valuable assistance 
in connexion with this investigation. Mr Oldham has also carried 
out a large number of experiments on the influence of the mode of 
preparation upon the resulting properties of cellulose acetate, and 
it is hoped that his results when completed may form the subject 
of a future communication. 
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An examination of Searle’s method for determining the viscosity 
of very viscous liquids. By Kurr Mottn, Filosofie Licentiat, 
Physical Institute, Technical College, Trondhjem. (Communicated 
by Dr G. F. C. Searle.) 

[Read 9 February 1920.] 

§ 1. The determination of the coefficient of internal friction in 
very viscous liquids has been the object of measurements by many 
different methods. A review of these will be found in Reiger*. 
A number of more recent methods are given by Kohlrauschf, and 
among them is a method of Searle’st. An examination of this 
method is the object of the present paper. 

In his paper, “A simple viscometer for very viscous liquids,” 
Dr Searlet gives an account of a viscometer he has constructed. 
The method consists in causing a vertical cylinder to rotate within 
a coaxal cylinder containing liquid, and in determining the angular 
velocity of the inner cylinder for a known value of the driving 
couple. The couple is produced by the weights of two loads acting 
on a drum by two threads. The time, 7 seconds, of one revolution 
of the cylinder is found, and the length, / cm., of the inner cylinder 
immersed in the liquid is observed. 

Newton’s statement is that 

where f is the force per unit area which acts against the direction 
of motion and at right angles to the normal, n, to the surface, 
dV /dn is the velocity gradient, and 7 is the coefficient of viscosity. 
In this statement the motion of the liquid is supposed to take place 
parallel to a fixed plane. Treating the liquid as incompressible, 
and modifying (1), by substituting the rate of shearing for dV /dn, 
so as to suit the case of rotation, we obtain the following formula: 

gDior— 0) (MEN C (= 

1 8a2a2b? ( 1 )- 1 i 
Here D is the effective diameter of the drum, a and 6 are the radii 
of the cylinders, and M is the mass of each of the two loads, which 
are required to move the inner cylinder with the constant angular 
velocity Q, such that 27/Q = T. 

* R. Reiger, Ann. d. Phys., 19, p. 985, 1906. 
+ F. Kohlrausch, Lehrbuch d. praktischen Physik, xu. Aufl., p. 268. 
t G. F. C. Searle, Proc. Cambridge Phil. Soc., 16, p. 600, 1912. 



24 Mr Molin, An examination of Searle’s method 

The angular velocity of the liquid about the axis of the cylinders, 
at a distance r from the axis, is given by 

2 2 ‘ 2a b (s -1), 

— Tae BP 

When r = 6, the radius of the inner rotating cylinder, 

w = O = 27/T, 

and when r =a, the internal radius of the outer fixed cylinder, 
w=0. This problem was first treated, not quite accurately, by 
Newton. The above results were given substantially by Stokes *, 
and are also given by Lamb} and by Searlet. 

The rate of shearing, rdw/dr, varies somewhat as r increases 
from 6 to a, as is shown by the formula 

dw Ar ~——-2aB? 
Do i Eas 

We have only taken into account the friction between the 
coaxal cylindrical layers of the liquid and not the friction between 
the horizontal layers in proximity to the bottom surface of the 
movable cylinder, and have not considered the conditions that 
arise near that surface. In practice, only the lower end of the 
rotating cylinder is exposed to viscous action; Dr Searle makes an 
allowance for this end by writing 

MT fp? fee (2) 

where / is the length by which the height, J, of the liquid, in the 
simple theory, must be increased, in order that the increase of 
couple shall correspond to the viscous action in proximity to the 
end surface and the edge of the rotating cylinder. 

Dr Searle gives a graphical method of determining k. The 
values of MT are plotted against 1, and he says, “It will be found 
that the points lie on a straight line, which cuts the axis of J at 
a distance k from the origin.” Dr Searle adds “If the corresponding 
total load hung from each thread be M grammes, it will be found, 
on repeating the observation with various loads, that MT is 
constant for a given level of liquid. This result confirms the 
fundamental assumption that the viscous stress at each point is 
proportional to the rate of shearing of the liquid.” 

n=. 

* G. G. Stokes, Brit. Ass. Report, p. 539, 1898. 
{+ H. Lamb, Hydrodynamics, Third Ed., p. 546, 1906. 
t G. F. C. Searle, loc. cit., p. 602. Compare C. Brodman, Wied. Ann., 45, p. 163, 
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§ 2. In my experiments I used Dr Searle’s viscometer, as 
supplied by Messrs W. G. Pye and Co., Cambridge*. I determined 
the viscosity of treacle, as Dr Searle refers to a determination of 
for that liquid. I found 2b=3-74cem., 2a=5-0lcm., and 
D=1-95cem. Since g = 982 cm. sec.-2 at Trondhjem, the con- 
stant C has the value 

C = 3-070 + 0-035. 

From the data given by Dr Searle, I find for the constant of the 
instrument used by him, C, = 3-153. 

In my instrument the rate of shearing for radius r is given by 

dw Im 15:80 
sn a a ah 

§ 3. To examine how MTZ depends upon M, when / is kept 
constant, six series of observations were taken with six values of / 
varying from 10-0 to 2:15 cm., and in each series M was made to 
vary from 5 to 205 grammes. 

Since the viscosity of highly viscous substances diminishes very 
rapidly as the temperature increases, as was shown by Reigert and 
by Glaser for values of 7 of the magnitudes 4-8 x 10° to 67-2 x 108, 
and by Ladenburg§ for 7 = 1:3 x 108, great care must be taken 
to keep the temperature constant. The apparatus was, therefore, 
placed in a thermostat with electric temperature regulation, and 
a very constant temperature of 19-8°C. was maintained. The 
apparatus was left in the thermostat for 24 hours before the 
measurements were begun, and, during the short time a rotation 
trial was in progress, only the outer wooden door of the thermostat 
was opened, since one could see into the thermostat through the 
inner glass door. The final measurements were all carried out in 
the course of a day; the observations were made at intervals of 
about 10 minutes, so that the unavoidable disturbances of tempera- 
ture, due to the manipulations, might have time to disappear. 

In other respects the measurements were carried out in ac- 
cordance with Dr Searle’s|| instructions. The revolutions were 
timed by aid of a stop-watch and the times were taken for different 
numbers of revolutions with odd numbers up to 9, as well as the 
_average time for one revolution. As no decrease in the time of a 
single revolution could be noticed as the rotation continued, the 
divergences from the mean lying within the limits of the errors 

* Catalogue of Scientific Apparatus manufactured by W. G. Pye and Co., 
List No. 120, p. 39, 1914. 

+ BR. Reiger, loc. cit., p. 998. 
t H. Glaser, Ann. d. Phys., 22, p. 719, 1907. 
§ R. Ladenburg, Ann. d. Phys., 22, p. 309, 1907. 
|| G. F. C. Searle, loc cit., p. 603. 
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of observation, there was no observable acceleration. We may 

conclude that, even for the greatest values of M, the viscosity of 

the liquid remained sensibly constant, in spite ‘of the fact that 
some potential energy was converted into heat. 

The values of 7 found in these experiments are given in 
Table 1. 

TABLE 1: 

Time, in seconds, of one revolution of cylinder. 

M 1=10-0 1=8-45 1=7-65 1=5-50 1=3-30 1=2-15 
grm. em. cm. cm. em. cm. cm. 

5 129-0 
7 114-6 50-7 

10 120-4 108-7 100-2 71-3 44-7 
12 93-3 85-0 77-0 54:3 
15 71-5 65:3 59-0 42-3 26-6 19-5 
20 52°8 47-0 41-7 29-7 
25 41-1 35-9 32-2 23-6 14-5 11-1 
30 33°3 29-6 26-4 19-0 
35 28-8 24-8 22-2 16-3 10-0 
40 25-1 21-7 19-2 14-0 
45 22-0 19-0 17-1 12-3 
55 17-9 15-2 13-6 10-1 6-3 4-6 
65 14-9 12-6 11-4 8-3 
75 12-8 10-9 9-8 7-2 4-5 3-4 

105 epi 7-7 7:0 5-1 
155 6-1 5-2 4-8 35 
205 4-6 3-9 3:6 

The results have been plotted in the form of six curves each 
for one value of J, as in Diagram 1. The curves are represented in 
the form WY (Mir VM) — 0} 

From the diagram it is clear that the function Y (UT, T), = 0 
does not represent a family of straight lines parallel to the M-axis, 
and that each of the six curves has a hyperbolic appearance. When 
M approaches a certain lower limit M,, MT tends to infinity. 
The area covered by the group of curves can be divided by a 
parabolic boundary curve into two departments, in one of which 
MT is sensibly constant for a given value of J. 

§ 4. I have, further, examined how MT depends upon /, when 
M is kept constant, and have found that the function 

F (MT, La eonct: = 0 
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represents, not a single straight line*, but a family of approxi- 
mately straight lines. Each line can be represented by the equation 
MT = al + B. For this group of curves 0 (MT)/él tends to adefinite 
value as M increases, i.e. the curves approach a certain border line 

MT 
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which is comparable with Searle’s straight line. The coefficients 
a and 6 have been calculated for each line by the method of least 
squares}, using the formulae 

21. UMT — 631. SIMT 
6 — 

g— 2! SIMT — EMT. EP 
(SI)? — 6S2 fy Ihe (S22 — 632 

* G. F.C. Searle, loc. cit., p. 604. 
+ F. Kohlrausch, Lehrbuch d. praktischen Physik, p. 13, 1914. 
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the various observations being regarded as having equal weights. 
The values of a and f have been thus calculated for seven different 
lines, and the results are given in Table 2. 

TABLE 2. 

Values of a, B and k. 

When / = 0, then MT = B, and Table 2 shows how £ varies with M. 
The curve thus extrapolated for / = 0 is marked “Calculated for 
1 = 0” in Diagram 1. 

When MT =0, we have k=|1|=| B/a|, where & is the 
correction for the lower end of the rotating cylinder. : 

© 10 20 30 40 50 60 70 80 90 100 10 120 130 4027 or. 

Diagram 2 shows how & depends upon M. 
The facts here recorded show that equation (2) should be 

replaced by 

where k; is the value of k corresponding to the load M,. 
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If the value of k; corresponding to M, is read off from the 
curve of Diagram 2, the viscosity 7 can be calculated by equa- 
tion (3). The values of & found from Diagram 2 have been used 
in forming Table 3. 

TABLE 3. 

Values of M,T/(l + k;). 

| 

M 1=10-0 l=8-45 |) 7=7-65 1=5-50 
grm. cm. cm. | cm. cm. 

10 111-7 1180 | 1185 113-4 
12 104-2 111-0 110-0 104-5 
15 101-2 108-0 106-8 103-2 
20 99-3 104-5 102-0 98-6 
25 97-9 100-1 99-1 98-5 
30 96-5 990 97-2 95-4 
35 95-6 97-0 95-6 94-7 
40 95-0 97-0 94-5 93-7 
45 94-5 96-0 94-3 92-5 
55 93:3 94-0 91-5 92-4 
65 92-4 92-0 90-7 89-7 
75 92-0 91-7 | 90-4 89-7 

105 91-1 90-2 90-4 90-1 
155 =| =: 903 89-2 90-6 89-6 
205 90:0 | 893 | 893 

From Table 3 it appears that the area in Diagram 1 in which 
equation (3) holds good is restricted to that part of the diagram 
to which the parabolic boundary curve is convex. From the values 
of MT derived from Table 1 and plotted in Diagram 1, the equation 
of the parabola is found to be M? = 11-26 (MT). I have not been 
able to give the parabola any definite physical interpretation, and 
it ought to be regarded as representing a diffuse limit region. But 
it is only when we pay regard to this, that we obtain values of 7 
differing from each other by amounts lying within the limits of 
experimental error*. To make a comparison with the values of 
M and | which Dr Searle has used, I have, in Diagram 1, plotted 
(the broken line) his values of M7} (strictly speaking, MT/C, 
which are comparable in magnitude with my values of MT) 
against MW. 

Dr Searle has pointed out to me that the effect shown in 
Diagram 1 might conceivably be due to pivot friction. I have 
carefully considered this possibility. Before the liquid was put 
into the apparatus, I adjusted the pivots so that the rotation due 

* Compare G. F. C. Searle, loc. cit., Table II, p. 606. 
{ Calculated from Table 1, G. F. C. Searle, loc. cit., p. 605. 
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to the weights of the two empty pans (5 grm. each) was so rapid 
that I was hardly able to measure, for instance, 37 by using a | 
stop watch. I have, therefore, not been able to take account of 
any pivot friction. This cause of error would, at any rate, produce 
effects much smaller than those actually found. 

§ 5. From the results for M = 205 grm. given in Table 1 we 
find the mean value 

n = 274-7 dyne sec. cm.~, 

for the temperature of + 19-8° C. To show how 7 depends upon 

Diagram 8. 

E 53, 
2 Angular velocity of the 

Rotating Cylinder. 

the angular velocity Q = 27/T, the values of » and Q, obtained 
from the first three series, have been plotted in Diagram 3. The 
curve drawn among the plotted points suggests that the relation 
between 7 and ( can be expressed in the form 

= 274-7 + ¢ exp (— AQ?). 

To find the constants ¢, A and a, I considered the equation 

loeaGy— 274-7) — log ib AOE a ilsceese eee (4) 
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When the values of log. (yn — 274-7) were plotted against Q, the 
curve was roughly a straight line. Hence x may be taken as unity, 
and thus the number of constants to be found is reduced to two. 
By the method of least squares, I obtained log. = 4:375 and 
A = 5-694, and thus 

Mages Bie, 1 Cota er eae ueraasee ne: (5) 

Equation (5) expresses the results of the observations when 
Q exceeds 0-1, but not for smaller values of Q. 

§ 6. Experiments carried out at different temperatures showed 
that the curves representing the function 

ini (MT, UE) ie oat. a 0 

are of the same character as those given in Diagram 1. Table 4 
gives the values of 7 found for various temperatures. In these 
experiments 1 was 10-0 cm.; and, at each temperature, six different 
loads were used, in order that I might be able to decide with 
certainty that the values of M, used in calculating the value of 7 
for each temperature, lay in the area to the right of the parabolic 
boundary line of Diagram 1. The same value of k, viz. the limiting 
value 0-48 cm. shown in Diagram 2, was used in calculating the 

TABLE 4. 

Values of n at various temperatures. 

Temp. n Temp. n 
eC. Dyne sec. cm. ZC Dyne sec. cm.~? 

19-8 274-7 8-75 1950 
18-0 415 6-2 2700 
13-0 860 6-0 2750 
11-8 1140 2-8 4970 
11-6 1200 

various values of 7. These values are not claimed to be exact. 
In these experiments it was very difficult to keep the temperature 
constant during each series of observations, and thus a deter- 
mination of k for each temperature was out of the question. From 
the curve of the function 7 = f(t), shown in Diagram 4, it follows 
that | dy/dt | rises rapidly as » increases; this tallies with what 
was said above. 
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§ 7. I thought it would be interesting to compare the results 
given by Searle’s method with those obtained by Poiseuille’s 
method. The utility of the latter method for very viscous liquids* 
is proved by the investigations of Kahlbaum and Rabery for 
values of 7 in the neighbourhood of 40, and by Ladenburgt for 
n = 1:3 x 10%. Fausten§ has found that the length of the dis- 
charge tube must exceed 45 cm., if the simple Poiseuille formula 

n = 79hR4p*t/8Lm 

is to represent actual facts. In the formula 

h = Height of liquid corresponding to difference of pressure 
between ends of tube. 

R = Internal radius of tube. L = Length of tube. 

p = Density of liquid (= 1-4103 + 0-0003 grm. cm. at 19°8°C.). 

m = Mass of liquid discharged. t = time of discharge. 

For shorter tubes, Hagenbach’s* correction must be employed; 
otherwise the value obtained for 7 will be too high. As the liquid 
flows out into the air in an even jet, it carries kinetic energy with 
it; in order to allow for-this, the value of 7 given by Poiseuille’s 

* H. Glaser, Erlangen Diss., 1906. 
+ G. W. A. Kahlbaum and 8S. Raber, Acta Ac. Leop., 84, p. 204, 1905. 
{ R. Ladenburg, Ann. d. Phys., 22, p. 298, 1907. 
§ A. Fausten, Bonn. Diss., 1906. 
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formula must be multiplied, according to Hagenbach*, by a cor- 
recting factor slightly less than unity. As the thermostat could 
only accommodate tubes shorter than 45 cm., Hagenbach’s correc- 
tion was calculated, but was found to be negligible. Ladenburgt 
points out that both Hagenbach’s and Couette’s corrections to 
Poiseuille’s formula can be entirely ignored for liquids such that 7 
is of the magnitude 1-3 x 10%. 

The discharge vessel consisted of a wide glass cylinder; through 
the bottom of this was bored a hole through which the discharge 
tube was connected with the interior of the cylinder. The whole 
apparatus was placed in the thermostat and the same temperature, 
19-8° C., was maintained as was used in the earlier experiments. 
When a tube whose internal radius was about 0:26 cm. was used, 
the liquid did not issue in a continuous jet but in drops. The 
values obtained for 7 are given in Table 5. The mean value is 
9 = 271-1. The value obtained by Searle’s method, viz. 274-7, 
differs from that obtained by Poiseuille’s method by 1-3 per cent.; 
the agreement may be regarded as good. 

TABLE 5D. 

Values of » by Potseuille’s method. 

m grm. 

0-3168 46-48 49-36 54-421 
49-93 53-568 

§ 8. The influence of the base of the rotating cylinder can be 
eliminated, without determining k, by using the relation t 

M,T, — MyP, _ 
i baa 

provided that the points corresponding to M,7, and M,T, lie to 
the right of the parabolic boundary line in Diagram 1. If we put 
1, = 10-0 cm., we obtain the results given in Table 6. 

7=C Cy, 

* F. Kohlrausch, Lehrbuch d. praktischen Physik, pp. 264—269, 1914. 
+ BR. Ladenburg, loc. cit., p. 298. 
~ Compare C. Brodman, loc. cit., p. 163. 
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TABLE 6. 

Values of y. 

When the various values are given the same weight, the 
mean value of y is 89-7, and then y = 275-4. 

§ 9. Diagram 3 and formula (5) show that y cannot be re- 
garded as independent of © unless 2 exceed a certain value, in 
this case 0-9. Since Q is related to the rate of shearing rdw/dr, 
according to the formula 

dw 15-80 
dr a meni 

it follows that 7 is a function of the rate of shearing. Hence, the 
assumption on which formula (1) is based, viz. that 7 1s independent 
of the rate of shearing, seems to be unjustifiable for small values 
of the rate of shearing, at least in the case of the highly viscous 
liquid used in these experiments. 
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Preliminary Note on Antennal Variation in an Aphis (Myzus 
ribis, Linn.). By Maup D. Havitanp, Fellow of Newnham 
College. (Communicated by Mr H. H. Brindley.) 

[Read 8 March 1920. ] 

In 1918, during an investigation of the life-history of the Red 
Currant Aphis, Myzus ribis, Linn., it was observed that consider- 
able variation occurred in the antennae of the winged partheno- 
genetic females; and the evidence pointed to the conclusion that 
this variation was induced by the food*. Antennal variation in 
certain Aphididae has been studied by Warren®, Kelly4, Ewing? 
and Agar'. Warren’s experiments on Hyalopterus trirhodus 
showed some diminution of the correlation co-efficient in passing 
back from parent to grandparent. Kelly, for Aphis rumicis, con- 
sidered that somatic variations of the parents were not inherited 
by the offspring. Ewing, who bred eighty-seven generations of 
Aphis avenae, concluded that the variations were not transmitted 
to the offspring. 

Agar found some evidence of a partial inheritance of individual 
variations in Macrosiphum antherini, but he showed that this 
might be due to causes other than true inheritance. 

Myzus ribis is a common pest of red currant bushes. The 
sucking of the aphides upon the leaves tends to cause red galls or 

" blisters, within which the plant lice continue to feed and reproduce. 
The fifth and sixth antennal segments of the winged partheno- 
genetic females normally bear two sense organs of unknown 
function—one on the distal third of Seg. v., the other on the 
proximal third of Seg. vi. It was observed in 1918 that, in indivi- 
duals reared on red blistered leaves, these sensoria were placed 
comparatively close to the articulation of Segs. v. and vi. On the 
other hand, if the aphides were fed upon green unblistered leaves, 
the sensoria were placed further away from the articulation. 

For the sake of brevity, the first type of antenna will be referred 
to hereafter as the Red (or R) type, and the second as the Green 
(or G) type; but every degree of transition may exist between the 
two extreme types. 

The experiments of 1918 were incomplete, and were conducted 
with a polyclonal population. They were repeated in 1919 with a 
monoclonal population, but the results are still far from being 
conclusive owing to the small numbers available in some genera- 
tions. Only the winged forms show the required character. The 
production of these forms is probably governed by environmental 
factors which at present are imperfectly understood, and, for some 

3—2 



36 Miss Haviland, Preliminary Note on Antennal 

reason, in the population used in 1919, it was unusually low. It is 
hoped to repeat and extend the range of the experiments in 1920. 

The character chosen is the distance between the sensoria of 
antennal segments v. and vi. and the articulation of these 
two segments, expressed as the percentage of the width of the 
head between the eyes. The ratios are shown separately for 
each segment, with a dividing line to represent the articulation. 

See. vi. = 19% of the head-width 

Seg. v. = 8% of the head-width ~ 

Kach generation is designated by combinations of two letters: 
R (=red leaves) and G (= green leaves) and numerals, which 
express its complete ancestry. Thus R,G, denotes the fourth 
generation from the fundatrix of the population, and the F,. 
generation after transference to Green leaves after two consecutive 
generations on Red blistered leaves. In the transferred generations, 
the aphides were removed to the new environment when less than 
twelve hours old. The individuals for transference were selected 
wholly at haphazard. Thus, if a brood mother R, gave birth to 
four young in the day, two were transferred to red blistered leaves, 
and two to green leaves, and so on in equal numbers from day to day. 

The pure Red (RRR, etc.) lines, and pure Green (GGG) lines 
were used as controls. The latter unfortunately became extinct in 
the third (G3) generation. Hence for later generations the next 
longest unbroken line on green leaves (R,G5, etc.) had perforce to 
be taken as the control, though as it had been fed for the first two 
generations upon red leaves, it cannot be regarded as wholly * 
satisfactory. In Table 1, the curves of error of the ratios of genera- 
tions R,, R, and R,G, are shown. R, is the common ancestral 
generation. The mode of the curve of R, tends to shift to the left, 
z.e. the ratios of the antennal segments to the head-width are 
smaller. For the sake of clearness, in the graph only the curve of 
R, is shown, but those of R35, Rs and R,, though with a smaller 
number of individuals, are almost identical with it. The curves of 

-the ratios of R,G, and R,G, are very similar to their red controls. 
The R,G, generation produced very few winged individuals, but 
these indicate a somewhat greater range of variation in Seg. VI. 
The curve of R,G,, as shown in the graph, has a marked tendency 
to shift to the right, indicating that the ratio of the antennal 
joints to head-width has increased, and this tendency is maintained 
in the succeeding generations, R,G; and R,G,. The position in 
the generation series does not account for the change in the 
antennal structure, for the modes for the six Red generations are 
nearly identical. 

So far we have considered only the modes. The mean ratios 
of the different generations are dealt with in the succeeding tables. 

Thus 12 denotes that 
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Table 2 shows the mean ratios of the successive generations in 
four lines of descent, including the red and green controls. The 
extinction of the green control line was unfortunate, and in future 
experiments it will be very desirable to obtain a pure green line. 
At present the explanation that suggests itself of the variation of 
the R,G,... line is that the influence of red feeding persists for at 
least two, and probably three generations after removal to different 
food, and this is somewhat confirmed by the R,G,... ete. line. 

Tables 3, 3a, 4, 4a and 5, 5a, give the effect of transference 
upon the mean ratios of the first, second, and third generations 
respectively, and below each is an analysis of the ratio of each 
segment, indicating its increase or decrease over previous genera- 
tions and the controls. 

Examination of the figures seems to show that the ratios of the 
first generation after transference vary irrespectively of the 
parental ratio. 

In transference to Red, the ratio of Seg. v. increases over that 
of the parental ratio, but in Seg. vi. it decreases (Table 3). In 
transference to Green, the results for both segments are quite 
inconclusive as regards the parental ratio (Table 3a). In the 
second generation after transference to Red, the results are lke- 
wise inconclusive for both segments (Table 4). After transference 
to Green, the ratio of Seg. v. shows a tendency to rise above, 
and Seg. vi. a tendency to fall below, the parental and grand- 
parental ratios (Table 4a). 

In the third generation after transference to Red, the ratio of 
Seg. v. rises above the ancestral ratios, and that of Seg. vi. falls 
(Table 5). After transference to Green, the ratio of Seg. v. rises 
above those of the ancestral generations, and that of Seg. vi. rises 
in one case and falls in the other (Table 5a). 

These results are inconclusive, but examination of the control 
ratios shows that, with occasional exceptions, the ratio of a genera- 
tion with a mixed ancestry tends to rise above that of the Red 
control, but remains below that of the Green. Many more experi- 
ments in transference are required, and a much larger number of 
individuals must be examined before any conclusion can be 
reached; but at present the evidence suggests that the antennae 
of Myzus ribis are modified according to the food supplied, and 
that the effect induced by feeding in one generation is discernible 
in the succeeding three or four generations. It is difficult otherwise 
to explain the difference between the ratios of R, and R,G,, and 
between R, and R,G3, which, translated into the terms of human 
relationship, would be third cousins, and first cousins once removed, 
respectively, for all were produced by parthenogenesis, and, 
except for the food, reared side by side under identical environ- 
mental conditions. 
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TABLE 1. Curves showing the ratio of the distance of the sensoria 
from the articulation of antennal Segments V and VI to the 
width of head. The lower curves refer to the fifth, and the upper 
to the sixth segment. 

SS — Regeneration 

SS SSS = Ry ” 

—e—e—e—s—e — RoGy ” 

15 

10 

10 

15 

TABLE 2, Mean ratios of the successive generations of the lines, 
Cond Ite acon LAG nce Jen Cmy aoe CHO Ti Crate 0. 

: : a 

II TIT IV V VI VII VIII 

Ce Cae . a ss 
Ry 2} R, 18 13nd R; 1 Ry 18 a a 

Be!) Wo op ” 9 RyGy 2? RG, 13 R,Gs is ian 

» 9 RG, 2 R.Gp aS RG; A RG, 15 RG; ig RyGe i 3 

OB) OF) ” ” ” ” ” ” R.G3R, i¢ R.G3Re a ope 
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TaBLE 3. Mean ratios of the first generation transferred from Green 
leaves to Red blisters, with an analysis below. 

+ = increase over ancestral ratio 
— = decrease from 3 ” 
0 = identical with “i PH 

Generation | Parental Generation | Red Control | Green Control 
Ratio Ratio Ratio Ratio 

Ry 24 G no winged forms | Ry 22 Gy 22 

GR ib | G, % Re, | Gadh 
RG, R, 1 RG, 1 | R, ae R.Go 18 

GR, 19 GR, 24 R, 38 Gs 23 

R,G,Ry 4? | RyGy 4 | Re 32 RoG, 24 

R.G3R, 20 R,Gs 1f Re +8 RG, +4 

R,GyRy Zt | RG, 74 Rg 1 RG; 78 

Segment V 

Variation from Variation from Variation from 
Generation Parental Red Control Green Control 

Ratio Ratio Ratio 

GR, no winged forms _ 0 

GR, ar ao - 

R,G,R, ae | + - 

GR. 0 | 0) - 
| 

RyG,R, + 0) — 

R.G3R, O + — 

R.GyR, ~ + - 

Segment VI 

| Variation from | Variation from Variation from 
Generation Parental | Red Control Green Control | 

| Ratio Ratio Ratio | 

f | | 

G,R, | no winged forms | + - 

GoR, Tn + = 

R.G,R, _ O — 

GR, aa | + = | 

R,G,R, a + ae | 

R.G3R, @) + — | 
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TABLE 3a. Mean ratios of the first generation transferred from Red 
blisters to Green leaves, with analysis as in Table 3. 

Generation | Parental Generation | Green Control | Red Control 
Ratio Ratio Ratio Ratio 

| RyG, 12 R no winged forms Gp 42 | R, 20 

RG, aia Ry 20 Gs a Rs 18. 

| G,R,G, 42 | G,R, #2 G3 23 R, 42 

| RG, 2 Rs 4% G3 73 Ry 36 

| GyByG, 4P | GyRe WY BG,4g | Rai 
| BGi ae | Rat RGsig | Bs et 

| | | 

Segment V 

| | ara 
Tes Variation from Variation from Variation from 
Generation Parental Green Control Red Control 

Ratio Ratio Ratio 

RG, no winged forms 0) | — 

G, RG, ar = + 
| 

RsG, O — | O 

| G,RG, | 4 = tk 

RG) = | - = | 
| 

Segment VI 

Variation from Variation from Variation from 
Generation Parental Green Control Red Control 

Ratio Ratio Ratio 

R,G, no winged fornis = = 

RG, _— — + 

G,R,G, = = ae 

R3G, 0 — + 

GR,G, 0 + + 

RG, Uy oF + 
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TasLE 4. Mean ratios of the second generation after transference 
from Green leaves to Red blisters, with analysis as in Table 3. 

encration Parental Grand-parental Red Green 

Batio Generation Generation Control Control 

Ratio Ratio Ratio Ratio 

GR, GR, 22 G, no winged forms R, 18 Gs 28 

GR i | GR 3 G, 92 Roe | Gs #8 
RiGsR, | RoGsR, 78 RsGs 15 Ro4f | ReGs 3g 

Segment V 

Variation from | Variation from | Variation from | Variation from 
Generation Parental Grand-parental | Red Control Green Control 

Ratio Ratio Ratio Ratio 

G,R, o) ‘no winged forms) ) - | 

GR, a5 | = + Cx 

R.G3R, | - | = es = 

Segment VI 

| Variation from | Variation from | Variation from | Variation from 
Generation | Parental Grand-parental | Red Control Green Control 

| Ratio Ratio Ratio Ratio 

~ no winged forms + = 

=~ — ae — 

ue 0 ae a 



42 Miss Haviland, Preliminary Note on Antennal 

TaBLE 4a. Mean ratios of the second generation after transference 
from Red blisters to Green leaves, with analysis as in Table 3. 

| 

: Parental Grand-parental Green | Red 
Goucreon Generation Generation Control Control 

Ratio Ratio Ratio Ratio 

= ou 

PoGs4§ | RG | Be GH | Rv 
RyGp 1) RG, 22 Ry 46 R,Gy 74 | Re if 

Segment V 

Variation from | Variation from | Variation from | Variation from | 
Generation Parental Grand-parental | Green Control | Red Control 

Ratio Ratio Ratio Ratio 

ral 
RyGo SF oF Tan = 

RyGs an + aa, AF 

Segment VI 

| 

Variation from | Variation from | Variation from | Variation from | 
Generation Parental Grand-parental | Green Control Red Control 

Ratio Ratio Ratio Ratio 

faa i 

R,Gp ing 7 ay Lr 

R,Go aad = Pies = 
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TaBLE 5. Mean ratios of the third generation after transference from 
Green leaves to Red blisters, with analysis as in Table 3. 

Great-grand- 
Cuneration Pein Panera parental | Ge pilneas 

Batio eneration | eneration Gancration:| ontro ontro 

Ratio Ratio : Ratio Ratio 
Ratio 

Gy R; 18 Gy Re aid G,Ry 21 ho winged Ry co Gs 73 

forms 

Segment V 

| Bea, “hate ee are 
Variation | Variation Variation from | Variation | Variation 

G Pa | from , from Great-grand- from Red | from Green 
| Parental Grand-parental parental Control Control 

Ratio Ratio Ratio | Ratio Ratio 

GR, + a no winged | - ~ 
forms | 

Segment VI 

Variation Variation Variation from Variation | Variation 
G ti from from Great-grand- | from Red | from Green 

G2cinn |) Parental Grand-parental parental | Control Control 
Ratio Ratio Ratio | Ratio Ratio 

Ate | 

G,R; = = no winged | ae ae 

forms | 
' | 
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TaBLe 5a. Mean ratios of the third generation after transference 
from Red blisters to Green leaves, with analysis as in Table 3. 

‘ Grand- Great-grand- 
Generation eueaell parental parental Green Red 

Rati Generation : 3 Control Control 
atio Rate Generation | Generation Ratio Ratio 

Ratio Ratio 

FoGstG | ReGeté | ReGi 7% Ry * Gs 73 Rs 3 
RiG3 72 | RyG, 45 RyG, *7 Ry 40 RoGs 7$ Re 

Segment V 

Variation Variation Variation from| Variation | Variation 
Gonawtign from from Great-grand- | from Green | from Red 

Parental |Grand-parental parental Control Control 
Ratio | Ratio Ratio Ratio Ratio 

R,G3 0 + 4p = 45 
R,Gs + + BUS + 

| 

Segment VI 

Variation Variation Variation from| Variation | Variation 
from from Great-grand- | from Green | from Red 

Parental |Grand-parental parental Control Control 
Ratio Ratio Ratio Ratio Ratio 
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The effect of a magnetic field on the Intensity of spectrum lines. 
By H. P. Waran, M.A., Government Scholar of the University of 
Madras. (Communicated by Professor Sir Ernest Rutherford.) 

[Read 8 March 1920.] 

[Plates I and II. ] 

Since the discovery of the Zeeman effect the main attention 
has been directed to the detailed study of the phenomenon of the 
small change of wave length suffered by a monochromatic radiation 
in a magnetic field. The question whether a magnetic field affects 
the spectrum as a whole has not received much attention. 

While working on the Zeeman effect with a mercury discharge 
tube run by an induction coil as the source, a small portion of the 
capillary tube being subjected to a magnetic field of about 5000 
c.G.8. units as shown in Fig. 1, the light was observed to suffer a 
change in intensity and also in colour opposite the pole pieces 
when the field was thrown on. A spectroscopic examination revealed 
the existence of some selective changes in the spectrum in addition 
to the increased brilliancy of the genera] spectrum. It was also 
noticed that the changes taking place varied considerably with 
the pressure, at a low pressure the tube showing little change 
visually but greater changes in the general spectrum. Attention 
was concentrated on the latter. 

In the case of mercury which was the first spectrum investigated, 
the tube, containing a trace of residual air at very low pressure, 
gave the principal mercury lines, viz.: 

5790-66, 5769-6, 5460-7, 4916-0, 4358-34 

and the principal hydrogen lines 
6563, 4861-5 and 4340-7. 

On applying the magnetic field, however, marked changes were 
observed, including a new set of lines at 

5426, 5679, 5872 and 5889, 

and a very strong red line at 6152, brought out prominently by 
the field. Mercury lines have been recorded at these wave lengths 
and these lines brought out are probably due to mercury. The 
behaviour of the line 6152 was very remarkable. It was invisible 
under ordinary conditions but showed up brilliantly in the magnetic 
field, the effect being practically instantaneous. Exhausting the 
tube still further and increasing the current through the tube to 
about 5m.a. Four faint lines appeared at wave lengths 

6234, 6152, 6123 and 6072, 
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and corresponding to these wave lengths mercury lines are recorded 

by* Stiles, Eder, Valenta, Arons and Hermann. But Arons and 

Fig. 1. 

Hermann have not recorded the line 6152, while Stiles records it 
as of equal intensity with the line 6234. Eder and Valenta have 
not observed the latter lines at all, but record the line 6152 as 

* Kayser, Handbuch der Spectroscopie, Band v. p. 538. 
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one of very great intensity. Examining the effect of the magnetic 
fields on these four lines, it is very interesting to note that the 
line 6152 alone increases about five times in brilliancy while the 
others if they suffer any change at all, decrease in intensity. It is 
also interesting to note that this line 6152 seems to be the same 
line that becomes so greatly enhanced when the tube contains a 
trace of helium as observed by* Collie. It seems very difficult to 
excite this line unless at least a trace of helium is present in the 
apparatus and at this stage it is not possible to suggest any 
explanation of its abnormal behaviour. 

In addition to these very prominent changes there are also 
many minor changes, among which is the disappearance of a faint 
trace of continuous spectrum, as well as of some of the nebulous 
bands and lines, the remaining lines being quite sharp on a dark 
background. 

The abnormal behaviour of the mercury spectrum in the visible 
region (the ultra violet spectrum has not yet been investigated) 
‘suggested the study of other spectra and the spectrum of helium 
was next examined. 

The discharge tube contained hydrogen and a slight trace of 
mercury vapour as impurity and the hydrogen lines and the 
prominent mercury lines were also visible. The effect of the 
magnetic field in this case was to enhance the helium lines very 
considerably, leaving the hydrogen lines practically unaffected or 
even slightly reduced in intensity. In this spectrum there were 
also a few faint lines not yet identified definitely which remain 
quite unaffected by the magnetic field. In the further study of 
the helium spectrum, the gas was contained in a separate tube 
from which any small quantity of it could be introduced into the 
discharge tube. At a pressure of 1 mm. of mercury the addition 
of a small trace of helium produced no perceptible effect on the 
spectrum of residual air which showed the prominent hydrogen 
lines and the nitrogen bands, but no trace of any of the helium 
lines. But on switching on the magnetic field, the helium lines 
flashed out prominently and disappeared again as soon as the field 
was turned off. The effect is shown in the accompanying photo- 
graphs (Plates [and II). In a plate taken with a greater percentage 
of helium the lines are visible without the magnetic field, but a 
creat enhancement of these lines with the field is evident, and a 
dense new line at 4933-4 a.u. is also noticed which has not yet 
been definitely identified. 

The spectrum of neon was also studied, and in a tube kindly 
lent to me by Dr Aston, there was a trace of hydrogen also present, 
showing the three principal hydrogen lines. Here also the effect 
of the field was to enhance very considerably the neon lines, 

* Proc. Roy. Soc. 71, 25, 1902. 
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leaving the hydrogen lines comparatively unaffected, so that by a 
casual examination of the spectrum the hydrogen and the neon 
lines can be distinguished from one another. 

The oxygen spectrum is rather difficult to excite when mixed 
with other gases. Yet a mixture of hydrogen, oxygen and a trace 
of helium was tried with success and here again the monatomic 
helium lines were brouglt out by the magnetic field, leaving the 
diatomic oxygen and hydrogen lines comparatively unaffected as 
shown in the photographs. 

From these experiments the natural inference follows that in 
a mixture of the monatomic and diatomic gases, the monatomic 
gases alone seem to be selectively affected in a peculiar way 
resulting in their spectrum lines alone being very considerably 
enhanced or brought out prominently even when not visible at 
all previously. By this method minute traces of the monatomic 
gases when mixed with other diatomic gases can be detected. 
On this view we might also explain the abnormal mercury line 
6152 and others as due to the radiation from the monatomic 
atom while the other lines may be classified as belonging to the 
molecule. 

Examining the spectrum of the atmospheric air at low pressure 
in this way the effect of the magnetic field is to bring out new lines 
which are not present without the magnetic field, as shown in the 
photographs. As far as their wave lengths have been determined, 
though one or two of them fit in fairly well with lines catalogued 
as belonging to oxygen and nitrogen, yet there are others which 
are difficult to identify while the absence of other stronger lines of 
oxygen and nitrogen make even these two or three fits inconclusive. 

Another interesting point noted in these experiments is the 
varying degrees of enhancement under the influence of the field 
for lines belonging to the same element helium. Preston has 
shown that the Zeeman effect is of the same magnitude for lines 
belonging to the same series, but differs in different series. Simi- 
larly we might expect the degree of enhancement of the lines in 
the magnetic field to depend on the series to which the line belongs. 

The exact nature of this phenomena and the mechanism of the 
reaction that brings about these novel changes in the general 
spectrum is not yet definitely known and it is not desirable to 
attempt an explanation until the study of the spectrum has been 
extended to the ultra violet. 

The current in the tube was usually about 3 m.a. and the effect 
of the field was to decrease the current by about 20 to 30 per cent. 
The changes of intensity observed cannot be attributed to this 
since the reduction of the current by a spark gap in series only 
brings about a proportionate decrease in brilliancy of the general 
spectrum. 
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Fig. 2. Photographs showing the enhancing effect of the field. The small lateral 
shift is due to the camera slider, and in (a) the mercury line 6152 is indicated 
by the dot, while in the other cases the lines that newly turn up are indicated 
by the arrows. 
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Fig. 3. Photographs showing the effect in mixtures of gases studied. 
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It may be of interest to note that in solar spectroscopy the 

spectrum of the sunspots is found to differ in many respects from 

that of the photosphere, considerable numbers of enhanced lines 

occurring in the sunspot spectrum. The existence of a powerful 

magnetic field in sunspots has been demonstrated by the Zeeman 

effect and possibly the differences in the spectrum of the sunspot 

and the photosphere may be attributed to this new effect of the 
magnetic field on the spectrum. 

The further study of this effect and the examination of other 
spectra are in progress. 

CAVENDISH LABORATORY, 

CAMBRIDGE. 

VOL. XX. PART I. 4 
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Further Notes on the Food Plants of the Common Earwig (For- 
ficula auricularia). By H. H. Brinpuey, M.A., St John’s College. 

[Read 8 March 1920.] 

In a paper published in the Proceedings of the Cambridge Philo- 
sophical Society, x1x, Part 4, July 1918, p. 170, I recorded certain 
observations in August and September, 1917, on the food plants of 
the Common Earwig, with the view of obtaining more exact infor- 
mation than was then available as to the damage likely to be 
done by this species in a flower or kitchen garden. The paper also 
epitomised recent literature on the subject, a consideration of 
which had revealed a considerable amount of diversity and want 
of exact information as to the favourite food plants of earwigs in 
the British Isles. The observations made by myself were on earwigs 
kept in captivity in connection with a statistical enquiry as to the 
variation of the forcipes which is still in progress. The observations 
in 1917 were on earwigs from St Mary’s, Isles of Scilly, and those 
recorded in the present paper were made in the second half of the 
year 1918 on a collection from the Bass Rock, which swarms with 
earwigs. The animals were all adults and were kept in large glass 
dishes bedded with sand slightly damped occasionally. Earwigs re- 
main healthy in a soaked substratum if the ventilation is good, but 
in captivity in a warm room without circulation of air they suffer 
heavy mortality from fungoid attack, as I have already recorded 
(Proc. Camb. Phil. Soc., xv, Part 4, Feb. 1914, pp. 335-338). The 
fungus appears to be usually Hntomophthora forficulae (Picard, 
Bull. Soc. Etude Vulg. Zool. Agric. Bordeaux, Jan.—Apr., 1914, 
pp. 25, 37, 62). The importance of ventilation and of normal tem* 
perature is well illustrated by the far fewer fungoid attacks and 
the low mortality when the new Insect House belonging to the 
Cambridge Zoological Laboratory became available in 1919. It is 
at present too early to say how far an improvement is obtainable 
in the survival of eggs and young which it is hoped to rear in the 
spring in normal outside temperatures in the Insect House. Harwigs 
offer a great contrast to cockroaches as regards desire for water; 
the latter thrive in captivity for months in a warm room on food 
which is entirely dry, while earwigs certainly visit water to drink, 
as I have seen in both the captive and wild conditions. I have 
previously recorded (Proc. Zool. Soc. Lond., Nov. 1897, p. 913) 
how Stylopyga orientalis in captivity seems to pay no attention to 
a damp sponge when that is the only source of moisture. We have 
however to bear in mind that the Common Cockroach is probably an 
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immigrant from warmer countries of the East. The earwigs under 
observation during the past three summers had no animal food save 
that afforded by those which died. In order to obtain information 
as to preference for one kind of plant above another they were 
usually given three different species, taken haphazard, at a time, 
for a period of two or more days. 

In the following summary the observations of 1917 and 1918, 
with a few made in 1919, are combined. The dates when the different 
foods were given are noted, as in the latter part of September, when 
the animals tend to become lethargic, and in the succeeding two 
months the desire for food is much lessened, even in the artificial 
temperature of a laboratory. The capital letters after the names of 
the plants indicate those which were given at the same time, and 
the numbers appended indicate the preference exhibited by the 
earwigs: e.g. in food group M, M! was attacked more than M?, M? 
more than M8; in group F, F! after two plants indicates that they 
seemed to be attacked equally, and more readily than F*: while 
in group Q, Q° indicates that the plant offered was not attacked at 
all. Similarly for the other groups. 

24-26 Aug. °17. Alkanet, Blue (Anchusa sp.) C': leaves not attacked; petals 
gnawed considerably. 

27-29 Aug. °17. Anemone, White Japanese (Anemone japonica) D*: leaves 
not attacked; petals eaten moderately. 

1-23 Sept. 717. Apple (Pyrus Malus) F?: rather unripe fruit with skin whole 
was not attacked, but when cut across was gnawed moderately: 24-28 
Sept. ’18, leaves holed. 

24-28 Sept. 718. Artichoke, Jerusalem (Helianthus tuberosus) M?: leaves holed 
and edges gnawed down to midrib; tuber, cross slice attacked vigorously 
and its buds also devoured. 

20 Sept.—5 Oct., 3-17 Nov. ’18. Asparagus (Asparagus officinalis) O*, T°: leaves 
nawed a little; fruit not attacked. 

26-31 Aug. ’18. Aster, Mauve China (Callistephus chinensis) H?: leaves not 

attacked; petals and flower buds much eaten. 
6-11 Sept. 18. Aster, Pink China (Callistephus chinensis): leaves slightly 

nibbled; petals much eaten; flowers used as a refuge. 

15-20 Sept. 718. Balm, Pale Mauve (Melissa officinalis) J*: leaves not attacked ; 

petals of buds devoured. 
22-23 Aug. °17. Bean, Dwarf (Phaseolus vulgaris) B*: leaves nibbled very 

slightly. 
30-31 ae °17. Bean, Scarlet Runner (Phaseolus multiflorus) E*: leaves, 

flowers and pods apparently neglected: 16-18 Oct. ’18, leaves holed a good 
deal and edges gnawed down to veins. 

20-28 Oct.’18. Beard Tongue, Scarlet (Pentstemon sp.) R®: leaves and flowers 

not attacked. 
22-23 Aug. 17. Beet (Beta vulgaris) B*: leaves much attacked, especially the 

petioles, which were opened out and their pith devoured. 

20-24 Sept. 718. Bell Flower, White (Campanula sp.) K!: leaves not touched; 

petals completely devoured. 
31 Aug.—6 Sept. 18. Bindweed, Common (Convolvulus sp.): leaves much holed. 

11-13 Sept. 18. Blackberry (Rubus fruticosus): ripe fruit well gnawed. 

4—2 
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30-31 Aug. ’17. Cabbage, Garden (Brassica oleracea capitata) E?: leaves gnawed 
down to midrib and veins and ends of veins eaten off. 

2-5 Oct. ’18. Canterbury Bell, Blue (Campanula medium) N?: leaves and petals 
well devoured. 

6-7 Sept. ’18. Carrot (Daucus Carota): root not attacked where covered by 
skin, but cut end was much gnawed. 

6-11 Sept. ’18. Celery (Apiwm graveolens) H*: leaves holed and their edges 
onawed. 

29 Sept.—3 Oct. ’18. Cherry (Prunus [Cerasus] sp.) M®: leaves not attacked. 
20-23 Oct. °18. Chickweed (Stellaria media) R1: edges of leaves gnawed 

slightly. 
31 cele oct 18. Chrysanthemum, Garden (Chrysanthemum indicum): 

flower buds used as refuge, tips of petals apparently somewhat nibbled: 
31 Aug.—6 Sept. ’18, purple variety: edges of leaves much nibbled; flower 
buds used as refuge, tips of petals apparently somewhat nibbled: 31 Aug.— 
6 Sept. ?18, white variety: leaves not attacked; petals much eaten. 

20-24 Sept. 718. Clematis, White (Clematis sp.) K?: leaves, a few eaten off at 
ends and edges gnawed here and there; flowers entirely devoured. 

23-27 Oct. 718. Cluvia miniata (Natal): leaves not attacked; petals gnawed a 
little along edges. 

15-20 Sept. ’18. Cornflower (Centaurea Cyanus) J+: leaves well eaten, only 
midrib left; flowers entirely devoured. 

29 Sept.—3 Oct. ’18. Cups and Saucers (Cobaea scandens) M*: petals nibbled 
a little. 

27 Oct.-3 Nov. °18. Dandelion (T'araxacum officinale): petals of ray florets 
entirely devoured. 

26-31 Aug. ’18. Elephant’s Ear, Pink (Begonia sp.): leaves much gnawed along 
edges and also holed; flowers thoroughly devoured. 

2-5 Oct. 18. Fern, Male (Lastraea filis-mas) O°: leaves not attacked. 
15-20 Sept. 718. Feverfew (Pyrethrum sp.) J+: leaves gnawed down to midrib; 

flowers apparently not attacked. 
21-28 Sept. °18. Fig (Ficus Carica): leaves not attacked; fruit neglected when 

whole, but cross section was well gnawed. 
7-15 Oct. ’18. Fox-glove (Digitalis purpurea) P?: leaves holed. 
6-11 Sept. ’18. Fuchsia, Crimson Garden (Fuchsia sp.) H®: neither leaves or 

flowers were attacked. 
28 Sept.—2 Oct. 18. Geranium, Scarlet (Geranium sp.) L?: petals eaten a little. 
20-24 Sept. ’18. Gesnera, Orange and Pink (Gesnera sp. )K?+: leaves not attacked ; 

petals entirely devoured. 
24-26 Aug. ’17. Golden Rod (Solidago sp.) C3: leaves gnawed at edges here 

and there; flowers apparently not attacked. 
2-5 Oct. ’18. Gooseberry (Ribes grossularia) O°: leaves not attacked. 
11-15 Sept. ’18. Hawthorn (Crataegus oxycantha) 1°: neither leaves or flowers 

were attacked. 
24-31 Aug. ’18. Hollyhock, Dark Crimson (Althaea rosea): leaves not attacked; 

flower buds used as refuge, petals apparently eaten to some extent. 
10-20 Aug. ’18. Honeysuckle (Lonicera sp.) G*: leaves not attacked; fruit 

gnawed considerably. 
7-20 Oct. 718. Hydrangea, Pink (Hydrangea sp.) Q®: neither leaves or flowers 

were attacked. 
7-15 Oct. °18. Larkspur, Garden variety (Delphiniwm sp.) Q!: leaves gnawed 

thoroughly down to midrib. 
3-6 Nov. °18. Leek (Allium porrum) T!: leaves gnawed deeply towards base. 
6-15 Sept. °18. Lettuce, Cabbage (Lactuca sativa): stem abundantly gnawed 

and bored; leaves of “‘heart” entirely devoured. 
7-27 Oct. °18. Lupin (Lupinus polyphyllus) S*: leaves gnawed to some extent. 
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3-17 Nov. 18. Mallow (Malvus ? sylvestris): leaves holed and edges gnawed 
down to veins. 

23 Oct.—17 Nov. ’18. Marguerite, White-rayed (Chrysanthemum leucanthemum) 
St, U?: petals of ray florets well gnawed. 

20-21 Aug. °17. Marrow, Vegetable (Cucurbita ovifera) A‘: leaves thoroughly 
devoured. 

20-21 Aug. °17. Michaelmas Daisy (Aster sp.) A®, N*: leaves hardly touched, 
if at all; flowers also neglected. 

11-15 Sept. °18. Mignonette (Reseda odorata): leaves gnawed down to midrib; 
4 flowers attacked but slightly or not at all. 
16-18 Sept. °18. Mint (Mentha sp.): leaves, edges and ends nibbled; flowers 

entirely devoured. 
20-23 Oct. °18. Navew (Brassica campestris) R1: leaves holed and edges gnawed 

a little; petals moderately attacked. 
3-17 Nov. °18. Nettle (Urtica dioica) U!: leaves well gnawed down to veins. 
31 Aug.—6 Sept. ’18. Onion (Allium Cepa) L®: inflorescence used as refuge, but 

apparently not eaten. 
7-15 Oct. °18. Pansy (Viola tricolor) P!: leaves nibbled slightly. 
10-20 Aug. °18. Parsley, Garden (Carum Petroselinum) G*: inflorescence 

nibbled moderately. 
29 Sept.—3 Oct. °18. Peach (Prunus [Amygdalus] sp.) N?: leaves gnawed 

moderately. 
28 Sept.—2 Oct. ’18. Periwinkle, Blue (Vinca sp.) L?: leaves and petals gnawed 

moderately. 
22-23 Aug. °17. Phlox, White (Phlox Drummondi) B?: leaves apparently not 

attacked; petals much gnawed and pollen found in gut of earwigs. 
1-3 Sept. °17. Plum (Prunus communis) F!: fruit well eaten. 
26-31 Aug. °18. Poppy, Garden (Papaver sp.): dried fruits very popular as 

refuges; some were holed to obtain entrance. 
1-18 Sept. °17. Potato (Solanum tuberosum) F1: tuber in skin was neglected, 

but slices were thoroughly gnawed. 
28-29 Aug. °17, 20-23 Oct. ’18. Primrose, Evening, yellow variety (Oenothera 

sp.) Dt: leaves not attacked; petals eaten thoroughly; pods neglected. 
7-15 Oct. 18. Privet (Ligustrum vulgare) Q?: leaves holed and edges gnawed; 

fruits not attacked. 
20-21 Aug. °17. Radish, Horse (Raphanus sativus) A?: leaves nibbled 

slightly. 
27-29 Aug. ’17. Raspberry (Rubus idaeus) D®: leaves not attacked, but earwigs 

assembled in crowds on their hairy undersides. 
22-28 Sept. °18. Red hot poker (Kniphofia sp.) : cut end of stem gnawed; 

leaves and petals not attacked. 
11-15 Sept. 18. Rest-harrow (Ononis sp.) I°: apparently neither leaves or 

flowers were attacked. 
30-31 Aug. 17. Rhubarb (Rheum officinale) E*: leaves well gnawed. 
24-26 Aug.’17. Rose, White garden variety (Rosa sp.) C!: leaves not attacked ; 

petals devoured. 
7-10 Oct. 18. St John’s Wort (Hypericum sp.) P!: leaves holed and their edges 

gnawed; flower buds not attacked. 
31 Aug.—6 Sept. °18. Scabious, Crimson Garden (Scabiosa atro-purpurea): 

leaves much holed; flowers apparently not attacked. 
23-27 Oct. ’18. Scotch Kale (Brassica oleracea acephala) 8°: leaves holed a very 

little; curled margins a favourite refuge. 
10-24 Aug. ’18. Sea Kale (Brassica oleracea acephala) G1: leaves holed and 

gnawed away from edges to between veins. 
6-11 Sept. ’18. Snapdragon, Scarlet (Antirrhinum sp.): leaves gnawed moder- 

ately; petals apparently holed to some extent, also used as refuge. 
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23-30 Oct. ’18. Sow thistle (Sonchus oleaceus): leaves holed slightly; flower 
buds not attacked. 

3-17 Nov. ’18. Strawberry (Fragaria vesca) U?: leaves holed a little. 
31 Aug.—6 Sept. 18. Tomato (Lycopersicum esculentum): leaves and ripe fruit 

gnawed thoroughly. 
14-15 Sept.’18. Valerian, Red Garden (Valeriana sp.): edges of leaves gnawed 

moderately; petals entirely devoured. 
21-24 Aug. °18. Vervain, Blue (Verbena sp.): leaves nibbled slightly, hairy 

undersides used for assembling; petals entirely devoured. 
24-31 Aug. ’18. Vetch, Mauve and White garden varieties (Vicia sp.): leaves 

attacked very slightly, if at all; petals entirely devoured. 
23 Oct.-3 Nov. ’18. Violet, Single and Double garden varieties (Vicla sp.): 

leaves holed and edges gnawed moderately. 
3-17 Nov. ’19. Wartweed (Euphorbia helioscopia) 'T?: edges of leaves gnawed 

very slightly. 
15-18 Sept. 718. Wormwood (Artemisia sp ): leaves not attacked. 

These observations are of course subject to the drawback that 
in captivity animals which normally feed daily may take unusual 
food with apparent eagerness because no other is available; but 
the above record probably indicates normal preferences over a 
certain range of common plants, and also that some are disliked 
by earwigs; thus Wartweed was left entirely untouched for many 
days in the absence of any other food, the animals attacking potato 
tuber ravenously as soon as this was substituted. It seems natural 
that such stiff and dry foliage leaves as those of Raspberry, Haw- 
thorn, and Cherry, should escape attack, and there is no doubt that 
the more succulent leaves are preferred. The list of plants affords 
some information which may facilitate the destruction of earwigs 
when they become a pest by the indications obtained as to plants 
which are popular as refuges, and also by the mode in which the 
attack on leaves is made; thus, some leaves seem to be attacked 
by holing as well as by gnawing along the edges, and others only 
by the latter method. There is no doubt that earwigs have pre- 
ferences among the common plants of a flower or vegetable garden, 
and that if numerous they are likely to become a pest. In certain 
cases, as for instance, chrysanthemums, the actual damage done 
seems to be exaggerated by common report. 

Since the epitome of recent literature on the subject in my 
previous paper (Proc. Camb. Phil. Soc., x1x, Part 4, 1918, p. 170) 
was written, The Review of Applied Entomelogy has recorded 
attacks on beets and sugar-beets in Denmark sufficiently serious 
to obtain mention by Lind and others in their Report on Agri- 
cultural Pests in 1915 (Beretning fra Statens Forsogsvirksomhed 7% 
Plantekultur, Copenhagen, 1916, pp. 397-423). 

As regards the carnivorous habit of F. auricularia, lean roast 
mutton without other food was given for several days to the ear- 
wigs under observation in 1918 and was gnawed sparingly, while 
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mutton suet substituted for it was eaten readily and extensively. 
In the Journal of the Bombay Natural History Society, xxvi, No. 2, 
May, 1919, p. 688, F. P. Connor records an unnamed earwig at 
Amara catching moths in its forcipes and in one case nibbling its 
prey. F. Maxwell Lefroy (Indian Insect Life, p. 52) remarks: 
“The function of the forcipes is a mystery that will be cleared up 
only when their food habits and general life are better under- 
stood.” They are very possibly “‘frightening”’ as well as defensive 
organs. Pemberton (Hawaian Planters’ Record, Honolulu, xxt, 
No. 4, Oct. 1919, pp..194—221) mentions the benefit to cane fields 
arising from the destruction of the leaf-hopper parasite Perkin- 
stella optabilis by the black earwig Chelisoches morvo. 

The importance of nocturnal observations on the feeding habits 
of Forficula auricularia to a satisfactory understanding of the 
economic effects of this insect in gardens, urged in my previous 
paper, may be referred to again. 
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Lagrangian Methods for High Speed Motion. By C. G. Darwin. 

[Read 8 March 1920.] 

1. In the later developments of Bohr’s* spectrum theory, it 
is necessary to calculate the orbits of electrons moving with such 
high velocities that there is a sensible increase of mass. The selection 
of the orbits permitted by the quantum theory almost necessitates 
the treatment of such problems by Hamiltonian methods. Working 

on these lines Sommerfeld} and others have calculated with a very 
high degree of success those spectra which involve the motion of 
a single electron. But the application of the Hamiltonian function 
involves a knowledge of the momentum corresponding to any 
generalized coordinate, and in the formulation of most problems 
the momenta are not known a priort but must be calculated from 
the corresponding velocities. In other words the formation of the 
Hamiltonian function must in general be preceded by that of the 
Lagrangian. An exception occurs in precisely the problems referred 
to above; for, the electromagnetic theory furnishes directly values 
for the momentum and kinetic energy of a moving electron in 
terms of its velocity, and the velocity can be eliminated between 
them so as to obtain the Hamiltonian function. But in even slightly 
more complicated cases this simple relation is destroyed—thus the 
problem of a single electron in a constant magnetic field can only 
be solved by introducing the artificial conception of rotating axes 
—and in general it will be necessary to follow the direct course of 
finding the Lagrangian function in terms of the generalized velocities, 
and then deducing from it the momenta and the Hamiltonian 
function in the usual way. 

If more than one particle is in motion another difficulty enters. 
For the interaction of two moving particles depends on a set of 
retarded potentials and the effect of the retardation is readily seen 
to be of the same order as the increase of mass with velocity. The 
calculation of the retardation can only be carried out by expansion 
and so the results are only approximate. This is not surprising since 
the methods of conservative dynamics cannot apply to such effects 
as the dissipation of energy by radiation, effects inevitably required 
-by the electromagnetic theory, though they do not occur in actuality. 
We can also see from the fact that these radiation terms are of 
the order of the inverse cube of the velocity of light, that it will 
be useless to expand beyond the inverse square. 

* N. Bohr, Kgl. Dan. Wet. Selsk., 1918. 
7 A. Sommerfeld, Ann. Phys., vol. 51, p. 1, 1916. 
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2. We first consider the motion of a single electron in an 
arbitrary electric and magnetic field varying in any manner with 
the time and position. If m is the mass for low velocities, the 
momentum is known to be mv/B, where B = V 1 — ve. Starting 
from this we have quasi-Newtonian equations of motion of the 
type 

De A Be 
aig %- Fe sq000r (2-1). 

The force F, is given from the field E, H as the vector eE + aly, H], 

where v is the velocity vector of the particle’s motion. E and H 
can be expressed in terms of the scalar and vector potentials in 

the form E = — grad ¢ — ao ae and H = curl A. 

Then if r, is the vector z, a z we have as the vector equation of 
motion 

d (my e, OA i 9-2 Fi i t ‘i —e, grad d — 7 CO OE 44 ase curl A] ...(2°2), 

where 8, = V 1 — #,2/C®. 
Let ¢ be any one of three peneraleed coordinates representing 

the position of the particle. Take the scalar product of (2-2) by 
or, eG: ae 
are Then since — = =, we have 

Ce 

or, d (my | eine {7 or, : My & t,) 

(Sa a By’ 1) di By Cr i) B, \eq’ * 
d jm Canatals mM, 0 
di tae aa 1) By age 

= 9, (— m,C*B,), 

here M a io = is the Lagrangian operator where @, Fe ramen grang Pp : 

Again — & (se grad ) = Ge -- = ¢, Id. 

The remainder can be reduced to 

ey Sn) 4 (ON oe) ae 
a (tz, # Gr =) ieee (2-3), 

where CBee Gk), ee ee 
GEN NOE Oar oy 0z 
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and so is the total change of A at the moving particle. (2-3) can 

be reduced to — 2 WD, (f,, A). 

Thus the whole equation of motion can be derived from a 
Lagrangian function 

L = — m0°B, — ef + A (hs, A) Pe (2:4). 

This is valid for any fields of force including explicit dependence 
of ¢ and A on the time. The first term in LZ, which reduces to the 
kinetic energy for low velocities, differs from it in general. It is 
very closely connected with the “world lne”’ of the particle. 

3. To treat of the case where several moving particles interact 
we shall start by supposing that there is a second particle present 
undergoing a constrained motion so that its coordinates are imagined 
to be known functions of the time. The same will then be true of 
the potentials it generates. The motion of e, will then be governed 
by (2:4) if 6 and A are expressed in terms of the motion of e,. These 
potentials are given by 

Bx “2 A=2 z * 
r+ (i,t —%4)/C’ Cr+ (t,t —14)/C 

In these expressions 7? = (r, — r,)? and the values are to be retarded 
values. If the time of retardation be calculated and the result 
substituted in (3:1) we obtain 

Ae ey (Es? (Bo, Bo En) (Ea Bae Ba A @k 
POR r 73 : ays 

where now rj, fr, refer to the same instant of time. ¢ is an approxi- 
mation valid to C™?, but the value of A has only been found to 
the degree C™ on account of the further factor C™ in (2-4) which 
is to multiply it. Then substituting in (2:4) we obtain 

(31). 

(3°2), 

Gyn ,€y (fo + (fF, %. —1,) —2(,,f L = — m,0°8, ~ sea Sas I (T,, 1, a) (T,, Ta) 

ft, — 2) 
ae 3 aa eats (3°3) 

The equations of motion are unaffected by adding to L the expres- 
d r,, Ty — : 

sion — m C28, + AE os ep The first is a pure function of 

the time and so contributes no terms to the equations of motion. 
The second contributes nothing because for any function f we have 

BD (GS dos -t)) =0. 
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The new form of Z then reduces to 

L = — m,0°8, — m,CB, — = se aa ra 

poh eA oe, 
73 

From the complete symmetry of this form the roles of e, and e, may 
be interchanged. Further from the covariance of the operator 
for point transformations, both may be included in the dynamical 
system, so that if g is any generalized coordinate involving both 
r, andr,, the equations of motion will be of the form 9,L = 0. 

For the sake of consistency, as the last term in (3-4) is only an 
approximation valid to C™, the first two should be expanded only 
to this power. The first term will give 

I Gala 
802 M41, ; 

Generalizing our result to the case of any number of particles 
in any external field we have 

— m.C2 Ip f.2 m,C? + dm,f,? + 

: 1 ; Cie ee 
L= im t?+ = OE mt? — Led + =X GC (#,A) — x 7 

€€> ((f,, 8.) | (fy, Pe — 11) (be 2 — Kh) + Xd 5(2 | a - ae w(a05): 

The double summations are taken counting each pair once only. 
4. The transition to the Hamiltonian now follows the ordinary 

tules. We find momenta p = — and solve for the q’s in terms of 

the p’s. This can be done in spite of the cubic form of the equations 
in the q’s by use of the approximation in powers of C. The Hamil- 
tonian function will then be H = Xpq — L and the equations of 

: : ; oH 
motion will be the canonical equations g = aan 2 gee If p, 

be the momentum corresponding to r,, the Hamiltonian in these 
coordinates will be 

2 4 

H=Z3* _ =p BE wp ay eee) (ay) depp 2m, 8C?m, Cm, fae 

mg €1€2 (Dy, Ps) , (Di, ¥2 — Ty) (Do, To — =v} Aen 
mea 2C?mMz | poe ih [abs aa 

All the applications of general dynamics, such as the Hamilton 
Jacobi partial differential equation, follow from this. As in ordinary 
dynamics, many problems can be conveniently solved in the La- 
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grangian form. The solution will usually depend on finding integrals 
corresponding to coordinates which do not occur explicitly in L 
and if dé and A do not involve the time explicitly there is also the 
energy integral. This has the form 

Timbt,2 + Uz = TY Sed Ss 2 
12 

Spay = {ite a (Ene 1 Say Sad Yr, Tem, a a2 const....(4-2). 

This completes the development of the method. Its direct applica- 
tions are naturally somewhat limited, since, even with the large 
order terms only, there are comparatively few problems that are 
soluble. A problem of some interest that can be solved completely 
is the motion of two attracting particles, where their masses have a 
finite ratio*. 

* A discussion of this problem by the present writer will be found in Phil. Mag., 
Vol. 39, p. 537 (1920), together with a somewhat fuller account of the general theory. 



Dr Searle, A bifilar method of measuring the rigidity of wires 61 

A bifilar method of measuring the rigidity of wires. By G. F. C. 
SEARLE, Sc.D., F.R.S., University Lecturer in Experimental 
Physics. 

[Read 3 May 1920.] 

§ 1. Introduction. In this method the couple due to the torsion 
of two similar wires is balanced against the couple due to the load 
carried by the wires and arising from bifilar action. 

The method is hardly suitable for accurate measurements of 
rigidity, but, as an exercise in the use of a bifilar suspension, it has. 
proved useful at the Cavendish Laboratory. 

§ 2. Bifilar couple. We first consider two light flexible strings. 
Let the strings 4B, CD, each / cm. in length, hang from two fixed 
points A, C, which are at a distance 2a, cm. apart in a horizontal 
plane. The lower ends B, D of the strings are attached to a rigid 
body of mass M grm., the points B, D being 2a.cm. apart. The 
centre of gravity of the body is symmetrical with regard to B and 
D and thus the tensions of the strings are equal. The line BD will 
then be horizontal. If, now, a couple, whose axis is vertical, is 
applied to the body, the body will be in equilibrium when the 
couple due to the obliquity of the strings balances the applied 
couple*. 

In Fig. 1, A’, B’, C’, D’ are the projections of A, B, C, D on 
a horizontal plane. In our symmetrical case, A’C’, B’D’ bisect each 
other in O. When the body has turned through 
6 radians from the zero position, in which the WN 
strings are in the vertical plane through A’C’, : 
then B’D’ will make an angle 6 with A’C’. 
Let ON be the perpendicular from O on A’B’. 
Let the tension in each string be T dynes. 

If the vertical distance of BD below AC 
is h cm., the vertical component of the tension is Th/l, and the 
horizontal component is T.A’B’/l. Since the weight of the body 
equals the sum of the vertical components, 

Mg = 2Th/l. 
The horizontal component of the tension at B acts along a line 
whose projection is A’B’, and hence its moment about the vertical 

Fig. 1. 

* For the general theory of the bifilar suspension, see Maxwell, El. and Mag... 
Vol. m, § 459; A. Gray, Absolute Measurements in El. and Mag., Vol. 1, p. 2423 
Kohlrausch, Physical Measurements (1894), p. 226. 
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axis through O is T.A’B’.ON/I. Since the moment due to the two 
tensions equals that of the applied couple, G dyne-cm., 

G = 2A cB ONE 

But A’B’.ON is twice the area OA’B’ and thus is a,4, sin 8. We 
thus obtain 

G  A’'B’.ON _ ayagsin 8 

Mg h Hanon 

Fig. 2. 

Since 4 = {2 — A’B}?, we see that, when A’B’ is small compared 
with /, we may put / = 1, and so obtain 

gee, (1) 
In the examples of § 7, h never differed from 7 by as much as 
1 in 4000. 
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_§3. Apparatus. This is shown diagrammatically in Fig. 2. 
The wires are soldered into torsion heads S, 7, which pass through 
a board X Y held in a firm support. 

The lower ends of the wires are soldered into screws which pass 
through “clearing” holes in the bar £F, and are secured with nuts. 
The heads of the screws are made with “flats” to fit a spanner. 
Before the screws are secured to HF, the torsion heads are set to 
zero; the screws are then secured to HF so that, when the bar is 
only subject to the action of the wires and of 
gravity, the flats on both screws have the same 
directions as when the wires hung freely. 

The distance BD is, as near as may be, equal 
to AC. 

The load is carried by a knife-edge forming 
part of the link N, Figs. 2,3. The knife-edge rests 
in a V-groove in a plate, P, fixed to EF by screws 
passing through slots. By adjusting P, the tensions 
can be equalised; the notes emitted by the wires 
when plucked have the same pitch when the ten- Fig. 3. 
sions are equal. 

A weight W (a few kilogrammes) is suspended by the rod Q 
from the link N. A slot in the lower cross-piece of N allows Q to 
be put into place; the nut drops into a recess. The weight should 
be so attached to Y that it cannot turn about a vertical axis 
relative to Y with any freedom; otherwise it will be difficult to 
reduce the system to rest. 

The bar may be fitted with two pointers A, LZ, and the readings 
of their tvps are taken on two horizontal 
scales. These scales are adjusted to be 
perpendicular to AZ when the torsion 
heads read zero. If A,L, is the straight 
line through the zero positions of the tips 
and K, LZ are the taps when the bar has 
turned through 6, Fig. 4 shows that 

SUE Vb Ga eae f 
sin 6 nea rig any Ree (2) 

where y, = KK, y2 = LL, and p = LK, the whole length of the 
pointer system. 

The deflexion of the bar is best observed optically. A metal 
strip R is screwed to HF, packing pieces being interposed to allow 
the link NV free movement, and a plane mirror is fixed to R. The 
deflexion can be observed by aid of a telescope and scale, or of a 
lamp and scale. It is, however, simpler to employ a goniometer 
such as those which have been in constant use at the Cavendish 
Laboratory for several years. A description of the instrument and 
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the method of using it for experiments of this type will be found in 

Proc. Camb. Phil. Soc., Xv, p. 31, or in the author’s Experimental 

Harmonic Motion, p. 35. The goniometer measures the tangents 

of angles. 
The motion of the suspended system, as so far described, being 

only slightly damped, it is consequently not easy to reduce the 

system to rest, and the vibrations of the building add to the diffi- 

culty. A simple damping device is therefore used. An annulus of 

thin sheet metal is carried by the bar G'H, which is clamped to the 
rod Q. The annulus is immersed in motor lubricating oil or other 

highly viscous liquid contained in the annular trough U, which 
rests on the table. The rod Q passes through a hole in the table. 

By adjusting the height of GH, the annulus can be brought close 

to the bottom of the trough, and then the motion is so highly 

damped that the system is practically immune to vibrations of 
the floor or the table. 

If the wires are overstrained by turning the heads through too 
large angles, the wires will no longer be vertical when the heads read 
zero, and it will be necessary to readjust the screws in the bar HF. 
To prevent overstrain, and at the same time to allow the heads to 
be turned through z in either direction from their zeros, a movable 
safety device is used. A metal disk, about 1. cm. in diameter, 
can turn freely about its centre on a screw by which it is attached 
to the board XY (Fig. 2). A vertical pin is fixed excentrically in 
the disk, the greatest distance from the pin to the axis of the head 
being small enough to prevent the steel wire, which forms the 
index of the head, from passing the pin. The torsion head can then 
be turned only a little more than 7 in either direction from zero. 

Care must be taken not to bend the wires near the soldered 
joints. A bend at B or D will alter the effective value of ay. If the 
wire AB is bent near A, the effect, when the torsion head is turned, 
will be the same as if the point A describes a small horizontal 
circle. This causes changes in a, as the head is turned, and, what 
is more serious, causes the bar EF to turn through angles which are 
by no means negligible, in addition to the angles directly due to 
the torsion of the wires. For this reason, annealed wires are more 
suitable for the experiment than hard drawn wires, as they are 
more easily straightened. 

The torsion heads are read on circles divided at intervals of 45°, 
the dividing lines being scribed on the board X Y. 

§ 4. Theory of the method. If each torsion head is turned from 
its zero through ¢ radians in either direction, the bar HF will turn in 
the same direction until the bifilar and torsional couples are equal. 
If EF turns through 6, the whole twist of each wire is ¢ — @. 

Let the radius and the length of each wire be 7 cm. and / cm., 
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and the rigidity of the metal n dynecm.~. Since the wires are 
nearly vertical, the couple, due to torsion, exerted by the pair upon 
the bar is znr* (¢ — 6)/I*, to a close approximation. 

The small couple due to the bending of the wires assists the 
bifilar couple; Kohlrauscht takes account of this small couple by 
writing in place of (1), 

G= By, wad (3) 

where = l—?7r (Qn B/Mg}?, stout (4) 

and E is Young’s modulus. 
Equating the torsional to the (corrected) bifilar couple, we have 

sin 02/01 “Layne al Ty (5) 
anrl’ 

where = Mgayaol Aforets ue (6) 

__ 940k Then ph ss EE MOE i tlle (7) 

§5. Experimental details. The distances AC = 2a,, BD = 2a, 
are measured. The diameters of the wires are taken at a number of 
points and the mean radius is found. 

The total mass, M grm., of the system carried by the wires is 
found. The masses of the screws are found before they are soldered 
to the wires. 

The torsion heads are first set to zero, and the scales on which 
the pointers K, LE are read are adjusted to be perpendicular to KL. 
If a goniometer is used, it is set so that its arm is in the central 
position when the goniometer wire coincides with its own image. 

To eliminate errors due to shght bends in the wires, the readings 
must be taken over the range — 7 to z for ¢; the theory assumes 
absence of hysteresis. But in experimental work in elasticity 
we must realise that hysteresis effects are unavoidable, when the 
strains are more than infinitesimal. To ensure that the effects of 
hysteresis shall be orderly and not irregular, the torsion heads are 
taken through a complete cycle from m to — 7 and back to 7. To 
make the two readings for ¢=7 agree as closely as possible, a 
preliminary half cycle from — 7 to zis done. To make the conditions 
uniform throughout the cycle and a half, the readings for the pre- 
liminary settings are taken and recorded; this will secure approxi- 
mately constant time intervals between successive readings. Thus 
the heads are set in succession at the following multiples of 7/4: 

== Se ae py i 2, 3, 

4,3, 2,1, 0, -—1, —2, —3, —4, — 3, — 2, — 1, 0, 1, 2, 3, 4. 

* G. F. C. Searle, Hxperimental Elasticity, § 39. 
+ Kohlrausch, Wied. Ann., xvu, p. 737, 1882. 

VOL. XX. PART I. 5 
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The first 8 are the preliminary readings, and only the last 17 are 
used. 

If ¢ goes through a complete cycle, and @ is plotted against 4, 
a narrow hysteresis loop will be obtained. When readings are taken 
as above, there will be two values of @ for each value of 6 except 
¢ = —7. With careful work, the two values of 6 for ¢ = 7 will be 
exactly or very nearly identical; for the wires used in § 7, I have 
seldom found a difference between these two values as great as 
one minute. As a rough method of eliminating the effects of 
hysteresis, the mean of the two values of @ for each value of ¢ is 
taken as the value of @ for that value of ¢. 

The effect of bends in the wires near their upper ends, A, C 
(Fig. 2), will be the same as if these points described small horizontal 
circles about the centres Ay, Cy, as in Fig. 5. Let d be measured 

from ©O,4,X, and let AA,X =d?+a, CO).X=—gd+y, while 
A,A =1, C,C = s, AgCy = 2a,. Then, ife is the small angle between 
AC and A,Cp, 

rsin (P + a) — s sin (¢ + y) 
2a, + r cos (f + a) — s cos (pb + y) 

When ¢ and s are small compared with 2a,, tane may be replaced 
by « and the variable terms in the denominator may be neglected. 
Then, putting 

tane = 

(r sin a — s sin y)/2a, = P, (7 cos @ — $ cos y)/2a, = Q 

we have 

e— Pcos¢) +) Q)sind4)| |) eee (8) 

Here P and Q are the values of e when ¢ = 0 and ¢ = 37. 
If the line BD makes an angle 6 with A,C, when the heads 

read ¢, the angle between BD and AC is 0 —e«. The wires will not 
be quite free from torsion when the heads read zero; let 7 be the 
mean twist of the wires when ¢ = 0. We must thus write sin (0 — ¢) 
for sin @ and ¢ + 7 — @ for ¢ — @ in the equilibrium equation (5), 
which thus becomes 

sin (6 = <) = O(n e- 6) (9) 
To evade difficulties, 0 is kept small. Then, sincee is also small, 

we may replace the sine by the angle in (9), and thus obtain 

TS 
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= “abt +e=DG tate anes: (10) 

If 0, €9 correspond to ¢ = 0, we have, since €, = P, 

Og eg = Digi Bai) iyi Neenese (11) 
Thus 

Ge 6, == Db-te — P= Db +P copd + Qaim d = P.......(12) 

Since this equation is linear in 0, we may take 0) as corresponding 
to any initial position of the bar which is near its ideal zero position. 

Thus, if 6 is the angle at any time between the bar and some 
nearly ideal zero position, 

Beep Oriel as We (13) 
Since f, though small—say less than 0-2 radian—is not infinitesimal, 
some correction should be made. An exact solution cannot be 
given, but accuracy is gained by writing sin f for f, and then the 
final formula becomes 

sinB = Dé+ Pcosd+Qsind—P. _...... (14) 

To eliminate P and Q, we combine the observations. Let £,, 
correspond to @ = mm/4. Then, putting d = 7 and d = — 7, so that 
m= 4 and m = — 4, we have 

LD =} 5 (Siy Bans SUNN —<alewial sully, eases (15) 

A second value for 7D is found by giving m the values 3, — 3, 
1,—1. Then 

aD = sin B, — sin B_, — (sin 8, — sin B_,). ...... (16) 

The two values of D are usually in good agreement, although, when 
f is plotted against ¢, the curve differs considerably from a straight 
hne. The mean value of 7D is used to find C. Thus 

(ee ce (17) 

Then n is found by (7). 
The actual values of P and Q are easily found. Thus 

Fg SNS ols ores 1000) oP) Oa A Pe (18) 

CO Sxsinisy — Bin Bio —TD eM acc ane (19) 

§ 6. Conversion table. A goniometer, such as those used at 
the Cavendish Laboratory, gives the tangent of the angle # through 
which the arm is turned from its zero. To find sin % we subtract 
from tan % the small quantity s given in the table. 

5—2 
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701 | -00000 | -10 | -00050 | -19 | -00334 
02 | -00000 | -11 | -00066 | -20 | -0C388 
03 | -00001 | -12 | -00085 | -21 -00448 
-04 | 00003 | -13 | -00108 | -22 | -00514 
05 | -00006 | -14 | -00135 | -23 
06 | -O0011 | -15 | -00166 | -24 | -00663 
07 | -00017 | -16 | -00201 | -25 | -00746 
08 | -00025 | -17 | -00240 | 
09 | -00036 | -18 | -00285 | 

Simple interpolation, by “proportional parts,” will give s with 
an error not exceeding unity in the fifth place of decimals. Thus, if 
tan % = °124, we find s = -00095, and then 

sind = tan % — s = *12305. 

§ 7. Practical example. The following results were obtained for 
a pair of soft brass wires. 

The distances AC, BD were each 6-00 cm. Hence a, = a, = 3 cm. 
Mean radius of wires = r = 0-0352 cm. 
Length of each wire = / = 47-30 cm. 
Mass of suspended system, excluding the weight W (Fig. 2) = 417-6 gm. 
The small correction for the buoyancy of the damper was neglected. 
The deflexions were observed by a goniometer. The distance from the 

centre of the pivot to the scale was 40-00 cm. The central, or zero, reading is 
10-00 cm. The following goniometer readings were obtained for the last 17 of 
the values of ¢ specified in § 5. . 

Reading | Reading| Mean x tanB | sinB 
radians cm. em. | reading | cm. =7/40 | obsd. 

| | 
7 14:10} 14:10} 14-100 4-115 1029 1023 

oar | 12-96 13-04 | 13-000 3-015 0754 | 0752 
dn 11:85) 11-98 | 11-915 1-930 0482 | 0482 
dor 10-80 | 10-96 | 10-880 0-895 0224 = -0224 
0 9:90} 10:07 | 9°985 0-000 -0000 -0000 

—47 9:16 9:33 | 9-245 | -0-740 | —-0185 | —-0185 
— 30 8-30 ] 8-43 | 8-365 | —1:620| —-0405 | —-0405 
— 0 7:37 7-44 | 7-405 | —2-580 | —-0645 —-0644 
ae 6-33 6-330 | —3-655 | —-0914 | ~-0910 

The value of x was found by subtracting from the mean reading, as given 
in column 4, the mean zero reading 9-985 cm. corresponding to d@ = 0. The 
differences between the readings m columns 2 and 3 are due to hysteresis. The 
seventh column shows that sin 8 is not proportional to ¢. 



Dr Searle, A bifilar method of measuring the rigidity of wires 69 

By (15), 7D = 4(-1023 + -0910) = -09665, 

and by (16), «wD = -0752 + -0644 — (-0224 + -0185) = -09870. 

Mean value of 7D = 0-0977. 

aD 
Then, by (17) Oa ae Ps We 0-03210. 

By (18), P= —- }(-1023 - -0910) = - 0-0028, 

and by (19), Q = 4(-0482 + -0405 - -0977) = - 0-0045. 

In the table, the column “‘sin 8 calcd.” gives sin § as calculated by (14), 
using the values of 7D, P and Q just found; there is fair agreement between the 
calculated and observed values of sin 2. 

The total load M was 417-6 + 4999 = 5416-6 grm. 

Taking ZH =10! dyne cm.~, we have r? (27H/Mg)? = 1-35 em., and hence, 
by (4), = 47-30 - 1-35 = 45-95 cm. 

Then, by (7), 

_ JA, Aeh _ 981 x 3? x 47-30 | 

CF art eT ee CORO x BO 
= 3-277 x 104 dyne cm:~. 

A similar set of observations, in which M was 3417-1 grm., gave the following 
values of sin B: 

-1510, +1123, -0743, -0361, -0000, — -0345, — -0735, - -1122, — -1540. 

Mean value of 7D = 0-1532. Hence C = 0-05127. 
Also I’ = 47-30 — 1:70 = 45-60 cm. 
Then 

. (981 x 3? x 47-30 
~ @ x 0-0352! x 45-60 ~ 

An independent determination of » was made by attaching a bar, of moment 
of inertia K = 4-766 x 104 grm. cm.?, to each of the two wires in turn; the mean 
periodic time of the torsional vibrations was 7’ = 10-55 sec. Hence 

and 8rKl 82 x 4-766 x 104 x 47-30 

i a 10-55? x 0-03524 

x 5416-6 x 0-03210 

3417-1 x 0-05127 = 3-326 x 10% dyne cm.-*. 

= 3:316 x 10! dyne em.;-. 
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The Rotation of the Non-Spinning Gyrostat. By G. T. BENNETT, 
M.A., F.R.S., Emmanuel College, Cambridge. 

[Read 8 March 1920.] 

§ 1. The following extract is taken from an old examination 
paper*: 

“A symmetrical wheel free to rotate about its axle is 
moved from rest in any position by means of the axle and is 
finally restored to a position in which the axle again points 
in the same direction as formerly. Shew that the wheel, again 
at rest, will have rotated through a plane angle equal to the 
solid angle of the cone described by the varying directions of 
the axle.” 

The proot of this result may be put briefly in a geometrical form. 
Translational and rotational movements being independent, the 
centroid of the wheel may be treated as stationary. As the gyrostat 
has no component rotation about its axis, the axis of rotation is at 
any moment some diameter of the wheel. This line has the central 
plane of the wheel as locus for the body-axode, and has a closed 
cone of arbitrary form as locus for the space-axode. The angular 
movement is therefore representable by the rolling of the plane 
on the cone. The angle of ultimate rotation of the wheel is thus 
(for cones of ordinary type) the excess of the four right angles of 
the plane surface above the total surface-angle of the cone. This 
difference is equal to the solid angle of the reciprocal cone described 
by the axis of the wheel. And hence follows the result quoted; 
namely, that the solid angle described by the axis of the wheel is 
equal to the circular measure of the plane angle of the resultant 
displacement of the wheel about its axis. Further, the sense of the 
displacement accords with the sense of circulation associated with 
the solid angle. 

§ 2. The result may be extended to the case in which the initial 
and final directions of the axis are different, say a and 6. For the 
axis may be restored to its original direction a by a subsequent 
movement in the plane ba; and this latter movement, which is a 
rotation about the normal to a and 3, leaves unaltered the angle 
that any diameter of the wheel makes with the plane ab. Hence 
the original movement, shifting the axis of the wheel from a to 6 

* Emmanuel and other Colleges, Second Year Problems, Wed. June 8, 1898 
Question 11. 
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by any conical movement, alters the angle between the plane ab 
and any diameter of the wheel by an angle equal to the solid angle 
enclosed by the cone formed by the conical surface ab together 
with the plane ba. 

§ 3. A geometrical integration of Kuler’s equation leads to the 
same result as § 1. The axis, with its direction given by spherical 
polar coordinates 6 and ¢ (radial and azimuthal), generates a solid 
angle 

ar a(le—cOs- Odds) . \ 9 Takase (1) 

The equation of motion, being 

Beose eas O. | (2) 
with zero initial values for ¢ and %, has as its integral 

Geir Cen} CN (3) 

If the axis of reference 0 = 0 is supposed (conveniently) external 
to the cone then ¢ is zero finally as well as initially, and % is the 
angle of resultant displacement of the wheel and is equal to the 
solid angle o. 

If, more generally, the gyrostat has a constant spin Q about its 
axis, the Kuler equation becomes 

d cos 8+ p=Q Re (4) 

with Die OE Men NG soba (5) 

as its integral. And the final rotation of the gyrostat is then given 
by the solid angle of the cone described by the axis plus the time- 
integral of the spin. It may be noticed that the angle d + ¢%, with 
a value independent of the choice of coordinates, gives in itself a 
natural measure of the total rotation of the wheel, as followed and 
estimated by projection on the plane 6 = 7/2. For on that plane 
the circular disc shows as an ellipse, with ¢ as the azimuth of the 
direction of the minor axis, and ¢% as the eccentric angle, measured 
from the minor axis, of the projection of the revolving diameter of 
the wheel. A distant observer on the axis 0 = 0, able to distinguish 
the two faces of the wheel, would in this way precisely reckon the 
amount of rotation, whole turns and fractional. He does not give 
merely the ultimate position, by naming a plane angle to a modulus 
of four right angles, but assigns the multiple of the modulus neces- 
sary for a correct account of the movement intervening between 
the initial and final positions. 

A kinematic representation of the angle ¢ + % may be obtained 
by supposing the circular rim of the disc to have rolling contact 
with the rim of another equal disc whose plane keeps parallel to 
the plane 0 = 7/2. The angle of rotation of this latter disc about 
its axis (which keeps the invariable direction @ = 0) is then ¢ + w#. 
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§ 4. For the special case in which @ is constant, so that the 
axis of the gyrostat describes a circular cone, the rotation is stated 
by Sir George Greenhill* to be 27 — (conical angle described by 
the axle), as against the solid angle itself found above. The differ- 
ence of sign of the latter can be accounted for by a reverse sign- 
convention: but the term 27 is unnecessary if 27 is implied as a 
modulus, and it appears to be wrong if the precise angle of turning 
is intended. If, specially, the axis of the gyrostat described only 
a small cone, then the angle of consequent rotation is certainly a 
small angle, and not an angle nearly equal to four right angles. 

He adds the remark that the movement “can be shown ex- 
perimentally with a penholder held between the fingers and moved 
round in a cone by the tip of a finger applied at the end.” But the 
illustration is inapt; for the creep of the penholder occurs in the 
sense opposite to that of the conical movement. The body-axode 
is a circular cone and not a plane, and it rolls inside a shghtly 
larger circular cone as space-axode; and hence the reverse move- 
ment. 

§5. The movement of the non-spinning gyroscope here con- 
sidered is not yet among those that are familiarly recognised, though 
it has important practical applications and deserves to rank as a 
dynamical commonplace. Bodies suspended from a point on an 
axis of symmetry behave in the same way and for the same reason. 
No matter how the point of suspension may be moved about, and 
no matter what complicated conical movement is consequently 
executed by the axis, the applied forces have no moment about the 
axis, and the spin remains zero if originally zero. The resultant 
rotation is then given, as above, by the solid angle of the cone 
described by the axis. 

Aeroplane compasses, in particular, are found to keep their 
cards practically parallel to the floor, under the combined action 
of gravity and lateral acceleration, during a banked turn of the 
aeroplane. Hence, from inertia alone, and apart from all other 
sources of control or disturbance, the compass-card would be 
rotated, as a consequence of the turn, through an angle equal to 
the solid angle described by the normal to the card. For an angle 
of banking a and a change of course f the solid angle is not much 
less than (1 — cos a) B if the banking is taken and left quickly; and 
for very steep banking this angle is nearly equal to the change of 
course itself, and the card would almost appear to “‘stick.” As 
compared with considerations of magnetic disturbance due to the 
vertical component of the earth’s field, and of mechanical disturb- 
ance due to rotation of the bowl and liquid, the pure inertia effect 

* Advisory Committee for Aeronautics. Reports and Memoranda, No. 146, 
Report on Gyroscopic Theory, p. 13, § 14. 
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of the conical movement seems to need more emphasis than it has 
hitherto been awarded. It is here explicitly isolated. 

The gyroscopic compass, like the magnetic compass, may at 
times suffer disturbance from this same source, if the compass- 
position in the ship and the run of the sea are such as to produce 
a circular or elliptical movement of the binnacle. 

§ 6. It would be hard to trace to its primitive source the know- 
ledge of the small piece of mechanics here discussed. It is really 
implicit in all treatises on Rigid Dynamics, but fails to emerge 
clearly amid the pressure of more important movements. Among 
empiricists it must be well-nigh prehistoric. The sailor in coiling a 
rope makes a winding motion of the feeding hand to remove the 
kinks from the overtwist of the piece which is to form the next 
turn of the coil. The circus clown, with the vertex of his conical 
cap resting on his finger-tip, or the end of a stick, easily makes it 
turn round and round; and the postman collecting his mail knows 
how to twist up the neck of his bag with a circular movement of 
the hand he holds it by. Later among empiricists are those who, 
accustomed to handle magnetic compasses, are very familiar with 
the rotation of the card produced so readily by giving the bowl 
a horizontal circular translational movement (without rotation). 
More lately still Mr 8. G. Brown has noticed the conical motion 
and its effect. In the abstract of his lecture to the British Associa- 
tion* it is described as a “new phenomenon” and is stated as being 
“explainable mathematically.” More fully in his lecture to the 
Royal Institutiont he states that in virtue of the “wobbling” 
(videlicet conical) motion, “the needles and.card would then have 
a force applied trying to carry the moving system round in the 
direction of the wobble.” This mode of expression is of course 
entirely illegitimate. The rotational movement observed needs no 
“force” to explain it; the very essence of the inertia effect is that 
it occurs with no spin about the axis of rotation and no couple 
about that line either. Mr Brown announces also (but without 
demonstration) that if his compass-dise “is carried round in a 
horizontal circular path without any wobble the plate still goes 
round or tries to go round with the circular movement” and that 
this ‘should be of interest to mathematicians.” It seems likely that 
the sheer paradox in angular momentum thus propounded will 
readily dissolve when all the relevant physical data are revealed: 
and meanwhile the interest is but that of a heresy resting on 
hearsay. 

* British Association, Bournemouth, 1919. Evening Lecture, Fr. Sept. 12, 
**The Gyroscopic Compass.” Abstract, ll. 9-14. 

+ Nature, March 11, 1920, p. 45, col. 2. 
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Proof of the equivalence of different mean values.. By ALFRED 
Kienast. (Communicated by Professor G. H. Hardy.) 

[ Received 12 April: read 3 May 1920.] 

If a,, Gs, ... Gn, --. denote the terms of a sequence of complex 

numbers, and 

gy = +... + An, 

a(1)__ (0) (0) Sig US ict tea te 

SOS SP anh Saag, 
iu 

then lim Se He r; 5 i ") is called Cesaro’s «th mean* of the se- 
NSD 

(0) quence S,’. 

Putting = Q+...+n,; 

ay 1 ©) (0) 
h, =— {hi + the hs 

ree ee pie aie Le ee 

then lim h is called Holder’s «th mean* of the sequence h. 
NSD 

In a paper “Extensions of Abel’s Theorem and its converses}” 
I found it convenient to introduce the expressions 

S, —~Qt+... +p, (Gliese 5 655) 

(1) (0) (0) 
Sn {Sy ate at Sen (n a 2, 3, ) 

(Gb Gea) («--1) iy on Bibe TOD emote (Omer ln (84h 2) 200) 

(x) and proved various theorems concerning the limits lim s,”. 
Nn So 

Several writers have proved 

Theorem 1. Whenever Cesdro’s (Holder's) th mean exists 
and vs finite, then Hélder’s (Cesdro’s) nth mean exists too, and both 
have the same value. 

* Bromwich, Infinite series, p. 310. + Ibid., p. 313. 
~ Proc. Cambridge Phil. Soc., vol. xtx, 1918, pp. 129-147. 
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I propose to complete the researches of my above quoted paper 
by proving the theorem: 

Theorem 2. Whenever Holder's (and therefore Cesuro’s) «th 
mean ewists and is finite, then lim s exists too, and both have the 

NSD 

same value, and vice versa. 

The demonstration of both theorems is based upon relations 
between the mean values which it is possible to calculate com- 
pletely, as I have found, in a most simple manner. 

In §§I to VI I determine the expression of s“ by 

(ne QT 2 Ge — 1); 

in § VII the expression of h“ by 

Se Un (A = buen): 

in § VIII the expression of S“ by 

Dee Ge ike Dek 7) 

and finally in § IX I consider two more general mean values. 

I. From the definitions follow 
= = AO = ah) — (n— 1)h® 

? mle 

ln—P 

im 1” n—I q) (0) (1) (1) (1) 
Sy aa = i ts S {rh, —(A- IA = as eee |) 

A= nh®—(n— 1A, 

Oe See AE n242 2 282) 1Y + 2 
OED 

= {(a— ace —(n—3)h®,} 

F (n= 2) HO, (n= 2) 12,3) 
Adding a term which is ae 

@a@-DO-2),0) _1 ae OSs MiLiss - 1), 
n n2 n—2 n(n— 1) n 

etc. Now I suppose that, i ee in this manner, I have 
arrived at the ‘ie 

st gen ay (ens eae aa (1), Ne. AKU Cnr N—K 

where c, , is a function of the indices n and x, and the coefficients 

dy, .(X4= L 2, ...) are, for each x, definite numbers which are the 

values of a Revco of X for X= id g 
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Proceeding to build up the expression for s“*”, applying the 
same transformations as above, we find 

mV ste TS a —M—@— 0-1 n nepal A-K-1 

Sy ne Kae) pet) me vn? ppl oe } 

1 «+1 «-+1) +=6,,((—«—1) he) — (0-1) hh 

(«-+1) iene) | Neer («+1) Ss =6. Bea | PRMERMe.se85 8.5 5 2A) Ve 
Ly N,K n m—k-1 9 a A, K+1 A ( ) 

from which we conclude 

n—-K—1 
Cn, c= Cn, K a) ee sho iesefore; sic slalelelatsi<ietetotatsta (3), 

and a series of relations involving the numbers d,,, and dy, «+41. 

Equation (2) is of the same formation as (1), and therefore (1) 
gives the required expression of s“) by the numbers oe 

n—1 
Since en) — , (3) leads to 

n 

from which follows, for « =2, , which is in 

accordance with the expression for 3) above. 

III. d,,. may be determined in the following way. Putting 

Oh. = 03, — = Oa — 0} Gn = Ib, Oren Sco S eeeces (4), 

we find 

(COMMER eZONY Lak ano 0 6-0 Ol) 
COLNE MN anys ay od (ie 

85 2 =S) = (0), Stl 4 7? Sate) 4 9? aa'5 

(2) _ (2) (2) 1 Ss Si) Ss = f seas 
3 ‘el AT? (A+1) (A+ 2) 

COMMUNE) («) 1 
Seti +> —S,te-1— 0, A+”) PDO 2) 2SClse ae 
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0 and Poe SSO SRV H 1, A: iy; 

Pea) an 0) ee @. 2 Gay eal 2 
1 A-1 ? hy 70 hoya tees 

hi? =}, = 0, RM) = v-* 

Writing equation (1) for n=2X+x«, and substituting these special 
values, we obtain 

A(A+1)... — K 

de +0) Oe) ee ae x 
(A+) NEDA +2) CNR)” 

which is, for «=2, in accordance with the above expression for 3, 

IV. Lemma a. The coefficient dy. 1s a positive number for 
a 2 se. KH 2, By oes 

It is easy to verify the inequalities 

Re ey 
AHK AtK-—p 

(o—0; ip an see yg x —1), 

from which results, by multiplication of all the left-hand and all 

the right-hand sides, 

AAt+1)...A+e-1) , mle. 

(A+ 4)" “(V+ 1) (X42)... (N+ 4)’ 

which demonstrates the assertion. 

Lemma B. The coefficient dy,. satisfies the equation 

: 1 it 
Ly |dn<—g(e-He(e +l) Aa sieleislajelsteloye (5): 

To show this we expand d,,, in the form 

d _¢e- Dee LASS ae =: 

a A anit +...) 

need ine =g(e—Dae@et i> ++... 

and the proposition follows. 

A consequence of (5) is 
WwW 

lining) Se coe 
n>o rAQ=1 
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and therefore the conditions of Stolz’s theorem are satisfied. Thus 

we can state: 

Lemma y. If lim Ne = HT exists and is funte, then 
n> 

1D 

aw OS ah ae / Sah |= TEE 
ne A=1 A=1 

V. Let Ca Gs — "Oa — One (6); 

then gs il CV) 
G4) ee ae Ie 
a a (i= 2, ah ose)? 

therefore lim s“ = 1, and consequently 
Nn SoD 

lim s° FE imiss @_ =. 
n> n—>2 

, 7 O) 2 AQ) 2 @) se = Furthermore hah, =h-=...=1 (n=l, 2). 

From (1) and (6) we obtain 
: es 

lim s = l= lime,.— lim) == dx. 
NSH Nn>o nao lt ] 

iL 2 
or lim — > Oy = 0b 

n >on Up=1 

VI. Now passing in cane ten (1) to the limit noo, we find 
N—K N—K 

lim 3 = lim h®? <7 im ( Ss ahs a lim | S dy, eh] S dae. 
n> n> nwo \N y=1 n>o la=1 A=1 

and this equation leads to the theorems: 

Theorem 8. Whenever lim oe . exists and is finite, then 
SD 

lim s“ exists too and has the same value. 
n>o 

More generally 

Theorem 4. When the function h oscillates between finite 
N—K 

limits, then ge oscillates between the same limits. 

VII. The reverse propositions can be established in the same 
way. From the definitions follow 

q_2+l @ (1) (2) 2) 
hy = Sy+y aN a (A te 1) Se hae rst ’ 

@_1| ZA+1 2) h, =7| 37% —= (Que 2) Sie (A+ 1) 8] 

n+2 + 7 (n+ 2) she (mt 22010} | 

OO) WS eee) 
~ n(n 1) n+2 Na= 1A(A+1) A2° 
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Continuing this process we find 

(BMGs ‘) hee = Cn, Spt t " 2 hued Pe en Meee Gi): 

In the same way as we determined c,, by (2) and (3), we 
obtain here 

a+K+1 
(peta Gea et 

n 
; n+1 1 

Thus, since a 
n 

(n+ «)* 
En, «= 

n(n+1)...(n+e—-1) 

Taking the values (4) for the numbers a,, we find from (7) 

_, (A+ At2)... Ate) _ (N+ «) 
| NG Niele ee emeiit 

The considerations in § IV show that 

0s (Ata Ieee moe ad com) 

Expansion of /,,, 11 descending powers of X gives 

i eG 
Fre=gle-le(etVrt atin; 

thus lim), pie = 2 
N—>nwr=1 

Introducing in equation (7) the values (6) for the numbers a,, we 
find 

1=lime,, + lm (- % fx) tim & CG ie 
1 al) n>» \Iy= noo Ne 

which gives, on account of Stolz’s theorem, 

wie Se SO: 

nx y=1 

Thus equation (7) is completely determined and leads to 

Theorem 5. Whenever lim hie exists and is finite, then 
So 

lim h© exists too and has the same value. 
No 

Theorem 6. Whenever the function ae oscillates finitely, 

then h® oscillates between the same limits. 

Theorems 3 and 5 together constitute theorem 2. 
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VIII. The relation connecting Cesaro’s and Hoélder’s means 
can be deduced in the same way. We have 

Su hee ee nh — (n 1) po 
nm—1? 

Ses oO na) 
nny PAG: Nest 

2S 2 

Sma S rAfAn—(ra-1 h® 1+4(n+1){(nh@—nh 
We) n (n+ 5 |e, ( Vax} + ( ){nh,, A 

2) 2) 

= 2p) ____~__ Ree 
ieee De 

Assuming therefore 

Si (x) 1 < («) 
a a = 6, My i) ee hy sieleteiers (8), 

ed Ce 
k N+K ‘ n ss 

we find Se ve ( K ) NC 44, Ds HE dy cath i) 

Hence Cn, «1 >= =(«+ 1) Cn4i, K> 

or | Cn, e= K!. 

Starting from the numbers (4), we have 

(0) Laat) (0) _ @ eis s=.,,=8,=0, SM= 8 =...=1, 
RANE Cle cea) qui of a CPS Se ao, SS i, ‘52, 2 

(n) (ey ene (x)_ (N-N+K SOL 2s 0,sO= 1,2. use - BO 
as is easily verified by the formula 

get) S sa "S SS he ie ae 

fi v=1 ea K 8 4r 1 i 

Writing (8) for n=, we find 

dy r= A(AH1)... A+K—-1)—-M ZO. 

Starting with the numbers (6), that 1s with tne numbers (4) for 
X= 1, we have 

sO (i +K— i ho — il, 

K 

and from formula (8) follows 

3 dy a= (e ‘=U mae 
A=1 
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so that finally 

S (x) 
Se ie 2 eaves 
7 = KIA —(«!- = eee (9). 
n+ Ge 1 n n 

( ) y Aa, x 
K A=1 

Analogous considerations lead to 
‘ S i” 

(«)_ a a te (1 ah * ene 
"Kk! (n+«—-—1 ly N+K—-1\ °° 

( ) = Sie ( ‘K K 

(10), 

A=1 

1 
1 

> Sac= i * aay eee ae 
ua! A+x-1 i 

oa, = ah 
Formulae (9) and (10) prove theorem 1. 

IX. By similar considerations it is possible to arrive at a state- 
ment about the equivalence of two means of the kind examined 
in Part II of my above quoted paper. 

Let b,, c, denote the terms of two infinite sequences of positive 
real numbers, which have, when we write 

nw n 

al eo, Lee=C;,; 
1 1 

the properties (i) hm B,=0, lim ¢,,= 0, 
DL el 2) Vk? 2) 

ae eos Ie ECe 

Gi) aR Fee 
tend to limits or oscillate between finite limits. Then putting as 

n before Rom ne 

aye 

(ijn 0) the means Ss = Bw Pa-1 Btgiad niscNicraenire Hoee (11), 

{) — an > Gig an ead oct, (12), 

are connected by two analogous relations. From (11) and (12) follow 

(0) (es (1) ‘ 68, -1= FS, aoe £5 of ash NR (13), 

Rw) (1) Y Se a OF NO elated oe dae (14). 

VOL. XX. PART I. 6 
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Substituting (14) in (11) we find, on adding a term which is zero 
I @s yeu ia [ey 6 i) +. 

? 

Bale C3 

, b (1) OT 1 1 
Soa = (Cte rar CAab aan) at aie {C,,t0— Ce} 

n N+1 

bug é he =) C4. Oni Cn re) 
ey mn Ca+1 ‘ ; n Cn441 age C 

: n n b Y b, 
Since z(2 = =) C= (0, Cs eae 

1\CA Ca+i 2 Cr_ Miia 1 Cn 

Le E _ Ons S| 
g Br Cn 

we can write 

i C S e ps ou 

sa 4 (1 Sn a! is, 
ibs Cn+1 | Ss (2 ag a2) C, 

9 Cyr Cr+} 

Now there may be distinguished two possibilities : 
Theorem 7. /f 

eu i 
29 \Cx Crt a 
— 7 < K ( fixed), 
SS) (Or a = OK 

2 \Ca Crt 

lim Cn Pres = 1, 
N>w Cn By, 

and if t° approaches a finite limit (or oscillates between fiute 
limits), then Sue approaches the same limit (or oscillates between the 
same limits). 

Theorem 8. Jf 
UO NOR +1 7 AQ) 
Bias ) C ty 
Y NON Ora 

2 \CA  Cjnay 

< K (fixed), Ons On 
1By, Cn+i 

and if t”) approaches a limit, then 3) approaches the same limit. 
This is a known theorem *. 
The second relation results by substituting from (13) in (12) 

and proceeding in the same way. The same formula is arrived at 
by interchanging in (15) 6. and ¢., B, and Ge. a and sun 
it we infer two theorems analogous to (7) and (8). 

* Bromwich, Infinite Series, p. 386, Theorem V. 

From 
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Notes on the Theory of Vibrations. (1) Vibrations of Finite 
Amplitude. (2) A Theorem due to Routh. By W. J. Harrison, 
M.A., Fellow of Clare College. 

[Read 3 May 1920. ] 

#4 (1) Lord Rayleigh in his Theory of Sound, Vol. 1, has considered 
the effect of introducing terms depending on zx? and z? into the 

De 
simple equation of vibratory motion —, dp? +nxz=0. He treats the 

added terms as small and employs the method of successive ap- 
proximation. The object of this note is to point out that exact 
integrals can be obtained in the form of the series of which 
Rayleigh determined the first two or three terms. The solutions 
now obtained are valid for any relative magnitude of the added 
terms subject to the motion remaining vibratory. 

(a) The Symmetric System. 

The equation of motion is 
27 
—. + na F 2Ba> = 0 
dt? 2P ; 

where f is positive, and the upper sign is taken in the first instance. 
A first integral is 

/ 2 

oS = n?a* — Bat — n2x* + Bat, 
dt 

where a is the amplitude of the vibration. 
We have 

2 
(=) = (a? —- 2”) (n® — Ba? — — Bz"), 

or (222), = (n? — Ba?) (1 — 2,7) (1 — 2,?), 
\ dt 

where ax, = 2, k* = Ba*/(n* — Ba*). 

Hence* 

LC = AX4 

= asn{(n? — Ba®)?t, k}, (a = 0 when t= 0) 

dra 2 gmt! (2m + 1) a(n? -- Ba?)*t 
7 kk UT gen 2K es 

* For the expansions of elliptic functions quoted in this paper see Whittaker 
and Watson, Modern Analysis, 1915, p. 504, and Example (5), p. 513; or Hancock, 
Theory of Elliptic Functions, Vol. 1, 1910, pp. 486, 494, 495. 

6—2 
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Let the units of length and time be chosen so that a= 1,n=1. 

It is necessary that B < 4, otherwise = vanishes first for 0 < #< 1. 

The effect of the term 26a? on the vibrations can be exhibited 
by the results of numerical calculation given in the following table: 

1-0006 sin pt + :0006 sin Spt 9924 
1-0074 sin pt + -0074 sin 3pt -9214 
1-0335 sin pt + -0348 sin 3pt + -0012 sin Spt -7309 
1-0632 sin pl + -0676 sin 38pt + -0046 sin Spt "5997 

+ -0003 sin Tpt 
1-0928 sin pt + -1028 sin 3pt + -0108 sin 5pi 5063 

+ -0011 sin 7pt + -0001 sin Opt 
tanh (t/,/2) 

We proceed to consider the equation 

d*x 
ae nz + 28a? — 0. 

If a is the amplitude of the motion as before, we have 
2 

(G) = (a= 22) (v2 + Ba? + Be), 

where aa, = 2, and p* = Ba?/(n? + Ba?). 

Write 1 — x,? = z?, so that 
2 

(5) = (2 + 2Ba4) (1 — 24) (1 — 2), dt 

where k? = p?/(1 + pw?) = Ba?/(n? + 28a). 

Thus z=sn{(n?+ 28a?)?t, k}, (2 = 0 when t=O). 

Therefore 

B= UD, 

= acn {(n? + 2Ba?)*t, 

MOR ee, ols, pte (Qm + 1) 2 (n? + 2Ba?)*t 
= ar =) Fe quer cos aK ‘ 

In this case there is no limit to the value of £, the motion 
remains vibratory, but the period of the gravest mode decreases 
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as f increases. The results of calculation, with n = ia—oleeare 
as follows: 

995 cos pt + -005 cos 3pt 
‘9818 cos pi + -0179 cos 3pt + -0003 cos Spt 
‘9742 cos pt + -0253 cos 3pt + -0006 cos 5pt 
9582 cos pt + -0402 cos 3pt + -0016 cos Spt 

+ -0001 cos 7pt 
9555 cos pt + -0427 cos 3pt + -0018 cos Spt 

+ -0001 cos 7pt 

(0) The Asymmetric System. 

The equation of motion is 

where « may be assumed to be positive, as changing the sign of a 
is equivalent to reversing the direction of the axis of x. 

Let the scale of time be such that n= 1, and the scale of 
length chosen so that the amplitude of the motion measured from 
x = 0 in the direction of x positive is unity. Then 

e = (l—2)(l+a+2+ ax + a2’) 
=(1—2)(b+ 2)(c+2), 

where 6=2{1 4+ @ = (1 — 2a — 302\/a, 
c=4{l+a+ (1 — 2a — 3a2)H/a. 

The limits of the vibration are s=1 and x=—b. It is 
necessary that a should be less than 4, so that the greatest value 
of 6 is 2. 

Writing 1 — «= (b + 1) y?, we have 

(Ge) = ta (e+ (=) (1 = Ry, 
where k? = (b+ 1)/(e+ 1). 

Hence 

y = sn (3a! (c+ 1)*¢, Rh, 
and z=1— (b+ 1)sn?{ha® (c+ My Gig 

Do it he BE Wnt 2 nage mac? (e+ a 
TR Ke tee ok 

The results of calculation are as follows: 
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1:1125 | — -0838 + 1:0557 cos pt + -0284 cos 2pt 
+ :0006 cos 3p 

2 | 1-2680 | — -2059 + 1-1306 cos pt + -0712 cos 2pt 
+ -0033 cos 3pt 

3 | 15657 | — -4634 + 1-2634 cos pt + -1783 cos 2pt 
ab -0190 cos 3pt + -0018 cos 4pt + -0002 cos Spt 

The calculations have been performed for illustrative purposes 
only, and no special care has been taken to ensure the accuracy 
of the digits in the final decimal places. 

(c) The solution of the equation 
2 
oat n'x + 3 az? + 2623 = 0 

in the form of a Fourier Series requires rather more elaboration 
of the algebra. 

The motion presents one novel feature which does not appear 
in the previous solutions. If B be positive, however small, the 
motion remains vibratory for any finite value of a, and if a and a/B 
be great, the amplitude of the motion on one side is approximately 
a/B times its amplitude on the other. 

(II) Routh has shown (vide Advanced Rigid Dynamics, 1905, 
p. 56) that an increase in the inertia of any part of a vibrating 
system will increase all the periods in such a way that the modified 
periods are separated by the periods of the original system. This 
is true in general if the inertia of only one part of the system be 
increased, the definition of a single part being that the effect of 
increasing its inertia can be represented by a single term 

2 (Hada + HeJ2 + -..)? 
in the expression for the kinetic energy, where q,, 5, ... are the 
normal coordinates of the original system. For example, the 
theorem is applicable to the case of an additional mass attached 
at a single point of a stretched string, but not to the case of an 
increase of mass spread over a portion of the string, or to the case 
of two or more masses attached at different points. 

The theorem may be simply proved as follows. Let the modified 
kinetic energy be 

2(G? + GP +...) +3 (Mat + bode t ---)?, 
and the potential energy be 

B (Aq?g1? + Ag?g2? + «.-). 
The equations of motion are typified by 

qr a r?0r + Pr (M91 sh MoJo a6 363)) = 0. 
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The determinantal equation for the periods is 

ONE fi") — Ax, [4 bor”, by pgr®, ... | = 0. 
My pA°, A? (1 + fg?) — Ag?, — ytgr®, «.. -(1 

Let A,?, A”, ... be arranged in ascending order of magnitude. 
If A? = 0, the left-hand side of (1) is (— 1)" as regards sign. If 
A? = A,?, the left-hand side of (1) is equal to 

by" | AY’, bor”, Mgr, «+ 

Body”, (19% + 1) Ay? — A,?, Palsy”, «+. 
ee a) 

) 

ara | A; HoAy baAy? 
| 0 ene 0 
he .0 0 ee 

CC ee ee ce 

Hence all the roots in A? are decreased and they are separated 
ae ee, 

The validity of this proof depends on (1) the non-equality of 
any of the values of 4,7, A,”, ..., (2) the non-evanescence of any of 
the constants p,, My, -... In case of (1) one period at least of the 
modified system is equal to a period of the original, but the theorem 
may be held to cover this case. 

In case of (2) the theorem does not remain true. Suppose 
the p’s are all zero except p,, ws, wy, ---. Then only the periods 
corresponding to q,, Ys, 9; --- are changed. The periods belonging 
to these coordinates will be increased and their new values will be 
separated by their old values. But these new periods bear no 
relation to the periods belonging to the remaining coordinates and 

‘ can occupy any position in regard to them except as specified 
above. Hence the theorem does not seem to indicate where the 
modified periods must lie in regard to the complete system of 
periods of the undisturbed system. 

An example is afforded by the modification introduced into 
the periods of a stretched string by a load attached at a point 
dividing the string into two lengths which are commensurable. 
Rayleigh’s argument (vide Theory of Sound, Vol. 1, p. 122), which 
serves to maintain the validity of the theorem in this case, is 
acceptable owing to the strictly defined relations which exist be- 
tween the periods in both states. But in an ordinary dynamical 
problem the theorem must be held to break down in the excep- 
tional cases under consideration since it fails completely to indicate 
the position of the modified periods in relation to the original 
periods. 
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Experiments with a plane diffraction grating. By G. ¥. C. SEARLE, 
Sc.D., F.R.S., University Lecturer in Experimental Physics. 

[Read 3 May 1929. ] 

Part I. PARALLEL LicHT. 

§ 1. Introduction*. When a plane grating is employed in 
accurate measurements of wave length, the rulings are set per- 
pendicular to the direction of the incident beam of parallel light. 
When these two directions are not at night angles, the diffracted 
beam is no longer parallel to a plane containing the directions of 
(a) the incident beam and (bd) a line intersecting the rulings at 
right angles. The formulae applicable to this general case are 
obtained in §§ 4, 5, 7; they are tested by the experiment of §§ 8, 9 
for the restricted case in which the directions (a) and (b) are at 
right angles. 

$2. The grating axes. tt 1s necessary to specify the three axes 
of a plane grating and the origin from which they start. 

For a transmission grating, the origin O is a point on the centre 
line of one of the openings. In a reflecting grating, O would lie 
on the centre line of one of the reflecting portions. 

The axes are 
(1) The normal ON to the plane of the grating. 
(2) The transverse axis OT, a line through O cutting the 

rulings at right angles. 
(3) The longitudinal axis OL, a line parallel to the rulings. 
The grating interval, i.e. the common interval measured along 

OT from centre to centre of the openings, will be denoted by d. 

§ 3. Doffracted wave front and ray. At a distance of thousands 
of wave lengths from the grating, the wavelets due to the separate 
openings will merge into practically a single wave. For the mathe- 
matical purposes of this paper we shall speak of this wave as the 
diffracted wave front and of a normal to it as the diffracted ray. 
We may speak of the diffracted wave front passing through the 
origin O, if we understand it to be a surface through O cutting at 
right angles the normals to the distant wave fronts. The normal 
through O may be called the diffracted ray through O. 

In the case of reflexion or refraction at a polished surface, the 
time of passage from an incident wave front to a reflected or 

‘ * JT have to thank Dr J. A. Wilcken of Christ’s College, and Mr C. L. Wiseman, 
M.A; of Peterhouse. Dr Wilcken took the observations of § 12, Part I, and assisted 
in other ways. Mr Wiseman gave valuable help and criticism in the mathematical. 
parts of the paper. 
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refracted front is independent of the particular ray. But, in the 
case of a grating, the time of passage from an incident to a diffracted ° 
front increases or diminishes by ir as the point of incidence of the 
“ray” is moved from the centre of one opening to the centre of 
the next. Here 7 is the periodic time of the vibration and 7 is a 
positive integer. 

§ 4. Diffraction of a plane wave ; general case. Take the axes of 
x, y, z to coincide with the axes ON, OT, OL of the grating, as in 
Fig. 1. Let R bea point on the centre line of the 
gth opening and let the coordinates of R be 
0, qd, h. 

Let the direction cosines of the forward di- 
rection OP, of the incident beam be 1,, m,, 4, 
and let those of the forward direction OP, of the 
diffracted beam of order 7 be /y, ma, Ng. 

Through O draw planes perpendicular to these 
two directions. The distance of R from the first Fig. 1. 
plane, counted positive when the incident wave 
front reaches O before it reaches R, is m,qgd + n,h. The distance 

of R from the second plane, counted positive when the diffracted 
front leaves O before it leaves R, is myqgd + nh. If v9 1s the velocity 
of light and A, the wave length in a vacuum, and if p44, pe, are the 
refractive indices of the media on the two sides of the grating, the 
times corresponding to the two distances are 

by (mgd + nyh)/vy and py (mgqd + Ngh)/V%p, 

and these differ by giz. Thus, since tv) = Ay, we have 

by (mgd + nyh) — py (m qd + nyh) = F qAg. 

This result must hold good for all positions of R on the grating, 
for which q is integral. We thus obtain 

P2Mo = yy a= “,/d, ees cleensnevcenteccee (1) 

Lig Mig(—= Ply lOige wiih enlecjne Jace clscisn tee aeige es (2) 

These equations completely determine the directions of the 
diffracted beams of order 7. 

Let the incident and diffracted beams make angles «,, €, with 
OT and angles 7, yn, with OL. Then 

COS €, = My, COS €y = Mg, --eeeeeeeeer eee ees (3) 

COS Hy = M4, COB Ay = Mg. secdeeeeesersenees (4) 

Hence (1) and (2) may be written 

[ty COS €, = fly COS €y -F BAp/d,... 2. 2-- 2-2-5203: (5) 

[a COS My ==" fig COS py Meraseere toetee swan soled Meoe (0) 
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Since m,2-+ n,? cannot exceed unity when the direction cosines are 
' real, the condition that a difiracted beam may exist 1s m,?+ nq” = 1, 

or COs? €, = sin? yy. If e, and 7p lie between 0 and $7, this requires 
that ys + & S437. 

It is noteworthy that «, depends only upon e, and 7A,/d, and 
that n, depends only upon 7. 

We shall not further consider the case in which p, and py are 
unequal, but shall confine the work to the special case of fy = pp. 
The reader will find no difficulty in making the necessary modifi- 
cations. 

§ 5. Diffraction of a plane wave; single medium. In practice 
each medium is air, of refractive index p relative to a vacuum. 
Tf A is the wave length in air, Ay = pA. We then obtain the simple 
equations 

Ms — Ml, az VA, }OL COSie,) —) COS en 12) 7\) Caer (7) 

Ny = Ny, OF, COS 75 — COS Hy. 6 cose (8) 

Since 7 may be restricted to he between 0 and z, we have 

No = y= Aa) ees oon cee ee eee (9) 

The direction of the diffracted tay 1s easily constructed on a 
spherical diagram. Let the axes of the grating intersect a sphere 
about O as centre in N, 7, L (Fig. 2), and let NON’ be a diameter. 

| Let the continuation of the incident ray 
L through O meet the sphere in P,. The 

co. great circle arc TP, measurese,. Calculate e, 
<M by (7) and take TQ = «, on TP,. About T 

[7 8 \ and LZ as poles draw small circles through 
N’ N QandP,. Then LP,=7. Ifthe small circles 

do not intersect, there will be no diffracted 
beam either by transmission or by reflexion. 
If the small circles intersect in the points P,, 

Fig. 2. P,', then OP,, OP,’ will be the directions of 
the two diffracted beams. Of the ares NP,, 

NP,’ of the great circle NP,P,'N’, one is greater and one less 
than $7. If NP, is less than 47, it corresponds to the transmitted 
beam, and then NP,’ corresponds to the reflected beam. 

When ¢, and 7 are given, there are two values of €,, and hence 
there are two points Q_ and Q, on TP,. Thus there will be two 
directions (OP,)_ and (OP,)., for the transmitted diffracted beam, 
and similarly for the reflected beam. 

It may happen that only one of the two beams (OP,)_ and 
(OP,), exists. Unless P, is on the great circle LN, there will be 
two distinct values of m,?, and the condition m,?+ n,2=1 may 
be satisfied by the smaller value of m,? but not by the larger. 
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Since n has the constant value 7, while m, or cos e, depends 
upon A, it follows that, if white light is used, to each A there will 
‘correspond a position of P, on the small circle through P, with L 
for pole. 

§ 6. The deviation. If D is the angle (< 7) between the forward 
directions of the incident and the transmitted diffracted beams, 
cos D = 1,1, + mymg + nN. If the plane ZOP, (Fig. 1) cuts OXY 
in OH,, where XOH, = 4,, then, since P,OZ = n, 

l, = sin 7 cos ¢1, mM, = 8iIN7 SiN gy, Ny = COS 7, 

and similarly for P,. Thus 

1 — 2 sin? 4D = cos D = sin? y cos (¢, — ¢2) + Cos? n, 

and hence sin 3D = sin y sin $(¢, ~ dg), +. ees cceeas (10) 

as can also be shown from the isosceles spherical triangle P, LP, 
in Fig. 2. 
| In the case of the transmitted diffracted beam, 1,/, is positive. 
Noting that n, = n, = cosy, putting m, = a+ b, m, =a — 5, and 
substituting for l,, /,, we find 

2 (sin? 4D — 6?) = sin? yn — a? — b? — [(sin?y — a? — 6?)? — 4a2b2} 

Thus sin? 4D is greater than b? except when a = 0, and then the 
two are equal. When a= 0, m, = — m,. If we take m, positive, 
we see, by (7), that, since 2 is positive, m, = — m= 2A/2d. Hence 
b = 2A/2d. Thus, if Dy is the minimum deviation, 

BUA OW aT. eee tence ats (11) 
Since 7 does not occur in (11), m, = — my gives a minimum of D 
for any given value of 7—a minimum having the same value for 
all values of 7. 

§ 7. The sloped grating. For the experiment of §§ 8, 9 it is 
convenient to use axes differing from those of § 4. Now let OY 
(Fig. 3) coincide with OT and let OL make an angle 6 with OZ. 
Then the direction cosines of OL are sin 8@, 0, 
cos 0, those of OT are 0, 1,0, and those of ON 

are cos 0, 0, — sin @. 
Let 1,, m4, 2, and ly, ms, nz, be the direction 

cosines of the forward directions OP,, OP, of 
the incident and the transmitted diffracted beams. 
Let n,= sin, so that the diffracted ray OP, 
makes an angle % with the plane OX Y, counted Fig. 3. 
positive when P,OZ < 47. Let the plane ZOP, 
cut OXY in OH, and let XOH, =. Then, if 7 is the common 
angle between OP, or OP, and OL, 
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l, sin 8 + n, cos 9 = cosy = 1, sin@+n,cos@._ ...(12) 

We also have, by (7), if P,OT = «,, P,OT = e, 

COS ey) — 5) 1 0A) = COS\e,) = ae (13) 

Hence m, is known at once. Using /,2 = 1 — m,? — n,”, we have, 

by (12), 
sin? 0 (1 — m,? — no”) = (cos 7 — ng cos O)?. 

Solving for n, and taking the negative sign in the ambiguity, we 
have 

sin % = n, = cos 0 cos n — sin 6 (sin? y — me2)?. ...(14) 

Using this value of n, in (12), we find 

1, = sin @ cos y + cos 6 (sin? y — Mn2)?. hanes (15) 

Since cos NOP, = [, cos 8 — ng sin 0, we find from (14) and (15) that 

cos NOP, = (sin? 7 — M2)? UUs, Saeae (16) 

Thus the negative sign has been correctly chosen in (14) for the 
transmitted beam, since for this cos NOP, must be positive. I the 
positive sign is used in (14), cos NOP, is negative, corresponding 
to the reflected diffracted beam. 

In terms of ¢ and w, the direction cosines of OP, are cos ¢ cos w, 
cos % sinw, sng. Hence m, = cos%sinw, and thus 

SIM), COS as) == COS ep) COS tsa as eee (17) 

The two angles % and w completely determine the direction of the 
diffracted ray. 

In the experiment of §§ 8, 9 the incident rays are parallel to 
the axis OX of Wig. 3:, Hence?l, — 1, m, — 0; n, — 0) Welthembhave 

COS cy! Ny A/a ea ee (18) 

 <COS:7) 7ST Os ee ee NO NV a eel or (19) 

and thus, since sin* y — cos* ey = sin? e, — cos? , 

sin % = n, = sin 0 cos 8 — sin @ (sin? e€, — sin? 6), ...(20) 

l, = sin? @ + cos @ (sin? «, — sin? 6)?, PAPA Ae (21) 

SiN @)— /m,/ COS) — COSlen COSI Watts. 95ee se eee (22) 

Since «, and @ may be restricted to be less than 47, we see that 
no diffracted beam will be formed if @ exceeds its critical value éy. 

§ 8. Apparatus. The general arrangement is shown in Fig. 4. 
The grating G is attached to a horizontal shaft A, with its plane 
parallel to A and its rulings perpendicular to A. A horizontal 
collimator Z has horizontal and vertical cross-wires intersecting 
at C in its focal plane; these are illuminated by a sodium flame S. 
The straight line joining C' to the appropriate nodal point of the 
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lens is the line of collimation, or axis, of the collimator. The parallel 
beam defined by C is parallel to this line. After the light has 
passed through the grating, it is 
received by a goniometer K, and SES 

“4C an image of the collimator wires 
is formed in its focal plane. To 
fix the line of collimation, cross- 
wires are placed in the focal © 
plane; they intersect in D. The 
goniometer is carried on a honi- 
zontal revolving shaft B, and its 
line of collimation is perpen- 
dicular to the shaft. One cross- 
wire is parallel and the other 
perpendicular to the shaft; the 
latter is also perpendicular to the 
shortest distance from PD to the 
axis of the shaft. The shafts are 
provided with divided circles EF, 
Ff, which are read by aid of the 
pointers U, U’, V, V’. A balance weight W is attached to the circle 
F. The point of intersection of the line of collimation of K with 
the axis of B should lie approximately on the centre of the grating, 
and the line of collimation of Z should pass through the same point. 

The angles 6 and % are measured by the circles F and F. 

§ 9. Hapervmental details. The shaft A is set horizontal by aid of 
a level. The collimator is adjusted optically by an auto-collimating 
method. The plane of the grating is set horizontal by a level, and 
the shaft is then turned through 90°, as measured by the circle Z, 
so that the plane of the grating is vertical. Light from a flame is 
then reflected by a plate of glass held at 45° past the cross-wires 
and through the lens on to the grating, and the collimator, pre- 
viously set for “‘infinity,” is adjusted so that the image of C, the 
intersection of the wires, coincides with C itself. If the coincidence 
is recovered when the grating shaft is turned through 180°, the 
plane of the grating is parallel to the shaft. Theline of collimation 
is then both horizontal and also perpendicular to the grating shaft. 

The line of collimation of the goniometer is set perpendicular 
to the goniometer shaft B by an optical method. An auxiliary col- 
hmator, set for “infinity,” is placed so that it is approximately 
perpendicular to the shaft. A plate of plane parallel glass is attached 
to the circle F near its centre so that its faces are approximately 
parallel to the shaft. It is convenient to make the shaft vertical; 

the glass plate can then be supported on a small levelling table 
resting on the circle. By adjusting both the collimator and the 
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plate, the faces of the plate are made parallel to the shaft and the 
axis of the collimator is made perpendicular to the shaft. In this 
case the image of the collimator wires can, by turning the circle, be 
made to coincide with those wires, when evther side of the plate 
faces the collimator. If the plate has been suitably placed, it will 
he possible, by turning the goniometer on its shaft, to receive the 
image of the collimator wires on the focal plane of the goniometer. 
The “vertical” cross-wire of the goniometer, i.e. the wire perpen- 
dicular to the shaft, is now adjusted so that it coincides with the 
image of the corresponding wire of the collimator. The line of 
collimation is then perpendicular to the shaft. The goniometer is 
then put into position and its shaft is levelled. 

The axes of the collimator, of the grating shaft and of the 
goniometer shaft are adjusted to be approximately in the same 
horizontal plane. The plane of the grating is made vertical, and 
the goniometer stand is adjusted in azimuth so that one of the 
diffracted images of the collimator wires can be made to coincide 
with the goniometer wires by turning the goniometer on its shaft. 

When the adjustments already described have been effected, 
and when the plane of the grating G' is vertical, the diffracted beams 
are parallel to the plane OTN. If OT is inclined at an angle 6 to 
the grating shaft, the direction of OT will be changed by 26 if 
G is turned through 180° about the axis of the shaft from Position 1 
to Position 2, when the plane is again vertical. The goniometer is 
turned to receive a diffracted beam when G is in Position 1. H, 
when G is turned into Position 2, the inclination of the beam to 
a horizontal plane is changed, the grating must be turned in its 
own plane until the inclination is the same for both positions. 

Since #% is always small, cos% is nearly unity and hence, by 
(22), sin w has a nearly constant value, for m, is independent of @. 
Hence, if the image of C, the intersection of the collimator wires, 
lies on D, the intersection of the goniometer wires, when the plane 
of G is vertical, the image of C will always lie very near the 
“vertical” cross-wire, and one setting of the goniometer stand will 
suffice for all values of @. 

The plane of the grating is made horizontal and the index 
reading is taken. It is then turned through 90°; it is now vertical 
and in its zero position. The goniometer is next adjusted so that 
the image of C lies on the horizontal wire of K. The goniometer is 
then in its zero position. 

The grating is now turned through 10°, 20°, ... on 2ither side 
of the zero, and the goniometer is turned on its shaft to bring the 
image of C on to the horizontal wire of K in each case. If the 
erating circle has ¢wo indices, the grating is turned through 10°, 
20°, ... as indicated by one index. In reducing the observations the 
mean of the angles furnished by both indices is used. 
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Since «, = 47, coSég = Mm, =1A/d. From the values of the 
interval d and the wave length A, cos«, is found and then the 
values of % corresponding to the mean values of @ are calculated 
by (20). These values are compared with the mean values of # 
given by the goniometer readings. 

$10. Distortion of the image. As @, and consequently ¢, increases, 
the observer sees that the angle between the images of the col- 
limator wires undergoes great changes. When #=0, the images 
are at right angles, but the angle diminishes rapidly as 6 reaches 
its critical value. The theory shows that they are actually tan- 
gential one to the other when @ has its critical value, but, as no 
light is transmitted in the critical position, the phenomenon cannot 
be observed. If the collimator wires are stretched across a small 
circular opening, the image of the edge is distorted into an oval, 
which is practically an ellipse having the images of the wires as 
conjugate diameters. When, however, 6 approaches its critical 
value, the oval begins to deviate from an ellipse. 

In Fig. 5 let OX, OY or OT, OZ, OL, ON meet a sphere described 
about O as centre in X, T, Z, L, N. Let OJ be the diffracted ray 
corresponding to the incident ray OX; 
the ray OX corresponds to the line of = 
collimation of the collimator and OJ to IN 
that of the goniometer, when the image Ae 
of Cis brought to the intersection of the UA \\ 
goniometer wires. Let OP, bea ray nearly vA 7 
parallel to OX and let. OP, be the corre- Ab 
sponding diffracted ray. Let the great 
circles through Z and P,, J, P, cut the 
great circle TXS in H, K, M. Let S be 
the pole of Z/JK and let the great circle Fig. 5. 
SJ meet ZP,M in Y, Then ZJQ = ix. 

If the goniometer is mounted as described in § 8, and if its line 
of collimation coincides with OJ, its horizontal cross-wire will 
correspond to SJQ and: its “vertical” wire to ZJK. The rays 
parallel to OP, will come to a focus in the focal plane of the gonio- 
meter at D’, whose coordinates referred to the horizontal and 
vertical wires through D (Fig. 4) are f x angle QOJ and f x angle 
P,OQ, where f is the focal length of the lens. 

If points on a curve CC” in the focal plane of the collimator 
give rise to diffracted rays whose directions are shown by points 
on the curve JP, on the sphere, and if the image of CC’ in the 
focal plane of the goniometer is DD’, the angle between the 
“vertical” cross-wire and the tangent to DD’ at D is equal to J, 
the angle between the great circle JZ and the tangent at J to the 
curve JP,. 
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If JK =7, P,M =’, XK =w, XM =a", then 
JQ dus’ 

tan J = limit of 5 —— = COS (a) Sie shoaa 23 

tf Xf =o Po —y, the nee cosines of OP,, OP, are 

1, = cos y COS @, M, = cosy sin a, ny = sin y, 

1, = cosy’ cosw’, Mm,=cosy’sinw’, n= sing’. 

Since ZOL = 0, a direction cosines of OL are sin 6, 0, cos 8. But 

P,OL = P,OL=y, P,OT =«, P,OT =«, and thus the funda- 
aerial equations M13) amd i) “hapacne 

cosy sinw = cosysina + tA/d, ........ S...(24) 

cos s’ cos’ sin @ + sin #’ cos 6 = cos y cos a sin @ + sin y cos 0. 
cee (25) 

The vertical collimator wire corresponds to the great circle ZX, 
and for this a = 0, but y varies. If J; 1s the inclination to JZ of 
the corresponding path described by P,, 

tan Ty = cosy (4 =), I(E) 

Differentiating (24) with respect to y and then putting y = 0, so 

that 2s’, w’ become #, w, we have 

— sin & sin w (dxf /Oy)9 + Cos % Cos w (Cw'/dy)) = 

Hence tan I;,= sin ¢ tan w. 

The horizontal collimator wire corresponds to the great circle 
XT and for this y= 0, but @ varies. Differentiating (25) with 
regard to @ and then putting @ = 0, we have 

— sin cos w sin @ (Cxb’/0a)y — cos } sin w sin O (Cw’/ea) 

+ cos % cos 6 (0b'/0a), = 0 

Hence, if J, is the inclination to JZ of the corresponding path 
of 2s. a! 

tan [y = cos (52 ) a 

__ cos Cos 0 — sin % cos w sin o 
sin w sin @ 

Multiplying numerator and denominator by cosw, and replacing 
cos? w by 1 — sin? w, we find 

I, cos @ — ny Sin @ 

sin w COS w sin 6 
een (27) 

Since the direction cosines of ON are cos 6, 0, — sin 8, and I,, n, 
in (27) refer to OJ, 1, cos @ — n, sin 0 = cos NOJ. In the critical . 
position, J lies on the great circle LT, which corresponds to the 
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plane of the grating. Then cos NOJ = 0, and the difference be- 
tween the tangents vanishes, 1.e. the two curves touch at J. 

Since the distance of ZLX from TJ is constant, the curve 
corresponding to the vertical cross-wire is a small circle passing — 
through J with T for pole. At J the small circle is perpendicular 
to the great circle 7J and the value of tan J, can be verified by 
spherical trigonometry. 

The horizontal cross-wire is represented by the great circle 
XT, but now both e, and 7 vary and no simple construction is 
available for the whole curve through J corresponding to this wire. 
The curve touches at J the small circle passing through J and X 
with Z as pole, and cuts at right angles the great circle LJ. Hence 
tan I,, = cot LJZ, and then (26) can be verified by spherical 
trigonometry. If we find cos LJZ and sin LJZ and divide, we 
obtain the alternative form 

cos # — sin # sin 6 
cos %sinw sin 6 ° 

If the angle between the two small circles which intersect in J 
is A, then A is the supplement of L/JT. But LJ = 47-8, 
JT =«,, LT = in, and hence 

cos A = tan @ cot é5. 

In the experiment cos eg has the constant value + 7A/d, and thus 
cos A depends only upon 6. The angle A will vanish when 
cos A = 1, and this occurs when 6 = ¢,, 1.e. when @ has its critical 
value. 

We can make visible a finite are of the small circle with L for 
pole. If we illuminate with white light the small opening across 
which the wires are stretched, the position of J on this small circle 
will be different for the different colours. The short length of cross- 
wire will correspond for any colour to a small are of a curve 
touching the small circle at practically its middle point. The 
envelope of these small ares will be the small circle itself. The 
image of the horizontal wire will thus be a dark curved line running 
across the spectrum. 

§ 11. The critical values: The critical position of the grating 
is reached when 6 = ¢,, and we have, by (20), (22), the critical values 

tan I, = 

: : é COS €5 
sin ys, = SiN €y COS € sina. : c 2 2° c - 9 2 il ’ 

(1 — sin? e, cos? €,)? 
2 COS €. COs? e. 

tan w, = >", (tan I;), = ——. 
sin? €5 SIN €5 

For the grating used in § 12 and with = 1, 
Cos €, = 0-33568, sin eg = 0-94198, e, = 4d — 19° 36’ 49”. 

Then = 18°26’, w, = 20° 43’18" and (Ly), = 6° 49’ 17”. 

VOL. XX. PART I. if 
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When 6 = 0, and therefore % = 0, 
SIN W = GOS €9, w = 19° 36 49”. 

Thus the maximum change in w is only 1° 6’ 29”. 

§ 12. Practical example. The following results were obtained 
by Dr J. A. Wilcken, using a grating having 14,468 lines per inch, 
and, hence, an interval d = 1-7556 x 10-4 cm. 

The adjustments described in § 9 were either effected or tested. The plane 
of the grating was not quite parallel to the grating shaft, but as both images 
of the first order were observed, the mean results will be hardly affected. The 
calculated values of were found on the assumption that the axis of the 
collimator is perpendicular to the transverse axis of the grating. Sodium light 
of mean wave length \ = 5-893 x 10-5 cm. was used. Then, since the images 
were of the first order throughout, 

2 r 5:893 x 10-> , wu 
M, = 4 = 77556 x 104 > - 0-33568 = sin 19° 36’ 49”. 

Thus € = COSs! mM, = 7102 237 117, and ™,* = 0-11268. 

Each of the observed values of w given in the table is the mean of four. 
Each of the first order images was observed, and for each image two values 
of 6, one on either side of zero, were taken. The grating circle, which was 
printed on card, was a little eccentric relative to the shaft (it was a ““home- 
made” affair), and, consequently, although the settings were made to integral 
degrees by one index, the other index did not always read integral degrees. 
Some of the mean values of 6 are, therefore, not integral degrees. The 
calculated values of are those found from equation (20), which for con- 
venience is written 

sin ~ = n, = $ Sin 20 — sin 6 [(cos 6 + mg) (cos 6 — ms) |. 

For the sake of interest, the calculated values of w, J, and J, have been 
added. The last line in the table gives the critical values as found by calcu- 
lation. 

6 | w 

mean obsd. nepal Lae caled Ly Ln 

000 000 000 19 36 49 000 90 0 0 
954 0 036 0 0 34.51 19 36 52 0 12 25 86 38 28 

19 54 0 11245 1 1233 1937 7 02551 83 15 
2950 0 15530 1 55 36 19 37 34 0 41 13 78 53 41 

3951 0 25145 25018 19 38 19 1 046 73 42 30 

49 48 0 4 730 4 725 19 39 58 1 28 20 66 3155 
59 49 O 6 2615 6 22 31 19 44 27 2 1655 54 29 53 

64 44 0 8 32 15 829 8 19 50 24 3 253 44 114 

6745 O 1054 0 10 51 13 19 59 10 355 4 33 20 15 

69 44 0 1418 0 1410 3 20 1519 5 940 20 20 49 

70 2311 18 26 O 20 43 18 6 49 17 6 4917 

The agreement between the observed and calculated values of Wf is satis- 
factory. 
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Part IJ. Non-PARALLEL LIGHT. 

§ 1. Introduction. In the following experiments the incident 
light does not form a parallel beam. The diffraction now not 
merely changes the direction of the axial ray of the beam, but 
also, in general, introduces astigmatism into, or changes the astig- 
matism of, the incident beam. The exception is when the incident 
and diffracted axial rays are perpendicular to the rulings and the 
deviation is a minimum. The diffracted rays will, in general, pass 
through two focal lines when the aperture is small. If the aperture 
is increased, aberration will appear and all the rays will not pass 
accurately through the two lines. Aberration can be minimised 
by keeping the aperture small, but astigmatic effects are inseparable 
from the diffraction in the general case. 

The formulae for the general case are easily obtained, but are 
complicated. We shall, therefore, consider only the case in which 
the axial ray of the incident beam is perpendicular to the rulings. 

§ 2. Diffraction of an astigmatic beam. In Fig. 1 let OX, OY, OZ 
coincide with ON, OT, OL, the axes of the grating, as defined in 
Part I, § 2. For convenience, OZ will be taken as 
vertical. 

Let a beam, which started from a luminous 
point and therefore has a wave front, fall upon 
the grating near O, Let OP, be the continuation 
of the ray through O, which has been restricted to 
lie in the plane OX Y, and let OP, be taken as the 
axial ray of the beam. Let P,;OX =06,. Take OP, Fig. 1. 
as the axis of 7, in a new set of axes Or,, Os,, Ot,, 
of which Os, is in the plane OX Y and Of, coincides with OZ. Let 
the equation to the incident wave front passing through O be 

" = 48,8," + SSE + 4T,t,?. eee cer cece cces (1) 

Let & be a point on the grating and let its coordinates referred 
to the grating axes be 0, qd, z, where d is the grating interval and 
q is an integer. Then the coordinates of R referred to the axes of 
the incident beam are 

UO SUM Oye oy —= OG CORIO anh y aie ket os aes (2) 

If a line through R parallel to OP, cuts the wave front OF, in F,, 
the second and third coordinates of F, are gd cos 6, and z. By 
(1) and (2), the distance of F, from the plane 7, = 0, which touches 
the wave front at O, is 1S,q7d? cos? 0, + W,qdz cos 0, + 37,27, and 
the distance of R from the same plane is gd sin 6,. Hence 

FR = qd sin 0, — $8,97d? cos? 0, — W,qdz cos 0, — 4T,2?....(3) 

7—2 
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When R and F, approach O, F,R becomes more and more nearly 
the normal at F,, and, for a small aperture, may be treated as the 
normal! in the estimation of distances. Thus, ultimately, FF is the 
ray distance from the wave front OF, to R. 

Let OP, be a diffracted ray of order 7. By symmetry, OP, is 
in the plane OXY, since OP, is in that plane. Let P,OX = 6,. 
Take the axial ray OP, as the axis of r, in a set of axes Org, Osp, 
Ot,, of which Os, is in the plane OXY and Ot, coincides with OZ. 
Let the equation to the diffracted wave front passing through O be 

1 r'== |e oSpo tor W oSola ni a alors lease eee (4) 

Then, if FR, parallel to OP, cuts the diffracted wave front OF, 
in F,, the distance F,R is ultimately the ray distance from F, to R. 
We then have 

FR = qd sin 6, — 4S,q7d? cos? 06, — W.qdz cos 6, — 4T42*....(5) 

The optical condition is that F,R differs from F,R by qiA, where 2 
is a positive integer. We thus obtain 

FR = F\R + mn. 

Since this holds for all values of z and all integral values of q, we 
have, by (3) and (5), 

Sim) Gy y—— SING) A) Gs) (ne eee (6) 

SSeS Wee kW = eee bel) 

where k = cos 0,/cos @,. Since 6, and @, both lie between — 47 
and 47 for a transmitted beam, k 1s positive. 

The direction of the axial ray of the diffracted beam is given 
by (6) and is independent of the constants S,, W,, T,. Equations (7) 
give the form of the diffracted wave front which passes through O. 

If the deviation of the axial ray is a minimum, it follows from 
Part I, § 6, or otherwise, that sin @, = — sin 6,. Since @, and 0, 
both lie between — 47 and 47, cos 6, = cos6,, and thus k= 1. 
Hence, in the case of minimum deviation, the form of the wave 
front is unchanged and the diffraction merely turns it through 20 
about OZ. The restriction stated in § 2 must be noted. 

If the planes of the principal sections of the incident wave 
front are OX Y and ZOP,, or, what is the same thing, the planes 
Or,s,, Or,t,, then W, = 0. It follows, from (7), that W, = 0, and 
thus the principal planes of the diffracted wave front are OX Y 
and ZOP%,. 

When W, = 0, the section of the incident front by the hori- 
zontal plane t, = 0 is r, = 4S,s,?, and the distance of the centre of 
curvature of this section from O is S,-1. The vertical focal line of 
the beam passes through this centre of curvature. Similarly, the 
horizontal focal line is at a distance 7,1 from O. The distances 
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from O of the vertical and horizontal focal lines of the diffracted 
beam are S,—1 and T,-. 

If the incident beam is stigmatic, 7,=S, and W,=0. Then 
S, = k?8,, T, = S,. Hence S, = k?T,, and so the diffracted beam 
is astigmatic, unless k = 1, i.e. unless the deviation is a minimum. 

§ 3. The principal curvatures. The principal curvatures of the 
diffracted front can be found in terms of those of the incident front. 

Let the principal planes of the incident front intersect the 
tangent plane at O in On,, O¢, (Fig. 2). Take these, with O€, 
along OP,, as axes for the front. Let the radi 
of curvature of the sections by O€,n, and O€,¢, t 
be B,-1 and C,-1. The equation to the incident & 
front is then n, 

EB AOE) ss ccnasteeee (8) \ af 

alge make an angle #, with Os,, as in Fig. 2. Fig. 2. 

E =, 1, = 8 cos, +t, sin, ¢, = — 5, sin ¥, + 4 cos fy, 

and hence (8) is equivalent to 

1, = 4B, (s, cos p, + t, sin p,)? + $C, (— 8, sin f, + t, cos py)”. ...(9) 

Comparing (9) with (1), we find 

> (By + Cy) + 3 (By — C;) cos 2%, 

oa — C,) sin by Pw (10) 

Phen $5, W, 7, can 2 ave or (7), 
If the eqadien to the diGcaoved front referred to its principal 

axes 1S 

Cee te ROU A. Wick aR ee (11) 
and if n,0s, = fp, then By, Cy, #, are related to S,, T,, W. by equa- 
tions similar to (10). Solving for Bg, C3, 2, we have 

B 
a SG Ne [L(y Pee ey Aleta: (12) 

PaM ania 2 2 Wola be Ne ten ease cases (13) 

The ambiguity in (12) has been settled so that, when #, = 0, 
B, = k?B,, Cz = C,. Apart from mere reversals of direction, (13) 
gives two values of w, differing by 47, and corresponding to the 
axes On,, OC,. The arrangement of signs in (12) implies that when 
10s) hs = 0) Since: Py, (7), W, and W, vanish together, yy 
and yw, must reach $7, 7, 37, .. _ together, and it follows that, for 

_ intermediate values, 4, must lie in the same quadrant as yy. 
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Equations (12), (13) with (7) give B,, C,, 4. 1n terms of S,, T,, W,, 
which are given in terms of B,, Cy, y, by (10). 

$4. A simple case. If we take C, = 0, the incident wave front 
is cylindrical. We then obtain 

B, = 4B, {2 + 1+ (2 — 1) cos 2f,}, C,=0, ...(14) 
2k sin ob, cos dbs tan ob 9 1 : 1 9 =r // 1 tan 2%, = ease = Se tan 2 tan ( ie ) 

or bam psa oe 4 Cains sea.) eee eee (15) 

The maximum difference between y%, and g% occurs when 

tan ys, =k, and then sin (, —#,) = (k— 1)/(k+ 1). 
Since C, = 0, the diffracted wave front is cylindrica]. There is 

therefore only one focal line at a finite distance from O and this 
distance is B,+. If the principal planes of the incident front are 
turned round, %, will change, so causing B, to vary, and the 
distance of this focal line from O will vary. 

§ 5. Measurement of wave length. The results of § 2 can be 
applied in the determination of the wave length of sodium lght 
by measurements made on an optical bench. On the bench slide 
three carriages D, H, K, as shown in plan in Fig. 3; D carries a 

Fig. 3. 

horizontal glass scale divided in mm., H carries the grating @ 
(with vertical rulings), whose centre is O, and K carries the con- 
verging lens system L, of focal length f. At the end of the bench 
is a vertical slit illuminated by a sodium flame F; to identify a 
point # on the slit, a wire may be stretched across the slit. The | 
divided face of the scale faces the slit and this face and the plane — 
of the grating are perpendicular to the bench. The line through 
the nodal points of Lis parallel to the bench and passes through £. 

The scale is first placed in the position 4,B,, at a distance 
from # exceeding 4f by about 30 cm., and the lens is adjusted to 
form a real undiffracted image on the scale at C,. The axial ray 
of the incident beam is normal to the grating, and thus, if ¢ is | 
the angle between the normal and the axial ray of either diffracted _ 
beam of order 7, we have k? = sec? d. Since the incident beam 
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corresponding to the point # of the slit is stigmatic, the vertical 
focal lines of the diffracted beams of order 7 will be at a distance 
OC,/k? from O, along lines OP,, OQ,, each making an angle ¢ 
with OC,. Sharp images of the slit will pass through P,, Q, and can 
be focussed on the scale if it is moved to A’,B,’. With the grating 
used in § 9, the two sodium lines can easily be separated. Then 
sin @ = $P,Q,/OP,. Since OP, is difficult to measure, we suppose 
OX, known, where X, is the mid-point of P,Q,. If OX,=%, 
P,Q; = 2y;, tan 6 = 3P1Q,/OX, = y/2y. 

The glass plate protecting the grating prevents an accurate 
measurement of OX,. We therefore move the lens carriage along 
the bench so that the undiffracted image is focussed on the scale 
at C,. If the scale is moved further towards O, the diffracted 
images can be focussed at P,, Q,. If OX,=2,, P,Q, = 2y. 
tan @ = Y2/%_. Hence 

LAM (Y, — Pa) (Wy — ale ve aeacder ace (16) 

Putting 0, = 0, 0, = ¢ in (6), we find 

A= SIM Ose dc cicero son hee 86 (17) 

where 7 is the order of the image and d is the grating interval. 
From (16) and (17), A is determined. 

Since it is an angle we measure, small errors of focussing will 
be of little account, for, in spite of them, the point in which the 
axial ray cuts the scale in each case will be correctly estimated, 
and this is all that is necessary. 

§ 6. Test of law of obliquity. Let OC, = u,, OC, = uy, OP, = 14, 

OP, —v,. Then 0, — v, = [(@, — 2)? + (y, — yo)? |. But, since 
Kk? = sec*, we have, by § 5, v, = u, cos? d, v» = u,. cos? d, and 
thus v, — v2 = (uy — Uy) cos? d. Since uw, — uy is known from the 
bench readings, we can test the law for the vertical focal lines 
by comparing the two values of v; —7,. As we are now concerned 
with the positions of images the focussing must be accurate. 

If the sht is not too narrow, the difiracted images of order 2 
of the horizontal wire stretched across it may be focussed on the 
scale. If these are at p,, gq, when OC = &, and at p,, g, when 
OO =) anda 7,9, —'27),; Pogo — 275, then 

PrP2 = [(1 — $2)? + (1 — 12)? )?. 

Since, by § 2, T7,=T,, we have p,p, = wu, — Uy. The two values 
of yp, are compared. 

It is difficult to obtain satisfactory readings for x and €. This 
is largely due to the fact that the diffracted rays in the horizontal 
plane through O do not meet in a point but touch a caustic of large 
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radius. If Q,R,, drawn perpendicular to Q,O in Fig. 3, cuts OC, 
in R,, the radius of curvature of the caustic at Q, is 3Q,R,. The 
length of the caustic between the points of contact of the tangents 
from M,, N,, where M,N, is the width of grating actually used, is 
3 (Q,M, ~ Q,N,) approximately. 

§ 7. Adjustment of the lens. The lens, a converging system, is 
adjusted optically. Let its focal length be f and the distance 
between its nodal points be ¢, where ¢ is positive when the distance 
between the principal foci exceeds 2/; for a projection lens as shown 
in Fig. 3, ¢ will be negative. When the distance of the luminous 
point # from the scale ACB exceeds 4f + t, there are two positions 
of the lens for which an image of # is formed on the scale. Let 
M, N (Fig. 4) be the nodal points corresponding to the principal 

Fig. 4. 

foci to the right and left of Z. In Fig. 4 let EC be the horizontal 
line through # parallel to the bench and let the other lines be pro- 
jections upon the horizontal plane through EC. Let MR, NS be 
the perpendiculars from M, N on EC. Let RE = p,SC=q. Then 
in the second position of the lens, R'E =q, S’'C = p. When the 
angles are small, RS = R’S’ =¢t. Let I, I’ be the images of # in 
the two cases. 

Take CE as axis of z and horizontal and vertical lines through C 
as axes of y and z. Let the second and third coordinates of M, N, 
I, I’ be y, 2, n, €¢, Y, Z, Y’, Z’. Since IN is parallel to ME, and 
I'N' to M’E, 

Yantyqp, 2=o+ lp, Yi=nt+ yplg, 2 =o + p/q. 
Since (p + q)/pq = 1/f, 

YY 9G Pie 2g Zig ie Pe 
Hence, if the image has the same position for both cases, then 
y=90, and z=0, and thus M lies on HC. The emergent ray 
through N will then be parallel to EC for all positions of the lens 
carriage. 

The lens is best mounted so that it can turn about a vertical 
pivot whose axis passes through M. If the support to which the 
pivot is fixed is moved through the distance WR at right angles 
to the bench, M will be brought on to EC. Then by turning the 
lens about M, N can be brought on to EC. : 
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To identify C, a pin is mounted on a carriage so that its tip 
coincides with #. The carriage is moved along the bench so that 
the tip touches the scale 4B. The point of contact is C. If Lis 
adjusted on its carriage so that J coincides with C for both cases, 
then M, N lie on EC. 

§ 8. Other experimental details. The scale A Bisset perpendicular 
to the bench. A set square X YZ, with the right angle at X, is held 
with XY in contact with AB. A pin is held close to XZ. If, when 
the carriage D is moved along the bench, the distance from the 
pin to XZ is constant, AB is correctly placed on its carriage. The 
scale must be horizontal and the slit vertical. The plane of the 
grating can be set perpendicular to EC optically. The lens L is 
removed and a small triangle of white paper is fixed to AB so that 
a vertex coincides with C. The grating G is placed midway be- 
tween C and £ and is adjusted on its carriage so that the image 
of C by reflexion at G coincides with H. To allow a close test of 
parallax, a few grains of lycopodium may be placed on AB when 
the image of the slit does not fall on a dividing line. 

§ 9. Practical example. Using a grating with d= 1-7526 x 
10 cm., the following results were obtained: 

The image of first order was used; thus 7 = 1. 

Bench reading 118-50 cm., glass scale readings 97-52, 73-84 em. 

Pp +5 141-21 cm., a i) 3 89-64, 82-18 cm. 

Hence 

y, = $ (97-52 — 73-84) = 11-84cem., ye. = $ (89-64 — 82-18) = 3-73 cm. 

Also %y — X= 141-21 — 118-50 = 22-71 cm. 

Hence tan @ = (y, — Ys)/(%, — X%_) = 8-11/22-71 = tan 19° 39’ 7”. 

Then A = dsin p/t = 5-894 x 10° cm. 

$10. Experiment with an astigmatic incident beam. The experi- 
mental test of the results of § 4 is a good exercise in optical manipu- 

Fig. 5. 

lation. Fig. 5 is a plan of the apparatus. Two cross-wires, inter- 
secting in £, are fitted into a tube turning about a horizontal axis 
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in a hole in the board D. A circular scale is attached to D and P 
has a pointer J which indicates its angular position. Only one wire 
is used in the measurements, but the second wire is useful as 
identifying #. The wires are illuminated by the sodium flame F. 
A lantern projection lens Z is placed so that £ is at its principal 
focus; for the best results, that end of Z should face # which faces 
the lantern slide. Beyond L is a cylindrical tube Q, resting in 
two V’s, V, V, and against a stop U, and thus having only one 
degree of freedom. A plano-cylindrical lens 4 is attached by its 
plane face to one end of Y. A lens of about + 2-5 dioptres, such 
as is used in spectacles, is suitable. The grating, centre O, is 
placed at G. A ground glass screen H can slide on the main optical 
bench, which also carries G, Q, L; if possible, D should be carried 
on the bench. On a short auxiliary bench slides a second screen K; 
the angle between the benches is 4, where sin¢d=iA/d. The 
ground sides of the screens face 0. 

Suppose, for a moment, that # is a luminous point. Then £, 
at the focus of L, gives rise to a parallel beam falling on the 
cylindrical lens A. This lens converts the plane wave front into 
a cylindrical front. If the “power” of A is + F dioptres, a “real” 
focal line, parallel to the generators of A’s surface, will be formed 
100/F cm. from A. This focal line can be received on the screen H. 
By § 4, the diffracted front is cylindrical and there is only one 
focal line at a finite distance. This focal line can be received on 
the screen A. If A is turned by turning Q on its axis, the focal 
line of the diffracted beam will turn about the axial ray and the 
distance of the focal line from O will change. The experiment tests 
the relation between the linear displacement of K and the angular 
displacement of A. 

When a wire is used instead of a luminous point, images of the 
wire will be formed on H and K when the generators of A are 
parallel to the wire. If the pointer J is set in any position, a sharp 
image can be obtained by turning Q. 

When the adjustments of §11 have been made, H is set to 
receive the image of the wire, and HO is measured. As a correction 
we may add ¢/u, where ¢ is the thickness and p the index of the 
plate covering the grating. A line ruled on H is made vertical by 
aid of a set square and a level, and P and Q are adjusted so that 
the image is vertical and %, = 0. Then K is set so that the diffracted 
image is in focus on it, and the reading of K on its bench is taken. 
Then P is turned by steps of 10° or 15°, Q is turned in response, 
and A is adjusted in each case so that the image is focussed. When 
P has been turned through 90°, so that %, = 47, the image is hori- 
zontal, and, by (14), since %, = 47, its distance from O is equal to 
the measured distance OH. When the image is vertical, %, = 0 ora. 
Since B,1 = OH, B,1 = OK, we have, by (14) 

5) 
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2.OH 
k? + 1 + (k2 — 1) cos 2,’ see eeeeeeeee 

where k = sec ¢ and sin ¢ = 2A/d. 
To compare theory with experiment, we may plot the value of 

OK given by (18) against the bench reading of A. If the zero of 
this bench is at the end nearest O, the points will lie about a 
straight line equally inclined to both axes. An alternative method 
is used in § 12. 

Ok — 

§ 11. Experimental details. The cross-wires should be mounted 
so that E is as nearly as possible on the axis of P. The lines joining 
the nodal points of Z to F are made coincident and parallel to the 
bench by the method of § 7. The axis of Q is set approximately 
parallel to the bench; optical methods are available. The cylin- 
drical lens A is adjusted optically. For a given direction of the wire 
at H, there are two positions of Q, 180° apart, in which A forms 
a sharp image of the wire on H. If the positions of these images 
are not identical, the error can be corrected by moving A at right 
angles to its generators across the end of Q. 

To set the lens Z so that £# is at its focus, a plane mirror is 
substituted for H, Q and G@ are removed, the cross-wires are 
illuminated and Z and the mirror are adjusted so that # coincides 
with its own image. The plane of G is made perpendicular to the 
bench by the same method, the plate covering the grating serving 
as the plane mirror. The bench on which K slides is adjusted 
optically. First set P and Q so that a vertical image of the wire 
is formed on AK. Then slide Z along the main bench and readjust 
K. Uf the position of the image relative to K is unchanged, the 
auxiliary bench is correctly placed. If a micrometer eyepiece is 
used in place of the screen K, two images will be seen except when 
the wire is horizontal, since sodium light has a double spectrum 
line. Unless the wire is very fine, the images will overlap. The 
doubling of the images causes no inconvenience. 

§ 12. Practical example. The following results were obtained 
with a grating of 14,493 lines per inch. 

For this grating, d= 1-7526 x 10-4 cm. The wave length was 5-893 x 10-> em. 
The image of first erder was used; thus 7 = 1. Hence 

sin @ = 0°33625, k* = sec® @ = 1-1275, @ = 19° 38’ 55”. 

A cylindrical lens of + 2-5 dioptre was used. The corrected value of OH 
was 38:91 cm. The angle w, was varied from 0° to 180° by steps of 15°. The 
bench readings in columns 2 and 4 are theoretically identical, and their mean 
is given in column 5. The values of OK calculated by (18) are given in column 6. 
To facilitate comparison, the mean difference between columns 5 and 6 has 
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been added to column 5, as suggested by Dr Wilcken, and the results are 
entered in column 7. 

The observed value of OK is a little low at 0° and 90° and a little high 

22-91 

Bench Bench 
yy reading Wy reading 

cm. em. 

0 18-52 180 18-51 
15 18-62 165 19-10 
30 19-54 150 19-90 
45 20-68 135 21-21 
60 21-87 120 21-96 
75 22-74 105 22-89 
90 

Mean 
reading 

OK OK y 
caled. obsd. aad 
em. cm. 

34°51 34:36 0 0 
34:77 34:70 14 10 
35°51 35°56 28 32 
36:58 36:78 43 17 
37-71 37:76 58 29 
38-58 38-66 Tes a 
38-91 38°75 90 O 

at 45°. Probably the incident wave front was not accurately cylindrical. 
The last column gives Wy, as calculated from tan yw, = k1+tany,. The 

difference between yy, and w, is too small to admit of measurement with simple 
apparatus. 
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The Shadow Electroscope. By R. Wuipp1neTon, M.A., St John’s 
College. 

[Recewed 15 June 1920. ] 

A simple form of Electrostatic Voltmeter of low capacity is 
frequently useful in the laboratory. The instrument under descrip- 
tion is of the gold leaf type designed primarily for class instruction 
and while not capable of the highest precision is yet sufficiently 
accurate for many purposes*. 

All leaf electroscopes with which I am familiar require some 
sort of optical system such as a microscope to view the leaf. 
Attempts have been made to use a scale placed near the leaf for 
measuring purposes, but when too near, disturbing electrostatic 
effects are encountered, placed too far away parallax errors become 
obtrusive. ; 

It occurred to me that the difficulties might be overcome by 
simply throwing a shadow of the leaf on a semitransparent scale 
some centimetres away, using a small 2-volt lamp as a source of 
heht. 

The first instrument made on these lines consisted of a tin 
cigarette box with the lamp at one end, a transparent scale at the 
other end and the gold leaf system with its insulation in the middle. 
It was found as expected that quite a sharp shadow could be 
obtained when the lamp filament was nearly parallel to the leaf. 

The final design of electroscope is shown in section in the 
figure, the photographically reproduced scale, graduated in volts, 
being shown below. It will be seen that the scale is practically 
even from 100 to 500 above which the leaf becomes unstable. 

The quadrant shape of metal box was chosen as being most 
hkely to give an even scale and a constant capacity over its 
working range. 

The tube (T) carries a well fitting sulphur plug fitted centrally 
with a quartz tube down which passes the rod (R) which carries 
the leaf within the case and a small cup at the top. 

The metal arm (A) is for clamping and tilting purposes and 
carries an earthing terminal (E). 

Just below (A), a short side tube is arranged carrying an ebonite 
block (B) in which a small lime coated spiral is fitted. When B 
is pushed home the spiral finds a place behind R. Its object is, 
when heated from a 2-volt cell, to provide a source of ions for 

* The original instrument, of which this one is the final form, was designed in 
1919 for the Naval officers under instruction in Physics at the Cavendish 
Laboratory. 



110 Mr Whiddington, The Shadow Electroscope 

experiments on lonization, its position behind the leaf precluding 
the possibility of disturbing convection currents. 

Cup FoR CONDENSER 

To EARTH. 

\ Re > 

ag SSNS 

eee ~ METAL Box 

LIME COATED SPIRAL 

The voltage range of the instrument is from 100 to 500 volts 
and with a good leaf itis possible to estimate to 1 volt, an accuracy 
sufficient for most purposes. 



Mr Whiddington, The Shadow Electroscope 111 

The scale was graduated by applying known voltages from a 
small direct current generator*, measuring them by a standard 
Weston Voltmeter. 

I have found that with this instrument and the scale repro- 
duced above, it is sufficient, when no more than approximate 
results are required, to register the shadow of the leaf for two 
positions only—zero and one other, say 200 volts. To effect this 
it will generally be necessary to alter the sensitiveness somewhat 
by adjusting the height of the sulphur block in T. This is no 
doubt due to the non-uniform aluminium leaff available. 

Charging the Electroscope. 

After connecting E to earth, the leaf may be charged positively 
by induction from a rubbed ebonite rod. If a negative charge is 
required care should be taken not to overcharge the leaf. Hf an 
appreciable leak is observed a small piece of smooth silk rubbed 
lightly over Q will almost certainly cure it. 

Insulation troubles are nearly always traceable to hairs and 
dust particles attracted under the comparatively high voltages used. 
It is therefore best to conduct the experiments in a dust free room. 

The following are a few of the experiments which can be carried 
out with this instrument. 

EXPERIMENT 1. To determine the capacity (C,) of the electroscope 
by comparison with that of a sphere of radius r em. 

Method. Charge the leaf to a voltage V, as indicated by the 
scale reading (with the case earthed), and then share the charge 
on thet leaf with the insulated sphere thereby causing a drop in 
potential to Vp. 

Then since g = C, V,; =(C,+ 7) Vo, ¢ being the original charge, 

r 
SAT ese cm. 

The following table shows a series of measurements taken on 

C, 

* Kindly lent by the Electric Construction Company, Wolverhampton. 
+ Cut with scissors from leaf approximately -0004 cms, thick. 
{ It is here assumed that the capacity of the sphere is equal to its radius. This 

is only true when the sphere is far removed from other conductors, a condition 
which can be approximately realised in practice if a long thin stiff vertical wire 
be inserted in the cup of the electroscope (or stalk of the condenser as the case may 
be) and the sphere touched to the top of the wire. If this precaution be neglected 
the results obtained will be too small. 

Further, it must be remembered that when bringing up the sphere to the 
electroscope for charge sharing, any charge on the insulating handle will affect the 
leaf by induction and spoil the results. This effect may be got rid of by passing 
the handle through a flame occasionally, merely touching the ebonite is often 
sufficient to produce a charge. 
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these lines using an insulated brass sphere of radius 3-25 cm.*; 
V, and J, are the scale readings in volts. 

Vii | V, V;/ Vy 

490 | 330 1-485 
330 | Puy) 1-405 
235 166 1-470 
LEO Me eT 1-452 

| 

From the above readings the mean value of V,/V, = 1-450, 
whence C, = 7-2 cm. 

EXPERIMENT 2. To determine the capacity of a parallel plate air 
condenser by the method of Expervment 1. 

The readings tabulated below were obtained with a specially 
designed circular plate air condensery. The diameter of the central 
plate being 4:25 cm., and its distance from two outer earthed 
plates being 0-15 cm., the capacity C, can be calculated from the 

formula for a parallel plate air condenser, viz. 2 ind oo 

Inserting the proper values for the present case leads to the 
value 60-2 cm. 

The experimentally determined value may be expected, if 
anything, to be rather greater than this calculated value owing 
to the extra capacity of the edges of the central plate. 

The method is essentially the same as in Exp. 1 but in this 
case the formula is 

p 
y SS] SSS | aaa 

Using the same sphere as in Exp. | the following results were 
obtained, the insulated central stalk of the condenser fitting in 
the electroscope cup (see figure) and the outer plates being con- 
nected to earth. 

* An ordinary bedstead knob mounted on an insulating ebonite rod. 
+ The main point in the design is the protection of the central insulated plate 

from dust, small hairs ete., which under the comparatively high potentials em- 
ployed would be attracted to it with resulting insulation troubles. The central 
plate is therefore sandwiched between twe outside parallel plates, one of which is 
provided with a peripheral spacing ring which in butting up against the other 
outer plate completely encloses the inner insulated one. Insulating grooved buttons 
of ebonite form the insulation. 
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From these readings the mean value of V,/V, = 1-045, whence 
C, + C, = 72-2 cm., and since C, = 7-2, C, = 65-0 cm. 

EXPERIMENT 3. To deternune the Specific Inductive Capacity of 
Ebonite. 

This can be readily carried out by using a second condenser 
exactly similar to the one used in the previous experiment but 
with circular plates of ebonite separating the plates instead of air. 

Then if this condenser (capacity C,) is placed on the electro- 
scope in the manner of the previous experiment, and charged to 
a potential (V,), and the sphere is used in the manner previously 
described, the resulting collapse of the leaf will be so small as to 
be hardly readable owing to the large capacity of the ebonite 
condenser. It is therefore more convenient to use the air con- 
denser of measured capacity C, in place of the sphere. It is suffi- 
cient to hold C, by its outer case for earthing purposes, touching 
its central plate momentarily to the corresponding plate of the 
condenser C’, on the electroscope. The potential resulting from this 
sharing of charge (V7) is noted. 

We then have that 

Orta eent Va 
C; ae C; We ) 

@ 

- whence C+¢,= =" 
: eV a ho ke 

in which both C, and C, have been previously determined by 

ae | Weg il ee ar 

r | 
330 |* 250 1-320 
340 262 1-296 
258 | 192 1-341 
486 362 1-336 
350 | 265 1-322 
260 195 1-318 

VOL. XX. PART I. 8 
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experiment. The above table gives the results of an experiment. 
From which the mean value of V,/V, comes out to be 1-322. 

By calculation from this value C, = 194-7 em. 
Assuming the identical dimensions of the two condensers* the 

Specific Inductive Capacity of Ebonite is just the ratio 

194: wIea= 5 
== 28S). 

A value not far removed from the accepted value which ac- 
cording to the table of Kaye and Laby will usually lhe between 
2-7 and 2-9. 

EXPERIMENT 4. The comparison of two capacities by the coniza- 
tion leak method. 

It is convenient to illustrate this method by giving as an 
example the results of an experiment using the same two con- 
densers as the preceding experiment. 

Method. If when the hme coated spiral] is glowing steadily the 
slow leak of the electroscope be observed firstly with C, in position 
and then with C; in position, the capacities can at once be compared, 
for if T, and T, be these times it can be shown that 

Ca ats C. muh ih 

Cy ar C, is Ar 

The following table gives some results obtained with this 
method. In order to eliminate as far as possible any variations 
in the amount of ionization (which depends very greatly on the 
temperature of the filament and therefore on the E.m.F. of the 
power supplying cell) the readings for T, and 7, were taken 
alternately and as quickly as possible. It will be seen that under 

Times in seconds 

a Lis 

9-2 

25:0 
9-2 

24-6 
9-6 

25:8 
9-4. 

25:4 

Mean 9-35 25:2 

* This can easily be tested experimentally. 
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the conditions of this experiment, in which a well charged 2-volt 
lead accumulator was used, there is very fair concordance between 
the various readings. 

Leak observed from 400 volts to 200 volts. 
If now in the above-mentioned expression we assume the pre- 

viously determined values of C, and C,, viz. 65-0 cm. and 7-2 cm. 
respectively, the value of C, comes out to 188-0 cm. leading to a 
value for the specific inductive capacity of ebonite of 2-90. This 
value is in as good agreement as is to be expected with the deter- 
mination of Exp. 3. 
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On the Hart circle of a spherical triangle. By Professor 
H. F. Baker. 

[Read 9 February 1920]. 

This note is concerned with the problem, given three arbitrary 
plane sections of any quadric, of finding a fourth section which 
shall be tangent to four of the tangent planes of the three given 
sections. If the three given sections are concurrent on the quadric 
they have only four tangent sections, and the fourth section is 
unique, the projection of the figure on to a plane (from the point 
of concurrence) giving rise to Feuerbach’s theorem of the nine- 
point circle. In general the three given sections have eight common 
tangent planes; in fact any two of these sections lie on two quadric 
cones, and the six vertices of the cones so obtainable le by threes 
on four coplanar lines; the three cones whose vertices are on any 
one of these lines have a pair of common tangent planes, which 
thus touch the three sections. The eight tangent planes of these 
are thus accounted for. There are now fourteen ways of selecting, 
from these eight tangent planes, four which all touch another 
section; six of these ways, in which the four tangent planes selected 
are tangent to a fourth section passing through the point of con- 
currence of the three given sections, are easy to recognise, and do 
not need further consideration. There are however eight ways of 
choosing four from the tangent planes which shall all touch another 
section lying in a plane @ forming with the planes of the three given 
sections a finite tetrahedron. 

§ 1. We are thus lead to the problem of the condition necessary 
and sufficient:in order that the sections of a quadric by the four 
faces of a tetrahedron should have four common tangent planes; 
and the main object of this note is to state this condition in a 
form which in fact leads to great simplification of what is generaily 
presented as a somewhat intricate theory, and to point out several 
results, apparently new, which follow from this. Let the tetra- 
hedron be O, X, Y, Z; denote the intersections of the quadric 
with OX by A, A’, those with OY by B, B’ and those with OZ 
by C, C’; similarly denote the intersections with YZ by U, U’, 
those with ZX by V, V’ and those with XY by W, W’. In general, 
if each edge of the tetrahedron be joined by planes to the two 
points in which the quadric meets the opposite edge, the twelve 
planes so obtained touch another quadric. But 1t may happen that 
this new quadric degenerates into two points, say S and S’; then, 
with a proper choice of notation, the four lmes AU, BV, CW are 
concurrent in a point S, and the four lines A’U’, B’V’, C’W’ con- 
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current in another point S’. That this should be so is a necessary 
and sufficient condition that the four sections of the quadric by 
the faces of the tetrahedron should have four common tangent 
planes. The condition may be stated in another form; take on 
the edge OX, the point A, separated harmonically from A by O 
and X, and the point A,’ separated harmonically from A’ by 
O and X; in the same way take on each edge of the tetrahedron 
the harmoric conjugates, with regard to the vertices of the tetra- 
hedron lying on that edge, respectively of the intersections of the 
quadric with that edge. The twelve new points so obtained lie on 
another quadric, which we may describe as the harmonic conjugate 
of the original in regard to the tetrahedron. The condition in — 
question then is that the harmonically conjugate quadric should 
break up into two planes, say o and o’; these will be the polar 
planes of S and S’ in regard tothe original quadric. 

We may illustrate this condition by applying it to the (Feuer- 
bach) case of three sections of the quadric which are concurrent 
on the quadric, say in O. The fourth section of the quadric touched 
by the four common tangert planes of the three given sections 
OYZ,OZX, OXY is then constructed as follows: on the plane YOZ 
take the line p through O, harmonically conjugate with respect to 
OY, OZ, to the line in which the plane YOZ is met by the tangent 
plane of the quadric at O; let this line p meet the quadric again 
in P; obtain the points Q, FR of the sections ZOX, XOY in a similar 
way. The plane PQR is the fourth plane required. In this case 
one of the planes a, o’ is the tangent plane at O. 

§ 2. We may obtain a direct verification of the sufficiency of 
the condition in general by using it to obtain any one of the eight 
(Hart) sections w@ which can be associated with three given sections 
YOZ, ZOX, XOY, so as to form four sections with four common 
tangent planes. Let the quadric, referred to YOZ, ZOX, XOY and 
the polar plane of O, have the equation 

ax® + by? + cz? + 2fyz + 2gzex + 2hey = t,?; 

with an arbitrary choice of the signs of Va, Vb, Vc, take 

u=4(ftvbve), v=4(9+Veva), w=k(h+Vavo), 

and then /, m, n so that 

m=u, nl=v, lIn=w; 

the eight planes required are then expressed by 

la + my + nz—t, = 0. 

It is at once seen that this follows from the condition stated above. 
If we introduce A, p, v so that 

f=vVbVecosr, g=VeVacos p, h=Vavb cos, 
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a plane of this latter form is 
1 1 Mecosne aly — cos dp cos 3 cos $y Cos $ tage OEIE g y/g Ee 
cos 3A cos du 

LA cos 4 
Fe 6 = (H); 

on the other hand a common tangent plane of the three given 

sections in x = 0, y = 0, z = 0 is at once found to be 

a Va cos (s — A) + yVb cos (s — w) + zV cos (s—v)—t,=0, (I) 

where s = 4(A+ +); and it is easy to see that the section (1) 

touches the section (H) at the point of the plane (H) which lies on 

aVa:yVb:2Ve=p(q—7?: a(r— py: r(p— 9g, 

where, for brevity, p, g, r stand respectively for 

sin (s— A), sin (s— p), sin (s— v). 

The four planes (I) which touch the section (H), as well as the 
original sections in z = 0, y = 0, z = 0, are obtained from the above 
equation by replacing A, u,v by + A, + p, + v, respectively. 

The eight sections (H) are obtainable from that above by re- 

placing Va, Vb, Vc, A, p, v respectively by 

(Va, Vb, Vc, A, wv), (— Va, Vb, Ve, A,7 + p, 7+), 

(Va, — Vb, Vc,A +7, pv +7), (Va, Vb, — Ve,A+ 7, w+ a, Vv) 

together with those obtainable from these by changing the sign 
of t,. 

§ 3. The following result gives a construction for the position, 
upon the section, 7, of the quadric by the plane (I), of the point 
in which this section is touched by the plane (H). Upon 2 we have 
three points, its contacts with the sections in « = 0, y = 0, 2 = 0; 
we also have two points, namely those in which 7 is met by the 
plane from O to the intersection of the planes ABC, A’B’C’, which 
plane is at once found to have the equation 

aVatyVb+2Ve=0. 
The point to be constructed is the apolar complement of the two 
latter points in regard to the three former points. This result may 
be made clearer perhaps by stating it for a sphere in Kuclidian 
geometry: If D, H, F be the mid-points respectively of the sides 
BC, CA, AB of a spherical triangle, the planes of the great circle 
arcs EF’, BC give a diameter, and the three diameters so obtained 
are coplanar; let I, J denote the intersections of their plane with 
the inscribed circle of the triangle ABC; let P, Q, R be the points 
of contact of this inscribed circle with the sides BC, CA, AB. Then, 
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upon this inscribed circle, the point of contact with the Hart circle, 
which touches this and certain other three tangent circles of the 
sides of the triangle, is the apolar complement of J, J in regard to 
P,Q, R. For the particular case of the nine point circle of a plane 
triangle the result has been remarked by Prof. F. Morley, as was 
pointed out to the writer by Mr J. H. Grace, Bulletin of the American 
Math. Soc., 1, 1895, 116-124 (“ Apolar triangles on a conic”). 

§ 4. Another result may also be stated here. To introduce it 
and render its meaning clearer we state it first for the Hart circle 
of a spherical triangle in Euclidian geometry. If this circle meet 
the sides of the spherical triangle A BC respectively in U, U’ on BC, 
V, V’ on CA, W, W’ on AB, then, with proper choice of notation, 
the arcs AU, BV, CW are concurrent, say in S, and the arcs 
A'U’, B’V’, C’W’ are concurrent, say in S’. The result in question 
is that S, S’ are the centres of similitude of the circumscribed 
circle of the triangle ABC and the Hart circle. It is a direct 
generalisation of the corresponding familiar fact for the nine point 
circle of a plane triangle. 

Stated in the more general way here adopted, which is also the 
more precise way, the theorem is that the lines OS, OS’ are each 
the intersection of two planes through O which touch both the 
section @ and the section by the plane ABC. If PQR, P’Q’R’ be 
two sets of three points lying respectively on two plane sections 
of a quadric, such that PP’, QQ’, RR’ are concurrent, the sections 
lie on a quadric cone having this point of concurrence for vertex; 
thus a plane through O touching the section » by the plane ABC 
equally touches the section p’ by the plane A’B'C". Now S, the 
point of concurrence of AU, BV, CW, is the vertex of one cone 
containing the sections p, w; and S’ is ‘similarly the vertex of one 
cone containing the sections ae ow. The line OS’, joining the vertex 
of one cone containing the sections yp’, w to the vertex of one cone 
containing the sections yu, mw’, passes through one of the vertices 
of the two cones containing the sections, u, 7; as OSS’ are not 
collinear, this line OS’ passes through the vertex other than S of 
a cone containing » and w. The two cones containing p and a 
thus have their vertices on OS and OS’. Now to each of these 
cones there can be drawn from O two tangent planes, which 
intersect in the line joining O to the vertex of the cone; the four 
planes so obtained touch the sections w and a, and thus are the 
four common tangent planes of the cones with vertex O standing 
on the sections p, w. Two of these planes therefore intersect in 
OS and two in OS’; which is the result we desired to obtain. 

There are as we have said eight sections @ each touched by four 
of the common tangent planes of the sections in YOZ, ZOX, XOY. 
These tall into four pairs, the planes of a pair intersecting on the 



120 Professor Baker, On the Hart circle of a spherical triangle 

polar plane of O, being harmonic conjugates in regard to this plane 
and QO; for the pair associated as above with the two planes ABC, 
A'B'C’ the lines OS, OS’ are the same. There is another pair 
associated similarly with the planes AB’C’, A’BC, a third pair 
with the planes BC’A’, B'CA and a fourth pair associated with 
the planes CA’B’, C'AB. And it may be remarked that the sections 
by the planes ABC, AB’C’, BC’ A’, CA'B’ are all touched by four 
planes, as follows at once from the fact that 4A’, BB’, CC’ are 
concurrent; so also the sections by the planes A’B’C’, A’ BC, B'CA, 
(AB are all touched by four planes. 

§5. Another remark may be made, relating to a property which 
appears in Kuclidian geometry as Salmon’s theorem that the 
tangent of the radius of the circumcircle of a spherical triangle is 
twice the tangent of the radius of the Hart circle. 

Let P be the pole of any plane section of a quadric, upon which 
any point A is taken, and O be any other point; denote by p the 
Cayley separation of the lines OP, OA in regard to the quadric, 
and by 6 the Cayley separation of P from O. It can then be shown 
that p is independent of the position of A upon the section, and is 
indeed symmetrical in regard to P and O, being connected with 6 
by an equation sin 6 sin p= + 1. Calling p the radius of the section 
in regard to the point O, it can be shown that if p, p’ be the radii 
of any two sections a, a’ whose planes intersect in a line /, and the 
planes joining / to O and to the vertex of one of the two cones 
containing a and a’ be respectively denoted by w and y, then 
tan p/tan p’ is equal to the homography (y, w; a, a’) or to the 
negative of this. In particular when the planes y, a are harmonically 
separated by w and a’, this leads to tan p = 2 tanp’. In our figure 
the plane o, which is the polar of S in regard to the quadric, passes 
through the line of intersection of the planes ABC and a, since S 
is the vertex of one of the cones containing the section by ABC 
and the Hart section a, and this plane o also contains the vertex 
of the other cone containing these sections; zt can easily be proved 
that the plane w which joins O to the line of intersection of the planes 
ABC and & is harmonically separated from a by the planes ABC 
and o; thus the planes co, ABC, w, @ have the relation of the 
respective planes y, a, w, a’ in the general description just given. 
Tt follows that if p, R be the radii of the sections w, ABC, we have 
tan & = 2 tan p; which is what we wished to prove. 

§ 6. A last remark may be added bringing into relief the con- 
nexion between the present point of view and that of the Euclidian 
geometry. As hitherto, let OX YZ be a tetrahedron whose faces 
meet a quadric in sections having four common tangent planes. 
Denote by 2a, 78, vy the Cayley separations OX, OY, OZ in regard 
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to the quadric; by ia’, if’, vy’ the Cayley separations YZ, ZX, XY; 
by (A), (B), (C) the Cayley separations of the pairs of planes 
meeting respectively in OX, OY, OZ; and by (A’), (B’), (C’) the 
Cayley separation of the plane X YZ respectively from the planes 
YOZ, ZOX, XOY. Each of these separations is ambiguous in sign 
and by additive multiples of 7, unless we enter into further detail. 
There are however equations by which all of them are deducible 
from a, B, y; and these equations may be represented, when proper 
regard is paid to the ambiguities, by 

a =ir+B—y, BP =im+y—a, y =ir+a- B, 

Lager See quae SMB CB o> al 
~ cosh (e+ a)’ pat at Goan (e+ BSA 

where « is such that 

2 tanh e = tanh a tanh f tanh y — tanh a — tanh B — tanhy. 

And these lead to 

ioe (2) (Cy CC ata) CO) -- (4) — CB), 
which may be used to define the Hart section. 

tan (A) 

§ 7. In what has preceded we have stated a sufficient condition 
for the Hart section, namely that AU, BV, CW are concurrent. 
It can however be proved that this is also a necessary consequence 
of the existence of the four sections of the quadric all touched by 
four other planes, provided we exclude certain particular possi- 
bilities which are easily stated. Precisely, given three arbitrary 
plane sections of a quadric, no one of which degenerates into two 
straight lines, so that the equation of the quadric referred to these 
and the polar plane of their point of intersection is of the form 
(abcfgh } xyz)? = t,?, in order that these with a fourth section (also 
not two straight lines) should form a set of four sections all touched 
by four planes, if no relations are assumed to hold among the 
coefficients a, 6, c, f, g, h, it is necessary that the condition in 
question (that AU, BV, CW are concurrent) should hold. 

In order that the sections by « = 0, y= 0, z = 0, t= 0 of the 
quadric (abedfghuvw )xya)? = 0 should have four common tangent 
planes, the cones enveloping the quadric along these sections must 
be concurrent; if A be the four-rowed determinantal discriminant, 
and A, B, ... the minors therein, it follows that the necessary and 
sufficient condition for this is that the equation 

(abcdfghuwwhV A, V B, VC, VD)? = A 

should be satisfied for four choices of the signs of VA VB, VC,VD. 
It proves to be possible to examine all the ways in which this can 
happen, and the result is as stated. 
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On a property of focal conics and of bicircular quartics. By 
Professor H. F. Baxer. 

[Read 9 February 1920.] 

The property of focal conics referred to in the title is the well- 
known one that if P, R be any two points of the focal hyperbola 
of a system of confocal quadrics, and Y, S be any two points of the 
focal ellipse, then the distances PQ, PS have the same difference 
as the distances RQ, RS. The theorem remains true if every one 
of the distances be replaced by the Cayley separation of its end 
points in regard to an arbitrary quadric of the confocal system, 
and the original theorem is then obtainable by making the para- 
meter of this arbitrary quadric increase without limit. It is shown 
that the generalised theorem is equivalent to the geometrical 
theorem that two enveloping cones of the arbitrary confocal exist, 
each of which touches the four lines PY, QR, RS, SP. The theorem 
that the sum of the two focal distances of a point of an ellipse is 
constant may similarly be replaced by the theorem that the sum 
of the Cayley separations of a point of the ellipse from the foci is 
constant, in regard to an arbitrary confocal conic; a theorem is 
obtained which includes both this last result and the former. It 
is unnecessary to point out that this last result is equivalent with 
Chasles’s theorem that a variable tangent plane of a quadric cone 
makes angles with the planes of circular section whose sum is 
constant (Chasles, Géom. Supér., 1880, § 812, p. 517). 

The property of bicircular quartics referred to is that the angles 
which a variable bitangent circle of one mode of generation makes 
with two fixed bitangent circles of another mode of generation, have 
a constant sum (Jessop, Quart. Journ., Xxt1, 1889, 375). This is 
shown to be equivalent to the former theorem. 

There exist much more general theorems in regard to the 
generation of a quadric with the help of a thread of constant 
length, whose systematic investigation is in connexion with the 
theory of hyperelliptic functions (Chasles, Liouville, x1, 1846, 15; 
Darboux, Théorie des surfaces, Livre tv, Ch. x1v, 296-312; Staude, 
Math. Ann., XX and xxtt, 1883; Finsterwalder, Math Ann., XXVI, 
1886; Maxwell, Works, 11, 156 or Quart. Journ., 1867). Ihave added 
some lines in regard to this general point of view. 

§ 1. If P, Q, R, S be four coplanar points of a quadric, and 
through the lines SP, PQ, QR, RS be drawn four arbitrary planes, 
respectively, a, f, y, 6, the lines af, By, yd, 5a meeting the quadric 
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again respectively in P’, Q’, R’, S’, then (1) the points P’, Q’, R’, S’ 
are equally on a plane, (2) if by the angle between the sections of 
the quadric by the planes a, 8 be understood the Cayley separation 
of these planes, measured by the homography of these planes in 
regard to the two tangent planes to the quadric drawn from their 
line of intersection, then the sum of the angles at P, R, determined 
respectively by the sections a, 6 and y, 6, is equal to the sum of 
the angles at @, S, determined respectively by the sections f, y 
and 6, a. 

That P’, Q’, R’, S’ lie in a plane follows from the fact that the 
four quadrics consisting of (i) the original quadric, (ii) the planesa, y, 
(iii) the planes f, 5, (iv) the planes POR, P’Q'R’, have seven, and 
therefore eight points in common. For the relation between the 
angles, denote by @ the section by the plane PQRS, and in general 
by (a, 8) the angle between the sections (a, 8). Then we have 

7 == (8, a) + (a, 8) + (B, 8) = (9, y) + (y, 8) + (6, 9), 
and therefore 

(a, B) + (y, 8) = 2a — (6, a) — (8, B) — — (0, 8), 

which is also the value of (8, y) + (6, a), the aoe of inter: 
pretation being properly aed in oa case. 

In a plane we have the theorem that if P, Y, R, S be concyclic 
points through which pass pairs of four circles a, f, y, 6, namely 
a, 8 through P, 8, y through Q, y, 5 through R and 4, a through S, 
then the two angles (a, f), (y, 5) have the same sum as the two 
angles (8, y), (6, a); and this, not depending on the Axiom of 
parallels, may on be regarded as a fundamental theorem. Further 
if P’ be the other intersection of a and B, etc., the points P’, Q’, R’, S’ 
are concyclic. The connexion of this result with the theorem of the 
angles is incidentally remarked by Prof. W. McF. Orr, Trans. Camb. 
Phil. Soe., XVI, 1897; 95, 

§ 2. Regard the bicircular quartic in question as the projection 
on to an arbitrary plane of the section of a quadric by a quadric 
cone of general position, the centre of projection being an arbitrary 
point of the quadric. An arbitrary tangent plane of the cone cuts 
the quadric in a section projecting into a conic having two points 
of contact with the bicircular quartic, and this conic, passing 
through the nodes of the quartic, is for us a bitangent czrcle, of 
one mode of generation. The other three modes are obtained by 
considering the other three quadric cones through the intersection 
of the quadric and the first cone. Take then two bitangent 
circles of the bicircular quartic of the first mode of generation, say 
a and y; their points of contact will be on another circle, say p, 
as appears from the three dimensional figure. Take also two 
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bitangent circles of a second mode of generation, say f and 6, 
with points of contact on a circle, o. We shall prove that the 
eight points of intersection of the pairs of circles (a, f), (B, y), 
(y, 5), (5, a) lie on two circles 0, 0’, four on each. These circles 0, 0’ 
pass through the two intersections of the circles p, o, and separate 
these circles harmonically; the circle p is orthogonal to the principal 
circle to which the bitangent circles of the first mode are all ortho- 
gonal, with a similar statement for o. For the proof, let a = 0, 
y = 0 be the equations of any two tangent planes of a quadric 
cone, whose generators of contact lie on a plane p = 0, so that 
the cone has the equation ay — p? = 0. Let 8d — o” = 0 be another 
quadric cone, whereof 8 = 0, 6=0 are tangent planes touching 
the cone on o = 0.. Then a quadric # = 0 through the curve of 
intersection of the two cones has an equation of the form 

E = ay — p* — m? (8d — o”) = 0, 

so that the four lines a —/0; 8)/— 0;))8)'— 05 4, — 0: 7 — Oror—0: 
6 = 0, a = 0, in which the two first planes a, y meet the two latter 
planes f, 6, intersect the quadric # = 0 in eight points lying in 
the two planes p + mo = 0, p — mo = 0. 

We have then a proof of Jessop’s theorem in regard to the 
bicircular quartic curve*. 

§ 3. Reciprocally let any two conics be taken in space, not 
intersecting one another. Consider a quadric touched by the 
common tangent planes of these two conics. Then if A, C be any 
two points of the first conic, and B, D any two points of the second 
conic, it follows from § 2 that the pairs of tangent planes to this 
quadric from the lines AB, BC, CD, DA touch two enveloping 
cones of the quadric, say F and G. Or, as a line lying in a tangent 
plane of a cone is a tangent line of the cone, there are two en- 
veloping cones of the quadric which touch the lines AB, BC, CD, 
DA. And, comparing the equations of § 2, the vertices of these 
cones lie on the line joining the points R, S, in the planes of the 
conics, which are the poles respectively of AC, BD in regard to 
these conics, and separate #, S harmonically; the positions of the 
vertices depend on the quadric taken to touch the common 
tangent planes of the conics. Moreover, as the reciprocal of the 

* The direct analytical proof is, of course, simple. Let the fundamental quadric 
be 2° + y? + 22 + # =O, and bitangent circles of two modes be obtained by pro- 
jection of the polar sections respectively of the two points 

[(a—d) x, (b—d) y, (c—d) z, 0], [(a—c) & (b—c) 7, 0, (d —c) rT]. 
Then the angle between these circles, being the Cayley separation of these points, 
is the angle, in rectangular Cartesian coordinates, between the two lines 

X /px=Y/qy, X/pé=Y/qn, where p?=(a—d) (a—c), g2=(b —d) (6 —c). 
This generalises at once to the Cyclide; cf. Jessop, Quartic surfaces, 1916, p. 106. 
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theorem in regard to the angles, if we consider the homography 
of A, Bin regard to the quadric, say a, and take the corresponding 
homographies for the pairs B, C; C, D; D, A respectively, sav b, ¢, d, 
we have ac = bd, or a/d =5b/c. In words, the difference of the 
Cayley separations of A from B and D, in regard to the quadric, 
is the same, for unaltered positions of B, D on the second conic, 
when A is replaced by any other point C of the first conic. 

This result includes the particular case of the focal conics of 
a confocal system, for which we may also consider the further 
particular case of actual Euclidian distances between the points. 
(Cf. § 10 below, where the relation between the separation and the 
distance 1s given.) 

§ 4. If we assume that the sides of the skew quadrilateral 
ABCD in § 3 touch an enveloping cone of the quadric, we can 
deduce the relation between the Cayley separations in another 
way. In fact if the sides of a skew quadrilateral touch any quadric 
having ring contact with a given quadric, the sum of the Cayley 
separations belonging to the sides of the quadrilateral, each taken 
in proper sense, is zero, the separations being measured by the 
latter quadric. For if AT be a tangent to a quadric V, which has 
ring contact with a quadric U, drawn from a point A, the Cayley 
separation AT in regard to U is independent of 7. If A be 
(€, n, ¢, 7), T be (x, y, z, t), so that, with usual notation, V, = 0, 
Vz = 0, and U be V+ P?= 0, then U, = P,?, U,z= P,P:, and hence 

Use|(UUs)* = PaPs|P, (Ud)* = Pe[(Ue)*, 
which is independent of 2, y, 2, ¢; and U,¢/(U Us)? is the cosine of 
the separation in question. Therefore, if the sides 4B, BC, CD, DA 
of the skew quadrilateral touch V respectively at a Mu, ny ¥, 
we have the following relations among the separations 

(AB) = (AL) — (BL), (BC) = (BM) — (CM), 
(CD) = (CX) — (DX), (DA) = (DY) - (AY), 

(AY) = (AL), (BL) = (BM), (CM) = (CX), (DX) = (DY), 
leading to 

(AB) + (BC) + (CD) + (DA) = 0, 

or (AB) — (AD) = (CB) — (CD). 

In the application of this result above, V was a cone. 

§ 5. We may however make an application in which U is a 
cone, and V not a cone, U being an enveloping cone of V. Namely, 
if the sides of a skew quadrilateral touch a quadric, the sum of 
the four Cayley separations of the vertices, each in proper sense, 
in regard to any enveloping cone of the quadric, is zero. The 
reciprocal theorem, is that if two plane sections a, y of a quadric 
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be both touched by each of two other sections 6, 6—and if, taking 

a fifth arbitrary section, w, of the quadric, we measure the angle 

between the planes of two sections a, 8, which touch one another, 

in the usual way, by considering the homography of these planes 

in regard to the tangent planes drawn from their line of intersection 

to the section w—then, with proper sense of measurement, [a, 6] 

denoting the angle between these planes, we have 

[a, fed ar [B, y] a ly; 5] SF [5, a] = 0. 

Now take one of the two quadric cones containing the sections 

a, y, and regard this cone, and the section w, as fundamental; 

speak of a, y as circular sections of this cone, of opposite systems 
because each has two points common with the other and with w. 
Then we have Chasles’s theorem that a variable tangent plane of 
a quadric cone makes angles of constant sum with two planes otf 
circular section of the cone, of opposite systems. 

§ 6. The reciprocal theorem is that a generator of a quadric 
cone makes angles of constant sum with two conjugate focal lines 
of the cone, that is, considering the conic in which the plane of w 
cuts the cone, and the quadrilateral formed by the common 
tangents of this conic and w, makes angles of constant sum with 
the lines joining the vertex of the cone, to an opposite pair of 
intersections of two of these common tangents (Chasles, loc. cit., 
§ 827, p. 528). Projecting on to an arbitrary plane we have the 
theorem that if P be a variable point of one of two conics having 
S, H as common foci, the Cayley separations PS, PH in regard to 
the other conic have a constant sum. An elementary proof can 
be given depending on the fact that if PS meet the other conic 
in S,, S,, and PH meet the other conic in H,, H,, then, with proper 
notation, each of S,H,, S,H, passes through a fixed point of the 
line SH. 

§ 7. This theorem for conics is a particular case of the following: 
Two conics V, W, have both double contact with a conic U, and 
also both have double contact with another conic K. From a 
point P of K a tangent PX is drawn to V, and also a tangent PY 
to W; then the Cayley separations PX, PY, taken in regard to U, 
have a constant sum (or difference) as P varies on K. Two tangents 
are possible from the point P to the conic V; but the separation PX 
is the same for both. 

If V degenerate into the pair of tangents to U from a focus S 
of U, and W into the pair of tangents to U from the conjugate 
focus H, then the conic K, touching these four tangents, will be 
confocal with U, and the tangents PX, PY will become the lines 
PS, PH. Thus the theorem includes that of § 6. 
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§ 8. The proof of the general theorem of § 7 is, analytically, 
identical with that, of the following theorem, of three dimensions, 
which leads, in § 9, to the theorem of § 4, and may thus be regarded 
as summarising all the analogous theorems here obtained :—If two 
quadrics V, W both have ring contact with a quadric U, and also 
both have ring contact with a quadric K, and PX, PY be tangents 
respectively to V and W from a point P of K, the sum (or difference) 
of the Cayley separations PX, PY, in regard to U, is independent 
of the position of P upon K. When V and W coincide the difference 
of the separations is zero for all positions of P and the quadric K 
is unnecessary. 

The theorem is easy to prove. In order that two quadrics 
V = 0, W = 0 should both have ring contact with another quadric 
U = 0, they must, if P = 0, 9 = 0 be suitable planes, be capable 
of the forms V = U — P?, W = U — Q?, and thus V, W must have 
two points of contact, there being an identity of the form 

V-—-W=p4, 

where p=0, g=0O are two planes. Any quadric having ring 
contact with both V and W is then capable of either of the 
identical forms 

V +2 (ap — ag)? = 0, W+ 3 (ap + ag)? = 0, 
wherein @ is a constant, and two such quadrics can be drawn 
through an arbitrary point. We may then suppose 

Be Vie CrP On) Ko Via (bp — bg)", 
where K = 0 is the quadric of the enunciation, and 0 is a constant. 
Thus we have the identity 

U — K = (a-2 — b-2) (p? — a?b%?), 

involving in particular that U, K have two points of contact on 
the line joining the points of contact of V and W. Putting 

P= 4 (ap — aq), Q= 3 (ep + ay), 
this is the same as 

(1 — 0?) (U— K) = P? + @ + 20PQ, 
where o = (a? + b?)/(a2 — G?). This again, if U is not zero, is the 
same as 

(P2— U) (Q?— U) — (PQ + cU)? = (1 — 0?) UK. 

We remarked however above (§ 4), that if 6, d be the Cayley 
separations PX, PY, taken in regard to U 5 

iP 
re ac Q 

ut’ 
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where the coordinates in U, P, Q are those of the point P. Tf this 

point be on the quadric K = 0, but not on U = 0, we thus get 

cos 0cosf+o= +sin@sin d 

showing that 6 + ¢ = constant, as was stated. 

§ 9. Now suppose a skew quadrilateral ABCD of which the 

sides 4B, BC both touch the quadric V, say in X and Y, respec- 

tively, while the sides CD, DA both touch the quadric W, say in 

Z and T respectively. The quadrics V, W are supposed to have 

two points of contact, so that quadrics can be drawn having ring 

eontact with both. Let U be one such; let K be another such 

passing through C, and let 4 be on K. Then, considering Cayley 

separations in regard to U, we have (BX), (BY) equal because V 

has ring contact with U, and also (DZ), (DT) equal because W 

-has ring contact with U. By § 8 we also have (AX) — (AT) equal 

to (CY) — (CZ), if a proper sense be assigned to the separations 

involved. 
We infer therefore that 

(AB) — (AD) = (AX) + (XB) — [(AT) + (TD)| = (AX) — (AT) 

+ (XB) — (TD) = (CY) — (CZ) + « (YB) — ¢ (ZD), 

where «, £ are each +1. Without making the proper detailed 
examination, we shall put both e and ¢ equal to 1, so obtaining 

(AB) — (AD) = (CB) — (CD). 
This is verified (§ 4) in the particular case where the quadrics V, W 
coincide, there being then no need for the condition that A, C 
lie on the same quadric K having ring contact with V and W. 

§ 10. A line joining a point of one focal conic to a point of 
another focal conic of a confocal system of quadrics is a particular 
case of a line touching two confocals of the system. And such a 
line is part of a continuous curve which on either of these two 
confocals may consist partly of arcs of the line of curvature which 
is the intersection of these two fundamental confocals, and partly 
of arcs of geodesics touching this line of curvature. As was recog- 
nised by Chasles this continuous curve has everywhere the geo- 
metrical property that if we take two other confocals of the 
system, the homography of the tangent planes drawn to one of 
these from a tangent line of the curve, in respect of the tangent 
planes drawn to the other, is the same for every point of the curve. 
That the analytic formulation may equally be regarded as uniform 
for all parts of the curve seems often to be unnoticed; it is recog- 
nised however by Staude in the papers above referred to. Let us 
consider the system of confocals 
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ae ye Af: 

Ae a ee ae 
where a> b>, using A for ellipsoids, » for hyperboloids of one 
sheet, v for hyperboloids of two sheets. Suppose that the straight 
portion of the curve touches the confocals for which A = p, A= q, 
and denote by dw the Cayley separation of two consecutive points 
of the curve taken in regard to the confocal of parameter A = 8. 
Putting 

1, 

F (a) = 4 (a + a) (w+ b) (x + ¢) (uw — p) (u — Q), 

2—f(r), M@=f(p), =f (v), 
the curve is such that 

A — p) dr —p)d (v — p) dv {\ p +{# p He] pe =0, 
E M 

(A—q)dr0 . ((u—gadp , [(e-—ge _ 
[es +] Mu + | API TG 

while, with ©? = F (6), 

a he ie ee eb ae 
Seren ene | aan v—O6)N 

(9 — p) (8 — 4) 
) > 

where w= fdw. By supposing @ to increase indefinitely, and re- 

= Dw. 

placing 62dw by ds, we have the corresponding result when 
Euclidian distance is used. 

In the notation of hyperelliptic functions (see Wultiply-periodic 
functions, Cambridge, 1907, pp. 35, 36, using the p, q as ay, dg are 
there used), we have 

C) [paca a0) ae 
2 (9 — p) (9-4) J 2, x—@ “| 

Gat Vw Pic, (ee). gt te log 
¥(u7" + k) 

¥(u"? + k)’ 
where (¢) denotes the place conjugate to (6), & is such that 3 (f) 
vanishes identically, and when @ is large the significant terms of 

the functions €,, ¢, are 6~ 2pq and 6-2 (p + q). 
Along a straight portion of the curve, joining, suppose, the 

points (Ap, Ho, Vo), (A, # v), the places (A), (1), (v) of the hyperelliptic 
construct are coresidual with the places (Ag), (M9), (vp), and we can 
satisfy the identities 

F (x) — [yp (x) P = 4 (@ — A) (@— p) (2 — v) (@ — fa) (2 — fa), 
F (x) — [yo (x) P = 4 (@ — Ap) (4 — fo) (4 — Yo) (& — fr) (@ — fa), 

VOL. XX. PART I. 9 
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where 

ub (x) = 2 (la? ++ me +n), Bo (x) = 2 ([px” + mox + Np). 

With this notation we find, for the Cayley separation of the two 
extreme points, 

w = tanh (600) — tanh (0.21) , 

leading in particular, if r be the distance of these points, to 
ry =1—l1,, and to 

OG NO eu ee )@ + py (7) tanh w- 

The character of the symmetric functions of the places 
(A), (u), (v), regarded as functions of w, along any portion of the 
curve, seems eminently worthy of investigation. 

And it appears that the total value of w, along any closed 
portion of the continuous curve, is expressible by an aggregate of 
the periods of the integral 

TOO St) | TES Oy | 
where y? = F (x), with integer coefficients; these will then be un- 
altered by any continuous small deformation of the are of the 
curve. This remark appears to lead to all the known results. 

In conclusion I should like to refer the reader to a most inte- 
resting note by Mr A. L. Dixon, Messenger of Mathematics, Xxxi1, 
1903, 177. 
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On the construction of the ninth point of intersection of two plane 
cubic curves of which eight points are gwen. By Professor H. F. 
BAKER. 

[Read 3 May 1920.] 

Cayley has collected, in a paper reprinted in Vol. rv of his 
Papers, pp. 495-504 (Quart. J., V, 1862), the various solutions given 
of this problem, regarded as a problem of plane geometry, by 
Pliicker, Weddle, Chasles and Hart, depending for the most part 
on the generation of a plane cubic curve (two points at a time) 
by the intersection of a pencil of lines and a homographic pencil 
of conics. So far as I have been able to notice, geometrical con- 
ceptions present themselves to an unbiassed child in the first 
instance as three dimensional, and he feels it to be an abstraction 
to regard plane geometry as self-contained; the discussion of the 
most natural Axioms of geometry seems also to point in this direc- 
tion; and the most valuable part of a training in geometry would 
seem to lie in the cultivation of a faculty for visualisation of 
relations in space. However these things may be, it appears to 
me always to be an interesting extension when a property of space 
is shown to follow from a property in space of higher dimensions, 
this being generally accompanied by the removal of some artifi- 
ciality. Thus, I regard the very simple example which now follows 
as being logically at least as fundamental as a proof in the plane. 

Let A, B, C, M, N and P, Q, R be the eight given coplanar 
points. Take a point D outside the plane of these. There are «1 
quadric surfaces containing A, B, C and the lines DM, DN; let Q 
be one of these (other than that consisting of the planes ABC, 
DMN). Let DP, DQ, DR meet this quadric again in P,, Q,, Ry. 
A definite twisted cubic curve can be drawn through D, A, P,,Q,, Ry 
to have BC as a chord (see below). This cubic curve, meeting Q 
in D, A, P,, Q;, R,, meets Q in a further point, say O,. If DO, 
meet the original plane in O, this is the ninth point required. 

For the space cubic is the intersection of two quadric surfaces 
drawn through D, A, P,, Q,, R,, both having the line BC as a 
generator; denote these by U and V. The quartic space curve of 
intersection of U with Q contains D, A, B, C, Py, Q,, R,, and 
meets the generators DM, DN of Q; this curve then projects 
from D on to the original plane into a cubic curve containing the 
eight given points A, B, C', P, Q, R, M, N. The curve of inter- 
section of V with Q projects from D into another cubic through 
these eight points. The point O,, on the space cubic, lies on U 

9—2 
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and V, and on Q, and so projects from D into a point common to 
the two plane cubics. This justifies the statement. 

Incidentally any two cubic curves in a plane are shown to be 
the projections of two quartic curves in space lying on the same 
quadric; and the plane problem is put in connexion with the space 
problem of finding the remaining eighth intersection of three 
quadrics with seven common points. 

To construct a twisted cubic curve with five given points 
D, A, P,, Q,, R, to have a given line BC as chord, we may for 
instance first construct a quadric surface by the intersection of 
corresponding planes of two homographic axial pencils with DA, 
BC as axes, three pairs of corresponding planes being those con- 
taining P,, Q,, R,, and then construct a quadric surface by the 
intersection of corresponding planes of two homographic axial 
pencils with DP,, BC as axes, three pairs of corresponding planes 
being those containing A, Q,, R,. These quadric surfaces intersect 
in the cubic curve required. 

It is seen that analytically each step requires only the solution 
ot linear equations. Indeed, if the conic through A, B, C, M, N 
be written (referred to A, B, C, D) as Ayz + Bex + Cay = 0, the 
line MN being «+ y+2z=0, we may take for Q the quadric 
t(a+y+2)= Ayz+ Bex + Cary. The general plane cubic curve 
through the five points A, B, C, M, N may be taken to be 

(Ayz + Bex + Cay) (la + my + nz) + («+ 4+ 2) & (qy + 72) = 0, 

and two cubics through these and P, Q, R may be found by solving 
for the ratios of 1, m, n, g, 7 in the three equations obtained by 
substituting the coordinates of P, Y, R. Corresponding to two sets 
of (ratios Uf sm; 5/71): d42%, and i, 2m nig, suaicomchasenr 
there are two quadric surfaces 

t (10 + my + nz) + @ (qyy + 732) = O, 

t (pu + Moy + Ngz) + & (Gay + 792) = 0, 

which intersect in a cubic curve containing D, A, P,, Q,, R, and 
having BC for chord. The combination of these with the equation 
of Q will lead to a linear equation for O,, from which O is found. 
Or the solution may be stated, naturally enough, without reference 
to three dimensions. 
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On a proof of the theorem of a double six of lines by projection 
from four dimensions. By Professor H. F. BaKer. 

[Read 9 February 1920.] 

The theorem in question is that if five lines in three dimensions, 
of which no two intersect, say a, b, c, d, e, have a common trans- 
versal, say f’, and we take the five transversals other than f’ of 
every four of these five given lines, the five new lines so obtained 
have also a common transversal. Namely if a’ be the transversal, 
beside f’, of b, c, d, e, and b’ be the transversal, beside f’, of 
a, c, d, e, and so on, so that we have the scheme 

Cr MO TN e~ weehe oe 
a’ b’ (on d’ e’ if / 

in which every line intersects those not occurring in the same row 
or column with itself, but not the others, in general, then there is 
a transversal f of a’, b’, c’, d’, e’. 

We see that the theorem is that if we take eight lines a, b, c, d 
and a’, b’, c’, d’, so related that @’ meets 6, c, d, while b’ meets 
a, c, d, and c’ meets a, b, d and d’ meets a, b, c, and if e’, f’ be 
the two transversals of a, b, c, d and e, f be the two transversals 
of a’, 0’, c’, d’, then the meeting of one of the two former, /’, 
with one of the two latter, e, involves the meeting of the other, e’, 
of the two former, with the remaining one, f, of the two latter. 
But the original relation of the eight lines a, b, c, d, a’, b’, ¢', d’ 
has a certain artificiality; the object of the present note is to show 
that there is a simple figure in four dimensions, possessing perfect 
naturalness, being determinate when four arbitrary lines of that 
space are given, from which the figure in three dimensions may 
be derived by projection; and that the condition for this derivation 
is precisely the intersection of the two transversals e and f’. The 
naturalness of this figure lies in the fact that three lines in four 
dimensions have just one transversal. 

§ 1. In order to show this, it is necessary to enter into some 
detail in regard to the elements of the geometry of four dimensions; 
this appears worth while for its own sake; and in order not to 
over-emphasize the importance of the theorem in three dimensions 
which is here made the excuse for this, we first give an elementary 
proof of this theorem, employing only three dimensions (Pyoc. 
Roy. Soc. A, LXxxiv, 1911, 597). 
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With the notation above, denote the respective intersections 
(b’,c), (B, ¢'), (c', @)s (cs a’), (a’, b), (a, 0’), (a, f’), (bs f’), (c.f) by 
A, A’, B, B’, C, OC’, U’, V’, W’. Let f be the transversal other 
than e of a’, ’, c’, d’, which we may represent by f = (a’, b’, c’, d’)/e, 

and denote the points (a’,/), (b’,f), (c’,,f) respectively by U, V, W. 
Similarly let f, be the transversal other than d of (a’, Oe Cy 
which we may denote by Ji = (a’, br, ¢’, e’)/d; and let the points 
(a’, fa), (5'" Si): (o,f), be U;, Vi, W,. 

Now take the lines 
Oy Ws Gif | 

Or. Om (ea Hie d’ 

The two quadric surfaces defined respectively as containing (8, ¢, e) 
and (6’, c’, d’), have, both of them, the two generators.e and d’, 
which are intersecting lines. The other common points of these two quadrics are then coplanar. Such points are A and A’, respec- 
tively (b’, c) and (6, c’), and U’ or (a, f’) and U or (a’, f). Thus U lies on the plane A, A’, U’). So, by considering the quadrics 
(c, a, €), (c’, a’, d’), we find that V lies on the plane (B, B’, V’), 
and, by considering the quadrics (a, 6, e), (a’, b’, d’), that W lies on the plane (C, C’, W’). By taking the lines. 

WO Qiks a 
a’, be Clu ue e’ ? 

and considering the pairs of quadrics 

(6, C, d), (0’, CH @))s (6, a, d), (c, a’, o))s (a, b, d), (a’, De e’) 

we similarly show that U,, V1, W,, lie respectively on the planes 
(AAG OA. (B, Bi Vi) (CO. C’, W’), and therefore coincide 
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respectively with U, V, W, being the intersections of these 
planes respectively with the lines a’, b’, c’. Thus f, = fis a common 
transversal of the lines a’, b’, c’, d’, e’; as was to be shown. 

§ 2. Now take four arbitrary lines a, 6, c, d in four dimensions, 
of which no two intersect. Two of these lines, determined by four 
points, two on each, determine a threefold space, defined by the 
four points, and this meets a third line in the four dimensional 
space in a point. From this point, in the threefold space, can be 
drawn an unique transversal to the two lines spoken of. Thus three 
lines in four dimensions, of which no two intersect, have an unique 
transversal. Let then a’ be the transversal of 0, c, d, and similarly 
b’, c’, d’ the transversals respectively of c, a, d; a, b, d and a, b, ©. 
Denote the points (b’, c), (b, c’), (c’, a), (ce, a’), (a’, 6), (a, 5’) 
respectively by A, B, C, A’, B’, C’ and the points (a, d’), (6, d’), 
(c, d’), (a’, d), (b’, d), (c’, d) respectively by P, Q, R, P’, Q’, BR’. 

Fig. 2 

In general use the word plane for the planar twofold space 
which is determined by three points, and the word space, or 
threefold for the planar threefold space determined by four 
points; as above remarked two lines determine a space, each 
line being determined by two points; reciprocally two spaces, in 
the most general case, intersect in a plane, there being a duality 
of properties in four dimensions wherein a space is reciprocal to 
a point and a plane to a line. The points A, A’, being respectively 
on the lines C’Q’, BR’, are in the space (a, d), and evidently are 
in the space (b, c); the points P, P’, being on the lines QR, B’C 
respectively, are in the space (0, c), and are evidently in the space 
(a, d). Thus the four points A, A’, P, P’ lie in a plane, which we 
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may denote by a, namely that common to the two spaces (bd, c) 
and (a, d). We see how much more naturally this arises than the 
statement, to which it is evidently analogous, in the three dimen- 
sional figure considered in § 1. It follows that the lmes 4A’ and PP’ 
intersect one another, say in Z. Similarly the plane, f, of inter- 
section of the spaces (c, a), (b, d), contains the lines BB’ and QQ’, 
which then intersect, say in MW; and the plane, y, of intersection of 
the spaces (a, 6), (c, Z), contains the lines CC’ and RR’, intersecting, 
say, in V. The points Z, M, N are however all in each of the spaces 
(a, a’), (b, 6’), (¢, c’), and so in a line, the intersection of these 
spaces. For instance the line AA’ joins a point (A’) of the line }, 
to a point (A) of the line 0’, and so is in (0, b’); and joins a point (A) 
of the line c, to a point (A’) of the line c’, and so is in (¢, c’); 
thus Z, on the line AA’, is in the spaces (0, 5’), (c, c’). But the 
line PP’ joins a point (P) of the line @ to a point (P’) of the line a’; 
thus Z is equally in the space (a, a’). Similarly both WM and NV 
are in the line of intersection of the spaces (a, a’), (b, b’) and (ce, c’). 
Thus the space (d, d’) passes through the line of intersection of 
the spaces (a, a’), (b, b’), (c, ¢’); for we similarly show that each of 
L, M, N is in the space (d, d’). We denote this line by e; evidently 
its relation to the lines a’, b’, c’, d’ is exactly similar with its relation 
to the lines a, b, c, d; the plane, a, for example, defined as that 
common to the spaces (6, c), (a, d), is equally the plane common 
to the spaces (b’, c’), (a’, d’); and so on. It is usual to speak of e 
as the line associated with a, b, c, d; examination of the figure of 
fifteen lines and fifteen points which we have constructed will show 
that there is entire symmetry of mutual relation, and that we may 
speak equally well of any one of the five lines a, b, ¢, d, e as being 
associated with the other four; further e is also associated with 
a’, b’, c’, d’; and indeed, taking any line of the figure, the eight 
lines of the figure which do not intersect it, consist of a set of 
four skew lines and their transversals, and the line in question is 
associated with either of these two sets of four. There are then 
15-2 + 5 = 6 ways of regarding the figure as depending upon a set 
of five associated lines. 

§ 3. Consider now what planes exist meeting the lines a, 8, ¢, d. 
In four dimensions an arbitrary plane does not meet an arbitrary 
line; two such elements which meet lie in a threefold space. It 
can be shown that a plane meeting a, b, c, d can be drawn through 
two arbitrary points, one on each of any two of these four lines, 
so that there are «? such planes. Further that every such plane 
also meets the associated line e. Further that two planes meeting 
a, 6b, c, d can be drawn through an arbitrary point of the four 
dimensional space, and, for instance, an infinity of such planes 
can be drawn through any point of the line e. Also, if the two 
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planes through an arbitrary point O, to meet a, b, c, d, meet the 
line e in T and U, then the two planes which can similarly be 
drawn through O to meet the lines a’, b’, c’, d’, meet the line e 
in the same two points T and U. In general two planes in four 
dimensions have only one point in common; when they have two 
points in common, the join of these points lies in both the planes 
which then both lie in the same threefold space. By what we have 
said there is a plane through OT intersecting a, b, c, d and also 
a plane through OT intersecting q’, 6’, c’, d’, with a similar state- 
ment for planes through OU. Namely considering the two planes 
through O which meet a, b, c, d and also the two planes through O 
which meet a’, b’, c’, d’ either one of the former meets one of the 
latter in a line. 

To prove these statements we may proceed as follows. The 
joining line of two points arbitrarily taken respectively, say, on the 
lines 6 and ¢, will meet the space (a, d) in a point, from which, in 
this space, a transversal can be drawn to a and d. Then the plane 
of the original join and this transversal is a plane, say w, meeting 
the four lines a, b, c, d. The point of intersection of these two lines 
determining this plane a is evidently on the plane, a, common to 
the spaces (b, c) and (a, d). Similarly the point of intersection of 
the plane w with the plane, 8, common to the spaces (c, a) and 
(b, d), is a point from which two transversals can be drawn respec- 
tively to the pairs of lines c, a and b, d; and the plane of these 
transversals is a plane through this point meeting the four lines 
a, b, c, d; conversely the join of the two points where the plane a 
meets the lines c and a lies in the space (c, a), and so intersects the 
plane £8, namely in the supposed unique point common to @ and f; 
this join is thus identical with the transversal drawn from the 
point (a, f) to the lines c, a. There is thus an unique plane a, 
meeting a, b, c, d, passing through any general point of the plane a, 
beside the plane q@ itself. It will follow from the general result 
enunciated above, to be proved below, that the plane a’, drawn 
through the same point of the plane a to meet the lines a’, b’, c’, a’, 
meets @ in a line intersecting the line e. 

Take now any general point O, and a varying point P of the 
line d; a plane can be drawn through OP to meet the lines a, b, 
this being the plane containing OP and the common transversal 
of OP, a and b. Let this plane meet a, b respectively in P, and P,. 
Thereby any position of P, on the line d, determines the position 
of P, on the line a. Conversely given O and P,, a plane can be 
drawn through OP, to meet b and d, which, being unique, coincides 
with the former. Thus any position of P, on a determines the 
position of P on d. The correspondence being algebraic, it follows 
that P,, P describe homographic ranges respectively on a and d. 
Using the line c instead of b, we obtain another range (P’) on d, 
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also homographic with (P,). Thence the ranges (P’), (P), on d, are 

homographic; and, if not coincident, they will have two common 

points, which may coalesce. When P has a position in which it 
coincides with P’, there is a single plane containing O, P,, P,, Ps, P, 
where P, is the point of ¢ on the plane OP, P’. Thus through the 

point O can be drawn, either an 
infinity of planes meeting all of 
a, b,c, d, or else two, which may 
however coincide. 

When O is on the linee, the 
plane Od’ meets a, b, c, and it 
also meets d because, as we have 
shown, e, d, d’ are in a three 
dimensioned space. Equally 
the planes Oa’, Ob’, Oc’ meet 
a, 6, c, d. As there are thus 
more than two planes through 
O meeting a, b, c, d, it follows, 
by what we have shown, that 
there is an infinity; this is 

when O is anywhere on the line e. The aggregate of planes so 
obtained, by taking O to be every point of e, is identical with the 
aggregate of all planes meeting a, 6, c, d, namely any plane meeting 
a, 6, c, d@ can be identified with one of these; for taking O on e, 
and P on d, this P determines P,, P,, respectively on a, 6, when 
regarded as belonging to one of the coincident ranges on e, and 
determines P,, P;, respectively on a, c, when regarded as belonging 
to the other range on e. Thus every plane meeting a, b, ¢, d also 
meets e, or more generally five associated lines are such that every 
plane meeting four of them also meets the fifth*. 

In general, as we have seen, from any point on a plane meeting 
a, b, c, d (and e), there can be drawn another such plane. If the 
point be on the conic through the five points in which the first 

* The reader may compare the proofs of this result given by Segre, Circolo 
Mat., Palermo, 11, 1888, 45, Alcune considerazioni....The elementary theorems 
here given for the geometry of four dimensions are of course well known; but I 
have thought that it was necessary for the purpose of this Note to supply demon- 
strations. The reader may consult Bertini, Introduzione alla geometria projettiva 
degli iperspazi, Pisa, 1907, a volume of 400 pages, p. 177. In English there is 
Mr Richmond’s paper On the figure of six points in four dimensions, Quart. Journ., 
ONONGTS 1899; Math. Annal., tm, 1900 (see also Trans. Camb. Phil. Soc., Xv, 1894, 
267), which deals with a diagram intimately related with that of the text, and 
Coolidge, A treatise on the Circle and Sphere, Oxford, 1916, p. 482, etc., where the 
lines of four dimensions are replaced by spheres. The origin of the five associated 
lines seems to be a result given by Stephanos, Compt. rendus, xcm, 1881, p. 578. 
I have not seen it formally remarked that the property of the double six follows 
from the geometry of four dimensions; indeed the argument given in §1 was invented 
in ignorance of this. The fifteen points and lines of our figure (Fig. 2) are the 
diagonal points and transversal lines of the figure considered by Mr Richmond. 
See also Hudson, Kummer’s Quartic Surface (1905), Chap. xii. 

Fig. 3 
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plane meets a, b, c, d, e, the second plane coincides with the first. 
It is not necessary for our purpose to prove this. 

§ 4. The theorem that two planes can be drawn from an 
arbitrary point O to meet the lines a, 6, c, d is obvious from the 
theorem in three dimensions that four skew lines have two trans- 
versals, the proof of which also depends on the fact that two homo- 
graphic ranges on a line have two common points. For, if we project 
a,b, c,d from O, on to an arbitrary threefold space X, the planes 
joining O to the two transversals of the four lines of & so ob- 
tained, all meet a, b, c,d. And, we now see, e projects into a fifth line 
meeting these two transversals. When O is on e, the projections 
in & of a, b, c, d are all met by the projections in & of a’, b’, ce’, d’; 
for the plane Od’, for example, meets a, b, c, and meets d because 
e, d, d’ are in the same three dimensional space; thus the pro- 
jections in & of a, b, c, d are four generators of the same system 
of a quadric surface of which the projections of a’, b’, c’, d’ are 
generators of the other system. The planes from O each meeting 
a, b, c, d intersect the space & in lines all meeting the projections 
of a, b, c, d; that is, in lines which are generators of this quadric 
of the same system as a’, b’, c’, d’. The planes from O meeting 
a’, b’, c’, d’ similarly give rise to generators of the system (a, b,c, d). 
Thus any plane from the point O meeting a, 6b, c, d meets any 
plane from O drawn to meet a’, b’, c’, d’ in a line through O; and 
every line drawn from O in a plane of the former system is the 
intersection with this plane of a plane of the second system. If O 
be a point of e lying on a plane drawn from a point H, not one, 
to meet a, b, c, d (which therefore also meets e), the line HO lies 
in a definite plane meeting a’, b’, c’, d’. Thus either of the two planes 
of the first system, those meeting a, b, c, d, drawn from a point H, 
not on e, meets one of the two planes of the second system, those 
meeting a’, b’, c’, d’, drawn from H, in a line; and the two lines so 
arising intersect the line e. 

§ 5. Hence we can obtain from the four dimensional figure a 
figure in three dimensions with the characteristics of that used in 
proving the double six theorem. 

If, in the four dimensions, p, o be the planes drawn from an 
arbitrary point O to meet a’, b’, c’, d’, and p’, o’ those meeting 
a, b, c, d, and if p and o’ meet in a line, as also p’ and o; and if 
we consider the intersections with an arbitrary threefold space &, 
of these four planes, and also of the planes joining O to a, 8, c, d, 
a’, b’, c’, d’, denoting these twelve lines respectively by (p),...,(@),---, 
then, arranged as follows: 

(a) (6) (ce) (4) (p) (2) 
(a’) (6°) (c’) (@’) (p') (e’), 
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these form a double six, any one of the lines meeting the five which 
do not lie in the same row or column with itself. 

§ 6. Conversely we now proceed to show that if 

a b & dy 
CeO ads. 

be eight lines in three dimensions such that no two of a, b,, ¢,, d, 
intersect, while d,’ intersects a,, b,, c,, a,’ intersects b,, ¢, d,, etc., 
and if one of the two transversals, say 1, of a,’, b;’, c,’, d,’, intersects 
one of the two transversals, say m’, of a,, b,, c,, d,, then these lines 
may be obtained by projection from four dimensions; namely 
1, 54, Cy, dy, @', by’, Gy’, d,’ are projections of four lines a, b, c, d 
in space of four dimensions and of the transversals a’, 6’, c’, d’ of 
threes of these, respectively, while / and m’ are the intersections 
with the original three dimensional space of planes in four dimen- 
sions meeting respectively the set a’, b’, c’, d’ and the set a, b, c, d. 

We give an analytical proof of this. And for this purpose first 
explain an analytical view of the theorems which have been given 
in §§ 2, 3, 4, which indeed renders these very obvious. 

It is fundamental that a point may be represented by a single 
symbol, say P, the same point being equally represented by any 
numerical multiple of this, say mP, where m is an ordinary 
number. Then a space of r dimensions is one in which every 7 + 2 
points, P,, Po, ..., P,,., are connected by a syzygy, 

Mm, P, + MP, + ... + MrioP rig = 0, 
where my, ..., M+. are ordinary numbers; thus the space is deter- 
mined by any r + 1 points of it, themselves not lying in a space 
of less than r dimensions; and, in terms of such r + 1 points, say 
A,, .... A,,1, every other point of the space may be represented by 
a symbol 7, Ay -- a, 45 Piet.) +t. Ap a) Where) a, .105 ie nee es 
ordinary numbers; whose ratios may be called the coordinates of 
this point, relatively to A,,...,A,,,. Thus any point of a line 
determined by two points A, B, is representable by a symbol 
mA + nB, in which m, » are numbers; and any point of a plane 
determined by three points A, B, C, is representable by a symbol 
tA + yB+ 2C. 

In our figure in four dimensions (§ 2), let the points 

A = (b', C), B= (c, a), C= (a’, 6), 

Ai (ONO Ver == (Gaon), 0" = (i, 
be regarded as fundamental. Being in four dimensions, they are 
connected by a syzygy; absorbing proper numerical multipliers in 
the symbols, this may be taken to be 

A+B+C+A’+B+C’=0. 
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It is not then allowable to modify further these symbols by multi- 
plication with numbers, except the same multiplier for all. And, 
the six points being supposed not to lie in a three dimensional 
space, there is no further syzygy connecting them. 

Each of the points P, Q, R of our diagram (§ 2) is then ex- 
pressible linearly by two of these six points, P by B and C’, etc., 
while P, Q, R, being collinear, are themselves connected by a 
syzvgy. This becomes then a syzygy for A, B, C, A’, B’, C’, which 
must be the same as the fundamental syzygy. Whence it appears 
at once that, by absorbing proper numbers in the symbols P, Q, R, 
we can write 

P=B+C@, Q=C+A4, R=A+B’. 

By a similar argument we deduce for the points P’, Q’, R’ of our 
diagram (§ 2) 

P=B LO = C+ A, f= A+B. 

From these two sets of equations we have however 
P+P=—-(A+A/’); s 

there is then a point lying both on the line PP’ and on the line 4/4’, 
namely these lines intersect, say in the point L. So also WM, N are 
the points B + B’, C+ C’ respectively. And the identity 

A+A4’4+B+B'4+C0+C’=0 

shows that L, M, N lie on a line, e. 
A plane meeting the lines a, b, ¢ can evidently be defined by 

three points, one on each of them, represented by symbols of the 
form 

yB+20", 20+ aA’, 2%4A+ y,B’. 

In order that the plane should also meet the line d, it is necessary 
and sufficient that numbers A, p, v, p, o exist for which there is 
the syzygy ! 

A (yB + 20") + p (eC + 2A’) + (2,4 + y,B’) + pP’ + oQ’ = 0; 

if herem P’, Q’ be replaced respectively by B’+C, C’+ A, it 
must reduce to the fundamental syzygy. Thus we find at once 
that 7, =a and y, = y, and any one of the «o? planes meeting 
a, b, c, d is the join of points respectively on the lines a, b, c, 
given by 

yB+ 20’, 20+ 2A’, 2A + yB". 

This plane however contains the point represented by 

x (yB + 2C’) + y (2C + 2A’) +2(xA + yB’), 

which is y2P" + 2aQ’ + ayR’, 

and is therefore its intersection with the line d. And the plane 
contains the point represented by 

(yB + 2C") + (20 + 2A’) + (2A + yB’), 
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which is a(A+A4')+y(B+ B)4+2(C04+C) 

and is therefore its intersection with the line e. 
Similarly it can be shown that a general plane meeting the 

lines a’, b’, c’, d’ and e is that joining the points, respectively on 
a’, b’, c’, represented by 

yB' + 20, 2C’+ 2A, 2A’ + yB. 

If the plane, meeting a, b, c, d, joining the points 
yB+2C', 20+ 2A’, cA + yB’, 

pass through an arbitrary point of the four dimensional space 
expressed by 

EA +yB+ 00+ 8A’ +B 4+ CC, 
it can be shown without difficulty that 

eS aie) moa 
a0 y Z 

Gy Oe aS is) Oars ==) @ = 
and also 

mf) =O , C-8)0 -8) , =n) =) _ 9. 
y—% Z2—2 r—y 

to satisfy the condition it is necessary and sufficient, in fact, that 
numbers A, p, v, p Should be possible such that 

E—vetp, — Ay tip, (6 — ie tae, 
5 = OO Sw Py |S Heo p- 

The first two of these equations determine the two planes 
meeting the lines a, 6, c, d, e which pass through the arbitrary 
point in question. The last equation determines the two points, 
of the form 

“(A+ A’)+y(B+ B)+2(C+C’), 
or (a — 2) (A + A’) + (y —2) (B+ B’), 
where these planes meet the line e. As this last equation is un- 
altered by interchanging €, 7, ¢ respectively with €’, 7’, ¢’, 1t shows 
that the two planes drawn through the arbitrary point to meet 
a, b, c, d intersect the line e in the same two points as do the planes 
drawn through this point to meet a’, 0’, c’, d’. 

§ 7. Now consider a figure in three dimensions consisting of 
four lines a, 6, c, d, skew to one another, and four other lines, 
a’, b’, c’, d’, skew to one another, each meeting three of the former. 
As before, with the same notation, the figure consists of a skew 
hexagon BC’AB’CA’, of which one set of three alternate sides is 
intersected by a line respectively in P, Q, R, and the other set of 
alternate sides is intersected by another line in P’, Q’, R’ respec- 
tively. But here the six points A, B, C, A’, B’, CO’, being in three 
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dimensions, are subject to two syzygies, which, without loss of 
generality, may be written 

A+B+C+A’'4+B'+C’=0, 

aA +6B+cC+a'A'+0'B’+ eC’ =0, 

The points P, Q, R, respectively in syzygy with (B, C’), with 
(C, A’), and with (A, B’), are themselves in syzygy. Thus, not 
only is P given, save for a multiplier, by an expression wB + v’C’, 
and Q by vC +X’A’, and R by AA + p’B’, but the multipliers 
pt, v’, v, A’, A, w’ may be chosen so that we have 

wB+vC' +10 +NA'+dAA + p'B’=0. 

This must then be a consequence of the two fundamental syzygies; 
or, for a proper value of p, we must have 

NepsieiN cp sv =atp:b+p:c¢+p:a+p:b'+p:e+p. 

Thence P, Y, R may be expressed by 

P=bB +cC' +p (B +C’, 

Q=cC +a@'A’+p (C +A’), 

R=aA +0'B’+p (A +B’. 

Similarly P’, Q’, R’ are expressible by symbols 

P= 0B) = Co -pip (BL), 
OO aA A), 
Rh’ =a@'A’+b6B +p ' (A + B). 

Suppose now that one of the two transversals, say wu’, of the 
four lines a, 6, c, d, intersects one of the two transversals, say w, 
of the four lines a’, b’, c’, d’. Then.as before (§ 1), remarking that 
the two quadric surfaces determined respectively by the triads of 
lines (0, c, u), (b’, c’, u’) contain respectively also the lines (a’, d’, uv’), 
(a, d, wu), we infer that the points A, A’, P, P’ are coplanar. And 
by similar reasoning, also because w, wu’ intersect one another, we 
infer that B, B’, Q, Q’ are coplanar, and also that C, C’, R, R’ are 
coplanar. Conversely let us assume only the first fact, that 
A, A’, P, P’ are coplanar. We can then prove that the numbers 
p; p’, occurring respectively in the expressions of P, Q, R and of 
P’, Q’, R’, are equal. For the fact that A, A’, P, P’ are coplanar 
involves the existence of a syzygy of the form 

m[bB+c'C' + p(B+C)] 
+m’ [0'B'’+cC+p'(B'+ C)]+ p4+ p’A’=0; 

for suitable values of m, m’, p, p’ and of another number f, this 
must be the same as 

(atkh)A+(a’'+k)A’+(6+k)B+(O'+h) B 
+(c+hkh)C+(('+k)C’=0; 
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we may then take 

p=atk, p=a+hk, m(b+p)=b+h, m' (b'+ p')=0' +k, 

m'(c+p')=c+k, m(c'+p)=e +k; 

these lead to m(b—c’')=b—c’, m' (b’—c) = b’—e, and hence 

m = m’= 1, unless the lines d, d’ have particular positions; whence 

p=p=k. 
Thus we have 

P=bB+¢0'+p(B+C), P'=0'B'+ cC + p (B+ C), ete., 

which give, in particular, 

Q0+Q'=ad4+a’'A'+C+cC'+ p(C+C'+A+A) 

= — [bB+ 0'B’+ p (B+ B’)), 

showing that the points B, B’, Q, Q’ are coplanar. And similarly 
the points C, C’, R, R’ are coplanar. 

§ 8. Now take a point O, not in the original space of three 
dimensions which we have considered; with this original space the 
point O determines a four dimensional space containing both. 
Therein take points A,, By, Cy, Ay’, By’, Cy’ given by 

A,=(a+p)4+10, B,=(6+p)B+m0, 
A, =(a' +p) 4’+ V0, By =(0'+ p) B+ m0, 

C,=(¢+p)C+ n0, 

Cy = (c+ p) C+ n’0,7 
wherein J, m, n, I’, m’, n’ are arbitrary numbers save for the single 
relation 

l+-m+n+U+ m'+ n'= 0. 
Then we have 

A, + B,+ C,4+ Ay’+ B+ Cy= 0. 

HM MalkelalsoyPs/ OQ. bisa O ius Siven Divs 
P,=P+(m+7)0, Q=04(n4+1)0, R, =R>tEm)O, 

Pi=P+(m+n)0, O=O+@+)0, RCM eC; 

then we have 

= B+ Che Oe Cy+ Als. li = A,/+ B,. 

The original figure in three dimensions is thus the projection 
from O of the figure now formed in four dimensions, and this is 
exactly such a figure as that we considered originally. 

Geometrically, what is arbitrary in the four dimensional space 
is the point O, and five of the six points taken on the lines OA, OB, 
OC, OA’, OB’, OC’. These being taken, it is no doubt possible to 
complete the construction without use of the symbols. These seem 
however to add to clearness. 
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On transformations with an absolute quadric. By Professor 
H. F. Baker. 

[Read 9 February 1920.] 

We consider homographic (linear) transformations of projective 
space which leave unaltered a given quadric, sometimes called the 
Absolute. We suppose the two generators, of either system, of 
the quadric, which are unchanged by the transformation, to be 
distinct. Denoting then by DC and AB the two diagonals of the 
skew quadrilateral formed by these four generators, it is known 
that the transformation may be represented (a) by rotations about 
DC and AB of suitable amplitudes, whose order is indifferent, 
(b) by a “half turn” about an arbitrary line meeting DC and AB, 
followed by a half turn about another appropriately chosen line 
meeting DC and AB, or preceded by such a half turn of appro- 
priate axis, (c) by a “right vector” and a “left vector” together, 
whose order is indifferent. The object of the present note is to 
mention another mode of decomposition of the transformation. 
For this purpose we define inversion, in regard to a point O and a 
plane a, as the process of passing from a point P toa point P’ on the 
line OP such that P, P’ are harmonically separated by O and o. 
We consider only cases in which a is the polar plane of O in regard 
to the absolute quadric. We also define harmonic inversion in 
regard to two given skew lines, as the process of passing from any 
point P to a point P’ on the transversal drawn from P to the lines, 
such that P, P’ are harmonically separated by these. When the 
lines are polars of one another in regard to the absolute quadric, 
the process is the same as a half turn about either of them, and is 
obtainable as the sequence of two inversions about any two points 
taken on either of the lines so as to be conjugate to one another 
in regard to the quadric. 

Thus if H, K be two arbitrary points respectively on AB, DC, 
and H,, K, be two appropriately chosen points on these lines 
respectively, it follows from the decomposition (b) referred to 
above that the complete transformation can be represented by 
the sequence of four inversions 

(H,) (K,) (H) (4), 
wherein, since H, K, are conjugate points, the process represented 
by (K,) (4) is the same as that represented by (H) (A,). The 
whole is then equivalent to 

(H,) (H) . (K,) (A). 
VOL. XX. PART I. 10 
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Conversely, it is an easy matter to prove directly that the two 
inversions (H,) (H), about points on AB, are together equivalent 
to a rotation about the line DC, of amplitude equal to twice the 
Cayley separation of H and H,, in regard to the quadric, with a 
similar fact for (K,) (K). This gives an elementary theory of the 
transformation. 

In Euclidian space, a general movement of a rigid body is thus 
obtainable by a succession of four inversions, two of these about 
points on the central axis, and two on the line at infinity of the 
plane at right angles to this. Taking the central axes to be « = 0, 
y = 0, the two former may be taken to be reflexions in planes 
z=k, z=k,, and the two latter to be reflexions in the planes 
z= 0,x2=y tan 30. By the former we obtain 

2+2,— 2k, 2 + 2, = 2k, 

giving 2’ = z + 2 (k, — k); by the latter we obtain 

Dy =— 4%, Y= Y, (v'— 2%) sin 36 + (y'— yy) cos 26 = 0, 
a (x’+ x) cos $0 — (y’+ y,) sin $0 = 0, 

giving 

a+ 2, cos 6 —y,sn0=0, y’— y, cos? — «, sin 6 = 0. 

Thus altogether 

“=xcos?+ysnd, y’=—xzsind+ycos8, 2’=2+ 2 (k,—k). 
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On a set of transformations of rectangular axes. By Professor 
H. F. Baker. 

[Read 9 February 1920. | 

In a paper in the Acta Mathematica, xxv, 1902, 291-296, Dr 
Burnside has greatly simplified, by geometrical considerations, 
results obtained in the same Journal, xxiv, 1901, 123-158, by 
Lipschitz, for the relations connecting the four rotations changing 
one system of orthogonal axes into another. Ina paper, Proceedings 
Lond. Math. Soc., 1x, 1910, 197, I have incidentally noticed a 
theorem which is intimately connected with these results, and 
may be made to include them. We may associate with a rotation 
in Euclidian space about an axis through the origin, of direction , 
cosines J, m, n, through an angle 0, a point of projective space, of 
coordinates (a, b, c, d) given by 

a =Isin 16, b=msin 10, c=nsin30, d= cos 40; aie 2. Pate } a> 3 2 

and we may call this point, which determines the rotation, the 
representative point of the rotation. The theorem referred to is then 
the following: Let Q, Q’ be any two congruent figures upon a 
sphere; let Q,, Q,, Q, be the figures obtained from Q by reflexion 
in, or rotations of amplitude z about, the respective coordinate 
axes; let Q,’, Q,’, Q,’ be similarly derived from (’; there is then 
a rotation changing any one of Q,, Q,, Q3, Q into any one of 
Q,', Q5/, Qs’, Q’. The representative points of these sixteen rotations 
form a Kummer configuration. In other words they lie in sixes 
upon sixteen conics, whose planes are in sixes tangent planes of 
sixteen quadric cones whose vertices are the points; or again, they 
can be arranged in twenty ways so as to form the vertices of a 
set of four tetrahedra of which set every two are mutually 
inscribed. As will be seen, the theorem is the same as that, if a 
point (a, b, c, d) be represented by the quaternion 

P=a+b+ck+d, 
the sixteen points 

VE Oban GER \ Oe: 

gPt, jPj, gPk, gP 
RPG AP), RPK RE 

7 SOMA Sey Me ca! A Ne? = 

form a Kummer system, the four tetrahedra formed each by the 
points in any row being mutually inscribed in pairs, as are the 
four tetrahedra formed each by the points in any column. This 

10—2 
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last statement is easily verifiable, and it is sufficient therefore to 
reduce the original statement to this. By direct algebra this can 
be done by using the well-known fact that the rotation of repre- 
sentative point (a, b, c, d) is given by 

a=ucthyt+g2, y=haet+ vyt+ fe, v=gr+ fy + wz, 

where the nine coefficients are given respectively by 

u, h, gy =a? + a? — 6? — c?, 2(ab—cd) , 2(ca+ bd) 

lone Oe ap 2(ab+cd) , d?+b?—c?—a*, 2 (bc —ad) 

OR) fe OD 2(ca—bd) , 2(be+ad) , d?+c?—a?—b? 

each of the elements on the right being divided by a? + 6b? + c? + d?, 
which is unity. Using the representative points given by the above 
scheme to calculate the rotations, it is at once seen that they 
have the interpretations assigned to them in the statement of the 
theorem. 

In particular the representative points given by the forms 

are respectively Pi, Pj, Pk, P 

(d, Coane b, Pan a), (— C, d, a, — b), (6, oo hy d, aan c), (a, b, C, d), 

and if these belong to rotations of respective amplitudes @,, 0, 65, @ 
about axes of direction cosines (l,, m1, 74), (le, M2, Ne), (I, M3, Ns), 
(l, m, n), we have 

d—1,sm30,, c—m,sn30,, —b—n,smi0,, —a—cos 40,, 

= ¢——11, sin $05, | d —\m, sin 40,,.) @ — 5 Sin 40>. | — 0 3 COSia Ga 

= 1, sin 63, —a=—m,sin40;, d—=—%n,sin463, — ¢=cos 30,, 

a= sin 40, b= m sin 40, |) .¢ — 0 Sin) 0.) aad eosnae 

from which follow, if the axes be OD,, OD,, OD3, OD, 

— be = cos DD; sin 36, sin 40, = — cos 46, cos 46, 

cos D,D; = — cot 46, cot 463, 

ad = cos DD, sin 36 sin 40, = — cos 40 cos 36), 

cos DD, = — cot 46 cot 40,, 
and hence 

cos DD, cos D,D; = cos DD, cos DD, = cos DD; cos D,Ds, 

in accordance with the fact that the plane containing any two of 
these four axes is at right angles to the plane containing the other 
two; as also 

tan? 30, = — cos D,D,/cos D,D, cos D,Ds, 

these being equations noticed by Dr Burnside loc. cit., p. 294. 
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But the definition of the representative point of a rotation 
which has been given is, like this proof of the theorem, both 
metrical and analytical, and it is desirable to alter it in both 
respects. A point of view which is not metrical is to regard the 
transformation 

e=ur+hyt+g92, y=haetovt+fe, v=gr+fyt+wz, (i), 

as that unique homographic transformation of the plane of the 
homogeneous variables x, y, z which leaves the conic 

gaya 0 

unaltered, and changes the self-polar triangle (1, 0,0), (0, 1, 0), 
(0, 0, 1) into the self-polar triangle (wu, h,, 9), (h, v, f;), (915 f, w)- 
If the vertices A, B, C of the former be joined to the corresponding 
vertices A’, B’, C’ of the latter, by lines forming a triangle D, EZ, F, 
of which EH, F will be collinear with A, A’, etc., and we take on 
the line A, A’, LH, F the points P, P’ harmonic in regard both to 
A, A’ and E, F; and similarly take Q, Q’ on the line B, B’, F, D 
harmonic in regard both to B, B’ and F, D; and take R, R’ on 
the line C, C’, D, E harmonic in regard both to C, C’ and D, E; 
then it can be shown that the six points P, P’, Q, Q’, R, R’ lie in 
threes upon four straight lines, which are in fact 

dx+cy—bz=0, dyt+az—cx=0, 

dz+br—ay=0, ax+by+cz=0. 

This gives a geometrical interpretation, which is not metrical, of 
GD. Cid. 

A much better point of view is however as follows. The rotation, 
expressed by four equations of which three are those marked (I) 
above, and the fourth is ¢’ = t, may be regarded as a homographic 
transformation of projective space (z, y, 2, t), leaving the quadric 
whose equation is 22+ y?+ 22+ ¢2=0 (or indeed any quadric 
x? + y2+ 22+ Mt2?=0) unaltered. And it may be regarded as 
compounded from two transformations P, Q, taken in either order, 
of which P is such as to leave every generator of the quadric of 
one system, say the q-system, unaltered, while it interchanges the 
generators of the other system, say the p-system, among themselves ; 
and @ has a similar meaning with the systems of generators inter- 
changed. In the transformation P there will be two particular 
generators of the p-system, say p and p’, which remain unaltered ; 
and the transformation may be described geometrically as changing 
any point 7’ of space, not necessarily on the quadric, into a point 7” 
of the transversal drawn from T to p, p’, such that the homography 
(T’T, pp’) is constant, equal to e® say, the transformation Q 
having a similar meaning in regard to two generators q, q’ of the 
g-system and having the same value for the corresponding homo- 
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graphy; so that P, Q may be described as equal transformations 

of the p-kind and q-kind respectively (or if g’ be interchanged 
with g as equal but opposite transformations). 

If two lines p, g meet in A, two others p’, g’ meet in B, while 
p, 7 meet in D and p’, q meet in C, and on the transversal TLL’, of 
p, p', be taken T, so that (7,7, LL’) = A, and on the transversal 
T,MM'’, of q, 7’, be taken T’ so that (T’T,, MM’) =A, it is at once 
shown that, referred to ABCD, the coordinates of T’, (x’, y’, 2’, t’), 
are expressible in terms of (x, y, 2, t), the coordinates of 7, by the 
formulae 

= i, Ua, CHW 0S Wie 

These are the equations of a rotation round DC, of which every 
point remains unaltered, as does every plane through AB. If the 
planes joining DC to T’, T meet AB in U’, U we have 

(WU, AB) = 2. 
The two processes may be taken in the reverse order. Any quadric 
containing the lines p, q, p’, q’, whose equation is zy = Mz2t, is 
unaltered by the composite transformation. The transformation 
here taken first is 2, = 2%, y, = Ay, 2% = 2%, t, =t, which changes 
the p, g-generators, expressed respectively by z= pz, y = Mpt and 
y = 42, qx = Mt, into the generators p,, q, given by p, = Ap, q, = ¥. 
The transformation here taken second is 

Wa Of Oh. B= By VS Wap 

which changes p,, q, into p’, ¢’ given by p’= 9,, q’=Aqy. 
Conversely any homographic transformation of space which 

leaves every point of a line DC unchanged, and leaves also two 
points A, 6, not on DC, both unchanged, will leave the lines 
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joining A, B to an arbitrary point D of DC both unchanged, and 
also the lines joining A, B to a further arbitrary point C of this 
line; referred to A, B, C, D, such a transformation will be ex- 
pressible by equations «’= mA—z, y’= mdy, 2’= z, t'=t. If it be 
further restricted to be such as to leave any (and therefore every) 
quadric zy = Mzt through AD, BD, AC, BC, unchanged, we may 
take m=1. Then any conic through A, B touching the planes 
ADC, BDC is also unchanged, and the equations of transformation 
a’= Ay, y’= dy, 2'= 2, t'=t are those just considered. By the 
component transformation 7,=2%, y,=Ay, 4% =z, t,=t, any 
point O of DC is changed to a point O, of DC given by 

(0,0, DC) =A. 

In more general terms, if we write, using matrices, 

Lee d, —6, Dua |e eye d, — 6, b, —al, 

Ce) a Beeb Gmid, =a, '—6'| 

a A a eG | =O. AO d, —c | 

—a, —b, —c, di flies digal sibs CN 

denoting by P’, Q’ what P, Q become by substituting a’, b’, c’, d’ 
for a, b, c, d, we find PQ’= Q’P, in particular PQ = QP, and 

eo | UM Twguar nO! |. 

Poly Day aan 0 

| g; to Ww, 0 

ACL nO NORE! 1H 

It is then easy to verify that the transformation 

EY TN ae) Wd A CO 

changes the p, q-generators of x? + y? + 2? + # = 0 expressed by 

cty=p(z+it), «e*-w=—p(z— it); 

Gty=g(z—-t), «c-w=—q*(z+ it) 
into p’, q’ given by 

, —pl(e—wmd)+a+0 , A 

P’ p@—®) tera??? 
this, with a =1/ sin 40, b= m sin 30, c= nsin 30, d= cos 40, is 
equivalent with 

b ] 

Piha vol liga tnte 

Da Cae ee lt+n 

Ty aT Oe L+ im’ 

BT Hag nye 
the stationary values of p being those of the generators passing 
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through the points where the conic t = 0, a7 + y? + 2=0 is met 
by the line aw + by + cz = 0. The transformation 

(x', y’, Zz" t’) = Q (Zz, Y, 2, t) 

makes precisely the same changes in the parameters q, p respec- 
tively. 

Gleariy the representative point (a, b, c, d) is the point to which 

the vertex (0, 0, 0, 1) is changed by the transformation P. This 

definition is relative to the position chosen for this vertex upon 

the axis of the original transformation, but this is immaterial in 

discussing the composition of rotations about different axes passing 
through the same vertex. 

In particular the representative points for rotations of ampli- 
tude z respectively about the lines joining (0001) to (1000), to 
(0100) and to (0010), are (1000), (0100), (0010), the corresponding 
transformations P being 

Bae OR Oss (Ose lal ang Os) Oy ts aol OF One 

O10, 21-6 ON FONONR pa. 0,0)! 
Oe ONO Le ON0.0 6, 0, 0,1 

— 10, 0,0 0, —1, 0, 0 10, 0, —1,0| 

by which the point (z, y, z, t) becomes changed respectively to 

(gt yi — — 2,2 — yn — — a) (a eh, 2 nn 

(GSS @ JS CS = 2), 
We at once find 

27 —P=—o, jk = — kj — 4, kt = —ok — 9, i — 40 an, 

and the matrix of the general transformation P can be written im 
terms of the matrices 2, 7, & in the form 

P=ma+6j)+ck-+ doa, 

where w is the matrix of the identical transformation. For the 
generators of the p-system, the transformations 2, j, & lead re- 
spectively to p'=p", p=—p™, p'=— p, that is they are har- 
monic inversions in the pairs of generators of the p-system passing 
through the intersections of the conic z?+ y2+ 2=0,t=0 re- 
spectively with the lines x= 0, y= 0,2=0. By the transforma- 
tion P, these three pairs of generators are changed to the generators 
passing through the intersection of the conic respectively with the 
lines 

ut + hy +gz=0, he+vy+fyz=0 and g,x + fy + wz =0, 

as is easy to see. For instance the generators p = 1, p = — 1, are 
changed respectively to the generators 

p=(u+m)/(1l+ 9), p=—(u+th,)/(1 —49). 
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Further a succession of any number of rotations about axes 
through the vertex (0, 0, 0, 1), namely a transformation repre- 
sentable in the form 

Piers SE Ouis 

is, in virtue of the commutative property of any p-transformation 
with any q-transformation, capable of being regarded as 

(PPPs 2) (Q19 2s oe) 

wherein the first factor is a p-transformation, and the second factor 
a q-transformation. The laws of composition of the rotations are 
then precisely the same as those of the associated p-transforma- 
tions—and the representative point for a composite transformation 
can be obtained by the composition of the p-transformations. 

This suffices to reduce the theorem we have stated to the 
theorem that the representative points of the sixteen transforma- 
tions referred to are those of the transformations 

(1,9, k, w) P (i, 7, k, @), 
where P is any p-transformation. For we can pass from any figure 
on a sphere to any congruent figure by an appropriate rotation PQ. 

But it is at once obvious that the representative point of a 
composite transformation PP’ may be obtained by forming the 
product of the symbols associated therewith 

(ai + bj + ch + dw) (a7 + 69 + hk + d’o) 

by means of the multiplication rules for 7, 7, k, w given above. In 
fact this product gives 

(ad’+ a’d + be’— b’c) 1 + (bd’+ b'd + ca’— ca) 9 

+ (cd’+ c'd + ab’— a’b) k + (dd’— aa'— bb’— cc’) a, 

or say Ai + Bj + Ck+ Dw, 

while the product of the two matrices P, P’ is at once verified to 
be the same function of A, B, C, D as is P of a, 6, c, d. 

The theorem stated is thus proved. 
Remark. Any rotation is thus associated with a quaternion, 

whose vector coefficients give the direction of the axis of the 
rotation, the amplitude of this being twice the angle whose cotangent 

is d (a? + 62 + c?)*. In particular the symbol 7 is associated with 
a rotation about the axis of x of amplitude z. 

If two rotations of amplitudes 0, 6’ about axes (1, m, n), (1,’m’,n’) 
be equivalent to a rotation of amplitude ¢ about an axis (A, py, v), 
we have such equations as 

Asin $46 =[ sin 36 cos $0’+ I’ sin $6’cos $6 + (mn’—m’n) sin $6 sin 36”, 

cos $¢ = cos 36 cos 40’— sin 36 sin 30’ (Il/+ mm’+ nn’). 
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The latter of these expresses Hamilton’s law that a rotation of 
amount 2C about the vertex C of a spherical triangle A BC, followed 
by a rotation of amount 2B about the vertex B, gives a rotation 
about the vertex A of amount 27 — 2A. The former expresses that 
if O be the pole of the arc BC, and P be any point of the sphere, 

cos PO sin a sin B sin C 

= cos PA sin A — cos PB sin BcosC — cos PC sin C cos B. 

The transformation here denoted by P is that called by Clifford a 
right (or left) vector. It can also be represented in the form 

P=cosi0.w+snl0.a 2 2 > 

where Qh, = 0, — Nn, ween elit 

Ws) Os — Ee am 

= Was Ovi 

—l—-m, —-n, O'§| 

is such that w? = — w; this is the same as P = e?™”, 
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On the generation of sets of four tetrahedra of which any two 
are mutually inscribed. By C. V. Hanumanta and Professor 
H. F. Baxer. 

[Read 8 March 1920. ] 

If from a point P the transversal be drawn to two given skew 
lines, the point P’ of this transversal harmonically separated from P 
by these lines may be said to be obtained from P by harmonic 
inversion in regard to them. If O and @ be a given point and a 
given plane, and on the line joiing O to an arbitrary point P 
there be taken the point P’ harmonically separated from P by 
the point O and the plane w, we may speak of P’ as obtained from P 
by harmonic inversion in regard to O and a; in particular when @ 
is the polar plane of O in regard to a given quadric it may be 
sufficient to speak of P’ as the inverse of P in regard to O, this 
use of the term including the ordinary use when inversion in regard 
to a circle is spoken of. 

When two tetrahedra ABCD, A,B,C,D, are such that the 
points A, B, C, D, A,, B,, C,, D, lie respectively on the planes 
B,C,D,, C,A,D,, A,B,D,, A,B,C,, BCD, CAD, ABD, ABC, they 
will be said to be mutually inscribed. When this is so the two 
transversals of the four lines 4A,, BB,, CC,, DD, are generators 
of a certain quadric in regard to which both the tetrahedra are 
self-polar (the two transversals of the four lines BC, AD, B,C,, A,D, 
being generators of this quadric of the other system). If another 
tetrahedron A,B,C,D,, self-polar in regard to the same quadric, 
be in- and circumscribed to ABCD, and such that the two trans- 
versals of AA,, BB,, CC z, DD, belong to the same system of 
generators of this quadric as do the transversals of AA, ..., DD, 
then ABCD, A,B,C,D, may be said to be mutually inscribed in 
the same sense as are ABCD, A,B,C,D,. It is well known that 
there exist systems of four tetrahedra of which every two are 
mutually inscribed in the same sense. 

The object of the present note is to point out that any such 
four tetrahedra may be regarded as all derived from a single other 
tetrahedron, by inversion of this in the vertices of a certain further 
tetrahedron, taken im turn, each of these vertices being associated 
with the opposite face of this tetrahedron in this process of inversion. 

More precisely we may state this result thus. Let a tetrahedron 
XYZT be self-polar in regard to a certain quadric. Denote the 
two systems of generators. of this quadric as the p-system and the 
q-system. There exist linear transformations of space changing any 
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point of the quadric into another point lying on the same q- 
generator; such a transformation will interchange the p-generators 
among themselves, save for two p-generators, each of which will 
be unchanged. We may call such a transformation a p-transforma- 
tion. Let ABCD be the tetrahedron arising from XYZT by any 
such transformation; let PQRS be the tetrahedron arising from 
ABCD by inversion from the point T. Thus PQRS may also be 
described as arising from XYZT by the q-transformation which 
effects the same transformation, of the points of the section of the 
quadric by the plane X YZ, as does the transformation by which 
ABCD is derived from X YZT; in other words if the parameters 
for the p, g-generators be chosen so as to be the same for the two 
generators which intersect at a point of the section by the plane 
XYZ, then PQRS is derived from X YZT by the g-transformation 
expressed by the same equation, connecting the parameters of the 
generators, as is the p-transformation by which ABCD is derived 
from XYZT. 

Then take the inverses of PQRS respectively from X, Y, Z, T, 
and let them be D,C,B,A,, C,D,A,Bo, B,A,D,C3, ABCD. The 
tetrahedra A,B,C,D,, A,B,C,D.,, AzB,C,D3, ABCD are then such 
that every two are mutually inscribed. And conversely given any 
such four tetrahedra, the transformation by which X YZT, PQRS 
are determined is definite. The tetrahedron X YZT is unique, being 
defined by the fact that the edges YZ, XT are the diagonals of 
the skew quadrilateral formed by (1) the two q-generators meeting 
the edges BC, AD, (2) the two p-generators which are the common 
transversals of AA,, BB,, CC,, DD,, while the other two pairs of 
edges are similarly obtainable. The tetrahedron PQRS has however 
been obtained from X YZT and ABCD in an unsymmetrical way, 
and there are three other possibilities. Let P,Q,R,S, be the tetra- 
hedron obtained from ABCD by inversion from X. Then D,C,B,A,, 
C,D,A,B,, B,4,D,;C;, ABCD are obtainable from P,Q,R,S, by 
inversion respectively from TZYX. So if P,Q,R,S, be obtained 
from ABCD by inversion from Y, the same four tetrads of points 
are obtained by inversion of P,Q,R,S, respectively from ZTXY; 
and if P,Q,R3S, be obtained from ABCD by inversion from Z, the 
same four tetrads are obtained by inversion of P,Q3R,S, respec- 
tively from YXTZ. But P,Q,R,S,, P.Q.R.S., P3Q,R3S3 are ob- 
tainable from PQRS by harmonic inversion in two lines in each 
case, respectively YZ, TX; ZX, TY and XY, TZ. 

Taking then the first case, where PQRS is used, since inversions 
in the vertices 7, X, in succession, in either order, are together 
equivalent to harmoni¢ inversion in the opposite edges YZ, TX, 
we may also say that the tetrads D,C,B,A,, C,D,A,B,, B,A,D3C3 
are obtainable from ABCD by harmonic inversion respectively in the 
pairs of edges YZ,TX; ZX, TY; XY, TZ. And we have remarked 
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above that given the four tetrahedra A,B,C,D,, A,B,C.D,, 
A,B,C;D;, ABCD, there is a simple construction for X YZT. 

The sets PQRS, S,R,Q,P;, RSsP Qo, Q3P353R, are related 
to one another precisely as are ABCD, D,C,B,A,, C,D,A,B,, 
B,A,D3C3, and, with the substitution of one set of generators for 
the other, have the same relation to X YZT. 

These results were obtained geometrically, and appear to con- 
stitute a simple geometrical construction for such a set of four 
mutually inscribed tetrahedra. But they can be readily verified 
analytically from the formulae by which the configuration is most 
usually treated. 
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On the reduction of homography to movement in three dumensions. 
By Professor H. F. Baker. 

[Read 9 February 1920.] 

It is known, and was assumed by Poncelet, that a self-homo- 
graphy of a Euclidian metrical plane is reducible, by a “move- 
ment” of one of the figures, to a perspectivity, called by Poncelet 
a homology, that is a transformation in which the join of two 
corresponding points passes through a fixed point, while corre- 
sponding lines meet on a fixed line. It is also known that this is 
not true for Euclidian metrical space of three dimensions. See 
H. J. S. Smith, Proc. Lond. Math. Soc., 1, 1866-1869, pp. 196-248; 
Chasles, Géom. Sup., 1880, pp. 375-381; Salmon, Higher Plane 
Curves, 1879, p. 298. 

The question arises what is the nearest analogous proposition 
for three dimensions. In the projective plane the reduction can 
also be made (instead of by a movement), by means of a trans- 
formation keeping a given arbitrary conic unaltered. In the present 
note we prove that in projective space of three dimensions a general 
homography is reducible, by means of a transformation leaving 
an arbitrary quadric unaltered, applied to one of the figures, to 
a transformation which we may call an axis-range perspectivity; 
namely one in which every point of a certain range is unaltered 
and every plane passing through a certain axis is unaltered. This 
seems to add something to what is known, and to be a very natural 
generalisation of the results in a plane. 

§ 1. Let S, Sy be two quadrics with a common self-polar tetra- 
hedron; let the two systems of generators of Sy be called the axes 
and transversals, respectively. There are four axes of Sy which 
touch the curve of intersection of S and So, and are generators of 
the developable surface of common tangent planes of S and S,; 
there are also four transversals of Sy with the same property. The 
eight points of contact of these lines with the curve (S, So) are on 
the curve upon S where it is touched by the common tangent 
planes of S and S); they are then the common points of S, So, Sp, 
where S,' is the polar reciprocal of S, in regard to S. 

§ 2. We now consider a certain porismatic relation between the 
two quadrics. From an axis of S), which we distinguish by the 
parameter 0, two tangent planes can be drawn to S, each of which 
will contain a transversal of So, say these are distinguished by the 
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parameters p, q. There will thus be a rational equation con- 
necting 6 and p, of the second order in p, equally satisfied by 0 
and gq. Through the transversal p can be drawn, beside the plane 
(0, p), another tangent plane to S, which, as it contains p, will 
contain an axis of So, say $,; thus the previous equation con- 
necting (@, p) is of the second order in 6, and is equally satisfied 
by ¢, and p. Similarly through q can be drawn, beside (6, q), 
another tangent plane to S, which, containing q, will contain an 
axis of So, say ¢,, and the relation connecting (8, q) is equally 
satisfied by 4, and g. There is thus a single relation of the second 
order in each of 0, p which is equally satisfied by (9, ¢), (44, 7), 
(¢,, g). As in other cases it may happen that ¢, = ¢, for all values 
of #, provided a certain relation hold between the quadrics. 

To find a sufficient condition for this, we may consider the 
particular case when the axis @ coincides with the identical axis 
?; = $2, or the transversal p touches S; then, this line p, being a 
generator of So, is a chord of the curve (S, Sp), and therefore, in 
the particular case considered, is a tangent line of the curve. Thus 
a sufficient condition is that the tangent planes of S at two of the 
four points referred to above, on the curve (S, S,), associated 
with the transversals of So, should intersect on an axis of Sp. 

More generally, if Sy be a + y? + 27+ # = 0, its generators of 
the two systems being of the respective forms 

x + iy = 10 ae z+ vy = 1p mane 
x— wy = (z—2))’ w—ty=ip (z+ a))’ 

the plane containing these, 

x + ty + Op (x — ry) — Or (2 + at) — po (z — tt) = 0, 

touches S, say ax? + by” + cz* + dt? = 0, provided 
62? (a-1 — b-2) + 62 (d-2 — c2) + p? (d-4 — 2) 

+ 20p (a+ b6-1— c+—d)+a1-b1=0. 

Hence, for the porismatic relation in question, by considering this 
equation, we see that we require that the discriminantal equation 
| Sp — AS | = 0, which with our coordinates is 

(i NaViGth ABV CE Ac) Cay =o! 
should have the sum of two of its roots equal to the sum of the 
other two. Writing then as usual (Salmon, Solid Geometry, 1882, 
p. 173) 

| Sp — AS | = Ap — AM, + YD — XO + ALA, 
the condition is 

©? — 40,A,® + 8A,?0 = 0. 

(Cf. Purser, Quart. J. of Math., vu, 149, and Salmon, loc. cit., p. 181.) 



160 Professor Baker, On the reduction of homography 

This is then the condition for the existence of tetrahedra with 

faces touching S of which two pairs of opposite edges lie on So, 

or equally, for the existence of tetrahedra with vertices on So, of 

which two pairs of opposite edges lie on S. Or say, it is the condi- 

y 

tion for S to be tetrahedrally in- 
scribed in Sp, or for S, to be tetra- 
hedrally circumscribed to S. 

Supposing the quadric S to be 
in the specified relation to So, there 
will, corresponding to each of the 
three ways of pairing the roots of 
the equation | S) — AS | = 0, be two 
figures such as that here indicated. 
Here , q are two transversals of 
S,, touching S, say at the points 
x, y; 8 is an axis of Sp associated 
with p, gq; and the lines zz, zt and 
yz, yt are the two generators of S 
at the points z, y. The tetrahedron 
of which the vertices are the points 
(0, p), (8, 7), each taken doubly, of 
which the faces are the planes (6, ), 
(0, q), each taken doubly, of which 
the edges are the lines p, g and the 
line @ taken four times over, has 
its edges p, q, 0, @ as generators of 

S, while its faces touch S; the tetrahedron z, y, z, t has its vertices 
on Sp, and two pairs of opposite edges of it are generators of S. 

Referred to (x, y, 2, t) the quadric S may be taken to be 

xy — 2 = 0, 

and the quadric S, to be 

2hay + 2 (gz + ut) + y(fe+ wt) =9. 

Then the equation | Sy — AS | = 0 has the roots 

Ay Ay = bh  {h? — [( fu)? + (go) PY, 
As, Ag=h + {h? — [( fu)? — (go) BY 

for which A, + A, = A3 + Ay. The axes of S, are given by 

(h—O0)a+fe+ut=0, (h+0)y+gz2+ut=0, 

and the transversals by 

c= py, hu + hpy + (f+ gp)2+ (vt up)t=0; 
the plane 

(h—O)a+fzet+ t+ p[(h+ 0) y+ gz + ut] =0, 
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containing one of each, touches the quadric S if 

ph + pgu + p( fu + go —h) + fo =0; 
this is the form of the (2, 2) relation in this case, the two axes 0, 6 
of Sy being 0, — 0. For the axis which is the line zt we have 0 = «© 
and the two corresponding values of p, g are p=0,q=0. It is 
then material to remark that the transformation ; 

h—6@ + 6 
aay yes 3,7 Hala 4,0 Ae ns Dae 

changes the particular axis of S, determined by 4 into the axis 
determined by — 6), and changes the plane (4p, p), or 

(h — O))x+ fet vt+ p[(h+ %) y+ 92+ ut] = 0, 
into the plane (— 6p, p), for all values of p. This transformation is 
one which leaves the quadric S, or zy — zt = 0, unaltered, and 
leaves every point of the line zt, which is a generator of So, un- 
altered, as well as every plane through the line zy. It is thus a 
transformation of the kind which we have called an axis-range 
perspective, or, in a usual phraseology, in regard to S as the 
absolute quadric, it is what is called a “rotation” round the line zt. 

Thus we may say: If a quadric S be tetrahedrally inscribed in a 
quadric So, it is possible to find a self-transformation of S, which is 
a rotation about a generator of So, suchas to change any axis of So 
into its associated axis, and to change any plane through this into the 
plane through the associated axis containing the same transversal of So 
as the former. 

It is easy to write down a corresponding result for the plane. 

§ 3. Now consider any homography in space, say 

v= a,x + by + 24+ dy, ..., #= age + byy + gz + dyt, 

which we denote, in matrix notation, by 

(2, y', 2,0) = | Q,, by C, dy | (z, ¥, 2, t), 

| Gene os. das | 

(en any Ca.) is 

| &, by, C4, d, | 

or also by (#’) = (x). Take an arbitrary quadric S; this is changed 
by the transformation into another quadric, and is itself obtainable 
from another by the transformation; regarded in these two aspects 
let it be denoted respectively by o and p’, the quadric into which 
it is changed by the transformation being o’, and that from which 
it may be supposed to arise being p. Denote the developable 
surface formed by the common tangent planes of p and o by 
(p, o), and that formed by the common tangent planes of p’ and o’ 

VOL, XX. PART I. Wil 
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by (p’; o’); the former is changed to the latter by the transforma- 
tion 3. Let 1 be the line of mtersection of any two planes of the 
developable (p, c), and I’ the line arising therefrom by the trans- 
formation, the intersection of the two planes of (p’, o’) which 
correspond to the planes of (p, a) taken. To the pencil of all possible 
planes through / will correspond a homographic pencil of corre- 
sponding planes through /’; and the locus of the line of intersection 
of corresponding planes of these two axial pencils, will be another 
quadric, say So. Evidently, by the construction, S is tetrahedrally 
inscribed in Sp, in the sense explained in § 2. 

Taking then such a tetrahedron of reference as used in § 2, 
let the lines J, l’ be respectively those there associated with the 
parameters 8) and — @; then the homography S changes the plane 
(Oo, p), of equation 

(h— 6) a+ fe + vt + p[(h + 8) y + gz + ut] = 0, 

into the plane (— 9, p), whose equation is obtainable by change 
of the sign of 0, for all values of p. When p satisfies the equation 

poy’ + pgu + p (fu + gv — h) + fo = 0, 
the planes (8, p), (— %, p) both touch S, which is o and p’. Thus 
the plane (9, p) touches the quadric p, and (— 6, p) touches o’. 

Now with the above form for the homography 8, the above 
equation for the plane (4, p), which the transformation changes 
into (— 4, p), 1s, for all values of p, the same as 

(h + Oo) (aya + by + oz + dyt) + f (asx + bgy + ¢32 + dst) 

+O (Agt + Oyy + Cyz + dyt) + p [(h — Oo) (age + bey + Coz + def) 
+ g (age + bsy + cgz + dat) + u (ax + bay + cz + d,t)| = 0; 

the coefficients a,, 6;, ...1n S must therefore be such that 

(h+Oo)ar+fag+ vd, (h+0o)b, + fb3 + vb, (h+%)G + fez + Vey 
h— 0 re i 

(h+9)d,+fd3+ vd, (h—O)dg+ga3+ Udy (h—O) bg +9b3+Ub, 
v 0 h+% 

(h — 9%) cy + geg + Cho (h — 4%) da + gd3 + Udy 
g u 

and there will be no loss of generality in supposing each of these 
fractions unity. With the ordinary notation of matrices these 
equations are then the same as 

LEE i KOA COMMON Wael vonish ik, a tin Us HI 5 
OL OO a Cu Nh Cie Oey Ca Ge | QO, Gp agemeay 
Oy OLN De 01] ayy, Bysy co ul ile. ene ae 
OOM OL a as ib ed waite | diy, 0 OE ee 
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and enable us to infer that the matrix of the homography has th 
form 

h ra 8, 0, i, v ’ id 
u | u 

Oe £0, ait i i ia, b, hw 
0, OF OR aed | ae’, be ana 

where a, b, c, d, a’, b’, c’, d’ are written respectively for 

. Az, bg, Cz, dg, Ag, Dg, Cg, dy. 
If then we put 

h Pea Oo R= mM, 0, 0, 0 > 0 = 
h+ % 0, m4, 0, 0 

Ode Pete DO 

Oe 50.0.) 1 

0, 0, ee | 

If the transformation associated with the matrix mw change the 
point (x, y, 2, t) to (x1, yy, 2, t), so that (7) = p (x), we have from 
(a’) = % (a), for the change from (z,) to (z’), the equations expressed 
by (z’) = Sp (a,), which, by what we have just seen, are the 
same as 

(h + 09) x’ + fe’+ vt'= (h + 65) 2, + fz, + vt, 

(h — Oo) y'+ g2'+ u'= (h — %) Yi + 9% + Uh, 

z= ama, + bmy, + cz + dt, 

t’= a' mz, + b'my, + cz, + dt. 

Without entering into general statements about the minors of a 
matrix, we proceed now to show in detail in an elementary way 
that these last are the equations of what we have called an axis- 
range perspective. For this purpose, write 

C=c— am1F —bmG, D=d— amv — bmU, 

C'= c'— a'm F — b'mG, D'= d'—a'mV — b'mU, 

i= 
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and also 
&=a7+ F2+Vt, €=2,+ Fe,+ Vi, 

n=y + Ge'+ UU*, <n, =y, + Ge, + Ut; 

then the equations of the transformation Syu-1 take the forms 

f= =n, v= amt, + bmg, + Ca, + Dt, 

t'= a'm€, + b’mn, + C’z, + D't,; 

assuming that the roots a, 6 of the equation in a, 

(C — a) (D’— a) —-C’D=0, 

are different from one another, and from unity, we can take p, p’ 
and q, q’ so that 

oO ae 10.0% fl + p'D’ i qo +q'C’ ie qgD+qD Bp 

P Pp q q 
and thence, by 

Z'= po + pit, Z,= pat pt, 
Pa @+qt, TM=qat qh, 

the last two equations of Su are replaced by 

Z'= Ag, + Bn, + oZ,, T’'= AE, + By, + BT, 
where 

A = (pa + p'a’)m™, B= (pb + p'b)m, 
A’=(qa+q'a')m4, B= (qb+ qb’) m, 

so that, finally, if we put 

aa S ae at ene 7 ee 1s 

at I oe a 3? ™71=T1,- fia f- 7p) 

the equations of Su are 

v= ers n= 11> C= aly, T= Bry 

which are the equations of an axis-range perspective in which every 
point of the line €=0, t=O is unchanged, and every plane 
through the line €= 0, 7 = 0 is unchanged. The latter line is the 
axis given in the notation first used by the parameter — 0, be- 
longing to the quadric S,; the former line, we easily see, is given by 

am—a'+ bmy’+ (ec — 1) z’+ dt’=0, 

a'm—z'+ b’my’ + cz’ + (d'— 1) t= 0. 

The transformation (x) = p (x), equivalent to 

aes — m-1 eat ras Ly = ML, Yy= MY, %=2, t, =F, 
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is evidently one which leaves unaltered the fundamental quadric S 
whose equation was taken to be zy — 2 = 0. 

The result then is: if we apply to the figure for which the co- 
ordinates (x) have been used the transformation p, by (x1) = p (2), 
this being a transformation leaving the arbitrary quadric S un- 
altered, the relation between the figure (z,), and the figure (2’), 
which arose from (x) by (x’) = (x), which is expressed by 

(2’) = Sp-* (2); 
is that the figure (x’) arises from the figure (z,) by an axis-range 
perspectivity. The axis of this is an arbitrary “line in two planes” 
of a certain developable determined by the arbitrary quadric and 
the original transformation S. 
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On the transformation of the equations of electrodynamics in the 
Mazwell and in the Einstein forms. By Professor H. F. BaksEr. 

[Read 9 February 1920.] 

The present note, which arose from reading the paper of 
Mr W. J. Johnston in the Proceedings of the Royal Society, A, XCVI, 
1919, 331, and the paper of M. Th. de Donder, Archives du Musée 
Teyler (Haarlem), 1, 1917, 80-179, has a very humble purpose. 
(1) It is shown that the noncommutative “imaginaries” used by 
Mr Johnston may be interpreted as aggregates of ordinary numbers, 
much in the same way as the complex numbers of ordinary analysis 
may be interpreted as aggregates of real numbers. It is shown 
indeed how to interpret a system of any number of units obeying 
the same laws of combination. (2) By this interpretation a form 
of Maxwell’s equations of electrodynamics is reached from which 
the ordinary Lorenz transformation is obvious at sight. This form 
of the equations is equivalent to a solution of the electrodynamic 
equations in terms of arbitrary functions. (3) The equations given 
by M. Th. de Donder, and stated by him to be the equations of 
electrodynamics in the Einstein field, are then considered, and 
their invariance under a general transformation 1s established. The 
purpose of this section is to show how simply this invariance follows 
by the use of notation which is familiar in other applications. The 
result of course includes the case of Maxwell’s equations. 

$1. Itisa familiar fact that the so-called complex numbers of 
ordinary analysis are couplets of two real numbers (z, y), subject 
to the laws 

(i) if m be a real number, m (x, y) = (mx, my), 

(i) @y) +(e, y)=(@+a,y+y); 
(mt) (, y) (2, y’) = (aa'— yy’, xy’+ x'y), 

those of the numbers which we ordinarily call real being couplets 
(z, 0), and those which we call pure imaginaries being couplets 
(0, y). By means of these rules any number (z, y) is expressible in 
the form x[1]+ y[], where [1], [2] stand for (1, 0) and (0, 1); and 
[7][7] = — [1]. It is this last equation which we ordinarily write 
Ze 

We may similarly have systems of more than two numbers, 
subject to laws of computation, addition (and subtraction), multi- 
plication (and possibly division). In particular consider systems, 
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built with the numbers of ordinary analysis (including complex 
numbers), each system consisting of n? numbers (n = 2, 3, ...). 
These we may conveniently arrange in the form of a square; and 
for purposes of explanation it will be sufficient to write down only 
two rows and columns. Suppose then 

(a) = a oa) 
M31, po 

where @4;, @,9, -.. are numbers of ordinary analysis, and introduce 
the rules (1) when m is a number of ordinary analysis m (a) shall 
mean the same as (a) with each element a,, replaced by ma,,. 
(ui) If (a), (b) be squares of the same number of rows and columns 
(a) + (6) shall mean the square of which the general element 
1S d,, + b,,; thus (a) + (b) is the same as (6) + (a). (iii) (a) (b) shall 
mean the square whose general element c,, is formed by combining 
the rth row of (a) with the sth column of 6, in such a way that 

Crs = AyD + Argdoe5 

thus (a) (b) is not generally equal to (b) (a). (iv) The zero square 
shall mean that in which every element is the number 0; denoting 
this zero square by 0, we shall then have (a)+0=(a), and 
(a) 0 = 0 (a) = 0 whatever (a) may be. (v) The unit square shall 
mean that in which all the elements are zero except those, a,,, in 
the principal diagonal, each of these being unity. Denoting this 
by E we shall then have EH (a) = (a) E = (a), whatever (a) may be. 
Addition of such squares is then not only associative, but is also 
commutative. It is easy to prove that multiplication is associative 
also; but in general it is not commutative. 

Of such squares, of two rows and columns, that given by 

as Cone 

is easily seen to obey all the laws of the complex number (2, y), 
the multiplication being commutative. This square may then 
equally be used to represent the numbers of ordinary analysis. 
Putting 

Oni een!) 

this square is x (1) + y (2). 
Now denote the two units of ordinary analysis by 1, «, where, 

for convenience of notation, « is used instead of the ordinary i, 
so that «?=—1. And consider the squares of two rows and 
columns expressed by 

Ha eek 0, ee Baa ion 

Ope —T}, 0 0,—e esl) Oy 
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By the laws above given we shall then find 

(DP 10 Josh = hd I Bie. 

[2 J ee od — 

KT el. IJ =—JI=K, 

so that I, J, K, H behave precisely as the units of the theory of 
quaternions. Other binary squares can be found with the same 
results of composition; for instance the work below suggests that 
I'=—TI, J’=— kK, Kk’=—J wight have been taken. “Adopting 
however the above, the usual quaternion cl+yJ+2zK+tE is 
represented by 

OF Vays Scull 0, — e\-+ /, OY, 

te L, a ( 0, — «ey — €2, 3 a ) 

or ( t+ ey, uc — €2\, 

—x—ez, t—ey/ 

and the formula of multiplication of two quaternions may be 
obtained by multiplying two such Bienes according to the rule 
given above. 

Now consider squares of four rows and columns. But for 
brevity, instead of writing four rows and columns, introduce 
symbols to stand as above each for a square of two rows and 
columns. Namely, using the letter O for the square of two rows 
and columns of which each element is zero, let 

aie eal ae : ae A oe ae eee : 

oO) I,O J, O KEV cal . 

where Hi, I, J, K are as above, # being the unit square of two rows 
and columns, and w the unit square of four rows and columns. 

Then by the rules above given it is easy to compute that 
e@= Pap h=— x, 

GG If a Gran Ts Be es a 

ON One OS 

yk — hy — (1, O\s) ke — ok — fd ONG 09) 

(0,7) (0, 3) (0: x) 
together with 

ae el ejk = a eki = (0, —J\, eg = (0, —K 

Tao) (7 O c a) ° 0) 
and evyjk — (EH, » OV; 

(0, -z) 
and, the multiplication being associative, it is not necessary to 
remark such equations as 

yk = — jk = jki = — kj, ete. 
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The squares e, 2, j, & thus obey the laws of combination of the 
symbols occurring in Mr Johnston’s paper above referred to, de- 
noted by him by 9, 2, 7, k. 

If we consider a square of which every element is « times the 
corresponding element in e7jk, and denote this by m, we find at once 

m=—u, em=— me, im=—m, jm=—m, km = — mk, 

and e, 2, 7, k, m are a system of five squares obeying the same 
laws of combination as the three quaternion squares J, J, K. We 
have ejkm = — eu, and save for multiplication with — | or e, or 
both, there are sixteen squares arising by multiplications of 
Uu, @, t, 9, k, m, namely these six and those obtainable by the ten 
products of two of e, 7, 7, k, m. 

As was remarked to me by Dr W. Burnside*, F.R.S., the above 
work is capable of generalisation. 

If €,, €5, ..-, @gr_1 be squares each of m rows and columns obeying 
the laws e;7 = — u, ee; = — e,e;, where wu is the unit square of 
m rows and columns, then the 2r+1 squares of each 2m rows and 
columns given by 

ees cy’ anes “ (i=1,2,..., (Q2r—1)), F= wEEy...Bgp-1, 

u, 0 Cis 0 ; 

where pw, = (— 1)*4**" is 1 or € according as r is odd or even, 
obey exactly the same laws—namely if U be the unit square of 2m 
rows and columns 

M=HPZ=—U, HE,;=—E#H,E, EE; = — H;H;. 

For instance for r = 0, m = 1, this gives 

& oe i - | 
Oni EO 

as two squares of which the square of the latter is the negative of 
the former. These are the two units (usually denoted by 1, 2) of 
ordinary analysis. Or if, denoting these, as we have done, by 1, e, 
we take r = 1, m = 1, the theorem gives the binary squares 

( 4 : ( i 7 G €, A , with ie ) ‘ 

he, 20) e, 0 0, € Oa: 

say, I, J, K, U, as units satisfying 
= J2— ke —U, JK = — KS =f, 

TES es A) SS I [J =— Jl = kK, 

which are the laws of Hamilton’s quaternions. 

2 1D ip halts writes: ‘In group notation it really comes to this:—The opera- 
tions S,, S., ..., S,, such that 

By ae ler Sy Ey es SS TE 
generate a group G, “of order 22n Tn this group H, 7 are the e only, invariant 
operations if 7 is even; when n is odd, the factor group ee | 18,8, . Sti is identical 
in type with G,_ 
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§ 2. With the symbols e, 7, 7, k above explained, satisfying the 

equations 

ea=2= P= RP=—u, a=—'e, ..., jk=— kj,..., CU = Ue — peers 

we clearly have 

(er + 1+ 9n + kl) (ef + 1F + 9G + kM) 

= —u(rtd+ EF + 7G + CH) 

+ jk (mH — 0G) + ki (CF — H) + if (6G — nF) 
+ ei (rF — &d) + ef (1@ — nd) + ek (7H — £4), 

and if we denote this by 

uW + kL + kiM + yN + eX + e7Y + ekZ, 

we further have the identity (A) 

(er + iE + jn + hl) (UW 4+ 9kKL + kM + yN + eX + eV Y + ekZ) 

=—e(rW+EX+nY + CZ) +1(EW +N — CM — 7X) 

+9(nW—-EN+CL—7Y)+kh(CW + EM — nL — 7Z) 

ate, Cn (Ch te ps tN) eg Es teal) 

+ fy (— (X+ EZ + 7M) + hy (— EY + 9X + 20), 
where A= UY On —= GAs fy SA. ee = G0) 

If now we interpret €, 7, ¢, 7 as symbols of differentiation in 
regard respectively to x, y, 2, t, the coefficients of e, 2, woey Cty 
arising in these equations are the combinations occurring in the 
equations of electrodynamics considered by Mr J ohnston in the 
paper referred to, the fF, G, H, X, Y, Z being certain constant 
multiples of those usually denoted by these symbols, except that W, 
which vanishes in the electrodynamic case, is here retained, and ¢ 
is a certain imaginary multiple of the time. 

However, a symbol er + 7€ + jn + k@, if we use the interpre: 
tation of e, 2, 7, k above developed, is the same as 

eae eC ae: See oh 
E, ile ©) J, O WEG) 

or ( O, —7TH+é&l+7/J+ CK, 

TH+ €l +/+ CK, 0, 

or, taking H, I, J, K as above, is the same as 

| 0, 0; — 7+ eM, E—& |, 

| 0, 0, —€—ce, —T-/& 

| o@+en, €-— el, 0, 0 | 

| —€-—e, = Sif) 0, 0 | 
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where 0 is the zero of ordinary analysis. The above operational 
equations may then be obtained by multiplications of such squares 
of four rows. 

But when é, 7, ¢, 7 stand for 

Giger G. |.) 6 
Comaun G2 Vol 

if we take 2, ¥,, 21, ¢, so that 

= yk ei ey ey Ys SY = ia 
we have 

0 0 0 0 
eae ce ae eee ikea On, Sa 

and, denoting these by €,, 7;, ¢,, 7), the above square is 

| 0, 0, wk T1> Ee; | . 

| 0, 0, mar Ge a 141 | 

| Nis eu 0, 0 | 

| a Gs, T1 0, 0 | 

Again 

UW + 9kL+ eM + yN +eaX + e7Y + ekZ 
is 
nate Ba reso fle ane, i, AO 

O, E Oe, Wis, lo, K/ 

Ake O\ + yas Bsahe a 
O, y) Ory O, K 

or 

Be oe X)I+(M—-— Y)J+(N—-Z)K, O, p 

0, WH+(L+X)I+(M+ Y)J+(N4+Z)K 

which, if we take #, I, J, K as above, is the same as 

| W+(M—Y)e, L—~-X-—(N—Z)e, 0, 0 

—(L— X)—(N—Z)e, W —(M — Y)e, 0, 0 

eo: Wi(M+Y)e, L+iX—-(N+Z)e 

0; 0, —(L4+ X)—(N 4+ Z)e, W-—(M+ Y)e 

Now put 

a=L+X+e(N+Z), y=L-X+.c«(N— QD), 

a=L+X—e(N+Z), yy =L-X—c«(N—-2Z), 

B=W+e(M+Y), 6= W+e(M— Y), 

B=W-—e(M+Y), 6 = W-e«(M-—Y), 
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so that B+ p=6+4+0. 
Then the last square is 

| On vas OPO se 

| —y, 06, 0 10 

0, 
| Oy Osa ca 

and the equations of electrodynamics are expressed by the vanish- 
ing of the product 

0, 0, aan Alp & 5, y' 0, 0 3 

0, 0, mas Ge — tA arae cs 3, 0, 0 

N1> ae 0, 0 0, 0, B, a! } 

ip (oe T1> 0, 0 0, 0, — a, jor 

this is equivalent to the vanishing of the two products 

(CE) eee 
and the equations are therefore 

60) OB. 0a" 0B". eyes ey, Cm 
CN ONY cme cn os 5 1 | 
da 08 oe 08) yay ae 
CNC cy RAC NON Cr REICURINh auteo Gi, 

These results are easily shown directly to be the same as the 
ordinary forms (putting W = 0, B’= — B, 6’= — 8). They involve 
that each of the functions a, B, a’, B’, y, 5, y’, 6’ satisfies the equa- 
tion 

o2V i CLV, 0 
Cee (OER 

C2 Viled2 Vi exo2 Vance 

e aa * aye t ae * oe — 9 
and they are equivalent also to 

0 0 
Ol (Gea aI 2 tn) + A (4%, 1); 

z rt rs) 7 7 } 

on I(- oe dz + a dt,) + A’ (ay, Y3), 
5 1 1 / 

fale) 08 
Y =|(- Oz, dt, + Oy de, ) + C (yy; 21); 

mk 08’ 00" : 3 
yhias \(- On, dy, + at, de) + C" (a, 4), 
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where A, C, A’, C’ are arbitrary functions of their respective 
arguments. The expressions under the integral signs are perfect 
differentials in virtue of the differential equation satisfied by 
B, 8, B’, 8. 

The equations are also equivalent to 

Uo Vie. yho— Sy’, 

Up’ = — Va’, Ry = — 88, 

together with those obtained by putting — « for «, where 

0 0 

What is to be remarked here however is that the equations (1) 
are evidently unaltered by replacing 

/ / 

@,0,;Y,Y>Yb ty 

respectively by oa, oa’, oy, oy’, oY, ot, 

where o is an arbitrary constant. These are the equations of the 
Lorenz transformation of the older relativity theory. If, putting 
W = 0, we equate to zero the coefficients of 2, 7, k, 44, 91, k,, in the 
identity (A) at the beginning of this article (§ 2), and write 

VK 0 : afte 
BE" L=mP, M=mQ, N=mR, m=— ite BR? 

where 7 = V — 1, we obtain the six familiar equations 

S V (OXY 7) curl(P.'O: RB), 

—2V (P,Q, R) =curl (X, ¥, 2), 
and the above results furnish a general solution of these, in terms 
of two arbitrary functions satisfying the above potential equation. 

T= 

§ 3. We now pass to the equations described by M. Th. de 
Donder as the equations of electrodynamics in the Hinstein field 
(loc. cit., p. 93). Here instead of one system of two sets each of 
three quantities (X, Y, Z), (L, M, N), which interchange, we have 
two systems each of six, connected together in a way which shall 
be explained, with coefficients which are quadratic functions of 
the coefficients in a certain Absolute quadric. These two systems, 
imitating the notation of the author, are denoted respectively by 

(My3, Ms1, Myo, Myy, Mo4, Mg4) and (Nos, N31, Nyx, Nig, Nos, N54); 
and symbols M,,, M,,, etc., are occasionally used where 

sR | Ree eo) 
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The differential equations in question, writing €, y, ¢, 7 for 

0 Onn aetG 

Bee en ez aE 
respectively, are 

— Ms, + Mo, — 7M; = pV 2, 

EM, — (M,,— 7M, = pV ,, 

—é€M,,+7M,, —7M,.=pV., 

EM,, + M3, + CMy, = «ins 

— N54 + €Noq — TNo3 = 0, 

EN 34 = Gina = ile, = 0) 

— EN + Ny, = ohio = 

ENo3 + N5 + ON yo =o 

If herein we replace M5, Ms, My, My,, Mo, Mo, respectively 
by X, Y, Z, — L, — M, — N and Nos, N5,, Nya, Nis, Nos, Noy by any 
constant multiples respectively of — L, — M, — N, X, Y, Z the 

» functions on the left become, save for W, the coefficients of 

é, %, J; k= €15%45)i> ky, 

in the identity (A) of § 2. 
Our object is to show that with any transformation of z, y, 2, t 

leaving a certain quadric differential form in dz, dy, dz, dt unaltered, 
and appropriate corresponding transformations of the elements 
M,;, N,; of the two systems, and of V,, ..., p, the equations change 
into others of the same form. In the Maxwell form of the equations 
the differential form is simply — (dz? + dy? + dz? + dt?). 

In the paper referred to M. Th. de Donder bases his work, after 
Hargreaves, Trans. Camb. Phil. Soc., xxt, 25 Aug. 1908, upon the 
transformation of differential (integral) forms, which he compounds 
together by rules which appear to have a certain artificiality. In 
what follows this is replaced by the use of Grassman’s alternate 
units*. For the actual transformation here considered M. Th. de 
Donder does not give the proof in the paper in question (loc. cit., 
p. 147), but refers to Mém. Acad. roy. de Belgique, 1, 1904. But 
more, in the present note, full use is made of the theory of matrices, 
which not only brings out the identity of much of the algebra with 
what is familiar in other work, but is also very much briefer, as 
the reader may easily see by comparison with the original paper. 
A short account of the use of matrices, under the name of squares, 
is given in § 1 of this note. 

* Mr Bateman, Proceedings of the Lond. Math. Soc., vat, 1909, p. 245, to whom 
M. Th. de Donder refers, has already suggested that Grassman’s units might be used. 
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We have quantities M,,;, N;;, for 7,7 =1, 2, 3, 4, such that 

M;; = Nii = 0, M;; ara Mj, N,; == Nj; We consider two 

matrices 

m=| 0, My, My, My], «=| 0, Nis, Miz, Nu |, 

Ms, 0, M3, Moy | No; 0, Nos, Mog 

Ms, My, 0, Ms, | Ns Noo, 0, Nay | 

My, My, Ms, 0 i ! Na, N42, N43, 0 | 

of which the second is determined from the former by an equation 
given later, with the help of a certain quadric. The determinants 
of m, n (supposed not zero) are respectively p?, v?, where 

b= MyM, + MgyMoy + MyyMgy, v= No3Nyq + NgiNoq + Ny2N 5q. 

It will appear later, from the equation connecting m, n, that 
vy = — p. Connected with m is a certain other matrix 

leas CS iad Jaana ey 

| My, 7 My,, 0, My, | 

| Post A ies Dogs a ey) 0 

Multiplying this last with m we find that in the product every 
element vanishes except those in the diagonal, each of which is — p. 
Replacing the unit matrix by unity, as usual, we therefore say 
that the last written matrix is equal to — ym. The corresponding 
matrix derived from n is therefore equal to — vn-. 

We consider a certain quadric form in four variables, whose 
coefficients a, h, ... will later be regarded as functions of variables 
L,Y, 2, t, and put A for the matrix 

NS SNe pill Gs u |. 

v | 

| 
h, b, ae 

aver iG 

sO Pe Oe | 

The determinant of this matrix being denoted by 6, we put 

e = (— 8)?. 

Then the coefficients NV; are defined by the equations expressed by 

en = pAmA 

which is the same as em = pAn “A, 

so that M,; are the same functions of N,,; as are NV; of M,;. At 
greater length these equations are the same as 



176 Professor Baker, On the transformation of the equations of 

n= —| a, h, 9, u| 0, My, —My, Mog | | @ h, g, u > 

hb. fv} \— Mage Oh > ig a ee | 

9, f, ew | Mo, — My, 0, My 9. J, © W 

U, Vv, W, d — M,., — Ms, —Miy, 0 | | 4,0, wd 

which give for instance 

— eN,, = (hw — gv) Mg, + (bw — fr) Mz, + ( fw — cv) Map 

+ (be —f ?) My, + (fg — ch) Mog + (hf — 69) Mga, 

— «Ny, = (ad — u?) Mp3 + (hd — w) Mg, + (gd — wu) Mys 

+ (hw — gv) My, + (gu — aw) Mo, + (av — hu) Mgy, 
— €Ny, = (av — hu) M,, + (hv — bu) Mg, + (gv — fu) 

+ (hf — bg) My, + (gh — af) Mo, + (ab — h?) Moy. 

The reader will compare the formulae for the polar line of a line 
in regard to a quadric, Salmon’s Solid Geometry (1882, p. 60), and 
may verify that, the coordinates of a line being J, m, n, I’, m’, n’, 
where the line is given by a a Tt-+ my + n'z = 0, 
the polar line Ora pv’) of (lmnl’m'n’) in regard to the quadric 
(RS CSIC Hi Gf 05, OD, OD) IN) ah, i t)? = 0 is given by 

| 0, antl B, ‘ \= 0, —n 2 m’, Ui | Xe 

oo 0, —X, p’ | Nn’, 0, —lv, m 
| 
Wg Roe BK A, 0, vy | cart mM, Le 0, n 

NS ee ea li one ON Ppa Sm, Sa 

Thus at ,., M;,, Myp, Mi,, Mo,, Mg, were proportional to 
l, m,n, —U, —m’, — n’, then No; Nat ton Ny, Nos, Nog would 
be proportional to mm [by o —2X, —p’, —v’. We assume however 
that M,,M,, + M,,M, o4 MM atin and the corresponding eX- 
pression for V,;, are not zero. The above expression of n in terms 
of m gives, on taking vine determinants of both sides, <4v? = 140? u-, 
or, from <¢4=6?,v?= pp”. The explicit forms for N,; show that v=— bh 

We consider now a transformation, from the variables (z, y, 2, ¢), 
upon which a, h, g, .... M,;, N,;, depend to variables (2’, y’, 2’, t’); 
we write 

da = pyda'+ pydy'+ pygd2'+ Pyalt’, 

dy = Poyda' + Pooly’+ Poglz'+ Poglt’, 

and so on, or more briefly, with the ordinary matrix notation, 

(dx, dy, dz, dt) =p (dx, dy’, dz’, dt’), 

the converse equations being written 

(dz’, dy’, dz’, dt) — p' (da, dy, dz, dt). 
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Thus the matrix p’ is the inverse of p; so that if P,, be the co- 
factor of p,, in the determinant, w, of p, we have p,,’ = P,,/w. 
With this transformation the quadric differential form 

(abcduvwfgh idx, dy, dz, dt)? 

changes into another such form which is written 

(Gi, 2. ida’, dy’, dz’, dt’). 

Using A’ for the matrix of this latter, we thus have 

A= pp.) A= p X'p’, 

where, as usual, p denotes the matrix obtained from p by inter- 
change of rows and columns. 

Corresponding to this transformation, we introduce new func- 
tions M,,’ .... These may be defined by the fact that if 

(dx, dy, dz, dt) = p (da, dy’, dz’, dt’), 

(dx, dy, 5z, dt) = p (d2’, dy’, 52’, dt’), 
then 

=X {Mp5 (dydz — dzdy) + M,, (dxdt — dtéx)} 

= & {M,,' (dy’dz'— dz'dy') + My,’ (dx’dt’ — dt’dz’)'. 

Thus, in matrix notation 

— m (dx, dy, dz, dt\ dx, dy, 5z, dt) 

= — m’ (dx’, dy’, dz’, dt’) (dx’, dy’, dz’, dt’), 

leading to m=pmp, m=pm'y’. 

If, as before, the determinants of p, m, A be a, w?, — &, and 
the determinants of m’, A’ be similarly p’?, — <’?, these equations, 
with A’= pAp, give «*= ae, p’* = wp? and hence, with a 

proper sign for e’, which is (— 8’), we have é’/u’ = e/p. 
The matrix n is replaced after the transformation by a matrix n’ 

connected with m’ as was n with m, namely by 

en = pp A’ (m’)-A’ 

= m'pAp . pm p™ . pAp 
= p pAmAp 

= ae 
ay PP: 

so that = PTnp, 2— ph p . 

The matrix 7 is thus transformed by the same rule as was m. 
We now introduce Grassman’s units é,, €, €3, €,, obeying the 

laws 

2) = 
és = 0, ee; = = €;€i5 

VOL. XX. PART I. Uy 
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so that, whatever a, b, c, d, a’, b’, c’, d’ may be, we have 

(€,@ + gb + esc + e,d) = 0, 

(€,@ + gb + eg¢ + qd) (€0’+ €yb’+ e3c’+ qd’) 

= — (e,a'+ eb’+ esc’+ ed’) (eya + @gb + €g¢ + eyd), 

while 
(ea + eb + esc + qd) (€,0’ + 9b’ + egc’ + qd’) (ea + €yb" + €g0'’ + €,d’’) 

= €2304Ay + €3¢y@aAy + €yC9@qAg + (— €y€203) Ay, 
in which A,, A,, Az, A, denote the determinants obtained from 
the array 

Na Ons d 

Week nD eumntcne dle 

Hah he BUN tel Ai al 

by omitting in turn the first, second, third, fourth columns, and 
prefixing respectively the signs +, —, +, —. 

We shall put 

Ey = clx@,, Ly = C3@1ea, Hz = €yl2@g, Hy = — lcs, 

and shall also introduce the four units given by 

(€y’, €2', 3 Ca) = P (C4, a, Cg a); 

so that €1'= Pe + Pisa + Pis &s + Pra Ca, ete. 
These equations are equivalent with 

€y = Prrei + Pro + Pises + Prala » Cte. 
and we may write the relations e’= p’e, e = pe’. The four com- 
binations 

/ / / If I) 1 / / y / / le 7 t / / 

are then linear functions of E,, E,, Hz, E,; we find in fact 
/ t y y ites =i 

(Hy, B,', Hs, Hy’) = op (Ey, Bo, Es, Ey). 

The laws of transformation from (e,, ..., @,) to (e;’, ..., e,) are 
the same as those from (dz, ..., dt) to (dz’, ..., dt’). Thus the 
equations 

i= FOO, Wo —= FOOD, 

lead to me? = me*, n'e* = ne*, 

where as usual me? is the notation for the quadric form 

TW (AGRA) (AGA), = oe 
For instance 

me2 = m (e) (e) = m (pe’) (pe’) = mp (e’) . p (e’) = p. mp (e’) (e’) 

=) (2) (6) = wes 
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Next let €, n, ..:, &’, n’, ... denote respectively 

Oy pe 0 0 
CR Gi A oan 

We then have 

(Se ic ae a) Lp (, 1; g; 7). 

Hence ef’, =e F+eoy +egb +e, 7, 

te A — (pee — pe Gee. 

Now consider the differential equations. They are capable of 
very succinct expression. Put ‘ 

M, = — 4My, + €My — 7My3, My = — (My + EM yy — 7M, 

Mz = — Mo + 7Myy— TMyy, My = €My3 + 7Mg, + CM, 

these being the forms occurring on the left in these equations 
(p. 174). Denote the row of these four quantities by 

my (MM, Mo, Ma). 

The expression e€ . me”, whose meaning 1s 

— (e,€ + egn + €36 + e47) 

(€2€3Mo3 + €3¢,Ms3, + €y€2.Myy + C10, Myq + Cy Moq + €3¢qMs,), 
is at once found on evaluation to be equal to 

E,M,+ £,M,+ E,;M,+ £,M,, 

which we can represent by Hm. In other words we have 

e&. mez = Em”, 

Thus the original differential equations are 

ene =p (Hig EV, SEV + E,)) 
e€ . ne? = 0 J aN 

In this form it is easy to show that they ate unaltered by the 
transformation, provided suitable values be adopted for the new 
values of p, V,, V,, V..- 

For we have shown that the operators e€, e’é’ are equal, and 
that me?, ne? are equal respectively to me”, n’e’?. Also that 

me 
p (Bia eseale 

a 
Thus, as e’é’ . m’e’? is identically equal to 

Hy My +... + Ey My, 

; ae aes ee , 
that is to , P(E) (Ml) = — E. pM, 

we have (oM,, 0M,, oMz, oM,) = p (My, M,’, M;', My’), 

12—2 

CEE yee ea”) 
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these being the equations (228), p. 146 of M. Th. de Donder’s paper, 
in a form which to the present writer at least seems much more 
intelligible. 

We shall then naturally take p’, Vy’, Vy’, V,’ so that 

p (EV +. + Ey) =p (EV. a --- ot Lads 

orp’ (BE) (V") =p (B) (V), — p’. B (EB) (V") = p(B) (V) 
on p (E) (pV") = ap (£) (V), 
namely, so that ap (V)=p (pV’), 

or p. (ParV a + Pr V y+ P13 Voge Pra) Ti apV ,., 

P (Par Var + PagV y+ Paz V 2+ Pas) = OP, 

which give, for instance, 

Ve = (PuVa' + -:- + Pra)/(ParVa' + --- + Pas); 

and this, comparing with 

6x/St = (pySa'+ ... + 91480’) /(pg8u'+ ... + Py St’), 

is in accordance with the view which regards V, as a velocity. 

Remark. We may evidently use Grassman’s units in § 2 instead 
of the quaternion units, the Maxwell equations being a particular 
case of those considered here. 
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On the stability of periodic motions in general dynamics. By 
Professor H. F. Baker. 

[Read 9 February 1920.] 

The question of the stability of periodic motions has been dis- 
cussed by Lord Kelvin (Coll. Papers, 1v, pp. 484-515), by Sir 
George Darwin in his paper on Periodic Orbits (Acta Math., xxt, 
1897), and by Poincaré, Les Méthodes Nouvelles de la Mécanique 
Céleste, 1, 226, etc. The stability in question is what for distinction 
from the secular or final stability, we may call the conventional or 
instantaneous stability; the solution of a differential equation whose 
coefficients are periodic functions of the independent variable ¢ 
being expressed by a sum of terms such ase’ [6 + df + ... + 6,0], 
where ¢, 4, ..., 6, are periodic functions of ¢, the motion associated 
therewith is called stable or not according to the character of the 
exponent a. In the present note I am concerned only with the 
development of a regular algebraic calculus for the determination 
of a. The method employed has already been applied to the 
differential equation 

2 
= + (n? + 4nH + 8ndAk, cos 2t + 8ndA?k, cos 4t + ...) x = 0, 

which has so great an importance in Astronomical and other in- 
vestigations. Here X is a small number, so that the series multi- 
plying z converges, and 7 1s an integer. There is no difficulty when 
n” + 4nH is not near an integer. If however H be small difficulty 
arises. The solution is a sum of terms of the form e’”™+9)td, 
where ¢ is periodic in ¢, and the stability, in the sense considered, 
depends on the sign of the real quantity q?. For n = 1, the value 
of gq? is positive, and the motion stable, so long as H does not lie 
between the values 

— kA — 3h,PA? + (44,3 — kha) B+ ..., 

kA — 44,20? — (4,3 — kyke) B+ ..., 

which it is seen are two small values on either side of zero unless 
k, = 0. For n = 2, there is similarly stability so long as H does 
not lie between 

— (2k,7 — k,) 2 and (40,2 — k,) A’, 

which again, generally include zero in their range (unless 

hy < hy < Phy’). 

| 
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But for n = 3, there is stability unless H le between 

3h 2A? — PA8, 3h,2 + PA’, (P = 2k — 3kyk. + ks), 

which limits do not include zero unless k, = 0. For greater values 
of m the range of values for H within which stability fails is that 
between two values of the form 

2 — qh + MM, a kPa? + NAB, 

(See Royal Soc. Phil. Trans., A, coxv1, 1916, 184.) 
In the following we consider a system of equations 

di; Of “dy, OF 

Gp Cops Nake Ox,” 

wherein the function F is expressible as a convergent power series 
in a small parameter p, 

F= Fo + pF, + eeey 

whose coefficients are analytical functions in 

Lah esas Baek CaMeen tons 

having no singularities in the range of values here considered, and 
are periodic, of period 27, in each of y,, ..., y, separately. Thus F 
does not contain ¢ explicitly. It as further assumed that Fy is a 
function of £4, ...,£, only. This is an important limitation, sug- 
gested by the use of Delaunay’s variables in the problem of three 
bodies. We shall for the most part limit ourselves to the case 
when ” = 2, so that there will be four differential equations. 

If x,°... x,° be initial values for x, ... z,, the quantities 

OF 5 
Onan ; 

for z, = x,°, may be called the conventional mean motions. By 
Poincare’s theory there 1s a periodic motion provided certain re- 
strictions for the initial circumstances are introduced, when the 
ratlOS 2, :M.:... are commensurable—that is when there are 
(n — 1) identities n,a, — na, = 0, na3 — n3a, = 0, ... with integer 
coefficients @,, @, .... By appropriate linear transformation of the 
variables 7, Zp, ..., Yj, Ya, ---, these conditions are reducible to the 
simpler forms n,= 0, n,=0,..., these being » — 1 in number. 
More precisely, noticing for the sake of comparison that, for » = 0, 
the differential equations are satisfied by 

ee) 

Dp = 

Uy = 2", y= Hy, Yy= Mt+ DW, Yo = Net + We, 
where a, @ are arbitrary, it can be shown that, for small values 
of yw, there is a periodic solution, reducing for t = 0 to 

%=2)9+A,, = 29+ A, yy =o,+ By, Yo= a, + Ba, 
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where, corresponding to n, = 0, «,°, z,° are such as to satisfy 

OF 4 
Chm 

_@, is such that the function [ F,], of ,°, 7,°, a, obtained by picking 
out the part of F, depending on 2, 2, y, only and substituting 
4°, XL”, @, for #, Zp, Y;, has a maximum or minimum value, namely 
@, is such that 

= Og: a0 = OF ior 2, = 7°, 2, = 2°, 

0D, 

and A,, A,, B, are determined, namely by linear equations whose 
determinant is , 

oF, OF Ces | 
sae om torso cans 

OF) oF, 
\>eatan.e ) das 

so that neither of these factors may be zero, while o, + B, is 
arbitrary. In other words, the origin of time- reckoning i is arbitrary, 
and either the ae ae of a or its Chars mean motion. 

Hee GO; (), Lo — dy (t = ds, (t), Yo = He (t) be the equations 
of such a es sea nee we ue in the differential 
equations 

supposing F=F,+ pF, 

values Ly = dy (t) + Ens Yr = Yr (E) + 
and retain only first powers of the small increments &,, 7,, we have 
a system of linear differential equations with periodic coefficients 
(of period 27/n,) 

a = (Yu %) S1 + (Yas 22) So + (Yu 4x) M1 + Ya Yo) Ne» 

2 = (Ya, ©) Ey + (Yas V2) a + (Yos Yr) 21 + (Yoo Yo) Ne» 

- = — (X, X) &, — (44, Fy) €o — (21; Y1) 11 — (Wy Yo) Ne» 

? = — (Wg, 2) Ey — (X25 Xa) Fo — (a, 1) M1 — (as Yo) Ne» 

2 
where (y,, Z,) denotes the value of sya for 

Ly = py (t), Yr = ob, (t) ; 

these values of z,, y, are of the forms 2,9 + pX,, n,t + o, + bY, 
Since F, does not contain ¥, Y all of the sixteen coefficients are 



184 Professor Baker, On the stability of periodic 

of the form »U, where U is periodic in ¢, having p as a factor, 
except the three (1,21), (24) 2») (a) 25); 

any one of these, say («,, 2), 18 of the form (2,°, 2°) + pm {&,, Ls}, 
where the notation {} must be observed. The matrix of four rows 
and columns formed by the sixteen coefficients on the night, if we 
retain only to the first power of », may then be represented by 

( OTe es ml (y, “), (Y; a 

Tata lal 0 irate {@, }, ee (x, y) 

where the 0 denotes a matrix of two rows and columns whose 
elements are all zero,,H, denotes the value for x, = 2,°, x, = ,", 
of the matrix 

aH a) oan 
fo>| Bee > andr |: 

er, oF, 
Chonchn  ) Chaes | 

(y, x) denotes for z, = 2,°, y,= n,t + o,, the matrix 

i) oe 
Y> Oy,00,° Oy,0Ly 

Fr,  eeF, 
| Oyp0x,’ Oy ,0ar, 

a similar meanings for (y, y) and (z, y), but {x, x} is such that 

PAL, U5 | 
3 2 Cl ae (2B Ti ge PF, 

On? Oe? 0%,0%5 on) Re | 02)? 2 eniegane 

OF, (oa er,  (@F, OF, OF, 
| 02,025 al 2 Ons? Gel) | OD OLa MalOiine 

a GEIEN. o7F, 
wherein Ge is the value of aa? LOL — Cys a — ee nnn 

in the first matrix we are to substitute z, = 7,9 + »X,, and retain 
only to the first power of u, while in the second matrix we are to 
put «,°, n,t + @, for x,, y,. 

If the matrix of coefficients as so explained be denoted by 
U+ mv we require, to solve these equations, to compute what, in 
the notation of the paper referred to, is denoted by Q (uw + pv), 
which by a theorem there given (p. 159) is equal to 

2 (uv) 2[(Q (w)>pw Q (w)). 
In case, as here, — Ons Owe 

(: Hy, a) 
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we have u? = 0, and hence 

a ala Oi re itt 0) 
—H,t, 0 (aes 

whose inverse is ( hy ; : 

Ne aeae | 

Thus we require, to first power of p, 

1, 0\Q oo hee (y; 2), (y, ¥) ( 1, “th 

iB tH, i) | lp: i ish {x, a}, — (a, i= tha 
or ( sear ah” 

—tH,, 1 eye 
where A= (y,x)—t(y, y) A, 

B= (y, 9); 
C = — {a, a} + t[ Hy (y, 2) + (2, y) Ho] — PH (yy) Ho: 

D= — (#, y) + ty (y, y)- 

Here the matrizant Q, to first power of p, is given by the definition 

Q {pu & BT es eee boa 
C.D QC, QD 

and the product is 

( 1 A ) + - ( QA 5 QB \ > 

= des eH, (OA 200. — th, .QB OD) 
that 1s ( | 1+ pQA : pQB i 

— tH, (1+ pQA) + QC, 1— ptH,.QB+ pQD 

In the paper referred to the rule reached for determining the 
characteristic exponents was (p. 163) to pick out the coefficient 
of ¢ in the matrix such as this, as it occurs outside trigonometrical 
signs, then put ¢ = 0, and from this form a determinantal equation. 
That rule was founded on the assumption (p. 162) that a certain 

matrix, o. (u), had, in case of equal roots, only linear invariant 

factors. It will be proved below that for the application of the rule 
the assumption is unnecessary; this is important in the present 
case since two of the characteristic exponents are necessarily zero, 
as we shall see. Of the quantities A, B, C, D, which are given 
explicitly above, only parts are material for the result. Denote 
then provisionally the coefficient of ¢ in the matrix last written by 

Ha Hale 
— Hy + py, pd 

where under the trigonometrical signs ¢ is put zero; the deter- 
minantal equation is then 

Ha—p., up iO: 

—Hy)+ py, pd—p 
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As we have computed A, B, C, D only to the first power of p, 
we retain only to first power of p in this determinant. It is con- 
venient to multiply by the determinant 

baa, 
\eliga —aiou 

which for n variables z and n variables y would be equal to p”, and 
for n = 2 is equal to p*. Then the above determinant becomes 

| — p (wa — p), — ppp 
pe (Hye — py), p? — ppd + pH 8 

and the evaluation to the first power of p is extremely simple, 
namely in general it is 

(p2)e = (el, 

where WM is the sum of the diagonal elements of the two matrices 

a pt ese Hee 
which in general are each of n rows and columns. 

Removing the factor p?”, which was introduced, and remem- - 
bering that the roots p are in pairs, equal, and opposite in sign 
(cf. p. 165 of the paper referred to), we infer that the sum of the 
diagonal elements of @ and 6 is zero, and to our approximation the 
equation reduces to 

ae a (Peppa (Hof), — 0 

which however, as was remarked above, divides by p?. Thus we 
see that for n = 2, p?/y is developable as a power series in pw, and 
further that the sign of p? is that of the negative of the sum of the 
diagonal elements of the matrix, of two rows and columns, ex- 
pressed by Hf. 

Now consider the meaning of 6. We have 

5 

> 

Boe] Ce eel 
Oy? ° OY10Ys 

Ga, OF, 

Oy10Yo? — Ya” 
where we are to put 

T= LY, Y= IY, Yr = Mei + Dy, Yo = Ngl + Dy, 

and, as was said, we have n, = 0. In general F, has a form 

FP, = Ay + XA, , COs (pry + Poe + h); 
wherein Ayo, A,,»,, 2 are functions of x, 7. Let [F,] be the part 
of F, which is a function of y, only, 

[Pi] = Apo + BA, cos (py; + 4), 
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which for y, = G1, Yo = Not + D2, does not contain ¢, and let Fy’ 
be the remaining part of F,. 

We have 
COR Coke le, OUR 

OyrOYs OYrOYs Oy, OYs” 
and ea) vanishes unless r = s = 1, while Q ay is an entirel 

OY,0Ys 3 Oy,0Ys y 
periodic function not having the factor ¢ outside trigonometrical 
terms. Thus in QB the only term having the factor ¢ arises from 
2 [F,] ne 

Q ay? ; this is 

2 

— QUAy,, , p17 608 (p,0, + h) = —tXAp,,, py? cos (po, + h)= oe 
1 

o2(F 
sO that B ar aoe ) 0 ’ 

Ono 

2H 22 
and = (A) ;; au g [Fi] = An 08 2 ? Cb Cay 

which gives, for the characteristic exponents which do not vanish, 
1 

ape Sage En aL: 
| ar V 0x02" 00,2 | 2 

And it will be recalled that 

Big ea 
Grae, hoa ie 

In order to obtain the corresponding expression when there 
are three variables x, and three variables y, it is necessary to carry 
the approximations as far as y?. Poincaré’s corresponding work is 
in Méth. Nouv., 1, pp. 201-226. 

Note. It has been remarked that two of the characteristic 
exponents are zero, and that the condition that, in case of equal 

roots, the matrix Q; (uw) should have linear invariant factors, is 

not necessary for the application of the rule above. In fact as ¢ 
does not occur explicitly in F, the existence of a periodic solution 
x, = o, (t), ¥, = 4; (t) of the original equations, involves the ex- 
istence also of a solution z, = ¢, (t+ h), y, = %, (t+ A), in which 
his arbitrary. This involves the existence of a solution 

2 beth | _ (t+ h) 
: ome oh 

of the equations of variation, where after differentiation h is to be 
put zero. This is however a purely periodic solution with zero 
characteristic exponent. The nature of the equations of variation 

0. 
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however involves that the characteristic exponents are in pairs 

of equal values of opposite sign. There is therefore also another 

solution.of vanishing characteristic exponent. 

Now suppose that in the argument of p. 162 of the paper referred 

to the matrix OQ. (wu) has not linear invariant factors. It will be 

sufficient to take one case, and to suppose that 
(5) ag | f-1 

OF (u=ki e™, BARES G Ns ki ; 
| 1€2@ - 2Ca 

| 

| 
| 

1C3@ 

p) Chee) 

Noticing then, multiplying the matrices, that 

gee as Deo a 
Le i Me act NI Nen Duel 00) Mi 
LeU SSN Gop Vir el eT Le 

EEN Ge! 

5° YY 2 we =o) 

Peace silt Uaitea let VY Yo! 

of which a particular case is for X’= X, Y’= Y, t=t, we have 

Q°** (uy = O°** (w) Q* (u) = QF (w) QF (u), 

> 

0 

because wu is periodic, and hence, by the form assumed for OF (w), 

wo+t —icy (w+ OP GM ey we ae | 
i —7 2g (& t . 7% 'o (@ pre) BG (oee ale 202 (w+-2) 

ar) 

is equal to 
t —icyt 

QO, (OTE Be. 4 : 
— Got +) =46s5 ICs file iCat 

— tat 

showing that the matrix 
t 

Q, (u) = OF (aE em Aan se : ae 

2 = > 

has the period w, and is therefore such that 

Ou) —@ (a) — 1. 
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This gives 

In this the terms involving ¢ outside trigonometrical signs are 

iQ (uk) Or e+ |, 

Cg | 

and putting therein t= 0, we have the determinantal equation for 
the characteristic exponents 

Wee a set vaath | = 0. 

DRE RO eee me 

| : sae acs 

The form of this equation establishes the result in question. 

If we put Q (u) k =  (¢), and, denoting the initial values of 

the dependent variables by 7,°, z,°, 75°, put 

k~ (a1°, £9, &3°) = (24°, 29°, 24°), 

the general solution Q) (u) . (24°, 72°, 25°) becomes 
7ext 

D(a ara eas a. F (eee). 
2Cot o eCat 

- 5 ue 

Cat 

2 he} 

2Cyt iCot 5, CGF ZCot 0 1) Ay) 

icyt iat On OE iegt 
@,e , O36 ., Dz te ~ + O,,¢ 

C2 2Cot 4 tet 2Cot 5 OGM 
@,e , Oe , Dgtie + O,,¢ 
a aeyt 0 UCot 0 iat 

conan a — 26 D4 ze O,, +2," . (O13 + #49), 

Nia, ay 2000 Dap als zee (D253 + wtDp9), 

zee Da, a zee Dag a zee (D3, + UDs59), 

where the ©’s are periodic functions, and 2°, 2°, z,° are arbitrary 
constants of integration. 

wae Lg = 2° 

& | 
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On the stability of rotating liquid ellipsoids. By Professor 
H. F. Baker. 

[Read 9 February 1920.] 

The present note deals only with the paedagogic problem of 
reducing the algebraic treatment of the stability of rotating ellip- 
soids and spheroids, for ellipsoidal or spheroidal displacements 
only, to the simplest possible terms. It is a modification of what 
is given on pp. 69-71 of Mr Hargreaves paper on the Domains of 
steady motion for a liquid ellipsoid, and the oscillations of the 
Jacobian figure, Camb. Phil. Trans., xxi, 1914. Mr Hargreaves 
refers to the paper of C. O. Meyer, Crelle, xxiv, 1842, for one of 
the identities he uses, but does not do himself justice in that he 
refrains from pointing out that Meyer’s work is vitiated in an 
important point by a mistake of algebra. 

§ 1. Supposing a, b, c to be real positive quantities in descending 
order of magnitude, put 

fe)=@+a(etd)@+o, f—-L9, g=F~@; 
then we can verify without difficulty that 

(e320 g | ee ie 
Ge = on aut g) Ce. Yin reno y 

Next put, y being throughout taken positive, 

2 az 1 
—— === — is I => fo) i Aa a+b 32 C= Ps 

so that 

i PA) oe op at i) (2 7) : FT (@) (e+) (2 a RNa + Ole + al w= as 

in this regard » as a constant, so that f(x) is regarded as depending 
on the two variable quantities h and c; so considered, denote it 
by P, and write 

oP oP G2P 
mm pe tl aye o Se 

and correspondingly write 
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Then if €, 7 be arbitrary we have 

a 2 9) 2 

Oyo" + 2&9 + Poon? = — is | Pus - 2P 6 ale dx 
J0 y 

oD 2 
bol (Pig + Pn) dx: 

4 Jo ye 

substituting the forms of P,,, etc., and utilising the two identities 
remarked at starting which here take the forms 

pee (os is eo i) Pp, ¢| dx Ie ee E 4200+; af SL ye 

At a Ne (tes 1 5 (2 C Pn PH 

fe ah ele +a) +E +5) +| 
we have 

ee 
ys? + 2by0En + Poe? = — [ a y ) 

where Q = Uz? + 2Vaz+ W, 

in which, if we put 
h 

t= ee ee ee. a — Ha, 

the values of U, V, W are given by 

4h 4 
—g Ue? = (8 — Ey + ma”) + B81” (Lu + 1) + yu (3t — uw — 1), 

4h4 : 
= Ve=t (E27 — Em + 1”) + $67? (Bu + t+ 4) + ?u (2t — 1), 

* W = (3¢ — 1) (€:? — ym. + 17) + E17 (28 + 1). 

Hence as ¢, h, p are positive, if €, 7 be any real quantities, each 
of U, V, W is necessarily positive provided 2¢ > 1. For this, being 

Fhe pi ba aa 
Ae ais gy? or c < 2ab/(a + b), 

involves, because of 4a7b?/(a + b)? < ab, also c? < ab, and hence 

t>u, 3{—-u—-—1l=t—u4+2t-—1>0. 

Thus for all real values of €, 7, the quadratic form in €, 7 
denoted by Q is necessarily positive, and the form 

buf? + 2b4989 + $297? 

necessarily negative, the sign of y being taken positive as stated. 
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§ 2. Now consider a mass of homogeneous (incompressible) 
fluid, of mass M, whose surface has the equation 

oye 2 

Gis GOS TiC 

rotating with angular velocity w about the axis of z. Let I, p, — W 
be respectively the moment of inertia, moment of momentum and 
potential energy of gravitation and 

Bee Mer H=5; W; 

we have 
M ddl 3 lee 

re Ure =~ (a + b) a, W= 7 We, 

and if we put 

20 a 
Peano eel ace: 

we have K = oh -— ¢. 

Weare concerned to make H a minimum when p and JM, and there- 
fore also p, = abc, are retained constant, and hence to make K 
a minimum regarded as a function of h and ¢, retaining o as con- 
stant. 

The necessary conditions of rotational equilibrium 

Oe gy, OE 
Wo GO 

give @1=¢, $2 = 0, 

and the condition of stability is that 

bus” + 2hyén + pox" 

should be negative for all real values of €, 7. 
We have 

anol 2 edu Me yo) 

t=— 3], ye (245-4). 

and, in the famihar way, this vanishes for a proper value of p, 
which is such that 

0, 

As this involves also p> 3c?/h, or, in a previous notation 
2t > 1, we see from § | that the condition of stability is satisfied for 
the ellupsoidal forms of rotational equilibrium when ellipsoidal dis- 
placements are considered. 
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§ 3. Consider a series of ellipsoidal shapes satisfying the con- 
ditions 4, = o, dy = 0, for all of which abc is the same. By ¢, = 0 
we can then regard c as a function of h, subject to 

de Pe 
dh poe 

For increments 6h, 5c, p being constant, the increment of K, to the 
second order, with constant o, is then 

BA iGoh = (ehhh bade) = (hb ,5h2-t Ad, ShSe + dade?) 

yi ($11 - oe ) Sh, 

ane Bo = fusdh + $rade = (by — i) ah, 

and, from w? = 3Moh? = 3Mh*d,, we have 

5 (a) = (bh + ypc) h2 + 26,h3h 
2 

= (h4,h? + 24,h) sh — Pr’ hsh. 
: poe 

But, from § 1 above, we have i 

; bo <0, dib22 — $12” > 9, 
while 

1 ae Sil waa Poe Ge i 1 2 1 1 yh? + 2d,h=h | a0 p de+ 5 | yp dx a 7: dx, 

2 2 
wherein - P,, = es = eG A a =— 5 hPa 

~ p2 

so that byl? + 2ph, = oP [ se dx, 
4 aha] 

is necessarily positive. 
Thus we see that, as h diminishes, for a series of shapes of 

rotational equilibrium, K constantl y increases, o also increases, but w 
diminishes. 

§ 4. We can however show that as a — 6 increases numerically, 
h does diminish, that is that a@ + b increases. |The numerical tables 
show that along the series of ellipsoids a increases, but 6 and ¢ 
both diminish. | 

For 
p 2p 48 [(a — 62] = 39 [ao 42|—— 7 an+ Be, 

VOL, XX. PART I. 13 
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while, along the series considered, 6¢ = — ae so that 

45 [(a — 6)*] = - |e +2 =F bus| 3 a 

We proved however (§ 1) that 

— (bE? + 2hi9€9 + doom”) = P (c?E? — ch&n + h?y?) + QE’ + Ry?, 

wherein P, Q, R are positive, and €, 7 are arbitrary. This gives 

— (poo + $ieé) = P (— gch& + h'n) + Ry; 

hence, replacing €, 7 respectively by 2p/c? and 1/h3, we infer 

9 hea 
- (52 + 2 un) = P(-© +5) + 

: le le ab 
wherein Reve On aan 

is necessarily positive. 
Thus, as 5. is negative, the equation 

oh = — 3 hop (ee at an E bu) e 6 [(a — b)?] 

shows that dh has a sign opposite to that of 6 [(a — b)?]. 
We have thus proved that as the axes 2 ./a, 24/b become more 

unequal, the energy H, the moment of inertia LM /h, and the angular 
momentum jr, all constantly increase, while the angular velocity w 
constantly diminishes. 

In Mr Hargreaves’ notation (Camb. Phil. Trans., xxt1, 1914, 61), 
if momentarily m be used for the whole mass, instead of M, 

L 4 M 5 N 
Smj2 Pi? Bp — Pia? Banja Ohta: 

He obtains L>2N, M> WN. The preceding work establishes 
M > 2N. 

§ 5. For the series of spheroids of rotational equilibrium, the 
variables h, c are not appropriate, for a reason which will appear. 
Writing a + a, b + & respectively for a, b and h + €,c +7 for h, c, 
we have at once, «, y being small, 

foe ne 

OD Oi A ies or 
n=—0(F 43) 4e(T 4 in +0) 4 ete, 

and hence 

SOG ate One) ote Pal stg (Pu? + 2pyoEn + doo”) = P+ VP, + ete., 
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wnere Fy = (o — 4) ? («@ + 9) — bee e i s) 
and 

aS (s way 
a ( ee” 

+B [bat c+ ah + abet co (E48) + bat (2+) 
If herein we put a = 6 we obtain, for an arbitrary ellipsoidal 

variation from the spheroid, to terms of the second order, of the 
function % = — oh + ¢, which is a constant negative multiple of 
the energy H, the following 

Spb = [to — 44) ha ee le (c + y) 

4 (=o gy) WB (a + y)? + F203 (w+ 9)? + (0 — WF 

+ 3 (e+ y)? me Piz + a o2 bx 

Thus we obtain, as determining the angular velocity or momentum 
necessary for the rotational equilibrium of the spheroid, the single 
equation 

Cc 
o= $1 + $2 

(explaining the reason for the change of variables), and thence 

; P Che c2 Cc F 
+ | $y h* + dy. 7 + $02 oe “1 dae dz | (e+ y)?. 

We have however shown that 

rou a daah™ — sr pauee az 

1 
b ? 

a>c. For the value of ny putting a = b, a=csec* a,t = tana, 
we easily compute 

is negative so long as : >- : ane and hence, for a = b, so long as 

dy = aM : (3 + 14? + 34) —(3+ 13°)} : 
8ttc? 

which is negative for values of @ ranging from a = 0, when the 
spheroid is a sphere, to the value for which 

E 13—2 
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; (3 + 142 + 34) — (3 + 132) = 0 

(about 54° 22’, corresponding to a meridian eccentricity e = -8127, 
2 

and a value of = equal to :187). For this value ¢, = 0, and, by 

what we have previously shown, the spheroid is a particular one 
of the ellipsoids of rotational equilibrium. 

Thus Sy is negative, the proof being valid for the spheroid for 
which ¢, = 0, and the spheroids lying between the sphere and this 
ellipsoid are therefore stable for ellupsordal displacements. 

§ 6. The coefficient of (« + y)* in the above expression for dx 
remains negative however even after a has passed the value (about 
54° 22’) for which ¢, = 0, and ¢, has become positive, indeed up 

toa = 5 . For from 
C 

a= $+ $2 Fp? 

using ¢ = 4ph?, and hence 6c = 8phoh, we get 

25h ¢ Ca tae da = Te Ena + Piph* Pe 2 Pos @e dee bs 2 

leading, for a = b, to 

Sf a (% + y)? do | 

4 a? 1l6a2_ da’ 

on the other hand a= ¢,+ ?9 a 

gives o = 2a(a—c) | SUE ah 
0 (x + a)? (a + ©)? 

and hence 

| {i (2a + e) + Bae-+ 30 (a ~ e) EEA me 3° 
da No %+ ¢) (4 + a)3 (x +c)® 

which is evidently positive. 
Thus, putting «= y, we infer that the spheroids are stable for 

spheroidal displacements for all values of a up to zr 

We can prove that 

i(1+ # 2 iL 

= Opa ts), ee ea 4b xP) = 1|,=6pa+ey Di, 

say, where (1 + #2)° increases with ¢, while 
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dU d ((1+#)? 9 + 7£ i - |Fa+44)- 1] = 7 dé di| # 34 (1 + 23 
nee _ 0440 

wherein Uf 9+ 72 — a, 

4 2 
leading to Oi ae Uist dt ~1+8°@+ 782" 
Hence o, and therefore the angular momentum, constantly in- 
creases with the angle a, along the series of spheroids. 

But, we may remark, 

eaorg.? (1+ 12)? a ae 4" Sap) BiCO8 Cay) E (i= 47) — 1), = 3 cosa, 

increases with « only until 

rhea ae ere 
t a 2 

2 
(approximately a = 68° 26’, e = -93, giving aaa 2247), and after- 

° Qap 
wards diminishes. 
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On the general theory of the stability of rotating masses of liquid. 
By Professor H. F. BAKER. 

[Read 9 February 1920.] 

I venture to make some brief provisional remarks, to which I 
have hoped now for some years to give a more detailed examina- 
tion, relating to the question why Sir George Darwin on the one 
hand, and Liapounoff and Mr Jeans on the other, arrive at different 
conclusions in regard to the stability of the so-called pear-shaped 
figure of equilibrium of a rotating liquid mass. These point to the 
conclusion that this is a case in which the empirical treatment of 
the convergence of an infinite series may lead to erroneous results 
in a concrete practical matter. 

§ 1. For a mass of homogeneous incompressible liquid rotating 
as if solid about an axis, with angular momentum p, moment of | 
inertia J, and potential energy of gravitation — W (where W is the — 
volume integral of the product dm.dm’ of two elements of mass 
divided by their mutual distance), we consider the Hamiltonian 
function 

H = — W + 4p2/I. 

Let H’ be the corresponding function belonging to another such 
mass, “sufficiently” near to the former, rotating about the same 
axis with the same angular momentum (and, for brevity, of the 
same mass, and the same centre of mass lying on the axis), but 
with different I and different W. We conceive that the form of 
this second mass can be specified, relatively to that of the former, 
by a certain number of parameters. In the actual problem the tale 
of these parameters must be unlimited; but the methods applicable 
when this tale is finite cannot be extended to the actual case 
without careful examination, and in what follows we think only 
of a limited tale. The difference H’— H is then a function of these 
parameters. In the case in which a change of form of the rotating 
mass involves a dissipation of energy, a necessary and sufficient 
condition that the form of the mass first considered should be one 
of stable rotary equilibrium, under its own gravitation, is that 
H’ — H should be positive for all small values of the parameters. 
We adopt this as the condition. In the problem now being con- 
sidered the first form of the mass is itself regarded as arising from 
another (of the same mass and centre of mass), with a different 
angular momentum, py, and different J and W, say J) and Wo, of 
which the relative rotary equilibrium and stability have already 
been investigated. We have then a known form of equilibrium, to 
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which there belongs a function Hy, then a contiguous form whose 
equilibrium is under examination, to which belongs the function 
H, and then, further, a ‘“‘virtual’’ form, which has the same angular 
momentum as arises in H, to which the function H’ applies. We 
may then suppose the parameters, above spoken of as identifying 
the form, to vanish for the form (H,), may denote their values for 
(H) by z, Y> ..., and their values for (H’) by x+&,y+7,.... We 
put 42 — 4pu,2=k. Presuming certain conditions of continuity 
for the functions involved, the equations of equilibrium of the 
form (H), which are such as 0H /ox = 0, 0H /oy = 0, ..., must, for 
2=0, y=0, ..., together with k= 0, be satisfied for (Hy). In 
general (certain conditions being introduced in the choice of the 
parameters) these equations determine a form (H) corresponding 
to every arbitrary small k; the necessary and sufficient condition 
however that (H,) should be a so-called form of bifurcation, or 
branch form, is that these equations should lead to more than one 
form (H) for any given small k&. A sufficient condition for the 
stability of the form (7), is that the quadratic form, in the arbitrary 
variables €, 7, ..., consisting of such terms as 

4£°0°H /Ou® + Eno*H /oxdy + ..., 

should be definite, and be positive, when, therein, the coefficients 
07H /ox*, 0?H/dxdy, ..., are those functions of k arising by sub- 
stituting the value of z, y, ..., just found from 0H/ox = 0, 
0H joy = 0, etc. And, in particular, if (Hy) be stable, this quad 
ratic form must be definite and positive for k—0, 7 — 05 7 — 05: 
Conversely this last fact, when (H,) is known to be stable, con- 
siderably reduces the labour of considering the stability of (#). 

§2. In our case, (H>) is an ellipsoid, and (H) a contiguous, so- 
called pear-shaped, form. Sir George Darwin calculates (Papers, 
11, 349), a form for the increment of the Lagrangian function 
W + 4u2/I, in passing from the form (H) to the form (H’), which 
leads, to the same approximation, to a form for 6H, or H’— H, 
which may be written thus: 

wl Mats k’ (1 — la? — my — nz) 322k, aay 
+ dant + Eby? + dcz7 + gurz + ha®y + fyz 

+ DU [h'aPy’ + 3b'y™]; 
for facility of comparison we may give the equations which connect 
the notation here employed with that used by Sir George Darwin: 

as) ep Z) Ws ee an a, 

are used respectively in place of 

URLs Os AO Pa 
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also the coefficients a, b, ..., b’, h’, expressed in Sir George Darwin’s 
notation are, respectively, given by 

ba cw d*w? 
a= — — 2A), b = — + 2C,, C= ara 20,°), 

a a 

eon bdw? bew? 
f=- g=- — 2B,%, h= —-— 2B, 

a a a 

h’ = — 2B, bi 26) 

§ 3. For a form of possible rotary equilibrium to which such an 
expression for 6H is appropriate, the equations for 6H to be 
stationary are 

2a [ax + hy + gz + Xh'y’ — k'l|=0, 

ha® + by + fz —k’m =0, 

gu? + fy + c —kn =0, 

ha + by =. 

The solution x = 0 belongs to the series of ellipsoids; omitting this 
for the moment, the equations give 

Eh'y =— Baa, 

la — & (h’2/b'), h, g ee Sb; Gy 8 |>¥ le = See. Bs == wie 

h 5 fl Dy jis He 

g ’ tf c Is Cie 

corresponding to two possible forms other than ellipsoids. 
The stability, for displacements in which only z, Y 2 Zz, y vary, 

depends on the quadratic form 

0 (6H) 0? (6H) 

Be" Ox 7 oxoy see 
namely 

Jane? + Zhan + 2gxEl + 2Zh'wEn’ + $by* + fyl + del? + 1Db’y’2; 

this is, however, the same as 

a 

22 (8H) 2 

el dy” + En'g"S = Oy’oy”’’ 

pub’ (1 o a én) + 3b (0 ad Ge = én) 

4 (c --| (¢ + 2807 a =a) 

4 262 | a se Be a 
* be =f? h CBee 

| g > Ts c 
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wherein, by what has appeared, the last term is the same as 

22h etal Bont 

be f* Dye. fsa. 

ib C, n \ 

The solution, above omitted, arising by taking x = 0, requires 

by+fe—k’m=0, fyt+ea—kn=0, y' =0, 

so that, if we introduce o, given by o = hy + gz — k'l, we obtain 

EN k’ Hi ig viet 

be — f? OS fs mn 

| re C, n | 

and the quadratic form arising in considering the stability is 

of* + gn? + find + 500? + Fb'y”. 
Assuming then that the ellipsoids up to the form of bifurcation, 
that is for k’<0, are stable (as is well known), we can infer that 
b, bc — f?, b' and o are all positive, and hence that 

ee gs ek 

b; f,’ m 

Nid Wisc Ot 
is positive. 

Hence, returning to the quadratic form above wherein z is not 
zero, we infer (1) that the pear-shaped figure, so far as the increment 
5H is appropriately represented by the form above, is stable of k’ 
is positive. By Darwin and Jeans this conclusion is made to depend 
on general reasoning, due in the first place to (Liapounoff and) 
Schwarzschild, writing in correction of Poincaré (Inaugural Dis- 
sertation, Miinchen, 1896, or Neue Annalen d. Sternwarte Miinchen, 
m1, 1898, 275); and (2) that a necessary and sufficient condition 
for this is that the determinant 

G—D(hAo). he og 

h, re 

9, Pe 
should be positive. It is however easy to verify that this deter- 
minant is, in the notation of Sir George Darwin, equal to 

40,02 B, , B,@h? aps Ba Fe sah re NS Sara) te ac * anh 2 (bee tere 

(B.)? | (B,°))? (Boy, 
where N= 2 EE + C, + C2) cI 3 
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from the expression of the increment of the function H, for varia- 
tion to the second order, in the case of the ellipsoids, it is known 
that C, is negative, and C,® is positive; (these are in fact the 
“coefficients of stability” corresponding to Lamé functions of one 
root, in the former case lying between the negative squares of the 
sreatest and mean axes of the ellipsoid, in the latter case between 
the negative squares of the mean and least axis). Thus (3), we 
infer, by algebraic methods only, that a sufficient condition for the 
instability of the pear-shaped figure, if we assume the preceding 
ellipsoids stable, is the single condition 

Bi”)? m = 2,240 
1N (Bri”) = Fe chop 3 Se eel aie |: 

Darwin (Works, 111, 378) computes 

N = — -000235513. 

_ It is easy to show, from what precedes, that, if dw” denote the 
increment of w? in passing from the ellipsoid to the pear, we have 

aow? Oho whee 0 N 2 1 9 p) p) 
Cnctaig ORORG) b, f, m 

We C, n 

B Jee 2 2 a Vs or Na? + $8u? (b+ 7? —d Gia) = 0. 

Thus a sufficient condition for instability is 6a? > 0. 
This again, we see algebraically, involves that the increment d5/ 

of the moment of inertia, is negative; for, if we put D for the 
coefficient of 46w? in the last written equation, we easily find 

rat ee a be — f? =F [D +N (1 ice) | 
As dw, df are then of opposite sign it is evidently desirable, if 
possible, to calculate N independently and not from these, as do 
Darwin (loc. cit., p. 379) and Jeans ( Cosmogony, 1919, p. 101). 

Mr Jeans (Phil. Trans. A, ccxv, 1915, 76, 77; Cosmogony, 1919, 
p. 92, § 94) appears, if I understand him aright, to hold the view 
that an expression such as that above taken for 6H, does not suffice 
to enable us to draw inferences in regard to the stability, and in 
particular that there should be present therein a term in z?. And 
he seeks to find in this way the explanation of the difference in 
conclusion of Sir George Darwin and himself. I cannot agree with 
this view; if the expression for 6H is accurate as far as it goes, it 
appears to suffice for forming a judgment, though hypotheses as 
to the relative order of smallness of 2, y, ..., should clearly not 
form part of the process for calculating 5H. 
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§4. I believe that the discrepancy of conclusion arises in 
another way. Sir George Darwin computes his form N only to a 
limited number of terms, and is satisfied with the verification 
(loc. cit., p. 380) that the terms he would next calculate are very 
small in comparison. It is easy to show however that the terms of 
the first few orders, in Mr Jeans’ expression for the normal variation 
from the ellipsoid to the contiguous pear, involve terms extending 
to infinity in Sir George Darwin’s expression for this normal 
variation. 

* Taking a point (z, y, 2) near to a point (2, Yq; 29) of the ellipsoid 

ala + y?/b + 24/e = 1, 
given by 

(a +A)7*=aa*, y(b+d)*#=y407%, z(e+d)*= ane 

Darwin (loc. cit., p. 320) has an expansion in Lamé products 

— 3A/po” = const. — eQyo* — f2Qug — fo Qa — UfMQ8, 

where py 1s the central perpendicular on the tangent plane at 
(29, Yo 29), So that, in terms of elliptic coordinates, po? = abe/pv. 

Jeans’ form of contiguous surface (Phil. Trans. A, CCXV, CCXVII, 
1915, 1916, or Cosmogony, p. 88) is 

ye 22 
% + Z + en, + e7Ulg + eRrVg + «.., 

where %, Up, V2 are integral polynomials in 2?, y?, z*, 1, of respective 
orders 1, 2, 2. If herein we substitute 

A\? elie 
x ty (“ ) = (1+5--gat-), 

2 

Bese Sy 
a 

with similar expressions for y and z, and solve for A, we shall find 
a series of the form 

Locale u+ e?p,2v + e82)p,)tw + —5 = — Cyt + ep CrsDy Ae 
Po 

where wu, v, w, ..., are polynomials in 2”, Yo”, 27, which, on ex- 

—5 OF &q"/a? + yo2/b® + 22/c?. 
0 

These are then expressible by finite series in Lamé functions. But 
22.2 

an a De es ..., can only be expressed by infinite series 
pv pv 

of this form. 
Thus even the terms of the second order in Mr Jeans’ form for 

A/po2 cannot be put down exactly from Darwin’s results without 
taking account of the whole aggregate of terms in Darwin’s series; 
and the same for terms of higher order. 

amination, prove not divisible by 
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§ 5. The conclusion so reached is in accordance with a note ap- 
pearing in the Compt. Rendus (cLxx, 5 Jan. 1920, 38; “Calculs de 
G. H. Darwin sur la stabilité de la figure piriforme,” Note de 
M. Pierre Humbert) long after the above was written, to which 
my attention was called by Mr F. P. White of St John’s College. 
The author has calculated Darwin’s series to a further approxima- 
tion, and finds a result not strengthening Darwin’s prevision. 

But the conclusion is made almost certain by a comparison 
with Liapounofi’s paper, “Sur un probléme de T’chebychef,” St 
Pétersbourg Mémovres, xvi. For the statements there given refér- 
ence 1s made to another memoir, of which the first, the theoretical, 
part, appears not to be obtainable in England; indeed, were it 
otherwise, there might be little justification for the preceding sum- 
mary remarks, save perhaps on account of the total difference of 
method, in view of the rigour with which Liapounoft’s results in 
these problems are developed. As was pointed out to me by Mr 
S. R. U. Savoor, of Trinity College, Liapounoff makes the remark 
(loc. cit., p. 27) that the terms of various orders in his development 
of what is here called A, though presenting themselves in the first 
place as infinite series, can be summed, and then take the form 
above remarked (§ 4) as belonging to the expansion which can be 
deduced from Mr Jeans’ work. 

Liapounoff however also remarks (loc. cit., p. 30) that the in- 
stability of the pear follows, when the ellipsoids have been ex- 
amined, from the sign of one term only, which, in a footnote, he 
identifies with that above denoted by 1N—which he states he has 
expressed in finite terms as an algebraic function of the axes of the 
ellipsoid ; and gives further, also without proof, a general expression 
for the increase of angular momentum in passing from the ellipsoid 
to the pear, with the remark that the (positive) sign of this also 
follows from the sign of N*. (See Péters. Mém. xxu, 1908, 126-131.) 

* The following references to Liapounoff’s papers may be useful to the reader: 
(1) 1884, “Sur la stabilité des figures ellipsoidales,’’ Toulouse Annales, v1, 1904 
(translated from the Russian); (2) 1903, ‘‘Recherches dans la théorie de la figure...,” 
St Pétersbourg Mémoires, xv; (3) 1904, “Sur léquation de Clairaut,” ibid. XV; 
(4) 1905, “Sur un probléme de Tchebychef,” ibid. xv; (5) 1906, Sur les jigures 
d'équilibre peu différentes des ellipsoides, Part I—published separately, unobtain- able in England; (6) 1908, “‘Probléme de minimum...,” Sé Pétersbourg Mémoires, 
xxi; cf. Toulouse Annales, rx, ‘Probleme général de la Stabilité du mouvement”; (7) 1909, second part of the memoir (5); (8) 1912, third part of the same. The second and third parts are in the British Museum (as was first discovered for me by Mr 
F. P. White); (9) 1916, ‘‘Sur les équations qui appartiennent aux surfaces des figures d’équilibre dérivées des ellipsoides d’un liquide homogéne en rotation”: and “Nouvelles considérations relatives & la théorie des figures d’équilibre dérivées des ellipsoides dans le cas d’un liquide homogéne,” St Pétersbourg Bulletin, 1916. These last two references I take from an article by L. Lichtenstein, “‘Gleichge- wichtsfiguren rotierender Fliissigkeiten,’ Math. Zeitschrift, vit, Berlin, 1920, 132. The same writer also gives (ibid. 1, 1918, 232) reference to a fourth part of the memoir (8), under date 1914, and to a memoir, Ann. del’ Ec. Norm. xxvi, 1909, 473. Mr§. R. U. Savoor has made a detailed application of the method of Liapounoft to the case of the rotating cylinders, of which it is hoped that a summary may be published in the Trans. Camb. Phil. Soc. ~ 
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Sur le principe de Phragmén-Lindeléf. Par Marcen Rtxsz. 
(Extrait d’une lettre adressée 4 M. G. H. Hardy.) 

[Received 29 July 1920.] 

1. La lecture attentive de votre travail receemment paru dans 
les Acta Mathematica* et de ceux de MM. Phragmén et Lindel6oft, 
P. Persson}, F’. Carlson 4], etc., me fait croire que le théoréme suivant 
n’a jamais été observé. 

Si la fonction g (z) holomorphe dans le demi-plan R (z) 20 (sauf 
peut-éire a Vinfinr) y satisfait a Pinégalité 

(1) | 9 (2) | < Ce" (r= |2]) 
et sur Vaxe vmaginaire a celle-ci 

(2) | 9 (2) | < Ce-*, 
C1, Cy, k et 1 désignant des constantes positives, cette fonction s’an- 
nulera identiquement. 

Ce théoréme rend la premiére démonstration dans votre travail 
beaucoup plus simple quelle ne était. Vous le verrez dans un 
instant. Mais démontrons d’abord le théoréme lui-méme. I] 
découlera immédiatement des principes généraux de MM. Phrag- 
mén et Lindel6f. 

Formons la fonction 

ib (2) = erg (2), 
w désignant un nombre positif. Désignons par C le plus grand des 
nombres C, et C,. Sur l’axe réel positif on aura d’aprés (1) 

|) | < Celeos 
et sur axe imaginaire 

| x (z) | < Ce-*r. 

I] s’ensuit d’aprés un théoréme connu de Phragmén-Lindeléf ||, 

* G. H. Hardy, “On two theorems of F. Carlson and 8. Wigert,” Acta Mathe- 
matica, t. 42, 1920, pp. 327-339. 

; E. Phragmén et Ernst Lindeléf, “Sur une extension d’un principe classique 
de Analyse et sur quelques propriétés des fonctions monogénes dans le voisinage 
d’un point singulier,” Acta Mathematica, t. 31, 1908, pp. 381-406. : 

{ Paul Persson, “Recherches sur une classe de fonctions entiéres,” Thése pour 
le doctorat, Upsal, 1908. 

4] F. Carlson, “Sur une classe de séries de Taylor,” Thése pour le doctorat, 
Upsal, 1914. 

|| Loc. cit., pp. 393-394; an explicit proof of the particular result required is 
given by H. Cramer, “Sur une classe de séries de Dirichlet,” Thése pour le doctorat 
(Stockholm), Upsal, 1917, pp. 34-36. 
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ci . 5 5 A TT 7 

¢ désignant un nombre arbitraire situé entre — 5 et 3° 
ol 

| bs (z) | < Cel-*|sin
é| + (+ cos ¢)r 

On aura donc, 6 étant choisi assez petit, pour @ = + E = 5), 

(3) ib (2) < CG, 
inégalité valable aussi sur l’axe imaginaire. En appliquant encore 
une iol: le théoréme en question de Phragmén- Lindelof aux angles 

7 aan 7 7 

Ga Ga eG = 
tous moindres que 7, on voit que (3) subsiste dans tout le demi- 
plan. C’est a dire, dans tout ce demi-plan, 

(4) hae? |< C 

En tout point intérieur au demi-plan, on a |e?|>1. On 
conclut donc de (4), en faisant tendre w vers Vinfini, 

g (2) = 0. 

2. Appliquons ce résultat a démontrer le théoréme de M. Carl- 

son. 
Si f (2) =f (re) est holomorphe dans langle —a50@a, ow 

q= oe et y satisfait a Vinégalhité 

ny <sedies (fo < a); 

et i (2) =O (7 ON ae 

alors f (z) ’annule identiquement. 
Ff (2) 
Sin 772 

numéro précédent, par suite elle est identiquement nulle. Quant a 
la condition (2), cela est évident. En ce qui concerne (1), on 
trouve les éléments d’une démonstration rigoureuse dans votre 
travail ci-mentionné (p. 329). (En réalité, votre démonstration en 
question du théoréme de M. Carlson présente une petite lacune. 
Pour pouvoir appliquer le théoréme de Phragmén-Lindelof, vous 
auriez di démontrer que pour tout angle -a+6505a—6, il 
y a une majorante (une certaine fonction exponentielle) qui dépend 
seulement de vr. Vous démontrez-seulement que + 1 (@)<& sur 
chaque vecteur issu de l’origine, sans vous préoccuper de Tuni- 
formité.) 

Voila une autre application de ce théoreme. M. Cramér a 
déduit dun beau théoréme qui lui est dt, le corollaire qui suit*. 

En effet, la fonction g (z) = satisfait aux hypothéses du 

* H. Cramér, ““Un théoreme sur les séries de Dirichlet et son application,” 
Arkw for Matematik, Astronomi och Fysik, t. 13, No. 22, 1918, pp. 1-14 (p. 12). 
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Si le module de la fonction entiére ¢ (z) finit par rester inférieur 
a eFl#i, ou k>O0, il y a sur chaque vecteur issu de Vorigine une 
infinité de points aux modules indéfiniment croissants pour lesquels 

I$) [> eerie 
et cela a lieu pour tout « > 0. 

L’application du théoréme démontré au début a la fonction 
g (2) =¢(z)¢(—2z) donne de suite le résultat de M. Cramér. 
D’ailleurs il est facile de déduire ce résultat directement du 
théoréme fondamental de Phragmén-Lindelof que nous venons 
@appliquer. 

3. Un corollaire immédiat de notre théoréme est encore le 
suivant. 

Une fonction g (z) qui est holomorphe dans un angle d étendue 
=7 et y satisfart a Pinégalité 

ney =< Cext (0) 

sannule identiquement. 
Par une substitution de variable on en obtient immédiatement: 
Soit D (x) une fonction analytique de la variable complexe x = re’? 

qui gout des propriétés suivantes: 
1°. Elle est holomorphe a Vintérieur et sur le contour @un domaine 

T renfermant Tangle — = =¢—¢)3 = sauf peut-étre certaines 

parties de cet angle situées a Vintérieur dun cercle autour de Vorigine. 
2°. A VPintérieur et par suite au contour de ce domaine, on a 

(5) | ® (a) | < Ce-*", 
C et k étant des constantes positives. 

Dans ces conditions, on a identiquement ® (x) = 0. 
Le meilleur théoréme de ce genre fut jusquw ici, a ce qu'il semble, 

un théoréme de M. Paul Persson démontré dans sa thése (/.c. p. 8) 
et cité in extenso dans la thése de M. Carlson (I.c. p. 36). Chez 
M. Persson, la condition 

['@ @)|<e°", lim (7) = a 

figure au lieu de (5). 
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Note by G. H. Harpy. 

I know from my own experience that it is sometimes a little 
difficult to pick out from Phragmén and Lindelof’s classical memoir 
the precise proposition of which one may have need; and Dr 
Cramér’s dissertation, referred to by Dr Riesz, is not easily acces- 
sible to English readers. It may therefore be worth while to give 
an explicit statement and proof of the particular theorems used 
by Dr Riesz. 

1. Suppose that T is an angle of magnitude less than 7, whose 
vertex is at the origin, that C, C,, and K are constants, and that 

(1) If@|se 
on the boundary of T, 

2) [Ff (2) | = Cye* 
throughout T. Then (1) holds throughout T. 

We may plainly suppose, without loss of generality, that the 
boundaries of 7 are 6 = — a and ¢=a, where 0 <a < 4m. Let 

6 be positive, l<k< ae and 

go\ae 
so that 4 ; 

ly (2) | a ened cos ke — an cos ka Bul 

throughout 7. Finally, let 

f (2) 9 (2) = h (2). 
Since | g (z) | = 1, we have | h (z) |< C on the boundary of T. 

Also, since & > | and cos ka > 0, 
| h (z) | < OR aes ka 

tends uniformly to zero when z tends to infinity m 7. Hence 
|z(z)|S—C if —a=¢Sa,r—R, and R is sufficiently large; 
and therefore at all points of the boundary of the region T (R) 
defined by the inequalities just written; and therefore throughout 
ul) (OER) 

As R 1s arbitrarily large: 

;2@ |= |e7 f(z) |/2¢ 
throughout 7; and therefore, making 5 tend to zero, | f(z) | =C 
throughout 7. 

2. Suppose that T is the angle 6,= ¢ = dy, where do— $1 < 7; 
that 

(3) | f (re*®) | S Cea, 

(4) Ge) || = Cae”, 
and that (2) is satisfied throughout T. Then 
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(5) [Ff (rei) | < Cerorr 
where h(¢) is the function A cos ¢+B sind which assumes the 
values a, and a, for 6 = , and 6 = do. 

We may plainly suppose, without loss of generality, that 
— $1 = $2 = , where 0 < & < da. 

Let Ge) en car ee 
so that lg (2) | =e*@)r 

and F (2) 9 (2) = h (2). 
Plainly 4h (2) satisfies a condition of the type (2); and baie) fae 
for = 4, and for d= 45. Hence | h(z)|<C throughout 7, 
which proves the theorem. 

It seems worth while also to fill up explicitly the “ petite lacune”’ 
in my proof in the Acta Mathematica signalised by Dr Riesz. It is 
a question simply of proving that 

_ F 
oases 

satisfies an inequality 
(6) | 9 (2) | < Cekr 
for 0 = = 3m. Suppose that A is a positive constant, U the part 
of the positive quadrant above, and V the part below, the line 
y =A. Since | sin zz| is greater than a constant throughout JU, 
(6) is satisfied in U, and we need only consider V. Also 

a eaten ay) 
if Ss ere OEY Le 

z lying in V and the contour of integration being the circle 
|«—z|=1. Hence f’(z) satisfies an inequality 

[f’ (2) | = Cye* 
throughout V. 

Suppose now that z lies in V and that n is the integer nearest 
to 2 (either, if there are two equidistant from z). Then 

fO=fe)—f(m) =| fw) du, 
the path of integration being rectilinear; and so 

If) |= Ml 2—n], 
where M is the maximum of | f’ (wv) | on the path of integration. 
Hence 

ee | re. 7 aati 

which is the inequality required. This is substantially the argument 
IT used before, extended however to complex values of z. 

Bin gy Kn Kr . = Cie = Ce 
Sin 7z 5) 

VOL. XX. PART I. 14 
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A note on the nature of the carriers of the Anode Rays. By 
G. P. Tuomson, M.A., Fellow of Corpus Christi College. 

[Recewed 3 August 1920.] 

The importance of positive rays as an instrument of research 
is now thoroughly established, and the success of the recent in- 
vestigations of Dr Aston on isotopes makes it the more to be 
regretted that so far, with the exception of mercury, no metal has 
with certainty been identified in the photograph of the mass spectra 
of positive rays; and this in spite of a considerable number of 
attempts. In these circumstances the work of Gehreke and 
Reichenheim* on anode rays suggested the possibility that these 
might fill the gap. From a rough measurement of e/m Gehrcke 
and Reichenheim showed that the anode rays probably consist of 
positively charged atoms of metal. They did not however photo- 
eraph the particles and their method of determining e/m made use 
of magnetic deflection only, and so involved the assumption that 
the velocity was constant and known. It was therefore not capable 
of giving more than a rough approximation and could not lead to 
separation of any isotopes which may exist. In the experiments 
described below, which are of a preliminary nature, I have tried 
to improve on their method in these points. 

Anode rays are formed when a mixture of various metallic 
chlorides and iodides with graphite is used as the anode in a dis- 
charge tube under reduced pressure. They are visible as a slightly 
diverging pencil of light starting from the surface of the anode and 
very roughly normal to it. In order to investigate the value of e/m 
for the particles which cause this light I placed in the path of the 
beam, and 2 or 3 cm. from the anode, an insulated aluminium plate 
pierced with a hole in which was fastened the end of a fine tube 
of -3 mm. bore. The parallel beam of rays thus produced was 
analysed by coincident electrostatic and magnetic fields in the 
usual manner for positive raysf, and the deflected particles allowed 
to strike on a photographic plate. With exposures of about 
20 minutes well-marked results have been obtained, the particles 
affecting the photographic plate in the same manner as positive 
rays. 
iene a paste composed of a mixture of KI, LiCl and graphite, 

short parabolic arcs appeared whose magnetic displacements were 

* Verh. d. Phys. Gesell., 8, p. 559; 9, pp. 76, 200, 376; 10, p. 217. 
{ Rays of Positive Electricity, J. J. Thomson, p. 20. 
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in the ratio V7 to V/39, indicating that they were due to Li and K 
respectively. On one plate a faint line appeared corresponding to 
about 140 atomic weight which is probably due to iodine, the 
accuracy being poor for large atomic weights. 

In order to confirm the interpretation of these lines an absolute 
determination of e/m was made from measurements of the electric 
and magnetic forces. Taking e/m for the hydrogen atom as 9571 
the measurements gave an atomic weight for the more deflected 
lines of 6-9, assuming a single charge, thus confirming the theory 
that they are due to single charged atoms of lithium. For accurate 
work a better method-swould be to use the apparatus, with an 
ordinary anode and the aluminium plate as cathode, to give positive 
rays, and use these to calibrate the plate; it may even be possible 
to get both anode and positive rays simultaneously. 

Owing probably to an irregularity in the electric field the lines 
so far obtained are not very sharp, but one plate has been obtained 
where the width of the line due to lithium is no larger than the 
separation due to a difference of a unit in atomic weight. Thereis 
no trace of doubling, and it seems clear that if lithium consists of 
a mixture of isotopes with atomic weights differing by whole 
numbers, only that corresponding to an atomic weight of 7 occurs 
in any considerable quantity. Further experiments are in progress 
with the object of improving the definition and detecting small 
proportions of isotopes if these exist. 
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ANNUAL GENERAL MEETING. 

October 27, 1919. 

In the Comparative Anatomy Lecture Room. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following were elected Officers for the ensuing year: 

President: 

Mr C. T. R. Wilson. 

Vice-Presidents: 

Prot. Marr. 
Prof. Sir W. J. Pope. 
Prof. Sir E. Rutherford. 

Treasurer: 

Prof. Hobson. 

Secretaries: 

Mr Alex. Wood. 
Mr G. H. Hardy. 
Mr H. H. Brindley. 

Other Members of Council: 

Mr F. F. Blackman. 
Prof. Sir J. Larmor. 
Prof. Eddington. 
Dr Marsball. 
Prof. Baker. 
Prot. Newall. 
Dr Fenton. 
Prof. Inglis. 
Prof. Seward. 
Dr Rivers. 
Dr E. H. Griffiths. 
Mr F. A. Potts. 

The following were elected Fellows of the Society: 

A. C. Banerji, B.A., Clare College. 
W. E. H. Berwick, M.A., Clare College. 
B. M. Jones, M.A., Emmanuel College, Professor of Aeronautical 

Engineering. 
K. Prosad, B.A., St John’s College. 
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The following were elected Associates: 

T. A. Browne, Trinity College. 
J. Chadwick, Gonville and Caius College. 
Miss L. V. Craies, Newnham College. 
H. Henderson, Gonville and Caius College. 
F. P. Slater, Gonville and Caius College. 
E. F. Vacin, Trinity College. 

The future policy of the Society, with special reference to the form 
and character of its publications, and the conduct of its meetings, was 
discussed. 

November 10, 1919. 

In the Comparative Anatomy Lecture Room. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following was elected an Associate: 

Donald A. MacAlister, King’s College. 

- The following Communications were made to the Society: 

1. Colourimeter Design. By H. Harrrivee, M.D., King’s College. 

2. A note on photosynthesis and hydrogen ion concentration. By 

J.T. SaunpErs, M.A., Christ’s College. 

3. (1) The effects of some electrolytes upon spermatozoa. 
(2) The effects of ions upon ciliary movement. 

By J. Gray, M.A., King’s College. 
4. Note on fe solitary wasp, Crabro cephalotes. By C. WARBURTON, 

M.A., Christ’s College. 

5. Preliminary note on the life-history of a Proctotrypid (Lygocerus 

sp.) hyperparasite of Aphidius. By Miss M. D. HavianD. (Communi- 

cated by Mr H. H. Brindley.) 

6. The Natural History of Rodriguez, with Exhibits. By H. J. SNELL 

and W. H. Tams. (Communicated by Professor Stanley Gardiner.) 

November 24, 1919. 

In the Cavendish Laboratory. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society: 

J. Line, M.A., Emmanuel College. 
L. F. Newman, M.A., Downing College. 
A. D. Ritchie, M.A., Trinity College. 
J. B. Seth, B.A., Trinity Hall. 
Gear Taylor, M. Ae Trinity College. 
G. P. Thomson, MLA. , Corpus Christi College. 
S. M. Wadham, M.A., Christ’s College. 
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The following were elected Associates: 

Miss M. D. Haviland, Newnham College. 
L. W. G. Malcolm, Christ’s College. 

The following Communications were made to the Society: 

1. (1) Photographs of a Solar Prominence taken during the eclipse 
of 1919 May 29. 

(2) The theory of relativity and recent eclipse observations. 

By Professor Eppineton and EH. T. CortrneHam. 

2. (1) The Hydrodynamical theory of the Lubrication of a Cylin- 
drical Bearing under Variable Load, and of a Pivot Bearing. 

(2) The pressure in a viscous liquid moving through a channel 
with diverging boundaries. 

By W. J. Harrison, M.A., Clare College. 

January 26, 1920. 

In the Comparative Anatomy Lecture Room. 

Pror. Sir ERNEST RUTHERFORD, VICE-PRESIDENT, IN THE CHAIR. 

The following was elected a Fellow of the Society: 

H. A. Milne, B.A., Trinity College. 

The following were elected Associates: 

A. H. Compton. 
T. Kikuchi, St John’s College. 
D. F. Scanlan, Jesus College. 
G. Shearer, Emmanuel College. 

The following Communications were made to the Society: 

1. Gravitation and Light. By Prof. Sir JosrpH Larmor. 

2. Note on Mr Hardy’s extension of a theorem of Mr Pélya. By 
K. Lanpav. (Communicated by Mr G. H. Hardy.) 

3. On a Gaussian series of six elements. By L. J. Rogers. (Com- 
municated by Mr G. H. Hardy.) 

February 9, 1920. 

In the Cavendish Laboratory. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. ' 

The following were elected Fellows of the Society: 

M. D. Bhansali, B.A., St John’s College. 
D. C. Henry, B.A., Trinity College. 
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The following Communications were made to the Society: 

1. The Mass Spectra of the Chemical Elements. By F. W. Aston, 
M.A., Trinity College. 

2. An examination of Searle’s method for determining the viscosity 
of very viscous liquids. By Kurr Moxin. (Communicated by Dr 
G. F. C. Searle.) 

3. Note,on the Diophantine equation + 43+ y3+ 22=0. By 
H. W. Ricumonp, M.A., King’s College. 

4. Mathematical notes: (1) On the stability of rotating liquid ellip- 
soids; (2) on the general theory of the stability of rotating masses of 
liquid; (3) on the stability of periodic motions in general dynamics; 
(4) on the invariance of the equations of electrodynamics in the Maxwell 
and in the Einstein forms; (5) on a property of focal conics and of bi- 
circular quartics; (6) on the Hart circle of a spherical triangle; (7) on 
a proof of the theorem of a double six of lines by projection from 
four dimensions; (8) on a set of transformations of rectangular axes; 
(9) on transformations with an absolute quadric; (10) on the reduction 

of homography to movement in three dimensions. By Professor 
H. F. Baxrr. 

February 23, 1920. 

In the Botany School. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society: 

K. Cunningham, M.A., St John’s College. 
M. C. Vyvyan, B.A., Gonville and Caius College. 

The following Communication was made: 

The Origin of the Vegetation of the Land. By Professor Sewarp. 

Mr Lister exhibited and described a large collection of butterflies. 

Many exhibits of botanical interest were shewn. 

March 8, 1920. 

In the Cavendish Laboratory. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following was elected a Fellow of the Society: 

Terry Thomas, M.A., St John’s College. 

The following Communications were made to the Society: 

1. Further notes on the food plants of the Common Earwig (Forficula 
auricularia). By H. H. Brinpuny, M.A., St John’s College. 
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2. Preliminary note on antennal variation in an aphis (Wyzus ribis, 
Linn.). By Miss Maup D. Havitanp. (Communicated by Mr H. H. 
Brindley.) 

3. Studies on Cellulose Acetate. By Dr Fenton and A. J. Berry, 
M.A., Downing College. 

4. The rotation of a non-spinning gyrostat, and its effect on the 
aeroplane compass. By G. T. Bennerr, M.A., Emmanuel College. 

5. Lagrangian methods for high-speed motion. By C. G. Darwin, 
M.A., Christ’s College. 

6. The effect of a magnetic field on the intensity of spectrum lines. 
By H. P. Waran. (Communicated by Professor Sir Ernest Rutherford.) 

7. Generation of sets of four tetrahedra mutually inscribed and 
circumscribed. By C. V. HanumMaAntva« and Professor H. F. BAKER. 

8. On the term by term integration of an infinite series over an 
infinite range and the inversion of the order of integration in repeated 
infinite integrals. By S. Potuarp, M.A., Trinity College. (Communi- 
cated by Professor G. H. Hardy.) 

9. On rotating liquid cylinders. By 8S. R. U. Savoor, B.A., Trinity 
College. 

May 3, 1920. 

In the Cavendish Laboratory. 

PRoFEssor Sir ERNEst RUTHERFORD, VICE-PRESIDENT, IN THE CHAIR. 

The foliowing were elected Fellows of the Society: 

N. K. Adam, M.A., Trinity College. 
P. A. Buxton, M.A., Trinity College. 
N. M. Shah, B.A., Trinity College. 
F. P. White, M.A., St John’s College. 

The following was elected an Associate: 

K. W. Braid, Fitzwilliam Hall. 

The following Communications were made to the Society: 

1. Notes on the Theory of Vibrations. By W. J. Harrison, M.A., 
Clare College. 

2. On cylical octosection. By W. Burnsrpz, M.A., Pembroke 
College. 

3. (1) A bifilar method of measuring the rigidity of wires. 

(2) An experiment on a piece of common string. 

(3) Experiments with a plane diffraction grating, using conver- 
gent light. 

By Dr G. F. C. Szaruez, Peterhouse. 
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4. Congruences with respect to composite moduli. By Major P. A. 
MacMauon. 

5. Equivalence of different mean values. By ALFRED KIENaST. 
(Communicated by Professor G. H. Hardy.) 

6. Construction of the ninth intersection of two cubic curves passing 
through eight given coplanar points. By Professor H. F. BAKER. 

7. Quintic transformations and singular invariants. By W. E. H. 
Berwick, M.A., Clare College. 

May 17, 1920. 

In the Cavendish Laboratory. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society: 

W. M. H. Greaves, B.A., St John’s College. 
W. M. Smart, M.A., Trinity College. 

The following was elected an Associate: 

T. Shimizu. 

It was announced that the adjudicators for the Hopkins Prize had 
made the following awards: 

For the period 1903-06 to W. Burnside, M.A., F.R.S., of Pembroke 
College, for investigations in Mathematical Science. For the period 
1906-09 to G. H. Bryan, Sc.D., F.R.S., of Peterhouse, for investigations 
in Mathematical Physics, including aerodynamic stability. For the 
period 1909-12 to C. T. R. Wilson, M.A., F.R.S., of Sidney Sussex 
College, for investigations in Physics, including the paths of radioactive 
particles. 

The following Communication was made to the Society: 

The atomic nature of matter in the light of modern physics. By 
F. W. Aston, M.A., Trinity College. With Experiments. 
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PROCEEDINGS 
OF THE 

Cambridge Philosophical Society, 

Lhe Problem of Soaring Flight. By E. H. Hankin, M.A., Se.D., 
late Fellow of St John’s College, Cambridge, Chemical Examiner 
to Government, Agra, India. (Communicated by Mr H. H. 
BRINDLEY.) 

[Read 22 November 1920.] 

With an introduction by 

F. Hanpiey Pace, C.B.E., F.R.Aer.S. 

INTRODUCTION. 

By F. Hanpiey Pages, C.B.E. 

The study of bird flight has always fascinated those who were 
interested in the early development of aviation, and all the original 
attempts at heavier-than-air flight were based on imitation of birds, 
both in constructive and in propelling mechanism. 

Progress from such study was, however, well nigh impossible. 
The bird represents the finished article of millions of years of slow 
development to suit the difficult condition of taking the best 
advantage of the air structure in which it had to fly. Observers 
therefore had not only to study a complicated mechanism to find 
its basic principle of operation, but also to do so in a medium 
whose movements were but imperfectly understood. 

The methods of observation were crude, and the observers not 
trained for the work of exact measurements and recording of the 
results. A great many of the early observers, from Leonardo da 
Vinci down to Weiss and others of the present day, were artists 
accustomed to observe with the trained eye the picture presented 
to their mind by bird flight, and from that they endeavoured to 
reproduce empirically in a mechanical form the design which they 
deemed the most successful in bird flight. 

Directly engineering and scientific thought was directed to the 
study of flight problems the component parts were reduced to 
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simple and elementary forms. Instead of the complicated sup- 
porting plus propelling mechanism of the wing of varying plan form 
and cross section the aeroplane was developed with a wing of simple 
geometrical shape which was used for support only and with a screw 
propelling mechanism quite distinct from its wings. 

Great progress has been made in the design of aircraft based on 
mechanical methods of investigation in wind channels, where the 
air is driven at uniform speed with little or no turbulence against 
the model to be tested. There still remains a vast amount to be 
discovered in the actual air structure in which aircraft fly and in the 
aerodynamical design best suited to fit the conditions discovered. 
Here, without a doubt, lies the value of a careful and considered 
study of soaring flight. In this country, owing to the complicated 
and ever-changing meteorological conditions, research is difficult. 
In continental and particularly tropical climates conditions are 
more stable and investigation easier. In India Dr Hankin has been 
particularly fortunate in having most favourable conditions for 
observation and in bringing to bear on the problem observing 
powers trained to a high degree of accuracy by long years of 
practice. 

The measurements made and the facts discovered relating to 
soaring flight are so extraordinary as to awaken suspicions at once 
as to their accuracy. Were they but chance observations of an 
observer made at odd intervals such criticisms would be just, but 
the careful system of investigation and re-investigation continued 
by Dr Hankin over a long period of years makes his results worthy 
of consideration by all interested in flight phenomena and open up 
an entirely new field for aviation and meteorological research. 

The high soaring speed of 50 miles per hour over the plains of 
India without any discoverable wing movement brings up visions 
of possible motorless flight in tropical climates, where conditions 
of visibility and weather are ideal for this form of transport. To all 
those who are interested in aviation development in India and other 
tropical countries, Dr Hankin’s discoveries must be of the greatest 
interest and his published results well worthy of most careful 
study. 

The results are by no means on all fours with present aircraft 
design. The wing sections of the best soaring birds and of the 
soaring dragon-flies are characterised by ridges projecting on the 
under side of the wing, forming to the eye of the aeroplane designer 
a source of resistance entirely uncalled for. On the other hand, birds 
of more streamline wing cross section, where these ridges are not 
present to anything like the same extent, invariably fly by flapping 
their wings, and have little or no power to soar. Can it be that the 
more crude cross sections fit in with, and thus take advantage more 
readily of, some form of air turbulence or movement and so allow 
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the soaring bird to draw on some at present unknown source of 
energy—kinetic or other—in the air? 

Another observation is of interest. Birds of the smaller size are 
more lightly loaded than the larger birds. Thus the cheel, with a 
span of 51 inches, is loaded ‘5 lb. per sq. ft. as compared with the 
vulture, with a span of 85 inches and loading of 1-5 lbs. per sq. ft. 
Each, however, in similar conditions of soarable air glides at 
approximately the same speed. According to aerodynamical theory, 
the speed of the vulture should be approximately V3 times as great, 
the loading being three times as great—if we neglect bodily 
resistance. Even if this is taken into account, their speeds should 
not be anything like the same. The explanation lies probably in 
“scale effect.” The larger bird is, owing to its larger dimensions, 
able to lift more in proportion to its area, just as the full size 
aeroplane can compared with the model. Here nature, faced with 
the problem of making large birds, has avoided the increased 
percentage of wing weight due to increased span by concurrently 
increasing the lifting power of the wing with increase in area. 

Apart from the study of natural soaring flight its mechanical 
equivalent has aroused interest and a good deal of research has been 

' carried out on the Continent. In Germany, Gustav Lillienthal, 
brother of the famous Otto Lillienthal, has, according to a paper 
published by him in 1917*, designed a wing section of alleged 
similarity to that of a soaring bird, and with a glider of this wing 
cross section a German engineer, Friedrich Harth, claims to have 
flown 500 metres against a wind of 12 metres per second at a height 
of 40 metres. 

Such attempts are, however, premature, and the results un- 
authenticated. Firstly, we want to know whether soaring birds 
can soar—as apparently they can—for indefinite distances, pro- 
vided weather conditions are suitable. Secondly, if such flight is 
as effortless as it appears to be, from what source is the energy 
obtained and how the bird is able to take advantage of it. When 
this is discovered, then will be the time for practical application. 
Its importance for aviation work in tropical climates has already 
been referred to. 

Dr Hankin’s discovery of the soaring flight of dragon-flies and 
flying-fishes and its similarity in speed and other respects to that 
of the soaring bird affords a means of more closely investigating the 
phenomenon of soaring. Observation of birds soaring at 2000 or 
3000 feet is difficult compared with the observation of insect flight 
at a few yards’ distance. The whole subject demands most careful 
investigation and merits the attention of all those interested in the 
scientific development of the world’s latest form of Jocomotion. 

* “Der Einfluss der Flugelform auf die Flugart der Vogel” (Sitzwngsberichte der 
Gesellschaft naturforschender Freunde, Berlin, 1917, No. 4). 
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THE PROBLEM OF SOARING FLIGHT. 

By E. H. Hanxty, M.A., Sc.D. — 

This paper contains a short summary of existing evidence as to 
the nature of soaring flight. 

1. Comparison of soaring flight in birds, dragon-flies and flying-fishes. 

Birds, dragon-flies, and flying-fishes can exhibit two kinds of 
soaring flight—slow and fast—characterised by different wing 
dispositions. 

As a rule, both with birds and flying-fishes (XI)*, slow soaring 
flight is carried out with wings dihedrally-up (7.e. with wing-tips 
at a higher level than the body). In fast soaring flight the wings 
are either flat or occasionally in the case of flying-fishes dihedrally- 
down. In dragon-flies the wings are strongly dihedrally-up in slow 
flight and either flat or less dihedrally-up in fast flight (XII). 

In each of the three classes of soaring animals slow soaring flight 
is dependent, as a rule, on the presence of sunshine and fast flight 
is always dependent on the presence of wind (IV, pp. 52, 98, 251, 
299). 

With birds and flying-fishes lateral instability occurs more often 
late in the afternoon, when the air is becoming unsuited for soaring 
flight, than at other times of the day (IV, p. 294 and XI). A rare 
form of lateral instability in which the oscillations are just too rapid 
to count has been observed in each of the three classes of flying 
animals. 

The speeds attained in soaring flight seem to be remarkably 
similar in the three classes. The slow speed flight is between 5 and 
10 metres per second. The high speed flight has been estimated for 
dragon-flies at above rather than below 15 metres per second (XII). 
For flying-fishes, in strong winds, it may exceed 20 metres per 
second (XI). The air speed of vultures has been measured and 
found to reach a mean speed of 20 metres per second in winds of 
medium strength (X1). 

In view of the above resemblances between the soaring flight 
of birds, flying-fishes and dragon-flies there seems to be no room 
for doubt that we are dealing with the same phenomenon in each 
case. 

2. The regularity of soaring flight. 

A remarkable, though familiar, phenomenon is shown by a flock 
of cranes in soaring flight. The birds may be seen to keep their 
distances from each other with marvellous exactitude and this not’ | 
only when they are gliding in a straight line but also when they are 

* Roman numerals in brackets refer to the appended list of my publications. 
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on a curved course. When watched through a binocular they 
resemble a number of dead birds pinned on a blue wall (IV, pp. 
60 and 61). 

The regularity of soaring flight thus shown conspicuously by 
cranes, and less strikingly by all soaring animals that fly in groups, 
furnishes a clear proof that the energy involved does not come from 
any chance or irregular currents of air. 

Two alternatives appear to be suggested. Hither such regular 
flight is due to undiscovered wing movements or its cause must be 
some condition widely and uniformly distributed in the atmosphere. 

3. The flight of the puttung. 

The puttung is a kite made of paper and bamboo in common use * 
by Indian boys. 

The chief peculiarity of its flight is that, in a suitable wind, it 
flies vertically over its string and when so flying its flight is par- 
ticularly stable. To achieve this result the front limb of the bridle 
that attaches it to the string must be a little shorter than the hind 
limb. 

This mode of flight can only be explained by the supposition 
that this kite takes energy from the air after the manner of the 
soaring bird. 

Its flight resembles that of the soaring bird in that it is more 
hable to show lateral instability late in the afternoon than at other 
times of the day. 

When struck by a gust it may, for a few seconds, fly up wind in 
advance of the vertical. Similarly, birds and dragon-flies soaring 
up wind when struck by a gust often show an increase of speed. 

The structure of this kite is such that when it is exposed to wind 
pressure there must be a ridge on its under surface that lies trans- 
verse to the line of flight. In all the more efficient soaring animals 
ridges transverse to the line of flight are present on the under 
surfaces of the wings (IV, pp. 242 and 341). 

If it is admitted that the flight of this kite is an instance of 
soaring then obviously the idea of undiscovered wing movements 
must be given up and, also, a means is indicated by which the 
phenomena of soaring may be submitted to an experimental 
investigation. 

4. Soaring flight not due to undiscovered wing movements. 

(a) Flying-fishes can check their speed by hanging their hind 
wings downwards. They habitually do so towards the end of a 
flight if it has been carried out at high speed. But in the highly 
soarable monsoon winds they often use this air brake during the 
whole of a flight and, as may be seen, with this brake in action 
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they attain less speed than other fishes near them that are not 

using the adjustment (XI). 
If their flight was due to undiscovered wing movements why 

should they not be able to check it by decreasing these movements? 

(b) Dragon-flies can check speed by hanging down the abdomen 

and hind legs (IX and XII). Those kinds of soaring dragon-flies 

that habitually soar in a group over a restricted area commonly use 
this air brake, when in continued flight, between about 11 a.m. and 
3 p.m., if there is strong sunshine. If small clouds pass over the 
sun the brake is taken out of use to be applied again when the sun 
is clear. This happens even when the clouds are too thin to throw 
a shadow or to cause any appreciable decrease in the intensity of 
the sunshine. After the sun comes out there is a latent period of 
about 23 seconds before the brake is reapplied (XII). These facts 
give a striking proof that, in fine weather, the energy for their flight 
is derived from sunshine and are quite inconsistent with the idea 
that their soaring is due to undiscovered wing movements. 

(c) Among birds the albatross furnishes a proof that soaring 
flight is not due to undiscovered wing movements. Observers are 
agreed that this bird cannot soar in a calm when near sea level (VII). 
If its soaring flight was due to wing movements, why, it may be 
asked, should it be unable to execute these movements in the 
absence of wind? 

5. Soaring flight is not due to the effect of lateral gusts of wind. 

If soaring animals habitually carried their wings inclined so that 
the wing-tips were at a higher level than the body, then it is con- 
ceivable that soaring flight might be due to the effect of lateral 
gusts which, striking the underside of the wings from one side or the 
other, would give a succession of lifting impulses and hence keep 
the bird aloft. 

This idea is negatived by the fact that in high speed flight the 
wings are placed in the flat position. When this is the case lateral 
ousts can have no lifting effect. Flying-fishes sometimes place their 
wings dihedrally-down, 7.e. the wing-tips are at a lower level than 
the bases of the wings. This disposition is probably that used in 
flight at highest speed (XI). If lateral gusts existed and were 
operative their only effect in this case would be to drive the fish 
under water. 

Though wind is favourable to the high speed flight of dragon- 
flies, the clearest proof exists that, in calm air in the early morning, 
when soarability is developing under the influence of sunshine, the 
coming of the lightest draught of wind causes soaring to be replaced 
by flapping (XII). This observation is entirely inconsistent with 
the idea that soaring flight is due to the effect of lateral pulsations. 
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6. Soaring flight 1s not due to the effect of ascending currents. 

(a) Hf isolated clouds are passing over the sky soaring dragon- 
flies are apt to collect in the neighbourhood of a convenient 
ascending current and glide into it whenever the sun is observed. 
They glide out of it and keep out of its range as soon as sunshine 
returns. The behaviour of dragon-flies is such as to suggest that 
ascending currents are in some way inimical to their soaring flight 
(XII). 

(b) Inland birds similarly avoid ascending currents so long as 
the sun is shining during the day time. They use them when the 
sun is obscured and also both in the early morning and late in the 
afternoon when the air is not soarable. Under a cloudy sky in 
disturbed weather some winds are soarable and some are un- 
soarable. In the latter case only, do birds make use of ascending 
currents (IV, pp. 20 and 283). 

7. Convection currents and soarability. 

Ample evidence exists that convection currents in the air caused 
by the heat of the sun, whether at ground level (IV, p. 263) or at 
a height (IV, p. 23) have nothing to do with soarability. 

8. The theory that turbulent motion in the air may be the source of the 
energy of soaring flight. 

In favour of this idea the following facts may be noticed: 
(a) Atmospheric turbulence, in fine weather, decreases to- 

wards sunset. At this time soarability for land birds and dragon- 
flies comes to an end at ground level. But soarability at this level 
may persist after sunset in the presence of stormy winds when 
turbulence must obviously continue (IV, pp. 80, 281 and 375). In 
the case of flying-fishes a loss of soarability has been observed 
shortly after sunset in the absence of appreciable wind (XI). 

(b) The stronger the wind the more turbulence is likely to be 
present. The speeds attaimed by vultures in horizontal soaring flight 
have been measured and found to be greater the stronger the wind. 
In winds of 10 to 20 metres per second the mean air speed of the 
vulture has been found to be about three times the speed the same 
bird reaches in calm after sunset when in flapping flight. As above 
stated, both cheels and dragon-flies often show an increase of speed 
when struck by a gust (IV, pp. 250 and 377, XII). 

9. Difficulties in accepting turbulencies whose effects can be seen as an 
explanation. 

(a) Cheels have been observed catching locusts. Each locust 
flew in a straight line whether it was flapping, as was usually the 
case, or gliding downwards as sometimes occurred. The cheels were 
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in gliding flight and always olided at a faster rate than the locusts. 

This was the case whether they were travelling horizontally or 

eliding upwards at an angle of 10 or more degrees with the horizon. 

Such upward gliding was often a continuation of a horizontal 

course. It was not due to any momentum obtained by a preceding 

glide in a downward direction (X). 
How, it may be asked, could turbulent motion be present of 

sufficient force to propel the cheels and yet to have no visible effect 
on the course of the locusts? If, as is the fact, in virtue of its larger 
size, the cheel is a more efficient flying machine than the locust, one 
would expect the latter to be the more readily deflected or influenced 
by turbulence. Had dragon-flies been present, animals smaller than 
locusts, there is no doubt that they would have been seen flying 
faster than the latter. 

(b) A dragon-fly whose flight is mostly by flapping (Rhyothemis 
variegata) is common near Calcutta. A soaring dragon-fly may 
sometimes be seen gliding to and fro in a group of these flapping 
dragon-flies. Its speed is distinctly faster than that of the latter 
(IV, p.388). What form of pre-existing air movement can be imagined 
that propels the soaring dragon-fly and yet has no effect on the 
flapping dragon-fly though the latter is of lighter weight and 
loading? 

(c) Cheels have been seen soaring in air containing small 
masses of discrete cloud material which were so numerous that the 
movement of any one cubic foot of air relatively to that of adjacent 
cubic feet could be seen if it existed. No such relative movement 
was visible. It is difficult to see how such an observation is con- 
sistent with the idea that turbulent movement is the cause of 
soaring flight (IV, p. 104). 

For soaring flight to be possible under such conditions a strong 
glare from the sun shining through cloud is necessary. Glare due 
to light reflected from a cloud seems unable to furnish the energy 
necessary for soaring flight (IV, pp. 102 and 105, II, p. 24). 

(dq) Vultures have been seen gliding in air that was so full of 
aerial seeds that it looked like a snowstorm. These floating seeds 
were in slow equable movement that showed no turbulent motion 
such as one might expect to be necessary to propel a bird weighing 
ten or twelve pounds (IV, p. 102). 

(e) Small feathers have often been seen floating in the air in 
the midst of soaring birds. These feathers in their course showed only 
the smallest deviations from a straight line. Sometimes a slow 
partial rotation of a feather may be seen but any evidence of 
energetic turbulent movement is conspicuously absent (IV, p. 57). 

On one occasion a floating feather was seen to pass directly 
under the wing of a cheel. It was instantly shot out sideways to a 
distance of several metres from the bird, thus yielding evidence of 
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active air movement which, so far as is yet known, must have been 
the effect rather than the cause of the bird’s progress. 

10. Conclusions. 

This brief summary of the facts observed by me during the last 
ten years amply supports the view that soaring flight is inexplicable 
in the light of existing knowledge. 

In the case of soaring flight at slow speed a proof exists that 
the energy involved is derived from the sun’s rays. But the mode 
by which it becomes available to the soaring animal is, as yet, a 
complete mystery. Direct observation having failed to point the 
way to a solution, it is to be hoped that the subject will be attacked 
with the aid of an experimental investigation. It is only in this way 
that an explanation of the problem is likely to be attained. 
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Preliminary Note on the Superior Vena Cava of the Cat. By 
W. F. Lancuester, M.A., King’s College, and A. G. THACKER. 

| Read 22 November, 1920.] 

The present series of observations arose out of the more or less 
accidental discovery of a discrepancy between the factors of the 
Superior Vena Cava in a cat that we were dissecting and the 
description of these veins given in St George Mivart’s well-known 
text-book on the Cat. It will be remembered that in the cat the 
two innominate veins (or, as they are otherwise called, the brachio- 
cephalic veins) are formed by the union, on either side, of the 
External Jugulars and Subclavians, the two Innominates then 
uniting with each other slightly to the right of the trachea to form 
the single Superior Vena Cava. The right Innominate is of course 
the anterior portion of the surviving Superior Vena Cava. Now, 
according to Mivart’s description, the Internal Jugular (of either 
side) runs into the corresponding Innominate. In our first cat we 
found on the contrary that the Internal Jugular ran into the 
External Jugular, or in other words, that the vein which unites 
with the Subclavian is not really an External Jugular but a Com- 
mon Jugular. There are several American text-books on the cat, 
and we found that they agreed with our own first observations, 
but none of them refer to the different description given by 
Mivart, neither do any of them mention another vein, which does 
in fact usually joi the Innominate (on one side only) at the point 
Mivart indicates for the Internal Jugular and which is usually 
much more conspicuous in dissection than the Internal Jugular 
itself. This is the vein coming from the thyroid glands, which, 
though it is of course a paired structure in the anterior, is usually 
single in the posterior part of its course. We decided to clear up 
this small point regarding the position of the Internal Jugular. 
The American text-books are correct. Out of 30 cats dissected, in 
29 the Internal Jugular entered the External Jugular before the 
union of the latter with the Subclavian. In one small kitten the 
three veins—the Subclavian, the External Jugular, and the Internal 
Jugular—appeared to meet one another at the same point. Our 
observations show, therefore, that there is normally a Common 
Jugular in the cat, and this vein is often of considerable length. 
It is often longer, sometimes much longer, than the corresponding 
Innominate. The Thyroidean, as stated, usually falls into one or 
other of the Innominates; but it sometimes falls into the Common 
Jugular or even into the Internal Jugular. In two cases the 
Thyroideans were separate throughout their course. 
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Whilst investigating this point we began another series of 
observations on the Superior Vena Cava itself, which will perhaps 
be of more general interest than the point of anatomical detail 
just described. ‘This work is still proceeding, but the results already 
obtained are perhaps of sufficient interest to justify a brief summary 
of them. 

Of the large changes in the circulatory system by far the most 
recent is that from the condition of two Superior Venae Cavae to 
that of one Superior Vena Cava, and the latter condition has ap- 
parently been evolved independently in more than one order of 

_ the Mammalia. The nature of the variation in the single Vena Cava 
would therefore appear to have considerable interest. Cases of 
two Superior Venae Cavae have, we believe, been recorded for the 
human subject, and at least one such case is recorded for the dog. 

_ The Superior Vena Cava of the cat is not only large but long, being 
normally, as we shall see in a minute, almost half as long as the 
trachea. It is normally about four times as long as the Innominate 
Veins, which are, therefore, very short vessels running almost at 
right angles to it. We decided to measure the variation in the 
length of the Vena Cava, taking as our standard the length of the 
trachea from the posterior edge of the cricoid cartilage to its 
bifurcation into the two main bronchi. The trachea proved to bear 
a fairly constant relation to the total length of the animal, exclu- 
sive of the tail, but we checked our standard by making other 
measurements. The length of the trachea varied from 21% of 
the total length to 26-7%. To summarise the results, we found it 
necessary to exclude the kittens from the scheme as they showed 
in many respects very anomalous relations between the sizes of 
their different organs. This left us with only twenty-one specimens, 
all these being over 40 cms. in length. Taking the length of the 
trachea as 100, the extreme limits of variation in the length of the 
Vena Cava were 19 and 47-9. But the majority of the cats are by 
no means massed about the mean between these extremes. On the 
contrary, the great majority, 16 out of 21, are massed close to the 
upper limit. These 16 varied from 38 to 47-9. This is obviously the 
normal type and in it the Vena Cava is approximately four times 
the mean length of the Innominates. And it may be said that in 
this type the blood coming from the fore-limbs and head runs 
into a single channel at the earliest possible moment. There was 
one case in which the Vena Cava sank to just under 35%, but 
which, nevertheless, probably belongs, we think, to the normal 
category; because this was the cat which had the longest trachea 
(26°7 °%), and if the Vena Cava be judged either by the total length 
of the animal or by the Innominates, it comes up to the normal 
length. Then there are three other cases which varied from 29 % 
to 33 %,. These are very possibly a different type, but the numbers 
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are at present too small for us to speak with confidence on this 
point. In this second type the Vena Cava was approximately 
twice the length of the Innominates. 

Finally, we had one animal which was clearly in quite a different 
class. In this specimen the Vena Cava was only 19 % the length 
of the trachea and the two Innominates were themselves swollen 
almost to the proportions of Venae Cavae. The mean length of the 
Innominates was, in fact, slightly greater than that of the Vena 
Cava. It is owing to the existence of this specimen that, notwith- 
standing the small total number, we think the curve of variation 
cannot be that of normal continuous variation. In view of the 
evolution of the single Vena Cava we think that even these pre- 
liminary results may be of some interest and, at present, they 
would appear to be congruous with a discontinuous method of 
evolution of the single Vena Cava condition. 
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A Note on Vital Staining. By F. A. Ports, M.A., Trinity Hall. 

[Read 22 November, 1920.] 

Great confusion exists as to the phenomena which are classed 
under the term ‘vital staining’ but it is established that certain 
stains can penetrate the living cell and enter into combination with 
bodies in the cell without apparently affecting the normal course 
of cell life. These bodies are principally granules of various kinds 
and some of them are undoubtedly concerned with the process of 
secretion. How far they are actually part of the living protoplasm 
is a point at issue. Very little work has been done, in the Metazoa 
at least, on the further history of stained granules of this kind, 
and it seems to offer a promising field for students of vital pro- 
cesses. Exceedingly interesting in this connection are the observa- 
tions of Oxner* on Nemertines, the mucus cells of which contain 
numerous granules staining with neutral red and methylene blue 
but produce colourless mucus. The earlier work of Apathyy had 
brought to light similar effects and is more satisfactory in that the 
author states that he has seen in the mucus cells of Hirudinea 
granules stained with methylene blue actually forming blue mucus. 
It is not obvious that Oxner had definitely traced the genesis of 
his colourless mucus from stained granules. 

The Nematoda are a group which offers wonderful facilities for 
researches of this kind, for the smaller members of the phylum are 
of an almost perfect transparency, are exceedingly hardy under 
experimental conditions, and contain many kinds of granules which 
take up vital stains. Cobbt has already indicated this extraordi- 
nary suitability of the free-living forms in particular and appealed 
to scientific workers to give their attention to these and other 
related problems. I wish in this paper to briefly summarise some 
observations made on a species of Diplogaster which was found in 
garden soil in Cambridge during 1919. 

Neutral red was found to be by far the most effective stain. In 
fact no others of those used showed up the granules which I go on 
to describe here. The solutions employed were very concentrated 
especially if compared with the exceedingly dilute ones which give 
the best result for freshwater Crustacea (Fischel) and marine 
organisms. A solution made up more than ten years ago of neutral 
red in distilled water was especially good, its staining properties 
had evidently improved with age and it was almost non-toxic. 

* Oxner, Bull. de l Institut. Oceanograph, Monaco, 1908. 
+ Apathy, Zeitschr. wiss. Mikr., Bd. 9, 1892. Cf. also Hardy, Journ. Physiol.,. 

vol. x1, 1892. 
t Cobb, Natural Science, vol. 46, 1917, p. 167. 
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The nematode is surrounded by an elastic cuticle which is con- 
tinued into the gut at the mouth and anus. Anteriorly it lines the 
buccal cavity and oesophagus and posteriorly the short rectum. 
When the animal moults this lining is detached with the external 
cuticle and retains its shape after detachment. The midgut or 
intestine consists of a single layer of cells which according to some 
authorities (Cambridge Natural History, Vol. 11. p. 131) is “coated 
internally and externally by a layer of cuticle.’ In my experience, 
however, of free-living forms the cells of the midgut do not possess 
a firm and definite cuticle like that of the oesophagus and rectum 
but the cell membrane is thin and without any apparent structure. 

The frequent pulsation of the second oesophageal bulb is the 
means by which the liquid culture medium is pumped into the 
gut of the nematode. Hence, when the animal is put into a solution 
of stain this rapidly penetrates into the cavity of the oesophagus 
and the anterior part. of the midgut. It is some time, however, 
before the whole lumen of the gut is filled with the stain. But 
none of the neutral red ever penetrates through the external cuticle. 
The cuticle of the buccal cavity and oesophagus is apparently 
porous enough to allow the penetration of a certain amount, but 
the greater part passes through the cell membranes of the mid- 
gut. When a nematode has been in stain for about six hours it 
presents a remarkable appearance, the gut being stained pink or 
purple in its various parts while the remaining tissues are still per- 
fectly transparent. The stain is taken up by the various scattered 
granules of the gut-cells and when their capacity for stain is ex- 
hausted, which does not occur till the experiment has lasted about 
twelve hours, the neutral red begins to pass through the external 
membrane of the gut and irregular deposits appear in the genital 
organs and the lateral fields of the hypodermis. Lastly, the muscle 

fibres take up the stain, showing a transverse banding of the 
individual fibres. It does not appear that the slow penetration is 
due to the resistance of the external membrane of the gut, but 
merely to the avidity with which the gut granules take up the stain. 

In the midgut cells of Daplogaster these granules fall into two 
categories: (1) brownish highly refractive granules of various sizes, 
resistant to most reagents and scattered irregularly through the 
cell. Their composition is unknown, but they take up a good deal 
of stain. It is not proposed to deal with them in the present paper. 
(2) Smaller secretory granules of uniform size forming a peripheral 
zone round the lumen of the gut, normally colourless, but purple 
with neutral red. They are especially thickly developed in the first 
four cells between which the gut cavity is enlarged and often 
occupied by a bolus of living or dead bacteria. 

There are, however, individuals which do not show the granular 
zone, but instead the gut-lumen appears to be lined with a structure- 
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less highly refractive layer which stains a brownish-red. Some 
Diplogasters show the granules anteriorly in the gut and the struc- 
tureless layer posteriorly, but never both together. The explanation 
of this distribution is given by observing that the granules break 
down and form the substance of the structureless layer. This is a 
change which can be watched, beginning posteriorly and working 
slowly forward until the whole of the midgut is lined by the 
substance. 

The structureless layer is not a firm cuticle as is shown by the 
fact that when a stained Diplogaster is compressed under a cover- 

Diagrammatic figure of Diplogaster 
sp. to show staining of midgut with 
neutral red after about six hours. In 
the specimen figured the individual is 
in an intermediate state, the granules 
being well developed anteriorly but 
have broken down posteriorly to form 
the secretion. The cell boundaries and 
nuclei of the midgut are omitted. 

f. oesophagus. 
g. granules surrounding lumen of 

midgut. 
s. secretion formed by breaking 

down of these. 
m. ridgut with larger resistant 

granules. 
0. Ovary. 

slip to such an extent that the contents of the body are squeezed 
out through the anus, as the gut lining passes through the narrow 
aperture it changes its form and flows like a plastic material. 
Moreover the lining of the midgut does not appear as a definite 
detached layer in moulting or after the death and disintegration 
of the anrmal, as is the case in the cuticle of the oesophagus and 
rectum. 4 

That the granules and the substance they produce are not arti- 
facts or products of degeneration is shown by the fact that they 
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are visible in unstained nematodes, taken fresh from cultures where 
they were growing under the most favourable conditions. Neutral 
red in this case only serves to differentiate pre-existing structures 
which are otherwise very difficult to make out. 

The function of the layer is very doubtful. It might be supposed 
that it is digestive and the great development of the granules in 
the anterior part of the midgut where the lumen is enlarged and 
often contains an accumulation of bacteria and organic fragments 
would seem to support this view. But living bacteria exist embedded 
in or attached to the lining and appear to grow and divide freely 
there as in a culture medium. From this observation it seems 
possible that a symbiotic relationship exists between the bacteria 
and the nematode which is in some way furthered by the secretion 
of a soft lining to the gut. 

While the granular phase is often seen passing into the plastic 
phase I have not succeeded in observing a natural evacuation of 
this lming preparatory to the formation of fresh granules in the 
gut-cells. I hope, however, that further study will reveal the rela- 
tion of this phenomenon to the life of the nematode. To this end 
it will be necessary to find out whether it is a regularly, or at least 
frequently, repeated event. 
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Preliminary note on a Cynipid hyperparasite of Aphides. By 
Maup D. Havinanp, Fellow of Newnham College. (Communicated 
by Mr H. H. Brinp.ey.) 

[Read 22 November 1920.] 

Aphides are liable to parasitisation by certain Braconidae of 
the sub-family Aphididae. The larva develops in the haemocoele 
of the host, which dies just before the metamorphosis of the para- 
site, and the latter lines the empty skin with silk and pupates 
within it. Throughout its larval life the Aphidius is in its turn 
hable to parasitisation by certain Chalcids, Cynipids, and Procto- 
trypids, which are thus hyperparasites of the aphid. I described 
the development of one of these hyperparasites, a Proctotrypid, 
Lygocerus cameroni, Kieff., in a paper read before the Society last 
February. The following is a summary of some observations made 
on the development of certain Cynipid endo-hyperparasites of the 
genus Charips, formerly known as Allotria. The aphid used in the 
breeding experiments was Macrosiphum urticae, Kalt. from the 
nettle, and the primary, or host, parasite was Aphidius ervi, Hal. 

These Cynipids have long been known to be hyperparasites, but 
at first I could not induce them to oviposit in captivity. The cause 
of this failure was that the material offered them was in too ad- 
vanced a stage; for, unlike most of the hyperparasites of this 
group, which do not oviposit until the aphid is dead and the 
primary parasite is in metamorphosis, these Cynipidae seek out an 
Aphidius preferably in the third, or early in the fourth, instar, 
though a second instar larva may also be chosen. At this time 
the parasite is lying in the host’s body cavity, and the aphis feeds 
as usual. Until twelve hours or so before its death there is no 
external sign that it contains a parasite, and yet the Cynipid un- 
erringly recognises the presence of the latter and ignores unpara- 
sitised aphides when they are offered to it. A necessary condition 
for oviposition appears to be that the aphid host should be alive, 
and the Aphidius be still bathed in its body fluids. Larvae which 
had emptied the Aphid’s skin of its contents, and had already 
begun to spin the cocoon, were never selected. 

In captivity, ovipositions were sometimes, but not always, par- 
thenogenetic. The female Charips ran among the aphides, tapping 
them excitedly with her antennae. When a victim was chosen, 
she leaped upon its back, facing the head, and clung there in spite 
of its struggles. Sometimes she was thrown off, but in such cases 
always returned to the attack, until the aphid became passive from 
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exhaustion. The oviposition took from three to six minutes to com- 
plete, which is not surprising when it is remembered that the ovi- 
positor must be thrust through the chitin and body wall of the 
aphid before probing for the Aphidius. Even then the organ 
must possess an exquisite sense of touch, for the gut of the host 
larva is so distended with food that the haemocoele is correspond- 
ingly reduced; and if the ovipositor were to be driven in a fraction 
too far the egg might be deposited in the gut cavity, and be lost 
at evacuation of the meconium. 

The egg is oval, with a pedicel or stalk at one end and a smooth 
chorion. As development proceeds it becomes more spherical and 
the stalk disappears. It hatches about two to three days after 
oviposition. As in certain other internal Hymenoptera Parasitica, a 
‘pseudo-serosa,’ or envelope of large deeply staining cells, is 
developed round the embryo, and presumably fulfils a trophic 
function. The remains of this embryonic membrane may be found 
in the host when the larva has ruptured and emerged from it. 

The newly hatched larva is a remarkable form, armoured with 
dark segmental plates of chitin, which render it easily visible 
through the tissues of the host. There are a distinct head and 
thirteen body segments, the last terminating in a long tail. The 
mouth is produced into a proboscis, within which lie two simple 
mandibles. The head is furnished with four pairs of chitinous 
nodules, three on the ventral and one on the dorsal side. Hach 
bears a transparent spot at the summit, possibly sensory in func- 
tion. The anus, which is dorsal to the cauda, is a large conspicuous 
structure surrounded by a chitinous ring, and striae of chitin may 
be seen radiating into the lumen. At this stage, as in other 
Hymenoptera, there is no passage from the mid- to the hind-gut, 
but the bulb-shaped cavity of the latter and the wide anus, suggest 
that in this form it may serve some especial function in early larval 
life. The duration of this stage is variable. In one observed case, 
the chitin had been cast when the larva hatched, and was left 
behind in the pseudo-serosa. In other instances, it lasted from two 
to four days. Three or four of these larvae may be found in the 
same host, but, so far as is known, only one reaches maturity. In 
ecdysis the chitinous skin either splits down the ventral median 
line or else transversely across the thorax. 

The second stage larva differs from the first chiefly in the 
absence of the chitinous plates. It is transparent, and the gut 
contents tinge it pale yellow. The mouth parts are less produced, 
but the ventral papillae on the head are more conspicuous and the 
first three segments bear ventral processes. 

In the third stage, the tail is greatly reduced, the thoracic 
processes disappear, and the cephalic papillae are hardly visible. 
It was not ascertained whether there was actually a moult between 
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these two stages, or whether the change of form was due merely to 
growth and absorption. In the fourth stage, the tail, appendages, 
and papillae disappear, and the anus is proportionately smaller 
than in the preceding instars. 

All this time, the parasite, with its head orientated towards 
that of the host, lies in the haemocoele of the latter against the 
distended mesenteron, which, under the pressure, becomes much 
constricted. The Aphidius remains apparently healthy and retains 
some power of movement when irritated. It secretes silk as usual; 
but, immediately after the cocoon is woven, its development is in 
some way arrested, for the contents of the gut are never voided 
and metamorphosis does not take place. Death occurs only when 
the Cynipid larva is almost fully fed, and to the last the tissues 
remain fresh and undiscoloured. The Charips, which until then has 
been apneustic, makes its way out through the host’s thorax, and 
its tracheal system becomes functional. Within the next twelve 
hours the hyperparasite devours the remains of the host, and 
prepares for metamorphosis within the cocoon inside the aphid’s 
skin already woven by the Aphidius. 

The full-grown larva is an apodous form with a well-developed 
head and thirteen body segments tapering somewhat posteriorly. 
The skin is soft and smooth, and the gut contents, seen through 
the white fat-body, give it a greenish colour. The buccal armature 
consists of labrum, mandibles, maxillae, and labium. The labrum 
is crescentic and bears eight small papillae. The mandibles are 
strongly chitinised, notched, and connected by powerful muscles 
to the endoskeleton of the head. The maxillae each bears a raised 
disc on which are three minute papillae, one of which terminates 
in a short seta. The labium is large and oval, and is furnished with 
two pairs of papillae. The salivary duct, which is conspicuously 
dilated immediately below its orifice, opens on the floor of the 
mouth under the U-shaped hypopharynx. There are six pairs of 
open spiracles in the full-grown larva, namely, between the first 
and second segments, and on segments 3, 4, 5, 7 and 9. Two larvae, 
out of the considerable number examined, had, in addition, a pair 
of spiracles on segment 8. 

Pupation lasts from three to four weeks, and the total period 
of development seems to be from thirty to thirty-five days. The 
imago, when ready to emerge, gnaws a hole in the aphid’s skin and 
creeps out. The adult insects feed on the honey dew of the aphides, 
which is either sipped from the leaves where it has fallen or else 
from the anus of the living insect. 

The economic importance of this hyperparasite is probably not 

great, but to some extent it must be considered injurious, since it 

checks the Aphidius in its destruction of plant-lice. The inter- 

relations of aphides with their parasites and hyperparasites form a 

16—2 
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bionomical complex of considerable intricacy. Thus, this Cynipid 

hyperparasite, equally with its Braconid host, is hable to destruc- 

tion by the Chalcid or Proctotrypid ecto-hyperparasites; and, from 

observations made in the course of this work, the evidence points 
to the conclusion that where the incidence of Chalcid and Procto- 
trypid hyperparasitism is high, few of the Cynipids survive, for 

they are not only dependant upon the occurrence of the host, but 
share its vulnerability to other parasites throughout their larval 
life. I attribute to this the fact that from collections of parasitised 
aphides, made in the field, there were proportionately more Cynipid 
emergences in June than in July. Most of the hyperparasites 
obtained from later collections were external-feeding Chalcids or 
Proctotrypids; and the inference is that the later broods of Cynipids 
suffered from a second parasitisation of their host by other hyper- 
parasites. . 
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A method of testing Triode Vacuum Tubes. By E. V. APPLETON, 
M.A., St John’s College. 

[Read 22 November 1920.] 

The circuit to be described affords a simple and convenient 
method of measuring the slope of the principal voltage-current 
characteristic of a triode vacuum tube. It is now well known that 
the effectiveness of such a tube as a relay or amplifier depends 
primarily on the efficiency with which the magnitude of the thermi- 
onic current can be controlled by means of the grid or intermediary 
electrode; that is to say, we are mainly concerned in practice with 
the rate of variation of anode current with grid voltage, and not 
with the absolute magnitudes of either quantity. The characteristic 
mentioned is determined if sufficient correlated values of the anode 
current J and the grid voltage v are known. To obtain such data 
accurate ammeters and voltmeters are required. Moreover, even 
if these values for the characteristic are known, the accurate deter- 
mination of dI/dv by the ordinary graphical methods takes con- 
siderable time. As the dimensions of the slope of the characteristic 
are those of a conductance it seems preferable to dispense with 
ammeters and voltmeters and determine this quantity directly in 
terms of a standard resistance. 

A circuit designed to determine the mean value of the mutual 
conductance (A//Av) over any range of grid voltage was suggested 
by the writer two years ago*. With this method static currents 
and voltages were used. In developing the circuit for use since 
then a great increase in both accuracy and utility has been found 
to accompany the use of small alternating voltages of acoustic 
frequency. With the sensitive alternating current detectors now 
available it is possible to decrease the limits of the variables in- 
volved so that the value of AZ/Av obtained by this method differs 
inappreciably from the value of dZ/dv obtained from a graphical 
analysis of the complete characteristic. We shall assume that these 
values are identical in the following discussion. 

The circuit used is shown in Fig. 1. An alternating voltage of 
acoustic frequency from the alternator A is applied between the 
grid and the filament of the tube and also across the two non- 
reactive resistances R and 7, the former of which is variable while 
the latter is small and constant. The anode and grid batteries (B, 
and B,) are suitably fixed to give the operating conditions for 

* See J. A. Fleming, The Thermionic Valve and its Development in Radio- 
Telegraphy and Telephony, p. 142. 
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which the conductance is required. To determine the value of dZ/dv 
the resistance F is varied until the potential difference between the 
points C and D is constant. The value of dZ/dv is then given simply 
as 1/R. An amplifying-telephone is connected across the resistance 
r, the constancy of the potential difference between C and D being 
indicated by a note of minimum intensity in the telephone. 

To determine the actual voltage amplification obtainable in 
any particular case (e.g. in a resistance-coupled amplifier such as 
has been suggested for the measurement of small ionization cur- 
rents) a suitable high resistance R, may be included in the anode 
circuit while the test is made. The voltage amplification then avail- 

able is given by R, FR 

Fig, 1. 

Fig. 2 shows some typical results obtained with a hard valve 
(Type R). For comparison the actual v-J characteristic is shown 
in the same figure. 

Proof of Formula. Before the alternator current is switched on 
the potential difference between the ends of the resistance r is seen 

R vate to be J, R = where J, is the stationary value of the thermionic 
anode current. If the alternating voltage applied between the grid 
and filament is v, sin pt the change in the potential difference 
between C and D may be regarded as the algebraic sum of two 
oppositely directed changes. The first is due to the direct effect of 
the applied alternating voltage and is equal to Sara = ; the second 

TL may be regarded as due to the alteration of anode current from I 0 
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ae 
to I, + + % sin pt. For these two oppositely directed effects to 

dv 
be equal in magnitude we have 

rosin pt Rr 5 hina Rr 
age = pa; (lo + F %o8in pt) — Ty ps 

df 
that is areas 

It will be seen that the method is self-compensating so far as 

the effect of the resistance r is concerned so long as the impedance 

of the coil ZL is small compared with R as is usually the case in 

practice. HH, however, it occurs that the impedance of L is large 

compared with the result is still a simple one, the value of dI/dv 

being then given by 1/(R+ 7). It will also be noticed that the 

result is independent of the angular frequency p of the applied 

alternating voltage. Thus a sinusoidal voltage 1s not essential and 

a buzzer source may be used. 
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The definiteness of the point of null telephone response depends 
on the fidelity with which the anode current changes follow the 
grid voltage variations. The circuit is therefore suggested as a 
possible method of testing whether any temporal ‘lag’ exists be- 
tween these two quantities for any particular tube. So far as tubes 
of extreme exhaustion have been tested no such inertia has been 
found to exist. For cases of ultra-acoustic frequencies the ordinary 
wireless methods of testing the constancy of the potential across 
CD are applicable. 

In addition to its use as an amplifier the vacuum tube has a 
distinct field of utility as a detector of high-frequency oscillations. 
When operation takes place with conditions represented by a 
curved portion of the characteristic a symmetrical grid voltage 
change produces a variation in the mean value of the anode cur- 
rent. As a first approximation in such a case one may consider 
that the magnitude of the anode current alteration is proportional 
to the value of d?J/dv? and also to the square of the amplitude of 
the grid voltage variation. 

It is possible to determine the value of d?J/dv? directly. To do 
this the alternator of Fig. 1 is replaced by a small voltage battery 
(positive to grid) and tapping key, and the resistance CD by a 
milli-ammeter. The resistance R is adjusted so that the milli- 
ammeter deflection is unaltered when the key is closed. If the 
value of the resistance so obtained is R,, we have approximately 

lied: eelded 
i oD 1 5 arp AO, (1) 

where Av is the E.M.F. of the small battery. 
If the same adjustment is now made with the battery reversed 

(negative to grid) we have 

Wg GRE 
in oe Oe Av. Uae (2) 

Thus from (1) and (2) we have 

di Naf 1 

dv , = a zn) ; 

fd ca (er BH =| us 
2 Ni Tey) INO 

With such an arrangement the results are accurate to within 
3 or 4 per cent. If extreme accuracy is required the milli-ammeter 
may be replaced by a resistance r (see Fig. 1) and a potentiometric 
scheme and sensitive galvanometer used to indicate when the 
voltage drop along CD is constant. 
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The Rotation of the Non-Spinning Gyrostat. By Sir GEORGE 
GREENHILL and Dr G. T. BENNETT. 

[Read 22 November 1920.] 

Dr G. T. Bennett has done me the honour of criticizing a state- 
ment in § 14, p. 13, of my Report to the Aeronautical Commiattee on 
Gyroscopic Theory, 1914 (cited as R.G.T.), and I am pleased to 
have this opportunity of meeting his objections. 

_ The diagrams of Flatland on a sheet of paper are inadequate in 
a discussion concerning Rotations in Space; it is advisable then to 
have a physical representation at hand, such as that described in 
Fig. 3 of R. G. T., where the displacements can be visualised, with- 
out the confusion arising from thinking of the different sides of 
the sheet of paper of a diagram. 

In this model of Fig. 3, of an Altazimuth suspension of a stalk, 
as an axle carrying a gyroscopic flywheel, the three angles 0, ¢, 4, 
introduced into Dynamics by Euler in 1760, and standard to this 
day in mathematical treatment, may receive the corresponding 
astronomical names; 0, measured from the downward vertical Oz, 
may be called the Nadir Distance; % will then be called the Azi- 
muth; and Euler’s third angle 4, the angle the wheel has turned 
over the axle OZ, may then be called the Hour Angle. 

The point in dispute is concerning this hour angle ¢. 
On the model, of the stalk with altazimuth suspension, carrying 

a flywheel moveable about the stalk as a smooth axle, the hour 
angle ¢ will represent the extent to which the wheel has rubbed 
round relatively to the axle stalk. This displacement can be shown 
unmistakably by chalk marks, originally in coincidence on wheel 
and axle, and also on the frame, and in their subsequent divergence, 
to show the increase in ¢, and also in w. 

Dr G. T. Bennett will oblige greatly if he adheres to Euler’s 
standard notation; so I will change his equations (1), (2), (3) into 

dd dip dp , ab _ - 
Begs Oe ar Pap ae 

when the flywheel is not set spinning. Here do denotes the polar 
element of area described on the unit sphere by Z the end of the 
stalk; and, in an incomplete circuit, o must be taken to represent 
the solid conical angle subtended by the spherical area bounded 
by the are described by Z, and the two great circles proceeding 
from z to the ends of the arc. 
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When the circuit is complete, the solid angle described will be 
represented by the spherical area; but there is a discrepancy of 
27 to be considered, according as the area encloses the nadir ~ or 
not, when % increases by 27, or oscillates and returns to its original 
value; but we will not delay over this here. 

When the circuit of the pole Z is incomplete, the geometrical — 
interpretation of ¢ + % is not simple, as will be seen on reference 
to (6), p. 71, R.G.T.; and the angle does not appear in an in- 
spection of the model. But ¢ and % separately are visible in the 
chalk-marks and their divergence; but the angles are in different 
lanes. 

: It is only in the complete circuit, where the stalk OZ is brought 
back to its original position, that the angle can be visualised 
through which the flywheel has turned relative to the frame. 

In the statement of R. G. T., § 14, criticized by Dr Bennett in 
his § 4, where in the model the stalk is hanging vertical, 6 = 0, 
and the stalk is then revolved in azimuth, the solid angle o = 0, 
¢+%—=0. But in a complete revolution of the stalk, yb = 2rr, 
and @ = — 2z; that is, the wheel has rubbed once round the axle 
inside; and ¢ does not represent the angle the wheel has turned in 
space; the wheel remains stationary with respect to the frame and 
the stalk turns round inside the wheel: but d+%=0 at any 
intermediate stage. 

Dynamics were never studied at Cambridge as an experimental 
science, so it is not likely that the model of R. G. T., F ig. 3, should 
exist there, to place on the lecture-table between the lecturer and 
his class, for him to show off the variation of Euler’s angles, and 
to handle and feel an actual state of gyroscopic motion. The 
non-spinning gyroscope is imitated by a plummet at the end of a 
thread, as a spherical pendulum, when the wheel has no rotation ; 
and by giving the wheel a spin R, the extension is made to the 
most general state of the spinning gyroscope. 

But a penholder is always at hand, to serve as an illustration 
of the angular creep in g. The action is not frictional as has been 
objected. Butter the finger to acquire the perfect smoothness of the text-book jargon, and the creeping action is not arrested. 

The experiment is not inapt, as it shows the relative motion apparently reversed, where the axle is fixed in the wheel and runs 
in outside bearings; here the finger and thumb, perfectly buttery. So too with the other homely familiar experiments cited by 
Dr Bennett. 

Kuler’s angles require to be interpreted on the altazimuth suspension of the stalk in Fig. 3. But Prandtl suppresses the com- plication of the hub and vertical spindle on ball-bearings, and replaces it by the simple economical arrangement of a fixed hook, to which the stalk is hooked up, with the rubbing surfaces well 
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greased. The motion of the stalk here is the same as with Kelvin’s 
trunnion rings and knife-edge gimbals, or his short length of elastic 
wire, fixed to the stalk and the support; and it may be imitated 
in the swaying motion of the body seated in a chair, where one 
wall of the room is always faced; the conical motion does not make 
the body turn on the seat, not a music-stool. 

It would carry us too far to discuss the modification in d due 
to these and other modes of suspension, such as Hooke’s joint 
and bevel-wheels. 

But so long as the inertia of the stalk may be ignored, there is 
no modification in the 0,% angles of the axle of the gyroscopic 
wheel; but the angle ¢ will require separate consideration. 

If however ¢ is suppressed by clamping the wheel to the stalk, 
or if the inertia of the stalk is taken into account, the motion is 
hyperelliptic and intractable. 

The question quoted from the 1898 examination paper is a very 
good specimen of many such, scattered anonymously in college 
papers. Judging from the date, Dr Bennett ought to be able to 
lift for us the veil of anonymity. 

A similar question by Maxwell in the Mathematical Tripos 
1869, on vibration in its effect in causing a permanent deviation 
in a pendulum, has proved useful, nearly 50 years later, in the 
interpretation of compass deflection; and we have seen the deflec- 
tion realised in an experiment devised by Mr C. C. Mason. 

Quaternions come in useful for the geometrical interpretation 
of these questions on finite rotation; as for instance in the resultant 
rotation due to successive rotations of a spherical triangle through 
the exterior angles. Then there is a theorem given by Dr W. Burnside 
in the Messenger of Mathematics, xxttt., on the resultant screw dis- 
placement due to two half turns about non-intersecting axes. 

The 1898 question, on the rotation that can be given to a body 
on a smooth axle by a conical motion, may be quoted as an answer 
to Aristotle’s challenge—to rotate a smooth sphere—jxiota de 
KUWNTLKOV 7) ohaipa Oia TO pdev Eye Spyavoy TpOS THY KiVNnaW. 

To the preceding remarks of Sir George Greenhill, Dr G. I’. Bennett 
replies as follows :— 

From Sir George Greenhill’s comments it is happily apparent 

that the difference of four right angles between a result in his 

Report and a result in my paper is not a miscalculation of either 

but a discrepancy turning on a verbal ellipsis. My work has regard 

only to the movement of the gyroscope relatively to ‘fixed space’; 

whereas his is limited to the movement of the gyroscope relatively 
to the rotating stalk of his altazimuth suspension. 
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In the matter of his experimental illustration with the pen- 
holder I was far from conjecturing that it was to be regarded as 
ideally smooth; and if that indeed is to be the case it must be 
further described as having precisely no angular velocity about its 
axis, if it is to imitate the gyroscope successfully. 

It may be remarked that the suspension of a pendulous gyro- 
scope by an altazimuth mounting is open to one grave objection: 
that the gyroscope loses one of its three degrees of freedom in its 
central position. And if the gyro-axis swings close past the vertical 
it involves in consequence excessively rapid changes in the azimuth 
movement of the suspension. The gunner who attempts to deal 
with aircraft passing overhead, using the ordinary gun-mounting, 
finds a corresponding difficulty with his training gear. Acoxex 
Tats ToTaVOV OpuLy. 
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On the representation of the simple group of order 660 as a group 
of linear substitutions on 5 symbols. By Dr W. Burnsipr, Honorary 
Fellow of Pembroke College. 

[Read 22 November 1920.] 

Except in the cases of two and of three variables, it is only few 
groups of linear substitutions of finite order the forms of which 
have been exhibited explicitly. This, it is hoped, will justify the 
following calculations, which seem to offer one or two points of 
interest. In particular the existence of a cubic three-spread in 
space of four dimensions, which admits a group of 660 collineations 
into itself, is perhaps noteworthy. The well-known cubic three- 
spread of Segre, defined by 

(2g + Hy + Uy + Ly + %)* — Xo? — 2° — 2,8 — a3 — xP = 0, 
admits a group of 720 collineations. That which admits the group 
of 660 collineations is defined by 

Got, + Bye + yy + Ly, + Tr, — 0. 

The modular group, for p = 11, is a simple group of order 660. 
Its characteristics have been calculated*, and it is known to admit 
two representations as an irrational irreducible group on five 
variables. It is proposed here to set up these two representations. 
In one of them the multipliers of an operation P of order 11 are 
a, a, a4, a®, a°; where a is a primitive 11th root of unity. Moreover 
the group contains an operation S of order 5 such that 

OP Sa Pe 

Now when P has the above multipliers, there is only one representa- 
tion of the cyclical group {S, P} as a group of degree 5; and by suit- 
ably choosing the variables this can be brought to the form which 
is generated by 
ee he Ot at i we ee 

a ee dit edie Nba) een 

The variables for the required irreducible representation [’ may 
be therefore chosen so that I’ contains this subgroup. When the 
methody for finding the number of invariants of the nth degree 
of a group is applied to [it is found that the group has one cubic 
invariant. Now it is very easily verified that the only cubic invari- 
ant for the above metacyclical group {S, P} is 

Dq7By + Ly Ly + Ly°Ly + Ty7tq + Hy7Ly, 

and this must therefore be an invariant for I’. 

* Burnside, Theory of Groups, p. 502. t loc. cit. p. 301. 
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In [I there are 5 operations A of order two, and characteristic 
unity, such that ASA = S*. Moreover I’ has no subgroup which 
contains an operation of order 11 and an operation of order 2. 
Hence P and any one of these 5 operations A will generate [. 

If E; = Uy + wd, + wa, + wg + w “Dy, 
(GS Og Il, 2, a 2), ai = I. 

the canonical form of S is 

fo =fo f1 = why, £2 = wk, &,' = wy, 4 = wit€,, 

and the most general operation of order two which will transform 
S into its inverse, while its characteristic is unity, is 

=f. f= 4%, &'= b&, &' = bE, fy =atg,. 
Now the above invariant, when expressed in terms of the é’s, 

is a numerical multiple of 

0 ae ene 2) ap ae) essa (Uke a a) fel fe 
+ (w + 2") & &? + (w4 + 20%) Eg E57 + (w® + 2w) &7& 
ae (Ge ae Aa) eS. 

The conditions that the above substitution of order 2 shall 
leave this unchanged are 

ab? (w + 2w?) = wt + 2w?, 

a*b- (w? + 2w) = w? + 24, 

and these equations clearly have 5 solutions. Now a and b must be 
rational functions of a and w, for otherwise the group could not be 
one of finite order. They may be expressed in that form as follows. 

Put 

Gi Om — Age Oa ag eno oe Wo 

Cae i We 8 te Gr sy 

fe; = Ag + wA, + WA, + As + tA, 
(= Il 2, By 4) 

Direct multiplication then gives 

1 Ha = Halt = (+ 2eo®) (co? + ent) (w® + Qn) (wot + Qeo8) = 11, 
pa? = (+ 2a) (co? + Qo) jap, 
pa? = (w® + 2eot) (co! + 2004) pag, 
fg? = (wt + 2) (w8 + 2w) ps, 

pis? = (8 + ew) (co + 2%) pay. 
From these results it follows at once that 

Ms Py 
(@ + 2w?) (w? + 2Qw)’ b (w + 2w*) (w? + Qw4)’ 

involving 

2 p.1 — Ba 
(wt + 2w3)’ (w? + 2w) (wt + 2w?) 

—1 lL 

(w* + 2w4) 
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is a solution of the above equations, the other solutions being 

aw’, bw’2, where w’ is any primitive fifth root of unity. With these 

values of a and 6, the operation A, when expressed in terms of 

the original variables is 

Ba,’ = wit,’ = & + wiag, + wbE, + wb, + wag, 
j 

= % (1 + aw? + bw + btw? + atw*) 
4 a, (1 + awit! + be + bw? + att) 

3 ak Le (1 + dw? = bw2*-1 au b-1q3?-4 ae Oma) 

=e Le (i a dw*-2 ar ba?*-4 vile boy a Gms) 

4 ay (1 + det) + bev? + DAW + awht-4) 

(¢—= 05 15°2;5:3,,4). 

On entering the values of a, b, a~!, b-, it is found that there are 

only five distinct coefficients, viz. 
— $ (2A) + 4Aq + 3Ag + 2A,), 

and those derived from this by cyclical permutation of indices. 

Finally, writing 
B; = 2A; + diag + BAgag + 2Assa, 

the substitution A is 

— 11a’ = Boty + Bat + Bi%, + Bats + Bota, 

— 11a,’ = Pst) + By®1 + Bai, + Batts + Bora, 

— Lary’ = Byty + By, + Bote + Bots + Bsa, 

— Lag’ = Byt) + Bo®, + Bote + Bats + Bi%a, 

— ary’ = Boy + Bo®, + Bat, + Bix3 + Baa. 
This substitution and P, viz. 

Gq = Oy, Ty! = a%,, Xe = ait, Ly’ = 0°23, ty = Danae 

generate [. Since the invariant has rational coefficients, if it is 

unchanged by a substitution 7’, it must necessarily be unchanged 

by T derived from T by changing the sign of /— 1 in each of the 

coefficients of T. It follows that I and I consist of the same set 

of substitutions, the correspondence between the substitutions and 

the operations of the abstract group being distinct for the two 

representations. 
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On the representation of algebraic numbers as a sum of four 
squares. By L. J. Morpety. (Communicated by Professor H. F. 
BAKER.) 

[Received 24 July 1920. Read 25 October. ] 

Professor Landau in a recent paper* entitled ‘Uber die Zer- 
legung total positiver Zahlen in Quadrate” states that about twenty 
years ago, Professor Hilbert} gave without proof the theorem that 
“Every number in an algebraic field (provided that neither it nor 
any of its conjugate numbers are negative real quantities or if 
all of the conjugate fields are imaginary) can be expressed as 
the sum of the squares of four numbers of the field.” This is an 
extension of the well-known theorem{ due to Fermat and proved 
by Lagrange, that every positive integer§ can be expressed as the 
sum of the squares of four other integers. From this result it 
immediately follows that every positive fraction can be expressed 
as the sum of the squares of four other fractions, a theorem 
included in Hilbert’s theorem, which is of course only a very special 
case|| in the arithmetical theory of quadratic forms with co- 
efficients in a given algebraic field. The development of this theory 
however, is a matter of great difficulty, if only from the fact that it 
requires a knowledge of the laws of quadratic reciprocity in the 
field, the investigation of which, in even the simplest general cases, 
requires a lengthy and detailed although very interesting dis- 
cussion]. 

Professor Landau gives a simple proof for the quadratic field 
based upon elementary algebra. He states however that he does not 
know whether the theorem holds universally. This indicates that 
a proof of Hilbert’s general theorem is not easy, a view which 
is confirmed by considering the general theory underlying the 
question. The following proof for a cubic field may therefore be of 
interest**. 

§ (1). Let then z be the root of an irreducible cubic equation 

a a0? ba 6 10) eae eee (1) 

* Nachrichten der K. Gesellschaft der Wissenschaften zu Gottingen, 1919, pp. 392— 
396. 

+ Grundlagen der Geometrie, § (38). 
t Bachmann, Zahlentheorie, vol. 4, p. 151. 
§ The terms integers, fractions, etc. refer to rational quantities unless otherwise 

stated. 
|| See also an account of some of A. Meyer’s work on equations of the form 

ax* + by? + cz? + di?+ eu? = 0 in Bachmann, Zahlentheorie, vol. 4, pp. 259, 266. 
§| See for example Hilbert, Ueber die Theorie des relativquadratischen Zahlkor pers, 

Mathematische Annalen, vol. 51, pp. 1-127. An elementary introduction is given 
in Sommer “ Vorlesungen tiber Zahlentheorie,” section 5, of which there is a French 
translation. 

** T am very greatly indebted to Professor Landau for having gone through this 
paper and for having suggested a number of improvements in the exposition. 
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where there is no loss of generality in supposing that a, b, ¢ and all 
the rational numbers dealt with in this paper are integers, except 
when obviously otherwise. Any number f in the cubic field can be 
expressed in the form 

Df = Ax? + Bz + C 
where A, B, Cand D are integers, of which D is positive. Hilbert’s 
theorem then asserts that 

Fv fas ta» fa 

Dif, = 4,2? + Byx + O,, ete. 
and A,, B,, etc. are integers, can be found so that 

Pah ie ie te 
provided that neither / nor any of its two conjugate numbers are 
negative real quantities. We shall refer shortly to this theorem by 
saying that H holds for f. 

The case when f = 0 can be dismissed at ‘once by noting that 
0 = 02+ 02 + 02+ 02, 

§ (2). If H holds for two numbers F,, F,, it also holds for their 
product since as is well known 

(fi? + fe? + fs” + Sa?) (G1? + $22 + b52 + $42) = 2 + fy” + oe” +h," 
where %, = fib: + fobs + fabs + fads ete. ; 
and also for their quotient since 

F,/F, = FP, /F,?. 
In particular if n is any positive rational fraction, H holds for 

nf if it holds for f. 
Obviously H holds for the number z2+ q if q is a positive 

integer which can be expressed as the sum of the squares of three 
integers. This is always* the case except when q is of the form 
4° (8m +7); and we shall say for shortness that any number, 
positive or negative, of the form 4 (8m -+ 7) is of the form M. 
From the definition it is necessary but not sufficient that 

tb Es OT (MOM By eo ccene . eeacee (A). 

In particular the highest power of 2 dividing M must have an 
even exponent. Similar results hold for x? + q when q is a fraction 
(positive of course) 

XJ = Ap/p? 
such that Ay is not of the form M, and we can still say in this case 
that the fraction q¢ is not of the form M. It is also clear that H holds 
for 

where 

ax + be + ¢ = [(2ax + b)? + 4ac — b?]/4a 

* Bachmann, Zahleniheorie, vol. 4, p. 1468 

VOL, XX. PART II. 17 
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if a is positive and the discriminant 4ac — 6? is neither negative nor 
of the form M. 

It will be useful hereafter to prove now that if q is any integer, 

an even integer p can be found so that ¢ — p? is not of the form M. 
This follows from (A), for if 

q = 1,2 (mod 4), take p = 0 (mod 2), 

if g=3(mod8), take p = 0 (mod 4), 

if g=7(mod8), take p = 2 (mod 4). 
If however g =0 (mod 4) 

put g= 4h, P= 2p; 
then since 

atte Cah aed sty 
the result follows by induction since if 

q, = 0 (mod 4), 

we can put q, = 492, Py = 2Po, ete. 

§ (3). Hilbert’s problem can be simplified by writing 

y = Av? + Br + C 

so that x can also be expressed rationally in terms of y by aid of 
equation (1), while y is also the root of an irreducible cubic*. Hence 
the whole question can be reduced to proving H for # where 

Ge — aa - ba =" = 0 eeeeeee eee (1) 

where the real roots of the cubic and hence also ¢ are positive. The 
cubic in z can be written as 

(at+p)et(q—bate 
Gp? TORE SE 

where p and q are entirely arbitrary. If we can find rational values 
for p and q so that the discriminants 

p=4¢—p2ando=4c(a+ p)—(q—b)? ...... (3) 

are both positive and neither of them of the form M, then H holds 
for both the numerator and denominator of x and hence for z. 

Suppose now that a, b and ¢ are all positive, including in par- 
ticular the case when all the values of x are real. Then by con- 
sidering the region common to the two parabolas 

4n — &* =O and 4ce(a+é)—(n—b/?=0 ....... (4) 

it is obvious that real and hence also rational values of p and q can 
be found to make each of the discriminants in (3) positive. Moreover, 
if we can find any rational values of p and q for which neither of the 

C— 

* Except in the trivial case A = B= 0. 
{ Itis by no means obvious that such values exist. For example, one of the two 

expressions, & + 7, 512 — k? is always of the form M. The same applies to the two 
expressions pg, 5129? — (7q — p)?. 



as a sum of four squares 253 

discriminants in (3) is of the form M, it is clear that the same holds 
when »p and q are replaced by 

p+2™r, q+ 2M uy 
if N is sufficiently large and A, » are fractions with odd denomina- 
tors, and that A, », N can be taken so as to bring the point 

(p + 2A, q+ 2% yu) 
within the common region of the parabolas (4), that is, p and o 
will be both positive. 

We can summarise the rest of this section § (3) by saying that 
we shall show that suitable values for p and q can be found when 
either a or b or ¢ is odd, so that we must discuss the case when 
a, band care all even. It is then shown that suitable values can be 
found for p and qg when the highest power of 2 dividing cis the first 
or second, and that the case when c is divisible by any power of 2 
can be reduced to one of the preceding cases. It then follows that 
H is true for x in the case of a cubic with three real roots. 

Suppose first then that ais odd and that 47 is the highest power 
of 4 contained inc. Put c = 47C and take 

G—bD— 2 0) 7 = 2P 
so that 

o/4v+1 = C (a+ 2P) — Q?, p/4 =q — P?. 

Consider first the case when C is even so that it must be divisible 
by 2 only and not by 4. Then because a is odd, o is not of the form 
M if Q is even, whatever P may be. 

Also by § (2) we can find a value for P for which p is not of the 
form M so that H holds for z. 

If, however, C is odd, take P even but Q even or odd according as 

Ca = 1 or 3 (mod 4), 

so that o is not of the form M. The only restriction on P is that it 
should be even, and from § (2) we can find even values of P for 
which p/4 = q — P?is not of the form M when gis given. Hence H 

holds for x if a is odd. 
Writing now « = c/y so that H holds for « if H holds for y and 

conversely, we see from 

y® — by? + acy — ce =0 

that if b is odd, H holds for y and hence for x. Hence we need only 
consider the case when both a and 6 are even. 

Should now c be odd, take in (3) p and q both odd, then 

p =3(mod 8), o =3 (mod 8) 

so that we need only prove H when a, }, ¢ are all even. 

17—2 
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If c is divisible by 2 but not by 4 put 

¢e= 20, a=2A, 6=2B, p—2P, ¢=20 

then o/4 = 2Q — P?, of4 = 4C (A + P) —(Q — BP. 

If now Ais even, take Pand Q — B both odd. Then since Cis odd, 

o/4 = 3 (mod 8). 

Should, however, p/4 be of the form M, in this case 

p/4 =7 (mod 8) 

for these values of P and Q, then since the only restriction on Q is 
that Q — B should be odd, the change of Q into @ + 2 changes 
p/4 into a number p,/4, such that 

p,/4 = 3 (mod 8) 

while o is changed into a number 9, still satisfying the congruence 

o,/4 = 3 (mod 8). 

If however A is odd, take P even and Y — B odd. Then 

o/4 = 3 (mod 8). 

The only restriction on P is that it should be even and from 
§ (2) we can take it so that p is not of the form WM. Hence H holds 
if c is divisible by 2 but not by 4. 

H holds also if ¢ is divisible by 4 but not by 8. For putting 

= C/U) 
we find 

y? — gby* + gacy — gc° = 0, 
where all the coefficients are integers and c?/8 is divisible by 2 but 
not by 4. Hence A holds for y and also for z. 

Suppose now that ¢ is divisible by 8 or say 2” but not by 2”++. 
Then put again 

ay == G20) 
so that as before 

y® — dby? + hacy — ice = 0. 

Hence if b/2 is odd, H holds for y and hence for x. If however 6/2 is 
even, put 

Gal, b= 5, 6=S3C' 

so that the equation (1) becomes 

xv? — 2Aa* + 4Bx — 8C = 0, 
or, putting xv = 2z 

2 — Av+ Bze—-C=0. 

But C is divisible now by 2”-° and not by 2”-*. Hence if this 
process be continued, we shall arrive at an equation of the form 

3 — 0G? 200 = |C— 10 eee (1) 
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where either a is odd or c is not divisible by 8. But H has already 

been proved for these cases so that we have proved H in the case 

when a, b and c are positive and in particular for the algebraic fields 

arising from a cubic with three real roots. 

§ (4). If however a and b are not both positive, in which case 

equation (1) has imaginary roots, it is clear from equation (2) that 

if p and q are taken to satisfy the inequality 4q > op? and ¢ is a 

sufficiently large positive number, then 7+ ¢ can be expressed as the 

quotient of two positive definite quadratics in x Hence as x + ¢ 

is also the root of a cubic of the type (1) where a, b and ¢ are 

positive, it is clear that H holds for x + t provided ¢ is a sufficiently 

large positive number—integral or fractional. 

We have now from equation (1) 

i il ma aa hn 

where & and € are arbitrary rational quantities. We take k so large 

that the discriminant 44 — (é + a)? is positive and not of the form 

M (this is always possible as & need not be an integer, take it say, 

a fourth of an integer), and so that —  — ag + k — 6 is also 

positive. 
Suppose € is not negative and put 

ké + ¢ : 

ay 2g eee ea Biacelctatatoria einielefelsieia erele (6) 

then €, is positive and also € > € since 

& 4+ a+ bE+c>0 

because the real root of the cubic (1) is positive. Also H holds for 

a + €if it holds for x + &. 
Take now €= 0, and find &,, é,... from &, & «.. with of course 

suitable values of &,, ky ..., In the same way as é, was found 

from €. Then &, &, & ... form a monotonic increasing sequence 

whose limit is infinity. For if it were finite say L, then it follows 

immediately from equation (6) that 

(?+al?+bh+c=0 

which is impossible as we have assumed that the cubic (1) has no 

negative root. 
Hence after a certain stage (H) holds for x + &. It is obvious 

then from (5) that H holds for x, so that we have also proved H for 

the case of the field arising from a cubic with only one real root. 
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Note. 

The general law of quadratic reciprocity in any field was given 
without proof by Hilbert in the Géttinger Nachrichten for 1898, 
page 380 in his paper “‘Ueber die Theorie der relativ-Abel’schen 
Zahlkorper.” In his paper ‘“Mathematische Probleme” in the 
Nachrichten tor 1900, the investigation of the theory of the general 
quadratic form with algebraic coefficients is proposed as problem 11. 

The law of quadratic reciprocity above was proved by Furt- 
wangler in the third part of his paper “Die Reziprozitatsgesetze 
fiir Potenzreste mit Primzahlexponenten in algebraischen Zahl- 
kérpern” in the Mathematische Annalen, Bd. 74, 1913. 

MANCHESTER COLLEGE OF TECHNOLOGY. 
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On a Gaussian Series of Six Elements. By L. J. RoGErs. 
(Communicated by Prof. G. H. Harpy.) 

[Read 26 January 1920.] 

§ 1. The symbol H (a, B, , w, y) will be used for the infinite 
series 

Ch. [BAe rips 
Laie ay ma Bisset (1), 

where ttt __ (+n) (B-+n) (+n) (un) 
Un (L+n)(y+n)(e+n—O)(K4+n4+ 6)’ 

and 2e=a+B4+rA+p+1—-¥. 

s nN 1 Since M14 (at B+X+p—1— 7-2) +0(5) 
n 

=1-=+0(5), 

it follows that the series (1) is always convergent, provided that 
the elements a, 8,... are all finite, and y, «+ @ are not negative 
integers. 

When pu =y¥ the series reduces to 1 + amt 

where 2e=a+B+rA+4+1, 

which series will be written 

da Bice cin) Von nae ae RR OE eo (2). 

It is not necessary to introduce @ into the functional notation. 
For the sake of conciseness it will be convenient to write 

Qn, Bny+e Kn foratn, B+n,...K+N. 

§ 2: Correspondin g to the well-known formula in hypergeometric 
series, it 1s easily seen that 

H (a, ISB A, lose) 1) — HI (a, B, Xr, PB; Y) 

_ aBr(y- #) Tee a) Geto d 6 If Cee Sve, Vey ee nena (1). 

Moreover 3 

{(« — pw)? — 0) H (a, Bi, as M1) — (x? — 6) H (a, B, A, oY) 

-@-9G- B)(y—A)# 
= y(y +1) Ff (0, Bi, Mas Pay Ya)eveee (2). 
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To prove this write the equation in the form 

B, B, 
(et et ee ! 

2 2 Jal ‘als —(k -*) 11+ oo e+ Got } 

To ei 1g Reyes (aaa 

where the A’s, B’s and C’s are independent of 0, it being observed 
that, in the first and third series in (2), « becomes « +1, 

The left-hand side is 

yo Pep + Bf + Ea Be 

INS NBM aS 
+ ep ee 

2_ G2 Koz — 62 

Ae! A, =a 

Hence 

C=? —2eu+ B,— A, 
Sy a 84 ye De ere 

pce m pb 
— — — — 2), Gy! a) (y—8)(y¥—2X) 

while Ores bynes te IB, {(k — p)? — («+ n)} — Ans. 
aor 

Now A = aan JB and JB = CE ne 

n+1 

C, an ufS% iAn En ‘ abr th: t Be AF + Stal mx sy) fe Bn f AG Be To aleieealie sia ag © emteaue ies (n+ 1)y 
= — = =U VOERO=) ae (3), 
y(y+n+1) 

as may be easily verified, thereby giving the right-hand side of (2) and establishing the relation. 
We may now obtain a continued fraction of the form 

1 @,2 @& 6 
lite je je ee (4), 

for the ratio JEL (Ci, (8), I, te, y)/H (a, 8, r, w, 7). For from (1) 

es H (a, B, Xr, By Y) 1 ey Jel (ees [Bas vc by, Yo) 
I (a, B, A, bi) 1) ee ?? HH (a, (ee A, ba, 1) ‘ 
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ar (y =H) 
y(y+1) 

But from (2), by changing p, vy into “,, y%, which does not 
alter «, we have 

I (a, B, A, Ha, 1) 15 OR Biya, fa, Ys) 
K = &2 => 2 62 — 5 

( Te Na, fais Ya) a a id (a, Ban 1: His Yo)” 

(y=atDiy-8+D(y—rAt+ VD (H+)) 
(y +1)(y + 2) 

These two results lead to 

HT (a, B, Ay Mi; oe. 1 @y (04, Bry ha Has Ya) 

la: B, A, b> y) 1 Pe («—-p—1lP-—@— ET (a, Bi, a> Pas Ya) ; 

The ratio of H-functions on the right-hand side differs from 
that on the left-hand side only in that a, 8, X, w are increased 
each by unity, and y by 2. This does not alter « — yu, so that we 
have finally 

HI (a, B, >, w+1,7+1) 

where 2= 

where 2 = 

H (a, B, , #, ¥) 
u e; ep es 

Ria (¢—-p= lp] e=1— Goes dy= oe 
ber ee er 

5 ee de 
Bere ) Sais isa 2) 9 Se?) (2 — B) (Y2— ) ee 2 

Y2Y3 Ys 

and =(«k-yw—-lP—-@ 
Sli 

eure (5). 
It is remarkable that if we change » into y— 4, the coeff- 

cients e all become symmetrical in a, 8, », w, and «—p—1 
becomes } (a+@8+2+y—1-—2y), so that 

A (a, 8,r, y-ut1,y+1) 

H (a, iS; r, ie es Y) 

is symmetrical in @, B, A, bw. 

Hence 

H(a, 8,4 y¥-m)_ Ht 8% y+1l-4% yt) 
H(a,By-y\ uy) HaRytl-ryAw yt)” 

where the first of these fractions is the same function of y as 
the second is of y+1. 

..(6), 
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§ 3. From § 2 we have 

(65 eae ae Or ee Bi, ay Pas 2) 

ce — @ H (4, B, r, bi; v) 

peel eo es, = 1 G@ a pee Ch): 

Now change a, 8, 2, pu, y respectively into 

¥-4%7-B,y-rAy-e—-Ly-l. 
It will then be seen that e-—1 becomes —(« —p-—1), 

x becomes — (x — y—1), e, becomes e,, and generally e, becomes 
€n—1- 

We have in (1) then the same continued fraction as in § 2 (4), 
and hence 

H (a, B, r, ime v1) 

H (4, B, », pm, 1) 

Cree velo ch 1 —-B,m— 4, YH, 1) 

(c-—y-1?-@ H(y-a,y-B,y-AyyY-BwY) ” 

A (y-4,¥—-B, y-y ¥- 1) 
or 

HI (a, B, r, 1, ¥) 

_(«-n—-l1P-? A (yw -au-8 n-%y-4) a tie (2). 

(e—y= IP GP H (2, B, A; Ki, %1) 

Let ) =0, then 

H (y—4, y—8, y—p) 

a 2 2 
Wear ei a Nao) Se i. ut “4 
Ge =a a, V1 B, ¥ i), 

or, changing a, 8, w into y—a, y— 8, Y-R 

t(a+B8-w+1)P-& 
HT (a, B, Ey Ga Gao page ee (Shs #) .- (4). 

The series H (a, 8, ») has been investigated by Saalschiitz, 
Zeitschrift f. Math. xxxv., for the case when a isa negative integer, 
and generally by Dougall, Proc. Edinburgh Math. Soc. Xxv.,§ 12 (20). 
For special cases of the continued fraction § 2 (5), see Proc. 
London Math. Soc. series 2, vol. 4, pp. 83, 394. 

§4. Heinean forms. 
The results of the foregoing sections have their counterparts, 

when every factor in the terms in H, are replaced by correspond- 
ing sines or hyperbolic sines. 
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If the fundamental series be taken as 

sinh ma sinh m8 sinh md sinh mp 

sinh m sinh my sinh m(« — @) sinh m (« + @) 

then, if e”"=g, the factors in v, take the form 1 — q?, etc., there 
being an extra factor 

expm(at+@B+rXr4+p—l—y—2«), =e°™=¢. 

Moreover 
ae el zs gar) el wet qt") ad eS gen) (1 ae ge) 

Un al a oF gh) (1 sta qyt”) (1 cE: grin) (1 ae qripthy q 

so that the series is obviously convergent if | q|< 1, and no indices 
of powers of g are zero. 

| The formula corresponding to § 2 (1) is readily obtained, 
- giving 
| is sinh ma sinh m8 sinh my sinh (y— 4) 

ced sinh my sinh m (y + 1) 

Shi 

That corresponding to § 2 (2) is more difficult, but it depends 
on the fact that, by employing the somewhat intricate identity 

sinh m(a+n+1)sinh m(8+n+1) sinh m(A+n+ 1) 

sinh m (n +1) sinh m (y ++ 1) 

_ sinh masinh m8 sinh mr 

sinh m(n+ 1) sinh my 

—sinhm(a+B+rA-—y+n4+1) 

__ sinh m (ry —a) sinh m (y — 8) sinh m (y — 2) 
= sinh my sinh m (y+ 2+ 1) : 

we get, corresponding to es in § 2 (3) the value 

sinh m (w +n) sinh m (ry — a) sinh m (y— 8) sinh m'(y — 2) 
sinh my sinh m (y+ n + 1) ; 

This leads to a relation corresponding to § 2 (5), where 

: = sinh? m (« — w« — 1) — sinh? mé, 

and the e’s are altered to corresponding hyperbolic functions as 
explained above. 

§ 5. Convergence of the continued fraction in § 2 (5), when « 
is negative and the e’s are all positive. 
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A continued fraction of the type 

1 at ent 

fee 

converges, if when reduced to the form 

Pale hele a 
1+ d,+ d,+ 

either or both the series 

l+d,+d,+..., dd+d,+d;+... 

eee 

are divergent. 

: 1 /e That is 1+ (44204 ee, ik 
ib NGS GNA GGG 

WAL e 
and ( le SUES A ah i) 

ENA GG GAGA 

must be either or both divergent. 
In the first the ratio of the general term to the preceding 1s 

€m— and in the second it is 2”. 
on a es tn @on+1 
The first ratio is 

(atn—1)(B+n-1)A4+n-1)(y—w+n—1)(y + 2n) 

(y-a+n)(y—B+n)(y-A+n) (w+ 2) (y + 2n— 2) 
1 

1 =1- 7 (14+2(y+p+1—-a—B6-»} +0(5), 
while the second is 

(y-—atn)(y—B+n)(y—A+7n)(y + 2n + 1) 

(a+n)(B +n) (X+n)(y—e+n) (7+ 2n—1) 
1 1 =1==(1-2(y+et1-a-8-2) +0(5). 

It is evident that one series converges and the other diverges 
and therefore the continued fraction converges. 

In the Heinean case these ratios are approximately 
Neri === GMa YK a) qh gatas a—A MH) 

one or other of which must be greater than 1. Hence one series 
must diverge and the continued fraction converges. 
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Note on Ramanujan’s trigonometrical function c,(n), and certain 
series of arithmetical functions. By Prof. G. H. Harpy. 

[Received 10 August 1920: read 25 October. ] 

1. Ramanujan’s memoir ‘On certain trigonometrical sums and 
their applications in the theory of numbers’* is devoted to the 
study of the function 

Bin BS ash a Cos En stall aoe (1-1), 
p p 

where p runs through the numbers less than and prime to 4g. 
Ramanujan proves that 

Liason (2) Pe ie 1 (1-2), 

where p(n) has its usual meaningt and 6 is a common divisor of 
q and n{. He then proceeds to express a number of the most 
important arithmetical functions of n as series of the form 

S UgCq (n), 
q=1 

where a, is independent of n. From among the many interesting 
results which he obtains I may quote the following :— 

o4(n) = 5 — ee See ec ee (1:3), 
and in particular 

o(n)= ae S a scalar eat (1-31), 

hols GLO Wer eet (1-32); 

d(n)= == E14, CANE 

p(n =" sale: niga iter ens (1-4); 

r(n)=7> cs = aM) 9 51) 8 (1°5), 

* Trans. Camb. Phil. Soc., vol. 22, 1918, pp. 259-276. 
+ «(m)=O0 unless m is a product of p different primes, when pu (1) =(—1)?. 
+ The formula (1°2) seems to have been first stated explicitly by Ramanujan 

(l.c. p. 260). It is given for n=1 by Landau (Handbuch, 1909, p. 572) and by 
Jensen (‘Et nyt Udtryk for den talteoretiske Funktion Zu (n) = M (m),’ Saertryk 
af Beretning om den 3 Skandinaviske Matematiker-Kongres, Kristiania, 1915). The 
deduction of the general formula from that given by Landau is trivial; but 
Ramanujan makes so many beautiful applications of the sums that they may well 
be associated with his name. 
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Here d(n) is the number of divisors of n, ¢ (n) their sum, and 
o,(n) the sum of their s-th powers; d(n) is the number of numbers | 
less than and prime to 7; 

2 (n) = 0? (1 ==) (1 A 

when n= p%p,%...; and r(n) is the number of representations of 7 | 
as the sum of two squares. 

These series have a peculiar interest because they show ex- 
plicitly the source of the irregularities in the behaviour of their 
sums. Thus, for example, the formula (1-31) may be written in the 
form 

1)” 2cosénmr  2cos4nar 

OS ee 
2 (cos 2n7m + cos 4 gn) | 2 cos 4n7 

+ Bs Bi eas 

and we see at once that the most important term in a(n) 1s $7°n, 
and that irregular variations about this average value are produced 
by a series of harmonic oscillations of decreasing amplitude. 

2. Ramanujan’s proofs of his principal formulae are very 
interesting and ingenious, but are not, I think, the simplest or 
the most natural. In this note I prove a number of them by a 
different method. This method occurred to Mr Littlewood and me 
in the course of our researches connected with Waring’s and Gold- 
bach’s problems, and in which Ramanujan’s sums play an important 
part. JI also include a few new results which are suggested natur- 
ally by our analysis. 

The multiplicative property of c,(n). 

3. The first step is to prove that 

Cog (1) Cy 2B) Ce TU) mice eee tele eee (3-1), 

whenever g and q’ are prime to one another. For this we observe 
that 

Cq (N) Cy (n) = = e-2nprt/a % e2np'nild — 3 g—2nPrijag’ | 
Dp’ 

where poe + pq. 

But it is plain that every value of P is prime to both q and q’, 
and that no two values of P are congruent to modulus qq. Also 
the total number of values of P is $(q) ¢(q’) = (47). Hence P 
runs through a system of values congruent, to modulus qq’, to the 
$ (qq) numbers less than and prime to qq’. This plainly establishes 
the truth of (3-1). 
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The value of c, (7). 

4, I show next that the value of ¢, (7) is given by (1:2). 
Let us write ; 

Cinyh 3 8p (2) POEs oe (4-1). 

If g and q’ are prime to one another, we have 

Cx) Gotn) = 3,88 (B) »(f). 
where 6 is a common divisor of g and n and 6’ one of q’ and n. 
Clearly 66’ runs through the common divisors of qq’ and n, each 
once only. Also q/é and q’/8' are prime to one another, Hence 

C,(n) Cy (n) => Du (#2) 

where D=606' runs through all common divisors of qq’ and n; 
and so 

Cann) => 6 2s 
p 

where p runs through the w*!(#—1) numbers less than and 
prime to a*, These may be expressed in the form 

3 pa 2 +p, 
where z=0,1,..., a—1 and p’ runs through the numbers less 
than and prime to a*. Hence 

Cayk (n) = > e~2neri/a > e Aap’ nt/at - 

z p’ 

and the sum with respect to z is zero unless a |n*, Thus 

Cat (n) = 0 (k>1, a+n) 

and Capt (GV) = oS EPP rE — BC x (V). 

Now plainly 

Ce (n)=—-1 (a tn), Cao (n)=a—1 (a|n)...(43). 
Hence 

Caz(n)=0 (a +n), Ca(n)=—a@ (a|n, w+), 

Cat (n)=a(a—1) (a?/n); 
and generally 

Coe(n)=0 (w* +n), Car(n)=—ak (ot |n, oF +n), 

CROP eos mace Coon) a (call) LES eree eee (4-4). 

* Following Landau, I write @|n for ‘@ isa divisor of n’ and @+tn for ‘g@ is 
not a divisor of n.’ 
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It may be immediately verified that these are also the values 
of Cg:(n). Hence c,(n)=C,(n) when g is a power of a prime, 
and therefore generally. 

Summation of the series (1-3). 

5. It is plain that |c,(n)| does not exceed the sum of the 
divisors of x. It therefore follows from (3-1) that, if s> fr, 

» a(n) ae Wy, 

g 

Car (2)  Cay2 (2) 
where ys Thee = is al a 

ea No =l-aw. 

If x is the highest power of « which divides n, 
= jl o—l w(a—1) wt (a —1) Ac 

Mp at ax ote ae in tee as SST: 

— a—as 

te can ae ome (ore ll) ——— 
1 — (a+) (1-s) 

=(l-—a~) oe 

Hence SS Ca (2) = [I (1 jug os) Ul 1 — @(at) (1-3) 

[ uP ior ain L—a§ 

OHSS (7) kee aaa T.— (n) 

C(s) €(s) ; 
This is Ramanujan’s formula, with s in the place of s —1. 

The formula (1-32) lies, as Ramanujan points out, somewhat 
deeper, since s = 1 does not lie inside the region of absolute con- 
vergence. I have nothing to add to Ramanujan’s remarks con- 
cerning this limiting case *. 

Summation of the series (1-4), 

6. Let us write, with Ramanujan, 

Ps (n) = ns (1— p-*) (1—p,-5)..., | 
Where p, p,, ... are the different prime factors of n, so that 
di(n)=(n). Then, if s>1, we have 

ss #(Q) Can) _ 
= 6 (@) Wee 

where ee wea 

* Le, ps 265. | 
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so that 

1 w—] 
Melt (a +n), Meat eng (@ | 7) 

It follows that 

s HD) Cq (2) iy ( os ) Tl — 

od; (q) winiat—l Jalen 

1 =H pes Hao 
= €(s) nn" $,_, (n). 

Thus see es aE Oy de (6-1). 
S(s) bs (9) 

This formula is equivalent to Ramanujan’s formula (9-6), and 
reduces to (1-4) when s=2. 

The cases = 1. 

7. The case in which s=1, which is not discussed by Ram- 
anujan, is of particular interest. 

We observe first that 

nO $4 (n) £(8) = {1 — pe} 1 — pr}... £(0 
tends to zero, when s—~1, unless ” is a prime p or a power of a 
prime p, in which case its limit is log p. Thus 

lim n-&—-) ,_, (n) €(s) = A (n), 
s>l1 

A (n) having its usual significance in the theory of primes*. 
If then we suppose that the series (6-1) is convergent for s = 1, and 
that its sum is continuous, we obtain 

Wal) # (9) Ca (n) 
. $ (9) 

It is not difficult to prove that this formula is incorrect. 
In order to prove this, and to obtain the correct formula, I 

consider the function 

gb (q) ° 
supposing first that o, the real part of s, is greater than unity. It 
is plain that 

As) Sl a 

idee EN Le Se where Gena mag 

so that 

2 SESE As gi oes cela eat = Bateay ay gS fi ll ti ai Co 
* A (n)=log wif n= m™, and A (n) = 0 otherwise. 

VOL. XX. PART II. 18 



268 Prof. Hardy, Note on Ramanujan’s trigonometrical function 

It follows that 
1 i 

f= H+ sea} BOs) 
thee | 
= 9 (s) h(s), 

say. Now 

Fo-8 [P+ sae} Os) 
= {1+0(e~>)}; 

and this product is uniformly convergent throughout any half 

plane o>6> 0, so that g(s)/f(s) is regular for o> 0. Thus g (s) 

is regular for o > 0, except for a simple pole at s = 1, with residue 

1; and its properties for c > 0 are substantially the same as those 

of € (s). 

If n is a prime p, or a power of a prime p, 

ne) wo eS 3) 
De joe Die + 1 

has a simple zero for s= 1, and 

al h’ (1) =P =“ log p. (1) Pu 

Thus in this case f(s) is regular for s = 1, and 

FO -2— log p. 
In all other cases (except when n = 1), h(s) has a zero of at least 
the second order, and 

f (1) =0. 
We have now only to apply to f(s) the arguments which, when 

applied to the function 1/€(s), lead to the proof of the well known 
theorem expressed by the equation 

in order to conclude that the series for f(s) is convergent for 
s = 1, and that its value is f(1). That is to say 

5 #9) a(n) _P (9) Ca (m) _p-1)., 
(9) pee 

* See for example Landau, Handbuch, pp. 593 et seq.; Hardy and Littlewood, 
‘New proofs of the prime-number theorem and similar theorems,’ Quarterly 
Journal, vol. 46, 1915, pp. 215-219. 
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or zero, according as 7 is or is not of the form p*; or 

s #9) Ca (nm) _ b(n) A (n) (7-3) (9) nesses : 

which contradicts (7-1). 
It should be noticed that, if we are merely concerned to prove 

that (7-1) is false, all the difficult part of the preceding argument 
may be omitted. For, if (7-1) were true, f(s) would certainly tend 

to the limit A (n) when s ~ 1, and the mere knowledge of the value 

of f(1) is enough to show that this is not the case. 
The simplest examples of the formulae (6-1) and (7:3) are 

obtained by taking n = 2, when 

Cq(n) = # (q) + 24 (29) * 
is equal to «.(q) if g is odd and to — w(q) if qg is oddly even. We 
then obtain 

(= 1) | (9)! > = (1 —2'-*) €(s) =1-° —2-#*+3-*-..., 
bs (9) : A 

which tends to the limit log 2 when s > 1; but 

a Coal 9 ania 
a => 1 lo 2: OGh) Cat te 

The last result may be written in the form 

ak cs otenhivi cate al triad drain 
2) 68) oO) $6) a) oH TP” 

The series = oi ; 

8, Another very interesting series, the consideration of which 

is suggested naturally by the work which precedes, is the series 

s #(9) Bet Ua agly od 
$(q)7 1 6) $8) $65) o6)~ 

I shall prove that this series 1s convergent, and has the sum 0: 

more generally, 

Cq(%) _ Sg TO crite: (8:1) 

th Cq Ct) ao 
Let J (8) = > gay (q) 2 

and let us write s—1=z. Then 

f(s)=Uxe> 

where Nor = 1 + = a + ee 

* We agree to regard u(x), when is not an integer, as zero. 

18—2 



270 Prof. Hardy, Note on Ramanujan’s trigonometrical function 

aw % 

Boi: 
Ifatn Xo =1- 

while if a is the highest power of a which divides n 

Xwtlto’+
o *+..40 %—- — 

s 
asl 

Thus 

as 
—Z a6 Gy (a1) z 

f)= M (1-5) U (1+= +... +e a —] ) 

= 9 (8) h (8), 
say. It is plain that h(s) is a finite Dirichlet’s series in s. On the 
other hand, if 

(9) = 0 (;——) =£(0) 0 a, 
mtn m\|n 

9 (s) En (8) =m {(1 2 = /a- =| 

= Hi es (=) + 0 (a-*)} 

is regular and bounded in any half-plane ¢>1+8> 3. Thus g(s) 
behaves, in any such half-plane, substantially like the reciprocal 
of ¢,(s), or of €(s); and so therefore does J (s). And so we can 
prove (8:1) by substantially the same argument as that which 
proves (7-2). 

Hor n = 1 we obtain 

It should be observed that, in this series, the%terms cancel in 
pairs, since 

w (2g) __ (9) 
$ (29) (4) 

if q is odd. Naturally this does not in itself establish the truth of 
(8:2). 

If n=2 we find that c,(n) is equal to w(q) if q is odd, to —(q) if g is an odd multiple of 2, to 2u($q) if g is an odd 
multiple of 4, and to zero if q=0(mod.8). Thus we obtain 

tech) 02) ey glee 
$(2) (3) (4) (5) $(6) (7) (10) 

1 2 
$ (11) * (12) = 
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9. The following results may be proved in substantially the 

same way:— 
s HG) los _ 9 

(4) 
2 yao Ea lon 2 

1 
where A=m {1-H 

@ running through all odd primes* ; 
lo 

3 Alo, = Oe. 
1,3,5,... ? (Y) 1,3,5,.. (9) 

atl A 
> (ne = 0, 

q 
where v(q) is the number of different prime factors of q; 

—1y sD ; eae 

BLO i sg agi ert ea ee 
dese Opecey oe ; 1535 ieee g 

s Al s (n) s 2(n) y(n) logn _ S PIA: 2 (log m)? _ 0: 

? n 
v(n) 

Seal = (log n) _ _ 944 log 2. 

* 4—-66016... is the constant which appears to play a fundamental part in 

‘Goldbach’s Problem’. See two notes, by Shah and Wilson and by Hardy and 

Littlewood, in vol. x1x (1919) of the Proceedings of the Cambridge Philosophical 

Society (pp. 238-244 and 245-254). 
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On the distribution of primes. By H. Cramiir, Stockholm. 

(Communicated by Prof. G. H. Harpy.) 

[Recewed 10 August 1920: read 25 October.] 

Throughout the whole of this paper, I shall assume the truth of 
the Ruemann hypothesis concerning the vcots of the Zeta function, 
wz. (a +2t) #0 for o >$. 

This being so, it is known that 

om (x) = Li (ax) + O (* log x) 1 cece dle (1) 
and Pin THOR. is. cock ee (2), 
where 7 (x) denotes the number of primes less than or equal to a, 
and p, denotes the nth prime. The last relation is independent of the 
Riemann hypothesis. But very little is known as to the behaviour 
of the difference 

A, = Pn+i— Pn 

between two successive primes, for large values of n. It follows 
from the “ Prime Number Theorem ” (1) or (2) that 

A,+A,+...A, i 
ate ee oat aloe. 

and from (1) that 

(= (O)( Dnt log? pn). 
I have recently shown* that the last relation may be replaced by 

An =O (pn? log pn). 
So far as I know, this is all that is actually known about A, 

It is very probable that A,, = 2 for an infinity of values of n; but 
this has not yet been proved, and it has not even been proved 
that A,<4 log p, or A, >2log p, for an infinity of values of n. 
The object of the present paper is to prove the following theorem, 
which gives an upper limit for the frequency of certain large values 
Oe (ANA. 

Theorem. Let h(x) be the number of PrUMes Pn < x satisfying 
the inequality 

Pn+i— Pn > pr, 
where 0<k=4%. Then : 

h(a) =O (@'#***) 
for every positive e. 

* “Some theorems concerning prime numbers,” Arkiv far Matematik, Astronomi och Fysik, Band 15 (1920), No. 5, pp. 1—822. 
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It is interesting to remark that we may obtain by a very 

trivial argument (viz. that the sum of all the h (#) A,’s which are 

greater than p* must be less than «+ ax*) the evaluation 

h(a) = 0 (a), 
but it seems impossible to improve this even by direct deduction 

from the Prime Number Theorem. 
The proof of the theorem given here depends on the theory of 

the function Se”, which I have studied in some recent papers*. 

We denote here and in the sequel by p= 4+ ty an arbitrary zero 

of the function ¢(s), situated in the upper half of the plane of 

the complex variable s = o + Ww. 
In order to prove the theorem, we shall require a set of lemmas. 

It seems convenient to remark that all the sets of points we shall 

have to deal with in the proof consist of a finite number of finite 

intervals (and perhaps a finite number of isolated points). Hence 

their measure may be taken to be the measure in the elementary 

sense. 

Lemma 1. If 
Dist) = et, 

ys 
we have 

a+2 f : 
[7 16 @.0)|de=0 08 (og oy! 

uniformly for x > 2. 

Proof. We have 

lb 8) SS pe 
ySv y'Sv 

and thus 
x-+2 2-2 Fane 

[lo Hlede=s = [etre ae 
| 2-2 ysv ySv- 2-2 

<= % Min(—..4). 
ysvy'sv iy ry 

The number of numbers 9 in the interval (y+, y+» +1) is 

O(log (y+v))t. It follows that our sum is 

log(y+1) , log(y+2) s Sy Sy 
O( © log 7) +0| > = Maa 

a Hae) 
= 0(v (log »)"), 

* Lc. (footnote 1); Comptes rendus, t. 168, p. 539; and Mathematische Zeit- 

schrift, Band 4, pp. 104— 
+ Landau, Handbuch, p. 337. 
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uniformly in z. Hence the truth of the lemma follows by the use 
of Schwarz’s inequality. 

Lemma 2. Let us put 
ul goat 

Aun 
and consider the interval x —25t =a + 2,wherex>2and}<a<l. 
Then the set S, of points t belonging to this interval such that 

| y cos yt e % | = Le 
Y 

us of measure M, such that 
plea). 

M,=O0O (ae 2 ) : 
Proof. We have 

yy Feces yee Ss 2 fem a) | = | y [4 (uv, t) e~™” du 

<y| "| 6 (0,8) | end 
Tt follows by Lemma 1 that, if we denote by y, and y, the 

values of y at the points x — 2 and x + 2 respectively, 
a+2 n , A 

| ap = © (| yw" (log v)? e~% dv) 
a—2 0 

Ne 
=O) (nyt (log ) ) 

=O (ee), 
Thus the measure of the set of points ¢ belonging to the interval 
of integration, such that 

Xcosyt ew 
Y 

| = cosyte | = Lett, 

must be of the form 

UE O(Ge .o) 

i) lee ) 
Lemma 8. In the set S,, complementary to the set S, of 

Lemma 2, we have ; 
Ss n(n) ea 0 
1 n((t— log n)? + 7?) Ly 

where |9|<1 for all sufficiently large values of x. Here » (n) eres the arithmetical function defined for integral values of 
n=I1 by 

1 
n(n) = a (n = p™, p prime), 

n(n) =O (otherwise). 



Dr Cramér, On the distribution of primes 275 

Proof. In a recently published paper*, I have proved the 

formula 
x (p—1) (¢+7y) 1 
s 7 (n) SIT L5G) le eats (;) 

eq binytyy te Ee ME 
where y may denote any positive decreasing function of ¢ which 

tends to zero as ¢ tends to infinity. On the Riemann hypothesis, 

and assuming y to be the function of Lemma 2, this formula 

reduces to 

S ri 7 (n) * 

y 1 n((t —logn)? +7’) 

gm 20 == et (1 +0 (%)) = cos (yt — dy — arg (t + ty) e-” 
t t/) 

=7-"Fe¥ (106) (gemneen + ootem))ro() 
But we have 

2 m/e iL 
Sra pe-ny \ — ae = i yy 0 (3 log ne r) 0 (leg 5): 

Hence 

/ ee Lea a) ( 
y = a log nF ry) ; 1—2e Scones W) +0 ;) 

By the definition of the set S,, we have 

| 2e7 #S cos yte™ | <4 
Y 

for all values of ¢ belonging to the complementary set S,. Since S, 

is contained in the interval («—2, x+ 2), we conclude that 

5 7 (n) eda 
= n(g—logne ty) ty 

where | 0 |< 1 for all sufficiently large values of &. 

Lemma 4. We denote by f (v) the function 

f (x)= = n(n) 

introduced by Riemann, and we consider the interval (x — 2, +2) 

of the two preceding lemmas. The set of points t belonging to thas 

interval such that 

Ss a=afe)-flez7¢4 t 
t<loguSt+y 

is, for all sufficiently large values of x,a subset of the set S, of 

Lemma 2, so that its measure is of the form 
pie 

O os i 

* L.c., footnote *, p. 272. 

Ke) 

18—d 
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Proof. To prove this lemma, it is only necessary to show that 

9 
> n(n) < -¢ e! 

t¢<lognSt+y 

if t belongs to the complementary set S,,. This follows immediately 
from Lemma 3, for we have, since » (n) = 0, 

S 7 (2) pA ame 

t<loguS<t+y mv ((¢— log n)? + Y’) ty 

if x is sufficiently great and ¢ belongs to S,. Hence 

1 2 

t<logn St+y ty t 

for all sufficiently large values of 2. 

Lemma 5. Let S be a set of points of measure M, situated in 
a finite interval ab. Then it is possible to divide ab into sub-intervals 
of length 6 (the two extreme intervals being possibly less than 8) in 
such a way that not more than M/6 of the points of division belong to S. 

Proof. Consider any such division of ab, and denote by a8 an arbitrary sub-interval of length 6. Let « be a point in a8, and denote by ¢ (x) the number of points of Sf which are “ congruent ” 
to # according to the adopted division of ab. Then it is clear that 

[ ¢@de=a. 

Thus there must be at least one point x, in a8, such that $ (%) < M/6. Starting the division of ab from this point, we see that the conditions stated in the lemma are fulfilled. 

Lemma 6. Let us denote bg c, the set of points t, belonging to 
the interval (a —1, «+ 1), such that 

m (ett) — ap (een) So 

where c is a positive constant. Here m(v) denotes as usual the number of primes less than or equal to v. Then it is possible to give such a value to c that the measure Mx Of ox satisfies the relation 
l-a 

in = 0 ae 4 

__ roof. We shall prove this lemma by first excluding from the interval (x—2, # + 2) a certain set, the measure of which satisfies 
# 
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the relation just stated for w,, and then proving that we may 
choose c so that 

a (eo + Y) — a (ef) See resect es (3) 

in the part of the remaining set which belongs to (~7—1, « +1). 
By Lemma 5, we are able to divide (1-2, x+2) into sub- 

intervals of the length 
he ; : goer) 

in such a way that not more than 

M, 
Ye 

of the points of division belong to the set S, of Lemma 2. 
Supposing this to have been done, we exclude from the interval 

(x—2, +2) the set 2, defined in the following way: we take 
first the whole set S, and then, denoting by ¢ any of the just 
mentioned points of division belonging to S,, the interval 
(ty) — 2x°y2, t) + 2x*y,). The measure of ¥, is thus less than 

My + 227Yp. 7 =) (ae) 
2 

In order to prove the lemma, we now have to show that ¢ may 
be so chosen that (3) is valid for any tin (2 — 1, x + 1) not belonging 
to >,. It is to be noticed that the definition of Y, in no way 
involves c. 

Since ¢ does not belong to ¥,, it does not belong to S,. Thus 
we have by Lemma 3 

S 7 (n) 7 —1 
= n((t — log n)? + y°) es fg 0 aa (4) 

for all sufficiently large values of x. We put 

Pans + py + > + > 
1 lognSt-1 ¢t-1<lognSt-ay,  t—axyo<lognXt—-ey.  t—-cy2<lognit+eye 

3° > + = Foe 
t+eyo<lognSt+2°y2  t+a?y2<logn <t-+1 é+1 < log» 

SEAR A) so SA OE aoe te (5). 
Then we have 

n il 1 
Ab ess pox an) > == ol) eee (6), 

logn <t-1 n mSe n ty 
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. (n) (n n(n n(n 
A,= ae < + ——— 

; feces nv ((t as log ny ate y’) log 2 > ¢-41 1 (log ti t)? 

s 7(n) ( i 2t log n ) 
en>tq nm \(lognP+é  ((logn)? + #) (logn—ty 

i 2t iACs 
Pah tai 10 ( + ) =0 (=) s4cc Seen 1); 

ben Sepi ie) Neem) ie loom ty (7) 

since the series > 2 (2) is convergent. 
nlogn 

In order to obtain similar evaluations for A, and A,, we consider 
the division of (c—2, x+2) into sub-intervals of the length y, 
which we have used for the definition of =,. Since ¢ does not 
belong to =,, it follows from this definition that none of the points 
of division situated in the interval (t— 2°y., t+ ay.) belong to the 
set S,. Hence, denoting by t, any such point of division, and by 
y, the corresponding value of y, we obtain, by Lemma 4, 

; 9 
3 n(n) Ss > n(n) < eb. 

ty <lognSt+y2 ty <logn Sto+yo ty 

Thus, if we consider first A,, and group together the terms belonging 
to the same sub-interval (considered as interval of variation of 

| 
| 

log n), we obtain | 

1] 1 1 2K 
A,< Kiet. al 

; Hay opt (4ilry* (e+ 2) y 

supposing c>1 and denoting by K a constant independent of | 
c and ¢. 

Grouping together the terms of A, in a similar way, we have 

if 
Ar ea a) ee ——_—_—— 

; t—-1<logn <t—2y, C ya log n)P 

=0|e-*. ye'( = E ae i +.) 
xy? @ at 1)? y (22+ 2y y? 

Le | =0 a) =o (=) a. (9), 

since the number of terms in each group is of the form O (ye?). 
Of the remaining terms, A, may obviously be treated in the 

same way as A,, and A; in the same way as A;. Thus we see, from 
(4)—(9), that it is possible to determine two absolute constants 
Cc, and x such that 

=F, nw 5 a 
; t—cys < log n S t-+-cy2 ((¢— log n)? + ¥?) ty 
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for all values of ¢ in (2 —1, +1) not belonging to ¥,, so long as 
c>c,andz>2,. Hence, a fortior, 

= n(n) Were 
t-—cy< lognSt+cy n ((¢ — log ny? + y’) ty 

—(¢—cy) e 7 —2 
= 2 n(n) > Pant 

y t—ecy <lognSt+cy y 

s n(n) > (4 — 2) Zeta sal cutee (10). 
t—cy <logn <t+cy 

and 

But we have 

: n(n) =m (et) — ar (02) 
t—cy <logn St+cy 

HEE *(e-bey) * (t-cy) 
+2 |x (¢ me) a (er wie 

y=2 V 

log2 1 Lees S 1 ln ee ee Ge st 

y=2 V / 

t 1 Loy t . 
=() EB ss feat at oe 1)| = 10) EB Z (Ze + 1) | 

2v 29V\V 

= 0 (log t) = 0 (¥ et). 

and 

Hence, if c is fixed and greater than c,, we obtain from (10), 

Tv (etty) —T (e’—Y) = =e, 

for all sufficiently large values of x, and for all values of ¢ in 
(x—1, +1) not belonging to X,. 

Proof of the theorem. 

Consider the set of points e’, where ¢ passes through all the 
points t of the set o,of Lemma 6. This set belongs to the interval 
(e*— e*+1), and its measure is less than e**"y,. Hence if,in Lemma 
6, we write x in the place of e”, tin the place of e¢ and & in the 
place of 1 —a, this lemma will take the following form: 

Let us denote by co, the set of points t, belonging to the interval 

(=, ex) , such that 

c C i a ue (mees 
i ¢ 3 logt a log t log?t 
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where c is a positive constant and 0 <k#=4. Then it is possible to 
give such a value to ¢ that the measure px’ of ox’ satisfies the relation 

pa = O (x'~* log a), 
Suppose now that ¢ has been properly fixed. Then it is clear 

that, if x is sufficiently large, and if p, denotes a prime belonging to 
the interval (4a, x) and satisfying the inequality 

Pnti—Pn> Pr, 
then the interval (pp, Pni1i) Will contribute more than 4p* and a 
fortiori more than } (4a)*, to c,/. Hence we obtain 

2 (2@)* (h (w) —h (32) = O (w- tte), 
h (a) —h (3a) =O (41-i¥+9), 

If we replace in the last relation z first by 32, then by 42, and so 
on, and add together all the relations obtained in this way, we get 

| Oj Ole 
Hence our theorem is proved. 

CAMBRIDGE, 20 July, 1920. 
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Note on the parity of the number which enumerates the 

partitions of a number. By Major P. A. MacManon. 

[Read 25 October 1920.] 

In a letter received by me from the late S. Ramanujan about 

a year ago he stated that it was his intention to calculate the 

number of the partitions of 1000 by the direct approximate 

formula which had been successfully used by him and G. H. Hardy 

in the calculation of the case n = 200. He enquired, at the same 

time, if I knew of any simple way of ascertaining whether the 
sought number is even or uneven as this information would be of 

importance to him. This note has arisen in consequence of this 

enquiry. 
I shew, in particular, that in the case of the partitions of 1000 

the parity can be found, in a few minutes, from certain congruence 

relations. 
It is easy to derive, from the theory of the self-conjugate 

partitions of x, that 
1 

— = TI (1+q7"—) mod 2. 

Tm(1—g™) 
Thence 

a ile {(1 a2 ns) (1+ Jeu (_1— qi™)} 

—_——=- — mod 2. 

Bik —¢"™) be (go) 
1 1 

The numerator of the fraction on the right is one of Jacobi’s 

elliptic products which has the series expression 
legt+G@tGtgrt...Fqeayt+.... 

Wherefore if p, denote the number of partitions of n 

Spnqr=(L+ qt Ft P+ ert ---) Spay mod 2. 

Put Dn = A mod 2. 

Comparison of the coefficients of like powers of 4 yields the four 

relations 

Ayn = An + An7 + An-g + An—so F An—s4 + Un—eo + An—75 + An—104 

+ An—132 + An—195 + In—205 + An—o2 + An—sos SCL 

Qynga = An + Anos + An-11 + An—6 + Gn—ss + An—3 + An—si + On—n16 

+ An—r40 + An—1e5 + On—ors + An—270 + Un—s06 + ++ > 

Qans9 = An—1 + An—2 + An—16 + An-19 + Un—a7 + An—s2 + An—s4 + An—-101 

+ An_157 + An—r66 + Un—296 + Un—2a7 + An—ssi + +++ > 

Qints = An + On—3 + Onis + An—2e + Un—se + An—s7 + An—s7 + Gn—108 

+ GAy—rag + On—175 + Un—o + noes + An—sis Sp istancs 
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These relations may be written 
wo 

Wan = = Wy — (882-8) | 

i.e) 

Cnt = = @, — (8s?+3s) 
: : 

Cn+2 = 7 G1 —1— (8527s) 

loa} 

Cnss = = ©, — (832-458) 

In fact the four relations are connected with the four elliptic 
products 

ie (1 a Quien?) (1 eth gum") (1 eas qu 

We (1 ey Gee) (1 ce, Oar) (1 an Ope), 
1 

q ie (1 — gems) (1 — quem) (1 — gi), 
1 

ie (1 a Gee) (a — gi") (1 ah GD) 

1 

The formulae which have been obtained soon involve high numbers 
and are therefore suitable for the calculation of parity of p, when | 
m is large. 

. As an example of the use of the formulae I append the calcula- | 
tion of Qo, the parity of pio, making use of the enumeration. of | 
the partitions of n, as far as n = 200, calculated by me in connection with the valuable paper by G. H. Hardy and S. Ramanujan*. 

We use the first of the four relations but we first of all require 
the parities of P250> Prs3, Pe, Po, Pore: 

From the third relation 

Bago = Ag + Ug + Ayg + Aas + Ays + Ayo 
=14+1+04140+0=1. 

From the fourth relation 

A243 = Ago + Asz + Caz + Asg + Ayg + Az 
1+04+0414141 

=0. 
From the second relation 

Ara) = Ugy + Ass + Aggy + gy + Ag 
=1+0+1+0+0 
=(. 

* Proc. Lond. Math. Soc. Vol. xv et seq. 
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From the first relation 

W090 = Ass + gg + Ugg + Mos + Ao, 

=0+1+0+0+4+0 

=1. 

Aoig = Us, + gy + Mg5 + og + Aap 

=1+04+04+141 

a 
Thence 

Ayo00 = Bas + Ayyg + Mog + Aaa + Aayg F Aye + Aizs + Ayog + Aayg + Ass + Ags 

=1+04+0414+14+14+040+4+1+4040 

=1, 

establishing, in about five minutes work, that po) is an uneven 
number. 
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Cambridge Dbilosopbical Society, 

Note on constant volume explosion experiments. By S. LEEs, 
M.A., St John’s College. 

) [Read 24 January 1921.] 

~ §1. Much work has been done in recent years in determining 
the values of the volumetric heats of gases at high temperatures. 
In the main, the experiments have been made either at constant 
_ pressure with the gas heated externally, or at constant volume with 
the heating produced by explosion in a closed vessel. A compre- 
hensive collection of available data on this subject, with estimates 
of the probable degrees of accuracy involved, has been given by 
‘Mr Dz. R. Pye of Trinity College*. 

Such differences as occur in the results from the two methods 
seem to be in one direction, the internal energy for a gas obtained 
by constant pressure methods being slightly less than the value 
obtained by constant volume methods. It seemed possible to the 
author that the variations of temperature experienced at any 
instant in different parts of an explosion vessel, might account for 
'some part of the difference in the values of the internal energy 
obtained by the two methods. 

In this connection, the following extract from the first British 
Association Report on Gaseous Explosions (1908) may be quoted: 

If the volumetric heat of the gas were constant, the equalisation of these 
_temperature differences by convection and conduction, could it take place 
without loss of heat, would cause no change of pressure. The volumetric heat 
is, however. not constant, but may quite possibly be 50 per cent. greater in 
‘the hottest than in the coldest part of the mass. The attainment of thermal 
equilibrium must, in fact, cause a change of pressure....The amount of the 

‘change might be the subject of rough calculation, taking an assumed distribu- 
“tion of temperature and assuming values for the volumetric heat. Such a 
‘calculation in the present state of knowledge would only be of value as showing 
the possible order of magnitude of the quantity sought, and the assumptions 

| made could therefore be of a character to make the calculation fairly simple. 
'More accurate knowledge both of temperature distribution and of thermal 
capacity will enable greater accuracy to be attained in the estimation of this 
correction, which will be of such a kind that a method of successive approxima- 
tion can be pursued, the revised values of thermal capacity resulting from its 
application being applied to a more accurate calculation of the correction, if 
necessary. 

* See Automobile Engineer, Feb., 1920. 
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It may be stated at the outset that the corrections on this 

account to be applied to the values of total energy obtained from 

constant volume experiments appear to be of very small amounts, 

and to be well within the limits of experimental error. In spite of 

this, the method of computation given below may be of interest to 

workers on this subject. 

a 

explosion, some simplifying assumptions will be made. The con- 

stituent gases of the exploded mixture are each assumed to follow 

the ideal gas law VAR, 4... (1) 

§2. In discussing the state of affairs after a constant volume — 

where p is pressure, V is volume, 7’ is absolute temperature, and © 

R is the same constant for a gramme-molecule of each of the - 

constituent gases. It is further assumed that these constituent | 

gases are intimately mixed, so that there is no variation in the 
chemical composition of the gas mixture at different points of the 

interior of the vessel. Finally it is assumed that the volumetric 

heat of each constituent follows a linear law of increase with 

temperature. Thus a given mixture will also follow a linear law of 
increase of volumetric heat. 

§ 3. The calculations involved are made more simple if a mass 
M of a constituent gas be replaced by N = M/m, where m is its 
molecular weight. The mass JM is thus replaced by its equivalent 
in gramme-molecules. In the case of any portion of a chemically 
homogeneous gas mixture, the weights of the constituent gases 
may be replaced by the number of gramme-molecules in each case, 
and we may speak of the number of gramme-molecules of the 
mixture without any difficulty. 
_ To take into account the variation of temperature at any 
instant of the mixture at different parts of the interior of the - 
explosion vessel, we may divide up the contents of the vessel as 
follows: 

N, gramme-molecules of mixture at absolute temperature T,,, 

N, 29 2” 29 29 oy) T, ? 

N; oe) 29 29 29 29 Ts ? 

etc. etc. 

If NV be the total number of gramme-molecules of the mixture in 
a vessel of volume V, the partial volumes V,, V5, etc. of the 
constituents are given by 

. pV,=RNGT,, pVo— RNGES, pV 5 — Neer 
where p is the uniform pressure in the vessel. Thus 

pV = p(V,+ V2.4 V3 + ete.) = R(N,T, + NoT, + N37; + ete.) 
= RE (NGL )S coco coe (2) 
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‘In most experiments of this kind, the pressure p is used as a means 
of measuring the mean temperature 7’,,. For a chemically homo- 
geneous mixture, this mean temperature will obviously be defined as 

Y a x (N,T,) ie X (N,7)) (3) 7 SN, | 

where JN is the total number of gramme-molecules in the vessel. 
Hence from equations (2) 

DV SRRNT | Cals Career (4) 
which since V, &, N are constants, indicates how p may be used to 

“measure T’,,. 

_  §4. The total internal energy # of a gramme-molecule of the 
gaseous mixture at a uniform temperature 7’ (absolute), assuming 
linear increase of volumetric heat with temperature, is given by 

E= AT + BT, 

where A, and B are constants. If as usual we measure # from a 
‘standard temperature 7), the internal energy # must be written 

B—A,(F—T,) +48 (T?-T,.)=C+ Al + 4B", ....(5) 

where C= —(A,f, + 4BT,”). 

On dividing this value of EF by (7 — 1) we get the mean 
specific heat (at constant volume) per gramme-molecule, i.e. the 
-mean volumetric heat, between 7 and 7), in the form 

Ag Bin eT) = A ASB, viene vsstenes (6) 

where A = A,+ $B). 

The true volumetric heat at temperature 7 is given by dH#/dT 

and is therefore equal to 
Mita Sr. Nieves onlin (7) 

§5. Reckoned from 7’), the internal energy of the mixture 

defined in § 3 will be 

Oxy 4 NT, + $BUN T= CN + ANT, + $B2N, TY. 
bss (8) 

Hn explosion experiments, this is usually assumed to be equal to 

the internal energy of the whole mass taken at the mean tempera- 
ture T,,,, i.e. is assumed to be equal to 

ON AGN Ty + EBND te secceteveeesaeeess (9) 

The first two terms of expression (8) are the same as the first two 

terms of expression (9). We have, therefore, to compare Da NG 

with NT,,2. To do this, put 

T,=Tmitts T2=Imt+t,, T3= Tm + tg, ete. ...(10) 

19—2 
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so that NT, = UN,T, = UN (Tm +t) = NIm + UN yh, from (3), 

We. NGG Oe eee ee (11) 

We then have 

DN, 22 = UN, (Lm + ty)? = PPL + 2T UN yt, + UN”, (12) 

so that from (11) 
DNL? = Nie te DING eo eee (13) 

Hence expression (8) is greater than expression (9) by the essentially 

positive quantity | 
ABOIUNGG A). .cse:ieee eee (14) 9 

To get the true value of the internal energy corresponding to | 

uniform temperature T',,, we must therefore diminish the actually | 

Fig. 1. 

measured value (8) by expression (14). This means that the ex- 
plosion experiments will give higher values, in general, for the 
internal energy, than constant pressure experiments, ideal accuracy 
in other respects being postulated for the determinations. 

§ 6. There remains the problem of estimating the order of this 
difference of internal energy values, i.e. the order of magnitude of 
expression (14). 

The problem of temperature distribution at any instant inside 
an explosion vessel requires the determination of the number dN 
of gramme-molecules of mixture* whose temperature lies between 
T and T + dT. If this be known, the temperature distribution can 
be represented by a graph like fig. 1. The graph is such that the 
abscissa of any point on the curve DCE represents the total number 
of gramme-molecules whose absolute temperature is not greater 

* To emphasise the simple algebraic character of the argument, the calculus 
notation has been avoided in §§ 3 to 5. 
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than 7. From its nature, therefore, the curve must always slope 

p 

upwards from D to Z. Referring to this diagram, it is easily seen 
from the definition (3) of 7,,,, that the shaded areas ACD and CEB, 
on opposite sides of the line 4B, must be equal. 

In the absence of more accurate knowledge as to the shape of 
the curve DCE, we may take it as approximately a straight line. 
This will, at any rate, give some kind of approximation to the 
truth. On this assumption, we shall apply our expressions to some 
results obtained by the late Prof. B. Hopkinson. In one of his 
explosion vessel experiments, Hopkinson* found for the instant of 

Fig. 2. 

maximum pressure (corresponding in this case to a mean tempera- 

-ture of 1600° C.) a maximum temperature at the centre of the 
re ‘vessel of about 1900° C., whilst the temperature was probably as 

‘low as 1100° C. in the immediate neighbourhood of the walls. The 

difference between the maximum temperature and the mean being 

less than the difference between the minimum temperature and the 

/ mean, the curve of temperature distribution has been arbitrarily 

assumed as DCE in fig. 2. In this diagram, DC and CB are taken 

_as straight lines, whilst the point C on AB has been so chosen that 

- the area ADO equals the area CEB. It will readily be verified for 

the temperatures obtained by Hopkinson that AC = 3N/8, whilst 

CE = 5N/8. 
For continuously varying temperatures throughout the gas, 

_ expression (14) must be replaced by 

ER PN eee ves hse (15) 
* Proc. Roy. Soc., 1906. 
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the integral being taken over the shaded areas previously referred 
to. It is useful to note that the integral in (15) for each piece of the shaded area is exactly twice the first moment* of the area of the piece about AB. The expression (15) thus becomes in our case 
numerically equal to 

(500)? x 3N (300)? x 5N B 
6x 8 6x8 

The mean volumetric heat per gramme-molecule for air, from 
0° C. to 1600° C., is probably about 5:55 gramme-calories. Thus 
for air at 1600° C., the internal energy reckoned from 0° C. is about 
8880N. The increase in value of the volumetric heat with tempera- 
ture does not appear to follow exactly the linear law, but in the 
neighbourhood of 1600°C. we may take the increase as being 
roughly 0-5 gramme-calories per 1000° C. Thus from expression (6) 
we see that B can be taken as 1 x 10-3. Thus expression (16) be- 
comes 25N, which expressed in terms of 8880N is 0-283 %. With 
the assumed conditions, this is the amount by which the observed 
internal energy at 1600°C. should be diminished to give the 
corrected value corresponding to uniform temperature throughout. 

Tt is conceivable that the true shape of the temperature dis- 
tribution curve may be something like the dotted curve DFCGE 
of fig. 2, in which case the correction would be materially increased, 
It is also possible that the temperature differences in the gas may 
diminish during the early stages of cooling at a much slower rate than the mean temperature. On the whole, however, it would seem 
probable that the correction ought not to exceed | % of the value of the internal energy, and might very well be much less. 

25000BN. ......(16) 

§7. Conclusion. An effort has been made to investigate the 
effect of temperature variations in an explosion vessel, on the 
values of the total internal energy measured. Instead of approach- 
ing the problem from the point of view indicated in the B.A. Report, 
by modifying the temperature fora given internal energy determina- 
tion, the author has modified the internal energy for a given mean temperature, and has given reasons which seem to indicate that the correction is probably not more than 1 % at a temperature of 1600° C. This order of correction is within the limits of probable 
error of experiments at the present time iia 

* For / edN =2 i 5. 4S, where dS =tdN. 
T Loc. cit. t See Pye, loc. cit. 
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On the Latent Heats of Vaporisation. By Eric KErIGHTLEY 

Ripeat, M.A., Trinity Hall. 

[Read 28 February 1921.] 

A number of attempts have been made to associate the latent 

heats of evaporation (L) with the natural periods of atomic vibra- 

tion (v) as calculated by the methods of Lindemann*, Einstein, 

Bernouilli and Nernst or determined experimentally by Rubens. 

There is, however, no relationship between the infra red vibration 

frequencies of the elements and their latent heats of evaporation. 

On the assumption, however, that intermolecular, chemical and 

physical actions take place with energy transfer in quanta and not 

continuously, it should be possible to derive the latent heat of 

evaporation of an element from some natural vibration frequency 

or spectral line. Although this spectral line need not necessarily 

be in the infra red portion of the spectrum. It is especially desirable 

to test this hypothesis in the case of the latent heats of evapora- 

tion, since this is a typical physical process and a conformity to 

theory would confirm the supposed identity of physical and chemi- 

cal forces and at the same time from the thermodynamic equations 

connecting the latent heats of evaporation and the vapour pressure 

together with the molecular kinetic effusion equations of Herzt, 

Marcelin and Langmuir it would be possible to calculate the inde- 

termined integration constant of the vapour pressure formula and 

thence the so-called Nernst chemical constants. 

According to the quantum theory applied to the energy change 

involved in evaporation considered as a chemical process the latent 

heat of evaporation per gm. mol. should be given by the expression 

L=WNh (Uproducts = Vreactants)s 

where } is Planck’s constant, vp, the vibration frequency of the 

products the metal vapour and 2, of the reactants, the solid or 

liquid evaporating. The evaporation of a metal may be imagined 

to take place by two different processes. We may remove a com- 

plete atom from the metal to the vapour state, then the activating 

frequency of the metal atom in the vapour state will correspond 

to some very small energy transfer, since experiment has indicated 

that practically all vapour atoms coming in contact with the solid 

metal stick, 7.e. as far as reactivity with the solid metal is concerned 

practically all the atoms are active, thus v products will correspond 

to a radiation far in the infra red and is probably not far removed 

* Physical Chemistry, McLewis, vol. 11. 

+ Ann. Physik, 17, 177 (1882). 
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from the natural infra red vibration frequency itself. The frequency 
of the radiation necessary to activate an atom in the solid will 
correspond to some line in the spectral series, each representing a 
different degree of activation of the element, which should be 
capable of experimental determination in the spectrum. In the 
attached tables are given a few of the lines in the spectrum of the 
various elements as observed by Rowland, Kayser and others (c/o 
Landolt-Bornstein Tabellen) and the latent heats calculated there- 
from (Z,). It will be noted that the line corresponding to the 
activation frequency of the atom in the solid is generally fairly 
widely separated from the other lines and is thus at or near the 
head of a series. The choice of the particular fundamental line, 
however, is somewhat arbitrary and it is consequently necessary 
to find some alternative method for calculation of the latent heats. 

If we consider that a metal is built up of space lattices of 
alternating valence electrons and positive nuclei, the activation 
of a metal atom can be assumed to take place in two distinct steps, 
the activation of the positive nucleus in the metal and the activa- 
tion of the valence electron attached to it. The activation fre- 
quencies of the positive nucleus and the valence electron respec- 
tively are given by the Yintra rea ANG Vyjtra violep (Or the photo 
electric frequency) frequencies whilst the activation frequency 
of the atom as a nucleus-electron complex corresponds to the 
so-called “radiation potential” of the element. It has already 
been indicated by Haber* that the transfer of a quantum of energy 
in a solid results in the activation of two atoms, being virtually a 
cleavage of a diatomic molecule linked by an electron into two 
active atoms. The latent heat of evaporation will therefore be 
given by the expression: 

L = 3NL (radiation — {Umtra rea + Vuitra violet} 
In the following tables are given the latent heats of evaporation 

calculated on this basis (Z,), the infra red: radiation frequency 
being calculated from Lindemann’s melting point formula, the 
ultra violet frequency from Haber’s relationship 

Mr eq = MV rXtra violet > 
where M and m are the atomic and electronic masses respectively. 
Where experimental values for ?yaaiation (or the radiation poten- 
tial) are not available there have been calculated from the approxi- 
mate relationship v;adiation = Vuitra violee- In the last column are 

58 
given the values of (£3) calculated from vapour pressure data col- 
lected by Johnston (Jour. Ind. and Eng. Chem. 9, 876, 1917), 
Gebhardt (Ann. 40, 438, 1913) and Langmuir (Phys. Rev. 2, 329, 
1913). 

* Ber. Deutsch. phys. ges. 18, 1117 (1911). 
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Line of atomic Infra | Ultra Ekad Ils 

Metal activation with those L red violet | ah in z observed 

next to it 1 | Nhv in|) Navin | ooiori latent 

din ME. calories| calories ae heat 

K 1248, 1252, 1516-6, 2706 | 18,575 | 225 64,100 | 27,480 | 18,420 | 17,900 

Na 819, 1138, 1267, 1845 | 23,718 | 382 88,640 | 48,090 | 20,466 | 20,500 

Li 670, 8, 812, 1868 | 34,264) 936 | 104,600 — 30,000 | 29,000 

Rb | 1366, 1475, 1529, 3581 | 17,644 | 136 53.700 — 15,240 | 17,780 

Cs | 1012, 1354, 1470, 2931 | 18,511 | 889 57,300 — 16,180 | 15,900 

Cd | 643-8, 1039-6, 1398 27,219 | 281 | 126,350] 87,930 | 24,350 | 25,000 

Zn | 636-4, 1105-5, 1305-5 25,590 | 408 | 140,600 | 90,000 | 25,500 | 28,800 

Ag | 518-4, 880-7, 1182-9 32,000 | 664 | 141,500 = 40,300 | 33,700 

Au | 338, 405-5, 563-3 69,800 | 408 | 187,500 — 51,700 | 65,500 

Cu | 327-4, 402-3, 578-2 70,373 | 627 | 214,500 — 61,100 | 75,400 

Fe | 346, 357, 372, 386 | 76,000| 777 | 250,650 — 71,160 | 77,800 

Cr | 360-5, 364, 367-6, 390-3| 72,230 | 777 | 240,400 — 68,370 | 68,200 

Pb | 391-6, 404-9, 412-9 560, 
665 42,820| 180 | 112,600 — 32,000 | 45,400 

Sn | 374-6, 452, 556 75,800 | 210 98,260 — 27,900 | 69,000 
63,100 

Al | 572, 1125 49,300 | 702 | 157,000 — 44,700 | 52,600 

Tl | 377, 535, 1151 55,130 | 172 | 105,500 — 30,000 | 40,500 

Hg | 615, 1014, 1367-4 20,700 | 202 | 124,900 | 114,210} 5,450] 13,500 

Pt — — 408 | 244,900 — 69,400 | 128,000 

Mo — — 590 | 246,000 — 70,000 | 177,800 

Ww — — 468 | 273,500 — 77,450 | 218,500 

Ni | 367, 372, 377°5 76,140 | 768 | 250,800 — 71,230 | 76,500 

Mn | 478, 482-3, 601-3 58,600 | 702 | 224,270 — 63,700 | 56,300 

a Be es 

It will be noted that for the metals in which the natural con- 

stants have actually been determined there is a very fair agree- 

ment in the three values of (LZ). Marked divergencies are, however, 

to be noted in the case of the polyvalent elements Hg, Sn and TI, 

and in those metals of high boiling points. In this latter case the 

fact that thermionic emission is strongly marked is an indication 

that the Haber relationship does not give the correct periodicity 

of the binding electron, but one of the electrons liberated by 

thermal agitation. Closer agreement is scarcely to be expected 

since, in many cases, the whole basis of calculation is the Linde- 

mann melting point and the Haber vibrational relationship, both 

only approximations. 
There is, however, a sufficiently good agreement to afford evi- 

dence for the validity of the quantum relationship in this physical 

molecular energy interchange. It would be of interest to deter- 

mine whether the extension of this hypothesis, involving new 

assumptions, were also valid, 7.e. whether the vapour pressure of a 

metal, e.g. potassium, could be raised by illumination with either 

monochromatic radiation of A = 1516-6 up or with a dichromatic 
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illumination of frequencies 2-3 10! and 6-85 10, the respective - 
infra red and ultra violet activating frequencies. 

The application of the hypothesis to the calculation of the 
latent heat of evaporation of non-conductors is more difficult, 
owing to our lack of knowledge of the intermolecular forces. The 
latent heats are, however, all relatively small and the infra red 
absorption bands generally well marked, thus CCl, possesses a 
marked absorption band at 4:5 x equivalent to the value ZL = 6400 
cal. per gm. mol. which agrees with the observed value of 

7100 — 700 = 6400 cal. 

In the case of naphthalene an absorption band would be antici- 
pated at 3:36 w, whilst actual observation indicates a strong ab- 
sorption at 3:25 uw. In the case of water the complex infra red 
spectrum leaves little doubt as to the existence of polymers in 
solution. That the formation of di- and tri-hydrol takes place 
through the oxygen atom is indicated by the equivalence of the 
latent heat of evaporation to the interatomic energy provided by 
a vibration frequency of 3-0 pz (9,540 cal. per gm. mol.) an absorp- 
tion band which is always noted in compounds containing the 
hydroxyl group. 

The so-called chemical constants of Nernst necessary for the 
evaluation of the equilibrium constants and reaction affinities of 
reactions occurring in non-condensed systems are related to the 
undetermined constant of the vapour pressure formula by the 
relationship 

i+log,R 
2°3023 7 

where @ is the integration constant of the PEASE suo -Clausius 
equation 

= 

th Oho l= 

Re Oe 

ae 0 log C ibn = RT. 

OT RI? 

putting Lm — RT = 1, + aT + BT? + 

Clog Cy Ly a 
oT ae RT?2 =F RT -+ Orory 

log, OC = 
= Ip 
ar t poet +s, 

(a + R 

ear. 

When equilibrium is established between a liquid or solid and 

Hog, 7+ PE 4 ... t+ log, R. 

: 
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its vapour the number of molecules striking the surface in unit 

time is equal to the number leaving. 
According to the effusion equation developed by Herz, Knudsen 

and Langmuir* the number of molecules striking unit area per 

second in a gas at pressure p, temperature T and of molecular 

weight M is given by the equation 

ee A ae 
BS ViaRMT 

where p is the number of gm. mols. striking a square cm. per 

second. In a recent communication} it was shown that the rate of 

a unimolecular reaction 

had a physical significance in that v was the time of molecular 

relaxation. This relationship shown to be experimentally true by 

Dushman and Langmuirt assumes merely that intermolecular 

energy changes involving chemical forces obey the quantum re- 

lationship. The above data indicate that the latent energy of 

evaporation is the work done in overcoming forces of a nature 

similar if not identical with the usual chemical manifestations. 

We may therefore regard the vaporisation of a substance from a 

liquid or solid surface as a monomolecular chemical reaction. 

The number of gm. molecules per square cm. of surface is 

bas 
Nad?’ 

where N is the number of molecules per gm. mol. and d the molecu- 

lar diameter. 
. The rate of evaporation in gm. mols. per square cm. per sec. 1 

accordingly given by the expression 
7) _Nhv 

Nad? ° 
This can be equated to the number of gm. mols. striking a square 

cm. per second, or 
Nhv v = 

ViaRMT Nad 
On taking logs of each side we obtain 

Nhv vV2rMR 

log, P = aT RT of 4 log T+ log, ot Meee 

* Phys. Rev. 2, 331 (1913). 
+ Rideal, Phil. Mag. x1, 461 (1920). 

+ Jour. Amer. Chem. Soc. 42, 2190 (1920). 
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We have also seen that the expression Nhv can be put equal to 
the latent heat of evaporation (ZL). 

If p be measured in atmospheres (10° bars.) and Z in calories 
the expression becomes 

ie oVM 
eeE er | Bee Pe ea anes 

The value of the chemical constant C, is thus equal to 

oVM 
CS rene 

2-3023 
or taking the generally accepted value of N = 6-062 1023 we obtain 

Cy = 0'2980 + log, ae . 1-200 10-28, 
This relationship may be tested by calculation of the chemical 
constant in those cases where both L and d are known, and com- 
paring these values with those determined in the usual way from 
the vapour pressure curve. - 

In the case of CO, 

M=44, Lese¢, = 3100*, .. L= 2600, v= 2-61. 1023, 
and d = 4-56 10-8 cm. 

loss, oe 1-200 10-*6 = log,, 9-972 102, 

or C= 3:29. 
The actual value of Cy from vapour pressure data is 

Co — 3-20: 
For hydrogen Eucken finds L = 229 cal. per gm. mol. 

d = 2-68 10-8 cm. 
Hence v = 2-446 1022, 

and Cy = 2:10 (observed value 2-20), 
For water, inserting the values 

d = 4-54 10-§cm., L = 10,200 cal., 
we find v = 1-09 10%, 

we obtain Cy = 3:73 (observed value 3-70). 
The influence of molecular size is well exhibited in the case of 

benzene. Surface tension data indicate that the molecular diameter 

* Landolt-Bornstein Tabellen. 
+ Jeans, The dynamical theory of gases. 
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across the benzene ring is 10-6 10-* cm. (the distance between two 
carbon atoms being 6:2 10-8 cm., hence the diameter is 

V3 96.2 10-9) 

and that the benzene molecule lies flat upon the surface of a hquid. 
Inserting the values 

DL, = 8000 cal., M = 78, 

Cy = 3:187 (observed value 3-20). 

A high value for the chemical constant is found in the case of 
iodine, where C = 4-0. The molecular weight is 

M=254, d=3-96 10 cm.* 

L per atom 2146 cal. or per mol. 4292 cal., hence 

0 = 4:08 10%, and C, = 4-09. 

Similar close agreements are to be found in the other cases 
where the values of Z and of d are known. 

The above derivation for the chemical constant leads to the 
dimensional expression 1 = MI-1t-*, where M, / and ¢ are the re- 
spective dimensions of mass, length and time. 

If we insert temperature into the dimensional expression we 
optame, = Mii 0-". 

This can be compared with the expression derived by Nernstt, 

wm,\2 93 

pap oe = 20, 
ke? 

and with that obtained by Sackurt and by Tetrode§, 

Qarm)?* k? 

It will be noted that there is a lack of agreement in these expressions 

as far as the temperature is concerned. Lindemann has developed 
from dimensional considerations the expression 

— Mi-1t-267%. 

a= log ue pi Oa
k 

where b’ = 5R approximately (the atomic heat of the gas at 0° K.) 

and a’ is the atomic heat of the solid at 0° K., which is either zero 

oc a very small quantity. With elevation of the temperature the 

? 

* Rankine, Proc. Roy. Soc. A, 83, 516 (1910); Phil. Mag. 29, 552 (1915). 

+ Grundlagen des neuen Warmesatzes, Halle, 1918, p. 138. 
t Ann. der Physik, 40, 67 (1918). 
§ Ibid., 434, 39, 255 (1912). 
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value of 6’ — a’ gradually decreases and the power of 6 increases 
from — 3 at 0° K. to 0 at the critical point where gas and solid 
become identical. 

It will be noted that the above expression derived from the 
latent heat equation and the effusion formula gives us a general 
method of calculation of the thermodynamic potential differences 
or the difference in the fugacities of a substance distributed in two 
phases and is not necessarily confined to the particular case where 
one phase consists of the material in the zero thermodynamic 
environment of a perfect gas. 
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On the function [x]. By Viaco Brun_(Dribak, Norway). 
(Communicated by Prof. G. H. Harpy.) 

[Read 24 January 1921.] 

§ 1. In the Proceedings of the Cambridge Philosophical Society 
(Vol. xrx, Part 5, 1919) Mr Shah and Mr Wilson have discussed 
some formulae proposed for calculating the number of Goldbachian 
decompositions of an even number. They have also mentioned a 
formula of mine, saying: “The formula to which Brun’s argument 
leads is ...(11)” (page 243). In reality I have not enunciated this 
formula, as Mr Hardy and Mr Littlewood justly remark in their 
“Note on Messrs Shah and Wilson’s paper.” 

But it may appear at first sight as if my method should naturally 
lead to the formula (11), and I should like to explain why one 
will not find it so on examining the matter further. 

The formula in question is deduced from the sieve method of 
Eratosthenes, employed twice. We will here simplify the question, 
examining only the common sieve of Eratosthenes. Let us deter- 
mine the number of primes under 14. We write the 14 numbers 

tees (O02 Ne CON GS: OO TE get 

effacing first the numbers 2, 4, 6, 8, 10, 12, 14 and then the numbers 
3,10, 9, 12.- The uneftaced numbers are the number 1 and the 

primes between V14 and 14. We find that 

a2 14] [14 14 
a (14) — 7 (V14) +1 =14— s|-(3]+ Ei 

= 14 7 ate oe 
where z (x) denotes the number of primes not exceeding x, and 
[z] denotes the number of integers not exceeding x. This formula 
can easily be generalised; it is not difficult to see how*. We could 
now say that it was “natural” to put [7] = x, and we should then 
get the approximate formula 

14 14 14 wha 4 = eae te) Ng eH [eee BANS TA: pe ema MA lt — oe = (1 — #) (1 — 2: 

and generalising, we should get 

7 (2) —m(Va) +1 =(1— (1-4)... (1- >a, 
T 

when p, denotes the greatest prime under Vx. But this formula 

* See Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 1. p. 67. 
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is erroneous, the correct asymptotic formula being according to 
Mertens 

(a) — (Vo) +1=k.(1= 9) (1-9). (1), 
p 

where p= =). 6S). i 

C being the Eulerian constant. For this, and also for other reasons, 
I have multiplied the formula in question by an undetermined 
constant. I also attempted to approximate to this constant em- 
pirically; but the value 1:598 thus obtained was seriously in error. 
The right value 1°320 has been determined independently by 
Stickel (Sctz. der Heidelberger Akad., Abth. A, 1916) and by Hardy 
and Littlewood (l.c. swpra). 

2. We have seen an example of the error of putting [a] = z. 

Let us study the function [z] more closely. If we draw the curve 
y = [x], we see that it forms a discontinuous line like the steps of 
a staircase. The same can be said of the curve y = z (xz), but here 

the steps are not regular. 
Let us try to express our discontinuous function by another 

discontinuous, but simpler, function. We write 

(c= 1), 
0 (Oa 

We see that 

p]= 0 (e) +O(5)+ 0(S)+0(F)+...; 

eg. [3.5]= (3.5) + ®(—") +@(%?) 1414153. 

This formula has been employed by Lipschitz in the Comptes 
Rendus of 1879. But our function will also express other dis- 
continuous functions, such as z (x): thus 

n(a)=0(5)+0(5)+O(5\+0(7)+0(F)+..: 

e.g. 7(6)=0(5)+(5)+0(2)=14141=3. 

_ § 3. Let us try to approximate to the function ® by a con- 
tinuous function. We will choose the function 

us 72s 3s 

1 Oi olla iae 
where s is a positive integer not less than 2. It is not difficult to 
see that 1 — e-** is very near 0 when x < 1 and very near 1 when 

L=e = 
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«>1. At the point of discontinuity = 1, 1-e“=1-—e-!. We 
are now able to approximate to the function [x]: thus 

a 1 1 i! Gee 1 1 1 
ee a) al oe t a) 

Pas em 

+..4+R, 
Ss 2s 3s 

or [2] = 292 aes pee —..+ 8, 

It is not difficult to find an expression for R, valid for all values 
of x which are not nearer to the integers (the points of discon- 
tinuity of [x]) than e«, where e < 3. We can give R the following 
form 

Fe OO ae aes 

where — 1 <@<1 and where s>2, 5>2. 
We can now give our formula the following two forms 

ane oe) a é gs - = 38 4 B62-H+ (1), 

valid for all positive values of x not in the intervals (1 — «, 1 + 6), 
(2 —e,2+e), (8 —e, 3+ 6), etc.; or 

C(s)a  € (2s) a  C (3s) as a ae fim 2! 3! sen 

valid for all non-integral z. 
If we wish to deduce results from the method of Eratosthenes, 

it is advantageous to make use of these formulae. Later on I shall 
perhaps show some of these applications. 

_ § 4. We are also able to find an approximate formula for z (2), 

s) x8 2s) x38 38) «74 ' 

i iE 1 1 ll 
where DS heat tae tps beer ayaa ts 

This sum can be expressed in terms of ¢(s) by employing the 
identity of Kuler, 

iI / 1 1 1 a 

Z(s) Oho) aml alee 
from which results 

log £ (s) =  (s) + 4m (28) + 39 (38) + 4m (48) + oo 
20 VOL. XX. PART III. 4 
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We can express 7 (s) in terms of log ¢ (s) by using the factors p (7) 
of Mobius, but we soon discover that it is more practical to study | 
the function 

Ff (a) = m (a) + Bn (Vax) + 4a (Ya) + dr (V2) +... 
than the function z (x) itself; and it is not difficult to deduce the 
formula 

ar (x) + dn (Vax) + .. 

_ loge (s) a _ log £ (28) a | log (3s) 2% 
aR Nore Hine 3 | 

The function f(x) has points of discontinuity only for integral z, 
and Rk” can be given the same form as R, viz. 

RY = 892-sl2+1, 

= ae 

It follows that 

a (v) + 4dr (Va) +... = lim & (— 1)4 mee 
sS>n n=1 . . 

for all non-integral «. | 
This formula has been deduced by Helge von Koch, in Vol. xxtv | 

of the Acta Mathematica, but is not mentioned in the Handbuch 
of Landau nor in the Encyclopédie des sciences mathématiques 
(Pt I, Vol. 111, Fase. 4). 

It is very interesting to compare the formulae (1) and (3). The 
only difference between them is that (1) has £(s) where (3) has | 
log ¢ (s), and in spite of this the formula (1) gives an approximation 
for the regular function [x] while the formula (3) gives an approxi- 
mation for the very irregular function f (xz) of Riemann. 

§ 5. If we use for our function ® (x) the formula of Kronecker 
(see Hncycl. des sciences math., Pt I, Vol. 11, Fase. 3, p. 256) 

ilk ne us 

2art 
® (x) = — ds, 

a-in § 

we obtain the famous formula of Riemann 

atin »s loo 
f(z) = a [ w* log ¢ (s) 9. , ; 

471 JS a—in 

which is equivalent to that of Helge von Koch (4). We equally | 
obtain the following formula, equivalent to (2) | 

il atin us a (s) : 

Lt] = oat s as | 

valid for all positive non-integral x. 
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§ 6. It is teresting to compare these two methods. It follows 
on comparing the two expressions employed for ® (x) that 

i 1 oa 1] atic ys F 1 

Been Ricoh Onl augue es Mea tae 
which gives a curious analogy between an integral with complex 
limits and a real function. The problem arises whether there is 
any more striking analogy between this sort of integrals and real 
functions, e.g. real integrals. And it is in reality not difficult to 
find a formula analogous to the well-known formula 

Ly ae 
271 J o2—@ 

according as @ is or is not contained in C. 
We find that 

= 1] (or 0), 

bate iv eae 
soe) |e aoe 

when a is contained in the interval A — B, while the limit is 0 
if a is not contained in the interval. Here | z — a| denotes the 
numerical value of « — a, and ¢€ is supposed positive. 

We are naturally also able to write down a formula analogous 
to the famous formula of Cauchy 

b) 

valid if a is contained in C. The analogue is 

Me ete capa) ae 

ftom lin | is— ai 
which is valid if a is contained in the interval A — B. 

It is in the nature of the matter that the analogy can only 
be very limited. 

20—2 
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A theorem concerning summable series. By Prof. G. H. Harpy. 

[Received 23 December 1920. Read 7 February 1921.] 

1. It is well known that if the series Xa, is summable (C, 1), 
that 1s to say if Sy AW 4 ides Valen ee (1), 

- where Gea hears odd ap Oia Gy any seo ck 

a Cn then ee ee 2 ren preg aoa = oe (2) 

as convergent™. ‘The converse is not true, as may be seen at once 
from trivial instances to the contrary. It is therefore interesting 
to frame a theorem of this kind which embodies a necessary and 
sugicient condition for summability. Such a theorem is the 
following. 

Theorem. The necessary and sufficient condition thatSa, should 
be summable (C, 1) to sum A is that 

S, Fl) bn A a (3), 

se) an Anti where Oa Sreegriey faaemanias 2° vised aR eee (4). 

2. It is plain that we may (replacing a, by a — A) suppose 
without loss of generality that A =0. If 

Sn =0(N), S,= 8, —8'n4=0(n). 
Again, (3) and (4) involve the convergence of (2), 7.e. involve t,—B, 
where a,—(n+1)c, and t,=¢,+¢,+...+c,.. And 

n n—1 

S,==(v+1)ce,=(n+1)t,— = t,=0(n). 
0 0 

Hence we may suppose s, = 0(n) in proving either part of the 
theorem. 

This being so, we have 
re) m ; 2 GB 8, — 8) 

Cpa = 2S ee itn ey eee 

nt+1 V oF IL mM>xn+tl V a 1 

i S m—1L s 
= lim ( =“ > — ) m>o\m +1 pate) Ie Gens) 

Sn Ea Sp 
ane ah : 
M+2  wii(yv+1)(v4+2)’ 

Ss eS Ss Cpe (Oar ILO ang ees IG Ly SS n+ ( ) naa n+2 ( y= GLa) GE) 
* H. Bohr, ‘ Bidrag til de Dirichlet’ske Rackkers Theori,’ Inaugural Dissertation 

(Copenhagen, 1910), p.100. The theorem follows at once from (1) and the identity 
3 i, = sv S'n—l Sin = Saal 3 > ov+1 (+1) 042) 043) nmol! n+l 
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The condition (8) is therefore equivalent to 

= Ss 
1 

poe tee en 
r 

nn@+l)@+2)- Fe) Piece ack (5). 

3. Suppose first that Ya, is summable, to sum zero, 2.e. that 

Sn. = (n). Then 

a) m th / 
Sy Sy—Sy-4 ee di 5 feels 

nti(y + 1)(v +2) 2 eee a) 
, / m—-1 / 

= ii (- ames ey Ts 2 on ) 
See (m+1)(m+2) (n+2)(n+3) 2 GED@+ D043) 

Bos iy Sn 
ma@+l)o+2)04+3) (n+2)(n+38) 

= 23 0 (5) —0 (*) = (5) Be eat ie Se ate reer cert (6). 

Hence (5), and therefore (3), is a necessary condition for 
summability. 

4, Suppose now that (5) is satisfied. Then, by (6), 
i/ : 1 Se 8 tg = (<) «(1 

Po ie 2058) (n+ 2) (n+3) % y (7) 

Writing 
/ 

Be G22) (ey = Se Pg eet) 2 Ga ee ai 
we obtain Defi —i6h = Ole) weetsn nant coda ee nanee (8). 

But 

RECT ROLE Mies Se poe 
Pn— On se Pee ANG ONG S n+3 

2dbn oe on ee 
by (8); and therefore ¢, =0(n) and s,’=o0(n), so that the series 
is summable to sum 0. Thus the theorem is proved. 

5. In order to show that the theorem is not without applica- 

tion, I apply it to the deduction of two known convergence criteria *. 

* See (for A) L. Fejér, ‘La convergence sur son cercle de convergence d’une 

série de puissances effectuant une représentation conforme du cere le sur le plan 

simple,’ Comptes Rendus, 6 Jan. 1913, and ‘Uber die Konvergenz der Potenzreihe * 

an der Konvergenzgrenze in Fallen der konformen Abbildung auf die schlichte 

Ebene,’ H. A. Schwarz Festschrift, 1914, pp. 42-53; G. H. Hardy and J. E. Little- 

wood, ‘Some theorems concerning Dirichlet’s series,’ Messenger of Mathematics, 

vol. 43, 1914, pp. 134-147: and (for B) G. H. Hardy ‘Theorems relating to the 

summability and convergence of slowly oscillating series,’ Proc. London Math. Soc., 

ser. 2, vol. 8, 1910, pp. 301-320; E. Landau ‘ Uber die Bedeutung einiger neuerer 

Grenzwertsitze von Herrn Hardy und Axer,’ Prace Matematyczno-fizyczne, vol. 21, 

1910, pp. 97-177; M. Cipolla, ‘Sul criterio di convergenza di Hardy,’ Rend. dell’ 

Acc. di Napoli, ser. 3, vol. 26, 1920, pp. 96-107, 151-160. 
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(A) If Xa, is summable (C,1), and Sn? |@,|?" as convergent 
for some positive p, then Ya, is convergent. 

(B) If Xa, is summable (C, 1), and either (4) a, ts real and 

or (8) an=0(7), 
then a, 1s convergent. 

6. To prove (A) we observe that 

Sy S —2pF1 _D_ a == (w+ 1) Bl. (y+ 1) Fa) ; 
n--1V + 1 n+1 

and so* 
= +l, p_ / @ Beebe bls (S O41) Pp )en( 5 (¥+ 1)|a,|2*4) pHi 

a+1 nm+1 

10) ((w >=) 0(1)=o (-). n 
Hence (x + 1) b,1,-9 0, and so, by (8), s,— A. 

7. To prove (B) we observe first that, if it is condition () that is given, we may suppose without loss of generality that a, is real; for we may treat the real and the imaginary parts of the series separately. But then (8) becomes a special case of (a). It is there- fore only necessary to consider condition (a). Further, we may plainly suppose that A = 0. 

Suppose that lims, =r’> 0, 

and choose a sequence of values of n for which 

Sn > SX. 

Let us denote a value of 2, belonging to this sequence, by m; and choose H so that 0 < KH < 4A. Then 

Sy =Sm + Amsit Anrot... ta, 

1 1 oe Vi eee se ay iN K( es 

> $X\— KH >4y, 

y—-—m 

m+1 
)>a-k 

* By the well known inequality 
1 1 

Zab (Lak)k (Doe (a20, Wey ssi dseil: aoe 
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ifm<v<em+Hm. Hence 

m+Hm Sy m+Hm 1 WEL 

is @ +1) @F2) 7 sch OFT) O42) ~ Im 
when m—. But this plainly contradicts (5). Hence 

lim s, <0. 

It may be shown in just the same way * that 

lim s, 2 9. 

Hence s,— 0, and the theorem is proved. 

tm s 

* Using a sum 3 Se 
8 m—Hm (v+1) (vy + 2) 
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Standing Waves parallel toa Plane Beach. By H. C. Pockutno-— ton, M.A., St John’s College, 

[Received 18 January; Read 7 February, 1921.) 

I. The object of this paper is to investigate the standing waves parallel to the shore line in the case of an infinite fluid bounded below by a plane sloping at an angle a to the horizontal. We restrict ourselves to the case where « is a sub-multiple of a right angle and use the method of images. The conditions to be satisfied are stated in section 2 and the images formed by the boundaries (beach and free surface) are found in section 3. In section 4 we write down the velocity potential and show that it satisfies all the conditions that it should. In section 5 we find that the amplitude of oscillation at the shore is increased (in consequence of the com- pression of the waves as they get into shallow water) in the ratio a/(r7/2c) 1, 

2. Let the liquid be bounded below by a plane beach sloping at an angle @ = 7/2n. We take the shore line as axis of z and use cylindrical coordinates, so that 6 = 0 is the equation of the free surface of the liquid, and 6 = @ is that of the beach. Let the period of the standing waves be 2n/p. Then the velocity potential is of the form 4 = A® cos (pt + €). The conditions to be satisfied by ® are (1) that d?O/dr2 + dO/rdr +- 2O/72d6? = 0, (il) that d®/dé = 0 when 6 =a, (iii) that d®/rd0 = — p?®/g when 6 = Q, (iv) that at infinity © must have the correct form for standing waves in deep water. Let p2/g = 2. 

3. If we have a value of @, say @,, that satisfies (i) but not (il) we can find ®, so that ®, satisfies (i) and ®, + ®, satisfies (ii) (it will of course satisfy (i)), and may call ®, the image of ©, with respect to lower boundary. Similarly, if ®, satisfies (i) but not (iii) and we find ®, to satisfy (i) and such that ®, + ®, satisfies (111) (it will of course satisfy (1)) then ®, may be called the image of O, with respect to the upper boundary. 
ici 

©, = exp {— Ar sin (6 — B)} cos {7 + Ar cos (8 — B)} = f (— B, », 6) 
say, it is clear that its image with Tespect to the lower boundary may be taken to be 

®, = exp {— Ar sin (2a — B — 6)} cos + Ar cos (2a — B — 6) 
=F (20 — B, », — 8) =f (6, 7’, — 0) say. 
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The image of ®, with respect to the upper boundary may be 
taken to be 

®, = cot f’/2 . exp {— Ar sin (P’ + 6)} cos {n’— 7/2 + Ar sin (B’ + 4)} 

= cot B’/2 . f (B’, n’— 7/2, 8) 

(and it will be found on trial that this is the only value of ®, that 
has the same general form as that given and satisfies the conditions 
stated above). 

4. Let 

@, = exp {—Ar sin 6} cos {(n — 1) 7/4 + Ar cos 9} 

= f {0, (n — 1) 7/4, 9} 
and add to it the first n — 1 images taken alternately with respect 
to the lower and upper boundaries, so that 

® = f {0, (n — 1) 7/4, 0} + f {2a, (n — 1) w/4, — 9} 

+ cota. f {2a, (n — 3) 7/4, 0} + cota. f {4a, (n—3) a/4, — B} 

+ cot a cot 2a . f {4a, (n — 5) 7/4, 6} + ete., 

the last term being 

cot a cot 2a ... cot (n — 1) a/2 . f {(n — 1) a, 0, 8} 

if m is odd and 

cot a cot 2a ... cot (n — 2) a/2 . f {na, 7/4, — 9} 
if n is even. 

Each term satisfies (i). Pairing the terms starting from the 
beginning we see that each pair satisfies (11) and that if n is odd the 
odd term at the end also does so. Pairing the second term with 
the third, the fourth with the fifth and so on we see that each pair 
satisfies (iii) and that the odd term at the beginning does so, as 
does the odd term at the end when n is even. Also if 0 $0 +a 
the sine under the exponential sign is positive for each term except 
the first so that these terms vanish exponentially at the infinite 
part of the fluid. The first term has the correct form for standing 
waves. Hence ® satisfies all the conditions and A® cos (pt + e) is 
the velocity potential required. 

5. The amplitudes at various points of the upper boundary 
are proportional to the values of ® there taken positively. The 
value of at 9@=0, r= varies from + 1 to — 1. Hence p the 
amplitude at the origin divided by the maximum amplitude at 
infinity is equal to the value of ® at the origin. 

Firstly, let n be odd. Pairing the terms starting from the 
beginning we have 

p = 2 cos (n — 1) 7/4 + 2 cos (n — 3) 7/4. cota 

+ 2 cos (n — 5) 7/4. cot a cot 2a + ete. 
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to (n + 1)/2 terms, the coefficient of the last term being | instead 
of 2. 

That is, 

p = exp (n — 1) 7/4 + exp (n — 3) mi/4 . cot a + ete. 
to n terms, the first term of the previous series being the sum of 
the first and last of this, and so on, for 

cot (n — r) a = tan ra. 

Secondly, let x be even. Pairing the terms 
p = 2 cos (n — 1) m/4 + 2 cos (n — 3) 7/4. cot a + ete. to n/2 terms 

= exp (n — 1) 2/4 + exp (n — 3) mi/4. cot a + ete. to n terms, 
which is of the same form as in the case of n odd. 

If w = cos 7/n + 7 sin m/n, 
we have cot ra = — wr" (w"-" — 1)/(w" — 1), 
so that 

p = exp (n — 1) mi/4 — exp (n — 8) mi/4.. iw (w®-1 — 1)/(w — 1) 
+ exp (% — 5) ai/4 . ew? (w”-1 — 1) (wr? — 1)/(w — 1) (w? — 1) 
— ete. to n terms, 

the indices of w in iw* being the triangular numbers in order. Also 
a= exp 71/2. 

Hence* 

9 (l= ey) (IL as) (= ao) 05 (ase) exp (n — 1) wi/4. 
Being real this is equal to its conjugate 3 

(Ub ae apes 2) (Ls a3) 0. (IL bas) exp (1 — n) 7/4. 
Multiplying, we find 

Pe (Lar) (l= ae). (aoe), - 
But w®, w4, etc. are the roots of (x — 1)/(~ — 1) = 0, whence p? = n. 

Hence the amplitude at the origin is 1/n times the maximum 
amplitude at infinity (but this has been proved only for the case 
of n integral). 

* Vide Todhunter, Theory of Equations (1885), p. 217 (ch. xxtv, § 292). 
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The Origin of the Disturbances in the Initial Motion of a Shell. 
By R. H. Fowuer and C. N. H. Lock. . 

[Read 28 February 1921.] 

(1) The following paper* is an attempt to throw some light on 
one of the most obscure outstanding problems in gunnery, namely, 
the precise cause of the initial angular oscillations of the axis of a 
(stable) spinning shell. The factors that produce the initial oscil- 
lations have hitherto only been guessed at, and design, which aims 
at reducing these disturbances to a minimum, has been guided 
solely by empirical results. It is therefore a matter of some im- 
portance to analyse carefully the experimental evidence which has 
recently been acquired, for the purpose of discriminating between 
possible causes, and suggesting the proper lines of future research. 
On the scientific rather than the technical side, we point out the 
desirability for a solution, if possible, of the elastic vibrations of 
the gun under its firing stresses. 

In experiments carried out by ourselves and others in January, 
1919}, we succeeded in recording with reasonable accuracy the 
initial oscillations of the axis of a series of shells, of four different 
types, fired at a series of muzzle velocities from a pair of 3-inch 
guns of two different twists of rifling. Specimens of these observa- 
tions will be found in the paper quoted. By extrapolation of the 
observed curves backwards to the neighbourhood of the muzzle of 
the gun, it is possible to deduce with some confidence rough values 
for the magnitude and direction of the initial angular velocity of 
the axis of the shell. The extrapolation is not a serious one, for the 
law of motion of the axis of the shell is well understood. By 
analysis of these values and their variation with the varying circum- 
stances of projection, it is possible to throw light on the origin of 
the disturbances themselves. 

The most obvious origin for these disturbances would appear to 
lie in random gas pressure variations during the last part of the 
travel of the shell down the rifled bore, and in random asymmetry 
of the blast which flows past the shell for the first few feet of its 
motion outside the barrel. The only reasonable alternative sug- 
gestion is that the initial angular velocity is primarily due to some 
form of barrel vibration. It is important to discriminate between 

* This paper is published by permission of the Ordnance Committee, for whom 
the experimental work was carried out. The authors also thank the Admiralty 
Director of Scientific Research and Experiment, who recently propounded to one 
of them a technical problem on initial motions. This problem suggested the possible 
importance of these results. 

+ “The Aerodynamics of a Spinning Shell,” Trans. Roy. Soc. A, vol. CCXXI, 
1920, p. 295. 



312 Mr Fowler and Mr Lock, The origin of 

these causes, and it is the object of this paper to show by analysis 
of the available experimental data that it is barrel vibrations that 
are the dominant cause, at least in these particular experiments. 
Whether the barrel vibrations are the cause in general it is for 
future experiments to decide. 

(2) Consequences of the random pressure variation theory. If 
random pressure variations and random blast disturbances are the 
dominant cause of the initial angular velocity of the axis of the 
shell, certain well-marked characteristics of the initial motion of 
the axis can be deduced. For shortness it is convenient to define 
the position of the axis OA relative to the direction of motion of 
the centre of gravity OP by the angles 6, ¢ of Fig. 1. 

Vv 

lites le 

The plane POY is vertical, and the angle § is usually called the 
yaw. Then the initial circumstances of the axis of the shell are 
defined with sufficient precision by the initial values of @ and 
d5/dt or 8’, that is to say, by dy and ,’. The initial value of 8 itself, 
obtained by extrapolation, is in practice very little different from 
Zero, as is to be expected, and may be ignored in what follows. 

Now random variations of gas pressure across the base of the 
shell and random asymmetry of the blast will result in a disturbing 
couple (practically impulsive) acting on the shell, whose plane of 
action must be expected to vary from round to round in an entirely 
arbitrary manner. That is to say, this theory demands that all 
values of $9 should be equally probable. Again, the impulsive 
disturbing couple which acts on the shell can hardly depend in 
any way on the axial spin of the shell or the twist of the rifling. 
The mean value of the disturbing impulsive couple, and therefore 
of 69’, should thus be the same for similar shells fired at similar 
velocities from similar guns with different twists of rifling. These 
are two deductions from the theory which can be tested by the 
experimental results. We may say at once that neither deduction 
is sufficiently fulfilled. We may be certain that, though no doubt 
such random pressure effects occur and are appreciable, the main 
cause of the disturbance lies elsewhere. 
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(3) Consequences of the barrel vibration theory. On the other 
hand, if the main cause of the disturbances lies in the vibration of 
the barrel, which constrains the base of the shell to follow its move- 
ments so long as the driving band is engaged in the rifling, we can 
draw at once very different deductions. For a gun is not a figure 
of revolution, and its vibrations may well be expected to take 
place in or nearly in the same plane from round to round, and to 
be in or nearly in the same phase each time when the driving band 
disengages*. This effect might be expected to be all the more 
marked and give rise to larger disturbances when the gun has a 
considerable curvature (technically droop). It appears in such 
cases that the gun temporarily straightens more or less while the 
shell is travelling down the bore. 

It follows then as a consequence of this theory that 4, should 
be roughly constant from round to round fired under similar con- 
ditions, or at least that the values of 4) should be highly correlated. 
Again, in this case the twist of the rifling may play a fundamental 
part in the phenomenon. For there will at least be stresses in the 
barrel proportional to the twist of the rifling, and we cannot say 
that the theory demands a value of 6,’ independent of the twist of 
the rifling. The further discussion of this case is unfortunately 
somewnat speculative at present and requires a little mathematical 
analysis. [tis postponed until we have described the experimental 
evidence. 

(4) The experimental evidence. The evidence available is deduced 
almost entirely from the experiments previously referred to. The 
following table gives the mean values of 6)’ and 6)//Q} which can 
be deduced from that experiment, for groups fired under similar 
conditions from guns of two different riflings. The other entries 
are the reference numbers of the observations{, Q itself, the muzzle 
velocity and the twist of the rifling. The values of 5)’ for the various 
rounds in any one group are reasonably consistent. 

It can be seen at once, by inspection of the columns for 6)’ and 
59 /Q, that 5,’ is distinctly greater for the gun rifled 1 turn in 30 
diameters—that is, with the sharper twist of rifling—than for the 
gun rifled 1 in 40. On the other hand 6,)//Q appears to be practi- 
cally the same (to the accuracy of the experiment) for both twists 
of rifling in each group. The disturbing impulse, other things being 

| * The case of a rifle is well-known, in which the direction of departure of the 
| bullet is very largely affected by barrel vibrations, which are themselves affected 

by the presence or absence of the bayonet. 
+ The notation is that of our previous paper loc. cit. Q=AN/B, where A and B 

are respectively the axial and transverse moments of inertia of the shell and J is 
the axial spin in radians per sec. The twist of the rifling is specified as 1 complete 
turn in ” diameters of the bore. Q and N are inversely proportional to n. 

{ Loe. cit. 
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equal, 1s roughly proportional to the spin of the shell. We can even 
go somewhat further on these figures, for we notice that the values 
of 69//Q show a well-marked constancy through the whole table. 

Table I. 

Mean value 
Anzai Nos. of u of 5)’ wena Twist of 
velocity, d radians di value of fli 

fs rounds ys radians 5.7/0 rifling 
; per sec. per sec. nf 

2130 IDL, Bh & 150 ez 0-014 1/40 
2120 IV 24-26 200 3:0 0:015 1/30 

1553 TV 7-9 110 11055) 9-014 1/40 
1547 IV 16-18 146 al 0-015 1/30 

1565 IL 7 125 2-6 0:021 1/40 
1563 I 27, 28 167 Sal 0-019 1/30 

1585 TW -5=7) 124. 1:0 0-008 1/40 
1589 E2223 165 Bs 0-014 1/30 

1583 iy 5=7, 145 2-0 0-014 1/40 
1567 Me? 223 192 3:2 0-017 1/30 

1084 I 9,10 87 1-1 0-013 1/40 
1119 J 22-24 120 1:9 0-016 1/30 

The next table, Table II, also contains values of 6)//Q for each 
group for which they have been deduced from the observations. 
The mean values of 6)'/Q for all groups for each gun are the same, 
confirming the more precise comparison of Table I. 

The main purpose of Table II is to exhibit the correlation (if 
it exists) between the values of ¢) for the various rounds of a 
group. It contains the mean value of ¢, for each group, and the 
“spread” of the values of ¢) in the group, the spread being the 
smallest angle which will include all members of the group. 

The entries of the table show unmistakable regularities. In 
the first place the spread is in general far too small for one to sup- 
pose that the observed values of ¢, represent a random distribu- 
tion over the whole 360°. The groups of two rounds each provide 
only shght evidence on this point. But even here there is some 
evidence of correlation, for it is obviously equally probable that 
the spread of a pair will or will not exceed 90° for random distribu- 
tions of dy. Of the seven such groups, the spread of one only 
(III 22, 23) exceeds 90° and the average spread of the seven is 
only 50°. 

There are twenty-one groups in the table containing three or 
more rounds. In a group of three rounds distributed at random, 
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the probability of a spread of less than @ radians can easily be 
shown to be 

302 
An 5) (0 < 7), 

30 — 3m 30 (4a — 36) 
4 et <0 <7). 

Table IT. 

| 
Mean Mean 
muzzle Nos. of value Spread Mean 

velocity, rounds of do, degrees of 6)//Q 
f.s. degrees 

Gun rifled 1 in 40 

2346 L205) 2 179 20 0-022 
2167 I 14 99 100 0-020 
1565 I 5-7 30 6] 0-021 
1312 T1718 ~ 55 51 aE? 
1072 1 8-10 — 105 104 — 
922 {11-14 — 83 30 0-011 

2024 TI 14 83 51 0-011 
1584 Il 5-7 = 3 100 0-008 
1334 IT 14-16 — 24 202 — 
934 II 8-10 —128 46 0-014 

2025 Ill 1-4 152 109 0-008 
1583 Ill 5-7 157 147 0-014 
1312 III 14-16 —107 40 — 
1077 IIT 11-13 — 135 53 — 
931 Ill 8-10 — 128 5 0-015 

884 IV 10-12 — 137 98 — 

Gun rifled 1 in 30 

1563 I 27, 28 20 19 0-019 
1326 I 25, 26 45 29 0-015 
1119 I 22-24 29 51 0-015 

1589 Il 22, 23 36 72 0-014 
eS II 17-19 6 49 0-018 

1567 Ill 22, 23 55 110 0-017 
1292 IIT 20, 21 37 49 0-019 
1119 III 17-19 = 9d 10 0-009 

2121 IV 24-26 113 172 0-016 
1547 IV 16-18 17 49 0-015 
1078 IV 13-15 7 12 0-008 
900 IV 21-23 81 72 0-010 
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The greatest possible value of the spread is of course 47 which 
occurs when the three values of ¢, are of the form 

a, &@+ 27, a+ 47. 

It is thus equally probable that the spread of a group of three will 
or will not exceed 147° cn a basis of random distribution. In the 
twenty-one groups the spread only twice exceeds and once equals 
147°, and the average spread is only 70°. The probability with a 
random distribution that any imdividual spread should be less than 
or equal to 70° is only 0-113. The probability that the average of 
twenty-one spreads shall be as small as 70° will be excessively 
small. 

We may therefore be fairly confident on the evidence of the 
spread that the main part of the angular velocity of the axis of 
the shell is due to some cause which operates in or nearly in the 
same plane for all rounds fired under the same conditions. This 
conclusion is supported by the results of two five-round groups of 
similar shells fired from another type of gun*. In each case the 
spread of the five values of dy was less than 30°. 

We are, however, justified in concluding that there are other 
regularities in Table II. It is arranged in order of muzzle velocities 
for the shells of each type, fired from the gun of each twist of 
rifling. Thus the table consists of eight sets of such arrangements 
separated by spaces. In each such set which is sufficiently complete 
there is a well-marked progressive change noticeable in the mean 
value of dy as the velocity changes through the set. 

Finally, compare together the mean values of gp for all groups 
at the same muzzle velocity from the same gun, irrespective of the 
type of shell. We obtain the following sets of numbers. For the 
gun rifled 1 in 40, 

(2000-2170) 99, Sonla2, 

(1560) SOME aaa 
(1320) S55 et 04 a Oi onn 
(1070) —105, —135 

(920) — 83, —128, -128, —137. 

For the gun rifled 1 in 30, 

(1570) 20, 36, 55, 17 
(1320) 45, 37 

(1110) Om, @, =, 7h 

The numbers in brackets on the left specify the muzzle velocity to 
which the group belongs. These mean values of ¢y are obviously, 
with one exception, heavily correlated. We may say in fact that 
the main part of the initial disturbance consists of an angular 
velocity of the axis of the shell located in a plane which varies 
little from round to round or even with changes in the centre of 
gravity and moments of inertia of the shell, but which changes 

* Gun: 16-pdr, 9-cwt. 
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progressively with the muzzle velocity and also with the twist of 
rifling. To this we may add on the evidence of Table I that the 
size of the disturbance appears to be roughly proportional to Q. 

On referring to the characteristics of the disturbances due to 
the two possible causes described in sections 2 and 3, we see that 
the evidence is fairly conclusively against the theory of random 
gas pressure variations which demands random ¢,’s and 6,’ inde- 
pendent of m. On the other hand there is nothing to prevent its 
fitting in with the theory of barrel vibrations. We must examine 
this theory now in greater detail, though, as we have already said, 
all we can say is speculative and intended only to suggest lines of 
further work on the problem. 

(5) The motion of a shell with the base constrained. Let us con- 
sider the circumstances under which a shell emerges from the 
muzzle of a gun. It seems probable that even for fairly small values 
of the clearance* the shell will cease to touch the bore, except 
at the driving band, from the moment when its shoulder reaches 
the lip of the muzzle. This is a direct consequence of the actual 
numerical quantities concerned—it is unnecessary to give numerical 
details here. Thus from the moment at which the shoulder emerges 
the shell may be regarded as practically free to swing about the 
driving bandf. 

Let us suppose in the first instance that owing to the firing 
stresses the muzzle end of the gun vibrates, so that the shell is 
constrained to take up the sideways velocity of the end of the gun 
just before it leaves the muzzle. We will assume first that the axis 
of the bore is unaltered in direction by this vibration. To work out 
the motion of the shell under such conditions we refer it to fixed 
rectangular axes Ox, Oy, Oz, such that Oz 1s parallel to the axis of 
the bore, Oy vertical, and Oz horizontal and to the right as viewed 
from behind the gun. That point in the shell whose motion 1s con- 
strained (the base point) may be taken to be the centre of a section 
through the middle of the driving band. Let A be a unit vector 
representing the direction of the axis of the shell (components 
I, m, n) and V a vector representing the total constrained velocity 
of the base point (components w, v, w). Then at the moment when 
the driving band disengages, wu is the muzzle velocity and v, w are 
the components of the barrel vibration. 

The resultant action on the shell may be taken to be (1) a force 
F acting through the base point, whose position is defined by the 
vector — dA relative to the centre of gravity of the shell. The axial 

* The excess of the minimum internal diameter of the bore over the maximum 
external diameter of the shell (driving band ignored). 

+ If the size of the initial disturbance is found to vary decidedly with the 
clearance, this paragraph will need modification. But the succeeding arguments 
hold unaltered provided less time is taken to refer to the moment at which the shell 
is first free to swing about the band. 
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distance of the centre of gravity from the base point is taken to 
be d; (2) a constraining couple acting about Oz. 

The velocity of the centre of eravity is therefore V + dA’, and 

F = m* f V + dA’}*. 

The moment of this force about the centre of gravity is d[F. A]. 
The moment of momentum about the centre of gravity isf 
ANA+ B[A. A’]. The equation of angular motion is therefore 
(omitting the constraining couple which we assume to act about the 
axis of the bore, Oz) 

d Pe ibe oe q ANA + BIA. A’l; = m"d [s+ day. A 

= mad ¢ (Vv + dA}. A]— m*d[V. A’), 

or a VAN AS BY UN NG) — ond | Ve  Aeeee (1) 

where B, = B+ m*d?. The y- and z-components of equation (1) 
are unaffected by the ignored constraining couple. When written — 
out at length they are 

g {ANm + B, (nl’ — In’')} = m*d (wl — w’n), ...... (2) 

: {4Nn + B, (lm' — ml’) = m*d (u'm — v'l). ...... (3) 

Equations (2) and (3) are exact. If, now, we recall that the axis of | 
the shell is only slightly inclined to the axis Ox, we may approximate 
by assuming that m and n are small, J/=1, and I’=0. Writing 
¢ = m + in we can combine these equations into the single one 

2 {ANCE + 7B,C} = — im*d (v' + ww’) + im*du’l. ...(4) 

The approximations made in obtaining (4) are certainly legiti- 
mate. To interpret (4) we must approximate further in a more 
speculative manner. 

If barrel vibrations are of primary importance, a rough calcu- 
lation, for the 3-inch shells used in these experiments, shows that 
| v’ + aw’ | must not be less than about ju’; wu’ is the ordinary 
linear acceleration of the shell at the muzzle. Also | £ | must be 
of the order of,| 2’ | 7, where 7 is the total time of emergence of 
the shell from the barrel (about 0-0005 secs.) so that | € | < 0-0015. 
It follows that the last term in equation 4 is in absolute value at 

* The mass of the shell is m*. Vector and scalar products are denoted by 
[ . ]and( . ) respectively. The notation is that of our previous paper, pp. 326, 
327. tT Loc. cit. p. 327. 
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most 51, of the last but one, and may be omitted*; the equation is 
then integrable as it stands. If we take as zero time the moment at 
which the shell begins to be able to rotate freely about the driving 
band (the moment of emergence of the shoulder), we may take 
t= 0 for the lower limit of integration and (practically) ¢, = 0, 
C5 = 0. Then we find 

1B,6 + ANG = —iwmi*d (v+w)}, «se (5) 

where 6 (v + ww) denotes the change in v + zw in the interval (0, ¢). 
As the interval in which the shell disengages is small, the action 
is practically impulsive, so that the term in ¢’ in equation 5 may be 
neglected to the present approximation. We thus obtain as a first 
rough value for ¢’, at the moment 7 when the band clears the muzzle, 

m*d 
C (7) =— api {O(USE Iw): ake (6) 

This can of course be obtained more directly if we are content to 
ignore the nature of the approximations made at each stage. 
Since 7 is of the order of 0-0005 sec. the value of € (7) is negligible 
by comparison. There are of course random gas pressure and blast 
effects to be superposed on the disturbance resulting from (6), but 
we are not concerned with these here. The alteration in ¢’ (r) pro- 
duced by including the term in ¢ can easily be calculated and is 
found to be of the order of 5 %. 

Thus we see that on this theory the main part of the disturbance 
will be the acquisition of an angular velocity of the axis @’ (7) 
given by (6) whose nature depends essentially on 

(v + ww), — (v + W)p. 

This change of velocity of the free end of the muzzle in the 
interval (0,7) may a priori be expected to be fairly constant in 
direction from round to round, thus satisfying the main require- 
ment of the observations. Whether it could be really proportional 
to the twist of rifling it is more difficult to say; owing to the tor- 
sional strains, such proportionality is not @ prior: impossible. We 
would content ourselves with pointing out here that 

(v + w), — (v+ W)o 

is directly observable; the principal object of this discussion is to 
urge the importance of its proper determination. The foregoing 
discussion also suggests problems in the theory of elasticity. It 
would be of great interest if any sort of approximation to the 
elastic vibrations of a gun under firing stresses could be obtained 
theoretically. 

* This omitted term represents the disturbing effect of the gas pressure acting 
through the centre of the base. It is only effective after a disturbance has already 
been set up. 
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Tides in the Bristol Channel. By G. I. Taytor, F.R.S. 

[Read 24 January 1921.] 

It is well known that tidal waves coming from an open ocean 
increase in amplitude as they reach the shallower water which 
usually surrounds the land. This increase is specially marked when 
the tidal wave enters a contracting channel. The cause of the 
increase is well understood, and in certain simple cases its amount 
has been discussed mathematically. 

Unfortunately it is very seldom that the nature of the bottom — 
or of the coast line of a channel permits us to apply these results 
with any hope of getting even an approximate representation of 
the actual state of affairs in any existing tidal basin. At any rate 
I do not know of any case in which it has been attempted. 

One of the most striking examples of the effect of a contracting 
channel in increasing the height of the tidal wave is that of the 
Bristol Channel where there is one of the largest tides in the world. 
On looking at a chart of that region, I was struck by the way in 
which both the depth and the breadth of the channel at low water 
appear to contract almost uniformly from the entrance to the head. 
Under these circumstances it seemed worth while to work out 
theoretically the increase in tide which might be expected in a 
channel whose breadth and mean depth both decrease uniformly 
from the open end to the head, and both vanish there. The results 
might then be comparable with the observed tides in the Bristol 
Channel. 

Theoretical Calculation. 

The differential equation which represents the variation in 
amplitude of the tides in a channel as the mean depth and breadth 
vary, is given in Lamb’s Hydrodynamics*. It is 

where 7 represents the rise and fall of tide, 6 the breadth, and h the 
mean depth of a section of the channel taken at a distance x from 
the head. 27/c is the period of the tidal oscillation and g is the 
acceleration due to gravity. 

Two cases have been solved by Lamb, namely (1) h constant, 
b proportional to x, and (2) h proportional to x, 6 constant. For 
the Bristol Channel neither of these is suitable, we require both 
6 and h to be proportional to z. 

* P. 267, 4th edition. 
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Let hy be the mean depth and by the breadth of a section at 

distance x, from the head of the channel. Then 

h = ho&|%q, 6 = by x/ay- 

Inserting these values in (1) the equation becomes 

d (2% Me 
Ae (« Zz) -- kya = 0 o dletels o7d'd Bleictelsleieieiciola'e.e (2), 

where BS O7dig[ hig G  seerssanseteseeeco edness (3) 

Putting 22 = ka, € = 72, this equation becomes 

ey ads Leia 
Tata + (4-5) é=0. 

The solution of this is € = AJ, (22), where J, represents a Bessel’s 

Function of the first order. Replacing the original variables the 

- gsolution becomes 
| n= Kd, {Qy/(Keax)}|>/ (Rat) seeveecceseeeeees (4), 

where K is a constant. 

Comparison with tidal observations in the Bristol Channel. 

For this purpose a chart of the Bristol Channel was taken and 

a curved line was drawn down the middle of the channel (see fig. 1). 

Sections A, B, C, D, E, F, G were taken at convenient points 

and roughly at right angles to the centre line. These sections are 

shown on the sketch chart (fig. 1). The breadth 6, and mean depth 

h, of the channel at low water at each of these sections was found. 

The distance x of its mid-point from the head of the channel 

down the curved line was also measured. The figures so obtained 

are given in Table I. The head of the channel was taken as being 

at Portishead, near Bristol. 

Taste I. Dimensions of Bristol Channel at various sections. 

Distance 

Section from aaa | ee doe Bie a 

A 61-7 20 22 

B 49-7 | 15 20 

C 42 11 14 

D 25 8 12 

E 15-5 | 43 7 

F 8 3 4 

G 0 3 1 

Two diagrams were then drawn showing the relationship 

between b and 2, and between h and x. These are shown in figs. 2 
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and 3. It will be seen that the assumption that the breadth and 

the mean depth of the channel increase uniformly from the head 

towards the mouth is a fairly good approximation to the truth. 

20 

Mean Depth—Fathoms 

Breadth—Miles 

30 40 

Miles from Portishead 

Figs. 2 and 3. Dimensions of Bristol Channel. 

On looking at the sketch chart (fig. 1) it will be seen that the 

breadth increases westward of section A, but that owing to two 

deep bays, Barnstaple Bay and Caermarthen Bay, it ceases to 



324 Mr Taylor, Tides in the Bristol Channel 

increase even approximately uniformly. For this reason the mouth of the channel has been taken at section A. 
Straight lines were next drawn in figs. 2 and 3 to represent the best values to take for the uniform rates of increase in breadth and depth of the channel. These are shown as dotted lines there. The values of hy and by in equation 3 were taken in this way as v = 80 nautical miles, hy = 25 fathoms. Since the period of the semi-diurnal tide is 12-4 hours, o = 27/12-4. From these data k is found to be -0118 (miles)-1, 
If the rise and fall of tide is known at one point of the channel, equation 4 enables us to find it at all other points. In order to compare the theoretical and observed increase in tide due to the contracting walls of the channel, the simplest method appears to be to use the observed rise and fall of tide at the mouth of the Bristol Channel to determine the constant A, in equation 4, and then to apply equation 4 to calculate theoretically the tides at places up the channel at which tidal measurements have been made. The rise and fall of tide at the time of spring tides has been measured at a number of places on the shores of the Bristol Channel. These are shown on the sketch chart (fig. 1) by means of numbers placed against the names of the places in question*. 
The rise and fall of tide at section A has been taken as 27 feet, a figure which appears to agree with the measured tides in the neighbourhood. Using this figure the theoretical rise and fall of tide has been calculated for all values of z, and a curve has been drawn (see fig. 4) to show the relationship between them. On looking at this curve it will be seen that in the range with which we are concerned the curve is very nearly a straight line. The observed tides, y, and distances, x, for the places shown on the sketch chart (fig. 1) are given in columns 3 and 2 of Table Il. They are represented by means of the dots in fig. 4. It will be seen that the agreement between the theoretical tides and the observed tides is very close, much closer indeed than one might have ex- pected when it is remembered that the rise and fall of tide in the upper part of the channel is as great, or even greater than the depth at low water. The calculated tides at the places mentioned in Table I are taken from the curve (fig. 4), and are given in column 4. In order to compare the predicted with the observed increase in tide due to the contracting channel, 27 feet has been subtracted from the figures in each of columns 3 and 4 of Table II. The results are given in columns 5 and 6. 

It appears from these results that the usual hydrodynamical theory of tides accounts quantitatively as well as qualitatively for the abnormally high tides which exist at the head of the Bristol Channel. 
* These figures are obtained from the Admiralty publication West Coast of England Pilot, 6th edition, 1910. 
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TasieE II. Comparison between observed and calculated increases in 

tides at various distances up the Bristol Channel over those at 

the entrance. 

Rise ard fall of | Increase in tide over 

| Distance, av, | tide, 7 that at section A 

Station | from 
| Portishead, 

miles Observed | Calculated Observed Calculated 

feet | feet feet feet 

| Section A+ | 61-7 | 27 27 0 0 

| Ilfracombe 58 274 27-7 4 0-7 

Mumbles | 51-6 274 28-6 tL 1-6 

Port Talbot 47 Wee pa 29:7 2 2-7 

Porthcawl 42 283 30-7 13 3:7 

| Foreland 42 30 30-7 3 3:7 

Minehead 30 324 od a 5t 6-1 

Watchet 25 34 34-2 7 7:2 

Bridgewater — 193 30 35:3 8 8:3 

Carditt 153 363 36:2 94 9-2 

Flatholm 153 372 36-2 102 9-2 

Newport 8 38 oho of EE 10-9 

Portishead 0) 42 | 39-8 115 12:8 

i 

Tide in Feet 

lfracombe 

eMumble? 

70: 6Y 50 40 30 20 10 Oo a 
Miles from Portishead 

Fig. 4. Comparison between observed and calculated tides in the Bristol Channel. 
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Experiments with Rotating Fluids. By G. I. Taytor, F.R.S. 

[Read 24 January 1921.] 

The present communication contains a summary of results on three subjects connected with the dynamics of rotating fluids. 

1. Experiments to illustrate the difference between two and three 
dimensional fluid motion. 

The first experiment to be shown consists in towing a solid circular cylinder of the same density as water through a tank containing water, the whole system rotating at a uniform speed. The tank is a circular glass crystallising dish which is filled three- quarters full with water and floats in another dish of slightly larger diameter. The inner dish is rotated by means of a jet of water which strikes it tangentially. In this way a uniform speed is obtained. 
The solid cylinder made of box-wood or wax js placed with its generators vertical, 7.e. parallel to the axis of rotation, It is held in a position close to the side of the dish by means of a device which releases it at an appropriate moment. It is towed hori- zontally through the tank by means of two threads which pass through two small rings fixed to the dish on the opposite side to the point to which the cylinder is initially attached. It is found that the cylinder moves straight through the liquid, moving rela- tively to the rotating system in the direction in which the thread is pulling it, so that it passes through the centre of the dish. When the same experiment is performed with a solid sphere instead of a solid cylinder, it is found that the motion is very different. The sphere is deflected and moves through the tank in a curved path, leaving the centre of the dish well on its right if the system is rotating in the clockwise direction when seen from above. These experiments confirm a theoretical prediction given by the author*. 
Another prediction which is verified with remarkable accuracy is that all small steady motions of a rotating fluid relative to the rotating system must be two dimensional. A consequence of this is that if a spot of coloured water is placed in the rotating water, and if any small motion is communicated to it, the colouring matter is drawn out into sheets which are always parallel to the axis of rotation. If these sheets are observed along the axis of rotation they appear as thin lines. This property is so strikingly 

* Proc. Roy. Soc. A. 1917, p. 99. 
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verified that after a time the sheets may become so thin and closely 

wound round one another that it is only possible to see that the 

colouring matter is not uniformly diffused through the liquid by 

placing one eye directly over the rotating basin. The sheets then 

suddenly reveal themselves as they pass vertically under the eye, 

and disappear as soon as they get into a part of the basin which 

is not exactly under the eye. 

2. Motion of a sphere in a rotating fluid. 

The steady motion of a sphere in a rotating fluid along the axis 

of rotation is discussed mathematically. The velocity of the fluid 

at any point is expressed by means of Stokes’ stream function. 

So far as the present writer is aware the Stokes’ stream function 

has hitherto only been used in problems where the motion 1s 

symmetrical about an axis and is confined to axial planes. It is 

equally applicable however to cases in which only the first of these 

conditions holds, and it is used in the present instance. The ex- 

pression obtained which represents the stream lines when the whole 

system is given a uniform vertical velocity so as to bring the sphere 

to rest 1s 
wb =f sin? 8, 

sin (2 + €) 
where f=22+Vpt+ 3p?+9 eos (z+e)— = 

YA, 
~ 

and z= kr, k= 2Q/v, w= ka, tan (w+ €) = 3p/(3 — pb’). 

Q is the angular velocity of rotation of the fluid. 

v is the velocity of the sphere along the axis. 

r, 9 are the polar coordinates of a point referred to the centre 

of the sphere as origin, and a is the radius of the sphere. 

The components of velocity of the fluid at any point are found 

from this expression by the formulae 

u = — 2f cos O/r?, v = te sin 6, w = hf sin @/r. 
r dr 

In this expression the axes of reference are not rotating. It is 

found that although the solution allows slip to take place at the 

surface of the sphere, the actual solution obtained involves no slp. 

This is a point of considerable importance because it is the assump- 

tion that there is a slip at the surface of solids which vitiates all 

the ordinary hydrodynamical theories of the motion of fluids. 

The stream lines due to the motion of a sphere along the axis 

of a rotating fluid may therefore be expected to be more like 

the theoretical stream lines than they are in the case when the 

fluid is not rotating. This is found to be the case. 
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One consequence of the fact that the velocity of the fluid at the surface of the sphere is zero, relative to fixed axes, is that as a sphere moves up the axis of a rotating fluid the liquid streaming past it will not tend to rotate it. This is found to be true. It is shown experimentally that a light sphere initially rotating with the liquid in a tall rotating jar of water, stops rotating directly it is moved along the axis of the jar, but that it starts rotating again as soon as the motion along the axis ceases. 

3. Stability of fluid motion between two concentric cylinders. 
The late Lord Rayleigh has stated, though without formal | proof, that for three dimensional symmetrical disturbances the steady motion of a perfect liquid between two cylinders which rotate with different speeds is stable if the square of the circulation round circular paths concentric with the cylinders increases on passing from the inner cylinder to the outer one. But that it is unstable otherwise. This conclusion is now proved to be correct by calculating the actual motion in a normal disturbance. All calculations about the stability of liquid between two rotating cylinders have assumed two dimensional motion. In the case of two dimensional motion a rotation of the whole system makes no difference to the type of motion. Its stability or in- stability are determined only by the relative motion of the two cylinders. 
Experiments made by Mallock* and Conettet showed that if the inner cylinder is fixed while the outer one rotates the motion only becomes unstable at a very much higher relative velocity than if the inner one is fixed and the outer one rotates. This evidently suggests that the instability observed is not two dimen- sional. According to Rayleigh’s criterion for the stability of the symmetrical disturbance of an inviscid fluid between rotating cylinders, the case when the outer cylinder is fixed and the inner one rotates should always be unstable. If it is observed to be stable this must be some effect due to viscosity. 
In the case when the inner cylinder is fixed and the outer one rotates symmetrical disturbances should be on the limit between stability and instability. The slightest rotation of the inner cylinder in the same direction as the outer one should make the disturbances stable, while the slightest rotation in the opposite direction should make them unstable. 
It appears therefore that the method adopted by previous experimenters in which one or other of the cylinders was fixed is unfortunate. 

* Mallock. Phil. Trans. A, 1896, p. 41. 
+ Conette. Annales de Chimie et de Physique, [6], Xx1, p. 433. 
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Preliminary experiments made with a pair of concentric 

cylinders which are both of them capable of being rotated, show 

that the Rayleigh condition appears to be verified for high speed 

rotation, but that at low speed it is very considerably modified, 

presumably by viscosity, the motion being stable beyond the 
limits prescribed by the Rayleigh theory. 

Calculations of the effect of viscosity on the stability of sym- 

metrical disturbances are very difficult, but an equation has been 

obtained which can probably be solved graphically ; and the author 

hopes shortly to be able to say whether viscosity should increase 

or decrease the stability of symmetrical disturbances. 
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Experiments on focal lines formed by a zone plate. By G. F. C. 
SEARLE, Sc.D., F.R.S., University Lecturer in Experimental 
Physics. 

[Read 28 February 1921.] 

§ 1. Introduction*. In the usual theoretical investigation of the 
properties of a zone plate, the luminous point is taken to be on the 
axis of the zone plate, and in the practical measurements, such as 
those which have been made at the Cavendish Laboratory for many 
years, the incident rays are not inclined at more than small angles 
to the axis of the zone plate. When, however, the luminous point 
is not on the axis, the zone plate gives rise to two focal lines, as 
a thin lens does under similar circumstances; the positions of these 
focal lines are investigated in the present paper. The theory has 
been extended to the case in which any non-spherical wave front 
falls upon the zone plate at any angle of incidence, and the positions 
and directions of the focal lines of the emergent wave front have 
been found. The experiments illustrating the theory were made with 
the kind assistance of Mr G. 8S. Clark-Maxwell of King’s College. 

§ 2. Theory of zone plate. Let OG,G, ... (Fig. 1) be the section 
by the plane of the figure of an infinitely thin plane opaque screen, 
and let X’OX be the normal to the screen at O. Let the spaces to 
the left and right of the screen in Fig. 1 be called the object and 
image spaces respectively. On the screen take a point G, near 
O and let OG, = p,. Let G,, Gs, ... be other points on the screen 
such that OG',? = p,? = p;2 + (n— 1) k?. Let narrow circular slits 
be cut in the screen with O as centre and passing through G,, Go, .... 
This system of screen and slits forms a theoretical zone plate. 

* When this paper was read, I did not know that the general theory of the 
action of a diffraction grating or of a zone plate upon a wave front of any form had 
been indicated by Sir J. Larmor in “The Dioptrics of Gratings,” Proc. Lond. Math. 
Soc. Vol. xxiv. p. 166 (1893). 

t To obtain strong images, the widths of the slits through G,, G,, ... are increased, 
so that the edges of the nth slit have the radii cy, 72, where ¢)? =pp2 — 22, Tp? =pp? +22. 
Zone plates are made by photography from large scale drawings, and the attempt 
is generally made to make z*=}k*. If this were accurately done, no images of even 
order would be formed. The zone plate used in the experiments is a “phase-reversal ” 
plate made by Prof. R. W. Wood and given by him to the Cavendish Laboratory. 
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On X’OX take P, Q at distances u, v from O, and let u and v be 
positive when P and Q are in the object and image spaces re- 
spectively. Then, when p,,/u, p,/v are small, 

PG, + QGn = (u? + pu2)® + (0? + pp?)? 
| =u 0+ Mp2 + (n— 1) Bh {lu + 10}. 
Hence, for all values of the positive integer n greater than 1, 

PG, + OGn = PGy_y + QOGn_y + $h? (1/u + 1/0). 

Thus, the paths PG,Q, PG,Q, ... increase by equal steps of h, where 

h = th? (1/u + 1/v). 

Let a train of spherical waves with centre P and wave length 
A fall upon the zone plate from the object space, and let D be one 
of the wave fronts. Let PG,, PG,,... meet D im D,, Dy, .... 
Waves will travel out from the slits into the image space. Let 
FE be a sphere about Q as centre, and let GQ, G.Q, ... meet H in 
H,, E,, .... Then the disturbances at E,, E,, ... will have the same 
phase, if the distances D,G,H,, D,G,H,, ... increase by steps of 
pa, where p is a positive or negative integer. When the distance 
of H from O is some thousands of wave lengths, the separate 
wavelets due to the ring slits will merge into a single wave in- 
distinguishable from #. We may thus speak of # as the emergent 
wave front. The wave D will thus give rise to the wave H, it 
PG, + QG, exceeds PG, + QG, by (n— 1) pA. An image of P will 
then be formed at Q. 

Hence, @ will be an image of P, if h= pA. If f, be the corre- 
sponding focal length, and F’,, the corresponding “power,” we have 

Deena bie Pe DANES. | paras (1) 

Thus, the power is proportional to p and is positive or negative 
with p. We here follow the custom of practical opticians, who treat 
the power of a thin converging lens as posvtive. 

The zone plate thus acts as a lens with a number of positive 
and negative focal lengths, and, for a given position of a real or 
virtual luminous point P on X’OX, there will be a number of 
images, some real and some virtual. 

if k? is found by measuring the rings with a travelling 
microscope, A can be found, when f, and p are known. 

$3. Oblique incidence. Let the luminous point now lie off the 
axis X’OX at P (Fig. 2) in the plane of the figure. Let PO = u, 
and let wu be positive when P is in the object space. Let the acute 
angle between PO and X’OX be 6. Let Q be a point in the plane 
of the figure, let OY = b, and let b be positive when Q is in the 
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image space. Let the acute angle between OQ and X’OX be p. 
Then, since 0G, = p,, | 

PG,” = u? + up, sin 8+ p,?, QG_2 = b2 — 2bp, sin d + p,,2. 

Hence, by expanding, 

PG, = u{1 + 3 (2p, sin 6/u + p,2/u?) — 2 (2p, sin O/u + Pn?/u?)? + ...}. 
Thus, as far as terms in 1/u, 

PG, = U + p, Sin 6 + 4,2 (1— sin? 6)/u = u +p, sin 6 + 4p,? cos? 6/u. 
Similarly, QG, = b— p, sind + 4p,” cos? 6/b. 
Hence 

PG, + OG, — (PG, + QG4) = (p, — p:) (sin 0 — sin 4) 
+ 3 (Pn® — px’) (cos? 8/u + cos 4/6). 

Fig. 2. 

If this difference is (n — 1) pa, there will be concentration of light 
at Y. Now p,?— p,2 = (n — 1) k2, but Pn — Py 18 not proportional 
to n— 1. Hence, if the equation is to hold for all integral values 
of n, we must have sin ¢ = sin 0. Thus cos? = cos? 6, and then, 

I/u + 1/b = 2pd sec? 6/k? = sec? /f, = I PRSSCAGS  55(2) 
Let H,, Hy, ... lie on a straight line through O perpendicular 

to the plane of Fig. 2, and let OH; —jo,. hentat nice point on 
OP, the path PH,R is, for given values of OP = u and OR — G, equal to the path PH,,R when P and R lie on the axis. Hence, if c be positive when R lies in the image space, there will, by (1), 
be a concentration of light at R, when 

Vu ei oh ee (3) 
As in § 2, we can speak of the emergent wave front, but in this case the front will not be spherical. By symmetry, the plane of Fig. 2 and a plane through PO and perpendicular to the latter plane are the principal planes of the emergent wave front. The radii of curvature of the principal sections of this front are 6 and €, aS given by (2) and (3). 
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The emergent rays of order p, i.e. the normals to the emergent 
wave front of order p, do not pass through a single point but 
through two focal lines. The primary line passes through Q and 
is perpendicular to the plane of Fig. 2, and the secondary line 
through R is in that plane. 

Tf a sht illuminated with sodium light is placed at P, and if 
the slit is perpendicular to the plane of Fig. 2, there will be a focal 
line image of the slit at Q, and the image will be perpendicular 
to that plane. If the slit is in the plane of Fig. 2 and perpendicular 
to OP, there will be a focal line image at R, the image lying in the 
plane of Fig. 2. 

§ 4. General case. Let OX (Fig. 3) be the axis of the zone plate 
and OP, the forward direction of the chief ray of the incident 

beam. Take OY perpendicular to OX 
in the plane P,OX, and OZ perpen- 
dicular to that plane. Then the zone 
plate lies in the plane YOZ. Let 
POX. 

Let the refractive indices of th» 
object and image spaces be py, p,. 
Let vp be the velocity of light, and A, 

He the wave length, in a vacuum, and 
Beis let + be the periodic time of the 

vibration. Then rv) =o. 
Take OP, as the axis of 7, in a new set of axes Or,, Os,, Ot,, 

such that Os, is in the plane XOY and Of, coincides with OZ. Let 
the equation, referred to these axes, of the incident wave front, 
when passing through O, be 

Peg St” > WS ce tte) 0 esac (4) 

Let G,, be a point on the zone plate on the circle of radius p,,, 
and let G,OY =w. Then the z, y, z coordinates of G, are 0, 
Pn COS w, p, Sin w, and its 71, s,, t, coordinates are 

fp, cosa sind, Ss; —p, cos w €os.0,, .t, =p, sina, 

If a straight line through G, parallel to OP, cuts the incident wave 
front OD,D, ... in D,,, the second and third coordinates of D,,, 
referred to the axes of 7,, 81, t,, are p, cos w cos 6, and p, sin w. 
Hence, by (4), the distance of D, from the plane 7, = 0, which 
touches the wave front at O, is 

Pn? (48, cos? w cos? 6, + W, cos w sinw cos 0, + $7, sin? w), 

and the distance of G,, from the same plane isp, cos w sin 6,. Hence 

D,,Gn = Pn COS w sin 8; 

— p,” (4S, cos? w cos? 6, + W, cos w sin w cos 6, + $7; sin? w). 

VOL. XX. PART III. 22 
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When » diminishes, D,,G,, becomes more and more nearly the 
normal to the wave front, and, for a small aperture, may be treated 
as the normal in the estimation of distances. Thus, when n is not 
great, D,,G, may be taken as the ray distance from the wave front 
to G,. 

Let OP, be the forward direction of the chief ray of the emergent | 
beam, which, by symmetry, must lie in the plane XOY. Let 
PSOXE— 05. ‘When referred to axes Or,, Os,, Otz, chosen similarly 
fo Or,, On) Ot,, let the equation to the emergent wave front, as 
it passes through O, be 

1 =| ES oSp cit | WigSota a Lalani (5) 

If a line through G,, parallel to OP, cuts the emergent wave front 
OE,E, ... in E,, the distance E,G,, is ultimately the ray distance 
from E,, to G,,. We then have 

E,,Gn = Pn COS w Sin By 

— py” (4S_ cos? w cos? 6, + W, cos w sin w cos 0, + $7, sin® w). 

The optical condition is that the time of passage of light over 
the distance E,,G,, — E,G, 1n the second medium is less than the time 
of passage over the distance D,G,, — D,G, in the first medium by 
(n— 1) pr. Hence 

pe (EnGn — EyG,)/% = py (DrGn — D1G1)/% = — (n — 1) pr. 

hie since Ut = Ay, we have 

(Pn — Px) COS w (f4y Sin G2 — p2, sin 4,) 

— (Pr® — pr”) [3 (H2S2 cos? 82 — pS, cos? 8) cos? w 

+ (u,W, cos 8, — ,W, cos 0,) cos w sin w 

+ 3 (H2T's— py T,) sin? w] = — (n — 1) pay. 

Now p,,” — pi” = (n — 1) &, but p, — p, is not proportional to n — 1. 
Hence, if the equation is to hold for all integral values of n greater 
than il we must have 

pio SID G5 — ik SING ee (6) 

Hence, the chief ray obeys the ordinary law of refraction, and 0, is 
known when @, is given. Since p,? — p,? = (n — 1) k, we have 

4 (poS_ cos? 6, — uyS, cos? 6;) cos? w 

+ (2W, cos 6, — ,W, cos 0) cos w sin w 

+ $ (eT, — pT) sin?w = pr/k. —...... (7) 
Equation (7) holds for all values of w. Putting w = 0, we have 

[tsiS3 COS? 05 — fi) COS* 04 —) 20g) ese (8) 

Putting w = 47, we have 

pal yD = 2prg/he 0 2) ae (9) 
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Hence, since cos? w + sin? w = 1, 

4 (Sq cos? 6, — pS, cos? 6,) cos? w 

+ ¥ (MoT, — wy T}) sin? w = paj/k, 

and thus, by (7), p.W,.cos0;—p,W,cos8,=0. —_ (10) 

Since @, is known by (6), the last three equations determine S,, W, 
and T,. 

In the ordinary use of the zone plate, the medium on either 
side of the zone plate is air of refractive index pw, and thus 
Pe = py, = p, and 0, = 6, = 0. If the wave length of the light in 
air is A, we have pA=,. If the “power” of the zone plate in air 
is F,, 2pA/k? = F,, and then the equations giving S,, W,, T, 
become 

eH cectg iS) iW, = War ees Bee TD 
If the incident beam is due to a luminous point at a distance 

u from O in the object space, S, = T, = — 1/u, W, = 0. Then 

ie sec0/f,— lew, W,=—0, 2,=1 fi, Yeo.) 

Since W, = 0, the focal lines of the emergent beam are in and 
perpendicular to the plane XOY. If their distances from O are 
ce and b respectively, where b,c are positive when the focal lines 
are in the image space, we have S, = 1/b, T, = 1/c, and then 

ie Wb — sect f/f, Lj Ble = tif aoe (13) 

as was found in § 3. 

§5. The principal curvatures of the emergent wave front. Let the 
principal planes of the incident front at O (Fig. 4) intersect the 

: tangent plane at O in On, Of). 
Take these lines, with O€, along OP,, 

E, as axes for the front. Let the radii 
of curvature of the sections of the 

”, front by O€,n,, O80, be B,+ and 
C,+, counted positive when the 
sections are concave towards P,. 

id The equation to the incident front 
9 * referred to these axes is then 

Fig. 4. : 
eA = 4Byy?* + 40, 6,7. ...(14) 

Let On, make an angle #, with Os,, as in Fig. 4. Then 

and hence (14) is equivalent to 

22—2 
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Comparing (15) with (4), we find 

S, = $(B, + C,) + 3 (B,— Cy) cos 2p, «..... (16) 

W,=2 (b> @) smi2hi, |) ee (17) 

T,=4(B,+C,)—4(B8,— C)) cos 2f,. ...... (18) 

If the equation to the emergent front, referred to its own 
principal axes, is 

Ey — PBon, 13 0s6s 9 0 (19) 

then B,, C, are the principal curvatures. If 7,0s, = #, then By, 
C,, wb. are slaved tO So.) Wo, Lo by; 

S,=4(B,4+ C,) + 4(B,— C.) cos 2h, ...... (20) 

We—i(B,— C))sm.2d5 0) 2 eee (21) 

T,=4(B,+ C,.)— 4(B,— C,) cos 2... ...... (22) 

Solving for B,, C, and using (11), we have 

(1 A SY, (Ghat le Y, eee (23) 

where 

Xo FS, + 0) — 5 Le (et sec? 0) 4- By Cr eee (24) 

Y =41(S,— 7,)? + 4W27 
—1/F,2 tant @ + 2F,, tan? 6 (B, — C,) cos 2, + (B, — C,)?}. 

These equations, with (23), determine B, and C,. But, as either 
sign can be given to the square root, we are left in doubt as to 
which of the two focal lines corresponds to B, and which to C,. 
To avoid confusion we must write 

Yoo (he tan20- By — O.)9 evel —- 4 (Hl tan =a a 

where ” Y”” are the values to be assigned to Y for sb, = 0 vane 
for 4, = 47. For intermediate values of %,, we take Y intermediate 
between Y° and Y”*. Since 4Y2 is a sum of squares, Y cannot 
vanish unless W, = 0, or, what is the same thing, unless W, = 0. 
When B,—C, is not zero, W, vanishes only when Tp 0 or 
~, = 97. Hence Y does not change from positive to negative or 
vice versa as ys, goes from 0 to dr. 

In practical work it is convenient to determine the quantities 
appearing in X and Y by oe BS, 0.0, Bs”,'C,7 7 the wales 
of B, and C, for #, = 0 and#s, = 47. We hee, in “accordance with 
(26), 

BO — He sec2G.- Banas a (27) 

B72, sec20 + (Cy Onna = Urges ore 
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Hence 

X=4(BS+ C2) =4(By7 + Oy", 
taney = Boe OL == Bee (on) (28) 

Bu Bo BS? — 677 — 02. 

The equation tan 2%, = 2W,/(S, — T,) leads, by (11), to 

2W 
2h. = 4 ee ST tant 

(B, — Cj) sin 2x, 

(B, — C,) cos 2, + F, tan? 6’ 

which gives two values of ys, corresponding to the two focal lines. 
In practical work it is more convenient to use sin 2%,. We have 

2W 2Ws Bi CO). 
B, ore = OY —— "ay af sin Quy , elajetalere (29) 

where, as we may restrict %, to range from 0 to $7, we may specify 
that | $,| 247. Equation (29) gives the value of %, corresponding 
to B,; the value corresponding to C, differs by $7 from that given 
by (29). 

When Y = 0, the two focal lines coalesce into a point image of 
the luminous point. Unless B, = C,, this can only occur when 
wu, = 0 or J, = 47. When this is satisfied, we must further have 
S, — T, = 0, or, by (11), F, tan? 0 = — (B, — C)) cos 2i5,, where 
ob, = 0 or, = In. If 6° and 6”” are the required values of 6, we 
have 

sin 2if, = 

tan? 4° — — (B,— C,)/F,, tan? G72 = (Bi Oi) he 

For real values of 0, » must have the values 1, 2, ... in one case 
and — 1, — 2, ...in the other. If B, — Cis positive, pis— 1,— 2, ... 

for 6°, and 1, 2,... for 9”. If, however, B, — C, is negative, p is 

1, 2, ... for &, and — 1, — 2, ... for 677. The value of tan? 6 will be 
the same in each case, viz. 

taneO — (Br Cy) Fe — |( By — Cy) p| Pats ou) 

The image will be real or virtual according as the values of @ and 
p make X positive or negative. 

§ 6. Experimental details. In the experiments the apparatus 
shown diagrammatically in plan in Fig. 5 was used. The zone plate 

G is fixed, with its axis ON horizontal, to a table turning about 
a vertical axis and carrying a horizontal divided circle H, which 

is read by the pointers J, J. The adjustment of the zone plate so 

that its centre O lies on the vertical axis of the table may be 

effected by aid of a long focus microscope or by simple mechanical 

devices. It is convenient to mount the base of the revolving table 



338 Dr Searle, Experiments on focal lines formed by a zone plate 

H upon a carriage sliding on a graduated track R at right angles | 
to the optical bench S. The zone plate can then be moved aside | 
and be replaced at will. The focal lines are observed by aid of a 
low-power eye-piece or of a telescope 7 mounted on a carriage 
sliding along the optical bench S. The length of the telescope, 
which must remain unchanged during any set of observations, 
should be adjusted so that an object about one metre from the 
objective may be seen in focus. A cross-wire which has been 
properly focussed will enable the observer to secure more definite 
settings of the telescope or eye-piece. If a telescope is used, the 
positions of virtual as well as of real images and focal lines can be 
observed. 

In testing the results of § 3, a small circular hole P in a sheet 
of metal, illuminated by a sodium flame Z, may form the object. 
The hole P lies on the line OX passing through O and parallel to 
the length of the bench. The distance PO may be about 2/,. 

A string, stretched parallel to the length of the bench, may be 
used in setting P on to the line OX and in making the axis of the telescope coincide with OX. The zero reading of the circle A is found by holding a set square against the zone plate and adjusting 
the table so that the appropriate edge of the square is parallel to OX; suitable optical appliances would give greater accuracy of adjustment. The angle NOX is 6. When 6 = 0, the images of P 
will be found on moving the telescope along the bench. By com- paring the bench reading of the telescope for any image with its | reading when focussed on the zone plate, the distance of the image | from O is found. The distance is called positive when the image is _ real. 

If @ is now increased from zero, the circular image of P will be drawn out into a horizontal focal line at a point R on OX, and the position of R will coincide with that of the wmage of P for 6 = 0. There will also be a vertical focal line at Q on OX, but this will move towards O as @ is increased, the “power” of the zone plate changing from F, to F,, sec? 0 for this line. If PO — u, and if, for any value of 6, and for any value of p, the distances QO, RO are 
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b, c respectively, while v is the distance from O of the image when 

6 = 0, we have 

ave SE Te i 1 Siar | 
—+-= F,,, athe eee: ate ee ...(31) 

The distances u, v or c, and b are measured. The accuracy of the 

second formula is tested by finding the value of (1/u + 1/0) cos? @ 
for various values of 0. 

The experiment is improved by substituting for the small hole 
a pair of slits cut in a metal plate and intersecting accurately at 
right angles. To obtain sharp “images” of the slits formed by focal 
lines, one slit must be vertical, the other horizontal, since the focal 

line at P due to a luminous point at Q is vertical, and the focal line 

at P due to a luminous point at R is horizontal. 
When @ = 0, the zone plate forms images of the crossed slits. 

We can use the multiplicity of focal lengths to produce an apparent 
image of the crossed slits when @ is not zero. With @=0, the 

telescope is set on the image of the second order (p = 2). Then 

1/u + 1/u= F,. If @ is now made jz, the horizontal focal line of 

the second order is given by 1/u + 1/c = Fy. The vertical focal 
line of the first order for 0 = 47 is given by 

1/u + 1/6 = F, sec? da = 2F,. 

But F,=2F,, and hence 6 for the first order equals ¢ for the 

second order. The two focal lines will thus be at the same distance 

from O, and the observer will have the impression that he sees 

a true image of the slits. H, however, a small hole is used in place 
of the crossed slits, two focal lines will be seen. 

For testing the results of § 5, additional apparatus is required. 

A horizontal tube M, arranged with a draw tube for adjustment of 

length, turns in bearings A, A (Fig. 5) and carries a vertical divided 

circle V, which is read by the index F£. A lens L is fixed to the 

end of the tube nearer O. At the other end is a plate K pierced 

by a small circular hole, by one shit or by a pair of slits crossed 

at right angles. This plate can be turned in its own plane about 

the axis of M and thus a slit can be given any desired direction. 

The plate K is held against a flange at the end of the tube by 

three nuts working on three studs carried by a plate on the other 

side of the flange. The tube passes through a hole in the latter 

plate with an easy fit. (The plate with the hole P is removed.) 

If L has spherical faces, the length of M can be adjusted so 

that K is in the focal plane of LZ. The system then forms an ordinary 

collimator. If L is an astigmatic lens, spherical on one face and 

cylindrical on the other, and if M is adjusted so that KL equals 

one of the two focal lengths of L, one of the focal lines formed when 

a small hole is used in K will be at infinity, and the arrangement 
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may be called an astigmatic collimator. The emergent wave front 
in this case will be cylindrical. 

By rotating M, the principal planes of the emergent wave front 
emerging from an astigmatic lens Z can be turned about the axis 
of M*. 

The principal planes of the emergent wave front due to a 
luminous point at AK are perpendicular and parallel to the axis 
of the cylindrical surface of Z. We will denote by zs, the inclination 
of the first of these planes to XON, the horizontal plane of incidence 
of the chief ray upon the zone plate; then the inclination of the 
other principal plane is %, + $7. HU, in place of a small hole, a slit 
is used, its inclination to the horizontal plane through OX must 
be %, or #, + $7, when 6= 0. When @ is not zero and ¢, is not 
zero, no sharp focal line will be formed unless the slit is inclined 
to XON at one of the two angles 6 and 6 + 47. To find the angle 
6, first find the focal lines formed at QY and R on OX by the system 
of lens and zone plate, when a luminous point is placed at K. 
Next place a luminous point at Q; the direction of that focal line 
which lies in the plane of K gives one of the required directions 
of the slit. When the slit is placed in this position and is illuminated, 
there will be a long sharp focal line at Q. If the slit is turned through 
da, there will be a long sharp focal line at R. Uf we carry out this 
process mathematically we can calculate 6. In practice it is easy 
to adjust the direction of the slit so that the images formed by 
focal] lines are sharp. 

§7. Furst practical ecample. In this experiment the results of 
§ 3 were tested. 

A vertical slit was used in the collimator M/ (Fig. 5), and the instrument 
was adjusted so that the slit was accurately at the focus of a converging lens 
of 3-5 dioptre power. The rays falling on the zone plate came, in effect, from 
an infinitely distant slit, and thus 1/uw=0. The real images for p= +1 and 
the virtual images for p= —1 were observed by aid of a telescope. The real 
and virtual horizontal focal lines did not change their positions when 6 was 
increased from zero. Since 6, the distance of the vertical focal line from the 
zone plate is positive or negative with p, the product bp is always positive. 
The values of bp given for 6=15° are the means of those found for 6=15° 
and 6 = — 15°, and similarly for the other angles. By (2), since 1/w=0, bp sec? 6 
is constant. 

* The appliance (Fig. 5) for rotating the wave front may be used with advantage 
in the experiment described in § 10 of “‘ Experiments with a plane diffraction grating ” 
(Proc. Camb. Phil. Soc. Vol. xx. p. 105). In the method there described, the angle 
between the vertical and the cross-wire is erroneously taken to be ~,, whereas, in 
the theory, the angle between the vertical and the generators of the cylindrical 
surface of the lens is y,. These two angles are not generally identical. In the actual 
example given, the difference was small. When the experiment was done, I had 
not the appliance shown in Fig. 5 above. 
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| 8 a My mngt te Wean bp sec? 8 

| oF 65-96 cm. 65-84 em. 65-90 cm. 65-90 cm. 
| 15° 62-02 61-26 61-64 66-06 
| 30° 50-38 48-94 49-66 66-21 

45° 33-80 32-69 33-24 66-48 
| 60° 16-71 16-18 16-44 65-76 

| 

The mean value of bp sec? @ is 66-08 cm., and the corresponding “power” of 
the zone plate for images of the first order is 

F, =1/66-08 em.—! =-015133 em. =1-5133 dioptre. 

§ 8. Second practical example. The results of § 5 were tested in 
these experiments. 

The lens Z (Fig. 5) was built up of a spherical lens of 2-5 dioptres in power 
(2:5 D) and a plano-cylindrical lens of powers 0 and 1 D. The axis of the 
cylindrical surface will be called the axis of Z. When this axis is vertical, 
v,=9. In each set of observations, @ was made 45° and — 45°, and the mean 
results for the two positions are given. In the first set, the slit was vertical 
when yy, =0. Then W, was gradually changed from 0 to $7, and at the same 
time the direction of the slit and the position of the telescope were changed 
so as to keep the slit in view throughout. The image of the slit, formed by focal 
lines, was very sharp if the direction of the slit was very carefully adjusted. 
The table records B,, the reciprocal of the distance of the focal line from the 
aa eg expressed in dioptres. Thus the reciprocal of 40 cm. would appear 
as 2:5 D. 

The axis of Z was again made vertical and the slit was made horizontal. 
Then y, was changed step by step from 0 to $1. The reciprocal of the distance 
of this focal line from the zone plate is Cy. 

In each case the virtual focal line of the first order was used, and thus 
B, and C, were both negative and p= —1. From the values given in the table 
we have, in dioptres, 

B,®= -2-9976, B,"/?= -3-9002, C,°= -2-4201, C,7/2= —1-5006. 

Since (28) gives two expressions for X, F,, tan? 6 and B, —C,, we take the mean 
in each case. Thus 

X = —} (54177 +5-4008) = — 2-7046, 

F,, tan? 6 = — 4 (1-4970 + 1-4801) = — 1-4886, 

B, —C, =} (-9026 +9195) =-9110. 

Hence ¥°= —0-2888, We 1:1998, and Y is, therefore, taken as negative 

for all values of y,. Using the values of F,, tan? 6 and of B, —C, just found, 

Y was calculated for ~,=15°, ... by (25). There is good agreement between 

X-+/Y and the observed value of B, and between X - Y and the observed 

value of Cy. 
The distance OL was approximately 10 cm. 



342 Dr Searle, Experiments on focal lines formed by a zone plate 

X = —2-7046 D. 

1B. Of, ; =, aoe 
4 obsd. obsd: i X+Y xX-} 

2 D D D D D 
0) —2-9976 —2-4201 — +2888 —2-9934 —2-4158 

15 —3-1397 — 2-2594 — -4174 — 3-1220 —2-2872 
30 —3-3580 — 2-0325 — -6499 —3-3545 — 2-0547 
45 —3-6127 — 1-8037 — -8726 —3-5772 — 1-8320 
60 —3-7821 — 1-6375 — 1-0490 —3-7536 — 1-6556 
75 —3-8790 — 1:5347 —1-1613 —3-8659 — 1-5433 
90 —3-9002 — 1-5006 — 1-1998 — 39044 — 15048 

§ 9. Third practical example. In this experiment the directions 
of the focal lines were observed. 

The apparatus was the same as in §8, and 6 was 45°. For each value 
of y,, the direction of the slit was adjusted so that the image formed by focal 
lines was as sharp as possible, and the cross-wire of the telescope was set 
parallel to the edges of the image. The setting of the cross-wire thus depends 
upon the accuracy of adjustment of the slit, for a change of direction of the 
slit changes the direction of the ‘‘image,”’ in addition to changing the sharpness 
of its edges. The zone plate carriage was then moved aside on its slide R 
(Fig. 5) and the telescope was moved back, until a fine wire stretched across 
the face of L was in focus. The reading of the circle V, when this wire was 
vertical, was known. The tube M was turned so that this wire was parallel to 
the cross-wire of the telescope; the direction of the cross-wire was then given 
by the reading of V. In each case the focal line corresponding to p= —1 was 
used; this focal line was virtual. 

Two sets of measurements were made. In the first set, when yw, =0, the 
slit was vertical. Then , was changed by steps of 15° to 90°, and the image, 
which corresponds to B,, was followed up. The inclination of this image to the 
vertical is 2. In the second set, when y, =0, the slit was horizontal, and this 
image corresponds to C,. The inclination of this image to the horizontal is 
also y.. The table below gives the two values found for Ww, and their mean. 
Tn calculating y, from (29), we take B, —C, =0-9110, as found in § 8, and use 
Y as given in the table in § 8. Since Y is negative when p= —1, and since 
B, —C, is positive, it follows that y, is negative when y, is positive. 

Ws B ve : Yo 2 be » image C', image Mean obsd. Caled. 

0° OFF; 0° 0’ Oe Onno} 
15 —14 30 —16 15 —15 22 —16 32 
30 —18 30 —18 45 —18 38 —18 51 
45 —12 45 —15 30 -l4 8 —15 44 
60 orl OFC) =I a) —10 45 = las 
75 = & 23 = & 1S — 5 20 = sy) 
90 0 0 0 0 (0) 0 0 

| 
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Since F,, tan? 6 = 1-4886, when p = +1 and 6 =45°, and since B, —- C, =-9110, 

Y,° and Y”” are positive, and thus W. has the same sign as y,. Using the 
real focal lines corresponding to p=1, we verified that wW./, is positive. 

§10. Fourth practical example. In these experiments a true 
image of the object at K (Fig. 5) was produced; the direction of 
the axis of the zone plate was so adjusted that the astigmatism 
due to its obliquity balanced the astigmatism due to the lens. 

The mean value found for F, in § 7 is 15133 dioptre. Hence F, (1 +sec? 6) 
is at least equal to 3-0266D and F,(1+sec? 6) and F, (1+sec? 6) are still 
larger. Since B, —C,=-9110, X and p are positive or negative together. 

In the first set of observations, y,=0. The slit was made horizontal and, 
with 6=0, the telescope was focussed on an image for which p= -—1, —2 or 
—3; each image was virtual. This image is in the same place as the image which 
is formed by horizontal focal lines when @ is changed from zero. The slit is 
then made approximately vertical and the zone plate is turned until 6 is such 
that the image is again in focus. The image is then in focus for all directions 
of the slit. 

In the second set of observations, yy, =$7, and the images for which p=1, 
2 or 3 were used; these images were real. __ 

The calculated values of 6 were found from (30), using F, =1-5133 and 
B, — C, =:9110 dioptre. 

Real images Virtual images 
i eats Mean Caled 

aoe =f is erry " obsd oss 
Order Obsd. Order Obsd. : 

p 0 Pp é 6 6 

1 37° 45’ -] 37° 30° 37° 38’ 37° 48’ 
2 30 30 -2 28 30 29 30 28 45 
3 23 45 -3 22 30 23 8 24 8 

Corrections in Papers by Dr G. F. C. Searle. 

(i) “A bifilar method of measuring the rigidity of wires” (Proc. Camb. 
Phil. Soc. Vol. xx. p. 61). Equation (10) on p. 67 should read 

C € € 

Carer gare) arg ey Seach ear gh 

When this correction is made, the quantity C remains unchanged, but the 
values given for P and Q in (18) and (19) must be multiplied by 1+C. In the 
practical example (p. 69) P is changed from —-0028 to —-0029 and @ from 
—-0045 to —-0046. There will be corresponding small changes in the last 
column of the table of results on p. 68. 

(ii) ‘‘Experiments with a plane diffraction grating” (Proc. Camb. Phil. 
Soc. Vol. xx. p. 88). An error affecting §§ 10, 12 of this paper is noticed in 
a footnote to §6 of ‘‘Experiments on focal lines formed by a zone plate” 
(Proc. Camb, Phil. Soc. Vol. xx. p. 340). 
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The Tensor Form of the Equations of Viscous Motion. By 
H. A. Mixng, B.A., Trinity College. 

[Received 5 January, Read 7 February 1921.] 

In the general theory of relativity the Principle of Equivalence 
asserts that all laws relating to phenomena in a geometrical field 
of force which depend on the g’s and their first derivatives only will 
also hold in a permanent gravitational field. Eddington comments 
on this* that “it would be quite consistent with the general idea of 
relativity if the true expression of such laws involved the Riemann- 
Christoffel tensor, which vanishes in the artificial field and would 
have to be replaced before the equations were applied to the 
gravitational field. But were we to admit that, the principle of 
equivalence would become absolutely useless.” The following ex- 
ample from three dimensions illustrates the significance of this point 
by analogy. 

The equations of motion of a viscous fluid in terms of the 
velocities may be obtained in tensor form either by generalising 
the corresponding Cartesian equations, or by first generalising the 
equations of motion involving the pressures and then substituting 
for the pressures in terms of the velocities. The two forms are 
found to differ by a term involving G,,, which is of course zero in 
Galilean space, so that the two forms are in fact equivalent. The 
explicit emergence of G',, in such a simple case is however inter- 
esting; although there would in any case be no field for the applica- 
tion of an analogue of the principle of equivalence since the second 
derivatives of the g’s are elsewhere involved in both forms. 

The stress system (pz., Pyy,-..) in rectangular three-dimen- 
sional co-ordinates is a symmetrical tensor of the second rank. The 
precise generalised definition of p,,, etc., in general co-ordinates 
is to some extent arbitrary; let us assume they are defined so as to 
constitute a contravariant tensor P«”. It is to be noted that in 
this case the contravariant vector expressing the force across the 
element of surface dS is 1e,,, Pu dS": 

here the element of surface is represented by the antisymmetrical 
contravariant tensor dS°7 (such that dS**=0 when p=o and 
dSer — — dS7° when p +c), and e,,, denotes the covariant tensort 

* «Report on the Relativity Theory of Gravitation,” Phys. Soc. Lond. (1918), p. 43. 
{ For the properties of the e-tensors see J. E. Wright, “Invariants of quadratic 

differential forms,’’ Camb. Math. Tracts, No. 9, p- 21. They may be used for converting 
a tensor of rank p into one of rank |n — p|, » being the number of dimensions ; for 
example, by the use of them it is easy to show how it is that antisymmetrical tensors 
of the second rank in three dimensions (such as the vector product) degenerate into 
vectors. 
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of the third rank whose components are zero when any two 
of the suffixes are equal, and equal to + 1/g when all three are 
unequal, the sign being given by the parity of the number of in- 
versions inv, p, o. If x1, x2, 23 are the co-ordinates, and if the 
element of surface is denoted in the more usual way by d8S,, dS3, 
dS;, then the z,-component of (1) reduces to 

Vg (P4dS, + P!2dS, + P8dS,). 

The “mean pressure” p is the invariant 49,, P+’. 
If k is the coefficient of viscosity, the usual equations* for the 

pressures 
Ou Ov Ow Ou 

a 
ee ele) pape 

< gee (= ' oy pe =) wae “al ») 

o.. —= 7% ae 
| does (2) 

Poy = Pyx = oy =) 

generalise into 

i 91 p= Bb (U7) hig? (Ue 9 (woh a(8) 
the notation (w"), denoting the covariant derivative; and the 
equations of motion in terms of the pressurest 

Du _ Ope , OPay , Pas font xX + an sy ee, wee (4) 

alise int = X«) = (pw 5 generalise into P\ ae A eae eG eee (5) 

where the generalisation of “differentiation following the motion” 
is given by 

Substituting for Pv’ in (5) and remembering that the covariant 
derivatives of the g’s are identically zero we find 

0 3 i 

DE x") = — 9" —— (p + $k (w’)e) + bg"? (Wor +g (ov) 
F) 

ey ee (chi) Ag’ (Cou MOh” [(’\op — (onde 

where in the last term v and o have been interchanged as being 
dummies. These are the differential equations satisfied by the 
velocities. 

On the other hand the usual equations for the velocities ob- 
tained by combining (2) and (4) directly, namely, 

Du Op . 1,0 (Ou , ww , ow an py = PX — et thw ae =) + ky “ ...(8) 

* Lamb, Hydrodynamics, fourth edition, p. 570. t Loc. cit. p. 572. 
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generalise into 

Du 0 

p (Dp ~X) =~ 9 Bg,  — BR we) + Ra” (Wer) 
which differ from (7) by the absence of the term 

keg [(w op = (sale ee (10) 

Now the Riemann-Christoffel tensor B»,,, is conveniently de- | 
fined by the identity 

(Au)ve ae (Axu)ov ro AS LB sors 

where A, is any covariant vector; but it is easy to prove also that 
if A“ is any contravariant vector, then 

A tae! (A ap aa eer 

Contracting this by putting o = w and summing, we have 

(on nih (Pie = — AP Give 

It follows that the term in question, (10), is simply 

— kg"? Goo U, 

which vanishes, the space being Galilean. Were one attempting, 
however, to discuss viscous motion in non-Galilean space, with 
the generalisations of (2) and (4) as a dynamical basis, one would 
be led to an incorrect result by hastily generalising (8), although | 
this is merely a combination of (2) and (4); and the interest lies in | 
the circumstance that it is precisely the contracted Riemann-— 
Christoffel tensor that appears as an error term. | 
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Insect Oases. By C. G. Lamp, M.A. 

[Read 7 March 1921.] 

Cases of extremely limited distribution are familiar to all col- 
lectors, the limitation being sometimes so great as to amount to 
a single tree or a few square yards of ground, but it is nearly always 
possible to correlate the distribution with the presence of the 
necessary pabulum or with the environment. The establishment 
of a satisfactory case of a persistent isolated colony requires not 
only a careful search of the locality in respect to space, but obser- 
vation over a considerable period of time in order to eliminate 
possible secular disturbances. It happens that the author has 
visited a particular locality at the same period of the year for 
many years and has investigated it with much care, so that the 
required time and space conditions may be taken to be well 
satisfied. Further, the part of the district to be dealt with has the 
additional advantage of being singularly homogeneous in its flora. 
It consists of a tract, of “towans” or sandy waste in the parish of 
St Merryn, N. Cornwall, known as “Constantine Commons”: this 
waste is of fair extent and is characterised by great uniformity in 
its flora which includes an exceptional number of the Boraginaceae, 
Echium at times forming a perfectly astonishing spectacle: it also 
bears the spotted hemlock, the henbane and the opium poppy in 
fair plenty. The subsoil is clay, so that there is always permanent 
water in parts, and it is intersected in places with ancient slate 
slab walls bearing very old tamarisk bushes which indeed form 
the only shelter against the gales. The district is full of archaeo- 
logical interest and would repay investigation, and the neighbour- 
hood has yielded several other insects of much interest, though 
not exhibiting the localised habit of those to be considered. In 
this perfectly homogeneous area, and in places which careful in- 
vestigation shows to be in no way different from the surroundings, 
certain species of Diptera appear to inhabit quite definite oases or 
islands. One may proceed to such a spot at the proper season 
with the certainty that the insect will be found, and that in fair 
or even great numbers, while the rest of the area may yield one 
or two specimens at most, and that with extreme rarity. In spite 
of much investigation the author has not been able to find any 
circumstances whatever correlated to the distribution in the 
examples given below: whether it be due to a “herd” instinct or 
not is of course unanswerable: it is more probable that they are 
cases of approaching extinction. It would be of much interest to 
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have similar cases recorded, but unfortunately the observations 
necessitate a very long and close acquaintance with a given district. 
All the insects mentioned below are quite capable of flight, but 
are usually very sedentary in habit, being only obtainable by 
“sweeping.” 

Lucina fasciata Meigen. This South European species was first 
recorded many years ago from Ireland, and was rediscovered in 
England on the coast near Weston, Somerset, by the author. It 
occurs very sporadically in the locality under consideration, but 
in one very restricted area it is quite common, the boundary of 
its distribution being reasonably definite, though no observable 
physical boundary is to be seen. 

Oxyna flavipennis Loew. This species is apparently extremely 
rare although it is said to breed in Achillea millifolium; the late 
Mr G. H. Verrall in 40 years of most careful investigation only 
found two specimens. In the present locality it occurs in great 
numbers on the sheltered side of one out of many of the tamarisk 
hedges that intersect the commons, but is practically restricted 
to some 40 yards of the hedge. 

Aphaniosoma quadrinotatum Becker. This is a species first 
described from the Canary Islands and afterwards found in Spain. 
It is confined to a similarly restricted spot associated with Matri- 
caria, which is, however, quite abundant elsewhere where the 
insect is absent. 

Syntormon miki Strobl. This is another Spanish species which 
occurs only in a very small marshy hollow near the commons. 
That same hollow produces three other species of the genus, 
namely pumilus, monilis and the ubiquitous pallipes. 

A second type of homogeneous locality is afforded by the spots 
where small streamlets run on to the sands of the various bays 
that break the coast line: these localities are all practically alike 
in character and flora. On the banks of one of the streams, and in 
an area of but a few square feet, occurred our last example. 

Ochthera mantispa Loew, an insect first described from Rhodes, 
and found round the Mediterranean littoral. This singularly 
isolated colony persisted for some years, but is now probably 
extinct owing to disturbance of the natural conditions by visitors 
to the bay. In spite of assiduous search no other colony has been 
found. 

It will be noticed that all the species referred to, with the 
exception of the Oxyna, are of southern distribution. Other 
southern insects have been found in the district, but are not so 
striking in their isolation. Two other rare flies are also found 
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there, and in somewhat similar isolation, namely the dolichopids 
Dolichopus signifer and Acropsilus niger, but these are so far only 
known to be of Central European distribution, though the occur- 
rence of the former in Ireland many years ago makes it possible 
that it is another of the former class. 

The most probable reason for the extremely restricted distri- 
bution of these insects is that we are in the presence of the last 
stage of the extinction of a species. With creatures of such com- 
paratively sedentary dispositions, once an island is formed it has 
little chance of increase. There must be a minimum population 
density which is such that when the density approaches that 
minimum the chance of reproduction is practically zero; as there 
is no evidence that any of the species have sex attracting powers, 
this minimum density might well be attained at a comparatively 
small distance from the centre of the colony. 

VOL. XX. PART III. 
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A Note on the Hydrogen Ion Concentration of some Natural 
Waters. By J. T. Saunpers, M.A., Christ’s College. 

[Read 7 March 1921.] 

The natural waters referred to in this preliminary note are all 
fresh and all occur in districts where the soil or sub-soil contains 
chalk, gault or lime in some form or other. In such districts the 
natural waters have a fairly constant hydrogen ion concentration. 
When the water issues from the ground as in the case of springs 
and wells the Py is found to vary only within the hmits 7-1-7-2. 
The following table shows the values of Py for water issuing from 
the ground: 

Locality Pu Date 

Well at Cherryhinton, Cambs.... 3c 608 7-1 March 1921 

Springs at Shelford (“Nine Wells”), Cambs... 7-2 ee load 

Siphon spring at Warlingham, Surrey 7-2 pe I) 

Cambridge tap water (supplied from wells)... agit various dates 

These four cases are all very different yet the Py of the water is 
remarkably constant. The well at Cherryhinton is 8 ft. deep with 
2 ft. of water at the bottom. The water comes through the gault. 
At Shelford the “Nine Wells” are a number of springs bubbling 
up through fissures in the chalk. The siphon spring at Warlngham 
is intermittent, running freely for eight to ten weeks at intervals 
varying from two to seven years. Here, as at Shelford, the water 
comes up through fissures in the chalk. The Cambridge Town 
supply is derived from deep wells running through the gault to 
water-bearing strata. . 

As the water leaves the source and flows along in the stream 
that arises from the spring the value of Py increases gradually 
until it reaches a value varying only within the limits 8-25-8-5, 
at which value it remains constant. The siphon spring water at 
Warlingham flowed along a wide grassy ditch. Within half-a-mile 
of the source the Py of the water had risen to 8-4 at which value 
it remained constant for, at any rate, another mile, when I was 
unable to trace it further. The water flowing from the “Nine 
Wells” at Shelford behaves in much the same fashion, but here 
I was able to trace the water further and found that the Py, after 
reaching the value 8-3 within half-a-mile of the source, fell again 
at a mile and a half from the source to 8-05. This lowering of the 
Py is undoubtedly due to the stream, which has now become 
almost sluggish, mixing with its waters the acid products of de- 
composition from the bottom. At first the stream flows over clean 
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ground, there is no débris and the bottom is swept clean by the 
force of running water. But further on the stream expands, its 
pace slackens and débris accumulates at the bottom. In rivers and 
streams, however sluggish, there is sufficient stream to mix the 
waters thoroughly and to bring up the acid waters from the bottom. 
Hence the Py of rivers and streams is variable and not constant, 
depending on the pace of the stream and the amount of disturbance 
of the bottom. 

In ponds and lakes that are large and deep, no disturbance of 
the bottom will occur and there is no general mixing of the waters. 
Here again we find the Py, to be constant within the limits 8-25-8-5 
as the following table shows: 

Locality Pu Date 

Upton Broad, Norfolk ... ae ae ane Onde March, April 1919 

S. Walsham Broad, Norfolk Ane Aes S05. teeta op » 

Railway Ballast Pits, Chesterton, Cambridge... 8-4 August 1920 

Large Brick Pit, Cambridge __... yo soa, tea) March 1921 

99 st Madingley 38 oe ae Sone March 1921 

The two Broads in Norfolk are large shallow waters not more 
than 6-8 ft. deep. The pits at Cambridge and Madingley are 
20-30 ft. deep. The area in all cases exceeds an acre. In small 
shallow ponds no such constancy occurs. Here the influence of 
the bottom will cause a lowering of the Py; the presence of masses 
of vegetation, however, may increase the Py, for plants, during 
photosynthesis, extract CO, from bicarbonates and render the 
water alkaline. If, on a sunny day, water be taken from a small 
pond containing masses of Spirogyra the value of the Py will be 
found to be as much as 9-0. 

On shaking in a test tube well or spring waters from these 
districts where lime in some form or other is abundant in the soil 
or sub-soil, it is found that Py rises to a value varying from 8-25-8-5 
and remains constant within these limits. Bubbling air through the 
water produces the same effect. If the effects of decomposition and 
photosynthesis be avoided it will be found that the Py of waters 
in these districts when saturated with air in solution has a value 
that is constant within the limits 8-25-8-5. 

The method used for the determination of the value of Py has 
been that developed by Clark and Lubs. 

REFERENCES. 
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The Mechanism of Ciliary Movement. By J. Gray, M.A., Balfour 
Student, and Fellow of King’s College, Cambridge. 

[Read 7 March 1921.] 

Ciliary movement is a well-known phenomenon in the animal 
kingdom, and although there is general agreement concerning the 
morphological structure of the cilhary apparatus, yet our knowledge 
of its physiology is small. Most of the theories which have been 
advanced have been based upon the morphological structure of 
the cilium, and different authors have attributed different functions 
to the various structures which become visible in stained prepara- 
tions. The present paper is a preliminary account of an attempt 
to throw light on this vexed problem by the application of experi- 
mental methods. 

The material used has been the gills of Mytilus edulis, which, 
as explained elsewhere*, form an admirable subject for study. The 
main cilia on the gills can be divided into three classes (a) the 
frontal and terminal cilia, (6) the lateral cilia, (c) the latero-frontal 
cilia. Of these groups, the first two resemble each other in the fact 
that they perform work by creating a current of water or bring 
about the active transport of food and mucus. The function of the 
latero-frontal cilia is rather difficult to determine, but it seems 
certain that they do not perform work as do the other types of 
cilium. These latero-frontal cilia may either serve to keep the 
filaments of the gill apart, or to direct the water currents formed 
by the lateral cilia on to the face of the gill. 

There is no doubt that the large latero-frontal cilia are com- 
posed of a number of cilia or separate fibres fused together. The 
frontal cilia also have probably the same constitution. There is, 
further, a wealth of morphological evidence to show that in a very 
large number of ciliated cells, the cilium itself is composed of 
fibres fused together, or that part of essential ciliary apparatus is 
fibrous. The work-performing cilia are remarkably efficient, and 
are capable of producing a rapid flow of water or food particles. 
All the cilia possess a very considerable degree of elasticity, since, 
when deformed by any external agent, they regain their normal 
shape when the disturbing element 1s removed. 

A considerable number of workers have taken cognisance of 
the fact that cilia are essentially elastic bodies, but it is of interest 
to consider the problem afresh. 

* J. Gray, Quart. Journ. Micros. Science, vol. 64, 1920, p. 345. 
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Consider a simple strip of steel wire ABC attached at one end C 
(Fig. 1). Ifa stress is applied to the wire so as to distort it to As BaG; 
then it is clear that in passing from the position of rest ABC to its 
new position 4,B,C,a considerable part of the energy used to disturb 
the wire is stored in the wire, in other words when in the position 
A,B,C the strip of wire possesses a definite amount of potential 
energy. If we wish to make the wire do work in the direction from 
A to A,, it is obvious that such a mechanism would be extremely 
inefficient since the whole of the potential energy taken up by the 
wire itself would be unavailable for work. Consider now the same 
wire distorted to abC. Again potential energy is stored. On releasing 
the wire the whole of this energy is set free and is available for work. 

———— 

A 

C 

ice 

Heidenhain and numerous other workers have regarded cilia 
as comparable to the wire which performs work in moving from 
A to A,. We therefore reach the paradoxical conclusion that cilia 
perform a surprising amount of work*, and yet are exceedingly 
inefficient machines. 

Let us now consider the actual movement of the frontal or 
terminal cilia on the gills of Mytilus. 

Under normal conditions the rate of beat of these cilia is so 
great, that it is only possible to observe the movement in detail 
when the rate of beat is reduced by the addition of some viscous 
but non-toxic substance (e.g. gum arabic) to the external medium. 

During the forward or effective beat (Fig. 2) the cilium behaves as 

* Bowditch calculated that each cell of the mucous membrane of the Frog is 
capable of lifting its own weight to a height of 14 feet in 1 min. 
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an elastic rod which moves forward froma pivot at its base, and which 
exposes the maximum amount of surface to the water. During the 
recovery stroke (Fig. 3), the movement is slower, and the shape of 
the cilium is different. The cilium is drawn back as a limp string or 
piece of unstretched rubber in which a stress is set up which starts 
at the base and is transmitted to the free end. The path followed 
by the cilium is essentially the same as that of a fishing line during 
the backward movement of the cast, whereas during the forward 
effective beat the cilium resembles a stretched spring which is 
suddenly released. The essential difference is that during the for- 
ward effective stroke the cilium is expending energy in the form 

M— Forward or Effective Beat 

Fig. 2. 

———> Backward or Recovery Beat 

pega A 

Fig. 3. 

of work, whereas during the recovery stroke the cilium is storing 
potential energy and is performing a minimum of external work 
during its change of position. 

The simplest conception of such a mechanism is to regard the 
cilium at the end of its effective stroke as a relaxed elastic body. 
The recovery stroke is brought about by the setting up of a tension 
in this body: the tension begins at the base of the cilium and passes 
on to its apex. The direction of the tension is approximately along 
the line which the cilium occupies at the end of the recovery stroke. 
In other words the position at the end of the recovery stroke represents the equilibrium between the force which is distorting 
the cilium and its own elasticity. If the force applied be removed, the potential energy stored in the cilium will be released, and the 
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cilium will fly forward: in doing so the potential energy will be 
expended in the form of work done on the water. 

There are, however, certain cilia (e.g. in Ctenophores) which 
differ from the cilia of M ytilus in that they can be stopped in the 
position normally occupied at the end of the recovery beat. We 
must regard such cilia as possessing potential energy when at rest, 
in the same way as a stretched spring which is held back by a 
mechanical catch. Such cilia appear to resemble muscle fibres very 
closely. 

Now we may enquire the origin of the potential energy stored 
in the cilium during the recovery stroke. It must be derived from 
the chemical energy either in the cilium itself or in some other part 
of the cell. The problem, therefore, narrows itself to a determination 
of the possible methods whereby chemical ener gy can be converted 
into kinetic energy by means of a fibrous and elastic mechanism. 
At this point the similarity of the ciliary apparatus to a muscle 
fibre becomes obvious, and it is convenient to summarize the 
mechanism of the muscle fibre as analysed by A. V. Hill*. 

When at rest a muscle fibre may represent a stretched elastic 
body which possesses potential energy stored as tension energy 
in some substance A (which may be inactive connective tissue 
fibres). Within the muscle, however, are certain fibres B which are 
capable of developing a tension when in contact with some chemical 
substance which is liberated at the time of excitation. We can 
regard this chemical substance as lactic acid, so that the muscle 
fibres are capable of developing a tension (just as a piece of catgut 
develops a tension) when in contact with lactic acid—by the 
absorption cf water. In the resting muscle the substance A is kept 
stretched possibly by the osmotic properties of the liquid in its 
interstices. When stimulated, lactic acid is set free from some 
carbohydrate compound, the fibres B take up the energy thus set 
free and develop a tension by taking up water from the interstices 
of the substance A. Consequently the muscle contracts and utilises 
the energy in both A and B. After shortening the lactic acid 
diffuses away, 7.e., is removed from the fibres B. They therefore 
give up their water which passes back into the interstices of A, and 
the muscle lengthens. It is clear that there is no a priori objection 
to applying such a hypothesis to the cilia of Ctenophores—but as 
far as these cilia are concerned it is a hypothesis and nothing more. 

In the case of the cilia of Mytilus we can analyse the system as 
follows. At the end of the effective stroke a tension is set up in the 
fibres by the liberation of some chemical substance (which may be 
an acid) from the interior of the cell. The equilibrium between this 
tension and the elasticity of the cilium draws the latter to the 
position occupied at the end of the recovery stroke, and in doing so 

* A.V. Hill and W. Hartree, Phil. Trans. Roy. Soc. vol. 210 B, 1920, p. 153. 
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some of the tension energy of the fibres is stored in the cilium as 
a whole. The supply of the chemically active substance now ceases, 
and that portion already located in the fibres diffuses away, so that 
the cilium flies forward by virtue of its stored potential energy. 

In order to test this hypothesis the first obvious line of enquiry 
is to locate the essential parts of the ciliary mechanism. This prob- 
lem cannot now be discussed at length: it may suffice to say that 
the cilium is not of itself automatic; when separated from the cell 
it does not move. The essential portions of the mechanism le 
towards the free edge of the cell. The nucleus does not appear to 
play an essential réle. 

Owing to the small size of ciliated cells, it is impossible to 
analyse the movement by such mechanical methods as are applic- 
able to a muscle; ciliated cells have, however, one great advantage 
in that each individual cell can be observed. Thus, when the ampli- 
tude of the contraction of the heart is gradually abolished, it is 
impossible to say whether this is due to the partial reduction of 
the contraction of all the cells, or to the total abolition of contraction 
in some cells, while the amplitude of the others remains unaltered. 
In the case of cilia this difficulty does not exist, as the beat of a 
single cilium can be observed throughout the whole experiment. 

During the present work an attempt has been made to analyse 
ciliary movement by a determination of possible means whereby 
the movement can be influenced or abolished in a reversible manner, 
z.e. without serious derangement of the mechanism itself. 

1. The effect of acids and alkalis. 

As shown in a previous publication* cilia are extremely sensitive 
to acids. A certain degree of acidity in the external medium causes 
a cessation of movement. There is no reduction in the amplitude 
of the beat: the speed of both the effective and recovery beats 
becomes gradually slower, often with prolonged pauses at the end 
of each stroke. Eventually the cilia come to rest at the end of the 
effective stroke. Since there is no diminution in the actual amount 
of contraction, we are forced to conclude that the cilia do not stop 
because the actual contractile or elastic mechanisms are deranged 
but because the rate at which the transformation of chemical into 
potential energy is gradually reduced and finally ceases. Further, 
the rate at which potential energy is converted into kinetic energy 
is also reduced. This conclusion is confirmed by the study of cells 
in which we know that the amount of convertible chemical energy 
is small, v2z., spermatozoa. The work of Cohn} has shown that in 

* J. Gray, Quart. Journ. Micros. Science, vol. 64, 1920, p. 345. 
{ E. J. Cohn, Biological Bulletin, vol. 34, 1918, p. 167. 
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such cells the cessation of movement in an acid solution involves 
no wastage of energy: the acid simply prevents the chemical energy 
being converted into kinetic energy. 

It is important to notice that the efficiency of acids to cause 
cessation of movement depends upon the ease with which they 
penetrate the cell surface, so we may conclude that the liberation 
of chemical energy into ‘potential energy takes place inside the 
cell, and not at its surface. 

The effect of all moderate strengths of acid (7.e. those strengths 
which rapidly stop movement but do not kill the cell) is entirely 
reversible by means of alkalis. Again, we find that the efficiency 
of alkalis depends upon the ease with which they penetrate into 
the cell, e.g. ammonia is much more efficient than the strong alkalis. 
Within fairly wide limits the rate of ciliary movement depends 
upon the alkalinity of some area with the cell—from about P,5 to 
P,,10 there is a progressive increase in the rate of beat. 

The reduction in the rate of transformation of chemical energy 
into potential energy, by an increase in the acidity of the cell 
interior, is in accord with Kondo’s* investigations on the rate of 
production of lactic acid from muscle extract. The production of 
lactic acid from muscle extract is a self-limited reaction which 
is checked by the formation of the lactic acid—or by another acid 
in the medium. The fact that the effective beat of a cilium is 
slowed when the cell interior is more acid than normal is clearly 
explicable if we assume that the liberation of the potential energy 
into kinetic energy is dependent upon the rate at which an acid, 
like lactic acid, diffuses away from some special structure or fibre 
—the more acid the cell or medium the slower will the potential 
energy be liberated. 

It is clear that the observed facts so far described, place no 
obstacle in the way of accepting our provisional hypothesis. There 
is, however, one point which should be mentioned. If potential 
energy can be stored in the cilium by the liberation of lactic acid 
at the surface of certain fibres, then one would expect that if lactic 
acid or any other acid is used as an experimental means of stopping 
ciliary action, the fibres should remain in the shortened condition, 
and not in the relaxed state. If the concentration of the exper!- 
mental acid is raised above the minimum value to cause stoppage 
of movement, it is true that the cilia move away from the fully 
relaxed position, but they never approach the end of the recovery 
beat. The same phenomenon occurs with muscle fibres which are 
rendered inexcitable by acid. As pointed out by Minest, however, 
the shortening of the muscle fibre (or the distortion of a cilium) is 
brought about by a local concentration of acid at the surface of 

* K. Kondo, Biochem. Zeit. vol. 45, 1912, p. 63. 
+ G. R. Mines, Journ. of Phys. vol. 46, 1913, p. 188. 
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the fibre, and so the degree of tension set up in the fibres may 
be due to the difference in the concentration of hydrogen ions at 
the surface of the fibres and in some other part of the cell. 

On the other hand, it is possible that if the acidity of the whole 
cell is raised to the value which normally only exists at the surface 
of the fibres, there may be a breakdown in the whole colloidal 
structure of the cell. 

2. The effect of metallic ions. 

_ It has already been shown* that an artificial solution containing 
NaCl, KCl, MgCl, and CaCl, whose Py is about 7-8 forms a satis 
factory medium for cilary activity. If a similar solution be prepared 
in which KCl is omitted the different cilia on the gill react in 
different ways. The frontal cilia and terminal cilia are practically 
unaffected within two or three hours; the lateral cilia, however, 
quickly stop. On adding KCl to the solution they rapidly recover. 
Recovery can also be brought about by making the solution shghtly _ 
more alkaline. It is interesting to note that the lateral cilia beat 
in a definite rhythm, and it is possible that potassium is necessary 
for this rhythm. If the concentration cf potassium be increased 
above the normal value, the beat of these cilia is well maintained 
even in solutions in which the whole of the NaCl is replaced by KCl; 
the frontal and terminal cilia are not appreciably affected; the 
latero-frontal cilia however go into a state of prolonged contraction. 
After some time they gradually recover. The effect of potassium 
on the latero-frontals is antagonised by alkali. Further work is 
required for an elucidation of these facts, but it is interesting to 
note the different effects of potassium on different types of cilia. 

If an artificial solution be prepared which contains all the normal 
constituents with the exception of Ca:-, all the cilia come to rest 
within 14—2 hours. If Ca-- is added as soon as the cilia have ceased 
to beat, complete recovery takes place: if, however, the addition of 
Ca: is delayed for some time, the recovery is much less perfect, 
the rate of beat is slow and there is often a marked pause at the 
end of the recovery stroke. After stoppage in the absence of Ca--, 
rapid and complete recovery takes place on the addition of alkah, 
even when Ca-- continues to be absent. It is noticeable that the 
effect of the absence of Ca-- upon cilia is similar to the action of 
such solutions upon the heart. It is not clear whether the effect of 
alkali mobilises further stores of Ca--, or whether the absence of 
Ca:- causes a reduction in the alkalinity of the cell interior. Mines} 
concluded that in the absence of Ca:- the heart ceases to beat 
because the actual contractile mechanism is deranged, while the 

* J. Gray, Quart. Journ. Micros. Science, vol. 64, 1920, p. 345. 
+t G. R. Mines, Journ. of Phys. vol. 46, 1913, p. 188. 
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supply of potential energy from chemical energy is fully main- 

tained*. It is hoped that further work will throw more light on this 

problem. 
The action of Mg: is interesting, although the details of the 

experiments cannot be given here. It seems probable that the 

presence of Mg: stabilises the cell—probably the surface of the 

cell—to the other ions in the medium. It regulates the rate at 

which other ions can enter the cell, and the rate at which intra- 

cellular ions leave the cell. In this respect it can usually be re- 

placed by Ca~. 
During the course of these experiments a fairly close parallel 

is visible between the effect of ions—both anions and kations—upon 

muscle fibres and the ciliary mechanism. There is, however, one 

respect in which the cilia of Mytilus differ from cardiac muscle—v72. 

they are remarkably insensitive to the salts of the rare earths. On 

the other hand spermatozoa and the cilia on the blastulae of 

Echinus are just as sensitive to these salts as is cardiac muscle. 

Possibly the difference depends upon the position of the sensitive 

surface within the cell: if it lies near the surface, the trivalent ions 

can reach it, whereas if it lies deeper in the cell they may never 

penetrate. It is interesting to notice that those cilia which are 

sensitive to trivalent positive ions are also more sensitive to hydro- 

gen ions than other types of cilia. 

3. Effect of osmotic pressure. 

When cilia are exposed to any solution whose osmotic pressure 

is above a certain critical value, all movement ceases: the cilia 

remain in a position between the beginning and end of the effective 

beat, and are consequently very obvious. On reducing the osmotic 

pressure normal movement is at once resumed. 

Although the details in connection with osmotic stoppage of 

cilia require further investigation, it may be pointed out that the 

known facts fit in with our initial hypothesis. The tension set up 

in a fibre by exposure to an acid depends upon the uptake of water: 

if the amount of water in the cell is reduced below a certain critical 

amount, it is obvious that this will affect the tension set up in the 

fibre, and consequently the beat is affected and at a critical point 

will be abolished altogether. 
The general conclusion which may now be drawn is that the 

mechanism of ciliary movement and muscular activity may be of 

essentially the same nature. 

* The work of other authors does not appear to agree with this conclusion. 
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A note on the biology of the “Crown-Gall’ fungus of Lucerne. By 
J. Line, M.A., Emmanuel College. 

[Read 7 March 1921.] 

‘Crown-Gall’ of Lucerne has been investigated and described 
by several workers since the first report upon it (published) in 1898 
by von Lagerheim*. 

The earlier accounts merely describe the external appearance — 
of the diseased plants, without giving any details of the fungus 
causing the disease. More recently (1920) two important papers 
by Wilsony, and Jones and Drechslert, have appeared describing 
the disease and its causative fungus, Urophlyctis Alfalfae (Lagerh.) 
P. Magnus, in great detail. : 

Before these papers appeared, a detailed investigation of the 
fungus had been for some time in progress at Cambridge, and was 
in fact approaching completion at the time of their publication. 
In view of this it has been thought desirable to publish a brief 
account of the work, which is in the main confirmatory of the paper 
by Jones and Drechsler, and like that, is in considerable disagree- 
ment with that of Wilson. 

> 

External features of the disease. 
Diseased plants are found to bear wart-like masses of tissue at 

about the level of the soil (fig. 1). In advanced cases these may be 
as much as six inches across, but they are rarely found to extend 
more than an inch or so below the surface of the ground. 

When these masses are cut across, they show characteristic dark 
brown areas, the spore cavities in section, among the white tissue 
composing the gall, giving a marbled appearance. The name 
‘marbled gall’ has been suggested to distinguish this type of gall 
from true bacterial crown-gall. The disease is reported to be fairly 
common on Lucerne in certain areas west of the Rocky Mountains 
in the United States; in this country it has so far been reported from 
three areas only: in 1906 Salmon§ observed it in Kent: it was re- 
ported from Bedfordshire by Mr Amos (University Lecturer in 
Agriculture) in 1917, and was found in two fields near Cambridge 
in 1919 by the writer. It has again been found in Kent (1920), and 
in another field, adjoining the first, near Cambridge. It is probable 
that it is much more common than these reports would suggest, 

* Lagerheim, G. (1898). Bihang K. Svenska Vet. Akad. Handl. Ba. 24, Afd. 3, 
No. 4. t Wilson, O. T. (1920), Bot. Gaz. v. 70, No. 1, pp. 51-68. 

t Jones, F. R. and Drechsler, C. (1920). Journ. Agric. Res. (U.S.A.), vol. 20, 
No. 4, p. 295. 

§ Salmon, E. S. (1907). Journ. S.E. Agric. Coll. Wye, No. 16, p. 296. 
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as the galls are not easily observed until the plant is removed from 
the soil. A number of normal, leafy shoots may develop on the 
plant close to the galls, and in hot weather it is often noticed that 
these shoots become yellow and show signs of wilting: in this way 
it is possible to pick out infected plants in a field. The most con- 
venient starting point for a description of the parasite is the resting 
spore and its germination. Mature spores are globular, flattened 
at one pole, the average dimensions being 30u by 45, with an 
extremely brittle wall nearly 2 u thick, of a rich golden brown colour, 
lined with a thin colourless membrane. Only a very small per- 
centage of the spores examined were induced to germinate; hanging 
drop cultures were started with different liquid media containing 

Mr ARTIFICIAL NATURAL 

INFECTION INFECTION 

oe 

Fig. 1. 

spores from galls of various ages, some of which were more or less 
completely rotted. Some spores were treated previously with lactic 
acid, pepsin and other reagents which have been found to induce 
germination in other cases; others again were exposed to low tem- 
peratures, but consistent results were not obtained. It was however 
found that very slight pressure was often sufficient to start germina- 
tion in certain cases, and that the most easily germinated spores 
were obtained from galls which had become rotted owing to the 
action of mould fungi (often Fusarium sp.) and bacteria. The de- 
velopment of external zoosporangia as described by C. E. Scott* 
was never observed; the first sign of germination being a vibratory 
motion of the spore contents visible through the wall. This may 
continue for half an hour, but asa rule the escape of zoospores begins 
almost at once. Irregular cracks appear in the spore wall; a portion 

* Scott, C. E. (1920). Science, N.S., No. 1340, pp. 225, 226. 
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of the inner membrane is sometimes extruded, and throngh the 
cracks the zoospores, accompanied by and often entangled in, drops 
of oil, are seen to escape; they were found to remain active for 
several hours: no fusion of the zoospores was ever observed. The 
rapid growth of bacteria in almost all the drop cultures greatly 
hindered the observations on the behaviour of the zoospores. 

Reaction of the host plant to infection. 

The zoospores can apparently only penetrate the host at points 
where the tissues are relatively unprotected by either cuticle or 
cork. By far the most common starting points of naturally occur- 
ring galls are the numerous adventitious buds arising in continuous 
succession from the woody rootstock of the Lucerne plant. Many 
of these buds are developed some distance below the ground; they 
consist of a small axis and a number of leaf rudiments. The zoo- 
spores appear to penetrate between the outer scale leaves, and to 
enter the cells of the young leaves and of the growing point itself. 
Wherever penetration is effected the host is stimulated to locally 
increased cell division, the mass of tissue resulting bearing greater 
or less resemblance to the normal bud, according to the degree of 
infection. An extensive branching vascular system develops with 
the gall in direct communication with the vascular system of the 
host stem; the galls are thus hypertrophied buds or parts of buds. 
When first observable they appear as minute, white, shining pro- 
jections from the rootstock or from a bud. 

The cell originally entered by the zoospore could often be traced, 
although it is as a rule rapidly covered in by the division of the 
surrounding cells. The actual penetration of the host cell by the 
zoospore has not yet been observed. 

From each point of infection the fungus spreads out radially into 
the host tissues, invading particularly the thin walled cells which 
have been developed as a result of the presence of the fungus: their 
contents are absorbed, and their cavities linked up by the absorp- 
tion of certain of the walls to form an irregularly branching central 
cavity inhabited by the fungus. 

Active living hyphae of the fungus are only found in the peri- 
pheral regions, the older portions of the gall being occupied by 
developing resting spores and degenerated mycelium. The per- 
sistent walls of all cells entered become thickened and often 
curiously pitted; the inner side, in contact with the fungus, appear- 
ing somewhat mucilaginous. 

In sections of growing galls it is noticeable that part of the walls 
in the path of the hyphae disappear before the hyphae come in 
contact with them, but rim-like projections of these walls persist 
long after the cell is incorporated into the main fungal cavity. 

Growth of the fungus is by no means regular in all directions, 
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and the branching cavity formed by the invaded cells may be of 
any shape. Once the wall is thickened the fungus never grows 
through into the adjoining cells, and cell division ceases in the 
tissues surrounding the older parts of the cavity. It is sometimes 
observed that a portion of the host tissue is completely isolated by 
the fungus, and slowly dissolved without actual invasion of the 
cells composing it. In sectioned material it is not at all easy to 
make out the method of growth of the hyphae or of the resting 
spores, but if young and actively growing galls are dissected out 
and the tissues stained after fixing in bulk, it is possible to re- 
construct the fungus thallus with great certainty. 

Development of the fungus. 

Figs. 2 to 7 are camera-lucida sketches from preparations 
made in this way. The youngest hyphae (Hy, figs. 3 and 5) are seen 
to possess a very narrow lumen and thin wall, their diameter being 
about -5y. They are terminated by a swollen portion (C, figs. 2, 5 
and 6) containing rather dense protoplasm, and at first one nucleus 
only. This swollen portion will be referred to as the ‘collecting 
cell,’ since similar terms have been employed by other writers for 
analogous structures. 

The extreme end of each of these collecting cells develops a 
short, very delicate and much branched process, which is considered 
by Jones and Drechsler to have an absorptive function (Ha, figs. 2 
and 7). It could never be determined with certainty whether this 
process was a branching hypha or an outgrowth of the wall only: 
a similar structure is described by Biisgen* for Cladochytrium 
Butomi, and by Schroeter} for Physoderma ( = Urophlyctis) pulposa. 

The collecting cell increases in size, developing from 10 to 
15 nuclei, until it is about 10 in thickness. Details of nuclear 
division have not been made out, the resting nucleus shows one 
deeply staining mass of chromatinic material, but very little normal 
reticulum. Fine cross walls are then laid down, oblique to the axis 
of the collecting cell, cutting off 2 to 4 uninucleate masses of 
protoplasm, peripheral in position, from a central, multinucleate 
portion. The former give rise to branch hyphae, the latter to one 
resting spore; in each case by a process of proliferation. From each 
of the peripheral cells a papilla arises, the end of which enlarges; 
into this the single nucleus and contents of the cell are passed; it 
rapidly elongates to form another hypha of limited growth exactly 
like the one first considered. The resting spore arises from the 
centre of the apical haustorial process, as a rounded cell on a short 
stalk, simultaneously with the branch hyphae. Into this cell the 

* Biisgen, M. (1887). Beitrag zur Kenntniss der Cladochytrien. Cohn’s Beitr. 
Biol. Pflanzen, Bd 4, pl. 15. 

+ Schroeter, J. (1882). Bot. Centbl. Bd 11, Nos. 31, 32, p. 219. 
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entire contents of the central portion of the collecting cell are passed ; 
it rapidly increases in size, the absorption of food material being 
probably assisted by a zone of haustorial processes exactly similar 

Ci, the original collecting cell. | Sz, the spore proliferated from it. 
Cu, Sti; Cui, Sai; Civ, Siv; similar structures proliferated in succession 

from Cz. Ha, haustorial processes. 

to those developed apically on the young collecting cells, but in this 
case arising about midway between the equatorial plane and the 
pole of the spore remote from the collecting cell (Ha, figs. 3, 4 and 5). 
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More than 100 nuclei are formed in the spore as it matures; they 
are on the whole larger, and show a reticulum better than those in 
' the collecting cells. 

_ Figs. 3 and 4 show this method of proliferation, spores of four 
different ages developed in succession on one portion of a thallus 
being shown in fig. 4. 

The branched (haustorial) processes are not found to persist 
on the ripe spores, but as a rule the small depressions from which 
they arise can be made out. 

From this description of the fungus it would appear that it can 
no longer be regarded as forming its resting spores as a result of 
the conjugation of two hyphae, in the manner described by Magnus* 
and Schroeter; this is the conclusion also reached by Jones and 
Drechsler {; their description of the spore formation agrees exactly 
with that in this paper. It should be noted that the fungus even 
at the earliest stage in the host plant is bounded by a thin wall, 
forming a definite mycelium. No trace of a plasmodial stage as 
described by Wilson§ has been observed. 

Host Plants 

Lucerne (Medicago sativa) has been the only host plant observed 
associated with the fungus in this country; M. falcata is reported 
to be about equally attacked in the United States with MW. sativa, 
under the same conditions, and M. denticulata to be immune. 
Several attempts to infect WM. falcata and M. lupulina have failed, 
but are being repeated. 

Unsuccessful attempts to bring about infection have also been 
made with all commonly cultivated leguminous crops, and a 
number of common leguminous pasture plants and weeds. 

Infection has been induced at all seasons of the year and with 
Lucerne plants of all ages from six months old upwards. It is found 
however that under normal conditions actual infection of the host 
tissue does not take place during the summer months, the most 
favourable time being from September to February. From observa- 
tions made in the field it seems probable that a very wet condition 
of the soil is favourable for infection, though actual flooding is not 
necessary. All attempts to cause infection of the youngest seedling 
stages have so far failed. 

I should like to take this opportunity of expressing my thanks 
to Professor Biffen for suggesting the work, and for supplying some 
material for investigation, to Professor Seward for laboratory 
accommodation and to Mr F. T. Brooks for directing the work 
and for much stimulating criticism. 

* Macnus, P. Ber. Deut. Bot. Gesell. Bd 20, Heft 5, pp. 291-296. 
+ Schroeter, J. (1882). Bot. Centbl. Bd 11, Nos. 31, 32. p. 219. 
{ Jones, F. R. and Drechsler, C. (1920). Journ. Agric. Res. (U.S.A.), vol. 20, 

No. 4, p. 295. § Wilson, O. T. (1920). Bot. Gaz. v. 70, No. 1, pp. 51-68. 
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On some Alcyonaria in the Cambridge Museum. By Sypney J. 
Hickson, M.A., F.R.S., Professor of Zoology in the University of 
Manchester. 

[Read 7 March 1921.] 

Clavularia dura n.sp. 
A very small specimen of a creeping Clavularia was found in 

the collection made by Dr J. C. Verco in 20-30 fathoms off Adelaide, 
8S. Australia. The stolon consists of a few flat strands about 5 mm. 
in width attached to the horny tubes of a Gymnoblastic hydrozoon. 
On this stolon there stand at considerable distances apart five 
calices in the shape of inverted cones 1-5 mm. in height with a 
diameter of -8 mm. at the distal end and 0-3 mm. at the end where 
it is attached to the stolon. At the free base of each cone (2.e. 
the distal end of the calyx) there are eight grooves radiating from 
the centre but the circumference of the cone is quite smooth. 

The body wall of the stolon and of the calices is rendered 
pertectly rigid by a dense amalgamation of calcareous spicules, as 
in Tubipora, Telesto rubra and Sarcodictyon. So hard are the calices 
that I was unable to break them open with a pair of needles and 
it required a sharp blow on the cover-glass to crush them, When 
a calyx had been thus crushed the tentacles were seen to be armed 
with numerous spicules in the form of curved rods 0-1 mm. in 
length with a few small tubercles. The whole colony was pure 
white in colour. In form and habit this new species approaches 
very closely the Clavularia ramosa from the coast of Victoria* but 
differs from it in the hardness of the walls and the restriction of 
the eight grooves to the distal end of the calyx. Moreover in the 
new species I have not been able to find any of the double club 
spicules which are so characteristic of C. ramosa. 

Sarcodictyon catenata Forbes. 
An Aleyonarian having very much the same appearance as the 

British Sarcodictyon catenata of Forbes was sent to the Museum 
by Dr J. C. Verco from 20-35 fathoms off Adelaide, S. Australia, 
in 1904. | 

The interest of this specimen lies in the fact that the genus 
Sarcodictyon has been found hitherto only within the British — 
sea area. | 

In a former paper} I expressed agreement with Sars in sug- | 
gesting that the genus should be merged with Clavularia and I 

* Hickson, 7'rans. Zool. Soc. Lond. xi, 1894, p. 340. 
iP Cs Gin 1 SBD 
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said that the genus had been only imperfectly described. In doing 
so I did not do justice to the excellent description of Sarcodictyon 
catenata by Herdman* and I wish to make a sincere although 
belated apology. The submergence of the genus in Clavularia has 
unfortunately been accepted by May, Kiikenthal and other writers, 
but since 1894 I have examined several species of Clavularia and 
by the kindness of Prof. Herdman several specimens of Sarco- 
dictyon catenata, and I have come to the conclusion that it is 
desirable to retain the generic name Sarcodictyon. Sarcodictyon 
differs from all the species of Clavularia I have examined—except 
Clavularia dura—in having a stolon protected by hard inflexible 
walls of fused calcareous spicules and in having long retractile 
anthocodiae which can be withdrawn into shallow convex calices 
situated on the strands of the stolon. The stolon consists of 
flattened strands about 1-5-2 mm. in width, forming a network 
slightly expanded at the nodes and in the places where the zooids 
are situated. The colour of the stolon seems to be almost in- 
variably red, pink or yellow. 

Clavularia dura appears to be a connecting link between the 
two genera in having hard inflexible walls but differs from Sarco- 
dictyon in the large conical calices and in the absence of colour. 

The specimen from Australia is growing on a dead cockle shell 
about 35 mm. in length and breadth. The stolon is of a pale pink 
colour and forms a very irregular network of strands with meshes 
5 or 6 mm. across, and the strands are about 1 mm. in width. As 
the zooids are all completely retracted it is very difficult to deter- 
mine the exact distribution of the spicules in the anthocodiae but 
in these parts of the colonies free spicules can be found up to 
0-2 mm. in length which have the form of irregular spindles pro- 
vided with numerous irregular tubercles. The wall of the calices 
and of the stolon can be seen to be formed of spicules of the same 
form which in further growth have become jammed together to 
form a solid structure. 

On comparing the specimen with specimens from the British 
sea area I can find no characters to separate it from S. catenata. 
It is true that the pale pink colour distinguishes it from all the 
other specimens I have seen; but as S. catenata is known to vary 

from red to yellow the colour character is obviously not reliable. 
There seems to me, therefore, to be no other course to adopt 

than to name this specimen S. catenata notwithstanding the 
enormous distance that separates the Australian from the British 

habitat. 

* Roy. Phys. Soc, Edin, vt, 1883, p. 31. 
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Pseudocladochonus hicksoni Versluys. 

This very interesting Aleyonarian was first described by 
Versluys from the collections of the Siboga Expedition near Ceram 
and Halmaheira*. It exhibits a curious similarity in its method 
of gemmation and general form to the fossils belonging to the 
family Auloporidae and particularly to the genus Cladochonus 
from the carboniferous strata; but according to Versluys, who has © 
made an elaborate study of the genus and of the Auloporidae, it 
affords us an example of convergence rather than one of genetic 
affinity with the fossil family. 

In a small collection of Aleyonaria from the Uraga Channel 
near Tokyo, Japan 40-200 fathoms, I found a few small specimens 
of this species which exhibit all the principal characters described 
in detail by Versluys. 

The size of the retracted zooids 2mm. x 1 mm. and the dia- 
meter of the stems from which they arise 1 mm. are the same as 
in the type. 

The yellow bands where the stem is shghtly constricted just 
above the origin of the zooids can be clearly seen in some of the 
older fragments but are obscure in the younger branches. Sections 
through the stem show an arrangement of solenia divided by septa 
similar to that of the type and the precise arrangement also seems 
to vary in different parts of the stem. In one of my sections there 
are four septa meeting in a central column, in another eight septa 
which do not meet in the centre, but show some fusions of their 
free borders. There can be little doubt that the 4-septate condition 
of the first-named section has been derived from an 8-septate 
condition by an increase in the thickness of the septal walls and 
fusion at the centre. 

The small amount of the material at my disposal has prevented 
me from making a further investigation of this structure but 
sufficient has been done to prove that the identification of the 
genus is correct and that the specimens do not represent an 
aberrant species of the genus Telesto. 

The only difference that I can observe between the Japanese 
and the Molluccan specimens is in the character of the spicules. 
In all the preparations I have made which show clearly isolated 
spicules or spicules which have not yet become firmly joined with 
their neighbours to form the solid wall or septa of the tubes, the 
spicules of the Japanese specimens possess more numerous and 
larger spines and tubercles than they do in the type specimens. 
The length of the larger spicules (c. 0-12 mm.) does not show 
any material difference but there is such a wide range of variation 
both in size and shape of the spicules in any one preparation, that 

* Siboga Expedition. Monograph XIII c, 1907. 
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obviously it would be absurd to suggest a specific difference on 
this single very variable character. 

In conclusion it may be said that the comments of Versluys 
on the relation of this interesting genus to the family Telestidae 
appear to be sound as also is his conclusion that there is no 
evidence at present as to any direct relationship with the fossil 
genus Cladochonus and the Auloporidae. 

Telesto trichostemma Dana. 

A few branches of a Telesto that must be attributed to the 
widely distributed species 7’. trichostemma were found in the Uraga 
Channel off Tokyo, Japan, in 40-200 fathoms. The walls of the 
main and lateral zooids are so densely crowded with large spindle- 
shaped and profusely tuberculated spicules that they are quite 
rigid and they show eight shallow longitudinal ridges as in other 
specimens of the species. These walls, however, become soft and 
flexible on prolonged boiling in potash and then the outline of the 
individual spicules can be clearly distinguished. In this respect 
the species differs from 7. rubra in which the walls are also rigid, 
but do not soften or show the outlines of spicules clearly. after 
prolonged boiling in potash. The colour is pale red. An interesting 
feature of these specimens is that they support a number of 
specimens of the rare entoproctous polyzoon Barentsia discreta. 

Leptogorgia sp.? 

The specimen was obtained by Charles Darwin in the Galapagos 
Islands during the voyage of the “Beagle” in 1835. It is evidently 
only a small fragment of a much larger specimen. 

The branches freely anastomose in one plane forming meshes 

of 6 sq. mm. or less but of very variable size. The branches are 

about 2 mm. in diameter and almost cylindrical in shape. They 

are of a dark red brown colour spotted on both sides with flat 

yellow calices. 
The spicules are spindle-shaped with five or six encircling rows 

of prominent compound tubercles and have a length of about 

0-1 mm. and a breadth, including the tubercles, of 0-04 mm. 

The axis is composed of a horny substance without any deposit 

of calcium carbonate and is perforated longitudinally by a series 

of chambers filled with a light transparent spongy substance. In 

a branch of the axis 0-4 mm. in diameter 20 of these chambers 

can be counted in a millimeter of length. 

No attempt has been made to identify the species of this 

gorgonid because the specimen is only a fragment and because I 

have not had the opportunity of studying the systematic part of 

Kiikenthal’s monograph on the Gorgonaria in the “Valdivia” 

series of publications. Until this monograph or some other mono- 
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graph that gives a critical examination of the most unsatisfactory 
and confusing literature of the family, comes to hand, the attempt 
to identify the species is little better than a waste of time. 

Virgularia mirabilis sp.2 O. F. Miiller. 
In 1889 I recorded the occurrence of specimens of the genus 

Virgularia from the coast of Victoria under the name Virgularia 
l6weni, but as recent researches on the stages of growth of the 
northern species of the genus have shown that the type of this 
species is but a growth form of V. mirabilis, it is clear that the 
name I gave to the Australian specimen must be changed. 

The question is whether these specimens, however, are correctly 
identified with a species that has hitherto been recorded only from 
the N. Atlantic and Mediterranean waters, and I have therefore 
re-examined the specimens in order to compare them with examples 
of V. mirabilis from our own coast. The result of this examination 
has been the failure to discover any satisfactory characters to 
distinguish them. In the number of the autozooids in the leaves 
(about 30), in the characters of the calices, and in the number 
and position of the single row of siphonozooids the Australian 
specimens resemble V. mirabilis and correspond with the deserip- 
tion and figures of V. léwenii as given by Kélliker. 

But before assuming that this identification is sound and that 
we have in this case an example of a species with bipolar distri- 
bution, it is really necessary to examine a large series of growth 
forms of the Australian Virgularias. 

Many years ago specimens of Virgularia from Australia were 
recorded by Gray and named V. elegans, and A. Thomson has 
recently recorded a Virgularia under the same specific name from 
the Ceylon seas*. It is difficult to determine from the published descriptions of these specimens what are the specific differences 
between V. elegans and V. mirabilis, as no account is given of the position and number of the siphonozooids. It seems possible, how- 
ever, that they are all representatives of a species that has a very wide distribution where a suitable habitat occurs. For the present, 
therefore, I am content to leave the name V. mirabilis for the Victoria specimens. 

Cavernularia chuni Kiikenthal and Brochj. 
Seven specimens of a species of Cavernularia were found by 

Dr C. Hose washed ashore after a storm on the beach at Miri, 
Sarawak, Borneo. As this is, I believe, only the second record of a pennatulid being ‘“‘washed ashore”—the other being Cavernu- 

* Report Pearl Fish., Suppl. xxvur, 1905. 
t “Valdivia,” Pennatulacea, x11, p. 190, 
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laria malabarica recorded by Fowler*—the fact is of some interest 
in the natural history of the sea-pens, and I was surprised to 
find that the species of the Bornean Cavernularia is not the same 
as that which is washed ashore in the Bay of Bengal. 

The principal measurements of the five perfect specimens were 
as follows: 
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De aca ood, bn Ast “2 

Length of rachis 25 35 40 48 50mm. 

of stalk (lowe Ss selGpe Ommm€ 

From these figures it is clear that the stalk is relatively short, the 
rachis-stalk ratio varying from 2-5: 1 in specimen 2 to 5:1 in 
specimens 3 and 5. 

As in the type specimen, there is no sharp distinction in dia- 
meter between the stalk and rachis, the stalk passing abruptly 
into the rachis by the appearance of the zooids only. This feature 
is in marked contrast to that of C. malabarica—in which the 
passage from the stalk to rachis is marked by a great increase in 
diameter. 

The specimens are so much contracted and distorted that any 
figures that might be given of the diameter would be untrust- 
worthy. As a guide, however, to the proportions in the species, 
I may say that I estimated the greatest diameter of the rachis of 
specimen 5 to be about 15 mm. There is no axis in the two speci- 
mens that were dissected. 

The spicules of the rachis are needles 0-3-0-5 mm. in length 
by 0-04 mm. in breadth arranged vertically to the surface and 
penetrating down almost to the centre of the rachis. There are 
no spicules that are divided at the extremities. 

In the stalk the spicules at the surface are small rods and oval 
in shape, -05-0-1 mm. in length, but in the depths there are 
numerous rod-shaped spicules of the same type as those that occur 
in the rachis. 

The character and arrangement of the spicules are like those 
described for Cavernularia chuni by Kiikenthal and Broch, with 
which species the Bornean specimens also agree in the total absence 
of an axis. 

In the type, however, the stalk is relatively much longer, the 
stalk-rachis ratio being 1-1-4. 

As the species was founded on a single specimen and this stalk- 
rachis ratio may be variable, it seems probable that the specimens 
from Borneo should be called Cavernularia chunt. 

The locality given for the type which 1s deposited in the Vienna 
Museum is Coamong (?). (I do not know where Coamong is and 
cannot find such a place mentioned in Stieler’s Atlas.) 

* PLS. 1894. 
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Cavernularia darwinii n.Sp. 
In the stores of the Cambridge Zoological Museum there is a specimen of the genus Cavernularia from C. Darwin’s “Beagle” collection labelled Chatham Island, Galapagos Islands, September 1835. As I can find no record of any species of this genus in the Eastern Pacific Ocean and as this Specimen is of special interest from its association with the great English naturalist and his memorable voyage in the “Beagle” I decided to examine it carefully — with a view to giving it a definite specific name. | The specimen is unfortunately not very well preserved and is strongly contracted and bent, but there are three autozooids killed expanded, one of which has been mounted as a preparation for the microscope. 

of KUL 
BEG 

Spicules of Cavernularia darwinii. [ x 200.3 

Allowing for the contraction and bends the specimen is about 90 mm. in length, the rachis being 38 mm. and the stalk 12 mm. and therefore the stalk-rachis ratio about 1-3. It is quite impossible to make any accurate statement about the arrangement of the zooids on the rachis or of the relative number of autozooids and siphonozooids owing to the extremely contracted and convoluted condition of the surface. The only statement that can be made without having recourse to a large series of sections is that apparently there are relatively very few autozooids. 
The presence of an axis can be proved by probing with a needle and so far as can be judged by this method it extends about half-way up the rachis and about half-way down the stalk. The. 
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general statement may be made therefore that the specimen has 
an incomplete axis. 

The spicules of the rachis, although very variable in shape, are 
at the same time, very characteristic and can be easily distinguished 
from the rachis spicules of any other species I have examined. 
The most prevalent type is that of a short rod 01-0-13 mm. in 
length, terminating in swollen extremities divided into two, three, 
four or sometimes five convex facets having an appearance which 
is extraordinarily like that of a metacarpal bone of a mammal. 
The variations even in this type of spicule are numerous as the 
number of the facets varies at each end independently. Thus, 
there may be one facet at one end, two at the other or two at each 
end, three at one end and four at the other and so on; but generally 
speaking if the number of these facets is not the same at each 
end the excess at one end is not greater than one over that at the 
other end. This may be represented as follows in figures: 

1-1], 1-2, 2-2, 2-3,° 3-3, 3-4, 44, 4-5. 
In addition to the spicules of this type there are some quadruplets 
which are either simple crosses with rounded ends or crosses with 
two or three convexities at the end of each of the branches or, in 
a few cases, simple square plates with very rounded angles. The 
most noteworthy thing about these rachis spicules, however, is 
the absence of plain rods of full size or of oval spicules. Apart 
from a few small spicules, which are probably growth stages, all 
the spicules are swollen at the extremities and most of them show 
divided lines of growth. 

In the outer layer of the stalk there is a dense armature of 
spicules of the same type as those prevalent in the rachis; in the 
inner structures of the stalk there are apparently very few spicules, 
but several of these which are found lying vertically to the surface 
in the fleshy septa are longer than those in the rachis, being 
0-2 mm. in length. 

Cavernularia malabarica Fowler. 

Two specimens of this species were obtained by Dr Imms from 
Puri, Orissa Coast, Bay of Bengal. Their principal measurements 
are: 

Length of rachis 27-25 mm. Diameter of rachis 35-22 mm. 
oe stalk 13-10 mm. - stalk 10:8 mm. 

The sharp distinction in diameter between rachis and stalk which 

is a character of this species and of Cavernularia glans was well 

marked in the specimens. The stalk seems to be a little longer in 
proportion to the rachis than in the type specimens, but it is 
nevertheless a short stalk. 

The species is of some interest as it afforded the first known 
examples of pennatulids to be “washed ashore.” 
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Lhe Influence of Function on the Conformation of Bones, By 
A. B, AppLeton, M.A., Downing College. 

[Read 7 March 1921.] 

Inspection in a museum of a series of mammalian skeletons is 
sufficient to indicate some sort of relationship between the osseous 
details and the locomotor abilities of the animal, whether on 
plains, in the trees, or in water. 

The femur is a bone which, in association with neighbouring 
bones and muscles, repays detailed study. 

We find something in common between the femora of jumpers. 
belonging to quite different animal groups, even though all may 
not jump in exactly the same way. The same is true of runners 
(cursorials). It is true in spite of the fact that each mammalian 
group of living forms tends to exhibit its own characteristic 
musculature, skeletal features and probably, too, characteristic 
nervous mechanisms. And it is to be presumed in the first place 
that tendencies exhibited by cursorials, say, belonging to various 
groups, may be legitimately regarded as adaptations. How far 
their peculiar musculature is really of advantage to them will be 
discussed in the sequel. 

A short summary will be here given of some muscular pecu- 
liarities of specialised cursorials, jumpers and arboreal mammals, 
and their relationship to peculiarities of the femur discussed. 

To what extent such peculiarities are determined by “en- 
vironmental” influences acting in the individual requires not only 
a study of ontogeny, but experimental investigation of the effect 
of modifying the conditions of growth. In fact, a study of human 
variations demands from us an answer to the question: Are all of 
these variations of hereditary origin, as Pearson and Lee assert*? 

The great plasticity of bone under mechanical influences sug- 
gests these influences as possible modifying circumstances during 
ontogeny. In what manner bone will react, is, however, at present 
ill-understood; though it seems unlikely that Manouvrier’s sup- 
position can be true, viz. that under transmitted pressure during youth, a femur will bend asa vital process or reaction. We only know of bending as a twig is bent when the pressure is too great for a femur softened by rickets or osteomalacia. 

Bone, however, does react to stresst. If too little stress falls upon an adult bone, it undergoes partial atrophy; it becomes im- 
* Pearson and Lee, ‘Long Bones of the English Skeleton,’ Drapers’ Company Memoirs (Biometric Series), x and x1, pp. 267, 287. 
7 Murk Jansen, ‘On Bone Formation,’ 1920, 
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possible to draw the line between pathology and physiology, Cer- 
tain observations from human orthopaedic surgery throw light on 
this question. 

Human bone-grafts growin thickness under certain conditions of 
stress. Els* has recently stated that a thick bone-graft diminishes 
in girth till it resembles the bone it replaces. The repair, again, of a 
fracture is assisted by the transmitted pressure obtainable when 
a calliper-splint is used. The internal structure of an astragalus 
changes under gross alterations of mechanical stress as occur in flat- 
foot. The observations of Dendy and Nicholsont on the spicules 
of sponges suggest also the continual living reaction of skeletal 
elements to mechanical factors. 

When therefore we recall Hunter’s observation that during 
growth there must be a continual remodelling of the neck of the 
human femur, we find ample grounds for supposing that one’s 
habit of walking, or peculiarities of musculature, or of the methods 
of employing it, will probably play an important part in the pro- 
duction of individual variations. 

Much valuable information is provided by Pearson and Bell 
in the vast array of statistics in their recent monograph on the 
femur of mediaeval Londoners and of Primates. They show that 
while there is a considerable correlation between dimensions of 
epiphyses of the femur, and between these and its total (and 
shaft) length, this is much less evident in the female, in whom also 
the (upper) epiphysis shows less variation in absolute size. On the 
other hand, and this seems very important, the correlation of coronal 
and sagittal diameters of the shaft is quite small, and of the neck 
diameters smaller still. This appears to me just what one would 
expect from the incidence of “environmental” factors, affecting 
diameters in different ways. The assumption that such are here- 
ditary features, evolved by selection, is unnecessary. The different 
correlations and variabilities on the two sides may be accounted 
for by muscular peculiarities, asymmetrical locomotion, and un- 
usual habits. 

Could we but anticipate the differences of right from left which 
may appear in the rising generation of to-day with its “scooters” 
and differentiation in function of lower limbs! 

Musculature and Cursorial. Specialisation. 

By some means many groups have evolved cursorial types 
with similar muscular characteristics. The Primitive type of thigh 
musculature was doubtless of the pattern found in the living tree- 
shrew (Tupaia) and the lemurs. Matthew, in fact, suggests an 
arboreal ancestry for mammalia. 

* Els, Anatom. Hefte, 1 Abt. 176 Heft. 58 Band, Heft 3, 1920. 
+ Dendy and Nicholson, Proc. Royal Soc. LXxx1x, B, 1917, p. 573. 
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Certainly, eocene mammalia had femora of the same pattern; 
and probably also musculature. The M. femorococeygeus (Fig. 1) 
may be first considered. In primitive types this muscle passes down 
to be attached to the outer border of the femur below the third 
trochanter (Fig. 2). From the latter the M. gluteus superficialis 
passes upwards and forwards. These muscles are often, and were 
probably originally, continuous, as also with the M. biceps and 
M. tenuissimus. Tupaia presents this general arrangement with 
little modification. 

A Cursorial life leads in all groups to a downward migration 
of the attachment of the femorococcygeus, while this muscle tends 
at the same time to gain a new upper attachment to the tuber ischii 

Fig. 1. Thigh musculature of hedgehog. A primitive condition. F.C. =femorococey- 
geus continuous with superficial gluteus above. G. VM. = gluteus medius. V.Z. = 
vastus externus. (From a preparation by Dr W. L. H. Duckworth) 

of the pelvis. The femorococcygeus may even extend downwards 
till it reaches the patella and then it gains a new function—knee 
extension. The Felidae show various degrees of specialisation. 
Even within the single species Felis pardalis, the muscle may be 
attached to either femur or patella (Parsons). The “long vastus” 
of veterinary surgeons is none other than this transformed femoro- 
coccygeus with (in Artiodactyla) accession of the superficial gluteus 
which has also lost its femoral attachment. This muscle in the horse 
plays an important part in bracing up the thigh during a stride 
(Stillman). The superficial gluteus, if not thus incorporated in the 
long vastus, undergoes, first, proximal migration, then regression 
—as in Carnivora. Whether its persistence in Equidae is of some 
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functional value is not clear. Certainly in the rabbit it may experi- 
mentally be deprived of its femoral attachment without noticeable 
difference in the animal’s locomotion; though it is possible that 
minute differences would be found in its skill at turning rapidly 
or in the placing of its feet when at full speed. 

A hyrax (H. capensis), which Prof. Keith kindly placed at my 
disposal, presented an interesting intermediate stage, foreshadow- 
ing the “long vastus.” The superficial gluteus was attached not 
only to the femur, but its anterior fibres were adherent to the 
femorococcygeus, which passed down to the patella as in the cur- 
sorials. 

Most jumping animals present very similar changes in the 
femorococcygeus. Whatever the group of origin, whether a cat, a 
cow, or a kangaroo, the line of specialisation is similar. 

In the Primates the femorococcygeus tends to disappear or 
become incorporated in the superficial gluteus and to lose its lower 
femoral attachment by regression or migration of its lower fibres. 
The superficial gluteus (7.e. gluteus maximus) is attached just below 
the great trochanter to a more or less rudimentary third trochanter. 
The lemurs, however, and the giant apes retain the femorococcy- 
geus attachment along the femoral shaft; they are not specialised, 
as are the monkeys, for a modified arboreal life, and man for a new 
mode of progression. That the gibbon presents in this respect to 
some extent a parallel evolution with monkeys and man is sup- 
ported by the fossil Paidopithex whose femoral shaft is more like 
that seen in lemurs and the gorilla (vide infra). 

In man traces of the femorococcygeus are still to be found in 
the external intermuscular septum as low down as the condyle— 
just in the position which the muscle occupies in the gorilla. The 
primitive condition found in the gorilla, chimpanzee, and orang, 

is probably truly primitive. There is no reason to suppose that this 
condition is ever acquired secondarily after the specialised features 
found in cursorials, jumpers, and monkeys have arisen. There is in 

fact reason to believe that Irreversibility of evolution of a muscle 

like the femorococcygeus is as true as that of many other organs, 

such as teeth. Various kinds of mammalian specialisation alter 

its primitive arrangement; to this it will not revert, but would 

more probably merely atrophy, with lethargic habits. 
To prove the condition in the gorilla to be secondary to that in 

catarrhine monkeys requires proof that the “primitive” femoro- 

coccygeus is more suited to him than, say, the catarrhine arrange- 

ment with a biceps which has extended its fascial attachment up- 

wards to the middle of the thigh, and with complete absence (as an 
independent muscle) of the femorococcygeus. 

The plasticity of muscle and of bone is of the same order; they 

both show phylogenetic as well as ontogenetic response to function. 
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But reversion to slow-moving habits will no more resuscitate an 
absent muscle than a lost third trochanter. 

The adductor group of musculature (with which must be con- 
sidered the MM. semimembranosus and caudofemoralis [Leche] 
from their frequent synergism) shows important modifications 
characteristic of various specialisations. 

Attached in the primitive type along the whole femoral shaft 
and down to the head of the tibia, the bulk of this musculature in 
cursorials comes to be concentrated in the region of the knee. The 
value of this will be pointed out subsequently. At the same time 
it shows great increase in size. 

Carnivora deviate far less from the primitive type than do 
Artiodactyla and Perissodactyla, though the specialised types, 
such as Canidae, show great increase in size of the adductors. — 

TasLe I. Weight* of Adductor Group Musculaturet 
(including Semimembranosus). 

Macropus cuniculus Homo (at birth) Canis (dog) Lepus Rhinoceros Choloepus didactylus Felis (cat) 
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1 Approximate. 

It is seen that there is a reduction in the adductor musculature attached to the 
shaft in just those specialised types, cursorials and saltatorials, which exhibit the 
specialised femorococcygeus; but that the total mass may become very large, as in 
the horse, dog (and lion). The adductor mass in the gorilla is also of great size. A 
resemblance of the baboon to the cursorials is noticeable in this as in other respects. 

* Unit of weight is M. rectus femoris; the best unit yet found for comparative 
purposes; little affected by specialisation, and containing a factor depending on 
femoral length. 

+ Muscles concerned: all adductors, pectineus, presemimembranosus (ischio- 
condyloideus), semimembranosus, caudofemoralis. 

ft Includes condylar part of adductor magnus. The figures of Dursy for the adult 
are similar. 

§ The rectus femoris is exceptionally small (partly replaced in function by 
tensor fasciae femoris). 
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The knee extensors show in cursorials and saltatorials a con- 
siderable development in size, the vastus externus being particu- 
larly affected. Its method of attachment to the femur is influenced 
by its internal structure, the penniform pattern, as in man, being 
relatively more powerful than the simple form of the hedgehog; 
it is largely determined by the attachments of the neighbouring 
femorococcygeus and gluteus superficialis. Where these lose their 
attachment to the lateral margin of the femur, the vastus externus 
and crureus are able to spread around the outer aspect (as in 
the baboon, man, and sheep) of the shaft. In primitive types, 
however, it is unable so to spread backwards on account of the 

Fig. 2. Left femur of Priodontes giganteus, showing the descending extensor ridge 
(“frontal pilaster”) and the flange-like third trochanter. M. vastus externus 
envelops the extensor ridge and occupies the hollow in front of the third 
trochanter. 

femorococcygeus and the third trochanter. Now the vasti muscles 
become large in other animals beside cursorials and saltatorials. 
In edentates, which present a primitive type of femorococcygeus, 
gluteus, and adductor, the vasti are, compared with the rectus 
femoris, of unusually large size. As will be seen below, a special 
outgrowth of bone, the “descending extensor ridge” (Fig. 2), 
appears on the front below the great trochanter for the attachment 
and accommodation of the vastus externus. This long outgrowth 
would be unnecessary and does not occur when the superficial 
gluteus (and femorococcygeus) have no attachment to the shaft as 
in the specialised runners and jumpers; in them the vastus externus 
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extends backwards round the shaft. The ridge occurs in some 

edentates, rodents, and the Lemuroidea (including Tarsius). That 

it does not appear in gorilla, where the superficial gluteus is at- 
tached close up to the great trochanter and the third trochanter 

has disappeared (as in recent Carnivora), suggests the close relation- 
ship to this structure. 

TaB_eE II. Weights* of Knee Extensors. 
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The special tendency to development of the knee-extensors in jumpers is to be 
seen, notably in Tarsius with its very long femur. That the M. rectus femoris (the 
ambiens of reptiles) is not included in this development is illustrated in the above 
figures. 

Correlation of changes in the Femur with Muscular Specialisation. 

Special attention will be here directed to the form of the shaft in 
cross-section. Much interest attaches thereto owing to the great 
contrast in form presented by the gorilla to the human genus. 

Unspecialised mammalian types generally present a trans- 
versally oval cross-section at mid-shaft, and from the lateral 
margin somewhere near its middle a third trochanter projects: a 
common type in early tertiary mammalia (Pantolestes, Menisco- 
therium, Nesodon). Cursorials and saltatorials tend to exhibit a 
rounded shaft, and the third trochanter shifts up the femur and 
becomes reduced or disappears. 

There is in these more active types an increase in the antero- 
posterior diameter of the femur. Does this appear in adaptation 
to the increased bending moment, tending to break the shaft 
across, or is it merely a means of providing attachment for 
muscles, viz. the vasti and crureus, the knee extensors? 

The more active animals do throw an enormous strain on the 
femur in springing from the limb when at the gallop or jump; far 
greater than the animal’s dead weight. An increase in this sagittal 
diameter is indeed very necessary, and is the more necessary in 
that these animals have angulated limbs, unlike the graviportal 
types (Gregory) with straight pillar-like limbs. The increased 

* Weights are given in terms of the M. rectus femoris as the unit. 
+ A descending extensor ridge is present; it is no test of blood-relationship. 
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antero-posterior diameter of the condyles, so remarkable a feature 
of running and jumping types, especially in certain extinct artio- 
dactyla (see Fig. 3), must be a part of the same evolutionary 
response to requirements. The internal structure of the deep con- 
dyles illustrates their true nature. The data of Pearson and Lee* 
provide an excellent illustration of this effect in the lower Primates, 
though not so interpreted by them. Tarsius, Indris, and Nyeti- 
pithecus, all jumpers, contrast strongly with Apes, Loris, Mycetes 
and others}. Man again shows the deeper and narrower condyles 
of active hind-limbs; how precarious must be an argument as to 
his ancestry from a study of indices based on these measurements, 

Fig. 3. Lower end of femur of Anthracotherium, showing deep condyles of a cur- 

sorial type. From a specimen in the possession of Mr Forster Cooper, repro- 

duced with his kind permission. 

without further knowledge of the knee-joint movements in various 

animals, 
The importance of the shaft of a long bone as a surface for mus: 

cular attachment is suggested by an examination of animals in which 

transmitted propulsive forces are not great. They exhibit flattening 

of the shaft, the width far exceeding the sagittal diameter; this is 

conspicuous in the sloth. The great relative width is necessary for 

provision of muscular attachments; there can hardly be lateral 

strain sufficient to justify such width. The slow loris and apes are 

broad in the shaft (Pearson and Lee). And when width of shaft is 

* Pearson and Lee, ‘Long Bones of the English Skeleton.’ Drapers’ Company 

Memoirs (Biometric Series), X and x1, pp. 329, 337, 412. 

+ The length of the femur is g poor standard for comparison because of its great 

variability with function. 
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influenced by the presence of a long flange-like third trochanter 
the requirements of muscular attachments are obvious. In fact 
the shaft in the small primitive types may be regarded as consisting 
of a pillar for strength and an external flange for muscular attach- 
ment, as in the eocene Meniscotherium and others. The great 
width in the extinct Megatherium is probably of a similar nature: 
X-ray investigation of the primitive femur of Priodontes supports 
this view of its nature. . 

In larger and more active animals increase of stress requires a 
stouter femur; there is now less need for flanges. Also, as Scott 
has shown, all heavy types, despite their relative want of activity, 
show a general tendency to reduction of the external flange and 
third trochanter in situ (e.g. elephant). Data do not appear avail- 
able to show whether reduction of the superficial gluteus, or of the 
vasti, can account for such loss in the elephant. 

The descending extensor ridge already mentioned is developed 
in association with a peculiar muscular combination. That it has 
also the advantage of withstanding stress from the forwardly pro- 
jecting great trochanter which in these animals (e.g. Tarsius, 
Priodontes) forms a conspicuous attachment for the vastus ex- 
externus, is suggested by X-ray examination of the bone™. 

The actual bulk of the vastus externus is probably closely 
related to the degree of projection of the third trochanter, from 
which the fibres of gluteus superficialis pass upwards and forwards 
across it. A third trochanter placed lower down the shaft will 
tend to be longer. 

The term “frontal pilaster” applied to this ridge by Pearson 
and Bell suggests a comparison with the pilaster on the back of a 
human femur: only so long as both are regarded as adaptations 
for muscular attachment does the term seem justifiable. 

The human “pilaster,” to which the adductors are attached, 
was regarded by Manouvrier as being due to the backward exten- 
sion of the crureus muscle, on the outer side; and to expansion of 
the front of the bone. How is it that in Tarsius, with far larger 
knee extensors, this backward encroachment does not occur? It 
is an example of the influence exerted by the M. femorococcygeus, 
which in primitive types is attached to the outer margin of the 
flattened femur. A distinct line is produced which marks also the 
attachment of the crureus, vastus externus and adductors, the 
attachment in fact of the external intermuscular septum. A similar 
line for attachment of the vastus internus is found along the inner 
margin. These lines may for convenience be termed the 
External and Internal septal lines. While the M. femoro- 
coccygeus isattached to the femoral shaft, the external 
septal line never gets displaced to the back of the femur. 

* Bone trabeculae may be considered indicative of lines of Pressure (Murk Jansen). 
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Hence a “linea aspera,” formed by approximation of the two 
septal lines on the back of the femur cannot be formed. 

The rounded shaft with linea aspera, which some artiodactyles 
possess (e.g. sheep), is rendered possible by the specialisation of the 
femorococcygeus, and by the downward displacement of adductors. 
The shaft is rounded in Tarsius from considerations of strength; but 
the septal lines are on the lateral margins of the bone—a femoro- 
coccygeus is attached. Since the “interseptal” space provides 
attachment for adductors, this if broad, as in the elephant, tends 
to flattening—merely to enable the adductors to pass to their 
more lateral insertion. Thus the posterior surface of types with 
septal lines remains flattened, even where the anterior surface may 
become very convex. Heavy types, such as the elephant and 
Toxodon, show this peculiarity to advantage. 

The obliquity of the posterior surface in Carnivora has a similar 
origin; the adductors here have a presumably important lateral 
attachment; the backward external projection permits of the 
accommodation of the large adductors. 

* Actual production of a narrow interseptal space, and finally of 
a “linea aspera,”’ as in man, is associated with expansion of the 
knee extensors, and downward migration* of the bulk of the ad- 
ductor musculature: these are characteristic of cursorials and salta- 
torials. Considerations of accommodation would make it necessary, 
when vasti muscles are attached behind the femur, that flattening 
of the inner and outer margins of the bone should occur. For the 
vasti ultimately gain attachment to the patella. It is a similar 
problem to the accommodation of the enormous vastus externus 
of Tarsius. The surface below the great trochanter is hollowed out 
for its accommodation. 

Why is it that carnivora, and some Artiodactyla (e.g. Cervus), 
show such a tendency to a wider interseptal space and a prominent 
lateral position for the external septal line? It is not merely due to 
the bulk of the adductors attached to the shaft, though large for 
cursorials; for these are large also in catarrhine monkeys, and still 
larger in man, but in them there is a “linea aspera.” There is 
probably some functional significance in an extreme lateral attach- 
ment for the adductors in the cursorial Carnivora; their external 
rotatory effect will counterbalance the internal rotatory effect of 
the synergic gluteus medius. This attachment is not found in the 
catarrhine monkeys and man; it is sufficient in them for the ad- 
ductors to be attached largely to intermuscular septa; and the 
septal lines become placed close together. The structure of the 
quadriceps extensor appears to be closely associated with the back- 
ward displacement of the internal septal line in man, and perhaps 
monkeys too; a penniform arrangement of the fibres of the vastus 

* Except in monkeys and man. 
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internus is rendered possible, increasing power and diminishing 
range of movement. defe 

There appears then abundant reason to believe that peculiari- 
ties of shape of the femur cannot be properly understood without 
reference to the muscles attached and adjacent thereto. And 
further, that the muscles themselves have been evolved in accord- 
ance with the habits of an animal and of its forerunners. 

Effective Leverage as a factor in Muscular Specialisations. 

. A consideration of the mode of action of the Adductor* group 
shows that in cursorials and saltatorials their function is largely 
one of hip-extension. The adductor function proper is more char- 
acteristic of arboreal types with a wide range of abduction. 

P 
2 Bo 

B B 

A Cayia. B LEpus. C Bos. 

Fig. 4. Lengths A, AC, are proportional to lengths of femur and postacetabular 
pelvis in various types. (Used merely as a diagram) 

A. (Cavia porcellus) illustrates in AB, position of thigh in which semimembrano- 
sus obtains maximum effective leverage, measured by perpendicular AC to joint 
A. AC is greater than AD, which measures leverage when thigh occupies 
position AB. 

B. (Lepus cuniculus) when extension proceeds further till thigh is in position 
AB,, leverage is again less, AD, being less than AC. At this time, a shaft ad- 
ductor CZ, is acting to the best advantage. 

C (Guernsey cow) all positions of flexion in front of the vertical AB require 
use of the lowest, viz. the knee adductors, which only attain their maximum 
power at AB, (ACB, being aright angle). At same point of extension AB, at 
which rabbit employs shaft conductor CZ,, the cow is still employing CP, 
adductors attached close to the knee. 

Considering extension alone in the first place, the maximum 
effective leverage can be easily shown (e.g. for a semimembranosus 
or ischio-condyloideus) to obtain when the muscle is at right 
angles (Fig. 4 a) to the line joining acetabulum with tuber ischii, 
If the thigh is at right angles to the pelvis, the most effective 

* Including semimembranosus, 
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muscles of the whole adductor group will be those attached in the 
region of the knee; so also in flexed positions of the knee. It is 
thus that the perpendicular from muscle to joint is the longest— 
and this is a measure of the leverage. The femur is of course prac- 
tically always longer than the postacetabular pelvis; if shorter, the 
muscle would have to be placed at right angles to the femur for 
optimum leverage effect. 

In more extended positions of the thigh (Fig. 5) such ‘“‘adductor” 
muscles as pass to the knee-joint will be at some disadvantage; 
the most effective muscles will now be attached further up the 
shaft; and the greater the extension, the higher up the shaft will 
hip extensors be required. 

A relatively longer femur will after a smaller movement of ex- 
tension involve the employment of these shaft ‘‘adductors,” 
rather than those of the knee. Application of these principles to 
the cursorial, saltatorial, and arboreal animals shows some corre- 
spondence with actual life. 

Arboreal animals require a greater range of extension at the 
hip than do cursorials; and the mass of their adductors is attached 
to the femoral shaft (Fig. 5). Ungulata present a much smaller 
range of extension (Fig. 4c). Carnivora are intermediate and so 
is their adductor musculature (vide Table I). 

Again, cursorials present a shortened femur, not only as com- 
pared with other limb-segments (Gregory), but as compared with 
the postacetabular pelvis (Fig. 4 c, cow). This will in itself involve 
the continued use of the semimembranosus at a range of exten- 
sion at which in longer-limbed animals shaft adductors might be 
employed. Hence the concentration of ‘“‘adductors”’ at the knee in 
Artiodactyla and other cursorials and jumpers; and, along with this, 
changes in the form of the femur. 

That shortening of the femur, alone, will not result in the cur- 
sorial pattern of adductors, viz. with attachment largely to the 

_ knee-region, is shown in the gorilla (Fig. 5); in him, a large part 
of the adductors is attached to the middle of the shaft, in associa- 
tion with the habitual employment of the thigh in the almost fully- 
extended position. In man, the ratio of shaft to knee adductors is 
large also, larger than the figure in Table I would suggest; his 
semimembranosus is in fact reduced far below its size in the gorilla; 
extension from full flexion is not a frequent or habitual movement. 

The conditions governing adductor attachment, in so far as 
true adduction is concerned, are probably similar; in man the 
extensor function of the group is largely taken over by the en- 
larged gluteus maximus (sew superficialis) owing to the unsatisfactory 
position of the adductors; and the adductor longus in particular 
has become an adductor par excellence. The relationship of the 
form of the preacetabular part of the pelvis to the functions of the 
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adductors should prove full of interest. The postacetabular part 

of the pelvis shows in its modifications in various groups an 

attempt to provide the semimembranosus, etc., with more effective 

leverage (notably in Artiodactyla), as judged on these principles. 

Lowering (or lengthening) the postacetabular pelvis vastly increases 

the effective leverage of hamstring muscles. The changes in the 

femorococcygeus, its transference to the tuber ischii and knee in 

cursorials, the migration upwards of the biceps in the catarrhines, 

are all explainable on these lines. 

i 
! 

B 

Fig. 5. AB and AB,=femur of Semnopithecus. Az and Az,=femur of Gorilla, re- 
duced to same AC, AC'=postacetabular pelvis. In positions of great extension, 
AB,, AB,, semimembranosus to knee is almost useless as an extensor in any but 
flexed positions or positions near AB. The most effective position for an ex- 
tending adductor lies up near head of femur, represented by a muscle CX, 
(relatively lower on the shaft of the gorilla). The muscle CX has to shorten 
itself CX, to 0-4 of its length at CX, but muscle CB is C'B, only shortened 0-1 
of its length. 

Shortening of the femur in cursorials is explained by Gregory* 
as an adaptation which allows of more “‘open angles of insertion” 
of hip-extensors and other muscles. As a matter of fact, in ordinary 
locomotion, the femoral attachments are the fixed points or origins 
of the muscles; and their effective leverage on the hip-joint will be 
lessened by shortening of the femur. The shortening appears to me, 
considered only from this point of view, to be a disadvantage. 
Gregory is in difficulties over explaining the lengthening of the 
femur in the recent greyhound and racehorse. Perhaps they lengthen. 
to increase the effective leverage. 

* Gregory, Annals of the New York Academy of Sciences, vol. Xxu, p. 291. y p 



on the Conformation of Bones 387 

What, then, has brought about the shortening of the typical 

eursorial femur (e.g., Artiodactyla [Gregory ])? I think it is to be 

found in the enormous strain thrown upon the knee extensors in the 

active animals with long femora. The longer femur when the knee 

is flexed puts an almost impossible burden on the vasti during a 

violent thrust from the tibia. In large animals it is inadmissible; 

the femur shortens. Confirmation of this is found in the enormous 

size of the vasti in Tarsius (see Table II), a small-sized jumper with 

long limb-segments. The larger jumpers, the kangaroos, exhibit 

distinct shortening of the femur. It is better to develop the neces- 

sarily powerful hip muscles than to depend on powerful knee 

muscles; the centre of gravity is, in fact, thus placed so much the 

higher up the limb. 
Considerations of the actual shortening (Fig. 5) undergone by 

muscles passing to the higher and lower parts of the femur re- 

spectively in fully extended positions, would suggest that muscles 

do not all present the same percentage shortening over the com- 

plete range of hip movement. If all shortened by the same fraction 

of their length they would effect different ranges of hip movement, 

distally attached muscles causing extensive angular movements, 

proximally attached muscles small ones. Comparative study of the 

internal structure of the Great Adductor will, it is hoped, prove 

enlightening. 
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Animal Oecology in Deserts. By P. A. Buxton, M.A., Fellow of 
Trinity College, Cambridge. 

[Read 7 March, 1921.] 

The following notes are the outcome of a somewhat extended 
sojourn in Mesopotamia and N.W. Persia during the war. Con- 
ditions were very unfavourable for consistent investigations. I take 
this opportunity of publishing my unfinished observations, in the 
hope that they will furnish raw material for others. Aspects of the 
subject which are already well known have been entirely omitted 
from this short paper in which comprehensiveness is not aimed at. 

Climatic conditions. 

It is of course well known that deserts are dry, and many of 
them hot as well. It must be clearly recognized that well-nigh all 
the hottest places in the world are in desert or semi-desert country, 
and that cold is almost as characteristic of deserts as 1s heat. Wind 
too must be considered as a factor with which the desert fauna 
has to contend. At Menjil in N.W. Persia the wind sweeps through 
a pass in the Elburz mountains with such velocity that one can 
barely stand against it. This wind blows with great regularity from 
about 9 a.m. till sundown throughout the warm weather. It is 
caused by the daily heating of the N. Persian plateau under the 
sun’s rays; the heated air rises and is replaced by an inrush from 
the sides: at Menjil, this inrush is concentrated in a rocky defile. 
Such a terrific but steady wind must be an important spreader of 
small organisms. A large camp at Ruz in the valley of the Diyala 
in K. Mesopotamia was smitten bv an exaggerated dust-devil early 
in November, 1918. The wind carved a lane through the camp 
ripping every tent that lay in its path: heavy articles of kit were 
blown through the air and deposited on the opposite bank of the - 
Ruz canal: an officer of my acquaintance was pulled out of his 
tent with all his camp furniture and dropped twice, with such 
violence that three of his ribs were broken. Such winds are rare, 
but im most desert countries small dust-devils are common; they 
wander about the desert in a somewhat aimless manner, sweep 
débris, bushes, etc. from the ground, and drop them later in a 
different place. The fact that so many desert animals live beneath 
rocks and excavate burrows is possibly to be explained as an 
attempt to reach an equable temperature, and to avoid wind and 
dust: the generally accepted explanation is, I believe, that the 
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scanty vegetation affords no cover and necessitates an underground 

life. Some of the meteorological conditions of deserts have received, 

I believe, no attention so far as their effect on the fauna is con- 

cerned. The extremely low relative humidity, the sharp spell of 

heat by day and of cold by night, the great heat of the stones and 

soil on which some insects crouch and the effect of direct sunlight 

on animals are among the problems which call for study. We know 

indeed that they must have their influence on the desert fauna, 

but we have no accurate knowledge of what that influence is. Much 

might be learnt by exposing animals to one or other of these 

conditions, using an adequate number of controls. 

Colouration of animals. 

We have all of us known from childhood that in the desert the 

animals, the birds and the insects are coloured like the desert: any 

desert fauna furnishes countless examples of this. There are, how- 

ever, a few very disturbing facts, which, I believe, are not widely 

known. The Gerbilles (Gerbillus, Meriones, Dipodillus, Tatera, etc.) 

and the Jerboas (Jaculus, Alactaga) all appear to be perfect 

examples of protective coloration, but they are strictly nocturnal. 

This is also true, I believe, of the Cape Jumping Hare (Pedetes) and 

the jumping mice of the deserts of southern North America 

(Perodipus, Zapus) and the Spiny Mice (Acomys) of Sinai, etc. It 

is difficult to explain the coloration of these animals unless we 

suppose that it is of some protective value by moonlight. One does 

not know from what foe the Gerbilles need to escape, unless it is 

foxes: certainly in Mesopotamia and Persia owls were almost non- 

existent in the desert, except the resident Little Owl (Athene noctua 

subsp.), and in winter the Short-eared Owl: both of these owls feed 

almost entirely by day. As I have said, the Gerbilles and Jerboas 

are strictly nocturnal, not appearing at dusk or at dawn: at Qazvin 

-n N.W. Persia I lived for four months close to colonies of Meriones 

erythrourus Gray and M. blackleri lycaon Thos. Every night I was 

out in the desert between sundown and 9 p.m., and I was often 

about just when the dawn was breaking, but I never once saw a 

Gerbille except in the hours of darkness, when they were extremely 

abundant, crossing the light cast by my lantern. Among the birds 

the Cream-coloured Courser (Cursorius gallicus) is efficiently pro- 

tected by its colour and disruptive pattern so long as it crouches; 

but when it runs the long legs raise the body from the ground and 

cause it to cast an extremely conspicuous black shadow. The See See 

Partridge (Ammoperdix griseogularis) [bonhame| is another example 

of imperfect protection by coloration: the bird is crepuscular, 

hiding by day in holes under rocks. In the evening its movements 

are betrayed by the long shadow it casts as the suns rays decline, 

and this in spite of its short legs. It is a curious fact that most 
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desert birds are protectively coloured as chicks and as adults, 

but their eggs are in no way specially coloured and in general 

resemble the eggs of related birds which do not breed in 

deserts. : 
It appears to have been overlooked that black animals form 

a definite element in the fauna of the great palaearctic desert belt 

which stretches from Marocco to the Gobi. Examples are a number 

of the Wheatears (Sazxicola melanoleuca, S. lugens, S. leucopyga, 

S. monacha, S. morio, etc., all of them predominantly black, with 

a greater or lesser amount of white). One might also mention the 
ravens Corvus umbrinus and C. rhupidurus (affinis). Among the 
insects the coleopterous family Tenebrionidae is characteristic of 
deserts in many parts of the world. Black tenebrionids, belonging 
to no less than five sub-families (Hrodiinae, Zophosinae, Tentyrinae, 
Adesmiinae and Pimeliinae) are a very conspicuous feature of the 
deserts of the palaearctic region from Marocco eastwards to Turkes- 
tan,and to Sind. The great majority of these black formsare diurnal: 
in these same deserts there occur a number of Tenebrionidae which 
are not black: the majority of these are buff, or grey, or brown, and 
these species are mainly nocturnal. Other sub-families of Tenebrio- 
nidae occur in the deserts of Australia and America, and many of 
these insects are black, but I do not know whether they are diurnal. 
In the Orthoptera there is an example in the Phasgonuridae (Locus- 
tidae): in Algeria I took that remarkable insect Hugaster qguyont; 
this is a large stout locust, black and highly polished, with some red 
prominences on the thorax. It is unable to leap, for its hind legs are 
barely stronger than its forelegs, an unusual condition in this family. 
This species also is diurnal and of course extremely conspicuous: 
it is probably protected by its copious secretion of blood, or at 
least one is tempted to suppose that this is the case. It is prob- 
ably the case that none of these black animals are preyed upon 
by larger animals: wheatears are extremely wary birds, which 
perch on the very summit of some upstanding rock and are always 
ready to dive under a stone at the approach of danger: ravens, so 
far as one knows, act more often on the offensive than the defensive: 
the tenebrionids are covered with an intensely hard exoskeleton, 
and are probably often attacked by birds or lizards without 
suffermmg harm: I say this because I have frequently taken speci- 
mens of Adesmia and Pimelva with several legs or antennae missing, 
or with dinted but unpierced elytrae. Granted that the black 
creatures are in some way protected, and therefore not in need of 
protective coloration, we do not in the least know why they are 
black, a colour which must render them extremely hot in the desert 
while the sun shines. To sum up, of course I admit that the majority 
of animals which live in deserts are coloured protectively, but find 
the protection much less efficient than I had supposed. There is 
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a small element in the fauna which is not protectively coloured, 
and these animals are all black. 

Concentration. 

One is justified in saying that concentration in point of time 
and of place is a characteristic of desert animals. The rain falls, the 
plants blossom, the animals appear and breed and are no more 
seen. All that is most apparent in the life of the desert is con- 
centrated in a couple of months. Concentration in place is just as 
noticeable. The great leaf-bases of the date palms in Lower 
Mesopotamia give cover, especially after rain, to a host of animals, 
grass-hoppers, beetles, bugs, ants, termites, centipedes, millipedes, 
woodlice, scorpions, spiders, snails, oligochaets, lizards and others. 
In deserts generally plants do not cover the ground and every bush 

_ or patch of scrub is an oasis in itself, full of specialized forms of 
animal life. In some places in the Algerian deserts for instance, 
nearly every large stone shelters a collection of insects, myriapods, 
arachnids, isopods, and often also lizards, snakes, and even small 
mammals and birds. The hordes of migratory birds which suddenly 
appear and pack every bush in an oasis are yet another example of 
the concentration of life in the desert. 

Winter and summer. 

In the palaearctic desert region the butterflies for the most 
part are on the wing in spring, and a few appear also in the autumn. 
In cold weather they are not seen and presumably they pass the 
winter as they do in more northerly climates: that is to say some 
of them as eggs, some as hibernating larvae, some as pupae. In 
the hot weather also the majority of species are not in the imago 
stage, and we do not yet know what they are doing. One might 
suppose that the rise of temperature would cause the stages to be 
passed through more and more rapidly, but this is not the case. 

* In Lower Mesopotamia (at Amara) Colias croceus (edusa) is on the 
wing from March to May, and in November and December; Pieris 
‘rapae February to May and October to December, and as a great 
rarity insummer. Both these species certainly produce a succession 
of broods in spring, and probably in autumn also. They are in fact 
continuous-brooded while the temperature is neither very hot nor 
very cold. The three lycaenids, Zizera lysimmon, Tarucus mediter- 
raneae and T’. balcanicus, have, I think, similar periods of emergence, 
but I have not a sufficient number of records for each species to 
enable me to state definitely that this is the case. We do not know 
in what stage these five species pass the summer, nor what is the 
factor which retards their development during the hot season. It 
is not lack of food for the pabula of C. croceus and P. rapae are 
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crown as crops and irrigated all through the summer, and the 
Zizyphus, the food-plant of the two Taruci, is evergreen. Possibly 
development is retarded or inhibited when the relative humidity 
falls below a certain figure. The lycaenid Chalades galba is in quite 
a different biological group: at Amara it is on the wing from June 
to August abundantly, and rarely during early September; I have 
examined 80 specimens, the earliest taken 8 June. It appeared 
that a large number of pyralid moths were only on the wing. in 
the heat of summer in Mesopotamia. 

Belenois mesentina is a vigorous species able to maintain itself 
in deserts, but found in other terrains also. Grosvenor informs me 
that it breeds in great numbers continuously through the summer 
at Tank and Bojikhel, Waziristan; it is the only butterfly on the 
wing at that time of year. The food-plant (Capparis) is green and 
succulent all the summer. Possibly the butterfly’s ability to con- 
tinue breeding through a period of great heat is one of the factors 
which make it an abundant species over a very wide extent of 
country. 
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Venational Abnormalities in the Diptera. By C. G. Lams, M.A. 

[Read 7 March 1921.] 

The published records on this subject are very scanty, only 
two or three notes having appeared for many years past. The 
most remarkable case on record is described and figured by F. W. 
Edwards (Entomologist's Monthly Magazine, 1914, p. 59). It is 
that of a tachydromid in which the simple venation natural to 
that genus suddenly flourished out into a highly complex and 
irregular network of cross- and accessory-veins, which show nearly 
every form of abnormality that the wing can be afflicted with; 
this physiological explosion remains unique. Dr Keilin records a 
case of true malformation, in which the distal part of both wings 
is greatly abbreviated and deformed, in the Bull. Soc. Ent. France, 
1917, p. 194, and suggests that the condition has been brought 
about by pressure. The abnormalities which are now referred to 
are usually smaller and more regular, and are scarcely striking 
enough to be called teratological, but as there is apparently no 
definite boundary between the two sets of cases, that term will be 
used for convenience. 

The only recently published matter bearing on the abnorm- 
alities to be considered is contained in three short papers by 
Kroéber published in the Zeitschrift fiir Insekten Biologie in 1910, 
where several cases similar to the following were figured, these 
will be referred to in passing. Apparently the above include all 
that has been published on the subject of wing teratology though 
there are several scattered notes on antennal teratologies. 

Abnormal venation is naturally more probable in those flies 
which have an approach to the generalized Panorpa-like venation, 
both from the greater number of the veins and from the presence 
of two possible stress systems at right angles, and consequently 
it is not surprising that Mr F. W. Edwards of the British Museum, 
who has had an exceptionally intimate knowledge of the Nemato- 
cera, informs me that he has frequently seen aberrations in the 
venation of that section, and that they are particularly common 
in the tipulid genera Eriocera and Tricyphona. On the other hand 
Mr J. E. Collin considers flies to be remarkably free from wing 
abnormalities, and that they occur only in certain species such as 
the one to be referred to later on. The author’s experience is practi- 
cally confined to-the non-nematocerous families and agrees with 
that of Mr Collin. Neglecting one exceptional species, among the 
many thousands of individuals that have passed before him, there 
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were less than 20 cases of teratological conditions, most of which 

are here figured. The families the author has principally dealt with 
are all characterised by simple venation, roughly of the syrphid 
or muscid type, in which the cross-veins are very few in number. 

These teratological conditions are either those of deficit or of 
excess. The first is shown in Figs. 1 and 2; the former is the tip 
of the wing of Platypeza dorsalis showing the absence of the lower 
part of the fork to the fourth vein; such a break is sometimes 
definitely specific as in the genus Cryptophleps (Dolichopids), and 
on the other hand the presence or absence of such a fork may be 
a matter of indifference; thus in the tachinid Rhacodineura antiqua, 
the upward bend so characteristic of the family is normally absent 
or represented only by a small fragment ofthe upper portion: 
very rarely, as in one specimen in the Cambridge series, it is fully 
developed on both sides. Mr Colbran Wainwright drew the author's 
attention to the fact that this bend is also normally absent in the 
tachinids Actia frontalis and Phytomyptera nitidiventris. Fig. 2 
shows the wing of Oscinis nana, in which the second vein definitely 
falls short of the costa, a very rare condition in flies. Such a non- 
attainment of the wing margin is not uncommon for the parts 
other than the costa, and may even be such a constant character 
as to be helpful in determination of the family, Teratology by 
deficit is however rare except as a definite character. In the above 
cases it is normally bilateral, and one of the remarkable things is 
that bilateral occurrence is quite usual and occurs in the next 
series of cases, especially in those shown in Figs. 9 to 12, 

Teratology by excess takes three principal forms; the com- 
monest is that of little hang-veins (“anhangs”) which occur in 
many places, for example on the second long vein as in Fig. 10 or 
on the discal cell as in Fig. 3 which shows one on the discal cell 
of a specimen of Ocydromia glabricula (Empidae) in which family 
the only other recorded case of abnormal veins is that of the 
Tachydromia mentioned above. These hang-veins are often present 
normally as for example in Hrnoneura argus (Cordylurids) where 
the second vein has a regular row of them hanging from it, each 
carrying a spot of pigment. It is also always present in some 
species of Parhydra (Ephydridae) at the end of the second vein, 
where it forms a little hook which is often quite constant for a 
given species, though in others it is rather variable, or, in rare 
instances, absent. The size of the hang-veins differs greatly; in 
Fig. 4 is shown one in an agromyzid which is doubled at the base, 
though simple on the other wing; here it is long; that in Fig. 3 is 
smaller, while those in Fig. 14, the case to be referred to later of 
Ptilonota guttata (Oxrtalidae), show various forms; the limit is when 
the hang-vein degenerates into a little hard spot on the vein, a 
sort of local breakdown in its continuity. 
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The second class consists in an extra cross-vein between the 

third and the fourth long veins as shown in Fig. 5, Sapromyza 

pallidicornis (Sapromyzidae), Fig. 6, M inettia plumicornis (Sapromy- 
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Fig. 1. Platypeza dorsalis. Fig. 3. Ocydromia glabricula, 

Fig. 2. Oscinis nana, Fig. 4. Agromyza sp. 

Fig, 6. Sapromyza plumicornis. 

Fig. 8. Orthochile nigrocerulea, Fig. 7. Ditaenia grisescens. 

zidae) and Fig.7, Ditaenia grisescens (Sciomyzidae). The only known 

case in which the cross-vein at the end of the discal cell is duplicated 

is shown in Fig, 8, Orthochile nigrocerulea (Dolichopodidae). 
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Fig. 9. Agromyza sp. Fig. 10. Cyrtoneura stabulans. 

Fig. 11. Sapromyza dedecor. Fig. 12. Noterophila glabra. 

Fig. 13. Platypeza modesta. 

Fig. 14. Ptilonota guttata. 
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The third class is the most interesting and is shown in Fig. 9, 
a species of Agromyza, Fig. 10 Cyrtoneura stabulans (Muscidae), 
Fig. 11, Sapromyza dedecor (Sapromyzidae), and Fig. 12, Noterophila 
glabra (Drosophilidae). Kréber also figures two similar cases, in 
Mydaea urbana and Polietes lardaria, both in the Anthomyiidae. 
The small triangle formed looks just as if the cross-vein in its 
development had torn the fourth vein into its two constituent 
parts M, and M,: this condition is often bilateral. 

A similar formation of a triangle, but taking the form of a 
cross-vein between the two branches M, and M, beyond the discal 
cell, is shown in Fig. 13, Platypeza modesta (Platypezidae), this is 
accompanied in both wings by small hang veins. A noticeable 
feature is that the teratologies very frequently occur in the neigh- 
bourhood of the discal cell, that is to say, in that part of the wing 
where one would expect stress phenomena to occur owing to the 
presence of veins at right angles. 

The above examples constitute almost all those that the author 
has met with, and they occur in single specimens of various species 
spread over many families: in some of those species hundreds of 
specimens have been seen. This remarkable degree of uniformity 
breaks down in a species of ortalid, Ptilonota guttata (Fig. 14). Here 
the teratological diathesis is extraordinary, taking as a rule the 
form of hang-veins, which vary from dots near the second vein to 
simple veinlets or complex forms as shownin the figure: these 
hang-veins are also common in the discal cell itself. Out of the 
40 specimens in the Cambridge collection no fewer than 15 exhibit 
one at least of these abnormalities, many of them more than one. 
Mr Edwards has kindly informed the author that in the British 
Museum set, about 5 out of 21 show small defects of the nature of 
hang-veins or dots, and Mr J. E. Collin tells him that 9 out of his 
23 specimens exhibit the same phenomenon. The species also 
shows much inconstancy in the acrostichal bristles; further, the 
author figured in the #.M.M. 1911, p. 216 a unique case of true 
Batesonian teratology occurring in the same species, the specimen 
having on one of the antennae a small accessory third joint bearing 
two extra aristas. The species seems to be endowed with extreme 
natural instability, and it would be of interest to hear of similar 
occurrences in other families of insects. 
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Lhe Cooling of a Solid Sphere with a Concentric Core of a Different 
Material. By Professor H. 8. Carstaw. 

[Read 2 May 1921.] 

1. Fourier himself remarked* that the present temperature 
gradient near the surface might be used to obtain an estimate of 
the time that has elapsed since the earth began to cool from its 
molten state. And in a paper} which attracted much attention at 
the time of its publication, and to which, even towards the end of 
his life, Kelvin attached considerable weight, he based his estimate 
of the Age of the Earth upon the simple mathematical problem of 
the distribution of temperature in a solid bounded by the plane 
« = 0 and extending to infinity in the direction of x positive; the 
initial temperature is constant and the boundary « = 0 is kept 
at zero. 

In this case, with the usual notation, the temperature v at the 
time ¢ is given by fs 

2p [2viKt) 
y= | e-“da, moat 

and SUNT oat are 
0% 4/ (at) 3 

the initial temperature being 2. 
In 1895 Perry reopened the question in a series of papers{ the 

aim of which was to show that other possible internal conditions 
would give greater ages than Kelvin’s estimate of 108 years, which 
was regarded by the geologists as quite inadequate. Heaviside§ 
made important contributions to this discussion and the problem 
solved in this paper is one to which he refers. He mentions that 
he had obtained its solution by his “operational method,” but his 
work has not been published. 

* Cf. Huvres de Fourier (Darboux’s Edition), T. 2, p. 284. 
+ Trans. R. Soc., Edinburgh, 23, p. 157, 1864. 
{ Nature, 51, pp. 224, 341 and 582, 1895. 
§ Heaviside, Electromagnetic Theory, vol. 2, ch. v. 1899. 
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Though the discovery of radioactivity has definitely closed the 
controversy as to the reliability or otherwise of the results obtained 
by Kelvin’s method, or similar methods, the mathematical problem 
treated in this paper seems of sufficient interest to justify the 
publication of a solution on lines which I have found useful in 
dealing with other questions of.the conduction of heat. 

2. It is more convenient to start with the case of a sphere 
whose surface is kept at a constant temperature, the initial tem- 
perature of the whole being zero. . 

Let the sphere be of radius 6,. the core being of radius a. The 
surface r = 6 is kept at a constant temperature Vp. 

Let the temperature, conductivity, specific heat and density of 
the core from r = 0 to r=a be v,, Ky, c, and p,: and the corre- | 
sponding quantities from r = a to r = b be v,, Ko, c, and po. 

Also let ep SEG Gon BING) eg = IK OaDee 

Then if we write uv, = v,r and uw, = var, we have the equations: | 

OU, Oy OU, Oly 
Bee ae S O =< a2 (a): Ty ae EN ay 

=O) whee PSO codecs (QQ), a, = bv, when 7 — eee) 

Oy =O), when =O ssosc (3), %— 0) whens? —0meeoa 

U; = Us, wheniin—(@ 55) (4), 

b= 20a) 

IK (a ae um) = IK (0% — uw.) , when r=@...(5). 

It is clear that 

U, = A, sin ar es, 

Uy = (A, sin pa (r — a) + B, sin pa (6 — 1)) es 

satisfy (1) and (1’), when pp = 1/(k,/). 

They also satisfy (4) and (5), provided that 

A, sin aa = B, sin pa (b — a), 

K,A, [aa cos aa — sin aa] = K, [aa (A, — B, cos pa (6 — a)) 

Thus we have Re 

o COS aasin po (b—a) + sinaacospa(b—a) + bee sinaa@ sin ja (b—a) 
A= a A 

sin pa (b—a) 

where kG = Gl. 
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Now introduce the path (P) of Fig. 1*. In this standard path 

the argument of a lies between 0 and 2 at infinity on the right, 

and between a and z on the left. The condition (2’) at r=b 

suggests the suitable value for A,. Then we are led to the solutions 

. = bv, [sin ar ei“ 

mien) 2 (a). -« 

rat. bv, = pa(r—a) , sinaasin wa (b — a enrns (7) 

(sin pa (b—a) F(a) sinpa(b—a)) a Tel liT 

where 

F (a) = 0 cos aa sin pa (b — a) + sin aa cos pa (b — a) 

l—po . ; 
b— ’ ay SIN @a Sin jue ( a) 

and the integrals are taken over the path (P) of Fig. 1 in the a-plane. 

RTM iA MONO A. 

ere) + @ 

Fig. 1. 

The value of uw, given by (7) reduces to 

__ bu i (a) ene? 
sions Bey ve 1 kd ERE EAE a (8), 

where 

G (a) = o cos aa sin pa (r — a) + sin aa cos pa (7 — a) 

a a= sin aa sin pa (r — a), 

and the integrals are taken over the path (P). 
The values of uw, and uw, given in (6) and (8), from the way in 

which they have been obtained, satisfy the differential equations 
(1) and (1’), and the conditions (2), (4) and (5), which hold when 
7 = 0 and r = a. 

, , buy [eve 
Putting r = b in (8), we have a = da, over the path (P). 

Introduce the path (Q) of Fig. 2 formed by the path (P), the image 
of this path in the real axis, and the circular arcs dotted in the 

* A similar path was used by me in Chapter xvi of my book on Fourier’s 
Series and Integrals and the Mathematical Theory of the Conduction of Heat, 1906. 
See also, for the method of this paper, Phil. Mag., London (Ser. 6), 39, p. 603, 1920. 

26—2 
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diagram, joining the ends of these two curves. Then use Cauchy’s 
Theorem and we see that uw. = bv) when r = b. 

Thus the condition (2’) is satisfied. 
There remains only the initial condition, u, and u, are to 

vanish when ¢t = 0. 
Now the equation 

F (a)=c cos aa sin pa (b — a) + sin aa cos pa (b — a) 
oO 
sin aa sin pa (b—a)=0...(9) 

Fig. 2. 

has no imaginary roots, or repeated roots, and it has an infinite 
number of real roots symmetrically placed with regard to the 
origin*. 

Putting ¢ = 0 in (6) and (8), we have the integrals 

buy[sinarde ,q Bm /G (eda 
ut] F(a) «@ ut | F(a) a” 

Consider the closed circuit of Fig. 3, consisting of the path (P) 
and the part of a circle, centre at the origin, lying above the path — 
(P). There are no poles of these integrands within this circuit and, | 
when the radius of the circle tends to infinity, the integral over 
the circular arc vanishes. 

—- —— 
— 

Oe ~ 

Fig. 3. 

_ It follows that both integrals vanish over the path (P) and the 
initial conditions (3) and (3’) are satisfied. 

* See below § 5. 
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Finally the solutions in (6) and (8) are obtained as infinite 
series. For we have 

buy [ sin ar e-*i2% 
~ a 

Qu} F(a) «@ ; 

buy enKiart 

ol ners = [Fe a ge 

over the path (Q) of Fig. 2 
Then, by Cauchy’s Theorem, we have 

Uy = 

© sin ar e—*ian't 
Uy = 1Uq + 2g, De yp nese eens (10) 1 0 0 4 “ , 

1 F (@,,) Qn 

7c0Sa,( Sin wa, (r—a)+sina,acosma, (r— a) + teal sina,asinua,(r—-a) _, 4% 
3 

La nl 
? 147 

TVo+ 2Qbv_p= eee 

1 ne (4n) an 

Hee (11), 
the summation being taken over the positive roots of (9). 

3. In the discussion of § 2, put V, = vp — v, and Vz, = v% — V9. 
Then V, and V, are the temperatures in the core and sur- 

- rounding sphere, when the surface r= 6 is kept at temperature 
zero and the initial temperature of the whole is v%. 

OV 3 
Also the gradient, when r = b, namely “a , is given by the 

equation 
sora J ; ire 

gCOSa,ACOS ma, (b— a) + - sina,acos ua, (b — a) —sina,asin ua, (b—a) 

)_= — 2u Vo = 2 — - eT kian2t 

+3 1 vi (4p) Ree (12), 

the summation extending over the positive roots of (9). 

4. With the constants which Perry and Heaviside adopted, 

i— 6-38 x 108 b—a=—4x 10 4=—4-« 10, 

et K, = -00595, 

1 py =) 2°80; Cpe — soul, 

ep Bey esp. ote, ky — Kei, = 0111", 

B= WV (key /eg) = 3-742, = V/(K 61 p1/K2C0p2) = 21-1. 

Thus po = 79 and pw Me = pe 2°35 x 10-8. 

Also the gradient of 1° in 50 ft. is 1/2743 degrees per cm. 

* This corresponds to Kelvin’s value of 400 for « in foot-year units (/oc. cit. § 15 
and Mathematical and Physical Papers, vol. 3, p. 302). 



404 Professor Carslaw, The cooling of a solid sphere 

The equation (9) is 

F (a) =o cos aa sin pa (b — a) + sin aa cos pa (6 — a) 

+ Eos aa sin pa (b — a) = 0. 
pad 

The roots of this equation will be the common roots, if any, of 

sin aa = 0) 
be cd aatiAle sae 13), 

sin pa (b — a) = 0) ) 
and the roots of 

1 — po 
o cot aa + cot pa (b — a) + ——— =0 ....... (14). aaa 

Since (6 — a)/a is small, the values of aa, if any, given by (13) 
will be large. Thus for our solution we require only the earlier 
roots of (14), which, with the above constants, reduces to 

20-8 
21-1 cot « + cot (2:35 x 10-3 a) = pos (15), 

where x = aa. 
It will be found* that the first two roots of (15) are 

SOO we 10S ee ay 
t= 5-980 or 360° — 17° 22’, 

and that x, lies between na — 4x and nz. 
Taking the first term only, the value of ¢ is required for which 

s qe 
1 o Cot a,a cot pa; (b— a) + P* cot fay (D--a)—1 

qa = — 2HVo a eWKia't (16 2743 1—po .-.(16). 
oa cosec? aja + uw (bd — a) cosec? way (b — a) + —; 

This gives the equation 

1 2-0298 293712 
ayaa — 8% 3142 x 104 x e~ 68x (Seams) # 

5-9763 

since the numerator and denominator of the fraction on the right 
of (16) are, respectively, — 2-0298 x 104 and 5-9763 x 104. 

Reducing the answer to years, this leads to 9-02 x 10° years}. 

* T am indebted to Mr R. J. Lyons for the solution of this equation. 
yt Heaviside (loc. cit. p. 19) gives 9-03 x 10° but adds that he has not taken 

special pains to get the third figure right. 
As Heaviside compares his result with Perry’s for the problem when the 

capacity of the skin is neglected, it may be worth while to point out that some 
arithmetical errors have crept into Perry’s solution. (Cf. Nature, 51, p. 225.) 

The first two roots of the equation 19 tana+a=0 are 

a, =2-985676 or 180° —8° 56’, 

a, =5-9783345 or 360° — 17° 28’. 

The first term in the series for the temperature is 138-13 instead of 142-7, and the 
second term is 4-82 instead of 5-65 given by Perry. 
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5. In § 2 it has been assumed that the equation (9) has no 
imaginary roots or repeated roots, and that it has an infinite 
number of real roots, symmetrically placed with regard to the 
origin. 

There is no difficulty at all in proving that the equation has no 
pure imaginary roots, and that its real roots are not repeated; 
and, since F (a) is an odd function of a, to every positive root a, 
there corresponds a negative root — a. 

It is harder to prove that there is no root of the form & + um, 
where € and 7 do not vanish. To prove this, we need to show that 
the equation 

o cot aa + cot pa (b — a) + ——"— a) 

has no root of this form, when p, o, a and 6 are real and positive 
and b> a. 

Let UL — smien 0= 7 <6 | 

SENS helsing ac ik aaa eiane: 17 
and a= eile Os8) snad, a<r< ' oa 

sin wa (b — a) 
2 2 

Then ae + a@?U, = 0 and — OO) pO) acne (18). 

Also 

i 0. when r— 0: U, = Uz, whens — a: U, = 0, when r—0b 

Further, if @ is a root of our equation (14), 

dU, dU 
a Fe — U, = po (a2 v,), when r=a_ ...(20). 

Now let a, B be two roots of equation (14). 
Also let U,, U, be as above, and let V,, V. be the corresponding 

expressions, when f is substituted for a. 
Then 

(a? — B?) (| U,Viar+ an U,V adr] 

a 

a b 

= [OW Vis") ar + | Waa" — Vas") ar, by (18) 
Py ’ , 

== po AZ - Vit | 

a b 

a LA‘ v0 | 

mony f= VU) = ES ae) se EE) 

= 0, by (20). 
But if @ and Pf are conjugate imaginaries € + um, U, and V, 

are conjugate imaginaries; also U, and V, are conjugate. 
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b 
Thus [ : U,V, dr and | ? U,V, dr are both positive. 

But we have just shown that 
a b 

(2 — 82) il UVa +4! U,V, dr) Xo 
0 Oa 

If follows that our equation cannot have roots of the form 
€ + um, when neither € nor 7, vanish. 

[Added June 3, 1921]. 

6. My attention has been called to the fact that the problem 
with which this paper deals was set in the Mathematical Tripos, 
Part IT, 1904, 4 June, 2-5 p.m. In that paper Question 7 reads as 
follows: 

A solid sphere of conductivity k and diffusivity a2 and of radius b is enclosed 
in a spherical shell of conductivity k’ and diffusivity a’ and of internal and 
external radii b and c. Initially the whole system is at uniform temperature wu, 
and from the epoch ¢ = 0 onwards the surface r = ¢ is kept at zero temperature. 
Prove that at any subsequent time ¢ the temperature at a distance r from the 
centre is given by equations of the form 

sin A,r} op 
u= 3A, —*_ —e-ds"at, when b> r> 0, s *sind,br 

sinh,’ (e-7r) 1 atin 
iA Ga) e—Asat, whenc>r> 6, s ‘sind,’ (c —b)r 

where ),/a’=),a, and ), is the sth root in order of increasing magnitude of the 
equation 

k’a tan Xb + ka’ tan dN’ (c — b) =0, 
further Zi: 

ee Quy ((k —k’) sin Ay’ (c — b) + k’cX,'} sin? db sin® ),’ (¢ — b) 
TT Oe kb sin? d,’ (¢ —b) + (a®/a’2) k’ (c — b) sin? ,d 

Explain the bearing of a numerical solution of this problem on the caleula- 
tion of the age of the Earth. ; 

This solution of our problem is wrong. The equations which the 
temperatures (uv, uv’) must satisfy at r = b are 

te 

Ou , OU’; 

Uae ae 
so that, if we take terms of the type given in the summation, the 
second of these equations leads to 

b (kX, cot A,b + kd,’ cot A,’ (c — 6) =k— ki’. 
It is clear that the mistake arose from taking 

0 rae ka (ap) = Ip a, (U r), 

instead of the proper equation at this surface. 
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Asa matter of fact the equation for A given in the Tripos question 
arises in the corresponding problem for linear flow of heat, when 
the equations for the temperature, with this notation, areas follows: 

Ou  , Oru Ou’ 02u ae ay Shenae ape Pao te Bp =U ag, b<a<e. 

u=0, whenzx=0:u’=0, whenz=e. 

U = U9, when t.= 0: u’ = uy, when t = 0. 

et 

Ou ow’ | , when z= b. 

OO ah es 

And this problem* can be solved by Fourier’s method on the 
same lines as the solution of the sphere problem which is given in 
the next sections, a solution suggested by this Tripos question. 

7. With the notation of §2, the sphere problem reduces, on 
substituting vr = u, to the solution of the following equations: 

Ou, Ou, OUy O*u 
— y 1, 2 Ks 2 , at =Kr aa» O<r<a...f Ly Se ge acre. (21°), 

eo 0) when r= O..:: (22), v,=0, whenr=6 ...(22') 

rior when? — Oy... (23), Uo. = vor, when t= 0 (23) 

ty a WONG Oh gn aise oaneoneens (24), 

Ouy eat UO Ulin al : 
| Ky (a ine u) = KK, (a Se a), when r = @...(25). 

As before 
U, = sin pa (b — a) sin ar a 
Uy = sin aa sin pa (b — 7) et 

satisfy (21), (21’), (22), (22’) and (24), provided that yu? = #,/K. 
Further (25) is satisfied, if 

F (a) =o sin pa (b — a) cos aa + sin aa cos pa (b — a) 

See hce sie aoe), 
pad 

where K, = Kyyo. 
This is the equation in «@ given in § 2 (9). 
Unless pu (b — a)/a is rational, the only roots of F (a) = 0 are 

those of 
Pa. 

o cot aa + cot pa (b — a) + ae ORL (28). 

* See also §§ 5, 6 of my paper cited above. 
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In the first place we confine ourselves to the case when 
pu (b—a)/a is not rational. 

As in §5, let a, 6 be two different positive roots of (28). 
Also let 

U,=sin pa (b—a)snar, 0<1r<a) 

U,=sinaasin pa(b—1r), a<r<bjJ 

And let V,, V, be the corresponding expressions when f is sub- 
stituted for a. 

We know from § 5 that 
a yb b 

| Gia dr + = [ we dr = 0 eee cceccccce (50). 

0 a 

Following Fourier’s method, our solution is obtained by ex- 
panding vr in an infinite series of these terms: 

Ur = & A, sin pa, (6—a)sina,r, O<r<a 
tr GD). 

= 2A, sina,a sin pa, (b—1r), a<r<b 
nN 

Then with the usual assumptions as to the possibility of this 
expansion and of term by term integration of the series, we have 
from (30) 

a b 
Abbe sin [Oy (b — a) | sin? a,rdr + © sin? a,a | sin? pa, (b — 7) ar| 

0 o é 
a 

= Oy sin [ay (b — a) | r sin apr dr 
0 

1e2 5 b P 
+E sin aga | r sin pct, (b= 1) dr. 

Evaluating these integrals and using (28), it will be found that 

Ay = 
SI 

gay, aie : WS fap ; Gn (as sin? ya, (b— a) +u(b—a)sin?a,a+ — a sin?a,,a sin? ua, (b— a)) 
May, 

Also, from (26), it will be seen that the solution of the problem is 

sina,a@ sin ua, (b—a)sina,r —kyan2t Ee ioe w Ha. ( — an! ee aa ...(33), 
a ae er Ae a do sin? ua, (b—a)+u(b—a)sin2a,a+ ee sin?a,asin2ua,(b—a)  ™ 

nr 

sin? aa sin =| —kyan%t Up =2bvy = oe a a) Bas ... (34). 
— po On do sin? wa, (b — a) + u(b —a)sin?a,a+ Z sin?a,asin2 ua, (b— a) 

This agrees with the results given in § 2 (10) and (11), if we 
remember that w, and wv. now correspond to (709 — Uy) and (7¥9 — Uy) 
of that section. 
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8. The case when p (b — a)/ais rational remains to be discussed. 

Suppose that it is equal to p/q, a positive fraction in its lowest terms. 

Then the equation F (a) = 0 [cf. § 7 (27)] is satisfied by 

aa = qr, 2qr, etc. 

as well as by the roots of (28). 
When aa = sqz, it will be seen that wa (b — a) = spr. 
Thus, in addition to the terms of (26), 

U, = sin pa, (b — a) sin ayr e797 

Uy = SiN a, Sin pat, (b — 7) ee ; 

where «,, is a root of (28), we have 
@?s?n* \ 

Pe ; St: U, = wK, cos ps7 sin gst —e * a 

: (35) He Cre pee a 
— ; or) = lee es Ug = — K, cos gsm sin ps7 (5 = “) Cie na | 

where s is any positive integer. ; 

The theorem of § 5 [cf. § 7 (30)] applies to all the solutions 

sin pa, (b — a) sin @,1) 
sin @,@ sin pa, (b—7))’ 

and pK, cos psm sin gsm = | 

Lae 
— K, cos gsm sin ps7 t = = | | 

Thus we assume that vgr can be expanded in an infinite series 

with terms of the type 
A, sin pa, (b—a)snma,r, O<7r< a) 

A, 810 G2 Sin pao,(b—7T), a<r< b)’ 

and A, pK, cos ps7 sin gsm » Vere 

— A, K, cos qsz sin psa (ar Gar < a 

The coefficient A,, has been found above in (32). The coefficient 

A, is given by 
a 

Ax ek? COS? psi 4 sin? qs7 dr 

B b—r Ee Weaae ase Rae K,? cos? qsa i. sin? ps7 (; = “| ar| 

mi ae r 
= Ee COS ps7 | f rsin qs 7 dr 

_ op es =") 
E Ky cos gsm | sin pst — ar). 
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It follows that 

Une™ _ 2bv9 _ (b — a) cos qsa 
K e 

K Si ) 2(a+ K, | a) 

Thus 

2bv) cos gst. in An SEK GR EEA since K, = yok, ...... (36). 

Also these terms in our solution are as follows: 

4p 
COS ps7 COS qsm SIN Ys7r z 

— 2bU5 —— ee Ca 5 a~ 

st (op + q) 

sl S 2022 oO SIN ps7 (= ) ese 

sm (op + 9) 
On referring to § 2 (10) and (11), it wili be seen that this solution 

agrees with the result obtained in § 2 by the method of contour 
integrals. And it may be noted that the assumptions involved in 
Fourier’s method were not necessary in the discussion of § 2. 

and 2b, 
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Symbolical methods in the theory of Conduction of Heat. By 
Dr T. J. Va. Bromwicg, F.R.S. 

[Received 29 April. Read 2 May 1921.] 

In 1914, I communicated a paper “Normal Coordinates in 
Dynamical Systems” to the London Mathematical Society*; and 
I explained there (§§ 2, 3, 4) the relation of my methods to the 
symbolical methods used by Heaviside for various Electrical 
problems. But I reserved} any general application of the corre- 
sponding methods in Conduction of Heat and Diffusion; owing to 
the pressure of the War and other difficulties I have not had 
leisure to arrange my results for publication until now. 

I have given here only the special points which are suggested 
in connexion with problems arising out of the question of the 
“ Age of the Earth” as handled by Heavisidet and Perry; reference 
is also made-to the paper by Prof. H. 8. Carslaw on the same 
topic, communicated at the same time as this paper. 

Not much importance is attached to the estimate made here 
(9:37 x 10° years) for the age of the Earth; but the same data 
have been adopted as in the original suggestion of Perry, that the 
internal conductivity and heat capacity affected the estimate more 
than the corresponding constants of the skin. It would be easy 
to estimate new values of « and & with which the formula of § 2 
(for g/v)) would yield almost any value of ¢ from 10° to 10'° years§. 

The ease of manipulating the constants in the formula of § 2 
is in marked contrast to the labour involved in solving the same 
problem by means of a Fourier-expansion; and mistakes are far 
more quickly detected in the numerical work. Some comparisons 
of the work will be found in § 3. 

The contents of the paper are as follows: 

§ 1. General consideration of a method for solving Conduction 
of Heat problems. 

§ 2. Application of Heaviside’s method to the problem of a 
sphere surrounded by a shell of different material ||. 

* Proc. Lond. Math. Soc. ser. 2, vol. 15, 1916, p. 401. 
+ Lc. p. 402. 
{ Electromagnetic Theory, vol. 2, §§ 227-237. 
§ Compare Heaviside’s estimates (J.c. §§ 232, 236). On radio-active grounds, 

the most recent estimates appear to be from 3 x 10° to 5 x 10° years (H. N. Russell, 
Proc. Roy. Soc. A, vol. xcrx. (1921), p. 84). 

|| This problem appears to have been solved originally by Heaviside himself 
(see his remarks in Electromagnetic Theory, vol. 2, § 230), but his solution was not 
published. A solution with an erroneous result was set as a question in Part IT 
of the Mathematical Tripos, 1904. 
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§ 3. Numerical tests of the formulae. 
§ 4, Evaluation of certain symbolical expressions required in 

SS ay 

§ 1. General consideration of a method for solving 
Conduction of Heat problems. 

Using the notation explained in §§ 4, 5 of my paper quoted 
above, it is evident that the typical solution of a Conduction of 
Heat problem, with a solid originally at zero temperature, and the 
surface of the solid maintained at constant temperature Up, is of 
the form Vp, [atic aN 

JP) tay v Pal 2 uy. (a > 0) 

Here wu is to reduce to unity at the surface and is to satisfy the 
differential equation INO 

at other points in the solid, where A, is Laplace’s operator and 
« = k/c is the fundamental constant of the heat-equation in the 
solid; & is the conductivity and c the heat capacity (per unit 
volume). 

To connect this formula with Prof. Carslaw’s (I.c. § 2) is easy; 
if we write ea pe 

u will become U say, where U satisfies the equation 

and also reduces to unity at the surface. The integral for v 
becomes , dé 

pa Bley S 

qr | 0 

where the path of integration is given by 

— kK (62 — 47) =a, OG 4? — 67) — afi) 1h Oe 

The beginning and end of the path correspond to the two points 
given by 

—2kén >~>— 0, —AkEgy>+o0; 

thus, choosing the upper half of the rectangular hyperbola 

Ne Go | — 
the path will start at infinity in the first quadrant and will end at 
infinity in the second quadrant as sketched. 
___ This path agrees with Carslaw’s path (P), and so the integral v 
is identical with his, when U is written out at length. 

To explain the connexion of these complex integrals with 
Heaviside’s symbolical treatment is also easy; Heaviside writes 
symbolically 9 

eerie 



in the theory of Conduction of Heat 413 

and then solves the equation 

A,V —gV =0 

subject to the condition V = 1 at the surface. 
It is evident that the function V will be equivalent to U on 

writing 6 =.q, or g = — 8, and thus Heaviside’s forms of the 
solutions can be translated at once into complex integrals, if 
deésired* ; and it has been proved (see § 4 of my L.M.S. paper) that in 
general Heaviside’s standard method of interpreting his symbolical 
solutions is equivalent to the evaluation of the original complex 
integral as a sum of residues (taken for all the poles of the func- 
tion u/A). 

Before leaving these general considerations it will be con- 
venient to note briefly the theorems relating to the special differ- 
ential equation of Diffusion which follow immediately on the lines 
of §§ 8, 9 in my paper previously quoted. 

The potential energy will be expressible in the form 
DA (Gu Ne. fav\2 feu 

a= 5 /E(ae) + Gay) + (ee) f 
and the dissipation-function will be 

F— fe(S Esk ) dr, 

both integrals being taken ae the volume of the solid; and 
here there is no kinetic energy function. 

Thus, if A= «a,,a@, are two distinct poles of the function wu, 
and if 4,, d, are the corresponding residues of the function, we 
find (as in formula (75) in § 9 of my L.M.S. paper) 

Dbeeds Ob cobs Lode o 
Jedsdadr = 0 and [ee + a et see $2\ dr = 0 

* Since this relation gives y= — é, it follows that the path selected above 
‘corresponds to one in which the real part of q is positive; and this agrees with the 
convention adopted in § 4 below. 
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Thus it follows that the poles a, @, are purely real; for if a, ae 
are supposed to be conjugate complexes, so also are ¢;, ¢,; and 
thus the product c¢,¢, is essentially positive, so that the integral 
fed ¢. dr could not vanish. 

Further we have Ff = — a , and taking the special value ¢, 

for v, we find that 

wefegs2dr =— ty fk (a). 4. (By + Gal dr, 

and (since @, is not zero) it is evident that @, must be negative*. 
The corresponding poles for the functions U will be real (since 

«02 = — A) and will occur im pairs given by 0 = + »/(— a,/k). 
There is no need for the thermal coefficients c and k to be con- | 

stants in these theorems, provided that at any surface of discon- ; 

tinuity, the functions v and & e are continuous, where 0/év implies | 

differentiation along the normal to the surface of discontinuity. 
It will be noticed that the theorem in § 5 of Prof. Carslaw’s paper 

follows at once, because ¢ has one of two constant values; and the 
ratio of these constants is equal to 

ke a-S/a— = Wt 
Ko] Ki > Ka) a eeeo Eno | 

a b 

Hence | rh, dr + sal rd, bdr = 0, 
0 a 

which is equivalent to the result obtained by Prof. Carslaw. 

§ 2. Application of Heaviside’s method. 

We can illustrate Heaviside’s method conveniently by solving © 
symbolically the problem of a sphere of radius a and heat-con- 
stants k, c, surrounded by a thin shell of thickness / = 6 — a and 
heat-constants k,,¢,. The solid so formed is initially at zero 
temperature, and at a certain instant (¢ = 0) the outer surface is 
raised to temperature v) and is maintained at this temperature 
afterwards. 

We shall write k= he, eu adelen 

and p= a = iP Sek 

Then suppose that V reduces to the value A at r=a; the 
differential equations of the problem reduce to 

C2 , 3 0? 
Or? UD) SENG) Ore (Vi) =H? V4), 

* Tt should be noticed that we cannot draw this conclusion immediately from 
the corresponding theorem of § 9 of my L.M.S. paper. 
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which yield the formulae 

V ie Aasinhq,(b—r)  bsinhq, (r — a) 

Beremiga ® 7 * r sinh qyl r sinh qy/ 

meance ) — V,— A at r—a, and V,=1 atr—d. 
Further we are to have 

__ Aa sinh gr 
2 

Oo as 8 © he 
ORM ee 

and so 
s1 cae : 1 kyq6 kA (4 coth qa ) =—k,A (1 coth no) Peas qu? 

q,6/sinh qyl ; 

(k/k,) (qa coth ga — 1) + (q,a coth g,l + 1)” 

If we write kl/k,b = s, this formula can be written 

giving* A= 

pees q,l/sinh qyl 
~ § (qa coth ga — 1) + (a/b) (q,l coth ql + la)’ 

The problem actually amounts to evaluating 

ee a b, 
Uy OF 

where g is the gradient of temperature at the outer surface of the 
shell at time ¢. It will be found at once that 

Gis. Aa 
Up 6b sinh ql 

+ q, coth qyl =e 

An expression for g as a Fourier-sum can be found by Heaviside’s 
general process; but as this should be equivalent to the result 
calculated by Prof. Carslaw, I do not stop to write out the result 
and proceed to simplify the above formulae by means of approxi- 
mations suitable to the data of this particular problem. These 
approximations correspond to (1) treating ga as having a sufficiently 
large real part to allow cothqa to be replaced by unity and 
(i) treating q,l as small. 

The above formulae reduce then to the following, on rejecting 
(q,l)* and higher powers, 

bead ake Bac) Aa 
Ts + sga +} (ajb) (qu 

a aa Sa ouera ky 
ae bl {l & (91!) + 5 b’ 

* On writing g=va, q,= "ua, k/ky=uo, it will be found that 

Aa=b sin aa/F (a), 

where F (a) is the function defined in Prof. Carslaw’s paper. Then JV, is easily 
seen to lead to formula (7) of that paper. 

VOL. XX. PART IV. ill 
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where in the last formula the relation* g,? = 0 has been used in 

simplifying q, coth ql. 

Hence Le f1— A+ 4A (q,1)*} 
UY Ol 

een Ie 1—3(m/)? 

Bt tas + sga +h GO 
where we write 1 for a/b in the small term containing (q,/)? in the 
denominator. 

Write for brevity y=1—s-+sqa and then 

GO es Gnas ie 
V bl | My 7 y? 

Bo eae pelea = 

Following Heaviside, we proceed to expand 1/y in powers of 
sqa/(1 — s), and then retaining only terms in q, qg® (the terms in 
q?, 7,7 being identically zero), we find 

Oana ae 1 ( 373873 — 1 a ee) oral aa a nga + nFq2a® — 4 (q,) nga + 7 : 
§ || 

where, for brevity, we write n =s/(1 —s). 
In the actual problem s is small (about 5) and so in the last 

term of the formula we may put 

2n/(1 — s) = 2n 

without sensible error, and then the term in 2 reduces to 

— 3 (a!) (8nga) = — nl?agy*¢. 
To interpret these formulae we use the resultst 

me: 320 ualaheel 
1 nt)? 2 Qa 

eae 2 cate at aa is 
thee died eee Del VG 

Hence we find that 

g na a Gi ealae 
Gy | — (1 — s) «/(zxt) (1 nor si) | 

which is a slight extension of Heaviside’s formula, given for the 
case when the thickness of the shell is negligiblet. 

* See § 4 (iv) below. 
+ § 4 below (i) and (ii). 
t Electromagnetic Theory, vol. 2, § 236, formula (39). The extension consists 

merely in the addition of the last two terms in the bracket: that terms of this 
type would be present could be foreseen from Heaviside’s formula (27) in § 229 
(for the corresponding plane problem). There is also the external factor a/b in the 
present formula. 
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To estimate the numerical values of these terms is easy; take 
the data adopted in Prof. Carslaw’s paper (following Perry and 
Heaviside), 

b=4x 10°, a=6-38 x 108, «=-1643, «x, =-0117. 

Then S = 04953, n= -05211. 

After a little trial it was found that a value of ¢ about 3 x 1017 
(that is, about 9-36 x 10° years) would fit the data for g and w% 
used by Lord Kelvin (see below): and then it appears that 

sit = 2:3 x 10-5, 

so that this term will be negligible in our calculations (and naturally 
the same inference can be made with reference to the terms already 
neglected in /4, JS, ...). 

On the other hand it is found that 

$n?a/Kt = -0114; 

and accordingly this term, and other terms in n4a*/«¢?, will probably 
affect the conclusion. 

We shall accordingly complete the formula for g, by including 
higher powers of nga; on rejecting q?, q+, 9°, ..., the result is 

g — ae a ety 37373 57975 eon M+ 7, (nga + nigra + nPqra® + ...) 

nag I GR SE 
YT 8) Viral) 2d BP : 

As already explained, we have rejected the terms in /?, /4, ...; 
and the interpretation of q, q°, q°, ... follows from § 4 (i)--(iii) below. 

The series now obtained is not convergent; but it possesses the 
asymptotic property that the error in stopping at any stage in the 
series is less than the following term of the series (see § 4 (ix) 
below). ais 

Inserting the values given above for a, «x,t, the series in the 
bracket () becomes 

1 — -0114 + -0004 = -9890, 

the error being less than the following term (roughly -00002). 
Thus our formula becomes (approximately) 

G Ane (os e a (-9890) 

% Ol (1 — s)+/(aet)) © 

If we now assume the values assigned by Lord Kelvin 

g = 1/2743, v = 4000, 
the corresponding value of ¢ can be estimated by writing our 
formula in the shape 

a g Ol Taxi (9890) = (1-8) (1 ee ) = -9505 + -6653 = 1-6158. 

27—2 
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On reduction this formula gives 

j= AB)5) Se 1M 

or in years* j= BRIO S< LOY 

Finally we shall estimate the error which may be due to re- 
placing coth ga by 1 in the formula for A and g used above. It is 
easy to see that 

1 1 Ae 
“> T= pameenhen 1 yah + ga (2) 

where Pi eenae 

Thus on expansion we obtain 

I cf I+p en2g2 (Lo P\” } 1-,=5/1 nga (5 eG) i 
2 p { 

clay mst + 2p + 2p? + ...) =e = Pc lenaae)) 

BE pb onl =~ 

= al Z ara ae (nga — n?q?a? + n3q7a3 ...) 

ct fo 5 (nga — 2n?q?a? + 3n3q3a — ...)p-+ ... 

— P)+ Pip + Pep? + Psp? + ... 

where the first term in P, is 2nga/(1— s). 
The series Py leads to the asymptotic series already used; and 

similarly we can obtain series for P,p, P.p?, etc. Clearly the most 
important term (with the numerical values under consideration) 
is the first term in P,p, which is 

anga e244 pois an @ ene kt 

l—s 1 — s4/(mxt) 

by § 4 (vii) below. Thus in comparison with the term ngqa/(1 — s) 
in Po, the relative order of this term is 2e-2/«?, 

* On comparing this result with the value 9-02 x 10° found by Prof. Carslaw 
from the first term of the Fourier-expansion, I was led (by comparison with the 
numbers given in the first example of § 3 below) to the conjecture that the dis- 
ee must be due to the neglect of the second and higher terms in the Fourier- 
ormula. 

Prof. Carslaw has kindly re-calculated his formula for the above value of #, 
and obtains (using the first and second terms) a gradient 

g =-00035092 + -00001348 = -0003644. 
This is equal to 1/2744; and so agrees with the value assumed for g to one part 
in 3000, which is roughly the same order as the correction on account of neglecting 
ee |ké. 
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Now here a?/«kt = 8-4 roughly, and so 

2e-0 4-5 10 nearly, 

The corresponding correction to the value of ¢ will be of the 
relative order 9 x 10-4, and so will change ¢ to about 9-37 = 10° 
(in years). 

The correction on account of the terms in P,p?, P;p%, ... will 
lead similarly to an estimate of the relative orders 2e~40/**, 2e-9#"/«?, 

which are entirely unimportant in the present problems. 

§ 3. Numerical tests of the formulae of § 2. 

In view of the difference in form between the series of § 2 and 
the corresponding Fourier-expansions, it seemed desirable to 
compare the results of numerical calculation with values not very 
different from those of § 2. Prof. J. Perry* had given the results 
of some calculations in connexion with a problem which may be 
regarded as the limit of that of § 2, when the thickness of the 
shel] (J) tends to zero, the value of s remaining fixed. However 
some discrepancies were found (see below) and I[ decided to recal- 
culate with slightly different constants so as to reduce the labour 
of calculating the Fourier-expansion; I had not then} the 
advantage of Prof. Carslaw’s results with which to compare my 
work. 

If we make / tend to zero in § 2 we find that 

A = 1/(1 — s + sqa coth qa), 

and then if we replace V by (v — v)/% we obtain the formula 

» Uy — v 1 a sinh qr 
Up (1 — s + sga coth qa) r sinh qa’ 

This represents the symbolical solution for the temperature v of 
a sphere initially at temperature v), radiating into a medium at 
zero temperature; this problem was solved by Fourier{ in the form 

v 2a. sin @ sin (Or/a) e**@ 

Fon C= ee 
where the summation refers to the roots of the equation 

t= 73's cot’ — 0. 

* Nature, vol. 51, 1895, p. 225. ‘ 
+ These calculations were made at intervals in the latter part of 1916 and in 

1917. 
{ Theory of Heat (Freeman’s translation). § 293. 
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It is easy to confirm the Fourier-expansion from the symbolical 
formula above, by using Heaviside’s general rule*. 

However, in the actual problem we want the value of v at 
r =a; and for this purpose, from the considerations already given 
in § 2, it will be sufficient to replace coth ga by unity to obtain 
the series 

v i 

Gu l= ae ee a aes (nga + n?q?a? + n3q2a3 + ...) 

where n = s/(1 — s). 
Then (as in § 2) we obtain the asymptotic series 

a 1 n?a?_—-1«. 3 nat ) 

) 

ay ( 1 Le zs settle ai ee ad soe bs Ge ans PE Tee) Ri 9 D0 ae 
As explained in § 2, the formula is valid only if e-“/ is negli- 

gible; and to obtain four-figure accuracy, this requires a?/xt to be 
not less than about 8-5. Hence to obtain good results from the 
asymptotic series, n must be small, of about the order 1 /15 to 1/20. 

In the Fourier-expansion, to avoid the labour of the actual 
calculation of the roots of the equation for 0, I decided to adopt a 
simple value for 0, (which is the root requiring the greatest 
accuracy), and to deduce the corresponding value of s. 

The value 0, = 1707/180 = 2-9671 was selected; and this gave 
1/s = 17-827. Then 0, was not very different from 20,, and the 
value 0, = 5-944 was comparatively easy to calculate. A further 
simplification in the arithmetic was made by taking 

a?/xt = 0,2 = 8-8 (nearly). 
Then the first and second terms in the Fourier-expansion for v 
were found to be 

% (04248 + -00191) = (-04439) vw. 
The corresponding asymptotic series is found to be 

I — -01546 + -000725 — -000075 + -000008 = -98520. 
Then on substitution we find 

VU = U (04441); 

+ 

* This rule may be written in the form 

F(p)_ F (0) , 5 P(aet 
A(p) A(0) aA’ (a) ? 

where the summation refers to all the roots p=a of A(p)=9. Proofs of this equation (from different points of view) have been given in Phil. Mag. vol. 37, 1919 (see pp. 417, 418), and Proc. Lond. Math. Soc. vol. 15, 1917 (see pp. 419, 420); Heaviside’s own discussion will be found in his Blectrical Papers, vol. 2, pp. 226, 373. 
In the present problem, the term F (0)/A (0) reduces to 1 and cancels a term from the other side of the equation; and the values of a are — x6?/a? (found by writing qa=6). 
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so that the two formulae agree as well as could be expected with 

four-figure accuracy. 
In Prof. Perry’s calculation, the value l/s = 20 was taken, 

and the value of x = k/e as in § 2 above, while ¢ was taken as 

96 x 108 years; then with v) = 4000 the first and second terms 

are stated to be equal to 

142-7 + 5-65 = 148-4. 

I did not succeed in confirming this value; and Prof. Carslaw has 

recalculated the Fourier-formula with the above data. His result is 

138-13 + 4-83 = 142-96, or say 143-0. 

The corresponding value of the asymptotic series is found to be 

1 — -01131 + -00038 — -00002 = -98905. 

Hence — = 7. (— 14 1°6783) = -03570, 

and so y = 142:8, 

which agrees sufficiently closely with Prof. Carslaw’s result*. 

Perry has also given numerical results for the same Fourier- 

expansion when the constants are adjusted so that s= 1; the 

asymptotic series used above will clearly fail under this condition, 

and a fresh formula becomes necessary. 

When s = 1, the equation for 0 becomes 

cot @ = 0, 

thus the values of 0 are 47, 37, 57, ...; and the Fourier-expansion 

simplifies to 

v = 2 —KO*t/a? __ 8 —w 1 p—9 1_g—%Bof 
an 92° a ara + 46> + ope a) 

where w = mt /4a?. 

In Perry’s actual calculation, the value of w is nearly equal 

to 1; and so the corresponding value of 

a?/«t = 4n? = 2-47 nearly. 

Thus the method of approximation adopted in § 2 needs recon- 

sideration; and it turns out that the new formulae are not very 

convenient for numerical work in this special case (see below). 

However it is easy to recalculate this simple Fourier-expansion 

for other values of w; and to select values which are suitable for 

purposes of comparison. 

* The correction on account of the first term in ea’ lkt is of the same relative 

order of magnitude as in the calculation of § 2; and this gives 

1-6782 
(“) (4-5 x 104) (4000) = -17, 

which accounts for the small residual difference. 
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Putting s = 1 the symbolical formula for v at r = a becomes 

ay ee (1 — 2e-202 4. Qe-taa__), Up qa qa 

Thus the first approximation (analogous to § 2) is given by 

v iL y kt L w 
Up J qa : MN 7a? wN a’ 

where the value of 1/q is given by § 4 (vi). The value of the next 
term in this series is 

‘4 7,2) G 

2 —2qa _ ae —w* du é = é 2°? 
qa Vit Jajvict) 

which requires the error-function integral to obtain a formula 
suitable for actual numerical calculation. However, the numerical 
value is less than 

Kt 
tla?) e—@lkt x 2 y («t/a : b) 

7a 

/4w Aly 4 w 
or iceree Cima ei) DOxe ea =S 

\ 72 P aN a 

The following terms in the series will be negligible if @2/ret 
exceeds 2. 

Tt is easy to test the accuracy of our results by taking say 
w= 4, with a@/kt = 7? = 9-87; so that (xt/a?) e~“/*t is of order 
x X 10-, and so is negligible. 

The Fourier-expansion is then 

St (Grase es Et = (7789 + -0117 + -0001) TT 

82% 

The symbolical formula gives (for w = t) 

(-7907) = v (-6409). 

2 | oo (1 a a = v% (1 — 3592) = 2 (-6408) | 
and thus the agreement is as close as could be hoped for. 

Even for w = 4, when (xt/a?) e-“/«t is of the order 1/700, the 
two formulae agree to three significant figures; the Fourier-expan- 
sion is | 

SON an “5 8v : ag (C7 t teF t= =2 (6065 + -0012) = % (-4926) 

while the other gives 

eee 1 — -5079 4921 — ap) => = = —e = . Z : Chuo ( A) U ( O79) = U ( ) 

It is therefore clear that, under proper conditions, the Fourier- 
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expansion is numerically equivalent to the simpler formula ob- 
tained by the symbolical method*. 

§ 4. Evaluation of certain symbolical expressions used in 
the foregoing sections. 

As explained already in § 1, the fundamental meanings of the 
symbolical formulae can be obtained by translation into complex 
integrals. In fact the meaning of the function f (q), where 

Kg" =p — oJ di, 

is given by the complex integral 
atin 1 [ (v) em dr 

PETE acs 

where Kv? = x. 

In the first instance we are concerned only with functions of 4, 
which are in reality even functions}; or functions which are (in 
theory) such that f (v) is expressible as a one-valued function of A. 
But in the symbolical transformations of f (q¢), it is generally con- 
venient to manipulate algebraically, without restricting the func- 
tions used; and then we must adopt some definite convention as 
to the interpretations. First we make v single-valued by means of 
a cut along the negative real axis in the A-plane; and we select 
that value for v which has its real part positivet. 

Further the functions f (q) are (in their original forms) such as 
to tend to zero when |q¢\ +o; and thus the complex integral 
above can be replaced by an integral along the path indicated 
in the A-plane. 

eT 

When the path has been modified, we can suppose the algebraic 
transformations of the function f (v) carried out so as to correspond 

* For Perry’s case (w =1) the two formulae work out as vy (-2982) and v (-2816); 

but, as already remarked, the value of («t/a?) e—“/*! is then about 3, so that a 
discrepancy is to be anticipated unless the definite integral given is evaluated 
numerically. 

+ For instance ga coth ga can be written in the form 

l mg a | l l aac) {1 +3 (qa)? + ra) (qa)* + vi / ! +3 (qa)? + Fal (qa)* + aie 

Then the corresponding function of v is equal to 

tical este pee eee : 

PAL AR US eae Bik 5K? a). 

{ This has practically the same effect as if we regard q as real and positive, in 
our algebraic work. 
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to the symbolical manipulation of f(q). For, on this path we can 

write v = + 6 (on the upper straight part), 

or — v0 (on the lower straight part) 

and A = — ké?; 

thus the convergence is always ensured by the presence of the 
exponential e~***, 

With these general remarks we proceed now to evaluate the 
special functions used. 

(i) Interpretation of ¢q. 

This becomes 

dr 1 Seine elo Lite age 200 5 ve Ts [a 0) est? 7 a I, (+ 18) e-*t a: 

Pe Pe Il 
aad 2 —Kté? ° 

eo Be ~ Vara)’ 
the contribution from the small circle there tends to zero with 
the radius (its value is in fact proportional to the square-root of 
the radius). 

Hence g = 1/-/ (met). 

(1) Interpretation of q?. 
Repeating the foregoing transformations, we obtain 

2 as tot qa. Une I 

as. 
and so E== : ea 

2.4/m (xt)? 
(iii) Interpretation of q2”*4, 
Similarly 

gemtt = 1 a) eas (ce ym . 3... (2m — 1) 
K™ \Ot] +/(akt) - (Qkt)™ »/(zret) 

It should be noticed that symbolically the relation 
ONT 

Ppa, a ef 
q Km (=) q 

is obvious, since xq? = p. 

(iv) Interpretation of q?, q4, ... 
Tt is here easy to verify that the two integrals from the upper 

and lower paths cancel; so that g? = 0, qt= 0, etc. This again 1s 

obvious symbolically, since q? = L ay (Cy = 0. 
K 

(v) Interpretation of 1/¢. 
atic ; 

This is : | (fe a Qmre r a—.Loo 
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and by a known result, due to Cauchy, 

Oe Nein eave ae 
Ort ba nok © CEE an)? 

if Leen =O ands 0: 

tow YEH) 
a result which follows symbolically from (i) by observing that 

9 bee dt 2 ees lat ity Ci SEEN (ap), er me 
(vi) Interpretation of 1/q”. 

The method of (v) shows at once that 

1 (ct)"*4 1 (xt)™ 
pee Gig Sy) gee ne) 

and we can sum up all the preceding formulae in the single state- 
ment n 

1 hea. (xt)2 4 

q? (1+ $n)’ 
which may be stated even more simply in the shape 

Dano 

ped eae 
where ” may be taken as having any (positive or negative) value. 
The last result is obvious by successive integration when n is an 
integer: and it is natural to conjecture that the same formula will 
be valid generally. 

(vu) Interpretation of ge-%, where x is positive. 

This is readily obtained by expansion in powers of x; and the 
result is 2 3 4 © x £ 

Pe Gh on Is ae gy oe 

Using the results found above we obtain the series 

1 | Rear an el o ee fh Los Ores a 
Ont 21 Qnty 4t Gat? 61 

mee iP (aA (A NE Tae 
ect) be de Diag BY Beet ee eee) 
If these operations appear to need further justification, it is easy 

to see that the direct expression of ge~* by means of a complex 
integral leads to the formula 

Pathe Wl one it : gah —Kt6? Ep = it € cos (6x) dé an € 
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a 

1 : = 
(viii) Interpretation of e~*” and 7 e-2, x being positive. 

We have proved that 
1 é 

—ge = _— px? /4xt Gem a (ric) Z ‘ 

Thus, on integrating with respect to 7, we see that 

da : 
wifi ol a een é€ | Ge) é + const. 

PA dea 
===) e-’ dv + const. 

where z= 44//(kt). 

Now when z > 0, e- > 1, and so 

Dh fe Daa iges 
ea = |] — — | e-*dv = —- | edu. 

/ 1 t a/ 1 12 

We have now a verification of the work; for as x tends to + «0, 
e~ tends to 0 (since the real part of q is positive) ; and this property 
is seen to hold for the integral just found. 

The value of (1/¢) e~™ is easily found by observing that 

(1 te aa 0 La Ogee. 

pte Ly eo al 
(< a AGING ah 

pore pet —x* e/AKt 

tee uA ) a pa 2! (5) ; = 2 J(5 Je 

iL Kt : De be ‘ 
DEED ~~ |) pa? Act —v" Thus ; e€ 2, vi =) e ele edu, 

aw 

where as before 2 = $4 /\/(kt). 

This is a form suited for numerical work; but a more useful result 
is the simpler formula | 

ed 
= Ge = ne pe 

q VT Jz v 
For large values of z this integral can be converted into an 

asymptotic series of which the first term is bes a 

(ix) The only point remaining is to establish the asymptotic 
property for the series in powers of g, used in §§ 2, 3 above; this 
series 1s derived from the function 

i 
f(g =1- 1—s+sqa > 

and suppose that as a matter of algebraic expansion we obtain 

F (gq) = 49 + Ayg + Acq? + ...- 
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When f (q) is converted into a complex integral along the path 
indicated above, there is a contribution from the small circle round 
the origin, which tends to the value Ay, when the radius of the 
circle tends to zero; and the straight paths contribute the integral 

= £) —f— ayer F == |g eras, 
OSE) sa where ? (8) = 5.0 = Gra ae 

Thus F(@) =A) + ; l$ (0) e-**t dO 

gives the interpretation of the function f (q). 
Now ¢ (@) can be expanded in powers of 0, when @ is sufficiently 

small; and, having regard to the connexion between ¢ (@) and 
| (q), it is clear that the expansion will be of the form 

(0) = 4a A otee eon ee 
Denote the sum of the first n terms of this expansion by 

S,, (@); then it is easy to see that we have the algebraic identity* 

ee Cee (las)? As 0 
d (9) Sn (8) aa ( 1) (1 at s)? Hi. $2q262 y 

Thus for all real values of 6, the difference between ¢ (0) and 
S, (@) is numerically less than (— 1)" A,,,, 62"; and accordingly 
the interpretation of f (q7) may be taken as 

DAE : A, += | S, (0) e***d8, 
mJ 

with an error which is numerically less than 

z | (= 1)" A sy OP e*B, 
7 J 0 

Thus we may say that the error in replacing f (¢) by 

Ay + Ayq + Agg? + ... + Aon >? 

(or by Ay + Aq + Agqg? +... + Aonq?”) is less than the numerical 
value of the following term A,,,,, q?”*1 (when interpreted according 
to the rules already given). This establishes the asymptotic 
property assumed in regard to the series for f (q). 

* On multiplying up, we see that 

{ (8) —Sp (4)} {(1 — 8)? +.8°a?6?} 
is a polynomial of degree 2n in @; further when @ is small it can be expanded in 
powers of #, the first term being ( —1)"(1—s)? A,,,, 6°”. Accordingly the product 
must reduce to this single term. 
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On the effect of a magnetic field on the intensity of spectrum lines. 
By H. P. Waran, M.A., Government of India Scholar of the 
University of Madras. (Communicated by Professor Sir Ernest 
RUTHERFORD, F.R.S8.) 

(Plate III.) 

[Read 16 May 1921.] 

Since my last communication to the society* on the pheno- 
menon of the changes in the general spectrum brought about by 
the influence of the magnetic field, I have come to know that the 
phenomenon has been noticed as early as 1858} and studied to a 
certain extent by various observers. Yet the complex changes 
taking place in the source when the radiation is emitted from 

TS LSES 
CONES 
Cay AN 

Fig. 1. 

inside a magnetic field, does not seem to have had the attention 
it deserves. But in 1913{ Messrs Kent and Frye made a study of 
the phenomenon in some particular cases with a view to its com- 
plete elucidation. They do not seem to have come to any definite 
conclusions and from their experiments they seem to be inclined 
to attribute the effects observed mainly to the chemical disinte- 
gration of the walls of the discharge tube brought about by the 
disruptive action of the blast of ions deflected to the sides by the 
magnetic field. 

Considering a section of the discharge transverse to the mag- 
netic field, as in Fig. 1, with the lines of force entering the plane of 

* Proc. Camb. Phil. Soc. vol. 20, Part 1, p. 45. 
7 A. de la Rive, Annales de chimie et de physique (3), 54, p. 238, 1858. 
i Astrophysical Journal, 37, pp. 183-189, 1913. 
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the paper normally, it is seen that the discharge current through 
the tube which consists of the unrectified current from the secondary 
of an Induction Coil is split into two streams and deflected to the 
opposite sides of the walls of the tube. The brighter stream corre- 
sponding to the break current is arranged to be on the side facing 
the spectroscope. Since they are travelling in opposite directions 
both the ions forming the discharge are deflected in the same 
direction on to the glass and with a strong discharge in an intense 
field the magnitude of the corrosion of the sides of the glass under 
this sand blast action of the ions is considerable. Where this is 
predominant the real effect gets mixed up with the effects of the 
chemical disintegration and the phenomenon may get attributed 
entirely to the latter cause. This conclusion is inevitable from the 
intense fields and strong currents Messrs Kent and Frye used 
without taking adequate precautions to exclude the complications 

of the attendant chemical disintegration of the tube. 
To examine the extent of such disintegration heavy currents 

and strong fields were employed for a few minutes and Fig. 2 
shows an enlarged view of a side of the capillary of the glass dis- 
charge tube in the region opposite the pole pieces. The deep 
channels found to have been cut in the glass show that the dis-. 
integration of the glass is considerable. The consequent compli- 
cations are sure to lead one to erroneous conclusions in case proper 
precautions are not taken to exclude them and make allowances 
for such effects. To study the phenomenon free of such compli- 
cations, this disruptive action of the ions should be reduced to a 
minimum by the employment of a moderate field and current 
and even then the tube must be of a material like quartz not 
liable to such easy decomposition, arising from any local heating. 

In my experiments I used a quartz discharge tube with 
aluminium electrodes the diameter of whose capillary was of the 
order of about 2mm. The current generally used was about 
2 milliamperes and the field was of the order of about 5000 c.a.s. 
units. Further the tube was in permanent communication with 
a mercury pump fitted with McLeod’s gauge and drying tube of 
phosphorous pentoxide. Thus owing to the large volume in con- 
nection with the discharge tube the pressure of gas in the tube 
remained constant throughout the experiment and the disturbing 
influence of the gradual absorption or emission of gas by the 
electrodes or walls of the tube during the course of an experiment 
was considerably compensated. Under such circumstances the 
results obtained with the quartz tube are identical with those 
obtained with the glass tube and hence the phenomenon cannot 
be attributed to the chemical disintegration of the walls of the tube. 

Another possible view of the phenomenon put forward by 
Messrs Kent and Frye and others is that the change is due to the 



430 Mr Waran, On the effect of a magnetic field 

decrease in cross-section of the discharge brought about by the 
deflecting action of the field. From Fig. 1 it was seen that the 
discharge is pushed on either side into two thin filaments leaving 
the centre of the tube more or less free, thus reducing the effective 
cross-section of the discharge. They regard it as tantamount to 
a change to a narrower capillary. But that the effect is not entirely 
due to this can be shown by the following considerations. 

Though a narrower capillary does generally tend to enhance 
the weaker lines and bring about a trace of continuous spectrum, 
its effect is not of such a selective nature tending to the enhance- 
ment of some lines previously almost invisible, at the same time 
decreasing the intensity of some others as observed in the case of 

mercury and many other gaseous spectra. 
Further the effect of the field is to weaken the 
continuous spectra in many cases though under 
the same circumstances a narrower capillary 
tends to intensify the continuous spectrum. 

To test this point further a tube of the 
form shown in Fig. 3, in which the capillary 
portion was made of two sections in series, 
with sectional areas in the ratio of about 10: 1, 
was made and placed transverse to the field as 
indicated. An image of the portion of the tube 
between A and B was thrown on the slit of the 
spectroscope and the spectra given by these 
two capillaries were compared. There was very 
little change except that the portion of the 
spectrum corresponding to the narrower capil- 
lary was distinctly brighter throughout the 
whole spectrum. A magnetic field was now 
applied transversely at A to see how far the 
narrowed section of the discharge through A 
gave a spectrum resembling that given by B. 

; The change introduced by the field was quite 
Fig. 3. different. With hydrogen at low pressure, while 

the effect of the narrowed capillary B was to 
increase the intensity of the hydrogen lines the effect of the field 
on A was to decrease the intensity of the hydrogen to a slight 
extent and increase the intensity of the mercury lines as shown 
in Fig. 4 (1). Such results clearly show that though the decrease 
in the cross-section may be the cause of some of the changes ob- 
served, yet there are others that cannot go under this simple 
explanation and they point to the existence of some other influence 
exerted by the magnetic field. 

Further, experimenting with a tube of the form illustrated 
below, Fig. 5, in which the discharge is in the direction of the 
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field effects are observed similar to those obtained with the dis- 
charge going transverse to the field. With a leyden jar in parallel 
with the coil and a spark gap in series with the tube shunted across 
the condenser, at low pressures the stream-like character of the 
discharge is lost and the discharge passes through the whole section 
of the tube without seeming to suffer any visible change in the 
cross-section. But the spectroscopic changes observed are similar. 
The fact that in many cases the change over the spectrum is 
brought about practically instantaneously on the application of 
the field is also against the possibility of any progressive changes 

Fig. 5. 

resulting from the absorption or liberation of some of the component 
gases. 

There is at times a great similarity between the effect produced 
by the condensed discharge through the tube and that brought 
about by the magnetic field, and from that, though we may conclude 
that the magnetic field brings about a similar violent excitation of 
the spectrum in some way, we cannot as yet go so far as to say 
that their effects are identical. For there are important differences 
between the effects produced by the two. Experimenting with 
hydrogen the effect of a condensed discharge is found to be mainly 
to broaden the hydrogen Balmer series lines, especially those towards 
the violet, where as the magnetic field under the same conditions 

VOL. XX. PART IV. 28 



432 Mr Waran, On the effect of a magnetic field 

leaving the Balmer series lines unaffected brings about the se- 

condary spectrum very prominently as shown in Fig. 4 (2). 

It is possible that the change in the spectrum is purely me- 

chanical in origin. In Fig. 1 we saw that under the influence of the 

magnetic field the discharge was deflected to either side. In each 

of these streams the electrons being much more easily deflected 

out of their path than the positive ions, they might be going in a }) 
layer much closer to the walls than the positive ions as shown in 

Fig. 1. In such a case we may regard the massive positive particles 
as bombarding the layer of electrons adjacent to the walls, thus 

giving rise to mechanical and electrical reactions that cause a 
peculiar excitation of their spectra. Orbits and frequencies pre- 
viously not natural might then become possible and this would 
account for the change observed. 

The spectrum of hydrogen with its simple structure is only 
very slightly susceptible to the influence of the field, excepting of | 
course the secondary spectrum which it brings about. When the 
gas is pure and at a low pressure the Balmer series lines undergo 
very little change in their intensity. But when it is present mixed 
with other gases or at higher pressures it is brought out intensely 
by the field though not prominent without it. From our observa- 
tion of the enhancement of the lines of the monatomic gases, now 
confirmed independently by the study of Messrs Kent and Frye 
on Argon, if we are to attribute it to the enhancing effect of the 
magnetic field on the atoms, this would mean that at higher | 
pressures atoms predominate giving the Balmer series, while at 
lower pressures the molecules predominate giving the secondary | 
spectrum, a conclusion in accordance with that arrived at by 
G. P. Thomson in his study of the spectrum of the hydrogen — 
positive rays. The effect of the field in enhancing the secondary — 
spectrum shows however that this division of share in the radiation — 
is by no means clear cut between the atom and the molecule. 

From the enhancement of the Balmer series lines observable | 
at higher pressures it is possible that the atoms are mainly respon- 
sible for them and by the employment of a magnetic field in con- _ 
junction with Prof. Wood’s} long discharge tube the lines of the 
Balmer series obtainable in the laboratory could probably be still 
further increased. 

Experimenting with nitrogen having a constitution and spec- 
trum considerably more complex than hydrogen the effects ob- 
served are very complicated. When a condensed spark is not 
employed to excite the tube, the effect of the field is to enhance 
the band spectrum and to bring in some of the lines belonging to 
the line spectrum of nitrogen with a different intensity distribution 

* G. P. Thomson, Phil. Mag. vol. 40 (1920), p. 240. 
7 R. W. Wood, Proc. Roy. Soc. A, vol. 97, p. 455. 
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from the line spectra obtained with a condensed spark. The dense 
line at 4277-7 a.u. brought out very strongly by the field is generally 
absent without it, especially when the gas is not quite pure. With 
a condensed discharge it is rather faint. It has been catalogued as 
a negative pole band by Exner and Haschek*. 

The phenomena attending the employment of the magnetic 
field are many and varied and complications arising from local 
variations of potential current, temperature and pressure known 
to occur there are difficult to eliminate entirely. But by inde- 
pendent variations of some of these factors it has not been possible 
to reproduce the phenomenon observed and hence the phenomena 
cannot be attributed entirely to these disturbing causes. It is 
possible that it might be due to some other influence brought 
about by the field. Further study of the phenomenon is in pro- 
ress. 

4 In conclusion I beg to express my indebtedness to the kind 
and sympathetic help of Professor Sir Ernest Rutherford through- 
out this work. 

CAVENDISH LABORATORY, 

CAMBRIDGE. 

* Kayser, Handbuch der Spectroscopie, vol. 5, p. 826. 
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On a property of focal conics and of bicircular quartics. By C. V. 
Hanumanta Rao, University Professor, Lahore. (Communicated 
by Prof. H. F. Baker.) 

[Received 20 April. Read 2 May 1921.] 

The present note arises directly out of a note with the same 
title by Prof. H. F. Baker in the Proceedings (vol. xx. pp. 122-130). 
The property referred to in the title is that a varying circle, of one 
mode of generation, makes with two fixed circles, of a second mode, 
angles with a constant sum; and this result is here deduced from 
a particular case of it, viz. that where the curve consists of two 
circles. A preliminary series of results is inserted of some interest 
in themselves. By distances and angles will be meant throughout 
the Cayley separations, and the quadric or conic with respect to 
which the homographies are considered is indicated in each case. 

1. Given two conics a, B in a plane, they have four common 
tangents meeting in three pairs of points. Indicate by V,, V, one 
such pair of points. Then the sum of the distances, with respect to 
a, of V, Pand V, P, is constant as P moves on £; and this constant 
remains the same if a, B are interchanged. 

The proof of this result depends on the existence of two fixed 
points on the line V, V,, and this fact in turn is an easy consequence 
of the space figure of two conics with two common points. 

Conversely, given a conic « and two fixed points V,, V, in its 
plane, the locus of a point P, which moves so that the sum of 
the distances with respect to a of V, P and V, P is constant, is 
a conic B touching the four tangents from V,, V, to a. 

In particular, when one of the three pairs of points such as 
V,, Vz 1s projected into the circular points at infinity, the other 
two pairs are the foci and the conics are confocal. This leads to a 
slightly more general definition of confocal conics than the usual 
one, namely taking a fundamental conic & the system of conics 
touching any four arbitrary fixed tangents of © may be called a 
confocal system. Or again when the conic ¥ is made to degenerate 
tangentially into the two circular points at infinity, we have the 
usual definition of confocal conics; it was this idea in fact which 
suggested the theorems of this note. 

2. Precisely similar results hold in space of three dimensions. 
Given a quadric « and two points V,, Vz, the locus of a point P 
such that the sum of the distances with respect to a of V, P and 
VP is constant, is a quadric 6 which is enveloped by the enveloping 
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cones of a from V,, Vz. In fact taking « as Xz? = 0, the equation 
to B is of the form 

(Lxx,)? (Lax) (Lax,) (Xxx)? 

xa" 3 Vv (22,") (2a?) Lax,” 

where C is a constant, and this is clearly a quadric enveloped by 
the two cones like (Xa?) (Xv,”) = (Laz). 

Conversely, given two quadrics @, 8 having two common en- 

veloping cones from V,, V2, either quadric may be thought of as 

the locus of a point P such that the sum of the distances with 

respect to the other quadric, of V, P and V, P, is constant; and the 

constant is the same whichever quadric is considered as the locus. 

In particular, for some definite value of the constant the latter 

quadric will degenerate into a pair of planes, viz. the two planes 

of intersection of the two enveloping cones. Thus, given two conics 

B,, By intersecting in two points, V,, V, indicating the vertices of 

the two cones through both of them, the locus of a point P such 

that the sum of the distances with respect to ;, B., of V; P and 

V, P, is constant, is a quadric enveloped by the two cones. 

Taking the two points V,, V, in the first result of this article 

to coincide, we find that if two quadrics have ring contact with V 

for the pole of the plane of contact, and if P be an arbitrary point 

on either quadric, then the distance VP with respect to the other 

quadric is a constant. 

= (377) sin2 C, 2 cos C 

3. Reciprocally, take two quadrics having two common conics. 

Then an arbitrary tangent plane to either quadric makes with the 

planes of the two conics angles (measured with respect to the other 

quadric) whose sum is constant. Indicating the quadries by 

La?+ 2z=0, Ya? + Zyuzt = 0, 

VES (ie = 1) 
1— Aw ; 

In particular taking the two quadrics as a cone and a sphere, 
we have the well-known theorem that a varying tangent plane to 
a cone makes, with two circular sections of opposite systems, angles 
with a constant sum. 

Conversely, given a quadric a and two arbitrary planes z, ¢, the 

envelope of a plane which makes with them two planes angles with 

a constant sum, is a quadric f intersecting the given quadric along 
the two given planes 2, f. 

We observe that in the above results the second quadric consists 

of two planes, and two conics having two common points represent 

the elliptic quartic curve which by projection is to yield the bi- 

circular quartic. From this particular result we shall deduce the 
theorem in the general case. 

the constant referred to is found to be are tan 
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For this purpose consider a sub-group of the possible positions 
of the moving plane, namely the planes all of which pass through 
a fixed point. They are then tangent planes to an enveloping cone 
of 6, and we have the result that through the curve of inter- 
section of this enveloping cone and the quadric @ there passes 
another cone touched by the planes z, t. This is so in virtue of the 
following simple result: 

Given two quadrics A, 4 with two common conics 2, f, through 
the common curve of A and any enveloping cone of » there passes 
another cone touched by the planes of z, t. For if S = 0 and S = 2t 
be the two quadrics, any enveloping cone of the first is SS’ = P2 
and meets the second in a curve lying on the cone P? = §’zt, which 
clearly has z, ¢ for tangent planes. 

We have thus established the well-known result for the common 
curve of two arbitrary quadrics, viz. that a varying tangent plane 
to one of the cones through this curve makes with two fixed tangent 
planes to a second such cone, angles with a constant sum. 

4. Quadrics having ring contact are just concentric spheres, and 
two quadrics with two common conics are equivalent to two spheres. 
But no such complete projective reduction can be effected in the 
case of two arbitrary quadrics, and what we have done in Art. 3 is 
to establish a general result for the common curve of two arbitrary 
quadrics by deducing it from the particular case where one quadric 
degenerates into two planes. 
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Convex Solids in Higher Space. By Dr W. BurnsipE, Honorary 

Fellow of Pembroke College. 

[ Recewed 14 July 1921.] 

Definitions. A set of linear (n— 1)-spreads in n-dimensional 

space is said to be “general” when no n+ 1 of them meet in a 

point, no ” in a line, no n— lina 2-spread, ...., and no three 

in an (n — 2)-spread. 
A set of points in n-dimensional space are said to be the internal 

points of a convex polyhedron, when each pair A and B of them 

satisfy the following conditions: (i) no point of the finite line AB 

lies on any one of a certain set of m(n— 1)-spreads; (i1) the line 

AB produced from B meets at least one of the m (n— 1)-spreads 

at a finite distance; (iii) the line BA produced from A meets at 

least one of the m (n— 1)-spreads at a finite distance. If, in addi- 

tion, it is always possible to choose B so that AB produced from B 

meets any assigned one of the m(n— 1)-spreads before it meets 

any of the others, then each of the m (n— 1)-spreads is said to 

form part of the boundary of the convex polyhedron. 
Consider five 3-spreads A, B, C, D, E in 4-dimensional space 

of “general” position and such that no one of their five points of 

intersection is at infinity. Denote by a, b, c, d, e the points of 

intersection of B, C, Dand E;....; A, B, Cand D. Ife and q are 

on opposite sides of H, then eq produced from qg does not meet 

A, B, C, D or E; and therefore q cannot be an internal point of 

a convex polyhedron bounded by the five 3-spreads. If e and q 

are on the same side of F, let eg meet EF in p. In £ the four points 

a, b, c, d are the vertices of a tetrahedron. If p is outside this 

tetrahedron, it must be separated from one of the vertices, say a, 

by the plane through the other three. Hence p and a, and therefore 

also q and a, are on opposite sides of A: and q cannot be an internal 

point of a convex polyhedron bounded by the five 3-spreads. It 

follows that the only points that can be internal points of a convex 

polyhedron bounded by the five 3-spreads are the points of the 

finite lines joining e to every internal point of the tetrahedron 

abcd: and these points clearly satisfy all the conditions. 

Hence five 3-spreads of general position in 4-dimensional space, 

whose intersections are all finite points, form the boundary of just 

one convex polyhedron. An obvious extension of this reasoning 

shows that n + 1 (n— 1)-spreads in n-dimensional space, of general 

position, no one of whose intersections is at infinity, form the 

boundary of just one convex polyhedron. 
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There are just 3(n+1)(n+ 2) points of intersection and 
6” (m+ 1) (n + 2) lines of intersection of a general set of (n— 1)- 
spreads, n + 2 in number, in n-dimensional space. The lines pass n 
by n through the points and the points lie 3 by 3 on the lines. If 
each (n — 1)-spread is denoted by a single symbol 7, the point in 
which all the (n — 1)-spreads except 7 and j meet may be denoted 
by y and the line of intersection of all the (n — 1)-spreads except 
v,j and k by yk. The three points 7, ik, jk lie on the line uk. Vf this 
configuration is projected from an arbitrary point of the n-dimen- 
sional space upon an arbitrary (n— 1)-spread in it, the configuration 
becomes a like one in (nm — 1)-dimensional space. If the points of 
the original configuration are all finite points, the projection may 
clearly be carried out so that if vj is between ik and gk in the 
original configuration, the same is true after projection. Taking 
again an arbitrary point and an arbitrary (n— 2)-spread in the 
(7 — 1)-dimensional space, the configuration may be projected into 
a like one in (n — 2)-dimensional space; and the process may be 
continued. Moreover if all the points of the original configuration 
are finite points (so that for each set of three such as 1, tk, 9k one 
is actually between the other two) and if each projection is carried 
out as suggested above, then in the final two-dimensional figure 1% 
will be between ik and jk if it was so in the original configura- 
tion. 

It will be said that 77 and ik are opposite or adjacent according 
as jk is or is not between them. If 27, 7k are adjacent and also 77 
and i, then 2k and il are adjacent. Hence, with m single symbols, 
the m— 1 points #1, 2,....0m may be divided into two sets such 
that all those of either set are adjacent, while any two taken one 
from each set are opposite. A suitable symbol to indicate the 
Separation is 12 13 | 14 15 16, all those on either side of the bar 
being adjacent. 

It will now be shown that, apart from permutation of the single 
symbols, there is just one scheme for the Separations of the set 
of $m (m— 1) points arising from m symbols. 

When » is odd, 7 for example, the typical separation is 
[ers ae BG 
[21023 24 ee Go 

135 | 23934535) SONG 
24 [Ve 844 AG 4, (1), 
15 35[25 45 56 57 
26) AG) 6 = s6ne Done Ge 
lg or a0 | By A By 

which is associated in an obvious way with the symbol 
{12} {34} {56} (7. 
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Wher n is even, say 8, the typical separation is 

(eb? ia? “LEN lo, Slo Tt ES 

[21 23 24 25 26 27 28 

13 | 238 34 35 36 37 38 

24|14 34 45 46 47 48 

15 35|25 45 56 57 58 

26 46[16 36 56 67 68 

LE Pat Por ahe Aa “Gl fs 

28 48 68|18 38 58 78 

which is associated in a similar way with the symbol 

{12} {34} {56} {78}. 

There is no difficulty in verifying that for three symbols and for 
four symbols, all possible separations arise from these by permuta- 
tions of the single symbols. It will be shown here that if the scheme 
is general for 7 it is general for 8. If the proof is examined it will 
be quite clear that the same method may be used for any two 
consecutive numbers. Assuming that the separation of 21 points 
is given by the scheme (i), the question to be settled is how the 
seven points 18, 28,...., 78 fit into it and how they are separated 
among themselves. 

Suppose for instance that 48 is the first of the new symbols 
that occurs to the left of the bar. Then 48 is opposite to 45, 46 and 
47: so that 45 and 58, 46 and 68, and 47 and 78 are adjacent. It 
follows that 68 occurs to the left of the bar and 58, 78 to the right. 
Since 18, 28 are both adjacent to 12, 28 is opposite to 18. So 23, 28 
and 23, 38 being adjacent, 28 and 38 are opposite: 24, 28 and 24, 48 
being adjacent, 28 and 48 are opposite. In a similar way 28 is 
shown to be opposite to 58, 68, 78. The scheme that thus arises 
for the 28 points is 

(p28 ha al coke: tabs. 

[24.2824 25° 26° 27 28 

13|23 34 35 36 37 38 

24 48(14 34 45 46 47 

bb 30/125 45-756, OT fp be 

26 46 68|16 36 56 67 

En SEU SCMZO OLE CRICTS 
28:|'18 38 48 58 68° 78 

Comparing this with scheme (ii) it is changed into the latter by the 

permutation (846), the other single letters remaining unchanged. 

Similarly if 38 is the first to occur to the left of the bar the scheme 

that arises is changed in (ii) by the permutation (8357). 



440 Dr Burnside, Convex Solids in Higher Space 

The general statement is that if, in forming a scheme for 27 
from the standard scheme for 2n — 1, the first of the new symbols 
that enters to the left of the bar is 27 + 1, 2n, then the permutation 

(2n, 2r+ 1, 27+ 38,....,2n— 1) 

will change the resulting scheme for 2n into the standard scheme 
for 2n: and that if 27, 2n is the first that enters to the left of the 
bar, the permutation 

(2n, 27, 2r 4- 2,.:.., 2n— 2) 

has a similar effect. There is no difficulty in establishing similar 
results for building up the scheme for 2n + 1 from that for 2n. 

Returning now to the configuration of n + 2 (n— 1)-spreads in 
space of n dimensions, of general position, whose 4 (n + 1) (n+ 2) 
points of intersection are all finite points, the separation 

Tp ON Ora 4 bil | bly Ueno. 3 

implies that of the n + 1 points which do not lie on the 2th (n— 1)- 
spread, the set 2a, ib, 1c,.. .are separated by the 2th (n— 1)-spread 
from the set 2d, 2e,.... 

In particular for five planes in ordinary space the scheme is 

[ees 
[2 9B DA OR 

11) OB eke Be 
94/14 34 45 
15 35/25 45 

The first line implies that plane 1 does not divide the tetrahedron 
2345 into two parts; and the second line implies that plane 2 does 
not divide the tetrahedron 1345 into two parts. 

The third line implies that plane 3 does divide the tetrahedron 
1245 into two parts, one of which is the tetrahedron 2345, while 
the other is a polyhedron with vertices 12, 14, 15, 23, 34, 45 
bounded by each of the five planes. Similarly plane 4 divides the 
tetrahedron 1235 into the tetrahedron 1345 and a polyhedron with 
vertices 12, 13, 25, 14, 35, 45 bounded by each of the five planes- 
Plane 5 divides the tetrahedron 1234 into two polyhedra, each of 
which is bounded by all the five planes, 12, 14, 23, 34, 15, 35 being 
the vertices of one and 12, 14, 23, 34, 25, 45 those of the other. 

Hence any five planes of general position in space, whose points 
of intersection are all finite, form the five faces of just two distinct 
convex polyhedra each of which has six vertices. The scheme for 
six 3-spreads in 4-dimensional space may be similarly dealt with. 
Any five of the 3-spreads bound a convex polyhedron, and the 
scheme shows how this polyhedron is divided by the remaining 
3-spread. The result shows that there are just three distinct convex 
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polyhedra each of which is bounded by all the six 3-spreads. Two 

of these have eight vertices, viz. 

126 (2850 2b, 26V 14a ge 49 46 
12 14 15 1G |, 23 134 30) 36 

It is obvious that two of the 3-dimensional faces of these are 

tetrahedra and the other four polyhedra with five faces and six 

vertices. 
The remaining one has nine vertices, viz. 

12 14 16 23 25 34 36 45 56 

Its 3-dimensional faces are all polyhedra with six vertices and five 

faces. 
A similar examination of the next scheme shows that seven 

4-spreads in 5-dimensional space bound just four distinct convex 

polyhedra. The vertices are 

Beh SE. 40 12 BD 25) 26057 67 

93.94 87 47 Ts-14 35 45 36 46 

fe 14 16. 23.024 2beoT AT Ot “1 

(a, 14. 1G) 235, 24 2G" 37. 47) OT 35 (ye Tox i Ou Ol 

=~] 

(er) H bo 
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Note on the Velocity of X-ray Electrons. By R. Wutpp1neton, M.A. 

[Received 5 August 1921.] 

It has been known for many years that X-rays have the power 
of ejecting high speed electrons from the surface of materials on 
which they are incident. 

The earliest attempts to determine the velocities of these electrons 
were made by Dorn in 1900 and Innes in 1907. Their general 
results being that the velocity, as measured by photographic records 
of the curvature in a known magnetic field, lay between 6 and 
8 x 10° cm./sec. and was independent of the intensity of the exciting 
radiation. 

In 1912 the problem was attacked from a different angle, by 
interpreting the absorption experiments of Beatty. It had previously 
been shown that a fourth power law of velocity absorption was 
quite fairly accurately true for fast moving electrons such as those 
ejected by X-rays*. 

Beatty having measured, in essence, the range in air of the 
electrons ejected by various qualities of X-ray it was therefore 
possible to deduce their velocity*. 

In the paper cited it was shown that the velocity of the fastest 
electrons ejected by X-rays was very nearly equal to 108 x A, 
where A is the atomic weight of the radiator supplying the X-rays. 
It was further predicted that future work should show the existence 
of two sets of electrons of definite speeds. 

In the early months of this year de Broglief published a short 
account of some highly important results in which by using a 
Coolidge X-ray tube he was able to take magnetic photographs of 
X-ray electrons with only an hour’s exposure. 

The present experiments were then in progress and it seems 
worth while now to publish a preliminary account of the apparatus 
finally adopted and initial results obtained. 

The problem resolves itself into obtaining as strong a source 
of X-rays as possible, causing them to pass through a thin sheet 
of solid matter and observing the magnetic spectrum on the 
emergent side. De Broglie used a Coolidge tube to provide a 
powerful source of X-rays, a method which commends itself on 
the grounds of simplicity and ease of working. 

The first attempts I made were with an apparatus consisting 
of a fine slit covered with thin metal foil on which Cathode-rays 
were focussed, the electrons ejected from the emergent side being 
subject to magnetic deviation ona photographic film. Photographs 

* Whiddington, Proc. Roy. Soc. 1912. 
{ De Broglie, Comptes Rendus, 1921. 
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were obtained after considerable difficulty, but the method was 
abandoned since it was found that in spite of all precautions the 
thin foil rapidly disintegrated, wearing thin and eventually breaking. 
The apparatus finally adopted is shown in the figure. 

mel 

Cathode-rays from the concave cathode C are focussed on the 
water-cooled target T. Immediately below YT is the fine slit S 
(5 mm. wide and 5mm. long). About 2 cm. below this slit is 
another wider slit leading the rays into the evacuated box B on the 
under surface of which a photographic film F can be placed. The 
collimator O projects a little spot of light on the film for reference 
purposes. The whole system of X-ray bulb and camera is evacuated 
by a liquid air charcoal bulb JV. 

At right angles to the plane of the figure a nearly uniform 
magnetic field is applied so that the X-ray electrons streaming into 
the box are focussed on the film. This method was originally used 
by Rutherford for the determination of the speed of f-rays, was 
later used by Rawlinson and Robinson* in an experiment on X-ray 
electrons and was also used by de Broghe7y in the experiments just 
cited. 

Under good conditions as much as five milliamperes can be 
passed through the bulb and it is interesting to compare the 
efficiency of the arrangement above illustrated with that of de 
Broghe using a Coolidge tube. 

* Phil. Mag. 1913. if Loc: crt. 
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If the distance between T and S is 1 cm., and we assume that 
the distance between the target of a Coolidge tube and the slit 
is (say) 8cm., it follows that with the arrangement above, there 
is an available intensity 64 times as great. 

Even if only 1 milliampere is used the available intensity will 
be more than ten times as great. 

One disadvantage of the arrangement is that the coils producing 
a field in B, produce a small but appreciable magnetic field in the 
region STC. 

_. The result is that the cathode-rays from C are deflected. This 
deflexion must be balanced out by an additional compensating coil 
in series with the main coils. It is fortunate in this connexion that 
it is the fastest rays arriving at T which are the most effective 
X-ray parents and which are least affected by the stray field*. 

The photographic film used was 10 cm. long and the current 
in the field coils was adjusted to give a range of velocities from 
3 x 10° to 10*° cm./sec. approximately, yielding a dispersion of 
0-071 x 10° cm./sec. per millimetre. 

It is possible to take a photograph with the apparatus in half 
an hour although longer exposures are desirable. Using a platinum 
or rhodium target, for example, and a copper foil over the slit, 
the strongest lines on the film correspond to velocities 6-02 x 109 
and 5-74 x 10° em./sec. 

It we apply the quantum relation to the X-ray K doublet of 
copper we get the corresponding velocities of electrons carrying the 
same energy to be 5-61 x 10° and 5-33 x 10® cm./sec. 

It is interesting to note that while the differences are precisely 
the same in both experimental and calculated cases, the actual 
values differ by about 10 per cent. Whether this difference is real 
or due to a defect somewhere in the apparatus must be determined 
by further investigation. 

It is worth remembering, however, that both the present writer 
and Hullf found that velocities of parent electrons distinctly in 
excess of the value demanded by the quantum relation were re- 
quired for the production of a fluorescent radiation of any definite 
wave length. 

It seems possible that the difference if it be real may be accounted 
tor by taking into account ‘the sums of the individual energies 
tequired for the simultaneous excitation of the radiations of both 
K and L series. 

It is hoped to publish a full and extended account of this work 
very shortly. 

* See also Whiddington, Proc. Roy. Soc. 1911. 
{ Physical Review, 1916. 
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A Laboratory Valve method for determining the Specific Inductive 
Capacities of Liquids. By R. WuipprneTon, M.A. 

[Received 30 July 1921.] 

The method outlined below has been used successfully by students 
as a laboratory exercise in the Physics Laboratories of Leeds Uni- 

versity. 
The method employs alternating electro-motive forces of low 

frequency generated by a thermionic valve linked with the usual 
reacting circuits. 

The apparatus is shown diagrammatically below. On the left 
is shown a standard circuit generating oscillations in the closed 
circuit A consisting of a fixed condenser of about -5 m.f.d. and a 
large air core coil. The natural frequency of this circuit isabout 1000. 

Very loosely linked to this circuit is a similar one B also comprising 
an air core coil and condenser box, but in parallel with the latter 
is arranged a small variable condenser C and a mercury cup switch 
S so that an additional small condenser D can be switched in at will. 
C is a moving vane air condenser fitted with pointer and scale, D is 
a small parallel plate condenser the dielectric medium of which 
can be easily changed without altering the distance between the 
plates. Included in the anode circuit of this arrangement is a con- 
denser shunted, and an aperiodic needle galvanometer @ connected 
as shown to a potentiometer P to balance the steady current flowing. 
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This galvanometer indicates in a very convenient manner the slow 
beats set up when A and B are suitably adjusted. 

To determine the capacity of Dit is merely necessary to adjust C 
until a definite beat rate between A and B is established and then 
switch in D. A new beat rate will be set up which can be restored 
to the original rate by decreasing C, until the decrease in C is equal 
to the additional capacity of D. The experiment is then repeated 
with a liquid dielectric in D, the ratio of the two capacities being 
the Specific Inductive Capacity required. 

It is to be noticed that the actual capacity change indicated 
by C is not required so long as the scale is known to be uniform 
by previous calibration. 

It was found in the case of the particular condenser used in the 
position C that the scale was for all practical purposes uniform 
over the central portion of its scale, each division representing 
0000065 m.f.d. 

In an experiment carried out by Mr L. G. Stanton the following 
results were obtained using olive oil as the dielectric. 

Dielectric Air. 

Din D out Difference 

116 160 44 Mean difference 44 

118 162 44 

Dielectric Olive Oil. 

Din D out Difference 

36 166 130 Mean difference 131 

32 164 132 

The Specific Inductive Capacity of the oil is therefore 2-98 which 
is very close to that usually given in Physical Tables. 
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The Theoretical Value of Sutherland's Constant in the Kinetic 
Theory of Gases. By C. G. F. James, Trinity College, Cambridge. 
(Communicated by Mr R. H. Fow ter.) 

[Recewed 28 April: read 2 May 1921.] 

§1. In any attempt to deduce, from observations on viscosity 
and diffusion for gases, facts as to the nature of the intermolecular 
forces, it 1s necessary to find the theoretical relation that holds 
between the so-called Sutherland’s constants, and any assumed 
intermolecular force. It is assumed that the molecule behaves as 
a perfectly elastic sphere surrounded by a field of attractive force. 
This is in fact the only known model, capable of satisfactorily 
predicting the observed laws of variation with temperature of these 
quantities, at least at ordinary temperatures. The relations in 
question have been worked out by Professor Chapman in various 
papers*. His formulae for Sutherland’s constants are given on 
p. 459 of his first paper on the subject. 

It appears however that the formulae in question are affected 
by a certain error explained below. This mistake affects the rela- 
tions between Sutherland’s constant S fora single gas, and analogous 
quantities, and the potential of the intermolecular field. It must 
be definitely understood however that this in no way affects the 
rest of his theory, or the numerical values of o, the molecular 
diameter, obtained. These are in fact deduced directly from observed 
values of S. It is only when theoretical values of S become im- 
portant, that this mistake is of any significance. 

It was suggested to me by Mr Fowler that the correct theoretical 
determination of this constant is of considerable importance. This, 
then, forms the subject of this paper. 

It is known, that with fair accuracy the relation between the 
viscosity » of a single gas and the temperature T is, when T is 
sufficiently large, 

po T3/(1 + S/T), 
where S is Sutherland’s constant; and can be calculated in terms 
of the forces in action. Thus if ¢(r) is the potential of the force 
between two molecules whose distance apart is r, Prof. Chapman’s 
result was 

S = ¢(o)/3R, 

R being the usual gas constant for one molecule (1-372 x 10-8). 

* Phil. Trans. (A), vol. 211 (1912), p. 432; vol. 216 (1915), p. 276; vol. 217 
(1917), p. 115. 

VOL, XX. PART IV. 29 
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The correct result is not so simple as this, and cannot be ex- 
pressed so generally. 

In the same way, the coefficient of diffusion for a mixture of 
two gases satisfies a relation 

D6 T?/(1 + Syo/T), 

where if o,, denotes the mean of the two molecular diameters, 

Sie = rd (oy2)/R, 

where A is a number depending on the law of force assumed. Prof. | 
Chapman gives A = } for all laws of force. 

Prof. Chapman informs me that Enskog* has already pointed 
out the necessity for the corrections here referred to, and that his 
results agree with those found in §6. The results of the other 
sections have not, I understand, been given by him. 

§2. A note on the approximations employed. It is necessary to | 
regard the absolute temperature T as large, since the theory gives | 
for the denominators of » and D,, series in descending powers of T. _ 
We shall also neglect squares and higher powers of ¢ (a). Actually 
it will be seen that all terms involving ¢(c) to any power are 
multiplied by 1/T to the same power. Thus the assumption is 
really that ¢(o)/T is negligible in higher powers than the first. 

As regards the terms involving {¢(oc)/7}? it will be found that 
Prof. Chapman’s statement, that these are positive in each case, 
is not affected. 

§ 3. Statement of the Problem. The first step is the determination 
of the deflection of a typical molecule, relative to a selected molecule 
which is conveniently supposed reduced to rest. In the diffusion 
problem these molecules will be of opposite kinds. In the viscosity 
case we will for simplicity consider a single gas only. 

To the order of approximation explained above it is only neces- 
sary to consider molecules that actually suffer impact with the | 
selected molecule. Let A and B be the centres of the respective | 
molecules at impact, so that in the general case: 

AB = oy, = 3 (0 + 92). 

Let TN, NT’ be the asymptotes of the initial and final relative | 
paths; YB, BQ’ the directions of motion immediately before and 
immediately after impact. Let V be the relative velocity at a great 
distance, p the perpendicular onto the asymptotes. The molecule B 
is typified by the direction and magnitude of V, by p, and by an 
azimuthal angle e, determining the direction of », in a plane at 
right angles to V. The true deflection required is 

Dy = IT. 
* Inaugural Dissertation, Uppsala, 1917. 
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while the angle taken by Prof. Chapman is 

2x’= Q, BQ. 
We propose to calculate the effect of this difference on the 

viscosity and diffusion problems. Two laws of force will be con- 
sidered: 

(1) The inverse power law. 
(2) A shell of constant force from r = o,, to r = d = ao,, where 

a is a moderately small number. 

§ 4. Calculation of the Correction in the angle x. This correction 
is seen from the figure to be negative and equal in magnitude to 

ib = BON. 

Let {—/f (r)} be the acceleration of B in the relative orbit. Thus 
¢ (r) being the potential of the intermolecular field, 

— _ dO(r) m+ m, dd (r) 

TO ies dvi 0 Wy Mae) Maree 

® (r) being introduced for convenience merely. In our case, the 
forces being attractive, f(r) and ® (r) are positive. 

Let @ be the perpendicular onto the tangent at any point. 
Then we have 

diye 2 5 (=) =- af 
where c is the angular momentum pV. Integrating: 

le rl 20 (r) CE Seca fp tee 
ravie / ( 2 y2 ) 
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Now, if p is the radius of curvature at any point of the path, and 
the inclination of the radius vector to the tangent, 

te Ve per Vena 2 : a a fe eae 
f() pisine © yeo%ay a) ppin Beye 

or to the first order 

Li PRG) 
p Ver’ 

If s is the arc of the path this is 

ds _ pf(r) 
ds Verne 

(r) ds 
leading to | y=-$,/ Oe r 

Also, from the equation 

a (qo) = papel? + © (1 
ds __ {V2 + 20 (r)} 7? : 
dr |r? {V2 4+ 2@(7)} — p2V? 

which to the first order is 

asin r 

GE (Pasay 

we obtain 
5) 

whence wb (o) = oe | 

It will be observed that f(r) may be of any order of magnitude, 
provided only © (7) remains small. 

$5. The Viscosity of a Single Gas. General Analysis. On 
reference to the papers cited* it will be seen that we have now to 
evaluate 

ON) = al [sine 2y pdp, | 
0 

where p, is the greatest value of p for orbits involving collision, 

so that p,= o {1+ 2 (c)/V2}*. To our order we may put p, = o. 
Putting x = x’— #, and expanding in ¢ to the first power only, 

AQ! (V) = — 7V [4 sin 2x’ cos 2y'pdp. 
0 

* First Paper, p. 453: ” (V) is denoted there by 2”,, (V). See also pp. 457, 458. 
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Now cos y= p/p, = p/o = t (say). This substitution gives 

AQ! (V) =— 80%nV | ‘We (1 — @)8 (22 — 1) dt. 

It is now necessary to bacsi i the law of force. 

$6. The Inverse Power Law. Ms take 

FOo=hr, OG) =hleS Tyres, 

giving v= ie] es 0 hen 
where s, is the Seal of é" in the expansion of (1 — €)~?. Thus 

i Sid FMP k s S; 

pe n+2ro™?r V2%e"1 5 n+ 2r 

8rkV ui 9 Ss 
pee P32 2\e (Df2 Vio" J, = t ALO (1 — #7)? (2¢ 1) dt, 

which readily evaluates to 

AQ” (V) = — 

art (ors 

AQ" (V) = — 

1l6zk 
Vor-3 hn, 

r+1 

0 (27 £7) (2r + 5) Qr+3) Or mn)" 
The next step is the evaluation of 

where h,, is the sum of the series 

AR’ =| AQ" (V) V5 e~tm¥* ay 
/0 

pase ass pooch: C ie Vie 7am? ip 
/ 0 

i We 16kzh,, =) 

ie go” 3 i : 

Now ® (c) = k/(n— 1)o"-1. Substituting, 

» _ 1670? (hm®(o) , , 

peas (hm)4 3 In I, 

Pac: ee fies Il 

where hy’ = 24 (n— 1) > G1) Gr + 5) Ort 3) Gren) 
This will be found to lead‘to 

5m /RT\? hm ® (oc) | 

BU T6027 alm) (hs 3 Ghee 

Now A = 1/2RT, ‘lee = 2¢ (c)/m. Thus 

ee ole) Seed 
R 3 
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The numerical values of RS/¢ (c) are as follows: 

n 4 5 6 7 8 9 

RS/d (c) 0-213 0-196 0-183 0-172 0-163 0-156 

Prof. Chapman’s value is 0-333 in all cases. The calculation is 
very simple for n odd, from n = 9 (inclusive). The other values 
are more troublesome. The value for n = 8 was interpolated merely. 

§ 7. We proceed now to the same calculation for the law of force: 
(@O)=]A4, oxXr<is, 

PO)=O;) b> ae, 

Thus ® (c) = Ao (a— 1). 
map i dr Ap ie (2 ar dr 

UAE (NE 8 r) £? ip 
| p 
Ap Rig Den ao 

p= 7 jloee | 35 Fe | 

iv) 

Sa 1 ~ AF biogas $83 [1-2 
This leads to | 

AQ" (V) = 16Ao®ah,/V, 
where 5 | 

as (7 +1) (i ele 
a Po: (r+ 3) Qr+ 5) @r+7) 1) o@| + Top 8 @ 
By comparison with § 6 we can at once write down the number 

corresponding to h,’, namely 

h,’ = 24hq |(a— 1). 
In this way we draw up the table 

a 1-25 1-50 1-75 2-00 2-50 3 4 
ES/¢ (c) 0-166 0-206 0-227. 0-241 0-259 0-270 0-283 

a 5 6 7 8 9 10 
-RS/p(c) 0-291 0-297 0-301 «0-804. ~—«0-307 «0-309 

§ 8. Fora given value of ¢ (c), Sutherland’sconstant § decreases, — 
so that finally for a thin shell of intense force it vanishes. The result | 
is thus, to this order at any rate, the same as for elastic spheres | 
exerting no force. 

Thus suppose f(r)=0 forr>oa+.«, while ® (a) — | f(r) dr | 
; ote 

remains finite. This gives without approximation | 
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ote 9 —3 

cm | ee on *S ay or tte 
2 

oO 
= Eo eodee x’, 

V20;* 

in the limit e—0. Approximately 
1 

AQ" (V) = — 870? ® (0)/V (22 — 1) dt 
/0 

= — 207 OD (a)/3V, 

9 1670* {hm ® (a) 
whence DNS Gila \ 

and it will be seen that this leads to S = 0. The approximation 

consists only in the neglect of higher terms in the expansion of 

sin? 2 (y’— 7). These terms will not disappear. 

§9. The Second Order Terms. It will be sufficiently typical to 

consider only the inverse power law. These terms arise in five ways. 

I. From the second term in the expansion of # (¢). 

II. From the first term in the expansion of # (o); and the second 

term in the expansion of 
id 

III. From the first term in % (a) arising from the approximate 

value of the upper limit p,. This is conveniently dealt with simul- 
taneously with the last. 

IV. From the #2 term in the expansion of sin? 2(y’— #). 

V. From the deflection of molecules, which do not actually 

suffer collision. 

These and these only lead to terms of type 1/T? in the denomi- 

nator of the expression for p. I have verified by actual calculation 

that taken together they give a term of the type K {¢ (o)/RT}?, 
where K is a positive number. 

§ 10. Diffusion of a Mixture of Two Gases. We have to calculate* 

Q' (V) = iV sin’ a pas 

and sin? y = sin? y’— 2% sin x’ cos so that 

KOU) = 8a V Ne sin x’ cos x’ pdp. 

For the inverse power law we find 

AQ! (V) = — 8akH,/Vo™™, 

* Q/(V) is Prof. Chapman’s 22’;. (Vo). 
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ee 2 (r+ 1) 
ess eg sore 1) r+ 3) @r+ 5) Qr+n)’ 
The next step in the integration is to calculate 

, 2 ’ ~iV? hmm Npe [, VAA@i( View: de cheney — 
Ne 4rkH,, hm, mz ee 

o” 3 (my + Mme, 

= The coefficient of diffusion D,, contains a factor (1+ =) : 

namely 

By 2Ne I Bae 71 Ses 
Dy = 16 E) ae (=) eo = 14 S/o 

and on reference to the papers cited, together with the above 
analysis, it will be seen that 

By comparison with the above, and with the viscosity calcula- 
tions, we can at once write down, for the shell of force case 

Sie = ¢ (a) {1 — 4H, /(a— 1)}/2R, 

_fe 2(r +1) ee 
a [3 (27 + 1) @r +3) Q@r+ 5) i S| + 705 fos a]. 
The values of RS,,/¢ (c) are given in the following tables: 

where 

Inverse Power Law. 

n 4 5 6 7 8 9 
RS,5/ (co) 0:227 0-201 0-182 0:167 0-154 0-144 

The numerical calculation becomes simple for n odd, from n = 7 
inclusive. n = 8 was interpolated merely. 

The Shell of Constant Force. 
a 1-25 1-50 1-75 2 2-5 3 4 

ES,o/$(c) 0-153 0-208 0-243 0-268 ~—«0-308 «03270-3858 
a 5 6 a 8 9 10 

RS, 5/h (c) 0-378 0-393 0-404 0-413 0-420 0-425 

Prof. Chapman’s value was 0-5 in all cases. That this sequence tends to zero as a tends to unity can be verified as before. 
Tt can also be verified, in the same way, that the next term in the series in inverse powers of T is still positive. 
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On the Stability of the Steady Motion of viscous liquid contained 
between two rotating coaxal circular cylinders. By W. J. Harrison, 
M.A., Fellow of Clare College, Cambridge. 

[Received 29 August 1921.] 

In the previous paper* on this subject an error has been made 
which invalidates the results given in Part I. The solution given in 
equation (26) satisfies equation (25), but is not sufficiently general 
to provide a solution of the problem, as it makes two values of m 

identical. This error has been pointed out by Prof. W. McF, Orr. 
_ Between equations (4) and (12) there are also various errors and 
misprints which are misleading, although they do not affect the 
subsequent work. A brief statement of these and a slight modifica- 
tion of the method of obtaining equation (17) will be given first. 

The equation following (4) is correct. Integrating the last three 
integrals by parts we obtain the equation preceding (5), except 
that the final expression in it should be written 

ou Ou . Ov Ov 
= || Paw a + Pav + =) + Pyy 5 dr. 

Equation (5) is correct after making the same alteration. Equations 
(6) should be written 

Pow = — p— Su div + no", ete, 
ov Ou 

Pey = [Es S ai =) ‘ 

ALINE 2 
In equation (7), = + ay) should be replaced by (2 a. aa) , and 

(8) should be written p’ = p+ 3p div q. 
The equation giving the critical value of w for a given disturb- 

ance is obtained by equating the left-hand side of equation (7) to 
zero. Varying w, v, » in this equation, putting du = 0, and inte- 

grating by parts where necessary, we obtain equations determining 

a state of disturbed motion such that the relative kinetic energy 

is stationary, » being at the same time stationary and a maximum. 

After performing these operations the fluid is treated as incom- 
pressible. 

Thus we arrive at equations determining the mode of disturb- 

ance which is most likely to cause the steady motion to change to 

turbulent motion. Hence for all greater values of than that which 

* Tamaki and Harrison, Trans. Camb. Phil. Soc., vol. xxi, No, 22. 
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gives stationary relative kinetic energy for this mode of disturbance, 
the steady motion is bound to be stable whatever the nature of the 
disturbance. 

These equations are (compare with (9) in the previous paper) 

oU oU OV\ Op 
ae ee it ag, Ox’ 

OV oU OV Op 
/ 29) — pee Ee, mele 2uV20 plua tun +205) 

2uV2u — p (2u 

Writing Ue ori Dae 

Ch Chit 
cae oy ’ Viswian ss 

eliminating p, and transforming to polar coordinates (r, @), noticing 
that ‘’ is a function of r only, we find 

OY 1OV\1/ as 1a j L fips, 2uV 4b + 2p ( or. 7) r (=p ip 2D 

1 ys 0 ie LOE) _ 4 
P70 Or \or? | r Or, 

Now Y = A logr + 4Br?. 

2Ap (0% 1 Ob H OM alee te ( ae ) eee 
ene Vy ae \Gnoo nf obL) ai 

Assume that #% varies as e?, where A can take integral values, and 
we have equation (17). 

Let the notation be changed by writing 

k= 2AXp/p, 
ob isn pemtl ere. 

So that (21) becomes 

m* + 2 (1 + A?) m? + km + (1 — A?)? = 0. 

Write log, (b/a) = n, then equation (25) becomes 

20s cos on cos sn — (4p? — o? — s?) sin on sin sn — 2os cos 2pn =0 

This equation is identical with equation (15) on page 125 of 
Orr’s paper in the Proceedings of the Royal Irish Society, vol. XXvi1, 
Section A. He shows that either s or ¢ must be imaginary. 

Write o = to’, and (1) becomes 

20's cosh o’n cos sn — (4p? + o’? — s?) sinh o'n sin sn 

— 20's cos 2pn = 0 ...... (2). 
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Thus equations (23) are replaced by 

o'2 — 52 — Ip? = 2 (1 +A%), 

(p? + o°2) (p? — 8?) = (1 —A®)?, fF ceeeee eee eeeees (3). 

2p (o'? + 8?) = — k. 

Expressing o’ and s in terms of p, we have 

s? = 24/f2 + (1 +A) p?2 + pt}— (1 +A? + pp?) ...(4), 

2 = 2/fA2 + (1 + A2) p? + pet (L +A? + p?) ...(9). 
A 

Thus was Ap v/{r? + (1 + A?) p? + pt}. 

Now p may be taken either positive or negative, and A is either 

positive or negative according to the nature of the motion of the 
cylinders. Putting 

and assuming p and w to be treated as positive, we have 

a2 2 

ae z= (1 = =) ‘ a/{02 + (1 + A2) p? + pt} ..-..(7). 

The discussion of equation (2) proceeds exactly as in Orr’s 

paper, using the values for s and o’ obtained above, and it is easily 

shown that there is no solution for which sn is less than 7 except 

one for which sn is zero. 
Putting s? = p? + « in (4), we see that 

(1 — 2)? + Qe (2p? + 1 + A?) = 0. 

Hence « is negative, and p is always numerically greater than s. 

Thus from (5) a’ > 4/3p > +/3s, and, therefore, sinh o’n and cosh o’n 

each exceed 100 and are approximately equal. Thus (2) becomes 

. 20's ea 
an sn = Eege se 

_ Vf{8pt + 2 (1 + i?) p — (1 — A?)*} SE acoey Gea (8). 

We have to solve the equations (4) and (8) for p and s, using 

integral values of A. The result of the substitution in (7) gives the 

corresponding critical values of ». Now for a given A, tan sn given 

by (8) has no real stationary value, and thus tan sm must be less 

than 1/1. Hence the smallest value of sn, except the zero value, 

satisfies the inequality 7 <sn <7m/6. The corresponding value of 

p is also the smallest of the series of roots in p, and therefore gives 

the left-hand side of (7) its minimum value for given values of b/a 

and A. 
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The calculated values of pwa?/y for series of values of b/a and A 
are shown below. 

pwd" |p. 

b/a 

N 
Il 2 10 

1 39480 459 22, 
2 19760 242 igs 
3 13200 176 22 
4 — 149 — 
5 —— 140 — 
6 — UB = 
u — 146 — 

40 424 = = 
41 423* a = 
42 424 = = 
43 425 — = 
45 428 = = 
50 443 aS = 

The values marked * give the critical values of for the corre- 
sponding values of b/a. 

Write b — a= D, then we have 

bla = tell 2 10 

Dia = al 1 9 

Critical value of pwa?/p = 423 137 iL 

Critical value of pwD?/u = 4-23 137 1380 

The critical values of pwD?/1 may be compared with Orr’s 
result BpD?/u = 177 for the shearing motion between parallel 
planes, showing that the shearing motion between circular cylinders 
is relatively more stable than the shearing motion between parallel 
planes if b/a is small, and relatively less stable if b/a is large. 

There are some approximations which are of interest. 

(a) 2 large. 

Since s? is positive, it follows that p? is greater than the positive 
root of 

Bie ae 24 (Wins ae) 90s = (Ih) 
considered as a quadratic equation in p?. The same result follows 
by considering the reality of tan sn. Hence 

(ee LOY = 1b el = ey 
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Therefore p is of the same order as A, if A is large. Accordingly 

pod? _ GEN ETE ANE ECE) a= (1 ~ 7a) - , Ee (9); 

tan sn = +/(3p4 + 2A2p2 — A4)/(Bp? + A) ......... 6. (10), 

Sa Dip AE a py Se Ne ro aene ca vaseoee (11). 

(10) and (11) are the same as Orr’s (30) and (21). 

(b) bla nearly unity; A not large. 

We find $= p, sn = Tr/6. 

(c) aand b large; b — a finite; X not large. 

We have S— 7, n= pn — ia/6, 

Write b—a=d. 

b d d 
Then n = log, a — Jog, (1 Lt =) =n 

7a 
and P= 7° 

poe eae (a Therefore aa as 

= 3094/2. 
This approximation may be compared with the calculations 

given above for b/a =-1. If, however, we make a and 6 infinite, 
the restriction of A to finite integral values is meaningless, and 
therefore we cannot expect to deduce the results for shearing 
motion between two parallel planes. 
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The soaring flight of dragon-fues. By HE. H. Hankin, M.A., 
Sc.D., Agra, India. 

[Read 16 May 1921.] 

I. Introduction. 

Dragon-flies of the larger species to be found in Agra, such as 
Hemianax ephippiger, frequently spend the day gliding at a height 
of several metres above tree-top level. At sunset they come down 
to low levels in search of prey, and hence have been described as 
of crepuscular habits. When flying at a height during the day 
they may be watched through a binocular till one’s arms are tired 
without a single flap of the wings being observed. Proofs that such 
flight is not due to undiscovered wing movements will be found 
in a later paragraph, thus leading to the conclusion that it is an 
instance of soaring flight. Smaller species, such as Pantala flavescens 
and Tramea burmeisteri, that habitually fly nearer to ground level 
are more suitable for detailed observation and on these most of 
my work has been done. 

Il. Soaring flight at low speed. 

- The mode of flight of Pantala flavescens during the months of 
July and August and in fine weather is as follows. 

If, in the early morning, one watches a group of these dragon- 
flies, it will be seen that their flight consists of alternate periods 
of flapping and gliding. The flaps at this time are of the hind 
wings only. As the sun gets stronger the amount of flapping is 
seen to decrease and to be more and more replaced by gliding. 
By about nine o’clock the dragon-flies are showing two methods 
of flight; either they glide with the abdomen horizontal, aided by 
two or three flaps of the hind wings every two or three yards of 
their course (Fig. 1), or, on the other hand, they glide with the 
abdomen elevated, travelling horizontally for the most part, and 
apparently may proceed in this way for indefinite distances 
(Fig. 2). Glides of 10 or 15 seconds without a flap may be observed. 
Flaps are apt to occur when two dragon-flies happen to approach 
each other. In the case of another species (Rhyothemis variegata), 
observed in Calcutta, proofs were obtained that such occasional 
flapping of their brilliantly coloured hind wings is used as a signal 
to other individuals (Animal Flight, p. 388). 

The mode of flight continues to vary with the time of day. If 
there is strong sunshine and but little wind, then, at about eleven 
o'clock, the dragon-flies may be seen gliding with the abdomen 
and hind legs hanging down as shown in Fig. 3. This adjustment 
is maintained till about three o’clock when the abdomen is seen 
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to be again elevated above the level of the thorax, Then, later 

in the afternoon as the sun gets weaker, the gliding is interrupted 

by periods of flapping of the hind wings. The amount of flapping 

gradually increases till, towards twilight, the dragon-flies descend 

to within a few inches of the ground in search of prey. They are 

then in fast jolting flight caused by flapping of all four wings. 

—_ = 

gy 

Fig. 1. Dragon-fly in flap-gliding flight seen from the side and below. The hind 

legs are parallel with the abdomen. The latter is horizontal. 

Fig. 2. Dragon-fly in slow speed soaring flight seen from the side, The abdomen is 

elevated above the level of the thorax. 

Fig. 3. Dragon-fly in soaring flight with hind legs and abdomen hanging down. 
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III. Object of flight with abdomen hanging down. 

A clue to the meaning of the adjustment was obtained by 
observing instances in which it occurred in single individuals while 
others near by were not using it. 

On several occasions it has been noticed that dragon-flies with 
abdomens down show less speed than others whose abdomens 
are up. With various species of dragon-fly ghding over water it 
has been repeatedly noticed that the abdomen is lowered when 
they need to check speed, either to avoid another dragon-fly 
or on turning as they reach some obstruction. In a light wind 
dragon-flies gliding to and fro over a restricted course, as is usual 
with Pantala, have been seen to have abdomens down when going 
with the wind and to raise their abdomens each time they go 
in the opposite direction. 

A dragon-fly has been observed to lower the abdomen for a 
moment, apparently to check speed, while catching an insect. 

We are thus led to the conclusion that lowering the abdomen 
and hind legs is an adjustment intended to check speed. It is 
obvious that in the lowered position the abdomen and legs must 
present more resistance to speed ahead than occurs when these 
organs are in the up position. 

IV. Conditions under which continued flight occurs 
with abdomen down. 

From the diary of my observations it soon appeared that this 
adjustment did not occur on days when the presence of thin 
cirrus cloud had been noted. 

On one occasion it was noticed that the dragon-flies kept 
changing the position of their abdomens from up to down every 
few minutes. Suspecting the cause of this I obtained several 
pieces of coloured glass through which the sun could be observed 
without inconvenience. It was found that small thin clouds were 
passing over it which were too small to cast a shadow or even to 
cause any appreciable decrease in the intensity of the sunshine. 
Whenever one of these clouds was over the sun the dragon-flies 
held their abdomens up, downwards whenever the sun was clear. 

It was further found that if small cumulus clouds are rapidly 
crossing the sky, and if there is not much wind at ground level, 
dragon-flies glide with abdomens up when there is shadow and with 
abdomens down when there is sunshine. After the sun comes out 
there is a short interval before the abdomens are lowered. If the 
edges of the cloud shadow are sharp cut this interval may be 
measured and this was done on three occasions the times being 
22, 23 and 27 seconds. 
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The depressed position )»f the abdomen in continued flight is 
seen only in the hotter months of the year and then only when 
the sun is shining in full strength. 

V. Significance of the use of a hrake in continued flight. 

The interest of the above observations lies in their bearing on 
the question whether the soaring flight of dragon-flies is due to 
undiscovered wing movements. If this were the case, it may be 
asked, why could not their flight be checked by cessation of such 
movements and why should the use of a brake in continued flight 
be necessary ? 

These observations also furnish a proof of the dependence of 
soaring flight in light winds on sunshine. It is remarkable that 
the presence of an amount of thin cloud far too small to have 
any known effect on the flight of birds should be able to influence 
the flight of dragon-flies. 

VI. High speed soaring flight of dragon-flies. 

The first observation of high speed flight of dragon-flies was 
made by Leeuwenhoek about 200 years ago. In discussing the 
compound eyes of insects and as a proof of the quickness of sight 
compatible with eyes of this description, he relates how he watched 
a swallow chasing a dragon-fly over the surface of a large pond 
and how the swallow was baffled by the speed and the unexpected 
turns of the insect which kept it always several feet in front of 
the enemy*. 

In my experience such high speed flight over water is due to 
a combination of soaring with occasional flapping. This form of 
rapid flight in which a dragon-fly can easily outdistance a swallow, 
so far as I have seen, occurs only in the presence of sunshine and 
wind. 

On rare occasions it has been my fortune to observe dragon- 
flies in a strong wind and to be able to form a definite opinion as 
to the absence or presence of flapping in their flight. The following 
instance appears to be of sufficient interest to be worth transcribing 
from my diary in detail: 

August 10th, 1915, at 10.05 a.m. on the Bharatpur Road, 
22 miles from Agra. 

A strong wind that tended to blow off my hat. A cluster 
of dragon-flies (Pantala) were gliding to leeward of a small 
tree but generally remaining a little to one side of it so that 
they met the full force of the wind. They were in continued 
gliding flight. Long grass about 2 metres high was below 

* Miall, The Early Naturalists, Their Lives and Works (Macmillan and Co., 1912, 

p- 206). 
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them. They kept at a distance of 1 to 3 metres above it. 
The grass was waving and showed, where the dragon-flies 
were gliding, no sign of its being sheltered by the tree. Some- 
times, in a stronger gust, a few of the dragon-flies came up 
to leeward of one of the branches. Rarely a few went further 
to leeward than usual. The group generally extended from 
near the tree to about 35 metres to leeward of it. The dragon- 
flies showed lateral swaying, and one of them showed lateral] 
instability for an instant just after a gust. 

10.20. When quite near the tree the dragon-flies occa- 
sionally flapped. Away from the tree they appeared to glide 
only. Glides of at least 10 metres up wind without a flap 
were observed. 

In view of the probable speed of the wind on this occasion, it 
is likely that the speed of these dragon-flies through the air was 
above rather than below 15 metres per second. 

When in low speed flight dragon-flies appear to travel a little 
faster than a locust. The speed of locusts, whose flight depends 
on flapping, has been measured by me on different occasions and 
found to be 4 metres per second. 

VII. The relation of ascending currents to the soaring 
flight of dragon-flies. 

The facts of the case are simple. Whenever the air is soarable 
or, in other words, whenever there is sunshine, dragon-flies avoid 
such currents. 

For instance, on one occasion, observations were being made 
at a time when the sky was partially clouded with short intervals 
of sunshine. Dragon-flies of two species were gliding, so long as 
there was cloud shadow, in the current reflected up from the 
windward side of a stable. Whenever there was sight sunshine 
the dragon-flies elevated their abdomens and glided away, generally 
only for a short distance from the ascending current. But twice 
during the period of observation the sun came out so strongly that 
the dragon-flies put on a brake, that is to say they were gliding 
with abdomens depressed. On each of these occasions every 
dragon-fly went a long distance, 50 yards or more, from the 
ascending current. 

Dragon-flies appear to remember the position of an ascending 
current. At Futteypur-Sikri they have been seen collecting on the 
windward side of the hill towards sunset, coming from distances 
of half a mile or more to get there. 

Thus observations on dragon-flies yield valuable evidence that 
soaring flight is not due to the use of ascending currents. As 
happens with soaring birds, such currents are avoided so long as 
the air is capable of supporting soaring flight. 
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VIII. Comparison of low and high speed flight. 

As above stated, low speed flight is dependent on the presence 
of sunshine. In the early morning, before the sun has attained its 
full strength, it is clearly favoured by the absence of wind. On 
occasions when the air was uncomfortably hot and very dry and 
when, therefore, the slightest movement of the air could be recog- 
nised by its cooling effect on the skin and when the dragon-flies 
were gliding often within two or three feet of my head, it has been 
noticed that the coming of the slightest draught of wind caused 
sliding to be replaced by flapping. 

Sometimes during the daytime, if the air is nearly calm, wind 
seems to be unwelcome to the dragon-flies. On such occasions they 
retire to the shelter of the leeward side of a tree on the coming of a 
puff so light that it causes only a gentle movement of the leaves. 

On the other hand, if conditions are suitable for high speed 
flight the presence of wind appears to be helpful rather than 
harmful. The speed of flight appears to increase with the strength 
of the wind. In such “soarable” winds, dragon-flies travelling up 
wind may be seen to glide ahead with a distinct increase of speed 
whenever they are struck by a gust. A similar increase of speed on 
entering a gust occurs in the case of cheels and other soaring birds. 

In low speed flight the wings of dragon-flies are in the “up” 
position, the wing tips being on a higher level than the body. 
The tips of the front pair of wings are more elevated than those of 
the hind wings. Hence the gliding dragon-fly has a distant re- 
semblance to a staggered biplane. The abdomen is elevated above 
the level of the thorax (Fig. 2). 

In high speed flight the abdomen appears to be generally if 
not always horizontal and the wings appear to be less elevated 
than when flight is at low speed. 

IX. Conclusions. 

Various species of dragon-flies have been found to possess the 
power of soaring flight. 

Facts have been adduced that are incompatible with the idea 
that this soaring flight is due either to undiscovered wing move- 
ments or to the use of ascending currents. 

Soaring flight is now known to occur in three different classes 
of animals, namely dragon-flies, flying-fishes and birds. It is re- 
markable that, despite their widely different structure, size, and 
weight, and the very different conditions under which they soar, 
there should be such similarity of the flight in these three classes 
of animals. In each class evidence is available that low speed 
flight depends on the presence of sunshine and high speed flight 
on the presence of wind. The speeds attained in the three classes 
are comparable if not identical. 

30—2 
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The Gluteal Region of Tarsius spectrum. By A. B. APPLETON. 

[Plate IV. ] 

[Read 16 May 1921.] 

Attention will be here called to certain anatomical features 
which have come to light in the course of a special examination of 
the thigh musculature of Tarsius, an animal interesting not only 
for its peculiar saltatory method of locomotion in the trees, but 
also for the varied Primate features exhibited in its anatomy. It 
combines features of the Insectivora, of Lemuroidea and of Anthro- 
poidea, and it is in comparison with these animals that its muscu- — 
lature must be chiefly considered. 

The dissections on which the following account is based were 
made upon two Tarsii kindly provided by Dr W. L. H. Duckworth*. 

Burmeister’s classical description of 1846 provides a careful and 
accurate description, but he had not the advantage of that masterly 
study by Lechet in 1883 of the pelvic region of Insectivora for 
help in a determination of the identity of the various muscles 
found in Tarsius. 

Attention in this paper will be centred on two muscles which 
are absent in some Primates and in many other Mammalia; but 
which are not uncommonly found in the more primitive of living 
Mammalia. These muscles are the femorococcygeus and the caudo- 
femoralis—employing Leche’s nomenclature. They apparently have 
their counterparts among Monotremes (Leche) and the latter 
among Reptihat. 

The superficial gluteal musculature of Tarsius consists of a 
thin sheet attached to the 3rd trochanter of the femur, and a thicker 
band passing from the caudal vertebrae to the back and outer 
margin of the femur. 

The latter of these we here describe as the femorococcygeus 
muscle. 

The thin muscle sheet attached to the 3rd trochanter, which, 
with Burmeister, we regard as the conjoined tensor fasciae latae 
and superficial gluteus, arises from the crest of the ilium, and, 
through the lumbodorsal aponeurosis, from sacral spines, extend- 
ing as far back as the Ist caudal vertebra. 

* References are made to dissections of specimens of Tupaia, Lemur, Simia and 
Troglodytes, also so provided. 

t+ Leche, K. Svensk. Vet. Akad. Handl. 1883. 
{ Caudifemoralis of Gadow, Morph. Jahrb. 1882. 
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A thicker band of musculature forms its cephalad margin and 
this has a special attachment to the 3rd trochanter by a small 
tendon. Supplied by the superior (cephalad) gluteal nerve, it is 
thus distinguishable from the superficial gluteus muscle which 
forms the hinder part of the muscle sheet and is supplied by the 
inferior (caudad) gluteal nerve. The latter nerve reaches the hinder 
edge of the muscle from behind the gluteus medius and enters its 
deep surface. 

The cephalad gluteal nerve enters the deep surface of the tensor 
fasciae latae after passing through the gluteus minimus. 

A complete deficiency of muscular tissue occurs behind the 
tensor fasciae latae, a thick fascia only being present; and through 
this the fibres of the superficial gluteus gain attachment to the 
3rd trochanter. In front of the tensor fasciae latae the fascia lata 
of the thigh is thinner than is the case in those numerous Mam- 

malia where it receives the pull of the “tensor” muscle. This muscle 
in fact acts in Tarsius as a flexor and rotator of the thigh on the 

trunk, and not as an accessory extensor of the knee (which occurs 
in the cursorial groups, e.g. Artiodactyla and Carnivora). 

Our description differs from that of Burmeister who states that 

the tensor fasciae latae of Tarsius loses itself below in the fascia 

lata. He mentions no tendinous attachment to the 3rd trochanter. 

The gluteus medius and gluteus minimus are described by 

Burmeister. They are little larger than in Tupaia (Table 1)*. 

The femorococeygeus muscle claims our next attention. 

Burmeister evidently saw this muscle, but, erroneously, as we 

think, described it as a “pyriformis’” muscle; moreover, he ap- 

parently regarded the caudofemoralis as a second or deep pyri- 

formis. These two muscles in Tarsius so closely resemble the muscles 

described by Leche in Tupaia, and are still more like the muscles 

of Lemur, that we cannot regard them as different structures. 

Nerve supply is also similar in all these cases. A representative of 

the femorococcygeus is even found in the anthropoid apes, sup- 

plied by a branch from the nerve to biceps (Orang): and these 

animals possess a separate pyriformis homologous with the human 

one. 
The femorococcygeus of Tarsius arises from the deep aspect of 

the transverse processes of the Ist, 2nd, and 3rd caudal vertebrae 

and from the intervening intertransverse ligaments. Its origin is 

therefore quite distinct from that of the superficial gluteus. Below 

the tail and immediately medial to its place of origin is situated 

the sacrococcygeus; and it passes out from under cover of the 

intertransversarius caudae (of Burmeister) and dorsal caudal 

* In Macropus the gluteus medius is, compared with the rectus femoris, twice 

as large as in Tarsius (data by Haughton, Pr. R. Ir. Acad. 1x). In cursorials it is 

also much increased in size. 
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musculature. It is inserted by muscular fibres along the outer side 
of the back of the femur for four-sevenths of its total length, cover- 
ing a broader area above, at the back of the great and 3rd tro- 
chanters, than along the shaft. There is a delamination into strips 
of muscle attached behind the 3rd trochanter, close to the centre 
of rotation of the hip-joint; the hinder and larger part of the 
muscle, attached to the femoral shaft, is quite distinct from the 
remainder. 

The nerve-supply of the femorococcygeus is provided by a 
special branch passing from the great sciatic nerve* caudad to 
gluteus medius; the nerve enters it behind the great trochanter. 
The femorococcygeus is superficial except at its insertion, where 
the bulky vastus externus overlaps it. It covers the great sciatic 
nerve; also the obturator internus and gemelli, quadratus femoris, 
adductor magnus and caudofemoralis from above downwards. The 
muscle is relatively smaller than in Lemur, and the insertion is 
less extensive. It closely resembles the muscle of Simiidae, except 
in being readily separable from the superficial gluteus. A further 
difference from Simiidae lies in its (primitive) origin from coccygeal 
vertebrae. In Simiidae its origin is from the tuber ischii. 

The caudofemoralis muscle of Tarsius arises from the tuber 
ischii cephalad to the biceps tendon. A flat muscular band, it 
passes down to the middle of the thigh where it gains insertion to 
the back of the femur, a rough line marking the place, for a distance 
equal to one-fifth of the femoral length, equidistant from either end. 
It is immediately medial to the insertion of the femorococecygeus. 

It receives its nerve supply from the nerve to the hamstring 
muscles (from the great sciatic). 

It is situated in its whole length on the deep aspect of the 
femorococcygeus, except when the great sciatic nerve intervenes 
between them [v. Plate IV, fig. 2]. 

In Tupaia this muscle is a far thinner sheet, with two places 
of insertiont: (1) to the back of the shaft (one-fourth of the length 
of the femur); (2) just proximally to the internal condyle. In 
Lemur it is thin and the length of its insertion one-tenth of the 
length of the femur. In Simiidae it is indistinguishable. 

The nerve to the hamstring muscles (i.e. to biceps, semi- 
tendinosus and semimembranosus) passes deep to the caudo- 
femoralis muscle. 

These nerve-relationships are characteristic of the musclet also 
in Tupaia among Insectivora, and in Lemur among Primates, in 
specimens I have dissected. They, together with the attachments of 
the caudofemoralis to bone, are sufficient to establish the identity of 

* As also in Tupaia and Lemur. 
+ Cf. the corresponding caudifemoralis of Reptilia—Gadow, loc. cit. 1882. { Cunningham’s figure of the thigh of Phalangista shows (as the “ischiofemoral muscle’’) agreement in that animal also. ‘Ohallenger’ Report, 1882, vol. v, Plate III. 
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the muscle. It appears from the description of Burmeister that his 

“deep” or “second pyriformis,’ apparently (partum) our caudo- 

femoralis, is represented to be superficial to the great sciatic nerve, 

not deep to it as we have stated. That error is here a possibility is 

suggested by the following consideration. 
The femorococcygeus and the caudotemoralis muscles are very 

closely apposed close to their insertions. It is bere that the great 

sciatic nerve passes through, sandwiched between them*; and by 

its sheath it is so intimately bound up with the muscles that every 

movement of the muscles must carry the nerve with them. This 

may possibly be an arrangement for steadying the nerve during 

rapid and extensive hip extension. In Lemur, and in Tupaia, such 

a close association ot the caudofemoralis with the femorococcygeus 

around the great sciatic nerve does not occur. 

The tenuissimust is absent in Tarsius, as also in Lemur. 

Klaatsch has shown it to be absent also in other species of Pro- 

simiae. I find, with Leche, that it is present in Tupaia. 

The quadratus femoris is triangular in shape, as is characteristic 

of Insectivora and Lemuroidea, and is inserted to the broad space 

behind and between the lesser (2nd) and 3rd trochanters. It does 

not occupy the extensive area of insertion found in Lemur, and 

is thus more like Tupaia and Simiidae. The bulk of the various 

muscles, in comparison with Tupaia and Lemur, forms an instruc- 

tive study. 
As a standard of comparison the weight of the rectus femoris 1s 

employed. 
All specimens were long preserved in spirit. 

Table I. 

| Tarsius Tupaia | Lemur 

Actual weight Weight Weights 

Muscle in grains Rectus femoris Rectus femoris 
=] =] 

Gluteus supfl. and 3°7 1-3 1-2 0-98) | 

tensor fasciae latae - 

Femorococcygeus 4-0 1-4 1-2 2-18 | 

Caudofemoralis 3-0 1:0 0-20 | 0-28 

Gluteus medius 3-5 1-2 1:00 | 1-94 

Gluteus minimus 1:8 0-6 0-25 —~ 

Biceps 2-6 0-9 1-05 1-10 

Semitendinosus 2-9 1-0 0-58 = 

Tenuissimus — — ? = 

Semimembranosus __ | | 9-8 3.4 2-30 sa 

Presemimembranosus| J 
Quadratus femoris 0-7 0:2 — 0-71 

* See Plate IV, fig. 1. 

+ The iliofibularis (possibly) of Reptilia; Gadow, loc. cit. 1882. 

{ An arbitrary line of division had to be made in this specimen. 
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The similarity of Lemur and Tupaia (except as to the gluteus 
medius) is noteworthy. In Tarsius the caudofemoralis is large, 
while the gluteus medius and quadratus femoralis are little de- 
veloped. 

Table II. 

Actual weights of thigh muscles (supplied from lumbar plexus) in a 
spirit specimen of Tarsiws—and of certain shank muscles. 

mn mn z 
s =) mn Bugaes , a OE 5 = =m fond cmt — o 

$282 3 2 ma eS z Baal 64 Sat B Cay Sh et ees aS en Sa ae So Soa — ™ ca a SH ao n | 3 3 Dino tal f= a ss s n n2O 3 5 3) a + So ¢ =I oS Se se O i) 3 ec Oo > 5 a S = =e = Gla) do) i) aD € a n = 77 ms o fay =| BS ot eig Sia ea OR a | ia 0S) oi oc So tR00R DP Fe OMA F&F &— 5 FR Be he & 
pert 16 67 15 37 35 14 18 29 512 165 90 5:4 18 17 11 180 123 5 

It will be noticed that the hip extensors of Tarsius are not 
developed to the huge extent of the quadriceps extensor. Their 
weight compared with that of the quadriceps is in the ratio 1 /54, 
Wize! 

Gluteus medius | 
Femorococcygeus : : ee Cena tom oe i ' 14-5 grains. Quadriceps extensor 79-6 grains. 
Adductor magnus 

Now this ratio shows curiously little variation among Mammalia. 
It is convenient for the present purpose to employ the same set of 
four hip-extensors [it would, therefore, prove of very doubtful 
utility in comparisons with Sauropsida or Monotremes (see also 
footnote { p. 471)]. 

In the less specialized forms the ratio as thus defined of 
hip extensors 

knee extensors 
in certain cursorial groups, viz. Artiodactyls and Perissodactyls. 

A large leaping animal like the Kangaroo shows no marked 
disturbance of this ratio. And while the ratio in Lemur resembles 
that of most Mammalia, it is found in Tarsius to be extraordinarily 
small. 

is rather less than unity. It tends to rise somewhat 
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Table IIT. 

“4 4 P ici 
co Same It ) ° B = 

ne vaAa> B 2 2 & on 4 Zs 
<a . ODS ney oO = [=| pa io 

Seo SO) Be gall a Bai ey Migs Oi ee dt ae 
ee | = | ease. lee il es pee Re prea 
aS] ou 42m | a | td fs) Ay eo Q 

| _ or re : Meee 

Hip extensors lip exter ; + 5 ; - ' 
Eaters 50 | 5:67 274 2:70 | 46 317+) 2°4 Re |) SRY) 

( iceps ext. 
Quadriceps ext. | o7.5 | 7-64) 291 | 2:32 | 32 4-0 §| 31" | = |) 30 |e 

Rect. fem. 

Hip extensors ‘ : g 901 ‘o7t| 1: 79 5 eal cane oe Baaficans ext. 018 | 0-74 0°90 O-97+| 1:4 0-7 0-77) 0°83| 0°62) 0-73 

How then shall we account for the great difference in Tarsus? 
The length of the femur relative to other parts of the body 

appears to be a matter of great importance. Cursorial animals and 

jumpers require the action of powerful knee extensors at the 
moment of springing from a foot, whether in galloping or leaping; 
for the line of thrust from the foot is placed approximately at a 

right angle to the long axis of the femur. The quadriceps itself is 
situated disadvantageously for powerful action when the knee is 

fully flexed. And the longer the femur, the greater the moment of 

the animal’s weight about the knee-joint. It is as a mitigation of 

the strain so placed upon the knee extensors that I regard the 

shortening§ of the femur in cursorial animals; and these muscles 

are not of disproportionate development in them. In the Macro- 

podidae also, shortening of the femur occurs with a saving of 

knee-extensor musculature. In the smali jumpers, however, such 

as Pedetes, Macroscelides, Dipus and Tarsius, this compensatory 

shortening is not a feature, and a powerful quadriceps is essential. 

This muscle-group is here shown to be of extraordinary size in 

Tarsius: it would prove of interest to ascertain the muscle-weights 

in the other saltatory mammals: I am aware of no records. 

It appears that in the production of such a form as Tarsius, 

the rectus femoris took no part in the great development of the 

quadriceps extensor; the remaining muscles (forming the “triceps 

extensor’) alone have been concerned,—most of all the vastus 

externus. 

* Haughton, assuming his identification of muscles to be the same. 

+ Haughton, P. R. Ir, Acad. 1x, fails to distinguish a caudofemoralis. It is, how- 

ever, in Marsupialia a distinct muscle from the quadratus femoris as Carlsson 

(K. Sv. Vet. Akad. Handl. 1915) (Hypsiprymnodon), Parsons (Petrogale), McCormick 

(Dasyurus) have shown. Cunningham, loc. cit. 1882, saw both muscles in Thylacinus 

and Phalangista. 
t Inclusion of tensor fasciae latae as a knee extensor would lower this ratio 

slightly, while admission of semimembranosus as a hip extensor raises this ratio 

considerably. 
§ Appleton, Proc. Camb. Phil. Soc. 1921, p. 386. 
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The musculature of the gluteal region is not only little developed 
in point of size: it is, moreover, comparatively little specialized as 
regards muscle attachments. 

The changes in Tarsiusfrom a Tupaia-like form have comprised: 
*(1) Attachment of the caudofemoralis (of Leche) to the tuber 

ischii instead of to the caudal vertebraef. 
*(2) Loss of the condylar attachment of the caudofemoralis (of 

Leche). 
*(3) Increase in size of the remaining part of the caudofemoralis, 

and concentration of its insertion to the middle of the femur. 
(4) Disappearance of the muscular part of the upper part of | 

biceps. 
(5) Loss of the tenuissimus. 
(6) Close envelopment of the great sciatic nerve by the muscle 

fibres of femorococcygeus and caudofemoralis. 
(7) Concentration of the pull of the tensor fasciae latae on to 

the 3rd trochanter. 
Primitive features, retained in Tarsius, but lost in anthropoid 

Apes comprise the following: | 
(1) Persistent caudofemoralis muscle (of Leche). 
(2) Independent femorococcygeus (more or less fused with : 

gluteus maximus in Apes: Gorilla, Chimpanzee, Orang). 

| 

| 

(3) Caudal attachment of femorococeygeus. (Origin is ischial 
in Apes mihi = Duvernoy’s ischiofemoralis, and Fick’s tubero- | 
femoral muscle). 

t(4) Persistent 3rd trochanter, associated with the attitude of — 
a flexed hip, and the passage of a superficial gluteus muscle-sheet _ 
and tensor fasciae latae across a large vastus externus muscle. | 

In the last four points, Tarsus is in agreement with Lemur. 
The most striking difference between these two in the gluteal region 
is found in the extensive attachment to the femur of quadratus 
femoris in Lemur; the smaller size of the caudofemoralis in Lemur, 

and its ‘‘more primitive” origin from coccygeal vertebrae. 
The caudofemoralis (Leche) has been confused with the femoro- 

coccygeus (Leche). It appears to be merely a verbal confusion, 
owing partly to the description by Windle and Parsons of the 
femorococcygeus of Carnivora and certain Rodentia under the 
name of the caudofemoralis§. In Petrogale a similar muscle is 
included by Parsons under the term biceps||. He describes what 
appears to be the caudofemoralis of Leche in Petrogale as the 

* Certain Marsupials resemble T'arsius and differ from T'wpaia in these features; 
a parallel development. 

sp dal ypsiprymnodon i is the only Marsupial found by Carlsson, loc. cit. 1915, to 
retain a coccygeal origin for the caudofemoralis. 

{ Appleton, loc. cil. p- 380. 
§ Parsons, F. G., Proc. Zool. Soc. 1898. 
lI Parsons, F. G., op cit. 1896. 
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ischiofemoralis*; Carlssont identifies the corresponding muscle of 
Hypsiprymnodon as the caudofemoralis. 

Gregory{ has fallen into the error of comparing the caudt- 

femoralis of Reighard and Jennings (the Cat), in Parsons’ meaning, 

with the caudofemoralis of Hypsiprymnodon in Leche’s sense of 
the term. 

In the present state of the literature, it is indeed not possible 

to compare muscles of similar name described by different authors 

without further enquiry into the attachments and nerve-relation- 
ships of these muscles. The position of the great sciatic nerve 1s 

a ready method of distinguishing the femorococcygeus (caudo- 

femoralis of Parsons) from the caudofemoralis (ischiofemoralis of 
Parsons). 

The nomenclature of Leche has some claim :rom usage, and is 

here employed. Ischiofemoralis is an excellent descriptive name in 

certain more specialised mammals: but in the more primitive 

animals (some Reptilia and Insectivora)§ a caudal) attachment 

rather than ischial is found. If it is agreed to use different names 

for what is practically the same muscle, according to interspecial 

variations in its attachments, then there must be no verbal 

homologisation of muscles. The caudofemoralis (or caudifemoralis) 

muscles of certain authors are no more comparable with the 

caudofemoralis of Leche and Carlsson than are the various muscles 

which go by the name of pectineus in various mammalia homolo- 

gous with one another. 
Some correlated changes in bones, associated with muscular 

peculiarities of Tarsius, may be mentioned: 
(1) Large transverse processes to the first three caudal verte- 

brae{], associated with well developed femorococcygeus. 

(2) 3rd trochanter and descending extensor ridge on femur 

(v. supra). 3 

(3) Marking on the posterior aspect of the femoral shaft for 

attachment of caudofemoralis (paralled in Marsupialia). 

(4) Femoral shaft with high pilastric index—associated with 

the powerful quadriceps extensor. 
The peculiar features of Tarsius deserve comparison with those 

of other jumping animals. Some have been already considered. 

(1) Length of femur. In large jumpers (Macropodidae) shorten- 

ing occurs for a similar reason in cursorial types**; viz. diminu- 

tion of the necessary mass of knee-extensors. In small jumpers 

* Cunningham, loc. cit. 1882, also uses this term. 
+ Carlsson, A., Kungl. Svensk. Vetensk. Handl. 1915. 
t Gregory, Bull. Amer. Mus. Nat. Hist. 1918. 
§ Also Hypsiprymnodon (Carlsson) and Monotremata (Westling, Bihang t. K. Sv. 

Vet.-Akad. Handl. 1889). 
|| For M. caudofemoralis (Leche). 
| Cf. Duckworth, Morph. and Anthrop. vol. 1, 1915, p. 106. 

** Appleton, loc. crt. 1921 
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this does not appear to be necessary. For this musculature in 
jumping animals other than Tarsius, and the Kangaroo, verification 
is needed. 

(2) Attachment of muscles tc tuber ischii instead of to tail. 
In Reptilia and Insectivora, both femorococeygeus and caudo- 

femoralis (or their precursors) are attached to caudal vertebrae. 
But in two Insectivora Macroscelides and Hrinaceus), one of them 
a jumper, the femorococcygeus is recorded as attached to the tuber 
isch. A new type of hip-extensor is produced, acting as far from 
the hip-joint as possible, and therefore exerting the greater leverage. 

The same principle is seen in cursorial types where the long 
vastus (= gluteus maximus +? femorococcygeus) gains attach- 
ment to the tuber ischii, while at the same time the tuber ischii 
shifts away from the hip-jomt downwards and backwards (Artio- 
dactyla). 

In Tarsius it is the caudofemoralis alone which gains an ischial 
attachment; but in giant apes we see the femorococcygeus attached 
here. An ischial attachment for hip-extensors appears to be no 
prerogative of jumpers, but is shared alike by the active Metatheria 
and cursorial Hutheria, and also by the giant apes. 

ES — — 

To sum up, Tarsius exhibits, in the musculature of the gluteal — 
region, primitive features like the genus Lemur, recalling Tupaia | 
and Hypsiprymnodon, and less closely reproducing the conditions — 
of Monotremes and Reptiles. Along with these features we find 
certain modifications, such as the ischial attachment and develop- 
ment of the caudofemoralis, in which Tarsius has progressed beyond 
the conditions in Lemur and is paralleled by many Marsupialia. © 
Its small size is held accountable for a certain lack of parallelism 
between Tarsius and the Kangaroo. 

While certain of the primitive features of Tarsius and Lemur are 
lost in Simiidae, others, such as a well developed femorococcygeus, 
are retained in the latter. 

} 
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An unusual type of male secondary characters in the Diptera. By 

iC. G. Lams, M.A. 
| 

[Read 16 May 1921.] 
| 

Secondary sexual characters may be classed as persistent or 

‘sporadic: the former occur with much regularity throughout a 

genus or family, the latter crop up suddenly in isolated species 

of a genus, and are often similar in form in quite unrelated families. 

Examples of the persistent type are the antennal dimorphism of 

so many nematocerous and other families, and the male eye 

holopticism in many families. The sporadic types are such as: (1) 

frontal processes as in Ceratitis sp., (2) very varied types of leg 

adornment, which is a common form, probably connected with 

courting habits, (3) replacement of head bristles by hair tufts as 

on some Chrysosomatinae, (4) costal lumps as in the two quite 

unrelated species, Pemphigonotus mirabilis (Chloropids) and Omma- 

tius Lema (Asilids), (5) differences in the palpal structure, as in 

many Dolichopids and others. The list could be extended, but one 

thing is apparent, all the characters of either type are peripheral in 

their position on the insect. 
The author has recently completed the study of certain families 

‘of flies contained in the collections made by Dr H. Scott in the 

‘Seychelles, the descriptions of which will appear in a forthcoming 

volume of the Percy Sladen Expeditions Reports, Trans. Linn. 

'Soc. London, Ser. 2, Zool., vol. 18. Amongst these are some 

exceedingly interesting forms belonging to the Dolichopodidae. 

‘These belong to a new genus, Craterophorus, which is probably to 

be referred to the subfamily Chrysosomatinae; these differ from 

‘other known species of fly in having centrally placed secondary 

characters; further-each of the three species constituting the genus 

‘bears the same set of characters, one of which is nearly unique, 

the others being absolutely so. The genus is apparently endemic, 

“being found in the native forests of the Island of Mahé. There 

‘are no tarsal or antennal differences between the sexes. The 

special characters under consideration are four in number: (1) the 

wing of the male (Fig. 1) is quite different in shape from that of 

the female (Fig. 2) having a sharply angled posterior margin; this 

peculiar form of wing is almost if not quite unique. The other three 

characters are more strictly central; they are shown in the photo- 

_ graph (Fig. 3) and diagram (Fig. 4), these characters are as follows: 

(2) the Dolichopodidae are usually devoid of alulae, but in these 

species one is developed though it is of a totally exceptional form. 
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Fig. 1. Craterophorus mirus 2 wing. Fig. 2. Craterophorus mirus 3 wing 

Fig. 4 Craterophorus mirus 3. 
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lt consists of a straight edged lobe (A, Fig. 4) which is highly 
chitinized and has the margin beset with a very close even row of 
tiny stiff bristles, co-planar with the lobe, the bristles having the 
utmost regularity of size and shape: they form a perfect comb with 
the teeth nearly touching. (3) In most dolichopids the squama con- 
sists of a more or less pronounced knob bearing a characteristic 
row of bristles, which are frequently spread out into an elegant 
fan. In the present species the squama (S, Fig. 4) is long stalked, 
apparently mobile, and instead of the usual fan of long hairs, it 
carries a set of parallel stout bristles hooked at the tip. The relative 
position of the last two structures almost irresistibly calls to mind 
the relation of a hand to a harp. In the figure only one structure 
is shown on each side to avoid confusion. (4) The fourth structure 
(B, Fig. 4) is even more remarkable: it consists of a pair of large 
spheroidal bodies, one on each side of the basal segment of the abdo- 
men and confluent below with the hind epimeron. Each is hollow 
and has a round orifice on the dorsal surface; from the bottom 
springs a rod which nearly reaches the surface of the sphere. The 
significance of the whole complex is entirely problematic, though 
it is certain that the several parts are in some way duly correlated. 
The general appearance, as said above, is that of some musical 
instrument, although the function of the bulbs is quite problematic, 
to suggest ‘resonators’ is too fanciful, nor can one see the relation 
of the whole to the remarkable wing form. 

It is much to be regretted that the paucity of specimens and 
the fact that none but pinned individuals were available rendered 
it impossible to submit the bulbs to a competent histologist, as 

-a suitable examination might have helped to throw some light on 
this assemblage of mysteries. 
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A Note on the Mouth-parts of certaan Decapod Crustaceans. By 
L. A. BorrapatLe, M.A., Fellow and Tutor of Selwyn College, 
Cambridge, and Lecturer in Zoology in the University. 

[Read 16 May 1921. 

In that close study of the relation of aquatic organisms to their 
surroundings which is now becoming an important part of Biology, 
much attention is given to their modes of feeding; and one of the 
most interesting branches of the subject concerns those organisms 
which obtain their food from organic particles, alive or dead, in 
suspension in the water. Orton has investigated this habit in 
various animals (Molluses, Tunicates, ete.), and Potts has shown 
that it is practised by the Coral-gall Crab Hapalocarcinus, and that 
the mouth-parts of this animal are correspondingly modified, the 
endopodite of the third maxilliped and the exopodites of the second 
and first being provided with fringes of bristles which are used 
for gathering the food, while the inner jaws are reduced in the 
absence of the need for powerful organs to masticate it. These 
adaptations are analogous to those that appear in Cirripedia and 
Branchiopoda, which are also feeders upon suspended matter. 

Sundry other crustaceans which live in the mantle-chamber or 
pharynx of sessile or subsessile organisms must be presumed to 
get food of the same kind at second hand. Some time ago, in the 
course of a study of the prawns of the subfamily Pontoniunae, of 
which most members are commensal and a number live in the 
mantle cavity or pharynx of bivalve molluscs and ascidians, I 
endeavoured to discover some correspondence between the habitat 
of the animals and the structure of their mouth-parts; but was 
disappointed to find practically no trace of this. The jaws of the 
crab Pinnotheres, which lives between the valves of the shell of 
Lamellibranchs, show the same absence of specialisation in the 
direction in which Hapalocarcinus is specialised. They have some 
interesting peculiarities, but not those that might be expected from 
an animal which was nourished upon finely divided food. Probably 
these cases are to be explained by the fact that the crustaceans feed, 
not upon food in suspension, but upon the strings of mucus in 
which it is entangled by their host. Orton has recently shown that 
this is done by Pinnotheres. 

A like explanation, however, cannot be given for Porcellana 
platycheles. This animal is not a commensal, and gathers for itself 
suspended food, taking it by means of long fringes upon the third 
maxillipeds, but is provided with well-developed inner mouth- 
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parts. Possibly it feeds, not, as Hapalocarcinus does, only upon 
the very minute organisms which make up the nannoplankton, 
but also upon suspended particles of greater size and toughness. 
Or it may be that it uses the chelae for seizing food, though I have 
not seen it do this. Another case of the same kind would seem to 

_be presented by the prawn Paratypton, which was found by 
Potts to live in a coral gall somewhat in the same way as Hapalo- 
carcinus. Details of its habits are not known, but it does not at 
present appear likely that it can obtain any but finely divided 
food. Yet its jaws show neither any provision for gathering such 
food nor any marked reduction in masticatory structures. 

All these organisms deserve a good dea] more investigation than 
they have received. 

VOL. XX. PART IV. 31 
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An Apparatus for Projecting Spectra. By H. Harrripce. 

[Read 2 May 1921.] 

If a Thorpe replica celluloid diffraction grating of about 14,000 
lines to the inch be mounted in optical contact with the hypotenuse 
of a right angled glass prism, and if now a parallel beam of white 
light be caused to enter normally at one of the other faces, then it 
is found, while the direct beam is totally internally reflected and 
occupies the same position as it would if the prism had no grating 
mounted on it, that the 1st and 2nd order spectra of one side are 
found approximately in their normal relationship in regard to the 
direct beam, but that the spectra of the other side pass out through 
the hypotenuse of the prism without suffering reflection. If the 
prism be made of crown glass the yellow region of the 1st order 
spectrum is in a straight line with the incident beam, and the 
dispersion of this spectrum is about 54 °/, greater than that of the 
diffraction grating alone. It is also found that (1) the resolving 
power for a given aperture is increased about 41 %, (2) the purity 
factor for a given collimator slit width is also increased by about 
half, (3) the intensity of this spectrum for a given purity and dis- 
persion is also considerably greater than that of the grating alone. 
Tt is to this latter feature that the arrangement owes its value. 
To make use of this spectrum for projection purposes the green, 
blue and violet regions of the 2nd order spectrum are screened off 
by a deep orange colour filter. 

The transmission of the spectra through the hypotenuse of the 
glass prism, in apparent contradiction to the laws of geometrical 
optics, is almost certainly due to the inclination of the sides of the 
separate strip elements of the replica, which when the cast was 
made filled the grooves of the original grating. These sides are then 
roughly normal to the incident light rays and a number of ele- 
mentary wavelets would therefore, on Huyghen’s hypothesis of 
diffraction, pass out of the surface, but since they would retain the 
phase relationships of the original beam they would be in a con- 
dition to interfere with one another, and thus form the spectra that 
are observed. 

This prism grating would therefore seem to be in closer 
theoretical relationship with the echelon of Michelson, or the 
echelette of R. W. Wood, than with the ordinary diffraction 
grating. 
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Note on true and apparent hermaphroditism in sea-urchins. By 
J. Gray, M.A., Balfour Student, Cambridge University. 

[Read 16 May 1921.] 
During the winter of 1913 I had occasion to examine at Naples 

the gonads of a large number of specimens of the sea-urchin 
Arbacia pustulosa. It is exceedingly easy to distinguish the two 
sexes of this animal; the eggs and ovarian tissue of the female 
contain a dark red pigment, whereas the testes of the male are 
devoid of any pigment. The gonad of the female is brick-red in 
colour from the very early stages of its development. That of the 
male is yellowish white. 

On opening one individual, a unique condition of the gonads 
was observed: four of the gonads were apparently female— 
being of the usual colour, and of considerable size. Part of the 
fifth gonad was also in the same condition, but the majority of 
the gland was typically male in appearance. On examining this 
portion of the abnormal gland, spermatozoa were found, which, 
though normal in appearance, were either motionless or only 
capable of feeble movement. 

On sectioning the whole of the gonads, I was most surprised 
to find no trace of ova or ovarian tissue. On the other hand, those 
parts of the gonads which were female in appearance were found 
to be full of a mass of degenerating spermatogonial cells, which 
failed to take up any of the usual stains. The walls of the gonad 
were perfectly normal. 

This animal is of interest as it would appear that a derange- 
ment of the sex-cells has been attended by an inversion of the 

secondary sexual characters. Although no parasite was observed, 
the condition of the gonad recalls the well-known effects of para- 
sitic castration in the Crustacea. If this view is correct, the male 

of Arbacia appears to be heterozygous for sex. 
Owing to the courtesy of Mr H. M. Fox, I have been able to 

examine the gonads of a true case of hermaphroditism in the urchin 
Strongylocentrotus lividus. In this case three of the gonads were 

completely female, while the other two contained both ripe eggs and 

spermatozoa, which were fertile inter se. In one of the abnormal 

gonads most of the tubules were female. It appears that this 

animal was essentially a female—possibly an “intersex.” No 

abnormality was found in either the male or female portions of 

the gonads. 
As far as Iam aware the only other description of an hermaphro- 

dite sea-urchin is that given by Gadd* of an individual of Strongylo- 

centrotus droebachiensii, in which one gonad was male and the 

remaining four female. 
* Zool. Anz. vol. XXx1, 1906-07, p. 635. 

31—2 
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On Certain Simply-Transitive Permutation-Groups. By Dr W. 
BurnsipE, Honorary Fellow of Pembroke College. 

[Recewed 19 September 1921.] 

In 1900 I proved (Proc. L. M.S. vol. xxx, p.177) that a simply- 
transitive permutation-group of prime degree p must contain a 
self-conjugate subgroup of prime order. In the second edition of 
my Theory of Groups (1911) it was shown that a simply-transitive 
permutation-group degree p™, which contains a permutation P of 
order p”, necessarily has a self-conjugate subgroup containing 
pe". Lventured then to express an opinion that a similar result 
was true for any simply-transitive permutation-group which con- 
tained a transitive Abelian subgroup. Quite recently I have suc- 
ceeded, with a single exception, in justifying this expression of 
opinion in a remarkably simple way. 

Denote by x,,, a set of mn variables, where the first suffix takes 
all values from 0 to m—1, and the second all values from 0 to n—1. 

1 , The permutation dike = Basa 

is a regular permutation M, of order m, in the mn variables, and 

U'a,0 = La,ria 
is a regular permutation NV, permutable with M. The two generate 
a regular Abelian group {W, N} simply-transitive in the mn 
variables. 

If ¢, n are primitive mth and nth roots of unity, and if 

| bap = Beta 
ab 

then Wisp Sag MNGi = HPS: 5. 
so that the mn quantities €,, are the reduced variables for the 
Abelian group {J/, N} and each gives a distinct representation of 
the group. Also 

ene, oy og) 1a) pan 

tJ 4,9, a,0 

Hina 
Suppose now that a simply-transitive group @ in the mn a’s 

contains {M,N}. Since no irreducible representation of {M, N} 
occurs more than once, no irreducible representation of G, when it 
is completely reduced, can occur more than once; and therefore* 
Go, the subgroup that leaves x») unchanged has just one linear 
invariant in each irreducible representation of @. 

For each irreducible representation of G, the reduced variables 
must be expressible as a set of é’s. Let 

oan By ? Sa, Bo> pay) Sa. Bu 

be the reduced variables for an irreducible representation I’. 
* Theory of Groups, Second Edition, p. 275. 
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Since mn %, 9 = X €;, ;, the one linear invariant that Gy has in 
Tis tJ 

we 

Dibag. By: 
t=1 

Suppose now that 

Lay, by? Lap, by? eeey Lap, bp> 

is a set of variables which are permuted transitively by @. Then 
j=p 

2 La5,0; 
j=1 

is a linear invariant for G). 

Now z Sas, = pss e tin iG, 
4=1 a,b 

and since the spanner side is invariant for Gy which permutes 
Vq;,0;(J = 1, 2, ... p), transitively, 

is independent of 9. 
Dp Dp 

Also esr La;,0; ae ei” Gas 

and since the only linear invariant that G) has in the symbols 
E.,,8; (1 = 1, 2,... 4) is theirsum _ 

Dp 
Xe E2589? Bi 

j=1 

is independent of ¢. 
Moreover the immediately preceding result may be expressed 

in the form that 
“ 

Di E247 2b; 
Te! | 

is independent of 9. 
Hence 

Mz 
rs 

p p Ke 
Mie 25% 470 385 =) > 252i i = p Dy € 257179594, 

1j=1 f=1 t=1 

im 

Now ye E8571 Psi 
(haa! 

is the sum of the multipliers of the operation, 1/iN*: is the irre- 
ducible representation I’. Hence in I’ 

a; 658; Xut iN? td Pinrire 

for each 7. 
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Suppose now that [is that irreducible representation to which 
€;,9 belongs. Then 

p 2 
Xm%inei = — D €*o;, 

Pj=1 
Now choose the set 

L x eg a2, 029 ** ap, bp? 

so that it contains the symbol 2,5. Then 

Ma = P s ha; 
Mw pi=i 

If m is not a prime k may be chosen so that e* is a primitive 
gth root of unity, where q is a prime factor of m; and when k is 
so chosen, 

a1, 61? 

Xui = be 

Hence, if m is not a prime, G has a self-conjugate subgroup 
containing M¢. 

If m and n are different primes, and I is that irreducible 
representation to which &, , belongs, so that 

Xt vei = — dy €%, 
=1 

yur p MK 

then — 2 €% = DY €%5%é iB, 
PijHl t=1 

Unless each £; is zero, in which case the group has a self-conjugate 
subgroup containing N, this equation actually contains powers of 
7 on the right. Hence when the indices of the powers of 7 are 
reduced (mod. n) each power must occur with the same coefficient. 
This shews that ~ must be a multiple of n, and that the reduced 
variables for I must be 

apne assis ne (Os Oy aly Fe aos 03 = Ll), 
The family of representations to which I’ belongs accounts there- 
fore for (m — 1) of the reduced variables. The remaining reduced 

variables are THIS Gn Nos. Ginn mn 
and in each irreducible representation whose reduced variables 
belong to this set Mae = hn 

Hence when m, n are different primes G has a self-conjugate 
subgroup containing either M or N. It is clear that the same 
method of proof will apply, when the transitive Abelian subgroup 
has three or more independent generators. Hence:— 

Asimply-transitive permutation-group, which contains a regular 
transitive Abelian subgroup, always has a self-conjugate subgroup, 
except possibly when the operations of the Abelian subgroup are 
all of the same prime order, 

| 



PROCEEDINGS AT THE MEETINGS HELD DURING 

THE SESSION 1920—1921. 

ANNUAL GENERAL MEETING. 

October 25, 1920. 

In the Cavendish Laboratory. 

Mr C. T. R. Witson, PRESIDENT, IN THE CHAIR. 

The following were elected Officers for the ensuing year: 

President: 

Prof. Seward. 

Vice-Presidents: 

Prof. Sir E. Rutherford. 
Mr C. T. R. Wilson. 

Dr E. H. Griffiths. 

Treasurer: 

Prof. Hobson. 

Secretaries: 

Mr H. H. Brindley. 
Prof. Baker. 
Mr F. W. Aston. 

Other Members of Council: 

Dr Marshall. Prof. Marr. 
Prof. Newall. Mr C. T. Heycock. 
Dr Fenton. Mr H. Lamb. 

Prof. Inglis. Prof. Hopkins. 
Mr Rivers. Dr Bennett. 
Mr F. A. Potts. Dr Hartridge. 

The following were elected Fellows of the Society: 

T. M. Lowry, M.A., Professor of Physical Chemistry. 
S. Pollard, M.A., Trinity College. 

The following were elected Associates of the Society: 

E. S. Bieler, Gonville and Caius College. 
T. M. Cherry, Trinity College. 
L. Harding, Gonville and Caius College. 
W. W. Hurst, Jesus College. 
I. Jones, Emmanuel College. 
E. B. Ludlam, Trinity College. 
J. K. Roberts, Trinity College. 
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The following Communications were made to the Society: 

1. On the stability of the steady motion of viscous liquid contained 
between two rotating co-axal circular cylinders. By K. Tamaxt and 
W. J. Harrison, M.A., Clare College. 

2. Sur le principe de Phragmén-Lindeléf. By M. Marcet Riesz 
and Professor G. H. Harpy. 

3. A note on the nature of the carriers of the Anode Rays. By 
G. P. Tomson, M.A., Corpus Christi College. 

4. On the distribution of primes. By M. H. Crammer. (Communicated 
by Professor G. H. Hardy.) 

5. Note on Ramanujan’s trigonometrical function Cq (n), and certain 
series of arithmetical functions. By Professor G. H. Harpy. 

6. On the representation of an algebraic number as a sum of four 
squares. By L. J. Morne, M.A., St John’s College. (Communicated 
by Professor H. F. Baker.) . 

7. The parity of the number which enumerates the Partitions of a 
number. By Major P. A. MacManon, 

November 8, 1920. 

In the Cavendish Laboratory. 

Mr C. T. R. Witson, Vicr-PRresIDENT, IN THE CHAIR. 

The following was elected an Associate of the Society: 
M. H. Belz, Gonville and Caius College. 

The following communication was made to the Society : 
The Inner Structure of Atoms. By Professor Sir Ernest RuTHER- 

FORD. 

November 22, 1920. 

In the Comparative Anatomy Lecture Room. 

ProFEssor SEWARD, PRESIDENT, IN THE CHArR. 

The following were elected Fellows of the Society: 

U. R. Evans, M.A., King’s College. 
J. EH. G. Harris, B.A., Jesus College. 
L. J. Mordell, M.A., St John’s College. 
K. K. Rideal, M.A., Trinity Hall. 
R. C. Staples-Browne, M.A., Emmanuel College. 
B. M. Wilson, B.A., Trinity College. 
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The following were elected Associates of the Society: 

J. Humphries, Queens’ College. 
A. C. G. Menzies, Christ’s College. 
Miss Lorna M. Swain, Newnham College. 

The following Communications were made to the Society: 

1. A note on Vital Staining. By F. A. Potts, M.A., Trinity Hall. 

2. Preliminary note on the Superior Vena Cava of the Cat. By 
W. F. Lancuester, M.A., King’s College, and A. G. THackEr. 

3. Preliminary note on a cynipid hyperparasite of Aphides. By 
Miss M. D. Havitanp. (Communicated by Mr H. H. Brindley.) 

4. The Problem of Soaring Flight. By E. H. Hankin, 8c.D., 
St John’s College. (Communicated by Mr H. H. Brindley.) 

5. On the rotation of a non-spinning gyrostat. By Sir GrorcE 
GREENHILL. 

6. A method of testing Triode Vacuum Tubes. By E. V. APPLETON, 
M.A., St John’s College. 

January 24, 1921. 

In the Cavendish Laboratory. 

PROFESSOR SEWARD, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society: 

E. D. Adrian, M.D., Trinity College. 
A. Munro, M.A., Queens’ College. 
E. G. D. Murray, M.A., Christ’s College. 
H. W. C. Vines, M.B., Christ’s College. 

The following were elected Associates of the Society: 

Miss M. Barker, Newnham College. 
J. Burtt-Davy. 
D. A. Keys, Corpus Christi College. 

The following Communications were made to the Society: 

1. (a) Experiments with Rotating Fluids. 

(b) Tides in the Bristol Channel. By G. I. Tayzor, M.A., Trinity 
College. 

2. The deterioration of fabric under the action of Light and its 
- physical explanation. By F. W. Aston, M.A., Trinity College. 

3. Note on Constant Volume Explosion Experiments. By 8. Lrss, 

M.A., St John’s College. 
4. On the function [x]. By Vieco Brun. (Communicated by 

Professor G. H. Hardy.) 
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February 7, 1921. 

In the Botany School. 

PROFESSOR SEWARD, PRESIDENT, IN THE CHAIR. 

The following was re-elected a Fellow of the Society: 
EK. H. Hankin, Sc.D., St John’s College. 

The following were elected Associates of the Society: 

K. N. Hewitt, Trinity College. 
W. Schlundt. 

The following Communications were made to the Society: 
1. The Development of Photosynthetic Activity during Germination. 

By G. E. Briaes, M.A., St John’s College. (Communicated by Professor 
Seward.) 

2. A theorem concerning summable series. By Professor G. H. 
Harpy. 

3. Vectors and Tensors. By E. A. Mitnz, M.A., Trinity College. 
4. (a) Standing waves parallel to a plane beach. 

(6) A kinetic theory of the Universe. By H. C. Pocxuneron, 
M.A., St John’s College. 

5. (a) A configuration in four dimensions. 
(6) The representation of a cubic surface on a quadric surface. 
(c) On Delaunay’s method in planetary theory. 
(d) A periodic motion in dynamics. By Professor H. F. Baxerr. 

February 21, 1921. 

In the Anatomy School. 

PRoressor SEWARD, PRESIDENT, IN THE CHAIR, 

The following were elected Fellows of the Society: 
G. S. Adair, B.A., King’s College. 
H. 8. Carslaw, Sc.D., Emmanuel College. 
G. N. Nicklin, M.A., St John’s College. 
D. F. W. Scanlan, B.A., Jesus College. 
J. T. Wilson, M.A., St John’s College, Professor of Anatomy. 

The following was elected an Associate of the Society: 

B. N. Banerji, Clare College. 

The following Communication was made to the Society: 
The present position of the Helmholtz theory of hearing. By | W. Harrriver, M.D., King’s College. | 
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February 28, 1921. 

In the Cavendish Laboratory. 

Pror. Str Ernest RUTHERFORD, VICE-PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society: 

G. E. Briggs, M.A., St John’s College. 
H. T. H. Piaggio, Se.D., St John’s College. 

The following Communications were made to the Society: 

1. On the nature of crystal-reflection of X-rays. By Professor Sir 
JosEpH Larmor. 

2. An experiment on focal lines formed by a Zone plate. By G. F.C. 
SEARLE, Sc.D., Peterhouse. 

3. The origin of the disturbances in the initial motion of a shell. 
By R. H. Fowter, M.A., Trinity College, and C. N. H. Lock, B.A., 

Gonville and Caius College. 

4. On the latent heats of Vaporisation. By E. K. Riprat, M.A., 
Trinity Hall. 

March 7, 1921. 

In the Comparative Anatomy Lecture Room. 

PROFESSOR SEWARD, PRESIDENT, IN THE CHAIR. 

The following was elected a Fellow of the Society: 

R. E. Holthum, B.A., St John’s College. 

The following was elected an Associate of the Society: 

A. Harrison White. 

The following Communications were made to the Society: 

1. A peculiar case of heredity in the Sweet Pea. By Professor 

PUNNETT. 

2. (a) Insect Oases. 

(b) Wing Teratologies in Diptera. By C. G. Lams, M.A., Clare 

College. 

3. Some Alcyonaria in the Cambridge Museum. By 8. J. Hickson, 

M.A., Downing College. (Communicated by Mr H. H. Brindley.) 

4, The Mechanism of Ciliary Movement. By J. Gray, M.A., King’s 

College. 

5. The influence of function on the conformation of bones. By 

A. B. Appteton, M.A., Downing College. 

6. A Note on the Hydrogen Ion Concentration of some Natural 

Waters. By J. T. Saunpers, M.A., Christ’s College. 
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7. Animal oecology in deserts. By P. A. Buxton, M.A., Trinity 
College. 

8. The Biology of the Crown Gall Fungus of Lucerne. By J. Lina, 
M.A., Emmanuel College. 

May 2, 1921. 

In the Cavendish Laboratory. 

PROFESSOR SEWARD, PRESIDENT, IN THE CHAIR. 

The following Communications were made to the Society: 

1. On active molecules in physical and chemical reactions. By 
HK. K. Rrpeat, M.A., Trinity Hall. 

2. (a) Anexperiment which favours the resonance theory of hearing. 
(6) A criticism of Wrightson’s theory of hearing. 

(c) A method of projecting interference bands. 

(d) A method of projecting absorption spectra. 

(e) The shift of absorption bands with change of temperature. 
By H. Harrrives, M.D., King’s College. 

3. The cooling of a solid sphere with a concentric core of a different 
material. By H. 8. Carsuaw, Sc.D., Emmanuel College. 

4. An alignment chart for thermodynamical problems. By C. R. G. 
CosEns, B.A. (Communicated by Professor Inglis.) 

5. Symbolical methods in the theory of Conduction of Heat. By 
T. J. Pa. BRomwicg, Se.D., St John’s College. 

6. On a property of focal conics and of bicircular quartics. By 
C. V. Hanumanta-Rao, M.A., Trinity College. (Communicated by 
Professor H. F. Baker.) 

May 16, 1921. 

In the Comparative Anatomy Lecture Room. 

PROFESSOR SEWARD, PRESIDENT, IN THE CHAIR. 

The following was elected an Associate of the Society: 

A. Pratt, Magdalene College. 

The following Communications were made to the Society: 

1. The soaring flight of Dragon-flies. By E. H. Hanxtn, Sce.D., 
St John’s College. 

2. An unusual type of secondary male characters in the Diptera. 
By C. G. Lamp, M.A., Clare College. 

3. A note on the mouth-parts of certain Decapod Crustaceans By 
L. A. Borrapaize, M.A., Selwyn College. 
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4. Hermaphrodite Sea-urchins. By J. Gray, M.A., King’s College. 
5. (a) Preliminary note on the development of muscle, bone and 

body-weight in Sheep. 

(b) On the alleged Inheritance of an acquired Character in Man. 

(c) On the so-called Gluteus Maximus of Tarsius. By A. B. 
AppLteton, M.A., Downing College. 

6. On the effect of a magnetic field on the intensity of spectrum lines 
(second paper). By H. P. Waray, M.A., Christ’s College. (Communicated 
by Professor Sir Ernest Rutherford.) 

7. The theoretical value of Sutherland’s constant in the kinetic 
theory of Gases. By C. G. F. Jamzs, Trinity College. (Communicated 
by Mr R. H. Fowler.) 

__ 8. Orthogonal Systems and the moving trihedral. By T. 8S. Yane. 
(Communicated by Professor H. F. Baker.) 
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