(

Digitized by the Internet Archive in 2009 with funding from University of Toronto

Koninklijke Akademie van Wetenschappen te Amsterdam.

PROCEEDINGS

OF THE

SECTIONOFSCIENCES.

VOIUMEV.

AMSTERDAM,
JOHANNES MULLER.
June igo3.

Translatedfron: Verslagen van de Gewone Vergaderingen der Wis- en Naturkundige Afdeeling van 31 Mei 1902 tot 24 April 1903. Dl XI).

CONTENTS.

Page

Proceedings of the Meeting of May 31 . 1902 1

》

》
" " > September 27219

* October 25 279
* " ${ }^{\text {\% November } 29}$ 359

K0ninkliJke akadenie van wetenschappen te amsterdam.

PROCEEDINGS OF THE MEETING: of Saturday May 31, 1902.

(Translated from: Verslag van de gewone vergadering der Wis- en Natunkundige Afdeeling van Zaterdag 31 Mei 1902, Dl. X1).

CONTENTS.

J. D. vin der Wabls: "Ternary systems," IV, p. 1.
J. D. vix dere Wiils Jr.: "Statistical clectro-mechanics," (Communicated by Prof. J. D, vax dea Wials). p. 22.
E. Verschaffelt: "On the prussic acid in the opening buds of Prunus," (Communicated by Prof. Hego de Vrifs). p. 31.
P. Zafman: "Observations on the magnetic rotation of the plane of polarisation in the interior of an absorption band." p. 41. (with one plate)
J. W. vax Wishe: "A new method for demonstrating cartilaginous mikroskeletuns," $p 47$.
H. M. Kimschefr: "Intramolecular rearrangement of atoms in azoxybenzene and its derivatives", (Communicated by Prof. C. A. Lobry de Breys). p. 51 ,
P. II. Scholts: "On the connection of the planes of position of the angles formed by two spaces Sn passing through a point and incident spacial systems," p. 53.
J. W. Lingrlas: "The principle of entropy in physiology", II. (Communicated by Prof. T. Place). p. 57. (with one plate).
E. F. vas de Sinde Bakiftaen: "On the yearly periodicity of the rates of the standardclock of the observatory at Leyden, Hohwü Nr. 17," (First pari). p. 68.

The following papers were read:
Physics. - "Termany systems." IV. By Prof. J. D. vis der Wials. (Continued firom Vol. IV pag. 694).
B. If we put $T=$ constant in equation I of our previons commumication, we find the relation between $d_{p}, d_{e_{2}}$ and dy, at constant temperature in the following form:

$$
\begin{align*}
v_{2_{1}} d p & =\left\{\left(x_{2}-x_{1}\right) \frac{\partial^{2} \zeta}{\partial x_{1}{ }^{2}}+\left(y_{2}-y_{1}\right) \frac{\partial^{2} \zeta}{\partial e_{1} \partial_{!} y_{2}}\right\} d w_{1}+ \\
& +\left\{\left(x_{2}-x_{1}\right) \frac{\partial^{2} \zeta}{\partial x_{1} \partial y_{1}}+\left(y_{2}-y_{1}\right) \frac{\partial^{2} \zeta}{\partial y_{1}{ }^{2}}\right\} d y_{1} . \tag{II}
\end{align*}
$$

Proceedings Royal Acad. Amsterdam. Vol. V.

For a binary system this relation is simplified to:

$$
c_{31} d_{p}=\left(x_{3}-x_{1}\right) \frac{\partial^{\prime} \zeta}{\partial c_{1}{ }^{3}} d_{c_{1}}
$$

We know from the propertics of a binary system, that we have then a curve $p=f\left(x_{1}\right)$ and a curve $p=f\left(r_{z}\right)$, and that the branch representing liguid phases is abways found higher than the one representing vapour phases. Both curves start at the point representing the vapour-tension of the first component, and finish at the corresponding point for the second component. This however is only true if the temperature is lower than $T_{\text {cr }}$ of that component. If $T>\left(T_{c r}\right)_{2}$ then the two corves are joined thently so that they form a single one.

For a ternary system we have to deal with two surfaces $p=f\left(x_{1}, y_{1}\right)$ and $p^{\prime}=f^{\prime}\left(x_{2}, y_{2}\right)$ insteat of the curves $\rho=f^{\prime}\left(x_{1}\right)$ and $p=f^{\prime}\left(x_{2}\right)$. We will use as a rule the index 1 for a liquid phasis, the index 2 for a vapour phasis. These surfaces cover the rectangular triangle $O . X Y$, and above the angles of this triangle they have points in common. The common ordinates represent the maximum tensions of the three components. This hoids good, if the temperature is lower than $T_{\text {ir }}$ of each of the components. In some cases these sheets may have still another point in common, just as is the case with the two branches for a binary mixture if a maximum pressure occurs. But for the present we will disregard the existence of such a maximum pressure. If $T<T_{c r}$ of one of the components then the two sheets of the p-surface do not cover any longer the whole rectangular triangle, but they have joined thently to one surface.

In the above equation II the properties of these two sheets of the p-surface are expresed in the form of a differential equation; - we will now proceed to deduce the principal properties from this equation. Even for the pressure-curves of a binary mixture the number of these properties is already considerable. For a ternary system they will of course be still much more numerous, and even properties occur which have no analogon for a binary system. But many of the properties of the pressure-curves of a binary mixture may directiy be extended to the corresponding ones for the pressure surfaces of a temary mixture. Such properties need hardly be treated here, as we suppose the properties of a binary mixture to be known. Accordingly I will limit myself in the main to treating those properties that are proper to ternary systems but not to binary systems. The study of the ternary systems however has induced me, to give a more detailed discussion of some equations, given in Cont. II for a binary mixture, from a more general point of view. And in some cases this detailed
disenssion has enabled me to wive a more precise and aceurate form to some of the equations and to some of the quantities oceurming in them. In these cases I shall discuss some properties more extensively, concerning which I hat else contined myself to refer to Cont. II.

From a theoretical point of view the relation between p, r_{1} and !/1 at given temperatme is not more important than that between v_{1}, r_{1} and y_{2} or between x_{2}, x_{2} and y_{2}. But even for a simple substance the experimental investigation concerning the maximum pressure has first been executed, and only in these later years it has been followed by an investigation concerning the densities. In the same way we may expect, that also for a termary system the experiment will occopy itself in the first place with the determination of the pressure, and that the investigation as to the densities of the phases coexisting with other phases, will follow later. The surfere representing for all temperatures the pressure as finction of the composition of a binary misture has been called by me "surface of saturation". We might call for a ternary system the surface whose properties we are about to investigate "surface of saturation for a given temperature". Wherever it is not ambiguous I shall speak simply of "surface of saturation".

In the following considerations we will take triangle (1) S° in a horizontal plane; the direction in which the pressme is latid off is then vertical. We represent the maximum pressures of the three components by p_{1}, p_{9} and p_{3} where we choose the indices in such a way that

$$
p_{1}<p_{2}<p_{3}
$$

If $T>T_{\text {cr }}$ for one of the components, then the surface of saturation does not reach the corresponding angle and the corresponding maximum pressure does not exist any longer.

a. Catres of equal pressitre.

For curves of equal pressure, we have $d_{p}=0$, and equation II is reduced to:

$$
\begin{aligned}
& \left\{\left(x_{2}-v_{1}\right) \frac{\partial^{2} \zeta}{\partial x_{1}^{2}}+\left(y_{2}-y_{1}\right) \frac{\partial^{2} \zeta}{\partial x_{1} \partial y_{1}}\right\} d x_{1}+ \\
+ & \left\{\left(x_{2}-x_{1}\right) \frac{\partial^{2} \zeta}{\partial x_{1} \partial y_{1}}+\left(y_{2}-y_{1}\right) \frac{\partial^{2} \zeta}{\partial y_{1}^{2}}\right\} d y_{3}=0 .
\end{aligned}
$$

The projection of these curves is of comse the same as the projection of the comodal curve of the 5 -surface constrmed for this pressure. We have diseussed this progection in our first commmication p. 461. If ρ^{\prime} is chosen such that $\mu_{2}<\mu<\mu_{2}$. the two branches of this projection cut the two siden of the triangle arljacent
to the right angle if $p_{0}<1,<1$, then they an the lappothenne and the wher side correpombine with the third compment. If
 second compenem. We mizht tind the eppation of the comes if

 yed in some canes we may fibut the mpation appoximately. A digression in order to diserns theere gmantion (ambor be left out here: dee we shall always be comironted with the same manswered questions in all subsequent problems.

The valne of \boldsymbol{B}^{5} is given p .44 , wol. 11 , in the followime form:

We omit the linear function of and $\%$, as it has no influence on the phememema of equilitrimen. So the vathe of semsists of a pure function of or and !/ and of another part whell fullils the well known comdition:

$$
(1)_{n}, T=r, l_{1} .
$$

This second patt is known if the equation of state is known. In fig. 1, p. 450 I have represented graphically this second part such as we may conclude its course to tre if we only assume the principle of contimity. In what follows we will extend the principle of contimity so far, that we assume the equation of state to vary fluently if x and!/ vary thently. We now imagine the second part of ζ to he comstrued for all mixtures, i. e. for all values of x and y, and for all vathes of p. If we now put $p=$ constant, then we have an anxiliary quanty, which raties with x^{2} and y, and the knowledqe of whose properties is the condition for the solving of all questions relating to the equilibrimm, cither of a hinary, or of a ternary mixture. or of any system of still more components. As we have already stated the knowledge of this quantity depends on the knowledge of the elpation of state. From this aplears, how absurd the opinion is, that knowledge of the equation of state would not be required for the knowledtere of theres syoms. Yob we find this opinion often expresed.
 he repuired, hut for much more complicated systems it would be totally superthoms: I have introntuced this anxiliary quantity already before (see i. a. Cont. II, p. 147); I shall represent by \boldsymbol{t} the puotient. obtaned by dividing it hy MR'T'. Now we have:

$$
\zeta=1 / R T^{\prime}\{(1-x-y) \log (1-x-y)+x \log x+y \log y+n\}
$$

From this follows

$$
\begin{aligned}
& \left(\frac{d \xi}{d, v}\right)_{p, T, y}=M R T\left\{\log ^{2, n} \frac{x}{1-x-y}+\left(\frac{d n}{d x}\right)_{p, T, y}\right\} \\
& \left(\frac{d \zeta}{d y}\right)_{p, T, x}=M R T\left\{\log \frac{y}{1-x-y}+\left(\frac{d n}{d y}\right)_{p, T, x^{x}}\right\} \\
& \left(\frac{d^{*} 3}{d x^{2}}\right)_{p, T, y}=M R T\left\{\frac{1-y}{x(1-x-y)}+\left(\frac{d^{2} \mu}{d^{2} \mu}\right)_{p, T, Y}\right\} \\
& \left(\frac{d^{2} \zeta}{d x d y}\right)_{p, T}=M R T\left\{\quad \frac{1}{1-x-y}+\left(\frac{d^{2} u}{d x u d y}\right)_{p, T}\right\} \\
& \left(\frac{d^{2} b}{d y^{2}}\right)_{p, T, x}=M R T\left\{\quad \frac{1-x}{y(1-x-y)}+\binom{d^{2} u}{d y^{2}}_{p, T x^{x}}\right\} \text {. }
\end{aligned}
$$

For brevity's sake I shall represent $\left(\frac{d \mu}{d x}\right)_{p, T, y}$ by u_{α}^{\prime}. With amalogons signification the symbols $u^{\prime} y, a^{\prime \prime},{ }^{\prime}, \ell^{\prime \prime} x y$ and $a^{\prime \prime}, y$ will be used.

We deluce firm the conditions of coexistence (see p. 551, 553 and 554 Vol. IV) the following relations.

$$
\begin{equation*}
\text { From }\binom{d_{j}}{d, v}_{1}=\binom{d_{0}^{*}}{d x}_{2} \text { follows } \frac{v_{1}}{1-r_{1}-y_{1}} e^{y^{y^{\prime}} x_{1}}=\frac{r^{\prime}}{1-r_{2}}-y_{2} e^{p^{\prime} x_{2}} . . \tag{1}
\end{equation*}
$$

From $\binom{d 5}{d y}_{1}=\left(\frac{d 5}{d y}\right)_{2}$ follows $\frac{y_{1}}{1-x_{1}-y_{2}} e^{y^{\prime} y_{1}}=\frac{y_{2}}{1-x_{2}}-y_{2} e^{v^{\prime} y_{2}}$.
And from $\left\{\xi-x \frac{d \xi}{d x}-y \frac{d \xi}{d y}\right\}_{2}=\left\{\xi-x \frac{d \xi}{d x}-y \frac{d \xi}{d y}\right\}_{2}$ follows:
$\left\{\log \left(1-x_{1}-y_{1}\right)+\mu_{1}-x_{1} \mu_{x_{1}-y_{1}}^{\prime} \mu_{y_{1}}\right\}=\left\{\log \left(1-x_{2}-y_{2}\right)+\mu_{2}-x_{2} \mu_{x_{3}}^{\prime}-y_{2} \mu_{y_{2}}^{\prime}\right\}(3)$.
From these equations (1), (2) and (3) again follows, that we can express the relation between the composition of the coexisting phates only then, if we know what variation in the equation of state is caused by the substitution of one of the components by another. So we find e. g. for the determination of the limiting value of the ratio of x_{1} and x_{2} in the case that x_{1} and y_{1} are infinitely small the equation :

$$
\log \frac{x_{2}}{x_{1}}=\boldsymbol{\mu}_{x_{1}}^{\prime}-\mu_{x_{2}}^{\prime} .
$$

If we exclude the knowledge of the equation of state, we can in nowise accome for the considerable differences which this matio show.
 Withont any relation 61 wher properties of the solvent or of the solved shloblame. Neither can wo areome for the valhe of his ratio,
 theory of mixtures: for this law is the salme fir ath substances and cannen therefore aromat for the differem vatues which this ratio has ill difterent cases. Therefore it appears commeibly that a closer
 I pass new to this invertigation.
We stat from the following equation, which may be considered as the detinition of the quantity under consideration:

$$
M B T u=\int_{n}^{b}{ }_{n}{ }^{n} l_{p}
$$

So in the first phace this quantity depends on p, but as the equation of stat for a mivare depends on the compunition, it also depends on x^{x} and ! We deduce from this equation:

If we write $\binom{d r}{d r}_{p}=-\binom{\frac{\partial p}{f_{r}}}{\partial_{r}}_{v}\binom{\frac{\partial r}{\partial p}}{\partial_{p}}_{x}$, we find also:

$$
\begin{aligned}
M R^{\prime} u_{x}^{\prime} & =-\int\left(\frac{\partial p}{\partial x}\right)_{v}\left(\frac{\partial v}{\partial p}\right)_{x} d p_{v}=-\int_{v=\infty}^{v}\left(\frac{\partial p}{\partial x}\right)_{v} d x \\
\text { or } M R T^{\prime} \mu_{x}^{\prime} & =\left(\frac{\partial \psi}{\partial x}\right)
\end{aligned}
$$

In Cont. II, p. 9 and p. 19 I have started from this last
 theres. I have ubtained the re-ult, that for low temperatmes pas may
 - $\frac{d T_{c r}}{d, r}$, if ly the symbel $T_{c r}$ we represent the temperature which would be the critical temperature of a lignid mixture if this mixture might he considered ats a simple substance: or, what comes to the same. $T_{\text {cr }}$ reprements that temperature fire which the theoretical isothermal of that mixture which we think always homogeneons. presents only whe horizontal tangent. and for which therefore maxi-mum- and minimum-pressure have coincided.

It is true that this quantity $T_{c r}$ is no experimental quantity, and
that we therefore might superficially think, that the introduction of $T_{r r}^{\prime}$ is of no use; but in the first place in rery many celses the critical temperatures, found experimentally, do not differ unth from this quantity and in the second place eren the simple assmmption, that this fuantity varies fluently with the composition, will yield many conchusions, confirmed by the experiments. As an instance I mention the comection of the fact, that if a mixture has a minimm critical temperature, a maximm-pressine is fomel on the comodal curve. A closer investigation of the signification of the quantity : itself will however enable us to give a still more exact form to all further conclusions which have heen dethued in this way, and to all further deductions which are important for the theory of mixtures. For the present I shall occupy myself only with the case that one of the coexisting phases is a raretied gas-phasis. In this case $\mu_{x_{2}}^{\prime}$ and $\iota_{y_{2}}^{\prime}$ may be neglected. For in the equation :

$$
M R T^{\prime} \boldsymbol{\mu}=\int^{p} r d p
$$

the value of r may be represented by $\frac{M R T}{p}$ if the phases are very rare, and this hofls for every mixture whatever its composition may be. Therefore we get by integration:

$$
M R T: G=M R T l_{p}+\varphi(T)
$$

In order to remain in accordance with the form of p. 450 , I will determine $\boldsymbol{\varphi}(T)$ such, that we may write:

$$
u=\log \frac{P}{1 / R T}+1
$$

This signifies in fig. 1 that the rapour branches coincide, whatever the value of x, y and $1-x-y$ may be.

In all such cases the equations (1) and (2) may be simplified at follows:

$$
\frac{x_{3}}{1-x_{2}-y_{2}}=\frac{x_{1}}{1-x_{1}-y_{1}} \cdot r^{y^{\prime} x_{1}}
$$

and

$$
\frac{y_{3}}{1-x_{2}-y_{2}}=\frac{y_{1}}{1-x_{1}-y_{1}} e^{y^{\prime} y_{1}}
$$

If the pressure increases μ_{x}^{\prime} and μ_{y}^{\prime} begin to differ from zero, and properly speaking these quantities always differ from zero. This is to be ascribed to the deviation from the lan of Boyme which oceme. in a different degree for different mixtures. But just as we do not commit considerable errors if we neglect the deviation from the lan
 bewlece this deviation for liquids, in the sathe wiy we may negleed
 complosition, if we are tration of at rate valums phatis, but if we
 load for alomalitios.

Let 1 new intigine for the ditherent mixtures the presolle fo be so
 Experimentally this cath of comse bot be performed withont disturbing.

 be reatiaded, get we maty fut the quertion. What wobld happen with tho ghantity mater considerallon, if we ateombing to the prinejple of
 we find the vatue of es for the liguid phasis in that dunble point, and we may write the equation:

$$
\begin{equation*}
m=\operatorname{len} \frac{\prime}{I / R T}+1 \tag{4}
\end{equation*}
$$

The presore fi in this equation is lhat one, which we have before called comedense-pressure. As hats alreaty been observed this state cambot the realied. Such at lignit, coexisting with such a vapour Would he at sate of equilibrimu: but an mastable one, or one that is metanable. It is howerer phsible hy increasing the pressure still mone to get in this way a homogeneons liguid which differs only slighty from the one mater consideration and which in fact ean be realised at a lomogeneons phasis. It appeas from dig. (1) that \boldsymbol{u} for this more compresed liguid is somewhat greater than the value written down in the lat equation. But again that smplas of the amomat of et maty he nergertet. Fin we have always:

$$
A K T d \boldsymbol{\prime}=r d p
$$

But if we calculate the suphlis of it, represents the liquid-volume. And unless the increase of the pressure shonld be excessive edp is a quantity withont significance, if x is a volume of a liguid. From this follows that the quantity which we have represented by $\boldsymbol{u}_{x_{1}}$ may be fomm apposimather in diffombationg the above equation 4 and therefore may be represented by:

$$
u_{x_{1}}^{\prime}=\frac{1}{l^{\prime}} \frac{d p^{\prime}}{d c_{1}}
$$

In the same way we have:

$$
\boldsymbol{u}_{y_{1}}^{\prime}=\frac{1}{p^{\prime}} \frac{d p^{\prime}}{d y_{1}} .
$$

so the dependence of $\boldsymbol{\mu}_{x_{1}}$ and $\mu_{y_{1}}^{\prime}$ on the coordinates x_{1} and η_{1} is reduced to the dependence of the coincidence-pressure on μ_{2} and I_{1}. The coincidence-pressures would be the maximmomepestures of the different mixtures, if they behwed like simple substamees. The following relation exists for the colncidence presures, at least approximately:

$$
-l_{o, t} \frac{p^{\prime}}{p_{e r}}=j \frac{T_{r r}-T}{T} .
$$

Consequently we find:
and $\quad \boldsymbol{i}_{S_{1}}^{\prime}=-\frac{j}{T} \frac{d T_{c r}}{d y_{2}}+\frac{d \text { log } p_{c r}}{d y_{1}}$
or $\quad \mu_{x_{1}}^{\prime}=-f \frac{T_{c r}}{T} \frac{\text { d loy } T_{c r}}{d_{1 r_{1}}}+\frac{d l_{01} p_{c r}}{d_{c_{1}}}$

$$
\mu_{x_{1}}^{\prime}=--\frac{f^{\prime}}{T} \frac{d T_{c r}^{\prime}}{d r_{1}}+\frac{d l_{0} \rho_{c r}}{d e_{1}}
$$

and

$$
\begin{equation*}
\boldsymbol{u}_{y_{1}}^{\prime}=-j \frac{T_{c r}^{r}}{T} \frac{d l_{0 y} T_{c r}}{d y_{1}}+\frac{d l_{0 y} p_{c r}}{d y_{1}} \tag{5}
\end{equation*}
$$

It is clear from the deduction that these formmbe mayy only be considered as an appoximation for the case, that the vapou-pressure is low, and therefore T much lower than $T_{\text {cr }}$. Puting $f^{\prime}=7$ we maty put the factor of the first term at a value of about 12 or 14 , and the factor of the second term is mity. If therefore the values of " lour $T_{\text {er }}$
 we find for n a conse not differmg much from proportionality to - $d T_{c r}$. So we obtain a result in a way, totally differing firom that in which I had obtained it hefore (Cont. II, p. I48 ete.) But in the way We have now followed we are enabled to add a correction term. (of comse these equations (5) and (6) are only approximations, and that, for several reasons. But we most distinguish between the chatacter of these appoximations. In the first place we have assumed that $a_{1,2}$ and $\mu_{5,}$ vamish for a vapom phasis, and so that $\boldsymbol{\sim}$ for different mixtures at the same pressure has the same value. If the density of the vapour phases is so small, that they do not perceptibly deviate fiom the laws of Boyde and Gay-Lossac everyone will agree that this approximation maty be admitted. In the second place we have ascribed to n for the liquid
state the value whied it has in the double-point, thongh the gressure exceeds that of the donbloopaint. This apporoximation comes the the satme as to saty that we heateret the volmate of the liguid eompared With that of the sapone : and alow this approximation is of so signi-

 is that we make noe of the following relation for the pressure of the double-point :

$$
-\log _{P_{c r}}^{P_{c}^{\prime}}=i\binom{\left.T_{c r}^{\prime}-1\right)}{T}
$$

if we suppore in this equation for all shbstances and so atso for all mixtures to the the same amb independent of the temperature. Therefore it we set:

$$
u^{\prime}=\frac{1 \cdot \rho_{1}^{\prime}}{f^{\prime} l_{1}^{\prime}:}
$$

We assume a relation, which is incontestable in all those cases, in Which the vapour-phatsis maty be considered ats a perfect gats. But if we do more and if we assume a peculiar property of the equation of state, as that one assumed in the formula for the pressure f^{\prime} of
 \therefore and ti ate contestable or not depents man the question whether the relation med is acourate. Themetore in applying the equations (5) :und (6) it is not our aim to ohtain mumerically perfectly reliable results. loat onl! to tret an ideat of the comse of the enexistene pressure for different mixtures which is in the matin reliahle, and which makes us understand the phenomena.

Aceording to the considerations, knowledge of the pressure of the donble-pmints is required for the determination of the shape of the surface of satmation. If we introbluce this pressure also into the eraphical representation. We add a third surface to the two surfaces. lignid sheet and rapour sheer. The thind sheet is found hetween the first and the second one and the only points which it has in common with them are those atwo the angles of the rightangled triangle. In the ease, that prints of maximum pressure occur, in which points the liquid sheet and the vapour sheet toneh each other, this third sheet also will tonch hoth of them. If we ent these three sheets by a plane ${ }^{\prime}=($ ', we get three sections and the projections of these sections are the curves, which we have already mentioned in (a) p. 3 as curves of equal pressure; to these howerer is added the curve of equal coincidence pressure. After this expatiation on the signification of the quantities occurring in formula II, p. 3, we
will return to the question if we can determine the shape of these projections. In these calculations we contine ourselves to the case of small vapour pressure.

We may put (see p. 7):

$$
\underset{1-x_{3}-y_{2}}{x_{2}}=\frac{x_{1}-e^{y^{\prime} x_{1}}}{1-x_{1}-x_{1}}
$$

and

$$
\frac{y_{2}}{1-y_{2}-y_{2}}=\frac{y_{1}}{1-n_{1}-y_{1}} e^{y_{2}^{\prime} y_{1}}
$$

Adding these equations we get:

$$
-1+\frac{1}{1-x_{2}-y_{2}}=\quad \frac{r_{1} e^{y^{\prime} x_{1}}+y_{1} e^{r^{\prime} y_{2}}}{1-x_{1}-y_{1}}
$$

${ }^{\circ}$

$$
\frac{1}{1-x_{2}-y_{2}}=\frac{1+x_{2}\left(e^{y^{\prime} x_{1}}-1\right)+y_{2}\left(e^{y^{\prime} y_{1}}-1\right)}{1-x_{1}-y_{1}}
$$

Hence also:

$$
x_{2}=--\frac{e^{u^{\prime} x_{1}}}{1+n_{1}\left(e^{n^{\prime} x_{1}}-1\right)+!_{1}\left(e^{y^{\prime} y_{1}}--1\right)}
$$

and

$$
\frac{y_{2}}{y_{1}}=\frac{e^{y_{1} y_{1}}}{1+x_{1}\left(e^{y^{\mu^{2}} x_{1}}-1\right)+y_{1}\left(e^{y^{\prime}} y_{1}-1\right)}
$$

In the same way $: \frac{x_{2}-x_{1}}{r_{1}}=\frac{\left(1-x_{1}\right)\left(e^{r^{\prime} x_{1}}-1\right)-y_{1}\left(e^{y^{p^{\prime}} y_{1}}-1\right)}{1+, w_{1}\left(e^{p^{\prime} x_{1}}-1\right)+y_{1}\left(e^{m^{\prime} y_{1}}-1\right)}$
and

$$
\frac{y_{2}-y_{1}}{y_{1}}=\frac{\left(1-y_{1}\right)\left(e^{y^{\prime} y_{1}}-1\right)-x_{1}\left(e^{y^{\prime} x_{1}}-1\right)}{1+x_{1}\left(e^{y^{\prime} x_{1}}-1\right)+y_{1}\left(e^{\mu^{\prime} y_{1}}-1\right)}
$$

If we substitute in equation II these values of $\cdot x_{2}-r_{1}$ and of $y_{2}-y_{1}$, and the values of $\frac{\partial^{2} \zeta}{\partial x_{1}{ }^{2}}, \frac{\partial^{2} \zeta}{\partial x_{1} \partial y_{1}}$ and $\frac{\partial^{2} \zeta}{\partial y_{1}{ }^{2}}$ found on page 5 and if we divide by JRTT then we find the following differential equations, where we denote for brevity's sake by N the nominator of the fractions indicating the values of $x_{2}-r_{1}$, and $y_{2}-y_{1}$

$$
\begin{aligned}
& 0=\frac{\left(1-x_{1}\right)\left(e^{y^{\prime} x_{1}}-1\right)-y_{1}\left(e^{y^{\prime} y_{1}}-1\right)}{N}\left\{\frac{1-y_{1}}{1-x_{1}-y_{1}}+x x_{1} u^{\prime \prime}{ }_{n_{1}}\right\} d x_{1}+ \\
& +\frac{\left(1-y_{1}\right)\left(e^{y^{\prime} y_{1}}-1\right)-x_{1}\left(e^{\mu^{\prime} x_{1}}-1\right)}{N}\left\{\frac{y_{1}}{1 \quad y_{1}-y_{1}}+y_{1} u^{\prime \prime} x_{1} y_{1 / 1}\right\} d x_{1}+ \\
& +\frac{\left(1-x_{1}\right)\left(e^{y^{\prime} x_{1}}-1\right)-y_{1}\left(e^{y^{\prime} y_{1}}-1\right)}{N}\left\{\frac{x_{1}}{1-v_{1}-y_{1}}+x_{1} \mu^{\prime \prime} x_{x_{1} y_{1}}\right\} y_{y_{1}}+ \\
& +\frac{\left(1-y_{1}\right)\left(e^{\mu_{2}^{\prime} y_{1}}-1\right)-x_{1}\left(e^{y^{\prime} x_{1}}-1\right)}{\boldsymbol{N}^{r}}\left\{\frac{1-x_{1}}{1-x_{1}-y_{1}}+y_{2} u^{\prime \prime} y_{1}\right\} d y_{1} .
\end{aligned}
$$

 then we may write this engathos in the following form:

 whath this interat for the progection of the erowe of equal pressure in : simpler way: In this enpation, where the index 2 indicates

$\ln \left(1-r_{1}-n_{1}\right)+n_{n_{1}, n_{1}}-n_{1} n_{1}^{\prime}-n_{1} n_{n_{1}}^{\prime}=\lim _{1}\left(1-x_{3}-n_{3}\right)+\log \frac{\rho}{1 / R T}+1$. fionn which follow:

In eonnertion with the value I have qiven before

$$
\operatorname{lon} \frac{p^{\prime}}{M M_{1} T}=\frac{1-w_{1}-y_{1}}{1-n_{2}-y_{0}}=1+x_{1}\left(e^{\mu_{x_{1}}}-1\right)+y_{2}\left(e^{u^{\prime} y_{1}}-1\right)
$$

This equation may be written in the following form:

Aheady long agro I have given a corresponding equation for a hinary sytem. It may also be found Cont. Il, p. 146, though in a somewhat moditied form. I have shown for the case of a binary mixture, that such an equation in some cases may represent a straight line, but that it in other eases represents a coure, which at certain values of x_{1} presents a maximum value for f. The intermediate forms may also ocerm of comse. The couse of the function \boldsymbol{f} being at least approximately determined hy that of the functions T_{0}, and $p \mathrm{pr}$, knowledge of the dependence of these functions on x and y would he required for an adequate discussion of equation (7). This would be possible according to my equation of state putting

$$
Y_{1, r}=\frac{8}{27} \frac{1}{6} \quad \text { and } \quad P_{c r}=\frac{1}{27} \frac{a}{l^{2}} .
$$

But as the \{uantities $\frac{u}{b}$ and $\frac{u}{b=}$ depend rather intricately on r and ! this would lead to an claborate disenssion, and I have not yet sue
ceeded in drawing simple conclusions from it in a concise maner and to formulate them sharply. In the formula

$$
u=-f\left(\frac{T_{c r}}{T}-1\right)+\log _{p} p_{c r}
$$

the discussion of the term $T_{\text {cr }}$ and of its first and second derivative function according to x and y would already require extensive calculations, and the discussion of lof for and its derivatives would still augment the difficulties considerably. And though it is true, as we have observed above, that generally the influence of loy $f p_{\mathrm{cr}}$ is not great, yet some cases occur, namely those, in which $\frac{d T_{\text {er }}}{d_{d r}}$ and $\frac{d T_{\text {or }}}{d_{y}}$ are small, in which this influence is decisise. Therefore for the present I will not enter into an accurate discussion, and only investigate some peculiar cases.

So as first case we may suppose that the three components have been chosen in such a way, that the course of p will be represented by a straight line for each of the three pairs, which may be formed from the components of the ternary system. This may be the case if the difference of the critical temperatures of the components of these pairs is considerable and the eritical pressures either differ but sighty or have such values that the expression:

$$
-j \frac{d T_{c r}}{T d x}+\frac{d p_{c r}}{p_{c r} d x}
$$

may be considered to be constant for each of the three pairs. Then we may expect that for the ternary system ! $n_{x_{1}}^{\prime}$ and $n_{y_{1}}^{\prime}$ will be everywhere constant or nearly constant, from which follows that d $\boldsymbol{h}_{x_{1}}^{\prime}$ and din' n_{1}^{\prime} may be neglected compared with $\mu_{x_{2}}^{\prime}$ and $\mu_{y_{1}}^{\prime}$. If we in fact neglect the ralues of d $u_{x_{1}}$ and d $\boldsymbol{a}_{y_{1}}^{\prime}$ the differential equation of the curves of equal pressure assumes the following form:

$$
0=d \log \left\{1+x_{1}\left(e^{p^{\prime} x_{1}}-1\right)+y_{1}\left(e^{y^{\prime} y_{1}}-1\right)\right\} .
$$

And we get for the equation of the projection of these curves:

$$
C=1+x_{1}\left(e^{\mu^{\prime} x_{1}}-1\right)+y_{1}\left(e^{\mu^{\prime} y_{1}}-1\right) .
$$

And we find for the value of p from equation (7)

$$
r=\operatorname{MRT}^{p_{0}-1}\left(1+y_{1}\left(e^{p^{\prime} x_{1}}-1\right)+y_{1}\left(e^{v^{\prime} y_{1}}-1\right)^{2}\right.
$$

The supposition namely that $d_{1} i_{x_{1}}$ and $d_{n_{y_{2}}}^{\prime}$ are zero comes to the
 We have also:

$$
\boldsymbol{u}_{1 u_{1} / 2}=\boldsymbol{\mu}_{0}+\ldots+r_{1} c_{1}+n_{1} c_{2} .
$$

Forom this wo dedmed that the liguid sheet of the satmation surfice is a platre ame on hatl:

$$
\begin{equation*}
r=p_{1}\left(1-r_{1}-n_{1}\right)+p_{2} r_{1}+p_{3} 1_{1} \tag{8}
\end{equation*}
$$

We deduce llis fimm for f ly making use of the relations for cach of the compronents:

$$
\begin{aligned}
& r_{1}=M / A_{1} T_{r^{\prime}} \mu_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& I_{s}=M R T_{n} n_{0}^{v_{0}}+y_{y_{1}}-1
\end{aligned}
$$

The value $r^{p^{\prime}{ }_{3}}$ which is comstant in this case, is equal to $\frac{\rho_{2}}{\rho_{1}}$ and the value of $e^{u^{\prime}} y_{1}$ is equal to $\frac{p_{2}}{l_{3}}$.

The lines of equal presure for liquids are therefore all parallel to eath other. If $\mu=\rho^{\prime}$, the projection of such a line is:

$$
1-x-\frac{p_{3}-p_{2}}{p_{2}-p_{1}} y=0
$$

It cuts therefore the I-axis at the point $y=\frac{p_{2}-\mu_{1}}{p_{3}-p_{2}}$. It appears that in this case we have the interesting circumstance, that the addition of a substance with a friven maximum tension to a binary mixture whose vapour pressure is equal to that maximum tension, does not bring about any variation of that pressure, however great or small the added quantity may be.

The other line of equal pressure, the section of the vapour sheet, lying at the same height of f, and representing phases coexisting with those of the first line, may be deduced from:

$$
p=p_{1}\left(1-x_{1}-y_{1}\right)+p_{2} x_{1}+p_{3} y_{1}
$$

if we express in this equation x_{1} and y_{1} in x_{2} and y_{2}; and this may be easily done if $\mu_{x_{2}}^{\prime}$ and $\mu_{y_{2}}^{\prime}$ vanish, and $\mu_{x_{1}}^{\prime}$ and $\mu_{y_{1}}^{\prime}$ may be ronsidered as constants. We write then:

$$
\frac{x_{1}}{1-x_{3}-y_{1}}=\frac{x_{2}}{1-x_{3}-y_{2}} e^{-\mu_{x_{1}}^{\prime}}
$$

and

$$
\frac{y_{1}}{1-r_{1}-n_{1}}=\frac{y_{2}}{1-r_{2}-n_{2}} e^{-\mu_{y_{1}}}
$$

These equations would also hold, if $\mu_{x_{1}}$ and $\mu_{y_{1}}^{\prime}$ still depended on x_{1} and y_{1}, but then it would not be possible to express r_{1} and y_{1} in x_{3} and y_{2}. Performing the substitutions mentioned we get:

$$
\begin{equation*}
{ }_{l^{\prime}}^{1}=\frac{1-x_{3}-y_{3}}{p_{1}}+\frac{x_{2}}{p_{2}}+\frac{y_{3}}{p_{3}} \tag{!}
\end{equation*}
$$

As it is however not only on aim to obtain the results, hut as we also wish to interpret the equations given before, we return to equation II in order to determine the line of equal pressure "for the vapour phases.

If we continue to use the index 2 for the vapour phasis, and the index 1 for the liquid phasis, but if we now apply equation II 10 the rapour phases, it assumes the following form:

$$
\begin{aligned}
v_{12} d p & =\left\{\left(v_{1}-x_{2}\right) \frac{\partial^{2} \zeta}{\partial x_{3}{ }^{2}}+\left(y_{1}-y_{2}\right) \frac{\partial^{2} \zeta}{\partial x_{3} \partial y_{2}}\right\} d x_{3}+ \\
& +\left\{\left(x_{1}-x_{3}\right) \frac{\partial^{2} \zeta}{\partial x_{2} \partial y_{2}}+\left(y_{1}-y_{2}\right) \frac{\partial^{3} \zeta}{\partial y_{2}{ }^{2}}\right\} d y_{3} .
\end{aligned}
$$

As we may neglect $\boldsymbol{\mu}_{x_{3}}^{\prime}$ and $\boldsymbol{\mu}_{y_{2}}^{\prime}$ for the vapour phases, we may also neglect the second derivatives of μ; and we may put:

$$
\frac{\partial^{3} \zeta}{\partial x_{2}{ }^{2}}=M R T \frac{1-y_{2}}{x_{2}\left(1-x_{2}-y_{2}\right)}, \frac{\partial^{2} \zeta}{\partial x_{2} \partial y_{2}}=M R T \frac{1}{1-x_{3}-y_{2}}
$$

and

$$
\text { We have } v_{12}=v_{1}-v_{2}-\left(x_{1}-x_{2}\right)\left(\frac{d v}{d x_{2}}\right)_{p}-\left(y_{1}-y_{3}\right)\left(\frac{d v}{d y_{2}}\right)_{p} ; \operatorname{and}\left(\frac{d v}{d r_{3}}\right)_{p}
$$

and $\left(\frac{d v}{d y_{2}}\right)_{p}$ are zero for the vapour which we assume to follow the law of Boyle, and so to occupy the same volume, if the pressure and the number of molecules are constant. If we neglect moreover the volume v_{1} of the liquid compared with v_{2} the volume of the vapour, then we get after division by MR'T:

$$
\begin{aligned}
-\frac{d p}{p} & =\left\{\left(x_{1}-x_{2}\right) \frac{1-y_{2}}{x_{2}\left(1-x_{2}-y_{3}\right)}+\frac{y_{1}-y_{2}}{1-x_{2}-y_{3}}\right\} d x_{2}+ \\
& +\left\{\frac{x_{1}-x_{2}}{1-x_{2}-y_{2}}+\left(y_{1}-y_{2}\right) \frac{1-x_{2}}{y_{2}\left(1-x_{3}-y_{2}\right)}\right\} d y_{2} .
\end{aligned}
$$

For a binary system this yields the well known equation:

$$
\frac{d p}{p}=\frac{x_{2}-x_{1}}{x_{2}\left(1-x_{3}\right)} d x_{2} .
$$

If limplier we substatute fore $r_{1}-r_{3}$ and $!/ 2-1 / 2$ the values:
then we erot by interation:

III in commedion with the vathe of " $0^{-a^{\prime}}$ and ${ }^{-3} 1 / 1$ given betore:

$$
\prime=\frac{1}{\left(1-r_{9}-l_{2}\right)+r_{2} \frac{P_{1}}{P_{3}}+y_{2} \frac{\mu_{1}}{\mu_{3}}}
$$

The eonstimt r is wi comse the pressure for the case that x_{8} and $!/ 2$ are equal to zero, so it is equal to μ_{1}, and we find again equation (9). If we now trive to p the same value as for the liquid sheet,
 lind lon $\mu^{\prime}=\mu_{1}$:

$$
1-r^{\prime}:=\frac{I^{\prime}: I_{3}-l_{1}^{\prime}}{I_{1}^{\prime}: I_{3}^{\prime}-l_{1}^{\prime}}:
$$

a line which ! ichls ! $=1$ for $r_{2}=0$ amd:

$$
\therefore=\begin{aligned}
& \prime_{3}: I_{3}^{\prime}-\rho_{1}^{\prime} \\
& I_{2}^{\prime} I_{3}^{\prime}-\rho_{1}^{\prime}
\end{aligned}
$$

for the point of interection with the axis for the third component. This value is of conse the vilue of y_{y} for the pressure j_{2} of the vapour phasis of the himary system consisting of the first and the thind component. The projections of these vapour lines of equal pressure we again parallel.

The line:

$$
\frac{1}{p^{\prime}}-\frac{1}{p_{1}}=x_{2}\left(\frac{1}{p_{2}}-\frac{1}{p_{1}}\right)+y_{2}\left(\frac{1}{p_{3}}-\frac{1}{p_{1}}\right)
$$

is displaced parallel to itself, when the value of p varies. The vapour sheet consists therefore of parallel lines and may be considered as a cylindrical surface. The section with the $P^{\prime}()^{I}$ plane is a hyperbola, and also that with the $I^{\prime}(1)$ plane.

It we cut the sheet of the coincidence pressures also at the same
height, we get a third line, which lies between the fwo former ones, and Which we have already mentioned in one first communieation ath the projection of the line of the double-points. The equation of this lime may be found from the equations of p. 8 and 9 namely from:

$$
\begin{aligned}
& \frac{1}{p^{\prime}} \frac{d p^{\prime}}{d x}=\boldsymbol{\mu}_{x_{1}}^{\prime} \\
& \frac{1}{p^{\prime}} \frac{d p^{\prime}}{d y}=\boldsymbol{\mu}_{y_{1}}^{\prime}
\end{aligned}
$$

In this case we have $\mu_{x_{1}}^{\prime}=\log \frac{p_{2}}{p_{1}}$ and $\mu_{y_{1}}^{\prime}=\log \frac{p_{3}}{p_{1}}$; integrating we find for the equation of this curve:

$$
\log p^{\prime}=c+x \log \frac{p_{2}}{p_{1}}+y \log \frac{p_{3}}{p_{1}}
$$

If x and $y=0$, this third sheet coincides with the fwo others, and $p^{\prime}=p_{1}$; from this the value of C may be calculated. We may also write this equation in the following form:
or

$$
\begin{aligned}
p^{\prime} & =p_{1}^{(1-x-y)} p_{3}^{x} p_{3}^{y} \\
\log p^{\prime} & =(1-x-y) \log p_{1}+x \log p_{3}+y \log p_{3} .
\end{aligned}
$$

This equation also represents a right line, which is displaced parallel to itself, if p^{\prime} varies.

So we find very simple lines for the three curves, which we get in this case for a binary system, namely a right line, a hyperbola, and between them an exponential curve.

We shall now discuss the case which differs most from that which we have treated, namely that, in which each of the pairs that may be formed from the components of the ternary system, presents amaximum pressure. The critical temperatures of the components do not differ much in this case, and for each pair a composition may be found, for which the function \boldsymbol{u}^{\prime} vanishes. Then we may expect. that for the ternary system a value for x_{2} and for y_{1} may be found for which the values of $\boldsymbol{\mu}^{\prime}{ }_{x_{1}}$ and $\boldsymbol{\mu}^{\prime} y_{y_{1}}$ are equal to zero. If the function $\boldsymbol{\mu}^{\prime}$ depended only on $T_{c r}$, then we might simply express this in properties of $T_{c r}$, and we might say: for each of the pairs a minimum critical temperature occurs, so we may also expect a minimm value for $T_{c r}$ for the ternary system. As μ still contains the term $\log p_{c r}$, the same set of values of x_{1} and y_{1} which yields the minimum value of $T_{c r}$ will not make $\mu^{\prime}{ }_{n_{1}}$ and $\mu_{y_{1}}^{\prime}$ vamish. This agrees indeed with the considerations for a binary mixture, given in Cont. II.

For values of x_{1} and y_{1} differing only slightly from those, for which
 the smatl in this rase hat the serosel derivatione ont the wher batal will be derosive for the eobrese.

It appeats alreaty form this fom of phat that pressure of this ststem may be considered ats a comedence pressure, and ats this system can be realised, it may he eomsidered as an ordinary maxi-
 We maty put,$^{u^{\prime} r_{1}}-1=!^{\prime}$ and $n^{u_{1}} v_{1}-1=n^{\prime}$, n_{1} and

$$
\ln , m_{1}\left\{1+r_{1} u_{s_{1}}^{\prime}+y_{2} \boldsymbol{u}_{n_{1}}^{\prime}\right\}=n_{1} u_{r_{1}}^{\prime}+y_{2} u_{y_{1}}^{\prime},
$$

then we find fon mixatres, whose componition does not difter much from x_{n} alled ! l_{n} :

$$
\operatorname{lun}_{p_{m}}^{\prime_{2}^{\prime}}=u_{s_{1}, y_{1}}-u_{n}
$$

If we write:
 We may write the last eqmation:

$$
\log _{0} \frac{p^{\prime}}{p_{n}}=\frac{1}{2}\left\{\left(e_{1}-r_{m}\right)^{2} n^{\prime \prime}{ }_{5 m}+\underline{2}\left(r_{1}-r_{m m}\right)\left(y_{1}-y_{m}\right) \ell_{u_{m y m}^{\prime \prime}}+\left(y_{1}-y_{m}\right)^{2} \iota_{y m}^{\prime \prime}\right\}^{\prime}
$$

If we only inguire into the mathematical consequences of this last equation, without trying to answer the question, if the suppositions
 be foumd in nature, we may only saly, that if $\boldsymbol{\mu}_{x m}^{\prime}$ and $\boldsymbol{\mu}_{y / m}$ vathish, the comes of equat messure in the immediate neighbomhood of this singular point will he conie secobons. In order that pon may be really a maximm presure, the firs member most be negative for

 of equal pressure are ellipes whose centre is the singula point. For a binary mixture the quantity $e^{\prime \prime}$ hats always appeared to be negative in accordace with this theory, when the components were
substances, which do not exercise any ehomical ation upon one amother, for which therefore the molecules in the mixtme may be considered to he simply mixed, without suffering any internal modification. For such binary mixtures minimm eritical temperatures have actuatly been found, - and the chief term of \boldsymbol{n} being - $f\left(\frac{T_{\text {cr }}}{T}-1\right)$ a minimum value of $T_{c r}$ corresponds to a negative value of $u^{\prime \prime}$,
but never with certainty maximum critical temperatures. If $\mu^{\prime \prime}{ }_{x, n}$ and
 get cllipses for the curves of equal pressure, but then we should have $p>p_{n}$, and the ternary system would present a minimum pressure. which would also lead to minimum pressures for the pairs of which the system consists. If maximmon critical temperature for a binary system should really oceur in nature, and if we then formed a ternary system, of which one pair of components presented a maximum and another pair a minimm valne of $T_{c r}$, then $\boldsymbol{u}^{\prime \prime}$, and $u_{y / m}$ might have opposite signs, and the point for which $\boldsymbol{\mu}_{x m}^{\prime}$ and $\boldsymbol{\mu}_{\gamma_{/ m}}^{\prime}$ vanish would be a
 stationary point as to the pressure, and the curves of equal pressure would intersect in that point.

In figure 12 the course of the chrves of equal pressure hats heen represented schematically for the case of maximum pressure for the three pairs of components and for maximum pressure for a point of the system. The succession of the values of the pressure is then:
Fig. 12.

$$
p_{1}<p_{2}<p_{13}<p_{3}<p_{18}<p_{23}<p_{p_{1}} .
$$

Fig. 13. only the order of succession of p_{12} and ρ_{3} and of p_{13} and p_{23} maty be reversed. The figure does not require any further explanation.

As intermediate case for the course of the curves of equal pressure, we assume a system, in which for two of the paits the pressure increases or decreases regularly, but the third pair has a maximum pressure. So in fig. l:3 the pressures follow catch other in this way: $p_{1}<p_{2}<p_{12}<p_{3}$. One of the
 the 1/ N-arvis.

In the following ehapher wo will give some indic:thons conserning

servinlion "fi the pressinter.

 to the emmes of efpat presure

If in the equation:

$$
\begin{aligned}
& +\left\{\left(r_{2}-r_{1}\right) \partial_{d^{\prime} v_{1} \partial y_{1}}^{d^{2}}+\left(!_{2}-y_{1}\right) \quad \begin{array}{l}
\partial^{2} \xi \\
\partial y_{1}{ }^{3}
\end{array}\right\} d l_{y_{1}}
\end{aligned}
$$

we choose the values of di, x_{1} and thy such, that

$$
\frac{d l_{1}}{r_{2}-l_{1}}=\frac{d y_{1}}{y_{2}-y_{1}}=\frac{d l}{L}
$$

where L represents the leneth of a line, connecting the point P_{1}, Whose coordinates are and y_{2} with the point I_{g}, representing the phasis coexisting with l_{1} and whose coortinates are x_{2} and $/ /_{2}$.. Be fiuther all the length of a line, whose projections are d. x_{1} and d y_{1}. then the point $r_{1}+d r_{1}, l_{2}+d / l_{1}$ lies between the points P_{1} and P_{2}. It lies therefore in what we may call the heterogeneons region. The ahove equation may then be written:

The second member of this equation is positive for the points of the comodal come, as the 5 -sumbe lies above the tangent plane for all phates which may be realised. If the point l_{1} represents a lidpuid phasis, then r_{21} is poxitive, and therefore $\frac{d p}{d l}$ also positive. When the pressure increases the liquid branch is displaced in such a Way, that it moves lowards the side of what was before the heterogeneous region. This rule for a temary system is equivalent
to the rule of Koxownow for a binary sysm, if this lattor male is duly extented. If on the other hamd I_{2} lies on the ligpuid sheet, then r_{21} and therefore also $\frac{d p}{d l}$ is negative. This signities that the vapome branch of the comes of equal presisme moves on fowards the heterogeneons region if the pressure decrectese, and on the other hand towards the region which at constant pressure belonged to the homogeneons region, if the temperature incromes. If the pressure is ratied the fwo bramehes move, in such at way, that one of the branches retreats for the other. If there is not yet question of eritical phenomena, a point for whieh $r_{21}=0$ does not yet exist, and the given rule holds without exceptions. For the cise that no maximum pressure exists, the two hathes of the projection of the curves of equal pressure consist of two curves, originating both in the same side of the rightaggled triangle, and ending again in the same side. Every point on one of the branches hats a compugated point on the other hauch. We will call the lines joming such a pair of conjugated points (coexisting phases) chords. The firs of these chords have the direction of one of the sides of the rightangled triangle and the last the direction of the other side. If these two sides are the sides contaming the right angle, then the chord turns orer an angle of 90°. It occurs however only as an exception that the ehond is directed towards the origin in other points than the extremities. Afterwards we will retum to this question.

If a maximum presoure exists, the branches of the cmores of equal pressure form closed corves near the phasis, whose presure is maximum. The liquid branch contracts if the presture increatese, and according to the rule, deduced above, it moves towards the branch of the rapour phases. This branch therefore must also form a closed come round the point of maximmom pressure and that at smallerone. For the limiting case, the curve for the liquid phases is an ellipese the enre for the vapour phases is also closed, but has other dimensions, and its axes have other directions and another ratio, in the limiting case, however, it must coincide with the ellipee of the liguid phases. At any rate therefore, the position of the liguid branches being given for increasing pressure we may immediately conchete to the relative position of the vatom bramehes.
(To be continuet.)
 Wass de. (Commmaricated by l'rof. Sas dak Wisis).

Drot. (inms has newly published a treatise entithed "Elementary prineiples in statistieal mednames", in which he commonicates some considerations, belomengr 10 at setenee, which he calls "statistieal mechanies," and of which he shates that "on ateroment of the chegance sud simplicity of its principles" it is cminenty worthy that the laws to which it is subjected, atre stodiced. The laws relate to the behatiour of a great mumber of systems, whose motions are mutually imberendent. These systems guite agree with one another ats to their nature and only differ in so far, that the integration romstants of the dilferential emations of motion have dillerent values. (10, what comes to the same, that the values of the generalized coordinates and of the greneratized velocities at an arbitrary moment (e. Wr at the moment $t=0$) differ for different sysms. The laws, which hold for such ensembles of systems have a very general chatuctery, as fings shows: yet in their application they are confined (t) systems, consisting exclusively of ordinary matter. Now the question arises whether such like eomsiderations might be applied to electromarnetie systems, and whether in doing so we might extesnd our very limited knowledge of the phenomena of radiation in comnection with the laws of thermodynamios.

We camot deny however that we must not expeet too much from these comsiderations. The wreater pat of the theses sleduced by Gibss ate explosively wrine pally applicable to ernsembles of systems which he calls canonical and which have such an important phace in his considerations, because they represent the simplest law possible of the distribution ot the serems ower the different "phases" ${ }^{2}$). Mathematical simplicity, however, is not a trusworthy criterion, when we want to insestigate, what is actually to he found in nature. For our mathematioal representation e.g. the simplest motion, a vibrating string can perform, is an hamonic motion, yet we should be btterymistaken if we shouk assume, that every vibrating string would execote such a motion. Perhaps we run the risk of making smilat mistakes if we assume, that all sristems in nature will follow the laws which we have dednced on the supposition of a canonical distribution of the systems of an ensemble.

It is tue that (ibBs shows in his chapters XI-XIII that the cano-
${ }^{1}$) Two systems are considered to be in the same phase when they are to be found in the same element of extension in phase.
nieal distribution is the most probable one provided the only eomdition, to which the ensemble is subjected, be that the mean value of the energy of the systems is a preseribed quantity; but the main difficulty happens to be to answer the question whether this is indeed the only condition. Systems e. 名, consisting of spherical, muthally equal molecules, will not be distributed camonically, for they are still subjected to another condition, namely the distane of two centres of molecules ean never be less than the diameter. 'To assume the eanonical distribution comes therefore to the same as to nerged the volume of the molecules, but it is not easy to decide whether mothing else is neglected. In fare choosing the distribution of the systems of an ensemble is equivalent to choosing the cases, which we are to consider as "cases of equal probability" in a more dired application of the calculus of probabilities. Both are subjee to the chance, that the probatbility a posteriori will prose to be another than we had asomed a priori.

Yet such like considerations ean be useful, in the limome region of thermodynamies, because they bring its laws very simply and eleganty together under one point of view; in the yet unk houn region, becanse they may perhaps suggest formulae, for which comparison with the experiments may decide, whether they are in aceordance with the phenomena of nature or not.

Lave of conservation of density-in-phase.

In an investigation, whether the considerations of Gabis are also applicable for electromagnetic systems, we have in the first place to examine, whether the "law of conservation of densify-in-phase" holds also for them. In the begiming we will contine ourselves to ststems devoid of material, electrical or magnetical masses.

Now we imagine an ensemble of systems. The different systems are congruent spaces, cnclosed by perfectly reflecting walls. We divide each system into n equal cubic elements of spate dx dy dz. These elements are so small that the electric and magnetie forces in them may be considered to be constant. The state of each system will be perfectly defined, if in each element of saace the components f, !/ and h of the electric displacement, and the eomponents ε, β and γ of the magnetic induction are given. So the state is determined by means of 6 n data; acoorling to the assmption, that electric energy is potential, magnetic energy kinetic, the $3 n$ components of the electric displacement would represent coordinates, the 3 n components of maxnetic conduction generalized momenta, or at least they womal lex proportional to them.

We matk the ehements of spate with sheressive mombers and

 datit lio berwern the limits i_{1} and $i_{2}+1 i_{2} i_{2}$ and $i_{2}+1!i_{2} \ldots$ i_{n} and $i_{n}+1 f_{n}$ and in the same way for the wher mompenemis:

(1)

$$
\begin{equation*}
1)\left|\left(1, i_{3}\right)\right|\left|\left(1 / e_{1}\right)\right| . \tag{1}
\end{equation*}
$$

Here the brackets indicate, that abo the ohter emmpenents, the paremberses that the same quantitios atso for the othere elements of spate sure to be taken. We will eall $\left[\left(1 / f_{1}\right)\right]\left[\left(h_{1}\right)\right]$ ant element of (extension-in-phase, I) the density-in-phase, $I \prime=\frac{J \prime}{}$ the coefticient of probability-in-phase $(X$ representing the total namber of syatems in the ensemble and y_{i}, detined by the equation $l^{\prime}=p^{\text {fif }}$, the index of probability-in-phase.

Let us eomsider the same ensemble after a short lapse of time aft, then the mumber of systems being in at certain phase, will have varied. We mate conceive the vadiaton of that momber to be compmed of 12π parts. as the symms may enter or leave a certan phase by passing one of $12 /$ diflerent limits, $\left[\left(f_{1}\right)\right],\left[\left(f_{1}+\left(f_{1}\right)\right],\left[\left(\mu_{1}\right)\right]\right.$ and $\left[\left(e_{1}+c\left(e_{1}\right)\right]\right.$.

The systems passing the limit f_{1} contritute:

$$
\begin{equation*}
\text { J) } \frac{d f_{2}}{d t} d t d f_{2} \ldots d f_{n} d l_{1} \ldots d_{1} \ldots d l_{1} \ldots d l_{n}\left[\left(l e_{1}\right)\right] \ldots \tag{-}
\end{equation*}
$$

The sistems patsing the limit $f_{1}+1 / f_{2}$ contribute a derorase amounting to:

Alding these quantities we get an increase with:

$$
\begin{equation*}
\left.-\frac{\partial}{\partial r_{2}}\left\{I^{d / f_{2}}\right\} d t d\left(d f_{1}\right)\right]\left|\left(d / t_{1}\right)\right| . \tag{-1}
\end{equation*}
$$

Now we have:

The second term of the second member is zero, for $\frac{d f_{2}}{d t} d e p e n d s o n t y$ on the rotation of the magnetio induction, and is independent of the value of f_{1}.

In the same way we find the increase in consequence of the systems passing the other limits, - laking into aceount that all quantities of the form $\frac{\partial}{\partial e_{1}} \frac{d e_{1}}{d t}$ are zero. - Taking the sum of all these partial increases and dividing by $\left[\left(f / f_{1}\right)\right]\left[\left(/ / e_{1}\right)\right]$ we tind:

$$
\begin{align*}
& \frac{\partial I \prime}{\partial t}=-\left[\left(\frac{\partial D}{\partial f_{1}^{\prime}} \frac{d f_{1}}{d t}\right)\right]-\left[\left(\frac{\partial I)}{\partial \boldsymbol{c}_{1}} \frac{d c_{1}}{d t}\right)\right] . \tag{i}\\
& \frac{\partial D}{\partial t}+\left[\left(\frac{\partial D}{\partial f_{1}} \frac{d f_{2}}{d t}\right)\right]+\left[\left(\frac{\partial D}{\partial \epsilon_{2}} \frac{d \epsilon_{1}}{d t}\right)\right]=\frac{d D}{d t}=0 . . \tag{7}
\end{align*}
$$

Here $\frac{\partial I}{\partial t}$ represents the themion of the density for at phasis whone limits are constant, $\frac{\text { dI }}{\text { dt }}$ for a phasis whose limits partake of the motion of the systems of the ensemble.
so the density proves to be constant for a phasis, partaking of the motion of the systems, and as, of course, the systems can never pass the limits of an extension-in-phase, when these limits move with the systems, the total mumber of systems within every extension-inphase, i. e. $D\left[\left(1 / f_{1}\right)\right]\left[\left(/ l \ell_{1}\right)\right]$ remains constant, and so also $\left[\left(r / f_{1}\right)\right]\left[\left(/ / t_{1}\right)\right]$.

This proof of the laws of conservation of density-in-phase and of extension-in-phase quite agrees with that one given by Grbs. In our case, howerer, we have still to pay attention to one circmmstance. In calculating $\frac{\partial D}{\partial t}\left[\left(l f_{i}^{\prime}\right)\right]\left[\left(d \epsilon_{1}\right)\right]$, we have assumed, that this number is the sum of the numbers of systems passing the diferent limits. This comes to the same as to say that no system will pass more than one of the limits during the time dt, or at least, that the number of the systems that pass more than one limit is so small, that it may be neglected. In the proof of Gibbs we may assume, that this is really the case, provided we take de so small, that $\frac{d_{l}}{d t}$, t is small compared with dy (where of represents one of the generalized coordinates, and dy one of the dimensions of an element of extension-in-
 phase). For our (ase however this proof is incomplete. Be r and s two adjacent element: of space, then $\left[f_{r}\right]$ and $\left[f_{s}\right] .\left[\epsilon_{r}\right]$ and $\left[\epsilon_{s}\right]$ are no independent quantities, hut they mast be approximately equal, as $[f]$ and $[\pi]$ vaty om! fluently from point to point.

In order to investigate the eomserfeneres of x this circomstance we imagine an ensemble of

Sy-tems will only fwo roordinates atme !/ which ave sulyeeted

 of this linese ath systems leaviag the chement of sate drathe in
 stme moment. If the comblition is not that \boldsymbol{r}^{2} and!/ mas be rigomonsly equat, but unly that their diflerenere must be bery smatl, then ath systems will he hathled up very were the lime $1 / .1$ athe at great part of those that pass the limit ele will ako pass the limit i!!. It is evident, that this ciemmstame is catmed by the fint. that within the element d.x ely the density is not homowemons. If we choose therefore the the dimensions the and d!! sh small, that the whole element lies within at region, where the density maty be considered as comstant, then we maty agat assme that the mumber of systems, passing looth limits maty be neglected, compared with the mumber of systems passing omly one of the two limits.

If we choose therefore $\left\{\left(f_{f_{2}}\right)\right]$ and $\left[\left(\right.\right.$ le $\left.\left.e_{1}\right)\right\}$ smatl compared with the

 and $\left[\left(f / e_{1}\right)\right]$, so e. (r. having a tinite ratio to dras , it appeas that in fice the number of systems passing more than one of the limits maty he neglected. So the proot of the law of conservation of density-inphase is complete.

The quasi-ctmomical distrightion.

If we wish to distribute the systems of an ensemble over the difterent phases in sheh a way, that the distribution does not vary with the time, so that the state of the ensemble is stationary, it is evident that we have to choose for I ' a function of the coordinates, which is constant in time. Gubss chooses for this purpose the function

- - :
$e^{"}$ where ε represents the energy of a system, and ψ, and O are constant quantities for a given ensemble. He calls this distribution the canonical distribution. This simple law camot be applied to sratems consiatine of aher. If wo asomed it, the quantities $[f]$ and of would bary albuply from element to element instead of varying thently, and mureover the distritution would depend on the dimensions of the elements of space, which we have abbinaily chosen. We must therefore assume another distribution which secures a thent variation of the electric and magnetic displacements.

To this purpose we will assmme a distribution rlosely resembling those, disenssed by Gums in his chapter 15 as "other distributions having the same properties as the canonical." These distributions have the characteristic property, that the index of probability y_{y} is a linear function of one or more functions $F^{\prime}{ }_{1}, F_{3}$ ete of the coordinates; the functions F_{1}, F_{3} ete. are subjected to the condition that their average value, taken over all systems of the ensemble must be a prescribed quantity. We might form diferent distributions, all satisfying the conditions. Now we seek the average value of y for all these different distributions; this average value of y_{0} will be a minimum for that ensemble where $\boldsymbol{y}_{\boldsymbol{y}}$ is a linear function of F_{1}, F_{z} efe. This is proved by Gibbs in his chapter XI. I shall call such a distribution a quasi-canonical distribution. The canonical distribution is nothing else but such a quasi-eanonical distribution where there is only one fimetion H_{1} and that represents the energy. As the canonical distribution is of little application, e.g. not for systems of molecules with finite diameter, it would perhaps have been preferable to give a broader meaning to the word canonical and to use it in the sense, in which I use quasi-canonical. As Gibbs has howerer used the wort canonical exclusively for ensembles for which oj $=\frac{\psi-\varepsilon}{\|}$, I will use the expression quasiecanonical for ensembles for which

$$
\eta=\psi-a F_{1}-b r_{2}-\text { etc. }
$$

In the ether we cannot have canonical ensembles. and so we will discuss only (pasi-canonical ensembles. We put:

$$
\begin{equation*}
\eta=\frac{\eta-\varepsilon}{\|}-\frac{\varphi+\chi}{k}-\frac{\Omega_{1}+\Omega_{2}}{\delta_{1}}-\frac{\omega}{\delta_{2}} . \tag{s}
\end{equation*}
$$

Where, do representing an element of space:

$$
\begin{align*}
& \boldsymbol{y}=\int\left\{\left(\begin{array}{ll}
\partial! & \frac{\partial h}{\partial z} \\
\partial z & \partial y
\end{array}\right)^{2}+\left(\begin{array}{ll}
\partial h & \partial f \\
\partial x & -\frac{\partial z}{\partial z}
\end{array}\right)^{z}+\left(\begin{array}{ll}
\partial! & \partial! \\
\partial y & -\frac{\partial x}{\partial z}
\end{array}\right)^{2}\right\rangle d \tau \tag{!}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{\Omega}_{e}=\int\left(\frac{\partial f}{\partial \cdot r}+\frac{\partial y}{\partial y}+\frac{\partial h_{2}}{\partial z}\right)^{2} d \boldsymbol{\tau} . \\
& \boldsymbol{Q}_{m}=\int\left(\frac{\partial \boldsymbol{q}}{\partial_{x} x}+\frac{\partial_{1} \beta}{\partial y}+\frac{\partial \gamma}{\partial z}\right)^{2} d \boldsymbol{\tau} . \tag{111}\\
& \omega=\frac{1}{\lambda} \int_{0}\left(f^{2}+q^{2}+l^{2}\right) \lambda d i j . \tag{12}
\end{align*}
$$

k, δ_{1} and δ_{2} are constants, and δ_{1} and δ_{2} are infinitely small. The term - $\frac{\Omega_{1}+\Omega_{2}}{\boldsymbol{\delta}_{1}}$ hats been added, hat we should have only to

 We maty admit them in sult atmall mombers, that they hatere no

 would epread in it and we ewnld met hatere at statomate distribution

 neressary 60 ahl at term 80 3. Whinh expreseses, that the walls reflect
 term - ${ }^{\omega}$ expresen this: 2 reprevents a small lime in a direction
 represents an element of atea.

If thi distribution is to le for ehter statems, what the canonical
 at ennstan in time. For the wher terms this is inmediately evident, so we have only thew it for the rerm $\frac{t+\%}{k}$.

The relation. We have to prove may be written:

$$
\begin{equation*}
\frac{d x}{d t}+\frac{1 \%}{d t}=0 \tag{15}
\end{equation*}
$$

We will make we of the relations

$$
\begin{align*}
& { }_{I_{t}}=+\pi r^{-z}\left(\frac{\partial!}{\partial z}-\frac{\partial h_{1}}{\partial y_{n}}\right) \tag{1.4}\\
& \frac{d f^{\prime}}{d t}=-\frac{1}{4 x}\left(\frac{\partial z}{\partial z}-\frac{\partial \eta}{\partial y}\right) \tag{15}
\end{align*}
$$

and of the following relations, that may be deluced from them:

$$
\begin{align*}
& \frac{t^{2} j^{i}}{d t^{z}}=I^{-v}\left(\frac{\partial^{z} i}{\partial x^{z}}+\frac{\partial^{z} i}{\partial y^{z}}+\frac{\partial^{2} i^{0}}{\partial z^{z}}\right) \tag{16}
\end{align*}
$$

and alse of the corresponding relations for the other components. Now we have:

$$
\frac{d \varphi}{d t}=\int\left[\left(\begin{array}{ll}
\partial!\prime & \frac{\partial / k}{\partial z} \tag{1S}\\
\partial!!
\end{array}\right) \frac{d}{d t}\left(\frac{\partial!}{\partial z}-\frac{\partial / t}{\partial!\prime}\right)\right] d \mathbf{r}
$$

Integrating partially we get:
$\frac{d \varphi}{d t}=a$ number of surface intervats -

$$
\begin{align*}
& \left.+\frac{d h}{d t}\left(\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial \mu^{2}}-\frac{\partial^{2} \dot{\prime}}{\partial e^{2} \partial z}-\frac{\partial^{2}!\prime}{\partial!/ \partial z}\right)\right\}, I t . \tag{19}
\end{align*}
$$

In the coefficient of $\frac{d f}{d t}$ in the enbie-integral we have:

$$
\begin{equation*}
-\frac{\partial^{2} h}{\partial t \partial z}-\frac{\partial^{2}!}{\partial c \partial!}=-\frac{\partial}{\partial c c}\left(\frac{\partial!}{\partial!!}+\frac{\partial h}{\partial z}\right)=\frac{\partial^{z} \dot{l}}{\partial x^{3}} \tag{20}
\end{equation*}
$$

at least if we put, $\frac{\partial \dot{j}}{\partial \cdot i}+\frac{\partial y}{\partial y}+\frac{\partial h}{\partial z}=0$, so if we neglect the systems in which electric masses oceur. So we get for the coefficient of $\frac{\text { l } f}{d t}$ the expression $\frac{1}{V^{2}} \frac{\partial^{2} \dot{f}}{\partial t^{2}}$ and for the cubic integral :

$$
-\frac{1}{F^{z}} \int\left[\frac{d f t^{2}}{d t} l^{d t^{2}}\right] d \boldsymbol{\tau}=-\frac{1}{1 t \cdot \boldsymbol{x}^{2} V^{2}} \int\left[\left(\frac{\partial p}{\partial z}-\frac{\partial \gamma}{\partial!!}\right)_{d t}^{d}\left(\frac{\partial_{i} z}{\partial z}-\frac{\partial \gamma^{\prime}}{\partial!!}\right)\right] d \boldsymbol{\tau}=-\frac{d \%}{d t} .
$$

As at the absolutely reflecting walls $\left[f^{2}\right]$ and therefore also $\left[\begin{array}{c}d \\ f^{\prime} \\ d t\end{array}\right]$ continue to be zero, the surface integrals disappear; so equation (13) is proved.

The quantities of and $\%$ which are introdnced in order that the variation of the electric displacement and the magnetic induction may take place fluently, are defined as the sum of the squares of the components of the rotations of those vectors, if we disregard the coefficient $\frac{1}{16 x^{2} V^{-2}}$ introduced in order that equation (13) maty he satisfied. This seems to me the simplest definition for of and $\%$. It might, however, appear that we are not yet sure that $\frac{\partial f}{\partial f}, \frac{\partial y}{\partial y}$ and $\frac{\partial h}{\partial z}$ wet convenient values. In moder to show that this is not the case, we will prove the following relations

$$
\begin{align*}
& \boldsymbol{\varphi}=\int\left[\left(\frac{\partial f}{\partial f^{\prime}}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+\left(\frac{\partial f}{\partial z}\right)^{3}\right] d \tau \tag{21}\\
& \%=\frac{1}{16 \boldsymbol{x}^{2} V^{2}} \int\left[\left(\frac{\partial \ell}{\partial{ }^{2}}\right)^{2}+\left(\frac{\partial \ell}{\partial y}\right)^{2}+\left(\frac{\partial \ell}{\partial z}\right)^{3}\right] d \tau \tag{29}
\end{align*}
$$

where again the brackets indicate that we have to take also the cor-

 rately the terms:
 equals vanish arath and we gen :
lis intarabing once more partially, where once more the suffee intergats vamish, we get:

$$
s=\int\left[\binom{\partial f}{\partial . i}^{2}\right] d \tau
$$

so) equation (21) is proved. Equation (22) is proved in the same way.
Three constants oeror in the exponent η namely ψ, $/ /$ and k. ψ is a constant which must be chosen such, that integration of P over all systems of the ensemble yields 1 . The two constants 0 and k determine therefore the state of the systems. This is commeted with the fact, that the nature of the ratiation inside a closed surface, as Loreatz ${ }^{2}$) hats shown, depends besides on the temperature, also on the charre of the electrons hy which the radiation is emitted. The fact that inside all bodies radiation of the same nature is formed, proves that in all bodies the electrons have the same charge. The constant fuantity k must depend on that charge; it will therefore have the same value for spaten enclosed within all bodies as they are found in nature at least if the temperature is the same and its value would for a certain temperature only be different, if we imagined walls with elecerom whoe chate wat different from those admally ocemring.

[^0]Botany. - "On the prussic aciel in the openinu lmels of Promus." By Prof. E. Verscmafela. (Commmicated by Prof. Hego de Vries).

During last winter and the spring of 19021 made a series of determinations to ascerdain the amount of hydrocyamic aced which can be prepared from different organs in species of Prunts. They were untertaken with the view of investigating the changes that occur during the budding, regarding the prussic acid-compomets. In these analyses the titration-method of Lafbig was always need in the following manner. The parts of the plants to be examined - mostly 5 - 15 gis. freshly gathered material, - were heated in $200-300 \mathrm{~cm}^{*}$ of water to $60^{\circ} \mathrm{C}$, so as to kill the protophasm without destroying the emulsin. Though it will directly be shown that this treatment answers the purpose, the heating to 60° was repeated after some hours or the next day, to be certain that no cells were still living. Between both treatments and also during 24 hours after the second heating, the organs remained, immersed in water, in a well corked flask, that the emulsin might have time to split completely the HCNglucosides. After that, the distillation was performed, the prussic acid being collected in a little flask containing some drops of KOHsolution, and the titration was made after the method described in the treatises, with $1 / 10$ normal nitrate of silver. The distillate was always collected in a flask of $100 \mathrm{~cm}^{3}$ capacity; ly taking with a pipette a known volume, I was able to repeat the titration two or three times in the same experiment. The quantities of plant-material and water being as above, it appeared without exception that the whole of the prussic acid had been condensed together with the first $100 \mathrm{~cm}^{3}{ }^{3}$ of water.

The necessity of allowing the objects to macerate for some time after the killing is clearly shown by the following preliminary experiment.

From 25 leaves, one year old, of IPrmzes Lethocerasus (Bot. (i. Amsterdam) gathered 9. 12. 01. the halves of the bades were ent on each side of the middle-nerve. The halves a weighed 11,85 grs. the halves $b 11,35$ grs. The first portion was immediately sulmitted to distillation after having been immersed in the proper quantity of water, and gave $0,0160 \mathrm{grs}$. HCN. The portion b wals heated to 60° C., and remained under water till the next day; this time the amomet of HCN was $0,0254 \mathrm{gr}$. As soon however as both portions are treated as b, the concordance of the results is very satisfactory :

In the sambe manmer it combl be ateredtamed that it was paite sulbicient, after killing at bot. In materate during ome day only, to

 left mo living portions in the phantoremes.
 lichus: LA was chictly my intention to follow the chatges umbergene hy the prasse adoteomponads durine the opening of the leaf-huds. As of both athose named spectes the second is the carliest, and abo viched shouts a bong time before the cherre-tarel, when cont bathches were plated in the lont lomese, it wats with I. Pothes that the most complete experiments were mate, those with I^{\prime}. Latrocerasus: mather serving to control the fimmer.

In the verg lion phate, I asked myself the question whether the amome of HC'N in resting hods - whatever might be the form of combination - did exhihit changes, when the buds began to grow. To know this, the estimation of the pereentage in buds and young shoots issued therefrom is insufficient; one must compare the absolute quantity of prosice aded eontaned in a qiven mumber of louds with the amomb in at same nmmber of shoots. As the dimensions of both the bouts and the shoots vary considerably, a satisfactory mediumvalue conld only be ohtaned by the amalysis of a great mmber of these olyects, a precantion alleady made necessary on accoment of the buds being small.

The amomet of IIC'N contained in resting buds of I^{\prime}. P'thus will appear with sufficient exactues by the following three estimations:
10. 2. (02. 195 buds (Bot. (i. Amsterdam); weight : 4,80 gr--HCN: 0,0067 grr.. i. e. $0,14 \% / 0$ in 100 buds: $0,003 \pm$ gr.
11. 2. 02. 280 buts (B. (i. Amsterdam); weight: 6,35 gro-HCN: 0,0094 qr.. i. e. $0,15 \%$: in 100 buds: 0,0034 gr.
20. 3. 02. 100 buds (B. (i. Amsterdam; the buds are about to open, many show a green top); weight: 2,75 gro-IICN: 0,0040 gro, i. e. $0,15 \mathrm{~m} / \mathrm{m}$: in 100 buds: $0,0040 \mathrm{gr}$.

In the first two amalyses, the buds, as always was the ease with the parts examined, in order to avoid losses of hydrocymic acid, were immersed in water withont being cut into fragments, and killed by heat. However, as it misht be feared that the bud-scales should hinder the diffusion of gheoside and enzyme, the buds were, in the
thish experiment, cut in halses, to see whether they shomld viok more HCN. As no marked difference wats to he noticed, there smoty was no prossic acid that in the first two instances had remaned unestimated.

It wats presently the tum of the opening buts to be studied. Ont the $2^{\text {th }}$ of February ent branches of P^{\prime}. Pothos, dipping in water, were placed on a well lighted spot in the hot house, the temperature being circa 20° C. After some weeks, at great number of huds hat opened. and yielded shoots, which, though short, were neverthelens well finnished with leaves.
5. 3. 02. 75 shoots taken; weight: 5,20 gr.-HCN: 0.0079 wr, i. e. $0,15 \%$; in 100 shoots: $0,0105 \mathrm{gr}$.

Con branches placed in hot house 26. 2. 02.
14. 3. 02. 60 shoots; weight: 8,70 gr.-HCN: 0,0108 gr.; i.e. $0,12 \%$; in 100 shoots: 0,0180 wr.

When one considers the weight of the shoots examined, it will he seen that in the second experiment they were more fully developed than in the first. It is clear that, as the shoots go on growing, a steadily increasing abohote amount of HCN-compounds gathers therein. so much so that even at a rery early stage they contain three to four times the quantity found in the resting buds. As, on the other hand, the percentage of prussic ared depends on a mumber of circumstances, chiefly on the proportion of water in the shoots, a factor which itself is so rery liable to moditication, the changes undergone by this relative amount of HCN are much less interesting. It will howerer he noticed that, notwithstanding the fact that the weight of the romg shoots exceeds many times that of the buds, the percentage of pmssic acid is but feebly or not diminished.

I should wish to recall here that $E^{\prime}\left(l m\right.$. and $E=m$. Tumu ${ }^{2}$), estimating the HCN in romg leat-huds of l^{\prime}. Pothos, while these were opening in April, found no hisher proportion than $0,05 \% / 0$. This undoubtedy is due to the fact that the authors, distilling off after having added some sulfuric acid, did not ohtain a 'complete splitting up of the glucosides.

It will now be asked, whether the prossic acid which appeats in the growing shoots is formed in the same, or perhaps transerred to them from the branches. As the green mofolding leares will very probably begin to assimilate, it seems credible enongh that the hydrocyanic acid should be made hy a process of "photosynthesis". Whether
${ }^{1}$) Zeitschr. Allyem. Uesterr. Apoth. Ver. 1892, p. 330.
 developerd in the dark.

 had heod developed.

bianchers purt in the datk 24. 2. 02.
17. 3. 02. 30 well impown, etiolited shoots, for the mon patil
 in 100 shoots: O.OASO irr.

There ean be no doub, firom the results erisen athove that shook
 pounds than the masting buts, and that these shbstances camon have been buit "p by an assmibatory process, moter the action of smblight.

Results of quite the same kind were obtained in studying lromus Sathememerastis.

Resting buds.-24. 12. 01. I15) buts, mostly axilla from the growers of mediemal plants (iboEventan and Lspmotr, at Noorlwijk); Weight:

shoots developed in the linht (also mosily from axillat buds).-24. 4. 02. 50 shoots, still shot, (ent from the shrubs exowing in the Botan. G. Amsterdam: the pate green leaves are not quite mofotded; weight:

27. 4. 02 . 50 shoots, rounger than the former, or newly opened buds: weight: 4,90 gro-HCN: 0,0138 gr: i. e. $0,28 \% ;$ in 100 shoots: 0,0276 wr ${ }^{1}$)

Etiolated shoots. - Branches of I^{\prime}. Lamocerovers (B. G. Amsterdam) placed in the hot house, under blatkened celinders 23. 4. 02 .
10. 5. 02. 5 shoots taken: weight : 2,25 wro-HCN: 0,0047 g1: ; i. e. $0,21 \%$: in 100 shoots: 0,0940 gr .

Branches in the dark 25. 4. 02 . 4. 5. 02 . 10 very shot shoots; weisht: 1.65 gro-HCN: 0,0037 gro, i. e. $0,22^{\circ} \%$ in 100 shoots 0,0370 gro

Branches in the dark 25. 4. 02. 12. 5. 02. 11 shoots; weight:

1) A. J. vas be Vex. (Cyumeuterstofzuer bï de Promuceue. Dissertation
 (p. 34 resp. p. 391) for young shoots $0,19.0,23 / n$.
${ }^{2}$) Vin de Vex (l. c. p. 37 resp. p. 393) applying the test of (ireshoff-Thectb. was not able to deteet prusic acid ir etiolated shoots of P. Lenerocerasus. This affords a new proof that microchemical reactions, as soon as the substarces are not very ahmolant, necessarily require analytical confirmation. Mostly so when the test yields negative results.

Referring to what has heen sald with relation to l^{\prime} '. P'thlus, the above given results require no further discussion. That in hoth species the percentage of 11 (N ' appears to be smatler in the etiolated shoots than in the green ones, has no very great importance. Etiolated shoots indeed are known to contain much more water, the evaporation heing less ative under the opatue bell-jar.

After it has thus been shown that buds opening in the dark also increase, as they grow, their amown of $H(N$, there still remain two ways of acomating for this angmentation. Perlaps the prossif ated in whatever form it may be present - is made in the growing shootont of other substances ; it could however be drawn from other parts of the plants; that is to say the branches in I '. Perles', possibly atso the leaves in the evergreen P. Lathrocerosos. I regret not to have succeeded in establishing with certainty which of the two explanations is the right one. All I can saty for the present is that the Ho gathering in the shoots is not derived from the internodes, which bear the buds examined. However, the possibility of the aded being supplied by more distant parts camnot at the present time be said to be exchuded completely.

In this part of the researeh, I again chielly made use of P '. P'ulus, as this species, hearing no leaves in winter, was especially favourable. The point to be ascertained was whether the increase of HCN in the opening buds should be atcompanied by changes in the adjatent internodes.

In the first place the amount of HCN was determined in the internodes below resting buds. As the length and thickness of these organs are exceedingly variable, it once more was necessary to analyse a not too small portion of phat-material.
10. 2. 02. 100 internodes (Bot. Gr. Amsterdam) : Weight : 11 , 75 gro. $\mathrm{HCN}: 0,0108$ gr., i. e. $0,09^{\circ} \%$; in 100 internodes: $0,0108 \mathrm{gr}$.
7. 3. 02. 250 internotes (B. (x.) ; weight : $18,95 .-\mathrm{HCN}: 0,0246 \mathrm{gr}$.: i. e. $0,13^{0} \%$ in 100 internodes : $0,0098 \mathrm{mr}$.

With these amounts will be compared those observed in the internotes below etiolated shoots.

Branches (B. G. Amsterdam) placed in hot honse 24. 2. 02., and covered by opaque bell-jars.
17. 3. 02. 30 internodes are taken from helow long etiolated shoots; weight: 3,85 gr.-HCN 0,0057 gr. i. e. $0,15 \%$; in 100 internodes : $0,0190 \mathrm{gr}$.

Already this tirst experiment does not prove in fiwom of the view, that the HCN-compounds should be drawn from the adjacent inter-

 internedes.

 in 100: 0.015! err.
 0,0159510 : i. e. 0.16° : in $100: 0,0127$ (21.

 i. $0.0,11^{\%} \%$ ill 100 : $0,00152 \mathrm{gr}$.
29. 3. (12. 122 busk and intermones (eat ont other shrols ats the

Brameles in the dark 24. 2. (02.: 2\%. 3. 02. 25 slowots and inter-
 0.0204 ir .

The considerable indrease in the quantity of prossice acid: fwo fo three times the origimal amomot, shows clearly that it has not been angmented in the shoots at the cosi of the internodes immediately belonging to the boms. I can even go farther, and surgest that neither it can have been suphied by the more distan internores, one rear old. In the amalyses of shoots with the aljacent internotes, ats well as in the experiment with internodes only, the material was taken from twirs developed the summer before, which in the experiment had yielded shoots at diblerent heights. Therefore, if the more hasal internodes had fombised the $H(\times \mathrm{N}$-material for the shoots nearer the top, then the estimations would have shown it, since in that cate $\therefore 0$ great an increase as was noticed wonld have been impossible. If consequently during the growth of the young shoots prossie aceid might be drawn from the branches, it cond be only from the older parts.

I shonld have liked very much to establish with certanty whether the shoots form themselves the hydrovanie acid they eontain. For that purpose I several times analysed bramehes of I. P'ohes as well ats of I '. Lathorerostus. so as to determine the amount of IIC'N present in the rutior brameles, hefore and after the opening of the buds. These estimations however did not rield satisfactory results, hecanse, when the branches used were small, the buds in the dark only gave
short shoots, containing too small a phamtity of II 'N, and the ditherence between the two portions compared bay within the rame of individual vatiation. If on the other side one will we larger loranches, it is exceedingly diftientt to choose two portions which can be compared; the limits of error of the experiment presently widen, and consequenty the desired ent is not reathed. The experiments on bramehes longitndisally cut in two, which were undertaken with l^{\prime}. Leturocrotans, one moiety being immediately analysed, the other one, bearing the buds, being put in the dark till it hat given off etiolated shoots, fatiled for the same reason. In consequence this question must remain mathswered for the present ; perbaps experiments to be made next spring with rooted cottings will meet with more suceess.

I will now endeavour to show that the eherry-tane behaves in so far quite like P^{\prime}. Padur, that the parts situated immediately below the growing shoots retain their percentage of IICN neally completely mehanged. Here the experiment becomes in a certain degree complicated, but also on the other hand is made more interesting, by the presence-of the leaves. Therefore I most begin to tell something respecting the amoment of HCN in these orgaths.

They have been analysed several times for pharmacentioal purposes. I only will recall here that F_{L} ähiger ${ }^{1}$) gave as the average of entimations, protacted during ten years, on cherr-lancels growing on the banks of the lake of 'Thme, $0,12 \%$ of the weight of fresh leaves. Folia Laurocerasi, bought in December and Junsury
 shrubs grown in the botanical daden at Amsterdam were fomm to contain in their leaves an amount ranging from 0,12 till $0,21^{\circ} \%$, areording to the individual amalysed. Those were at least the quantities found in the cousse of the season December-May. The last mamed high figure is regularly yiefled by the leaves of a certain sbrub, that consequently could if wished be made the starting point of a selection to obtain a race eontathing much prosside aciol.

It also may be of importance to acequice an idea of the absolute quantity of hydroevanic acid eontaned in one leaf. Of eourse, owing to the variable dimensions of these organs, this quantity ato varies considerably. I fomm 0,0015 - 0,00:36 g! HCN, the maximmotalue in large leaves supplied by Grobxwmo and hinbuore, with a percentage of $0,15 \%$.

Before studying the modifications in the amome of H ' N in the

[^1]leaves. bobught about by the oproniture of the buds, atoo in the dark, one should kow the dhatges cansed by the ocelasion of the light, independently of the formation of shoots. I propery omght on have
 expeet that these warals, with their periderasal cobathay, shombld show enerentical proceses of asomitatory kind.
'The expreriments with l^{\prime}. Lermonertastas took phater mot only with
 Whether ent leates should thatmer in the dank their atmonnt of IIC: the halves of the firshly phedeed omans wero colt of along the middlenewe and killed immediately. The ohter hatwes, with the middle-nerves still adhering to them, were bought in the hot homse, and placed, under batkened bedt-jats, in atats, the petioli dipping in waters At the and of the experiment. the middle nerves were cont ofl, and the remainimer halves of the blades amalysed.

It appeats that hy staying even a fainly latge nmmber of days in the dark, the leates muleren no moditioation whatever as regats the amomen of H(X, at leats mot in winter ${ }^{2}$).

25 leave (Nomduyk) 13. 12. 01.
Halses "t atalyed immerliately: HCN: 0.0135.

25 leares (Noordwal).

$$
\begin{aligned}
& \text { Halves a: 18. 12. 01., 0,035\% gr. HCN. }
\end{aligned}
$$

It follows that even atter abont one month no ehatage whatever is
 have shown that the leaves of the cherr-lamed reman fresh and living in the dark even atter tilty days. On the other side, the results griven above quite agree with those obtaned by A. J. Vas de V EX^{3}), using microchemical methots.

Howerer, atter a longer stay in the dark, or even, in certain cases, at a temperature of $20{ }^{\prime}\left(\begin{array}{c}\text {... after a shorer stay, pathological chames }\end{array}\right.$ become noticeable in the laves. Yellow sots, originating along the middle-nerve and the more important side-nerves, cover hy and by the surface of the leaf till it becomes miformly yellow. However, these mrgans don't die at once; they remain fresh many days, but the amalrois shows that they lose mpidly their hydrocranic acid.

1) J. Colabde (Joumal de Pharmacie te Lioge, Qe année, 1895 p . 1) states that leaves of cherrydarel, whein the entire shrubs remaned in the dark from May lill dugust, yieded a percentage of HCiN, somewhat inferior to the percentage in plants exposed to the light.
-) Ammets of Botemy, XV. 1901, p. Er:3.
${ }^{3}$) Dissertation Amsterdam. 15!s, y. 35. Archiés Nérlunduisess, 1. e. p. 392.

25 leaves (Noordwyk).

Hables b: 7. 1. O2., (hegiming to show yellow straks
along the nerves): 0,0142 gr. HCN.
20 leates (Bot. (i. Amsterdam).

$$
\begin{aligned}
& \text { a: 27. 4. 02. 0,0162 \&1. HCN. } \\
& \text { b: 9. 5. 02. (yellow patelres) } 0,0113 \text { gr. HCN. }
\end{aligned}
$$

25 leaves (Noordwyi).

$$
\begin{aligned}
& \prime: 27.12 .01 . \quad . \quad 0,028: 3 \mathrm{qr} \text {. HCN. } \\
& b: 20 . \text { 1. } 02 \text {. (yellow) } 0,0089 \text { gr. HCN. }
\end{aligned}
$$

25 leares (Bot. (i. Amsterdam),

$$
\begin{aligned}
& \text { a: 17. 12. } 01 . \\
& b: 20 . \\
& b .02 . \\
& \hline
\end{aligned}
$$

Just the sume processes can be observed, when cut brathes bearing leaves are phaced mader opaque cylinters. The leaves can reman fresh and green many weeks, and keep their amomnt of HCN malrered. The halves a of the bades were analysed immediately; the hatves b remained, adhering to the middle-nerve, on the branches till the end of the experiment.

25 leaves, from branches phated in the dark 5. 12. 01.

$$
\begin{array}{rrrrr}
\prime \prime & 5 . & 12.01 . & 0,0270 & \text { H(N. } \\
b: & 22 . & 12.01 . & 0,0283 & \text { g1. HCN. }
\end{array}
$$

25 leaves, from the same branches (5. 12. 01 in the dark).
31. 12. 01.; batves cut off : the other ones remain on the bramehes. (1: $0,0243 \mathrm{gr}$. HCN.
1,: 16. 1. 02.; remaining halves yellow; it appers that in this stage they fall off", on sit hat lowely on the brathes : 0,0196 gro. H(N .
branches placed in the dark 17. 12. 01.:

1. 2. $02 . ; 10$ yellow leaves, about to be dropped; weight:

From the same branches 1 took the same day 25 fresh green leaves, and cont off the halves; weight: 13,15 gro-HCN: 0,02g9 gr, i. e. $0,17^{\circ}$

Halves b; 14. 1. 02 for the greatest part yellow, and fatling oft - HCN: 0,0155 gr.

This experiment therefore is also of importance, beatuse it shows how the diminution in the amomen of IICN gees clearly together with the discoloration and dropping of the leaves, and does not directly depend upon the length of the stay in the dark. In fitet, when I placed separated bathenes in the hot house, but exposed them to the light, there always were a certain momber of leaves that became
 have diminisluad comsiderably.

 form the slants egrown in the liotan. (i.

The figures for fresh leases, mentioned formory, show that but at small pate of the He'N momatly present hath beent retained heres.

As the hedroeyanie aded was atso ohseped to disappede firom the Gut leates, when they berathe yellow, it sems very probable that this substane - or its compounds - atre not tramsiented fiom the
 formation.

The boddiner however. at least in the first periods that I examined, hats no intherner whatever on the phantity of prossit acid in the leaves and lwigs Pon instance, 30. 4. 02 were gathered, on the cherry-laturels of the Bot. (i. Amsterdam, 10 leawes, one rear old, each being inomted below a well grown romis shoot weisht:
 These lismes ate of quite the same order as were yiedded in December by the same shomb. 30. 4. (12 also were ent, helow opening buds, twigs one vear ohl: I chose intemtonally lwigs which thongh they bore sumerous, and fariy big shoots, had no more leaves, these being cot or having fallen ofl at an earlier period, lefore the budding ; Weight: S.2. however, in twiss one vear old, taken from the different shobs in the Bot. (i., during wimter, a percentage of HCN ratging from 0,$0 ;$ till 0.11%. It is cleal that there wats mo dimimtion after the opening of the buls.

Neither wats this the cave after the budding in the dark. Branches having been phaed in the hot honse, mader dakened hoxes, 29.4. 0 .2, leares were (at 4. 5. 0.2 , behow etiolated shoots. The percentare: $0,14 \%$, Was the same as leave from the same shruh had vielded before.

Finally, it combl the shown in P '. Pithes that, thomgh the goung branches issed from the winter buls are abready considerably developed, and bear mmmerons leaves of fatio size, the amount of HCNcomponnts in the internorles below is still the same as before the bodding.

This was observed 2.5. 4. 02, when 130 internodes of P. Phuths. from the year before were laken below long shoots, well furnished
 in 100 internodes： 0,0108 s．

Resmming，I am brought to the comelnsion that in both efocopos of
 open，there appeats in the shoots growing fom them a seadily increasing ahsolute quantity of IIC \times－ 0 ompounds，whereat the pereentater changes little in the period examined．In this same periot at leatst， and at any bate for a great part，these substances appear interpentem！ of the light．Neither is this prossice ated drawn from the internodes directly bearing the buds，and developed the reat before．Whemer if is supplied by more distant orgats，or is formed in the growing twigs ont of other substamees，this rematins to be shows．

It is also stili a proint of researeh in what form the pras－ate ated is contaned in the growing prots．That it is neresony for matate the killed organs hefore the botal amome of hydeocyance acid ean he distilled off，speaks in fatrone of the presence of a compormal that ean be split up by enzome．Moreoser，as the liquid distilled firom etiolated as well as from green shoots of I^{\prime} ．Pedhas and Lomporemostos， hats an intense smell of benzaldehyde，it is very probable that these organs also contatin ghocosides of the amyedalin－type．

1．The difficolties of a complete themy of emission are partly awoided in a treatment begiming with the absorption，and this may have been the reason why Goum has followed has procedure though it must be gramed that in his method an explanation of the mechanism of the phenomenon at in Lombat\％sheory camot be given ${ }^{2}$ ）．In Vongt＇s theory the sepation of at－yectabline by the atetion of a magnetic fied is found ats the separation of an atment－ tion line．
 and contirmed by experiment ${ }^{*}$ ）．

[^2]

 of the phane of pulatisation in the interion of an abonphon batm
 latal were but contimed by the experiments of somatss ${ }^{4}$) The

 in ulserving at very small positive rotation.

It womblo very remakable hewever, if there existed at disureement
 neroded with wher well anterstood phemomentat.

I have been experimenting already sombe time on this subjeet. In exeroting the experiments I have bern aded in an exeellent maner bÿ Mi. Habdo.
 of ath albonption hatal, the results of my observations being in pertece ymulitulior anerement with Vomers theory
2. The method used in the following observations on the rotation in sodimm sapour is principally the same as that which has been nsed by Vont " ${ }^{\text {an }}$) his demonstration of the double reftaction of sodimm vapom phated in a manetio dield. Aready llossma ${ }^{7}$) used it in a determination of the natuel rotation of the plane of polarisation in quatto, and also Corbiso in his tirs experiments on sodimm.

By means of a system of phant prisms (as has been used by Frowab in his experiment on the division of a plane-polarised ray into two circulaty polarised rays) a number of horizontal interference fringes are formed in a spectom. The light taverses the prism in the direction of the axis and the edges are horizontal and perpendicollar to the slit of the spetroseope. The prism system (length 50 mm .) Wats plated in my experiments as near as possible hefore the slit of -peotaal applaratus and a small Nieol, used as amalysator, behind the shit. The polarising Nicol wats pated, of couse, before the electro-
$\left.{ }^{1}\right)$ ef. also Lammon. Aether and Matter, p. 003.
${ }^{2}$) Solit. Amn. dee Plysik. (f), 6, p. $7 \times 1,1901$.
3) Combso. Atli R. Ace. dei Lincei. Vol. 10 p. 137, 1901, Nuovo cimento Foblmaio 1 ! (NE.

1) Smmases. Aun, d. Plyys. 2 p. 280, 1900.
${ }^{5}$) The magnetic rotation in the ricinity of the band is positive in soditm vapour.
${ }^{6}$) Vorgt. Wied. Mm, 67, $p, 360,1 \times!!9$.
i) Hessel. Wied Am. Bd. 43, p. 49s, 1891.
magnet (of the Runmorry fype). The speetoseope was a Rownown's grating, for which I am indehted to the kindness of the Directors of the Dutch Society of Sciences at Marlem; it has a ratins of 6.5 M., 10.000 lines to the inch and a divided surface of neaty it cm.

The grating was mommed for parallel light in the mamer indieated hy Ruage and Paschex ${ }^{1}$). The souree of light wats in most (atses the electric are, in some the sum.

Using this artangement of the experiment we ean deduce immediately from the deformation of the interference finges in the neighbouthood of the absorption bands, when the sodimen rapour is muler the attion of the magnetic field, the value of the rotation of the plane of polatisation for different wave lengths. Fig. 1 of the Plate gives an idea of the aspect of the fringes in absence of the diedd in the neightouhood of the sodium lines, rather much sodium being present in the flame between the poles. The observations were made in the serond order.
3. In the experiments first to be described, the distance between the perforated poles was about $4 \mathrm{~m} . \mathrm{m}$. and the intensity of the fied abomt 15.000 e.g.s. mits. In this field was placed a gat flame fed with oxyeen and a small quantity of sodimm introduced in it by meats of a glats rod. After removal of the polarisator and of the Frbsal prism the two doublets, in which the sodimmlines are separated, in the inverse magnetie spectral effect were observed. Between the components of the domblet were seen the very namow reversed sodimmlines due to the are light itself.

The polarisator and the prism were now introduced in their proper places. The field of view was then erossed by the above mentioned (2) dark, neary horizontal interference fringes.

I now wished to ascertain the deformation of the fringes by increasing contimonsly the quantity of sortimm vapour, the field remaining constant. This method must be prefered for obvions reasons to the other which might have been followed also, viz: the examination of a flame with constant percentage of sodimn under varying magnetic intensities.

The following observations refer io D_{1} :
If the quantity of sodium in the magnetic field wats only extremely small, the interference fringe exhibited at the place of the reverned sodinm line a protulerance -- let lis say domemond -- the lines of the doublet being somewhat stronger just above the interdeneme fringe. In fig. 1 this behaviour is represented sohemationally.
${ }^{1}$) Kayser. Handbuch. Bd. I, p. 4se.

Fiッ． 1.

 of the fromge shed downmated with incteasisg velocity and then resembled ath amow with point direded mpwat，the pats more femoted from the medinn line lating atway and disappating（el），the
 increase of the density of the raporns．It then became impossible to distinguinh the fringen or any brace of streture in the fied between the eompments．Rather moth light was transmitted．The entire witth of the eompmonems of the doublet was now about of the same woler at the distame of the did rentral limes．

A fimber increase of the quantity of sodimm ohsenred the eentad fatt more and more（see finther（ \mathbf{S} ））．

The exterion frimes moved contimonsly unsard while the density Was heme increared．

In a fied of aboul 20000 mits the downwad displacement could be followed over at distane of more than the donble of the distance hetween two finges，comerponding 10 a metuthe rotation of above

Some more acourate data will be given on another occasion．
In the carse of l ，the phenomena were in the main of the same －hataterer．

For D_{z} it was however chatateristic that the stage of the nearly or entirely vanishing of the interior finges was reached with smatler died，whereas also the shape of the interior finge differed from the one observed in the ease of D_{2} ．Hence there exists also in this case a dillerenee between $/)_{1}$ and $/_{2}$ ，a difference already known to exist in the phenomena of reversal，of the sepatation by a magnetic fied and of the rotation of the phane of polatisation in the vicinity of the absorption band．
4. It appeared possible to keep stationary carh of the shates dow cribed in (3) during a considerable time. Exechem pholographs eond to. secured with plates which weresensitisel for yellow light with eryyhorsine silver. Instead of the gastlame fed with oxgen it wat cation in the ease of greater distanes between the poles, to mee a bumen hmrner wherein common sall was introduced.
5. If the density of the rapour wat mamamed ats comstant an possible and if it and the fiedtintensity corresponded to the ciremmstances represented in fig. 3) (3) then an incretsere of the beld pate a motion of the arrow (tig. 3) (3) mpards, corresponding to a doestens of the negative rotation and reciprocally. It wats posible to ohserve by eye observation rey cleady this decrease when the tied was changed e.g. from 18000 to 25000 . If the circumstanes were more in accordance with fig. 2 (3) then the same change of fiek protheed a change only just pereeptible of the negative rotation hut in the same sense as mentioned in the case of fig. 3 .

An enlarged reproduction of one of the photographs is shown in fig. 2 of the plate. The distance hetween the poles in this experiment was $6,3 \mathrm{mM}$., the fied intensity about 14000°). The nevative rotation in the case of D_{1} is somewhat less than ser . In the case of D_{2}, yet only some traces of the interior frimes can be seen (3). The negative rotation is aloout 180°. In the photograph are seen also the reversed very narow D_{1}-line and the broaler I_{2}-line, which are due to the are itself and have nothing to do with our sulyeed.
6. The observations (3, 4, 5) agree qualitatively in an excellent mamer with the conchnions from Vonst's theory. According to it, the negative rotation must be of the same order of magnitude ats the positive one. This last was known from Macantao's and ('onbenos experiments to be very great. The chomons value and the sign of the negative rotation given in (3) may thus be regarded as a beantiful contirmation of the theory.

As much is this the case with the direction (a) of the change of the negative rotation with increasing field. In order to see this we must know the value of the (quanity ocemring in the theory $l={ }^{\prime}=\begin{gathered}\text { it }\end{gathered}$ ($k=$ fieldintensity, f and 3 parancters of the absomponband), for which the comparison must take place. It was posibible to atsigu a value to P by comparison of the phenomenon with Volgt's figure I^{2}).
${ }^{1)}$ The intensities of the fich were measured by mears of a bismuth spiral in the centre of the fied. Probably the values given are somewhat too high. Measumments of the magnetic change of the spectral lines give lower values.
$\left.{ }^{2}\right)$ Annalen der Physik. 6 p. 789.1901.

 remombliner in the main feathose lige 2 of the Plate. 'To the

 the tasal atomer hind ate prohathly in the viemity of the eritical vallue $I^{\prime}=1.7: 3$.
7. 'The shope wh the exterion interference fringes is greater towards

 rotation dhe to the where. St the same distamese if not very smatl, of eatel of the lwo /) limes the rotation at the side of the violet is spratest. The interion fringes also show a slight asmmens, so e. or the print of the arow in lig. © (3) ought to be asymmetrical. The pate at the side of the violet is predominatimer.

It is clear that these phenomena depend upon an astmmetry of the dispersion come
8. With very dense sodinm vapour, hence umber ciremmstances Which we berond the last stage of (3), I ohserved phenoment very probably identical with those observed by Combso. In my fint experiments with those dense vapon's I thourht if alsolntely necessary for secoring sulficient intensity to widen the slit beyond the width used in the already given experiments. I now see however that this is manecessaty.

Using these very dense vapours one sees in the absorption hand a horizontal pirt of an interference fringe, which seems to have undergone a very small displacement "puards by the action of the tiedd. These horizontal parts are more ill-defined and broader and the whole phenomenon in the bands is darker than under the circumstances deseribed in (3), (4), (5).

Figss 3 and 4 of the Plate will give a clearer impression of the change in the phenomenon than a long description.

Fig. 3 was obtained with at field of 4500 mits and much sorlium. I have made some measurements, according to a method not to be given here, concerning the displacement of the central (in horizontal and vertical direction part of the interference fringe, and I have found a displatement, which would correspond to a positice rotation of about is with loth D-lines. Fig. 4 was taken with a fiek of 10700 and much sodinm. The exterior interference fringes are very clear and much deformed; the rotation in the parts adjacent to the absorp-

I: 1

tion band supass 180^{\prime}. The interion intertereme frimes arm ver indistinct. Their appeatance would sugest that in the ("itse of $/$) in

This however eamot be the cate becathe there wats fow mothe sodimm in the flame. A eomparison with fig. 2 will show that the lines are mueh broader in fig. 4. Measurements taken on other nematives gave me for tieds of 11000 , displacements of ahout wh the distance thetween two fringes, comesombing to a positive rotation of 11°. Hence the displatements in these eases are precenely of the same order of magnitude as in Commo's experiments. The palenemof the boarters of the band is easily aceomed for hy the remark hat here

I. do not believe that these lates are in contradiction with thenry. It is true that it requires for very high values of I ' a value zero for $\left(1 \% \%_{0}\right)_{1}$. If we must take as the logens of the frimge the mean vertiond height, then really the rotation wonld be positive. It reems possibhe that with those broal fringes the case is different. It is also possithe that the circumstances, assmmed in the theory are not wholly realised in the experiments with dense rapous. I am making some new experiments abont this subject and therefore shatl not diserns further the different possibilities.

EXPLANATION OF THE PLATE.

Thie Plate gives about sixfold enlargements of the photographs.
Fig. 1. Interference fringes and absorption lines in absence of the field and rather much sodium. (2)

Fig. 2. Same lines. Field intensity about 14000 , little sodium. (3) (.)
Fig. 3. Same lines. Field intensity about 1000, much sodium. (s)
Fig. 4. Same lines. Fied intensity about 10700 , much soditur. (8)
 Mikroskeletons." liy Prof. J. W. Wis Widae.

It is a well-known quality of cartilage that it firmly retains eerlain anilinstains. Taking adramage of this quality, I have for some yeats endearoured to find a stam, which will remain permanent in the cartikge. after it will have been entirely extracted out of the other tissues. If the object is made transparent in cauda balsam, the cortilatinots skeleton will then be seen ats if if were prepared. I wats more or less suceessfal with most of the so-called basal aminn-pigments, best of all howerer with methylene-blue, and m I was imdnced to use this latter stain exclusively.

 When appline to smatl where with which the ordinaty prepataion-

 omly a part was comstructed, for instamere the heat-skeleton or the pelvis.

Womkiner on this plat at single ohject regpures many months of
 imitations.

Fonlowser the colorimernethot, on the contraty, ateat momber
 not chansy imitations. hat the ohjects themselves with all parts in their mathat combection and the contoms of the whole embro and of different oryan besters. for mownthtanding the transparency of the ormans the ontlimes of many are still cheaty recomizable. Althongh the cartibug is colored imtene ly blae, it remans transparent: so for instane the spinal colnm elimmers throw the shonder-hate.

The method is ats follows:
The embren is tixed in the nsual way in $\tilde{j}^{\prime \prime}$ s sublimate-solntion, or $10^{\prime \prime}$ 。formol. 00° in Zaxker's lignid and is preserved in alcohol. So douly it may be fixed in many other ways: I even ohtaned nseful reants with ofd preparations of aleohol fiom the collection. I mostly dix the embros in ó" ${ }^{\circ}$ sublimate-solution, to which is added ${ }^{1}$ in volumen formol, shortly hefore using.

The objeet may now the bromght immediately from the akohol into the pigment-oolntion. but it has seemed advisable to me to extated previonsty for atay or two with alcohol, which contans some $\left({ }^{2} / 4{ }^{0}{ }_{0}\right)$ hydro-charic ated. The ated alcohol most be renewed if it has tumed yellow the next day, which often bappens when iodine has heen used in extrating the sublimate. The iodine is fatal for the coloringe, as it forms with methyleneblue an almost insoluble precipitate and with nentral aleohol the iodine camot be quite removed. This is proved when seemingly white objects, preserved for a year and more in alcohol which has remaned colorless, being bronght into adel alcohol, ratuse this liguid to turn yellow the next day. The yellow color disappeats after the addition of a few drops of sublimatesolution.

From the acid alcolol the object is placel for a day at least, rather for a week, into an alcoholie solution of methylene-blue, to which 1% hydro-chloric acid has been added. It is sufficient when ${ }^{1} /$ gram of methylene-blue is dissolved in 100 ce . alcohol of alront 70%. If more coloring-matter is taken, a sediment remains on the bottom of the bottle. After the addition of the hydro-chloric acid, blue erystalline needles separate themselves from the liquid. For this reason it is desirable that this addition should be made not at the moment of using, but some time hefore.

The object when taken from the pigment, should not show any sediment. If it does, it has not been extracted long enongh with acid alcohol. Although it is not lost yet, it may cost months before the sediment is removed. The intensely blue-colored object is treated in the usual mamer in the above mentioned acid alcohol, which is renewed several times on the first day and once daily afterwards. The renewal is continued until the alcohol shows mo blue tinge the next day. The time required for this is, of course, dependent on the size of the embryo. This time can be shortened hy taking alternately alcohol of about 70% and a stronger one and hanging the object one day in the stronger alcohol, whereas the next day it is allowed to settle on the bottom of the bottle; this is not necessary however. In about a week the stain has been removed from all the tissues, except from the fundamental substance of the cartilage. It is not necessary anxionsly to observe the day when the alcohol shows no more coloring; objects kept for a year and longer in the colorless acid alcohol, showed the cartilage still distinctly blue.

The object is now dehydrated in absolute alcohol, in the usual way, and rendered transparent in xylol. To avoid wrinkles, it is not put immediately from the alcohol into xylol, but first in a mixture of two parts of absolute alcohol with one part of xylol, then in a mixture of one part of absolute alcohol with two parts of xylol and only after that in xylol only. Larger-sized embryos are cut in halves or in different pieces with the razor. After that the objects are put first in a thin, afterwards in a thick solution of canada-balsam in xylol and finally in a solution, which in ordinary temperature is solid, but liquid at 60°. In this solution they remain in the thermostat at 60° during a couple of hours and are then enclosed in glass-cells under a covering-glass.

The glass-cells in trade are usually too low, higher ones cam easily be obtained by fixing stripes of window-pane with canada-balsam on an object-glass.
 that the wheets will sot fade ist the long run, I lion only sely, that ovent my oblest proparations, which have heen endored in canadat hakan for a comple of geas, hase mot fated visibly. I have taken catre however to dissolve in xylol the solid, mentral camada-halsam of (irïblea's myself becamse the commereial solation often contans turpentine.

The staining methoul here described has been suceessfal with the cartilaghous skeleton of representatises of all classes of vertebate animals, as for instance with Amphoxns, with embryos of sharks and rays, of sabmons and roblebes, of frogs and lizards, of birds, of mite, rahbits and mam.

With reqard to man, it is of importance that the coloring ean will he sucessful with embryos in a far proceded state of dissociation ath which otherwine one wond be imelined to throw away.

Marnitied slighty, the preparations are particulary suitable for demonstration. I here demonstrate the skeleton of a loman embryo of about tive weeks old and draw your attention to the rudiment of the shoulder-blade. It is still exchusively adjacent to the neck, on a level with the $5^{\text {th }}$, $6^{\text {th }}$ and $7^{\text {th }}$ cervical vertebrae, with the point still above the first rib. Eleven ribs show the blue color of the cartilage, the modermost, the twelfth, not yet.

In this second embryo, which is somewhat older, the shoulderbate has left the $5^{\text {th }}$ cervical vertebra and lies on a level with the $6^{\text {th }}$ and $7^{\text {th }}$ cervical- and the $1^{\text {st }}$ and $2^{\text {d }}$ thoracic vertebrae; it reaches with its point as far as the third rib. Not only all the fwelve ribs are visible on the twelve thoracic vertebrac, the rudiment of a rib on the last cervical vertebra is seen besides, which rudiment fuses with this vertehra later on, as is well-known.

In this third embryo, which I received in perfect condition and which after fixation was 25 mm . long in its natural curve, it may be seen that the shoulder-blade has again gone down a little. At the neck it does not reach hirher than the level of the last cervical vertebra and reaches with the point as far as the $4^{\text {th }}$ rib. Further the rudiment of the pelvis mat here be noticed, on the level of the fourth lumbar - and the tirst summo-vertebrate and on the head the eartilage of the oceiput, the ear care, the cattage of Merkel and the rudiment of the ineus.

Other preparations show the paired rudiment of the rabbits and the chicken's sternum.

Also for materosopie musem-preparations this is a suitable method: I could show you, for instance, the cartilatinots skeleton of shark-
embryos more than 2 din. long, preserved in xylul. These preparations were exceedingly beatiful at tirst and the non-cartilaginous lissues transparent, as clear as crystal; hater on however they lost the transparency for the greater part and became opalescent. The canse of this change is unknown to me. Such macroseopic preparations onght therefore also to be enclosed in camada-balsam or dammar-resin.

Chemistry. - "Intramolecular rearantement of atums in "Evr!gbenzene and its dericatives." By Dr. H. M. Kvipacheer. (Commmicated by Prof. Lobry de Brets.)

Whafach and Beldi ${ }^{1}$) noticed a long time ago that azoxybenzene is converted into its isomer p-azoxybenzene by gently heating it with sulphurie acid, or by means of fuming sulphuric acid at the ordinary temperature. Bambergen found that in this process there is also formed half a percent of o-oxyazobenzene a substance discovered by him some time ago when acting on nitrosobenzene with aqueons canstic soda at 100 . The reaction noticed by Wharach and Bebli must be represented as follows:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \xrightarrow[\mathrm{O}]{\mathrm{N}-\mathrm{N}} \mathrm{C}_{6} \mathrm{H}_{5} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OH}(1.2 \text { and } 1.4)
$$

Sulphuric acid was up to the present the only reagent (apahle of cansing the said intramolecular rearangement of atoms. Warker ${ }^{2}$), however, when stating in his paper on e-azoxynaphtalene that this substance turns red by exposure to direct smbight, also remarks that azoxybenzene is likewise sensitive to sunlight, but he only mentions that it turns deep yellow withont having investigated the nature of the change.

Various derivatives of azoxybenzene also appeared to be liable to the same intramolecular rearrangement of atoms, but again sulphurie acid is mentioned as the only reagent capable of causing the change. The result of those investigations showed that some of the substitution products, namely the meta-derivatives, are almost fuantitatively converted into the isomeric phenols, while the ortho-and para-derivatives are only affected to a small extent or not at all.

[^3]

 ghlnene aceompanied by a wids sted ats o-lolylazohenzoio atod.

 heating it with sulphorice ated at 100 - 105°.
 molecular rearangement might he realised by other means that by the use of sulphorice acid. It was aseertamed that the intramolecolar reamatement of atoms in azoxybenzene is also possible by raising the temperature to at least 200° and by the inflnence of direct smblight. In the first aise a mixture is formed of p - with mueh o-oxyazobenzene : in the second case only o-oxyazobenzene is ohtaned. Nome of these changes is reversible. Also those derivatives of azoxybenzene which undergo intramolecular rearangement by the action of $H_{2} \mathrm{SO}$, are converted by the said agencies, but the action is slower and the amomt is smaller than that obtamed from azoxybenzene. The insestigation of these derisatives has not yet heen guite concluded.

Acetic anhydride is withont effect on azoxybenzene at the boiling temperature: on heating however at 200° the change already takes place in a notable degree, much better than by merely heating the substance itself, while an acetate is either not formed at all, or only in very small quantity. P'oxyazobenzene is not formed at 200° bul only the o-isomer. Solutions of azoxyenzene derivatives in acelio anhythide do not however suffer any intramolectar change at 200°,

Addition of $\mathrm{Zn}\left(\mathrm{Cl} \text {, or } \mathrm{P}_{2}\right)_{s}$ to acetio anhedride does not enable it to canse the change at the boiling point; heating with the so-called Beckmas's mixture is also withont avail. By heating a solution of azoxybenzene in this mixture at 150° and 180° it appeas that azoxybenzene which, when prepared in the ordinary way is a yellow substance, is perfectly white when in a pure condition. The ordinary

[^4]product therefore contains a yellow impmity, which ammot be removed by recerstallisation.

The intramolecular change was attempted in vain by means of the following reagents :

Aceyl chloride, butyryl choride, benzoyl chloride, phosphorus pentachoride, phosporus oxychoride, phosphoric aded, abminium chloride, afmeons ("anstic soda, copper oxide, zinf oxide and zine earbonate. Of these reagents the following deserve to be specially mentioned on accomt of their action on azoxybenzene :

Acetyl chloride: formation of $/ 1$-p-dichloro-azobenzene and p-chloroacetanilide ; benzoyl chloride: formation of azobenzene; phosphorus pentachloride: formation of azolsenzene with evolution of chlorine ; ahminimm chloride: formation of ρ-chloro-azobenzene.

Mathematics. - "On the connection of the plenes of position of the angles formed by two spuces $S_{\text {a }}$ passing through a point and incident spucial systems." By Prof. P. H. Schoute.

1. If in a space $S_{a_{n}}$ with $2 n$ dimensions two spaces S_{n} are given arbitraly, these have in general only a single point O in common and they form in this point with each other n angles differing in general respectively. These angles are situated in n definite planes through O ant the line at intinite distance of such a plane of position has a point in common with the fwo given spaces $S_{n}{ }^{(1)}$, $S_{n}{ }^{(2)}$ as well as with the spaces $s_{n}{ }^{\prime}(1), s_{n}{ }^{\prime}(2)$ drawn perpendicular to the just mamed spaces throngh any arbitury point, say (), not at intinite distance. In this way the two platues of position of two planes ε_{1}, ε_{2} taken abibarily in S_{4} are determined by the common transversals of four lines situated in a three-dimensional space, viz. of the lines ℓ_{1}, ℓ_{2} of $\varepsilon_{1}, \varepsilon_{3}$ in the space S_{3}^{\prime} at infinite distance in S_{4} and the lines $\ell_{1}{ }^{\prime}, I_{2}{ }^{\prime}$, normally conjugate in this S_{3} to $!I_{3},!/ I_{2}$.
2. Let us consider the particular case when the n angles formed by $S_{10}^{(1)}, S_{n}{ }^{(2)}$ are alike; as an introduction we take in S_{4} again two planes $\varepsilon_{1}, \varepsilon_{2}$ forming with each other in their point of intersection () hwo equal angles. It is known that in that case the form above mentioned lines $!I_{1}, \ell_{2},!_{1}{ }^{\prime}, \ell_{2}{ }^{\prime}$ are generators of an hyperboloid ; so they admit of not only two but of an infinite number of common transversals, to which answer likewise an infinite momber of planes of position. If the system of those transversals I is indicated by (t), the
 between the two incident satems of times (9) (1) at intinite distance this reciprocal combection that the phane patwing themen an arthitarily chasen point ${ }^{1}$ at finite distanee and an athitrary lime of one of the
 ing the print " with two inthatary lines of the othor gatem. From the mamer in which the quadratie seroll (1) is firment omb of !/, , !/s $!/^{\prime}$, $/_{2}^{\prime}$ mamely manes hat the surface $/ /^{*}$ of order lwo, bearer of the two systems (y) , (t), atrees with itself in the polar system all intinity in S_{8} of which the imavinary shere B_{∞}^{2} common 10) all hyperspheres is at the same time the loens of the peims lying in their polar planes and the emedope of the planes passing themgh their poles; for to cath line t interecting $!!_{1},!!_{2},!!_{2}{ }^{\prime},!!^{\prime}$, regarded as loons of points agrees in that comsondence a line t^{\prime} lying with $!_{1}{ }^{\prime},!_{3}{ }^{\prime},!\Omega_{1},!\Omega_{2}$ in a plane regarted ats axis of a pencil of planes, ete.

If we make the lines !!, !f of (y) mormally compuate to carch other to correspond to each other, then between the lines of (g) a guadratie involution is formed; the domble rays y_{i}, y_{j} of this involution must lie on b_{x}^{2}, being nomally congugate to themsetves Likewise does $B_{s}=$ contain the double ratys t, t of the involution formed in quite the same way between the line $1, t^{\prime}$ momally comgrate to each other. So Π_{x}^{*} and B_{∞}^{3} intersed cath other in the sides of a skew quadriateral whose pairs of opposite sides are the double rays
 normally conjugate to each other.

If $\left(!,!, \prime^{\prime}\right)$ are two nomally coningate rays ! and $\left(t, t^{\prime}\right)$ likewise two normally conjugate rays t and if we lake the phanes $0!$, 0 , f^{\prime}
 then the surface H_{∞}^{2} must be characterised with respect to this rectangular system of coordinates by the equation $r_{1} r_{3}=r_{2} r_{4}$ between the intinite coordinates. For the quadratic surface $r_{1} r_{3}+\mu_{2} r_{2} r_{4}=0$, brought through the lines at infinite distance of the four mentioned coordinate phanes, corresponds to itself in the polar system with the sphere $r_{2}{ }^{2}+r_{2}{ }^{2}+r_{3}{ }^{2}+r_{4}{ }^{2}=0$ at infinite distance as surface of incidence only when the absolute value of μ is equal to unity. For the normally conjngate line of $r_{1}=2 r_{3}, 2 r_{2}+p_{1}=0$ is $2 r_{1}+r_{3}=0$, $p^{2} x_{s}=2 n_{4}$ and this new line lies only for $\mu^{2}=1$ with the original one on $r_{2}, r_{3}+\mu_{2} r_{4}=0$. so by reversing if need the the sign of one of the coordinates we can always bring the equation of I_{x}^{*} into the form $, r_{1}, r_{s}=r_{2}, r_{4}$.
3. Before passing on to the general case we shall consider the
case, when in S_{n} two three-dimensional spaces $S_{3}{ }^{(1)}, S_{2}{ }^{(2)}$ are given arbitrarily. The line !/o at intinte distance of the plane of position of one of the angles formed by those spaces in their point of intersection ($)$ is then a common transversal of the planes at infinte distance $\varepsilon_{\alpha}^{(1)}, \varepsilon_{\infty}^{(2)}$ of $S_{3}^{(1)}, S_{3}^{(2)}$ and the planes $\varepsilon_{\infty}^{\prime(1)}, \varepsilon_{x}^{\prime(2)}$ normatly ronjugate to these. As the common tramsersals yo of the three phanes $\varepsilon_{\infty}^{(1)}, \varepsilon_{\infty}^{(2)}, \varepsilon_{\infty}^{\prime(1)}$ form a "rariety", $\left.\right|_{3}{ }^{3}$ of order three of three dimensions and this curved space is intersected in three points by $\varepsilon_{\infty}^{\prime(2)}$, the spaces $S_{3}{ }^{(1)}, S_{s}{ }^{(2)}$ make in () three angles with each other. This variety $\mathrm{J}_{3}{ }^{3}$ is not only (compare i. a. the first part of my "Mehndimensionate
 locus of a twofold infinite series of transversals I_{x}, but at the same time the locus of a simple infinite series of planes ε_{∞}, each of which determines with $\varepsilon_{\infty}^{(i)}, \varepsilon_{\alpha}^{(2)}, \varepsilon_{\infty}^{\prime \prime}(1)$ on the lines $!_{\infty}$ quadruples of points with a detinite anharmonic ratio, i. e. $\mathrm{l}_{3}{ }^{3}$ is the bearer of two incident systems which we represent according to the nature and the multiplicity of the elements $\mathrm{l}_{\mathrm{y}}\left(/ /_{\infty}\right)_{3}$ and $\left(\varepsilon_{\alpha}\right)_{1}$. Beside the general ease, where $\varepsilon_{\infty}^{\prime(2)}$ has in common with $V_{3}{ }^{3}$ thee points not situated on a right line, the particularity may arise that $\varepsilon_{\infty}^{\prime(2)}$ has a line in common with one of the planes ε_{∞} of $\left(\varepsilon_{\infty}\right)_{1}$ or coincides with one of those planes; to this answer the particularities that two of three generallydifferent angles of position or all three of them become equal to each other. In the last case of the three equal angles of position, to which we restrict ourselves here, there is between the two systems of incidence this comection, that the plane passing though an arbitrarily chosen point () at tinite distance and an arbitrary line $!/_{\infty}$ of $\left(!\sigma_{\sigma}\right)_{2}$ is a phane of position for the pair of spaces comnecting () with each of two arbitratily chosen planes ε_{∞} of $\left(\varepsilon_{\alpha}\right)_{1}$. If namely we make on each of the lines f_{∞} of $\left(!/_{\infty}\right)_{\text {, }}$, those points to correspond to eath other which are conjugate to each other in the involution determined by the pairs of points of intersection of that line with the planess $\varepsilon_{\infty}^{\prime(1)}, \varepsilon_{\infty}^{\prime(1)}$ and $\varepsilon_{\infty}^{(2)}, \varepsilon_{\infty}^{\prime(2)}$, then between the planes ε_{∞} of $\left(\varepsilon_{\infty}\right)_{1}$ is formed a quadratic involution, from which ensues that the plane $\varepsilon_{\infty}^{\prime}$ normally conjugate to the phane ε_{∞} of the variety $I_{3}{ }^{3}$ lies likewise in $\mathrm{J}_{3}{ }^{3}$, etc.

The two double planes $\varepsilon_{i}, \varepsilon_{j}$ of the involution ($\varepsilon_{\infty}, \varepsilon_{i x}^{\prime}$) form part of the imaginary hypersphere $B_{4}{ }^{2}$ with four dimensions at infinite distance common to all hyperspheres $b_{s}{ }^{2}$ with five dimensions of S_{8}. So the section $\mathrm{I}_{2}{ }^{\circ}$ of $\mathrm{J}_{3}{ }^{3}$ and $\beta_{4}{ }^{2}$ consists of these two planes and a $\mathrm{V}_{\mathrm{a}}^{+}$which must now necessarily be the locus of the transversals $/ /_{\infty}$ of $\left(/_{x}\right)_{3}$ lying entirely on $B_{4}{ }^{2}$. Whilst ats is known the lines $/_{\infty}$ resting on any atbitrary right line of ε_{∞} form a surface
"ff woder two, the locus of she limes !to resting on the conie of section of x_{s}, illal $\mathrm{l}_{4}{ }^{8}$ is a $\mathrm{l}_{2}{ }^{4}$.
4. If tinally in sen fwo spores stare taken athatraty, these form with eateh wher, ats was mentoment abover, in theig point
 and the line at intinte distane of the plate of position of each of those atheres in the patere at intinite distanere $x_{2 n-1}$ of sim interseds again four pates S_{n-1}, the spates at intinite distance $S_{n-1}^{(1)}, S_{n-1}^{\prime 2}$ of the two qiven spares $S_{n}^{(1)}, S_{n}^{(2)}$ and the spares $S_{n-1}^{\prime(1)}, S_{n-1}^{(2)}$ nombatly conjugate to these. If now the sperial dase presents itself that ead right line cutting three of the four spaces $s_{n-1}^{(1)}, S_{n-1}^{(2)}, S_{n-1}^{(1)}, S_{n-1}^{\prime(2)}$ also couts the fouth, the $1 /$ angles of position are mutnally alike and the locus of the n-fold infinte system $\left(t_{\infty}\right)_{n}$ of the lines I_{∞} at intinite distance of the planes of position is a valiety ${V_{n}^{-4}}_{n}$ of order $/ 4$ with $/ 1$ dimensions, appearing likewise as the locus of a simple intinte momber of spaces S_{n-1}, i.e. in the form of $\left(S_{n-1}\right)_{1}$, namely of the spaces S_{n-1}, determining with
 mutually projective series of points. In that cate a phane commecting an arbitrat point $\quad 1$ at tinite distance with at line $!_{\alpha}$ of $\left(!_{\infty}\right)_{n}$ is always a phane of position of eath wo of the spates s. ${ }^{n}$ comnecting () with spates $S_{n}-1$ of $\left(\mathbf{N}_{n-1}\right)_{1}$.

As is immediately evident, in this special catse the section $\left.\right|_{n-2} ^{-2 n}$ of f_{n}^{-n} with the hypersphere s_{n}^{2}, with $2_{n}-2$ dimensions common to all hyperspheres $b_{2 n-1}^{2}$ of $S_{2_{n}}$ breaks up into the wo double spaces $N_{n-1}, S_{n-1}^{(i)}$ of the involution of the spates $S_{n-1}, S_{n-1}^{\prime}$ of $\left(S_{n-1}\right)_{1}$ normally conjugate to each other and into at $\int_{n-1}^{-2(n-1)}$, focusot the lines t_{∞} of $\left(t_{\infty}\right)_{n}$, lying entirely on $B_{2 n-1}^{2}$.

Physiology. - "The minciple of onterpy in physintemg." biy Dr:
J. W. Lavgelas. $3^{\prime \prime}$ part. (Commanicated by Prof. T'. P'acke)

All investigations made with the intention of testing the law of Fecmand at the experiment, have proved, that this law is only satistied within a small interval and within that interval only by approximation.

In order to find out the canses of these deviations, I bate triped to deduce the law of Fecmere (considered as at phasological law) from a general physical principle. It has appeared from this deduction that this formula rests on very special premises, and that the circomstances assumed in these premises, are never realized in nature.

In a series of experiments I have tried to fulfil as accmately as possible the conditions required by this law according to its dednction. 'To this purpose the spinal cord of a frog ${ }^{1}$) was cut between the cramium and first vertebra; then the whole frog, with exception of the hind leg which was used for the experiment, was wrapped up in wads and fastened to a glass rod. The leg humg down in a wide ressel which could contain about 600 ccm, of thuid. In the enle of the foot a hook was put and a horsehair was attached to this hook, which passed outside through a rery small opening in the bottom of the ressel. This horsehair was fixed to the arm of a length-recorder:

The small opening through which the hair passed was filled up, with vaseline; this prevented admost perfectly the fluid to drip out, while the friction experienced by the horsehair was very dight. By suspending a weight to the length-recorder the leg was charged with 15 grams. Then the ressel was tilled with 350 ccm . of water, and the leg immersed till the knce. To the stand bearing the glass and the frog, a clamp was fixed bearing a burette. This burette contained a solution of oxalic acid in distilled water. By opening the tap this solution flowed into the water in which the leg hung. A bent stirrer always kept in slow motion (but which did not tonch the leq.), cansed the acid to be thoroughly mixed with the flnid. Then so much acid was slowly added to the liquid till the leg began to contract. The vertical motion of the leg, three times magnified, was registered on a slowly rotating cylindre by the length-recorder. In order to prevent too large excursions, the length-recorder struck against a pice of cork. so that the contraction in the begiming took place isotonically, at the end isometrically.

After the leg had returned to rest, we waited about in mimutes and

[^5]then again so mad awid was alded, fill anew grouf of retleveron-
 tathed f^{\prime} grams of oxalio atod per liter sohation. Is a measure of the stimulns in physeat mats the eomeentration of the solution, in which
 the proportion between the quathtites of watie adol and watter, white ats the unity of weight the molecolat weight was chosen (126 for oxalie ated, is for water).

The result of the experiments was given in at table in the following wat. The tirst colamm gives the romerentration of the solation in the vessed, just at the moment the leer begins for show a group of retlex-ontrations. The serond colnmon eontans the incoroment, Which the concentation in the vessel mast madery to produce arain a set of reflex-ontratoms. The thind abonn qives the relation between this quantity and the absolate value of the concestration at the moment that the retlex-eontrations appear. This eolumn eontains therefore the quotient of Webers.

Let us now consider in how fiu this experiment satisties the con-

 which imnervate the skin of the hind leg, supply also the museles of the leg with nemes. If we have ent the spinal cord at the upper end and have therefore ammedthe influene of the higher centra, we have in the hind leg a segmental primary rellex-apparatus. The receptive organs of this reflex-apparatus lay in the skin, while the musele forms the ransformer. Adopting the simple latw of distribution, I record only the mechanical effect. In this respect the experiment fultils the required conditions.

The interpretation of the mechanical effect is very difheult as the new state of equilibrium is not reached at once, but only after oscillating round this new state. It is therefore hard to say what part of the total effect must be considered as the quantity $\triangle E$ of the formula. Fig. I is the reprodution of a trpical tracing. After the reflex-apparatus is in perfect rest, the tap of the burette is opened at the moment inticated in the eurve by a comple of vertical small lines on the hase line and oxalic acid is slowly added under continnous stiring. At the moment that the tirst contraction appears, the tap of the burette is closed and no more acid is added. At this moment the increase of concentration amomed to 3.2×10^{-5} the intial concenthation heing 15.9×10^{-5}. The curve represents the mechanical effect, following upon this increase of the concentration of the acid in the ressel. This effect consists of at gromp of seat contractions, followed
by some smatler ones of decreasing size. If we should be at first inclined to consider this group of harge comtactions as the mechanical effect corresponding to the quantity $\triangle E$ of the formula, this conception offers many difficulties when the mechanical effech assimes a form as is represented by the curve which is reprodnced by tig. H. In consequence of a small increase of concentration we do not see a definite effect appear, not even party defined, but the reflex-apparatus comes in rythmical contration. Where in the first ease the resistances in the chemical system are such that the oscillations rapidly die away, and the new state is reached after a few oscillations, these resistances in the second ease are so small, that once the equilibrimm distmped, the system remains uscillating round its new state of equilibrium. This oscillation docmments itself as a rydnmical mechanical effect. If the rate of decay of these oscillations is very small, these rythmical

TABLE I. (Fig. V).

Section of the medulla 10 A. M. begiming of the experiment 11.15 A. M. Temp. 13.5 C.

TABLE II. (Fig. VI.)

No 35. (25. 12, 01)		
Conc.	\triangle Conc.	$\frac{\triangle \text { Conc. }}{\text { Conc. }}$
0.0×10^{-5}	$26.6 \times 10^{-.3}$	
266	$\therefore 0$	0.154
:31.6	2.9	0.0sts:
38.5	3.1	0.150
83.7	9.3	0.058
41) 0	2.1	0.06
A2.0	1.6	$080: 3$
43.6	2.7	0.0 .99
916.3	3.5	0.064
49.8	- 4	0.098
	10.8	0. 16.1
6if.0	141.3	().2en
85.3		

Section of the medulla Io. in A. M. beximing of the exprement 1-. 40 P'M 'lemp. 1:3 C.

 in sure essive determinations．The experiment does mot athow atmother mome delinite eonseption of this ynathtity．

By the atdition of akeid from the burette ton the liguid in which the lex is immered，the level of the liguid rises，and the stimmated －whfare increases．So the experinent denes not faltil the condition of the firmmar in this respect either．

T＇SIBIE：III．

Section of the medull： 10 ． 15 A．M． begiming of the experiment I2．iが呂． Ternp．is C ．

Cinc．	\triangle Conc．	\triangle Conc：
		Cinc．
110×11	15.9×10^{-8}	
f0．9－		
$1!1.1$		
－3．if	4.8	0．192
：31．！	7.	0．～゙．
：＇s．！	S． 0	1）． 217
a：	4．	0.096
4．）	3s	$0.1 \times$ 2
47.10		
（ii．！	1！ 31	（1．29\％
96	27.6	
111．3	16． K	0.151
	15.3	11.121
126．6		

Section of the medulla 10 I．M． 96 ！ 9. begemning of the exper．12． 1 19．M．©1．9！ Temp． 16.5 E ．
${ }^{1}$ It seems to me that the heart is in this condition，and it wouk be worth while to repeat many experiments from the physiology of the heart on this ryths． mically acting reflex－apparatus．

Similar experiments as described by me, were performed by Winkire and Van Waraborgsome yearshefore. The method folloned by them, which slighty deviated from mine, enabled them fo extemd the experiment only over a small interval of vatiation of eoncentration. They concluded for this smatl interval, that the reflex-apparatus of the frog follows the law of Fechner ${ }^{2}$). In the experiments commmancated by them slight deviations from this law proved to orebr and it was with the purpose of leaming something abont these deviations. that I repeated these experiments extended over a greater interval. Table I, II, III and IV represent four of these experiments. If we take R as the value of the stimulus in physical measure (i.e. the concentration of the solution of the acid in which the leg is immerged) and if we take ΔR as the value of the increment of this stimulus Which is required to eall forth a change in the system, the quotient $\frac{\Delta R}{R}$ is not constant, but in general a function of R.

Fig. V (table I, exper. í)

Fig. VI (table II, exper. 35).

Fig. VII (table IV, exper. 14).

1) Van Wayenblig, Dissertation 1897 , pag. 117.

Fige V, VI, and VII are the eraphaical reprosentalion of Table I. 11 atht \mathbb{N}. In this entaphiabl repreacotation I lawe considered the atmonnt of watel ats eonstant (10^{5} butites of weight) athel put as atherissate the mumber of solved mbities of weight of the arded. The relative increates of the concentration, in pereents, have been chosen ats ordinates. The points, representing sureessive determinations, are commeded by a course. The graphical representation ot the result of the experiment ly a contimons corve is only an appoximation, remathang in the same conse of thomshts as that, which hat led us to represent the phenomenon ablytically ly a contmons function.

If the law of Feanar watatiofied, the lime mperenting graphically $\angle l$
the quotient $\frac{L /}{l}$ at function of $l i$, would be a straight one. But instead the experiment fimmises a comed line. In order to choidate the form of this course further, lig. V is eriven, which is the graphical representation of ant experiment, where the first descending bathed is determined by as lare a number of observations as is possible. Fig. Il shows a reduction in the extent of the first descending branch and this enables us to determine the ascending batach by a Ereater number of observations. In the experiment represented hy lig. VII this reduction of the first desending hranch is so considerable, that it no more appears in the experiment; this makes it possible to determine the top of the ascending branch and the deseending branch following on it. The whole course of the second descending branch camot be griven, as always a discontinuty oceus at a point which seems to be near a second minimum. After this dicontinuity a new period sets in, and as fiar as it is possible to follow this new period, it appeats to he comsiderathy greater, whereats the oscillation which the value of the quotient $\frac{\Delta R}{R}$ shows in this period, seems to be relatively smaller. For a skin-musele reflexapratatus the quotient $\frac{L R}{R}$ must therefore be considered ats a periodie function of R. If we inquire what is the signification of this diseontimuty, it seems that only those variables. which are the representation of the independently variable components of the chemical system, can be able to show discontimuties. This brings about a change in the nature of the system and this must be attended by a discontinuous variation of the quantity R, which occurs in formula I of the second commmmication. The experiment communicated by Massart ${ }^{1}$) seems

[^6]

Fig. VIII (table V, exper. 25).
TABLE V. (Fig. VIII.)

Section of the medulla $\mathrm{R} .: 30$ A.M. begimming of the exprement 12.5 P.M. Tomp. I: C .

 Lis.
quotient k in mont abor The thate of the conve representing the
 prehology hat reon omly part of a latwe period. By the dividing of a periont into several patto. the qumtient $\frac{L / i}{R^{\prime}}$ seens to show multiple minimatan! this orents alon in some experiments of the experimental prychology. Hence there is agreement in these respects between the results of the prodzological and the phasiological experiment.

With regad to the mechanial effect I hate pointed out, that this is sraaty depentent on the rate of decay of the occilations of the system. The rapudity of this teeay is determined by the passive resistances in the chemical srstem. If these passive resistances are slight, a small increase of $l i$ will be suflicient to call forth a change in the system. Therefore the value of the quotient $\frac{\angle R}{R}$, which is a measure of the value of these passive resistances, will determine the rapidity of the decay of these ascillations.

In correpondene with this the experiment shows that the height and the momber of the elevations in every successive determination increases with decrease of the valne of the quotient $\frac{\angle R}{R}$. Fig. III (able II) observation 2, 3, 4,5 shows this clearly. At the $5^{\text {th }}$ observation the resistances are so slight, that the system continnes to oscillate for several seobuls. Whervation is and 10 , Now this same phenomenom at a higher value of R, in the same series of observations. If we compare, however, olservation 8 with observation 5 , in which two observations the value of the grotient $\frac{L R}{R}$ is almost the same, and

[^7]also observation 10 with observations 3 and t, it appeans, that in the second place the rate of decay is dependent on the absolate value of R. Supported by these and more similar observations we maty say that the rapidity of the decay of the oscillations increases with increasing value of R and with increasing value of the quotient $L h$?

In this we have to keep in view, that the first observation always ocrupies a special place; for this observation ΔR is always very large, and though the method followed does not enahle ns to determine the quotient $\frac{L R}{R}$ for this observation, this quotient is probably also very great. Notwithstanding this we always see that the rate of decay is very slight and from this we shonld have to conchude, that the influence of the alsolnte value of R on the rapidity of this decay is preponderant in the begiming.

The same experiments which I have described for the firow whose spinal cord is cut through, can also be performed with perfectly intact frogs. For this it is necessary to wrap up the whole animal carefully in wads with exception of the hind leg which is used for the experiment. If we take care to awoid tactile and auditory stimuli, the frog remains quiet during the experiment also under these circumstances ${ }^{1}$). In this case the result of the experiment is the same as that of the preceding one.

Fig. Id (table VI) is the graphical representation of an experiment.

Fig. IX (Table VI, exper. 46).
If the first period is small, it is possible to see also here a part of a second period appear (Fig. X, table YII). This second period seems also ereater than the first, while the oscillation, which the value of the quotient $\frac{\Delta R}{R}$ shows in this period, seems relatively to be smatler.

[^8]TIIME: VI. FM, IX.

The mumber of my experiments in which a second perion appears, is, however, not great. Therefore we may say also in this case, that the quotient $\frac{L R}{R}$ is probathly to be considered ats a periodical fimetion of R. The value of the quotient $\frac{\angle R}{R}$, however, is in these experi ments considerably greater than in the preceding experiments, while in concordance with this the rapidity of the decay of the oscillations of the system is also greater.

Figure IV (table VII) which is the reprothetion of four observations from the same series, shows this clearly; the new state of equilibrim is reached after a few oscillations. If we compare observation 3 , 5 and 6 , the system proves to be a periodical one, at the third observation; at observation 5 and 6 the rapidity of the decay decreases with decreasing value of the quotient $\frac{\angle R}{R}$. At the tenth observation, where the quotient $\frac{\Delta R}{R}$ shows a very low value, the rapidity of the decay is very small notwithstanding the high value of R. If we summarize these differences briefly, we conclude that in consequence of the high section of the spinal cord, the passive resistances in the chemical system of the skin-muscle reflex-apparatus considerably decrease. On account of chinical observation chiefly rexarding the plantar-reflex, it seems to me, that we have to deal here with a very general phenomenon oceurme always where there is a wasting of systems. In this case the rapidity of the decay of the osedlations of the system is very small in conseguence of the decrease of the passive resistances in the chemical system. It is obsions that a good motor function can only exist, when the rapidity of the decay is so great, that the system is almost aperiodic. The motor disturbances, which oceur in multiple sclérosis, in locomotor ataxy and many other diseases of the nervous system seems to be partly dhe to the decreasing resistances in the chemical system of the reflex are.

If the system is perfectly aperiodie, then the quantity $L E$ is at perfectly determined quantity. This condition most also be finffilled by the systems, to which the experimental psychology extends its experiments; if this condition is not satisfied, then the effeet is a not determined quantity as in the physiological experiment.

I. Introuluction.

1. When the whervatory at leviden was fommed in Isifl, it wan fittend with a celock mate hy Mr. A. Home of Amsterdam, and hy
 showed the great resularity of its rate, in which point it was superior to all clocks about which an invertigation hask an far heen pmblished. Since that time it has coittimatly heen weed ats the standard-elock of the observatory and all the present moment its rate is still eminently satistictory.

The elock was originally moment in the tramsit-room of the ohservatory on a lorick pier which reas on the fommataions of the meridian-eirele. The stahility of the mommeng thens left mothing to be desired. On the other hand the temperature at this place was rather variable, showing very dearly a daily periok; moreover entirely irregrnar changes of temprature were offen cansed by the opening and clowing of the shmters.

From 1861 the clock haw been soing regularly milil 1874, without being touched during this time except for the propose of winding once a week. On the $17^{\text {th }}$ of Jome of the latter year however it stopped spontaneonsly, after having shown for about a month a particolar irregularity.

As the intention existed already to make comsiderable changes as well in the transitroom as in the meridian-cirele, it was thought best to defer a thorough cleaning and overhanling of the clock till the time of these alterations. Accordingly the clock was then only provisorily cleaned, and was set going again after a few days.

The intended alterations were made in the second half of 1876 and the begiming of 1875, and in June of that year eversthing wat again in working order, and also the clock Howwe 17 was mometed again.

Though Prof. H. G. wa de Sande Baniluzes did consider the possibility of removing it to a better position, out of the transit-room,

[^9]this gave rise to too many difficulties at the time, and it was only tried to diminish the variations of temperature by makime a seond wooden case round the clock. ${ }^{2}$)

In the meantime the ehronographic method had been generally adopted at the observatory for the meridian observations. Now it had been shown repeatedly that the introduction of an electrical contact in a clock diminishes the regulatity of its rate, and on the other hand we had found that the comparison of two docks could be effected with extreme atecutuy by means of signals given by hand ${ }^{2}$). Accordingly the clock Honwu wat not comnected with the chronograph, but the clock by Kxoblach wats used for this purpose.

On the 26th of November 1877 the clock was stopped for a shor time in order more completely to adjust its beats; since that date howerer it has been gomg mintermpedy motil August 1898. At that time the clock wats again dismounted at the orcasion offered by alterations in the thanstroom, and cleaned and overtanded by Mr. Honwio,

In becember 1898 the clock was remomed. and this time the formor plan of removing it from the transit-room was cartied out, and it Wats fixed to the pier of the 10 inch refinctor. In order better to secore a constant temperature, Prof. H. (土. Vas de Saxde banheyzan resolved to have a niche cut ont firm this pier in the large hall of the observatory, and to place the clock in this niche.

The clock Honwi $\mathrm{N}^{0} 17$ has now been in its new place for oved three years. It is still enclosed in fwo woolen cases, and the niche itself is closed by a glass door. We may remark already at this place that by this arrangement the am of excluding rapid variations of temperature has been attaned in a very perfed mamer.
2. In 1887 Mr. Whtradink investigated for a special purpose the rate of the clock Honwu 17 dming the period 1886 Jammary to 1887 July. It then appeared that after reduction for temperature and barometer the mean rates for the summer- and the winter-half-years were in very satisfactory agreement, white on the other
${ }^{1}$) At the same time a small mirror was attached to the pendulum-hoh, to permit more accurate determinations of the amplitude of oscillation. See: H. (i. vis we Sande Bakhuyzex, Terslag zuen den stadt der stervemucht te Leiden 1s76-1877, page 12.
${ }^{2}$) From series of signals given by the two observers Wilmbink and E. F. bas de Sinde Bakuctzex immediately afler each other, on a great number of days, the Mean Error of the result of a series of about ㄹt signals, (including the variation of the constant error during an interval of about a month) is foum to be $\pm 08.007 \overline{7}$.

Mr：Wintemman fommel

$$
\begin{aligned}
& \text { (11) (1口1月) } \\
& \text { 1846 Jamary- Jume }+0.045 \\
& \text { dnly- Decomber -- } 0.0: 3 \\
& 1857 \text { dannaly }- \text { dume }+0.03 \% \text {. }
\end{aligned}
$$

（＇onsequenty，when in 1890 I matertook the definitive dise 1 assion of the lime－dederminations amb elock－rates for the period 18.7 － 1882 ，it appeated desibabe to me the investigate whether a similat phonomenom Wond arain show itself．I then fonmel that the vears 1878－1882
 this respert entively smilat to 1886 － 8 ，and，insestigating the phomb－ menon more closely，I moreoser found that tho rates，after corvection for semperature，still showed a yearly periodicity which areordingly had its maxima in the months of eynal femperathere Aprib and oreober and the amplitude of which was about 0． 10 ．

I then continued my insestigation the resulto of which were briefly
 1889－1s90，＂pages $14-15)$ in the same direction and inchated on the one side the yeats $1882-90$ ，heing provisional results of the time－determinations，and on the wher side the yeats $1862-1864$ ， using the reablts of Kissars investigation in Sate．Vercher．1502．For these two perionds I also fomm the same mexplaned inequality．

After 18.90 this investigation was abtatomed for the time being． and it was only baken up again lata geatr．In the mean time the Clock had been remosed to its new position，and it mow appeared that． notwithstanding the fact that the changes of temperature had beenme much more gratual，sill the yearly periodicity of the rate showed itself in the same way ats before and its deviation from the geally periodicity of the temperature wats certainly not less evident ${ }^{2}$ ）．

It became thus evident that there wats no question of atecidemat circomstamees，which eond he altered by cleaning the chock，nor of such conditions ats depend on the spectal matare of the colanges of temperature to which the clock is subjected，but that the cathse of the phenomenon mast lie deeper：

It therefore appeared desinathe to sulgect the way in which it showed itself in the three protiods（aiz：before and after the cleanimg

[^10]of 1877, and after the cleming and removal of 1898) to a new investigation which had to embrace the whole of these perionts. The results of this investigation are given in the present paper.

I have confined myself to such results as could be derived from the mean daily rates during periods of about a month. Thus it was not necessary that the time-determintations on which the investigation is based were discossed with the utmost acouracy. In this way I investigated successively the three periods, 1877-1898, 1862-1874 and $1899-1902$. The results for these three periods will he commumiated in this order. Then the observed amplitudes of the period 1877-1898 will be investigated, so far as their yeary periodicity is concerned, and finally the several results will be compared with each other.

As a consequence of the restriction of the investigation to the monthly means, the question is considered from one point of view only. In the mean time howerer Mr. Werder has definitively discussed all the time-determinations from $1882-1898$, and has undertaken investigations about the rates of the clock during shorter periods. It is to be expected that, when these investigations will he completed, the comparison of his results with mine will also throw more hight on the phenomenon which is here treated.

Very recently, while my investigation was already nearly completed, I had occasion more closely to study the computations which Karer made about the clock Hommú 17 dumg the lasi years of his life, and which are preserved in manmseript at the observatory. I then found that as early as 1870 his attention had been drawn to this particular rearly inequality as to a remarkable phenomenon. Among the prapers I found a summary of monthly means of rates, corrected for barometer and temperature, from which mean results had been formed by combining the corresponding months of the years 1862 - 1870 . These means show clearly a periodicity having its maxima in May and (october, and a total amplitude of 0 0.09. Futher I found means for the half-yeas Februar - July and AugustJumary for each of the years 1863 to 1870. The differences between the two half-years vary between +0.026 and +0.5048 and Kaser adds the remark that the only difference between the two half-years is that in one of them the temperature is, in the mean, rising, while in the other it is falling.

II. The period 1877-1898.

3. The clock-rates which were taken as the basis of the investigation were, for the period 18.7-March 188°, derived from the

 the berimming of each month．
 figation were derived in dhe dillowing waty

The temperature was reat an fwo thermometers stopended in
 the wher at the level wf the permblam buts．These theromometers were real live tmes a day viz．at is a．m．，mom， 4 f．m．．\＆p．m．amb midnishla． The seales were Remmers and wore divided into fall degeres．

We will tim investigate the relation befween the results given hy the fwo thermometers．The reading of the years 1888， 1879 ， 1884 and 1885 were discossed for this propese．In the following tathe the monthly means of the differences between the two thermoneters are griven for eath of these form years，affer application of the index－ comrections．The difterences are taken in the seme upper thermonneter－ bower themometer．The las cohmm sives the means of the fome reas．

バズ	1879	1x：i	1以゙い	\19\％
Januiur $\ldots+0$＋ 16	＋1112	$+11.19$	＋11．1ti	＋ 16.16
Fromuary ．．．+0.18	＋111i	＋ 11.19	＋11 21	＋ 0.15
	＋11．01	＋0．ひッ	＋ 11.20	＋11．21
April $\ldots .$. ＋ 13.333	＋17．25	＋11．2	＋10．27	＋ 11.27
May ．．．．．+10.2 d	＋ 17.89	$+10.27$	＋1120	$+11.05$
Jume．．．．+0.29	＋11．26	＋ 1203	＋11．2！	＋ 11.25
July ．．．+0.20	＋ 0.12	＋0．95	＋ $112 x$	＋ 10.260
August ．$\cdots 1+0.23$	$+0.22$	＋11．27	＋ 0.25	＋ 0.23
Soptember ．＋ 0.21	$+0.20$	＋ 0.6 .2	＋1122	＋ $0 . \varrho 1$
Ooturere．．．．+0.18	＋ 0.15	$+10.20$	＋ 11.19	＋11．19
Susmuthra $+11.11 \%$	$+0.18$	$+0.20$	＋ 0.18	＋ 0.18
［momber ．．．+0.18	$+0.18$	$+10.18$	$+0.17$	＋ 11.16

There apmears to the a constant difference of about $+0^{\circ} .2$ between
the two temperatures. There also seems to be a small yeally inequality. We will return later on to these small differences letween the separate montls, and investigate the inthence which they can have had on the rate of the clock, if they are real.

For the rest of the investigation the readings of the upper thermometer were used exclusively. I first formed daty means ${ }^{1}$) - the day beng reckoned from midnight to midnight - and then means for the periods of about one month. The index-eorection, which may be taken constant and equal to - 0°. 5 for the whole period, wat not applied.

Until May 1886 the heights of the harometer were real and reduced in exactly the same way as the iemperatures. The reatings were made on a merowial barometer which was sumpended in the transit-rom from the same pier which also carried the clock. After that time a barograph of Ridmard was used, which was placed on the top of this sume pier. Its corrections were determined ly comparison with the mereurial barometer ${ }^{2}$). The daily means were then derived by integration by mems of a plamimeter of Ansisis.

During the period in question three different cistern barometers were used; in consequence of cleaning and refilling we must however distinguish 7 periods. The corrections for these 7 periods were determined by intercomparisons, by comparisons with simultancous reading. of the barometer of the Meteorological Institute at Utrecht, and finally by comparisons with a "Cistern-syphon" barometer lyy Fuess, which in 1890 was provided for the olservatory, to be used as a Standard barometer. Since however before 1890 mo correction had been applied and the neglected corrections amounted to approximately +0.3 mm . during the whole period, the realings after 1890 were reduced to: Normal barometer - 0.3 mm .

The barometer-readings were not reduced to 0'. This reduction was omitted on purpose, though the errors introduced therehy are by no means negligible (at $760^{\text {man }}$ the effect of 1° Rérus is $0.15^{\text {man }}$). The influence of these errors on the rate of the chock is howere nearly completely compensated by the fact that also the influcne of the temperature on the rate, which is thas found, differs firm the true one. It is here supposed that the emperatures of the barometer has ahways been equal to that of the prendulum, which condition is

[^11]maty fultillel in the preand rave The only thine that is thes
 rature on high and on lew hatomener-ventines, which is extremely suatl.

 in the fiermula:
\[

$$
\begin{aligned}
\text { Daily Rate }= & 11+1(1-.6(60)+(1-10) \\
& l=+0.0140 \\
& 1=-0.0268
\end{aligned}
$$
\]

The value of 1 , wats derived from a rigorons disenssion of the perion 1875-1882, in which only rates obsemed maler high and low barmetric presure durine the same month were compared. This vatue must be very near to the truth. In all investgations, not only about Honwe 17, but also about other elocks with similar, or even with difierent forms of pendulam, harometer-oefticients have always been fomed of neally the same amomb, and it is mot probahle that its value would valy with the time for one and the same clock.

The value $b=+0.0140$ has therefore been emsidered detimitive, and I have not attempted to improve it.

The following table gives, for each month from 1875 December t1) 1898 July, the mean observed daily rate, the mean height of the barometer and the mean temperature, and, in the column headed ..Red ${ }^{d}$. D. R. I.", the daily rates reduced to $760^{\text {amm }}$ and $+10^{2}$ R by the formula given above. The meaning of the dwo last colums can only be explaned later.

[^12]

		$\begin{aligned} & \text { Ohw } \\ & \text { I). } \mathrm{H} . \end{aligned}$	Hir．		Tenny	$\begin{gathered} \text { linid. } \\ 11,18,1 \end{gathered}$	$\begin{aligned} & \text { 18e.d.1 } \\ & \text { 1). If. II } \end{aligned}$	11，$-\mathbf{C}$ ．
1＊＊1	Ally．	＋ 11111	763.8		$+10.8$	＋ 11.	+11.2 年；	＋ii
	\therefore 二n．	0.11841	（i2） 1	।	13.8	11．150	$\because 10$	－－1
	11.1	11171	（a）． 11	I	9.1	11.16	$\because 24$	＋ 7
	Sos．	11：3\％	1i1．2	1	77	11． 1 ※	－	$+27$
	1ro．	11． 2 －	－ 7	1	$\therefore!$	11．15：	－1\％	＋i；
1sst	J：m．	0.81	－x． 7	1	19.4	10．2゙ロ｜	ご	1
	Fothe．		－x．	1	：3．1	11.174	291	－ $3: 3$
	March	0.37%	二1月．2		$\therefore 1$	ロ．とった	213	＋21
	April	0．：3it	181.1		6i． X	11．2．w	28	＋ 16
	May	11.3 \％	昭．		10.4	10．24）	2！	－1：
	Sulie		（ix．ti	｜	12．3	11．2゙ロ1	บ世	－\＃
	July	1．12：01	63． 7		15.11	11．26\％	－12	$+1.0$
	． 1 \％r．	0.1073	Sx．l		1：3．4	1）． 191	24	－थi
	sipt．	11．12以	10．2	I	12.0	0．15：2	20	－－
	0.1.	0217	611.8		7.4	11．19\％	$2: 1$	＋－
	Sus．	0.0 ํㅡㅡ	43.0		7.8	6．As	26：	＋！！
	bere．	6． 3 232	12.7		8．1i	11.16	21.5	-8
1×8	Jan．	0.59	710		4.2	0．170	？	＋
	Forir．	0.698	71.0		3.5	10.131	$\because 1: 3$	－ 4
	March	0．359	16． 5		7.0	0.2 （1）	219	$+5$
	Amil	0.189	85.7		8.1	11． 171	171	－${ }^{11}$
	May	02.0	6it．${ }^{\text {d }}$		11.3	0.291		-1
	June	0． 180	60.7		12.5	0.102	17：	－
	Inly	（1．113	80.9		13．9	0．20．	190	－\＃
	Aurs．	0.0×6	89.7		13.6	0.187	$2{ }^{2}$	$+7$
	sopt．	0.105	89．8		12.0	0． 1 tie	－18	＋ 26
	Oct．	0.1087	89.1		9.3	0.081	18：	-13
	Sov．	0.113	$\therefore 1$		6.1	0.16 .11	18：	－ツ
	Dec．	0.150	\therefore 二to		4.3	0.187	116	－90
1883	J：an．	0.309	60.9		3.5	0.12	181	1
	Febr．	0.361	$6 \mathrm{fri.4}$		5．2	0．142	17.	－ 3
	March	0.349	30．8	1	3.3	0．172	$2(2)$	$+9$

	Obst D．R．	Bar．	Temp．	Reda D．R．I	$\begin{aligned} & \text { lied.l } \\ & \text { D. IR. II } \end{aligned}$	（1）－（\％
1883 April	$+0.301$	761.1	$+7.7$		＋ 0 止20\％	＋
May	0.203	62.4	11.0	0.196	18：3	＋ 10
June	0.133^{4}	626	13.0	0.178	11：3	－
July	0.053	\％9	139	0.169	1103	$+$
Aug．	0.107	（33．8	13.9	0.159	17\％	＋16i
Sept．	0） 020	39.5	12.7	0099	1.51	－ 4
Oct．	0.0 .00	60.0	9.8	0.0 亿	1：9	$-1: 3$
Nov．	0.078	59．0	7.3	0.020	107	－ 11
Hee．	0．25＇t	6́t．2	4.9	0.05	1：32	－ 10
188 Jom．	0.219	（i3．） 1	5.9	0.0 .8	10.	－ 37
Fehr．	0.242	（i2．） 1	5.0	0.088	112	－バ
March	0.221	（11．0）	6.6	0.116	129	－！
April	${ }^{10} .182$	57.3	7．5	0.153	$1: 10$	＋18
May	0.200°	6.6	11.2	0.181	172	＋ 3
June	0.150	63.9	12.1	0.151	14	＋${ }^{\text {a }}$
July	0.0 .02	62.7	15.6	0.164	164	＋ 15
Aug．	0.087	64.3	15.7	0.179	199	＋ 4
sept．	0.078	63.6	13.8	0.130	187	$+27$
Oct．	0.10%	62.4	10.1	0.073	169	$+1$
Nov．	0.323	65.9	5.7	0.125	219	＋it
Dec．	0.272	59.0	4.4	0.136	2103	＋
IS85 Jan．	0． 413	58.8	1.4	［0．190］	912	＋32
Febr．	0.262	57.2	5.6	0.183	218	＋ 23
March	0.399	63.6	4.8	0.210	229	＋34
April	0.201	30.5	8.7	0.215	回以	$+17$
May	0.148	58.1	9.2	0.151	1.3	－隹
June	0.151	63.6	13.2	0.187	19%	－ 11
Tuly	0.191	67.7	18.5	$11.20{ }^{1}$	225	＋ 15
Aug．	0.117	61.9	12.9	19．16\％	910	－ 4
Sept．	0.097	40． 3	11.7	0.438	211	－
Oct．	0.031	54.2	8.8	10．080	180	－ 43
Nov．	0．30．	60.5	48	0.159	239	$+11$

		$\begin{aligned} & \text { Obsd } \\ & \text { D. R. } \end{aligned}$	Bar．	Temp．	$\begin{aligned} & \text { Rred d } \\ & \text { 1). R. I } \end{aligned}$	$\begin{aligned} & \text { liond } \\ & \text { D. R. } 11 \end{aligned}$	$0 .-\mathrm{C}$
1888	Aug．	$+0.188$	763.6	＋131	$+0 . \pm 21$		-27
1	Sept．	0.2087	$66 \pm$	11.9	0.221	27	-15
	Oct．	$0.30{ }^{\prime}$	62.6	8.2	0.230	281	－9
	Nov．	0.333	59.4	5.9	0.231	－以	＋ 2
	Dec．	0.415	63.0	4.7	$0.23: 31$	\％	－
1888	Jin．	0.548	66.5	9.6	0．20．7	217	＋ 7
	Felor．	0．420）	57.3	3.1	［0．273］	20\％	$+6$
	March	0.437	60.6	4.4	0.279	29.	$+5$
	April	0.270	514.0	7.6	0．292	271	-19
	May	0.20%	59.7	13.0	0.289	988	＋ 8
	Jume	0.216	6 6． 1	15.0	0.292	308	$+18$
	July	0．150	60.3	14．0	11．252	280	-10
	Auy．	0.133	593	13.6	0.293	2×1	－ 9
	sepr．	0.232	63.1	12.2	0.297	301	$+11$
	Oct．	0.181	55.7	8.8	0.210	271	-19
	Nuv．	0.108	60.9	6.4	0.215	276	-14
	Dec．	0.518	66.1	2.9	0.242	096	$+10$
1890	Jill．	0.420	60.9	4.3	0．只准	296	＋15
	Fehr．	0.589	67.4	2.6	0.287	315	＋25
	March	0.324	57.1	6.1	0.260	276	－14
	April	0.282	55.5	7.2	0.270	279	-10
	May	0.226	28.4	11.4	0.285	294	＋
	June	0.282	63.6	12.4	0.295	311	＋ 23
	July	0.199	60.0	13.7	0.299	327	＋40
	Aug．	0.180	61.3	13．5	0.256	（9）	$+13$
	Sept．	0.26 k	66.8	13.1	0．251	310	＋
	Oct．	0.283	63.4	9.6	0．202）	$28(6$	＋ 5
	Nov．	0.245	578	$+7.1$	0.198	29	-19
	Dec．	0.677	63.3	-0.8	［0．3\％ 010$]$		
1891	Jan．	0.711	6 6． 8	-0.2	［0．368］		
	Febr．	0.620	73.2	＋3．3	0.256	28.	$+15$
	March	0.320	568	4.7	19.223	$2: 39$	－ 28

Proceedings Royal Acad. Amslerdam. Vol. V.

		$\begin{aligned} & \text { 111, } 1 \\ & \text { I. It. } \end{aligned}$	İar．	＇Jım！	$\begin{aligned} & \text { Iic.el- } \\ & \text { I). Ii. } 1 \end{aligned}$	$\begin{aligned} & \text { II. If. II } \\ & \text { II. } \end{aligned}$	（1）．－1：
I＊！n ；	Sup	＋ 11120	7127	± 110	＋0．2．20	$+11.20=$	＋12
	Sur．	11 10：1	$\therefore \mathrm{AT}$	1：1．：	1）． 214 i	＇20）	$+14$
	Het．	111 is	87：	！．$\%$	11.178	シージ	＋ 21
	Sus．	1120×1	12.1	$\therefore 7$	11.1 in	世6	＋
	Here	11．05	Sx．	8.1	11.081	1×11	－\％
$1 \times 0 \%$	sthl．	11．301	is i	$\because 1$	11111		$+11 \%$
	Vilur．	11： 212	1i： 3	i．${ }^{\text {a }}$	$11.11!1$	15s	-11
	Mand	（1．1 1il	$\therefore \because$	13.1	11.100	1×1	-17
	April	（1．29）	（11）． 7	S 1	0．16：3	2013）	＋
	May	1）． 19.1	1il．＇	10.9	19．19\％	215	$+11$
	Jии，	（1．17）	（13）	13， s	$1)^{11}$	212	$+11$
	Inly	（1． 129	6i3．6	11．x	11．204］	$1!2$	－！
	Aur．	0.033	36.1	14.7	0．172	1：8	-4.3
	sept．	$0.17 \cdot 1$	16.1	120	11.170	178	－ 23
	Oct．	0.329	（17．$\overline{6}$	9.2	0．203	23	＋ 33
	Nuv．	0.348	（ini． 6	6.1	0.191	2%	$+16$
	Dec．	0.360	62.3	4.1	0.1 尔	220	＋19
1808	J：иı．	0 ） 367	710.0	5.5	0.100	167	-34
	Febr．	0.216	So． 1	4.9	0.100	172	-20
	March	0．2尔	is 6	5.0	0． 1303	198	－3
	April	0.201	00.5	8.8	0182	216	$+15$
	May	0.185	＂8：3	10.1	0.211	235	$+35$
	June	0.174	（3）．5	13.1	0.207	206	$+5$
	July	0.181	$6 \cdot \mathrm{t}$	13.4	0.205	202	$+1$

The table shows clearly that during the first month following the starting of the elock the rate has been rarying rather considerably， as probahly will be the catse with all clocks．It will be seen at the same time that onty after about 10 years the greatest regularity was attained．In the last vears however the rate again began to get slighty less regular，which is shown especially in the mean rates during short periods，and when the clock was taken to pieces in 1898 it appeared that this onght not to have heen deferred so long．It was
found that the pivots were more or less atfected，and on the smpen－ sion－spring there was a small stain of rust，which had fortmately not eaten into the metal．

Further rather large deviations are shown by the reduced rates， whenever the temperature wat below 0° ．This is clearly shown by the monthly means for 1890 December and 1891 damary during which months the temperature wat almost constanty below zero． It might be thought that this points to the existence of a term depemel－ ing on the square of the deviation of the temperature from its mean value．Such a term might be explained by an influence of the temperature on the elasticity of the suspension－spring．${ }^{1}$ ）

It appeared however，ats will more amply be thown behow，that the monthly means show little evidence of the influence of at cyat－ dratic term，so long as the temperature remains above zero．It would seem that the temperatme－coefticient changes more or less abruptly near 0° ，its value for lower temperatures being mach targer．

I have therefore excluded all periods during which the tempera－ ture wats below 0°（or rather below－ 0.95 R ．）Fow months，diz： 1879 Dec．，＇90 Dec．， 91 Jan．and 93 Jun．must conserfuenty be exclad－ ed entirely．In 16 other months the temperature was below zero on $10 t$ days．For these months new ，means were formed，excluding those days．${ }^{7}$ ）The following table giver the athered redncel mean daily rates，together with the corresponding mean temperatures．

	Temp．	$\begin{aligned} & \text { Redd } \\ & \text { I). R. I } \end{aligned}$		＇Temp．	$\begin{aligned} & \text { Redd } \\ & \text { I). R. I } \end{aligned}$
1xit）January．	＋$\because 1$	$+0.133$	1891 Inecomber	十 5.1	$+1)^{8} .20$
1881 January ．	＋ 2.3	． 199	1ど3－2 Jimuary	＋：3．1	． 19%
1885 Jamuary．	十－5	． 161	＂Matreh．	＋3：9	2%
Is8t December	＋i－2	Itil	＂December	＋+6	． 190
1887 January ． 1	＋1．	． 20.5	189：January．	＋3．2	$\therefore 2 t i$
1888 January	＋ 2.9	2li：）	1）Febratry	＋4．9	2：
＂February	$+2.7$	26\％	189\％）J：muary	＋ $2 \cdot 3$	．17\％
1889 February	＋ 3.4	． 86	＂Fehruary	＋ 2	．14i

${ }^{1}$ ）Investigations by Dr．P．J．Kaser about the clock Honwt－ 27 ．belonging to the Bureau of Verification of the Nautical instruments belonging to the Dutch navy， have shown that the nature of the suspensionsenting las a considerable influence on the value of the temperature－coefficient．
${ }^{2}$ ）Since there were not always time－deteminations cxadly at the begminy and the end of each cold period，some more days had to be exchule
'These means have finther heen med insead of the origimal valus.

 exelonded from the begimniner.

To begin with, it is possible without mome eompmation, simply by combining the reduced rates into gromps, to show that they must skill contan a term of veatly period which eamon be explatned by at diaret inthence of the temperathere.

This is done as follows. 'The monthly means of the satles sund of the temperatures were atanged in gromps of one year eath, the year bergming with May and ending with the following dpril. Then the means were taken of the rates for each year, and the differences between the montbly means and their yearly mean were formed. Thus I derived for each year a series of 12 differences: monthly means of rate searly mean, and ako a series of 12 corresponting temperatures. In each of these series the mean was then taken of the firs and the last value, of the secome and the hast but one, and so on. Fimally also similar reatts were derived substituting for the temperatures the differences between the actual temperature of the month and that of the preceding month (\angle Temp).

Then the same process was repeated with the only difference that the yearly eroups commenced with February and ended with danuary.

The aim of this process will become clear when the results are considered. For brevity's sake I confine myself here to the five years $188 \pm$ to 1888. The differences: monthty means of rate - yearly mean are given separately for each year, and also for the mean of the five years. For the temperatures and the \triangle Temp. only the means are given. The differences of the rates are expressed in thousandith parts of a second as mit.

It is evident at liss sight that in the first arangement all the series of bates show a very mathed progression, while the temperatures are neaty the stme. In the second armagement the reverse is trae. On the other hand the variation of the rate is roughly paratlel to that of the $\&$ Temp. Hence the rates contain aterm which does not depend on the actual temperature , but of which the maximal coine ide with those of the yearly chomfe of temperature, or, in other words, the yearly periodicity in the rate of the clock does not coincide with that of the temperature, and from the values just quoted we easily derive that the tirst lags about half a month behind the latter.
6. Before a closer investigation of the phenomenon is possible, it

	1884	1885	18810	18.7	1888	$8{ }^{8}$	$\begin{aligned} & \text { Temp, } \\ & S_{4},-N \end{aligned}$	
May. April.... ... +	$+: 39$	+18	+60	+14	+位	+ 3	+8.9	$\frac{1}{1} 311$
June, March +	+29	+3s	$+32$	$+1$	+27	+2\%	+85	+ - 11
Juls, February..... +	+14	+28	+30	+11	- 5	$+16$	+8.8	+1:3
August, January ... +	+11	$+8$	-8	$+8$	-16	$+1$	+8.2	-1.8
September, December -	- 23	- (2)	-40	-1/4	- 69	- 6	+85	-1.5
October, November.. -	-60	-70	-7	-24	- 9	--5!	+7.4	- 3.5
Feloruary, stanuary -	-18	$+27$	$+9$	$+10$	$+3$	+ ${ }^{1}$	± 3.0	-0.8
March, December... -	- 11	$+27$	+	$+4$	- 2	+ 5	+4.5	-0.2
April, November... +	$+2$	+ 0	--9	+ 2	+20	+5	+6.ij	- 0.2
May, October -	- 10	-tiv	-10	- (1)	+16i	-17	+! ${ }^{\circ}$	-11.4
June, Scptember ... +	+ 4	-14	$+$	15	-4	- 3	+12. 8	+ 0.6
July, August...... +	+ ${ }^{1}$	$+9$	+ 2	$+19$	-30	$+7$	+142	+ 0.6

musi first be ascertained whether the adopted temperature-coefticient represents the observations for the whole periorl. ${ }^{1}$)

For this purpose each rear was treated separately. The years hegiming with February were used, since in that case the remperaturecoefficient is form nearly independent of the changes in the rate which are proportional to the time.

Gradual variations with the time are namely clearly marked, and over long periods they are not even proportional to the time. This is seen from the following summary of the yearly means in which I have taken the years begiming with May in order to he able to include 1878.

1878	$+0.122$	1883	$+0^{s} .114$	1888	$\begin{aligned} & +0.952 \end{aligned}$	1893	$+0.8$
1879	. 120	1884	. 159	1889	.294	189%	. 20 K
1880	. 189	188.5	. 189	1890	.29	1805	.200
1881	. 186	1886	.210	1891	. $\because 18$	18975	. $1 \% \%$
188\%	. 157	1887	. 2.57	1892	.2929	1×97	169

1) In the investigation of this section and also in that of 5 , it was inadvertently omitted to apply corrections amounting to 0:005 to six rates of the years ' 88 and ' 89 . The intluence of this omission is negligible. For the four montls, in which the rates were rejected on account of the low temperatures, interpolated values were used.
 dionts. Sh the dirs method I ked the deviations of the monthly means firom the yeaty meaths, while in the seromel the deviations of the ese stme month!y meaths from appoximath values of the term of i.e the nob-periontic pate of the rate, were tased. These values were derised from at enve which represents ats neaty at posible the reaty means for veas hegiming with Maty, with Angras, with November and with Febrmary ${ }^{2}$).

These two methods satve the following serjes of corredions, heated 1 and It respectively, whith must be applied to the value - 0.0268
 tenthomsamdth part of at seromd.

	1	11		1	11
157:	$+15$	$+23$	1×89	+ !	$+12$
1500	+	+ ! !	$18: 0$	+ 3	+ 1
1Rsi	+47	+ 81	1×91	11	;
15:2	$+70$	+ 13	1892	+	+2x
1503	+ is	+i7	1×93	+	+ 46
188i	+	+ 31	18:94	+ in	+ 68
	- 家	-17	1×5	+ 98	+ 93
1880;	-	- 3	1896	$+102$	+ n
1×87	- 凹'	- -3	1897	+ 64	+ 67
$1 \times 8 \times$	- 120	-11			

The two methots thas give pratically the same results. Althoment this agreement is of comse not a measure of the real acemacy of the corrections fomm, it is nevertheles evident that the temperaturecoefficient has not been constant during the whole period, but that the adopted value requires a positive correction ats well in the tirst as in the last years, the latter being the most marked.

If the whole period is divided into three parts, we get the following mean results, according to the second computation (hose of the tirst method are nearly the same):

$1879-1884 \triangle c=$	+38
$1885-1892$	+2
$189.3-1897$	+74

[^13]Throughout the preceding investigation it was atsimned hay han intluence of the temperature is proportional to its firs pewer. It is important to investigate the results, which will be formot, if we repres sent the influence of the temperature by the fommatia:

$$
c_{1}\left(t-t_{n}\right)+c_{2}\left(t-t_{n}\right)^{2} .
$$

For this purpose I used the deviations of the mombly means: from the values of a derived fiom the durve. These deviations were represented by the formula

$$
\angle u+\Delta c_{1}\left(t-t_{n}\right)+c_{2}\left(t-t_{n}\right)^{2} .
$$

I did mot investigate the separate years, but I derived mean results for the three perions mentioned above; t_{n} is then in sach cate the mean temperature of the perion, and differs boul litte from +8.5 $(=+8.1$ Réaumur).

In this way I fomud the following values of $L^{\circ} r_{1}$ and r_{2}, boolt expressed in centhonsimeth parts of a secomd:

$$
\begin{array}{lc}
& \angle c_{1} \\
1879-1884 & +30 \\
1885-1892 & 5 \\
1895 \\
1893-1897 & +75 \\
\hline
\end{array}
$$

The values of Δc_{1} nearly agree with those previnusly found for Δc. Those of c_{2} are small and of different sign, and their reality is doubtful. The rates for temperatures below zero would require positive and much larger values of c_{2}. In order to represent e. w. the two results for the momhs 1890 Dec. and 1891 , Jan. it would be necessary to assume $c_{2}=+15$.

I think therefore to have acted correctly by exchuting the rates corresponding to temperatures helow 0°. For the other temperatures we may certainly provisionally atopt a linear formula for the influence of the temperature.

As to the coefficient c of this formula, 1 domot think that it could be represented as a function of the time which would have any real meaning. Probahly, however, it will be better to assme it comstant during shortẹ periods only, e.g. thens:

	$L e$	i
$1879-89$	+21	-247
$1881-83$	+52	-216
1884	+31	-237
$1885-91$	-1	-269
$1892-93$	+37	-231
$1894-97$	+81	-187

Finally I will show how these coefificients would be altereal see

 conterions ate of this medtement:

 preferable it dial not seem neeresary to repeat the compulations with theme altered values.

Ather this the deviations of the corvected monthly means from the values of $"^{2}$ d derived from the empe were formed and these means were amatged in yearly gromps, each year berimning with May. ${ }^{2}$) For brevity's sake I do mot give the results for the separate veas, but on! the means for form drongs of years, vi\%: $1879-1882$, 185:3-1886, 1887-1891 amd 1892-189\%. If the deviations of the monthly means from the yearly means are used, the mean results for those form groups are not apprecolaby altered. All values are given in mits of one thonsandth part of a second.

It will be seen that the results of the tirst and the second grongs agree vely well inter se, and also those of the thited and the fouth groups, I have therefore finally formed the means for the periods $1879-1886$ and $1887-1896$. The principal differene between these two periods seems to be that the low minimum in October which is shown in the first, has disappeared in the last. In the years, 1892-1896. however, the whole periodicity hegins to be less marked, and in 1897 it is no longer shown by the monthly means. The monthly means of 18.8 (i. e. 78 May-'79 April) are in rood arreement with the results for the period $1879-1886$.
${ }^{1)}$ Since this curve is relative to the temperature $+10^{\circ}$, while the mean yearly temperature is $+8^{\circ} .7$ its first and last part had to be slightly altered, to account for the altered values of the temperature-coefficient.
\Rightarrow The curve for " can only be drawn from "is Nor. to "is Jan., therefore the present investigation can only include the period '79 May-'97 Aprit.

	79－82	$833-80$	87－91	（12－96	$\frac{1579}{1854}$	$\frac{18 x}{1 \times 27}$
May	＋$: 17$	＋ 38	＋ 2	＋41	＋	＋：3
June	$+14$	＋ 2	＋ 23	＋ 27	＋ 19	＋
July	＋12	＋22	＋ 13	－ 4	$+17$	＋\quad \％
Augus	－ 3	＋ 7	－ 4	-14	＋	－ 10
September．	－38	-32	－${ }^{7}$	-9	－：	－18
Octuler	－${ }^{\text {ri }}$	-85	－＜	－	－74	－
November．	－2	－． 34	－ 24	－ 21	－3	－ツir
December．	－22	-26	-13	-16	一 \underline{y}^{\prime}	－ 11
January ．	＋12	－ 5	－ 7	－ 6	＋4	－ 6
February ．	－ 1	＋19	$+11$	－ 9	＋ 9	$+$
March．	$+40$	＋33	＋ 11	$-\therefore$	＋$: 1$	$+$
April．．．．．	＋39	＋ 46	＋30	＋ 24	＋红	＋27

During the period 1887 － 1896 the periodicity can be very satis－ factorily represented by a simple simusoide．We find：

$$
\Delta r=+25+\cos 2 x^{T-I_{1}(y) 5} 365
$$

where the amplitude has been expressed in tenthonsandth parts of a second ${ }^{1}$ ）．

For the first period such a representation is impossible，and even when a term containing the double angle is introduced，the repre－ sentation is not entirely sufficient．In that case we find：

$$
\Delta r=+455 \cos 2 x \frac{T-11^{m} \cdot 24}{365}-95 \cos 4 \pi \frac{T-1 p \cdot 23}{365}
$$

An entirely satisfactory representation can only be obtained by an empirical curve．

This eure，together with the points which indicate the observations to be represented，is here reproduced in fig．1．The simsoide of the second period is given in tig． 2^{2} ）．

Moreover the following table gives for the first period the differenes
${ }^{1}$ ）From the period 1887－1891 alone we find

$$
\Delta r=+274 \cos 2 \boldsymbol{x} \frac{T-11 a y 1}{365}
$$

${ }^{2}$ ）These figures will be published together with the second part of this paper．

Finally attention must be drawn to the fate that a term with the argument taT might be explained by the direct influchere of the temperature, if a quatratic term is assmmed therein. In fact the yeary variation of temperathere can be approximaty represented by:

$$
t-t_{1 n}=+i, 5 \sin 2 \pi \frac{T-1 \text { Mey } 1}{365}
$$

which would introduce into the rate a term:

$$
\angle r=-15 c_{2} \cos 4 x \frac{T-M a y 1}{365}
$$

which agrees nearly with the second term in the alowe formula for the period $18.9-1886$, if we lake $c,=+6$. The probability of this explanation is howere lesened by the fat that a simila term does mot exist after 1886 .

8, The results which have on far been derived have tinally been used to fiee the month! means from all periondic terms and then to represent them by a simple curve.

For this purpose
Ist the reduced rates I were reduced to the mean temperature $+8^{\circ} .7$.

2 nd the corrections, which become necesary it the temperaturecoefficients given at the end of of 6 are adopted, were applied.

Brd corrections were applied for the supplementary periodic ferm in the following way, viz. for 1878 to 1886 ateording to the comve for 1887 to 1896 by the formula, white for 1897 and 1898 the correction was adopted $=0$.

The rednced rates fomed in this mamer are combaned in the general table of the rates given above under the heatinge "Red I). R. II".
 10 make it as simple as possible. It is reproduced in Frig. © ${ }^{3}$. The residuals O.-C. (Obs. - Cime are given in the lats colum, of the gencral table.

For the years $1879-1896$ the mean error of a monthly mean derived from these residnals is

$$
\text { M. } E:= \pm 0.02: 37
$$

If the supplementary term had not been applied it would have been

$$
\text { M. } E .= \pm 0.0364
$$

The difference is considerable.
3) The curves derived from the yearly means, which were previously used, agree with this one in the principal points, but were more complicate.

K0NINKLJKE AKADEME YAN WEMESCDIAPEN
 TE AMSTERDAM.

PROOEEDIN(x' Of TLIE MEETIN(; of Saturday June 28, 1902.
(Translated from: Verslag van de gewone vergadering der Wis- en Xatumkundige Aflecling ran Zaterdag 2o Juni $1902, \mathrm{D}]$. XL).

○○NTエNTIS。

Erg. Debors: "The geological structure of the Hondsrug in Drenthe and the origira of that ridge", (1st. l'art Commonicated by Prof. K. Marra), p, 93 , (2nd. Part (iommunicated by Prof. H. W. Bakitis Roozeboom), p. 10 .
G. C. J. Vosmser: "On the shape of some siliceuns spicules of sponys", p. 104.
J. I). vis deis Whus Jr.: "Statistical electromechanies," II. ('ummmicated by Prof. I. I). vis here Wibls) p. 114.
J. D. vis ipen Winis: "Ternary systems," V, p. 121.
J. H. Boxnema: "Cambrian erratic-blocks at Hemelum in the South-W"est of Frisia". (Communicated by l'rof. J. W. Moll), p. 140.
G. vix Itersox Jt: "Accumulation experiments with denitrifyine bacteria". (Communicated by Prof. M. W. Beymarick), p. 148, (with one plate).
W. II. Jruirs: "An hypothesis on the nature of solar prominences", p. 162.
C. A. Lobey de Bermand J. W. Dito: "The boilingp int-eurve of the system: hydrazine +water", p. 1 :1.
 of sugars and glucosides", p. 175.
J. J. Beanksma: "The intramolecular rearangement in hatornacetaailides and its velocity". (Communicated by Prof. C. A. Lamer me Batw), p. 158.
W. Rembers: "Galvanic cells and the phase rule". (Commmicated by Prof. II. Wr. Bunutas Roozeroon) p. 182.
E. F. van me Swne: Bukurazra: ,On the yearly periodicity of the rates of the standardclock of the observatory at Leyden, Hohwii Nr. Li," (2nd Pary). p. 193, (with one plate).

Etratum, p. 217.
The following papers were read:
Geology. - "The Geological Structure af' the" Homelsivtly in Drenthe atul the Origin of thet Ridele." By Prof. Ettr. D) Boos. Communicated by Prof. K. Martin.)
(Communicated in the meeting of May 31, 1902).
North-west of Eksloo, on the Hondsug in Drenthe, remarkahle sections of the soil are now to be seen in about fifty pits, dug last

 mutmal distane of हो M., at few at 100 M. manthal diatamee, in the
 some, neared to the village, on the Howre Vold. Shen whers are on
 group, sumeedtine eath other at intervals of 100 M . in the direetion from somblheat to merth-west. The pits are spare, the eflees measming ahom B^{3} M., and thomgh many are men guite ats derp mow ats they have been, owing to their bemg parlly filled again by blown-in sand, the reatial sides of the greater momber are still monevered to a deph of 3 or eren $3^{3} / 2 \mathrm{M}$.

Execpled wo of them, sitnated most to the northeastern border of the Hondsurg, we ohace in all at similar seetiom. In the upper part a relatively thin bed of sumd, being near the surface of a dark greyinh or nearly back colow, owing to much homes contamed in it, hut for the rest of a light yellowish or brownish grey, this bed showing hardly any traces of stratitication and combaning irregulaty scattered stones of very different size, among which gramites and coloured quartzites are predominant ${ }^{1}$). The sand is intimately mixed in some places with a noticeable quantity of brown clay. It is the well-known bonder-send of the Hondsrug. Under it, to the bottom of the pits, rather coarse, loose, white quartz-sand, which is dearly stratified and in which are to be seen, locally, irverulat omall bank- and atrings of well rommed, water-worn pebbles, principally of white rein-fuartz and next to it of light-grey quartzites and lydian Stone, the largest of which pebbles have for the greater part only a dimension of 15 , some however of 25 mM . The grains of this sand seen through the magnifying-glass prove to be also well rounded and almost all clear as glass. This deseription of the underground is completely applicable to the "Preglacial or Rhime-Dilurium".

Whilst near the bottom of the pits the stratification of this pleistocene alluvium of the Rhine is often nearly undisturbed and pretty well horizontal or stoping in modetermined directions, it is mpwards ahways fantastically folded and wrinkled, contorted, a feature becoming very prominent on account of thin or sometimes thicker veins of sand of a yellow or hrown colour, evidenty derived from the

1) In most cases we find only smaller stones. the bigger ones having a'ready been dug up, which appears from the unevenness of the surface, caused by the irregular reposition of the swards. There where this is not the case, large stones and boulders are still to be found.
upper hed, altermating with the white head mats. In hom, for consequences of the pressure and the moving of the lamb-ien with its bottom-motane material orer the forme motergromml ame beantifully illustrated here.

Of the most part of the pits on the Noorder Vole wi Ek-low, vi\% of those numbered from 111 to NIS, I hibe meatimed the thickme. of the boulder-sad bed. These dimensions ame wiven (int Meross in the following small table. Some pits eould not be metsured on terombt of the indistinctness of the lower limit of the berd. F'rom those on the Hooge Veld the thickness of the boukder-simel is not mone Hatar NW.

 -howiner a very imegular thislatom of this mper lad, it locally giving Waty in the eratitied white Rhine-samb. Noreoser the latterembans, moto a depth of 2 d., boulders of grathite and wher rocks of Scamdinavian origin.

From this table, that refers to ath area bome foo M. in the same direction as the Homderue extemb (fiom morth-west dosomblereast) and herad 250 M., at right athele on it, and from the otheo qiven data, it appears that the thicknes of the bomder-sand bed is very slight, attaminererdom 1 M., forther that it raves greatly at smatl distances (often in the solfame pit). The fate that the difterence in height of the position of them pits is mush larger than those differences in thickness prowes that the upper of boulder-sand bed follows the molulations of the preqlatial muclens of the Hondspog amb is rather recularly laid down upon it.

Some details may still be mentioned. In pit XII the browsish boulder-sand, having an averate thickness of 0.6 to 0.7 M ., penetrates wedgelike in the white simd unto 1.25 M . beneath the surface, whilst the strata of that madergronnd are rent asmader mato about 2 M . lower than this wedge. This brings to the mind straining fores having worked laterally to the Hondsug, such as would have arisen from an uphifing of the sand masses now ronstituting the muclens of that ridere. In pit XXXIV wo boulders from 0,2 to 0.3 M . in dimension are sunk totally below the general inferior limit of the bonker-sand bed in the pit. In pit XCXIX and XLI the sand, of a darker brown colour, is partly containimg enough clay, that it becomes plastic, and also by alluviating it is proven that no small quantity of clay is present there.

But besides such pationlarities there are to be observed phenomena of greater importance. This is the cave with N^{0}. XLSII, showing fluvio-crlactial mixing of the botom-moraine with the sand of the undergromud, and with the two pits No. NLI and XVH. In pit XLI there is in the south-western side a boulder of quartzite, almost square, about meaturing 0.35 M . in every dimencion. It in fixed at the botom of the boul-der-simd hed, having there a thicknes of 0.7 M., and depressing, pocketlike, the stata, there mather motistmbed, of the white quartz-sand, unto 0.4 M . below its inferior extremity. Its hasis is a plane ascending in the direction from north-west to south-east; but this basis belongs
properly to a sheet of the boulder, about 4 c. M. thick, extorted acerording to a lamination plane parallel with that slophom hasis, and the large upper piece has been pushed on, shding "pward 1/a co. It. in the direction frem nonth-urst to south-edst. The boulder with its extorted sheet are immovably fastened in the mper boukter-sand bed, which here contains rather much clay and is tolerably hard. In the opposite side there is a somewhat larger boulder of eramite, polished and scratehed. The contortions in the white sand of the materground are particularly fine in this pit. Apparently no boulders were extrated here, as is shown also by the appearance of the surface.

Pit XVII, which (with XLXII) is nentest to the eastern border of the Hondsrog, at a distance of about 150 M . from the first honse along the beekskanden, shows, ats alraty hats been satid, a section different from those in the other pits. Above, again the common yellowish grey boulder-sand, 0.8 M . thick, in its lower half without boulders, under this, however, $\pm 1 \mathrm{M}$. of redelish brown, hard boulder-clay, containing much small stone fragments and some boulders.

This hard, red.boulder-clay is well known in the undergromed of some of the Velds of Eksloo, where, locally, it occurs, at small distances from the eastern borter of the Hondsrug, as far at least as Weerdinghe.

Quite identical reddish brown boulder-clay, under 0.7 to 0.9 M . of block-sand, is visible in a clay digging at the west of the Hondsrug, along the Langhiets Kamp near (doorn. Going from there in the direction of Valthe it soon disappears from the underground, so that the boulder-sand bed is resting immediately upon the loose Rhine-sand. In a sand digging $2^{1 / 2} \mathrm{M}$. deep, at a distance of about 1 K.M. N. N.E. from Valthe, the boukder-sand is 0.4 M thick. The white sand below it contains well rounded pebbles of white quartz and also of lydite. Halfway Odoorn and the side-branch of the Oraje Kanaal the boulder clay bewins at a hunderd Meter westward from the road to Emmen. There as well as nearer to the road, where the boulder-sand rest immediately on Rhine-sand, this boulder-sand is 0.7 M . thick; but already betore the side-canal the boulder-clay reaches the road which rematns on it ats fas Emmen. Following the high road from Odoorn in north-western direction to Ees we find the boudder-clay in a clay digging, a little farther than the churehyard, under 1 M . boulder-sand. In a well sumk still somewhat farther off, in a meadow to the rimht of the road, about 3 M. of this
 especially flint nodules; muler the clay again contse white loose sand with small well romuled pethles of white quart\%. At a distance

 ul bouldarosamb: heme it is patially of at pellowish bomen spotled

 all lata at liar an Eore.
 that is in the midst of the Peat-masis of sehoomomat ateomding to
 boulder-samd, which catme to lishat ater the opening of the peat-moss for digumg fisel. In its place a bed of light hhish grey elay, O.3 110 0.t II. Haick, is fomml. This wats ohsemed at a pil duge on propose alld is the cate with the whole leat-moss of Odoome as has been wherved when digging ditches. This plastio elay, contaning no palpable satme, is entidely diflerent from the bomblereday. It is hatrolly to the dombed that we have to regard it as lake-clay, the sume ats the wellinown prequial Pot-clay from the moderground of Drenthe. (ironinghen and Friestand, which gave rise fopeat-mosses in such cates where it wats shaped in the form of hasins.

Thus the eomsidered part of the Homdirus, atrout the hatf of the Hondsrug in Drenthe and almost a thital of the whole of that ridge which is extemted from moth-west to southeast, between Groninghen and Emmen, amb is clevated only on an atrerage 5 M . ahove the suromulimererion, is emstituted by preglacial Rhine-sand, superficially coveral, in the same manner as the adjoining ground, by a bed of houlder-sand not 1 M. thick.

That the boukder-sand eamot owe its origin to washing out of the boulder-clay may be admated for the following reasons:
$1^{\text {st }}$ 'The had bouklereclay' oflers great resistence to eroding agencies. This appeans amongs others from its forming steep and more or less projecting parts at the coast of the Roode Klif, the Mirdummer Klif and the Voorst, and even isles, at Urk and Wieringhen.
$2^{\text {nd }}$ 'Thongh muloubtedly the quantity of boulders in the bouldersand hat from the beximning been very variahle, it is however a fact, that in the neiqhomhood of the villages most boulders have already been dug out and that they were formerly very numerous almost everywhere. At some places one stone was lying next to the other in the sand. An average condition is to be met with at some parts of the Noorder Veld of Eksloo. Now to the north of pit XLV on a sufface of $1500 \mathrm{M}^{2}$. and to a depth of 0.5 M . there had been freshly dug out $40 \mathrm{M}^{3}$. of stones, from the size of a child's fist up to

1 M. in length. Estimating the air spaces between the stomes heaped up at $1 /$ s 2, we find about $\frac{1}{2}$ as of the volume of the boudder-simed bed (0) have consisted in stones. Between pit XI amd XII a simitar estimate, from a surface of $484 \mathrm{M}^{2}$., leats to ${ }^{2}$, for that proportion. What an enormons thickness of boukder-clay, which in this region is paticularly poor in stones, mast have been washed out to leave all these stones!
$3^{\text {rd }}$ The boukder-sand contains very little flint, the bonder-elay very much, everywhere. Fint is the kind of rock most frequently ocemomg in the clay (Odoom, Zwinderen, Nienw-Amsterdam, Mindummer-Klit, Nicolaasga, Steenwijkerwohd, Wieringhen etc.).
$4^{\text {th }}$ Even the deepest and evidently not washed out parts of the bonlder-sand, which rest immediately on the Rhine-sand, are as a rule poor in clay.
$5^{\text {th }}$ Boulder-clay and houlder-sand are fomed jointly or the latter alone without this being expressed in the form of the surface.

That the Hondsrug camot be a terminal moraine, ats has been supposed by some geologists, follows sulficiently from the deseriphion of its structure as siven above.

It neither can owe its origin to an upward folding or pressing of the undergromed, perpendicular to the direction of the motion of the pleistocene land-ice; for how then to aceont for the deposition of boulder-clay parallel to the Hondsmeg ridge:

The distribution of the bonder-eday in our north-eastern provinces is so, that there can hardly be any doubt that from the begiming it has been very meqnal and the boulder-clay has been laid down parallel with the actual Hondsrug ridge.

Can it perhaps by its weight have pressed upward the Rhine-sand, when the soil was still totally drenched with melting-water? This apparently has not been possible. The specific weight of a well compressed sample of that Rhine-sand from the Hondsrug, quite drenched with water, is 2.05 . If now that of the bonkler-clay had even attained the high value of 2.5 , it would require a bed of boulder-clay of a thickness of 20 M . to (ause an uplifting of 5 M ., as is the average height of the Hondsrog above the smrounding region. In reality the thickness is most probably only $1 / \%$ of that supposed value.

Other causes must have been in ation to bring about this elevation of the Hondsrug, but canses which nevertheless were not inoonsistent with the deposition of the boulder-claty parallel to that ridere. These couses may be fommel in what ('mambratis, Rosima, simasbery, von Drygalshe and ahrealy Naxise hate tatght us rexading the

 the fore from the rembman of disposion of tho latler; to day we

 of the inferion statat of an inlambion matis fromans the slighter

 mond elecated protion of the Homblater dath at the west of this portion,
 with clity. Alowe hai stop we may suppere to have existed a relalively mone raphal metion of the inlamdere in comparison with abowe the extonsive westem raty hanks, the result of which difterence would hate bern a lowe level of the iee in the first and a highere in the latt prats. Thus, athatly, in Greenland a considerable diminishing of the motion and at selling of the iee is seen there where in its madermost strata it is strongly laden with dehris of rock, and lowering of the surface where this motion is not hindered, on account ot the lowest ice-strata being relatively pure. Thence considerable pressure on the underground where those clay banks are now to be found in the Hondsrug and a minimum of pressure near the castern border; there then the loose Rhine-sand, drenehed with water was as a whole mass uplifted.

The sithation of the elevated ridge of preglacial sand side by side with the long and boad western strip of boulder-clay makes us also suppose that the direction in which the ice moved was not, as is still generally admitted, from north-east to south-west or from north to south, but the same as the extension of the Hondsrig, from north-west to south-east. Now with this supposition perfectly agrees the at first sight paradoxical direction of motion as derived from the shifted boulder of quartzite.

But how then can we accomt for the fact that the boulder-clay was lad down principally in a long and broad strip along the western part, whilst the boulder-sand above it is uniformly thick with that in the eastern part on the Hondsrug where clay is generally absent under it? This question too is not difficult to solve with our actual knowledge of the phenomena of the motion of an inland-ice mass. The material of the boulder-sand bed may have been transported as a contimous bed by higher ice-strata, at the same time as disjuncted strips and patehes of clay were inchoded in the lower ice-strata, or the sand with its boulders may have been transported
at a somewhat later time. simall variations in the direction or in the velocity of the motion of the iee can easily have divided the boukderelay in strips and patehes.

Thus all the observed geological phenomenat can be vewed in the light of known actual phenomena, which appeats to be impossible if We stat from the opimions embrated up till now on the mature of the Hondsrug.

Now that it is known that the direction of ice streams which ended in North-Germany has often heen considerably modified by the form of the basin of the Baltic and ako by the meeting with other ice streams, it is less surprising, that, notwithstanding the predominating or exclusive oceurence of swedish, at least seandinavian rock species in the bottom-moraine of our north-eastern provinces, these can nevertheless have arived there in north-west-south-eastern direction. Suchlike factors, as supposed to have modified the direction of the North-German ice streams, may have been the cause of the deviations of an ice stream, which, coming from Sweden, first took a south-western direction over Demmark, till it arrived in the North-Sea. We do not know how fir the ice which came down from southern scotland and northern England did progress southeastward in the North-Sea; it might be posnible, at least, that as a very powerful stream it has met there with the ice stream coming from Sweden and has phined this back south-eastward in the direction of Friesland, Groninghen and Drenthe.

Very likely as a result of this motion of the ice over our northeastern provinces the Hondsrug and some parallel less extended elevations have then arisen, in such a way as indicated above. Farther west of the Hondsrug, however, probably a real folding, under the pushing ice, of strata impermeahle for water, should they consist in Potclay or in the boulder-clay itself, raised, perpendicular to that direction, a number of north-east-south-western ridges, leaving between them valleys now occupied by rivulets. Indeed an elevation by folding is more readily to be admitted for compact soils than for the loose sand which constitutes the nuclens of the Hondsrug.

Geology. - "The Greological Structure of the Homdsruy in Drenthe and the Grigin of that Ridye." second commmaication. By Prof. Elg. Dubors. (Communicated by Prof. Sakhtis Roozeboom).

Further researches in that part of the Hondsrug, considered in my former communication, led to the following results.

At a short distance north-east of pit LI, the boulder-sand bed of

 ahom I K.... s. Heters in exery direction.

The clay found in pit Xlll extends, its shewn by horimess, only

Amother patch of boulder-elay is fomod south of the Kaider Exah of Ekslog on the sombern Howe Veln, in an mak-mulemood, mader athout 0.5 M. of boubler-abul. This patelt for is of small dimension. The same is the catse with amother on the Zainleq Vedd of Eksloo.

Fiather, in the neighmurhood of Vathe, a clay bed is foumd on the Kwablen Vekl, moter \pm O.') M. w" lombler-sand, I.5 M. thick. att least, of about 300 M. dimension in every rlirection and extendingr still somewhat farther south-eat on the Nienwe E-ch; a smatler one exists south-eat of the kimpen Veen.

The four latter chay patches ate situated, with the fwo first mentioned, pretty well in one direction, from north-west to sonth-east, but they are separated by latere intervals in which the bouder-sund rests immediately on prediacial stratitied white Rhine-sand. The mutual distances of these elay patches are resp. 2, 3, 1, 2, 1.5 K.M. With the only exception of the small clay patch on the Noorder Veld, all these, though sithated very near to the eastern border of the Hondsum, are on the highest pats of that ridge.

The stratitied white Rhine-sand is, amongst other localities, to be seen in a sand digging on the Kleine Exch of Eksloo (under $\pm \mathbf{0 . 4}$ M. of brubler-sand in a sand digeing at the morhern border of that Esch (nuder 0.3 M. of houlder-sand) and on the Znider Veld, near to the southern border of the Achter Exch: further at the Valther Schans (under 0.3 or 0.4 M . of boulder-sand), in a sand digging east of the Kampen Veen (under a bed of boulder-sind of the same thickness) and further, along the great Bourtangher Peat-moss, from Valthe to Weerdinghe.

The western houlder-clay, on the contrary, forms a long and broad strip, which from Ee- to Emmen seems not to he interrupted and is 1 to $1^{1 / 3}$ K.M. wide. It has probably in its whole length a thickness of 2 or 3 M . and is covered by 0.7 to 1 M . of boulder-sand.

The origin of the Hombrug arombing to the hypothesis indicated in the former commmacation can thus only be applied to that westem strip of boulder-clay: Other fitcts now observed have brought to my mind, besides the aheaty mentioned factors, others which may have
been of still greater importance in the formation of the Homdsrag.
Beyond the Hondsiog also, even ation west as Hoogereen, the moderground consists of preglacial "Rhine-Diluvinm". In the l'aatmoss of Ees it is covered by at most I M. of boukler-simtl. In the Elders Veld between Schoonoord and Shoontoo the preghatial Rhinesand is of a yellowish grey colom, on acomnt of its intimatemixing with parts of the upper bed. The ocerurence of small water-worn pehbles of white quartz and lydite, repeatedly stated to at dephth of 2 M ., serves to show, that here foo we have chiefly hefore us ohd Rhine-alluvia, which only later on were mixed with the hottommoraine. At schoomloo, in a samd digering, a kind of "Mixed Dilnvimm" (fremengel dilurimm) is to be observed; water-wom pebhles of white guartz and lydite are seen in the sand side by side with Semondination grantes. On the Elders Veld boulder-chay is only found in single small patches, such as the one at 1.5 K.M. south-west of Schoonloo.

In the midst of the Peat-moss of Ees, at a distance of 4 K.M. exactly south from Westdorp, a round hillock rises above the perfectly level environs, not mblike a small voleanic island above the sea. With a basis of about 30 MI . of diameter and a height of cirea 5 M . it resembles a very large tumblus; it is the renowned Brammershoop.

The constitution of this hillock, however, is inconsistent with the idea, which presents itself at first sight, that we have hefore us a work of mans making. It is indeed composed of white quartzsand with well rounded small pehbles of white quartz and lydite, the same preglacial Rhine-sand, which also constitutes the molergromed of the surrounding region with a mande of glacial boulder-sand only 0.2 to 0.5 M . thick.

Still less than in the case of the Hondsme it will do here, to attribute the origin of the eleration to pressure of the pushing ice: for how could the motion have been directed firon all sides towards that single point! As it appears to me, the only way to explain how only there the soil was pressed upward, in the form of an isle, is to suppose that a minimmon of pressure of the ice, has existed there, most probably in consequence of a former (iletselermiihle (mouliu) is the period of the melting of the ice.

Not improbably then we have, partially or perhaps chicely, to impute the elevation of the preglacial Rhine-sand in the Homolsrog to a similar minimum of ice-pressure, at the plate of a lare river-bed, formerly ocenpied by melting water, and carved in the surface of the ice in the direction from north-west to south-cast, or mathe to a large and long crack in the same direction.

 -pectal terms. and $2^{\text {and }}$ to divide the ypoulde into gromp. The first

 spiculat. It is obsions that this primaty datsidication is mot based
 the momphoterieal valme of the axial eanal ore mome corecetly, the
 Clasification of silionons phanla on the prosemer of one or more of such axial theads, which altere all represent the axes of the spiena.

1. "Die emaxiren kieselkionper."
2. Die Kieselkimper, deren (irundform die dreikantige regulare P'rmitle."
3. Die dreiaxigen Kieselkimper:"
4. Die Kieselküper mit unendlich vielen Axen."
 maderstood the fimdamental value of scmmors elassifeation. My attempts to draw attention to it IS81 a and 1884 p . 146-168)
 the spienla of the Monaxomids in the first phace into Megasclera and Microselera, a classification which practioally agrees with those of bowerbaxh and C'artar. The example was followed ly somas in spite of his being well aware of the firct that the distanction is far from "absolute". This author quite comectly remaks (1888, 1. LIII) : the microseleres and megasderes pass into each other by easy gradations, so that it is not prssible to saly where ome ends and the other begins, indeed there wonld lie a certain eonsenience in aceepting a third division of intermediate or middle-sized spicules, which we might call mesoscleres." Finally, in 1889 , Soutize d Laxdexfend accept Sommid's primary division into "polyaxone, tetraxone, triaxone, and monaxone Nadeln."

I do not intend to discuss here the triaxoms and tetraxons; for the present I only wish to draw attention to some monaxons and some spicules hitherto generally consitered as polyaxons.

In the group of the monaxons. i. e. spienta with one single axis, two fundamental divisions may be distmgnished, adrording to the
fact whether the ideal axis lies in a plane or mon. In the former ease the line may of course be straight, comed, bent, flexuons ele: : in the latter case the line is a serew helix ${ }^{2}$). The spiculat belogeme to the former case I propose to call pectimeroms ${ }^{2}$), the other spararons ${ }^{3}$). To the group of the pedinaxoms belong e. g. oxea, styles, tylostyles, some of the "imphidisel", some of the "toxa". It is, however, to the spiraxons, that I wish more especially to draw attention.

Again we can distinguish here two cases: a. the sorew line is formed on the surface of a circular eylindre or on that of an elliptical cylinder. The former group I wish to call "-spurtrons; the pitch is here generally large. The latter I call propuratons; the pitch is here small.

Let us first examine the (s-spiraxons. To this gromp belong the spicula known as sigmaspires, toxaspires, spirules; futher those which are usually called spirasters and which are by the majority of spongiologists erroneonsly comsidered as modified asters. This mistake is due, I believe, to Oscar Schmot. "Eine blosse Modification dieser Kugelsterne," he says, 1870 , p. 5, "sind die Spiralsterne oder Walzensterne. Sie werden zwar in manchen Spongien nur allein, d. h. nicht untermischt mit den Kngelsternen angetrofen (Syiprostrella cunctatrix Solt. Chombrilla phylloeles N.), häufiger aber, wie wir unten in die Specialbeschreibung (z. B. von Sphenctrella horvida N. und Stelletta hystrir N.) hervorheben werden, liegen alle Uebergange von den normal centralen Sternen zu den gezogenen Spiralstemen ror:" Unfortunately did Scmant not keep his promise; for in the description of Sphinctrella horride we find nothing more about it, and Stellette hystrix is forgoten altogether. Scmmot failed, therefore, to give any proof whatever for his statement that "Spiralsterne" are modified "Kugelsterne". Schnimt's suggestion has nevertheles generally been accepted, myself not excluded.

Sollas (1888, p. LXI) distinguished two chief series of spicula (microsclera): "the radiate or astral, and the curvilinear or spiral." The former are called "asters," the latter "spires." With some astonishment we further read that the asters are divided into two

[^14]

 atolers. It is trme that sum stpposed framsitions ate montioned by some athoms: but probally we have here to do with a mistake due

 a S'purnstortha bistelleth (which he comsiders identieal with Tothyn bistelloth (I)... in which he fomd that the supposed asters are true "spirasters". Jmbering firms what I saw in atype specimen of Schmots sponge, I hate no dombt that lamozabob is right. Unite correctly Laxbenfete believes that sommot has been misled by an optical delnsion, "da diejenigen Spimater deren Axen im Preparal anfecht stehen und daher verkïnt qesehen werden, häufig wie Enaster anssehen". . . . I fatil to fiml a single proof that phasters are modified enasters, either in previons papers, or in my preparations. On the contrary, everothing speaks in favom of the view that "spirasters" are a sort of e-spiraxoms. The fact that in some cases it is difticult to get certainty about the twisted shape, is no proof against my surgestion in general. For in the great majority of eases the fwisted nature is certain, as can be demonstrated by allowing the spiculum to roll in the preparation when observed through the microseope.

Let us proceed now to examine the different sorts of t-spiraxons.

1. Siemmespiniz.

 "a slender rod, twisted about a single revolution of a spiral"; le adds that it appears in the form of the letter C or s , according to the direction in which it is viewed. Te definition of the "toxaspire" runs as follows: "a spiral rod in which the twit a little exceeds a single revolution. The pitch of the spiral is usually great and the spicule consequently appears bowshaped when viewed latemally"... It seems to me not quite exatet when solfas pretends that the howshaped appearance is in the first place due to the number of revolutions.

Considering the fiacts that these spoula are genemally very small, and that consequenty a microseope of very hish power is wanted to understand the true shape, it is evidently not easy to determine the number of entire revolutions or parts of it the same maty he satid of the pitch of the "spiral" - or rather of the sorew helix.

In order to obtain certainty about this I constructed wax models, the axis of which were serew helices of various length and varions pitch, of course all drawn on the same dincular eylinder. The diameter of the models I made in acoordance to the relative size observed in the spicula. Such a set of models ought to be earefully studied in projection. This an be done by looking at them with one eye, or, which is far better, by studying the shatows of the models in varions positions. These projections are then compared to the cameratdrawings or microscopical projections of the spicula themselves. This method most clearly shows $1^{\text {s: }}$ that the bow-shape can be obtained with models of less than one revolution; $2^{\text {nd }}$ that the (- or S-shape can be obtamed with models of more than $1^{1} / 2$ revolution. This depends both on the length and the pitch of the screw helix, as is shown by the following table ${ }^{1}$):

${ }^{1)}$ (i, S or a means: (G-shape, S-shape or bow-slape distinct; () means: indistinct; [] means very indistinct. A dash - means that the shape cannot be obtained witis the wax model.

 he seems 10 ateeph two difterent kinds, instrad of comstering them as bedorgines to one som, the shape of which smply dithers aceording
 hass "mehr wie eine Wimdmaz", herems to acrept mot more than one revolation fir the sigmaybire. This is not in ateondathe with mys. observations, ats latid dowa in the above bable.

2. S'pirultr.

Althoush ('anter disl mot wive a sperial delinition of the spinula, it is cleat enough what he moterstands the this mame. In his paper on the "spinispiruta" (1879 " p. B506) he latls the spiculam which he formerly ($1875 \mathrm{p} . \mathrm{B}^{2}$) demeribed as "simons sulspiral", simply "the smooth form of the pirnla" and he refers to an illastration of
 Obviousty the term spimat nsed by ('arter is ath abbeviation of "spinispirula", not as terminus techmicus. Ridmat d Dexdy (1887 pp . XXI and 264) introduce the term pripulae ats syonym with spinispirulae of Cartar, adding that "these are more of less clomgated, spiral or subsinal forms, which may be enther smooth or provided with more Or less numerous spines." somats creates (1888 p . LALI) the term polyspe for spimba, sather that it is "ane of two or more revolutions", adding, howerer, that he is inclined to adopt the term spirulat. In the list given by Somtas: \& Lexnmpern (1889 p. 28) we find a "spirul" described as "spiral gewmulene Niadel mit mehr als einer Windugg". Comsequently we learn that the term spirula by some anthors is med hoth for smooth and for spined forms, whereas others leave the question open. Lambarbio (1890 p. 426) proposes the name for smooth spicula only: "eine selhanke mol ortatte, spiralig gewmulene Natdel mit mehr wie einer Windung". I herein agree with Lexdenfeld and I understand hy spinda: a smooth e-spiation of at least $1^{3 / 4}$ revolution.

3. Spinispiara.

As long as the r-spiraxons are smooth it will as a rule not create any difficulty to distingush sigmaspirace and spirnac. Bnt there are
a quantity of spined e-spiraxons. Evidently such spined a-spiraxons will exhibit the inisted nature the less distinelly the more the spines are developed. It is, therefore, not prathetieal in this ease to make distinctions, based on the mumber of revolutions. Espectally not becanse there exists a great diversity with many transitions. I prefer. therefore, to propose for spined e-spiratons the aeneral term spinispirace, to which I bring the spicula called by previons anthors spiatsters, metastés, plesiasters, and also (partly) pinispirules, sandaters ete.

Sobmas (1888 p. LAIII) has given the following defintion of the spirater: "a spire of one or more tums, produced on the outer side into several spines." S'Chezze \& Lexdmable (1889 p. 28) say that it is a "peicht wewundener qestrecker Aster mit dickem, tornenbesetzem Schatf", a definition which Lexdexpeld (1890 p. 426) modified into: "ein kurzer und meist dicker, leicht spiraliggewundener Stah mit starken, meist dicken mad kurzen, kegelfömigen Dornen". Solas distinguished "metasters" and "plesiasters" fiom his spirasters, but he acknowledges himself that: "the three forms present a perfect gradational series, so that it is frequently difficult when they all occur associated in the same sponge, to distinguish in every case one variety from the other'. Now it happens very frequently indeed that they all oceur associated in the same sponge and that all gradations are met with. One only needs to read Sollas' own deseriptions and to compare them with his illustrations, e.g, of the many "species" of Thenct, P'occilltsistre, Sphinctrellat i. a. in order to become convinced that it is practically impossible to distinguish spirasters, metasters and plesiasters. Schulze \& Lendenfeld, therefore, did not adopt the latter fro terms.

I am of opinion that the name spinispira can be likewise applied to the spicula which Soluss calls amphaster; at any rate to such amphiasters as are said to oceur in Stryplmus mifer Sold. ${ }^{1}$) A great confusion exists, with regard to the word amphiaster. The name is first used by Ridley \& Dexdy (1887 p1. XXI and 264), who say that the amphiaster is composed of "a eylindrical shaft bearing a single toothed whorl at each end; ocouring for example, in Aroniderme mirabile..." The authors give an illustration by fig. 9 on their Pl. XXI, and a further explication saying: "amphiastra $=$ birotulates (Bowerbank); amphidisks (auctorum)." But Soldas says (1888 p. LXIV) of hix amphiaster "the actines form a whorl at each extremity of the axis, which is straight"; herewith a woodent on p. LXI.
${ }^{1}$) In his preliminary account on the Challenger-Tetractinellids (1886 p. 193) Sollas calls this spiculum "amphiastrella".

Proceedings Royal Acad. Amsterdam. Vol. V.

 strablen alderebes." Comparing bow the thee quoted illustrations, it beomme evident that there are important diflerences between them.
 lomer "sehati" and boner pointed "Stahlen", we tind in the detinition of Lexmexation (1890 , 1, 419) hat the amphat-ter is: "ein in die Limge arengener Stern, die ans emem lateon, weralen Schati besteht, von desen Enden melnere limen saahlen abrelsen". Indeed: tot capita for sensus. If, therefore, I hring eertatin amphataters to the
 min!
 for spiniferous spiratly twisted sphentes." Such spicula are, ateording to CobTER excedingly polymorph. They may be "long and thin" or "short ant thick". The spines may be "long and thas... or long
 in at shat line, forresponding with that of the shaft . . or they may be seattered ower the shati les reandaty... Latstly, the shaft may ronsist of many or be reduced to one spikal bent only..."

Instad of chowins one of the varions terms mentioned above, I prefer the new lemm spinispira, which is then simply: a spined a-spiravon. If in future it happens become to a desideratum to have more than one name for such spicula, one might distingnish two groups of spinispitace, viz. forms with long spines and such in which the spines are small, in comparison to the total length of the spiculum. In the former gromp the ratio between the length of the spines and the total leneth is nsually no more than $1: 3$; very seldom as much as 1:7; the mmber of revolutions is trenerally not more than $\mathbf{1}^{1 / 2}$. In the latter gromp this ratio is nsually at least $1: 10$; the number of revolutions as a rule more than two.

4. Microspira.

In some sponges very minute spicula occur, especially in the superficial (dermal) layers and lining the canals, which are either distinct e-spitaxons, or moditications hy reduction. For obvious reasons it can only he marle ont with a microropre of very high pmwer and in faromathle sithation in the preparation, whether they are smooth or minutely spined. In such small spicula it is not always possible to distinguish with certanty whether they are minte spinispirae, sigmatepiate or spirnlac. Moreoser they show gencrally manifold transitions in one and the same sponge specimen. This is ers. the case in Placospongiut
conimute. And still, we want to designate them with a name; I propose to use for this the term microspira.

5. Sterrospira.

In the remarkable genus Phecospomine the stony cortex and axis are ahmost entirely composed of spicula, which very strikingly resemble the sterasters of Geodidae. Keller (1891r, p. 298) wats the tirst to demonstrate that these spicula are of quite a different nature; whereas the stermasters develop from true asters, the cortical spicua of Placospongiut take their origin firom "spirastern". This observation is contirmed by Lexdexpeld (1894f, p. 115). Hintrsch (1895, p. 214-216) found the same for the corresponding spicula of Physetphomet (三I/tmeospomyia) decorticams; as they possess in this species an elongated, somewhat crescent-shaped appearance Hisitsin called them "selenasters". In 1897 Lexdexpesd, not acquainted with the paper of Haxissif, proposed the name "psendosterasters" for the
 decorticans. Itan.). If one wishes to apply the rules of priority in this case, the spicula under consideration have to be called selenasters. I am, however, of opinion that these rules, excellent as they are for specific nomenclature, need not to be applied in other cases and I propose, therefore, the mame sterrospira, which at the same time reminds us of the sterasters (of the Geodidae) and the spiraxoms. ${ }^{1}$)

In the group of the p-spiparons the ideal axis of the spiculum is a line drawn on an elliptical eylinder. The simplest type of such a spiculum is

1. Sigma.

This term is introduced bij Rwhey \& Dexdy (1887, pp. IXXII and $26 \pm$) for spicula called by Bowerbaxk "bihamate", "contort bihamate" and "xeversed bihamate". The authors say that the sigma consists of a "slender, eylindrical shaft, which is curved over so as to form a more or lesti sharp hook at each end. The two terminal hooks may curve both in the same direction, when the spicule is said to be simple .. or they may curve in different directions, when it is said to be contort... There is, however, no real distinction between the two, and, as a matter of ficet, the spicules are nearly always contort to some extent". Sollas (I888, pp. LXII) modified the detinition into "a slender rod-like spicule curved in the form of the letter C : This spicule is not spial though it probably arises

[^15]

 detimition is :

 half a revolmion, which is catily poneed hy wax models.

As at derivation of motilication of the sigmat we have

2. (blulu.

Bowrmbank hats alrealy shown (18.5s, p, 30t-305; reprinted IStit 1. 47 - th hat the chedate develop fiom sigmata. This whervation is

 this lont we cian wive a new trong atroment in fatwe of it. This lies in the fite that the anisochelate of Expmolle symer are twisted." I cou add now that this twisted nature is fomm in isochelate as well as in anisochelate. Consequently we may regard both ats b-spitatons.

3. Ditucistre.

Acoording to Riddey \& Dexmy (18s6, p. XIX) the spicula, which Bowerbsax cathed "trenchant contort bihamate", and for which they propore the name diancistrat are "nsually... more or less contort, the two hooks lying in two different planes". Ny own observations contirm this statement and I bring the diancistat, therefore, likewise fo the $\begin{aligned} \text { b-p } \\ \text { pitamons }\end{aligned}$

Resuming we may divide the monaxons into the following primary (roups:
I. Pratimomes. Monaxons the axis of which lies in a plane; (oxea, syles, tyloustes, ete.).
II. Simotroms. Monaxons the axis of which is a serew helix.
A. e-Spurveroms. The axis is a line drawn on a circular evlin(ler'; the pitch is generally great, to this group) belong :

1. Sifmaspirc.; smooth a-spiraxon of no more than 1^{1} revolution.
2. Spimule ; smooth ex-siriexom of at least $1^{2 / 2}$, revolution.
3. Spinxspivet; spined a-spiraxon.
4. Mierospura; very mimute, smooth or spined espinaxon: it mites the chatateters of 1 and \boldsymbol{B}_{3} diminutively, and frequently forms transitions and reductions.
5. Sterospira; the young stages are spinispirae, from whid develop by secondary soldering together of the spines the adult forms.
B. β-Spmaroms. The axis is a line, draion on an elliptic cylinder; the pitele is alwity small: always less than one revolution. Hereto belong:
6. Sifma;
smooth β-xpiraxon.
7. Chelu;
8. Diencistref the foung stages are (probably) sigmata from which develop the adult one by outgrowth of siliceous processes.

Rejerences.

1858 Bowbrbank in: Philos. Trans. R. sur. Tanden. ('XIVIJt.
1862 Scmment in: Spongién Adrjat. Meores.
1864 Bowerbank in: Monogr. Brit. Spony. I.
1864 Köt,Lאer in: Ioones histiol. 1.
1870 Scmand in: Gimulz. Spong. Ail. (xa)
187: Gray in: Amm. \& Mag. (4 , Xll.
1875 Cirter in: Amm. \& Mag. (4) N11.
1879(a) Curter in: Amn. \& Mag. (o) ILI.
1881 (a) Vosmaf in: Tijdsehr. Ned. Dierk. Ver. V.
1884 Tosmaner in: Bromn's Klansen n. Oriln--Pomiliona.
1886 Levisen in: Dympha-Tugtets Zool. Uillyolle.
1886 Soldas in: seient. Proc. R. Duhlin sow.
1887 Ridmay © Dexdy in: Challehger Rep. Zool. XX.
1888 Soblas in: Chatlenger Rep. Zool. XXV.

1890 Lexmaxplo in: Abh. Senckenh. Naburt. (ian. Nli.
1891 (a) Keluer in: Zeitschis. Wiss. Zanol. LIL.
1894(d) Lexdenfeld in: Biol. Centalbl. NIV.

15:4 Whans in: Jomm. Nowh. IN

 Amstoridill. \1.

In equation (-) of m! previons (ommmaniation's at distribation of the energy wer the difierent perionds is imelmbed. If therefore this equation really represents the eomblitom of a spate tilked with "hatek radiation", then a complete seedral formalat fin hand ratiation may be derived from it with the aid of the law of Wrise on the shifting of the wate-length with the temperature.

Instead of disenssing the mather intricate equation (s) I have taken a simpler equation which I experted to viehd the same distrilmtion of the energy wer the diflerent perionds. This simpler ednation, howerer, proses to include at disthation whith doed mot al all arree with the distribution of the energy which is fomm in batak radiation. Sow it is prosible that the distribution, determined ly the simpler equation does not agree with that, determined hy equation (S). hat it is also prosible and for the preem this seems mone likely to me, that equation (8 , does not represent the comblition of at spate filled with batek radiatom, or in other works that the mature of hatek radiation is mot comerly detemined by the suppositoms that ε, \boldsymbol{y} and $\%$ have at mos probable value, and that for the reat the distribution is as irregulat as possible. If this secomd explanation is the trote one, the systems are still sulyeeted to other comblitions, hesides Hose comcernines the most prohable values of ε, of and $\%$, or', what comes to the same, the distribution of the systems of an ensemble in which the conditions for the valnes of ε, f, and $\%$ are satisfied, are moreover still partially ordered.

The simplitication I have applied to equation (δ) is the following.
In the first plate I have omitted $\frac{\omega}{\sigma_{8}}$; this will no douln hatse very

1) These Procedinge 15, ,,$~ 27$.
litile influence on the distribution of the energy. Then I have conifined myself to treating one dimension only, and this hat induced me to omit the terms $\frac{\boldsymbol{\Omega}_{e}+\boldsymbol{\Omega}_{n}}{\boldsymbol{d}_{1}}$. If, however, we admit electrig and magnetic masses into the space, statical fores may orerw. When analysed with the aid of Fotraters integrals these statical fores actually yield a distribution of the energy over the diflerent watelengths. Yet they do not contribute to the propagation of ratiation, the distribution of which we wish to investigate. It is for this reason that I have prefered a distribution in time to one in space.

So we consider the component f in a certan point during the time between the moments $t=0$ and $t=t_{1}$. This time we think divided into n equal parts \boldsymbol{r} and the values of f during those parts we call respectively $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}, \ldots f_{n}^{\prime}$. Then the index of protability gets the following value:

$$
\begin{equation*}
\eta=\frac{\psi}{v}-\frac{1}{\boldsymbol{v}} \int_{0}^{t_{1}} j^{2} d t-\frac{1}{k_{2}} \int_{1}^{t_{1}} \frac{d j}{d t} d l . \tag{8c}
\end{equation*}
$$

If we wish to make the agreement of this equation with equation (8) as great as possible, we have on give to k in this equation $\left.4 x\right|^{r^{3}}$ times the value it has in equation (8); this foblows fiom the equations (10) and (15).

Now we will proceed to the investigation of the distribution of the entrgy over the different periods, inchuted in equation (sor). To that purpose we represent f as at fometion of t during the spare of time between $t=0$ and $t=t_{2}$, ly moans of the integrals of liotrimer As we will begin with treating f ats a discontinnous function, determined by the n values f_{2}, $f_{2} \ldots i_{n}$, we will represent the integrat ats a sum, which only becomes an integral if we make ${ }^{\prime \prime}$ assmme the limiting ralue ∞. Therefore in the expression

$$
\begin{equation*}
\dot{f}^{\prime}(t)=\iint f(x)\{\sin (u q) \sin (\eta t)+\cos (n q) \cos (\eta t)\} d u d_{q} \ldots \tag{26}
\end{equation*}
$$

in which the limits for u are 0 and l_{1} and those for q are 0 and x, we will xeplace u by $\frac{t_{0}}{n} r$ or by τv and du by τ where c represents the series of the integers between 0 and π.

So we get

$$
f^{\prime}(t)=\boldsymbol{\tau} \sum_{v=0}^{r=n} \int f_{v}\left\{\sin (\boldsymbol{\tau} v q) \sin (q t)+\cos (\boldsymbol{\tau} v q) \cos \left(q^{\prime}\right)\right\}, d q
$$

If we wish to separate in this equation the energy for at deter-
minal perind wir mant exive of aldermimed valme fr and then take

 same time it is proshle formoe the variable in sholl at waty that
 hring the interat into the following form:
where \angle reprerent- the determinant of Jxenbs. The linear sulstitninn reguired to wet this form maty he dhoteht to he exemoted in fwo operations: $1^{\text {so }}$ a sulntimtion which yiolds

$$
\%_{1}^{2}+\%_{2}{ }^{2} \cdots \%^{3}
$$

for the exporment atht:

$$
a_{11} \varkappa_{1}{ }^{2}+\|_{22} \%_{2}{ }^{2}+\ldots u_{n n} \%_{n}{ }^{2}+\underline{2}_{1} u_{22} \%_{12} \%_{2}+\ddot{2}^{\prime}{ }_{n-1, n, n} \%_{n-1} \%_{n}
$$

 of the determinamts for the partial elistributions. The determinant
for the orthogonal substitution hat the value mity; so only the determinant for the firs partial substitution remans. This substitntion hats been chosen without taking into aceomet the form of the second fartor: The coefticients which determine this substimion depend therefore only on the coelticients of the exponent; ats p dene not occur in these coefficients, the determinant alsa cammot be a function of p, and so we may omit it in what follows.

The integral (29) can easily be integrated and yichs:

$$
\ell \Sigma \beta
$$

So we have only to calculate the sum of the cochtedents b. These coeflicients may be found by the solution of the lollowing equation of which they represent the n roots:

$$
\left|\begin{array}{ccccc}
u_{11}-\beta & u_{12} & u_{13} & \cdots & u_{1 n} \tag{:30}\\
u_{21} & \alpha_{22}-\beta & u_{23} & \cdots & u_{2 n} \\
u_{31} & u_{33} & u_{33}-\beta & \cdots & u_{3 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
u_{n 1} & u_{n 2} & u_{n 3} & \cdots & \cdot \\
u_{n 13}-3
\end{array}\right|=0
$$

The sum of the cocficients β is the sman of the roots of this equation, i.e. the coeflicient of $3^{2 n}$. Only the product of the elemems of the diagonal of the determimant yichls ferms combinims ${ }^{1}$; and as is obvious, the coefficient of 3^{n-1} will be

$$
a_{11}+a_{22}+a_{33}+\cdots a_{n n}
$$

In order to determine this sum we hate fo find an athithay substitution for which the exponent assumes the form $\begin{aligned} & \\ & \neq \text { and then }\end{aligned}$ We must substitute the new vartahles it into the secomel fitetore A substitution fultilling this condition may eatily be fomend. The exponent mamely may be written as follows:

$$
\frac{\tau}{v} \geq j_{v}{ }^{2}+\frac{1}{k_{i}} \leq\left(j_{i+1}-j_{k}\right)^{2}=\geq\left(a j_{c}-3 i_{c+1}\right)^{2}
$$

where:

$$
a^{2}+\beta^{n}=\frac{\tau}{i}+\frac{\ddot{v}}{k \tau} \text { ind }-\ddot{u}{ }^{2} \beta=-\frac{\ddot{\partial}}{k r} .
$$

So we find for " and β :

Now we choose as new variables:

$$
a j_{0}-\beta j_{i+1}=\neq
$$

This substitution does not yield the ateratate coefitionts low $i_{2}{ }^{2}$ and $t_{u}{ }^{2}$ ford, in order to wet $1 /$ (quantities $\%$, we have to fake ats one of the new variables $\%_{n}=\| j_{n}-\beta i_{1}:$ so we introdure moreose : ferm 2 erbith which does not ocene in the exponemt. As howerem the exponent consists of an infinite number of intinitely small terms,
there thee terms which have not the proper eredicients will be of lithe inpertamere.

These new variahles ate sow to be infroduced into equation (27).
 We hatse omby to determine the sum of the ereftiedents of the squares
 In the dirs plate we have to express the whl vatiables f in the new variables \% We have:

$$
\begin{aligned}
& \%_{1}=\boldsymbol{u} i_{1}-\boldsymbol{B}_{2} \\
& \%=\quad \boldsymbol{\omega} i_{2}-\beta_{i} \\
& \%=\quad \| l_{3}-\beta f_{4}
\end{aligned}
$$

From this follows:
 or $j_{1}\left(e^{n}-\beta^{n}\right)=\chi_{1} \mu^{n-1}+\chi_{2} \mu^{n-2} \beta+\chi_{1} \mu^{n-3} \beta^{2}+\ldots \chi_{n} \beta^{n-1}$

In the same way we tind for fir

$$
\begin{align*}
& j_{v}\left(e^{n}-\beta^{n}\right)=\%_{v} \epsilon^{n-1}+\%_{n}+1 \epsilon^{n-2} \beta+\%_{n}+\epsilon^{n-3} \beta^{n} \ldots \\
& \ldots \%_{n} e^{n-1} \beta^{n-n}+\%_{1} 6^{v-2} \boldsymbol{3}^{3^{n-c+1}} \cdots \%_{n-1}^{\beta^{n-1}} \text { 。 } \tag{2}
\end{align*}
$$

In determining the prodncts fif we shall always suppe that $r^{\prime}>r$, and so we shall integrate r hetween the limits 0 and v^{\prime}; r^{\prime} between the limits 0 and x. In this way we get only one hatf of the quantity we have to determine. In order to find the amount contributed by the product $f_{i} f_{e^{\prime}}\left(\boldsymbol{*} N\left(r^{\prime}-r\right)\right.$ to the coelicient of $\%_{r}$, we have to distinguish three different ciases:

1st $0<1 \ll$. Then the coenticient has the following form:

$$
\boldsymbol{e}^{\prime}+r^{\prime}-2 r-2 \beta^{2} n+2 r-r-r^{\prime} \quad \cos \left(r^{\prime}-r\right) \mathbf{r} p
$$

$2^{\text {nl }}, ~ \bullet \ll r<r$. Then:

$$
a^{n+}+c^{\prime}-2 r-2 \beta^{3}+2 r-r^{\prime} \cos \left(c^{\prime}-r\right) \mathbf{x} p
$$

$3{ }^{\text {rd }} . v^{\prime}<n<n$. Then :

$$
\boldsymbol{a}^{2 n+}+v^{\prime}-2 r-2 \beta^{2 r-r-v^{\prime}} \cos \left(c^{\prime}-v\right) \boldsymbol{\tau} p .
$$

We have to seek the sum of these quantities, when r gets successively the value of all integers $1^{\text {st }}$. between 0 and $r, 2^{\text {nd }}$. between r and x^{\prime} and $3^{\text {rd }}$. between r^{\prime} and x. x^{r} has all values between 0 and x^{\prime}, and x^{\prime} those between 0 and n. We may write these sums in the form of integrals, if we put:

$$
\begin{gathered}
\boldsymbol{\tau} v=u \quad \boldsymbol{\tau} v^{\prime}=u^{\prime} \quad \boldsymbol{\tau} r=u \quad \boldsymbol{\tau} u=t_{1} \\
\boldsymbol{\alpha}^{1 / 5}=a \text { and } \boldsymbol{\beta}^{1 / 5}=b .
\end{gathered}
$$

The integration according to w may direotly be executed. It yields for the three cases:

$$
\int \frac{a^{-2 w}}{b} d x=\frac{-1}{2 l^{a}} \frac{u}{b}_{-2 w}^{b}
$$

If we substitute in this equation for each case the proper limits and if we then add the results for the three cases, when we get:

$$
\begin{aligned}
& \int_{0}^{t_{1} u^{\prime}} \frac{-1}{u^{\prime}}\left[b^{2, t_{1}}\left\{u^{-u+u^{\prime}} \quad b^{n+u^{\prime}}-u^{n+u^{\prime}} \quad l,-u-u^{\prime}\right\}+\right. \\
& 2 l \frac{a}{b}+a^{\prime} b_{1} l_{1}\left\{a^{\prime}-u^{\prime} b-u+a^{\prime}-a^{-u+a^{\prime}} b^{n-u^{\prime}}\right\}+ \\
& +u^{\left.2 t_{1}\left\{u^{u}+u^{\prime}-2 r_{1} b-u-u^{\prime}+2 f_{1}-u^{n-u^{\prime}} b^{\prime}-u+u^{\prime}\right\}\right] \cos p\left(u^{\prime}-u\right) d u d u^{\prime} . ~ . ~ . ~}
\end{aligned}
$$

In the exponent of a we have neglected the term $2 r$ as it is small compared with the other terms. If we arrange the terms in another way and again suppress the constant fatoms we may write the integral in the following form:

$$
\begin{align*}
& \int_{0}^{t_{1}} \int_{0}^{u^{\prime}}\left(u^{\prime}, l_{1}^{\prime} 1-u^{2 t_{1}}\right)\left(\frac{u}{b}\right)^{-u^{\prime}}\left(\frac{u}{b}\right)^{u} \cdot \cos p^{\prime}\left(u^{\prime}-u\right) d l_{n} d u^{\prime}+ \\
& +\int_{0}^{t_{1}} \int_{0}^{u^{\prime}}\left(l^{2} t_{1}-u_{1}^{\prime} z_{2} t_{2}\right)\left(\frac{u}{b}\right)^{n^{\prime}}\left(\frac{u}{b}\right)^{-u} \cos p\left(u^{\prime}--u\right) d u d l^{\prime} . \tag{3:2}
\end{align*}
$$

Integrating pathally we find:

From which follows:

In the same way we have:

$$
\left.\int_{0}^{u_{1}}\left(\frac{u}{b}\right)^{-u}\right)^{-o s} p^{\prime}\left(u^{\prime}-u\right) d u=\frac{\left.\left.i^{\prime} \frac{{ }^{\prime}}{b}\right)-\left(\frac{u}{b}\right)+\frac{u^{\prime}}{b}+i^{\prime} z^{\prime \prime \prime}\right\}-p^{\prime} \cdot \sin m^{\prime}}{l^{2} \frac{u}{b}+p^{2}}
$$

 lillow ine form:

$$
\begin{aligned}
& -\left\{1^{\prime_{1}}\binom{11}{1}^{u^{\prime}}-l_{1}\binom{11}{11}^{a^{\prime}}\left\{l^{\prime} \sin l^{m i^{\prime}}\right\rfloor d u^{\prime}\right.
\end{aligned}
$$

Lutorating this equation we aret:

$$
\begin{aligned}
& \left.+\left(u^{\prime}+l_{1}\right) l^{\prime \prime} \frac{\prime}{b}\left(\sin \mu_{1}+\operatorname{mos}^{\prime} p_{1}\right)+\left(u^{\prime}-l_{1}^{\prime}\right) p l^{\prime \prime} \frac{l}{b}\left(\sin p_{1}-\cos l_{1}\right)\right] \text {, }
\end{aligned}
$$

The fact that the terms with sim p_{1} and cos $p t_{1}$ oceme, shows that the distributom depends on t_{1}. We migh have experted this, speciatly as we hate choren of f_{n} - f_{1}^{\prime} as one of new variables for the substitution and therefore introdned the condition that f_{1} and f_{n} have abont the same value. If however we take a eonsiderable value for t, then the term $\left(t_{1}^{\prime}-l t_{1}\right) \frac{t^{\prime}}{b_{1}} t_{1}$ will have decisise influence. If we now consider a region of the spectrm of some, though it be an extremely small extension and not a rigorously simple wave, then we have to admit shght variations in the value of ρ. The terms sim f_{2} and (ons p_{1} will then have altemate! the positive and the negative sign and yiehl zero on an atrerage.

If t_{1} hats a sufitemently great value then the course of the function is principally determined by the fitetor $\frac{1}{\int^{2}}$. This expression does

$$
l \frac{1}{l}+l^{2}
$$

not present a well defined maximmon value, hut it has its greatest value for $f^{\prime}=0$ (i.e. for infinite wave-lengths), it decreases gradually with increasing l^{\prime} and is zero for $p=\infty$ (i. e. for intinitely small Wiare-lengths).

So this equation does not at all represent the distribution of baek ratiation. I only eommmanate these calcolations in orter to show that equations amalogous to (S) or (Sa) determine in fate a distribution of the enersy over the different perionts and to indicate a method for analysing such like equations.

Physics. - "Ternary systems." V. By Prof. J. D. vas der Wails. (Contimed from pag. 21).

If the temperature is so low that there is no duestion of critical phenomena, and if therefore both liquid sheet and vapour sheet coser the whole triangle, r_{21} is for all points either positive or negative, and the given rules for the displavement of the curves of equal pressure will therefore be followed by all points of these courves. If on the other hand the temperature is chosen so high, that the surface of satuation does not cover any longer the whole triangle, and if therefore the liquid sheet and the rapour sheet pass into each other above a certain locus in the iriangle, v_{21} vanistres for the phase represented by this locus.

We may form an idea of the shape of the surface of saturation with the aid of fig. 11 (Cont. H, p. 135). Let us imagine that this figure represents a section by the vertical plane which contains the X-axis of the triangle and let us take a similar section by the vertical phane which contains the Y^{-}-axis. The value of T is then chosen such that $T>\left(T_{c r}\right)_{\text {e }}$, and also $T>\left(T_{c r}\right)_{3}$. In the figure mentioned P is the point, where a vertical tangent may be drawn, so this point represents a phasis which is in critical point-of-contact circumstance, and for which $v_{\mathrm{n} 1}=0$. The point C represent.s the plaitpoint. If we now intagine different planes which contain the axis erected in the point 0 normal to the plane of the triangle, these planes will cut the surface of saturation, and the sections will be analogous figures, which however change their shape fluently from that which they have in the $P O N$-plane to that which they have in the $P O Y$-plane. If the pressure is lower than the lowest pressure of the points P, the two branches of the curres of equal pressure are perfectly separated lines which, if the pressure is increased, will be displaced according to the rules given above. If however the pressure has risen till the pressure of a point P has been reached, then the two braches are still separated, but on the rapour branch occurs a point for which $v_{21}=0$. Such a point is not displaced when the pressure increases. The locus of these points forms the limit of the mixtures which may be splitted up into two phases at the given temperature. From a geometrical point of riew it is the envelope of the projections of the horizontal sections of the surface of saturation, or the envelope of the projections of the curves of equal pressure. If the pressure has been increased till it has attained the value of the lowest of the pressures of the point C, then the two branches of the curves of equal pressure pass continnously into one
anothors. But if we contime to call those phases represented by tho lowor shed, vapond phases, and those phases represented by the higher sheet, liguid phases, then the vapons phases do sut reach the point, where the combection of the two thetuctres has batien phan (the platpoint), but onsy the primt where the value of va is zoro, i.e. the point, where two sumerosive entres of equal proserte intersert. Fows all pribts lying ont one of the sides of that paint of intersedion, - e.g. on the side where the phatpoint ocerns, - v_{3} is posilive.

Tharese points will be displacenl powath the eomjugated point, when the pressure is interateal: all points ont the wher side of the point of intorection with mowe atway fion the points, represeming coexisting phates. If we therefore, continte to the the expressoms "liquid phats" and "xapont phatsis" with ho same meaning ats we have done till bow, we mus saty that for points between the phatpoint and the perint for whioh $r_{z 1}=0$ wo liguid phates eocxist. If for the two patirs of the ternaty system we hat a comse of the pressthe ats is repreached in ('ont. II, J. 135), lig. I2, the athove rules would comtinte to hold; hat in this case we lime a series of vapour phases coevisting with vaphur phases behween the platpoint ind the point, for which $r_{21}=0$. For these points we have then retrogtade condensation of the second kind. We may expeet that it will he easier to observe this phenomenon for a ternary system, than for a binary one. In order that retrogade condensation may be easily observed a rathere ireat distance between the two sheets of the surface of saturation is reguired; and the distance between the sheets will be more eonsiderable in the middle than at the ends, where we have to deal with a hinary mixture, because the requirements for stat hility and coexistence for a ternary mixture are stricter than those for a binary mixture (See Vol. IV, p. 57T). But then we have to avoid the case that a real maximum pressure oceurs, for in that case we have also in the middle of the figne a point in which the two sheets touch each other.

c. Cimres of slope and nodal emedopes.

If for a binary mixture we have construed the curves $p=f\left(e_{1}\right)$ and $f^{\prime}=f^{\prime}\left(n_{2}\right)$, we have at the same time answered the question, what phases may coexist with each other. Every line parallel to the I-axis joins a pair of coexisting phases. If on the other hand we have construed the two sheets of the surface of saturation for a ternary system, this is not sufficient in order to answer the question which
phasis coexists with a given phavis. It is true that we know that the pressure must be the same, and that therefore the second phasis will be foum on the other sheet at the same height as the first phasis, but as the section of the second sheet hes atane al a height equal to p is a curve and not a point, the question is not yet perfeetly determined. Therefore, hesides the series of conves of efual preme sure, which are already given as the points which have the same height, still mother series of curves must be trated on the surface of satuation which pass from lower to higher pressure ant whose properties enable us to answer the question, which phasis of one of the sheets corresponds with a given phasis of the other sheet. We will again begin with treating the simplest case, in which maximun-pressures are excluded, ats well for the pairs of components of which the ternary system consists, as for the termary stamitedf, so the case for which the lowest pressure is equal to p_{1} and the highest to p_{3}. The question is then, what systems of curves, starting at the point where the pressure has the lowest value and cnding in the point where the pressure has the highest value, may be traced on one of the sheets or on both sheets of the surface of saturation which enable us to find, what phases coexist with each other. Such a system of curves will be found in the cousse of a person who would climb the inclined sheet, e.g. the liquid sheet, always moving in such a direction that he has the phasis, coexisting with the point, where he is at the moment, just in front of him. If we now project the tangent to the way which he has followed on a horizontal plane, the point in which this projection cuts the vapour sheet will indicate the coexisting phasis. The projection of such curves on the plane of triangle OXY has therefore the property that the tangent passes through the conjugate point, and is therefore the chord, joining the points 1 and 2; from this follows again that these projections are the envelopes of these chords. If therefore in the plane of the triangle we have drawn the two branches of the curves of equal pressure, and if we have joined a pair of nodes by a chord, an element of the curve in question will be represented by an infinitely small part of this chord. Let the point from which we start represent a lipuid phasis and be its coordinates x_{1} and y_{1}. The projections of the element of the way followed are then the quantities $d x_{1}$ and $d y_{1}$. At the end of the elementary way the second phasis is also changed, of course, and the consequence of this will be that we have to follow a curve. But the direction of the intinitely small way will always be the same as that of the chord joining the nodes; and the differential equation will therefore be given by:

$$
\begin{array}{ll}
l_{1} & l_{1} n_{1} \\
d_{2} \cdots n_{1}
\end{array} n_{1}=-n_{1}
$$

 Fone the propertion of than amone on the phane of the triangle I

 athele athl the lyputhemese of the triatere.

Fone the - ollation of the dilferemial apration of then emes it is ropuited that we maty exprose y_{2} and y / z^{2} in r_{2} and y_{2}. This is
 mamely a-bme the finmetions ás and $\boldsymbol{u}_{1 / 2}$ to be known. For that

$11{ }^{\circ}$

$\left.o v^{\prime}\left(e^{y^{\prime} y_{1}}-1\right) \left\lvert\, d_{n_{1}}-\frac{d\left(1-r_{1}-y_{1}\right)}{1-n_{1}-y_{1}}\right.\right\}=\left(e^{u^{\prime} r_{1}}-1\right)\left\{\frac{l_{y_{1}}}{n_{1}}-\frac{d\left(1-r_{1}-y_{1}\right)}{1-r_{1}-y_{1}}\right\}$.
The lat equation may also be written as follows:

$$
\left(e^{y^{\prime} 3 y_{1}}-1\right) d \log \frac{r_{1}}{1-r_{1}-y_{1}}=\left(e^{v^{\prime} x_{1}}-1\right) d \log _{2} \frac{y_{1}}{1-r_{1}-y_{1}} .
$$

For the case that the liquid sheet is a plane, $e^{0^{\prime} y_{1}}-1$ and $e^{\mu^{\prime} x_{1}}-1$ are comntant, and efgat to $\frac{P_{3}-P_{1}}{p_{2}}$ and $\frac{l_{2}-P_{1}}{p_{2}}$ and so the equation of the nodal envelope will be given by:

$$
\left(\frac{x_{1}}{1-x_{1}-y_{1}}\right)^{\frac{y_{3}-y_{1}}{r_{1}}}=C\left(\frac{y_{2}}{1-x_{1}-y_{1}}\right)^{\frac{y_{2}-p_{1}}{p_{1}}}
$$

$$
x_{x_{1}}\left(\frac{p_{3}-p_{1}}{p_{1}}\right)=C_{y_{1}}\left(\frac{p_{1}-\mu_{1}}{p_{1}}\right)_{\left(1-r_{1}-y_{1}\right)}^{\left(\frac{\nu_{3}-p_{2}}{\mu_{1}}\right)},
$$

an equation in which all exponents are positive as appears from the values of p_{1}, p_{2} and μ_{3}.

For $C=0$ this equation is satisfied by $x_{1}=0$ and therefore the nodal envelope coincides with the Y-axis. For $C=x$ either ! y_{1} or $1 — r_{1} — y_{1}$ is zero, and for this value of ($?$ the nodat envelope coincintes with the X-axis and the hypothenuse. For the special cate, for which $p_{2}=2 p_{2}$ and $p_{3}=3 p_{1}$ the equation assumes the following shape:

$$
x_{1}^{2}=C y_{1}\left(1-x_{1}-y_{1}\right)
$$

This is the equation of a conice section which touches the X-axis and the hypothemse in the points in which they cot the Y-axis. Whatever the values of p_{1}, p_{3} and p_{3} may be, the curve will touch the X-axis and the hypothenuse in the points mentioned, if only the condition $p_{1}<\mu_{3}<\rho_{3}$ be satisfied, and the same would hold true if on the other hand $p_{1}>\rho_{2}>\rho_{3}$ be fulfilled. The nodal envelope for which $C=0$ will of course be an exception to this rule.

Fig. 13.

In the adjomed figure 13 the general course of the nodal envelope is represented in the above deseribed circumstances. Though the calculated formula only holds for $\boldsymbol{\mu}_{x_{1}}^{\prime}$ and $\boldsymbol{\mu}_{y_{1}}^{\prime}=$ comstant the shape of the curve will agree in main features with the one, dawn here, always if neither on the sides, nor anywhere in the middle of the surface of saturation a maximum pressure oceurs.

Only the details are different.
For the locus of the points where the tangent of the nodal envelope is parallel to the J-axis for instance, we find in the case that $\mu_{x_{1}}^{\prime}$ and $\boldsymbol{\mu}_{y_{1}}^{\prime}$ are constant a right line passing through the intersection of the X-axis and the hypothenuse. For $\frac{d y_{1}}{d x_{1}}=x$ for such points and so $d x_{1}=0$. But then also $x_{2}-x_{1}=0$.
As follows from the equations (1 . 11).

$$
\frac{x_{3}-x_{1}^{\prime}}{x_{1}}=\frac{\left(1-x_{1}\right)\left(e^{\mu^{\prime} x_{1}}-1\right)-y_{1}\left(e^{y^{\prime} y_{1}}-1\right)}{1+x_{1}\left(e^{y_{1}^{\prime} x_{1}}-1\right)+y_{1}\left(e^{w^{\prime} y_{1}}-1\right)}
$$

and

$$
\begin{aligned}
& y_{2}-!_{1} \\
& y_{1}\left(1-y_{1}\right)\left(e^{y^{\prime} y_{1}}-1\right)-c_{1}\left(e^{y^{\prime} x_{1}}-1\right) \\
& 1+r_{1}\left(e^{\mu^{\prime} x_{1}}-1\right)+!_{1}\left(n^{\prime y^{\prime} y_{1}}-1\right)
\end{aligned}
$$

we have:
if

$$
1-x_{1}=y_{2} \frac{y^{\mu^{\prime} y_{1}}-1}{y_{1}^{y_{1}^{\prime} y_{1}}-1}
$$

This equation represents a risht line, if the fincor of !/ is constant, and it vieds $x_{1}=1$ if $!_{2}=0$. If the surface of saturation is a plame, i.e. if $e^{\mu^{\prime} x_{1}}=\frac{\rho_{2}}{\mu_{1}}$ and $e^{p^{\prime} y_{1}}=\frac{p_{3}}{p_{1}}$, then the equation of this right line is:

$$
1-x_{1}=y_{1} \frac{p_{3}-p_{1}}{p_{3}-p_{1}} .
$$

This right line coincides with the liquid branch of the projection of the curve of the pressure ρ_{2}. (See our previous communication, p. 14).

If $\|^{\prime} r_{1}$ and $\boldsymbol{~}^{\prime} n_{1}$ are not constant, i.e. if the factor of y_{1} is variable, then the locus of the points for which $x_{3}-x_{1}=0$ is of comse not stratight, but it will be a couve, which, however, if the condition $\boldsymbol{\mu}_{y_{1}}^{\prime}>\boldsymbol{u}_{c_{2}}^{\prime}$ continues to be satisfied, will start from the same angle of the triangle. In this case the line for which $x_{3}-x_{1}=0$ does no longer coincide with the line for which the pressure is equal to μ_{2}. If we put in equation (7) of p .12.

$$
1-x_{1}=y_{1} \frac{e^{\mu_{y_{1}}^{\prime}}-1}{e^{\mu_{\mu_{1}}^{\prime}}-1}
$$

then we find:

$$
\operatorname{lon} \frac{\rho}{1 / R T}=u_{x_{1} y_{1}}+\left(1-x_{1}\right) \mu_{x_{1}}^{\prime}-y_{1} \mu_{y_{1}}^{\prime}-1
$$

If we denote the value of $:$ for $x=1$ and $!=0$ by μ_{20}, then we have:

$$
\operatorname{lot}_{I_{3}} \frac{I^{\prime}}{r_{3}}=\boldsymbol{\iota}_{r_{1} y_{1}}+\left(1-x_{1}\right) \boldsymbol{u}_{x_{1}}^{\prime}-y_{1}!_{y_{1}}^{\prime}-\boldsymbol{u}_{10}
$$

The second member of this equation represents the distance between the point of intersection of the tangential plane to the n-surface and the rettical axis of the second component, and between the ordinate μ_{10}. If the whole surface lies below the tangential plane, as is probable, then the second member is positive and $l^{\prime}>p^{\prime}$, and the difference hetween p and $p_{\text {s }}$ increases, if the point of intersection
lies at a greater distance from the second component, and if the deviation of the surface p from a plane surface is more considerable.

The succession of the values of the pressures p_{2}, p_{2} and p_{3} involves that the condition $y_{2}-y_{1}=0$, which would lead to:

$$
1-y_{1}=x_{1} \frac{e^{y^{\prime} x_{1}}-1}{e^{\mu_{y_{1}^{\prime}}}-1}
$$

camot be fulfilled, for in that case the factor of x_{1} would be less than urity, and the equation:

$$
1-y_{1}=x_{1} e^{e^{p_{1}^{\prime} x_{1}}-1} e^{y_{y_{1}^{\prime}}}-1
$$

with constant value of $\mu_{x_{2}}^{\prime}$ and $n_{y_{1}}^{\prime}$ would then in fact represent a line through the summit of the triangle; but a line outside the triangle. But we will return to this condition presently.

These notal envelopes have an analogons significunce as that of the lines of force in the magnetic field. In the same way as the tangents of the lines of force determine the direction of the force, but not its intensity, so the tangents of the envelopes determine the direction in which the second phasis is to be found; hut they do not indicate the distance between the points 1 and 2. This distance, however, is perfectly determined if also both brathes of the curves of equal pressure and triangle $O X Y$ are drawn. Then we find the second phasis which coexists with a given liquid phasis, by drawing in the point representing the liquid phasis the tangent to the notal envelope of that point ; the point of intersection of this tangent and the vapour branch for the pressure of the liquid phasis represents the second phasis. If we do this for all points of the same notal envelope then we get a new locus, which we may call conjugated curve of the nodal envelope. In order to give the equation of this conjugated curve we must be able to express , x_{1} and y_{1} as functions of x_{2} and y_{3} and we must substitute these functions in the equation of the cuvelope. In general, however, we are not able to to this, not even in the case that the second phasis is a mare gas phasis. Only in the case that $\mu_{x_{1}}^{\prime}$ and $\mu_{y_{1}}^{\prime}$ may be comsidered as constants it can easily be executed. If we write the equation of the envelope as follows:

$$
\left(\frac{x_{1}}{1-x_{1}-y_{1}}\right)^{\left(e^{\mu_{\prime_{1}^{\prime}}}-1\right)}=C\left(\frac{y_{1}}{1-y_{1}-y_{1}}\right)^{\left(e^{\mu^{\prime} x_{1}}-1\right)}
$$

which only may be admitted for constant value of $\mu_{s_{1}}^{\prime}$ and $a_{y_{1}}^{\prime}$, and if we take into account that:

$$
\underset{1-r_{3}-y_{1}}{r_{1}}=\begin{aligned}
& x_{2} e^{-\mu_{x_{1}}} \\
& 1-r_{2}-y_{2}
\end{aligned}
$$

and

$$
\frac{!n_{1}}{1-n_{1} u_{1}}=\frac{u_{2}!_{1}^{\prime \prime}}{1-n_{2}-!n_{2}}
$$

then the substitution into the equation of the envelope vields the following formula:

$$
\begin{aligned}
& \binom{r_{2} e^{y^{\prime} j_{1}}}{1-r_{2}-y_{2}}^{\left(e^{y^{\prime} y_{1}}-1\right)}=C\left(\frac{y_{2} e^{-y^{\prime} y_{1}}}{1-r_{2}-!_{2}}\right)^{\left(e^{u^{\prime} y_{1}}-1\right)}, \\
& \left(\frac{x_{2}}{1-v_{2}-y_{2}}\right)^{\left(e^{\mu_{y_{y}}}-1\right)}=C^{\prime}\left(\frac{\eta_{2}}{1-v_{2}-y_{2}}\right)^{\left(e^{\mu_{\mu_{1}}^{\prime}}-1\right)} .
\end{aligned}
$$

From this follows that the conjugated curve of a nodal envelope of liquid phases, is, in the chosen cireomstances again a modal envelope, with another value of the comstant, namely:

$$
C^{\prime}=C\left(\frac{p_{2}}{p_{1}}\right)^{r_{3}-m_{1}}\left(\frac{p_{1}}{p_{3}}\right)^{\frac{p_{2}-p_{1}}{p_{1}}}
$$

If $\mu_{1}<\rho_{2}<\rho_{3}$, the factor of C is ${ }^{\prime}$ greater that mity and the conjugated comve is therefore to be found nearer the hypothemse. Only in the case that $\mu_{2}=\mu_{s}$ we have $C^{\prime \prime}=C$ '; but then the system is only apparently a ternary one, and the envelope derenerates into a straight line with the equation:

$$
x=C y:
$$

It appears therefore that the conjugated corve in this case always coincides with the envelope.

We might ako have considered the nodal envelope for vapour phases. Then we consider the projection of the way which we should follow, if we descend on the vapour sheet from the point where the pressure has the highest value towards the point, where it has the lowest value, always moving in such a direction that we have the liquid phasis just in front. We find the equation of this curve if we express the values of x_{2} and of y_{2} as functions of,x_{2} and $1 / z^{2}$ and if we substitute those functions into:

$$
\frac{d x_{2}}{x_{1}-x_{2}}=\frac{d y_{3}}{y_{1}-y_{2}}
$$

This is only possible if $\mu_{x_{1}}^{\prime}$ and $\boldsymbol{u}_{y_{1}}^{\prime}$ are constant as we have already mentioned several times. With the aid of the equations:
and

$$
\begin{aligned}
& \frac{x_{1}}{1-x_{1}-y_{1}}=\frac{x_{3}}{1-x_{2}-y_{3}} e^{-\mu_{x_{1}}} \\
& \frac{y_{1}}{1-x_{1}-y_{1}}=\frac{y_{2}}{1-x_{3}-y_{3}} e^{-\mu_{y_{1}}}
\end{aligned}
$$

we find a differential equation, which differs fiom the one treated p. 124 in so far that x_{2}, y_{2}, d x_{2} and $y_{1} y_{2}$ are substituted for $r_{1}, y_{1}, d x_{1}$ and $d y_{1}$, and that - $\mu_{x_{1}}^{\prime}$ and - $\boldsymbol{r}_{y_{1}}^{\prime}$ are substituted for $\boldsymbol{\mu}_{x_{1}}^{\prime}$ and $\boldsymbol{\mu}_{y_{1}}^{\prime}$. In the integral found there the same substitutions must of course be performed. So we find:

$$
\begin{aligned}
& \binom{u_{2}}{1-w_{2}-y_{2}}^{\left(e^{-u_{1} y_{1}}-1\right)}-C\left(\frac{y_{2}}{1-u_{2}-y_{2}}\right)^{\left(u^{-y_{1} y_{1}}-1\right)} \\
\mathrm{Or}^{\circ} \quad & \left(\frac{a_{2}}{1-u_{2}-y_{2}}\right)^{\left(\frac{y_{1}}{\mu_{3}}-1\right)}=C\left(\frac{y_{2}}{1-u_{2}-y_{2}}\right)^{\left(p_{2}-1\right)}
\end{aligned}
$$

This equation may ako be written in the following form:

$$
r_{2}^{\frac{\mu_{2}}{\mu_{1}}} \frac{\mu_{3}-\mu_{1}}{\mu_{1}}=C_{2}^{2} \cdot y_{2} \frac{\mu_{3}}{\mu_{1}} \frac{\frac{\mu_{2}-\mu_{1}}{\mu_{1}}}{\left(1-r_{2}-\mu_{2}\right)^{r_{3}-\mu_{2}}}
$$

For $C_{2}=0$, we have also $d_{2}=0$, and the $)^{2}$-axis is therefore the first of the envelopes, just as was the case for the liquid phases. For $C_{2}^{\prime}=\infty$ we have $y_{2}=0$ and $1-x_{2}-y_{2}=0$. The last of the envelopes is therefore also here the X-axis and the hypothemse. Though the equation of the two series of envelopes is different, the course is in many respects analogous. These envelopes also touch the hypothenuse in their begiming and touch the N-axis in their final point. They have a tangent parallel to the 5 -axis, and the locus of the points where this is the ease, is found from the equation:

or | $x_{1}-x_{2}=0$ |
| :--- |
| $1-x_{2}=y_{2} \frac{1-e^{-\mu^{\prime} y_{1}}}{1-e^{-\mu^{\prime} x_{1}}}$ |
| or |
| $1-x_{2}=y_{2} \frac{p_{2} p_{3}-p_{1}}{p_{3} p_{2}-p_{1}}$. |

This locus coincides with the vapour branch of the curve of pressure p_{2}. This nodal envelope has a conjugated curve, which is again a nodal envelope with greater value of the constant, just as is the case for the liquid phases.

Before we proceed to the discussion of the nodal envelopes in more complicated cases, namely in those in which a maximum pressure occurs either on the sides of the triangle or for a point inside the triangle, we will make some general observations about peculiar points of these curves, which, however, only apply to the case that the second phasis is a rare gas phasis.
From the equation : $\frac{x_{3}}{1-x_{2}-y_{3}}=\frac{a_{1}}{1-x_{1}-y_{1}} e^{\mu^{\prime} x_{1}}$

$$
\frac{y_{2}}{1-x_{9}-y_{2}}=\frac{y_{1}}{1-x_{1}-y_{1}} e^{\mu^{\prime} y_{1}}
$$

We deduce that the modal emveloper hate tangents which pass flumph
 equal to zero. The bangent contains the angle representing the third component, if $\boldsymbol{\prime}_{s_{1}}=0$; that representing the second eomponent if $\boldsymbol{r}_{y_{1}}^{\prime}=\mathbf{O}_{\text {; }}$ and that for the first componment if $\boldsymbol{i}_{y_{1}}^{\prime}=\mu_{5_{1}}^{\prime}$.

The comblitions that at tanemt of the mbelope is paralled to one of the sides of the triamerle maty be dedmed from the values of $e_{3}-d_{1}$ and $y_{2}-y_{2}$. So form $r_{2}-r_{1}=0$ lillows the comblition that the fangent is parallel to the side of the tiat and the thind components. This condition hats the following form:

$$
\frac{y_{1}}{1-y_{1}}-\frac{e^{i^{\prime} x_{1}}-1}{e^{y^{\prime} y^{\prime} y_{1}}-1}
$$

Sow $\frac{y_{1}}{1-r_{1}}=$ then a, where re represents the angle enclosed between the radius vector diawn from the second eomponent, and the \mathcal{V} axis. As a must be less than 45°, we get for the condition for the existence of points where the tanent is paratlel to the J-axis:

$$
\text { tem } a=\frac{e^{\mu^{\prime} x_{1}}-1}{e^{\mu_{1}^{\prime} y_{1}}-1}
$$

and $\mu_{x_{1}}^{\prime}<\mu_{y_{1}}^{\prime}$, if both are positive.
The condition that the tangent is parallel to the I-axis may be derised from $!y_{2}-y_{1}=0$ and has the following form:

$$
\frac{x_{1}}{1-y_{1}}=\frac{e^{y^{\prime} y_{1}}-1}{e^{p^{\prime} x_{1}}-1}
$$

As $\frac{x_{1}}{1-y_{2}}=\operatorname{tam} \beta$, where β represents the angle, enclosed between the radins vector drawn from the third component, and the Y-axis, we may write this condition as follows:

$$
\tan \beta=\frac{e^{p^{\prime} y_{1}}-1}{\rho^{p^{\prime} x_{1}^{\prime}}-1}
$$

and $\boldsymbol{i}_{x_{1}}^{\prime}>\boldsymbol{i}_{y_{1}}^{\prime}$, if both are positive.
The condition that the tangent is pualle to the hypothenuse may be derived from:

$$
\frac{y_{3}-y_{1}}{x_{2}-x_{1}}=-1
$$

From this we deduce:

$$
\frac{y_{1}}{x_{1}}=-\frac{e^{\mu^{\prime} x_{1}}-1}{e^{u^{\prime} y_{1}}-1}
$$

Therefore a tamgent of the nodal envelope paralled to the hypothemse can onty oceme in the ease that $u_{x_{1}}^{\prime}$ and $u_{n_{1}}^{\prime}$ have different sign.

All these relations apply only to the case that $u^{\prime} x_{2}$ and $u^{\prime} y_{y}$ may be equated to zero; and the given rules will require corrections when the temperature is increased and approaches one of the critical temperatures. If T has reached a value higher than $\left(T_{c r}\right)_{3}$ for instance, and consequently the sufface of saturation does not cover the whole triangle any more, the envelopes can no longer pass through the angle of the third component. Even without knowledge of the equation of the envelopes we can understand in the following way what peculiarity will then come into the shape of those curves. The surface of saturation has in the vertical plane containing the Y-axis, and also in that containing the hypothentse still the shape of fig. 11, Cont. II. The first curve of slope lies in the first mentioned vertical plane and consists of that part of the p curve of the figure mentioned which extends to the maximum, i.e. to the point C. All other points of this pressure-curve, as well those between C 'and P as those forming the lower branch, represent coexisting phases and belong to the conjugated curve of this curve of slope. The last of these curves of slope lies above the X-axis and above the hypothentse, but above the hypothenuse it also extends only to the projection of the point of maximum pressure. Every intermediate nodal envelope has initially the shape of fig. 13 , has also still a vertical tangent, but ends in a point (the projection of a plaitpoint) before it has reached the locus which represents the limit of the points above which the surface of saturation extends. Above such a limiting point of the nodal envelope the curve of slope of which it is the projection has reached its highest point. Before the limiting point however the course has been modified. In order to discuss this modification we will derive the second derivative function, namely $\frac{d^{2} y_{1}}{d x_{1}{ }^{2}}$. From:

$$
\begin{aligned}
\frac{d y_{1}}{d x_{1}} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { follows } \\
\cdot \frac{d^{2} y_{1}}{d x_{2}^{2}} d x_{1} & =\frac{\left(x_{2}-x_{2}\right)\left(d y_{2}-d y_{3}\right)-\left(y_{2}-y_{2}\right)\left(d x_{2}-d x_{1}\right)}{\left(x_{3}-x_{1}\right)^{2}}
\end{aligned}
$$

or

When we write it in this form we see that $\frac{d^{2}, y_{1}}{d x_{2}{ }^{3}}=0$ for that phasis for which dre and d!/z are zero, so for that phasis which coexists with the eritical point of contate If we write:

$$
\frac{d^{1} y_{1} d \cdot e_{1}}{d_{1} v_{1}^{2} d x_{2}}=\frac{\frac{d y_{2}}{d \cdot v_{2}}-\frac{d y_{1}}{d \cdot v_{1}}}{\left(x_{2}-v_{1}\right)}
$$

then the value of $\begin{aligned} & d^{3} l_{2} \\ & d l_{1}=\end{aligned}$ asswmes for the plaitpoint, where $x_{2}=x_{3}$, and $\frac{d l_{2}}{d l_{2}}=\frac{d l_{1}}{d n^{2}}$ a shape which is indefinite. As, however, the points 1 and 2 are situated on opposite sides of the platpoint, and the point 2 mast always lie on the tangent of 1 , and the eurve contaning the points 1 , the nodal envelope will present a point of inflection in the platpoint, i.e. in the point where it ends. The further continuation to the locus of the critical points of contact belongs to the conjugated curve, and this must reverse its couse either abruptly or fluently, where it meets the locus mentioned.

Let us now pass to the disenssion of the course of the nodal envelope in the case that a maximum pressure exists on one of the sides of the triangle. We shall suppose to oceur on the X-axis, so that the snecession of the pressures is given by:

$$
r_{1}<p_{2}<p_{13}<p_{3}
$$

If for a cerdain value of x_{1} a maximum pressure oceurs on the T-axis, then $r_{2}-r_{1}=0$, and $y_{1}=0$; from which follows that for the point representing the phasis with maximum pressure we have:

$$
u_{r_{1}}^{\prime}=0
$$

The locus, represented by $n_{s_{1}}=0$, see our previons commanication p. 9) cuts therefore one of the sides of the triangle adjacent to the right angle, namely that one which joins the angles representing the first and the second component. Inside this triangle therefore also a continnons series of prints oceurs for which this condition is satisfied. The shape of this lorus camot be determined without the knowledge of the equation of state. It might be derived from the equation on
p. 9, if $T_{c r}$ and $p_{c r}$ were known ats functions of , , and !/ If we assume, that $T_{c r}$ is proportional to $\frac{"}{b}$ andel i^{\prime} cr is proportional in ${ }^{a}{ }^{a}$. as follows from the form of the equation of state I have adopted, then we see that $a_{x_{1}}^{\prime}=0$ in the case muder consideration represents a feebly bent curve, which starting from the N-axis intersects cither the J-axis or the hypothenuse. Which of these lines will be cout depends on the values of $\left(T_{c r}\right)_{2}$ and of $\left(T_{c r}\right)_{2}$ and on the size of the molecules of the components 1 and 2 . As intermediate case the curve $n_{x_{1}}^{\prime}=0$ might pass through the angle of the third component. In tig. It I have represented it by

Fig. 14 curve $D H^{\prime}$, so I have assumed it to ent the hypothemuse. The area of the triangle may be divided into two parts according to the value of $\boldsymbol{a}_{x_{1}}^{\prime}$. On the left of $D E$ this quantity is positive; on the right of DF it is negative. As the quantity $n^{\prime} y_{1}$ does not change its sign in the case under consideration the pressure not presenting a maximum on the lines $A C^{\prime}$ and $B C^{\prime}$), the value of $\frac{a_{u_{1}}-1}{a_{y_{1}}-1}$ is positive on the left of $u_{y}-1$
The points in which the tamsents $D F$, and negative on the right. The points in which the tangents to the notal envelopes are vertical, can therefore only be found on the right of DF; tangents parallel to the hypothenuse on the other hand can occur on the left of $D F$. On the line $D F$ itself the taugents have a direction, passing through the point (: The curve /)/ represents the locus of the points whose tangent is rertical, and the curve $D H$ that of the points whose tangent is parallel to the hypothenuse. We may easily form an idea of the course of the nodal envelopes themselves in main features if we consider them as slight modifications of the shape they should have if the curve $D F$ were a straight line, directed towards the summit (C. In that case namely the conse of the entelopes in the left part is the same as that of fig. 13, with the modification which follows from the fact that one of the sides, adjacent to the right angle is smaller than the other, - and in the right part it is symmetrical with fig. 1:3 with regard to the Y-axis, - with the modification which follows from the fact that an obtuse angle occurs instead of the right angle. In the left part $.1 D+D C$ is one of the outmost envelopes; in the right part $B D+D C$:

If alow one of the other sithes of the dramge presents a maximum

 subjere. I eonsider tho premeding disenssion as sumberento draw
 ternary sysme.
d. Thu' arldition "f "t third rompument to "t aven bimury silstem.

If we have a hinaty sysm comsisting of 1 - t° moleconles of the tirst kind and . r_{0} molecolles of the second limb, and we add to it a thided component on that the dinal composition is given ly 1 - e - y, r° and !/, then we have:

$$
1-x-y={ }_{I-r_{n}}^{r_{n}}
$$

From this relation we derive:

$$
\frac{r}{v_{n}}=1-y
$$

from which we conclude, that the points representing the ternary system lie on at staight line, which commects the stmmit of the rightangled triangle with that point on the opposite side that represents the composition of the binary system.

Taking into account the values of $\frac{\partial^{2} \zeta}{\partial x_{1}{ }^{3}}, \frac{\partial^{2} \zeta}{\partial c_{1} \partial y_{1}}$ and of $\frac{\partial^{2} 5}{\partial!_{y_{1}}{ }^{2}}$ given on p. 5 and substituting the value - r_{0} dy for d x_{1}, we find from formula 11 of p . L .

$$
\begin{aligned}
& +\left(y_{3}-y_{1}\right)\left\{\frac{-x_{0}}{1-r_{1}-y_{1}}+\frac{1-r_{1}}{y_{1}\left(1-x_{1}-y_{1}\right)}+n^{\prime \prime} y_{1}-x_{0} u_{4}^{\prime \prime} x_{1} y_{1}\right\} .
\end{aligned}
$$

This equation may be simplified to :

In order to get the corresponding equation for the rapour phases, we must interehange the indiees 1 and 2 ; it has the following form :

If the gas phases are very rarified the latter equation may he simplified to:

$$
\frac{1}{p} \frac{d p}{d y_{2}}=\frac{y_{2}-y_{2}}{y_{2}\left(1-y_{2}\right)},
$$

which form is identical with that which applies if a second component is added to a simple substance, and from which accordingly the quantity x^{\prime}, has disappeared. This identity of the form of the equetion does, however, not justify the conclusion that also the shape of the carre $p=f^{\prime}\left(y_{2}\right)$ will be identical. The same form of the equation applies also to a binary system, and yet it includes the great variety of curves which the pressure as a function of the composition of the vapour can present. All those differences in shape are to be ascribed to the different ways in which y_{1} and y_{3} depend upon each other. In the same way every plane section of the vapour shect for a ternary system by a plane, normal to the plane of the triangle and passing through the summit, will be represented by this equation, though these sections may present an infinite variety of forms, which again may differ from those of a binary system. Yet we may make use of this equation and deduce some general properties from it. So e. g. $\frac{d p}{d y_{2}}$ will be zero if on the chosen section a point x_{2}, y_{2} occurs for which

$$
y_{2}-y_{2}=0 .
$$

If the succession of the values of the presstures is $p_{1}<p_{2}<p_{3}$ this can never occur. In this discussion, however, we will think the succession to be changed according to the circumstances in order that we are not obliged to draw the section every time through another angle of the triangle. If the succession is $p_{1}<p_{3}<p_{2}$ a locus occurs indeed, for which $y_{2}=y_{1}$ and this locus coincides with that for which the pressure of the vapour phases which occur on the chosen section is maximum or minimum. We might have expected a priori that in general a maximum or minimum would be found on the section which passes through the angle for the component whose pressure lies between those of the other components, and which cuts the opposite side in a point with the same pressure. This maximum or minimun will, however, not have the same significance as that of a binary system. For in the case of a binary system the composition of the rapour is the same as that of the liguid phasis; for a ternary system only y_{1} and y_{2} are equal, but x_{1} and n_{2} differ. In such a point the pressure of the liquid phasis is not equal to that of the vapour phasis - as is the case with the maximum pressure of a binary system, - but the pressure of
the lignid is higher than that of the vapume The fwo sheets

 If we sulatitute in this eqnation $!_{1}=!/ 2$, we find:

$$
\begin{aligned}
& 1 d p
\end{aligned}
$$

The fikelon $w_{4}-\pi_{1}$. Which also may be written $\frac{d i^{\prime}}{d_{1}}$ depends on the convature of the f-sulfare, and in all bases in wheh the surface is omly slighly bent it will hate moly atmall valhe ; but only in very spedial abses it will be rigomousy zero. In groneral therefore we may assmme, that his loners of the maximmm liquid pressmes does not deviate much from the loens lor which $!/ y_{s}-1 / 1=0$. If the projections of the entres of equal pressure are drawn, the points of maximum presure and the sections discussed by us are of course
 the angles of the triangle.
 binary system if eilher $\left(r_{1}-r_{2}\right)$ or $\frac{d l_{x_{1}}}{d / y_{1}}$ are zero. The value of $x_{2} — x_{1}$ banshes in the first place if the quantity we have denoted by x_{0} is zero, and in the second place if it is equal to unity. But in these catses we are really dealing with hinary systems; in the first case with the pair 1,3 and in the second with the pair 2,3 . In the first case we hatse :

$$
\frac{r_{21} d_{p}}{M R T d y_{1}}=\left(y_{2}-y_{1}\right)\left\{\frac{1}{y_{1}\left(1-y_{1}\right)}+\iota_{y_{1}}^{\prime \prime}\right\}
$$

and in the second ease. if

$$
\left.\begin{array}{c}
1-\ell_{2}-y_{2}=1-r_{1}-y_{1}, \text { or } d_{2}-l_{3}=-\left(y_{2}-y_{1}\right): \\
r_{v_{1}} d d_{p}=\left(y_{2}-y_{2}\right)\left\{\frac{1}{y_{1}\left(1-y_{1}\right)}+\ell^{\prime \prime} d_{y_{1}}-2 y_{1} \ell_{x_{1}}^{\prime \prime}=\left(\ell_{y_{1}}^{\prime \prime} x_{x_{1}}\right.\right.
\end{array}\right\} .
$$

 signification as $\mu_{1 / 1}^{\prime \prime}$, for the pair 1,3 , as is easily mulerstood.

The quantity $\frac{v_{21} d p}{M R T d y_{1}}$ assumes also this simple shape in the very peculiar points, where $x_{1}-x_{2}=0$ either inside the triangle or on one of its sides, and also in the points where $\frac{d \mu_{x_{1}}}{d x_{1}}$ vanishes.
 modification in the course of the value of the pressure which is very slight. The value of the pressure depending primeipally on the term $\frac{y_{2}-y_{1}}{y_{1}\left(1-y_{1}\right)}$.

We will consider more closely this last quantity, which represents the limiting value of $\frac{1}{p} \frac{d p^{\prime}}{d y_{1}}$ for $\quad y_{2}=0$ or $\quad y_{1}=1$, for a binary mixture and which for a temary system is to be ansmented with $\left(x_{3}-x_{1}\right)_{0} \frac{d \mu_{x_{1}}^{\prime}}{d y_{1}}$.

We have found before the following value for $\frac{y_{2}-y_{1}}{y_{1}}$:

$$
\frac{y_{2}-y_{1}}{y_{1}}=\frac{\left(1-y_{1}\right)\left(e^{y^{\prime} y_{1}}-1\right)-x_{1}\left(e^{i^{\prime} x_{1}}-1\right)}{\left(1-r_{2}-y_{2}\right)+r_{1} y^{y_{2}^{\prime} x_{1}}+y_{1} y^{y^{\prime} y_{1}},}
$$

From this value we deduce, if we set $y_{1}=0$ and $u_{1}="_{n}$

$$
\frac{y_{2}-y_{1}}{y_{1}\left(1-y_{1}\right)}=\frac{\left(e^{p^{\prime} y_{1}}-1\right)-w_{0}\left(e^{y_{x^{\prime}}^{x_{1}}}-1\right)}{1+x_{0}\left(e^{y^{\prime} v_{1}}-1\right)}=\frac{e^{y^{y_{1}^{\prime}} y_{1}}}{1-x_{0}+w_{0} e^{y^{\prime} x_{1}}}-1
$$

where $\boldsymbol{\mu}_{n_{1}}^{\prime}$ and $\boldsymbol{\mu}_{y_{1}}^{\prime}$ have the values they have in the point whose coordinates are $\mu_{1}=r_{n}$ and $y_{1}=0$. This value, which for $\mu_{n}=0$ is equal to $e^{p^{\prime} y_{1}}-1$, has for $t_{0}^{\prime}=1$ the final value,$^{y^{n^{\prime}} y_{1}-y^{\prime} s_{1}}-1$, and varies fluently with increasing w_{4}; and now the way in which $\frac{1}{p} \frac{d p}{d y_{1}}$ varies depends upon the relation hetween $\boldsymbol{u}_{y_{1}}^{\prime}$ and $\boldsymbol{\mu}_{r_{1}}^{\prime}$. This value may have reversed its sign, either firm negrave to positive or from positive to nequtive. The quantity $r^{\prime} y_{1}-f_{r_{1}}^{\prime}$ represents the variation of " for the motion along the hypothennse towards the summit of the triangle in the same waty ats represents the variation for the motion along the Y-axis fowards the smmmit. If therefore $T_{c r}$ for the summit is lower than $\left(T_{c r}\right)_{1}$, then μ_{n}^{\prime} is positive, and if $T_{c r}$ for the summit is higher than $\left(T_{c r}\right)_{2}$ then $u_{y_{1}}-u_{x_{1}}$ is negative.

It is not superfluons to point out in how high a degree the value of $\frac{1}{p} \frac{d p}{d y_{1}}$ depends on the value of $r^{\prime}{ }_{3 / 1}$, if it represents the initial direction of a curve of equal pressure for a binary system. According to our former observations this value is equal to $e^{y^{\prime} y_{1}}-1$. If we also draw the vapour curve, then $\frac{1}{p} \frac{d p}{d y_{3}}=\frac{y_{3}-y_{1}}{y_{3}}$, and so it is equal to:
$0^{0^{2}} y_{1}-1=1-0^{-y^{\prime} y_{1}}$. If we draw moreover the conve of the domble
point- then we have $\frac{1 / p}{p^{\prime \prime}!!}=u_{!}^{\prime}$. Fion the catace that $u_{y_{n}}^{\prime}=0$ we alwitys find zero as well for the value of $\frac{1}{p} \quad \frac{d p}{d!y_{1}}$ as for $\frac{1}{p} \quad \frac{d p}{d!y_{2}}$ and $\frac{1}{p} \frac{d p}{d!}$. If $\mu_{!/ 1}^{\prime}$ is positive, the three limes aremd, and they descend if $f_{y, 1}^{\prime}$ is nerative. If the value of f^{\prime} / h^{\prime} is very small, there is only a small difference in the stope of the three corves. But if fi,y has not so very smatl a value, then there is a very great difference in the slope of the three courses, and the liguid branch aseomds exceedingly fast.

$$
\text { As } \quad u_{y_{1}}^{\prime}=-\frac{i d T_{c r}}{T}{ }_{T} d y_{1}+\begin{gathered}
d \text { loy } p_{c r} \\
d y_{1}
\end{gathered}
$$

We shall have a mreat value $\mu_{y_{1}}^{\prime}$, if $\frac{d T_{c r}}{d y_{1}}$ has a comsiderable negative value, so if the $T_{c r}^{\prime}$ of the second component is much lower, e.g. if we press a permanent gas into a liquid. As in general $T_{c r}$ does not depend linearly on y_{1} and $\frac{d \text { log } p_{c r}}{d y_{3}}$ has a value differing from zero, we shall not find the accurate value for $\mu_{y_{1}}^{\prime}$, putting:

$$
\imath_{y_{1}}^{\prime}=\frac{\dot{j}}{T}\left\{\left(T_{c r}\right)_{1}-\left(T_{c r}\right)_{3}\right\}
$$

but only a more or less approximated value. If we choose for the second component a substance whose $T_{\text {er }}$ is much lower than T and for the first component a substance, whose $T_{c r}$ is much higher than T ', we do not take an impossible value for $\mu_{y_{1}}^{\prime}$, if we give it the value 14 or 15 for ordinary temperature. In that case $e^{y^{2} y_{1}}$ may in rough approximation be represented by 10^{3}. If we might apply the results we have obtained, also in the case of water, though its behaviour is specially at low temperatures very abnormal, then we might form an idea of the degree of approximation by means of the absopplon coefficients of grases solved in water.

According to our results we find for small values of $!/ 1$, if we neglect the vapome pressure of the first component compared with the total pressure:

$$
p=p_{1} y_{1}\left(e^{\mu^{\prime} y_{1}}-1\right)
$$

Here p_{1} represents the vapour pressure of the first component. Further we have, denoting the absorption coefficient by \boldsymbol{c}, and the molecular weight and the density of that component by m_{1} and d_{1} :

$$
y_{1}=\frac{m_{1}}{d_{1}} \frac{0,001: 3}{28.8} \pi p
$$

If we nerlect unity to $e^{y^{\prime} y_{1}}$, we may derive from these two equations:

$$
e^{v^{\prime} y_{1}}=\frac{d_{1}}{m_{1}} \frac{28.8}{0,0013} \frac{1}{\alpha p_{1}}
$$

If we put in this equation $\quad l_{1}=1, \quad m_{1}=18$ and $\rho_{1}=\frac{4.15}{760}$ Atmospheres, and $a=0,02$ as is the case for λ_{2}, then we find for $u_{y_{1}}^{\prime}$ a value between 16 and 17 . This result shows that the equation

$$
\iota_{y_{1}}^{\prime}=\frac{j}{273}\left\{\left(T_{c}\right)_{k}-\left(T_{c r}\right)_{\lambda_{2}}\right\}
$$

does indeed hold as an approximation.
If we had chosen as second component a substance of small volatility and whose $T_{c r}$ is much higher than $\left(T_{c r}\right)_{1}$, then we might form an idea of the value of $\boldsymbol{n}_{n_{1}}$ by making use of the approximation:

$$
\boldsymbol{u}_{y_{1}}^{\prime}=\frac{f}{T^{\prime}}\left\{\left(T_{c r}^{\prime}\right)_{1}-\left(T_{c r}\right)_{2}\right\}^{\prime}
$$

but then we should find a very great negative value for $\mu_{y / 1}^{\prime}$ and for $\frac{y_{2}}{y_{1}}=e^{i^{\prime} y_{1}}$ a value which differs only slightly from zero.

When we add a third component to a binary system whose composition is determined by x_{0}, then we have found for the value of $\frac{1}{p} \frac{d p}{d y_{1}}$, if y_{1} is infinitely small:

$$
\frac{1}{p} \frac{d p}{d y_{1}}=\frac{e^{\mu_{y_{1}^{\prime}}^{\prime}}}{1-w_{0}+v_{0} e^{\mu x_{1}}}-1+\left(w_{3}-w_{1}\right)_{0}\left\{\mu_{x_{1} y_{1}}^{\prime \prime}-v_{0} \mu_{x_{1}}^{\prime \prime}\right\}
$$

The two branches of the pressure-cure of this section do not start in the same point and so they differ already from the beginning from those of a binary system. Only if $\left(x_{2}-x_{1}\right)_{0}=\mathbf{0}$ they start at the same point. But as the factor of $x_{2}-x_{1}$ depends on the curvature of the \boldsymbol{r} surface the influence of this term may be neglected specially when $\boldsymbol{\mu}_{y_{1}}^{\prime}$ is great or when the curvature is considerable. So we find for the value of x_{a} for which $\frac{1}{p} \frac{d_{p}}{d y_{1}}$ vanishes approximately:

$$
x_{0}=\frac{e^{\mu^{\prime} y_{1}}-1}{e^{\mu^{\prime} x_{1}}-1}
$$

Only when $\mu_{y_{1}}^{\prime}<u_{x_{4}}^{\prime}$ this yields a possible value for x_{n} at least if as well $\mu_{y_{1}}^{\prime}$ as $\mu_{x_{1}}^{\prime}$ are positive.

Geology. - "imulnian Sivalic-blucks al Itemelum in the sumthentest "fi Prisio." liy .I. II. Bossoms. (C'mommateated by Prof. I. W. Mor, 1).

 Komblam, wheh is stmated on elevated epmond. Is fate as bere the surfare showed allovial clay buly : how we sed for the first time dibwial formations. The onter part of this elevation eomsists of boublereclay, whereas in fwo sund-pits it may he easily observed that pregatial layors form the imber part.

A little firther ont, When the athwial gromms are reached again, one comes to the (ialamatams. They are fonme on the Morra, areorting to the abovernamed athtor a bottommorame-lake.

About a mile farther upward we again find diluvial soil, and on contmumer our jobuney in the direction of Rijs we see, just before leaving Hemelmmer-fldephaert and Soordwolde, and entering the domain belonering to daasterdand, in a meadow to the right of the road at large pit 8 metres decp. From this pit for some vears boulder-clay has been dug in behalf of the brick-works of the Comp. "(iatasterland", at a short distanee, on the other side of the road.

As far as I know, these are the only brick-works in the Northem part of the Netherlauds, where bricks ate made of boulder-clay.

The bouder-clay, which forms a bottom-morane here and which must be forme very deep in the eath, is coloned bhe-grey. Only quite near the humus-layer it has become red-hrown, mader the influence

1) Vis Caprelle, Les Escarpements du "Caasterland" sur la còte meridionale de Ia Prise. Extrait du Bulletin de la Société Belge de geologie, de pakontologie et d'hydrologie 1889.

Sin Cirprelle, Bịdrage tot de kemis yan Frieslands bodem. II. Eenige mededeelirgen betreffende de Gaasterlandsche kliffen. Tijdschrift r. h. honinkl. Nederl. Aardrijksk. Genootschap. 1s:90.

Vis Ciapplee, Bijdraqe tot de kennis van Frieslands bodem. IV. Eenige medededingen over de diluviale henvels in de gemeente Hemelumer-Ohlephaert en Noordwolde. Tijdschr. v. h. Kon. Nederl. Aardrijksk. Genootschap. 1892.

Vis Cappale, Bijdrage tot de kennis van lrieslands bodem. V. Karteering van 't diluvium van Gaasterland en Hemelumer-Oldephaert er: Noordwolde. Tijdschr. v. h. Kon. Nederl. Aardrijksk. Genootschap. 189\%.

Vas Gappelle, Diluvialstudien im Südwesten von Friesland. Verhandelingen der Koninkl. Akad. r. W'etensch. te Amsterdam. 1895.
of the weather. It contains comparatively few eratic-blocks. They often show very fine glacier-scratehes and are mostly of atrerge size.

During the time when this opportmity of gathering erathe-hooks hats presented itself, I have several times visited, from lecmwarten, this loam-pit. The result of these visits is that I bromghthome rather a large number of cratic-blocks (probably between 300 and 400).

The sedimentary ones we still here at present : after shodying them I intend to present them to the Geological lnstitute at diromingen. The others, whose momber is small compared with that of the sedimentary stones, have already been given to this Institnte.

Though my collection is still small, it is large enough to contirm my opinion that our knowletge of on sedimentary erratie-blocks leaves much to be desired. I formed this opinion already after examining the erratic-blocks of Kloosterholt. ${ }^{1}$)

In gathering erratic-blocks in the Gron. Hondsrug I had gradnally come to the conclusion that our sedimentary ones almost exclusively originated from Silmian layers, and that the latter mmst have shown much resemblance to those of the Russian Ballic-sea provinces, perhaps are still to be found there. On getting acquainted with the erraticblocks in the boulder-clay of Kloosterholt, however, I could not but see very soon that at any rate this rule does not hold good in all cases. In this place I often found pieces of okter and younger formations, while corresponding stones oceur ats firm rocks in sweden and Demmark. The very same phenomena, ats l hope I shall indicate, are seen in the erratic-blocks of Hemelmm. Besides silmian formations, others, hoth older and younger, are numeronsly represented. At the same time all of them show almost exchusively a West-baltic character.

We should then see the remarkable phenomenon that at Groningen, which is situated between Kloosterholt and Rijs, erratic-blocks greatly differ from those of the two places mentioned.

Gradually, however, I am begiming to donbt whether my opinion about the chatacter of the erratic-blocks in the Groningen Hondsrug should be the right one. In the years when I used to gather there, digging was atmost entirely confined to the upper layers, so the chances are, that deeper parts contain other kinds of erratic-blocks.

A few farets seem to indicate this. First of all: while a deep cave was being dug moder the brewery called Barharosis, at Hepman, big blocks of Sadtholmhe with Terebratula lens Nilss made their

1) Vis Ciaken. Leber eine Sammlung von Geschiehen von Kloosterholt. Zeitsche. d. Deursch. Geol. Gesellsch. Jahrgang lsos p. Wist.

Bonxema, De sedimentaire zwerfblokien van Kloosterholt. Versl. v. d. Koninkl. Akad. van Wetensch. te Amsterdam 1898 pag. 448.

Proceedings Royal Acad. Amsterdam. Vol. V.

I should now like to kell something about the chief ('ambrian pieces that are fomed in my collections. I am moing to treat only of those stones whose age may be more or less precisely determined.

I. Lonerv-Cimbian Stomis.

1. Seolithms-andstone. Eleven stones eonsisting of this material are found in my collection. Nine of then are typical grey, fuarto iferous seolithos-samblone, showing a peenliar, faty lustre on the side where they were broken oft. No layers are visible as long ats the stone is not changed by the influence of the weather. Only if this takes place, the layers hecome more or less visible. In one stone they are rather distinct and turn upwat (perhaps downward) neat the "seolithus." 'Two other stones, one of which is bhe-grey, whilst the other moreover contains red parts, are clearly divided into layers and contain math finer tubes than are found in the typieal stone. In the recrions from which our enatic-blocks come, Scolthos-sandstone was first seen as firm rock in the isle of Rumi near Oscashamm, where aceording to Tomsd ${ }^{2}$) it was diseovered by Dr. Hommström. Afterwards it was also met with as such by Nithonst ${ }^{3}$, in the isle of Frmom, not fiar from Runo.

I wat wrong when, in treating of the Kloosterholt erratic-hlocks, I told that Scolithus-sandstone as firm rock is found in Sweden, in the neirhbourhood of Lund and Kalmar. The same mistake was
${ }^{1}$) San Gilker, Beitrage zur Kemtniss des Groninger Diluriums. Zeitsch. d. deutsch geol. Gesellsch. Jahrg. 1885 pag. 718 and 7 ± 7.
${ }^{2}$) Tonell, Petrificata Suecana formationis cambricae. Lumds Univ. Irsskrift. Tom. VI 1869 pag. 12.
") Nıтноня, Geol. Föreniugens i Stockhuh Fürhandlingar 1879. Bd IV, pag. 293.
made by Scmonder ris der Kork ${ }^{1}$) and the Greanoff ${ }^{2}$. The latter and I probably came to make it unter the influence of what wat told be Romer ${ }^{3}$) with regard to the origin of this kind of erratic-
 appears from the mote at the bottom of the page.

As to their being fomed at Hateherga in the meighomomod of Lamd, Romar seems to have forgoten the fact that Torbab '), thongh he af first commmieated that the Hardebergat sandstome comaned worm-shaped bodies probahly belonging to scolithestincaris Itail, afterwards makes mention of a new kind, viz. Solithserrams Tormas a). The latter ate distinguished for being mostly coutbed and moming through the stone in varions directions.

Rombers information that Toras deseribes scolithnslinearis from an erratic-block found near Lumd, and that according to Ninsos Scolithns-sandstone oceurs near ('ahmar (at firm rock), must be attributed to an error. If my imperfect acequantance with the Swedish language does not deceive me, Toresis ${ }^{6}$) writes that the place where the pictured stone (an erratic-htock) was found, camot be indicated for sure, but that Nussos thinks he remembers that it was found near Cahmar.

In the Northern part of the Netherlands erratic-blocks of Scolithessandstone are rather common. In Frisia were found, hesides the stone treated of above, one in the Roode klif (Red (Cliff) ${ }^{\circ}$), one in the Mimsercliff ") and one at Warns (see mumber B). Among the erratic-blocks of the Grom. Hondsrug ${ }^{9}$) only one piece was found "p to this time, whereas I formerly described already wo pieces from Kloosterholt ${ }^{19}$) and afterwards gathered more of them there. In the

[^16]
 mỵalf foumal some all Ulowitn.

 examine which laver-sy-tom fons patalley for them.

This satudeme was mate mention of for the list time by Nite

 Oeland, a few reas after. Latter on the latter writer') (ondd tell about this kind of erratic-hlock oreduring in dilurial latyors in the neighbomhoorl of berlin.

As one of the pieses fommd there contanins seolithns-lultes, he conld also draw the eonclasion that their atre is the same ats that of the ahove mentioned scolithoseandatone. This comelasion is contirmed hy means of a piere of seolithos-sanditome that l found at Wimns a short time agr. Throngh the erey piere of sumblone rum on one side a fow viohetoblomed layers, which are interserting the soolithostubes umder an angle of bo degrees, while the latter always stand perpendicularly on the surfaces of deposit, which are not seen here.

That this stome also oceurs in the Dutel diluvimm, wats alreardy shown by vin (arofe ${ }^{s}$); he proves that it is found in the eraticblocks of the (iron. Hondsrug.

II. Meel-Combrian Stomes.

3. Limesudstone with Paradoxides-remains.

In my collection I have also a piece of erey, finc-rrained sandstone with a large quantity of calcimm-carhonate as bindingr-material.
${ }^{1}$ Sis Gamer, Leber ein Vorkommen ron Kantengeschieben und von Hyolithusund Soolithus-Sandstein in Holland. Zeitschr. d. deutech. geol. Gesellseh. Jahrg. 1890 pag. 5x 3.
2) Nithonst, Geol. Föreningens i Stockhoh Förhandlingar 1879. Bd IV pag. 993 .
${ }^{3}$) Dames, (ieol. Reisenotizen aus Schweden. Keitschrift der deutsch. geol. Gesellschaft. Jahrg. 1 Ns plag. 417.
${ }^{\text {4) }}$ Dames, Zeilschr. II. deutsch. geol. Gesellsch. Jahrg. 1890. Bd XLIII pag. 777.
${ }^{5}$) Vis Gianer, Zeitschr. der deutsch. geol. Gesellsch. Jahrg. 1891. Bu XLII pag. 793.

Through the stone rim intersecting passages of the same mineral. Here and there are small grains of glatomite and protesterystals. Besides mayy Paradoxides-fragments arranged in layers, my stone contains remains of hom-shelled Brachiopoda. The former are cremcoloned and do not allow of being further detinet. Among the lather are casily fomd valves of Acrotele gramulata Limm.

About this stone I have up to this time nowhere foum any information. It is probably of the same age with the layers of Patadoxides Tessini Brongn, or it is a little older than these are.
4. Grawel-stone with Paradoxides Tessini Brongn.
a. It is a piece of fine-grained, hard sand-stone, yellon-grey inside and light grey nearer the surface, whilst the surfice itself is brown in some places. With a magnifying-glass some grains of glanconite and a few mica-seales may be distinguished in it.

With muriatic acid applied to it, there is no effervescence; consequently it does not contain calcium-earbonate. There are no layers.

The chief remnant oceuring in this erratic-block is a mid-shell, a little more than 1 centimetre long, of a Paradoxides, which mid-shell is visible for the greater part. The eream-colonred shell is still almost entirely present. That this remnant originates from Paradoxides Tessini Brongn., could be easily determined by means of the description and the pietures which Lavarssox ${ }^{1}$) gave as of this kind. Prof. Moberg, to whom I had the honour of showing this erratic-hlock, when visiting Lund, thought my determination right.

The glabella increases in breadla towards the front ; quite near the front it is broadest. The front-edge is romeded off. On eath side the ghabella has two side-furows, which in the middle rum into those of the other side, which is also the ease with Paradoxides Oelandicus. Of smaller furrows, which according to Laswasson are sometimes found in the latter, nothing is to be seen here. The edge before the glabella is vely narrow in the midedle and broatens towards the ends. This is chataderistic of Paraloxides Tessini, whilst with Paradoxides Oelandicus the breath of the elge before the glabella is rather comsiderable, and remains about the same towards the sides.

We also find here a piece of a thomax-ring of a kimd of Paradoxides, in which it may be seen that the plemae first run straightway towards the outside and then turn to the batk, forming an ahmost righ angle. This also oredus with Pazadoxides Tessini, whereas with Paradoxides Oelandicus this turning to the back takes place gradually:

[^17]Finally are fomul in this rothe-blonk a fews small valves of horm-

It is at that phere, emsistine of two pats of at dilliment matare. One of them is formed by somdstome and dones not present bathy layers. 'This sandstone erveatly resembles the material of whioh comsists the

 shows many more laters and has a dark hoblhogey oblome Sometimes the layers are ats thin ats paper, so that the material beromes slate-like.
fust ats in the other piere of stome, the latadoxides-remains atre cream-obloned here They are, however, foo fiarmentay forable us to draw the conelnsion that the originate from P'andoxides Tessini. As up to this time, however, only sathdotone with this kind of l'atadoxides hats been fomm in diluvial gromods, and the petrographieal nature of one part of them beans a great reermblance to that of the previous piece, I think I may suppose this much, and I venture to range this erratie-block moter this head.

I think that both pieces originate fom a layer-omplex of gravelstone with latadoxides Tessini-remains, which complex consisted both of shate-like bhe-grey pats and of theker lighteoboured layers. The last-mentioned erratic-block may originate from the former, wherats the one treated of moder " would be a piece of a thicker layer.

If my suppoition is not fake, it may be easily explaned from the difference in firmmess and the difference in fitness for beine transported issuing fiom this, why in literature mothing is found about erratio-flocks that should bear resemblance fo the last-mentioned piece, whilst wo or three commonications have been received ahmu the tinding of erratie-hberks that mon probably are more like the piece treated of in the tirst phare.

The first commmitation we got from homabr. ${ }^{2}$) It deats with a piece of gravel-stome that Wats formd in a sumd-pit of Nieder-Knuzendort near Freiherg in silesia. It seems to have been more exposed to the intluence of the weather than the ermatio-block fomm by me, the Writer mentioned speaking of a fermgions onter crost, while ronnd my piece such a crust begins form formetf.

Probably I must abo ramge among this kind a piece of samdstone

[^18]with Paradoxides Tessini-remains that was fomen in the collection of Groningen erratic-blocks, given to the geological Institute at Lund by Mr. De Sitper, L. L. D., then burgomater of Gromingen. It was described by Laxdara ${ }^{1}$). I am somy that we to not learn whether it is gravel-stone or lime-sandstone. I wrote to Prof. Monse, director of the Institute mentioned atove, in order to ask atter this, but he conld not give me any information concerning the picee just then. I thimk, however, that it is gravel-stone, Lexdgras telling the that the colour is "grahnit", while acording to Romar ${ }^{2}$) lime-sindstone with Paradoxides Tessini is dark gres.

While in the previons case it has not yet been with certainty determined which kind of saddstone one has to deal with, Remebs ${ }^{3}$) has amomed :mother gravel-stone with Pataloxides-remains having been found. This erratic-block differs frem the piece I deseribed under a in the fossils being coloured brown by manganite-superoxide. However, I think this of little importance, as it may be just as well a consequence of intiltation that oecurred in diluvial grounds or even before that time.

Gravel-stone with Paradoxides Tessini has up to this time not been met with ats firm rock. Probahly it occurs as such, or did so in former times, in the neightombood of Gelamd; for on the Western coast of this isle is found, in several places, lime-sandstone with the same kind of trilobites.

III. Upper-Cambition Stones.

5. Alum-slate with Agnostus pisiformis I. var. socialis Tullb.

One time I was so fortmate as to tind a piece of black slate, in which are seatered the grey head- and tailshields, presersed in relief, of a lind of Agnostus. They have a length and a breadith of 3 millimetres at most.

The head-shields are moderately vaulted. The dorsal fiurows meet in from, and a tongue-shaped glatella is bomeded by them. At the fromepari of the glatrella is on each side a lateral furmon. The fwo lateral finvows run into each other and in this way ent off a smatl part in from. At the foot of the glatiolla two smath lobes are separated from the rest by means of two lateral furrows slanting batckard. The centad, latgest part of the glabella shows
 pag. 1t.
${ }^{2}$) Roemer, Lethaea erratica, pag. 29.
${ }^{3}$) Remelé, Zeilschr. der deutsch. geol. Gesellschaft. Bd 35. Jahig. 1883 pag. 871 .

 tha wler-firrow

 wedge-shapeat elevation pataing on from the serond paty to the hirst

From the properties memtomed it baty be easily emen why this

 and Ponll:CK".

Up to this time this ermatic-bloek is the maly pieee of almm-shate

 sthed alom-shate with hais variety of tribohites onems in sweren

The ereat signification of the denitrilying haderia fio the corendation

 Pay, sti, Taf, 1. lis. 10 able

t) (iotrathe, Die sedimentaiderschiethe der Provinz Schlewig-Holstein, page, 11.

In the first place it was necessary to sulbeet their distribution in mature and their isolation to an investigation, beatase the literature thereon offers but very deficient data. The best way to attain this ohject seemed to try whether the method of "acermmulation" gathe in this case, ats in so many others, any definite result, and that for the following reasons.

The charater of this way of experimenting is the camse, that many biological properties of the species there by acommatad may the predicted:
it renders it possible, in a simple way, directly and with certainty to isolate from nature a determined species; this is of special interest inasmuch the cultures of most bacteria, by being kept in the laboratoria, change their character to such a degree as to become irrecognisable, so, that the descriptions, fomen in bateriological literature, according as they are made after newly isolated or long kept materiad, may be wholly different:
it teaches us to recognise the sought- for species in the different varicties occurring in the material used for infection, ats these varieties are bound to corresponding culture conditions:
the identification and synonymy of the bateria, which are always extremely difficult, even in case we possess grod deseriputions, made of freshly isolated cultures, are much facilitated by good "accumulation experiments";
these may, moreover, be controlled by anyone, and render the investigator independent from material isolated by others.

For the arrangement of my experiments I have followed the example given ly 1r. H. H. (irax ${ }^{1}$) of Bergen in his reseathes in the Bacteriological Lathoratory al Delft on denitrifying sea bateria.

By exclusively using nitrate as soure of nitrogen in the culture liquid, which was comtaned in a cotton-phugged flask, so that the air could fireely enter, he succeded to restrict considerathy the mumber of developing species of bacteria, when taking fresh sea-water for infection, bringing the denitrifying species to vigorous growth. He furthemore selected, as sonce of carbon the calciumsaths of orvanic atids, by which the prejudicial alkaline reaction, which appats in bouillon in consequence of the decomposition of the alkatinitrate. wats avoided. Mostly calciummalate was used, which is at ver good hacterial food, and has moteover the adrantage of solving onty to $0,8 \%$ at 25° C., so that it can be added to an exeess, whenere, ats the sall is oxidised, a new quantity is solved.

[^19] batomial mixhme was whaturd.

1 triat to apply these primeiples lo the isulation of dentrifying

 (1) bue diactused.

It prowad howere to be a limbamental improwement wholly or patily to exelude the anees of atir ats lherely the grewh of the denitrifying hateria is mot in the hatal imperted, whilst anmber of wher acobice buterta ate very muth hindered is their development.

Of the mumerous moflods of culture mater explasion of air I have followed the simples, manely the "botite medtod", long sime in ure in the batertermborical Lahoratory at Delft fow the examination of the sulphate reduetion hy miorohes and the lachosad fermentation. For my experiments this medhod proved perfeedly adapted, ats the quantity of ail which fimbs areses, can therehy easily be regulated. An matinary, marwo-monthed soppered botte, with an exatelly fithars sop, is quite or parly filled with the culture liguid, athe after serilising of bot, acording to virombstanes, the bothe is placed in the thermosiat for colture

1. Mistorical.

The reduction of nibates by bateria constantly begins with the formation of nitrite. This may be further eonverted in tive different Ways, viz. :
$1^{\text {st }}$. It may be reduced to ammonia.
2^{24}. It may be converted into manown, nomsolatile nitrogen compoumls.

3al. If in the lipuid acod is formed simmaneonsly, it maty give rise to the development of nitrogen-oxyen compomats.
$f^{\text {th }}$. It may he decomposed in alkaline solntion mader formation of hitrogen-oxygen compounds.
$5^{\text {th }}$. The nitnite maty, in alkaline solutions, give rise to the development of nitrogen without the probluction of nitrogen-oxygen compromels. This is demitngication proper, of which here is only question.

Already in $181+1$ D.AY ${ }^{2}$) sates that dhoing putrefaction of ammal mater nitrogen as such is freed. "Here it is again seen," salys in 1860 (i. J. Mctorik ${ }^{3}$), from whom I borrow this particular, "if one wishes
$\left.{ }^{1}\right)$ Elemente der Agriculturchemie, Berlin 1814, S. 309.
\Rightarrow De Scheikunde der Boumbare Aarde, 1860 , dl. 3, blz. js.
troly to give the enique summ in this part of sefence, one often masi retrograde half a century."

Not before 1856 the problem wats atan taken into researeh. ln that year Rases ${ }^{1}$) pointed out, that at the putrefaction of dhme and tlesh free nitrogen is produced. Later investigators have mol been able to observe free nitrogen maler these cirommstances, in asmoth at no nitrate or ninite are present, but the putrefadion of allominoms matter as such has still rematned an open (guestion from this point of view.

It was Pboozes ${ }^{2}$), who in 1857, for the first time, with certanty stated the disappearance of nitrate during the patrefitetion of amimal matter.

Bocssngatua ${ }^{3}$) observed in 1858 the disappeatance of salt-peter in the soil. He ascribed it "at me canse phrement aceidentelle, at whe action réductrice, exerée par de la matiere végétale morte".

From the year 187:3 date very interesting observations of somorana ${ }^{4}$) on mitufieation. By studying the influence of oxygen on this process, he was led to the examination of dentrification. He fomm that nitrification in the soil was still very active, when it was held in a courent of gas, which contained but $1,5 \%$ oxyoen. If he worked in a current of pure nitrogen, there not only ocemred no nitrification, but even the nitrate, origimally in the soil, disappeared entirely. He furthermore proved that at this decomposition nitrogen is formed.

Experiments of Pasteve and the well known investigation of Sohbobsizg and Müzz on nitrification, indued Gagos and Dupetit ${ }^{5}$) to ascribe denitrifieation to the action of micro-organisms. In 1882 they commmicated their first results and these put the baterial nature of the process out of all doubt. Their elaborate and exeellent resenedes on this subject were published in 1886°).

Our compatriots Ghatay and Aberson ${ }^{\top}$) isolated, for the first time, in 1892 a denitrifying ferment, and the preseription given by them for the artificual colture lignid has been followed hy varions bater investigators.

The aftention of bateriologists was atean fived on these formonts
${ }^{1}$) Expertiences sur la putrefaction et sum la formation des fumiers. (i. It. 1sati, T. 42, p. 53.
$\left.{ }^{2}\right)$ Remarques de M. Pelocze. C. R. 18: 7 , T. 尔, p. 119.
3) Nouvelles observations sur le développement des hetionthus sommiz it l' action

${ }^{4}$) Etude sur la nitrification dans les sols, G.R. 1si:3, T. 77, p. 203.

${ }^{6}$) Recherches sur la réduction des nitrates par les infiniments petils, Nimey. Nski.
i) Recherches sur un mode de denitritication et sur le schizomycite fui la produit. Arch. Neerl. T. 25, 1892, p. 341.

 fing batertia.

 arommalalion experiment, which pive a constant resull.

2. (itmeral comsinheralions.

The hatherdo isolated denitrifyong bateriat are atl aterobice In liypids contaming nitrate we nitrite, they cath, however, erow vigorGusly with a very slight or without areess of ate, so that in this case they hehave bike amamobe bateria. They then thanster the oxyren of the nitrate or the nitrite to the orratio eomponms present in the colfore lignid. Thenee nitrogen is liend and the metals of the salts pass into cambnates or hi-cathonates, wheh proeess may be represented hy the fommate:

$$
\begin{aligned}
& \left.5 C+4 \mathrm{KNO}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{KIICO}\right)_{2}+2 \mathrm{~N}_{2}+\mathrm{CO}_{3} \\
& 3\left(\therefore+4 \mathrm{~K}_{2}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{KHCO}_{3}+\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{~N}_{2}\right.
\end{aligned}
$$

The correctmess of this representation has been proved by the

We see from this, that in a liguid, simultaneonsly with the nitrate, the rate of orqanife suhstanese decreases, and aceordingly abo the permatuate momber. From a pratioal point of view this must neressarily be of signification for the explatation wit the processes on which is hased the bological protication of sewage and water ${ }^{4}$).

My experiments have farthermore ronvered me that denitification is inseparably comected with the growth, for which thaces of fiee oxyent are always neversally.
$\left.{ }^{1}\right)$ Die geringe Ausnützung des Stalmiststickstofis und ihre Ursachen, Landw. Presse, 1s95, S. 92.
\Rightarrow Leher denitrifizierende Bakterien. Centrbl. f. Bakt. Aht. II, BJ. 1, 1895, S. ant.
a) O. Lemmermaxa. Kritische studiën über Dembrilikationsvorginge. Jena, 19000 . (: Höplath. Vergleichemde Untersuchangen üher die Denitrilikationshakt. etc. Cintul, f. Bakt., Abl. II, Bd. 7, 1!02, S. 25
4) Dr. Jexwy Wexermax. Biologische stekels lot reinigiug van riookocht, enz. Fragen des Tijds. Febr. 1901, Sep., blz. Bs.

In $1897 \mathrm{Wbasaxbma}^{2}$ pronomed the hypothesis that, at the reduction of nitrate to free nitogen, nitrite constanty aypats ats interphase. I ean perfectly well shate this view, and that for the following reasoms:
$1^{\text {st }}$. All denimifying epecies which I have stadied in the combe of this researel conde, in ats moth athey produced fiee nitrowen from nitrate, do the same from nitrite.

2nd. Like Burk and stotarl (le.) | have been able do isolate a species, which does comvert nitrite into free nitorgen, bul leaven nitrate intad. so that from at mixture of mitrite with a lithle midrate. all the nitrite is removed by this baterimm, whilst the nitrate remams unchanged.

Here I mast however observe, that at the comversion of nitate into free nitrogen, not always nitrite ean be detected in the culture. This fact has abrealy heen stated by sbmpas ${ }^{2}$) and Këramans ${ }^{3}$). It is however by no means in contradiction with Wbasmabera's hypotheris, for if the course of the second process: decomposition of nitrite, is quicker, or ats quick as the first : reduction of nithate, the nitrite-phase is no more to be demomstrated.

Künmanan observed this fitet in a varicty of B. stutspit, which observation I have been able to confirm; however, in my opinion, the cultural conditions phayed in this experiment a much more important part than the chatacter of the varicty. In houillon with 0,1 " KNO$)_{3}$. I could often point out no nitrite, whilst here a strong development of gats took place. On the other hand, I obtamed with 4 and 5% KNO_{3} only a slight gats development, but a strong reaction of nitrite.

For the investigation of a colony on its denitrifying power, sterile test-tubes were filled with 10 a 15 C Com. of boullon, as well with $0,1 \% \mathrm{KNO}_{3}$ as with $0,1 \% \mathrm{KNO}_{2}$ and then inoculated. Denitrifying bacteria grow therem sufficiently, after $2 t$ hous to protuce a distine turbidity, whilst, at the surfice they form a semm-layer. Sometimes the scum is wanting, but is produced at shaking the test-tube.

Besides were used solutions of calcium-salts of organie aderls, decocts of pease-leaves with 2% cane-sugar, and decocts of potatoes, likewise with $0,1 \% \mathrm{KNO}_{3}$ or KNO .

In this case a control experiment was made to decide, whether withont addition of nitrate or nitrite, these solutions might cause

[^20]develophomen of eas. whid prewed never to he the case with denitrifyme hathoriat.
 liguids 10° "erelatin whten wats adhent atml. When in the losided mohn-

 This mothorl ("abe-coltare") problues at shap reaction on demitridicathon, experdatly when controllent ly a patallet experiment, using the satme coulfore erelathen, withent nitrate or nitrite.

This primeiple may aloo be bacel for a romgh computation of the momber of dentrifying arpms in atsy materiat. So it wat proved
 and dera 100 in 1 gr. of catbal water.

In these experiments the potassimm-salts may be replaced by matrinmor magnesimm-salts; caleinm-nitrate, on the other hamb, prevents even in dilute solution the growth of many bateria.
before passing to the description of the diflerent acermulation exproments. I have tomake a general remark about their aramernent.

Which species finally becomes most common in the used culture liguid depends on many fercomstances, dibicult to control, in particondar on the mutual mumerical proportion of the individnals and the nature of the different species in the material originally used for the infection, and likewise on the condition of the mierobes themselves in consequence of previons cireumstances.

This explains why, when using different materials of infection for the aferumblation of one amb the same species it is sometimes neressary to modify the conlfural condition- in aceordance with the nature of that material.

I insist on this circumstance in particula to explain the different
 from water by using tartate, on the other hand from soil by using malate.

3. Accumulation of Bacterium stutzeri, Lemmaxy and Neumasx ${ }^{1}$).

This interesting bacterium was isolated in 1895 from straw by Berk amb stotaer l.e. whilst in 1592 bhés. ${ }^{2}$ hatl already shown the presence of denitrifying bacteria thereon.

[^21]In 1898 Konsmans (l.e.) isolated the same species from soil and a variety from home-dung and staw.

By acemmation experiments, logically carried ont, I have strededed in obtaining this bacillus from soil, comalwater, sewage-water and horse-dung.

The following experiment always led patetically to a pure rulthre from canalwater:

A bottle of about 200 (emm. is purty filled with fresh cemalwater
 computed atter the whote capacity. Then the botte is filled up to the neck with camalwater and the stop is loosely put in, so that a little water is pressed from the bottle. In this way it is filled without a single bubble of air and, after shaking, put in a thermostat of 25^{3} of 28^{3}. The calcimm-artate solves at this temperature for only 1% so that this salt remains for a great part at the bottom.

Commonly already after one day a feeble production of gats is to be observed, issuing from the non-solved calcitm-tartate at this bottom. The process gets into finl course after three or four, sometimes only after five days. So much gas therehy is produced that a coatre, slimy serm originates at the surface and a great quantity of the liquid is pressed out of the bottle. The gats containing only nitrogen and carbondioxyd, the culture remains anaerobic. The lignid grows turbid by the growth of the bacteriat and the fine, eristalline calcium-tartrate changes into coarsely grambar calcium-carbobate. After a week, in consequence of the soum formation, the bottle is nearly half void, and after about 12 days the reaction is at an end, in as much, corresponding with the chosen quantity of tartate, all nitrate has disappeared.

If a vigoronsly growing culture is sown on broth gelatin, a mixture is obtained of colonies of various different species, from which B. stutzeri can easily be isolated, if we tre once aequainted with it.

From such a bottle some drops are inoculated into a botle of abont 50 cem. capacity ${ }^{1}$), which, after sterilisation, is filled for $3 / 1$ with the following sterile culture liquid:

Tap-water, 2% calcium-tartrate, $2 \% \mathrm{KNO}_{3}$ and $0,05^{\circ} / \mathrm{K}_{2} \mathrm{~K}_{2} \mathrm{HPO}$.
After inoculation the bottle is quite tilled up with the same liquid in the above described way, and after the lapse of two or three days, the same phenomena appear as in the first bottle.

If now, once more, of this transport a plate culture on broth gelatin is made, the great diminution in the number of species is
${ }^{1}$) The capacity of the bottle is not indifferent.

liy repertiter the said lramspert this batelerimm maty will be more
 ally a poree coulture of this spopios is ohbatherel.

 lys applying the "bottle methorl" with this liguid:

In the spring, howerer, thong there were eonstant! some colonics of the spectes, the momber of to erems proved so small that they
 dlamosaches, of which more presently.
 (1.e.), as weil as Köxsmans (l.e.). It will therefore be suflecient here to trive the ehief ehatateristies by which this species is directly recounised.

The bacterium is a short, thick rodlet with a peenliar vibrio-like motion.

The colonies on ${ }^{\text {gelatin }}$ are extremely charateristic (see Plate). After three or fom days they have a diameter of about 0. m mm, and after a week they attain 1 to 1.5 mm . When marnitied they then resemble a rosette, or hawe an irregulaty folded or crispate, grevish surface. The peculiar structure appeats only distinctly, when the grlass-dish which contains the plate enlture, is reversed and the colony is seen through the bottom with abont a 30 -fold marnification. The most frequent shapes are represented in figmes 1-4.
but it may happen that the crispate character becomes still more conspicnons and then the image is as in lig. $\overline{5}$.

Commonly it seems as if reqularly arranged smaller colonies are situated in the larger ones, which may often be observed till in the outer border, and points to a peenliar periodicity of the mucus secretion in the interior of the colony.

In the colonies moreover a tine deposit is observed, and sometimes very distinet erystals, which may also be found in the gelatin around.

All these characteristics are particularly marked when the cultures have been recently isolated. but they may in the course of time get losi or become indistinct. Another property however remains always quite distinet, i.e. the athering to the gelatin. Vomer colonies can only be removed in one piece, and of the older always part remains behind.

Very chancteristic also is the growth of this haterimm on a sterilised slice of potato, where the combed and folded struotme of the colonies is quite distinct, in consequence of the laree dimensions they attain. The colour changes thereby into ilesh-red. Old conlmes wrow solt in consequence of a dissolving process the slimy substance.

The compounds which ean provide the carbon and nitrowen nutrition of this species were determined by means of the anxanographic method ${ }^{2}$), this giving in a simple way a meature for the difference in assimilability of the motritive substances.

With KNO_{3} as soure of nitrogen, a feeble growth was observed with glncose and maltose. Kalinm-succinate, malate, malonate, citrate and calcimm-tartrate, gave rise to a vigorons growth. No growth was obtaned with eane sugur, milk sugar, mamite, galactose and oxalic aciel.

The auxanograins prove that tartate belongs to the hest assimilable substances, which explains why its use in the accommation experiment with canal water produces such good results.

With kalium-citrate as source of earbon, NH, Cl, KNO $)_{3}$, KNO $)_{2}$, asparagin, kalium-asparaginate and pepton, could serve as source of nitiogen.
B. stutzeri produces no invertin, does not split indican and wrem but it secretes diastase, although in very slight quantity. This latter fict explains the possibility of denitrifying by this species in solntions containing, besides the salts, only amylum and KNO_{3}. In broth no indol and no sulphureted hydrogen are produced.
B. stutzon produces much alkali; even the presence of glucose does not prevent the production of it in a plate of broth gelatin.

Yery remarkable is the behaviour of B. stutani towards free oxygen.
If the arrangement of the moving individuals muter the influence of the oxygen of the air: ${ }^{2}$) is examined in the glassoom, we find an accumulation in a line at ather great distance from the meniscus. On the other hand, growh is only observed ${ }^{2}$) in the menisens itself. Hence, in this respect the bacteritm behaves quite in acordance with the acrobic spirilla.
B. stutzeri is a very active denitrifying species; to broth comld be added up to $4^{\circ} \%$ KNO, and up to $1^{\circ} \% \mathrm{KNO}_{2}$, without thereh preventing the development of gas. If in the hefore deseribed way a "tube

[^22]

I will timally mater mention of atn instrotive experment I performed

 the prothetion of shitate herommes very matked after fwo weeks. If now the whole content of the Embiameter llask is peored into a stoppered botte, which therehy is quite tilled, whilst B. stuteror, is used for infertion, shon a development of trats sets in and the nitrate disappeats eomplotely. Honer it follows that acoording at the air enters on colture ligut well or not, nitrifieation or dentrification may ocerm. This is unite in acoordance with odder experiences

4. Aecremulation "f Braillus demitrothomescens 11. sp.

 denitrifying ferments. But the eromp of flnorescents proper was long fruitessly examined at to their denitrifing pewer, first by Lammas
 isolated for the first time a denimifing bacterimm, which biguefied grelatin and fluoresced.

Though in my experiments I often ohtaned fine cultures of a similar species, I did not succeed in finding a satisfactory aceumblation experiment for it. On the other hand I found such an experiment for a non-liquefying fuoreseent Bacillus, which I named B. demitro-

The culture liquid for the aceumulation of this species is:
Tap-water, 2% caleimm-eitrate, $1 \% \mathrm{KNO}_{3}$ and $0,05 \% \mathrm{~K}_{3} \mathrm{HPO}_{4}$.
 put; it is then quite filled up with the eulture liquid, in the way described under B. stutani. The eulture is made at 25° (.

When sowing on broth gelatin the $2^{\text {nid }}$ or $3^{\text {da }}$ transport, successively kept in the same culture medium, I always obtained cultures contaning almost exclusively colonies of that species.

In horse-hung, camal water and sewage water, I also observed this bacterimm, but it is with more certanty to be isolated from soil.

In exterior appearance of the colony this species differs in no respect from one of the most common thorescents, characterised by
lakking, on the culture gelatin, the smoothly sprading border. In young broth gelatin coltures, the pigment fluoperees hhe, whe atier some time a white precipitate forms in the oplatin.

Examined anxamographically, KNO as somere of nitrogen proved to canse a feeble growth with mamite, a viqorous one with kalimmmalate, citrate, malonate, sumenate and tartoate, ats well ats with glucose and levulose. On the other hand no growth is seen with cane-sugar maltose, milk-sugare, and raflinose.

In broth, with 2% ghucose, this hacterimm, like all fluoreseents, produces acid. Broth with 2% cane-sugar, heromes however strongly alkaline, which is observed also in all other fhoreseent secretimg no invertin.

This bacterimm neither prohnees diastase, nor can it hydrolise indican or uremm. In broth it forms no sulphtreted hydrogen and no indol.

In its behaviom towards fiee oxygen it likewise corresponds with the fluorescents, i.e. with the cover-glass culture in the humidroom, both motion and growth cause accommation in the menisens.

This makes the bacterium strongly contrast with P. stuteri and B. culpinus, whose motion figures show the spirillum type.

As to the energy of its denitrifying power B. demitopluorescrps: corresponds with B. stutzeri. At the "tube experiment" with broth gelatin with $0,1 \% \mathrm{KNO}_{3}$, the bubbles form ovel the whole length of the tube, quite in the same way as with B. stuterit.

5. Alcermulation of Bucillus: melpimus n. sp.

Already in my introductory observations l remarked, that an accomulation experiment with full access of atr, when using tartrate and nitrate, produced this species, but the acommatation obtained in this way was still very imperfect. By cultivating under purtly exclusion of air, I succeeded in improving the experiment very much. I obtained this result by enclosing in the culture bottle with the liguid a determined volume of air, and reinoculating from bottle to bottle moder the same conditions three or more times. It is true that therebr not all other species are totally removed, but this is no olstacle to the recognition of B. culpints, whose colonies are extremely charate teristic, possessing a quite unique brown-red pigment.

The experiment is as follows:
Into a bottle of 50 Com. 1 to 2 grams of fresh garden soil is put, and further it is filled up with the following culture liguid, whilst leaving on air bubble of 2 Cem: Tap-water, 2 : Calcium-tartrate, $0.1 \% \mathrm{KNO}_{3}$, and $0.05 \% \mathrm{~K}_{2} \mathrm{HP}^{\prime}()_{1}$.

Here likewise the culture is eflecered all 25".
With wharsation of the satid propurtion and opreation as described undere lB. stuterti, the difierent varietios of b. rulpuinus can also be ohtamed from rathal wather.

The demitritication sels in bry slowly and the development of gas gets mot by fin the intensty perveised in the preceding species. Here foo, by the eomplete disappeatance of all lignefying bateria ahreaty at the dirst batsport, the ischation of the wished for species is much fiteilitated. Althongh at sowing the ernde eratures on both gelatin some 3^{3}. rulpimus colonies may atready be perecived, they multiply so much in the fransports, that plates therewith prepared, appear, so to say, quite covered with the large, flatly spread, trans parent, fox-colonred colonies of this species.

If for the acemmulation other wrathic salts than tartrate are used,
 motpimss is tetected, thomet it was eertanly present in the infection material as it is miverally, slispithed in the soil.

By their ?rowth the eobenies atomgly remind of the datly spread variety of lB. ghemescens: mon liptefitciens, hut of thorescence nothing is seen. In shape and motility the bacterimm corresponds with B. stuteri.

An interesting property of B. culpums is, that the brown/pigment only develops mader the influence of light. If simaltancously two coultures of this species are matle on broth gelatin, and one, wrapped in black paper, is put in the dark, and the other in the light, for the rest in equal conditions, a great difference is pereeptible. This become mote obsions still, when making remocnlations or tamsports of either colture, likewise keeping these repectively in the dark and the light. So-doing a perfecty colourless culture can be obtaineds: but if this is again inoculated in the light, the brown colour returns, The pigment fommation only takes place at growth, so that colonies, full-grown in the dak do not colour when exposed to light.
B. cinlpitets belongs to the group of real chromophores ${ }^{2}$, i. e, the pigment is bomed to the bacterial body, and the behaviour towards light is, in my opinion, another indication that in this grotip the pigment has a biological function.

The anxanographic examination proved, that with nitrate for nitrogen mutrition, a feeble growth is obtained with kalimm-malonate, i a vigorons one with levulore, enhore, maltose, kalinm-citrate, sucemate
${ }^{1}$) See Bemennsek, La biologie dune bactéric pigmentaire. Arch. Néerl. 1892, T. $25, ~ p .227$.
acelate and tartrate, whereas eane-sugat, milk-sugat, mannite and raffinose produce no growth at all. Ammonimm-chloride may also serve ats source of nitrogen, when nsing tartate for cathon motrition.

Pepton, asparagin, and kalimm-asparaginate may simultaneomsly serve as (and N mutriment.

The baterium secretes neither invertin nor diastase and does mot split indiean or wremm. In Woth it produces nosulphurded hydrogen bua it little indol.

In the "tube experiment" in broth gelatin with 0,1 "/ "KNO, bubhles of nitrogen are exelnsively seen to form at a little distance from the meniseus, and moreover, the culare of this speries not snceeeding in a bottle wholl! filled with a culture liquid containing nitrate, we mast needs conchule, that li. milpimus wants considerable quantities of oxygen for the denitrification.

As regards the other species, which form gas bubbles also in the depth of the tube, I have come to the conviction that they too. want traces of free oxyen to this end.

Notwithstanding this different behaviour towads fice oxygen, the motion figure, like that of 1 . stutari, shows the spirilhm type.

By modifying the mitrient liquids and temperatures I have succeeded, as observed above, in aremmatang varions other denitrifying bacteria, beside those described. Thus I ohtained, at 37 (1 . with calcimm-citrate and $0,2 \% \mathrm{KNO}_{3}$, under exclusion of air, and using garden soil for material of infection, the spirillum-like ls. indigntert.s Vosies ${ }^{1}$), which denitrifies only feebly, but is interesting by indigo-like pigment. When using sewage water, I obtained a strongly denitrifying, liduefying, blue pigment bacterium, not yet described.

Of all these experiments however, the result is not constant enough to be inserted here.

6. Summery and conclusions.

$1^{\text {st }}$. The fundamental principle of my aceumulation experiments was partly or completely to prevent the aceess of air. By this means I have sncceeded, by cultivating in sohtions of organie salts and nitrate, only by repeated transports in the same lipuit, in bringing many denitrifying bacteria to a more or less perfectly pure culture.

[^23]

 pixament only forms at ormoth in the light.

 hatreritur.

6:th. Like in mil and dume, in which it had also been fomm by
 demitrifying hatemat in camal and seware water.

Fth. The denitrifying hateria can, even with the slightest quantities
 frimtitios of mitrate mater development of tree nitrogen.
$S^{\text {th }}$. In one and the same conlure moditm, where nitrifieation is probued dhriar ateation, denitrifieation may he ramsed bye exelusion of air, this loolds grood atso in recgatel th the soil.

Af the end of this paper I want to expres my sincere thanks on Profesom 1m. M. W. Dampanch for his kind, invaluable gradance and efficaloms assistance, afforded me in these researehes.

Delft, July 1902.

Physics. - ${ }^{\text {A }}$ H!/fothesis on the Viatmo of sular Prominences." By Prod. W. H. Jomes.

The introduction of the prineiple of amomalons dispersion into solat physion make it parable borm an inlea of the Sm's constifution from which necessarily follow i.a. a ereat many peculiabites of prominences, which, motil mow, it hats been imposible to deduct in at satisfatory mammer from other physicall laws. This I will show in the followiner pros.

In my piper on "Sular Phenoment. ete." read Febr. 24, 1900. I phit forth the following hypothesis with respect to that part of the solar atmosphere, situated (motside what is called the photosphere ${ }^{1}$):

1) W. H. Jelus, Solar Phenomena, considered in connection with Anomalous Dispersion of Lieht, Proc. Roy. Acad. Amsterdam, II, p. 5 sio.
G. VAN ITERSON Jr. ,,Accumulation experiments with denitrifying bactoria."

Fi!. 1.

F"!. ㄹ.

ノ゙i!. \&

Fit. 5.
"The various elements, whose presence in that atmosphere has been inferred from spectral observations, are much more largely diffused in it ham has generally been assumed from the shape of the light phenomena; they may be present everywhere, up to great distances outside the photosphere, and yet be visible in few plates only; their proper radiation eontributes relatively little to their visibility (with perhaps at few exceptions): the distanes, at wheh the eharateristio light of those substances is thonght to be seen beyond the Sur's limb, are manly determined by their local differences of density and their power to call forth anomatous dispersion."

How we were to imagine the condition of the matter insite the photosphere, was not considered there. One hypothesis on the origin of the light of the chromosphere was kept free from any special conceptions ats to the mature of the photosphere. Only where the principle of anomalous dispersion was made use of also to explain spectral phenomena observed in smapots ${ }^{1}$), we had to fall batek upon A. Sommots theory ${ }^{2}$), aceorting to which the sun is an mamited gasball, so that the apparent surface of the photosphere shouk not be considered to be the real boundary of a body, but to correspond to a "eritical sphere", defined by the property that its radins equals the radius of curvature of horizontal rays, passing through a point of its surface.

At present, however, in working out the problem of the nature of the chromosphere and the prominences, we likewise will take as a starting point the first of the three Theses, in which fommot sums up the main points of his theory. Accordingly, we suppose the sun to be an mulimited mass of gats, in which the density and luminosity (not considering local irregularities) gradually diminish from the centre outward. But our conception of the properties and composition of this gaseous body can in a certain respect be much simpler than would be the case, if we accepted the whole of Schmot's theory

Indeed, Schmid explains both the edge of the Sun's disk by the laws of regular refraction (or ray-curving) in a stratified mediam, and the prominences by refraction in "schlieren" ${ }^{3}$); but in order to account for the fact that the light from the prominences as well as that from the chromosphere, instead of being white, shows a bright line spectrum of varying appearance, he supposes the strongly radiat-

[^24]

 aracoms hooly, as well inside as mbsild the oritical sphere the varions elements are altownthr imbinsically mixed (Erantinge that in the mixture the quantity of materats with greater sperefile gravity must grow will the depoth). Fow wherever there are lowal differences of density in the mixture camsal by urrents,
 it is evident that spectially thone clemems of the mixture, which posess an exceptiomally high dispersing power for certan waves of the thamsmited ligh, will be athe to reveal their presence even at great distames fiom the disk, white oher substances, thongh alson present at the same places, remain insisithe there. Thus a purely optical explanation maty he siven of the fact, that the different grases of the sun tre sorn separated, even though we suppose them to be thoromghly mixed.

And surely this las supposition is the simpler by fart it even necessarily follows from the fundamental idea, that the sum may be considered ats a rotating, heat-radiating mass of gats, for in such a body the constituent parts must contimally mix.

A few months ago the main character of the motion that must go on in as sma, supposed to be gravens, has been diseussed by R. Evidex ${ }^{2}$). He applies to the Sun the same mathematical deductions, which had been devised ly yor Hamoltz for investigating the kind of motion which in our terrestrial atmosphere most result from the mited influence of heating ly the sim and of the daily rotation ${ }^{3}$. Though Evors supposes the gaseons sum to be limited by a well-defined surface, and so far acepts the prevailing views on the constiation of this celestial body, still his mathematical formulae are absolutely independent of the existence of a homdary surface, and so are fully applicable to a sun, such as we are considering here.

Radiation causes the outer layers to cool down soonest ; they sink inwards and are replaced by ascending hotter gases, so that,
${ }^{1}$) As appears from a paper in the lhysik. Zeitschr. 3. S. 959-261: entitled "Ueber die Doppellinien im Spectrum der Chromophäre" Scнmıt adheres to this conception, even after havine tahell iutu consideration the possibility of explaining the light of the chromosphere by anomalous dispersion.
${ }^{2}$) R. Exdes, Beiträge zur Somnentheorie. Amn. d. Phys. [4] 7, p. 176-197.
${ }^{3}$) H. von Helmholtz, Gesammelte Abhandlungen I, p. 146, III p. 287-355.
if the sun did not rotate, we cond only expect radial eonvection currents. But the rotation of the sun completely changes this form of motion; the angular velocity of descending masses increases, of ascending masses diminishes; there will tre fomd side by side gatslayers of different densities, and rotating at different speeds.

It has been shown by vos Hsmmoltz, that dming a certain time such gashayers can flow side by side, shaply separated by a so-ealled surface of diseontimity (i.e. by a surface, on passing which the values of the relocity and the density (olange with a leap); but gradually the friction canses this surface to modulate; the waves advance with the more swifty moving layer, they grow steper, overhang and break, forming whirls; and thos, by the mingling of the adjacent parts of the two layers a new layer is formed between them, the properties of which will be intermediate beiween the corresponding properties of the original layers.

From the conditions of the problem we may deduce the position of the surfaces of discontimuity. This has been performed by vos Helmholtz with regard to the air-curents in om atmosphere, and by Emben for the rotating layers of the Sun. He arrives at the conclusion, that in the Sum the surfaces of discontinuty must in the main have the shape, figured in the accompanying sketch and reminding us of hyperboloids of revolution ${ }^{1}$).

Fig. 1.
${ }^{1}$) Emben draws the intersections of the surfaces with the plane of the paper only inside the circle, representing the sun"s boundary. I have dotted this circle, with a view to indicate, that the border is only a seeming one; accordingly I prolonged the intersections outward.

 smalter value. Within every later hame exish a volocely potentand,

 in the didection of the potation, and when, atier erowinge steper and seeper, they hreak, the restlaner vondere will have theis eore-lines perpendientar th the disection of motion of the waves, ie eronceding with the gemeratioes of the surfaces of disemblamity. Su, the curves in our figme also erive ath ideat of the position of the vortex-eores.

From the theory follows. at we abreary mentioned, that at each delinite surfare of diseontimuty the leap of the velocity is greater all at sher than at a lons distance from the sun's axis; therefore, the transition from a wave into a whirl most, ats a rule, begin in those parts of that wave which are noarer to the axis, and appear afterwards in the outer pats.

Foulher it is dear that, becane every whinding leads 10 mingling of the adjacent path of two layers and to the formation of two new surfaces of discontimuty, there will never exist a complete sufface, sheh as indicated hy ont setch. Everywhere we shatl meet with pieces of surfates of discontinnty; only their matin chatateter and the average direction of the vortex-cores will correspond to the sketch. And in spite of the contimal mixing of layers, which leads to equalization of differing rotational velocities, the motion still remains nearly stationary; for within each layer, temporarily enclosed hetween two surfaces of discontimuty, the convection currents carry cooled matter inwads and hot matter outwads, by which process the differences in rotational relocity are renewed.

Forced as we are to admit, that such an minterrupted mixing process is going on in the sum, the advantage of explaining the chromosphere and the prominences by amomalous dispersion of white light, must appear to us very obvious. All other explanations, that I know of, must start from the hardly tenalle supposition, that the different gases of the chromosphere are separately present in large quantities.

Ember has succeeded in deducing many properties of sum-spots from the supposition, that the spots show us the places, where huge whirls attain the Sun's surface. It seems 10 me that Embes's views
on sum-spots would beeome even math more aceptable, if the notion of a real surface of the sun were given up and if the consequences of normal and anomalous refiretion (hetfer raterurving) in those whirls were allowed for: But to this subject I desire to come batck on another orcasion.

For the present we will confine om atlention to those parts of the whirls, optieally projecting beyond the edge of the sums disk, and we propose the hypothesis, that the whole ehromosphere with all its prominences is nothing but this system of waves and whirls, made visible withinshorter or longer distances from the sun's edge by anomalous dispersion of light, coming from deeper layers.
(Perhaps the structure of the corona, with its polar streamers, arches, ete., might tell us something about the course of the surfaces of discontimity at very great distances outside the critical sphere; this point 100, however, I will only hint at here).
so we ascribe the chromosphete to the smaller vortices, to the contimal rolling up, of the surfaces of discontinnty; in the prominences we see the whirling, in which the rarer, very large waves of the solar ocean dissipate.

The particnare structure of the chromosphere, suggesting the comparison with a grats-field in vertical section, follows immediately fiom this hypothesis. l'rominences likewise nearly always show a tissue of stripes, hands and filaments ${ }^{1}$). These, acording to om view, indicate the position of the whirl-cores. In the whole region, where whirling is going on, the density will, of course, vary in a very ircegular way : we therefore may expect to find in the spectrum of that region as well the light on the red as that on the violet side of the absorption lines, i. e. the chromospheric and flash lines mast be donble lines ${ }^{2}$).

Along the core of a vortex

Fig. 2. the density is a minimum. If, now, a vortex intersect the apparent limb of the sum obliquely, as in Fig. 2, where μ represents the core-line, the light coming from a point a must differ from the light, coming from b. Indeed, following in " the sim's radins

[^25]outwad. We at dirst ene into hatyers of increasing density, whereas,

 domble lime mast tre promiment and in the seretmon of the sede
 and ho the two rases will be seen at at shat distande wh the satme

 ned), the sathe pheromenom may be met with on mbmerons phaces of the ereacents. Mitny instanes thesenf ate visible on the plates. ubtamed in sumattat by the I buth expedtaton for observing the total eclipne of May $18^{\circ} 1!01$.

With lave prominencos the phenomomon sometines appars very intensely. In the important work by fisson, mentioned before, we read for instance on p . 121 , in the deseription of a carefully observed prominence, the following patsige:
"Im materen Teile zeigte dic Protuberanz am Anfange ihrer Entwickelung eine grose stomng in der H_{2} linie. Bei engem (tan-
 der eine, gröscore erotreckte sich weqen rot, der andere kleme gegen hlan und stand etwan südicher: Die (iröse des ersteren hetrur $\mathbf{~}^{\prime \prime}$ im Gesichtsfelde : ant (irmod einer nenen beotimmong der thatsächlichen bispersion des spektrokkps ergiht sich darans für diese stelle der Protuberanz eine bewermug ron mus mit der Geschwindiqkeit von $240, \pm$ Klm. in der secmule. Die Verichiehung gegen blan betrug nach dem Angenmatase etwa die Hallite der ersteren gegen rot.

Die entreqengestzten Bewegungen neben einander und die Kegelfömige Form des veränterten Lichtes wïnden unchwer die Dentung ant eine Withelbewergne an firmble der Promberanz grestatten. Aus der Congleichheit der Kegel würde ein Vorschreiten des Wirbels von uns mit der (reschwindigkeit ron Isolm. Nich erseben. Die Beobachtung steht auch nicht allein da; eine ähliche Erscheinung worde von Yocig am 3. Aug. 18.2 (The Sun, p. 210) eine andere von Thollos in Nizza (C. R. XC p. 87, XCI p. 487) beobachtet; ähliches wude atuch von mir bei anderen Gelerenheiten beobachtet."

Thus, interpreting the light on both sides of the hydrogen-line after Dopprer's principle, Fexir arives at the very astonishing conclusion, that the whirling mats of hydrogen moves at a speed of 180 kilometers per second. Moreover, there is a much greater difficulty, not even mentioned by Fexni, viz. that the coherent outbuds of the line impose upon him the necessity of supposing that velocity to be very different for the varions parts of the whirl, adjacent
pieces of the prominence not even taking any part in the enormons motion along the line of sight.

The above-given explamation of the phenomenon by amomalons dispersion solves all these mysteries.

It oceurs very seldom that prominences show a rapid sideward motion, i.e. a motion in the meridian of the Sun. Fexal mentions as an exceptional ease a sideward velocity of 2 2\% kilometers per sec ${ }^{1}$). As, on the other hand, velocities of 250 kilometers and more in the direction of the paratlel (calculated after DoppaER) are by no means a great exception, we meet with contradietions - as is admitter also by Fésin - from which it appears impossible to escape, muless we: donbt the reality of the velocities.

It is surprising and satisfictory to see how neally all the peenliarities in the behaviour of prominences, as described by Youxt, Fény and many others, appear quite intelligible as soon as we look at these phenomena from our point of view.

Let us choose only a few more examples out of the vast material.
Féxy says (l. e: p. 115) : ifschon seit Jahren habe ich bemerki, dass helle hervortretende Punkte in der Chromosphäre, welche eine kleine Terschiebung gegen blan zeigen, der Ort sind, wo alsogleich der Aufstieg einer Flamme oter einer kleinen Protuberanz erfolgt."

Now the process of whirlformation in a surface of discontimuty proceeds, as a lule, from the imner parts of the Sun outwards. In the axis of a whirl the density is a mimmm. Consequently, at the moment the whirling reaches the apparent edge af the sum, a minimum of density will be found just projecting beyond the edge. Here we have a place, where the density increases fiom the photosphere outwatd and where, therefore, the violet-facing component of the chromospheric double-line temporarily prevals: it seems as if a shifting towards the violet oceurs. shortly afterwards the more distant parts set a whirling and the prominence appears.

In the description of a greal prominence, observed by Fexy on the $18^{\text {th }}$ of Aug. 1890, we read i.a. the following particulats ${ }^{2}$):
"Ein ganz: hesonderes Interesse verleihen dieser an und für sich schon grosartigen Erecheinmg die Eigenbewegumgen in der Gesichtslinie, die an derselben beobachtet wurden. Eine nogefihn zwischen $40^{\prime \prime}$ und $50^{\prime \prime}$ Höhe liegente schicht, (deren Lage in der beigegebenen Figur genau bezeichnet ist), zeigte eine hefige Bewergng gegen die Exde zut. Das rote Licht des Hydrogeniums ergoss sich daselhot in verworrenen Formen üher den spatirat geqen blan hinats ohne

[^26]8) Fényi, l. c. p. 129.

 der Protuberanz wahtand 中心 zwichomzeit von 30 Minnten gegen
 äntern müssen."

Of contse hais condradiefion immediately vanishes if we only suppose, that in the part of the prominence, showing the persistent shift of the hydrogen lisht towards the bhe, the density of the solar matter was increasing in the direction from the photosphere outwads. This supposition is quite in hamony, too, with the fact, that the picture of this prominence shows very important whinling betor the part in question and no disturbance worth mentioning abore it.

Ohservers have often heen pazaled at the rapid disappearing of enomons prominenees and at the perfect calm in the whole region, incluling the sun's surface, a short time after such a violent "eruption" had taken patee It was hatdy consecivalle that the ejected incandescent gases could loose their hase quantities of heat so rapidly, nor that the eruption lat mo further visible consequences.

In our theory a lare prominence is mohing thot the visible token, that whinting is erome on almost smultancously over vat regions. The very important varieties of density in the whirling mass may. however, be ammlled by dipplacements of much matter over relatively small distances, which poress. of course, may go on without violent movements and yet be aceomplished in a short time. So there is no reason whatever to expect, that a wreat prominence will leave the medimm in a highly disturbed condition.

Whosoever wishes to consider prominences as emptions, must grant, that it is one of the most diflicult problems to account both for the tremendous values of the ascending velocities sometimes observed and for the most capricions way, in which the speed often suddenly changes withont any conceivable canse. The $20^{\text {th }}$ of Sept. 1893 Fésin witnessed a prominence ascendiner 500000 kilometers in a quarter of an hour, that is at an acerete velocity of more than

550 kilom. per see. In another ease, also observed by Féry (July $15^{\text {th }} 1889$, in the cousse of 10 minutes the ascending velocity passed through the values $72,6,65,24,154$ kilometers per second; and with the prominence of Oct. $6^{\text {th }}, 1890$, in 30 minutes time throught the values $3: 3,8,79,8,67,6,72,7,127,7275,5,242,3,121$, 57,3 kilom. per sec.

Considering the problem from the new point of view we see the difficulties disappear in consequence of the observation, that, properly speaking, we have not to do with velocities at all. We may speak of the velocity with which matter moves or with which a disturbance is tramsmitted hy a medium; hut neither of these cases is met with here. Wherever the whinting sets in, it results from lncal conditions and camot be considered as directly transmitted from places, where whirling was going on a little earlier. Thongh it is true that, as a rule, the breaking of a wave begins in those parts of a surface of discontinuity, that are nearer to the Sm's axis, and from there proceeds outwards, yet this does not involve that we should have a right to call this process a transmission of matter or of motion in the direction of the vortex-cores. And where there is no transmission, there is no velocity.

When at the sea-shore a wide wase approaches and breaks, now here, then farther and farther, nobody will speak of the "velocity" with which the form or the whirling is moving along the coast. Every borly knows, that the form, the visible token of the whirling, is successively formed at different places. Such about is the case with the prominences, the visible spots in the breakers of the solar ocean.

Chemistry. - Professor Lobly de brty commmicates a paper by himself and Mr. J. W. Dito. "The boifingpoint-curve of the system: hydrazime + wetcer".

In a previous report ${ }^{1}$) Mr. Diro has (ammmanicated the results of determinations of the densities of mixtures of hydrazine and water; the figures showed that a maximmm density corresponds exaroly (or nearly so with the composition $\mathrm{N}_{2} \mathrm{H}_{4}-\mathrm{H}_{2} \mathrm{O}$. At the end of that note it was stated that we woud endeavour to determine the boiling-point-curve of the system: hydrazine + water.

We have lately been engaged with that determination: the reant is given in the following table and annexed coure.

[^27]

It should be observed heforehand that the figntes ohtained, particularly those relating to the mixhmes rich in hydrazine, cannot possess that aceruacy attanable with other mixtures. In the first plate free hydrazine is a costly subsance: working with a large prantity such at is reguired for the acourate determination of a boilingpoint curve, therefore leads to not inconsiderable expenses. Moreover, free hydrazine and its mixtures with little water (also the hydate $\mathrm{N}_{8} \mathrm{H}_{4}$. $\mathrm{H}_{3}(0)$ are very hygroseopic and also casily oxidisable by the oxygen of the air. During the volumetric determination of the amount of

hydrazine in the liquid and condensed vapour, it was impossible to avoid contact with the atmosphere. The operation was carried out in such a mamer that each time after distilling off a cerdain quantity ($10-20$ c.c. in the catse of the greater concentrations), two portions ($3-4$ (hrops) of the condensed vapour and residue were simultaneously collected in tared weighing bottles containing about 5 e.e. of water. On terount of the many weighings a certain time necessarily elapsed between the taking of the samples and the titration and, considering that the bottles ako contained a little vapour of hydrazine mixed with air, this must have excercised some influence. This explains why the agreement between the various duplicate determinations often left much to be desired; in one case a diserepancy oceured amoming to 2 mols. per 100 . Finally, another source of error is found in the fact that on accoment of the many weighings and titrations, the determinations had to be done on different days, so that the distillations were eomducted under different barometric conditions.

Notwithstanding this, the results allow of the construction of a curve, the regular course of which is a guaratee that the figures observed

Proccedings Royal Acad. Amsterdam, Vol. V.
 ds alreaty stated, mote cormed pestals sath only be obtained by repating the experiments will hatere \{pantities of bydratane ${ }^{2}$).

Our experaments hate led to the interesting result that bydrazinehyatrate does mot at all reprenent a chemical componand $\mathrm{N}_{2} \mathrm{H}_{3} . \mathrm{H}_{2} \mathrm{O}$) with a constant boilmopoint of about 120 . as hatherto believed. This however is not suppising, pationlaty ather Kixtson's experiments on the system sulphartrioxide + water ${ }^{2}$). The tendeney of SO°, and $\mathrm{H}_{2}()$ to enter into combination is greater than that of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{H}_{2}($ O. As the boilingoint curve of the system suphantrioxide + Watter shows a maximum not belonging to the compound $\mathrm{H}_{2} \mathrm{sO}$, but to a mixture of $!8,5 \%$ of $\mathrm{H}_{2} \mathrm{SO}$, and $1,5 \%$ of $\mathrm{H}_{2}(0$, it is not at all surprising that in the system hydrazine + water the maximum does not eorrespond with the composition $\mathrm{N}_{3} \mathrm{I}_{4} . \mathrm{H}_{2}$ (). It is seen from these lignres that a liguit boiling at $119^{\circ} .8$ and having the composition 50 mols. $\mathrm{N}_{2} \mathrm{IH}_{8}+50 \mathrm{mols}$ of $\mathrm{H}_{2}()$ yields a vapour containing abont 42 mols. of $\mathrm{N}_{2} \mathrm{H}$, and 58 mols. of water, while a vapour of abont the composition $\mathrm{S}_{2} 11_{3}, \mathrm{H}_{2} \mathrm{O}$ is given off at $120^{2} .4$ by a liquid containines about 54 mols. of $\mathrm{X}_{2} \mathrm{H}$, and 46 mols. of water.

From the course of the curve it appars that a maximum boilingpoint of about 120 . 5 corresponds with a liguid with about 58 mols. of $\mathrm{N}_{3} \mathrm{H}_{4}$. The experiment has shown that a mixture of about 58.5 mols. of $\mathrm{N}_{2} H_{4}$ and 41.5 mols. of H_{2} () has a constant boilingpoint of $120^{\circ} .1$ at $760 \mathrm{~m} . \mathrm{m}$. In the table $120^{\prime} .5$ therefore corresponds with $771 \mathrm{~m} . \mathrm{m}$.

The course of the dirst half of the curve plainly shows the phenomenon observed by Cortics mamely, that on boiling dilute solutions of hydtazine the distillate consists at first almost exclusively of water, althongh the hoilingoint has very sensibly increased. It may be assumed that the same thing happens in the reverse case of much hydrazine and little water; for reasons stated we have not been able to ascertain this.

One of us (Dto) is already engaged with the determination of the viscosity of the system: hydrazine + water; while with the co-operation of Profesor Ehast Comax experiments have already been started; several months ago, on the electrolytic conductivity of the same system and of solutions of salts in hydrazine ${ }^{3}$).
$\left.{ }^{3}\right)$ Ber. 34. 4088 (1901).
*) Curtics slates that concentrated solutions of hyilrazine attack glass when boiling at ordinary pressure. We did not notice any such action of even highty concentrated solutions on our slass fractional distilling apparatus and comlensing tube.
${ }^{3}$) Fecueil 15, 179.

Chemistry. - Professor Lobry de Brcys presents, also in the name of Mr. W. Alberda vas Ekensteis, a commmication on "Formuldehyd (methylene) deritatives of sutgers and ghucosides."

In a previous commmication ${ }^{2}$) we have already stated that an aqueous solution of formadelede when evaporated with some of the sugars reacts on the same. This was shown by the great changes in the rotation. We then also remarked that attempts to isolate the erystalline compounds from the syrupy mass had not proved successful. These, moreover, are readily dissociated by evaporation in the presence of much water, the pure sugars being left behind. ${ }^{2}$)

About the same time ${ }^{3}$) Tollexs had prepared a crystallised methyleneglucose by mixing a solution of glucose in formaldehyde with hydrochloric and acetic acids and setting the liquid aside for some months. He obtained a monoformal-derivative which still powerfully reduced Frmane's liquid. Other sugars gave a negative result.

On continuing our researches it appeared that substances, of an apparently different nature and more stable than those occurring in the said syrups, are formed when the dry sugars are melted with polymerised formaldehyde (trioxymethylenc). The rotatory power then appears strongly modified and the reducing power decreased: this, however, reaches its normal figure on boiling with dilute acid. From this follows that during the reaction of the sugar with the formaldehyde, the aldehyde groups disappear.

We now succeeded in isolating in the case of several sugars (and glucosides) crystallised compounds or such having at constant boiling point, by introducing the fused mass into sulphuric acid of various concentrations or phosphoric acid and then agitating the liquid with an organic solvent such as chloroform, which dissolves the diformal compounds. In some cases there are formed, simultaneously, monoformal derivatives which are readily soluble in alcohol and water, but sparingly soluble in chloroform and so behave in this respect quite the reverse from the diformal derivatives.

Both the di- and the mono-methylenesugars no longer react with Fehlise's solution and behave indifferently toward phenylhydrazine: the carbonyl groups have therefore disappeared during the action of the formaldehyde. After boiling with dilute aceids, the reducing power returns. These substances must therefore in the first place
${ }^{1}$) Proc. 1900. 9.
${ }^{2}$) Ruff and Ollendorff, Ber. 32. 3236 (1899), have regenerated some sugars from different hydrazines by evaporation with solution of formaldehyde.
${ }^{3}$) Ber 32. 2585 (1900); his experiments had commenced some years previously.
 Which is ank mown in the free state. Tho of the ateobsolic hydroxyl groups of the sharamoleente have also taken pat in the formation of the difomal-derivatives. A hydroxy eromp is no longer present in formadmethylenexyloside amb -itathonside, for aretic ambydride and benzoyg chloride do 100 ate on theore substances. As, areording lo the analysis, fwo mols of water have leeen climinated, the following constimtimal formmate, for instance, may be datwn up for the said pentose derivatives.

Diformalxylose ($\left(\begin{array}{c}5 \\ 5\end{array} \mathrm{H}_{21} \mathrm{O}_{5}\right.$) erystallises very neatly from benzene or light petroleum; melting point $56-57^{\circ},[\iota]_{D}\left(2^{2} \%\right.$ solution in methylalcolol) $=+25^{\circ}, 7$; may be reatily sublimed.

Diformalatahinose is a somewhat oily, colorless liguid which may be distilled in varomm without deromposition. boiling point 155° at about 32 2m.m. pressure; $[a]_{D} \quad(2 \%$ solution in methylalcohol) $=-16^{\circ}$.

With shucose a symper diformalderivative may he separated from a solid mono-compoumd hy taking advantage of the sad difference in solubility. Neither of these substances have any reducing power or reat with phenthydiakine. They are probahty mixtures; the white suhstance, althourh erystalline, does not possess a definite melting point 140 - $1.0(0)$ and on analysis wives no satisfactory firnres, but it could not up to the present be resolved by recrystallisation into components. The diformal-derivative, left in contact with solvents for many months, remained syrupy.

Both compounds still contain one or more free hydroxyl groups;

1) The methyleneghcose obtained by Toleexs (l.c.) has still a strong reducing action: it appears to us that it should not be regarded as a glucoside (which Tollesis dues); apparently two alcoholic groups of the glucose have taken part in its formation,
the products of the reaction with acelie anhydride and benzoyl chloride could not as yet be obtained in at crystalline form.

They are not liable to fermentation that do not prevent the fermentation of any free glucose, although they retard the same.

The simultaneons formation of rarions isomeric mono- and difimalglucosides may, as will be easily seen, explain the monatisfactory result.

Galactose yielded products comparable with those obtamed from glucose. The indistinetly erystalline methyleneqalactoside (menoformal derivative) seems, however, to be a pure substance as the melting point (203) remained unalterel; $[a]_{D}$ (in $2^{\circ} /{ }_{\|}$aqueous solution) $=$ $+124^{\circ}$.8. It is still being investigated.

Fructose yields a well-crystallised formalmethylenefructoside ; when preparing the same a 50% sulphorie acid should be used. Melting point $92^{\circ} ;[a]_{D}(2 \%$ aqueous solution $)=-34^{\circ} .9$.
$\left(l\right.$-Sorbose yields a derivative melting at 54° and $[4]_{D}(2 \%$ aqueons solution $=-25^{\circ}$. Rhammose yields a product melting at 76° and $[a]_{D}\left[0.4^{\%} \%_{0}\right.$ aqueous solution $)=-18^{\prime}$; mamose also yields a crystalline derivative.

The (mono)methyleneglucosides also derive a certain importance from the analogy which they show, as regards their properties, with ordinary canesugar. In the same way as the latter has been formed from glucose and fructose, they are also formed, with the loss of two carbonyl groups, from two aldehydes from which one mol. of water has been eliminated. The redueing power is lost; towards phenylhydazine they have become indifferent. On boiling with dilute acids, however, the components are regenerated.

It camot be a matter of astonishment that the methylgheosides are quite as capable as the hexites, the oxy-acids and the sugats to give condensation products with formaldehyde. They are formed in abundance by simply melting the pordered gheosides with dry trioxymethylene.

In a properly erystallised state were obtained the formaderivatives of methylmanoside $\left[\mathrm{m} . \mathrm{p} .127^{\circ},[a]_{D}=+10^{7} .5\right]$, of, -methyl-(l-ghu*)side m. p. 136°, inactive and of a- and β-methyl-t-galactoride.

The derivatives of ϵ-methyl- $($-glucoside and of amyl- and aethyl- $/$ glucoside are viscions liquids.

It is worthy of notice that saccharose melted with trioxymethylene is decomposed with the formation of a mixture of formalderivatives of glucose and fructose, from which the latter was sepurated in a crystalline condition.

 by Prof. Lomik mi lbits).
 bromination, nifation, suphonation efe of phemol and aniline derivallaces maty be explamed by assmming that the hatogen atom or the
 the buelens by intramolerolar migration. Athomgh at great many compoumds are now alreaty kown comaining gronps linked to \mathcal{N} or O which, under the inthence of "ertain aremeies, shift towads the mudens, it was in there eatos up to the present mot proved with absolnte cerdanty that we are really deatheg here with a rearamgement of atoms ore sroups in a molerole and not with a reation in which several molecules hake part, whieh ateording to some anthoms is not improbable ${ }^{2}$). In order to inseatigate this it bevame nevessary to know the velocity of reation. If the reation took phace monomolecobary, we should be really dealing with an intamolecolat displacement; a bimoleculat reation would point to at double deromposition helween two molecules.

As a suitable example for this reseache Prof. Lobmy dot Butw pointed out to me the eomsersion of atedyldaroamilide into pata-
 discovered by lixamar ${ }^{\circ}$

It is known that the chorine in acetylehoroanilide may be determined by adding potassimmoolide to is acetic acid solution and fitsating the liberated iodine; μ-chorowetanilide does not react with K I:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NClCOCH}+2 \mathrm{HI}=\mathrm{C}_{n} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}+\mathrm{HCl}+\mathrm{I}_{2} .
$$

The aretylehoromilide was prepared ateording to the directions of ('hattuma and Ortos ${ }^{4}$) by shaking acelaniliele with a solution of heaching powaler containing potassimm bicarbonate. Within half a mimute to a mimute it will be motied that the acetanilide has nearly emtrely dissolved; after a few mimutes the acetylehloronilide sepamates in a erostalline state. Cinatman and Ontos shate that this

1) Proc. 2.5 Jan. and 99 March 190 .
${ }^{2}$) Ammatrongi, Journ. C'hem. Soc. 77. 1003.
2) Ber. 19. 2273. Slosien, Ber. 28. 32b\%
${ }^{\text {t) }}$ Journ. Chem. Soc. 79. 978.
compound is unstable and is spontaneonsly conserfed into probloroacetanilide. A closer investigation showed me that the canse of this must be attributed to the action of sumbigh. After 14 days exposure to the light (May 14-28), the atmosphere being clomly, this substance was entirely converted into p-chlonometanilide while on a bright day in June the conversion was complete in a day. In the same mamer it was shown that the analogons bromo-compound $\mathrm{U}_{6} \mathrm{II}_{5} \mathrm{~N}$ BrCOCH3 had been entirely converted after $3-4$ hours exposure to direct smblight on an afternoon in Jumeand in 70 homes by exposme to incandescent gaslight; in diffuse daylight the conversion was complete after a few days, while both the chlorine and the bromine compound, could be preserved umaltered in the dark.

We therefore see that Br and Cl linked to N, shift to the macleus under the influence of light. On consulting the literature it was found that Bombergre ${ }^{1}$) had aheady shown that phenylnitamine is converted by smbight into o - and p-nituaniline, while he had also found that nitrosophenylhydroxylamine is very riphidy decomposed by direct sumbigt and sometimes even explotes. The reaction tikes here a more complicated course, the first stage of the reaction is probably the migration of the NO group to the nuclens.

Recently Kxipscurer ${ }^{2}$) has shown that azoxybenzene is converted by direct sumlight into o-oxyazobenzene.

We therefore see that under the influence of sumbight Br, $\mathrm{Cl}, \mathrm{NO}_{2}$, NO and O attached to N migrate from the side-chain to the moleus and change place with an atom of hydrogen ${ }^{3}$).

In the previous commmication (l.c.) attention was called to the analogy of the CH_{3}-group with NH_{2} and OH. Now howerer, we notice a difference. Whereas sumlight promotes the entering of atoms or gromps into the muclens of the NII-derivatives, it causes the formation of br and Cl compounds in the side-chain of the C'II -derivatives, for instance in the bromination or chlorination of toluene ${ }^{4}$).

We may briefly refer to the experiments of Srper ${ }^{5}$) and Errara ${ }^{6}$) who have proved that on chlorimating patahomotoluene μ-homo-
${ }^{1}$) Berichte 27, 364, 1554, 34, 66.
${ }^{2}$) Proc. 31 May 1902 .
i) No experiments showing the effect of light have, as yet, been made with phenol derivatives containing atoms or gromp attached to the oxygen. It is mobable that sumlight will in this case also excercise an influence on the migration of atoms or groups of the side-chain to the nuclens. This should be bome in mind when preparing these compounds.
${ }^{4}$) Sohramm, Ber. 18, 608.
$\left.{ }^{5}\right)$ Mouatsch. f. Chem. 11, 431.
$\left.{ }^{6}\right)$ Gazz. Chim. Ital. 17, 909.

dfore several preliminaty exproments which showed that the
 of a acids, I determined bloe velocity of reation in the following manner. 3-4 grams of the aretyleflowamilite were dissulved in 100 grams

 with water to joto res. This solution was put into a black botle and kepl in a thermostat at 25. As soom as the temproature had rathed 25 so ere were removed with a pipelte and delivered into 100 ere of water to stop the reatetion. Exeess of solntion of polassiumiondide was added atod the biberated iodine bitrated wilh sodium thionalphate ($0,150 \mathrm{~N})$. The following results were obtaned.

$\begin{gathered} t \text { in hours. } \\ 0 \end{gathered}$	$\begin{gathered} \text { (c. } \mathrm{Nil}_{2} \mathrm{~S}_{3} \mathrm{O}_{3} \\ 49.3 \end{gathered}$	k.
$1 / 2$	42	0.160
1	3 3 .6	0.162
$1^{1 / 3}$	30.25	0.163
2	25.75	0.162
$2^{1 / 3}$	21.8	0.16 .3
:3	18.5	0.160
4	18.8	0.160
6	7.3	0.160
S	4.8	0.162

By applying the formula for the monomolerolat reaction $h=\frac{1}{t} l \frac{d}{A-x^{2}}$ values are found for k which may be regarded ats constants.

This proves that the readion is really monomoleculat and that we are dealing with an atotal intramolecular rearangement of atoms.

If intead of 10 er., 20 (\% of hydrochloric aded were added the value for k was found to be 0.610 ; (the arerage result of eight oberevations); by using donble the quantity of ated the velocity has therefore increased nearly forr times. If instead of hydrochloric acid suphamie abod of the same coneentration wats used, the comversion Was very show and a good eomstant was not obtaned (32.8 ee of $\mathrm{Nit}_{2} \mathrm{~S}_{8} \mathrm{O}_{3}$ at first, 29 (ce. after 24 hours).

In watedal atetic acid ($99-100 \%$) the reaction takes place much

1) Cf. Haxzern, Ber. 30, 2334. Thöl and Echel, Ber. 26, 1104.
more rapidly so that addition of sery little hydrochloric auid suffices for the complete conversion.

The substance was again dissolved in glacial aceetic acid and 3 ? ${ }^{2}$. of a solution of dry hydrogenchloride in glacial acetic arid were added. The quantity of HCl thas introduced into 500 ce. of the solution amomed to only 0.0135 gram or not quite ${ }^{2} / 2$ ano part of the quantity present in the experiment with aqueons acetic acid.

The progressive change of the reaction was as follows:

t in hours	ce. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
0	30.3
$1 / 3$	29.7
1	28
$1^{1 / 3}$	24
2	22.6
$2^{1 / 3}$	19.8
3	17.2
$3{ }^{1 / 2}$	14.2
4	12.4
$4^{1 / 2}$	10.5

On calculating h according to the formula $k=\frac{1}{t} l \frac{A}{A-n}$ it will be seen that it keeps on increasing; this shows that the amoment of the eatalyser increases. On repeating the experiment it wat fomm that, after the reaction, more hydrochloric acid existed (weighed ats $\mathrm{Ag}(\mathrm{Cl})$ than corresponded with the quantity added.

A graphic representation of the above figures painly shows that we are dealing here with a reaction the relocity of which has been accelerated by an increase of the catalyser ${ }^{1}$). In the experiment with 20 per cent acetic acid the small increase of the relatively large amount of HCl is not pereeptible.

Even when we do not add hydrochloric acid but set the acetic acill solution aside in the dark we meet with the same type of progressive change of the reaction. 10 c.e. of a solution in glacial acetic acid were titrated from day to day and took:

$$
\text { 13. 12. 9. 6,7 3,7 2,6 } 1,5 \text { and } 1 \text { e.c. } \mathrm{Kia}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}
$$

which figures again reveal the character of a reaction accelerated by a catalyser. It moreover shows that it is not the glacial acetic acid which starts and continues the reaction, but that the conversion is due to the catalyser formed from the product itself; in the first

[^28]cane it amght to be posithle to calenlate ar comstant by means of the fiomma combeyed for monomberobar reations.

We are therefore, dealing here with at cate quate analogens to that of the epontaneons deromposition of alliyl sulphatie arid and
 prevented by adding a litte K, (O) or C'a (CO.

The reation in the presence of atcolat takes phace in a similar
 and Oetos berome so violent that the ateothe bewins to boil. This may be prevented lyy adding a trace of $\mathrm{Na}_{2} \mathrm{CO}$, which fact has heen noticed ly Armstrosg (1.e.).

We therefore, see:

1. That the conversion of acetychlormatetailide into p-chlowo aredanilide proceeds like a monomolerular reaction and that it represents a true intramolecular rearranement of atoms. It may therefore be compared th the ease of the tramsformation of the bromo-amides muder the influence of alkalis studied by was Dand Absasos ${ }^{-1}$).
2. That Br, (l, NO $)_{2}, \mathrm{NO}$, and 0 attached io N change place, mader the influence of smoligh, with an II-atom present in the muclens.
3. That the conversion of acetythhornactanide in atcoholic or acetic acid solution is cansed by the formation of a catalyser which canses the reaction to proceed at an increasing rate (particularly in smblighi: this may be prevomed ly atding a trace of eodimu cartonate or acelate as this removes the catalyere.

The investigation will be continned in varions directions.

Chemistry. - "Giutrunic colls and the phesisp pale." Beve Dr. W. Reanmers of Breda. (Commmieated ly. Prof. II. W. Batheis Roozeroом).

Nervis ${ }^{2}$) amd, more recently, Bascroft ${ }^{3}$) have tried to establish a relation between gathanic cells, consisting of a combination of two metals surromeded by electrolytes in commmication with each other, and the phase rule. Neither of them, however has paid sufficient attention to the fact that: When the phase A is in equilibrium with l) and also with C, then l ' must be also in equilibrium with C : Ther regard the liquid electrolyte. in contact with the metals, as one homogencous phase, whilst in reality two phases exist which are

1) Recueil 19. 318 (1900).
${ }^{7}$) Theor. Chem. 1e Aufl. p. 560, Be Aufl. p. 660.
${ }^{3}$) J. of phys. (ib. II 427 (1598),
not in equilibrium with each other: in fact various means are employed to prevent them from forming a homogeneous mixture.

The following contains a new effort to study the gatvanice cell from the point of view of phase rule.

Those cells have been considered, which eonsist of a eombination of 2 metallic electrodes, each surounded by in electrolyte, contaming the cation of the metal and comected with each other either diredt! or by means of an electrolyte.

Equilibium may exist between both the electrodes and the surrounding electrolyte and when that equilibrimm is reached, there exists at the phane of separation a certain potential difference, which is the measure of the energy required to thansfer an equivalent of the metal from the one phase into the other.
bancroft is therefore in error in regarding the E.F. as an independent variable, as a further condition of equilibrium. He says: "In addition to the ordinary conditions of equilibrium there is also the electromotive force."

The variables would then be the n components, temperature, pressure and the potential difference and from this it would follow that for an invariant system $n+3$ phases were required.

This is not the case, for \boldsymbol{x} is completely defined when $"$ phases are present in a system of n components at a given temperature and pressure (for instance by the formula of Nerast when $n=2$ or 3).

There exists, however, no equilibrimm between the two electrolytes in the cell. They will tend to form a homogencous mixture in which case the composition is changed and the equilibrium with the electrode disturbed.

Therefore, there can be no question of a real equilibrium in the whole of the cell so long as both electrodes camot be in equilibrium with the same electrolyte and the EMF becomes zero. An apparent equilibrium may, however, be got by preventing as much as possible the diffinsion of the 1 wo electrolytes.

Considering the cell as a combination of two systems consisting of metal and electrolyte, the equilibrimm of the separate systems should be diseussed before alluding to that existing in the cell.

The equilibrium between the metrellic electrode and the sumpumbin! electrolyte amd the potemtial difference at theive plame of sepuration.
A. The electrode comsists of " single metel and the surromuling electrolyte also contrins. cations. of that metrel whone.

When the electrolyte is a fused salt of the metal, we have a system of 2 components in 2 phases which at a given temperature and press-

 the metal, $\mu=$ tho wimotic presiate of the cation and $"=$ the valeney of the metal.

 fiollowing distinction maty be mate in the equilibita of the electsode and clectrolyse.
 they form theretane milles "tompmenel now a liquid or solid selution.

Stating from the electrolyte, containing only the salt $1 T_{1} /$ (fused or in solutiont, there is a series of electrolytes with an increasing amonnt of $\mathrm{H}_{2} \ell$. which can only be in equilibium with If_{3}, and another series. starting from $M_{y} Z$ with increasing quantities of $M_{1} Z$, which are only in equilitrimm with $/ I_{s}$.

Where these two series meet. We have an electrolyte, which is in equilibriam with both H_{1} and $/ H_{2}$. When there is no solvent athl wr are consequenty dealing with a fused salt mixture, there is omly one dectoolyte which satisfies this equilibrimm. We then
 and the atod eromp, $\%$. The equilibrium at atren t and p is, therefore, completely defined.

If, however, a solvent, and consequentiy a fomth component is also present, then, aceording to the quantity of this solvent, there will he a series of electrolytes which satisfy the conditions of equilibrium.

To follow the change in the potential difference, we may imarine, that a part of the ions $M T_{1}$ in the electrolyte containing $1 I_{1} Z$, has heen replaced by I_{2}, but in such a way, that the total eoncentration of the ions $I_{2}+I_{2}$ remains constant. The potential difference between $\quad / /_{1}$ and the electrolyte will increase, becanse in the equation $\boldsymbol{\pi}_{1}=\frac{R_{i} T}{n_{1}} l \frac{P_{I}}{p_{1}}, p_{1}$ becomes smaller and consequently $\boldsymbol{\sigma}_{1}$ hecomes greater.

The same applies to τ_{2}, the potential difference between the metal $1 I_{2}$ and an electrolyte contaning only $\quad \mathrm{I} / \mathrm{g}$ cations, when part of these ions is replaced by ions $M H_{2}$.

Fig. 1.

$\rightarrow{ }^{c_{M_{2} \text {-iuns. }}}$

In fig. 1 AD and $P D$ are the lines giving a graphice representation of the chrate of a a s function of the ratio of the ions $/ / T_{1}$ and If, at a constant total concentration of the cations. A point on AD, therefore, gives the concentration of the J_{1} and M_{2} ions in an electrolyte, which is in equilibrimm with I_{1} and the potential difference at the plane of separation between this electrolyte and the electrode. $B D$ does the same for $/ L_{2}$. Bohn lines are logarithmic curves. AD, therefore, asymptotically approaches the ordinate $I_{2} B$, matil it is intersected in D by the line $B D$.

In D the electrolyte is in equidibrium with the two metals $1 f_{1}$ and M_{2}. To the left of it, M_{1} is precipitated by M_{2}, to its right, I_{2}, M_{1}. The condition of equilibrimen in D is $\boldsymbol{\pi}_{1}=\boldsymbol{\pi}_{2}$
therefore
or

$$
\begin{aligned}
& \frac{1}{n_{3}} \log \frac{P_{I}}{p_{1}}=\frac{1}{n_{2}} \log \frac{P_{I I}}{p_{2}} \\
& \sqrt{n}^{n_{1}} \frac{\frac{P_{I}}{p_{1}}}{}=1^{n_{2}} \frac{\frac{P_{I I}}{p_{2}}}{}
\end{aligned}
$$

and, for metals of the same valency $P_{1}: P_{I I}=\rho_{1}: \mu_{2}$.
In words: in this equilibrinm the ratio of the concentrations of the cations is equal to the ratio of the solution tensions of the metals.

Owing to the great difference in the solution tensions, μ_{2} must in most eases be very small and consequently the possibility of the second metal existing in contact with the mixed electrolyte, is limited to very minute concentrations of the first metallic salt; whereas the first metal may be in equilibrium with almost all the electrolytes, whatever the proportions of the two salts may be. The point D is, therefore, situated nearest to the less noble metal and almont coincides with B.

Daxeel ${ }^{2}$) has investigated an instance of this equilibriom, namely $2 \mathrm{HI}+2 \mathrm{Ag} \rightleftarrows 2 \mathrm{AgI}+\mathrm{H}_{2}$. The solution, which is in equilibrimm with both Ag and H_{2} under 1 atm . pressure, is saturated with A I ($c=0,567 \times 10^{-8}$) and 0,0483 normal in HI.
II. The tuo metuls form a homogeneous liquid or solid solution.

This is the case with the liquid amalgams and other fused metals. with $\mathrm{Zn}-\mathrm{Ag}{ }^{2}$), $\mathrm{Sb}-\mathrm{Sn}^{3}$) and other allors.
${ }^{1}$) Z. f. Pliys. Ch. 33, $\$ 15$.
${ }^{2}$) Heycock en Neville. J. Chein. Soc. 1897, 415.
${ }^{3}$) Heycock en Neville. J. Chem. Soc. 330, 387; vav Biuerit, 7. f. phys. Ch. 8, 357 en Reinders Z. f. anorg. Cll. 25, 113.

Starline with the ome pure mulat athl at volution, rontaining omly Har lirst metallie salt, it is fomand that an addition of the ereond bedatlic satt a smatl portion of the semond metal will be sepatated atod disoblved in the first one matil the metallie phase is agath int eynilithian with the electoblyte.

This equilibrium requires that $\boldsymbol{x}_{1}=\boldsymbol{x}_{2}$ or for dibute solntions:
(1) also

$$
\begin{aligned}
& V^{n_{1} / r_{1}}=V^{n_{2}} / \frac{r_{2}}{r_{1}}
\end{aligned}
$$

in whieh P_{1} and P_{3} are the partial solution temsions of the two metals in the homoremeons metal phatse. I_{1} and I_{z} are mot constant here, but vary with the composition of the electrode.
 ly means of the example $\mathrm{H}_{\mathrm{g}}+\mathrm{AgNO}_{3} \geq \mathrm{HgNO}_{3}+\mathrm{Ag}$.

The electrode now contains looth metals, as may abso happen in the (ase of non-homogencons mixtures (I) in fig. 1). The difference, however, is that there the metals form 2 phases and here only one. If the electrolyte is a mixture of fised satts or a solntion in which the total concentration of the two cations is constant, then, at a constant temperature and pressure, the system will still be monovariant and the relation $V^{n_{1}} P_{1}: V^{n_{3}} P_{2}$ or $V^{n_{1}} P_{1}: V_{2} P_{2}$ may still be variable. Once $n_{1} \quad n_{2}$ however, the relation $V / \rho_{1}: V / p_{1}$, that is the composition of the electrolyte, having been qriven, $V_{1} / P_{2}: \nu_{2} / P_{z}$ or the composition of the metal phatse, is also tetermined and consequently also \boldsymbol{x}.

It eath temperature a series of two such coexistimy phases are possible. The potential difference contimonsly changes with their composition.

In order to trace the peneral comse of this \boldsymbol{x}-line it must first be ascertained how P_{1} and I_{z} depend on the composition of the electrode.

If, in the metal phase, there are x atoms of J_{2} and $1-x$ atoms of I_{1} and a is small, the lowering of the solution tension may be taken as proportional to the number of dissolved molecules of the second metal, which is analogous to the lowering of the vapour pressure in liquid mixtures. If we call the solution tension of the pure metal $I_{1} I_{1}^{\prime}$, then $I_{1}^{\prime}=P_{I}(1-x)$.

For smatl concentrations P_{z} is proportional to the concentration
${ }^{1}$) Z. für phys. Ch. 22, 539 .
${ }^{2}$) Z. lür phys. Ch. 27, 285.
of the second metal, as has abready heen proved thy the investigations

The factor K is manown. For $a=1$ it hecomes however $=I^{\prime} / l$. For small values of x however this is not nevessarily the case. for it is to be expected that its value will be influenced by the nature of the first metal.

The condition of equilibrium then becomes:
or

$$
\sqrt{n}_{n_{2}}^{\frac{p_{1}(1-n)}{p_{1}}}=V^{n_{2}} \frac{k_{1}}{p_{2}}
$$

$$
\begin{gathered}
\frac{\bar{p}_{2}}{p_{3}}=\frac{\sqrt[n_{2}]{n_{1}}}{\sqrt[n_{1}]{p_{1}}}=\frac{n_{1}}{\sqrt[n_{1}]{P_{1}(1-x)}} \\
\frac{p_{2}}{p_{1}}=\frac{K}{P_{I}} \frac{x}{1-x} .
\end{gathered}
$$

In words: The ratio of the ions in the electrolyte is to that of the atoms in the metal as $K: P_{1}$.

When the ratio $K: P_{1}$ is very great, $p_{2}: p_{1}$ will also be great, even when d has but a small value, that is to suy that the electrolyte will contain almost exclusively cations of the baser metal even when the concentration of that metal in the electrode is small.

In calculating the potential difference, the concentration of these ions $\left(p_{2}\right)$ may, therefore, be taken as constam. $x=\frac{R_{2} T}{H_{2}} l \frac{K_{1},}{P_{2}}$ is then at logarithmic function of x and, for small values of x, will inerease rapidly with it. $\left(\frac{d x}{d x}=\frac{R T}{u_{\mathrm{e}}} \frac{1}{x}\right)$.

The graphic representation of this function is a curve rising rapidity from the potential of the nobler metal at asmall distance from the x-axis. As,x increases, K approaches to the value l_{l}, , becoming equal to P_{I} when $x=1$. The curve, therefore, bends sharply and after an small further rise reaches to the value of the potential of $1 I_{2}$ in a solution of pure $M_{2} Z$.

The ratio of the ions in the coexisting electrolyte $\frac{P_{2}}{p_{1}+r_{2}}$ increates from 0 to nearly 1 for quite small values of ir. The curve, which represents \boldsymbol{x} as a function of this ratio, rums, therefore, at a slight incline towards the ordinate representing these bawer metal, finally approaching it almost asymptotically.

[^29]
$$
\boldsymbol{x}=\sum_{\mu_{1},}^{l T_{1},} l_{1}(1 \ldots, \ldots)
$$

1＂㶽

\rightarrow or $\frac{l^{\prime}=}{\mu_{1}+l_{2}}$ protions，the armes will thereform pereses the geberal liom Hown in fignve 2.
 －ithated oft the same harizantal lime，atre ero existing phases．The omblate of the points evisen the potemtial difference at the plate of －- patation．

Alathong it is mol impusible，a maximam Or minimum will varely oreore，mnless the whation tensions of the fwo eomponents ，liffer very little．
b．If the metals ate not homogeneously miseible in every propution，and the series of mixfores is therefore disembimmos，the two metallie phases，which are in equilibrimm with tateln other（the end pronts of the beaks，will also be in equilibrium with the same electrolyte．The potential in this electrolyte mast be the same for both metallie phases，for if stuch were not the case，a coment might be gencrated and the equilibium would be disturbed．

According to whether the potential difference in this non－variant apnilibrimm is erreater than those of the prore metals in sobutons of their salts or intemerliate between them，the figrures 3 or 4 are obtained．

ドッ ：3．

$\rightarrow d$ or $\frac{P_{2}}{P_{1}+P_{2}}$

Fig．f．

（ and D atre the two metallic phases in equilibrium with each other．E is the conexisting electrolyte．

The catse of tige＇s hecomes identical with that of tig． 1 if C and D
coincide to the right and the left with the \boldsymbol{x}-andis, that is when the metals do not mix.

An example of the case of tig. 4 is fomad in my investigation ${ }^{1}$ of the equilibrimm between fused lead, zine and their chomides. At
 $E=99,9 \%$ of $7 n C L_{2}, 0,1 \%$ of PhCl_{2} and if $\tau_{,}$is taken as 0 then $\tau_{C E D}=0,277$ Volt and $\boldsymbol{x}_{\beta}=0,283$ Volt.

A second example is foum in the cadminm amalgams, investigated by Jabger ${ }^{2}$) and Bua ${ }^{3}$). Further researches are those of Marer and Richards and Lewis on the dihute amadgams, those of Lindeck ${ }^{4}$) and those of Herschowitsch ${ }^{5}$), who met with the case represented by dig. 4 in his investigation of Cd——n, Cd—Pl), Kn—Sn, Zn-bi, Cn-Ag.

In all these cases the concentration of the nobler metal in the electrolyte is very small: to a large extent the curve $f=\mathscr{B} B$ almost coincides with $1 I_{2} B$.

III. The two metels form "t compound.

If the compound is present in a pure condition there will only be 2 phases and at least 3 components. Even without solvent the system is still monorariant at constant temperature and pressure. As in case I, if one of the pure metals forms the electrode, a series of solutions exists with varying proportions of the salts $M_{1} /$ and $H_{3} Z$, which may be in equilibrium with this compound. The limit of this series is reached when the solutions are also in equilibrimm with a second metallic phase (one of the pure components, a liquid or solid solution or a second compound).

In order to make use of Nersst's formula to calculate the potential difference, it is necessary to assume that the electrode forms ions of the same composition as the compoumd, for instance of AuAl $1_{2}, \mathrm{Zn}_{2} \mathrm{~A} \underline{2}$, ete., and to substitute the concentration of these ions in the formula. The solution pressure is then a definite constant for this compound, as it is for every pure metal:
therefore $\quad \boldsymbol{\tau}=\frac{R T}{\mu_{1,2} l_{1,2},}$.
${ }^{1}$) Z. f. anorg. Ch. 25126.
${ }^{2}$) Wied. Ann. 65106.
3) Inang. Dissert., Amsterdam 1901.
${ }^{4}$) Wied. Ann. 35311.
a) Z. f. phys. Ch. 27123.

$$
\mu_{1}^{\prime \prime} \prime^{\prime \prime}=K_{l}^{\prime},=
$$

$$
\mu_{1}{ }^{n}\left(k-p_{1}\right)^{\prime \prime}=\kappa_{l p_{1.2}}
$$

The maximum valloe of $f^{\prime}:=$ is reathed when the firet differential ghutient with resperet $10 / J_{1}=0$, that is, when

$$
{ }^{1} \mu_{1}^{n-1}\left(k-\mu_{1}\right)^{\prime}-l_{1}^{n}\left(k-\mu_{1}\right)^{b-1}=0
$$

${ }^{\prime}{ }^{\prime}$

$$
"\left(k-p_{1}\right)=l_{1} p_{1}
$$

or

$$
f_{1}: I^{\prime}=a: b_{0}
$$

$I_{1}=$ therefore reathe a maximmo amb \boldsymbol{x} a minimmon where the
ris
 ration of the ions $I / 2$ and $I / 2$ in the electrolyte is ergual to that of the metals in the empound.
a. If the compound can be in equilibrimm with an electrolyte in which the ratio of the eathions is the same ats that of the metals in the compround and if in addition to the compound only the metals in a pure condition are capable of existence, then the x-ewre will have the form indicated in fier. 5 .
The points on the line 16 tive the compositions of electrolytes in equilihrimm with pure $/ /_{2}$ and the corresponding potential differences. With the electrolye f_{i} both H_{2} and the compoum are in equilibrium. Su long as lonth metal phates are present, the potental difference remains constant. Shombl $3 / 2$ have entirely disappeared, so that the electrode consists of the pure componad (eomposition = $=/$), the eblectoplyte maty vaty from \boldsymbol{B}^{\prime} to K° while the potential difference first falls to $/ /$ and then aratin rises to K. In K there is again a non-variant equilibrimm between the compromd, pure M_{z} and the electrolyte K and an long as these phates exist the potential diflerenoe remaths comstant. But when the compormel hats disippeated, it falls to B, while the electrolyte changes from is to pure $1 / \%$.

From an electrolyte having a composition situated between fand K the compound $M_{2} M_{2}$ is precipitated by M_{2} and also by M_{8}.

Owing to the small rise of the line fors the firet dase is sure to oceur but rarey, as the line (iHf then stands a chance of mot bemper again intersected by A (, and this case will pass into diat of h (see below).

I/ may be stmated higher or lower that 1 .

Fig. 6.

If, in addition to the compound, two solidt solutions are possible ($1 / /_{1}$ in which a litule M_{2} and M_{2} in which a little M_{1} is dissolved), the \boldsymbol{T}-chure takes the combe indicated in lis. 6 , which differs from fis. 5 in this, that in presence of the electrolytes A to f pure H_{1} is replateed by an electrode of varing composition, represented by the line $A C$, and in presence of the electrolytes B to K metallic phases B to F occur.
The line $B F$ may either rise or fall ${ }^{1}$).
An example of this case is probably the system $\mathrm{H} g, \mathrm{Ag}, \mathrm{NO}_{3}$, examined by Ogg (l.c.) for dilute solutions of Ag in Hg .
b. If the compound camot exist in presence of : m electrolyte in

Fig. 7.
 which the ratio of the cations is the same as that of the atoms in the compound and if we consider the case in which in addition to the compound two solid solutions are possible, we get fig. 7 .

Metallic phases from 1 to C are in equilibrium with electrolytes from A to G. From (' to D the electronde consists of a mixture of the two phares (' (a solution of M_{2} in M_{1}) and D (the compemed). The potential difference is constiant.
As therefore, the compound is not in equilibinm with an electrolyte having the same ionie ratio, it will, in contat with such an electrolyte, dissolve with separation of $\|_{1}$, and tend towats the equilibrium $(G, D, C$. If, before ataming this, I) has totally dissolved, a metaliic phase on the line $A\left(\begin{array}{l} \\ \\ \text { and }\end{array}\right.$ an electrolyte on the line $A G^{\prime}$ will remain.

From D to E the pure compound is in equilibrimm with an electrolyte of varying composition, sitnated on the line ($\dot{r} K$. The potential difference rises. The metallic phase F and the compound E are in equilibrimm with the electrolyte K. As long as these thee are present, the potential difference is constant. If, however, the electrode reatches a composition to the right of F, the compound will have disappeared

[^30]abd there will the equilibrimm of the mepatlie phases fo for with

 latere extent run chase to the a-anis of $J_{\text {g }}$ and that in comsequeme the concentration in $\mathrm{J} / \mathrm{g}_{\mathrm{g}}$ ions in $1:$ and $l \boldsymbol{i}$ will be very smatl.

When so solid mixtures of tho lwo metats are ponsible $A C$ and PF condede with the a-axis. Fithen lies atove P.

If there is more than one compommb, the sulden change of potential

 hat regarded them ats evidence of the existence of thene compounds.

We shonld, however, be careful when drawing such conelusions as to the composition of alloys from measmements of potential difference, for an athoy, ohained by molting together the two components and rapidly cooling the mase, is a badly defined substance and often contains more than for phases wheh are not at all in equilibrimm. When they are hrought into eontact with an electrolyte consisting of a salt of the les moble metal, the unstable compounds in the alloy may be converted into the more stable ones and this reaction, which is calned by a shat eirenited element mastable compoumd, electrolyte, stable compomid), contimes until only the two phases, which are really in equilibrium, remain. Iming this period the fill F observed is not necessarily constant.

The constant cells.

As alrearly stated, there is no equilibrimm between the two electrolyes of a cell; they tend to form a homogeneons mixture by diftision. The potential dilference between fwo clectrolyes is, however, generally very small and when the diffusion is small, it will change very little. As, moreover, the $E J / F$ of a cell consists of the sum of the potential differences between the two electrolytes and hetween electrolytes and the electrobes, an apparent equilibrium and consequently a constant $E, M / F$ may be secured by making the diffusion as small as possible.

To attatin this it is necessay that there should be equilibrium belween the electrodes and their electrolytes. But, in a constant cell, that equilihrium must not be moditied when the corrent is allowed to flow and an interchange between the phases takes place in consequence. At constant t and f the system must be invariant.

If the electrode consists of a single metal, the concentration of the ions of the metal in the electrolyte must be kept constant. In case
the electrolyte consists of a solution of the metallic salt, the presenee of this salt in a third phase of constant composition, such ats a solid hydrate, is required. These conditions are satisfied in the original form of the Clark rell, which contans on one side Zan and at saturated solution of $/ 7 n \mathrm{O}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$ and on the other side meren'y and a saturated solution of $\mathrm{H}_{2} \mathrm{~g}_{2} \mathrm{SO}_{1}$.

If the electrote consists of two metals forming only one phase (liguid solution, solid solution or compound), the curent will neeses sarily cause a change in the equilibrimm, because the ratio of the metals in the electrolyte is generally different from that in the electrode. The equilibriam will only then become invariant when a second metallic phase appears.

If there is no solvent, and the electrolyte therefore consists of a mixture of the two fused metallic salts, its composition is completely defined by the presence of $: 3$ phases of the 3 components (M_{1}, M_{2} and the common acid radicle). If, however, there is also a fouth component in the form of a solvent, a fom phase must be present to make the equilibrimm invariant such as the crystals of one of the two salts. The choice between the two salts is not an arbitrary one, but is regulated by the required relation of the concentration of the cations and the solubility of the two salts.

From this it follows, that on passing the corrent, only that metal, the salt of which is present in a second constant phase, ean dissolve or deposit on the electrode (which consists of a mixture of the two metal phases). The ratio of the (puatities of the two metallic phases must be regulated accordingly.

An example, from among the commonly used normal etements is the Weston cell in which the Cal-electronle consists of a mixhure of a liquid phase (Hg with 5% Cd) and a solid one (Hg with 14% $(\mathrm{d})^{1}$) while the surrounding electrolyte consists of a solution of $\mathrm{Cd} \mathrm{SO}_{4}$ and traces of $\mathrm{Hg}_{2} \mathrm{SO}_{4}$, saturated with. $\mathrm{Cd} \mathrm{SO}_{4} \frac{8}{3} \mathrm{H}_{2} \mathrm{O}$.

The Clark cell in which a zinc amalgam with $10-15 \%$ of zine is used, is clearly a similar combination.

[^31]Astronomy. "thn tire thetly f"rimlicity af the retes vif the

111. Tha privinl 1862 - 1874.

9. As was memtemed, sompal intatigations alom the rate of the ronk Homwi 17 durime this perion hate been mate log Kisem.

Afterwards. in the ammun of isiot Kaser madertook a new
 investigation wat comtinned and extemded wer the last year and a half ${ }^{3}$. Kins: wits cmaged in this invertigation, the results of which were intended for the $3=1$ Volme of the Amals of the observatory, till the last monthe of his life. It was mntinished, however, at his death.

The result: which Kaser had ohamed did not wholly satisfy him. several singular irreunlarites had shown themselves: moreover he Was alwate of the fat that the bameter-radings, one of the fomdations of the investigatiom, might still be atfected by rather considerable sytematic errots, even affer they haul heen corrected ats well as porsible. These harometer-vedings had heen derived by him from ohservations repeated three times evers day on an old defective mercour barometer of betts hamging in his study dowing a year and a half on an Aneroid-barmeter). The cornection of this barometer was derived from simulaneons readings of the barometer in the tran-it-rom. It appeared to be variahle with the height of the barometer and increased considerably in the course of the years; moreover the temperature of the harometer was quite uncertain.

For these reasons H. (x. wo do Sixde B. Bhtyzes, when in 1873 he phamed the continuation of the inveatigation of the elock, deemed it necessary, first of all to promere better data about the atmospheric pressure to which the chock had heen exposed ${ }^{4}$). He intended to derive these by the help of the regula barometer-readings made at the meteorological Institute at Utrecht.

In the first place the constam differences hetween the harometerrealings at Ltrecht and those at Leeden (the haremeter in the transitromm) had to the derived. From extensive calculations, which have

1) F. Kaiser l. c.
2) Tide: Virstay van ten statat der sterrenwacht te Leiden. $1870-71 \mathrm{pp} .15$ and 16 .
${ }^{3}$) Fide: Ver-lay van den staat der sterrenwacht te Leieen. 1871-72 pp. 14 and 15.
${ }^{2}$) Toide: Verslag van den staat der sterenwacht te Leilen 187 - -73 p . 1.
been contimed afterwards, it finally appeared that, when the neressary corrections ${ }^{1}$) and the reduction for difference in althude had been applied, the mean barometer-readings at hoth plater are in perfect agreement ${ }^{2}$).

After the completion of this preparatory work H. G. vis de Swide Banuczes has been prevented by want of time from further investigations of the rates of the clock Homwe 17.
10. When last feat the investigation of the clock in the period $1862-74$, was resumed by me, I have soon given mp the attempt to derive trustworthy corrections for the barometer of Butat and 1 too have used the readings at Utrecht. It appeared that in this way we can get a precision sufticient for our purpose, at least for the mean monthly barometer-readings.

I had at my disposal readings of the barometer at Utrecht for $20^{4}, 2^{\mathrm{h}}$ and 10^{4}. From these 1 derived mean harometerreadings reduced to O^{\prime} for the whole of our period ${ }^{2}$). In addition to these, howerer, we have readings of the barometer at Levden for the last months. For, to begin with July 1873 , the harometer in the transitroom has been regularly read five times a day. From these I could derive, in the same way as I had done for the time after 1875 mean barometerreadings, which afterwards I reduced to 0_{8}°. The comparison of the monthly means obtained in the two was stands as follows :

$$
\begin{array}{lr}
\text { L. }-\mathrm{U} . & 1 .-\mathrm{U} . \\
1873 \mathrm{July}+0.3 \mathrm{Mm} . & 1873 \mathrm{Jec} .+0.3 \mathrm{Mm} . \\
\text { Aug. } 0.0 & 1874 \text { Jan. }-0.2 \\
\text { Sept. }-0.2 & \text { Fehr. }+0.2 \\
\text { Oct. }-0.2 & \text { Mareh }+0.3 \\
\text { Nov. }-0.1 & \text { April }+0.1
\end{array}
$$

The differences thus appear to be very small. They would have turned ont still smaller perhaps, if we had not neglected the hundredth parts of the millimeters in all the computations. The mean value amounts only to $+0,05 \mathrm{Mm}$.

[^32]11. Fion the davivatios of the femperather of the elock I hat the followinger datat ath dieporat.

 toth themometers were read live time : day.

Frem duly 1 sä: it was prowhle dhepefore for take daily means of the femperathere ateondinge the theper thermometer in the efock catse in the same way at wat done for the dime atter 18 ats.

For former perionk I hat to limb corrertons in order to reduce to daty means of the latter thermometer.

For the purpese of timdine these comections I eompared:
1 st . For the yeari 18.1 , 1572 and 1573 the readings at $8^{18} 30^{n}$ in the morning of the upper thermometer in the chock case with those of the thermometer at the clockpier:
$2{ }^{2 n}$. for the years $187: 3$ - 75 the readiners at 8 in the morning of the upper thermometer in the clock case whth their daily means.

From the two comparisons I found the following monthly means of the differences $L_{1}=$ clock case - pier and $L_{2}=$ daily means readings at $8^{\text {b }}$, everothing being expressed in degrees Réncmor. The index-corrections have been taken into accombt.

	L_{1}	L_{2}	L_{1}	Δ_{2}	
Jan. +0.21	+0.22	July +0.01	+0.36		
Fehr.	.11	.19	Ang.	.19	.41
Manch	.14	.44	Sept.	.16	.46
April	.15	.48	Oct.	.20	.26
May	.06	.38	Nor.	.16	.29
June	.03	.47	Der.	.16	.04

For all the months I adopted for L_{1} the general mean $+0,13$. For \triangle_{2} I adopted

$$
\begin{aligned}
& \text { October-February }+0.20 \\
& \text { March-September }+0.43
\end{aligned}
$$

With the aid of these values and of the index-erms determined at regulat intervals the necessary reductions were applied.

Lastly I compared the temperatures according to the upper and lower thermometer, as has been done for the subsequent period,
the difterence in the two easen being that, for the period now umber discussion, the chock was only enchosed in a single coase. I will sed down only the results which I fomen for the means of the daty readings in the years $1873-76$.

$$
11 .-1 .
$$

| Jinn +0.32 | July +0.44 |
| :--- | :--- | :--- |
| Feln. +0.34 | Ang. +0.40 |
| March +0.38 | Sept +0.34 |
| April +0.42 | Oct +0.30 |
| May +0.44 | Nov. +0.31 |
| June +0.44 | Dec. +0.31 |

These differences are comected for imlex-errors.
12. With a few exeeptions I used for the time hetore $180^{\circ} 2$ the same time-determinations from which Kusser had formed his monthly means of the rates. Some corrections however cond be applied. The clock hat been set going in June 1861 but I left out the first year and placed the heximming of my investigation at $186^{\circ} 2$ May, as Kaser had done. It ends April isit, a short time before the necurrence of the perturbation.

The ohserved rates were finst reduced to 760 Mm . at 0° and to $+10^{\circ} \mathrm{R}$. For the coefficient b I again took +0). 0140 (Kinsme in his last investigation fomed +0.0134) and for (c I atopted the value - 0.0174 which is the mean result of Kusbers last investigation, allowance being made for the fact that 1 now reduced the barometerreadings to 0°.

In the following tahle all the columns have the same meaning ats the corresponding ones in the table for the period 1875-1898.

	$\begin{aligned} & \text { min! } \\ & \text { II. Ii. } \end{aligned}$	lar．	＇Tッツ！	$\frac{18 \cdot d \cdot 1}{11.16 .1}$		$11 .-6$
Nite Mas	－ 11 ＂：	780	＋12．7	－11042	-0	$+1:$
Jun．	（1） 3 （\％）	S＊	13．11	10．31：3	：3：	－1！
July	11.805	（0）．3	13．8	6． 3 \％	（ \sim	－ 31
Aup	11 显	（i）15	1：	1．3．3＇	361	-27
sipt．	11 32N	（i2．）	1：30	$10: 317$	2！ 11	＋ 3
Wer．	11：3it	\％	（10） $\mathrm{is}^{\text {a }}$	$0.80 \times$	296	＋
Suv．	11．2年	Bir． 11	ti．e	11311	䦽11010	＋ 3
liece．	11．19：	til．${ }^{\text {a }}$	$\therefore .1$	（1）31	2×1	＋x
N0゙い Jam．	$11: 31$	Ini	： s	10．3\％	：3：	－： 4
Petr．	0.151	19.1	5 2	0．350	3i\％	－$\quad 1$
March	0 ） 26	$58:$	13.1	0.88	314	0
April	13 217	til 1	s．s	0.2 ス®	？	$+x$
May	$11.21:$	61.7	i0．s	0.28	23	＋ 11
Junw	11．30，	－93	1：3 6	11.321	36	－：
Suly	11．2㣙	6i＇．3	$16 \geq$	10.236	23	＋$i n$
Aug．	10.15	（i）． 1	1．1 1	0.3 ± 7	31：	${ }^{\prime}$
sipt．	11． 20.4	－n¢	11.8	0.3 荗	321	-7
net．	10.1 促	58.8	110.3	0.4201	3×10	－ 2
Nor．	0.237	（83．9	6.4	0.3%	329	-10
Dec．	-0.276	63.1	6.0	0.360	371	－．if
196\％Jim．	$+0.032$	cix．s	0 s	0.2 .91	2%	＋6i
Fechr．	－016is	20	$\because 2$	1）． 2.10	311	＋ 4
March	11：30	$\therefore 10$	$\therefore 1$	11．346	：3：3	-18
Ipril	11.121	183	6：	10．230	210	＋ 51
Nay	1080	61.	101	0．220	昭 7	＋ 8
June	（1）362	（i）．	127	0.0 .88	318	＋
July	10：3\％	to 0	$13!$	6） 10.35	a	－i：3
Au＊	（1） 2 亿	$63 \div$	1．： 2	0．：3i	： 3	＋ 9
Sept．	0.404	61.2	12.5	0.374	347	－ 9
Oct．	0.369	39.0	8.7	0.378	33	${ }^{1}$
\cdots No．	11．23\％	5s．8	4.15	（3）	314	＋35
Dec．	0 0： 3	6：38	1.2	［0．349］	370	-15

		$\begin{aligned} & \text { Obsel } \\ & 1) . R . \end{aligned}$	Bar．	Temp．	$\begin{aligned} & \text { Red d } \\ & \text { D. R. I } \end{aligned}$	1). Fin. II	$11 .-1$.
$18(6)$	Jall．	$-0 \text { 采解 }$	750.0	＋ 2.	-0.42%	－成	－185
	Febre．	0.210	59.5	1.1	11．3．5	371	－\quad.
	March	0.269	8.76	$\because .7$	11：302	S3！	-17
	April	1）以ース	（6）， 2	\＆${ }^{\text {d }}$	0．87\％	il！ 1	－31
	May	0.390	（i） 1	$12: 3$	0．36is	394	-12
	Jume	11．352	（i）． 3	1219	0.381	41	-11
	July	O． 46 íf	（1）．	15.1	11． 28.	361	$+\quad i$
	Aug．	0.48	－9， 0	14.0	0． $511: 3$		$+11$
	Sept．	11.309	fix． 9	14.1	0．43：3	404	$+1$
	Oct．	0.485	538	9.5	0.4100	：3il	＋4i
	Nov．	0.376	60.1	6.5	0.458	407	$+11$
	Dec．	0.238	18．6	＋ 1	O．fic）	敒	-17
1866	Jan．	（1）Stiti	－8．7	5． 1	1）．43：3	909	－
	Febr．	（1）侑：	䖽 4	4.7	1）．处7	50：	－ 69
	March	0480	\ís	1．8	11．4．3	410	-27
	April	$0.39{ }^{\prime}$	160	S．＇t	0．425	409	－ 21
	May	0337	61.7	9 ！	0.385	416	＋
	June	1159	（10） 2	119	11．307	417	＋ 26
	July	0.477	299	14.1	0.105	109	＋35
	Aug．	$0.23+5$	26.6	1：3． 3	U． 4 \％ 1	41%	$+27$
	Sept．	0.500	20． 7	12.5	0.509	48	－3i
	Oct．	（1） 392	13.9	9.1	0.475	43	$+3$
	Nov．	0.421	－8． 6	7.1	0.451	420	＋ 20
	Dec．	0.331	$60{ }^{6}$	$\therefore .2$	0．1觬	403	＋
1867	Jan．	0.376	52.9	2.2	0.413	409	＋36
	Febr．	0.285	6＇s．＇t	5.5	1），¢25	138	± 7
	March	0.417	\％ 2	3.8	1）． 416	必！	－ 4
	April	0.4 .87	万5） 9	7.8	1）． 4 S	179	－ 29
	May	0.396	59.8	11.4	0． 3 a 0	417	$+25$
	June	0．413	133.4	13．0	1． 409	429	$+11$
	July	0.497	\％9． 1	13.3	0． 427	431	$+7$
	Aug．	0.505	（8）－ 2	1星乐	0.159	4 作	-11

		$\begin{aligned} & \text { 1110" } \\ & \text { I). } \mathrm{H} . \end{aligned}$	H．r．	＇T＾＊1！	$\begin{aligned} & \text { lidedy } \\ & \text { [1. } 12.1 \end{aligned}$	$\begin{aligned} & \text { Ifall } \\ & \text { H. IR. II } \end{aligned}$	O，－C．
1817	sept．	－110\％		＋13．2	-11.6×0	-10.803	-19
	Oct．	（1）．inis	59.1		1）． 160	is\％	${ }^{1}$
	Nor．	0.312	（i．）！	1.4	11．4．8	927	＋ 2
	Leec．	11． 296	1ix．2	31	0.117	897	＋ 30
1813＊	Jan．	11．203	is． 9	$\because 1$	11.10	4til	＋ 19
	Fehre．	11．20心	dí．it	1.9	0.651	\＆13\％	－ 41
	March	11．602	（1）． 61	\therefore \％	0.3×3	\＆ 10	$+11$
	April	1）．33：	（il）\％	7.4	11.395	4－9）	-10
	May	11.3509	10．2． $\mathrm{i}^{\text {i }}$	125	0．3．1	28：	$+35$
	June	0.393	（i．3．${ }^{\text {i }}$	1．4 19	O． $\mathbf{4 0}^{\prime}$	嵝	－ 0
	July	0． 19.3	（i2．4	117	0.114	418	-5
	Aur．	10．502	（i）． 0	16.1	0． 286	473	-62
	Sept．	0.610	59.3	$1: 3.2$	0 保	177	－ 8
	O．t．	1．3W1	（6） 3	8.4	0.413	：39	＋ $2 \times$
	Nov．	0.263	61.7	5．6	0.36 ＇t	：3：3	$+71$
	Dec．	11．421	52，	－！	0.380	3 Cl	$+30$
1869	Jan．	0.237	（3i3． 7	2.9	0.413	109	－ 0
	Febr．	0.249	（6）．9	5.7	0.357	370	＋28
	March	0.318	20．6．＇	3.7	0378	40%	－ 9
	April	0.336	62．${ }^{\text {\％}}$	8.8	0.391	425	-31
	May	0.383	57.2	9.9	0.346	377	$+14$
	June	0.388	（i3）．0	11.0	10.3×3	203	-14
	July	（9． $\mathrm{k}^{\text {\％}}$	6＇t．	14．＇	0 039\％	4，1	-14
	Aug．	0.420	6\％．2	13.4	0.416	403	-18
	Sept．	0.156	58.0	12．8	0.379	332	$+31$
	Oct．	0.403	61.3	9.2	0.141	407	-26
	Nov．	0.340	58.6	6.0	0.390	359	$+20$
	Dec．	0.349	20． 5	9.9	$0.42 \cdot 1$	404	－ 27
1870	Jan．	0.202	62.7	3.1	0.360	356	$+19$
	Febr．	0.132	60.0	0.9	［0．290］	$32 \cdot$	$+29$
	March	0.280	61.4	3.9	0．60x	435	-63
	April	0.296	（i）． 1	7.7	0.337	371	0

	Obs ${ }^{1}$ D．R．	Bar．	Temp．	$\begin{aligned} & \text { Red } \\ & \text { D. 1. } I \end{aligned}$	$\begin{aligned} & \text { Redel } \\ & \text { D. R. II } \end{aligned}$	0．－6
1870 May	$-0^{s} \cdot 299$	763.4	＋9．9	$-0^{\mathrm{s} .319}$	-0.380	－ 10
June	0.352	63.9	19.5	0.363	383	－14
July	0． 5.7	61.1	14.9	0.387	391	－ 23
Aug．	0.536	58．5	14.4	0.438	侯	－ 58
Sept．	0.341	614	11.4	0.379	352	＋14
Oct．	0475	54.7	8.9	0.120	386	－ 21
Nov．	0.388	56.3	5． 9	0.407	376	－12
Dec．	0.217	59.5	1.8	［0．35：3］	366	－3
1871 Jan．	0.167	28.9	0.1	0.324	320	＋42
Febr．	0.114	63.5	$\because 5$	0．293	306	＋5
March	0.198	62.7	6.0	0.306	333	＋ 28
April	0.3 你	57.6	7.2	0.363	397	-30
May	0.250	63.2	9.1	0.311	342	$+18$
June	0.391	58.9	11.6	0.3 你	368	－8
July	0.458	58.7	14.0	0.370	374	-14
Aug．	0.427	62.9	15.0	0.381	368	－8
Sept．	0．47\％	59.3	12.8	0.416	389	－ 29
Oct．	0.357	617	7.6	0.423	：389	－ 29
Nov．	0.309	60.9	3.7	0.432	401	－ 41
Dec．	0.178	64．5）	2.1	0.378	358	＋\because
1879 Jan．	0.285	54.6	3.6	0.3320	316	＋4ír
Febr．	0.273	59.8	4.5	0.306	379	－ 19
March	0.291	57.4	5.9	0.3×2	36	＋ 4
April	0.317	58.7	8.2	0.330	364	－ 1
May	0.34 \％	59.5	9.6	0.344	37	-15
June	0．38：	60.4	13.1	0.337	3.7	＋ 3
July	0.400	60.7	15． 5	0.314	318	＋42
Aug．	0.430	60.4	14.6	0.3240	313	$+17$
Sept．	0.46%	57.6	13.1	0.376	349	＋11
Oct．	0.430	55.8	8.8	0.392	3.8	＋\because
Nov．	0.417	50．3	6.9	0.40%	37	－ 14
Dec．	0.377	52.3	5.1	0.354	334	$+26$

before I matertok the findher investigation of the reduced rates I ${ }^{2}$) I friad to find out the redation of the rates below 0° to those athove that femperatrace It appeared that at stematice deviation of the former is far lese evitent than it wat in the period 187\%-98. In fiact such a deviation shows itself cleaty only in the fwo months 1870 Febmmary and December. Fimally I excloded the days with temperatures below of only for these monthe and for 1864 lecember ${ }^{2}$).

The moditied reduced rates 1 . together with the eorerponding temperatures are as follows:

	T (emp).	Red. 1). R. I.
1stit I Meombler	+ 2.4	- 11.3090
1880 Pebnuary	$+1.9$	- 11.3381
December	+ 3.6	- 0.3888

1) In comparing my values of the retuced bates I for the fwo lirst years with thuse oreduring in Kinser's papers, allowance mast be mate for the fact that my values apply for a pressure of 760 Mm , at 0^{\prime}, whereas those of haser may be assumed to apply for a barometer-height of 760 Mm . at +10 .
${ }^{2}$) During 8 other months the dexiations were small and variable in sign.
13. In the first place I have investigated in how fir the nom-periodic part of the rate, the constant a, has varied duriag the pretiod under consideration.

For this propose I have combine the monthly means to pearly means. They are as follows, the years begiming with May:

1862	-0.316	1868	-0.400
1863	.309	1869	.384
1864	.350	1870	.368
1865	.421	1871	.367
1866	.436	1872	.353
1867	.428	1873	.358

It is seen that the negative rate has somewhat increased in the begiming and somewhat decreased afterwards and that it remained nearly constant during the last four years.

With these values and the corresponding ones for years begiming with Angust, November and Fehrnary, I drew, in the same way as was done for the period formerly considered, a curve representing in a finst approximation the change of " with the time.
14. In the second place the influence of the temperature was investigated. I tried to find out:
$1^{\text {st }}$. In how far, if we assume a linear influence of the temperature, the adopted temperature-coefficient applies for the whole of the period;
$2^{\text {nd }}$. whether there is any term varying ats the sforare of the temperature.

For the first investigation the several years were kept semate. They were assumed to begin with Fehruaty.

I used $1^{\text {st }}$, the deviations of the monthly means from their yearly mean, 2 'd. the deviations of these same monthly means from the values of " taken fiom the curve. In the third and fomth place the computations were repeated using, not the monthly means themselves, but the mean sabue for the first month combinet with the last, that for the second combined with the last hut one, ete. By this devire the influence of the "supplementary term" must be nearly completely eliminated at the ontset.

In this way I found for the comection of the adopert eroctionent -0:0174, the following fon series of values; they are expersed in tenthousandih parts of a second.

	1	11	111	ハ
1sisis	+ $\quad 3$	+ t	-t !	+
1sit	+ 24	$+10$	+ 1:3	1
186\%	+1	+ 4	+ is	+ 7
1siti	+ 14	+ 17	$+10$	+ 14
1sicio	-.. 11	$1 ;$	11	10
Incis	- 210	23	- 31	32
1 sis 9	11	11	- 15	- 12
15.0	33	24	- 38	3.5
15.1	--29	27	- +1	- 41
18.2	+ 20	$+18$	$+15$	$+12$
15.3	+ 33	+ 35	+ 29	+ 31

The results of the form compmations are neaty aceordant. The value of the remperature condiciont appars to have varied far less than it did subsequently. A smadl fluctuation however, of the same mature ats that which exifed atterwards, appears to have oremred. It might be athwable to assume, in aceordance with the second computation, which in my npinion is to he preferved:

$$
\begin{array}{rrr}
1863-6 i 6 \quad \angle i=+9 \quad 0= & -0.0165 \\
1867-71 & -19 \\
1872-73 & +26 \quad-0.0193 \\
18 & -0.0148
\end{array}
$$

From all the years together we should find

$$
186: 3-7: 3 \quad \angle a=-1 \quad a=-0.0175
$$

The investigation about the existence of a quadratice term I only executed for the mean of the 11 years.

For this purpose I nsed the deviations aceording to the second and fourth computation.

If $\angle c_{1}$ and c_{2} represent the correction of the cocficient of $t-t_{0}$ and the costicient of $\left(t-t_{0}\right)^{2}, t_{0}$ being the mean temperature $\left(=+8^{\circ} .6 \mathrm{R}\right.$.), we have. expressing both in temhonsamblh parts of the second as mit,

$$
\begin{array}{cc}
L c_{1} & r_{2} \\
+0.5 & -0.92 \\
-6.2 & -0.4 .3
\end{array}
$$

At least for the mean of the 11 years, therefore, a quadratic term must be quite insensible.
15. It seemed umecessary to apply corrections to the reduced rates I on account of the temperature coeflicient, hefore proceeding to the investigation of the supplementary term. For the mean value of
this coefficient agrees all but absolntely with the value originally adopted and its fluctuations are certainly inconsiderable．

I made use of the deviations of the monthly means from the vatues of ℓ taken from the curve and I made the years hegin with May．

For the sake of brevity I will only give the mean results for 4 groups，each of three years．In the last colum the general means are set down．

	（i）－6it	6． $5-67$	（68－7）	71－73	$1892-1873$
May゙．．．．．	$+76$	＋4＇	$+46$	$+29$	＋48
June	＋ 4	$+99$	＋ 9	$+30$	$+18$
July．．．．．	$+12$	＋ 20	－ 9	$+19$	$+10$
August ．．．	－ 20	－ 3	－ 58	－ 5	－ 3
September．	－ 26	－45	-14	-39	－ 29
October．．．	－52	-17	-40	－ 45	— 3
November．	-10	-18	－ 4	－ 55	－ジ
December．	-30	－8	-17	-20	-19
January．．．	－ 9	$+14$	$+14$	$+1$	＋5
Februars ．	-2	－ 29	$+51$	－ 8	$+5$
March	$+18$	$+6$	$+13$	＋30	$+19$
April．．．．．	$+46$	$+13$	$+13$	$+53$	＋：31

In each of the 4 partial results the supplementary inequality is quite evident．Its amplitude is of the same order of magnitude as in the period 1875－98．There appears to be no reason for assuming any change in this amplitude during the 12 years 1862 － 74 ．I therefore tried to represent the general means by a formula and it appeared that a pretty satisfactory representation may be obtained by a simple sine：

$$
\Delta_{y}=+0 \mathrm{~s} .03+1 \cos 2 \boldsymbol{x} \frac{T-A p r .23}{365}
$$

The sinusoild corresponding to this formula，together with the points given by the observation is represented in Fig． 4.

The differences between the observation and the curve，in thou－ sandth parts of the second，are as follows：

Proceedings Royal Acad．Amsterdam．Vol．V．

Mity	$+17$	呺为。	－	Jinn＋！
J1114．	2	（1）．1．	4	Prore－is
Inly	$+i$	N心．	＋！	Mated
Aur．	9	ber．	$+1$	April－

The fate that the supplembitary form dath be repremented by as simple simsoid aml that a half－yearly inequality is mot shown，agrees with the result fonmel a moment atgo，that mo ferm varying ats the squate of the temperature is indicated ${ }^{2}$ ）．Properly speaking the two results are equivalent．

16．Finally I have arain fried to clear the monthly means of the rates，as well as posible，of all prevodic terms．In thong this I have applied no further eorrections for the influcne of the temperature because the vamition of its coeflicient－the results of the years 1871 and 1873 are just those differing most considerably－did not seem ats yet sulficiently demonstrated．

No other reductions were applied，therefore，but those for the supplementary term acoording to the formulat found ahove．

The rates corrected in this way（ $=$ term if）have been inserted，in the table already given，in the column Red．D．R．H．

These values of the term a have been represented as well as possible by a simple curve reproduced in Fig． 5.

In this figure the results of the observation are also shown，not for every month separately，but for the mean of any three consecu－ tive months ${ }^{2}$ ）．

I have tried to draw this curve about as simply as that for the period 18．8－98．The outstanding differences $0-C\left(C^{\prime}=\right.$ curve $)$ are eontained in the last column of the table．

These differences lead to the following mean amounts，which we might consider as the mean errors of a monthly mean ：

$$
\begin{array}{lr}
1862-1867 \mathrm{M.E}= \pm 0.0309 \\
1868-1874 & .0273
\end{array}
$$

[^33]whereas, if we had neglected the consideration of the supplementary term, we should have found:
\[

$$
\begin{array}{r}
1862-1867 \mathrm{M} . \mathrm{E}= \pm 0.0382 \\
1868-1874
\end{array}
$$
\]

which values are considerably greater.

IV. The period 1899-1902.

17. Since the time, 1898 December, that the clock Homwed 17 has been mounted in the niche of the pier of the 10 -inch-refiactor, its rates are kept under constant control by computations which are made, immediately after the time-determinations, by Mr. H.nmersma, computer at the observatory. He computes moreover mean values of the rate at the end of every month, which are at once inserted in graphical representations. The following investigation was fombled on these results only slightly modified.

The modification is the consequence of a small correction of the barometer-readings caused by the fact that the temperature of the clock is no longer the same ats that of the barometer in the transitroom. The barometer-readings were reduced therefore to what they would have been at the former temperature ${ }^{1}$). As my investigation, which includes no more than three years, must be considered as a preliminary one, it seemed useless to replace the original mean readings by the mean values according to the barograph-diagrams. Moreover the constant correction of the tharometer used was neglected.

As before the temperatures were determined from the readings of the upper one of the two thermometers suspended in the clock case. The former thermometers had been replaced however by two other ones having centigrade scales.

Besides the temperature in the niche below the clockease has been determined for the period of a year by means of a thermograph of Richard. It appeared that, even there, no trace of a daily period in the temperature is noticeable.

In gencral the changes in the temperature have now become much slower and much more regular. At the same time the temperature in winter time does not nearly sink to so low a point as formerly; this is shown even in the monthly means. In the years now under consideration the temperature in the clock eatse never sunk below $+2^{\circ} \mathrm{C}$.

As was done for the other periods, I have computed the differences

[^34]

 18:99-1!01, aro ats follows:

Jimbary	$+10.02$	duly	$+0.21$
Febmbary	+ 0.01	Alugised	$+0.17$
Mareh	+0.01	Seprember	$+0.016$
April	$+0.02$	Octobrer	$+0.02$
May	+ 0.0 .05	November	$+0.01$
June	+0.15	December	$+0.02$

The differenes are now expressed in degrees Celsins. The indexerors of these thermometers are insensible.
18. The observed daily rates were orisinally reduced to 760 Mm . and $+10^{\circ} \mathrm{C}$. by meaths of the coeflicients:

$$
\begin{aligned}
& b=+0^{5} .0140 \\
& c=-0.0170
\end{aligned}
$$

In the following table, however, the Red. D. R. I. have been computed, not with this value of the temperature coefticient, which had origimally heen derived from only the first months, but with the value

$$
r=-0.0220
$$

which accords better with the observations. The meaning of the two last columms of the table will be explaned hereafter.

The four months immediately following the mounting and the rectulation of the clock, during which the rate proved to be still somewhat variable, have been left out of consideration and have not been inserted in the table.

	$\begin{aligned} & \text { His } \\ & \text { D. R. } \end{aligned}$	Ear.	Temp.	$\begin{gathered} \text { Rewly } \\ \mathrm{D} . \mathrm{R} . \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Rudd } \\ \text { D. } . \text { R. II } \end{gathered}$	$\text { D. } \begin{gathered} \text { Redrl } \\ \text { R. IH } \end{gathered}$
					$-0^{8} .157$	$-{ }^{8} 8160$
1899 May	-0.116	763.2	$+11.8$	$-0^{\text {s }} .121$	4	+ 6
June	0.132	65.7	15.0	0.102	+ 17	+ 30
July	0.192	63.4	18.1	0.090	+ 42	+ 43
Aug.	0.228	66.0	18.7	0.120	$+36$	$+31$
Sept.	0.353	59.1	16.0	0.208	- 11	- 14

		Obs ${ }^{1}$ D. R.	Bar.	Temp.	$\begin{aligned} & \text { Red } \begin{array}{l} \text { b. IR. } \end{array} \end{aligned}$	Red 1 D. R. II	Redd (1). 1. 111
1899						$-0^{5} .157$	-0.169
	Oct.	$-0^{9} 160$	767.0	$+11.7$	$-0^{5} .221$	+ 1	- 4
	Nov.	0.156	67.4	11.6	0225	- 13	- 6
	Dec.	0.048	81.7	5.7	0.167	+ 13	+ 10
1900	Jan.	0.097	59.6	5.7	0.186	30	- 29
	Febr.	0.158	32.8	5.4	0.158	18	- 29
	March	0.0 .8	61.1	65	0.151	- 22	- 33
	April	0.065	62.2	8.4	0.131	10	- 13
	May	0.153	62.2	11.7	0.147	30	- 20
	June	0.247	61.7	16.4	$0.1: 30$	- 11	5
	July	0.258	63.8	18.3	0.128	$+4$	+ 2
	Aug.	0.328	62.8	18.2	0.187	- 31	- 31
	Sept.	0.252	67.4	16.5	0.214	17	- 23
	Oct.	0.278	61.9	13.6	0.2020	4	- 10
	Nov.	0.25\%	58.4	10.2	0.2.29	17	- 13
	Dec.	-0.129	612	8.8	0.172	+ 8	+ 27
1901	Jan.	+0.052	63.2	5.2	0099	+ 57	+ 52
	Febr.	+0.023	61.1	5.1	0.099	+ 41	+ 27
	March	-0.098	57.7	6.7	10 lat	5	- 16
	April	0.105	59.7	9.6	0.110	+ 11	+ 14
	May	$0.10{ }^{\prime}$	051	12.6	0118	1	+ 9
	June	0.216	64.3	16.0	0.14'	-	- 16
	July	0.296	6\% 5	19.3	0.120	+ 7	3
	Aug.	0.254	(6) 5	19.2	0.161	5	- 15
	Sept.	0.315	61.7	16.2	0.203	- 6	- 11
	Oct.	0.266	61.7	13.5	0.212	+ 10	+ 3
	Nov.	0.120	${ }^{6} 4.0$	9.7	0.1×3	+ 29	+
	Dec.	0.183	565	7.3	0.190	- 16	- 6
1902	Jam.	0.150	12.8	7.i)	0.113	- 7	+ 8
	Fohr.	0.0034	59.6	4.6	0.147	- 7	- 20
	March	0.107	57.9	7.8	0.124	+ 3	+ 1
	April	0.085	61.6	10.0	0.107	+	$4+18$

19. Thue mentuend daily rates 1 of this bable show at once and with evithere the presene of the supplementary ferm; for the rest the rate of the elock in the present proved appears to be a very regratar onte. If, fint of atl, we combine the monthly means into 3 yealy means, from May to April, we fime :

1899	-0.156
1900	156
1901	.157

There is no trace of a progressive change in the rate and for the finther investigation of the inthence of the temperature we may simply use the deviations firm the general mean $=-0.457$.

If in the first place we assume that the influence of the temperature is a linear one, we find

Ist from the monthly means,
$2^{\text {nd }}$ from the means for wo months combined in such a way that the suphlementary term is nearly completely eliminated, reperetively :

$$
c=-0.0224
$$

and

$$
=-0.0220
$$

which values are practically identical with that used for the determination of the reduced daily rates I.

In the second place let us assume the existence of aterm varying ats the square of the temperature. In this assumption we find, proceding in the same way as before, for the total inthence of the temperature: ${ }^{\prime}$
$-0.0253\left(t-10^{\circ}\right)+0.00074\left(t-10^{2}\right)^{2}$
and
$-0.027^{7}(1-10)+0.00069(1-10)^{2}$
respectively. We thus tind for this period a quadratic term of appreriable value. The difference between the two formblate is small: I will detinitively adopt the former.
20. It thus becomes necessary to use a quadratic formula in order to clear the rates completely from the direct influence of the temperature, at is required for the determination of the supplementary incquality. We may, however, as well toke the influence of the temperature to lus proportional to its finst poter and then comsider the remaining periodic part of the rate ats "supplementary inequality".

I have followed both ways. In the following table I have inserted, first, the values fond for the supplementary term in the first way, giving the results of the three years separately, as well as in the mean. These mean values are prety well represented by the following simple sine-formula:
${ }^{1}$) The mean temperature of the 3 years was $+11^{\circ} .6 \mathrm{C}$.

$$
\Delta_{!}=+0.0405 \text { cos } 2 \pi \frac{T-1 M_{10}!\Omega}{365}
$$

The last cohmm of the bable comtains the diflerences between the observation and the computation．Everghing hats been expressed in thousandth parts of the second．

	1899	1900	1901	Mean	0．－C．
May	＋ 52	＋ 96	＋ 5	＋4	－ฯ
Jun	＋6．5	＋ 30	＋19	＋ 38	$+$
July	＋ 5	＋ 17	$+12$	＋ 29	$+14$
August	＋2	－位	－ $2^{\prime \prime}$	－14	－ 5
September	－年	－ 31	－42	－47	-16
October	－48	－ 5	－ 41	－ 48	－
November．．．	－ 32	－ 59	－ 14	－住	$+$
December．．．	－25	－ s	－4i	－25	＋ 10
January	－作	$+37$	－7	－	$+10$
February ．．．	－ 0^{10}	＋ 30	-17	0	－！
March	2	＋15	＋32	$+1.5$	-16
April．．．	＋31	＋ 38	＋69	＋ 50	＋ 6

The mean monthly resulis of the ohservations，towether with the sinusoid by which they are reprenented，have been reprotuced in fig． 6.

In the second place we give，in the column 0 of the following table，the values of the supplementary incquality which we find in the mean，if we assume－－ $0.0220\left(t-10^{\circ}\right)$ for the influence of the temperature．These values are represented by a curve reproduced in fig．7．The column O．－C＇of the fable contains the deviations from this curve．

	0.	O．－C．		0.	（1）．$\%$
May	＋28	－－12	Nor．	－55	0
June	＋32	－ 6	Der．	－21	$+2$
July	$+43$	$+18$	Jaut．	＋ 8	$+7$
Ang．	＋ 1	0	Fehr．	$+22$	＋
Sept．	－51	－11	March	$+20$	－8
Oct．	－63	＋ 2	April	＋ 41	＋5

As might have heen expected，the furve shows clearly a half－ yearly inequality．
21. Finally I have medued the monlly means of the rates hoth, by the linean temperatureformala with the oure of tige 7 , and by the quadratice formula with the simbsuid of tire 6. The rates, thens redued, have been inserted in the wotmms Rend. 1). Rs. II and Red. I). R. It of the general table.

These collmme do not contain the redneod rates themselves, but Heir mean values, bogether with the deviatioms from the latter.

These deviations lead 16 a means ertor of at monthly mean

$$
\text { II. } E \cdot= \pm 00211
$$

if we adopt the linear formulat (Red. D. R. II), and

$$
\text { 1F. } b= \pm 0.0218 .
$$

if we adopt the guadratic formula (Red. D. R. Ill).
The two methots of reductiom thas lead to nearly the same degree of atreement and a decision athon the preference to be given to one of the two camot, therefore, be derived from the mombly rates.

If no reduction for the supplementary inequality had been applied, we should have fomed in the two cases:

$$
\begin{aligned}
\text { H. } E & = \pm 0^{\circ} .0422 \\
& = \pm 0.0398
\end{aligned}
$$

The increase of the If. E. is still considerably greater than it is for the other periods. The quadratic formula now leads to slighty better results than the linear one; the difference is smatl, however.

> V. Amprituede of the oscillations of the penduhem in the period $1878-1888$.
22. As has been mentioned before, H. G. van de Sande Bakiuyzen (:aused as small mirror to be attached to the pendulum in 1877^{1}), for the purpose of determining accurately the amplitude of the oseillation hy the aid of the reflected image of a metallice wire placed hefore a flame of petrolem. The image wats projected on a divided seale by means of a lens. 1 Mm . in the scale nearly corresponds to 0.5 in the total amplitude; the reading could be made accorate to tenths of the millimeter. In this way a determination of the amplitude was made, generally 4 times a day, from 1878 April to 1899.

The determinations of the years $18: 5,79$ and so were clatorately studied by II. G. fas de Sinde Bahheres. The influence of the temperature, of the atmospheric pressure and atso that of the position of the driving weight were thoronghly investigated. Having the inten-

[^35]tion of prosecuing this investigation he did not yet publish his results．

23．It seemed possible that the investigation of these amplitude－ observations might contribute to the diseovery of an explanation of the supplementary term found in the rates．I intended therefore to inquire whether the corrected amplitudes too would still show a yearly inequality．

As H．G．vin de sunde Banimyen gave leave to take advantage of his results for the present paper，his corrected amplitudes could be compared at once with each other for the period 1878－80． Furthermore I tried to execute a somewhat provisional investigation for the eight following years．For these years the monthly means of the amplitude found in a first approximation ${ }^{2}$ ）were corrected for the influence of the atmospheric－pressure，as fomed by H．（x．Fas DE SAXDE Banhtaza．A correction for the femperature was not so easily applied，becanse it appeared that its influence has conside－ rably increased in the course of the years．Finally I proceeded simply in this way，that I derived the value of the amplitude for $+8^{\circ} \mathrm{R}$ ． for every spring and every atumm by interpolations befween monthy means corrected for the barometer－reading．

The results have been bronght together in the following table：

	Spring．	Spring red．	Autumm．	A．－S．
1878	37.77	$3 \times .20$	39.71	$+1.49$
1879	38.68	：3．76	37.06	-1.10
1880	38．84	40.06	39.50	－ 0.56
1881	41.27	10，你	40.47	－0．01
1882	39.70	36．18	39.19	$+0.01$
188：	Sc． 66	\％． 12	3.3 .67	＋0．2\％
188\％	2c．19	30.80	29.22	－1．保
185\％	90． 20	30.5%	㫛，号	－ 2.20
1886	31.90	32．30	32．33	＋ 0.0%
1887	32．71	31．86	31.68	-0.18
1888	＇31． 01			

[^36]These results are expressed in millimeters of the seale and they reprement the total amplitude on that seate dimminsted loy 320 Mm .
 :pring and the atumin; the Bra contains the means of two comecentive pesults for the spring; the eth the diflerences ambom - spring whated by substracting the momber of the 3 ded comm from those in the $4^{\text {th }}$. The differences prove to be very small: their mean amomis only $10-0,38$ Mm. or, if we exclute 1578 on account of a possible displacement of the lens, - 0.58 Mm., i.e. - $0^{\prime} 2$ or
$0 .{ }^{\prime} 3$ respectively, whereas the effeed of $1^{\circ} \mathrm{R}$. is $0 .^{\prime} 6$ in the begiming and about 1^{\prime} afterwards. Besides, the sign of the mean differenee is the reverse of what we shonld have found, when the amplitude of
 investigation seems to show, that there is no term in the amplitude analogous to the supplementary ferm in the rates.

VI. Comparison of the results.

24. If we comsider the results oltained in the preceding pages in their mutual relation, we are struck in the first place by the fact that the clock Honwë 17, which at present has been going for more than forly years, fir from showing the defects of old are, has inereased on the contray in regulanty of rate in the comse of the years. We have seen that hoth in the perient 1862-157t and in that of 18781898 the greatest regularity was only reathed after some years. It may be pointed out now that this regularity has also increased from period to period.

For we found for the mean deviation of the monthly means from a simple curve ($1^{\text {st }}$ and $2^{\text {nud }}$ period) or from al constant value (3 ra period) the numbers:

$1862-1874$	± 0.0291
$1879-1896$.0237
$1899-1902$.0215

The dimimution of the mean deviation is considerable and whereas in the 3 rd periout the amelionation in the clock's position mary have contributed thwards this dimimaion, the difference between the first and the second is very striking. We have to consider in this connection that, for the two former periods, a whole year at the beginning has been left out of consideration, whereas for the third the $5^{\text {th }}$ month. has already been taken into account.

The only point in which the second period is at a disadvantage
as compared to the first is that the influence of the temperature has been more variable.

This however is mainly the ease only for the last years, when, evidently, the cleaning of the clock hat been already too long deferred.

If we reduce the temperature-eoticient found for the third period to what it becomes for $1^{\circ} \mathrm{R}$. instead of for $1^{\circ} \mathrm{C}$., if further we reduce the mean cocflicient of the first period to the value which would have been fonnd, had not the barometer-reading been reduced to 0°, and if, lastly, we add the value found for the middle part of the second period ${ }^{1}$), leaving the quadratic terms out of consideration throughout, we find:

$$
\begin{aligned}
& 1862-1874 \quad c=-0.0196 \\
& 1885-1891 \\
& 1899-1902
\end{aligned} \quad-0.0269
$$

Between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ period the pendulum has not been taken to pieces and only a small stain of rust has been removed from the suspension-spring.
25. Let us now consider the results obtained for the supplementary inequality. Setting aside a half-yearly inequality, sometimes shown, which is comected with the precise form of the influence of the temperature, we find in all the periods a supplementary yealy inequality in the rates which can be nearly represented by a simple simsoid having its maxima about May 1 and November I, the semiamplitude of which amounts to:

$1862-1874$	+0.0341
$1878-1886$.0455
$1887-1896$.0254
$1899-1902$.0465

In the latter part of the period 1878-1898 the amplitude of the supplementary inequality seems to have appreciably diminished so that in the years 1897-1898 it is hardly sensible. For the rest the amplitude of the inequality appears to have had neaty the same amount under any circumstances.

The question now arises:
What explanation can be offered of this inequality ? If weconsider only the monthly rates, we may mathematically represent it as a lagging behind of about half a month of the influence of the temperature. This camot be the true physical explamation, however,

[^37]Werance it appears from the rathe durine hent promak, that abrupt changes in the bemperature are reflected almost immediately. Not"illatambine this, I deemed it possible, at first, that the true explamation might he found in surlo at cames, by asoming that prent of the affeet of the temperature on the rate - perthaps the intervention of the clasticity of the surpensom-sping, - is only fell after a long time. In this ease howerer, we obuht to find another and smaller tomperature-coenicient from swift changes in temperature than from the comparison of smmmer- and winterates. In reality, however, it seems, that the coedticients ohtained in the two ways agree in the main, at least as far ats can be julged now, before the completion of a more elaborate investigation by Mr. Werdea.

Besides a change in the clasticity of the suspension-spring, lagring thehind the gealy change of temprature, hat herome improtathle since we found no trate of it in the amplitudes of the oscillations.

Another possilhe explanation might be fomen in the hypothesis that the temperature of the difternt pats of the pemblum is permanently unequal and that the distribution of tompreature varios systematically with the season, in such at way that it is mot identical in the spring and the autumn. The intluence of a small inequality of the temperature is comsiderable. For if the temperature of the pemblum-rod changes only by so much as $0^{2} .1 \mathrm{R}$., whereas that of the mereury remains constant, the daily rate changes by 0.06 .

The differences between the readings of the upper and lower thermometer in the clock-case must throw light on this distribution of the temperature. The information however must the defective 1^{-t}, on accomm of the small atecuacy of the themometers, $2^{\text {nd }}$ lecause we do not know the relation exi-ting between the temperature of the steel and the mercury of the premblum and that of the suromanding air. If we comsult the mean ralues of these differences of temperature for the three periods, we see that in the two former the difference: Lpper temperature-Lower temperature has been really found $+0^{\circ} .1 \mathrm{R}$. greater in April and May than in October and November. This would produce a difference in the rate agreeing in sign with that which is really found. In the $3^{\text {rd }}$ period, however, spring and antumn agree nearly perfectly.

It seems to me still very uncertain, therefore, whether the cause of the phenomenon in question may be found in this distribution of the temperature. The fact that, whereas the clock was in very different circumstances, the inequality of the rate was very nearly constant and also the fact that it seems to have diminished in the second period, seem, even "priori, contrary to such a hypothesis.

And so as yet I feel mable to give a sulficient explanation of the inequality which hats been foumd.

explanation of the figures.

Fig. 1. Supplementary inecfuality 1878-1886.
, 2. , , 1887-1896.
, 3. Non-periodic part of the daily rate for $+8^{\circ} .7$ R. 1878-1898.
, 4. Supplementary inequality 1862-1874.
, 5. Non-periodic part of the daily rate for $+10^{\circ}$ R. 1862-187 .
, (6. Supplementary inequality $1899-1902$.
" 7. The same inequality if the influence of the temperature is assumed to be linear.
In the Fig. $1, \pm, 4,6,7$ the letters D., J. etc. stand for : December 1, Jamuary 1 , etc.
In the Fig. 3 and 5 the numbers: 78, 62 etc: stand for: 1878 June 15, 1862 June 15 etc.
In Fig. 5 for 79 read 69.

ERRATUM:

p. 47. Behind the title of the commmication of Prof. .J. W. vas Whefe is omitted:
(Communicated in the meeting of April 19, 1902).
(August 8, 1902).

KONDKLDKE KK．DWENE VAN WETENSCHAPEX
 TE AMSTERDMM．

「RO（＇EEION゙GN OF THE MEETING
of Saturday September 27， 1902.

－ぶ－
（Translatel from：Verslag wan de gewome vergatering der Wis．en Natunkundige Miteeling san Zaterdag ef September 1！02，Dl．NI．

```
: CONTMENTS.
```

A．H．Sheks：＂On the advantage of metal－etching by means of the electric cument＂．（lom－ municatcl by l＇rof．I．L．C．Schampans rix mes lionk），p．219，（with one phate．

J．D．vix bate Whas：6On the comlitions for the occurence of a minimum critical temperatur for a ternary system＂，p．220．

W．H．Kprsoar：＂Reduction of observation equations containing more than one measured quantity＂．（Commanicated by l＇rof．If．Кinmetmang（Jasis），p．236．

E．H．M．Befkax：＂On the behaviour of disthene and of sillimanite at high temperature＂． （Commmicated by l＇rof．J．L．C．Sommombla ran man Kork），1，24t，（wiah une phate）．

L．If．Smatama：＂Measarements on the magnetic rotation of the phane of folaisation in liquefi d gases under atmuspherie pressure．II．Measurements with metlydehloride＂．（Commani－ cated by l＇zof．II．Kismealingit Oxams），p．243．（with one plate）．

II．Iliga and（．II．Wisi）：＂Diffaction of Röntgen－Rays＂，（2nd Communcation），j．2ti， （with one plate）．

II．A．Loneatz：＂The fundamental equations for electromaynetic phenomena in ponderathe bodies，deduced from the theory of clectrons＇，p．2．s．t．
 cluck of the observatory at Legden，Holtwii Nis． $1 /$ after it was momstet in the niche of the great pier＇，p． 267.

The following papers were read：
Physics．－＂On the aelvanterge of motulectchin！ly merens of the electric cotrent＂．By Mr．A．H．Surss．（Commmicated by Prof．J．L．（．Schroeder van ber Kolk）．
（Communicated in the meeting of Jume 2x， 1902 ）．

Side by side with the tension－and bending－tests to which metals and their alloys are submitted，with the object to find out，whether the material answers to the requirements，Prof．Brinevs gives，as a new method：a miscroscopic examination，which is deservedly made
use of on at lare sate. In a sperial work on the subjeet: "Dats
 atul the prational mee mate of it, is trated exhatustively. 'The mata substance of it is this:

A prese wi the material, which is to be summite to mioroseopies examination is lifed, fill it is perfecoly smoulb, different mombers of cartormathm-powder being used for the grinding, ather which it is polishad with tim-oxitle or arome-oxide, if a perfectly smooth slide is required: then, by means of the amoating colon's, the ground plane will show a design, sharpoutlined. Since mosi metals and alloys have rystal-formations at their frateres, the ameating colons will produce a very strongly marked ontline between the erystals and the gromal-mass, becanse it is a known fiad, that fwo substances, submitted to the same tomperature, hat of different formation the (rystats- and the surrounding mother-water) will mot take the same tempering-colons. Next hy making seratehes on the surface, with needles of known hadness (amalogons with he known hatraens-seale of Mons) the hardness of the material may be fixed.

A similat design, not so mimutely detated however, may becalled forth by the corroding influence of acids, bases or salt-solutions, which the crystals and the encompassing matter are not equally prof agamst. For this purpose the rubhing and polishing need not be done so carefully.

This method however has also its difficulties, which may often be very troublesome. As is always the case, when an acid operates upon a melal, also in this etching-process gas will be developed. The microscopically small gas-bubbles which are formed on the slide will locally prevent the corroding process of the acid and be the canse of little holes and dots that have nothing to do with the design and may easily lead to faulty conclusions. The very long time the grinding and polishing sometimes takes (I state here the grimding of different suecies of irom and bahbits) will keep many from applying this method.

No satisfactory results, in some cases, being obtained iy this method, although the material showed distmet erystals at its frature. Prof. Sumoder vis der Konk was struck by the idea, whether it would not be posisible to etch metal-planes in another way than by corroding thoomh acids. It is a known fact that a metal in a gralvanic cell will comode at its negative pole. I need only state the equally known fited, that the zine of a bichomate cell, after the electric eurent is set working, shows a magnilicent structure. To forestall the objection, that the chromic-atid of the cell has been predominating here
in the ctching-process, I will just rematk fatt at shat experiment. i. e., by putting the zine into the fluid, withont letting the cell give a current, was sufficient to prove that the otch-design obtamed in the first case, stood ont in much stronger relief than had heen the ease, when exclusively applying acids.

As in any electrolytieal process anions are formed which together with the metal of the electrode may prothee dissoluble salts, it was important to find out what distmbing influence this would have, and combine with it an examination into the prateticability of this etching method and see whether it could replace the one of Prof. Behress, in ease the results might be umsatisfactory. The corroding influence of acids having to be awoided as much as possible, preference has been given to use the electric eurrent of a battery instead of producing it within the apparatus ifself, as happens in any cell. The apparatus was constructed ats simply as possible and is exactly the same as that used for ordinary electrolytical experiments.

The object that was to be ctehed was used as anode (the place where the electric eument enters), whereas a piece of copper-phate serves as eathode. The electric cument was fumished by an accu-mulator-battery, having a terminal voltage of 4 volts. In etching alloys of copper, it proved recommendable, every time to connect two apparatuses in series or in some other way to diminish the potential difference, on account of the highly fleecy deposit on the cathorle. As electrolyte, water was used to which for every $100 \mathrm{~cm}^{3} \pm 6$ drops of diluted sulphuric-acid had been arded, in the first place better to conduct the electric current; in the second place, as much as possible, to prevent the formation of base metal-deposits ${ }^{1}$). Of course a controlling experiment was taken by hanging a second piece of the alloy, perfectly alike, in a fluid of which the percentage of acid was the same, in order to be able to eliminate etching by the acid. I have preferred to begin experimenting with copper-tin- and copper-zinc-alloys on account of the sometimes beatiful results obtained by the rubbing and polishing method.

In most cases I melted myself the alloys to be sure of the absence of foreign substances, which may cate very great changes in structure.

The metal-slides were hung to a piece of copper-wire, but precautions were taken that there wats no contact between the wire and the electrolyte, to be sure that the metal-phate, which had to be etched, did its wotk as electrode. For half an hour the electrolysis wem

[^38]On so as to produce a sharply oullined design on the hass- and bromze-slisles.
 were finished off in exately the same way ats lad been done for the
 this soon proved to be entirely superthous and so the stides were tiled only with at smoth-file. The firsa experiment wats tatien with a smatl piece of catanacs, which proved to becomposed of 58.5 \% of copper, 40.5 "': of zane, also traves of leard and of tin being fonmed. Fow half an hour it was submitted to electrolysis, the density of the enrent being ± 2 amp. p. d 2. The result of this experiment is reproduced in tig. 1. The indented structure is very distinctly visible, there being in the slide besides a matked differenee in eodour bedwern the erystalformation and the emempasing eround-matss. Bright yellow, the erystals stand out from the enclosing mother-water.

When a secome aprofinsut wats taken the same alloy wats suhmitted to electrolysis for 12 hours. Unoler the anote a glass-coup filled with glycerine and with oxite of magnesium was plated fo catteh up the crgstals that might be hollowed out by electolysis and which will be cansed to sink hy their weight, for as was to be expected (athing which was proved by the experiment) the erystals having a higher perentage of copper than the mother-water in which zime prevals) will be better proof against electrochemical inthence and so in the end get isolated and detached. The residue lelt in the ghass-("up was washed out with aleohol it being foum that without this precaution the erystals, that had got detadhed, casily corroded, leaving nothing behind but a green powder; they were then thied in ether; the residne proved to contain 1.78 mG . metal-erystals. Although these erystals had not got loose entirely intact, they were distinetly angular in form and showed facets. Being suhmitted to electrolysis (I wish to thank Mr. Vermaks for his assistance in this) these (rystals were found to contain 1.19 mf . of copper, equal to a copper-percentage of $66.8^{\circ} \%$. Traces of lead were found on the anode and proved to be $\mathrm{P}_{\mathrm{b}} \mathrm{O}_{3}$ but the quantity was too small to permit weighing.

The second design is of a phece of plate-hatas, of which the ground slide is in my possession. Etehing and colouring after perfect grinding and polishing, had yielded no result. The result of half an hour's electrolysis with a cument of the same density as with the first experiment, and the same fluid as electrolyte, is shown in the adjoined photosrams. Also the effeet of the mechanic treatment can be distinctly noticed. Everywhere in the slide twin-erystals are to be found, which as Prof. Behrexs explains in his work, are apt to be formed in conse-

quence of the mechanie treatment to which the material has been submitted. This slide was the tirst which wats no lonerer ground with carbormolum-powder, but only filed.

The ordinary bronze for coining (see fig. 3) equatly shows a structure in which the mechanic operation is visible, both in its erystatformation and in the position and direction of the crystals, where the more or less flattened parts meet.

From a piece of cast-bronze of a comnecting rod a thimest possible sheet was filed and polished; after heating, stuck on a slide-ghlass and submitted to etching by electrolysis. A beautifully executed, right-angled lacework remained, very typical for bromze structures. The encompassing matter of high tin-percentage had been etched away; the crystals, rich in copper, had remained. From a piece of heavily wrought phosphor-bronze, which had remained unaffected by colouring, I have obtained a slide with such a strong relief, that I have not succeded in taking a photography of it. Also here even the bare eye could see the right-ingled structure. The arangement of the erystals was like that of tiles on a roof.

On account of the great practical use made of white-metal in the technical branches, I have experimented also with that. After half an hour also here, intact cubes of alloy of tin and antimony outlined themselves; also here it was possible to go on chehing very deep and without much difficulty to detach the enbes, entirely intact from the alloy. The little time left to me for the moment, necessitates my putting off the malysis of those cultes fill later.

Whereas at the begimming only copper-tin and copper-zine alloys were etched, now also iron has heen experimented with. The fact, that it is fine-gramed, that the etched facels casily oxidize, that base-metal-deposits ${ }^{2}$) are apt to be formed, all that maturally eatuses difficulties. The use made of salt-solutions, as electrolyte, to diminish the internal resistanee, has yielded no result worth mentioning I have submiffed to etching a piece of an iron-ima rolled square. After a few homs the fibrous structure was distinctly visible with the bare ere, both lengthwas alons the fibres and rosswise, vertically on them. With some difficulty I succeeded in isolating iron-slivers, which, if only collected in sufficient quantity, might be analysed guantitatively. A socle of a gaspipe sawed throngh, showed cubes in the protile: all the crystals having grouped themsetres in the rolling-direction. A piece of a steel angle-iron having been submitted to the bending-test, yielded no other result ats

[^39] the dimedton withe filmes combl be seot with the hate eree, ats wedt

 combl the tixed at this titst experimont, I do not doubt bowever, hot atho here the results will be satialitedory.

Worth mentiming still is the efohing of at eylimbler-shaped piece of rat-steed, which was submitted to electrolysis for 36 lowns. Althongh
 "ff some iron-cathide appeated to he have been formed, which, eoming in connate with the air, was apt to oxidize, conld be eut with a knife, and in the imeision glittered like metal. When analysed the iron-per"ontare proved to be $91^{1 / 2}{ }^{\circ} / \mathrm{a}$.

The great results, ohtained also here, are a stimulas to me, to investigate this matter later more thoronghly.

Those experiments suggested to Prof. Suromber van der Koh the inlea, whether cryatals of minerals treated in this way, wonld show a dexign. Considering the results, obtained with copper-alloys, a piece of a copperone was used for the first experiment. After an hour, also this material showed a distinct eteh-design, which is probably commered with a crystal formation. Not to be led away from my subjert, I will only fust mention the phenomenon.
before concluding, I will resume the adrantages, gatined by the way inticered.
1.ets. Rewnts having been obtained, where the ordinary grinding-pulishimen- and eteh-methuds had fitiled.

2nd!. The obtained preparations show at far more detailed design, which stands ont in much stronger relief than the ordinary eteh-slide.

3adr. It is not necessary to finish off the slides half so carefully, at the tempering-method requires.
thly. From different alloys erystals or fragmentary crystals have foent detathed which permit of analysis and show remarkable differenes with the average peremtare of the alloys.

The grood results are a suffecient recommendation for practical purpone, time may still be saved by commecting many apparatuses
in series, so as to be able to eteh different slides at the same time.
To my opinion it will be possible with careful treatment regulating the power of the curcont and using different acids) in this way, from all cast-metals and alloys, to detach the crystals, thms making it possible to find ont the quality and formation of the materials.

After I had concluded these preliminary experiments, it came to my knowledge that the electric current had already been used as an etching medium in the work called "Contribution it l'élude des Alliages" edited by the Société d'Encouragement de I'Industric Nationate, Mr. Charpy describes a method, successfully made use of by him and which according to the added photograms, shows great resemblance with our method. He namely used an ordinary Danieli-cell to furnish the electric current and in it replaced zine by the alloy, that has to be etched, made a short circuit of the cell and obtained an etched design after having submitted the previously polished pane for half an hour to electrolysis.

To my opinion however there are great objections here. For to obtain a somewhat powerful curent it is necessary to reduce the inward resistance to a minimum, either by using larger electrodes or by considerably increasing the acid-percentage of the electrolyte. Especially with the etching of iron and steel the high percentage of acid will be an unsurmountable obstacle. A second olyection is the impossibility, on account of that acid, to go on etching deep enough to detach crystals, for the angles and ribs which will be laid open by the etching-process will very soon dissolve again.

Before I conchute, I will here openly thank Prof. Schroeder vax der Kolk for his readiness in furnishing me all I wanted, to render this investigation possible.

The Hague, June 1902.

Physics. - "On the comlitions for the occurrence of a minimum critical temprature for a ternaty system." By Prof. J. D. vin der Wals.

Aheady in my "Molecular theory" I have derived the condition on which a binary system presents a minimum eritical temperature (Cont. II, p. 20). Starting from the form of the equation of state I have assumed there, we namely find:

$$
R T_{t r}=\frac{8}{27} \frac{a_{x}}{b_{x}}
$$

Where P^{\prime} mpreant the temperathere for which the maximmen and

 hes the alhner mptation is atmimum, dither so slightly from those for a simple shatamer that this comation hats at sullicient dearee of "ppoximation for the determination ol the critical phomomena as we maty reatize them experimontally. Jko for a menary system the aritieal phemomenta will dillior form hlose for a simple substance, and we maty expect that the difference will even be more considerable than in the case of a hanary system. Yet also for a temary \therefore sten this difference will not be so great, that the conditions for the existence of at minimmm valne of $\frac{t_{x y}}{l_{x y}}$ will differ sensibly from Wo condition- for the existence of the minimmm eritical temperature as: it maty he realized experimentally.

In order to find this condition for a binary system I have investigathed in what eiremmatances $\frac{u_{x}}{b_{x}}$ taken as a function of x, can assume at minimum valne, and so I have discossed the equation:

$$
\frac{d \frac{t_{x}}{l_{1}}}{d \cdot c}=0 .
$$

Analogons so this we should have to discuss the following equation in order to dind this condition for a ternary system:
anl

$$
\begin{aligned}
& \frac{l^{\prime \prime}+\eta}{1!y}=0 .
\end{aligned}
$$

It present however I will foliow another way, which leads us more easily to our aim and which vields the results in such a mamer that they may he hetter surveged.

If we write for a binary system:

$$
\frac{a_{1}(1-x)^{2}+2 a_{12} x(1-x)+a_{2} \cdot x^{3}}{b_{1}(1-x)^{2}+2 b_{12} x(1-x)+b_{2} x^{3}}=\lambda .
$$

the the solution of the equation:

$$
\left(a_{1}-\lambda b_{1}\right)\left(1-v^{2}\right)^{2}+2\left(a_{13}-\lambda b_{12}\right) \cdot x(1-v)+\left(u_{2}-\lambda l_{2}\right) \cdot x^{2}=0
$$

rieds that value of x, for which $\frac{t_{x}}{b_{x}}$ assumes the exiven value i. So we find:

If:

$$
\left(\left(t_{12}-\lambda \cdot b_{12}\right)^{2}-\left(\left(t_{1}-\lambda \cdot b_{1}\right)\left(c_{2}-2 \cdot l_{2}\right)<0,\right.\right.
$$

the quantity $\frac{b}{1-r}$ is complex. This cammot be the case if the value of 2 lies between $\frac{a_{1}}{b_{1}}$ and $\frac{a_{3}}{b_{2}}$. It ean only oceur if 2 is chosen either smaller than $\frac{a_{2}}{b_{1}}$ and $\frac{d_{2}}{b_{2}}$ or greater than both these values.

If λ is chosen such that

$$
\begin{equation*}
\left(c_{1}-\lambda \cdot b_{1}\right)\left(u_{2}-\lambda . b_{2}\right)-\left(c_{12}-\lambda \cdot b_{12}\right)^{2}=0 \tag{I}
\end{equation*}
$$

then this equation will yield the minimum value of λ. If we prit in this equation either:

$$
\lambda=\frac{u_{1}}{b_{1}} \text { or } \lambda=\frac{u_{2}}{l_{2}}
$$

then the first member will be negative. If we put:

$$
\lambda=\frac{t_{1 z}}{b_{1 z}}
$$

then the sign of the first member will be the same as that of $\left(a_{3} \quad 2 b_{1}\right)\left(n_{2}-\lambda b_{2}\right)$. The second member is positive, if $\frac{t_{12}}{b_{12}}$ is smaller than $\frac{a_{1}}{b_{1}}$ and also smaller than $\frac{a_{2}}{b_{2}}$. Consequently a value of λ must exist for which $(1)=0$ and for which therefore $\frac{u_{x}}{b_{x}}$ assumes in minimum value. This value lies between $\frac{a_{12}}{b_{12}}$ and $\frac{a_{1}}{b_{1}}$; or if $\frac{a_{2}}{b_{2}}<\frac{a_{1}}{b_{1}}$ between $\frac{a_{12}}{b_{12}}$ and $\frac{u_{2}}{b_{2}}$.

In the ease that $\frac{a_{12}}{b_{12}}$ is both greater thim $\frac{a_{1}}{b_{1}}$ and than $\frac{a_{2}}{b_{3}}$, the first member of equation (1) changes its sign in the same way, and the value of 2 . for which the first member vanishes, lies ako between $\frac{a_{1}}{b_{1}}$ and $\frac{u_{12}}{b_{12}}$ or if $\frac{a_{2}}{b_{2}}>\frac{a_{1}}{b_{1}}$ between ${ }^{\text {", }}$, and ${ }_{b_{3}}^{a_{12}} b_{b_{12}}$. So for a minimum
 It 2 has the vathe of $\lambda_{\text {a }}$ atoo the followiter fore mpations hold：
：1111

$$
\begin{gathered}
1-r^{\prime} \\
r^{\prime}
\end{gathered}=\quad \begin{aligned}
& \quad \|_{13}-\lambda_{n} h_{1=} . \\
& n_{1}-\lambda_{\mu} l_{1}
\end{aligned} .
$$

As $\frac{\pi}{1-r}$ must be pasitive beratme ar mast lie between 0 aml 1 ，
 agrees with what we hate deduod comerning the relative value of $\lambda_{1 m}$ and ${ }_{h_{12}}^{h_{12}}$ ．

We shombl have ohtathed the same results，if we had written the relation $\mu_{s}=H_{x}$ in the following form：

In the case that $a_{1}-2 h_{1}$ is positive namely this equation camot he satistied if the coefticient of x^{2} is positive；so if

$$
\left(\left(t_{1}-\lambda l_{1}\right)\left(c_{8}-\lambda l_{2}\right)-\left(c_{12}-\lambda b_{12}\right)^{2}>0 .\right.
$$

If the coedicient of x^{2} is zero，then this equation cith only be satistied if we pht：

$$
\left(u_{1}-\hat{\lambda} b_{2}\right)(1-x)+\left(d_{12}-\dot{l_{12}}\right) x=0 .
$$

On the other hand in the case 1 hat $n_{1}-\lambda_{1}$ is nerative this equation camot lie satistied if the coelticient of x^{2} is negative．This however also yields：

$$
\left(a_{1}-\lambda l_{1}\right)\left(a_{3}-\lambda b_{2}\right)-\left(a_{13}-\lambda b_{13}\right)^{2}>0 .
$$

If therefore we have the equation：

$$
\left(a_{1}-\lambda b_{1}\right)\left(a_{3}-\lambda b_{2}\right)-\left(a_{12}-\lambda b_{12}\right)^{2}>0
$$

then the value of 2 must be either less than the minimum value of $\frac{t_{x}}{b_{x}}$ or more than the maximum value．

We must however distinguish between a minimun value of 2 ． which oecurs at positive value of $\frac{r}{1-\ldots}$ and a minimum value of 2 corresponding to a negative value of $\frac{x}{1-x}$ ．The former，which really exists，requires that $\frac{a_{19}}{b_{19}}$ is both smatler tham $\frac{a_{1}}{b_{1}}$ and than $\frac{a_{2}}{b_{2}}$ ．The
latter camot of course he realized. Solving the equation

$$
\left(u_{1}-2 l_{2}\right)\left(u_{2}-2 l_{2}\right)-\left(t_{12}-i b_{22}\right)^{2}=0
$$

we find:
$\lambda=\frac{-\left(a_{1} b_{3}+a_{2} b_{1}-2 a_{12} b_{12}\right) \pm V\left(\left(a_{2} b_{1}-a_{1} b_{2}\right)^{2}+4\left(a_{1} b_{12}-a_{12} b_{1}\right)\left(a_{2} b_{12}-b_{22} b_{12}\right)_{1}^{2}\right.}{2\left(b_{1} b_{2} b_{12} b_{12}\right)}$,
This equation ean be satisfied by a real value of λ. if:

$$
\frac{b_{1} b_{2}}{4 b_{12}^{2}}\left(\frac{a_{1}}{b_{1}}-\frac{a_{2}}{b_{2}}\right)^{2}+\left(\frac{a_{1}}{b_{1}}-\frac{a_{12}}{b_{12}}\right)\left(\frac{d_{2}}{b_{2}}-\frac{a_{12}}{b_{12}}\right)>0 .
$$

This equation is certainly satistied if $\frac{a_{12}}{b_{12}}$ is both smatler than $\frac{u_{1}}{b_{1}}$ and than $\frac{a_{3}}{b_{2}}$, but it may also be satisfied in other cases. Let us

$$
\left(\frac{a_{12}}{b_{12}}-\frac{a_{2}}{b_{2}}\right)\left(\frac{a_{1}}{b_{1}}-\frac{a_{12}}{b_{12}}\right)<\frac{b_{1} b_{2}}{4 b_{12}{ }^{2}}\left(\frac{a_{1}}{b_{1}}-\frac{a_{2}}{b_{2}}\right)^{2}
$$

a minimum value of 2 occurs indeed, but in this case it corresponds, according to our previous observations, to a negative value of $\frac{x}{1-a}$. We arrive at the same result starting from the equation of ('ont. II p. 20.

For a ternary system we have, putting $\frac{u_{x y}}{b_{x y}}=\lambda$:
$\left(a_{1}-2 b_{1}\right)(1-x-y)^{2}+\left(a_{2}-2 b_{2}\right) x^{2}+\left(a_{3}-i . b_{3}\right) y^{2}+2\left(a_{12}-2 b_{12}\right) x\left(1-x^{2}-y\right)+$ $+2\left(a_{13}-\lambda b_{13}\right) r(1-x-y)+2\left(a_{23}-\lambda b_{23}\right) \cdot y=0$.

We may represent this by the sum of three squares:

$$
\begin{aligned}
& \frac{\left[\left(a_{1}-\lambda b_{1}\right)(1-x-y)+\left(\left(t_{12}-\lambda b_{12}\right) x+\left(a_{13}-\lambda b_{13}\right) y\right]^{9}\right.}{\left(a_{1}-\lambda l_{1}\right)}+ \\
& +\frac{\left[x\left\{\left\{\left(a_{2}-\lambda l_{2}\right)-\frac{\left(a_{12}-\lambda b_{12}\right.}{a_{1}-\lambda b_{1}}\right\}+\eta\left\{\left(u_{23}-\lambda l_{23}\right)-\frac{\left(u_{12}-\lambda l_{12}\right)\left(u_{13}-\lambda b_{13}\right)}{a_{1}-\lambda b_{1}}\right\}\right]^{3}\right.}{\left(u_{2}-\lambda l_{3}\right)-\frac{\left(u_{12}-\lambda b_{12}\right)^{2}}{u_{1}-\lambda b_{1}}}
\end{aligned}
$$

In the case that $a_{1}-2 b_{1}>0$ and $\left(a_{1}-\lambda b_{1}\right)\left(a_{2}-\lambda b_{2}\right)>\left(a_{12}-2 b_{12}\right)^{2}$, this equation (amot be satistied if the coeffecent of y^{2} is positive. If this coefficient decreases to zero, then the equation is satisfied by only one set of values for x and y, mamely by those values for
 of $y^{\text {z }}$ is merative, then at holls exists (atomio arotion) Which intheates
 reduced to one point as is the case if the coedticiens of 9^{3} vathishes, then λ is for that pmint it minimmon, reserelively at masimm, The minimmon value of λ suthsties therefore the equation:

$$
\begin{aligned}
& \left(\left(n_{1}-\lambda l_{1}\right)\left(n_{2}-\lambda l_{3}\right)-\left(n_{12}-\lambda l_{22}\right)^{2}\right\}:\left(n_{1}-\lambda l_{1}\right)\left(n_{3}-\lambda l_{2}\right)-\left(n_{13}-\lambda l_{12}\right)^{2}- \\
- & \left(\left(n_{1}-\lambda l_{1}\right)\left(n_{23}-\lambda l_{22}\right)-\left(n_{12}-\lambda l_{12}\right)\left(n_{13}-\lambda l_{13}\right)_{1}^{2}=0 .\right.
\end{aligned}
$$

or

$$
\left.\begin{array}{lll}
u_{1}-\lambda l_{1}, & a_{13}-\lambda l_{13}, & a_{13}-\lambda h_{13} \\
a_{13}-\lambda l_{13}, & a_{3}-\lambda l_{3}, & a_{33}-\lambda l_{23} \tag{2}\\
u_{13}-\lambda l_{13}, & a_{23}-\lambda l_{23}, & a_{3}-\lambda l_{3}
\end{array} \right\rvert\,=0 .
$$

For the determination of x and !/ we have moreover the equation:

$$
\left(\left(a_{1}-\lambda b_{1}\right)(1-x-y)+\left(d_{13}-\lambda b_{12}\right) \cdot r+\left(u_{13}-\lambda b_{13}\right) y=0\right.
$$

and the equation, which follows from the other square when it is equated to zero.

Another way in which we might have redued the equation $u_{x y}-2 x_{x y}=0$ to the sum of thee squares, would hase yielded the following fwo equations for the determination of and $\%$.

$$
\begin{aligned}
& \left(a_{12}-\lambda b_{13}\right)(1-x-y)+\left(u_{3}-\lambda b_{2}\right) x+\left(a_{23}-\lambda b_{23}\right) y=0 \\
& \left(a_{13}-\lambda b_{13}\right)(1-x-y)+\left(a_{23}-\lambda b_{23}\right) x+\left(a_{3}-\lambda b_{3}\right) y=0 .
\end{aligned}
$$

alled
Eliminating $1-x-y, x$ and y from these three equations in which they ocem lineaty, we find again equation (2).

In order to calculate x and y we may derive the following relations from these three equations.
Or^{\prime}

and

$$
\begin{aligned}
& \frac{1-x-!}{a_{13}-\lambda b_{23},} \quad a_{3}-\lambda b_{3} \\
& a_{13}-\lambda b_{13}, \\
& a_{13}-\lambda b_{13}
\end{aligned}\left|=\left|\begin{array}{ll}
a_{3}-\lambda b_{3}, & a_{13}-\lambda b_{13} \\
a_{13}-\lambda b_{13}, & a_{1}-\lambda b_{1}
\end{array}\right|=\frac{y}{\mid a_{13}-\lambda b_{13},} \begin{array}{ll}
a_{23}-\lambda b_{23} \\
a_{1}-\lambda b_{1}, & a_{29}-\lambda b_{12}
\end{array}\right.
$$

In order that 2 have a minimum value for positive values of a, y and $1-x-y$ the following relations must hold:

$$
\begin{aligned}
& a_{1}-\lambda b_{1}>0 \\
& u_{2}-\lambda b_{3}>0 \\
& a_{3}-2 b_{3}>0 \\
& \left(u_{1}-\lambda b_{1}\right)\left(u_{2}-\lambda b_{2}\right)-\left(a_{18}-\lambda l_{12}\right)^{3}>0 \\
& \left(a_{1}-2 b_{1}\right)\left(a_{3}-2 b_{3}\right)-\left(a_{13}-2 b_{13}\right)^{2}>0 \\
& \left(a_{3}-\lambda b_{2}\right)\left(a_{3}-2 b_{3}\right)-\left(c_{23}-\lambda b_{23}\right)^{2}>0 \\
& \left(u_{12}-2 u_{12}\right)\left(u_{13}-2 u_{13}\right)-\left(u_{1}-2 u_{1}\right)\left(u_{23}-2 u_{23}\right)>0 \\
& \left(\left(t_{12}-2 . b_{12}\right)\left(t_{23}-\lambda l_{23}\right)-\left(t_{2}-2 h_{12}\right)\left(t_{13}-\lambda l_{13}\right)>0\right. \\
& \left(t_{13}-\lambda b_{13}\right)\left(a_{23}-\lambda l_{23}\right)-\left(t_{3}-\lambda b_{3}\right)\left(t_{12}-\lambda b_{12}\right)>0,
\end{aligned}
$$

and 2 , musi satisfy equation (2).
The first set of three inequalities indicates, that this value of 2. must be lower than that of the components. The second set indieates that it must be lower than the minimum value of 2 for each of the pairs of components of which the ternary system consists. The third set must be fulfilled in order that x, y and $1-x-y$ be positive.
Let us assume $\frac{a_{12}}{b_{13}}<\frac{U_{13}}{b_{13}}<\frac{a_{23}}{b_{23}}$ and suppose that the values of $\frac{a_{1}}{b_{1}}$, $\frac{c_{2}}{b_{3}}$ and $\frac{a_{3}}{b_{3}}$ are higher than that of $\frac{c_{23}}{b_{23}}$ without deciding anything about the relation between the values of the quantities $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{3}}$ and $\frac{a_{3}}{b_{3}}$.

According to our assumption the expression

$$
\left(c_{13}-\lambda \cdot b_{13}\right)\left(c_{13}-\lambda \cdot b_{13}\right)-\left(a_{1}-\lambda \cdot b_{1}\right)\left(c_{23}-\lambda \cdot b_{23}\right)
$$

is negative for $\lambda=\frac{t_{12}}{b_{13}}$ and also for $\lambda=\frac{u_{13}}{b_{13}}$ and it is positive for $2=\frac{a_{23}}{b_{23}}$ and for $\lambda=\frac{a_{1}}{b_{1}}$. This is perhaps best illustrated by a graphieal representation.

Here the points 12 and 13 represent the values of $\frac{a_{12}}{b_{12}}$ and $\frac{a_{23}}{b_{13}}$ and the parabolic curve passing through these points the value of

$$
\left(a_{13}-\lambda \cdot b_{12}\right)\left(t_{13}-\lambda b_{13}\right) .
$$

In the same way the points 23 and 1 represent the value of $\frac{a_{23}}{b_{23}}$ and of $\frac{a_{2}}{b_{1}}$ and the parabolic curve passing throty these point. the value of

$$
\left(1,-i i_{1}\right)\left(1_{2}, \cdots i b_{2}\right)
$$

 ration is there therefore perstive.

$$
\left(11_{12}-2 l_{12}\right)\left(1_{12}-l_{20}\right)-\left(1_{2}-\lambda 1_{12}\right)\left(1_{12}-\lambda 1_{10}\right)
$$

har lhe following shater:

 betwern the priats 13 athd 23 ath that this expresion is pmstive for biesher values of \bar{x}.

The thind exprention:

$$
\left(n_{13}-\lambda \cdot l_{13}\right)\left(n_{23}-\lambda \cdot l_{23}\right)-\left(n_{3}-\lambda \cdot l_{3}\right)\left(l_{13}-\lambda \cdot l_{12}\right)
$$

 zero, it will in arneral not vielal a real root; at leat not between 12 athl 3.

The mpaphical representation of this thind expression has the following form:

where the parabola passing throush the points 13 and 23 lies everywhere hifther that the other one. The first mentioned patabolat would, if there shomblexist roots, deseend below the secombl one between the points 13 and 23, and so the two roots wonld be between those points. But in this case also the thime expreswion is positive alowe a certain value of λ. below ${ }_{U_{23}}^{l_{23}}$. Or both parabolace might also intervect on the
left side of 12 and on the right side of 1 . Also in this citce this expression is positive and even within broader limits.

In the case that a value of λ. for which the left hand member of equation (2) vamishes, is higher thath the value discossed for these three expressions, a mimiman valne of λ will exist, which represents. a really ocemring minimmm critiond temperature. Lef us write eghation (2) in the following form:

$$
\begin{aligned}
& \left\{\left(a_{1}-\lambda b_{1}\right)\left(t_{2}-\lambda b_{2}\right)-\left(t_{18}-\lambda b_{13}\right)^{2}\right\}\left\{\left(l_{1}-\lambda l_{1}\right)\left(c_{3}-\lambda l_{2}\right)-\left(t_{13}-\lambda l_{13}\right)^{2}\right\}-
\end{aligned}
$$

The first member is negative if we choose for the value of λ cither the minimum value of 2 for the pair 1 and 2 , or for the pair 1 and 3. We will denote these minimum values by $\left(\lambda_{m 1}\right)_{12}$ and $\left(\lambda_{m}\right)_{13}$.

On the other hand the first member is positive if we choose for \hat{x} a value for which the expression, the square of which must be taken, vanishes, - this holds however only in the catse that the value on this last root is lower than that of the foratities $\left(\lambda_{m}\right)_{1 \pm}$ and $\left(\lambda_{m}\right)_{13}$. In this ease the equation (2) hats a root which satisfies all the requirements for a minimum value of 2 at positive values of $1-x-y$, t and $\%$.

As an instance we choose the following numeric values:

$$
\begin{aligned}
& b_{1}=1.6, \quad b_{2}=1.4, \quad b_{3}=1 \quad, \quad b_{12}=1.5, \quad b_{13}=1.3, \quad b_{23}=1.2 \\
& \frac{a_{1}}{b_{1}}=3 \quad, \quad \frac{u_{2}}{b_{2}}=3.2, \quad \frac{a_{3}}{b_{3}}=3.372, \quad \frac{u_{12}}{b_{12}}=2.8, \quad \frac{u_{13}}{b_{13}}=2.846, \quad \frac{u_{23}}{b_{23}}=2.9103 \\
& a_{1}=4.8, \quad a_{2}=4.48, \quad a_{3}=3.372, \quad a_{12}=4.2, \quad a_{13}=3.7 \quad, \quad a_{23}=3.4924
\end{aligned}
$$

From this we find:

$$
\begin{aligned}
& \left(\lambda_{n}\right)_{12}=2.933 \cdots \cdot \\
& \left(\lambda_{m 1}\right)_{13}=2.962 \cdots \cdot \\
& \left(\lambda_{m}\right)_{23}=3.15 \cdots \cdot
\end{aligned}
$$

A value for $\lambda<2.933 \ldots$ makes therefore the three following expressions positice:

$$
\begin{aligned}
& \left(u_{1}-\lambda b_{1}\right)\left(u_{2}-\lambda b_{2}\right)-\left(\left(t_{13}-\lambda . b_{12}\right)^{2}\right. \\
& \left(a_{1}-\lambda . b_{2}\right)\left(t_{3}-\lambda b_{3}\right)-\left(u_{33}-\lambda . b_{23}\right)^{2} \\
& \left(a_{3}-\lambda b_{3}\right)\left(u_{1}-\lambda b_{1}\right)-\left(u_{31}-\lambda \cdot b_{31}\right)^{2}
\end{aligned}
$$

and
For the value of λ for which the quantity:

$$
\left(a_{12}-\lambda b_{12}\right)\left(a_{13}-\lambda b_{13}\right)-\left(c_{1}-\lambda b_{1}\right)\left(d_{23}-\lambda b_{23}\right)
$$

is positive we find: $\lambda>2.884 \ldots$
For the value for which the expression

$$
\left(a_{23}-\lambda \cdot b_{23}\right)\left(t_{31}-\lambda b_{27}\right)-\left(a_{2}-\lambda \cdot b_{2}\right)\left(d_{31}-\lambda b_{31}\right)
$$

is positive we find : $\lambda>2.855$ and the last of the given expressions is positive within the limits $\frac{a_{12}}{b_{12}}<\lambda<\frac{a_{3}}{b_{8}}$.

Ther salne of 2 for which the equation (3) vanishes, lies therefore

With the aid of this value of λ_{n} we maty catenbate the values of
 of approximation with which $\lambda_{\text {te }}$ is determined is not high, the condinates of the point to which λ.n relates, are only known inatecumately.

These coordinates however may be calloblated directly by means of the following equations:

We whain thres eqnations when we determine the eentre of the ellipse

$$
u_{x y}=2 b_{x y}
$$

amd when we eliminate the gnantity 2 from the equations $f^{\prime \prime}=0$ and $t^{\prime \prime}{ }_{y}=0$. So we lind:

$$
\begin{aligned}
& 2=\begin{array}{l}
\left(u_{1}-u_{12}\right)(1-r-!)+\left(n_{12}-u_{2}\right)!+\left(l_{13}-a_{23}\right)! \\
\left(l_{1}-l_{12}\right)(1-r-!)+\left(l_{12}-l_{2}\right)!+\left(l_{13}-l_{13}\right)!
\end{array}= \\
& =\frac{\left(l_{1}-l_{23}\right)\left(1-l^{\prime}-!\right)+\left(l_{13}-l_{23}\right)!!+\left(l_{13}-l_{3}\right)!}{\left(l_{1}-l_{13}\right)(1-v-!!)+\left(l_{13}-l_{28}\right)!!+\left(l_{13}-l_{3}\right)!} .
\end{aligned}
$$

Introlueing the comdition, that the eentre lies on the ellipse itself we get the given equations.

In the case that $b_{22}=\stackrel{b_{1}+b_{3}}{\underline{2}}, b_{13}=\frac{b_{1}+b_{2}}{2}$ and $b_{23}=\frac{b_{2}+b_{3}}{2}$ which equations may be satisfied approximately, then the locus of the centres is greatly simplified and may be written as follows:

$$
\begin{aligned}
& \frac{\left(a_{1}-a_{12}\right)(1-c-\eta)+\left(a_{12}-a_{2}\right) \cdot v+\left(a_{13}-a_{13}\right)!!}{l_{1}-l_{2}}= \\
= & \frac{\left(a_{1}-a_{13}\right)(1-c-!)+\left(u_{12}-u_{23}\right) \cdot k+\left(n_{13}-u_{3}\right)!!}{b_{1}-l_{3}} .
\end{aligned}
$$

It is therefore a straight line, at least in approximation. With the given mumeric values we find:

$$
\frac{0.6(1-x-y)-0,28 x+0,2076 y}{0,2}=\frac{1,1(1-x-y)+0,7076 x+0,328 y}{0,6}
$$

Or°

$$
0,7(1-x-11)-1,5+76 x+0,2948!=0 .
$$

With this simplification the detemmation of the coortinates comes therefore to the same as the determination of the point of intersection of a conic section, e.g.
with a given stragh line.
In this catse we find:
and

$$
\begin{aligned}
& \frac{x}{1-x-y}=\begin{array}{l}
1 \\
2 \\
\frac{y}{1-x-y}
\end{array}=\frac{1}{4}
\end{aligned} .
$$

In fiat the siven numeric values for ${ }_{23}$ and $"_{3}$ were chosen such that we might timb simple values for the coordinates.
lecause of the asymmetry round the mixture with minimum critical temperature we might of course have expected that the centre of the ellipses which vary with the temperature, would change its place.

For the theory of hinary systems it wats necessary to introdnce the quantity a_{12}, whose value we are not yet able to deduce from the properties of the components. From the calculation of $\left(\lambda_{m}\right)_{12}$ by meaths of the equation

$$
\left(u_{1}-\lambda b_{1}\right)\left(u_{2}-\lambda b_{2}\right)-\left(u_{12}-\lambda b_{12}\right)^{2}=0
$$

follows, that for substances with a minimum critical temperature this quantity cammot be equal to $V_{\text {teng, }}$ but that it mas be less. If it were equal to $V \overline{u_{2} \pi_{3}}$ the equation would yield at value $2=0$. Moreover it would follow from $a_{1} u_{2}=a_{12}{ }^{2}$ that $\frac{"_{1}}{b_{1}} \cdot \frac{u_{2}}{b_{2}}$ would be greater that $\frac{d_{12}{ }^{2}}{b_{12}}$, as $b_{1} b_{2}$ in any ase will he probably less than $b_{12}{ }^{2}$.

For the application of our theory on a ternary system therefore, also knowledge of the fumatities $\left\|_{12}, \quad\right\|_{13}$ and a_{23}, is required, which howerer most be assumed to be known from the knowledere of binary systems.

The theory of the ternary systems therefore does not require any new data, above those of the theory of hinary systems.

Proceedings Royal Acad. Ainsterdim. Vol. V.

 X". + the the ('ommmonications of the Physical latheratory at daden hy Prot. H. Kismataval Owam

 equations eath of them combainime ont variable.

 and we want to dednce from her observations the ednation which represents the mos probable relation between these fulatities insess tigated. As in the literature on this subjeet I have not fomel a gencral solution for such a case, it may be weful to give it here. ${ }^{1}$)

1) Literature on this subject:
(Gus. H. Kumyet. Reduction of observation equations which contain more than one oheerved quatity. The Analyst July, $1 \times 7!9$ (Vol, VI, N", f).

1 have not been athe to tind this volume of the periodical in Hollant.
Membun. The Determination, by the Methot of Least Sytars, of the relation between two rariables, conneted by the equation $V^{\prime}=A \cdot A^{\prime}+B$, both variables being liable to errors of observation. U. S. Coast and Geodetic Survey, Report 18! 0 . p. (is7. A Texthork on the Method of Least Squares, \& 107.

Here an elecrant solution of the problem is given for the case in which a linear relatinn exists between the two measured guantities.

Jues Asmbap. Sur la Mellode des moindres cartes. C. Fi. 1. 192, p. 1400, 1896. The author gives a solution for the ease when:

$$
I^{\prime}\left(a, b, c \ldots ; t_{i}\right)=\boldsymbol{N}_{i}
$$

in which ti and x_{i} represent measured quantities, and $r, b, c \ldots$ are to be determined.

Ravesshear. The use of the Method of Least squares in Plysics. Nalure, March $21,1901, \mathrm{p}$. 49.

The author, apparently not acquainted with the literature mentioned above, points out that in treating equations between several measured quantities, we must make allowance for the fact that each of these guantities has an error of observation, and he gives a graphic solution for the case in which a linear relation exists between two guantitics, some supposition regarding the accuracy of the measurements of each of those quantities being assumed.
K. Pearsos. On Lines and Planes of Closest Fit to Systems of Points in Space. Phil. mag. (6) Vol. 2, p. 559, Nov. 1901.

The author gives an elaborate essay on the lines and planes (if necessary in a higher-dimensional space) which are such that the sum of the squares of the perpendicular distances between a number of points not situated in a straight line or a plane, and those lines or planes becumes as small as possible.
§2. Suppose, we have measured sombe series of the fuantities $L, M, \Lambda^{\top} \ldots$, between which the following relation exists:

$$
\begin{equation*}
F(L, I, N \ldots ; \quad \lambda, I, Z \ldots)=0 \tag{1}
\end{equation*}
$$

where $1,5, Z . .$. are mbnown grantities which we want to calcolate. We assmbe that the mmber of equations between the ohserved quantities is lareer than the number of mbleown quantities, so that we watat to eatcolate the most probable values of $X, Y, Z \ldots$ by means of the method of least squares.

Let $L_{1}, J_{1}, \Lambda_{1} \ldots$ he a set of values helonging together, ats yielded by the olnervations,
$l_{1}, m_{1}, n_{1} \ldots$ the empos matle in these olservations,
$m_{l_{1}}, m_{n_{1}}, m_{n_{1}} \ldots$. the mean crors in those measurements L_{1}, $H_{1}, V_{1} \ldots$. , which we assume to be known before hatard,
$X_{0}, \gamma_{n}, Z_{0} \ldots$ a set of : mproximate values for $X, Y, Z \ldots$ ar, $y, z \ldots$ the corrections to be calculated, which must be applied to those approximate values.
Each measmement gives then according to (1) an equation:
$\boldsymbol{I}_{1} \cdot l_{1}+\boldsymbol{J}_{1} \cdot m_{1}+\boldsymbol{V}_{1} \cdot n_{1} \ldots=-F_{1}-\boldsymbol{I}_{1} \cdot x-\boldsymbol{Y}_{1} \cdot y-\boldsymbol{Z}_{1} \cdot z \ldots \equiv \boldsymbol{y}_{1} \cdot(2)$ where:

$$
\begin{aligned}
& \boldsymbol{L}_{1}=\binom{\partial V^{\prime}}{\partial L}_{\begin{array}{c}
L=I_{1}, M=M_{1} \\
X=\lambda_{n}, Y=Y_{0} \ldots
\end{array}} \\
& \mathbf{X}_{1}=\left(\frac{\partial F^{\prime}}{\partial \mathrm{X}}\right)_{I=I_{1}, M=M_{1} \ldots} \\
& r=K_{11}, Y-y_{11} \ldots \\
& F_{1}=f\left(L_{1}, M_{1}, \lambda_{1}, \ldots ; \Lambda_{0}, Y_{n}, Z_{0}, \ldots\right) .
\end{aligned}
$$

Yet $, r,!, z, \ldots$ must be chosen so that ${ }^{1}$)

$$
\begin{equation*}
\leq\left(\frac{l_{1}^{2}}{m_{i_{1}}^{2}}+\frac{m_{1}^{2}}{m_{m_{1}}^{2}}+\frac{n_{1}^{2}}{m_{n_{1}}^{2}}+\ldots .\right) \text { is a minimum. } \tag{3}
\end{equation*}
$$

If now the eoefticients $I, Y, Z \ldots$, are known, what errors, $l_{1}, m_{1}, n_{1} \ldots$ correspond to the observel quantities $L_{1}, V_{1}, \Lambda_{1} \ldots$ It is evident that various sets of qumaties $L, J, N \ldots$ may have given rise to the same sets of quantities $L_{J_{1}}, I_{1}, I_{1} \ldots$, and that those values of $L, I /, \Lambda^{r}$ and hence of l_{1}, m_{1}, n_{1} are the most probable for which

$$
\frac{l_{1}^{3}}{m_{1_{1}}^{2}}+\frac{m_{1}^{2}}{m_{m_{1}}^{3}}+\frac{n_{1}^{3}}{m_{n_{1}}{ }^{3}} \ldots \text { is al minimum }
$$

[^40]whild we have the relation:
$$
\boldsymbol{L}_{1} l_{1}+\boldsymbol{M}_{2} m_{1}+\boldsymbol{N}_{1} n_{1}+\ldots=\boldsymbol{n}_{1}=\text { ionstemt. }
$$

We thes obtain $l_{1}, m_{1}, m_{1} \ldots$, fionn

$$
\begin{aligned}
& \frac{l_{1}}{m_{1}^{3}}+\boldsymbol{K} \cdot \boldsymbol{L}_{1}=0 \\
& \frac{m_{1}}{m_{m_{1}}^{2}}+\boldsymbol{K} \cdot \boldsymbol{\boldsymbol { I } _ { 1 }}=0 \\
& \frac{n_{1}}{m_{n_{1}}^{3}}+\boldsymbol{K} \cdot \boldsymbol{N}_{1}=0
\end{aligned}
$$

where:

$$
\kappa=-\frac{\boldsymbol{\eta}_{1}}{\boldsymbol{L}_{1}{ }^{2} m_{1}{ }^{2}+\boldsymbol{M}_{1}{ }^{2} m_{m_{1}}{ }^{2}+\boldsymbol{N}_{1}{ }^{2} m_{n_{1}}{ }^{2} \ldots}
$$

With this (3) becomes

$$
\begin{equation*}
\Sigma \frac{\boldsymbol{y}_{1}{ }^{2}}{\boldsymbol{L}_{1}{ }^{2} m_{1}{ }^{2}+\boldsymbol{M}_{1}{ }^{2} m_{m_{1}}{ }^{2}+\boldsymbol{N}_{1}{ }^{2} m_{n_{1}}{ }^{3} \ldots \text { is a minimum } . ~} \tag{4}
\end{equation*}
$$

If we define the weight of the ohservation equation by:

$$
\begin{equation*}
!_{1}=\boldsymbol{L}_{1}{ }^{2} m_{l_{1}}{ }^{2}+\boldsymbol{M}_{1}^{2} m_{m_{1}}{ }^{2}+\boldsymbol{\boldsymbol { N }}_{1}^{2} m_{n_{1}}{ }^{2} \cdots \cdot \tag{5}
\end{equation*}
$$

then (t) is reduced to

$$
\Sigma f_{1} v_{1}{ }^{2} \text { is a minimum, }
$$

and the equations for the determination of x, y, z, \ldots : become:

$$
\begin{aligned}
& \Sigma a_{1} \boldsymbol{X}_{1} v_{1}=0 \\
& \Sigma!_{1} \boldsymbol{Y}_{1} \boldsymbol{v}_{1}=0 \\
& \Sigma!_{1} \boldsymbol{Z}_{1} \boldsymbol{v}_{1}=0
\end{aligned}
$$

or^{\prime} :

$$
\begin{aligned}
& [!\mathbf{\Sigma}]] x+[!\mathbf{\Sigma} \boldsymbol{Y}] n+[!\mathbf{\Sigma} \boldsymbol{Z}] z \ldots+[!\mathbf{\Sigma} p]=0
\end{aligned}
$$

$$
\begin{align*}
& \left.[!\boldsymbol{Z} \boldsymbol{X}]_{c}+[!\boldsymbol{Z} \boldsymbol{\zeta}]_{!}+[!\boldsymbol{Z} \boldsymbol{Z}] z \ldots+[!\boldsymbol{Z} F]=0\right\} \tag{b}
\end{align*}
$$

where, according to the usual notation:

$$
\begin{aligned}
& {\left[a_{\mathbf{I}}\right]=g_{1} \boldsymbol{X}_{1}{ }^{2}+g_{2} \boldsymbol{X}_{2}{ }^{2}+\ldots \cdot+g_{n} \boldsymbol{X}_{n}{ }^{2}} \\
& {[g \boldsymbol{X}]=g_{1} \boldsymbol{X}_{1} \boldsymbol{Y}_{2}+g_{3} \boldsymbol{X}_{2} \boldsymbol{Y}_{2}+\ldots+\quad+g_{n} \boldsymbol{X}_{n} \boldsymbol{Y}_{n}}
\end{aligned}
$$

if n stands for the number of observations.
We hence arrive at this very simple result, that from the equations

$$
\begin{array}{ll}
\boldsymbol{X}_{1} x+\boldsymbol{Y}_{2} y+\boldsymbol{Z}_{1} z+\ldots & r_{1}=0 \\
\boldsymbol{X}_{2} \cdot r+\boldsymbol{Y}_{2} y+\boldsymbol{Z}_{2} z+\ldots & F_{z}=0
\end{array}
$$

rednced to the linear form, the normal equations are deduced in the same way as when the quantities $F_{1}, F_{2} \ldots$ are directly derived
from the observations, if we accord the weigh determined by equation (5) to eath of those observation equations ${ }^{1}$).

This treatment of the equitions with several observed quantities agrees with the solution for two meatured quantities given by Axprabr. For the case that a linear relation exist between two measured guantities this one is simpler tham Merrmax's solution.
$\$ 3$. In the following way it is easily shown that the mean error in the result is also fombl arcording to the usual rules, ats applied to equations with one measured quantity. From the normal equations (6) we find

$$
x=\ell_{1} F_{1}+\varkappa_{2} h_{2}+\boldsymbol{\varkappa}_{3} H_{3} \ldots+\ell_{n} F_{n}
$$

Here x is expressed as a function of the measured quantities $L_{1}, M_{1}, \Lambda_{1} \ldots L_{2}, I_{2}, \lambda_{2} \ldots$

The mean error in x is obdained from:
${ }^{1}$) For the equations, which Schalhwisk used (Comm. Nr. 70, Continued, Proceedings June 1901; Thesis for the Doctorate, 1r. 115) viz.

$$
P V_{20}^{r}-1.07323=B_{s_{20}}(d-0.93177)+C_{S_{20}}\left(l^{2}-0.868\right)
$$

where P and $V_{20}^{r}=\frac{1}{d}$ have been measured, $B \Sigma_{80}$ and $C S_{0,0}$ are to be calculated according to the method of least squares, we find from (b) the weinh of cach observation equation:
if $\mu_{p_{1}}$ and $\mu_{d_{1}}$ respectively represent the mean relative error in the pressure- and density measurement, and μ_{0} the mean relative error for a measurement to which the weight 1 is assigned. If we put $\mu_{\mu_{1}}=\mu_{d_{1}}=\mu_{0}\left(=\frac{1}{10000}\right)$, then if:

$$
\begin{aligned}
& d=6.2394: \quad g=\frac{1}{2.23} \\
& d=53.988: \quad g=\frac{1}{2.56}
\end{aligned}
$$

The terms with d will have little influence in the value for g, as long as d loes not become very large, as appars a priori from the fact that the coeflicients $B S_{20}$ and Cssa are small. (Comp, Sonalmwis's Thesis for the Doctorate p. 11:\%, where he gives: $B S_{20}=0.000667^{2}, \quad\left(S_{20}=0.00000099^{3}\right)$. In this case errors of observation in a will have little influence on the sccond member, and this second member may be considered as precisely known. As the values of $P V_{20}$ differ comparatively little for the different densities at which the observations are made, an equal weight has been assigned to each observation equation. This is the more justified if we consider that he was able to measure the ligher pressures with greater precision than the lower, as in the former in adding the measured lengths of each column of mercury the accidental errors partly neutralise each other.
$m_{t}{ }^{2}=\boldsymbol{\mu}_{1}{ }^{2} \boldsymbol{I}_{1}{ }^{2} m_{1}{ }^{3}+\boldsymbol{\mu}_{1}{ }^{2} \boldsymbol{M}_{1}{ }^{2} m_{1, m_{1}}{ }^{2}\left|\boldsymbol{\mu}_{1}{ }^{5} \boldsymbol{N}_{1}{ }^{2} m_{1}{ }^{2}\right| \ldots \boldsymbol{\mu}_{7}{ }^{2} \boldsymbol{L}_{2}{ }^{5} m_{1}{ }^{2} \uparrow \ldots$
${ }^{\prime \prime}$

This form is the stand an that obatamed in mpations will ome

 termined.

Mineralogy. - "On the botutrient of disthene athl "fi sillimmente' at high tempretelure." By E. II. M. Berkmas. (Commmateated by Prof. Schrobionk vis derk Kolk).
In matme oreme three varieties of almanimm-silieate $\left(\mathrm{Al}_{1}, \mathrm{Ni} \mathrm{O}_{6}\right)$ i.e. disthene, andahsite and sillimanite. Sillimanite aml ambalusite the orthoromblic: disthene however triclinic. So the fwo tirst show paballel, the last obligue extinction.

According to the experiments made by Varsinsky ${ }^{2}$), disthene is said th turn into sillimante, at abont 13500 degrees; the same temperature is sable to turn also andalusite into sillimanite. As a proof that they hat actually become sillimante, he urged that, whereas before being heated, their bardness and specife gravity diftered, they now showed the same. Moreover the extinction of disthene had become parallel.

The results to which he came are these:

N゙いte.	S. G. before heating.	$\begin{gathered} \text { Sif } \\ \text { after horlinge. } \end{gathered}$
Sillimanite	$\begin{aligned} & 3.0 \% 5 \\ & 3.286 \end{aligned}$	il.
Disthene	$\begin{aligned} & 3.51 \\ & 3.48 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 3620 \end{aligned}$
Andalusite	285	3.163

Direted by Prof. Schroeder vix der Kotr, I experimented, as stated by Varandskr, and came to the following results, as to their specitio gravity:
${ }^{1}$) See for instance Merrimax, Methon of least Squares, p. p. 83 and 88.
\Rightarrow See Bulletin te la Sociéte Min. Ile France (1xs9 de 1890).

Nitme.	S. G. before heating	S. 6. after heatinn
Sillimanite	3.152	3.157
	3.161	3.159
Disthermo	3 59	3. 240
	356	3.236
Andalusite	3.158	3.149
	3168	3.150

To determine the sperifie gravity, I made, as much as possible, use of the floating methot. The fluids I used were methyl-iodide (spec. gr. 351) and acetylenctetraloromide (spec. graw. 2.84). The - instroment I used to fix these spec. qrat. Was the "Westphal-balance", except when the fluids were too light, in which catse I mate use of a xylolareometer.

Consequently the results, as shown above, are pretty much the same, as those of Vervadsky.

The extinction of disthene, alter the heating, had hecome parallel also, however before the melting temperature of copper (1100 degr: (. .) had been reached.

What is a strong argument agamst the change of disthene into sillimanite is its index, which I fixed in at waty, indicated by Prof. Sohromber vas der Kolk, i.e. by using fluids of wheh the refractive index is known ${ }^{1}$). They were: methyl-iodide ($n=1.7 \frac{1}{2}$); monobro-mine-naphtaline $(n=1.66)$; monochlorine-naphtaline $(n=1.64)$; mono-iodine-benzol ($n=1.62$) and mixtures of them. The index of those fluids, I have fixed by using a Pulfich with changeable refracting angle.

Thus I conld fix the index of very small pieces and moreover acepuire a precision up to the second decimal.

I have fixed the index only in the direction of the c-axis. The donble refiaction not being great, this was suffeient. That index is the greatest, since in sillimanite, the ellipse of intersection, with the indicatrix, has its long axis in the flirection of the c-axis,

Before the heating process, the index of sillimanite was 1.64. Heating did not in the least affeet it.

Andahsite remains equally maffecterl by it, it has an index of 1.64 .

[^41]The highes fomperather for which I hate mbmithed my materials.

As investigration materiad for dishone, I mad the bhe varicly

 \therefore far helow that of sillimather

If distheme hat atedally bureed into sillmander, it shomblatse keph its index (1.65) : sillimante sumbitted for the same femperature, not chamenge its index in the least. So this shows that heating does mot turn disthene into sillimante.

To try whether lison wombl bring the index to 1.68 , I pros coeded thus:

I took several eathen muss, put in earh a piece of disthene fogether with other metals of which the melting temperatures are kown, lacated the metals to a temperatme that would keep them for a momen in melting eomdition and thas ohtaning constant temperatures, I conled fix the indices of disthene, which proved to be gradnally lower. Lower Whan 1.62 , it coubl not be reduced, in spite of continmed heating. On the subjoined diagram, the diflerent temperatures and indiees are stated. On one of the axes are the intiees, on the other the degrees fiom handred to humbed. The line stating from 1.68 , rmming patallel with the axis of the lemperatures, represents the direction of the intes of sillmanite. That line remaned eomsant. The broken line matlis the diexetion of the index of disthene. They coll eath other, as will he seedn, all abont 1250° (

The deriation in silver is prohably cathed, either by the not absolntely

The reaten of it is probahly that we have a mixture of materials of which one more and more prevatis: what pleads for this, is the

At a dengee of 1.62 disthene grows entirely oparpue, consequenty, it hats got entirely amalgantated with the other material.

Of course this agmment is open to dis*nssion, hut up to now, I have not been able to find a better one. This phenomenom, may be of some practical usefnlness in making maxim-prometers, since it proves that a comstant index may be obtainced by heating fo a certath temperature.

[^42]Physics. - "Medsimpements on the metmetio motution a! the plome
 II. Wersumpments with methylehtoride" ly. Dr. L. II. smamema. (Commmication $n^{\prime \prime}$. 80 from the Plysical Lathatory at leviden, by Prof. Il. Kimemanegh Oxames).
(Commanicated in the meoting of Jume 2s, 1!0)2).
I. In a previous commmication n^{0}. $57{ }^{2}$) ann apparathe for the measurement of the magnetio rotation in liquefied gasen under atmospheric pressure wats deseribed and a few results with methyt chloride were given. Further meaturements with this apparatus have not fulfilled my expectations, so that it appeared to be nevessary to make comsiderable modifications.

In the first place it was difficult io insulate the apparatus property from heat. It hat been parked in colton-wool, get it was not easy to obtain a perfectly quie liguid, entiely free from rising bublden. The pressme of at mamy ats six glass-phates belween the nients wat also very disturthing, owing to their depolarising influcnce. This was more noticeable after filling the appatatus when tensions appeared to arise in the plates, in contact with the cold lignid, which often rendered adjustment quite impossille.

To remedy this defeet the nicols were immersed in the cold liguid in the tabe marked l) of the phate in the previons communication. The nicols were lying hown in this tule and were conneded by a hats wire, mming along the outside of the tube. One of the nicols could revolse in its holder and conld be adjusied at a given angle before the appatatus was closed. The rotation for different wave-lengthe could then be fombl be meanuring the intensity of the emrent required to bring the dark band in the spectrom to that wave-length. The apparans being aranged in this mamer some measurements could be made with it, bou ahways after some time the nicols appeared to have lost their transparency, either becanse the layer of camada-lyalsam was dissolved of became laminated. Nieols with a layer of linseed oil instead of canada-halsam lasted longer, and the layer seems not to dissolve so easily, but in the long run these too lose their trampareney, perhaps in comsenture of irregular deformation of the calespar by the sudden and intense cold of the lignid gas.
2. Then a new apparatus was constructed, in which also the

[^43]
 liguid medhy ehlowide hatse laxer manke.

 indiatrubber ving (1) ats pathor-withers and is bightening rods. In these 'aps the ghas phates l 'se lixed with the sorew-rings I ', athd
 with them have rematural mudatured.

 at athy dime whether the jatered is tilled.

 thick, fastemod to it by means of lish entue. The nieols Q^{\prime}, rotating in
 there is ghats between the nions and the mataourable jathence of this makes itself felt, however to at moch smatler extent, so that atjustments can he now matle.
 an india mbiner stopper in ath aperture in the jacket and entering the testiner tube.

The methyt chlombe required to fill it is ohtained by distilling the commereial article, which hat heen once distilled aldeady, one more, the vapour pasing though a drying tube into a spiad immersed in a reservoir of liquid methyl chloride umber atmospherik pressure, supplied by the same tubes which were used for the lighad in the jateket described.

Lituid methyl chloride flows from this spiral throngh the steel capillary $/ /$ connected with it, into the experimentad fube muder atmospherie pressure and hence having the same femperature as the jacket and the space within. The thbe $/ /$ to which a piece of india rubber tubing is commeted, serves to remove the vapour formed

[^44]inside the jacket. This arrangement proved very satisfactory, the liquid in the testing fube is perfectly quiet and free from bubbles of vapour.

At first the space round the nicols formed one contimuons space with that round the testing tube, and so the nicols were also surrounded with an atmosphere of methyl chloride vapom: In consequence of this, rapour still condensed on the niens and accuate adjustments conld not be made. In order to aroid this the spaces round the mieols have been separated from that romel the testing tube by the brass rings L, fastencd on the testing tube by means of sealing wax and closed by means of india rubber rings on the jackec. As at the low temperature a considerable decrease of pressure is to be expected in the imperfectly closed nicol spaces, the caps I have been piered by copper tubes M, comeded to l-tubes with narrow openings and filled with pieces of sodium hydroxide.

Before closing the apparatus, the nicols have been adjusted at at given angle by fastening to one of them a long lent copper-wire, the end of which could te moved over a divided scale. This adjustment is not accurate and no use hats been mate of this angle in the caleulation of the results, the rotations having been compared with those in water.

The rotation at different wave-lengths is again obtaned by varying the strength of the current, by doing which, the dark band can be calused to move over the whole spectrum.

The optieal and magnetical part is almost the same as that deseribed in the previous commmication, exeept that for the measurement of the current we have again need a d'Amontat-galyanometer with shunt (eomp. Comm. Suppl. 1 p. 25, Arch. Néerl, (2) 2 p. 30). By compraing it with a Weston-millivolmeter it is formen that the sensibility of the galsanometer is constan within the limits we had to fix for the accurace.

Fig. 2 gives a general surver of the apparatus used. Crepresents an are lamp, l ' Arons-Lemone's meremry electrip lamp, 1 a collimator, D a water reservoir, P a prism and (Q a telescope on a circle from Mrmerstins. Fiuther G represents the eoil with the methyl chloride :appuatus, E ' the cock, by which the stpply of liquid methyl chloride for the jacket is regulated.

The arragements for regulating the corrent and masuremem, with resistances and switches, are similar to those for the experiment on the magnetic rotation in gases ${ }^{1}$).

[^45]
 lionn the crosed position．
 ：ts the strexth of the coment vaime lion 20 to 60 sump．＇The observations were mate with the electrie ate light and the cathathom
 brightes meremy lines，while the diepresone rewse of the prism had been dedormined by means of sumbigh．At sath strenght of the coment thee atimitments of the dark band were made and the means have been haken of the there pairs of reathars of the gatvatho－
 （a）obtained，bogether with the watselenghts 2 of the position of the datk bathe in the spectram．

Then ont as subergnent day the lesting fube was filled with water and the other pats of the appatalas remomated embely machatged． ＇The dank hatm reappeated atmontho of the coment deviating little fiom thone fommb hefore，from which we conld derive immediately that the rotation comstants of lignid methyl chatoride diftered little fiom those of water．＇Thas the numbers of table 1 hate been fombl， where a and 2 have the same meaning as they had before，and r stants for the rotation constants in water．＇The latter have heen derived from my meaturements of（ommmatation 4° ． $7: 3^{1}$ ），and firm them of hat been ealleukted，whidh quantity mast be constant for all values of f^{\prime} ，ats it is equal to the rotation angle divided by the magnetio potential difference at the embs of the lesting labe，and by the reduetion fixtor of the walvanometer with its shmot．

TABIE 1.

${ }^{\prime}$	λ	5	${ }^{\prime \prime}$
23：	こ心以	0．11307	：3．071
196	2134	1619	
ご心，	（10）	1187	$\therefore 3.100$

The mean value of ar，being 3.078 ，now served to derive the rotation constants of of melhyl chloride from the a found．These values of o have been ploted in a curve，from which $\varrho_{D}=0.01372$

[^46]is derived and the values o／od have been caldoulated limally，which valnes determine the dispersion of the magnetio satses．These difterent numbers are combince in table 2，while lig． 3 shows graphically the values of o／od．

TABAE：

${ }^{\prime}$	2	9	$\bigcirc / \bigcirc D$	＂	2.	0	$0 / 0 \mathrm{D}$
112	120	10.02748	2．00：	211.5	2\％	10．0193	1.061
1110	431	26：3	180	$\underline{616}$	579	1侯：	1.039
121	4iti	どぐ	1810	299．5	580	1促	1.022
1：0．5	4.8	2358	1.719		［ise）	［1：72］	1010
$1(\mathrm{i})$	510	186	1 （3）	231	29\％	13：2	0） 971
16%	512	18.4	1．3\％	第示	（i）＇s	1307	0.93 .3
174．5	527	1514	1．271		（0）＇	1899	0） 9 份
18\％ 5	53\％	mbis	$1 \because 16$	296．5	646	123	0.859
189.5	513	162 t	1．18\％	2－0	621	12：31	（1）．893
196.5	53.1	1566	1．14	273	fís	1197	0.82
19%	505	15：4）	1．1尔	28.3	（is）	10×9	0.793

In this caleulation the rotation in the whas phates has bern negleded． A simple eakeulation shows us that this is permissible ；for it shombl be remembered that this is done both for the measurements with methyl chloride and with water．

As the resnlt of this researeh I fimd that the matretic rotation constant for liguid methyl choride umber atmospheric pressure for sodium light is 0 O．01372，and that the rotation dispersion is nomat， deviating little from that with gases ant with water．

The researeh will be contimed with other gases．

Physics．－＂Diffraction of Ränt！pen－Rays．＂By Prof．H．Haga and Dr．（\％．II．Wixn ；second commmaication．

In the March meeting 1899 we stated as the result of our expe－ riments that Rontgen－rays show diffration；with these experiments the raty passing through a marow shit first fell on a second wedge－ shaped slit，then on a photographe plate．The image proved not

 malem of $0.181^{\prime \prime}$

 dhan experiments; he hat atrangel his experiments in entioly the sathe way ats we hatl moreover he hat haten - bill greater precantions
 bee had ued stomber Romben-rays. Wastar obatmed imares quite similat to the secomd stit and attributed one lwoalenings to inatecomaces of the photoratic plate bromat atoon by lows development.

These nemative results gate rise to at renewed insestigation on onn side, now that we hat erveater meats at ow service that thee years ado. We hate shereded in whating more eleatly than before
 dombthe thatater of Röntgen-rays to he that of distmonces in the ether:

The method of investigation has not changed in prineiple, but making nse of the expericne obtaned by Dr: Whater and ourselves We have heen ahle to make improvements still in some respects.

On the npper surface width 5 .5 cm . of an iron heam of I-shaped protile, long '2 m. and high 12.5 cm. three pieeses of angle-iron were serewed down, one at the end, the 1 wo others 75 cm . and 150 cm . distant from it, the edge perpendienlare on the length of the bean and the site of 3.5 cm . erect; in the figure the two first pieces of angleiron we visible; agams the vertieal sides bass phates - 12 cm . high, 10 cm . wide and 4 mm . thick - were sorewed. In the midhle of phate I was the first slit, in the midhle of phate II the wedge-shaped diffaction slit while against the third plate in a Watk envelope the photographic plate was (clamped ${ }^{2}$). During the experiments the second and the thind of these hats plates were enclosed in an ohbong leaden case, which had to prevent the secondary Röntgentays or rays diffused by the air, from aftecting the photosraphic plate and causing a fors.

The iron heam was fastened by means of plaster of Paris on two free-stone plates borne by free-stone columns; the colnmas were phaced on a firm pillar; on this same pillar, likewise on a free-stone plate borne by a stone column, was the Rontgen-tube in a large leaden
${ }^{1}$) B. Whlter, I'hysik. Zoitschrift 3 . p. 1:37, 1902.
") Schlexzseer's "Röntzemplatten" were used.
H. HAGA and C. H. WIND. „Diffraction of Röntgen-Rays." (Second Communication).

Proceeding: Royal Acad. Amsterdam. Vol. V.

Case (thickness of the side 2 mm .) ; only the bate ol this ease wat lett open for the comncting wires of the indurtion eoil, whilst in the front a small aperture was made apposite the first slit to let the Röntgentays pass. The first slit was formed by two platima plates, thick 2 mm . and high 2 e a ; a leaten sereen left hut the middle of it free over a height of 4 mm . the widh of this slit was lop The difiation shat was formed by two platima phates thick $1 / 3 \mathrm{~mm}$. high 4 cm., tapering at the upper end from it width of $25 / 10$ neary zero at the other. Greatest care was given to the grimling of the platina plates. For these slits, just its in our former experiments, the sides were everywhere equally thick and not ground wedge-shaperl at the edge of the slit as is the ease with slits for lightexperiments.

To protuce the Romigentays an imbluction coil of stamess and Hatsee was used with a sparklength of 60 cm ., a primary with 4 coils and at Wenserv-interpphor. The coment was furnished by a battery of accumulators of 110 Volt. The newest Romtgen-tubes of Mülser (Hamburg), were exelnsively used; the anticathode being kept cool by water.

More care than formerly was taken to bring the passages of the two slits accurately into the same line. Peculiar difficulties are incident to this, which is a result of the extraordimarily great depth of the slits logether with a width so slight that common light, on account of the arising phenomena of dithation, camot be used to dix aternately the direction of the passage. For this last reason we had to have recomse to Röngen-rays to do so. And here asain the slight width of the slits cansed the pencils of rays passing through them to beso very faint, that in the case of the first slit, wide 15 , 0 , they could he observed on a fluorescent sereen at the place where it was necessary, namely near the second slit only with an eye accustomed to complete darkness. The pencil of rays, allowed to pass through the most interesting part of the speond slit viz. that patt, where the width Was about is a, could be observed not even by this way, but only by the impression it made on a sensitive plate afler a lengthy exposure (4 hours). In order to dednce from this impression a mark for the direction of the passage of the second slit, a small strip of brass was fistened near and slightly above the first slit; (see figure); in this strip, held by an arm fixed to plate II, some vertical rows of small holes had been drilled side by side, differing in number and size. A Röntgentube was placed behind plate II in band a photographie plate between the brass strip and plate I; a small learden sereen left of the second slit but the part to be observed free. On the photographic impression one or two of the rows of the holes became visible and from this
combl the dedneod withont dillacolls, which pate bithe strip was

 at waty the holes in the iron wore sementhat laterer that the diameter of the serews - that, seoth fiom the centre of the seromal Sit, the pat of the strip. just now dotormined, appeared exadys athove the tirst slit. Plate I being able for beoblse rommed ath axis themart the dirat slit, the latter eombld be diveded in such a way that the rays from a Ramten-thbe phaced near of fell on the second stit; lys means of a flatereent sereen we confl make shre that this had been ohtained. Duding the eother of the diftiatoon experiments itself the exat position of the thbe wats several times controlled and if necematy corvecterl.

The witht of the seromel and first slits were arrived at from photographe when the photographice plate was plated immediately behiml plate If and the Romben-labe at a or the photograthice plate at "against plate 1 amd the Ramtgen-tube at h; the photograph of the secomd slit wat laken twoth before (mamely April $10^{\text {th }}$, plate N^{0}. 1) ath after (namoly Aur. 23rd, plate $N^{\prime \prime}$. 2) the experiments.

As hat bect mentioned hefore the self-regulating tubes with watercooling were exelnsively nsed; how well these tubea work and how exeellent they are for the nsmal medical purposes, for the meommon remands of this investigation only a few of them conld be of service for we wanted lubes whith were "soft" and rematned so for hours at a streteh, whilst the eflect was so great that the coolingWater kept on hoiling: mont of the fules herame hatder after a ten hoursuse; when the discharges look phate to the sides of the leaden abe amother tube had to be taken.

Thare very good photombaps were obtaned, to be distingrished as A, B and $\left(\begin{array}{l}\text { a }\end{array}\right.$

1, obtained on May $7^{\text {th }}$ and $8^{\text {th }}$ after an exposure of 9 homs and a half, pimeipally by a vere excellen tube fimbshing very strong rays and of great solmess ; developed during three quaters of an home in 200 cem . of glyeine ${ }^{2}$) 1 to 5.
b, ohtained on July $8^{\text {th }}$, gth, $10^{\text {th }}, 12^{\text {th }}$; lime of exposure 31 hours; fwo buhes were used, one of which was soft for four hours and after that became had and the second continually hard; developed in one quater of an hour with glyeine 1 to 5.

[^47](', Ang. $14^{\text {th }}, 15^{\text {th }}, 16^{\text {th }}, 17^{\text {th }}$, $18^{\text {th }}$; sime of exposime 40 bours: two thbes nsed, one of which worked 10 hoursaml was polly hard, the other a very good tube which rematined sof fon the remander of the time; developed in 10 minntes with glyoine 1 to 6.

There is seareely any fog on the plates.
In order to entuire how wide that pat of the difliadion sia was, through which the rays have passed that have worked upon the photographie phate at a deftnite point, small romd holes were drilled just as in our preceding investigation in one of the sides of the sereond slit and close to it at the extreme emals and in the rentre. (On aceoment of this on the phates $\mathrm{N}^{\prime \prime} .1$ and $\mathrm{N}^{\prime \prime} .2$ serving for the measurment of the second slit, circular imates had appeated and elongated ones on the phates A, B and C. (From these pinholephotograph of the attive pat of the anticathote, limited by the widh of the tirst slit, is proved that this atelive part wats only 2 mm . high). The distances between the centres of these imates were divided by the dividing-machine into the same number of equal parts, so that the corresponting division-marks point to corresponding places of slit and image.

For the measurement of N^{*}. 1 and $\mathrm{N}^{+\prime \prime}$ 。 2 ohject-glats I) amd measming-eye-piece 2 were used where one division of the micrometer corresponds to 3,6 $\quad \ell$.

For the measurement of the image of the slit on A, P and ${ }^{\prime}$ 'the
 pensation ere-picee 6 ; one division of the eye-piece-micrometer corrosponds to 550 , the magnifying power was 27 with a distance of the image of 25 cm .

In the following table are mentioned for the suceestive divisionmarks indicated by their momber in the dirst coltum:
in colmm 2 : the mean of the values derived firom $\mathrm{N}^{\prime \prime}$. I and N^{n}. 2 of the width of the seeond shit in miotat:
in column 3 : the double width of the second shit atmented by
 without diffration; the rlistane between the photorraphie phate and the first slit being double the distanee between the first and second slit:
in column 4 , 5 and 6 : the width of the images resperefively on A, B and $(B$ as measured in divisions of the efe-piece-mierometor (1 div. = 5̆. ! 1);
in column 7: the mean width of the images in micra (rommed off).
Proceedings Royal Acad. Amsterdam. Vol. V.

Numbre of the divi-iune natrh.	Willl (i) the second stit.		1.	Mesamend widll		
				13.	C.	M:sm.
1	$\because 7$		1.11	1.11	1.11	$\therefore \%$
\because	20.\%	(i)	11.8.0	1.s.0)	10.4	511
is	19, 5	51	$10 . \%$	0.7.3	0.8	81
;	18	:1	11.6	0.7	0.7	30
\therefore	17	69	11.50	1.7	1.7	30,
6	11	17	11.8	(1).4i)	(1), (6)	(1)
7	1.1	13	11.	0.6	10.0\%)	(4)
\therefore	12	:39	0.830	0.5	10.6	沓
9	9	34	0.3 .	1.1	0.19	\because
111	:	: 1	$10: 3$	11.3is	10.5	21
11	$1{ }^{1}$	27	0.4	0.4	10.3i)	
111/2			0.6	0.0	0.6	
19	4	$\because 3$	1	0.15	0.7	
$101 / 2$						
1:3	3.5	是		$\pm 11 / 2$		

When considering these figmes we must keep in view that the imare on accome of the with of the first slit is not sharply ondined but is haza; this canses the measmement to remain uncertain and so somewhat deviating figures are found by different observers or by the same ohserver at various times; all measmements, however taken, proved, as can be moticed from the figures mentioned in the table, that for the mide part of the slit the ligures of the third column are larger than the corresponding ones of the last colum. The figure of this third colum indiate the theoretie width of the image for the case that the plates have been affected to the outer edge of the mays to which they were exposed and that mo diffraction, vibration, disparement or photuraphie intadiation has phayed a part; the latter three causes might bring about a broadening, yet this would newnarily have heen greates ont the places of greatest influence thos at the wrild part of the slit. Sow that mo hroadening whatever is fomed there, the brush-shaped broadenings, whose width is 2 or 3 times greater than the theoretic, fomed on all the three phates at the narrow part of the slit, can certainly not be attributed to those three causes.
 in the ease of difliaction ; and therefore at long as amother explanation is wanting, we coun hut comsider our three plates as so many pronis of diffiraction of the Reintgen-rays.

Of the most important parts of $\mathrm{N}^{\prime \prime}$. 1, A, B and C we have mate entarged copies on glass by means of the microphanar, on which, if not so clearly as under the microscope, the broadening of the image of the shit is yet verydistinct; the dificuly of reproducing these endargements well hats mate us refrain from puhlishing them; we are quite willing to send these copies to those who are interested in them.

As to the fuestion to extimate the wate-lengths of these ratys, various ways are open; but in no case can one atfain al anthing but a very rongh estimation, as on one hand the real mature of the kind of radiation dealt with is unknown, so that it is meertain with which kind of diffaction-image our images must he compared. and on the other hand it is very difticuth to find out what is arecorately the physical meaning of the limits of the image, on which is pointed when measuring.

If however we are forced to limit ourshes to a very rough estimation it is rather indifferent, as liar as the result goes, which of the ways already indicated ${ }^{1}$) we take; the simplest method deserves recommendation, namely the one we followed in on first commmatation ahout this subject, based upon our estimating the tabular width r of the slit equal to 1.3 at the place where the broadening begins to make its appearance in the imate. Wilh a radiation of simple periodical disturbunes this tabular width is connected with the wavelength and the lincar width, and with the known distances t and b by means of the relation :

$$
c_{s}=s / \frac{\overline{2(u+b)}}{a b \lambda} o^{2} \lambda=\frac{s^{2}}{c_{s}^{2}} \frac{\underline{2}(u+b)}{(1 b} .
$$

As in the experiments a and hoth amounted (1) ion ("m. We obtain after substitution of the value of r s

$$
\lambda=0.0: 3 \cdot 2 s^{2}
$$

From the above table ensues fore x : the width of the slit where the broadening begins to appear, respectively ahout 7,4 and 8 , for the plates A, B and C. From this would ensme fon the

[^48]
\[

$$
\begin{aligned}
& \text { for pithe } \quad 1, \quad l, \quad l \text {, } \\
& \lambda=11,16 \quad 11,10 \% \quad 0,1=1 \%!
\end{aligned}
$$
\]

 the thee diflerent experiments have been mote or less prominent

 protanee most be attateded to the there values of 2 ats liar ats the aboblate digures ero, the ditherene they show is probably real and conalerefel with the differeme in hatedness of the babes. As wats
 by a conswlerable hathes from the ohbers, which were relatively very soff.

Worth moliemer is also the fitet, that the vathes of λ found here are of the same order as thase dedmed from ond former experiments.

F"inally we wish to state emphatically that we continue to regard as the chicf reant of our investigations the proof they fimmish that the Romtyen-rays onght to he comsidered its a phemomenom of tadiation in the ether.

Physical Labonotury L'miersity Ciromingen.

Physics. - II. A. Lobestz. "Ther fiembemental equations. fin dectromuenctie phenomene in prometerable bodies, deducel forom the therory "f dectroms."
§ 1. In framing a theory that seeks to explain all electromagnetic phenomena, in so far ats they to mot take place in free aether, by means of small charged particles, electrons, we have to start from two kinds of equations, one relating to the changes of slate in the aether, the other determininer the forces exerted by this medimm on the electrons. To these formalae we have to add properly chosen asumphons eoncerning the electrons existing in dielectries, conductors and mangetizable substances, and the fores with which the ponderable particles act on the electrons in these severat cases.

In former applications of the theory I have restricted myself to

[^49]the problem of the propagation of light in trimsparent substaneres, moving with a constant velocity. I shall now treat at more qemeral case. I shall transform the original equations into a set of formulate, which, instead of grantities belonging to the individual elexpons, contain only such as relate to the state of visible patts of the boty and are therefore atesesible to our observations. 'These formulate will hold for bodies of very different kinds, moving in any way we like.

The greater pat of the results have abready been established by Poncaré in the second edition of his Eldetricité 't (optique. The mode of treatment is howerer rather different.
\$ 2. With some exceptions, I shall use in the fundamental equations the same notation and the same wits as on former occasions. The aether will again be supposed to remain at rest and topenetrate the charged particles; the equations of the electromagnetio field are therefore to be applied to the interior of the electrons, as well ats to the spaces between them. We shall consider a distribution of the charges with a finite volume-density, whose value is a contimous function of the coordinates. If we speak of "electrons", we think of the charges as contined to certain small spaces, wholly separated from one another; howerer, in writing down our first equations, we may as well imagine a charge distributed over space in any athitury way.

We shall conceive the charges as being camied by "matter", though we might, if we chose, leare the latter out of consideration. We should then speak of the forees ating, not on chatged matter, but on the charges themselves.

Let us call

$$
\begin{aligned}
& \text { of the density of the charge, } \\
& \text { v the relocity of the charged matter, } \\
& \text { o the dielectric displacement, }{ }^{1} \text {, } \\
& \text { o the curcont, } \\
& \text { o the magnetic foree, } \\
& \text { or the relocity of ligh. }
\end{aligned}
$$

Then we shall have

$$
\begin{equation*}
\text { mirs }=0, \text {. } \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{Div}(\rho v)=0, \tag{II}
\end{equation*}
$$

[^50]\[

$$
\begin{align*}
& \text { si-i-1 ! ! } \tag{1}
\end{align*}
$$
\]

> 1.71 lint i.
> Jlirll-1. (V)
 por unit chatrex, will lee given los

$$
\begin{equation*}
i \quad 1.1 \text { i } \mid \text { u.K| } \tag{VI}
\end{equation*}
$$

 is the lieple to which the apmations (I)-(V) mast be applied, but it
 phenombens depreme wh the mean state of things in spates contaning at very late momber of partices: the proper mathemationd expressions for strly phemontent will therefore mot contain the quantites themselves

 the lakinn. Homayh very lange as eompated with the mutnal distance
 that whe distane owe which one mast travel in the body in order fo uborve it perephible change in ils state. We may express his hy -avimer that the slimensions mast be pheyserally imfintely smull.

Let /' be any point in the hooly and o a physically intinitely small r-based sinfate of' which it is the eentre. 'Then we shatl detine the meatr valum al the goint I^{\prime} of a mealar or vecomial ynantity A hy H10 ey!nallimi

$$
\begin{equation*}
\mathrm{A}=\frac{1}{\mathrm{x}} \int \mathrm{~A} \mathrm{~d} \boldsymbol{\tau} \tag{2}
\end{equation*}
$$

in whitl the internation hats to be extended to all elements elr ot the shate t, emolused by of It is to be muderstood that, if we wish to collentite the mean value for diblerent points I^{\prime}, $I^{\prime \prime}$, the corespondingrs spates s, st are laken equal, of the same form and in the -atme pasition relatively to I^{\prime}, $I^{\prime \prime}$. The result A will depend on the coordinttes of the print considered; however, the above mentioned latpid chatmes will have disappeaned fiom it; it is only the show changes trom point to pront, comesponting to the pereeptible chatores in the state of the broly, fhat will have heen preserved in the mean value.

It is easily seen that

$$
\frac{\partial \overline{\mathrm{A}}}{\partial x^{x}}=\frac{\overline{\partial \mathrm{A}}}{\partial x^{2}}, \text { ete., } \quad \frac{\partial \bar{\lambda}}{\partial t}=\frac{\overline{\partial \lambda}}{\partial t} .
$$

Hence, if we take the mean values of every term in the equations (I)-(V) and (1), as we shall soon do, we may replace is and is by $\dot{\bar{o}}$ and $\dot{\bar{b}}, \overline{\text { Die }}$ by Die $\overline{\text { b }}$, ele.
§4. Before proceding further, it is necessary to enter into some details concerning the charged particles we must suppose to exist in ponderable bodies.

Each of these paticles ealls forth in the suromeding acelter a fiek determined by the amomb, the distribution and the motion of its charges, and it may be shown that, if x, y, z are the coordinates relatively to an origin () taken somewhere within the partiole, and if the integrations are extented to the space ocerpied by it, the field, at distances that are large as compared with the dimensions of the particle, is determined by the values of the expressions

$$
\begin{align*}
& \int e d \tau \tag{3}\\
& \int 0 \mathrm{x} / \mathrm{r}, \quad \int 0 y d r, \quad \int 0 \mathrm{od} \text {. } \tag{4}
\end{align*}
$$

Kow, we might conceive particles of such a nature that for each of them all these quantities had to be taken into considemation. For the sake of ceamest, it will howerer be preferable to distinguish between different kinds of partieles, the action of eath of these kinds depending only on some of the integrals (3)-(6).
f. If the charge of a particle hats the same algobraice sign in all its points, the actions corresponding to the integrals (B) and (o) will far surpass those that are due $10(4)$ and (6); we may then leave out of consideration these latter integtals. Such patideles, whose fied is determined by their chatre and their motion ats a whole, may be called conduction-shetroms. We shall imasine them to be crowded together at the surface of a charged conductor and to constitute be their motion the currents that may be generated in metallic wires.

$$
\begin{equation*}
\int 0 \cdot 1 \pi=p \tag{す}
\end{equation*}
$$

$$
\int_{0}^{0} \cdot \boldsymbol{r}=0
$$

this serpor is independent of the pration of the orixim of coordinates. Fitom (a) We maty infer immerliately

$$
\int 0 x_{0} \mid r=p_{0} \cdot \text { elfo } \quad \int 0 \mathbf{v}_{x}=\dot{p}_{x} \text { elt. }
$$

In all diedectries, and perhaps in combluetors ats well, we mast admit the existeme of partioles that may be electrieally polarized. We shath reler th their chatres by the mane of pularization-eldatioms.
\therefore Fimally, let there be a clatss of partioles whose fied is solely due the the exprestions ($\mathbf{6}$), the intergals ($\mathbf{3}$), ($\mathbf{(4)}$, (5) beiner all 0 . If we suppose the values of

$$
\int_{0}^{0} 0 x^{2} d \tau, \int 0 x y d \tau, \int 0 x: 0 d \tau, \text { etl. }
$$

mot for valy in the comse of time, we can expres all the integrats (ib) foy me:m of the vector

$$
\begin{equation*}
\frac{1}{2} \int 0|r \cdot v| d r=m \tag{S}
\end{equation*}
$$

i. e. we the vertor whose components are

$$
\mathrm{m}_{s}=\frac{1}{2} \iint_{0}^{0}\left(v_{0} x_{=} \% v_{n}\right) d \tau_{0} \text { ello, }
$$

Indeed, we shall have

The tied produced hy a partide satisfyer the above conditions may be shown to be itentical to the tieh the to a small magnet
 murticle' alnd we shall call m its mofurtic moment.

Aecording to the view here adopted, this moment is ransed hy rotating or corentating motions of the chatres whith the partide. similar to Ampise's molernate eledrie corments. If, for the probled
 of motion of the charge", the integral in (δ) maty be satid to repres sent the moment about the origin () of the quantities of motion of all the chatges present.

A very simple example is fimbished by a spheridal shell, rolatimg romed a diameter, and enclosing at immovahbe, roneontric phere, the shell and the sphere having equal and opposite chatges, miformy distributed.

Whatever be the motion of the charges which rall forth the moment m, we may property apply to them the denomination of muty-netizution-edectroms.
$\$ 5$. In the determination of the mean values of the phantitios in (I), (II) and (1), the following eonsiderations and theorems will be foumd of use.
\%. Consider a space containing an immense momber of points ?. Whose mutual disiances are of the same order of matuithe as those between the particles of a porderable borly. Leet I be the momber of these points per mity of volume. If the density of the distribution gratually changes from point to point - in a simitar way as may be the base with the observed density of a body - the value of Δ belonging to a point I ' is molerstood to be derived firom the number of promts () lying wihnin a physioally infinitely small sate of which l^{\prime} is the centre.

Draw equal and patallel veotors (lli= form all the proints Q, and consider a physically infintely small plane dha whose normal, drawn towards one of its sides, is $~ \%$. The question is to find the number of the rectors (t l that are interserted by the plane, a nmmber which we shall call positive if the ends of the vectors, and negative if their starting points lie on the side of dos inticated by n.

If J has the same value throwhont the whole space, and if the points Q are impentom! distmbuted, like the molecules of a lignid or a gats, the number in question will be the same for all equal and parallel planes, whence it is easily fomed to be

$$
\text { Nr} r_{n} / \sigma \text {. (111) }
$$

The problem is somewhat less simple if the points "? have a regular geometrio armatgement, sum ath those one romsidens in the theory of the strueture of crystals. If, in this ease, the length of the rectors $Q R$ is smaller than the matnal distance of of neigh-
fombing puins, it may come to pass that there aro at erpain mumber
 plame wi the stme directions. We shat meed this dillionlly by imeme Jaty matulatins the element of smbitere in sumb it way that the disatmees of its puints from a plate dos atse of the same order of magnitude as the distance d, and that the direction of the momat is very neate that of the momat 18 this phater: so that the extent of the clement and the mormat to it maty still be demoted by do and n. It

 depemd only on its disertion and matratmde, and that it may still the represented by the firmula (10).

The same formmata will hold is catse the value of A' should slowly Fhange from point to point, provided we take for I the value belonging to the remtre of eratity of the element.
b. Let us apply the alowe result to the elements dis of a closed strfite σ. Let n_{1} be the mumber of emts h^{\prime}, ant n_{2} the number of - farting point: l? lying within o.
supposing the nomat n to be drawn in the oblwat direction, We may write for the difference of these mombers

$$
\begin{equation*}
n_{1}-n_{s}=-\int N r_{n} d \sigma \tag{11}
\end{equation*}
$$

an expresion, which of conse can only be ditierent from 0 , if N^{\top} chatrges from point to point.
(c. Leaving the syetem of points, we pass to a set of immmerable equal particles, distributed over the space considered. Let q be a sealar quantity, whose values in the points $A_{1}, A_{2}, \ldots A_{E}$ of one of the particles are $1 / 1, y_{2}, \ldots$. . $/ 2$, the position of these points and the values of $\%$ beine the same in all partieles, and these valnes hemer such that

$$
\begin{equation*}
q_{1}+q_{2}+\cdots+q_{k}=0 \tag{12}
\end{equation*}
$$

We proced to determine the sum sig of the values η, belonging to alt the points. A that lie within the above mentioned closed surfare os. Of comse, the particles lying completely within the surface will contrihute nothing to this sum. Yet, it may he different from 0 , becanse a certain number of particles are cot in two by the surfince, so that only a part of the values $/ / 2, \frac{1}{2}, \ldots, y_{k}$ belonging (1) eath of these are to be taken into account.

Assume in each particle an origin () (having the sime position in eardi) and regard this as composed of h points $\theta_{1},()_{2}, \ldots()_{k}$. Attach to these the values - $y_{1},-y_{2}, \cdots-\eta_{k}$. 'Then, in virtue
of（12），we may，without chamging the smm ごり，include in it mot only the points A ，but likewise the points（）．Now，if the veetors （）$A_{1}, \quad()_{2} A_{2}, \ldots()_{k} A_{k}$ are denoted by $r_{2}, r_{2}, \ldots, r_{\%}$ ，the part of Sy due to the points（ $)_{1}$ and A_{1} will be

$$
-\int_{0}^{N} N_{q_{2}} r_{1 n} d i
$$

as may easily be inferred from（11）．There are similat expressions for the parts of the sum corresponding to（）and A_{2}, （）and A_{3} ， ele．Hence，if we introblue for a single partide the vector

$$
\begin{equation*}
q=こ ゙ q \mathrm{r} . \tag{1:3}
\end{equation*}
$$

and if we put

$$
\begin{equation*}
\therefore+1 \text { O. } \tag{11}
\end{equation*}
$$

the final result will be

$$
\begin{equation*}
-\int Q_{n} d \sigma \tag{15}
\end{equation*}
$$

In this formula，the vector 2 is to be eonsidered ats a function of
 one point to another（this j ，（1）and the vector q may ray in at similar way．If now the surfice o is taken physically infinitely small，thongh of so large dimensions that it may be divided into elements，each of which is large in comparison with molecular dimen－ sions，the expression（15）may，by a known theorem，be replated by

- Imir S. S,
s being the space within the surface or．
1．It has been assmmed till now that the quantity of oremesonly in at limited mumber of points within eatel patticle．By indefinitery increasing this number k ，we ohatin the case of a quantity g con－ timonsly distributed．We shatl then write ghe instead of $\%$ and replace the sums he integrals．The comblition（12）beoomes

$$
\int_{0}^{0} y d \tau=0 .
$$

Which we shall suppose to be fultibed for carch separate pardicle， the vector of is mow to be detined by the equation

$$
\begin{equation*}
\rrbracket-\int y!t x . \tag{17}
\end{equation*}
$$

and the sum Σq ，whose value we have calculated，heeomes \int q dr r ， taken for the spate enclosed bij or．It we still understand by or the vector given by（14），the valle of the integral for it physially intinitely small space will be

$$
\begin{equation*}
y--\operatorname{Hin} ? \tag{15}
\end{equation*}
$$

 the distributom wh the vatues of y is mot the same in merghomsinger pratiofos. In this date we maty arath apply to eately particle the
 now to defme this veetor ly

$$
\begin{equation*}
0-\frac{1}{n}=\mathfrak{n} \tag{1!1}
\end{equation*}
$$

the sum being baken far all the partioles that lie wholly in the space \therefore Withoul athending to those that are cot in fwo by the sarfine We may express this in words ly sying that De the sum of ath the verems of reckoned pre mait of volmme.
\therefore The dase still remains that a patatity $\%$, given for every point, hats such values that the integral $(y)=\int y / r$, taken for at single particle, is mot 0 . If this quantity were constant thonghont the spate oreapied by a patiole, it would be moneressary to latie into ateromt those which ate ellt in two by the surface of and we shonld have

$$
q=N(\eta)
$$

The most gemeral atse may be redured in the following way to this case and to those that have atready been disposed of betore. If If is distributed in some arbitrary mamer, we begin by calculating for at simple particle the mean value $\eta_{1}=\frac{1}{s}(\eta)$, s lemg the volume of the particle, and we put in every point $q^{\prime}-t_{1}=q_{2}$. We shatl then have

$$
\eta=\eta_{1}+y_{2}
$$

The problem is therefore redused to the eletermination of two mean valnes, one of which may be found by what has just been sald, and the other by applying the formula (18).
\$6. The mean value of each of the quatities ofud ow in the equations (I), (II) and (I) may be decomposed into three parts, belonging to the conduction-electrons, the polatization-clectrons and the magnetization-eledrons. In determining them, we shall suppose the ponterable matter to have a visible motion with velocity w, and we shatl write of for the velocity the charged matter may have in addition to this. We have therefore to replace v by w $f v$, and to determine separately owdow.
a. Conduction-electrons. The mean value of o, in wh fir as it depends on these, may be called the (memsurable) density of electrie churemp: we shall denote it by \boldsymbol{o}_{1}.

The mean value © of ow may be represented hy

$$
\mathfrak{C}=\rho_{1} \mathfrak{w} .
$$

This is the comectiom-comont, and the vector

$$
\mathfrak{J}=\overline{\mathfrak{o}},
$$

taken for the conduction-electrons, may titly be called the combluctioncurrent.
b. Polarization-electrons. Let the hody contain immmerable particles electrically polarized, each having an electric moment p. The vector defined by the equation

$$
\begin{equation*}
\psi=\frac{1}{s} \Sigma p, \tag{20}
\end{equation*}
$$

where the sign \geq is to be understood in the same sense as in the formula (19), is the dectrie moment for anit coltume or the electric polarization of the body. Replacing q by o in the formulae of s5, d, and taking into account (7), we find for the part of o that is due to the polarization-electrons,

$$
\varrho_{2}=-D i v \psi .
$$

We may next remark that the visible velocity w is practionally the same in all points of a particle. Since, for the space oceupied hy it,

$$
\int o d x=0,
$$

we have likewise

$$
\int 0 w_{x} d \tau=\int 0 w_{y} d \tau=\int 0 w_{z} d \tau=0 .
$$

so that the values of on \mathfrak{w}_{r}, w_{y}, ow may be found ly means of (18). The result is

We have tinally to determine on . Now, the quatities ons, oby. ρ_{z} are of the kind considered at the end of $\$ 5$, e. However, there are cases, especially if the velocities $\mathfrak{v}_{y}, \mathfrak{v}_{y}, \mathfrak{b}_{z}$ and the dimensions of
 corresponding to $\overline{q_{2}}$ of $\$ 5, e^{2}$, may be neglected. Confining ourselves to such cases, we shall determine os without taking into consideration the particles intersected by the surface σ.

For a single particle we may write

$$
\int \begin{array}{ll}
0 & d x \\
d x
\end{array}
$$

 motion

$$
\int_{0}^{0} \operatorname{0ov}={ }_{d \prime}^{\prime \prime}=p .
$$

$$
\frac{11}{}(s)
$$

$\therefore 1$ Harl
 a point that moves with the velority n. If qu relates to a fixed point of spate, we have

$$
\frac{\prime \downarrow}{d t}=\dot{\psi}+w_{r} \frac{\partial \downarrow}{\partial!c}+w_{!\prime} \frac{\partial p}{\partial!}+w_{z} \frac{\partial p}{\partial z}
$$

aml, simer

$$
\begin{aligned}
& \frac{A}{d t}=s . D i c w \text {. }
\end{aligned}
$$

('ombining this with (21), we get for the mean salue of the current conrexponding to the motion of the polarization-electrons

$$
\ddot{P}+\text { Rot | } 1
$$

\therefore Itrambization-electroms. If the borly contains magnetized particles $(\$ 4, r)$, we have nothing to add to o and ow. There will however be a new part of obs We can calcolate it by aplying (18), becanse the quantities (o) vanish for every particle.

Leet us first replate, in the formulate of 5 gh, q by ov_{x}. We then find

$$
\psi_{x}=0, \quad \varphi_{y}=-m_{z}, \quad q_{z}=+m_{y}
$$

 the mm!nmtiation, a vector that is to be defined in a similar way as ψ,

$$
Q_{x}=0, \quad \sum_{y}=-N_{=}, \quad N_{z}=+\mathfrak{N}_{y}
$$

Finally, by (18),

$$
\overline{o v_{x}}=\frac{\partial w_{z}}{\partial y}-\frac{\partial m_{n!}}{\partial z}
$$

with similar expressions for ony and ob=

The mean value of the cmrent, in so fin as it is due to the magnetization-electrons, is therefore

Rot ㅇ․
It may be called the curvent equiralent lo the mutymetization.
\$ 7. It remains to take together the difterent parts of the secome member of (1). Putting
and

$$
\begin{align*}
& D=0+1 \text {, (} 2=2 \text {) } \\
& \mathfrak{B}=\dot{\mathfrak{D}} \text {, } \tag{23}\\
& \mathfrak{i}=\operatorname{liot}[\mathcal{H} \cdot \boldsymbol{w}] \text {, } \tag{2.4}
\end{align*}
$$

we have

$$
\bar{s}=\mathfrak{i}+\mathfrak{j}+\mathfrak{c}+\mathfrak{i}+\text { Rot } \mathfrak{n} .
$$

Now, we might understand by the cursent in the pomderable body the whole of this vector. Conformly to generat asage we shall however exclude from it the last term. We therefore define the current as the vector

$$
\begin{equation*}
\tilde{=}=\mathfrak{B}+\mathfrak{j}+\mathbb{E}+3 . \tag{25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\overline{\mathfrak{G}}=\Xi+\text { liot } \mathfrak{M} \tag{26}
\end{equation*}
$$

We may call \mathfrak{D} the dielectric displucement in the prombrable body, and \Im the displecement-cument. As to the total curent \mathcal{E}, the formula (25) shows that it is composed of the displacement-emrent, the conduction-current \mathcal{F}, the convection-emrent \mathcal{E} and the fourth vector $\mathfrak{i d}$, for which Poncaré has proposed the name of Räntfen-curpent, becatuse its electromagnetic effects have been observed in a well-known experiment of Röntgex.
§ 8. We shall now write down the equations that arise firom (I)-(V) and (1) if every term is replaced ly its mean vallue. In order to obtain these formulae in a usual form, we shall put

$$
\begin{align*}
& \text { b }=\mathfrak{ミ}, \tag{27}\\
& \mathfrak{b}-4 \boldsymbol{x} \geqslant \sqrt{2}=. \tag{28}\\
& \text { 4. } \boldsymbol{\tau} \mathrm{V}^{2} \overline{\mathrm{D}}=\mathbb{E}, ~ . \tag{29}
\end{align*}
$$

these quantities being the matmetie induction, the matrmetie fonere in the ponderable body and the electric force in the body.

Begiming with the equation (I), and writing o instead of o_{1} for the (measured) density of electric charge, we find

$$
\operatorname{Dic}_{\overline{\mathrm{D}}}=\boldsymbol{o}-\operatorname{Dic}^{\prime} \boldsymbol{\prime},
$$

whence

$$
\begin{equation*}
\operatorname{mir} D=0 \tag{I'}
\end{equation*}
$$

 firom this that

$$
M_{n} \Xi=11 .
$$

$$
3=5+1 x \cdots
$$

Which monlt: from (27) and (2n)

$$
\begin{equation*}
\operatorname{lin} n=1 x \equiv \tag{III'}
\end{equation*}
$$

Fimally wr fime by (N)
lint
(and ley

$$
\text { Lir } \grave{i}=0 .
$$

 lied in a form that hats lomg heen bowne. In this fomm we may use them withon even thinking of the indivihal elodrons. As som howerer as we seck to penetrate into the meeanism producing the phenomena, We mast keep in mind the detintions that have been wiven of the different quantifies appearing in the equations amb the manner in Whith they are commeeted with the distribution and the motion of the elementary electrice chares. The formulate (27) and (28) e.g. show the precise meaning that is to be attathed in the theory of electrons to the terms "magnetic force" and "magnedic intuction".

The equations (\mathbf{I}^{\prime})--(\mathbf{I}^{-1}) may be applied to all bodies indifferently. It is otherwise with the formake expressing the relation belween
 these depends entirely on the particular properties of the bodies considered. I shall not here discuss these more spectial formulae; in orter to dedure them from the theory of electrons it is necessary to eonsibler the forces acting on the electrons in a conductor, the "molecular motion" of these particles and the circumstances which determine the electric and magnetic moments of a simgle molecole or atom.

1) See Volit, Electronemhyothese und Theorie Nes Magnetismms. Nachr. d. Ges. d. Wiss. zu Göttingen, 1901, Heft. 3.

1. In a preceding paper on the clock Honwt 17 I commmancated the investigations I had made on an inequality of a featy period noted in its rate which does not depend on the atomal temperature.

Besides the periods $1861-1874$ and $1875-18981$ disemesed abo the period $1899-1802$ when the elock had been motmed in the hall of the observatory in a niche cut out for this purpose from the great pier. From the mean daily rates during periofs of about a month each, I derived formalate for the rate in two ditferent ways. and this research clearly bromgt to light that during this period the rate of the chock had become considerably mone regular than before and now satisfies high demands.

Since that time the same formulae have been compared with the daily rates ohserved during much shorter pretods and an investigation has been modertaken about the barometer coefficient, for which purpore the monthly rates were less appropriate.

The latter calenations have so clearly shown the excellenee of the clock also with regard to its rate during periods of a few days, that it seemed to be of interest briefly to give here the results to which they led.
2. The results we ohtained from the previons investigation may be resumed thas.

Under all the conditions in which the colock Honwte it hat heen placed, its rate, after correction for the intluence of the temperature. has always shown at residual yearly inequality. As the former intluence had heen derived from the yearly variation of the temperature, the residual inequality must necessamily show a differenere of phase of three months with respect to the temperature.

If the influence of the temperature hat been derived and ateromted for in the form $c_{1}\left(t-t_{0}\right)+c_{2}\left(t-f_{0}\right)^{3}$, whether we had found for c_{2} a small nerpigible value, as in the period 1862 - 1 Sit 4 or an obviomsly real quantity ats in the period $1899-1902$, the residual inequality could with sufticient acemracy be expresed by a simple simusoid. If on the contrary only a linear influence of the temperature had been accommed for, while an investigation of coshowed it to have an appreciable value, the residnal inequality showed a halfyearly term heside: This could be expectel; for at lons as ondy the

 A.pived in the tion flater the fimmula:

$$
\begin{align*}
& \text { - 11.0.2.83 (1 - 10") } \\
& \%-1 / n!: \%
\end{align*}
$$

wermily He formula:

The supplementary inempatity in the serond finmmlat was repree
 and a halfoyearly term. We then time:

$$
\begin{align*}
& -10.0198 \cos 4 . x \frac{T-1 \rho \% 16}{05 \%} .
\end{align*}
$$

Fiom the term depending on the equare of the temperature found ly the first methed whe calcudation and from the yeaty variation of the temperature in the ofock-case, which is appoximately represented by

$$
t=-11^{0} . b+5^{\prime \prime} .5 t \sin 2 . \pi \frac{T-1 / 6 y t}{3,5 j} \cdot
$$

we derive for the halfeyearly term

$$
-15.015 s^{\circ} \cos 4 x \frac{x-1 / 6!t}{335}
$$

Which is in sumicient arreement.
The two formulate must howerer give different results, as soon as the aceidental sariations of the temperature become of importance, and therefore it was of interest to compare the rates during short periods with either.
4. Hence two comparisons were made for the three years 1899 May 3-1902 May 3. ")

1) For the next term we find: $+0.55 \sin 4=T-\frac{\text { June } 9}{365}$.
2) In this and the following calculations the supplementary inequality for formula Il was read from the curve.

Within that period 1 cond dispose of 18^{2} time－determinations at average intervals of doays，giving $18 /$ valnes for the daty rate． We call assume ats mean error of the result of a time－determination， bargely arcombing for systematio erros such ats varitions of the personal errons of the whervers，± 0.04 ．

I do not give bere in full the results of the comparison of these L8I observed rates with the wo formulate and only lat down the mean rahes foume in hoth catees for at diference：observation－com－ putation．

I found：

$$
\begin{array}{rlrl}
\text { Fommular I } \quad \text { M. IVilf. }= & \pm 0.03: 3: 3 \\
\| & \text { II } & \pm 0.03+4
\end{array}
$$

Hence this mean difference is nearly the same for the two for－ malate；indeed，if the three yeats are kept apart，it is found to be a little greater for formula I in two of the three years．

We maty therefore say that the two are in equally good agreement with the observations and for the insestigation of the barometer coeffieient it was suffeient to nse either．

I chose formula II（linear influence of the temperature）and I proceeded in the following way．The rates reduced with that for－ muta to $760 \mathrm{~m} . \mathrm{m}$ ．and 10^{5} and freed from the supplementary ine－ quality were divided into five gromps atcording to the barometrid pressure and for each group the mean of those reduced rates was calculated．The results are latd down in the following table，where the first colnm gives the momber of rates from which each mean has been derived．

Number．	Imarom．	Irducell．I）．Ii．	O．－C．
17	7\％2．8	$-00^{.17 \%}$	－05．0102
31	757.6	$16 \underline{1}$	＋（以）
68	762.6	15.	＋ 01
．14	7673	1.15	$+0$
$\because 1$	77ッ．	｜＇1	－（以上

From these results I derived as correction for the harometer coefficient：

$$
\angle b=+0,0017
$$

 preationn ${ }^{1}$).

For the constant berm of the formmat we lime from atl the rates

万. With tho formalate thats madilient:

$$
\begin{aligned}
& \text { 1). } R=-0.17: 3+(0.0157(h-5180) . \\
& 0.02 .2 \%:\left(1-10^{2}\right)+0: 0007+\left(1-10^{-}\right)^{2} \text {. } \\
& \text { + č"p,nlementury imequelity. } \\
& \text { I). } l_{i}=\cdots(15.161+(0.0157(h-760) .
\end{aligned}
$$

We have agatin emblated all the ohrerved bates and this time the comparison hats heen extented to 1002 Sept. 20 i. e. lill almost tive months after the period from which the formable were derived.
 This we obtatned by applying the formula lla so that we did not luse the actual mean temperature but that of five days eatier. It is obsions that in doing so ako the value of the supplementary imequality mus be altered. An assmmed lagerger behind of the inthene of the temperature of tive days is egnal, so fare the the general vatiation of the temperature (as fommalme) is eonemed, to $0.27 \times$ the yeary supplementary term. Hence the latter had to he diminished lyg this pate of its amomen. The formulat thos modilied I call |l h.

The results of these three comparisons we siven in full in the following tahes. The first onlom wives the dates of the time determinations, the next column gives the mean remperatme for the period hetween the date of one line ahove and of that on the same line, while the thitel, forith and fifth colnmms give the differences between the observed rates for those periods and the computations Int, Ila and $11 /$ respectively. These differences are expresed in thousambth parts of seconds.

1) According to the investigations of Mr. Weever a value little different from this follows for the period $1802-1895$.

		Temp．	Obs．	Obs．	Obs		Temp．	$\stackrel{\text { OHs．}}{\text { Ift }}$	$\frac{117 \%}{11 /}$	［1］，
189						1899				
May	3					Nov．12	12．6	－12	-14	－ 28
＂	12	$+10.5$	-11	－ 18	-10	＂ 20	11.0	－ 3	－x	＋3
＂	17	12.0	＋33	＋23	＋ 9	＂ 28	10.8	－訨	－ 51	－63
＂	30	12.7	0	－ 12	－ 1	Dec． 7	10.4	－9	－ 2	-19
June	3	1：3．9	－		－ 61	） 13	．	$+83$	$+$	＋1\％
\％	\％	14.8	＋43	＋ 33	－： 3	＂ 16	3.7	＋ 76	$+103$	＋150
＂	14	14.8	＋ 9	＋14	＋23	＂ 19	3.0	－19	$+11$	＋ 2
＂	는	15．4	＋ 26	＋는	＋12	＂ 23	2.3	－2＇t	＋	－ 3
＂	27	14.5	$+20$	$+11$	＋ 5	＂ 31	3.1	－	-19	$-3 \times$
July	7	11.5	＋ 7	－ 3	$+7$	1900				
＂	11	16.4	-17	－ 99	－－¢	Jall． 8	二．：3	－ 3 ：	－	－6－2
＂	14	18.1	$+5$	＋5	＋ 13	＂ 20	5.4	－ 4 ＇t	－ 391	－勆
＂	17	18.6	＋ 56	＋ 60	＋ 29	1）〔－3	6.0	－ 36	－ 36	-62
$1{ }^{1}$	27	19.6	＋ 88	＋31	＋71	Fombe 4	6.1	－12	－9	－ 2
＂	31	19.6	＋ 39	＋50	＋60	＂ 8	4.9	－ 22	－6	＋ 8
Aug．	3	19.4	＋30	＋38	＋行	1） 29	1．3	－ 28	－9	＋ 3
	9	19.18		＋	＋ 71	Marche		-4	${ }^{1}$	-28
＂	14	19.1	＋ 2	＋2	＋41	！		－ 18	－	＋ 23
＂	91	18.7	＋ 3	＋30	＋ 3 r	＂ 11	6.7	－40	－ 30	－3＇
）	24	17.7	－：	－ 4	＋12	＂ 20	6.8	－：30	－ 20	-10
Sept．	3	1	$+17$	$+$	$+11$	1） 3 ；	6.6	－ 25	－12	－ 1
\cdots	8	18.3	＋ 9	＋ 2 는	＋18	1）： 1	6.1	－隹	－ 26	-7
\cdots	43	17.7	＋34	＋仵	＋ 30	April 2	4.	－	－ 32	－ 18
＂	21	16.3	－14	－9	＋ 7	＇	1.1	S	－ 19	-11
Oct．	5	14．4	－	－ 32	－ 21	＂12	7.2	12	－	-11
\cdots	9	13.1	＋3	$+7$	＋ 5	＂is	9.0	－ 9	－ 29	－49
＂	16	11.9	－ 9	－	＋ 8	＂ 91	9.9	＋ 37	＋3i	＋品
＂	19	11.1	－但	－ 87	－ 30	1） 26	10.7	$+17$	＋ 9	－ 11
）	24	10.9	－ 19	-14	-17	＂ $2 \times$	10.1	－ 16	－ 20	-1
＂	31	11.4	－ 15	－ 12	－	May I	9.8	＋ 14	$+10$	＋3i
Nor．	5	12.3	＋	＋6	-21	1） 4	10.4	-71	-77	－83

			1110. 11%	＂11－		「い川．	（HN． I／＂	1110. $11 /$	11いい。 11／
$1!n \times$					1： 1 M1				
M．1！	11	＋121－12	－－－	－in	11．1．$: 19$	＋12．1；	－	i	of $: 1 \%$
\cdots	$1 i$	$11.7-11 i$	21	－： 1	1． 3 ！	11.10	4	－ 10	：
，	\because	11．2－1！	－： 10	－1：	N（1）：	11．x	－：n	is	－1i\％
＊	24	$12.5-11$	－！－	－ili	17	11.8	－1：3	$\cdots 1: 3$	-14
J 114	\because	1：3．01－20	－i4	．．iti	1 11 i	11.8	－ 1	\because	＋i
${ }^{\prime}$	$!$	11．4｜－！	－1！	－ 41	p ${ }^{4}$	！1．2	＋	＋ 20	＋バ2
＂	13	16.8 － 24	－ 31	－is	＂ 97	S． S	－12	－ 11	－ 21
\％	18	$17.3 \mid+3: 3$	$\pm \cdots 3$	$+1 \%$	bree 7	\times ¢ 3	＋ 21	$+17$	$+1 \%$
\cdots	$\underline{3}$	1\％．1 $1-24$	： $3:$	－$\because 1$	16	N．！	12.2	－ 7.	－114i
＂	－	11i．1i－11	－－	＋	1.	4.3	$\pm \because 3$		$-1 i$
Jul？	\because	1ti．：－iti	\rightarrow is	－is	＂1！1	$!8$	＋ 81	＋ 29	＋1\％
，	111	11.33°－ 31	－ $3: 3$	－：3i	$2!1$	$\therefore .7$	$+\cdots$	＋\because	＋
＂	$1: 3$	11.4	－	－ill	1！01				
．	15	$1 \times .1+15$	$+18$	－－\underline{y}^{\prime}	J：11．：	7.1	＋13\％	＋$\quad 7$	＋ 61%
＂	$\because 1$	$1!1 \times+: 3$	＋ili	－$\quad 1$	． $1 i$	$\therefore \because$	＋ 4.	－1183	＋16：
D	－\％	$23.8+3$	＋1．s	＋$: 3$	11	$\therefore 1$	＋ 31	＋ 91	± 14
＂	$\therefore 1$	$20.7+11$	＋\because	$+3$	＂li	$\therefore 11$	：$\because 1$	＋	11
． 1 ¢	7	$13.11-3!1$	\because	－＇	－ 17	$\therefore \because$	＋	＋ $\bar{\pi}$	＋$\quad .11$
D	11	$17 \therefore-3$	if	－$\quad-1$	$\underline{\square}$	8.7	＋	＋ 51	＋1N
ν	1：	$17.1-103$	-74	－ 81	Frrms． 1	$1 . \mathrm{S}$	＋ 77	＋is	＋18
＂	17	17.10	－	－（i）	i	18.1	＋ 2	＋ 31	＋！！
＊	\because	1N．+	－12	\because	11	$\therefore 1$	$+\therefore 2$	＋ 16	＋1i\％
＂	※	パ．t－ご	\because	－ 11	± 1	＇．${ }^{\text {f }}$	$+1.7$	＋ 3	＋\therefore
＂	：3	17．1－3i	－： 1	K	11．15．	\therefore ，	＋以	＋ii	＋
Sッリ．	1	11．9 ：	－ 2	－ 21	＂1：	$7 \because$	$+1$	＋！	$+13$
n	$1 \because$	Jii．t：－	－is	－＇t	$\because 1$	7－	111	－： 3	$+1$
－	11.	$16.21-32$	－291	－：	－ご，	$13: 3$	＋1	$+17$	＋
＂	$1!1$	$16 . \therefore+3$	$+11$	－ 1	$\cdots 1+1$	$\therefore .8$	ご	－ 11	＋1：
，	$\because!$	$16.4-31$	－－241	－$\because 7$	＇	$7 .$.	\therefore	＋ 10	－${ }^{\prime}$
14	$1:$	$17 . \therefore$ 里	1：	－ 1	7	$\therefore \because$	$+1 \because$	$+11 i$	－1＇
＂	11.	1＇．19．．．12	：	．．．：	＂ 17	！：$: ~$	$+: i$	$+\quad$	\because

		Temp．	Ohs	$\stackrel{\text { Ons．}}{\text { Ifa }}$	Obs		「ül．	（1）心 I／r	$\frac{1 \mathrm{Hn} .}{\mathrm{H} / \mathrm{a}}$	（11バ。 11／1
1901						1901				
Apr．	20	$+9.8$	＋ 21	＋ 90	＋3i	Now， 1	＋11．9	＋in	＋i	＋11
＂	23	10．5	＋s	＋	＋12	4	10.6	＋26	＋ 9	＋化
$1{ }^{1}$		11.6	＋ 49	＋ 4	＋ 21	（15	9.9	＋ 5	＋1：1	＋ 11
May	$:$	11.7	＋13	＋ 4	＋18	＂ 2	1.4	＋ 3	＋	$+: i$
${ }^{\prime}$	s	11.13	－ir	-10	－3	1） 26	9.11	＋\because	＋	＋$\quad 1$
＂	11	11.8	$+1$	S	＋	Weer．is	8.1	－：	－ 7	－10
＂	14	11.7	-1	－ 11		＂ 14	7	＋！	$+$	$+7$
）	21	11.9	8	－19	-12	＂25	$\therefore \therefore$	$+$	＋	＋
June	2	1：．0	$+15$	＋	-15	1902				
1	7	16.4	$+17$	$+14$	1	Jam， 5	6.6	－i	-11	－ 13
$1{ }^{1}$	18	15． 19	30	－ 313	-10	》 11	8.6	$+20$	0	－ 19
	25		28	－但	-43	1） 18	$\times 1$	－ 2	－ 10	－
July	3	16.8	16	24	－ 38	28	7.9	$+18$	＋\quad \％	＋ 5
－	10	17.7	-19	29	－ 30	Fibr． 1	6.4	$+36$	$+37$	＋ 70
＂	15	． 1	－ 6	$+3$	－？${ }^{2}$	＂ 7	\％	－ 3	$+1: 3$	＋ 1.
	20	198	－ 2	$+$	＋	192	4.6	－44	－－－ 7	－ 1.5
＂		20.2	$+1$	＋	＋	1.5	1．2	－ 31	－ 11	1
lug．	1	19%	－－י2	－18	－ 11	20	3.2	－tis	－	－！
＂ 1	12	197	＋	＋	$+17 i$	\because	1.11	－ 7	＋ $2: 3$	$+12$
－ 1	16	19.4	－ 4	± 7	＋ 3	March i	5.6	－14	$+1$	－ 2.5
＂	29	18.9	－	30	－ 29	11	7.0	$-i$.	－ 9	－ 23
－		18.5	－2－	－18	-13	＂ 14	7.1	＋ 9	＋ 16	＋ 95
Supt．			－ 2	－ 27	－ 7	19	7.7	＋12	＋ 5	＋12
＂I	16	15.8	－$\underline{2}^{2}$	－－¢！	－ 26	Ar．es	ふ．3	＋12	$\frac{1}{+14}$	＋21
－	21		＋	$+$	$+11 i$		か	－－：	＋	＋ 11
¢	4	16.2	＋ 3	＋	＋ 7	119	8.0	－ 11	－	＋
Oet．	1	167	－ 5	$+$	－ 8	$\cdots 18$	$9:$	＋\because	＋$\quad 1$	＋ 16
1	11	（1）．	＋6	$+18$	＋ 30	2	11.3	$+41$	＋ 3	$+10$
$\cdots 1$	16	13.1	＋ 7	$+12$	＋ 32	28	12.	＋ 3	＋ 29	＋ 23
4		129	＋	＋i	－ 1	May ：	111	-6	-14	1 上
$\underline{1}$		12.6	－ 16	-13	－ 16	9	10.71	＋ 2	－ 7	＋12

			111 11.	（1）い。 11／4		＇10．1．．	1130．	$111 ヶ$ 111	$\frac{11 \%}{}$
リ！以 2					1！ 12				
May		＋111．1－ 101	－18	．．	小ula	＋17．1	－：	－ 13	－\because
＂		$1051+4$	$+12$	－ $1: 1$	小川\％	$110 \times$	－in	－1＊	－ 1.1
Itıl．	11	1．，！！：	＋	＋16	$\cdots 11$	li ！	＇＇t	－ 3	－\％is
\cdots	17		－心	－ $1: 1$		11.11	－－	－$\quad 11$	－－${ }^{1}$
＂	$\underline{1}$	1．：1－1：	－－！！	－：\because	1）	16.5	－－16	－－${ }^{\text {a }}$	－：
\cdots		$110.5+7$	1	－シ4	－r	$110 . \mathrm{x}$	－ 6	－\because	－inis
Suly	\therefore	1s．ij＋1	－1．is	1	Smp：	17.1	－ 16	－1！	－：\quad ；
		17．9－ 21	－ 11	-7		17.8	－2\％	－15	－ 31
	1．7	$17.1-31$	－：	－$\because 1$	＂1i	16.7	－ $1!1$	－ 16	－ 3
＂		17.7 － 21	－ 2	－	＂ 21	18．2	－ 27		

 tate comblated by means of the there formulate：

	Form．In．	Firme．IIn．	Firm． 11%
1＊09 May－f！nk April．．．．．		$\pm 10.03 \% \%$	士0，0晾
	：	：	887
1！hn May－1！n上s．at．．．．	$2: 5$	Whit	27.4
	± 0.0311	± 0.1037	± 10.028
1＊99）May－1902 Suthe．	± 0.0611	± 10.030	± 0.0382

Fibst let us compare the mean erross of the three formulate inter se and with the comresponding values formerly obtaned for the for－ molae I and II with the monorected batrometer coedicient．

Then it appears in the first platere from the valnes for the period 1899 May－ 1902 April that the correction of the barometer coelli－ eient has markedly improved the aereement with the observations．${ }^{2}$ ） Secondly it wonld appear that the quatratic formula now represents the observations a little hetter than the linear formula，and thirdy We find that the suppestion of a lagemes behind of the inthenee of the temperature markedly impairs the agreement．

1）Each of the three years separately also leads to the same result．

A consideration of the differenes obs.- Ild and obs.- II/, shows however, that the latter conclusion does not equally hotd wool for all parts of the year and that the agrement with formma IJ/ is esperially had in the winter months. In order to investigate this mome closely, I divided the observations into eroups of lwo monlts amb calculated for eath group the mean vatue of the differences, tims for eath year separately, then after combining the corresponding aroups of the different rears. The lather values foblow here.

	Form. Hes.	Form. 11\%.
Jamuar!, Felbruary	± 10.1100	\pm (15.0.9\%)
Mareh, Mpril.	208	214
May, June.	2sis	2xí
July, Aurast.	晾	\%
September, Octoter.	¢15,	29
November, December	309	539

They lead to the simpular renult that doming the form winter mondhes formula 11 b agrees much less with the ohservations thath IH, whereat in the middle of the smmmer the atereement with ll/z seems to be better, ant in the other months booh formulac may be satid to agree equally well. In this repred the different years prateticalty lead to the same conclusion amd hemee we camot saty that this has been brought on by entirely adedental (athses. Howerer dhis may be, we are not entilled yef to assume a lagemg behind of the inthencer of the temperature.

Let us now consider separately the resuits for formula In, which seems to represent the observations with the greatest precision (those for He, do not essentially differ from them). It will be seen immediately that during the last seventeen months the rate has been considetably more regula than during the firs fwo years ${ }^{2}$) a smaller M.E. hats been reached although the 5 last of these 17 months were not included for the derivation of the formula. Thus the feature ohserved before, i.e. the gradual improvement of the regularity of the rate after the mounting of the elock, shows itself once more. The mean result for the whole period (M.E. $= \pm 0: 0311$) may abreaty be regated as very satisfactory, and the great regularity represented by a mean difference of ± 0.0251 between a daty rate from a 6 days interval and a relatively simple formmat gives us a high sense of the supe-
${ }^{1}$) Aready at the begiming we had left out the first 4 months after the remounting.

 I simple proces for attatime this in to collenlate the mean value of the dithereme between dwo comberontive reduced daty bites．

Aphlame this mephom to Honwi 17 during the perion moder （colmaderation ${ }^{2}$ ） 1 formel：

Ferom ldoere mean values considered int combertion will the mean comes of the rates in didaily and in monthly intervals formerly fond
 the perturbations of lomger athd shorter periods．

The values fonme as well those for the whole perion ats those derived for the lat vear only，are given in the lollowing latbe．The columns－I contalin the values fomed ditectly，the colloms l s those diminished by the amoment that cath be ascribed to the errots of observation，asoming ± 0 ost ats the total meath eroo of a time－ determination．M．E．\vec{B} of a i－lataly rate stands for the botal mean diflerence firom the formula la，found atove．M．E．a represents the atom derived from the mean diflerences between fwo consechtive rates．The mean errors of the monthly bates difler a lithe firom those of my previous paper as they now also refer to formula be．

	1＊：リ－1！		1！M11－19ト3．	
	1.	I）．	\therefore.	13.
M．Dill．of two fill r．	（1，1）318	± 1502037	$\pm 0 \times 02-3$	± 01019
N．F\％\％of ti ll．r．		183		1：37
M．E．\％of © IT．r．	：31	297	ごい	※゙：
IV．F．of monthl． r ．	29	6以	113%	110.3

1）The rates were reduced by means of formula 1 ice，but a reduction according to Ie would practically have led to the same result．

Alhbough these caldubations are inaremate owing alon to the fixe that the intervals befween the time determinations often differ tather moth from（i）days，yet it is evident that the M．E．b are mueh latwer than the M．E．es and hence that considemble pertmothations of lome periont exist，as，imbed，a erlathe at the table of the ohs．－compl also shows．It would be prosible to atecome wheably well fore the
 abitharly of comse，that there are two kinds of perdmbations，whe constant during if days and anoher constant during a month．We should then have to assign for the whole preriod an average value （o）both of $\pm 00^{\circ} .02$ and fin $\left.1901-15\right)^{2} 2$ alone one of ± 0（0） 0 ．

There ate not many clocks about which investigations have been published，which allow as direoty to compare the regularity of their bates with that of Honwi 17 and mosi of these embrace hat a short periorl．

An insestigation extended over 4 yeas about the standardedock of the obrematory at leipzig Dtwerer 12 has been published by Dr． R．Schumas ${ }^{2}$ ）．He uses $22 t$ time determinations at mean intervals of $6^{2 / 2}$ days and elerives for the mate a formuk containing a linear influence of the temperature and of the barometric pressme and besides a term ramying with the time ehapsed simee a zero－epoch．As mean value of the difference ohs．－comp．he finds $\pm 0: 059$ and there is no evidence of a residual reaty inequality．I calculated abo the mean value of a difference between two consecolive rates and found $\pm 0: 05$ \％．

In the latter respect we posseas also data athont the four normal clocks of the Georletic Institute at Potsdam．An investigation by Mr．Wivich ${ }^{2}$ ），about the rates during last year gave the following mean differences hetween consecntive rates atter correction for the barometric pressure，while the temperature was kept very nearly constant：

$$
\begin{aligned}
& \text { Ritefter 20) } \pm 0.062 \\
& \text { InNeKER 27 士 } 0.047 \\
& \text { 以encera } 28 \pm 0,049 \text {. }
\end{aligned}
$$

These values are considerahly larger than that for Honwï 17 ，but respecting the Potsdam clocks we must keep in view that Dracker

[^51]

 minations the rewnlarity of the rate dhatery the et lomus of the day

 orive us athe information on this sulyeme

 temperature, renine that, whike the atmplitute of the yraty variation of temperathare hat diminished rompatatively lithe in its present plator, Whe daty sariation hate almose emtimely disappeated.

This will borest firm the following values of the difference berweren the temperathere at 4 bedoek in the afternom and the mean of the semperathes of the preceling and the following is lams in the momanes. Theme diflerences baken for about $2+0$ days have been

Jation! Vihtury	$\div 1.10$
Marh. Amil.	+ 0.18
Mar. Jume	$+0.2$
July - Iug゙u-t	$+1120$
S-ltembers. Wetobur	$+0.1 \%$
	+ 0)

The mean differenee is erreatest in stmmer, but even then very -mall, while no diflerence ever reathes 10 or.

KONINKLJKE AKADEME VAN WETEXGHAPPEN

TE AMSTERDAM.

 of Saturday October 25, 1902.

(Translated from: Verslag van de gewone vergalering der Wiss en Natumkudige Afteeling van Zaterdag 枵 October 1902, Dl. NI).

CONTMNTS.

11. W. Bakmers loozeroom: "A representation in space of the rupions in wholi the solid phases, which occur, are the components, when not formine compounds", 1 . 299 , with one plate).
12. W. Banmos Roozaboos: "Epuilibria of phases in the systemaretathehyde + paraldehyde with and without molecular transformation", P. 283.
L. Aronstais and A. S. fas Nimbor: "On tice action of sulphur on tolnene and xytere". (Communicated by l'rof. J. M. vas Bmampan) p. 288.

The Wraves: : 'Investigations of elucuzides in comection vith ithe internal matation of plants". (Commumicated by prof. C. A LanBey be: Bat is), p. 2s.
J. D. vas bera Wans: "Sume obs rations on the course of the molecular transiumation", p, 303.

I. K. A. Wertuan Sanmox-as: "The influence of variation of the constant chrent on the

J. E. Verachaffet: "Contributions to the knowledge of va mat Wh wa' -surfirs. Vil. The equation of state and the :-surface in the immediate neighbowhood of the critical state for binary mixtures with a small propertion of one of components", $p, 321$, with une plate, Continuation p. 336.
J. Bomk : "On the structure of the light-percepting cells in the spinal cond, on the nemonfibrillase in the ramglioncells and on the imervation of the striped muscles in Amphioxus lathceolatus". (Communicatid by Prof. T. Plack, p. 350, (witla une plate).

The following papers were read:

Chemistry. - "i repuresututions in sputce of the reapioms in which the solid phewses. which onceles, wre the cem:pmentis, when wot forming compoumels." By Piot. II. IV. Bathtis Roozemoom.
(Communicated in the meeting of September $\mathbf{2 d}^{-7}, 1!(10-2$).
In the course of my researches. I have often mate use of special kinds of graphical representations to indicate the limits of the existence of single phases or compleves of phases. It was only after the year 1896, when it comit be takon for gramed that the general

Proceedings Royal Acad. Amsterdam. Vol. V.
chatacter of the equilibia between lignid and vapome in hinary systems had hecome finl! moderstomb, that efloms cond he made to comstrunt a complete eraphical represontation of the comblitions of equilibrimm in which solid phates weroms.

The simplest possible case is found when only the fwo components of the bimaty system oceur as sotid phases. Fior such a case, I have
 are given in the acompanying tignes. For the case that chemical compounds or mixed coystals orome as solid phases other figntes have been constrmeted which, however, may he deduced in a simple manner from the present ones.

In this figure the lomgh represents the lemperature, the breadth the concentrations of of the mixtures which can exist as vapour or liquid, the component a being placed at the left and the component B at the right. The height represents the pressure. The figure does not represent any particular case, but is so constroted that the different details come out platy ant the dimensons are not too great.

We stat from the equilibria between liquid and vapour, which researches on the eritical constants of mixtures have proved to be capable of representation hy a surfue of two sheets, the upper part of which represents the liguids and the lower part the vapours. The coexisting conditions of these two must have equal values of p and t and are therefore, situated on a horizontal line which is parallel to the x^{2}-axis. The said surfaces meet at the left side in the vapourpressure line $0_{1} C$ of the liquid A, at the right side in the vapourpresoure line $\|_{B} I$) of the lifuid B and in front in the critical curve $(' D$.

The peints in the spare between the two surfaces indicate complexes of liquid and rapour. In the representation, this space is massive, like all other spaces which represent complexes of two phases.

The surface of two sheets for liquid + vapour is so constructed that A is the substance with the greatest vapour pressure. It has further been assumed that the liguids are miseible in all proportions and that no maxima or minima oceur in the equilibrium pressure.

Descending continuously, the surface would reach the absolute zero if A or B or both did not solidify first.

The pure liguids A and B solidify in O_{1} and O_{B}; from there the vapour-pressure lines $O_{1} I$ and $\theta_{B} K$ of the solid substances run in the left and right vertical side-plane.

Considering now the liquid-mixtures with in increasing amount of B, solid A can only be deposited at temperatures lower than O_{1}. At each temperature there is a detinite liquid and a definite vapour
which coexist with the solid phase A at a definite pressure which is lager than the vapomepressure of solid A alone, but the same for cach of them. The three roexisting phases are represented by the
 They are situated together on a cylintrical surface, because for equal t, also p is equal. The part $F^{\prime}()_{1} L$ ' is also a limitation of the surface of two sheets.

In the same manner we have for the equilibrimm of solid B with liquid and rapour the three lines $\left(O_{B} M,()_{B} L{ }_{2}^{\prime}, O_{B} F^{\prime}\right.$, for solid, liquid and gas respectively, again situated on a eylindrical surface, while the part $E O_{B 3} F$ thereof forms below a second limitation of the surface of two sheets. This cylindrical surface first rises from O_{B} but afterwards falls again.

The surface of two sheets terminates, as fat as the liquid-surface is concerned, finally in E, the gas-surface in F. This liquid and this vapour may exist in contact with solid A (point (G) and also with solid B (point H). As the points ($r, l, l, l \mid$ belong to the same values of n and t, they are situated on a horizontal line and represent the only possible complex of fom phases.

To the gas-line $O_{1} F$ a second gas-surface joins, representing the rapous capable of coexisting with solid A, when the quantity of B in the rapour increases; also to $U_{B} F$ the gas-surface for the vapou's in equilibrimm with solid B with increasing amounts of A. From the melting points of the pure substances down to the temperature of the quadruple-point $G F E H$ these two gas-surfaces are not in contact with each other, but each of them singly is in contact with the gis-surface of the surface of two sheets.

Below that temperature they intersect eath other immediately, forming the line $F L$, which represents the vapours capable of coexisting with solid $A+$ solid B. To this belong the lines $G M$ for solid A and $H N$ for solid B which are again situated on a cylindrical surface.

All complexes of the solid phase A and of the coexisting vapours are situated within the space formed by the gas-surface $\left[0{ }_{1} F L\right.$, the surface of the solid phase $I O_{1} G M$ and the two cylindrical surfaces $G O_{1} F$ and $M G G L$. All complexes of the solid phase B and the sapours which can exist in contact with it, are situated in the space hounded by the gas-surface $K O_{B} F L$, the surface of the solid phase $K U_{B} H N$ and the cylindrical surfaces $H O_{B}{ }^{F}$ and $N H F L$.

Both spaces extend to the absolute zero if no new phases are formed.

The three surfaces representing the equilibria of gas with liquid, with
solid. I and with solid I ' meet 'atelh other is the proint f '. In the stme way, two other lignidsurfates mas join in the point liat which the lignid surface coming from higher temprombers ends, mancly those which indicate: the p, t, x^{2} values of the bignids which coun erexist with solid A or solid B. The lower limits of then surfaces ate the lines O_{A} S' abd $W_{1} E$: which represent the eqpilitrimm of solid and vapour. Setting out from thee limes the vapour disappears when the pressure is increased. On account of the small chames which the composition of the liguid maderenes with an imerease of pressure, the lignidsurfaces (onlel' and oblel'l will rise almost vertically. They terminate to the left and the right in the melting point lines $O_{4} 5$ and $O_{13} J^{r}$ of the solid suhstances A and B, whist they interseet each other in the line $I: l$ which indicates the liquids which at different p, t values can coexist with solid A and B. To this line helong the p, t lines (r) and $/ H R$ for the solid plases, which atain form a cylindrical surface with El'.

In this way we arrive for the complexes of solid $A+$ liguid at the space included hetween the liquid-surface, the surface of the
 A similar space includes, at the right, the complexes for solid $B+$ liquid.

Finally, the region of the complexes of solid $A+$ solid B is situated behind the evlindrical surface dillit! and above the cylindrical surface $N H(; 1)$.

The spaces last described terminate in the figures at the back at an arbitrary temperature and above at an abitrary pressure. One must suppose that, in reality they continue their course.

The remaining space outside the massive parts constitutes the recions of homogeneous liquids and vapours which pass into each other beyond the critical curve. The other six massive parts repre-- mi complexes of two phases, the states of matter forming the complex being represented hy two side surfaces.

They further are comected with each other by four eylindrical surfaces on which three lines are always situated representing the systems of three coexisting phases and these eylindrical surfaces intersect each other in one straight line on which is situated the only possible complex of four phases.

If for any system of two substances the figure described were studied completely, it would enable us for each mixture at each temperature and each pressure to read off, of what phases it has been built up and as far as liquid and vapour are concerned it would also show their separate composition.

For the complexes of two phases, the relative proportions maty also be read off in the figure; for those of there or fon phases it would be necessary to also know the relation of the volumes.

The figure also makes it possible to ascertain what changes a mixture will undergo, when the femperature, pressure ${ }^{1}$) or concentration are changed.

Chemistry. - "Equitibriu of phases in the system acetaldehyrle + paraldehyde with and without moleculdr trans formation". By Prof. H. W. Bakhuis Roozeboom.
(Communicated in the meeting of September 27, 1902).
The character of the equilibria of phases is exclusively determined by the number of independently variable constituents - components of which the system is built up.

Sometimes this is equal to the number of the different kinds of molecules. It may also be smaller, if there are among the molecules those which may pass into each other as in the case of associating, ionizing or isomeric substances. If these molecular changes proceed more rapidly than the equilibria of the phases, they exercise no influence on them.

Although water, for example, is a mixture of at least two kinds of molecules, its freezing point is quite as shapply defined as that of a single substance.

If however, the velocity of the molecular change is small, the system on being treated rapidly will behave like one with more components than it shows if treated more slowly. The effect of this on the phenomena of solidification has alrealy been mentioned by Bancrort in 1898 and by myself in 1899. So firr, however, no suitable example has been found which would enable us to consider

[^52]

Paraldelayde.
the whole of the equilibia of phases from that point of view.
such at system has mow heom imsestigated in my laboratory by 1)t: Hommoss of Dorpat. It is the systemate tablehyde f paradelyyde, which hats the further atvantage of not modercoing molecobar frimsformation exeept in the presence of a catalyzer and so hehaves like a system with two eomponents, whilst it mulerroes transformation rapidly enough on aldition of a trace of sulphuric acid to appear as a system with only one component. It becomes possible, thas, for the tirst time to obtain a general insight into the position which equilibria with apparently one component occupy among the systems with two components.

The chicf results of the researeln are the following.
linst of all the soliditication phenomena of mixtures of acetaldehyde and paraldehyde were investigated. As is well known, paraldehyale in a pure state melts at $12^{2} .55$ (point $/ 3$). This melting point is lowered by addition of acetadehyde aloner to the coure $\mathcal{L}^{\prime} E \prime D C^{\prime}$,

With the aid of the apmaraths of Prof. Kamprasin Owsts ${ }^{2}$) the metting point of acetaldehyde was determined at - $118^{\circ} .45$ (. 1). The melting point line of acetaldehve does mot extend further than - $119^{\circ} .9$ (6^{\prime}) where it meets that of the pazaldelyde. ' is therefore a entectic point,

	Melting point.	- Pamaldehyde
13	+ 12.5.	1010
E	+ 6.8	-8. 1
D	- 4.0	13.6
C'	-119.9	1.4
A	- 118.4	11

[^53]The boilng points of the mixtures were next determined at a pressure of 1 atmosphere and the composition of the vapour of these boiling mixtures was also determined by means of a special apparatus. The former form the line FHG, the latter the line $F l G_{i}$ of which the following points are the most important:
$F^{3} \quad 20.7$ boiling point of acetaldehyde
I 41.7 vapour 2.5% paraldehyde
H 41.7 liquid 53.5 " "
G 123.7 boiling point of paraldehyde.
On account of the great difference in volatility of the two compenents the liquid- and vapour lines are situated far from each other. The vapour of a boiling mixture is much richer in acetaldehyde than the liquid, for which reason the two are readily separated by fractionation.

In the third place the critical temperatures of the components and of a few mixtures were determinet. (Only that of acetaldehyde had been previously fomd by Prof. vay der Waals to be 184°).

Resuit:

Critical temp.	$\%$ Paraldehyde.	
L	188°	0
P	221°	11.0
O	241°	22.0
N	270°	50.0
M	286°	100.0

These are the relations when there is no transformation of acetaldehyde into paraldehyde, or the reverse.

If, however, a trace of a catalyzer is added, acids in particular, the two molecules can be converted into each other, till the condition of equilibrium corresponding to p and t has been reached ${ }^{5}$).

It appeared that by these means the boiling point of all mixtures came in a very short time to $41^{\circ} .7$ and as this point according to the line $F H G$ is situated at $5.5 .5 \%$ of paraldehyde, it represents the relation of equilibrim in the liquid condition at that temperature and 1 am . pressure. As the corresponding rapour according to point l of the vapour line FL(t only contains 2.5% of paraldelyyde a rational explanation has thas been found of the long-known faet

[^54] aretaldelyade is colleroded.

 hyde meets the meltiner point lime of patablehyde.

 whole mixture berommes all lat a solid mats of paradehogle. This even prosed to the the rase when prote atedaddehyte wat taken as -tating point. On the other hand paradehyde in the presence of a trace of a catalyzer daces mot medt at $12^{\circ} .5$ but at $6^{\circ} .5$ owing to partial eomserson into acetaldehrale.

We have no knowledge of the equilibrium in the vapour at these low temperathes hat something ean be said regarding higher temperatures.

The limes if $/ / i$ and i / f have requrd to 1 atm. presome. Similat lines might however, be determined for a ligher pressure and in that mammer the displaternem of the points $/ /$ and $/$ with the presume wonld be determined. Finally, we should thas arrive at the aritical line $L / 1 /$ and here the compositions of the vapour and lignid, which indicate the refation of empilibritim, must become the same. It appeated from a series of determmations that the point P at 221° and $11^{\circ} \%$ of pataldehyde is this very point.

At these high temperatures, the equilibrium is atso reached after some time without a catalyzer.

It appeats from the position of $/$ ' hat the line which gives the eomporition of the lignit when equilitrimm is attamed sopes in the beginning very rapidl! with rising temperature fowats the atcetadehyde side of the figure (porion $E / /$ バ) bot atierwats mmeh less rapidy.

The lime of expilibitum of the vapour vertamly does retrograde, for at 41 the vapour still eomtams $2.5{ }^{5} /{ }^{\circ}$ of paraddehyde, at 100^{2} less, and at 221 atrain $11{ }^{\prime \prime}$. In this ease the inthence of the pressure prevait obvonsly. As pataldehade is a triple polymer, the inthence of the presure is very marked.

If we make at repremadion in sate of the whole fisme, like the one mentoned in the previons commmateation, it will'be noticed that the equilibit where the posibility of the mutual transformation of acetaddelyde and paraldehnde is admitted, are lines on the surface
b) The point K has been determined by Terbabs at $50^{2} .5$ and $39.4^{\circ}{ }_{0}{ }^{\circ}$.
which represents the ease that the wo components are not subject to transformation.

For this another new representation may be wiven which considers the matter from a more general point of view.

Taking p, t and x as coordinates, a surface maty be constructed which shall represent the equilibrim between the fwo kinds of molecules in a homogeneous phase, vapour or liguid.

- Fig. .

Fig. :3.

The general form of such a surface of mpilibrium for the system acet-paraddehyde may be readily deduced from thalowy with other known equilibria in the grasens condition, if one eonsiders that paraldehyde requires heat to pass into acetaddehyde and may be reobtaned from the same by compression.

The gencral course of the equilibrimm line at a constant pressure is indicated in fig. 2, that at constant temperature in dig. 3 . It we now imagine that on the difierent joints of the t, r-line in a horizontal plane, f, r-lines are erected in vertical planes, we obtain a f, t, x surface of a very pectiar shape which gives the equilibtimm relation hetween acetaddelivide and parahlehyde for ever temperature and pressure.

The comse may be theoretically calculated for the vapour if the pressure is not too laree. With ereater pressures and fore the liguid state this becomes a difficult matter lout the general course remans fanty certain. We might therefore, image this equilibrimm surface first of all at temperamos higher than those of the eritionl empe L.IV. Here, the surfare womh for some time extend itself undisturbed both vertically and horizontally. At lower temperathres, the surface, on aecount of its form, mus nevessamily meet first of all the surface for liquid-vapour; according to the invertigation this takes place in the point P^{\prime}. From here to lower temperatures, the

 state and amother for the lignial state.

The lines of interseretom of thest twa sullateres with the surface of
 "f comser also be added bines of intoperetion with the other gasand lignid surfaces, which haw heen mentioned in the previous commmbicationt.

In this mamer, it appears that special empilihria, which oceme when banstomation betwern the two components is presible, may Loe always considered to ortwinate from the intersedtion of the general spate ligume for the equilibria of phases with the surfare of equilibrimm for the moterolar equilibria in earoh phate.

Chemistry. - "On the retion of sulphar on toluene and xylene." By. L. Arosstein and A. S. Vis Nifrop. (Communicated by l'rof. d. II. vis Bemmeides).
(Communicated in the meeting of September 27, 1902.)

The researches on the molecular weight of sulphur aceording to the boiling point method of L. Aronstein and S. H. Meihuzen ${ }^{2}$) showed that this molecular weight was found to agree with the formula S_{s} and this in liquids the boiling point of which varied firm 45 10 214. But when toluene and xylene were used as solvents for sulphur the determination of the molecular weight had given values which eorresponded with those calcolated from formulae ranging hetween $S_{;}$and S_{8}. It was then suspected that this difference might be due to chemical canses. In the following lines we will communicate the results of otur efforts to trace those canses.

Action "f sulphur on twheme. It had ahready been noticed that on hoiling a solution of sulphur in xylene hydrogen sulphide was given off which was shown hy means of lead acetate. A similar evolution of hydrogen sulphide wat not noticed on boiling sulphur with toluene. As the chemical attion of sulphur on tohene at the msually observed boiling point could probably not amount to much, a preliminary experiment wat mate by heating a solution of sulphur in toluene in sealed tubes at $250^{\circ}-300^{\circ}$ so as to accelerate the action until on

[^55]cooling the tubes no arystallisation of sulphur took plate. la the case of a mixture of 2 grams of sulphur and 10 grams of toluene, this lasted 10 days; in the interval the tubes were repeated!y opened to allow the acemmatated hydrogen sulphide to excape. The product obtained was freed from undecomposed tolnene by distillation: a preliminary investigation of the residual mass showed with certainty the presence of stilbene, thionessal and probably also of robally sulphide. As moreover the contents of the tube had a strong odour of mercaptane it was supposed that the action had taken place in one of the following ways. Firslly, benzyl sulphydrate might have been formed by a direct addition of sulphur aceording to the equation:
$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{S}=\mathrm{C}_{0} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{SH}
$$
and this on losing hydrogen sulphite according to the equation:
$$
2 \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{SH}=\left(\mathrm{C}_{8} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{~S}\right.
$$
might have yielded benzyl suphide, which according to Forst ${ }^{2}$) may yield as final products stilbene, totallyl sulphide and thionessal.

Secondly, the sulphmr, according to the equation:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+2 \mathrm{~S}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \stackrel{\mathrm{~S}}{ } \mathrm{II}+\mathrm{H}_{2} \mathrm{~S}
$$

might have yiekded thiobenzaldehyde or rather $\left(\mathrm{O}_{6} \mathrm{H}_{5}(\mathrm{C} S \mathrm{~S})_{\mathrm{x}}\right.$, which $\left.{ }^{2}\right)$ according to the equation:

$$
2 \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CSH}=\mathrm{C}_{14} \mathrm{H}_{12}+2 \mathrm{~S}
$$

might have formed stilbene, which then might have formed thionessal according to the equation:

$$
2 \mathrm{C}_{14} \mathrm{H}_{12}+3 \mathrm{~S}=\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~s}+\mathrm{I}_{2} \mathrm{~S} .
$$

In order to test the accuracy of these theories 4 grams of suphar were boiled in a reflux apparatus with 150 ce. of tohene for 120 hous, care being taken that any hydrogen sulphide which might have been formed and the non-condensed benzylalphydrate were dimied off by means of a current of cathon dioxide and pasised through an alcoholic solution of lead ateetate. Alhough pereephible quambities of lead sulphide were precipitated during that time not a trate of the well-known yellow lead mercaptide was found. Both the toluene solntion and the crystalline mass obtaned therefrom were carefinlly tested for the presence of benzyl suphydrate and also of thiohenzaldehyde but notwithstanding the delicate tests for these substances their presence could not be demomstrated. But from the fohtene solution we succeded in isolating stilbene melting at 124° and from this was prepared the characteristic dibromide (m. p. 235 236) 23.
${ }^{1}$) Liebig's Annalen, Band 178. P. 370.
${ }^{2}$) Baumann \& Klett. Ber. D. Chem, Ges. Band 24, P. 3307.
 belofe that the formathon of widhene had baken place in a more simple mamber than wat lommery supposed, and acoording to the equation:

$$
\because \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+2 \mathrm{~B}=\mathrm{C}_{0} \mathrm{H}_{5} \mathrm{CH}:\left(\mathrm { CH } \left({ }_{n} \mathrm{H}_{2}+2 \mathrm{H}_{2} \mathrm{~S}\right.\right.
$$

The thionessal found in the pretiminary experiments might then have originated from the action of sulphom on the stilbene which atecordiner to Batmos and Khatr readily lakes place at 2000. Fresh experiments in which tolneme was heated with sulphar for hundreds of hours in seated twhes at 200 yielded ats sole erystallisable produet a large quantity of stilhene which was obtathed in a perfectly pure condition and of which the hromine addition prodnct with the eorreet melting point was prepared. In comection with the results of the atetion of sulphur on xylene to be mentioned presenty, we took into consideration the possibility that ats at first product not stibene but dibenzy might have been formed ateording to the equation:

$$
2 \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{S}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{C}_{8} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{~S}
$$

and efforts were made to isolate this if possible. As, however, according to the researelne of Ramazansi ${ }^{2}$, sulphur comserts dibenzyl very readily into stilbene and as we had found by special experiments that this alrealy takes place at 200° when a solution of dibenzyl in benzene is heated with sulphur and as we had also proved that this action does mot take place at a temperature of $140-145^{\circ}$ we have heated sulphom with toluene in a sealed tube for eight days at 140 . As sole product we obtained stilbene besides hydrogen sulphide from which fite we we justified in concluding that by the action on the toluene two atoms of hydrogen are directly withdrawn and the two remaining gromps are condensed to stibene.

Actione of sulphur on p-xylene. When a solution of sulphur in p-xylene is boiled there is a much more perceptible evolution of hydrogen sulphide than on boiling a solution of sulphur in tolnene. If, ats in the previous experiment with tolnene, the gats evolved was removed by means of a cursent of earbon dioxide and passed through an aleoholice solution of lead acetate 16 milligrams of lead sulphide (equal to 2.1 milligrams of suphm, were obtained after boiling for an hour and a half. Here again there was no sign of any lead mercaptide; neither did the xylene solution contain a mercaptane as was plainly shown by the fact that no reaction was obtained with mercuric oxide. We next proceded to heat one gram of sulphur with 30 ec of p-xylene in sealed tubes for 120 to 160 hours at 200 to 210° similarly to what was done in the experiment with

[^56]toluene. On opening the tubes much hirdrogen sulphide escaped and from the liquid obtained the xylene was distilled ofl. The residue became quite solid and apparently consisted of suphor and a crystallised hydrocabon. To remove the greater part of the sulphur, the hydrocarbon was dissolved in ether which was then distilled ofl. By recrystallising the residue from alcohol a mass was soon obtained which melted at 81-82'. Two determinations of the molecular weight by the freezing point method with benzene gave, respectively the values 200 and 205 . No chame took place on heating with hydrogen iodide in sealed tubes and no addition product wats obtained on adding an ethereal solution of bromine. The product in fact appeared to be identical with p.p. dimethyddibenzyl $1-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$. $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ - p. which Moritz and Wolfressten ${ }^{1}$) had obtained by the oxidation of p-xylene with potassimpersulphate.

The result which was not analogons to that obtained with toluene caused us to repeat the experiment which now yielded a crystallised product which malike the first substance was found to consist of a mixture of hydrocarbons. In order to completely eliminate the sulphur the mixture was boiled with solution of sodimm sulphite, then dissolved in. ether and after distilling off the same, the residue was treated with cold alcohol. The alcoholic solution again contained p.p. dimethyldibenzyl (m. p. $81-82^{\circ}$) as was proved by repeated reerystallisations. The portion insoluble in cold alcohol was solved in boiling alcohol and by repeated recrystallisation a product was obtained which melted at. $176-177^{\circ}$, yielded, on adding an ethereal solution of bromine, a bromine product melting at 208° and proved to he identical ${ }^{2}$) with p.p. dimethylstilbene p-($\mathrm{CH}_{8} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHCHC} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{8}-\mathrm{p}$.

In order to find out the eanse of the difference in these results a further investigation took place. As far as we were aware, the only difference between the two experiments wat that this time the tubes had been repeatedly opened thus causing the removal of the greater part of the bydrogen sulphide. The temperature during the experiment was in both cases the same and constant belween 200 ant 210° : the heating was also contimed for about the same length of time. It was now possible that origimally in hoth cases p.p. dimethylstilbene hat been formed. Whilst in the first experiment this substance might have been almost completely reduced to p.p. dinethyldibenzyl by the action of the hydrogen sulphite, this reation could only have occured in a limited degree in the second experiment.

[^57]Fon this invertigation athation of p.p. dimedhystilleme in benzene

 tubes there indeed was whtamed, besthes mathered P.p. dimethylstillorte, at product which proved of be identical with p.p. dimethyl-
 readion might have taken plate.
 sulphur in benzeme for 40 hous at 200 and, although it was not riched in at puantity sumicient watmil of a thoromgh puritication, p.p.
 between 140° and late which athorhed homine and vielded a product meltine hetwern 1 sa and 199°, whereas the melting point of prp. dimethystibneme dibomide is sithated at 20s'. From these experiments it is, therefores prohahle hat the formation of stilbene is here the primary and that of dibensy the secomdary reaction, but we here got no vertainty about this.

On repeating the experiments on the atelon of sulphur on prydene in sealed tubes some of which were opened from time to time unequal proportions of stilhene and dibenayl were still obtained, but the result of the first experiment (nealy exclasive formation of dibenzyl) was never again obtained.

It should be mentioned here that p.p. dimethylstithene was often obtained in two diflerent forms. Generatly, it wats a coarse crystahime powder, but occasionally it consisted of very thin leaflets with a silky lustre and showing a violet-coloured floreseence. The original form of both was retamed after reerystatlisation fom aleohol. Once we succeeded after a grood deal of tromble to convert the coarse grambar form by grafting, into the silky condition. The metting point of both forms was identical. On treating them with an ethereal solution of bromine they both gave the same bromine addition product. To see whether this wats a "are of stereo-isomery, solubility determinations were made of both modifications in absolute aleohol at 25.5 . In both instances the same solubility value was found, namely 0.21 part per 100 parts of atcoloo ${ }^{2}$. Somblhetanding the difference in appeatance which was also retained in these solubility experiments, a stereo-isomery has thereby been rendered very improbable.
${ }^{1}$) Elbs (Journal f. Pract. Chemic. Neue Folge Band 39. P. 999 and Band 47. P. 46) gives the solubility of p.p. dimethylstilbene in alcohol at the ordinary temperature as 0.76 per 100 .

Action of sulphur on m.-xyleme. Sulphur boiled with m-xylene not only gave a much smaller erolution of hydrogen sulphide than in the case of μ-xylene but the amount was even less than that oltained on boiling sulphur with toluene. m-Xylene which hat been boiled for a considerable time with sulphur was quite as free from mereaptane as the similarly treated toluene and p-xylene.

We now provected to heat sulphur and m-xylene in sealed twhes at 200'. After the heating had lasted for 70 homs, the sulphur had totally disappeared and the fubere could he opened. Streams of hydrogen sulphide escaped. From the lifuid obtaned the xylene was distilled off and the liquid non-crystallisable residue was freed from sulphur by boiling with solution of sortimm sulphide. As it wat not improbable that both m.m. dimethylbenzyl and dimethystilhene might have been formed (to judge from the behaviour of p-xylene) and as the first named substance is, according to Vollrati ${ }^{1}$) and Moritz and Wolfrastan ${ }^{2}$), a liguid and the manown m.m. dimethystilhene probably a crystallisable sulstance it was tried (although in vain) to effect a separation of these two sulstances by heating in at current of steam, by fractional distillation at ordinay pressure and adso by solvents. The suspected presence of a stilbene in that lipuid was, however, soon proved when bromine was added to its ethereal solution and the whole placed in a freezing mixture. A bromine-addition product now erystallised in abundance. The addition of bromine was continned until a small excess was present. The crystallised product after being recrystallised twice from xylene had a constant melting point of $167-168^{\circ}$. A bromine determination according to Carics gave 44.02% of bromine, the calculated quantity for dimethysstilbene dibromide being 43.50%.

The dibromide was used to prepare the hydrocarthon itself. For this purpose it was dissolved in xylene and boiled with molecnlar silver or sodium wire for 6 hours in a rellex apparatus. From the xylene solution obtained the xylene was removed by distillation ; the residual liquid crystallised on cooling and the crestalline mass conld be readily purified by recrystallisation from alcohol. The substance is very difficult to burn; the combustion only succecded by intimately mixing it with lead chromate and potassimm bichromate. The elementary analysis gave the following result :

[^58]
That the whataed hydrocarlon was vatly whem. dimedyybthene was proved by adding homine lo its atment solution which immediately gidhed crestals wh the ditmomble with the previously found con-tant mefting puint of 16 bit lios.

The whereal dignid from whiol the dimerthylathene bromide was precipitated, contatined, of combe. free brontine from which it was freed loy tratment with itgueons potash. After distilling off the ethere the lignid wats submitted the fitelomal distillation when hydrogen bromide wat evolsed wwime to the presente of brominated products. The hydrogen hromide prevent in the distillate wat removed by treatment with atpuesons pobish and the liguid distilled once more. When it appeated that this distillate, pasing wer between 298° and 302° was 160 yet fiee fomm bromine it wat diswhed in toluene and boiled for there homs with sodimm wire which completely removed the bromine. The lignid then showed a constant boiling point ot 298°. On amalysis wat found:

$$
\begin{aligned}
& \text { (" } 91.38^{\prime \prime} \text { "H. 8. } 64 \% / \%
\end{aligned}
$$

Two determinations of the molecnlan weight by mean of the lowering of the freezing point in henzene gave 201 and 199 : calculated 210. All data agree with those of Voldrath and those of Morit\% and Wobfewaten for m.m. dimethydibengy. Only the boiling point was found to he two derrees higher.

From this it, therefore, appeats that m-xylene on treatment with sulphur vields stilbene ats well ats dibenzyl as discomposition products.

To ascertain whether stilbene was here also the first product, m.m. dimethyldibenzyl wats submitted to the action of suphur by boiling it with this in a refles apparatus. The product of the reaction dissolved in ether and treated with hromine did not yield a trace of the characteristic $\mathrm{m} . \mathrm{m}$. dimethylstibene dibromide. This substance could not even be recornised by means of the microscope.

From this we think we maty come to the conclusion that during the action of sulphur on m-xylene the first protuct is most probably stibene and that dibenzyl is a secondary product formed by the reducing action of hydrogen sulphide.

The results of this researeh are, as we believe, a confirmation of the opinion expressed by Arossten and Mantzes in their treatise on the molecular weight of sulphms. A tritling action of the sulphur on toluene and xylene must cause a derivation of the molecular weight in the direction previously found. One mol. of sulphur causes the formation of 8 mols. of hydrogen sulphide and 4 mols of stilbene.

Athough hydrogen sulphide is volatile and most of it eseapes during the boiling, the increase of the number of molecnles formed during that action (however small this may be) is large enough to atecomt for the observed difference. The fate that the deviation has been fomd harger in the case of tohene than with m-xylene ats solvent is also in agreement with the observed fiud that more hydrogen sulphide is evolved in the first than in the second catse.

Onr research on the action of subhur on p-xylene wats not conducted merely with the idea of confirming the researehes of Arosstan and Mennizes (we were not quite sure whether the m-xylene then used had been completely free firom p-xylene but atso to throw more light on the mechanism of the process and particularty on the question of the primary formation of stilbene and the secondary formation of dibenzyl.

Chemical Laboretory of the Polytechnical School.

Delft, September 1902.

Physiology of Plants. - "Incestigations of cilucosides in ronnection with the Intemal Mutation of plants," by mr. 'Th. Weevers. (Commmicated by Prof. (. A. Lobry de Bretx).
(Communicated in the Meeting of 27 September 1902.)
The purpose I had in view in this investigation was to trace for some plants, whether the amount of glucosides remains unchanged during the development or not; and to investigate in the latter case by what conditions these changes are determined.

At the same time the manner in which those changes took place formed another subject for study: whether glucosides were transported as such, or whether a decomposition could be stated, and in the latter case what were the components in which this took phace.

Salix species and Aesculus hippociastanum L. were especially used for the investigations; Gaultheria procmmens L. and Fagus sylvatica were also submitted to a prefatory study.

The glucosides to be mentioned here are salicine for the Salix species, gaultherine for Gaultheria and Fagus, aesculine and moreover some glucosides not vet chemically determined for Aeseulus hippocastannm.

As for salicine the quantitative valations were made as follows. The salicine was entirely extracted by boiling water from the parts to he examined and the extract beated with hasic lead acetate. The

Proceedings Royal Acad. Amstertam. Vol. V.
-umplas was romoved ly dinatrimmphaphate and the lignid then

 (1) work in upon it for to hobrs. Profittory "xperiments with pure salicine had prosed that in this wity it wat completedy derompmed: the increase of the reduetion ather inversion was bo be atributed only to the erlneose formed of salicine. ${ }^{2}$).

From this incratse of the ghorose the quality of the satieme could then be calculated.

This same mothod was followed in order to state the salicine in varions parts of the plant then however, after inversion the liquid was extracted with ether, so that saligenine might enter into it. This substance is easily recognised by the physie quatities of its erystals and by the substitute of bomine ohtanable with bomnerwater and moreover hy its salt of copper. 'The efforts to point out salicine in the tissue itself were masucerstul; the mothod formerly used hy Tharors '!, namely that of adding concontrated sulphuric acid, proved impracticable, ats it during the produced erroneous results.

For the above mentioned Salix species salicine is found in the hark of the branches, but not in the wood; young bods are rich in it, likewise the assimilating leaves. It appears in young ovaries but disappears shring the process of ripening.

Althongh an inverting enzume was not to be extracted, it proved necessary to kill the parts immediately in boiling water, otherwise considerable alterations in the quantity of salicine presented themselves. Thus e.g. after stow drying 25 pe't. disappeared out of the bark.

The following series of determinations for the purpose of investigating the quantity of salicine during the budding periorl, was made with one specimen to exclude individnal differences.

The total quantity in various suceresive stages was calculated by taking a branch with a definte momber of sidehuds as ohjert. The weight of the different pats of this branch together with the procentic values of the quantity of salicine in corresponding parts of the same object in the successive stages gave the total quantity of salicine of this branch in those stages ${ }^{3}$).

[^59] No. 5 . Concentrated $\mathrm{H}_{2} \mathrm{SO}_{2}$ sives with salicine a coloring of red.
3) In conresponding parts of one olyect was an equal quantily.

Under observation were only branches without genitals: those with catkins gave a different result ${ }^{2}$).

Brames of $1 / 2-4 \mathrm{mM}$. diameter (wood and bark fogether).
Mareh $24^{\text {th }} 3.2 \mathrm{p}\left(\mathrm{t}^{2}\right)$
April $17^{\text {th }} 2 \quad "$
May $21^{\text {st }} 0.4 \quad 1$
Branch of $4-8 \mathrm{mM}$. diameter (only bark; hence the quantity is higher).

March	$24^{\text {ths }}$	4.1	pCt
April	$17^{\text {th }}$	2.8	$\prime \prime$
May	$21^{\text {st }}$	2.1	$\prime \prime$

For Salix Helix L. the figures for the bark of branches were

$$
\text { March } 24^{\text {th }} 4.4 \text { pCt. }
$$

$$
\text { April } 17^{\text {th }} 2.7 \quad /
$$

The quantity of glucose is a little variable: however, it does not rise above 0.5 pet.; the quantity of fecula diminishes when budding from 9.5 pCt to 6 pCt .

In the young buds of Salix purpurea there is before the budding 4.4 pCl . and of Salix Helix 6.2 p (\%. During the budding this quantity decreases greatly, disappears even for S. purpurea entirely (17 April) but rises again quickly, when assimilation begins, to 3.7 pc 't in leaves and 3 pCt . in young shoots (21 May).

Of the absolute quantity of salicine in a brameh with 300 buds

$$
\begin{array}{lccccc}
\pm 36 & \text { pCt. disappeared from } & 2 \pm \text { March- } 17 & \text { April } \\
\pm 18 ~ " & " & " & 17 \text { March-21 May }
\end{array}
$$

the assimilation, begun already before May 21 , having given rise to new salicine.

Experiments with branches placed in the dark in water ${ }^{3}$) showed the following:

After the roots have been formed, a number of long etiolated shoots bud forth, consuming hy their development besides the fecula also a great quantity of the salicine in the bark ($\pm 70 \mathrm{pCt}$).

At first the young shoots contain a great quantity 7.2 pCt , this, however, keeps on decreasing; the absolute quantity calculated for 100 young shoots also diminishes:
for 100 young shoots $10 n g 18 \mathrm{mM}$. there is 28 mG . salicine

$$
\text { " " " " " } 125 \text { " " " } 15 \text { " " }
$$

[^60]Thene fumbities are small eompared to the antire quantity consumed $\pm 830 \mathrm{~m}(\mathrm{x}$. for 100 young shoots.

When the young buds were bodding forth saligenine was found in them, the branches were immediately killed in boiling water, the extate after cooling down extrated with ether ; so all influence of enzyme could be excluded. It becomes very probable that the saticine is analysed hefore the consumption, on acomut of saligenine being found; the quantity, however, is so small that if really the analysis of
 the consmmption, saligenine ean only bre antermediate stage Either the aromatic half disappears as such, or another aromatic substance must be the definte product of the decomposition.

In the young leaves developing normally, salicine soon makes its appearance ayain after having disappeared for a moment; we can expect that this increase is commected with and due to the assimilation, as etiolated shoots do not show it. In order to state whether the leaves were really the place of a new formation and the light really had a part in it, the quantity of salicine before and after darkening was compared.

The quantity in the leaves was determined in the evening after sumset and in the mominer before sumrise one sperimen). Likewise in the erening leaves were halved, one half with midrib left on the plant, the other half analysed. The following morning the remaining half was cut off from the midrib and also analysed ${ }^{1}$. Provided that a suficient number, 100 or 200 leaves were halved, a comparison could very well be made.

For a small-leafed specimen a 100 leaves

8 P. M. 7 Aug. 47.5 mG . glucose 87.2 mG . salicine
4 A. M. 8
8

For a big-leafed specimen a 100 leaves
8 P. M. 7 Aug. 80 mG . glucose 177.7 mG . salicine.
4 A. М. 8 " 31.9 " " 142.7 " "
So in both cases we see a decrease during an 8 hours' summer night of respectively 30 and 20% of the salicine in the leaf in the evening.

For experiments with entire leaves of ome specimen :
8 P. M. 7 Aug. 4.6% salicine.
4 A. M. 8 " 3.2% "
8 A. M. 8 " 4.6% "
${ }^{1}$) See Lotsy. Mededeelingen 's Lands Plantentuin XXXVI,

Thus here too a decrease of 30% during the night followed up by an equal increase on the following day. If branches on the plant are enveloped in black waxed paper the decrease amomis after 48 hours only to 35%, no great difference with that of 8 hours; increase, however, did not take place, so light proves to be a necessary factor. The experiments of etiolating told the same.

If this quantity of salicine disappearing from the leaves was removed to the bark, an increase would have to be observed there. This was indeed the case, for branches rich in leaves the increase of the quantity of salicine of the bark amounted in one night to 2.5%; for branches with few leaves to 1.1%.

From the etherextract prepared in the above described mamer, of the parts of Salix purpurea still another substance could be isolated by means of subliming. According to the micro-chemic qualities this was a substance resembling phenol and qualified by its compound of lead and of lime, besides reaction with tetrachloorchinon as an orthoderivate ${ }^{1}$). The substance did not show Aldehydreactions. The further micro-chemical qualities corresponded to those of the simplest orthophenol, catechol. After a repeated crystallisation out of benzol the melting-point proved to be 104°. Elementary analysis and determination of molecular weight confirmed the fact, that it was catechol.

As the material which furnished the substance was quickly killed both in boiling water and in boiling alcohol and the etherextract already showed the crystals before sublimation, influence of enzym ${ }^{2}$) is not probable and formation out of resin is not possible.

Treatment with ferrichloride followed by additon of natrium hydrocarbonate also furnished in the tissue the reaction of catechol. The red colour was clearly visible in the mopened cells of the sections of the bark, young etiolated shoots showed them faintly, older ones more. Catechol is like salicine only to be found in the bark ${ }^{2}$).

The supposition was aroused that catechol might be the aromatic substance, remaining there as definite product of decomposition of the salicine. In order to test the accuracy of this supposition, an investigation had to be made whether the quantity of catechol of the parts of Salix purpurea were varying.

For a quantitative determination of the catechol the method of

[^61] acooms of a llavarlike coloming mattor mol closer examined, and abso precipitated by a hasie leadacetate. So the method of Prof. Branzas to determinn Jodigo was followed. 'The smblimate of a solotion of catechol of a known strenght in ahmoluto aloohol was compared with that of the alooholie solution of the remander of the ethere evaporit ted dey. Now it was examine how moth this liguid had to be dilated to obhat an equivalent suhbmate. The sublimation wats performed by means of the bats table deseribed by Prof. Whasmin. Under certan precations: the determination combl te aremately mate to milligrammes.

" " " " " " " " " " "morning0.1 " $⿻$ "ppecimen

So the quantity of the catechol here proved to chatge in reverse order as that of the salicine. In the leaves the salicine diminishes in the night, the catechol increases, and in the bark the catechol diminishes and the salibine increases. Is there any connection between the excent of these changes:

For that propose for one and the same object catechol was determined as well ats salioine.
200 halves of leaves A P. M. 29.5 m(ir. salicine ($1.51 / 0$) $\pm 32 \mathrm{mG}$. catechol (0.65%)
4 A. M. 162 , . $\left(3.33^{01}{ }_{10}\right) \pm 52$, , $\left(1.05^{11} / 0\right)$
So 63 mbi . salicine less, 20 mf . catechol more.
The propution of these values, given the degree of aremacy of the delommation of catechol, pretty well agrees with the proportion of the molecular weights.

A comparison wat also made of the change in salicine with that in eatechol for leaves budding forth in the dark.

17 Gr. bank before budding 35 F mGr. salicine 36 mG . catechol 17 " " after " 232 " " ठ̆) " " budding etiolated shoots .5̀ " " 4 " "
(a great increase in the bark, in the young shoots only a small part of the catedtol thas formed to be formed) 64 mb . saticine was used, 23 mGr . catechol was formed.

These two values stand in the ratio of 36 to 100 , the moleculat weights in that of 38 to 100 .

So it is very natural to asame here a decomposition of the salicine into sugat and catechol with saligenime ats intermediate stage (see
above). For this then a CH_{2} group out of the lateral chain would have to be decomposed, as saligenine is orthoüxybenzylalcohol and catechol is the orthodiphenol.

Corresponding to this the quantity of eatechol of the bark is large in $\operatorname{Hay}(1.1 \mathrm{p}$ ('t.), a greater part of the salicine then having disappeared, much lower in July (0.3 pC (.) when the loss has been repaired ${ }^{1}$). Where now has the decomposition taken place?

Preffer says Kap. VIII, Pflanzenphysiologie 2: Auflage: „riclleicht dienen die esterartigen Verbindungen der Kohlenhydrate mit Phenolkörpern zur Herstellung von schwer diosmirende Verbindungen bei deren Zerspaltung im allgemeinen der Phenolkörper in der Zelle intact rerbleib, un fernerhin wieder zur Bindung von Zucker benutzt zu werden."

The facts are excellently explained in the following way:
The decomposition of the salicine takes place in every cell, the glucose is conveyed in the direction of the green parts, the catechol remains in the cell and binds glucose, coming from cells situated closer to the bark, to salicine.

Glucose is transportmatter and salicine is trasitory reservematter.
The glucose being comsumed in young parts in greater quantities than its supply is, catechol must be found, but only so much as corresponds to the decrease of the absolute quantity of salicine.
100 young shoots $18 \mathrm{~m} . \mathrm{M}$. long $28 \mathrm{~m} . \mathrm{G}$. salicine, traces of catechol. 100 " " 85 m.M. " 21,6 m.G. " 2 m.G. "
6.4 m.G. salicine corresponds when calculated to $2,5 \mathrm{~m} . \mathrm{G}$. catechol, when observed to $2 \mathrm{~m} . \mathrm{G}$.

This correspondence adds great strength to the hypothesis. ${ }^{2}$)
In the bark the loss of consumed glucose is not repaired, so catachol increases greatly.

As for Acsculus, here it was especially the germination which was studied. The glucosides found in the ripe seedlings being not yet chemically determined, it was only necessary to base the method of the quantitative definition on the quantity of sugar formed by inversion. I had to trace whether the quantity of sugar bound in glucoside decreased during the germination.

To this end the seedlings were ground and extracted with methylalcohol, of this extract the alcohol was eraporated, and the watery liquid

[^62]extrated with rlher low ery rid of wit amd resim. The extracted liguid semed as detintion of the reduction before and dfor inversion by lmbiling it for 2 hours with [1 (I) ${ }^{1}$.

From the dillemene of this vednefon How quattity of reducing
 $13 \mathrm{p} \%$

During the germination this ghantity decreased in cotyledons by
 phants contaned only 1 or $2 \mathrm{p}, \mathrm{F}$. of thluense houmd in the shape of gluenside, the comsumplion of the ghaco-ided moth daring the germination could the regarded as proved by the 70 pet' decrease of the absolute quantity.

The localisation of acsomine was observed hy morescence of its watery solution, to be seen when there are not too few sections. Aesculine wat to be found in ungerminated seeds only sporadically in the plommle; when germinating it appears in greater quantity in the stalks of cotyledons, not in the cotyledons themselves. Stalk and hypocol! hodon internodimm contain acsonline when remminating in the dark ats well ats in the light, so light is not neressary for the formation.

The stalks of the leaves show the aesculine only when developing in the light and not in the dark: this seems to point to the fact, that the aesentine of the normat germinating plant originates from two sources: that it is formed for the mreater part hy reforming of substances out of the eotyledons and side by side with this, that it is prepared indepementy in the stalks of the leaves from substances assimilated by the leaves. Experiments with fult-grown plants, in the light and in the dark, with coloured and with normal leaves made this the more propable, but full certainty can only be given by means of later quantitative definitions.

Studies on (iantheria procumbens showed what changes took place in the quantity of the gatherine, the investigations have howerer not yet been bronght to an end. The method of quantitative definitions was fombled on the observation of the quantify of methylsalicylate which fould be formed ont of it. This was redistilled with vapour ont of the parts, catught in alfoholic potash and saponificated with it. The kidinmsalieytate fommel in this way was determined aceording to the method of Mssingar and Vormany "). For smaller quantities the colorimetric method of determination was used with $\mathrm{Fe} \mathrm{Cl}_{3}$.

[^63]With Fagus sylvatiea where Tamber ${ }^{1}$) fombl meflysalicylate only in the germinating plant, the latier method showed that it wat also present in the full-grown plant. Methylalieylate is to be foumd sporadically in the buds of the beech shortly before budding, durmog that process it is found in the foumg leaves and shoots as well as in the branches of the preceding year. Young long hranches are richest in it, 0.02 pett. As soon is the leaves have unfolded, this substance begins to disappear again and is nowhere to be found in a week's time.

Further particulars to be looked for in the dissertation to appear shortly.

Physics. - "Some obsemations on the comerse of the modecellen trans.formation." By Prof. J. D. vax der Wasts.

As is well known, acetic acid may be considered as a mixture of simple and double molecules and we find a decreasing nomber of donble molecules when we investigate the satmated rapon of this substance at increasing temperature. The same applies also to NO_{2}. We are apt to conclude from these fwo best known instances of molecular transformation that this conse is the only one that is possible. We may, however, easily comvince oursclyes that also the opposite course may ocemb, and it apears to me that we may conclude from figure (1) of the communication of Prof. H. W. Banhes Roozeboom in the Procedings of the previons session, that for the transformation of acetaldehade and paradeleyde this opposite course perhaps occurs.

Let us take the equation for the molecolar transformation, as at occurs Cont. II, pag. 29, namely:

$$
\log \frac{(v-l) v}{(1-x)^{2}}=\frac{2\left(E_{1}-L_{2}^{\prime}\right)}{R_{1}^{2} T}+1-\frac{2\left(I_{1}-H_{2}\right)}{R_{1}}
$$

The quantity $1-x$ of this effation represents the quantity of the substance expressed in grams which oroms in the form of simple molecules, x therefore that which ocoms in the form of double molecules. If molecules were formed consisting of n simple molecules, the equation would be modified into the following one:

$$
\operatorname{lor} \frac{(r-b)^{n-1} x^{x}}{(1-a)^{2}}=\frac{1}{T}+B
$$

It is true that we only find the equation in this simple shape if

[^64]
 mere complexes of simple molerollos, whidh dan be formed without
 selves. But as 1 will apply the eriven formolat only in the eatere of sothrated viperar at at presombe which is mot very hish, in which cate the inthence of the quatatitios atad b mity be neglected, we may consider it to be subticienly acemate for mas am.

We may deduce fiom it:

$$
(n-1) \frac{d r}{v / T}+\frac{d \cdot c}{d T}\left(\frac{1}{n}+\frac{n}{1-x^{2}}\right)=-\frac{d}{T^{2}} .
$$

For saturated vapour at a pressure which is not too high, we have:

$$
m=R_{1} T\left(1-\frac{n-1}{n} x^{n}\right)
$$

from which follows:

$$
\frac{d p}{p^{d T}}+\frac{d v}{v d T}=\frac{1}{T}-\frac{\frac{n-1}{n} \frac{d x}{d T}}{1-\frac{n-1}{n} x}
$$

If we substitute for $\frac{1}{v} \frac{d v}{d T}$ the value found above, we get the equation:

$$
T \frac{1}{d T} \frac{1}{x(1-x)\left(1-\frac{n-1}{n}, x\right)}=(n-1)\left(\frac{T}{p} \frac{d_{p}}{d T}-1\right)-\frac{A}{T}
$$

Whether the mumber of mahtiple molecules in the satmated vapour increases or decreases with the temperature, depends therefore on the fact whether the value of the expression:

$$
(n-1)\left(\frac{T}{p} \frac{d p}{d T}-1\right)
$$

is more or less than $\frac{A}{T}$.
For at normal substance $\frac{T}{\mu} \frac{d p}{d T}$ is approximately equal to $7 \frac{T_{c r}}{T}$. For a substance in which molecular transformation takes place, the factor 7 is to be modified and this factor will even vary more or less with the temperature. But if a perfectly aceurate mumeric determination is not required, and if we only ask: Cam both wass in which , may be thought to vary with the temperature occur? Then we may state what follows:
"When the heat developed hy the combination of "t simple mobecules 10 a comples one is so great, that it lave exeeds the quantity ($n-1$) $7 T_{e r}$ - as is the case for atedie acid - then the satmated vapore will at higher temperature be aseredated in a lowe degree. If on the other hamd that quantity of heat is much smaller than $(n-1) 7 T_{\text {or }}$ then the reverse will bake platere."

When we proced to satmated vapours of greater density and when we approach the ertical temperature, then this difference in the comse will no longer exist.

If we consider in the equation:

$$
(n-1) \frac{T}{r-b \cdot d T}+T\left(\frac{d}{n}+\frac{n}{1-w}\right) \frac{d x}{d T}=-\frac{A}{T}
$$

the value of $-\frac{T}{r-b} \frac{d r}{d T}$ for the siturated vapour at all temperatures between 0 and $T_{c r}$, we see that this quantity has a minimum value for a certain value of T. For very low demperatures it may be equated to $f \frac{T_{c r}}{T}$ and for the absolute zero it is therefore inlinite. But also for $T=T_{c r}$ it will be intinite, for $-\frac{d r}{d T}$ is intinite in the critical point. The value of ' T for which this minimm value oceurs, would for normal sulstances be the same fraction of $T_{c r}^{\prime}$. For substances with molecular hansformation we find a different value for this finction. It may be calculated for many substances from the experiments of Sidner Youg at least approsimately.

Above the temperature for which $-\frac{T}{r-b} \frac{d}{T}=\frac{1}{T}$ for ate etice ard also $\frac{d x}{d T}$ is again positive. For substances which behave as acetie acid therefore a minimum value of ex oceurs. The fig. (1) of Baкно Roozeboon presents in fact such a minimmom for paraldehyde, and from this would follow, that this transormation is of the same type as that of acetic acid. Yet it seems posible to me that an atermate direct investigation would prove this minmmm not to exist. If it really exists, then it will probahly oexor at a much higher valne of ' T '.

But even if this tramsformation would also prove to be of the same type as that of acetic acid, yet it seems not smpethome to me to point out, that also the other type may posibly occur. The abmomadity of substances as the alcohols, water, etc. is ascribed to a possible molecular transformation, and yet the saturated rapour
 He mome ateonately ats the tomperathere at whoh it is insestigated is lower. So the density of satmated vapone of water at 100°,
 fion of the baws for perfect gatses; whereas the satmated vaporn of water at ordinary temperature presents a density which does not deviate noticeahy from that, which follows from the laws of Boyse and (iar-atsisc. If for motecolat hansformation the type of ateetic acid were the only one which rombl oecur in mature, then the
 involve that the deviation womld be found to inerease when the temperature is lowered. It is highly prohable that the deviation of $2 \frac{1}{2}$ pCt. of satmated vapour of water at 100°, which camnot be accomnted for by the ordinary deviation from the laws of Boynd and diaflasse which also nommal substances present, must be ascribed to the presence of more complex molecules; but at the same time we must then assume, that the heat of transformation lies below the limit which we have indicated above.

The equation which we have used here, is taken from Cont. II, p. 29 and there it had heen obtaned ly the dired application of the primeiple of equilibrimm, acoording to which a qiven quantity of matter at a griven temperature in a given volume will arrange itself in such a way that the free energy is aminimm. It is therefore that we had to take a fixed quantiy of the substance, e.g. it unit of weight, which might be divided into $1-x$ grams simple, and derams double molecules. When x varies, the total quantity of the sulstance remains constant.

We may, however, also consider a mixture, consisting of a number of $1-x$ simple and x multiple molecules and then we may apply the thesis that, when equilibrium is established the thermodynamic potential for a molecular quantity of the multiple molecules must be " times greater that that for the simple molecules. The linear function of x, however, which in other cases may be omitted, must in this case of course be preserved. If we then put:
$\boldsymbol{\zeta}=\mathrm{MRT}\{\boldsymbol{\{}+(1-x) l(1-x)+x l x\}+T\{\varepsilon(1-x)+\beta x\}+\gamma(1-x)+\boldsymbol{\sigma} x$ then we have:

$$
\zeta-x \frac{\partial \zeta}{\partial x_{\nu} T}=M R T\left\{u-x \mu_{x}^{\prime}+l(1-x)\right\}+\varkappa T+\gamma
$$

and $\zeta+(1-x) \frac{\partial \zeta}{\partial x_{\mu} T}=M R T\left\{\mu+(1-x) \mu_{x}^{\prime}+l x\right\}+\beta T+\boldsymbol{\sigma}$.
From $\zeta+(1-x) \frac{\partial \zeta}{\partial x_{\mu} T}=n\left\{\zeta-x \frac{\partial \zeta}{\partial x_{\mu} T}\right\}$ we deduce:

$$
\log _{t} \frac{x}{(1-x)^{2}}=(n-1)\left\{\mu-x^{2} n_{x}^{\prime}\right\}-\mu^{\prime} x+B+\frac{A}{T} .
$$

This last equation yields the results we have obtained, in a still simpler way than that which we have mate use of originally. It has moreover the adrantage, that the usual signification of ir and n. as it is established in the theory of a binary system, may be kept unchauged.

Reactions like that of acetadelyde and parahdetyde, reactions which we can bring about at plasure ly means of at catalyzer and in which the composition may be determined experimentally are of course of the highest importance for the investigation of the course of the molecular transomation. For reactions as that of acetic and the density is the only criterion for the degree of the tramsformation; and this criterion fails as soon ais we work in circumstances in which the deviations from the laws for the perfect gases are considerable. The expermental investigation will therefore not be athe to prove the occurrence of a minimum in the number of the domble molecales in the saturated vapour of acetic acid. At the remperature at which the theory predicts that minimum and which lies probably hetween $0.8 \quad T_{e r}$ and $0.9 T_{c r}$, the density of the satuated vapour is already so great that it is nearly imposible to deduce reliable conclusions concerning the course of the transformation.

Physies. - "Critical phenumen" in pertially miscible liquids." By Prof. J. D. van der Walls.

I have read with great interest the commmication of Prof. Kuenes nuder the above title, which occuss in the Proceetlings of the previons session, aurl it induces me to drath attention to the following considerations.

In my paper of March $25^{\text {th }} 1899$ I statted from the thought, that the series of plaitpoints, which may occur at different temperatures, whether we arrange them to a platpoint curve or assign a place to them in the x, x phane, must form one or more contimons curves - of course contimons in the mathematical sense.

When therefore the experiment yielded, e.g. for ethane and ethylalcohol two separate platpoint curves, I have comected them by means of a theoretical part.

If we wish to comect the two pheces of curves foumd to one curve, we may perform this in two simple ways. In the tirst place we may comect them in such a way that the curve is con-
 the and of tho piexos which are experimentally determined, thate

 though it lin evervehome lower hath that prossutre

I then thonght that the swa pioces of the platpoint corse were to be commeeted in the firat matmer. The experiment hat shown that the peroliatitien which mat then oweme, namely the existene of a minimmm and of a maximmm lemperature, were possible and really ocemred in nalme: all atm rate the minimum temperature. The perenliatity on the other hamb, which ocens, if we make the commeetion in the eeomel manner, namely the abrupt change of the diredion, wats never ohserved.

Now when we have made a elonere and when we whish bexamine its meaninge, all comelnsions must of combe be in acoordance with the choice we have made. Here I will mention the following romelnsions from the first way of hinging about the connection: $1^{\text {st }}$. A mixture with minimmon eritical temperature exists. $2^{\text {nd }}$. A mixture with maximum critical temperature exists. $3^{\text {rul }}$. Platpoints ocom ontside the borders of the thee-phase temperature, which (ammot the observed, as they lie above the empirical 中-surface.

In this case a plait mast necessarily at a certain temperature be separated from the prineipal phat, which at higher temperature (the maximmon (eritical temperiture) has contracted to one point. In short then the phenomenon quite corresponds to the description I have griven Cont. II, p. 187. If therefore Kexas aceepts the way in which the comnection of the two pieces of the plaitpoint curve he has determined experimentall! is brought alwont, wen I cambot but consider it to he inconsistent, if he raises objections to the interpretation.

But more important is the question whether the choice we have made is the right one; whether, therefore, the connection between the two pieces of the curve should not rather be brought about with two abrupt changes in the direction. This has at the same time the following meaning: Is the phatpoint the course of which is indicated by the theoretie curve. perhags quite another platpoint as that whose course is indicated by the experimental curve? Now l read in the paper of Kceses p. 321 that he has obtained the ligure I have originally given, with the aid of other curves. But I think that this must be understood in such a way that he has sueceeded in pointing out, that the two ends of the experimental branches may be connected. The way in which the connection must be established can here, atter my opinion, not tre decided. I hatre already doubted some time as to
this question. The first way of eomeerting requifes that as well a mixture with at maximmm, ats a mixture with a minimmom erition temperature ocems And thomgh I exprested in my prope of ls99 the expectation, that it would be possible to aceomet for his, yet I must acknowledge, that a further investigation hats made me consider the ocerorence of a maximum eritical temperature more and more improbable.

Affer my opinion the question is decided by that part of the plaitpoint curve Kubare has determined experimentally, which stats at the critical point of methylalcohol and which indicates the course of a plaipoint belonging to a plat which has its summit towads the side of the small volumen. The fate that $\frac{d p}{d T}$, is negative or at any rate smatler than $\binom{\partial p}{\partial T}_{0}$ quite agrees with the circumstance, that $\left(\frac{d^{2} v}{d x^{2}}\right)$ is positive.

If this plait had its summit on the side of the Iarge rolnmes, then it would be possible to explain the course also for the cave of ethane and methyalcohol by admitting the existence of a maximmm and a minimum T_{c}. As this is however not the ciase it seems to me that we camot but assume with Kuexes, that the theoretical part of the plaitpoint curve indicates the course of a point, drawn i. a. by Kortewne: (Archives Neérl. XXIV, p. 305, fig. 12) amd which belongs to a sideplait if we tatee the eomotal come of the sideplait also in the unstable region. The discontinuity in the direction of the curve ensnes then from the fact that the theoretic part represents the course of another plaitpoint than the experimentad part.

If we return to the case of ethane and methylaleohol then we musi admit that above T_{B} the spinotal corve possesses a protuberance towards the side of the small volumes, aceompanied by a new commodal curve, which if we trace it also in the mstable region, presents a new phaipoint. Or', what comes to the same: the existing platpoint splits י1p into two phatpoints. This second patapoint lies on the side of ethame and in the begiming it will move with great velocity. At higher values of T the sideplait extends and in consequence thereof that part of the principal plait which has a platpoint on the side of ethane contracts. At the moment that that part would vanish the second phatpoint has coincided with the phatpoint which is indicated by the point 1 (see fig. (1) of p. Bl9). This deseription differs in details from that of kisas, but a great number of figures would be required
in arder for show his difterence cleaty, but ben atso in arder to bring us info atrement.

Foor the case of chane and methylateobol the theoretical phatpoint

 fowne value of T it is displated in the er, 乍plate lowats the side of aleohol and when the temperatme fombinnes fodecrease it approaches asymphotically to the phatpoint with which it forms a "systeme double heterogene" (after the terminology of Kontanes; If we draw this series of points in the platpoint diagram, it must of couse satisfy the condition which follows from the fike, that they lie below the threephatse triangle, namely on the side of the small pressures. At low temperatores it lies even in the region of the nequtive pressures.

Fig. '2 of K Kaxi p. $32(3$ mast therefore be completed with a theorete enve which stats at point A, retrograrles immediately to fower tomproatures and lies below the enove of the thee-plase pressure. The theoretical bathe approthes to the same asymptote as the highes branch that starts at C_{2}^{\prime}. For the theoretie branch also $\left(\frac{d^{2} c^{2}}{d l^{2}}\right)$ must be positive, and therefore we have:

$$
\frac{d p}{d T}<\left(\frac{\partial p}{\partial T}\right)_{v}
$$

The rapid rising of this branch at low values of T seems to be contradietory to this explatation. But if we take into aceount that also $\binom{\partial p}{\partial T}_{v}$ approateles to ath intinitely ireat value for values of r which approath to the limitiner wolume, this apparent comtradiedion disappears.

What is supprising, at least to me, is that these theoretic phat-
 But on the other hand the ciremmstance, that also for the couse of these theoretic platpoints a so important and at the same time a so simple meaning has been found, confirms my opinion that now the true deseription of the phenomenom hats been given, at least for those cases, in which the longitudinal phat has its summit on the side of the small volumes.

But thongh the acentaly of the description of the phenomenon has increased, we must acknowledge that the ehatnee to find a satisfactory explanation for the phenomenon is not sreater than before: on the contray it has diminished. The circumstance in which a mixture of two substances has a maximum and a minimum critical temperature needs now no longer he inquired into. The question whether the
size of the molecole of the normal substane has influence on the course, has also lost its direed importance. For mixtures of ethathe with an aleohol the separation between the two types lies between methyl- and ethytaleohol; the question whether this separation takes place between two higher terms of the alcohol series, if we take instead of ethane a higher term of the series of catbonhydrogene compounds, which seemed very important before is now no longer of primaty interest ${ }^{1}$). It seems to me that I have to return in many respects to my original meaning, namely that we have to inquive after the ciremmstance which causes the spinotal curve to show a protuberance lowards the side of the small volumes. In mixtures of a normal substance with an associating one this canse can perhaps be fomd in the ciremmstance that the quantity $\left(\frac{\partial p}{\partial x}\right)_{v}$ can obtain abl)normous high values for such a mixture. As the equation:

$$
-\frac{\partial \partial}{\partial v} \frac{\partial^{2}}{\partial x^{2}} \frac{\psi}{x^{2}}=\left(\frac{\partial p}{\partial v}\right)^{2}
$$

applies to the spinodal curve, the value of $-\frac{\partial p}{\partial x}$ may also be abmormonsly high in this case. If this is really the case an explamation for the protuberance is given which is certainly satisfactory. Yet in great distance exists between this ohservation and an adeguate calculation.

In any case these experiments of Kenase, to which I hope that he will add mans others, are an important contribution to onr knowledge of the critical phenomena of not miscible substances.

Physics. - "The influence of cervintion of the constemt current on the piteh of the simping are." By J. K. A. Wherthens Shomosson. (Communicated by Prof. P. Zeemax).

In the cousse of some experiments on the physiological action of alternating currents of very high frequency, I tried the currents generated by means of DtDDELLA's singing are A comstant current are between solid carbons shmoted by a self-inductive resistance and a condenser emits a note, the pitch of which corremonds with the frequency of the alternate coment generated in the condenser-circuit.

[^65]Drbots. betieved that the freguence wat determined by the selfinduetion athe the eapacity ateording the well-known formula: 1 = 2 天

Path dsaze thought the samm atme proposed, as Domotht had alreaty dome before to wor the smging are for measuring small coerticemes of self-imduedion.

In the way proposed by Jiviat, his seems for bo impossible ats the frequeney dopends not whly on the solf-imducton and the eapacity but i. at also on the strengeth of the eomstant exment.

I have investigated the vatiation of the frequency cabsed by varying the constant curent, the results being stated in this paper.

The experiments were carided ont after l'theat's method. The ${ }^{\prime}$ ' D at the solid rambons wats meatmed by a Weston-instrmment, that showed the Volfs of the constant eurrent only, and at the same time by a hot-wire Voltmeter. Lastly the current in the condensercirenit wats measured by means of a hot-wire amperemeter. The three readings being E_{1}, L_{2} and I_{2}, the frequency may be calculated by

$$
p=\frac{I_{z}}{2 \boldsymbol{x c} \sqrt{E_{2}^{-2}-E_{1}^{2}}}
$$

c being the capacity of the condenser in farads.
The necessary correction of the instruments was known and has already been applied in the tables. The are-lamp used was a small shunt-regulator by Körting \& Mitthesea.

Series 1. Capacity $2,68 \mathrm{mF}$. Selfinduction: bronze wire spiral of SO windings ; air isolation ; diameter 25 centimeter, height jo centimeter.

The table contains in the
Ist column: I_{1} the constant current through the arce.
$2^{\text {nd }} \quad \| \quad E_{2}$ the constant current $P D$ of the carbons.
$3^{\text {rd }} \quad \| \quad E_{2}^{\prime}$ the hot-wire voltmeter reading.
$4^{\text {th }} \quad \| \quad E_{i v}$ the value of $V \overline{E_{2}{ }^{2}-E_{1}{ }^{8}}$ being the superposed alternating volts.
$5^{\text {th }} \quad \| \quad I_{2}$ the alternating emrent strength.
$6^{\text {th }} \quad / 1 \quad P^{p}$ the number of complete alternations p. s. calculated hy Pelkert's formula.

TABLE I .

I_{1}	E_{1}	E_{2}	La	I_{2}	$1)$
1.9	37.0	12.0	93.7	1.8	4.200
2.9	37.0	16.0	27.4	$\underline{9} 4$	2-230
$\underline{9.6}$	37.5	13.0	21.1	$\because .1$	5900
2.8	37.5	44.0	93.0	?, '1	(6) 20
3.2	\% 3.0	42. 7	19.6	(2.)	Shoor
3.7	38.0	41.0	15.5	$\because .7$	10390
1.1	38.0	40.0	12.8	3.0	13980

Series 2. The same as in series 1. Capacity redured to 1.68 mF .
TABLE 11.

I_{1}	E_{1}	E_{2}	F_{a}	I_{2}	p
1.7	38	40	26	1.7	1020
2.4	39	46	24.5	2.1	8130
2.8	39	44	20.4	2.1	9820
3	38	42.7	19.6	2.3	11200
3.5	34.5	42	16.75	2.4	13390
3.7	38	42	18.3	2.7	13980

Series 3. Capacity 1 mF . Selfinduetion: coil of 160 windings in 4 layers; wire 2 millimeters. Length of coil δ centimeters, external diameter 3.5 centimeter.

TABLE III.

I_{1}	E_{1}	E_{2}	E_{n}	I_{2}	$[$.
1.9	38	47.7	28.7	2.4	14950
2.3	38	47	26	2.6	17240
2.6	38	45	245	2.9	18820
2.9	38	43	20.1	2.8	29200
3.3	37	42	19.8	3.3	26600
3.6	37	42	19.8	3.5	28160
4.1	38	41	15.4	3.4	35100

 TMBば： 11

TABLEV．

I_{1}	i_{1}	E_{2}	E ，	I_{2}	$1 /$
1.11	沙	811．4	：3．2	6．fix	
$\because \because$	：3	S11．4	333.2	－1．16；	
$\because .18$	汹	［11．＇r	3in：	$\therefore . \therefore 1$	$2(\mathrm{Cl}$（k）
$\because \because 1$	：	化	$29+10$	$\therefore .26$	318（x）
3．2	33， 6	if	$24 \mathrm{i} . \mathrm{F}$	（i．1．）	$33(4 n)$
$\therefore \mathrm{id}$	36	＇1＇	3：3．8	A． 15	412001
3.7	：${ }^{(1)}$	1：．${ }^{\text {a }}$	븡N	1．2＇i	Rather
¢	：	41	1．）． 1	$\therefore .71$	21290

series 6，The same conditions as in series 5 ．The capacity reduced （1） 0.3 mF 。

TABLE VI．

I_{1}	E_{1}	L_{3}		12	1.
$\stackrel{\square}{-1}$	35	． 09	3．3．7	4.1	61.300
2．8	$3{ }^{3}$	17．	31	4.2	71000
2.9	：5	住	ㄴ⒊2	i	Slfar
：3it	：3；	ill：	17.9	i．i	1360nn
i．-	S	：4i．：	9.7	：3．4i	1tMiums
．					

Dodoed. attained frequencies of $500-10000$ complete periods p. s. Simos increased the mumber of altermations so much, that the note emitted by the are reased to be andible. He speaks of a limit of $30000-40000$ vibrations. From my tables will be seen that I have attained much higher frequencies, so high that I first distrusted them. But as yet I have not been able to find any inacematey either in the principle of the method or in its application. So I must think that my numbers are exact, the more so as they seem to be contirmed by a physiological estimate. With small frequencies, say up to 10000 , the pitch of the note may he easily estimated by the ear when we produce two notes in bapid suceession. In series 1 I foum that increasing the cmrent from 1.9 to 2.2 ampere caused the pitch to rise abont a "second". By increasing from 2.2 ampere to 3.2 ampere the successive notes soumled as with a quint-interval. The later calculation of the frequencies from the galvanometer readings ageed fatirly well with the extimated increase of pitch.

The limit of audibility as calcolated from the readings agreed equally with the limit as determined by the aid of a recently graduated Gatrox-whistle by Prof. Edmansa, the smathation-bable being verified on different points ly mesti. I found as a limit for the audibility about 43500 d. r.p.s. My are-kmp reased to emit an audible note when the firequency of 42000 wats reacheal. In the $6^{\text {th }}$ series no somat was heard at all. In the series 1.2 and 3 the somat was heard throughout. In the series 41 heard the mote distinctly at 2.4 ampere; at 2,7 ampere I did not always hear the sound; only every now and then 1 got the impression of a very faint and high whistling somud. At :3.I ampere I did not heat the somnd. In the $5^{\text {th }}$ Series the somed was always present at 3.6 ampere and sometimes at 3.7 ampere.

As these results atree, I fhink that the method is a correct one. and that the higher mombers may also the relied upon.

The sound of the singing are maty prove perhaps valuable in physiological researches on sound.

The highest frequency with my apparatus wat attaned with a primary constant curcent of 4.2 ampere, $E_{1}=36$ Volt, $L_{2}=37.3$ Volt, $I_{2}=0.49$ ampere, $\quad\left(=0.03 \mathrm{~m} . \mathrm{F}^{\prime}, E_{a}\right.$ heing 9.7 Volt and $p=268000$. Of counse much higher fiequencies may probably be attained. But the resistance of my hot-wire amperemeter was rather high, and I helieve that therein lies an obstacle for my surpassing this limit.

How are we to interpret the increase of the frequency caused by an increase of the constant curent:- There is some analogy with
the rise in pitels of eleetromatometieally driven funingtorks when the intensity of the corrents is inereased: and atse with the rise of the pitel of hamonimmeeds when the air-pressure is increatsed. Yet there is afrem! some differener in the wrigh of these has two phenomena, ot as to forbid amyhimg more than comsidering the amatoys. The only athwed embequence is, that the electrical system consisting of a celpaceity and aselfinduction does in this special case bot vibrate in its proper period and that this proper period might only be expeoted to be hrought about by at hypothetie intinitely smatl constant corrent through the atre

Increasing the P. I. at the carbons seems to lower the pitch and at the same time to incerase the intensity of the sound; if the P.D. rises too much the whistimer reases all at once. As I worked with a constant E. M. F. of 110 Volts from an acemmulator-battery, the primary enrent strength was regratat by inserting resistance or withdrawing it from the cirent. When withont changing the resistance, the P. D. at the earbons rises, the current falls off and so causes the frequency fo diminish at the same time. Yet hy keeping the exrent constan!. by lenghening the are and withdrawing resistance at the same time an momistakahle lengthening of the period maty be observed.

From the Tables I-VI eluves have been plotted connecting the frequency with the comrent-strengit.

It is not imposible, that a simple relation might express this commection. Yet an experimental formula as

$$
\prime=\prime \prime+\prime I+\cdots \cdot
$$

is only posible when h is negrative: as in this ease there is a minimum for $I=\frac{b}{a}$ e this formula does not seem to be very plansible.

I have also tried a quadratic expression comecting the steadying resistance with the frequener, but this did not give satisfiction.

At last I found as the most simple formmat and agreeng best with the observed results:

$$
\log , l_{1}=1 \div 1+I .
$$

in which " and $/$ are constants, $/$ " the trequeney and $/$ the constant current intensity.

I found for series 1 :

$$
\ln 1 \quad 1=323522+11216 \pi /
$$

l	1：91／（1alc．$)$			p（aalc．）	
$1 .!$	3 31ヶ\％\％	：1－7，			为里
$\because \because$	3．711： 2 2		－ 10.10 пй	$\therefore 17$	Se：4
$\because 4$	3． 2 \％ 6	： 8 －0，	－10．1020	6202	二小さ
$\because \sim$	3．\times 㒂		－ 11.11313×10	80\％	16\％：0
：2		3 \％		＊行：	N（\％）
3.7	$4.004{ }^{4}$	\therefore Mriter		10x71	10：39
\＆．1	4．1225		＋ 0.101017	1：ローい	13：420

The wean cmor of lon／f heing：／ 1

 which are so be takern all att the same time and therefore are more interomate，at mean eron of o． 3°＂in the result，representinge ath interval of lem that a tome may not be called extmatrant．

For series 2． 1 tind： $\ln 111=3.45786+0.1845 \% 1$.

I	$\log 1 /$（calc．）	\log I（0）心．）	；	pr（cale．）	I＇（い）く，
1.7	3.8 9に，	3． 8 － 923 29	＋0．9ヶバ：	11×9	（i三）（4）
$\because 4$	8.930173	3．916（t）9	－0．010ris	N゙3：30	81：3
$\because 8$		：3．902011		1185\％	（1x－2）
30	4．10314，	4．196203	$+11.1117 \%$	10751	11596］
3.5	1．123\％1	4．1：3：2\％	＋11．006， 10.1	1：3：4i	12．isu
3.7	4．Whater		－11．11．11	1\％17\％	1：3611

the mean error of one observation being 2．S6\％＂／u＂

Series $3 . \quad$ lo．$\mu=3.84563+0.17062 \quad /$ ．

I	$\log p$（calc．）	$\log p$（obs．）	$:$	p（calc．）	1 （obs．）
1.9	4.10981	417.6	0．00年が3	11785	149.50
$\underline{\bullet}$ ． 3	4．238018	4.2383 .3	0.0015%	17：30）	172价
2.6	4.289 .7	4．274tiv	0．014（i．）	19616i6	1×820
2.9	4．3．40．43	4．3你违	0．00－9\％	21900	（29）200
3．3	4．40868	4．124x	0，04， 620	$2-626$	2660
3.6			0.010103	บ88：31	28160
4．1	生ご517		0.000014	？ 3180	3510

$$
o m=\sqrt{6} \pm(o)^{2}=0.01035
$$

mean error of one observation $2.412 *$ ．

Series $4 . \quad$ loy $11=3.80102+0.31641 \quad /$ ．

1	log p（calc．）	loy p（obs．）	：	$1 /$（calc $)$	
1.9	4． 402230	4． 6014	－0．0．000\％ 0	以ッ以行	（2）－（\％）
2.4	1． 20280		$+0.0030 \%$	3iis）	：Manto
$\because 7$	4． 0.0 .302	4．6价 6	$-0.008: 2$	4 为り	仿测
3.1	1．78189	4.7468	－0．03：	165．519	O－n．u
$\therefore 34$	尔87631	$\therefore .92788$	$+10.08 .107$	7．3：03：3	＜行60
3.7	在．971\％	＇．9808：	＋11．01815	933010	97800
3.9	5.03502	$\therefore .00217$	－0．0320 0^{-0}	10×100	109\％（0）

$$
o m=\int \frac{1}{6} \Sigma(o)^{2}=0.02994
$$

mean error of one ohservation 7.14% ．

$$
\text { sories is. } \quad \text { li! } 1=: 3.98!160+0.175102 \%
$$

1	1 bisp p（calke．）	\log probr．）	－	1 （ （calle．）	1 （10）
$1!$	A．3297：	6．12はご，	＋11．15パロ	$\because 13 \%$	
$\because \because$	：こどい号	4．2！上可	＋ 11.94 Ha	－117！	＂376）
$\therefore 1 \%$			－11．12が，	2－813	$\because 47 \%$（k）
$\because 9$	¢ Sonsit		－ 11.0 Mnisi3	25－24i3	31samb
3.2			＋0．005：\％	30．31）	3710001
3.6	\＆143 0^{4}	A．（b）织）	－ 11.01917	\therefore AM以	11200
3.7	A． Bin_{19}	4．63969	－ $11.01 \pm$ 促	\＆671	fifint
： 1		4．75－32	＋10．0．40\％	$\therefore 3.19$	Strem

mean error of one observation $4.75 \%{ }_{5}$ ．

I	I lug h（calc．）	$\log 1$, （obs．）	\％	p（calc．）	／（abs．）
$\because .1$	4．79128	4． 7×74	－ 0.000382	が心兄	（1）304
$\because .4$	4.858087	1 4．8．ti\％	－ $10.0 \times 39 \mathrm{y}$	－ハッヅ3	759.0
29	－ 9710	4．96190	－0．04910	9 n	Sheith
3.15	（） 12×27	5.11394	－0．01433	1：36：3\％	1：311010
4．2	$\therefore 2643440$	$\therefore 29220$	$+0.023+200$	1×350.7	

$$
o m=\sqrt{\frac{1}{4} \Sigma(o)^{2}}=0.01702
$$

mean error of one observation 4.00% ．
The empirical formula represents findy well the observed results in the range of the experiment．But it does not give more than that， I do not think that it may be used for extrapolating．＇This will be directly seen，when we extrapolate for the intensity $=0$ ．We cal－ culate for the frequence at the intensity $=0$ in the $4^{\text {th }}$ series： $6324 \mathrm{~d} . \mathrm{v}$ ． and in the 3 rd series： $7009 \mathrm{~d} . \mathrm{v}$ ．Theoretically the frequency in series t should be exactly 12 times higher than in series 3 ．

A more exact method may perhaps give nombers firm which a better formula might be dednced, and which at the same time might give us some insight in the phenomenon.

I have tried to get more exate mombers by means of the kowor dust-figures but I did not suceeed, though others might. Yet the oseillatory discharge of a Leyden jar through an inductive resistance easily gave regular dust-figures. The reason why the kuxdr-method proved refratory with the singing are, is not easy to be understood: I can only suppose that the intensity of the sound is not large enough.

Physics. - Dr. J. E. Verschaffelt. "Comtrihutions, to the hmovededge of van der Waals' ψ-surface. VII. The equation of state and the $\mathbf{\psi}$-surface in the immediate neighbowhood of the critical state for binary mixtures with a small proprortion of one of the components". Commmnication $n^{\circ} .81$ from the Physical Laboratory at Leiden, by Prof. H. Kamerlingh Onnes. ${ }^{3}$)
(Communicated in the meeting of June 28, 1902).

Introduction.

In Communication n^{0}. 65 from the Physical Laboratory at Leiden ${ }^{3}$) I have given the first results of a treatment of my measurements on mixtures of carbon dioxide and hydrogen ${ }^{3}$) by the method which Kamerlingh Onnes ${ }^{4}$) alone and with Reinganum ${ }^{6}$) used for the measmements of Kuenen on mixtures of carbon dioxide and methyl (chloride ${ }^{9}$). They confirm Kamerlingh Onves' opinion that the isothermals of mixtures of normal substances may be derived, by means of the law of corresponding states, from the general empirical reduced equation of statefor which he has given in communications mrs. 71') and 74^{9}) a development in series indicated in communication $59 a$. In this empirical reduced equation of state

$$
p=\frac{\lambda}{\lambda v}+\frac{\dot{v}}{\lambda^{2} v^{2}}+\ldots .
$$

${ }^{1}$) The translation of the first and second part of this article are treated ats a whole, hence some minor changes in text will be found.
${ }^{2}$) Arch. Néerl., (2), 5, 644, 1900; Comm. phys. lab. Leiden, n. 65.
${ }^{3}$) Thesis for the doctorate, Leiden, 1899.
${ }^{4}$) Proc. Royal Acad., 29 Sept. 1900, p. 275; Ciomm. 59a.
${ }^{\text {б }}$) Ibid. p. 289 ; Comm., n ${ }^{0} .59 b$.
${ }^{6}$) Thesis for the doctorate, Leiden, 1892.
${ }^{7}$) Proc. Royal Acad., June 1901 ; Comm., $n^{n} .71$.
${ }^{5}$) Arch. Néerl., (2), 6, 874, 1901 ; Comm., n^{0}. 7年.
where $\mathfrak{P}, \mathfrak{3}$ ete. represent aries of the powers of the reduced absothe temperature t , with co-elicients which like 2 are the same for all substances, we then pat:

$$
\mathbf{t}=\frac{T}{T_{x k}}, \quad \mathrm{p}=\frac{r}{r_{2 k},} \quad \mathrm{v}=\frac{r}{r_{x k},}
$$

 with molecular composition is, if it remained homogeneons, while $\lambda=\begin{gathered}p_{s k} "_{s k} . \\ j_{s k}^{\prime}\end{gathered}$

It must therefore also the pussible to find expressions for the mitieal quantities of a mixture - these are the elements $p_{s p h}, v_{x p} h$, $T_{x p l}$ of the plailpoint and $p_{x r}, r_{x r}, T_{x r}$ of the critical point of contact - in which only the co-eflicients of the general empirical reduced eqnation of state and further the quantities echaracteristic of the mixture viz, $T_{x k,}^{\prime} \eta_{1 k}, r_{2 k}$, werur, or the co-elicients of the developments in series of these quantities in powers of x. In the case of mixtures with small valnes of a', it may, exclusive of exceptional cases, suffice, to a tirst approximation, to introduce the co-eflicients:

$$
\mathrm{n}=\frac{1}{T_{k}} \frac{d T_{x k}}{d x} \text { and } \beta=\frac{1}{p_{k}} \frac{d p_{x k}}{d x} .
$$

A first step towards realizing this idea of Kamerbingh Onxes has been made by kieson ${ }^{2}$) who took for his basis the general equations by which tis der Whas in his Théorie moléculaire and following papers has expresed the relation of the critical quantities and the composition; he has fomd what these equations would become for infinitely small, r-ralues and has introluced into them the co-eflicients a and ${ }^{3}$ memtioned above, hesides others which might be derived from the co-efficients of the general empirical equation of state. I have now tried to work out this idea in a method which is more closely connected to the tratment of the ψ-surface, namely by developing the co-efticients of the equation of state aml the equation of the 4 -surface in the powers of x. On accomn of the great complication involved by the introduction of the higher co-eflicients into the calculation, I have confined myself to the lower powers of x. However, the method followed by me can also be used to tind the co-efficients of higher powers.

As I have contined myself to states in the neighbourhood of the critical point I could use instead of Kimbringh Oxaes' empirical reduced equation of state the more simple one which it hecomes within narrow limits of temperature and volume on developing the different

[^66]terms in powers of the small quantities $:-1$ and $t-1$. According to Van der Wanss method ${ }^{2}$) I wrote this new equation:
\[

$$
\begin{equation*}
p=1+\frac{\partial p}{\partial t}(t-1)+\cdots \cdots+\frac{\partial^{2} p}{\partial \cdot \partial t}(n-1)(t-1)+. \tag{1}
\end{equation*}
$$

\]

where the co-efficients $\frac{\partial p}{\partial t}, \frac{\partial^{2} \nu}{\partial v \partial t}$ ete. can be immediately derived from those of the above mentioned empirical reduced equation of state.

1. The p, r, T' diaypom for 'l simple salstance in the neighbourhood of the critical point.

In order to limit the number of the continually re-ocenring faters as much as posible, 1 shall not write the equation of state of the pure substance in a reduced form, but thus:

$$
\begin{equation*}
p=k_{0}+k_{1}\left(v-v_{k}\right)+k_{2}\left(v-v_{k}\right)^{2}+k_{3}\left(v-v_{k}\right)^{3}+\ldots=j^{\prime}(v) \tag{2}
\end{equation*}
$$

where k_{0}, k_{1}, k_{2} ete. are temperature finctions which can be developed in powers of $T^{\prime}-T_{k}$; as for instance:

$$
k_{0}=k_{00}+k_{02}\left(T-T_{k}\right)+k_{02}\left(T-T_{k}\right)^{2}+.
$$

and it is evident that $k_{n 0}=p_{1}$ while k_{10} and k_{20} are zero.
We might clearly find the equations of several curves in this diagram, such as: the border curve, the curve of the maximum or minimum pressures, the curve of the points of inflection ete. I shall derive the former only, chiefly in order to apply to a simple case the method of calculation to the used afterwards for finding the pressure, volume and composition of the ro-existing phases with mixtures.

If v_{2} and v_{1} represent the molecular volumes of the vapour and of the liquid, co-existing at the temperature T ' under the pressure p_{1}. then these 3 unknown quantities will be determined by the equations:

$$
\begin{equation*}
p_{1}=j\left(c_{1}\right), \quad p_{1}=j\left(w_{2}\right) \tag{3}
\end{equation*}
$$

and by Maxwell's criterium

$$
\begin{equation*}
p_{1}\left(v_{2}-v_{1}\right)=\int_{v_{1}}^{r_{2}} p d v^{2} . \tag{4}
\end{equation*}
$$

The two unknown quantities v_{2} and r_{1} I shall, however, replace by the two infinitely small quantities $\frac{1}{2}\left(c_{2}+r_{1}\right)-v_{k}=\boldsymbol{D}$ and $\frac{1}{2}\left(r_{2}-v_{1}\right)=\boldsymbol{g} ; \boldsymbol{\Phi}$ is therefore the alscissa of the diameter of the border curve for chords parallel with the r-axis, and φ is the half chord.
${ }^{1}$) Zeitschr. f. physik. Chem., 13, 691, 1894.

Bymation t atter division ly 2 of yields:

where for amplefeness I have not remated the order of the different terms. Also raking equation (3) whe for r_{1} athd once for v_{3} and adding together, vichls:
and subtrations and dividing hije $2 \boldsymbol{2}$ gives

$$
\begin{equation*}
0=k_{1}+\because k_{2}\left(\boldsymbol{l}+k_{2}\left(3()^{3}+\boldsymbol{q}^{2}\right)+4 k_{1} \boldsymbol{l}(\boldsymbol{l})^{2}+\boldsymbol{v}^{2}\right)+ \tag{7}
\end{equation*}
$$

While the, at least to a filst approximation simpler equation:

$$
\begin{equation*}
0=\frac{2}{3} / k_{y}: 2 k_{3} x+4 k_{1}\left(x^{2}+\frac{1}{3} x^{2}\right)+ \tag{8}
\end{equation*}
$$

follows fiom ($\overline{5}$) and (6).
The equations (6), (T) and (8) now determine the quantities J, of and $p_{1}-p_{k}$; for we find:

$$
\begin{gather*}
\mathscr{f}^{2}=-{ }_{k_{11}}^{k_{30}}\left(T-T_{k}\right)-. . \tag{9}\\
\left.\boldsymbol{p}=-\frac{1}{k_{30}}\left(\frac{1}{3} k_{21}-\frac{9}{5} k_{11} k_{40}\right)\left(T-T_{k}\right)-{ }^{2}\right) . \tag{10}\\
p_{1}-p_{k}=k_{03}\left(T-T_{k}\right)+. . . \tag{11}
\end{gather*}
$$

Along the border eurve $v=2 \%+\boldsymbol{p} \pm \boldsymbol{r}$, so that we may write the equation of the border curve :

$$
\begin{equation*}
0=\left(v-v_{k}\right)^{2}-\because\left(v-v_{k}\right) \boldsymbol{J}+\boldsymbol{I}^{2}-\boldsymbol{\varphi}^{2} \ldots \tag{12}
\end{equation*}
$$

and to the tirst approximation this represents a parabola ${ }^{3}$).
${ }^{1}$) Just as v. d. Waals (Arch. Néerl. (1), 28, 171) from the reduced equation of state $p=\frac{8 t}{30-1}-\frac{3 e^{1-t}}{0^{2}}$ has derived $\frac{1}{2}\left(0_{2}-p_{1}\right)=2 \sqrt{2}(1-1)$, 1 have also derived $\frac{1}{1}\left(r_{2}+r_{1}\right)$ from the same equation by means of the reduced formula (10) and have found for it:

$$
\frac{1}{2}\left(r_{2}+r_{2}\right)=1+7,2(1-1)
$$

whence, if f_{1} and ρ_{2} stand for the liquid and vapour densities:

$$
\frac{1}{2}\left(p_{2}+p_{1}\right)=f k[1+0,8(1-\mathrm{t})]
$$

From Amagat's data for carbon dioxide 1 find:

$$
\Delta=\frac{1}{2}\left(\rho_{2}+\rho_{1}\right)=0,464+0,001181\left(T_{k}-T\right)
$$

or reduced $1+0,775(1-t)$, and for isopentane (S . Young's data)

$$
\Delta=f k[1+0,8 s 1(1-1)] .
$$

The above equation of state, therefore, represents the diameter numerically in a satisfactory manner.
2) The same problem with regard to o has heen treated by v. d. Waals (loc. cit.) in a somewhat different way; only ρ is determined accurately by his method and the border curve can be derived from his formulae only to a first approximation.
2. The p, v, T diagram of a mixture with a small ralue of x near the critical point of the homogeneous mixture.

From the consideration we have started from it follows immediately that we obtain the system of isothermals of the mixture by moving that of the pure substance to an intinitely small amount parallel to itself so that the critical point (μ_{k}, r_{k}) is brought on to the critical point of the homogeneous mixture $\left(p_{x k}, v_{x k}\right)$, and at the same time by expanding it infinitely little parallel to its co-ordinates in multiplying the ordinates by $\frac{p_{x k}}{p_{k}}$ and the abseissae by $\frac{v_{x l}}{v_{k}}$. Noreover an isothermal, belonging to the temperature T in the first system will belong to the temperature $\frac{T_{x k}}{T_{k}} T$ after we have moved and magnified the system. We put again:

$$
\begin{equation*}
p=l_{0}+l_{2}\left(v-r_{x k}\right)+l_{3}\left(v-v_{x k}\right)^{2}+l_{3}\left(v-v_{x k}\right)^{3}+. \tag{13}
\end{equation*}
$$

where l_{0}, l_{1}, l_{2} etc. are once more functions of the temperature, thus:

$$
l_{0}=l_{00}+l_{01}\left(T-T_{x k}\right)+l_{0 \mathrm{~g}}\left(T-Y_{x k k}\right)^{2}+
$$

According to the derivation from the reduced equation of state by means of $T_{x k}, p_{x k}, v_{x k}$ the co-efficients $l_{00}, l_{01} \ldots l_{10}, l_{11}$ etc. are only functions of x. Putting:

$$
\begin{align*}
T_{x k} & =T_{k}\left(1+\boldsymbol{\alpha}_{x}+\boldsymbol{\alpha}^{\prime} x^{2}+\ldots\right) \\
p_{x k} & =p_{k}\left(1+\boldsymbol{\beta}_{x}+\boldsymbol{\beta}^{2} x^{2}+\ldots\right) \tag{14}\\
v_{x k} & =v_{k}\left(1+\boldsymbol{\gamma}^{x}+\boldsymbol{\gamma}^{\prime} x^{2}+\ldots\right)
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=a-\beta, \quad \gamma^{\prime}=a^{\prime}-\beta^{\prime}-\alpha \beta+\beta^{2} \text { ete., } \tag{14'}
\end{equation*}
$$

we find
$l_{00}=p_{k}[1+\beta, x+\ldots], l_{01}=k_{01}[1-(\alpha-\beta), w+\ldots], l_{02}=k_{02}[1-(2 \alpha-\beta), w+\ldots], \ldots$
$l_{10}=0 \quad, l_{11}=k_{11}[1-2(\alpha-\beta) x+\ldots], l_{12}=k_{12}[1-(3 \epsilon-2 \beta) x+\ldots], \ldots$
$l_{20}=0 \quad, l_{21}=k_{21}[1-3(\alpha-\beta) x+\ldots], \ldots$
$\left.l_{30}=k_{30}{ }^{[} 1-(3 \boldsymbol{a}-4 \beta) \cdot x+\ldots.\right], \ldots$.
$l_{40}=k_{40}[1-(4 \kappa-5 \beta) x+\ldots .],. \ldots$. ;
where all co-efficients l are expressed in co-efficients k as well as in Kamerlingh Onnes' a 's and β 's.

From the values of $T_{x k}, p_{x k}, v_{v k}$, with mixtures of carbon dioxide with small quantities of hydrogen for $x=0, x=0,05$ and $\left.x=0,1,{ }^{1}\right)$ I find:

[^67]\[

$$
\begin{align*}
& T_{s k}=T_{k}\left(1-1,17+1,58, r^{2}\right) \\
& r_{s k}=\mu_{k}\left(1-1,62, r+2,45, r^{2}\right) \tag{16}\\
& \left.r_{s k}=r_{k}\left(1+9,6_{2}^{2}-10,95, r^{2}\right) n^{1}\right)
\end{align*}
$$
\]

while from ($1 t^{\prime}$) wombl follow:

$$
r_{\mu} k=r_{k}\left(1+0,6 n, r+0,08, r^{2}\right) .
$$

Alhomgh the agrecment betwern the two expressions for $r_{\text {sk }}$ is
 corveporming states does bob hold: it maty very well be a result of the muerlatinty of the eritical datat of the lomoreneons mixtures, chiefly

 and these valnes deviate from thom determined directly $(0), 004: 34$ and 0,00444) mot more than the amomat of the ermor that fan be made in these determinations. Besides, since the law of eroresponding states does noi hohl entirely with prore substances, it is not likely to do so for mixtmes.
3. The p, r, r, dituprom for matheres with a small value of x, at "e tompurature difierin! little frome 'T T_{k}.

We shall now consider different mixtures at the same temperature T; the srstem of isothermals in the p, r, x diagram, at that temperature is represented by the equation of state (13), where, however, T must now he laken as constant and de as variable. We will now put this equation in another and more suitable form.

Among all the mixtures there is one for which the critical temperature would be T if this mixture remained homogeneous; the composition rgto of this mixture, and ako the critical elements prk and ropk are determined by equation (14). (In this equation we must put:

Hence we find to a dist approximation

It will be seen that to a first aproximation the value $x^{r} 7 k$ is cither positive or negative according as $T-T_{k}$ and of have the same or opposite signs, that is to say
$\because<0$
$T>T_{k} \quad$ ert $>0:$ firs. 1 and $7 \quad, \quad T k<0$; figs. 3, 5, 9 and 11
$T<T_{k} \quad r_{k}<0 ;$ ligs. 2 and $8 \quad$ rk $>0 ;$ figs. $4,6,10$ and 12
${ }^{2}$) Comp. also Keesom, luc. cit., p. 12.

Although from a physical point of view x can only take positive values, in these considerations even the case $x_{0}<0$ is not impossible; for the point $p_{T k}, v_{T \text { l }}$ has only a mathematical meaning.

In general, equation (13) may now be written thus:

$$
\begin{equation*}
p=m_{0}+m_{1}\left(v-v_{T k}\right)+m_{2}\left(v-v_{T k}\right)^{2}+m_{3}\left(v-v_{T k}\right)^{3}+\ldots, \tag{18}
\end{equation*}
$$

where m_{0}, m_{1} etc. are functions of x which can be developed in powers of $x-x_{T k}$; for instance:

$$
\begin{equation*}
m_{0}=m_{0 a}+m_{01}\left(x-x_{T k}\right)+m_{02}\left(x-x_{T k}\right)^{2}+\ldots . \tag{18'}
\end{equation*}
$$

The co-efficients m are functions of the temperature which is here considered constant; it will be obvious that $m_{00}=p_{T k}$, while m_{10} and $m_{20}=0$. By equalization of (18) with (13) we can express all the m 's in the k 's, and in Kamerlingh Oxxes' a's and β 's; for we find:

$$
m_{n 0}=k_{n 0}-\frac{k_{n 0}}{T_{k} \boldsymbol{\epsilon}}[n c t-(n+1) \beta]\left(T-T_{k}\right)+\cdots
$$

$m_{n 1}=-k_{n 0}[n k t-(n+1) \beta]-k_{n 1} T_{k}\left(t-(n+1) k_{(n+1) 0}(\alpha-\beta) r_{k}+\ldots\right.$, etc. (19)
so that to a first approximation:

$$
m_{30}=k_{30}, \quad m_{40}=k_{40}, \ldots
$$

Hartman ${ }^{1}$) has given a diagrammatical representation of the p, v, x diagram. This representation completely resembles a p, \imath, T diagram; but this resemblance is not necessary. It follows directly from the p, v, T diagram that k_{01} is positive, while k_{11} and k_{30} are negative; in the p, v, x diagram m_{30} is negative, but according to (19), m_{01} and m_{11} may be either positive or negative. The circumstance $m_{01}<0$ does not indeed influence the general shape of the diagram; it indicates that the isothermals of the mixtures lie below those of the pure substance as is the case at the upper limit $(x=1)$ of Harman's representation $\left.{ }^{2}\right)$. But while in the p, v, T diagram the isothermals with maximum and minimum pressure occur under the critical, the opposite may be the case in the p, v, x diagram, if m_{01} and m_{11} have the same sign. The four cases which may now present themselves, leaving out very particular values of the cocfficients, are given in the following table:

[^68]| | $m_{n 1}>\left\\|_{n}\right\\|_{n}^{3}>{ }_{k_{k}}^{T_{k}} k_{n 1}$ | $m_{,:}<\\|_{w_{i}}^{i}<T_{k}^{T_{k}} k_{0,}$ |
| :---: | :---: | :---: |
| $m_{11}>0,0 \cdot:>0$ | ligs. 1 and 2^{\prime}) | figs. 7 and 8 |
| $m_{11}<0$ or $\quad 1<0$ | ligs. 3, 4, 5 and fi | ligns. 9, 10, 11 and 12. |

Harmas's dagram represents at the lower limit the ease $m_{01}>0$ and $m_{11}<0$, at the superion $m_{01}<0$ and $m_{13}>0$. The cate $\theta>0$ will in general oceur when the seeond is less volatile than the first substance; this for instance is the case when methyl chloride is added to carbon dioxide ${ }^{3}$). On the other hand we shatl find the case $0<0$ when the second substance is the more volatite, when for instance hydrugen is adted to catwon dioxide (comp. formulat 16) or earbon dioxide to methyl chloride ${ }^{3}$).

A p, r, x diagram based on observations lias, so far as 1 know, not yet heen pmblished. A diagram of this kind which I have drawn from my measurements on mixtures of sarbon dioxide and hydrogen perfectly resembles the p, x, T diagram after Hartnas, so that in the neighbourhood of pure earbon dioxide we must have $m_{01}>0$ and $m_{11}<0$; according to formula (16) 8 is really negative, white with $k_{01}=1,61$ (comp. Kewson lon' cit., p. 14) 1 find $m_{01}=454$, and pesitive. For carlum dioside will at-mall quantit! of medly delloride') $a=0,378$ and $\overrightarrow{ } \quad \pi=0,088$, and hence $m_{01}<0$ and $m_{11}>0$; and for methyl chloride with a small quantity of cartom dioxide, $t=-0,221$ and $\beta=0,281$ so that $m_{01}>0$ and $m_{12}<0$. At temperatures between the critical temperatures of the two pure substances, the p, r, x diagram for mixtures of carbon dioxide and methyl chloride will probably correspond to hartmas's drawing.

While two neighbouring isothermals ($T, T+d T$) never intersect in the p, x, T diagram (the $\binom{\partial p}{\partial \bar{T}}$, never lecing zero) this may be the case in the p, r, x diagram for two neighbouring mixtures

[^69](x and $x+(d x$). If this point of intersection is siturted at a finite distance from the point $/ P T k, v_{T k}$, it lies outside the limits we are considering; but if it lies infintely near this point, then it practically co-incides with it; then $m_{01}=0$ and all the isothermals in the neighbouhood will intersect each other approximately at the point $\mu T k, r_{T k}$. This case is shown in tig. 13, where I have also supposed $"<0$ and $T<T_{k}^{\prime}$. The isothermals intersect in pairs, and the curve formed by all the points of intersection of two consecutive isothermals, also passes throngh the eritical point ($p \neq$, ork) ; this is represented in fig. 13. The comecting line of the points of contact envelops the isothermals; its equation is found by eliminating x from equation (18) and from $\frac{\partial p}{\partial x}=0$, where we also put $m_{01}=0$; hence we find to the first approximation :
$$
p-p T k=-\frac{1}{4} \frac{m_{11}^{2}}{m_{03}}\left(v-v_{T k}^{*}\right)^{2}
$$

This parabola is tumed upwards (as in fig. 13) if m_{03} is negative.

4. The $\mathbf{4}$-surface.

In order to find from equation (18) the phases co-existing at the temperature T, I shall make use of the properties of the ψ-surface of van der Wabls. The equation of that surface is:

$$
\psi=-\int p d v+R T[x \log x+(1-x) \log (1-x)],
$$

where R is the gas constant for a gramme molecule, hence the same quantity for all substances. Neglecting the linear functions of x, we may write:

$$
\begin{align*}
& \psi=-m_{0}(v-v T k)-\frac{1}{2} m_{1}(v-v T k)^{2}-\frac{1}{3} m_{2}(v-v T k)^{3}-\frac{1}{4} m_{3}(v-v T k)^{4}+\ldots \\
& +R T\left[x \log _{y} x+\frac{1}{2} x^{2}+\frac{1}{6} v^{3}+\ldots\right] \quad . \quad \tag{20}
\end{align*}
$$

5. The co-existing phuses.

The co-existing phases are now determined by the co-existence conditions :

$$
\begin{equation*}
\left(\frac{\partial \psi}{\partial v}\right)_{z}=\binom{\partial \psi}{\partial v}_{1}, \quad\binom{\partial \psi}{\partial x}_{z}=\left(\frac{\partial \psi}{\partial x}\right)_{1} \quad \text { and } \quad \mu_{2}=\mu_{1}, \tag{21}
\end{equation*}
$$

if μ represents the thermodynamic potential :

$$
\mu=\psi-v \frac{\partial \psi}{\partial r}-\varepsilon{ }^{\partial \psi} .
$$

Instead of the third eondition I find it lowever better to nse and other which follows from all three, viz.

$$
\begin{equation*}
M_{2}=M_{1} \tag{21'}
\end{equation*}
$$

where

$$
M=\psi-(v-v T k) \frac{\partial \psi}{\partial v}-\left(r-. x_{T k}\right) \frac{\partial \psi}{\partial \cdot x} .
$$

Corresponding to a former transformation now I write

$$
\frac{1}{2}\left(r_{3}+r_{1}\right)-v_{T k}=\boldsymbol{W} \text { and } \frac{1}{2}\left(r_{3}-v_{1}\right)=\boldsymbol{\psi}
$$

and equally

$$
\frac{1}{2}\left(x_{2}+x_{1}\right)-x_{k}=\boldsymbol{\Xi} \text { and } \frac{1}{2}\left(r_{3}-x_{1}\right)=\Xi
$$

and I consider the intintely small quatuties $\boldsymbol{F}, \boldsymbol{q}, \mathcal{Z}$ and $\underset{\xi}{ }$ as functions of the same variable, viz. $p_{1}-p T k$. Thins 1 find to the first approximation ${ }^{2}$)

$$
\begin{align*}
& \text { な }=-\frac{1}{2} \frac{1}{m_{30}}\left[\frac{1}{3} \frac{m^{3}{ }_{01}}{R^{2} T^{2}}+\frac{m_{02} m_{11}}{R T}+\frac{2}{3} m_{21}-\frac{4}{5} \frac{m_{40}}{m_{30}}\left(\frac{m^{2}}{R T}+m_{11}\right)\right] \frac{p_{1}-p_{T K}}{m_{01}} \\
& -\frac{m_{01}}{2 R T m_{30}}\left[\frac{1}{3} \frac{m^{2}{ }_{01}}{R T}+m_{21}-\frac{t}{5} \frac{m_{01} m_{90}}{m_{30}}\right] x x_{T k} \tag{22}\\
& \boldsymbol{\Psi}^{3}=-\frac{1}{m_{30}}\left[\frac{m_{01}^{2}}{R T}+m_{11}\right] \frac{p_{1}-p_{T k}}{m_{01}}-\frac{m_{01}^{3}}{R T m_{30}} x_{T 2}, . \tag{23}\\
& \Xi=\frac{p_{1}-p_{T k}}{m_{01}}, \quad . \tag{24}\\
& \xi=\frac{m_{01}}{R T}\left[\frac{p_{1}-P r k}{m_{01}}+x_{T k}\right]: \tag{25}
\end{align*}
$$

and
where $x_{T k}$ and $p_{T k}$ may be replaced by their expression (17).

6. The plaitpoint.

In the plaitpoint the co-existing phases become identical. If we represent the elements of the plaitpoint by $r^{r} T_{p} /, P^{\prime} T_{p l}$ and $r^{r} T_{p} l$ then
${ }^{1}$) The four equations from which I derive the relations (29)-(25) are:

$$
\left(\frac{\partial \psi}{\partial x}\right)_{2}=\binom{\partial \psi}{\partial x^{\prime}}_{2}, M_{2}=M_{1} \cdot\binom{\partial \psi}{\partial c}_{2}=\binom{\partial \psi}{\partial c}_{1} \text { and } P_{1}=-\frac{1}{2}\left[\left(\frac{\partial \psi}{\partial c}\right)_{2}+\left(\frac{\partial \psi}{\partial v}\right)_{1}\right] .
$$

The two first equations contain the expression $\log ^{{ }^{x}{ }^{x_{2}}}$; as all the other terms are infinitely small, this must also be the case with liny ${ }^{r_{3}}$, in other words, the ratio ${ }_{x_{3}}{ }_{x_{3}}$ can differ only infinitely lithe from 1 ; mast therefore be of a higher order than Ξ. so that also $\log \frac{x_{3}}{x_{1}}$ may be developed in a series in powers of $\frac{\bar{\Xi}}{\underline{E}+x_{T k}}$.
at that point $\boldsymbol{w}=v_{M, l}-v_{k k}, \boldsymbol{v}=0, \Xi=w_{p}-w_{T k}$ and $\xi=0$, while $p_{\mathrm{r}}=p_{T_{\mu},}$; thus we obtain, from the equations (22), (23) and (24),

$$
\begin{align*}
& x T_{p l}=\frac{R T m_{21}}{m_{01}^{2}+R T m_{11}}-x_{T k}, \cdots \cdot \tag{26}\\
& p_{T_{p} l}=p_{T k}-\frac{m_{01}^{s}}{m_{01}^{3}+R T m_{11}} x_{T k}, \cdots \cdot \tag{27}
\end{align*}
$$

and

$$
\left.r T_{p 1}=r_{T k}+\frac{m_{01}}{2 m_{30}\left(m^{2}{ }_{01}+R T m_{11}\right)}\left[\frac{2}{3} m_{01} m_{21}-\frac{1}{3} \frac{m_{01}^{2} m_{11}}{R T}-m_{11}^{2}\right] x_{T k \cdot}{ }^{2}\right)(28)
$$

If $x_{T k}, p_{T k}$, and $v_{T k}$ are replaced by their expressions (17), the elements of the plaitpoint are thereby determined to the first approximation as functions of the temperature $T ; R T T_{11}$ may then be replaced by $R T_{k} m_{11}$.

From equations (26) and (27) follows immediately:

$$
\begin{equation*}
\frac{p_{T_{p} l}-p T k}{v_{p l}-k T k}=m_{02} \tag{29}
\end{equation*}
$$

In order to see how this relation holds for mixtures of carbon dioxide and hydrogen I consider the temperature $27,10^{\circ} \mathrm{C}$, at which the mixture $x=0,05$ has its plaitpoint ($p T_{p} t=91,85 \mathrm{~atm}$.) ; at that temperature $x_{T k}=0,011$ and $p_{T k}=72,4 \mathrm{~atm}$. so that $\frac{p_{T_{p} l}-p_{T k}}{{ }^{r_{T_{p}} l}-x_{T k}}=500$, in good agreement with the value 454 which I have found for m_{01}.

It follows from equation (26) that $v_{T_{p l} l}$ can be positive or negative. As $x^{2} k<0$ is not impossible, this is equally the case with $x_{T_{p} /}$. It is true that from a purely physical point of view the ψ-surface, only exists between the limits $x=0$ and $x=1$ (in our case $x>0$), but from a mathematical point of view we can imagine this surface to extend also beyond those limits ${ }^{2}$). If we consider a temperature lying above the critical temperatures of the two components of a mixture, then there are, exceptional cases excluded (Hartman's $3^{\text {d }}$ type), no co-existing phases, that is to say the real ψ-surface does not show a plait, although formula 26 shows that there is a plait-
${ }^{1}$) If we take the value of $x_{T k}$ from the equation (26), insert it in (27) and (28), and finally introduce the k 's, α 's and β 's, the formulae (27) and (28) become Keesom's formulae (2b) and (2c) (Comm. $\mathrm{n}^{0} .75$), while (26) corresponds to Keesom's formula (2a).
${ }^{2}$) Outside the limits $x=0$ and $x=1 \downarrow$ is imaginary owing to the presence of terms with $\log x$ and $\log (1-x)$. Although this is the case the co-existing phases beyond those limits are real, as the co-existence conditions contain the necessarily real expressions $\log \frac{x_{2}}{x_{1}}$ and $\log \frac{1-x_{2}}{1-x_{1}}$.
point on the Bmbematy pat of it. If the lesuperatme is bower than the eritieal lemperatures of the two compobents the plat oremes

 limits. Henoe the catse is physicatly mot withomt significamee, but the platpoint cammot be ohsorved.

Equation (26) may be written:

$$
{ }^{n} T_{p l}=\frac{N T_{k} \cdot k_{11}}{l i T_{k}^{2} k_{11} l-m_{01}^{2}}\left(T-T_{k}\right),
$$

and this form shows that ar the will be positive or negative as $T^{\prime}-J^{\prime} k$ and $R T^{3}{ }_{k} k_{11} d-m^{2}{ }_{\text {of }}$ hatse dilterent on the same signs. $R T^{2} k_{k} k_{11} d>m^{2}{ }_{01}$ is only possible if $a<0 ; R T^{2} k k_{11} u<m^{2}{ }_{01}$ will always be the case if $*>0$, but may ocent with $\quad \ll 0$. The different cases that may oceur are shown in the following table.

Along the borter curve $r=v T f^{-} \boldsymbol{\prime}=\mathrm{f}$, so that the equation of the border curve may be written

$$
\begin{equation*}
0=\left(r-r_{T k}\right)^{2}-2 \boldsymbol{r}\left(r-r_{T k}\right)+\boldsymbol{J}^{2}-\boldsymbol{\varphi}^{2} . \tag{30}
\end{equation*}
$$

where $(f$, and f must be replaced by the expressions as functions of p_{1}. To the first approximation we can take therelor the expres sions (22) and (23) and netrlect $I^{2 \times}$; the equation (30) then represents a parabola of the second degree. The apex of this parabola does not, ats in the ρ^{\prime}, r, diagram of a simple snbstance co-incide with the eritical point ($p T k, v T k$), lut with the plaitpoint.

Along that parabola

$$
\begin{equation*}
\frac{d^{2} p}{d r^{2}}=-\frac{2 m_{01} m_{30} R T_{k}^{2}}{m^{2}+R T_{k 2}+m_{21}}=\frac{2 m_{01} k_{30} R T_{k}^{2}}{R T_{k \cdot k}^{2} \cdot k_{11} \ell-m^{2}{ }_{n 1}} \tag{31}
\end{equation*}
$$

This expression is cither positive or negative; that is to saty that the border curve may be fmed with its convex side towards the r-axis, while in the p, r, diamam for a simple substance the border curve is always concave to the r-axis. $\frac{d^{\prime \prime} \mid \prime}{d v^{2}}$ will be positive if m and $R T^{p^{2}} k_{k} k_{11} \ell-m^{2}{ }_{01}$ have different signs, and will be negative in the other ease:

$\quad R T^{3}{ }_{k} h_{11} a>m^{2}{ }_{a 1}$	$R T^{2} k l_{12} a<m^{2}{ }_{01}$	
$m>0$	figs. 5 and 6	figs. 1-4
$m_{01}<0$	figs. 11 and 12	figs. $7-10$

8. The projection of the: emmodel lime on the et, v pheme.

The equation of this eurve has been given by Korteneg ${ }^{1}$). In comection with our preceding formulae it is most easily derived from equation (30) by expressing p in terms of x and v by means of the equation of state (18). I shall now bring it in a form analogous to (30).

The border curve intersects the isothermal of the mixture x at two points $\left(p^{\prime}{ }_{1}, v^{\prime}{ }_{1}\right)$, and $\left(p^{\prime}, v_{2}^{\prime}\right)$ which indicate the phases where the condensation begins and ends. I again make:

$$
\begin{aligned}
& \frac{1}{2}\left(v_{2}^{\prime}+v_{1}^{\prime}\right)-r_{T k}=\boldsymbol{\Phi}^{\prime}, \frac{1}{2}\left(v_{3}^{\prime}-v_{1}^{\prime}\right)=\boldsymbol{\varphi}^{\prime} \\
& \frac{1}{2}\left(p_{2}^{\prime}+p_{1}^{\prime}\right)-p_{T k}=\boldsymbol{I}^{\prime} \text { and } \frac{1}{2}\left(p_{2}^{\prime}-p_{1}^{\prime}\right)=\boldsymbol{x}^{\prime},
\end{aligned}
$$

and consider the four infinitely small quantities $\boldsymbol{I}^{\prime}, \boldsymbol{y}^{\prime}, \Pi^{\prime}$ and \boldsymbol{x}^{\prime} as fimetions of x.

By expressing that the two points are situated on the isothermal (18) and on the horder eurve (30), I obtain four equations from which the relations we want call be derived. In this way I obtain to the first approximation,

$$
\begin{align*}
& \boldsymbol{\Phi}^{\prime}=-\frac{1}{2 m_{30}}\left[\frac{1}{m_{01}}\left(\frac{m^{3}{ }_{01}}{R T}+m_{11}\right)^{2}-\frac{2}{3} \frac{m^{3}}{R^{2} \eta^{2}}+\frac{2}{3} m_{21}-\frac{4 m_{40}}{5 m_{30}}\left(\frac{m^{2}{ }_{01}}{R T}+m_{11}\right)\right] x+ \\
& +\frac{1}{2 m_{30}}\left[\frac{m_{11}}{m_{01}}\left(\frac{m^{2}{ }_{01}}{R T}+m_{11}\right)+\frac{2}{3} m_{21}-\frac{4 m_{11} m_{40}}{5} m_{30}\right] x T k \tag{32}\\
& \boldsymbol{q}^{\prime 2}=-\frac{1}{m_{30}}\left[\frac{m^{3}{ }_{01}}{R T}+m_{11}\right] x+\frac{m_{11}}{m_{30}} x_{T k}, . \tag{33}\\
& \Pi^{\prime}=m_{01}\left(x-x T_{k}\right), \tag{34}\\
& \text { and }
\end{align*}
$$

$$
\begin{equation*}
\boldsymbol{\tau}^{\prime}=m_{11}\left(n^{\prime}-r^{\prime} T k\right) r^{\prime} \ldots \tag{35}
\end{equation*}
$$

[^70]Now we may again write for the eqnation of the comodal line

$$
\begin{equation*}
0=(r-r \neq k)^{2}-2 \|^{\prime}(r-r g) \quad f^{\prime 2}-y^{\prime 2} . \tag{36i}
\end{equation*}
$$

To the first approximation alomg this combe
and this expression has the opposite sign to $/ A^{12} k^{2} k_{11}{ }^{6}-m^{2}{ }_{0}$. Here therefore we distinguish only two caves.
 concave side towards the r-axis (hig. 14);
2. $R T^{2} k_{12} k_{12}<m^{2}{ }_{01} ; \frac{d^{2}, r}{d t^{3}}>0$ and the comodal line is convex to the r-axis (fige 15).

9. The critical peint of contuct.

The characteristic of the eritical point of contact is that there the two phases with which the condensation begins and ends coincide.

If $x_{T_{r}, P_{1}}$ and $v^{2} T_{r}$ represent the elements of that point we have there

$$
\boldsymbol{P}^{\prime}=v_{T r}-v_{T k}, \boldsymbol{y}^{\prime}=0, \boldsymbol{I}^{\prime}=p^{\prime} T_{r}-p_{T k}, x^{\prime}=0 \text { and } x=x_{T r} .
$$

and from (33) it follows that

$$
\begin{equation*}
a_{r} T_{r}=\frac{R T_{k} m_{11}}{m^{2}{ }_{01}+R T_{k} m_{11}} a_{T k}, . \tag{38}
\end{equation*}
$$

that is to say to the first apmoximation the composition at the critical point of contact is the same as at the platpoint (ef. 26). The different cases which may occur now follow.

1. $R T^{2} \varepsilon_{2} k_{11} \|>m_{01}^{2}$ (fig. 14).
a). $T^{\prime}>T_{1} ; x^{2}$ is negative and there is no comodal line inside the rerion that can be observed. This corresponds to the position of the border curve in liges. 5 and 11.
b) $T=T_{k} ; x T_{c}=0$ and the formula (30) reprevents a commodal line which touches the r-axis.
c) $T<T_{k}$; $T_{r}>0$ and there is a connodal line in the revion of positive x, (see also figs. 6 and 12).
2. $R T^{3} k_{11} c<m^{2}{ }_{01}$ (fig. 15).
a) $T>T_{r:}: x_{r}>0$ and the connodal line lies entirely within the region that can be olserved; (figs. 1, 3. 7 and 9).
b) $T=T_{k} ; \quad,{ }^{\prime} T_{r}=0$ and the connodal line tonches the r-axis ;
e) $T<T_{k} ;{ }^{2} T_{r}>0$ and the connodal line can only be completed
by prolonging it in the region of the necrative en (fig. 2, 4, 8 and 10). Equation (34) gives:
so that also to the first approximation $p T_{r}=p T_{p} l(c o m p$. equation 27). And from the eqnation (32) we derive in comnection with (38):

$$
\begin{equation*}
v_{T r}=v_{T k}+\frac{1}{3} \frac{m_{01}^{2}}{m_{80}\left(m_{01}^{2}+R T_{L} m_{11}\right)}\left(m_{21}+\frac{m_{01} m_{11}}{R T_{k}}\right) r_{T k}, \tag{40}
\end{equation*}
$$

from which by comparison with (28) we lind

$$
\begin{equation*}
v_{T}-v_{C_{p} l}=\frac{1}{2} \frac{m_{n 1} m_{11}}{R T_{h}^{\prime} m_{30}} \cdot r_{T l}=-\frac{1}{2} \frac{k_{11} m_{01}}{R T_{k} \cdot k_{30}}\left(T-T_{k}\right) \tag{41}
\end{equation*}
$$

The difference $v_{T}-v_{\mu}$ may be positive or negative, that is to say the eritical point of contact may be sitnated on the vapour or on the liquid branch of the border curve (or of the comnodal line). In the finst case, as it is well-known, we have retrograde condensation of the first type for all mixtures comprised between $x \mathrm{p}_{\mathrm{r}}$ and $x T_{p} t$, in the second case retrograde condensation of the second type:

Expressing that the phatpoint and the critical point of contact lie on the comodal line and subtateting the equations thes obtamed we find to the second approximation :

$$
\begin{equation*}
{ }^{e} T_{T}-x_{T_{l} l}=\frac{1}{4} \frac{m_{01}^{2} m^{2}}{R T_{k} m_{30}\left(m_{01}^{2}+R T_{k} m_{11}\right)} x^{v^{2} T k} ; \tag{42}
\end{equation*}
$$

this expression is positive if $R T^{2} / h_{11}$ ($>m^{2}{ }_{01}$ (lig. 14), and negative if $R T^{2}{ }_{k} h_{11} c<m^{2}{ }_{01}$ (fig. 15). In the sume way we find hy means of the border curve

$$
\begin{equation*}
p_{T r}-p_{T_{p} l}=-\frac{1}{4} \frac{m_{01}^{3} m^{3}}{R T_{k} m_{30}\left(m_{01}^{2}+R T_{k} m_{11}\right)} x^{2} T_{k} \tag{43}
\end{equation*}
$$

so that

$$
m_{01}>0 \quad m_{01}<0
$$

$R T_{k}^{2} k_{11} \quad \|<m_{01}^{2} \mid P_{T r}>P_{T_{l} l} ;$ figs. 1-4 $\mid P_{T r}<P_{T_{j} l} ;$ figs. . . 10

 state for binury mioturess with as small propertion of one of the comproments." (Contimned). Commanication n". St from the

10. The borders curve and the comodal line in special coses.

1. When $m_{01}=0$, i.e. $m_{k} \beta=k_{01} T_{k}$ a, all isotherms intersed one amother mealy all the eritical point (1 Tk, verk) ats we have seen in $\$ 3$; arombling to the expations (26), (27) and (28) the platpoint coincides in that case with this critical point. Besides from (31) it follows that $\frac{d^{2} p}{d v^{2}}=0$: this value howerer belongs to $\frac{d^{2} p}{d c^{2}}$ only to the first approximation (i.e. at the eritical point itself), or the border curve is a parabola of a higher degree than the second. In fatet we find in this case:

$$
\begin{aligned}
& \boldsymbol{\varphi}=-\frac{1}{2 m_{s 0}}\left(\begin{array}{l}
\underline{2} m_{21}-4 m_{11} m_{10} \\
3
\end{array} m_{30}\right) \Xi . \boldsymbol{f}^{2}=-{ }_{m_{11}}^{m_{30}} \Xi \text { and } \\
& p_{1}-p T k=\left(m_{02}-\frac{1}{3} \frac{m_{12} m_{21}}{m_{30}}\right) \Xi^{3} ;
\end{aligned}
$$

and therefore the border curve to the tirat appoximation becomes a parabola of the fourth degree; the equation of that parabola is :

$$
p-p_{T k}=\frac{m_{30}^{2}}{m_{11}^{2}}\left(m_{03}-\frac{1}{3} \frac{m_{11} m_{21}}{m_{20}}\right)\left(v-v_{T K}\right)^{\prime} .
$$

The comnodal line, however, bemains a parabola of the second degree, on which $\frac{d^{2} x}{d v^{2}}=\frac{2 k_{30}}{T_{k} k_{11} t}$.
 then the term $l_{1}-p_{i}$ disippears from the expresson for g^{2} equation 23), so that φ becomes of the first order with respect to p_{1}-pTk. We then find:

$$
\left.\Phi=-\frac{1}{3 m_{30}}\left(\begin{array}{c}
m_{01} m_{11} \\
R T_{k}
\end{array}+m_{21}\right)\right)_{m_{1}-p T k}^{m_{01}}-\frac{m_{01}}{R T_{l} m_{30}}\left(\begin{array}{l}
1 \\
3
\end{array} m_{31}-\frac{2}{5}-\frac{m_{01}}{m_{30}} m_{50}\right) \cdot r T k
$$

and

$$
\begin{aligned}
& \boldsymbol{\varphi}^{2}=\frac{m_{11}}{m_{30}}{ }^{2} \boldsymbol{T} k-\frac{1}{m_{30}}\left(\frac{5}{\frac{5}{2}} \frac{m_{01} m_{0 q}}{R T_{k}}-\frac{1}{3} \frac{m^{2}{ }_{01} m^{2}{ }_{11}}{R^{2} T_{k}{ }^{3} m_{30}}+\right. \\
& \left.+m_{11}+m_{12}-\frac{2}{3} m_{01} m_{21} m_{21}-1 T_{l, m_{30}}^{1}-\frac{m^{3}}{3} m_{50}\right)\binom{p_{1}-p T k}{m_{01}}^{2} ;
\end{aligned}
$$

${ }^{1}$) Comp. Proceedings Royal Acad. of Sciences Sept. 1902.
in the last term I shall express the co-efticient of $\left(\rho_{1}-p_{T k}\right)^{2}$ for convenience by K.

Substutung this in equation (30) we obtain to the first approximation an equation of the second degree, which now no longer represents a parabola but ath ellipse or a hyperbola. The coordinates of the centre are:

$$
p_{c}=p_{T k} \text { and } v_{c}=v r_{k}-\frac{m_{01}}{R T_{k} m_{30}}\left(\frac{1}{3} m_{11}-\frac{2 m_{01} m_{40}}{5} \frac{m_{30}}{m_{30} T k}\right.
$$

while the straight lines

$$
p=p_{T k} \quad \text { and } \quad v=v_{T k}+\boldsymbol{\Phi}
$$

are conjugate axes. With respect to these axes the coordimates of the border curve are f and $m_{2}-p T h$, so that the equation of the border curve with respect to those axes is:

$$
\varphi^{2}-K\left(p-p_{T k}\right)^{2}=\frac{m_{11}}{m_{30}}, T_{k}=-\frac{k_{11}}{k_{311}}\left(T-T_{k}\right)
$$

In the same case the equation of the comodal line is:

$$
\varphi_{2}^{\prime}-K m_{01}^{2}\left(. k-w_{T k}\right)^{2}=-\frac{k_{11}}{k_{30}}\left(T-T_{k}^{\prime}\right)
$$

with respect to the conjugate axes:

$$
x=v_{T k} \quad \text { and } \quad v=v_{T k}+w^{\prime}
$$

where \boldsymbol{I}^{\prime} is obtained through substituting $x-x_{T k}$ for $\frac{p_{1}-p T k}{m_{01}}$ in \boldsymbol{T}. We must now distinguish two cases.
a. $K<0$; the equations of the border curve and the comodal line represent ellipses. Provided $k_{11}<0$ and $k_{31}<0$ these ellipses are real when $T<T_{k}$; they lie only partially - to the first approximation half - in the real part $(x>0)$ of the q-surface. We find two plaitpoints of which only one is in the real 4 -surface and two critical points of contact co-inciding with the plaitpoints (at least to the degree of approximation considered here, i. e. to the order $V\left(T-T_{k}\right)$; the coordinates of these points are:

$$
\begin{aligned}
& r_{T_{p} l}=r_{T r}=r_{T k} \pm \frac{1}{m_{01}} / \frac{k_{11}}{K k_{30}}\left(T-T_{k}\right) \\
& p_{T_{\mu} l}=r_{r}=r_{T_{k}} \pm / \frac{k_{11}}{K k_{30}}\left(T-T_{k}\right) \\
& v_{T p l}=v_{T r}=v_{c} \mp \frac{1}{3 m_{01} m_{30}}\left(\frac{m_{01} m_{11}}{R T_{k}}+m_{21}\right) / \frac{k_{11}}{K k_{30}}\left(T-T_{k}\right) .
\end{aligned}
$$

If $T=T_{k}$, the border curve and the comnodal line shrink to one point, the critical point of the pure substance; and if $T>T_{k}$, there is no longer a border curve nor a connodal line.
b. $K>0$; the border come and the combotal line are hyperbolae: the asymptotes are:

If $T>T_{k}$, of (or \boldsymbol{y}^{\prime}) is the real axis; only that branch of the hyperbola which lies above the axis $\mu=p 7 k$ can be observed as horder curve; in the case of the comodal line it is only the branch lying athove the axis $r=r^{\prime} k$ which can he observed; again fwo platpoints are fonnd of which only one ean be observed, and the coordinates of which eat be expressed by the same terms as used for the ellipse. If $\quad T=T^{\prime} \%$, the horder corve and the comodal line consist of two straght branches meeting at the eritical point of the pure substance, which is therefore a double platpoint. Lastly, if $T<T_{k}^{\prime}$ there is no longer a platpoint; we observe two branches of the border curve and the comnodal line lying to the right and the left of the point $P_{T k}, v^{2} 7 k$: each phase on one branch co-exists with a plase on the other.

11. The border curve in the p, n, T dienfram for a mixture of composition x.

In equation (36) of the projection of the comnodal line on the x, r-plane, if we consider x as constant and T ' as variable, that equation will express how the volumes of the phases, where the condensation begins and ends depend for the same mixture on the temperature. It therefore may be considered as the projection on the r, T-plane of the border curve on the μ, v, T-surface for the mixture of composition x.

This projection, fan be written in the following form, corresponds to (36)

$$
\begin{equation*}
0=\left(v-v_{x k}\right)^{2}-2 \boldsymbol{I}^{\prime \prime}\left(v-v_{x k}\right)+\boldsymbol{S}^{\prime \prime 2}-\boldsymbol{Y}^{\prime \prime 2} \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{\Phi}^{\prime \prime}=\frac{1}{2}\left(v_{2}^{\prime}+v_{2}^{\prime}\right)-r_{x h}=\boldsymbol{L}^{\prime}+v^{v} T k-v_{x k}=\text { (to a first approximation) } \\
& =-\frac{1}{2 m_{30}}\left[\frac{m_{01}}{R T_{k}}\left(\frac{m^{2}{ }_{01}}{R T_{k}}+m_{21}\right)-\frac{2}{3} \frac{m_{01}^{3}}{R^{2} T_{k}^{2}}-\frac{4 m_{40}}{5 m_{30}} \cdot \frac{m^{2}}{R T_{k}}\right] x+ \\
& +\underset{\boldsymbol{c} T_{k}}{v_{k}(\ell-\beta)}\left(T-T_{x k}\right)+\underset{2 m_{30}}{1}\left[\begin{array}{l}
m_{11} \\
m_{01}
\end{array}\left(\frac{m_{01}^{2}}{R T_{k}}+m_{12}\right)+\frac{2}{3} m_{21}-\right. \\
& \left.-\frac{4}{5} \frac{m_{11} m_{40}}{m_{30}}\right] \frac{T-T_{x k}}{{ }_{\varepsilon} T_{k}} \tag{45}
\end{align*}
$$

and

$$
\begin{equation*}
\boldsymbol{\varphi}^{\prime \prime 3}=\frac{1}{4}\left(v_{2}^{\prime}-v_{1}^{\prime}\right)^{2}=\boldsymbol{\varphi}^{\prime 2}=-\frac{m_{01}^{2}}{R T_{k} m_{\mathrm{s} 0}} x+\frac{m_{11}}{m_{30}} \frac{T-T_{x k}}{\alpha T_{k}} . \tag{46}
\end{equation*}
$$

To this can be added

$$
\begin{equation*}
\boldsymbol{\Pi}^{\prime \prime}=\frac{1}{2}\left(p_{2}^{\prime}+p_{1}^{\prime}\right)-p_{x k}=k_{01}\left(T-T_{2 k}\right) \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{x}^{\prime \prime}=-\frac{m_{11}}{\varepsilon T_{k}}\left(T-T_{x k}\right) \varphi^{\prime \prime} \tag{48}
\end{equation*}
$$

To the first approximation equation (44) represents a parabola, of which the apex determines the elements of the eritical point of contatet for the mixture x. For we know that in the case of the critical point of contact $r^{\prime}{ }_{2}=r_{1}^{\prime}=v_{x r}$, so that $\boldsymbol{\varphi}^{\prime \prime}=0$ and $\boldsymbol{\Phi}^{\prime \prime}=v_{x r}-v_{x k}$. Hence it follows that ${ }^{1}$):

$$
\begin{array}{r}
T_{x r}=T_{s k}-\frac{m_{n 1}^{2}}{R T_{k} k_{11}} a \cdot \ldots . \quad . \quad . \\
p_{x r}=p_{x k}-\frac{k_{01} m_{n 1}^{2}}{R T_{k} k_{11}}, \cdot . \quad . \quad . \quad . \\
r_{x r}=v_{x k}+\left[m_{01}^{2} v_{k z}(\ell-\beta)+\frac{1}{3} \frac{m_{01}^{2}}{m_{30}}\left(\frac{m_{01} m_{11}}{R T_{k}}+m_{21}\right)\right] \frac{r_{k}}{R T_{k} m_{11}} . \tag{51}
\end{array}
$$

In order to derive from this the equation of the border curve in the p, v, T-diagrant, we must express T in terms of μ and v by means of equation (13).

Then we find:

$$
\begin{equation*}
0=\left(v-r_{x k}\right)^{2}-2 \boldsymbol{T}^{\prime \prime \prime}\left(v-v_{x k}\right)+\iota^{\prime \prime \prime \prime}-\varphi^{\prime \prime \prime 3} . . \tag{52}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{\Phi}^{\prime \prime \prime}=-\frac{1}{2 m_{30}}\left[\frac{m_{01}}{R T_{k}}\left(\frac{m^{2}{ }_{01}}{R T_{k}}+m_{11}\right)-\frac{2}{3} \frac{m^{3}{ }_{11}}{R^{2} T_{k}{ }^{2}}-\frac{4 m_{10} m^{2}{ }_{01}}{5} m_{30} R T_{k}\right] \cdot x+ \\
& +\frac{v_{h}(\alpha-\beta)}{k_{01} \alpha T_{k}}\left(p-p_{x k}\right)+\frac{1}{2 k_{01} m_{30}}\left[\frac{m_{11}}{m_{01}}\left(\frac{m^{2}{ }_{n 1}}{R T_{k}}+m_{11}\right)+\frac{2}{3} m_{21}-\frac{4 m_{11} m_{40}}{5}-m_{30}-\right. \\
& \left.-\frac{k_{11} m_{12}}{k_{01}}\right] \frac{p-p_{x k}}{\alpha^{W} T_{k}} . \tag{53}
\end{align*}
$$

and

$$
\begin{equation*}
\psi^{\prime \prime \prime}=-\frac{m_{01}^{3}}{R T_{k}^{\prime} m_{30}} n+\frac{m_{11}}{k_{01} m_{3 a}} \frac{p_{1}-p_{x k}}{\alpha T_{k}^{\prime}} . \tag{54}
\end{equation*}
$$

To a first approximation (52) is a parabola on which

$$
\frac{l^{2} p}{d v^{2}}=2 \frac{k_{01} m_{30}}{m_{11}} t T_{k}--\underbrace{k_{01} k_{30}}_{k_{11}}
$$

as in the case of the border curve of the pure substance.
The apex of the border curve is the point of the maximum co-existence

[^71] pultiner $\boldsymbol{q}^{\prime \prime \prime}=0$ and $\boldsymbol{s} \boldsymbol{s}^{\prime \prime \prime}=r_{s m a}-r_{s k}$

Hence fo the lirst approximation $p_{x m}=p_{x v}$ and $T_{x m}=T_{x r}^{\prime}$, but

$$
\begin{equation*}
v_{x m}-v_{r r}=-\frac{1}{2 R m_{\ell}{ }_{01} k_{01} k_{11} k_{30}} \tag{58}
\end{equation*}
$$

for real mixtures, that is to say,$x>0$, the hatter expression is necessarily nerative, so that the critioal point of contact is always sitnated on the descending (right) branch of the border curve. We cannot call it the stpmur Inanch, becanse here the apex of the border curve is not the platpoint as in the p, r, r odiagram. The critical point of contat is situated thus, becanse the eritical isothermal tonches the horder coure at that point, and beranse on that isothermal and hence also at the critical point of contact $T_{x r}>T_{s k}$ (at least for real mixtures), therefore $\frac{\partial r}{\partial r}<0$ for the border curve. This corresponds to a diagrammatieal representation of a $\quad \mathrm{l}, r$, T-diagram for a mixture given by Ktexex ${ }^{2}$) and also with the experimental diagram for the mixture: 0.95 c:ubon dioxide, 0.05 hydrogen which I have given in my thesis for the doctorate. In spite of the small value of x, terms of higher order appear to have such a great influence in the case of this mixture that the apex of the border curve lies far outside the area investigated, and the horder curve at the critical point of contact is no longer concave towards the v-axis but convex.

The platitoint elements for the mixture of composition x are found by sulstiluting $T_{x_{l} l}$ for T and x for $x T_{p l}$ in equation (26), by solving $T_{x, l}$ and substituting that value in (27) and (28). Then we find

$$
\begin{gather*}
T_{x p l}=T_{k}\left[1+\frac{m_{01}^{2}+R T_{k} m_{11}}{R T_{k} m_{11}} \ell, x\right]=T_{x k}^{\prime}-\frac{m_{01}^{2}}{R T_{k} k_{11}} x . \tag{59}\\
p_{x p l}=p k+\left[p_{k} \beta+\frac{k_{01} m_{01}^{2}}{R m_{11}} \ell\right] x=p_{x k}-\frac{k_{01} m_{01}^{3}}{R T_{k}^{\prime} k_{11}} x \tag{60}
\end{gather*}
$$

${ }^{\text {1) }}$ Comp. Hartmay, Journ. Phys. ('hfm., 5, 437, 1901. Communications Leiden suppl. No 3 p. 14.
${ }^{2}$) Zeitschr. f. physik. Chem., XXIV, 679, 1897.
$v_{x p l}=v_{x k}+\left[m^{2}{ }_{01} v_{k}(\ell-\beta)+\frac{m_{02}}{2 m_{31}}\left(\frac{2}{3} m_{01} m_{11}-\frac{1 m^{2}{ }_{01} m_{11}}{\beta} \frac{R T_{k}}{} m^{2}{ }_{11}\right)\right] \frac{x}{R T_{k j} m_{11}},(\dot{1} 1)$ which formulae, after some reductions, fan be put in the form in which Keeson has given them (Comm., n". 75). Also the following well known equation ${ }^{1}$) results directly from equations (59) and (60)

$$
\begin{equation*}
p_{x p l}-p_{x k}=k_{01}\left(T_{x p l}-T_{x k}\right) \tag{62}
\end{equation*}
$$

which also according to equations (49), (50), (55) and (57) holds for the coordinates of the eritical point of contart and for the apex of the border curve.

From the coordinates of the platpoint of mixtures of earbon dioxide with a small proportion of hydrogen ${ }^{2}$) ($x=0,0,05$ and 0,1) I derive the following formulate

$$
\left.\begin{array}{r}
T_{x p l}=T_{k}\left(1-0,30 x+x^{2}\right) \tag{63}\\
r_{x p l}=m_{k}\left(1+4,4 x+11 x^{2}\right) \\
v_{x p l}=v_{k}\left(1-0,40 x-8 x^{2}\right)
\end{array}\right\}
$$

In connection with the formulae (16) I obtain directly from these:

$$
\frac{p_{x p l}-p_{x / k}}{T_{x_{2}, l}-T_{s k}}=1,66(1 \quad-\quad . a) .
$$

in good hamony with equation (62) $\left.\left(k_{01}=1,61\right)^{2}\right)$. Using the value $k=-513^{4}$), I moreover find that the formulae (59) and (60) applied to mixtures of carbon dioxide and hydrogen become:

$$
T_{x, l}=T_{l:}(1+0,03, x) \quad \text { and } \quad p_{x, l}=p_{k}(1+0,4 x)
$$

hence the agreement with the formulae (6;3) is decidedly bad, as has also been remarked by Kewson (loc.cit., pr.13). We camnot, however, draw any conchasions from this; it is improbable that the inacemacy of the data should cause this great deviation; but from the fact that terms of higher order produce such a great influence in the mixture $x=0,05$, we see that quadratic formulae are very unfit for this comparison ${ }^{5}$), the more so as it appears from
${ }^{1}$) Comp. v. D. Wame, V'ersh. Kon. Ahud., Nor. 1897. It also follows directly from the equation of state (13) in comnection with (15), by expressing that the elements of the plaitpoint satisfy this equation and by neglecting terms of a higher order than the first.
${ }^{2}$) Verschaffelt, Thesis for the doctorate, Leiden 1899.
${ }^{3}$) Comp. also Keeson, loc. cit., p. 14.
${ }^{\text {1) }}$ Derived from $\frac{R T_{k}}{p_{k} v_{k}} \frac{\partial^{2} x}{\partial \omega_{2} \partial \tau}=-32,2$ (Keesom, $\mathrm{p}, 12$).
${ }^{5}$) By introducing the values for $x=0,2$ (comp. Verschaffelt, Arch. Neerl., (2), 5, 649 etc., 1900 , Comm. n". 65̃, and Keeson, loc. cit. p. 12) they certainly will not become better.

Kramone calenlations (1. 1:3 that momably smatl variations in the
 Acemate ohservations for mixtares with still smather compositions are therefore highly desirathe. Is the Isph, and also the coordimates of the ceriteat platpoint, arr known with less certanty than the $T_{x, n}$ and pral, a comparison of the theorelical and the experimental values for these quablities is paterically meless.

Again from the proceding equations $p_{r_{p},}=p_{x r}, \quad T_{x_{j} l}=T_{s r}$ to a tirst approximation, amd

$$
\begin{equation*}
r_{c, p l}--r_{a r}=\frac{1}{-} k m_{n 1}-\binom{m^{3} m_{31}}{k T_{k}+m_{11}} \cdot r . \tag{0.4}
\end{equation*}
$$

Hence the patpoint may lie either to the right or to the left of the eritical point of contat ; for positive x we have

$$
\begin{aligned}
& m_{01}>0 \quad m_{01}<0
\end{aligned}
$$

$$
\begin{aligned}
& l \cdot T_{k}^{2} k_{11} \quad \ell<m_{n 1}^{2} \quad i_{x p l}>v_{x r} ; \text { r.c. II } \quad r_{z p l}<v_{x r} ; \text { r.c.I }
\end{aligned}
$$

If the platipoint lies to the left of the critical point of contact, it may still lie either to the right or to the left of the apex, that is to say either on the desemding or on the aseending branch of the border comve. In fact, according to (58) and (64) it lies:

1. to the right of the eritical point of contact when m_{01} and $\frac{m m^{2}}{R T_{k}}+m_{11}$ have the same signs,
2. between the critical point of contat and the apex when $\frac{k_{n 1}}{k_{11}}\left(\frac{m^{2}{ }_{01}}{R^{2} T_{k}}+m_{11}\right)>m_{01}>0 \quad$ or $\quad 0>m_{01}>\frac{k_{01}}{k_{12}}\binom{m^{2}{ }_{01}+m_{11}}{k T_{k}}$, and
3. to the left of the apex when $m_{01}>\frac{k_{01}}{k_{11}}\left(\frac{m^{2}}{R T_{k}}+m_{11}\right)>0 \quad$ or $\quad 0>\frac{k_{n 1}}{k_{11}}\left(\frac{m^{3}}{R T_{k}}+m_{11}\right)>m_{01}$.

In the p, r, T-diagram the platpoint hats no geometrical meaning.
The expression that the coordinates of the critical point of contact and the plaitpoint satisfy the equation (44) gives, to the second approximation :

$$
\begin{equation*}
T_{x p l}-T_{x r}=-\frac{1}{4} \frac{m_{01}^{2}}{R T_{k} k_{30} k_{12}}\left(\frac{m^{2}}{R T_{k}}+m_{12}\right)^{2} x^{2} \tag{65}
\end{equation*}
$$

The right side is necessarily negative and therefore we always have $T_{x r}>T_{x p}$, which also necessarily follows fiom the meaning of the critical point of contact. In the same way we find by means of equation (52) :
$l_{x p l}-p_{c r}=\frac{1}{2} \frac{k_{01}}{k_{11}} \frac{m^{2}{ }_{01}}{R T_{k} k_{30}}\left(\frac{m^{3}}{R T_{l i}}+m_{21}\right)\left[\frac{m_{01} k_{11}}{k_{02}}-\frac{1}{2}\left(\frac{m^{2}{ }_{01}}{R T_{k}}+m_{21}\right)\right] x^{2}$.

12. The condensotion.

The line which indicates the relation between the pressure and the volume during the condensation, the so-catled experimental isothermal, extends between the two points $\mu_{1}^{\prime}, r_{1}^{\prime}$ and $\mu^{\prime}{ }_{2}, r_{2}^{\prime}$ the points where the condensation begins and ends) but we ean also imadine it to extend berond those two points, although there it has only a mathematical meaning ; for beyond those two points the quantity of one of the phases would be negative. In order to fint the equation of the experimental isothermal we must seek at each volume for the pressure at which the two phases into which the mixture splits, can co-exist. For this purpose 1 return to the projection on the x, x-plane ($\$ 8$) of the ψ-surface belonging to the temperature T '. If x_{1}, x_{1} and v_{2}, x_{2} are the phases into which the mixture x splits when the volume v is reached $\left(r_{2}>e^{\prime}>e_{1}\right)$, the point r, t lies on the straight line connecting the points v_{1}, w_{1} and r_{2}, r_{2} and hence we have this relation:
where $\boldsymbol{\Phi}, \boldsymbol{\Phi}, \boldsymbol{\varphi}$ and Ξ have the same meaning as in $\S \check{5}$. If p_{1} is the pressure at which the two phases x_{2} and x_{3} co-exist then we obtain the equation of the experimental isothermal by expressing the quantities $\boldsymbol{J}, \boldsymbol{\Xi}, \boldsymbol{\rho}$ and $\underset{\Xi}{ }$ of equation (67) in μ_{1} by means of the equations (22), (23), (24) and (25).

That this experimental isothermal passes through the two points v_{1}^{\prime}, x and v_{2}^{\prime}, follows directly from the way in which its equation has been derived; we also obtain it from the substitution of $v^{\prime}{ }_{1}, x^{\prime}{ }_{1}$ or $v_{2}^{\prime}, x^{\prime}{ }_{2}$ - for r, x, which involves the substitution of ${v^{\prime}}_{1}, x^{\prime}{ }_{6}$ for v_{1}, x_{1}^{\prime} - or of $r_{2}^{\prime}, x_{2}^{\prime}$ for x_{2}, r_{2}.

By successive approximations (67) is brought to the form :

$$
\begin{equation*}
p_{1}=p T k+m_{01}(x-x T k)-\frac{m^{2}}{R} \frac{T_{1}}{T_{k}}\left(x-v_{T k}\right) x+\ldots ; \quad . \tag{68}
\end{equation*}
$$

if we consider only the three first terms, this is the equation of a straight line, hence of that connecting the two phases where the condensation begins and ends. In comection with (18) we tind, neglecting terms of higher order,

$$
p-p_{1}=m_{11}\left(r-v T_{k}\right)\left(n-r T_{k}\right)+\frac{m^{3}}{l T_{k}}(v-v T k) x+m_{30}\left(v-v T_{k}\right)^{2},
$$

and according to (33) this may be written

$$
p-p_{1}=k_{30}\left(v-v_{l k}\right)\left[(c-r \pi k)^{2}-\psi^{\prime 2}\right] .
$$

We see that in this form the experimental isothermal intersects the theoretical at three points ${ }^{2}$), vi\% $v=r v_{t}+\varphi^{\prime}, v=v_{T k}-\varphi^{\prime}$ and $r=v z$ (all to the tirst approximation) ; the two first points are the pronts at which condensation begins and ends (W^{\prime} has been nexlected as being of himher order that \boldsymbol{o}^{\prime}, the third lies between the two first.

When $v_{T k}+v^{\prime}>v>v_{T k}$, that is to say at the beginning of the condensation, $l^{\prime}>p_{1}$ and the theoretioal isothermal lies above the experimental; when $v_{T} T:>v>v_{T k}-y$, i.e. at the end of the condensation, $\mu>\rho^{\prime}$ and the experimental isothermal is the higher ${ }^{2}$) this, indeed, follows neeresuily from the s-shape of the theoretical isothermal, and the approximate strairhtness of the experimental.

According to thermodyntmies the two areas enclosed by the theoretical and the experimental isothermal must be equivalent ${ }^{\text {b }}$, that is to say :

$$
\int_{v_{1}^{\prime}}^{v_{1}^{\prime}}\left(p-p_{8}\right) d v=0
$$

or

$$
\int_{-\bar{p}^{\prime}}^{+\bar{q}^{\prime}}\left(p-p_{1}\right) d\left(v-v_{\gamma k}\right)=0
$$

and this actually follows from the form, found just now for $p-p_{1}$.
This has only been proved for the terms considered here: but obvionsly it must also be possible to prove this for terms of higher order.

13. The p, T diayram.

a. The vapour pressure curce of the pure substance. We have found to a first approximation :

$$
p_{1}=p_{k}+k_{01}\left(T-T_{k}\right)
$$

As k_{01} is positive, this straight line rises and terminates at the
${ }^{1}$) Comp. for this Hartsan, Commo, n". 56 and Suppl. n". 3 p. 25 ; Journ. Phys. Chem., 5, 450, 1901.
F) Here the proof is only given for mistures with small composition. For a general proof comp. Kuenes, Zeitschr. f. Physik. Chem., MLI, 46, 1902.
\therefore It hat escaped Bumbere notice, who mentions this theorem in 1s 90 Zeilschr. f. physik. Chem., V1, p. 15j) that it occurs already in a treatise of vas der Wads of 1880 (Verh. Kon. Akad., Bd. 20, p. 23).
point μ_{k}, T_{k}. T_{k} is a maximum tempretature, so that this curve lies in the third quadrant $\left(ふ^{\prime} 0\right.$, fig, 16 .)

Fig. 16.
b. The plaitpoint curve According to equation (27)
$p_{T_{l}}=p_{k}+\left[p_{k} \beta^{3}-\frac{m^{2}{ }_{01}}{m^{3}{ }_{01}+R T_{k} m_{11}}\right] \frac{T_{-} T_{k}}{\alpha_{1} T_{k}}=p_{k}+\left(k_{01}-\frac{R T_{k} k_{11} m_{01}}{m^{2}{ }_{01}+R T_{k} m_{11}}\right)\left(T_{-} T_{k}\right)$
This curve may have all possible directions. If we consider only real mixtures $(x>0)$, it extends only on one side of the point p_{k}, T_{k}, namely that corresponding to such values that $T-T_{k}$ and $m^{\prime \prime}{ }_{01}+R T_{k} m_{11}$ have the same signs (according to equation 26').

With regard to the position of the platpoint curve we distinguish the following cases:

1. $m_{01}=0 . p T_{p}=p_{k}+k_{01}\left(T-T_{k}\right)$, hence the beginning of the plaitpoint eurve will lie either in the direction of the rapone pressure
curve of the pure substance on will eorimode with it as $T>T_{k}$ or $T<F^{\prime}$, that is 10 sat, acombing $10\left(26^{\prime}\right)$, as e is positive or negative.

 rerimeite with the reritioal olements which the mixture would have if it remaned homogeneons, henoe the mixtme behaves like a pure substance. This is the rase $\frac{d^{2} \|}{d y}=0$ atrearly disernsed by vas ber Whass ${ }^{1}$) : in this eave there is a mixture - - here it must be the pure substance itself -- for which the vapour rension is a maximum or a minimum, and indeed it follows from the expression for $p_{1}-p_{1 k}$. in this case ${ }^{2}$) that $\left(\frac{\partial p_{1}}{\partial, r_{1}}\right)_{x_{1}=0}=0$.

2a. $m_{01}>0$ and $m^{2}{ }_{n 1}+R T_{l:}^{\prime} m_{11}>0 . \frac{d p T_{p} l}{d T}>k_{01}$ so that the plait-

2b. $m_{01}>0$ and $m^{2}{ }_{01}+R T_{k} m_{11}=0, \frac{d_{p} T_{p l}}{d T}= \pm \infty$, and the beginning of the plaitpoint curve co-incides with σY^{s}).

Thus we have here the second special case of the shape of the platpoint curve investigated by vis der IVAMs, i. e. where there is a maximum or minimum tempreature, here the eritical temperature of the pure substance. Really in this case $(\$ 10,2)$, as $p_{T K}-p_{k}$ is of higher order than $\mu T_{p}-p_{k}$,

$$
T-T_{k}=\frac{K k_{30}}{k_{11}}\left(p_{T_{p} l}-p_{k}\right)^{2}
$$

hence $\left(\frac{d T_{1, l}}{d p T_{p},}\right)_{k}=11 . T_{k}>T_{k,}$ that is to say T_{k} is the minimum platpoint temperature, when $K>0$: his is the eate where the border curve and the comodal line are hyperbolae (mixtures of Hartmas's third trpe). And $T<T_{k}$, that is so say T_{k} is a maximmm, when $K<0$; in this case the border curve and the connodal line are ellipses (mixtures of the second type).

2c. $m_{01}>0$ and $m^{2}{ }_{01}+R T_{k} m_{11}<0 . \frac{d p r_{\mu} l}{d T}<k_{01}$, and because
$\left.{ }^{1}\right)$ Arch. Néerl., (1), 30, $266,1896$.
${ }^{2}$) Comp. preceding communication, p. 267 ; to the first approxination $\Xi=x_{1}$.
${ }^{3}$) Not with $O 1^{\prime \prime}$, for, as in this case $p_{T k}-p_{k}$ and $x_{T k}$ are infinitely small with respect to $p_{T_{p} l}-p_{k}$ and $x_{r_{p} l}(\$ 10,2)$, according to (29) $p r_{p} l-p_{k}=m_{01} x$, so that for $x>0, p_{T_{p}}>p_{k}$.
T - Tr. must also be nerative the plaitpoint enve lies in the angle $S^{\prime \prime}() Y$.
$3 a . m_{01}<0$ and $m^{x}{ }_{01}+R T_{k}^{\prime} m_{11}>0, \frac{d p T_{p 1}}{d T^{\prime}}<k_{01}$, but $T^{\prime}-T_{k}^{\prime}>0$, and hence in the angle $S O S^{\prime \prime}$.

3b. $m_{n 1}<0$ and $m^{3}{ }_{n 1}+R T_{k} m_{12}=0$. The plaitpoint curve touches $O Y^{\prime 2}$). Compare moreover $2 b$.
$3 c . m_{01}<0$ and $m^{2}{ }_{02}+R T_{k} \cdot m_{11}<0 . \frac{d p r p_{1}}{d T^{T}}>k_{01}$, but $T-T_{k}>0$, hence in the angle $\left.S^{\prime \prime}()\right)^{\prime \prime}$.

From this it appears that $\frac{d p p_{p l}}{d T^{\prime}}$ can take all possible values. According to van der (Wals ${ }^{2}$), however, this is not true and the case $\frac{d p_{p_{2}}}{d T}=\frac{p^{k}}{T_{k}}$ for instance could never occur. But it shonld be bome in mind that this rule of vas der Whals does not rest on an exclusively thermodynamic reasoning, but also on special suppositions about the form of the equation of state, which naturally corresponds to special relations between the co-efficients introduced here, and as a matter of course it is always possible that the numerical values of the coefficients are such, that one or more of the cases considered are excluded.
c. The critical point of contact curve. To the first approximation $p_{T}=p_{T_{r}, l}$, so that the critical point of contact curve to a first approximation co-incides with the plaitpoint curve and the considerations in b hold also for this line. Equation (43) shows moreover that to a second approximation:

$$
p_{T r}-p^{2} T_{\rho}=-\frac{1}{4} \frac{m^{3}{ }_{01} k^{2}{ }_{11}}{R T_{k} m_{30}\left(m^{2}{ }_{01}+R T_{k} m_{11}\right)}\left(T-T_{k i}\right)^{2},
$$

from which it follows that the eritical point of contact curve lies above the plaitpoint curve when m_{01} and $m_{0_{01}}+R T_{k} m_{11}$ have the same signs; this occurs in the cases 2ℓ and $3 c$ just mentioned, hence in the angles $S O Y^{-}$and $S^{\prime \prime} O Y^{\prime}$. In the other cases the point of contact curve is the lower. Moreover the two curves also co-incide to a second approximation if $m_{01}=0$ and even if $m^{2}{ }_{01}+R T_{k} m_{11}=0$. $\left(\frac{d p T_{n} l}{d T}=\frac{d p T_{r}}{d T^{\prime}}= \pm \infty\right)$ althongh in that case $p_{T_{i}--p_{p^{\prime}}}$ is not zero to the second approximation.
d. The border curves. This position of the critical point of con-

[^72]thet curve with resped to the plaipuint corve corresponds to the
 on the lowder curves, represented in ath exatgeratted way in fig. 16. To the secomi approximation those border curves atre parabolae which town the phaterim rown and hato a vertieal tangent at the
 with the axis which is compurate to the vertical chords and the equation of which accordins to (47), is:
$$
p=p_{-k}+k_{01}\left(T-T_{s k}\right)=p_{x p l}+k_{01}\left(T-T_{x p l}\right)
$$

Hence these stratigh limes are parallel with the vapour pressure curve of the prase substane and terminate, on the platpoint curve, in the plaitpoint of the mixture to which they belong.

14. Comtimution of \$ 9: the critical point of contact.

Mr. Kfesom kindly informs me that the method given by him in Comm. N°. 75 and which leads very easily to the constants of the platpoint prownts difienhies when appliod to determine the constants of the critical point of contact.

He lownorm sureeded, by means of the method used by me in \$ 9. in deriving the comstants of the eritical proint of contact from the formular ${ }^{1}$, given by Kortewna in his paper "L'eber lealtenpunkte". Wien. Sitz. Ber. Bd. 98, p. 1154, 1889, and proceeded thus.

It has been shown in (omm. ${ }^{0}, 59^{6}$, p. 36^{2}) that instead of deduciner the coexistence-comblitons by molling the tandent-plane over the q-sutface, we can ako obtain them by rolling the tangent-plane Wer a ψ^{\prime}-surfacte the hatter hemg deduced from the $\mathbf{\psi}$-surface by making the distance, measured in the direction of the q-axis, between this suffare athl atised batrent-phate the third coordinate perpendicolat to x and r. We can go a step further in this direction by deducing a $\mathbf{4}^{\prime \prime}$-surface hy means of Korteweg's projective transfomation ${ }^{2}$)

$$
\begin{gathered}
\psi^{\prime \prime}=\psi^{\prime}-v^{\prime}\left(\frac{\partial \psi^{\prime}}{\partial v^{\prime}}\right)_{\mu l} \ldots x^{\prime}\left(\frac{\partial \psi^{\prime}}{\partial x^{\prime}}\right)_{\nu l} \\
x^{\prime \prime}=x^{\prime}-m v^{\prime} \\
v^{\prime \prime}=v^{\prime}
\end{gathered}
$$

Here

$$
\begin{aligned}
& \psi^{\prime}=\psi-\psi_{T_{p} l} \\
& x^{\prime}=x-\tau_{T^{\prime}} l \\
& v^{\prime}=v-v_{p p} l
\end{aligned}
$$

[^73]As

$$
\begin{aligned}
\binom{\partial \psi^{\prime \prime}}{\partial x^{\prime \prime}}_{1} & =\left(\frac{\partial \psi^{\prime \prime}}{\partial v^{\prime \prime}}\right)_{2} \\
\binom{\partial \psi^{\prime \prime}}{\partial v^{\prime \prime}}_{1} & =\left(\frac{\partial \psi^{\prime \prime}}{\partial e^{\prime \prime}}\right)_{=} \\
\boldsymbol{\psi}_{1}^{\prime \prime}-e_{1}^{\prime \prime}\left(\frac{\partial \psi^{\prime \prime}}{\partial v^{\prime \prime}}\right)_{1}-v_{2}^{\prime \prime}\binom{\partial \psi^{\prime \prime}}{\partial e^{\prime \prime}}_{1} & =\psi_{2}^{\prime \prime}-u_{2}^{\prime \prime}\left(\frac{\partial \psi^{\prime \prime}}{\partial x^{\prime \prime}}\right)_{=}-r_{2}^{\prime \prime}\binom{\partial \psi^{\prime \prime}}{\partial v^{\prime \prime}}_{=}
\end{aligned}
$$

when

$$
\left(\frac{\partial \psi^{\prime}}{\partial x^{\prime}}\right)_{1}=\left(\frac{\partial \psi^{\prime}}{\partial \cdot x^{\prime}}\right)_{2}, \text { etc. }
$$

it is also possible to obtain the coexisting phases by rolling a tangentplane over this $\psi^{\prime \prime}$-surface. $\psi^{\prime \prime}$ as function of $e^{\prime \prime}$ and $v^{\prime \prime}$ presents the form

$$
\psi^{\prime}=e_{1} e^{\prime \prime 2}+d_{3} x^{\prime \prime} r^{\prime \prime 3}+e^{5} r^{\prime \prime \prime} \quad \text { (Korteweq's equation 4). }
$$

Hence for the connodal curve Korteweg's deduction may be applied, and we find for the equation of that curve

$$
x^{\prime \prime}=-2 \frac{e_{3}}{d_{3}} v^{\prime \prime 2} \quad \quad \text { (equation } 8 \text { l. c.) }
$$

m is now found from

$$
m\left(\frac{\partial^{2} \psi}{\partial x^{2}}\right)_{v T}+\left(\frac{\partial^{2} \psi}{\partial x \partial x}\right)_{T}=0 \quad \text { (equation } 34 \text {) }
$$

where the differential quotients are taken for the platpoint, so that for a substance with a small proportion of one component, to the first approximation

$$
m=\frac{1}{M R T_{k}^{\prime}}\left(\frac{\partial p}{\partial x}\right)_{v T} \cdot T_{p} l
$$

Further we may put, leaving out terms of higher order, according to equation (39)

$$
\begin{aligned}
& d_{3}=-\frac{1}{2 M R T_{k}}\left\{\left(\frac{\partial p}{\partial x}\right)_{v T}^{2}+M R T_{k}\left(\frac{\partial^{3} p}{\partial x \partial v}\right)_{T}\right\} \\
& e_{6}=-\frac{1}{24}\left(\frac{\partial^{3} p}{\partial v^{3}}\right)_{x T}
\end{aligned}
$$

Using the property that for the point of contact $\frac{d v}{d v}=0$, this yields :

$$
v_{T r}-v T_{p^{\prime}}=\frac{\left(\frac{\partial p}{\partial v}\right)_{1 \cdot T}}{\left(1 / R T_{k}\right)^{2} \cdot\left(\frac{\partial^{3} p}{\partial v^{3}}\right)}\left\{\left(\frac{\partial p}{\partial x}\right)_{v T}^{2}+M R T_{k}\left(\frac{\partial^{2} p}{\partial \partial^{2} \partial v}\right)_{T}\right\} \cdot{ }^{2} \Gamma_{\gamma^{\prime} l}
$$

and

 point of contad chave and the phatpoint curve tomeln at the ends. We find finther that with the same er:

from which pros - p_{6} bath be easily found.
If, ats in Commmacation N^{0}. 75 (Procectimes Nov. 1901), we introduce the law of correpmoling states, we find:

Physiology. ... "t/" the structure "it the light-percerptint! cotlse in the

 perints of the histulog of the central and peripheral nervons system of amphinxus laneentatu-, experially to follow the nemofibrillae in their arsamsement and dianibution in the cells and in the marele-plates.
 stazione Zowlogita at Naples. but then not carried any farther, to stuly the structure of the pirmented eells of the spinat cord. Duting

[^74]a stay at the Zoological Laboratory of Prof. Str. Apáruy in Kolozavar once again 1 took up the theme, with some excellently fixed materiak I got through Prof. Apithy's kindness. Finally the researches were carred on in the Histological Laboratory of Amsterdam.
A. The structure of the light-pereepting cells (eye-cells).

In 1898 Hrsse ${ }^{2}$) showed, that the peculiar pigmented cells, which are found in the spinal cord gromped round the rentral wall of the central canal, and which after begimning at the thind segment, are arranged segmentally though the whole medulla, are each of them composed of two cells, one of them a big sanglioncell withont pigment, the other a cupshaped cell, filled up entirely with dark brown pigmentgrans; the last cell covering the greater part of the firsmamed cell and hiding it from view.

The big mpigmented cells Hesse called eye-cells, light-percepting cells, the cupshaped pigmented cells he called the pigmenterp (Pigmenthecher), and the whole complex he compared with the enpshaped eves of the Planarians, that are equally composed of two cells, and attributed to it the function of light-perception.

The aramgement of these two-ecled eges in the pinal cord is strietly segmental. They begin in the fourth segment, with fore eves from there each segment is fumished with about 25 eves. In the region of the tail the number lessens, until a segment has only one eve or none al all.

The eyes lying ventrally of the central camal are abwas looking down, their line of vision, if we may rall it so, being directed to the ventral side of the amimal, those at the left side of the central canal look uphard and to the right, those at the right side book down and to the right.

The pigmenteup consists of one cell, the muclens, when distinguishable. lying at the concave side of the colp.

The eve-cell is concshaped, the hase being covered by the pigmentcup, the top being dawn ont into a thin process. At the basal side (turned towards the pigmenterp) the protophasm is differentiated into a layer of fine small rooks, pataed at right angles to the eellperiphery, and contiming in the protoplasm as a network of very thin fibres. Another layer of minute mods may be seen close agatinst the pigmenterp. Between those two layers at clear patee is formed. Which is not cansed by a shminking of the cell.
W. Krades ${ }^{1}$) did not agree with the 1 esults of Hesse. He still maintained that the pigmented rells in the spinal comb consisted

[^75]

 for right and contimmed.

As to the arrangement of the pigmenteells in the spinat cord in the dirst phate, the observations of Hzsat are mot eomplete. 'They do not simply lesen in mumber soing from before backwarts, In young pelage lavae there ate to be seen very distinctly two groups of pigmenteells, one in the cramial part of the body, the other in the catudal half. Between thore gronps there are much loss pigmontrells in each segment. In later shages lowerm these two gronps become fused, and then the arragement is in the man ats it described by Hessz.

As regards the position occupied by the pigmenteap on the eyecell. I ean in the main confirm the observations of Hrask. The eyes at the ventral side of the contral canal are always looking down, those at the left are mostly looking upwards and to the right, those at the right mostly downwards and to the right.

The histological structure of the eves seems to me to be slightly different from the one described by Hease and Schanemper.

The mucleus of the pigment-cell is never lying at the concave, but mostly at the convex side of the cupshaped cell; sometimes the nucleus is found in the middle of the pigment-cell, where often a rlear pigmentfree zone of protophasm may be distinguished. Acrording to Hesses the pigment-cup consists always of only one cell. Now sometimes in young amimals, where the pigment is of a light-brown colom and the mueleus may therefore be seen very clearly, I found fwo nuclei in the pigment-cap, and so it seems to me that there are sometimes two pigmentcells with one eye-cell. So the form of the pigment-cap in fig. 3 seems also to point to the pigment-cap being composed of two cells. As a rule, however, there is only one pigment-cell in each eve.

In the eve-cell, lying under the pigment-cell, Hesse describes a double row of small rods, lying close to the pigment-cell. This donble row of small rods exists, but the two parts of it are not separate, but continuous at both ends, in whatever direction the cell is cut through. So a flat oval body is formed, with a striated wall, lying close to the pigment-cap (fir. 1. a), and following in its shape the form of the cap. This body seems to me to be homologrous with

[^76]the "GXaskörper" with a striated watl, as it is found in the eyecells of the Hirndines. As is the catse with dhose eye-cells, here in Amphioxus too the vitreots body seems to be filled with a gramularlooking substance (coagulation: but this wats not always elearly to be seen.

Between this body (1), that lies close to the pigmented cip, and the muclens (fig. $1 k$) lying at the other side of the ere-cell, there is in most cases to be seen another beanshaped body, that does not possess a striated wall, but by a clearer tinction with protoplasmic dyes and a more homogeneous substance may be distingrished from the datker aud more gramular-looking protoplasm of the cell (fig. 1b).

This bofly seems to be comnected with the perception of light by the eyerell in the same way as the vitreons body described above. The arrangement of the nemotibillae in the evecells seems to point to this conclasion. Entering the cell at the ventral side of the muclens, there, where according to Hassa the eye-cell is drawn out to a point, the nemrotibril forms a loosely built network round the nuclens. From this network large nemofibits ascend through the rell and take the beanshaped body (b) between them (tig. 2, fig. 3). Between this body and the pigment-cap these neurofibrils anastomose again and form a second net, which seems to enclose the vitreous body (1t) with the striated wall. How the further course of these fibrils is between the vitreons booly (1) and the pigment-cap) I could not determine with any aceuracy.

To ohtain good results with the chlorid of gold-methoul of Apithe the sections maty not he very much thimer than 10 : Now for the sfudy of the eye-cells it is necessary to make sections of about if to 7 : t, hecause in thicker sections the black pigment of the capshaped cell embraces the greater part of the eye-e ell and shats it out from view. It is therefore not possible to get those deep, back nenrotibrillae, which may be seen so distinctly in the preparations of Apstur (the more so ats the nemrofibrillae of Amphioxus are thimer than those of Hirmdines): and even in sections of 6 to 7 f that part of the nemofibillae-network, which is bying beneath the pigment-cap) is entirely concealed by the pigment-grains. Probably the network is contimons and anastomoses at the other side with the more ventrally lying network.

In what mamer the neurofibillat leave the evereell I could see only in a few cases. The fibril seemed then to proceed horizontally for some time but could not be followed any farther.
b. The nemofibrillae in the ganglion-rells.

On the nemotibrillae in the ganglioncelts I 'll say only a few words.

 1 will therefore contine myself hore to the following statements:

 breaking op into a metwork. Gh! in the ypinal-ganglioncells and in
 networks of the neumbthillate ant ateombing to this anthor network possibly meene in the hatsal patt of the cedls of Protenoss in the verebellem and in the eells of the erman Ammonis.

Aceordiner to boonexek ${ }^{7}$) it is on the other hand probable, that in the vertehate grationeedls the newrotibillate form a very tine notwork with stall meshes. The very dense retienhm of nenotibrillae. he wat able to demomstrate in the graglionede of Itvas, forms atoording to bormazh an intermediate stare between the eorse network in the ceells of Hirwdines and lambrions, and the very fine network in the vertebrate samgliontedls.

In accordance with the satements by these two anthors, we should expect to find in the gathylioncells of Amphioxns cither a dense reticulum or a mass of discomected interworen very fine theads, passing from one process through the cell-body into another process without branching. This is not the case. In mon of the granglioncells the arratement and distribution of the nemoftorilate in the wationcells resembles very much that which is described by Apithe in the gratiglioncells of llirudines and Lumbricus.
sometimes we find eells ats the one shown in fig. 4 , where the neurotimilate pasis through the cell-body without interruption, but this is only to be found in a few cases.

In the bigger granglioncells, which are lying in the dorsal part of the spinal cord and in the dorsal group of ganglioncells behind the brain-ventricle, there is always a network of neurotbrilae branching and anastomosing with each other. After having entered the cell in most cases the nemodibrillae form a network round the nuclens (partially distinguishable in fig. S). From out this reticulnm radial fibrillae go through the cell body to the periphery often branching on their way) where they form a second network. With this network are commected fibrillate, which pase thromgh one of the processes of the cell (out of the cell or into it?) - in short, a distribution of

[^77]the nemofibillae vere much like that deseribed by Apitay in the smaller ganglioncells of Lumbricus. The fibrillate however in Amphioxus are thimer, and the reticulnm finer.

In other ganglioncells there are not two networks (one romed the muclens and one more at the periphery), connected with each other by means of the radial fibrillae, but the neurotibrillae enter the cell, form a network round the muclens and leave the cell at the other side, without there being iny trate of a more peripheral network to be seen.

A commection between different gamglioncells by means of the newofibrillae, I could not yet state with a sufficient amount of certainty.

In the colossal ganglioncells the "Kolossalzellen", lying just in the middle of the spinal cord, the arrangement of the neurofibrillae is very peculiar. From out the colossal nerve-filres, the axons of these cells, a thick bundle of very thin neurofibrillae, armaged very requarly and equally in the whole axis cylinder, enter the ganglioncell: in the cell-body they parsue their way as a hick bundle that passes round the nuclens, turns upon itself, forms a sort of vortex and then seems to condense itself into a few thick (composed of a great number of elementary fibrillae) fibrillae. Where these fibrils go to, I could not state accurately. In the axons the extremely thin neurofibrillate are closely set and parallel to each other, and so a striking resemblance is formed with the "sensorische schlänche" of Hirudines and Astacus. During the course of these nerve-fibres through the spinal cord the nemofibillae are seen to pass one by one every now and then in an oblque direction through the wall of these nervefibres; then they are lost in the nervons network without, and could not be followed any farther. Perhaps they are comected there with other tanglioncells, which should he in concordance with the character of the colossal ganglioncells as comecting cells ("Schaltzellen").
C. The immervation of the striped muscular tissue.

According to Rohbe ${ }^{2}$) the motor nerves simply enter the muscleplates there where these end, and there is no trace of a motor nerve endplate; according to Hermass and ran der Stricht ${ }^{2}$) however the motor nerves of Amphioxus terminate each in a shovelshaped endplate, that lies itself against the muscle-plate just as the motor nerve endplates of the higher vertebrates do. According to their descriptions and drawings the endplates of Amphiosus are thick shovelshaped plates without hranchings, without further differentiations (Golgi method).
$\left.{ }^{1}\right)$ Schneider's Zoologische Beiträge. Bd. II, 1888.
\Rightarrow Mém. couronn. par l'Acad. roy. de Belgique 1898 .

Sow Apithy and Rerfisy were able to demonstrate in homo the existane of "ultaterminal" nerve-fibres, that is $t 0$ sat nervedibres Which enow ont from the hathehing and thekening of the moter neve kemwn ats "endplate", and enter the musele-fibre (this combld not he made out with ahoolute certainty patas thromgh it and in many cases are combecod with ohter endphates. Only at few casen are described but they we sullociont to show that the so-called nerve end-plate is not always to be eonsidered as the real termination of the motor nerves.

The following observations seem to point to the same conclusion.
The thin muscle-phates of Amphioxus (tigg fia) present in longitudinal sections a beaniful cross striation. Each isomopons dise (i) is divided into fwo dises lys a delicate, but distinct membane of Krase: eade atmisotropous dise (y) is composed of two dises, separated by a thin bayer. that takes lout a faint sain with ehboride of grold, the median dise of Heases. In the middle of this tramsparent portion there is sometimes to be seen an extremely delicate line, the membrane of Hexsen.

The membranes of Krass form, as is known, rossnets, which bring the tibrilate of the entire musele-plate in commedion with each other. In the atult anmal real muscle-erells are not to be distinguished, there are only the thin flattened muscle-plates to be found, which however in hardened specimens sometime appear to be broken up into rows of tlat bundles of fibrillae. 'This is mothing but an artefact.

In longitudinal sections of Amphioxus in which therefore the muscleplates are cut in the same direction, but mostly appar not as plates but cut obliguely as bundles of muscle-fibres (figs. 6 ot), there are to be found, in case the sedtions are coloured after the chloride of gold method, in maty plates just there were the anisotropons and isotropons dises meet, minute black dots, or small corpuscles; seen under a microseope of the highest magnifying power these dots appear as very delicate cross lines, thickened in the middle, running just between η and i. In these dises belonging to the same muscle-plate these dots are lying in adjoining dises one just beneath the other, so that rows of black dots romning parallel to the myofibrillate are formed. In each muscleppate such longitudinal rows seem to be distributed with some regularity. These black dots were always found only at one side of the anisotropons dise, and, so it seems, always at the same side of q, viz. at that tumed caudal. The black dots lying in the same muscle-plate in the same longitudinal row, are often

[^78]found to be comected with each other by means of very delicate fibrillae, which are rumning parallel to the myofibrillac. This could be stated in many cases with great clearness. In some cases these fibrillae were straight, in other eases more or less undulating. In fig. $6 a$ a longitudinal section through the muscula plates (cont obliquely) is drawn greatly enlarged. The small dots and fibrillae are easily to be seen.

In transverse sections the same rows of tibrillae and black dots were also to be seen, and here they are seen to be distributed more or less regularly on the musele-plates (tig. 6b). At both ends of the black dot here too a delicate black line may be seen, extending for some way along the muscle-plates but then being lost to view. By playing up and down by means of the micrometer screw of the microscope in cross sections too a longitudinal fibril may be made out extending upwards and downwards from the black corpuscle; this fibril is identical with that, which in longitudinal sections was seen to run parallel to the myofibrillae and to comnect the black dots of a longitudinal row with each other.

So we find here in the muscle-plates of Amphioxus an apparatus, which brings the anisotropous dises of the same muscle-plate in connection with each other, which seems to be distributed with some regularity over the whole muscle-plate, and which gives the staining reaction of the neurofibrillae. Although I could not find the connection of these fibrillae with the motor nerves, still these facts seem to point to the conclusion, that we may regard these fibrillac and their knobshaped thickenings at one side of the anisotropous dises as representing the real imnervation-apparatus of the striped muscle-fibres. Sometimes I saw one of the longitudinal fibrillae near the place of attachment of the myofibrillae to the myosepts bend off from the muscle-plate; but it was lost almost immediately between the myotibrillae in the neighbourhood and could not be traced any farther. When we consider however the constant position of the small knobshaped thickenings at one side of the anisotropous dise, the fine often madulated comecting tibrillae, the dark-purple tinction with chloride of cold (Nachergoddung Apímir) so characteristic for nemrofibrillae, then, I think, it is difficult to avoid the conclusion that they are neurofibrillae.

This seems to me to be important from a general point of view. Although the structure of the striped muscular tissue of Amphiosus differs largely from that of the higher Vertehrates, yot the same type of cross striation, that is, the same structure of the myofibrillae, is present in all.

 ats I have attemperd to shme, theme is tomen for the comelusion that

$$
\text { Amsterverm. "tomber } 19002 \text {. }
$$

K0NLNKLIJKE AKADEME VAN WETEXSCHAPPEN
 TE AMSTERDAV.

PROCEEDINGSOFTHEMEETING
of Saturday November 29, 1902.

(Transhated from: Verslag van de gewone vergadering der Wis- en Natumkundige Afdeeling ran Zaterdag 99 November 1902, Dl. XI).

CONTENTS.

[^79]The following papers were read:
Chemistry. - "The intremolecular rearramypment of atoms. in lulogen acetanilides and its velocity," II. By Dr. J. J. Blanksma. (Communicated by Prof. C. A. Lobry de Bruys).
(Ciommunicated in the meeting of October ${ }^{2} 5,1902$).
In a former communication ${ }^{1}$) it was shown that the conversion of acetylchloranilide in acetic acid solution under the influence of hỵdrochloric acid proceeds like a monomolecular reaction. In continuing this research the object was to study the influence of:

1 st. The dilution of the acetic acid with water.
$2^{\text {nd }}$. The quantity of added hydrochloric acid.
$3^{\text {rd }}$. The solvent (besides acetic acid, alcohols ete.).
$4^{\text {th }}$. Different catalysers ($\mathrm{HCl}, \mathrm{H} \mathrm{Br}, \mathrm{H}_{2} \mathrm{SO}_{4}$).
$5^{\text {th }}$. Different groups in the nuclens and their relative positions.
$6{ }^{\text {th }}$. The temperature.
Finst of all the influence of the dilution of the acetic aded was studied, varying proportions of hydrochlorice acid being also added. afterwards a few experiments were made in alcoholic sohution.

[^80]The mulus uprotmeli was as follows：

 chlorige aded atml the misture was thatly dilnted with water to 500 ée．The experiments were then comducted as deseribed in the provious communication：by aplying the formolat $k=\frac{1}{t} \frac{1}{1-a}$ the h＇s were calculated；t is expressed in minntes．

The following results have been obtained：

：3（K）1 0．しだ3F

300	0．0158	0．0．35	0.0591

by means of these figuren enves maty be construeted either by taking the figures from a horizontal row or those from a column． The fins row for instance shows how the velocity of reaction con－ stant）increases in 20° atedic adid in the presence of a varying amownt of hydrochlorice ateid（ $10,15,20,25$ c．e．）ete．

In this mamer the different series may be represented by the lines A．B ．（ ${ }^{\circ}$ and D．

The finst column shows how the velocity of reaction changes with different concentrations of the acetic acid if the amoment of the catalyser is constant．These columns are represented by the lines E^{\prime}, F^{\prime} ，${ }^{\prime}$ and H ．The alcoholic solution has been represented in the same manner $\left(\Lambda^{\prime}, B^{\prime} ;\left({ }^{\prime \prime}, D^{\prime}, E^{\prime}\right)\right.$ ．

These curves show：
$1^{\text {st }}$ ．That the velocity of reaction，both in acetic and alcoholic solution，is decreased by addition of water．
$2^{\text {nd }}$. 'That the velocily of reation is much areelerated by inereasing the catalyser.

3rd. That the emves all end in the origin of the co-ordinates which means that the velocity of chame in water without hydrochatere acell is zero so that the substame is stable therem. I Aways on condition that light is excluded, (eompane tirst commmanication)].

On comparing the fwo mbles it will bee also noticed that the velocity of reaction is qreater in acetic acid than in atcohol; for instance, in atmixture of 200 e.e. of atetice aded and bere of hydrochlorice acid, $k=0.0335$; when 1 sing 200 e.e. of aleohol and 15 e.e. hydrochlorice acid $\mathrm{k}=0.0201^{1}$).

If we compare the comes K, f, f, and $/ /$ we notice that on decreasing the concentration of the catalyser, the cmves begin to approach the abscissa axis which agan shows that, in the absence of hydrochloric acid, the velocity of change in acetic acid or alcohol is zero or in any case very small, which may also be seen from the drves A, B, C^{\prime} and D.

I $100 \mathrm{c} . \mathrm{c}$ acet.acid with water to 5ulk.c.

B 150)	,	D)	")
C 2000	"	"	》	》	1)	"
D 250	"	"	"	(1)	"	n

[^81]
 ViN Oss. Zalthommel. ('ommanicated by Prof. P'. H. schoctes).

In a previous paper (these Proremlimps, Vol. IN, p. 218) the imsestigation of the elementary motion in x^{\prime}, was redneed to the consideration of the elementay motion in s_{3} ly makimg use of a principle to be read at follows: A system of rotations about planes all pmssimy through one athel the stome peniut is in equilibrium when their intersections with an arhitatry \mathfrak{S}_{3} are in equilhorimn. Here we mean hy section of a rotation with any , sta rotation of the intersecting space cansed by its compornent ahout the plane orthogonally contting this s_{3} in the intersection of the plane of rotation.

As an immediate result of this principle we can state the conditions under which three to seven phanes through om point can he the planes of a system of rotations in equilibimm. Thus i. at. the condition for four phanes, that they must belong to a hypertoobidic pencil, ete. ete.

We now wish 10 extend this principle in order to arrive by investigation also at the case, that the planes do not pass any longer through one and the same point.

It goes without saying, that if a system of rotations is in equilibium, its section with every S_{3} must be in equilibrium. The question
here, however, is to find out how many of those intersections will have to be examined before we can conclude about the system being in equilibrium or not.

To this end we direct our attention in the first place to the case, that a system Ω has two sections in equilibrimm, namely with the spaces A and B.

If the section Ω / A is in equiliturium, then Ω must necessarily be reducible to a single rotation ahout a plane in A; likewise, if Ω / B is in equilibrium, then Ω can be reduced to a single rotation ahout a plane in the space B.

So from the equilibrium of the sections it does not yet follow that the system itself is in equilibrim, for the possibility remains that it may be reducible to a rotation atront the plane common to the two spaces of intersection.

If, however, we can point out three spaces S_{3} not passing through the same point, their sections being in equilibrium, then the equilibrim of the system itself is guaranteed. Let us now apply this result to determine five planes which can be the bearers of a system of rotations in equilibrium.

The neccessary condition which these planes must satisfy is that they be intersected by three spaces S_{s}, not passing through one and the same point, in rays of a linear congruence. In other words: They must intersect three pairs of straight lines, the director lines of these congruences.

Now we know that in s, there are just 5 planes intersecting 6 given lines. They are the live "associated planes" of Segre (Rend. di circ. math. di Pulermo, t. II, 1888).

Now we have the necessary condition; we shall show, that it is also sufficient.

Let Ω be a system of rotations ahout 5 associated planes, A an S_{5} so that $\Omega / 4$ is in equilibrium. If Ω were not in equilibrium itself, this system would have to be equivalent to a rotation ω about a plane a in A. If we reverse the direction of the rotation about this plane, then the combination $(\boldsymbol{\Omega}-(\omega)$ is in equilibrium. If we now consider a second intersecting space b, , not through a, then the planes of Ω are intersected in 5 rays of a congruence and the plane of ω in a line not belonging to this congruence. The section of B with the combined system $\boldsymbol{\Omega}-\boldsymbol{\omega}$ would, however, have to be in equilibrium. This is impossible, unless $\boldsymbol{\omega}$ is equal to naught, i. e. unless $\boldsymbol{\Omega}$ is in equilibrium.

Nothing remains but to determine the ratios of the intensities of the rotations of Ω. This should be done as follows:
 the axes of rotation of the section: the determination of the ratios of the intensities lelonginer to then is a wrell known problem.

If. finally. We motice that between the intonsties on and ω^{\prime} of a rotation
 exists. then in this way the intensities of the rotations about the live associated phanes have berome kown quantities.

Mathematics. - "On meryulation bersed on "s sppposed condition of minimum." By̧. J. Wexider. (Commmaicated ly Prot. II. G. fis be Sode BakHeyzas.)

For the reduction of the daily rates of the standard clock in the Leyden Observatory I have developed a method of interpolation, which may perhips also be protitahly used for ohner insestigations.

The following is the problem we have to deal with: a variable quantits, here the correction of the chock, is given for a series of instants, during a long period, with mequal intervals; how can we find an intermediate value of that correction at any moment.

First 1 tried to solve this problem with the limiting condition that for all the intervals of time which enter into the calculation there is a smallest common divisor, which we lake as unit of time.

1. Let is (clock correction) be the variable quantity, and $!f$ (rate) the amount hy which it increases during a mit of time. Let S_{p}, and S_{q}, be two sucoessively determined values of S separated by m units of time, then $\frac{s_{y}-S_{p}}{m}$ is the average inerease per unit; that inerease is represented by Q_{m}. Hence the m quantities $!/ /_{1}!/_{2} \ldots!/ i \ldots, f_{m}$ of the interval considered depend on the relation $\sum_{i=1}^{i=y_{i}} f_{i}=S_{q}-S_{p}=m Q_{n}$ and a similar relation exists for each interval between two consecutive determinations of S.

In order to determine the quantities $!$, 1 put the condition that the sum of the squates of the differences of the first order for the whole period of observation should be a minimmo. This condition of minimum was selected with a view to the special case where we have to interpolate between the clock corrections, but I doubt whether in all cases these interpolated values will be the most probable ones. Leaving aside for the moment these considerations, I go on developing the problem in hand. The quantities which correspond to an interval of m units occur only in the following terms
of the smm which according to this condition must be a minimm:

$$
\left(!_{1}-\left(q_{1}\right)^{2}+\left(!_{2}-!_{1}\right)^{2} \cdots+\left(q_{m}-!!_{m-1}\right)^{2}+\left(q_{q}-q_{m}\right)^{2}\right.
$$

If represents the rate preceding if, and $!_{y}$ the rate following s.
If to this quantity we add:

$$
\because k_{n}\left(!_{1}+!_{2} \cdots+!_{1} \ldots++n_{n-1}+!_{n}\right)
$$

their sum U will also be a minmmon for the sime values t_{1} to I_{m}. because ${ }_{i}^{i=m} t_{1}=s_{q}-s_{p}=m Q_{n}$ is constant.

These values $t_{1} \ldots$ ane fomb by means of the comblition that each derivative of L baken with reference to each variahle shatl be zero. At the same fime we most assimn a definite value to k_{m} in order to satisfy the equation $\underset{i=1}{\stackrel{i=-n}{\searrow} g_{i}}=m Q_{m}$.

Thus we obtain the following equations:

$$
\left.\begin{array}{c}
-!_{p}+2!_{1}-!_{2}+k_{m}=0 \\
-!_{1}+2!_{3}-!_{s}+k_{m}=0 \\
-\cdot \cdot \cdot \cdot \tag{A}\\
-g_{i-1}+2 g_{i}-g_{i+1}+k_{m}=0 \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
-g_{m-2}+2 g_{m-1}-g_{m}+k_{m}=0 \\
-g_{m-1}+2 g_{m}-g_{q}+k_{m}=0
\end{array}\right\}
$$

Bij taking the sum of these m equations, each multiplied by $i(m-i)$, we climinate g_{2}, g_{i}, g_{m}, the coefficient of each g_{i} of that sum being equal to 2 ; lience the sum of the terms is $2 \underset{i=1}{i=m} g_{i}=2 m Q_{m}$.

The coefficient of h_{m} is:

$$
\sum_{i=1}^{i=m} i(m-i)=\frac{m(m+1)(m+2)}{1 \cdot 2.3}
$$

Hence the sum of the multiplied equations is:

$$
-m g_{p}+2 m Q_{m}-m g_{q}+k_{i n} \frac{m(m+1)(m+2)}{6}=0
$$

whence

$$
k_{m}=\frac{6\left(g_{p}+g_{q}-2 Q_{n}\right)}{(m+1)(m+2)}
$$

Then we determine the values of y_{i} by multiplying the m equations by the terms of the following series:
$1(m-i+1), 2(m-i+1), \ldots(i-1)(m-i+1), i(m-i+1), i(m-i), \ldots, i .2, i .1$

 mathonl in:

$$
-!(m-i+1)!(m+1) m_{i}-i_{!n}+\underset{\ddot{-}}{1} i(m-i: 1)(m+1) k_{i n}=11
$$

which yichls:

$$
n_{1}=\begin{array}{c}
m-i+1 \\
m+1
\end{array}!_{n}++_{m+1}^{i}!m_{1}-i(m-i+-1)_{k_{m}}
$$

hence

$$
!_{3}=\frac{m}{m+1} \cdot!_{p}+\frac{1}{m+1}!_{n}^{\prime}-!_{n} m k_{m}
$$

and

$$
!_{m}=\frac{1}{m+1} u_{p}+\frac{m}{m+1}!_{y}-1, m k_{m}
$$

The quantities I_{p}, and I_{q} are still manown and depend on the quantities (l of the neishboming intervals: they maty be derived from them by means of successive approximation.

It wives some advantage to determine $\frac{1}{2}\left(\eta_{p}+g_{1}\right)$ and $\frac{1}{\ddot{2}}\left(g_{m}+g_{4}\right)$ by apmoximations, because then we shall have to appoximate only one quantity for cath s. The approximation may be made in the following way: we pht $\frac{1}{2}\left(y_{p}+!y_{1}\right)=c_{n}$, and $\frac{1}{2}\left(y_{n}+\left(y_{q}\right)=c_{q}\right.$, then we ohtain:

$$
\begin{aligned}
& k_{n}=\frac{6}{m^{2}+2}\left(c_{l}+c_{q}-2 Q_{m}\right) \\
& !_{l^{\prime}}=-\frac{3 m}{m^{2}+2} Q_{n}+\left(1+\frac{2 m^{2}+1}{m\left(m^{2}+2\right)}\right) c_{y}+\left(\frac{m^{2}-1}{m\left(m^{2}+2\right)} c_{4}\right. \\
& !_{4}=-\frac{3 m}{m^{2}+2} Q_{m}+\frac{m^{2}-1}{m\left(m^{2}+2\right)} \quad c_{4}+\left(1+\frac{2 m^{2}+1}{m\left(m^{2}+2\right)}\right) c_{4}
\end{aligned}
$$

For the next interval of n units of time between the determinations Sy and s, we have the following equation:

$$
x_{m}=-\frac{3 n}{n^{2}+2} Q_{n}+\left(1+\frac{2 n^{2}+1}{n\left(n^{2}+2\right)}\right) c_{y}+\frac{n^{2}-1}{n\left(n^{2}+2\right)} c_{r}
$$

As $!!_{4}+!_{m}=2 c_{q}$ we obtain when finding the stmmation of the two last equations a recurent equation containing 3 consecutive quantities c, so that c_{y} ciun be expressed in c_{p} and c_{r}. This equation (an also be written thms:

$$
\begin{align*}
& \left\{\frac{2 m^{2}+1}{m\left(m^{2}+2\right)}+\frac{2 n^{2}+1}{n\left(n^{2}+2\right)}\right\} c_{3}=-\frac{m^{2}-1}{m\left(m^{2}+2\right)} c_{p}+\frac{3 m}{m^{2}+2} Q_{n}+ \\
& +\frac{3 n}{n^{2}+2} Q_{n}-\frac{n^{2}-1}{n\left(n^{2}+2\right)} c_{r} . \tag{B}
\end{align*}
$$

For the first interval considered here the first of the equations (A) is $g_{1}-g_{2}+k_{m}=0$. This equation may also be written in the general form by putting - $g_{1}+2 y_{1}-y_{2}+k_{m}=0$, thus assuming that the value of !/ preceding $/ f_{1}$ and e belonging to the dirst observation are both equal to $\%_{2}$. In the same way c belonging to the last observation is equal to the last of of the last interval. Between each three consecutive quantities c, therefore, a relation exists of the form (B) and two other equations are added to the begiming and to the end of this series, each containing only two values c derived from the formulae for g_{μ} and g_{y}. Let c_{a} and c_{b} be the first two and c_{y} and c_{z} the last two quantities c, then we obtain by substituting c_{a} for $g_{p}=c_{p}$ and c_{b} for c_{q} the tirst condition, and by substituting c_{z} for $g_{\varphi}=c_{4}$ and e_{y} for c_{p} the last condition of the series which determine the values c.

If the lengths of the limiting intervals are represented by $\boldsymbol{\mu}$ and v these equations are:

$$
\begin{aligned}
& \left(2 \mu^{2}+1\right) c_{a}=+3 \mu^{2} Q_{0}-\left(\mu^{2}-1\right) c_{b} \\
& \left(2 v^{2}+1\right) c_{z}=+3 v^{2} Q_{,}-\left(v^{2}-1\right) c_{y}
\end{aligned}
$$

The series (B) and these two equations determine all the quantities c. If we solve them by approximation our purpose is soon gained; we assume to the first approximation $c_{q}=\frac{n Q_{n}+m Q_{n}}{m+n}$ and c_{a} and c_{z} equal to the values of Q of the first and the last interval respectively. From the equations (B) we derive the first corrections $\triangle_{1} c_{p}, \Delta_{1} c_{4}$, etc. and $\Delta_{2} c_{q}$ is derived from the formula:

$$
\left\{\frac{2 m^{2}+1}{m\left(m^{2}+2\right)}+\frac{2 n^{2}+1}{n\left(n^{2}+2\right)}\right\} \Delta_{2} c_{4}=-\frac{m^{2}-1}{m\left(m^{2}+2\right)} \Delta_{1} c_{\rho}-\frac{n^{2}-1}{n\left(n^{2}+2\right)} \Delta_{1} c_{c}
$$

In this interpolation we determine g_{i} and S_{i} of an interval of m units according to the formulae:

$$
\begin{gathered}
g_{i}=\left(\frac{1}{4} m k_{m}+c_{p}+\frac{c_{p}-c_{q}}{2 m}\right)-\left(\frac{m+1}{2} k_{m}+\frac{c_{p}-c_{q}}{m}\right) i+\frac{1}{2} k_{m} i^{3} \\
S_{i}=S_{p}+\left(c_{p}-\frac{1}{6} k_{m}\right) i-\left(\frac{m}{4} k_{m}+\frac{c_{p}-c_{q}}{2 m}\right) i^{2}+\frac{1}{6} k_{m} i^{3}
\end{gathered}
$$

2. In the previous section the observed and the interpolated quantities S, occuring in the problem discussed, form a series of
 ment: now I will remove the vestriction of commensurable argments. athd will make hais mode of intorpalation appliathle lo atombinnoms

 of minimmon then berom, $\int\binom{11^{2}}{d t^{2}}^{2} d t=$ min.

The formolat for this rombunom interpalation may be derived independently: hat is is shoter to derive them from the eoresponeling formulae of the disorete interpolation developed alowe. For the present I shall put for the leneths of the intervals between which we have (0) interpotate m^{\prime} ant n^{\prime}, for the derived values dit of the interpolated function y^{\prime}, to distinguish them from the letters we have used in the former problem.

 quantities $\frac{s_{q}^{\prime}-s_{p}}{m^{\prime}}$ dt and $\frac{s_{r}-s_{\prime \prime}}{\prime^{\prime}}$ ilt or $r_{m^{\prime}}$ elt and $Q_{n^{\prime}}$ dl.

After dividing the relations (P^{2}) by $d t^{2}$ and omithing the intinitely small values we have:

$$
\left(\frac{2}{m^{\prime}}+\frac{2}{n^{\prime}}\right) g_{q}^{\prime}=-\frac{1}{m^{\prime}} g_{p}^{\prime}+\frac{3}{m^{\prime}} Q_{m^{\prime}}+{ }_{n^{\prime}}^{3} Q_{n^{\prime}}-\frac{1}{n^{\prime}!_{r}^{\prime}}
$$

from which, after dropping the aceents, we get:

$$
!_{q}=\frac{n Q_{m}+m Q_{n}}{m+n}+\begin{align*}
& n\left(Q_{m}-!_{n}\right) \tag{C}\\
& 2(m+n)
\end{aligned}+\begin{aligned}
& m\left(Q_{n}-y_{r}\right) \\
& 2(m+n)
\end{align*} .
$$

to which we must add as first and last equations:

$$
s_{a}=Q_{n}+\frac{Q_{n}-u_{0}}{2} \text { and } g_{z}=Q+\frac{Q_{2}-u_{y}}{2}
$$

For $l_{m i}$ we substitute $\frac{6}{m^{\prime 2}}\left(g_{p}^{\prime}+g_{q}^{\prime}-2 Q_{m^{\prime}}\right)(d l)^{3}$; for i we substitute $\frac{t}{d t}$, if t represents the time befween the last precedine observation at the moment for which we interpolate. These substitutions in the formula for $S_{\text {, }}$ yield a formula for st, which, after the omission $^{\text {a }}$ of intinitely small values and aceents, is:
$s_{t}=s_{p}+t_{1} t-\left[\begin{array}{c}3 \\ 2 m\end{array}\left(!_{1}+!_{q}-2 Q_{m}\right)+\frac{!_{\mu}-!_{q}}{2 m}\right] t^{2}+\frac{!_{p}+g_{q}-2 Q_{m}}{m^{2}} t^{2}$
By substituting in the above formula $m-t^{\prime}$ for t, we obtain for S_{t} a formula developed according to the ascending powers of t, the interval between the moment for which we interpolate and the moment of the next observation. It is simpler to find the same formula by imagining the interpolation to be made in the inverse direction, so that the quantities g and $($) $h a n g e$ signs and the indices p and q change places. Hence:

$$
S_{m-t^{\prime}}=S_{t}=S_{q}-!_{q} t^{\prime}+\left[\frac{3}{2 m}\left(q_{p^{\prime}}+y_{q}-2 Q_{m}\right)-\frac{!_{p}-!_{q}}{2 m}\right] t^{\prime 2}-\frac{q_{p}+!_{q}-2 Q_{m}}{m^{2}} t^{\prime 3} .
$$

For S_{t} to be interpolated in the following interval we use:

$$
S_{t}=S_{q}+y_{q} t-\left[\frac{3}{2 n}\left(f_{q}+g_{r}-2 Q_{n}\right)+\frac{g_{q}-g_{r}}{2 n}\right] t^{2}+\frac{g_{q}+g_{r}-2 Q_{n}}{n^{2}} t^{3} .
$$

Therefore the formulate on either side of each observation are different. If in the latter formula t is negative and - t ' is substituted for it, the resulting formula differs from the preceding one only in the coefticients of the terms of the $3^{\text {rd }}$ degree. The coefficients of the terms of the $2^{\text {nd }}$ degree have become equal by satisfying the relation (C).

Therefore we also obtain the interpolated function if, ly starting from a value $\left(S_{q}\right)$ derived from observation, we represent the values of S_{-t} and S_{+t} for the moments between that observation and the next preceding one and those between that observation and the next following one by the formulae:

$$
S_{-t}=S_{q}-g_{q} t+c_{q} t^{2}-e_{m} t^{3} \quad \text { and } \quad S_{+t}=S_{q}+!_{q} t+c_{q} t^{2}+e_{n} t^{3}
$$

Taking this as basis, we find:

$$
c_{q}=\frac{+a_{p}-3 Q_{n}+2 g_{q}}{m}=\frac{-2 q_{q}+3 Q_{n}-q_{r}}{n} e_{m}=\frac{g_{p}+q_{q}-2 Q_{n}}{m^{2}} e_{n}=\frac{g_{\psi}+g_{r}-2 Q_{n}}{n^{2}}
$$

The integral $\int=\binom{d^{2} S}{d t^{2}}^{2} d t$, which becomes a minimum through this nterpolation, is equal to the sum of the integrals between two consecutive observations, and each of these integrals can be expressed in the coefficients of the interval in the following manner:

$$
\begin{aligned}
& I_{n}=\int_{q}^{r}\left(\frac{d^{2} S}{d t^{2}}\right)^{2} d t=\frac{3\left(g_{q}+g_{r}-2 Q_{n}\right)^{2}}{n}+\frac{\left(f_{q}-g_{r}\right)^{2}}{n}=3 n^{3} e_{n}^{2}+\frac{\left(g_{q}-g_{r}\right)^{2}}{n} \\
& \text { or: } \\
& \quad I_{n}=\frac{4}{3} n\left(c^{2}{ }_{q}+c_{q} c_{r}+c_{r}^{2}\right)
\end{aligned}
$$

 integrathing parlially:

 we find:

$$
I=\Sigma \dot{v}_{n}\left(s_{1}-s_{i}\right)
$$

where the smmation extends wor ath the intervals betwern the observations. We eam easily find a simple expression for the differential quotient of I aceording to each of the observed values, which may be nseful when we want not only (onterpolate for an intermediate monent but when at the same time we have to determine the mos probable valnes of the observed quamities. For then the dibienty presents itself how to find the best methot for diminishins the amonnt of the minimum value I by applying corrections to the obsersations, of which corrections the mean value is known.

In doing so heed must be taken that these corrections, being errors of observation, slatl satisfy the law which determines their probabilities ats functions of their magnitules.

I have not yet reached a satisfactory solution of this problem. The following remarks, however, on this shbject seemed important enough to be commmicated.
3. Leet L_{p}, L_{q}, L_{r} be the observed quantities, free from errors of ohservation, and f_{p}, f_{i}, f_{r} the errors themselves.

If we have developed the interpolation ly means of the quantities L and f separately, we ohtain the formulate:

$$
\begin{aligned}
& L_{t}=L_{4}+\dot{j}_{q} t+\dot{I}_{4} t^{2}+E_{n} t^{3} \\
& \dot{f}_{t}=\dot{f}_{q}+\beta_{q} t+\gamma_{q} t^{2}+\varepsilon_{n} t^{3}
\end{aligned}
$$

By means of the summation of these two formulac we get:

$$
S_{t}=S_{q}+!_{q} t+c_{q} t^{2}+e_{n} t^{3}
$$

If we apply a partial integration $10 \int_{a}^{a} d t^{2} d d^{d^{2} f^{2}} d t$, we get :

$$
\left.\left[\frac{d^{2} L}{d t^{2}} \frac{d f}{d t}\right]_{a}\right]-\int_{a}^{c} \frac{d^{3} L}{d t^{2}} \frac{d J}{d t} d t
$$

or

$$
\left[\frac{d L}{-d t} \frac{d^{2} J^{2}}{d t^{3}}\right]_{1 t}^{\infty}-\int_{t}^{\infty} \frac{d L}{d t} \frac{d^{3} l^{\prime}}{d t^{3}} d t
$$

In either fase the integrated parts are equal to 0 , because at the begimning and end $\frac{d^{2} L}{d t^{2}}$ and $\frac{d^{2} f^{\prime}}{d t^{2}}$ are zero.

In this way we find the relation:

$$
\Sigma E_{n}\left(f_{i n}-i_{r}\right)=\Sigma \varepsilon_{n}\left(L_{n}-L_{r}\right)
$$

In the same way we find the relation:

$$
\pm e_{n}\left(\dot{f}_{q}-\dot{f}_{r}\right)=\Sigma \varepsilon_{n}\left(S_{q}-S_{r}\right) .
$$

By applying the corrections - f, the minimmon l_{s} becomes the minimum $I_{L}=I_{S}-f$.
$I_{S}-f^{\prime}=\Sigma 6\left(\rho_{n}-\varepsilon_{n}\right)\left(S_{q}-i_{q}-S_{r}+f_{z}\right)=$
$=\Sigma 6 e_{n}\left(S_{q}-S_{r}\right)-\Sigma 6 \varepsilon_{n}\left(S_{q}-S_{r}\right)-\Sigma 6 e_{n}\left(j_{q}-j_{r}\right)+\Sigma 6 \varepsilon_{n}\left(j_{q}-j_{r}\right)$
which expression hy means of the latter relation may be reduced to:

$$
I_{S}-j=I_{S}-12 \searrow e_{n}\left(j_{q}-f_{r}\right)+\geq 6 \varepsilon_{n}\left(f_{q}-j_{r}\right)
$$

For infinitely small values $f^{\prime \prime}$, the last term in the expression given above becomes of the order $f^{\prime 2}$ so that we find $\frac{\partial I_{S}}{\partial S_{q}}=12\left(e_{n}-e_{n}\right)$. This result cnables us to determine the set of small corrections, which, when applied to the quantities S, diminish I_{S} by the greatest amount. These corrections will be proportional to the abrupt changes of $\frac{d^{3} S}{d t^{3}}$.

The variations in the interpolation coefficients $/ /, c$, e, resulting from these corrections are found by repeating the interpolation, with this sole difference that for the observed quantities S we substitute the abrupt changes of $\frac{d^{3} \mathrm{~S}}{\mathrm{dt} \mathrm{t}^{3}}$.

As a rule a set of corrections of this kind will not show the character of the errors of observation and therefore be dissimilar to the set of errors which actually exist in the observed quantitics s. We may also determine a limit which should not be passed in the rectification.

If the quantities f represent the real crrors, we have:

$$
I_{S}=I_{L}+\Sigma 12 E_{n}\left(f_{q}-f_{r}\right)+\Sigma 6 \varepsilon_{n}\left(f_{q}-f_{r}\right)
$$

The coefficients E of the interpolation formula between the correct quantities S and the errors f being as a rule cutirely independent, we must assume that in $\Sigma 12 E_{n}\left(\dot{f}_{4}-f_{r}\right)$ the positive

 probable with rexatel to the results of the wherevations and the prevision.

The annexal table eontatis: the interpolation roeblicients of at pat
 ohserved mates of the elogk llohwit 17 . Therefore the eonelicemts at the limits of this period are not in atecordance with the homblaryconditions suphling the formmat (\mathbf{C}°)

We compute the interpolated clock corrections by means of the formula:

$$
s_{t}=s_{y}+t\left(n_{q}+n c_{q} \frac{t}{n}+n^{2} e_{n} \frac{t^{2}}{n^{2}}\right)
$$

$\therefore \begin{gathered}\text { is the } \\ \text { dock correction of the last preceding observation and }\end{gathered}$ the coefticients $!q, \pi_{q}, u^{2}$ en are given in the colmons 5,6 and 7 ; they are expressed in the unit 0 .001. The values sy and n e ${ }_{q}$ to be used are placed a little above the horizontal line corresponding to the lensth of the interval expressed in days, which interval contains the moment t for which we interpolate. Because of its connection with the constant derivative of the third order of the interpolation curve within each interval, the coelhcient $n^{2} e_{n}$ for each interval has been placed on the horizontal line of that interval.

The $8^{\text {th }}$ column contains the coeflicients p and the $9^{\text {th }}$ their differences a by passing from one interval to the other. For each of these differences I have calculated the variation $\angle \sigma_{y}$ of a given σ_{q}, as the corresponding correction of the colock in increases by $+0: 100$ while the other corrections remain ummoditied; they are given in the $10^{\text {th }}$ columm. By the increase $L s_{y}=-\frac{\sigma_{q}}{L \sigma_{q}} \times 0$ s. 100 the difference σ_{q} becomes zero. so that hy means of this increase we obtain the same result as if in the determination of the interpolation curve we had omitted the observation S_{y}. Hence the correction of the clock x_{g} derived from this interpolation is equal to the observed

in sexmals of time : tre romationed in the $11^{\text {th }}$ colloman.

 of all the values $I_{f}=\Sigma \lim _{n}\left(f_{h}-f_{r}\right)$, which vahes depend only on the marnitude of the amons and on theire distribution is equal to 30500. In the computation the mean error of the observations has been put 0:028, which value must be regated as the smallest that ("atr be assmmed on the shength of other investigations. Therefore the sinuosity of the interpolation coure must be ascribed for a great part to errors of observation.

KONLNKLJE AKADENE VAN WETENSOПAPPEA TE AMSTERDAM.

of Saturday December 27, 1902.

(Tramsated from: Verslag van de gewone vergatering der Wis- en Natumbundige Dideeling ran Zaterdag 27 December 1902 , DI. Nol .

CONTENTS.

J. L'ortas r゙ax Loon: "Benzidine tatasfomation". (Commmatated by l'rof. C. A. Janat ne BHYY), p. 3:-

I. Cunnn In: "(on the geometrical represintation of the motion of variable systems", p. 386.

 comes from the atmosphere", p. 348.
 sation, for substances withont an adosorptionhand iat the visibie spectrum". (Commmuiated by

The following papers were read:

Chemistry. - "T'in tmmelymas". Bỵ Prof. II. W. Batheis Roozeboon.
(Gommunicated in the meeting of November 29, 1902).
As the mumber of properly stmded amalyams is still rere small
 amalyans in combertion with the peseateh on collmiam annateams. by Dr. Dhos. The more important resthe are commmanded here

In the liguid condition tin and merenty are miscible int atl proportions. From the different mixtmere a solid phate is deposited at different temperatures. The points at which soliditioation hegins are

 :myle.
 which deposits on coolimer mast be either bin or mixed ergstats in

 lomat to be compored of 14 attom "\%n.

LINE BC.

At. ${ }^{0} / 1 \mathrm{~S}_{11}$	Temp.	At. $\% \mathrm{Sn}$.	Temp.
$1(0)$	6310.6	29.37	910
89.9%	211 . 6	10.79	79.7
76.62	183. 7	5.17	(6.) \because
61. 4 -	159. 2	1.20	哭. 0
49.99	133) . 4	(1). 610	() . 0
33.3.33	107 . ${ }^{\text {t }}$	1).36	
28.96	99.0	0.30	- -3',

this mamer, measurements of the K. $/ 2 . F^{2}$. were atso mate at 255° of amalgams of $0.001-100$ atom "/ " Sn against an amalgam of 16 atom " $/ 10$.

These meatmements led to the results that the unsatmated amalgams have a E. M. F^{2}. rising with the amonnt of tin until at 1.2 atom F saturation sets in. From this concentration up to 96 atom $\%$ the potential remains mehanged, conserpently two phatses of mehangeable concentration must exist between these limits; one of these is the liguid one of 1.2%, the other the solid one containing 99 atom $\%$.

At 25° the crystals deposited therefore consist of nemby pure tin which is the catse in a still ereater deogee at higher temperatures. By a comparison of the valaes of the $f=1 / .1$. for amalgams of whel the whole masts wat liguid at 25° and 50^{2} the heat of amalgamation could be calculated. 'The introduction of 1 gram-atom of sin into a liguid amalgam with $0.01-1.00$ atom $\%$ sn, therefore nearly pure 1 l , absorts about 3000 calories.

The line ($/ 3$ ' may ako be considered as the line of the solutions saturated with in. It makes a very perolial couse. The part from 120° 品 to the melting point of tin is neary straight, the centre part shows a rery rapid increase of the solnhility with the temperature, the lower part, however, an exceetingly small increase and abso ant exceedingly smatl solubility so that the line approaches very elosely the Ho-axis. In the lower part of the figure (p. 3 . 4) this part with its comse towards the melting point of Hy hats been drawn on a laterer scale.

 ïllo fwa later:

 increases but then dererases in intensiby. The maximmon lies nean

 the second solidifyin-line ('.1. 'The maximum in the intensity of
 mixed corstals having abont this composition ane formed. The montilication of tin therein contaned must difler from urdinaty tin.
 deposited from the mother-higuon (which moves along the line (\quad ID), this is acompanied by expansion. This ehanqe in volnme diminishes
 The solidification point of pure meroury and atoo the final solidification proint of all amalgams comathing up to alront 60% sh, lies at - 38.6 the 150 . As the line $(\therefore 1$ of the sathated solutions also ents here it would seem that at the solidifyiner point of Her, the solubility of tin hats decreased 100 , so that instead of a cutectio mixture only the rematime merome solidities.
still, the proint A beas quite the chatacteristic of a entectic point as not only the line $1 E$ is horizontal, hut all mixtures up to 60% \therefore atso remain a shorter or longer time at this temperature which prowes that a residnal liguid is solidifying completely.

A ereat meertamty still exists ats the natme of the tin-moditi(ation which ocems in mixed (rystals below - $3 t^{\circ} .5$ ehiclly becanse it has so fiar not heen possible to diseover the part played in the amalgams by the grey moditication of tin which may oceur below $20^{\circ}($
but from the change in volume which takes phate in the different tramsformations at and helow - $34^{\circ} .5$ we may arue that the specitic volume of the tim most be smatler than that of the grey modification and harer than that of liguid and, therefore, also of ordinary tin.
 Loon (froningen). (Commmisated by Prof. (C. A. Lobry de $^{\text {d }}$ Bkivis.
(Communicated in the meeting of November $9!$, 1902).
It is known that hydrazobenzene when treated with a dilute mineral acid is converted into benzidine and diphenylene, benzidine being, however, the main product. I endeavoured to aseertain the proportion in which the isomets are formed and in how far this depends on the temperature and the concentration of the ated and I fiuther attempted to measure the velocity with which the gransformation takes place moder definite ciremmstances.
benzidine was obtaned pure hy reerystallisation from water and distillation in racoo: the methog point of this substance was 128° Which is in agreement with the statements of Merk and strasswe (.Jown. f. Pratet. ('h. N. F. 60. 186).

For the preparation of hydrazohenzene, azobenzene wats bised as the statimg point: this wats purified by distillation and then redtued with zine dust in an alcoholic alkaline solution. The hydrazobenzene so ohtaned wats dissolved by warming in abohol and the still yellow liguid decolorised by means of ammonia and zine dust: the filtrate deposited pure white arystals of hydrazobenzene whieh cond be separated mathered from the liguid. A determination of the meltine point gave as result 122 .

For the staty of the 11:ansformation it was neressady to hate a method for the grantitatise defermination of hemzidine. It was formd possible to do this eravimetrically by adding potassimm sulphate to at solution containing not too much free ared and so precipitating the hase as sulphate which wats then eoblected on a weighed filter. Aceording (1) my experiments, the slight solnhility of henzidine sulphate amomes to 5 - 6 milligrams per 100 ore of water at the ordinary femperathre and consequently a correction should tre applied. To ascertain in what proportion the fwo hases are fommed during the transformation of hydrazobenzene, weighed quantities of this substance were pur into bottes of abont 120 ('火. capacity amd then shaken with a definite solation of ath acid matil all had dissolved. The benzidine present in the solution wats then estimated, ats directed, and the propertion realeulated from the two data.

At the ordinary remperathere, $X / 10$ hathochlorie aded used in this manner canses st per cent of the hydazobenzene to be eonverted into benzidine. Normal hydrochlorice, hydrobromic adids convert 90

 which that -mblather in lom lithe shmble.

 aloowe.
(Chem. Lah. C'nivers. Cimminftra).

Physiology. - "On ther dhriation of the cemmpensatory parnse witer stimulation uf the athich "fi the mammuliath herart." By Prof.

(Communicated in the meeting of 29 November 1902).
When atn extratoystole is set uy by attifial stimulation of the ventricte or atricle of the heating frog's heart, this extra-stasto is followed up hy a panse longer than the panse shoceeding a sponbanems sysole. This lomg interval wats studied by Maray, D.stre and others, and called a compensatory panse, becanse the longer quieserne of the heat wat rexaded ats at compensation for the extrat ardivity of the heat masele. And it was not without reason that the word "compensation" wats used, becallese the pathe after an extrastitole is of such length, that the follewing spontaneons contraction just commenees in the moment when it wonld have set in if, instead of sut extia, a pombmeons systole had preceded. Examamas (6) hat given a simple and exhatostive explamation of the panse: the nomal, physological stmulus to constaction reathing the heart from the venal cato ind cansing it to contract finds, after an extra-systole ambicle amb ventricle in a refiactory phase and so it cannot canse a contrateton. It is only the following stimulns which finds the heat ateatn in a comblion in which it can react on that stimnlus ; the contraction (the "post compensatory") then commencines, presents
itself precisely in the moment in which if would have commenced if the heat's action had been disturbed: so the rhythm of the physiological stimulation is not disturbed. In fig. I ${ }^{\text {b }}$) the (ate is represented schematically. An aditicial stimulus \hat{f} reaches 5 . When the second stimulus arrives it finds the ventricle still refractory : so on' systole is missing, but the following third stimulus, causes just at the right time again a normal systole. So the pause following the extra systole is with regard to its cation just compensatory; the time taken. up by a spontaneous systole + extras systole and pause is just equal to that of two mom al systoles.

If, however, we stimulate the frog's heart at the vena catwathere the contraction always sets in, the compensatory pane is entirely missing and the following spontaneous systole succeeds the extra systole after a peeved equal to the normal period of contraction. In Fig. I the second artificial stimmhe \ddagger reaches the vena sava; the following spontaneous contraction sets in after the natal interval 20 , a compensatory pause is missing. Whilst the interval between the systole preceding the extra systole and the one following the extra systole after stimulation of the ventricle (or of the auricle) was double the normal period $=40$, the same interval is here only $12+20=32$.

From this ensues that the stimulus is not chemically induced from

1) In these schemes answering to those used formerly by Exgelmaxi and by me the lime is indicated on the these abscisate, and this is done for the duration of the phase and the stimulation of vena cara (I°), anticte (A) and ventricle (J^{*}). $\downarrow=$ physiological stimulus, $=$ artificial stimulus. The perpendicular line represent the contractions of the heart-cavities. The slanting lines connecting the base points of the systole-mark indicate the direction in which the stimulus is conducted. If these lines are dotted the conduction does not actually take place. The duration of the spontaneous period is put at 20 abscis units $(=1 \mathrm{mM}$.), the interval from the moment of the physiological stimulus to the ventricular contraction ($F_{\epsilon}-F_{s}$) $=j$ units.

 strenght that a rombation is catleat. When however, the masele
 or at least to have been deatomed, on that exery lime ather at con-

 of the simmatang matler (dismeriation in lons, chemical changes of whatever this may be alway daken plate when the the is a
 itself of camsed by a thmblus intued firom elsewhere. For it is a well-known fitel, hat ly atificial stimblation of the andele or the ventricte, more ferpment than the spobameons flyothm, the latter cat be entimely weppoweral.

Another explatation is that at the vena bava there is a combthat stimmation constant in strenoth, expressing itself perionlically in

 has baken phace it alwats again lasts a eerlain time before the hear hats recosered ibelf in so far that another contratedion is posible Exiemmas objects to this that the explosion bromsht athout be the contration in the molecotat system of the masele ceell will destroy the stimulating matter in stok logether with the other properties of this musele eell, (impability, contatetility and rombluctive power): moreover diel Eximbuns shom that the prexiod of the fommation of the stimulus can be chatured indepemtent of the impability in the wall of the vena by ehrobotopic nerve inflacme so we must assime that the syitole destoys the stimulating matter and that every time the latter must agan develop itsolf ather every systole to active power. The law of the preservation of the physiongegal period of stimulation dominating the dhation of the compensatory panse and all the important data come to light by means of "the method of the extratsytoles" for the frog's beart have been wated by Conisy and Matturas (1) for the mammalian heat. These investigators showed that the mammalian heat ohess the same laws as the fiog's heart, that is activity is dominated by the same fundamental properties of the fibres of the heart muscle, that the same theories hold grood for both.

Only in one respect they fomm a difference: when the ambele is
artiferially simmbated, the compensatory patise after the extatsystofor is not as in the frog's heat fouly eompensatory but mostly of tow short a danation. Fometimes it was completely eompensatory, it was never entirely missing, it wats generally shortened and then at any rate not expally shomened.

They say on this sulbeet (l. e. page 226): , As lomg the the interval \cdots. ${ }^{-1}$ - is of considerable length the compensatory patase in the "ambicle is froly eompensatory, that is the interval between the lats "spontameons contration and the persterompensatory is equal for fwo "amotular ceres. When howerer the stmmbes falls eatier in the "irmitable period, no frome eompensation weertis, the posterompensatory "contratedion being premature, ... when A_{s}. is shom the com"pensation (of time W^{\prime}.) before the first natmat combatedion is always "imperfece."

The explatation of this difterence is aceording to them: "either "the contration wave passes from the atherele to the great veins "ambl there sets up a fored contration which retmoning to the "ambicle catses the premature sistole, or the imitability of the amiole "pradnally inereases matil it conhminates in a comtratelion which is "indepentent of the great reins and intiated in the amriculat musele "ilself. As 10 which of these two is the corvere explatation we are "mathle to give my opinion and feed that it would be useless to "halane probabilities before the movements of the ereat veins have "been examined."

Formerly I myself expressed the mpposition, that the mammatian
 phylogenetic development a patt of simus and rena wonlal be taken up in the auricle.
H. E. Hzasa (2) has atso been able to establish the differemer deseribed for the first time hy Cosmes and Mathems; he says:
"The earlier the moment of stimulation faths in the irmitable periond "of the andele, the shorter the artifecial higeminus is (interval between "latit spontaneous and posterompensatory systole): the later it fathe, "the more the dhration of the arificial bigeminns approtehes that of "two normal cardiace periods." De eombinmes: "the panse after the "extrat-sysole of the auricle fasts bonger areording to the moment "of stimulation falling eartier in the irritable period." so here too he assmmes the law of the conservation of the phesiological period of stimulation: "aber die beghehmg ist keine so cintarde wie am Ventrikel".

We had all owelooked, that Mackazas (3) had beoome convine already in 1894 after a carefin amalysis of the venous and liver pube

 ＇The posibility of distimernishing in this way lecweren antionker and

 collation of the bown of man．I fombl the following simple explanation of the alove mentioned phemomemon，an applation from whioh consus that we hate not wot anything to do with a diflereme in prineiple between the fions heat and the matmmatian lieat and that it is fommed on an anatomic differeme bedween the two heats．

Examans（a）has shown that in mosealat lissme of equal rom－ position the stimulas to combraction is comducted also at an equal rate in all diredtons．So when an artifictal stimulas is given to the athride，a contration stmulus and with it a contraction wave will pass firon the stimblated proint mot only to the bower pats of the anricle and to the ventricle，but also to the higher parts of the amricle and to the vena（＇alsa，so to the place where nomatly the stimulus is fommed and the eombation begims．ExaEdans（6）hat alreaty pointed to the importance which this＂antiperistallite＂move－ ment may have for the action of the heart，Cesnoy and Mattinas have also seen the possibility of it．

When a stimulus is applied late in the imitable period of the auricle．so just before the moment when the following physiological stimulus wats to eome from the vena cava，the stimmbus（and the contration）will not be able to reach the vena cava any more before the physiological stimmbus hat had its eflecel there：anride and ventricle will obey the extras stmulns，the spontaneons contration aheaty hegru will not go om，but the mylhat the venat is not disturbed．

If the extra－systole sets in a little eatier，the extrat contraction might read the renal eava just at the moment that the physiological stimulus had teveloped to the necessary intensity；then also anticle and ventricle obey the extra stimulus，the physological stimulus is nentratized or it finds the whole heat refiactory，but here too the rhythm of the formation of the stimulus is not distmbed and the pause of anricle and ventricle is completely compensatory．

When however the auricle is stimulated still carlier．the extra contraction will reach the rena cava before the moment，in which the stimulus to contration forming there，had attaned at sutiocemt strength （6）canse a contraction．The stmmating matter found there at that moment will the destroyed by the extra contraction：from this moment
new stimulating matte is being formed and after at certain time equal to the normal period it will have ohatine demo th intensity to cane smother confatedon. So the following spontaneous systole will not fall in the moment it would have done so if a th extra systole had not been set up, but just so much portion ats the extra contradion reached the vena "atv before the moment in which the following spontaneous contatedion would have occurred.

In the diagrams II and III an attempt has been made at making e these observations clear for a particular case.

In fig. II the auricle is artificially stimulated respectively 18,15 and 12 mats of time after the previous spontaneous contraction; auricle and ventricle follow the extra stimulus; in the first two eases the extra contraction moving to the vena cave intercepted the soonfaneous contraction coming from the vena sava. In the third case it arrives in the vena cara just at the same time as the physiological stimulus becomes active. In all these cases the rhythm remains undisturbed and the compensatory pause is complete for the auricle as well as for the ventricle: the interval between the systole preceding the extra systole and the one following it is double the period of the heart, in this case $=40$.

In fig. Ill an cartier stimulation of the heart is shown, 10 , resp. 8 and 5 units of time after the preceding systole the auricle is stimulated. The extra systole formed by the first stimulus arrives in the vena sava 4 wits before the following spontaneous cont ration.

The stimulating matter present at that moment is destroyed and a certain time $=20$ has to pass before the stimulus has increased to sufficient strength. So the interval of the spontaneous contractions is not $=40$ but $=16+20=36$.

According to the extra andentar contraction falling earlier, this

 lies. 111 reap. $=3.5$:and $=34$.

Another ind mene is still all work, which also governs the length

 ats than interval also dominates the moment in which the stimulating material is destroyed by the indued extras contraction it will also inthenee the length of the amiondar interval. In dits. Ill where the - dower completion when the stimulus is eftereded eat ier is taken into

The differences in length of the eompensathery pate after stomalotion of the ambicle are in this way easily explained and it appears that the rules cotahbished fine the amphibians hear hold gen ed for the mammalian heat o in the sense however, ats Itamag says, that "die Lhezehong heine an cinfache st".

The perealiar modifications in the come re of the extras eontraterion

 movements, will probate! time their explanation in the way in which. as is proved in fig. II, the contraction waves meet here in the arrientar
wall and the differenees will depend mon the spontaments of the extra contration fremer the most comsiderathe.

The question must howerer now he pua: why does a complete compensatory patuse always (om ahmost ahats, Examonas ") follow the exta sistole of the amicle in the amphibian heart and why in the mammalian heart only moder certain comblions:

The amswer maty rum as follows: In equally buil up pats of the heart muscle the stimnlus is also equally comblucted to all sides, but where for whatever reason the state of the masele fibres is not everywhere the stme, the conduction of the stimulas will neither be the satme. This is the reason that the conduction of the stimulus of the athele on the rentricle, in ereneral of one division of the heare on the other, takes place much slower than inside the wall of amicle or ventricle. When conduction takes place in the direction opposed to the normal. this distinetion will mot make itself less felt. And just ats the shower conduction maty be the canse that extrat-ststoles of the ventricle never recede quickly enough to hase a dismomge effect on the rhythm of the great veins. the differentiation between reins, sinns and ventricle in the fiog's heat will be the gatuse, that here it stimulation of the ambele is not quickly emond comblucted through the transition phaces to distum the rhythm at the venale cavae. Noreover this possibility seems on moth the sighter, bexatue
 ascend high up in the venat cava and so (amot be reached so easily by an extra stimulets. As this differentiation of the catdiate musele between venat cava and attro-ventriculat limit is missing for the mammals, it is no womber that the disturhine intlenence on the formation of the stimulus at the vena cavat oecors just in the mammatian heart.

If finally this expmation is the right one the place where the auriele of the mammaliat hearth is stmulated, will have its effect on the length of the eompensatory patuse: pertatpo it will be possible to establish for not too small heats and where the comduction of the muscle has aldeady somewhat slackened, fat for ambendar stimulation fite from the vena cata the compensatory panse in longer or even complete, whist the patise becomes shorter accordiner to the auricular stimulation taking place closer to the rena cava. For such an experiment the stimulation would alwats have to be effected exatty in the same moment of the heat perion, every time equally long atter the preceding sistole.

 Fin. 1N:

 Ahe motion of an invatialde s-men of the momats of the trajectorion

 serem: it will prome de-imale to erive the fimemos plate to the representation of the focal sy-xem.

[^82]or being an homologons bay of both pencils. The rats of A the the

Lee us now take two sheates of ratrs in the patere ${\underset{\sim}{*}}^{2}$ with the vertices S_{2} and X_{1}^{\prime} and establisha projective comperpondence between
 peneil of phanes through the axis $X_{1}, V^{\prime \prime}$ is fromologons to the pencils

 out of X_{1} and a bay l_{1}^{\prime} out of λ^{\prime} correspond; I_{1} and I_{1} intersect each other in a point L_{1}. This point is homologons to the ray $/$. So a projective correspondence is established between the points of the space \searrow_{2} and the bys of the foral system f.

As is the case with every representation, also here the knowledge of its principal curve emmot be dispensed with. It is a conic $X_{1}{ }^{2}$ through the points X_{1} and X_{1}^{\prime} sitnated in a plane ${\underset{B}{3}}^{0}$. Its points are homologons to the pencils of rays of A situated in phanes through ir The plane ${ }_{3}$ (principal plane) itself is homologons to x.

To an arbitary pencil of rats of a a right line comemponds conting $X_{1}{ }^{2}$, to at heperbolodice statem of focal raty at conice hating lwo points in common with $X_{1}{ }^{2}$, to a lineat congruence belonging to 1 it quadratic surface thongh $\boldsymbol{X}_{2}{ }^{2}$.
4. Let a projectively variahle moving pacial system be qiven: Iet as before PQRis be the tetrahedron of coine idener of wo shecessive positions and let the eorreponding focal system A be determined by $P Q$ and $R S$ as conjugate polans and the conie K^{2} bouching $P^{\prime} R^{\prime}$ and $P^{\prime} S^{\prime}$ in R^{\prime} and S. Acoordines to the indicated mothod the
 complex of the directions of the velocities, however, we need athother representation, which can be taken in such a way that the same principal curve is retained; we thall stoceed in hais if we do not represent the complex itself, hut its section with the foral sistem . 1 . This gives rise to a congruence $(2,2)$ which we shall first investigate more closely.
5. Let f be an atbitaty point, a its foral plane: at the same time it is the vertex of a duadratio cone, weometriad boous of the directions of the relocities throngh A, but of which only one is the direction of velocity of A itself. This cone will cot ingeneral e into two rays helonging to the congrumer $(2,2)$: in this way we can constrat the whole congruene by this we hate determined the constrution, but not the peometrical chatader of the comprome this can loe done in the following mamer:

"The raty of the emorronere (2,2), which is the exetion of the complex with the foral syom, hate a proint in common with the

 of the conne $h^{2 z}$: for these proint have the properys of treiner the puists of intersection not only of two but of a whote perneil of rays

 this enstles the following comstrolion:
 ("ntting \mathfrak{R}^{-2} for the seeond time in l^{\prime}. Let the lwo tamrential planes
 of tates of the congrience, the vertex of one pencil being A, whe the other A."
7. We now proved by giving some visible properties of the conwrnence (2.2).
". The two foce of eatel ray atre the points of internedion with \boldsymbol{K}^{2} amb the point of contad with $/{ }^{\prime \prime}$. The focal suftae of points heromes $I^{2 z}$: the focal surface of tamgential phates consists of the tangential plames of K^{2}.
b. All rats of the comprachee $(2,2)$ belonging to a congrnence of miss $(1,1)$ of I (ath two conjugate polats of I, and colting at the same time h^{3} they form is ruled surfaer of order forr with a simple conie and two double lines.

1) Congruences of this type are ranged in the "Index du repertoire bibliographique des sciences mathematiques" under 1 N゙ $1 e$ a and placed by R. Sturb in a separate division; see "Liniengeometrie", II, p. $3 \geq 3$.

A，pas：through the prints of intersection of the latter with K^{2} ，so they are four in number．
d．Let K^{*} be real and tet $/$ be sitmated within $K^{* 2}$ ：all foral rates thromgh P ，the foceal point of plane P^{\prime} ，s，now（cul K^{*} ；so all pencils of rays are reat．If $/ 2$ lies omside h^{3} wo tangents out of P can be drawn to K^{*} ：these tangents are the lines of intersections
 to these lines of intersedion are focal planes，in which two peneils of rays have coingided：rays throngh P ，not couting K^{2} ，give rise to imaginary pencils of rats of the congruence（2，2）．Further ensues from this：
＂If K^{z} is real and ath the vertices of the telathedron of coinct－ dence likewise are real，the congrnence $(2,2)$ is hoilt up of real and imaginary pencils of rays，where ats a transition two are double
 pencils are real．＂
e．The canes in which K^{2} is imaginary，or atso those in which all the vertices of the tetrathedron of coincidence are imaginary，do not give real comgrnences；st they are not mater consideration．

8．We now pats to the representation of the emgruence（ 2,2 ） by which the image is ohtained of the comection of foceal wistem and tetrahedral complex．
（1．The congratence combaning x pencels of tays which are represented in Σ_{1} ly straight lines having a point in common with $X_{1}{ }^{*}$ ，the whole congruence is represented by a ruled surface passing through $X_{1}{ }^{2}$ ．To a straight line I_{1} in Σ_{1} a leypertobodidic system of focal rats comesponds，which has four proms in common with K ： so it comtans four rats of the compronece and the representing sur－ face $S_{1}{ }^{\prime}$ of the congruence（ 2,2 ）is a mated sufface of order four．

1）．An authitaty pencil of foral rays of a contains two rays of the congruence ；the straight line in ゴ，corresponding fo them cutting $^{\text {cos }}$ $X_{1}{ }^{*}$ hats another two points in common with $\dot{S}_{1}{ }^{\prime}:$ so $X_{1}{ }^{*}$ is a double conic of ${ }_{2}{ }^{\prime}$ ．
c．To the pencil of rays in $\mathcal{\text { L }}$ with P an vertex and P his as plane as araight line p_{1} in 土n $_{1}$ corresponds，culting $\lambda_{1}{ }^{2}$ ．Each ray of the pencil I^{\prime} P／RS belonging to two pencils of rats whese vertices are points of intersection with $\left\langle^{2}\right.$ ，in all peints of p_{1} wo gencratom of $S_{:}{ }^{5}$ conemr：from this follows that S_{1}^{\prime} is a moded surface having as dombe come ar conice with as staigh line comting it：With this the type of s，has beed extablished．
 Hateing the pimelpoints on the donble extre: there eath be two of them on μ_{1} sumd two ont $\lambda_{1}{ }^{3}$. Thome of μ_{1} depend ont the position of 1 ' will respeed for
 pronts, we get two pencils of bitys of the congramee, to which two real gencratom of S_{t} comexpont, comentring in a point of p_{2}. For
 so the point of s. 4, from which they are drawn is a pinchpoint; so for this position there are two real pinchpoints on p_{1}; firom this ensues:
"If I ' lies ontsinle \mathbb{K}^{3}, ρ_{1} has one part appearing as double line and another which is isolated: two pinchpoints separate these two parts."
b. Let I ' lie within $\AA^{* 3}$. All focal mys though I^{\prime} cut K^{3}; there are no tangents to μ^{3}, so there are no pinchpoints on μ_{1}. So the domble line ρ_{1} is in its whole length really double line.

Besides the pinchpoints on μ_{2} the surface $S_{1}{ }^{4}$ has also pinchpoints, on $X_{1}{ }^{2}$. 'To find these we must keep in view that the points on $X_{1}{ }^{2}$ correspond to the pencils of rays whose vertices lie on $I X^{\prime} \equiv x$, which are thms situated in phanes through x. Let γ be a plane throngh x and C its focal point; the pencil of rays $(C$ ' γ) has two rays cutting K^{2} viz. the fwo rays comnecting C 'and the points of intersection B and B^{\prime} of γ and $K^{{ }^{3}}$. These two rays are represented in Σ_{1} by a single point β_{1} of $J_{1}{ }^{3}$. Now $C B$ belongs still to another pencil of focal rats, viz. to the pencil whose vertex is B and whose plane is the plane $C B P=$. The latter pencil belongs to the congruence (2,2) and is thens represented by a straight line through B_{1} lying on $s_{1}{ }^{4}$. In a similar way it appears that also a second straight line of $S_{1}{ }^{4}$ passes through S_{1}, namely the one which is represented by the pencil of rays ($B^{\prime} b^{\prime}$) lying in plane $\left(B^{\prime} P\right.$. Now again two principal eases may oceur:
a. x^{x} cuts the plane PRS in a point T outside K^{2}. The pencil of rays T lying in this plane has rays cutting K^{2} in two points, touching K^{3} or having two imaginary points in common with \underline{K}^{3}. In this case these are parts of $X_{1}{ }^{*}$ through which two generators of $\mathrm{s}_{1}{ }^{4}$ pase, which have thas to be regarded as points of a double coure, and parts which are isolated; the transition is formed by two pinchpoints, throngh which fwo coinciding generatore pats: and these last correspond to the pencils of rats, having their vertices on the tangents drawn from T to K^{2}.
b. The above mentioned point of intersection T lies within $X_{8}{ }^{2}$. All rays throngh T ent K^{*}; through each point of $X_{1}{ }^{2}$ two generators pass, so the whole conic $S_{1}{ }^{3}$ is a double curve.
10. Among the particular sections of S_{t}^{4} the conies of this surface come into account. These conics have two points in common with $\mathrm{V}_{1}{ }^{3}$; so (3) to these must correspond in Σ hyperboloidie systems of focal rays of A. These can be constructed in the following way:

Let again a point it be taken on K^{2}, its focal plane \boldsymbol{e} be determined, moreover the second point of intersection A^{\prime} of ϵ with K^{2} and the focal plane e^{\prime} of A^{\prime}. If now a pencil of rays he drawn in a^{\prime} through A (which rays are not focal rays) and likewise through A^{\prime} in a, the pencils $\left(A, a^{\prime}\right),\left(A^{\prime}, a\right)$ consist of conjugate polars of A between which a projective correspondence is established by means of the focal rays. In comnetion with $X_{1}{ }^{2}$ each pair of conjugate polar, catuses a hyperbolodic system of focal rays to appear. These two pencils generate them all, so their nomber is x.
11. Finally a few particular cases ask for our attention.
(. The line of intersection n^{2} cuts the plane $I R S$ in a point of the tangent plane $I R$. The pencil of focal rays in the plane $P R$ has as vertex this point of intersection; to this pencil corresponds a pinchpoint on $\boldsymbol{X}_{1}{ }^{2}$, but at the same time this pencil of rays has moreover a raty in common with the pencil of rays in the foral plane of the point K : so the obtained pinchpoint is at the same time a point of μ_{1}; from this follows that in the point of intersection of $\Lambda_{1}{ }^{2}$ and ρ_{1} two pinchpoints have coincided; so through this point only a single generator of S_{1}^{4} can be drawn.
b. Application to the motion of an invadible system. In this case K^{2} is imaginary (the imaginary circle in the plane at infinity) : so the congruence $(2,2)$ consists cutirely of imaginary rays. The pencil of rays $P / P R S$, however, rematins real; so the representation in Σ becomes an imaginary ruled surfae $S_{1}{ }^{4}$ with real double curve consisting of a straight line and a conic intersecting it. The same observation can be made for other cases where K^{3} becomes imaginary.
c. Another particular case occurs when the ray $X^{\prime}-x$ is taken in such at way that it cuts the conic $K_{1}{ }^{2}$; by doing so the character of the congruence does not change, but its representation does. If We now consider a pencil of rays in a plane brought through x, it is apparent that alwats one of the two rays of congruence to K^{x} coincides with x. Of the two rays cutting in Σ_{1} the double conic $\Sigma_{1}{ }^{3}$ only one is situated on $S_{1}{ }^{4}$, the other one passes into a ray situated in ${ }^{\circ}$: from this follows:
"When the focal ray x cuts the conic K^{2} the surtace $S_{i}{ }^{4}$ braiks up into ξ_{1} and a cubic ruled surface $S_{1}{ }^{3}$ of which μ_{1} is a doubre line; so this gives a simpler representation of the congruence '2.2

 betwey stimulus and deded I. 11 :and III, I have tried toprove that by increasing a stimulns, the offer ten will inerease in a definte манынет.

The relation wat expresent ly the formula

$$
\begin{equation*}
E=1(1-x \cdot \operatorname{Hin}(R-c)) \tag{1}
\end{equation*}
$$

In deduring this formula I assimed that the transiormation of chemital substance camsed one and only whe well-tetined eflect.

In mos cases howerer from such a thansformation several comseguences will result, comstituting together the total effect : e.f. a mednanical, a thermal, a chemical, an clectrical effeet may be camsed simmtameonsly by some changing of the protoplasma.

The question arises, whether om mathematical expression may be applied as well to the differem parts of and effect as to the total effeed. In order to obtain an answer to this question, we have to consider arain the differential equation:

$$
\begin{equation*}
-\|E=B E \cdot\| i \tag{2}
\end{equation*}
$$

expressing, that ly an infintesimal inerement of stimmbes an imtinitesimal proportional part of the transformable substance wat hamsformed, and at the same time stating the quantity of this tramsormation. The quamity - IlE: represents the increment of the effect. In the case of the effect heing composed of several different pats. the same equality will prevail for athy of them, e.s. the $\frac{1}{n}$ part, and so we shall ohtain for a merliel effect the equation

$$
\begin{equation*}
-\frac{1}{n} \| E=B E d l \tag{3}
\end{equation*}
$$

in which $n>1$.
From this formula we get the expression

$$
E=\|\{1-\varepsilon-n B(1\}-r)\}
$$

wherein " represents anoher constant than A, and wherein " is a momber lareer than 1.

This formula for a partial effect is identical to the formula for a
total effeet the only difterene being that the exponential eonsiant in the case of a patial effect is later than in that of at lotat effeet.

The masele maty be taken as an example. Exely contration bring ahout a mechamieal effect, whilst at the satme time an electrical response is given. Fimally the prodnetion of heat maty be baken for the total effect, at athy rate in the case of isotonice or isometrice vontrathons where the mechanieal effer is afterwards comerted into heat. Thence we are justitied in prestming that our statement about the formulate for total and partial effects, maty be applied to the themal effect amd merchanieal effee of musede-contratedions.

I have tried to aseertain whether the mumbers, qiven for the thermadefleots by different anthors are in acoortance with omr law.

In Dinatansti ${ }^{1}$ I found several series of mmbers, from which the following bables were calcolated

In this table, as in the following h represents the magnitude of

1) B. Danlewsky. Ergebnisse weiterer thermonymansher Untersuchungen der Muskeln. V. e. A. Fick. Dyothomishe Uutersurdumen 1ss!
 the hasal of eatel tables.

TABLE 111.
Ih. Initial load 300 Gr .
fig. B.
$A=20.8 \quad B=00217 \quad C=16.4$.

R	$E_{t c}$ calc.	E_{w} obsers.
30	5.3	5.5
100	174	18
$4(10)$	20.7	20
$2(0)$	20.8	21.5

The firs of the next-following tables. which are much more important, is ako taken from the experiments of Daviswsky l.c.,
whilst the observations in the $5^{\text {th }}$ and $6^{\text {th }}$ table have been published
 both represented.

The higher importance of the series given hereafter, consists chiefly in the fact of their having served to determine as well the mechanical response as the thermal effect with stimuli of increasing magnitude.

In the series of Damermsky a double thigh-muscle-preparation of the frog after the method of Fick was employed, whilst Nimalichis made use of a single gastrocnemins.

The musele contracted isotonically, whilst simultaneonsly the thermal and the mechanical effect of each contraction, were recorded. As it has been proved with sufficient accurace in our first papers that our formula may be applied to isotonic twitches, these may now serve us as a means of control.

In the following series the magnitude of stimulus is again indicated in the first column ly. R. The second column contains the calculated height of iwitch, the third column the observed height; the fourth column the calculated and the fifth the observed thermal effect. The constants A_{w}, B_{w} and C_{w} were used for calculating the thermal effects, the constants A_{h}, B_{h} and C_{h} for calculating the heights of the contractions.

1) Nawalichis, Myothermische Untersuchungen. Pfluger's Archiv, Bd. 14, p. 297.

T A lil．E： 1.

$$
\begin{aligned}
& .14=1.2 .5 \\
& \beta_{h}=11.101: 3 \\
& 1 \%=20 . \\
& .1 .=17 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \%=\because
\end{aligned}
$$

／＇	C rale．	$\begin{aligned} & \text { N: } \\ & \text { wherv. } \end{aligned}$	Fir cate．	$\begin{aligned} & \text { IVr } \\ & \text { whim. } \end{aligned}$
－1	3.17	$8 \because$	$\because .13$	：
（20）	$\because 14$	B x	$3: 0$	3 ：
－151	6．18	4.2	：3．8	＇
1：11）	生動	i．-	i．si	＇
Nins）	\therefore Sio	$\therefore i$	1i．7）	7
1：（1）	1i．15	$\therefore 7$	$11: 3$	111.1
$\because\left(\begin{array}{l}\text {（1）}\end{array}\right.$	1i．2．：	$1 i$	1：3．3t	18．．
2－（M）	（1．0）	（i．）	11．61	1．
ご， 01.1	1i．20；	（i， 3	1：101	$1:$

TABLE VI．

$$
\begin{array}{lll}
A_{h}=1.5 & B_{h}=0.018: & i_{k}=660 \\
A_{w}=17.15 & B_{u}=0.008 & r_{n}=6601
\end{array}
$$

1	Shin calc．	$\begin{gathered} \text { Eh } \\ \text { observ. } \end{gathered}$	$F_{\text {＊}}$ calc．	$\begin{gathered} \text { Byp } \\ \text { obsers. } \end{gathered}$
フィ以	3.61	3.5	4.81	A．
7.31	二） 97	5.3	$x .80$	9.5
（10）	6．但	6.1	14．61	12
1000	10.50	13．5	16.001	16
1．006）	1 1．8．0	6.5	17.10	17

Considering that the degree of acematey with which the themal effects were meatured is mot very high，we have some bathe for satisfaction aboul the results of our calcotations．Thomeh omly a tirst approximation hatis heen eflected thomohout all these series the emons remain wholly whin the limits of the mean evors of observation． Moreover in some cases it is eren possible to apply a correctiom．
booking at series 1 ，we see immerliately that the observed mumbers
correponting to the stimulus 900 me bather for small, as well for

 lime sto instead of 900 . Xow taking this mumber sto, to calcobate 1he heat-poduction, we ohtain 12. in perfert acoordance with the whemation. The supposition that the mamber got is ath ervo athd that 8 (t) wats meant is mot vory hatatoloms.

From the ermanmabeated series we maty daw firstly this conclusion What the heat-prohbotion, consthored ats fotal effed, increases virtually with increated magnitude of stimulus in the manner indicated by the ratalished formula.

In the there last series b_{n}, the increment-constant for the thermat eflece, proved to tre always smatler than the B_{h} corresponding to it, at fite predioted atrealy in our dedtation. We found for the mumber $\prime=\frac{B_{h}}{B_{r n}}$ in series [V, V and II the value 2.5, 4.23 and 2.31. Though of eomese wen by hais fite mar denduction may mot be deemed absolutely prowern, it meretheless athords a valnathe sumport for considering the deduction proposed hy me as a most useful working-hypothesis.

Bacteriology. - D_{M} a celourless bacterium, whose carbon food comes firom the atmonphere." By Prof. M. W. Beiserinch and A. vas Delden.

We give the name of Bacillus oligerarhophilus ${ }^{2}$) to a colourless bacterium, whose carbon mutrition in the dark (and likewise in the light takes phate at the expense of a not yet well-known atmospherice

1) It is probahle that \mathbb{W}. Heriecs (Ueber das Verhalten der Bacterien in Brumnenwasel sowir üher reducirende und oxydirende Eigenschaften der Bacterien. Zeitschrit f. Hygiene, Bd. I, pag. :20) already in 1856, has had cultures of B. vligocurbormitus before him. He says the following: ,Ausserordentlich auffallend war das Erge! niss dieser Versuche in der Hinsicht, dass eine Vermehrung der Bacterien in einer Flüssigkeit eingetreten war, welche keine organische Verbindungen sondern nur Salze enthielt. Ein unansehnliches, kaum sichtbares Pünktchen sun Baterienzooslueën hatte sich im Verlaufe vom zehn Tagen so stark vermehrt, dass die ganze Oberllache der Lösang von einer dicken Haut bedeckt war." Analytical results are not given, and the remark makes the impression of being accidental aud is lost among insignificant observations. Wisogradsky's statement, concerning the accumulation of organic carbon in nitrifying solutions, evidently refers likewise th thi- microbe, but his description suffers of indistinctness (Annales de l'Institut Pasteur, T. 4 pg. 270 et 462,1891).-- In the experiments of Gobleswhe (Bulletin international de 1° Académie d. sc. d. Cracovie, Dec. 1592 pag. 408 et Juin 1895 pag. 178), the vanished CO^{2} is not, as he thinks, absorbed by the ferments of nitrilication but by the $\mathrm{Mg} \mathrm{O} . \mathrm{Mg} \mathrm{CO}^{3}$.
carbon compound (or compounds), from which the energy, wanted for the vital processes, is also derived ${ }^{1}$).

The culture of this hacterium on solid media or in mutrient solutions, comtaning soluble orqunic substances has not yet suceeded, which mas, of course, have been cansed by an erroneons choice of these substances. On the other hand, pure cultures on solid and in liquid substrata, without soluble carbon compounds, are easy to he made.

1. OrtDe cldtures of bacildis oligocarbophilis.

Bracilhs: olifocorbophitus is obtained by the following aceumulation experiment, which, because of the purity of the thereby resulting regetation, may be called a "perfect accumulation experiment."

Into a large Erbemmeyer-flask a thin layer is introduced of a mutrient liquid of the same composition as used for the water culture of higher and lower green plants, but with alkaline instead of acid reaction.

One takes for instance:

Distilled water	100
Kaliumnitrate	0.01 to 0.1
Dinatrimmphosphate	0.02
"Mineral solution"	1 drop.

This "mineral solution" contains in one drop:

8	Mgrms	$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
0.05	$\prime \prime$	$\mathrm{InSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
0.05	$\prime \prime$	$\mathrm{FeCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

If from this liquid nitrogen, phosphor, katium or magnesium is left out, special experiments have proved, that no, or but an insignificant growth is obtained. As to the necessity of the likewise added elements sulphur, manganese and iron, there still exists some dould.

The inoculation is made with a not too small quantity of gardensoil, the flasks are closed with a cotton phog, or with filter paper, without impeding the entrance of air by diffusion, and the culture is left in the dark at $23-25^{\circ} \mathrm{C}$. After two or three weeks, the thuid. which itself remains perfectly clear, is seen to eover with a thin, white, or feebly rose-coloured, very dry film, difficult to moisten, and macroscopically resembling a Mycodermetilm, but consisting of minute bacteria, microscopically often invisible without staming, and sticking together by a slimy substance. This is Bacillus oligotorbophelm.s.

1) We also found another, raver species, belonging to the genus Streptothria Cons, with corresponding properties. It will not, however, be further discussed here.

 inslathers ate eriven below.

 mation in some of the hiskis mas neressatily result from the chosen
 their growhth. so we whoved that water, distilled in at eopper appataths, camed many more bithores that when distilled in ghass: we therefore atferwats alwats med the hatter. In other batses momats, whidt immediately devoned the bateria, were eathe of the lathere ly fathefers athd by the bae of pure coltures. these vorateons organisms combld be rembered hambes or remosed. When the distilled water is replated lys tap-water, the momber of thask remaining withon growth after incoulation with the same quantity of gaven-soil is mach smatlere
 probared either with distilled or with tap-water, come easily and whhont exeeption to development.

In the ahose mentioned motrient liguid we have chosen kaliumnitrate as somer of nitrogen. As well, however. kalimmatrite or sombe athoramio ammonimm salt may be bsed. Very good results were ohtained with:

Distilled Water	100
Ammonimm sulphate (or NH_{4} (1)	0.01-0.1
Dikalimmphosphate	0.02
"Mineral solution"	1 drop)

and with:

Distilled water	100
Kalimmibrite	$0.01-0.1$
Dikalimphophate	0.02
"Mineral solntion"	1 drop.

As both these liguids answer to the conditions of life of the mierobes of nitrification, the formation of nitrite or nitrate is actually to be observed when using them, and when inocolating with garden-soil or with crude coltures. With the casily produced pure cultures
 the film is possible, by which experiment if can at the same time be proved, that this microbe itself does mot nitrify. Hence, ammonimm satis or nitrites. added fo exerss dam. even fon a fear or longer, continne mehanged moler the lusmontly growing pellicle of B. whafocotophiths, whereas, in the presence of mitrifying ferments, they completely disappear in a few weeks, being hen foumd batek ats nitrates. If the ferments of nitriftation alone are present, there is no question of tim-formation and the mutrient solutions remain perfectly clear.

Not only the nature of the nitrogen-fumishing substances, but also their quantity can in these experiments, ats alteaty inferred in the recipes, vary between fatity wide limits, and the same may be said concerning the conditions for the water culture of higher and lower green plants. The limits atlowable for 3 . oligerablopheilns, have not yet heen precisely fixed, but they certanly hawe a broader mate for this orwaism (cireat 0.1-10 pro mille) that for the higher plants ($0.5-5$ pro mille).

By many experiments if was established, that in absence of kalimm, phosphor, and maxnesium, a still slighter growth ocems, than when no nitrogen compounds are given. Evidently B. oligfoctobophilus. fimds in the almosphere, in a condition fit for mutrition, a quantity of nitrogen, which, although insufficient, should not be overlooked.

If the distilled water in the artificial solution is replated by tap-water. at somewhat higher rate of organie substamee is protuced. As in tapWater a small quantity of nitrogen compoumds oceur, - here, at Delft, about 0.4 milligrams of combined nitrosen per litre, Whits it contains the ohther necessaly elements (phosphor and katimm, of conse, excepted) in an ohvionsly favorable form for the matrition of our mikrobe, one can simply use for its culture:

Tap-water $\quad 100$

Dikalimmphosphate 0.02.
It should, however, be kept in view, that the productivity in bacterial substance, in consequence of the film formation, is nof determined by the rolmme, but chiefly by the extent of the surface of the medium, which is in free contact with the air. Hence, in a very thin layer of tap-water, the nitrogen may som be consmmed, whereas, Witi: the same amount of mutrient liquid, but with a smallersurface, cor cequently in a thicker layer, the provision of nitrogen will suffiee for a longer time. Therefore, in order to obain from a flask of determined size, the maximum production of B. olifocerbophilus, a
nitrogen compmomd should be added when a small quantity of tapWaler is nsed, which addition in mot neecesary when cultivather in at ereater quathtity in at llank of the same size.
3. Jike chitike.

Whr hateriam dow \quad but trow all all or only to at shght extent
 math organic food. lant it is eaty lo produce pure cultures on solid media, when ohereving the stme precautions which I deseribed in the Mceting of the Acalomy of 27 dune 1892 for the pure culture of the femments of , nitritication on agir-plates ${ }^{2}$), and to which 1 refered in the Mecting of 30 Mareh 1901 ('roccedings p. 586) and 25. May 1901 (Procedingrs pra) when disenssing the colture conditions of the oligonitrophilons (ymophyceat.

In all these cases it is necessaty as completely ats possible to remove all solnhle organie substances from the solid medimm, which is to be eflected by a prolonged washing with distilled water. The arar thas prepared, whth the required motrient salts, for instance in the proportion:

Distilled water	100
Agar	1.5
K_HPO,	0.01
KNO_{4} of $\left.\mathrm{NH}_{4} \mathrm{Cl} \mathrm{I}\right)$	0.01

is lowiled and plated, and used for strew-or streakcoltures originating
 bacteria which never lack in the film, are seen to develop on the plate and when these by their growth and respiration have consumed the soluble carbon compounds, which were not ret removed from the agar by the extraction with water, $/$ '. whenernhophetus itself begins to grow. This is matally the case after 14 days. Then, however, the colonies become casily recognisable, our bacterimm being the only species which in the given circmastances can feed on the atmospheric carbon, and so go on srowing, whilst the growth of all other species soon comes to at stop.

Even the colonies of the nitrifyint ferments, which, as I have demonstrated before (l.c.), can grow fairly well on this medium, when instead of nitrate an ammonium salt is used, remain very small, never exceeding 1 mXI . or less. On the other hand, the colonies of B. ohigocurhopheits.s attain dimensions of 1 c.M. and more and may then easily be transferred in a pure condition into test-mbes

[^83]on the said medium. They grow on the aga as thin. snow-white or rosy-timed, very dry, flatly extended hayers, which strongly remind of the pellicle floating on the liquid.

Also on silicat plates, prepared in ghas dishes, which, after extration
 cam protuce very tine coltures, appeating after some weeks, an snowwhite colonics with indented margin, and which hy a right selection of the salts, can finally spreat owe the whole plate. Then the remarkable phenomenon is observed, that the siliat liquefies a little in the centre of the colonies and sinks in by evaporation.

The silica plates are mate at follows. A commercial solution of potassium silicate, diluted with a kmown quantity of water, is litrated with normal hydrochlorie acid. As the soliditication is much fivoured by an alkaline reaction, a complete nentralisation at the preparation of the plate should not ocemr, and as al plate, with at high percentage of silica, contracts strongly after coaguation, and expresses much Water, the dilution must be sufficient for this contraction to be delayed. Into a small beaker-whas was introduced, in a certain case, 5 c.M33 of potassium silicate diluted with 25 c ML^{3} of water, and into a second glass the required quantity of hydrochloric acid, amomuting to $10 \mathrm{c}^{3}$ of normal acid. The acid is mixed with the diluted silicate and the mixture poured into a glass dish. The soliditication delars the longer as the mass is more diluted, but it is easy, after some practice, to make very solid phates. The plate is hirst freed from the chlorites by streaming hap-water, then washed out with boiled water, and afterwards treated with the solution of mutrient salts. When these have sulticiently diffuced into the plate, the glass dish is gently wamed at the underside, until the athering water has evaporated and the plate shows an "䋉", glosy surface. The surface is flamed in the Boxsm-hmmer, by which only a partly but sufficient sterilisation is to he attained.

Not only B. oligocabophihes, but also the ferments of nitrification grow on this medium rery well. By mixing of the diluted solution of the silicate with chalk, magnesium carbonate, or ammoniummagnesimm phosphate, snow-white plates may be obtained, which are particularly tit for the culture as well of all these microbes as of several lower algae. Even earth-diatoms, of the genus Nitzschia will grow thereon.

Once more it must be observed, that in the silica plates organic substances must be absent, even fiagments of cork, fallen into the sibicate solution, may disturb the experiment.

The pure enltures, obtained on agar or silica plates, are as well fit

 Fivery thomght of smbintie melations on whicla the rathon asomilatom

('oncerning the further properties of on haterian in pare coltures. We eat be brief. In the tilns. as well ats on in the colonies on the -ohid media, it comsists of mimute, thin and shom rodlets, probally
 longh however is very variable and frequenty particles are seen

 meither in the colonies mor in the flowing pellicle but the hateria at once become vishle by staning the prepatations. The thick cellWath form the chief eomstitnent of the colonies; allmomosus mather is only present in at slight quantit! in his haterium.

4. the setbion with atmospheme cirbos.

A grool apprectation of the carlon aceumblation maty be had as well hy a direct weishing at by the permangathate methot.

Foor both determinations it is possible, to stok of the flnid, which is pratically free from bacteria, wholly or patly from beneath the tilm, so that the quantity of the culture material, destined for the filtation or the determination of the permangatmate momber, is not foo voltominous.

In our experiments there only resulted a precipitate of calcimnphosphate or calcinmeatmonate when we had wed one tap-water, which is rich in lime, and when kalimmphosphate to excess hatd been added. These precipitates can, however, be dissohed beneath ats well at in the film hy dilute acid, and then the acid com be expelled by further washing. The film is so dry and wetted with so much difficulty, that all these manipulations may be effected without much loss of material.

The permangatate mumber was determined after Kicbra, ${ }^{2}{ }^{2}$) method.
In relation to the quantity of organie matter fonmed by direct weighing of by the permangate method and formed from the atmospheric cathon, the following should be well ubserved.

As l. whyocaroophilns grows only on the free surface of the

[^84]medium, ant not in the depth, the thickness of the layer of the nutrient solution and consequently its volume, is, as already observed. actually indifferent. That is to say, by entarging the surface of the solution, a baterial film of any dimensions is to be obtained, which circomstance is of importance for apprectating the productivity of a certain quantity of a nutrient solmtion, the more so as the thickness of the bacterial film is ustually omly one cell-hayer. How rery thin the required thickness of this layer can be, growth being still possible, may he derived from the fact, that, especially when using distilled water with mutrient salts, the film can mome at the apparently dry glass-wall from 1 to 1.5 decimeter high, and not seldom extends on it nearly to the cotton plag. Only in certain vinegar bacteria I observed the same.

As it seems that our bacterimm forms no compounds prejudicial to its growth, so the only circmmstance, which governs its increase relatively to a given volume of liquid, provided its surface be of a sufficient extent, is the lack of one or more elements necessary for the nutrition. Carbon cannot be among the number, our experiments being made with free entrance of air.

Although it is thus established, that only the number of bacteria, prodnced in a certain time per surface-mit, indicates the rate at which the atmospheric carbon is assimilated, we will yet give the quantities in relation to the volume of the solution, because then a comparison can be better made with the numbers found by other authors for polluted waters.

5. How MUCH Carbon is assmillated.

First we determined by an experiment, in which, after vigorous shaking, a culture was divided into two equal portions, how much one half contained at direct weighing, of bacterial substance, whereas the other half was titrated with kaliumpermanganate. We used for this a three months old culture on:

Tap-water	100
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	0.02
KCl	0.02
KNO_{3}	0.02

The film from the pard, destined for the weighing, wats separated from the liquid by filtration, washed ont on the filter with strongly diluted hydrochloric acid, and subsequently with distilled water, to remove the chlorids. Subsequently the filter with the tilm wat
 remabed comstans. Bo wo lomat that per litre 1 so milligrams of haterial matter were produced, athel that, atter dednetion of it
 permabganate mamber wats 94 . Wo rath thos, with all aceomatey
 figures is ats $2: 1$, that is 10 saty, hat the dombling of the permangathe mamber erives the weight of the dry bacterial subtance, and, ats this latter momber is moth mote quickly to be fombed than the Weight, we have eontented onmedres with it in mose of one further determinations.

We shall now give some more lignres. Like the preceding they all relate to haterial films prodnced in Erbameybr-flasks on 100 ca I^{3}. liguid with a free liquil-surface of about 80 e. M^{2}.

By weighing we found in one case on :

T'ap-water	100
KCl	0.02
KNO_{3}	0.02
$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	0.04

after 5 months eulture 235 milligrams per litre. On:

Distilled water	100
KCl	0.02
KNO	0.1
$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	0.02
"Mineral solution"	1 drop

after 5 months 220 milligrams per litre.
Some mumbers, found by the permanganate method follow, and in the first place some rekating to dap-water.

The greates production which we had, was obtained with tapWater $0.02 \mathrm{~K}_{2} \mathrm{HPO}_{4}$ and $0.02 \mathrm{KNO}_{3}$, after a year's culture and amounted to 2.54 mgro of permangathe per litre nearly corresponding with $250 \times 2=500$ milligitum of dry bacterial substance.

After a shorter time the production is likewise smaller; so we found in a culture on:

Tap-water	100
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	0.02
KCl	0.02
$\mathrm{~K} \mathrm{NO}_{3}$	0.02

after 5 months eulture Jumary to May 202 mgrs of permanganate, corresponding with 404 mgrs. of bacterial matter per litre.

If the tap-water was replaced by distilled water, the production of dry organic substance was commonly smaller, which cannot, however, result from the mutrition by substances in the tap-water, oxidisable by kalimmpermanganate, for the 14 mgrs of permanganate, which our tap-water consumed per litre, we found quantitatively back, at the end of the cultivation period, in the clear liguid beneath the pellicle of B. oligocerbophitus, which liquid can easily be sucked on' with a pipette, without any considerable bacterial contamination. Moreover the experiments with distilled water have likewise exhibited great divergency in production, and though the canse has not been established with perfeet certainty, we still think it probable, that these differences result from the greater or smaller density of the cotton plugs, by which the speed of air entrance is greatly inflnenced. We base this supposition on results ohtained with flasks, only differing in the width of the months, and to which we shall refer later. It is fiuthermore certain that we have not to do here with the infection of other bacteria, or with monads, for the pure cultures displayed as considerable divergency as the crude ones. Neither can the chief cause be attributed to a change in percentage of the air in gaseous carbon compounds, the differences being observed simultancously in cultures placed side by side in the same locality.

But we now give some further numbers. In an experiment with:

Distilled water	100
$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	0.02
KNO_{3}	0.1
KCl	0.01
"Mineral solution"	1 drop

sterilised and inoculated with a pure culture of B. oligocarbophitus, were found, atter 37 days' (ultivation (2 Jan.- 19 Febr.) at 23° C., 66.6 mgrs of permanganate, corresponding with cirea 133 mgrs of dry bacterial substance per litre.

In another experiment with:

Distilled water	100
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	0.02
KNO_{2}	0.01
"Mineral solution",	1 drop

likewise sterilised and after a culture of 40 days, at $23^{\circ} \mathrm{C}$. the permanganate number amounted to 60 mgs , corresponding with 120 mgr's. of dry bacterial matter per litre.

In at thind rater in:

Wistilled watre	114)
成, H1].	10.02
$(\mathrm{SH})_{4} \mathrm{SO}_{1}$	(1).02\%
$\mathrm{XiL}_{5}(1)$,	0.01
"Mincral molution"	2 drops

 per litre were fomml.

In a collure in:

Whistilled water	100
	0.02
に!	0.02
KNO,	0.012
"Minemal solution"	1 drop

from 1 dane to 1 bere we found 165.5 mers, of dry bacterial subsstance, corsespondint with ea. 8.3 mgrs, of permanganate per litre. As we see. the difleremes are considerable.

When a lithe natrimm acetate was added to the anorganie solution, and when using a pure culture for inoculation, we could neither sate an atumenting nor a diminishing of growth.

Thns we obtained in:

Distilled water	100
KCl	0.02
KNO	0.1
Natrinmacetate	0.02
$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	0.02
"Mineral solution"	1 drop

hy means of weighing. 220 mges of dre bacterial substance per litre. coresponding with 110 mgrs of permanganate, which figures are not exceedingly high and might likewise have been producedi n the same time (4 months) from the air alone, without acetate.

In all these experiments with distilled water, the free surface of the liguid was also so c.l ${ }^{2}$, and the air had to pass through a dense cottom phur. with which the Ertexmeybr-flasks were closed. Already before we drew attention to the importance of the way in which the flasks are closed: be here still mentioned that we made some special experiments, which proved that a very narrow opening of the thasks. slatkens the orow th of B. ohemombophelus, so that years may go by before the film has vigoronsly developed. We conld not, howerer, expected anything else, for the considerable volume of atir. required for the growth of the sad grantities of hacteria, can ons rely fowly difnse inward and outwad thongh the narow eanal.

6. CARBONIC ACID CNXOT SERYE AN FOOD.

Various experiments were made to establish what may be the volatile amospherie carbon compound which renders the growth of
 free or combined, resulted from the following experiments. In closed culture-flasks with the best mutrient solutions, and arranged in such a way, that at times a little free carlomic aceid mixed with pure air. could artificially be introduced, it wats not possible to get any growth. This experiment, which seemed of particular interest, hass heen so frequently repeated, and so long contimed under different conditions. that we consider it as quite certain, that free carbonic acid cannot serve for the nutrition of B. oligocerthophiths.

For testing the influence of combined cartonia acid, cultures were made, instly in the following solution:

$$
\begin{array}{ll}
\text { Tap-water } & 100 \\
\text { Dikalimphosphate } & 0.01 \\
\text { Kadimmitrate } & 0.01 \\
\text { Natrimmbicarbonate } & 0.1
\end{array}
$$

When cultivating at the free air surely a luxurious growth was obtained, but it was by mo means more vigorons than when the bicarbonate was left out.

If in this liquid the nitate was replaced ly an ammonimm salt, the result was quite the same.

Secondly, the bicarbonate was replacel by common natrium carbonate, the same quantities of the different salts heing used. But in this case the action proved rather imjurions than farorable. It is true that the film had become considerable after a feer months. but it was directly to be seen that the growth was so much inferior to that of cultures obtained in the same circmonstances hut in absence of carbonate, that the determination of the permanganate inumber seemed superfluous. Here, too, the replacing of nitrate hy ammoninm salt or by a nitrite cansed no change.

As a remarkable fact it may be mentioned, that in these experiments, in our large flasks, contaning a litre of air, the thin bacterial film mounted very high up the dry glass-wall, which is likewise often observed in the solutions made with distilled water, and may repose on the absence of dissolved lime salts.

If the tap-water was substituted by distilled water, the addition of natrium carbonate did not cause an increase of bacterial growit either. We found, for instance, in:

Distilled water	1010
$\mathrm{K}_{2} \mathrm{HP口}^{\text {a }}$,	0.012
$(\mathrm{NH})_{2}, \mathrm{SO}$,	0.02
$\mathrm{Nab}_{2} \mathrm{ClO}_{3}$	10.1
"Mineral solution"	1 drop

 sponding with (at. 300 wers of dry haterial substance per litre, which prodnetion is las that that, ohtained in other cases under the same cimemasabmes but without (atbonate, so that here also, the action of the eathonate the loner time of entavation being taken inte comsiderathon, Wats not farmable Quantities of carhonate,

The results of this examination can be thas smmmarised, that for
 is athally consumme lom that this camot possibly be free carbonic arid. Finthemome that also combined earbonic acid cannot serve for it nutrition.

If the cartonic acid of the air camot be the food of 8 . delgocorbephiths, what other atmospherice carbon souree might then come into consideration:

It is clears. that we thould think here of the carbon-containing component of the air, discovered in 1862 by the botanist Hermans Karatw ${ }^{1}$, and recently discovered anew by French experimenters, especially hy Mr. Mrariet ${ }^{2}$). It is true that the chemical nature of this sub-tame has been hitherto unknown ${ }^{3}$), but yet it is certain that we have here to do with an easily oxidisable compound (or compounds), for a prolunged contact with alkati and air will already sutfice to split ofl carhonic acid from it. Furthermore, according to the statement of the French investigator, the substance probably contains nitrogen.

This latter circumstance gives rise to the question whether this
${ }^{1}$) H. Karstex. Zur Kenntniss des Verwesungsprocesses. P'oggendorff's Annalen Bd. 191, pas. 343. 1862. To this place, as also to the not unimportant older literature on the carbon compound of the air, my attention was drawn by Mr. G. vax Iterson.
") Comptes Rendus T. 135̈, pag. 89 et 101. 1902.
${ }^{3}$) Hesriet thinks that the substance must be a monosubstituted formamid with the formuln HCo.NHIR, where It represents a still unknown alkylrest. But then it is not easy to understand, why the production of carbonic acid takes place so readily. It might then rather be expected that, with an alkali a formiate would result and no carbonate.
nitrogen, like the carbon, is fit for assimilation by our microbe. Though this question has alreatly partly been answered in the negative by the preceding experiments, it should still be rematked here that in mutrient liquids, without an expressly added nitrogen compound, far instance in:

Distilled water	100
$\mathbf{K}_{2} \mathrm{HPO}_{4}$	0.02
$\mathrm{Mg}, \mathrm{S}, \mathrm{Mn}, \mathrm{Fe}$	traces.

Or still better in:

Tap-water	100
$\mathbf{K}_{2} \mathrm{HP}^{\prime} \mathrm{O}_{4}$	0.02

without any further addition, anot inconsiderable growth of fi. oligocarbophtitus may oceu', so that at least tatees of an assimilable nitrogen compound may be drawn firom the air by this bacterium, whereas, for the possibility of assimilation of the free atmospheric nitrogen no indications were found.

We now tum to another question, which the assimilation of the atmospheric carbon gives rise to, namely: How great is the quantity of the volatile substance wanted for the formation of the bacterial film produced in our cultures: This cuestion is closely comnected with the following: How much of the compound is moreover consmmed by the respiration of our baterium, escapimg as free catbonie acidt For answerims these questions we have to measure the quantity of the carbonic acid corresponding with a determined weight of dry bacterial substance, granted that the carbon percentage of this suthstance be known.

Our experiments relating to the measurement of the quantity of carbonic acid produced, are not yet closed, bat as to the first part of the question, we give the following calculation to tix the volume of air wanted for the production of the carbon, actually acermulated in the bacterial tilms. We hereby make two chemical suppositions which, to be sure, are fairly well in accordance with truth. First, we admit that the carbon, freed from the unkown compound, as carbonic acid by a prolonged contact with alkali, is consmoned quatitatively by om bacterium and, secondly, that the bulk of the bacterial cells comsists of a substance possessing nearly the composition of cellulose ${ }^{1}$).

[^85]

 pheric fathon rompromal, prownt in :

 if still the aldition lats to be made of a yof mbenwo, but apparenty considerathle amomut comsimed for the hate erial respriation, which, as remarked abowe. seeme necereaty. We therefore think that it must the admitted that the quantity of the atmosphorice componnd (or
 latomatery atmonhere, than in that of the Paris bonlevard, analysed
 variable fixctor. The ciremmetance, too, that we have not as yet been able in our orrenhomse, where the atir, in the common sense of the word, is surely mach purer than in the laboratory, to ohtain a vigoroms growth of 5 . whymentmphilus pleads for this view. But here we combl not alwats keep the temperature high enough, so that we consider ont experiments in this direction not yet closed. bexdes, we should observe, that in an emply, isolated room of the labobatory, the quantities of eombined catron drawn firom the air, were as great, or only little bese than in the lathoratory itself, where the air was certainly impures.

We are acoortingly conscions that finther experiments, with fresh atmospherie air are wanted to decide, whether the carbon compound oceus in the atmosphere in a constant or in a varving percentage. Only thereby it will be possible to asertain the distribution of this compound, by which, at the same time, the signification of B . oligocorlopheilus un nature will berome clearer.

As to this stgmitation, the question arises whether our microbe in substrata containing sufticient mineral mutrients ($\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Mg}, \mathrm{S}$, Fe, Mn), hut being poor in organie substances, is able to build up the latter in the dark from the vatale carlon componads werorving in the
atmosphere of the surounding medium. And furthermore, whether carbon mutrition takes place exclusively in the floating dry films, - hence, in the earth, only on the relatively dry surface of the earth particles, - or that also in the depth of thuids growth and earbon assimilation be possible. The hitherto gathered experience about the self-purification of rivers and the hiological purification of water in general, seems to exclude the latter hypothesis, and our own experiments too, render it not probable. The result of these experiments consists, in our opimion, in the very discovery of a microbe, which, in consequence of the film-formation, has the specific faculty, to absorb for its mutrition and multiplication, from a gas, namely the air, traces of volatile carbon compounds, by which the struggle for existence with the rest of the microbic world can be successfully sustained. The biological purification of water would, according to this view, find a counterpart in the biological purification of the air by Bucillus oliqocenbozhtilus:

Physics. - "The calculation of $\frac{e}{m}$ from the matnetic rotution of the plane of polarisation, for substances without an absorption band in the risible spectrum." By Dr. L. H. Siertsema. (Communication No. 82 from the Physical Laboratory at Leiden by Prof. H. Kamerlingh Oxwes).

Starting from Fitzgerabd's ${ }^{1}$) simple explanation of the magnetic rotation of the plane of polarisation derived from the Zemman effect, and also from the supposition that the result of the magnetic force is only shown by the displacement of the dispersion curve of the medium $\left(n=f^{\prime}(\lambda)\right)$ over a distance of, Halio ${ }^{2}$) finds for the magnetic rotation ω

$$
\omega=\frac{2 \pi}{\lambda} \approx \delta \frac{d /}{d \lambda}
$$

where $=$ represents the thickness of the medimm. Hallo's investigations are concerned with the parts of the spectrm in the neighbourhood of an absorption band and for these we are justified in making the above supposition, as appears from a formula derived by Vorat

[^86]from a more rigome theory If howemer we wam to aply it 10 puints ath a greater distame from ann ahomptim hamb, its is the ease
 (10) Volit: nume eromeal formula:

If we may assmme that only one term oxems muler the summat tion in the serond members. and also that "h h 'and ot are small (compared wilh it, a simple redurtion shows that the new di-persion dorve may he derived from the original one he moving each point
 on the wave-rensth. In this case Hamos relation will hodd, if of is mot suppered comstant, but propertional to λ^{3}.

Though it is mertain whether for a given tramsarent substance we are entibled to acept the formma for $/$ with only one term muler the summation, we may insertigate to what results this would lead. From the elementary theory of the Zremas effed it follows that

$$
T^{2}-T=\frac{\square H T^{2}}{m}
$$

whence for the displacement of the disperion ame

$$
\delta=\lambda^{2}-\lambda=\frac{e}{m} \frac{H T^{2} V^{\gamma}}{4 x}=\frac{e}{m} \frac{H \lambda^{3}}{4 x 1^{1}} .
$$

This value has been derived for the absorption band. From the above considerations it follows, however, that we may apply it for cald wave-length, and hence we find

$$
\omega=\frac{\ddot{2}-x}{2} z \frac{p}{m} H \frac{\lambda^{2}}{4 x V} d \lambda=z H \frac{d n}{m} \frac{\lambda}{2 V} \frac{d n}{d \lambda} .
$$

Whence follows for the rotation constant $\boldsymbol{\theta}=\frac{\boldsymbol{\omega}}{\approx I I}$:

$$
o=\frac{e}{m} \cdot \frac{\lambda}{2 V^{*}} \cdot \frac{d n}{d \lambda}
$$

which formula forresponts with one, given hy Volit ${ }^{3}$), if we replace the k occurring there by:

$$
k=\frac{e}{m} \cdot \frac{1}{2} V
$$

[^87]which value maty also be derived directly, if we equate the magnetic displacement $\frac{1}{2} c_{h} R$ after Vons with that resulting from the elementary theory. The dispersion of the magnetie rotation expressed hy this formula is the same as that resulting from bacquaren's ${ }^{1}$) relation and found by him to be confirmed in the cate of carbon disulphide and ereosole.

The relation fonnd for o enables us co compute $\frac{e}{m}$ as soon as we know the rotation constant o and the dispersion $\frac{d n}{d 2}$ of it sulstance for the same wavelength 2. For we have

$$
\frac{\prime}{m}=\frac{2 V}{\lambda} \cdot \frac{d \lambda}{d n}
$$

We shall make the calculation for some substances at a value of $\lambda=589 \mu \mu$. The rotation constants r being usially expressed in minutes we have

$$
\rho=r \frac{9 x}{360 \times 60}
$$

and hence we find

$$
\frac{e}{m}=\frac{2 \times 3 \times 10^{20}}{589} \frac{2 \pi}{360 \times 60} \times r \frac{d \lambda}{d n}=2.96 \times 10^{4} \times r \frac{d \lambda}{d n}
$$

 tinds for the refractive index at (1 atm. 0 (O)

$$
\begin{aligned}
& \lambda= 644, n-n_{D}= \\
& 538 85.10^{-s} \\
& 88.10^{-s}
\end{aligned}
$$

whence $\frac{d \lambda}{d n}=0.65 \times 10^{5}$ and $0.58 \times 10^{\circ}$, on an average 0.61×10^{5}. Supposing $n-1$ proportional to the density, it follows that for air (100) kilogram, $13^{\circ} .0\left(\frac{1}{2}\right) d . d m=0.648 \times 10^{6}$ and we dind:

$$
\frac{t}{m}=2.96 \times 50.3 \times 0.648 \cdot 10^{\prime}=1.06 \cdot 10^{7}
$$

In the same way is found for:
2. Carbon dioxide ($\left.1 \mathrm{~atm} .6^{\circ} .5\right) . \quad r=8.62 \times 10^{-\mathrm{B}}$

$$
\begin{aligned}
\frac{1 \lambda}{d n}\left(1 \mathrm{~atm}, 0^{\circ}\right) & =3.42 \times 10^{\circ} \\
\left(1 \text { atm., } 6^{\circ} .5\right) & =3.50 \times 10^{\circ}
\end{aligned}
$$

[^88]$$
{ }_{m}^{\prime}=0.89 \times 10 \%
$$

\[

$$
\begin{aligned}
& { }_{\prime \prime \prime}=1.75 \times 10^{\circ} .
\end{aligned}
$$
\]

 motations romsamt 0.01830 we erel

$$
{ }_{m}^{\prime \prime}=1.25 \times 10^{7}
$$

.). (imlm, disulphith In the sume way with r=0'042 we

$$
\frac{m}{m}=0,745 \times 10^{\circ}
$$

 tive indices we lind

$$
\frac{\prime}{\prime \prime}=1.25 \times 10^{\prime}
$$

It may be remarked that the valnes of $\frac{e}{m}$ found here correspond in order of magnitnde with those fonmed in other ways.
${ }^{1}$) Defer. Bull. Soc. Minér. \& p. als.
${ }^{2}$) V. d. Willigex. Arch. Mus. Teyler III. 1. p. ju
${ }^{3}$) Bohel, (: R. 128 , p. 1095.

KONDKLDKE AKADEME VAN WJTEASCHAP'PA
 TE AMSTERDAN.

PROCEFDINGSOF THE MEETING
of Saturday January 31, 1903.

(Translated from: Verslise van de gewone vergadering der Wis- en Naturkundige Ddecling van Zateday 31 Jamari 19033, DI. N1).

CONTENTS.
A. Smurs and L. K. Wolff: "The velocity of transtormation of Carbon musuxide". Communicated by Prof. If. W. Bunutis Lonzebeкm), p. 417.
J. J. vas Latr: "The course of the melting-point-line of solid alloys or amalgams". (First communication). (Communicated by I'rof II. W. Bakhise Rowzenoom), p. 424.
J. A. van Liak: "On the potential-lifference, which oceurs at the suface of contact of two different non-miscible liquids, in which a dissulved electrolyte las distributed itself". (Communicated by Prof. II. W. Bikuris Loozermony), P. 431.
J. J. Hallo: "The value of sume magnetu-optic cunstants". (Communicated by Pruf. l'. Zeemas), p. 438.
J. K. A. Whatheim Salomonsus: "A new law concerning the relation between stimabas and effect", (V). (Communicated by l'rof. C. Wınklem), P. $4+1$.
D. J. Kobteweg: "Plaitpoints and corresponding plaits in the neighbourhoul of the sides of the f-surface of vis bar Wasses", p. 445. (With one platel.
A. H. Sirks: "Some remarkable phenomena, concerning the electric cireuit in clectrolytes". (Commonicated by lrof. H. A. Lobratz), p. 465.

The following papers were read:

By Dr. A. Smos and L. K. Wolfe. (Communicated by Prof.
H. IV. Bunhtes Roozaboom).
(Communicated in the metiny of December 27.1402).
From the researches of Botaotand ${ }^{\prime}$ on the equilibrimm $2\left(^{\prime} 0 \leftrightarrows\left({ }^{\circ}\right)_{2}+C^{\prime}\right.$, Where the was made of the areclerating atom of the metals Ni, Co. Fe, it follows that they do not modify the equilibrimm but only
${ }^{1}$) Ann. de Lihimie ef de Plysique [7] ロf, p. 5 (1901).

 (' $)_{3}$ illul (${ }^{\prime}$.
 condition.

INEKmintos.

1. The following rearareh was instatued with the objert of detemininge velocitios of reation in the metatable rexion in presence of at eatalyzer. The apparatos employed by ns was in the main the same ats that maed hy var T Hory in his researels on the velocity of tramsformation of detonating gats into water. The reation vessel, however, wats filled with a catalyzer obtained in the following mamer.

Pomice stone was broken up into small lumps, drenched with a solution of $\mathrm{Ni}\left(\mathrm{N}_{3}\right)_{2}$ then dried, ignited and finally redtued in a curent of hydrogen or caron monoxide.

This reduction. it wats otserved, takes phace in two stages. The grevish-black surface of NiO tist tums yellow owing to the formation of a suboxide $\left.\left(\mathrm{Ni}_{2}()^{2}\right)^{2}\right)$ and afterwats on complete reduction agran beeomes datk-grer. When operating at a high temperature, reduction with II_{2} of ('O gives apparently, the same material. If, however, the reduction takes place $i n$ a emment of (0) at $4+5^{3}$ a layer of cartron is deposited on the reduced nickel.
2. The experiments with nickel-pmmice obtancel hy reduction wilh either H_{2} or ('O) at a high temperathere gave the following result *).

At 310° (boiling print of diphenylamine) the activity of the catalyzer did not appear constant. Sucessive fillings contimally gave smaller diminutions of presiture in the stame length of time.

り) Mëllef, Bell (Chemical News 20, 2058).
\Rightarrow Coating the inner wall of the reaction vessel with nickel did not appear to alfert the resulf. probably because the sufface of the slass wall was rery small as compared with the surface of the catalyzer.

We foum for instane:

Folling.	Diminution in mas. Hg. during 10 minutes.
1st	5, 5 \%
Qund	5,100
3 cl	3,50

As we smbected that the retrogression of the activity of the catalyzer wats due to the ever increasimg layer of (', which deposits. on the cadalyer during the experiment and fillings, we next used a nickel-pumice which had been reduced at 45\% and was in consequence already coated with a layer of carthon. Athough at first there was still a pereptible dimimotion in the atetivity, the differences in successive fillings become gratually smaller and finally, the acrivity Wats constant as seen from the following table:

310	
Filling.	Diminution in mM. Hg. during 10 minutes.
1st	1,88
2nd	1,80
3rd	1,78
4th	1,74
5th	$1,7 \%$
6th	1,74
7th	1,74

Being satisfied with this result, we starled our investigation with the catalyzer of constant activity obtatined in this wat.
16. Measurements concernim! the arder of ther isation.

For the determination of the order of the reaction the method of vas 't Hofr was first of all applied. It is griven in this case by the equation:

$$
n=\log _{\log ,}\left(\begin{array}{c}
d c_{1}:\left(d_{2}\right. \\
d t
\end{array}: \frac{c_{2}}{d t}: c_{3}\right)
$$

Ther dotermintation wak made al :310

 to $7: 349$ mm. He. The dimmation of pressure in 30 minutes therelore amomoleal to $46,9 \mathrm{mmon}$. 1 g .

It we take for $\frac{\text { dit }}{\text { dt }}$ the diminntion of presome per minnte then dis becomes 1,56 .

In the secome experiment the presstare of the ('0) was $5: 35,3$ mon. Her at the commencement and after 30 mimutes the presobre had come down to $504,7 \mathrm{~mm}$. Her. Here, the diminntion of presonre in 30 mimtes amomited, therefore, $10: 33,6 \mathrm{~mm}$. H_{L} or $\frac{\text { dhe }}{\mathrm{ltt}}=1,12$. $O_{1}=$ awer. of press, at begimn. and end at the $1^{\text {st }}$ experim. $=76: 3,35$ mm. If

If from this we calculate n, we find

$$
n=0,86
$$

from which it is apparent that the reaction is a monomolecular one. In order to make more rertain of this, the order of the reation was also determined at two other temperatures acording to the method given hy Noves. In this ease n is calculated from the following formula:

$$
n=1+\frac{\frac{\log t_{1}-\frac{t_{3}}{t_{3}}}{\log _{c_{3}}^{c_{3}}}-}{}
$$

in which t_{1} and t_{2} are the times during which the same part of the original quantity is eonverted when statimg from different concenfrations c_{2} and c_{2}.

At 256° we ohtained the following result:

$$
n=1+\underset{\substack{\ln , t \\ \operatorname{lon}!200 \\ 570.9}}{192}=1.1
$$

The experiment at 340^{n} gave

The observations at the there temperatures $2560^{\circ}, 310^{\circ}$ and 340°, therefore lead to the conclusion that we ate beally dealing here with a monemoleceltar reaction.
c. Determination of the mactim-constamt at $2566^{\circ}, 310^{\circ}, 340^{\circ}$.

These detemmations were eondurted with the same reation vessel and the same catalyzel.
256° (boiling point of amyl benzoate).

The following may serve for elucidate this table:
At 256° the catalyzer seemed to still perepmilly absoth the CO, which catused the diminution of pressure dwing the first 5 mimbes to be exerssive. The values for h are, therefore, not eonstant when we stat from the presture corresponding with the time (), but they gradually diminish which may the seen from the first two figures in the last column of the bahle. To eliminate the error eatused by aborytion, we have, when calculating k, stated from the pressure corresponding with the time 5 minutes (colmm 2) and, therefore, have called this pressure I_{n}. As the CO concentration had diminished very little in 5 mimntes the error thas introduced eould be disregated. The valnes obtained for h^{2} are found in the lasi column beneath the doted line. The following table relates to the temperature 310°.

310 Imilime puint of diphom！tanim

＇f゙im＇in minuto．	I＇rいいばロ il III.11. H:r	1．．．． $\because I_{t}^{\prime}-I^{\prime}$
11	780；	
111	76：	11．0615\％
［19	78%	110：｜c゙
（3）	73： 19	11． 6 Wix：
． 21	720.6	（）．（4）18：

As was to the expereded，the atherption at this hight tomperathere Was seaterely perephthe athe in the followiner fable which shows the

340°（bobiling point of phenantrene

Tinm，in minntos		$l=\begin{aligned} & 1 \\ & , \quad l^{\prime}, l_{1}^{\prime} \\ & l_{n}^{\prime} \end{aligned}$
11	5！1． 1	
111	7\％1． 1	$0.102 こ ゙$
$\because 1$	2150.4	$0.100^{\circ} 27$
：41	16isis	1）．100：\％：11
211	161．7	11． 140×1

In ormer fo make－mote that he abetivity of the catatyzer had mot diminished darime these there series at orere of experiments wats linatly taken at 310 with the following result．

310°

0	805.5	
10	788.3	0.00189
20	783.0	0.00183
30	757.8	0.00182
40	742.8	0.00184

The activity of the eatalyzer had, therefore, undergone no change during these measurements, so that we were justified in calculating the temperature-coefficient fiom the results ohtained. The result was as follows:

Temperature.	k.	$\frac{k_{t}+10}{k_{t}}$
956	0.000279	
310°	0.0 Herst	
340°	0.00.327	

d. Mechanism of the retection.

What idea are we to form abont the mechanism of the reation if this takes a monomolecular course :

If we assume the formation of $\mathrm{Ni}(\mathrm{CO})$, with an immeasurably large velocity and the subsequent breaking up of this compound according to the equation

$$
\mathrm{Ni}\left(\mathrm{CO}_{4}=\mathrm{Ni}+2 \mathrm{CO}_{2}+2 \mathrm{C}\right.
$$

we must also accept the equilibrium

$$
\mathrm{Ni}(\mathrm{CO})_{4} \leftrightarrows \mathrm{Ni}+4 \mathrm{CO}
$$

of which the ronstamt is given by the equation:

$$
K=\frac{C_{c o}{ }^{4}}{C_{Y i(c n)_{4}}}
$$

This would then necessarily lead to the conclusion, that the velority

 of the ('O-80, prositions monata.
l"irstly:

Senomlly:

$$
\text { 1. }{ }^{\prime}()+\mathrm{Ni}=1+\mathrm{Ni} 0
$$

II. $(0)+\mathrm{Ni} 0=()_{2}+\mathrm{Ni}$.

 one proceded more mapidly that the first.
 from the result of several exproments. that it is mot the cartom bum the limely divided nelelel which persesses the catalytio atedon.

Amstordam, ('hem. Lath. Whiversity. Dece. 190)
Chemistry. - Professor Bulfis Roozanoom presents a commmaication from Dre. J. J. vis Lask on: "The romerse of the meltery-print-lines uf solid alloys or ammlymm.". (ľis: Communication). (Communicates in the meeting of December 27, 1! 侯).

1. In the researehes of fin Hetreres ${ }^{2}$) on Tinamalgams a mel-tingpoint-line ocruts ${ }^{2}$) of a kind, which has not as yet been studied over such ath extended course (from 0 to neaty 100 atom $\%$ of mereury). This is chiefly due to the fitet, that the temperatures of finson of the two metals are so very different; tin 231°, merenry - 38.6°. In eonsequence the meltingpoint-line of the tin meets that of the meremry

Fig. 1. pratetically at 100 atom $\%$ mercury, so that the meltingpointline of the meroury has not even been observed. We therefore see for the first time a melting-point-line in its full course, and the question arises whether the course, found by vis Heteres, may be predicted theoretically:

The answer to this is in the affirmative. Let us, to statr with, fake the most simple view as regards the molecular poten-

1) Dissertation 1902. (also Report Meeting as Nor. 1902).
$\left.{ }^{9}\right)$ 1. c. pg. 18 .
tials $\boldsymbol{\mu}$ of the tin as solid substance and $\boldsymbol{\mu}_{1}$ of the tin in the liquid amalyam, namely that

$$
\left.\begin{array}{l}
u=e-c T \tag{1}\\
\mu_{1}=e_{1}-r_{2} T+R T \operatorname{lo!}(1-r)
\end{array}\right\}
$$

In this it has been assumed, firstly that the tin, crystallised from the amalgam, does not consist of mixed crystals, but of pure tin - a supposition, which has been proved by experiment to be nearly correct and secondly, that the energy-quatity e is no function of x. Later on we will drop this last simplitied supposition, and demonstrate, that a more aceruate calculation of the function μ_{1} affects the course of the meltingpoint-lines quamtitatioely, hut not qualitatively. Then it is our object to demonstrate at once, that the entive qualitative course, as represented in the figure, follows from the equations (1) in connection with the course of the logarithmic function of 1 -.e. By putting the two potentials equal to each other, we obtain:

$$
\left(e_{1}-e\right)-\left(e_{1}-c\right) T=-R T \log (1-c)
$$

or calling $e_{1}-e=q$ (the heat of fusion of the solid tin, when passing into the amalgam), and the quantity $c_{1}-c=\gamma$:

$$
q-\gamma^{\prime} T=-R T \log (1-x)
$$

from which follows:

$$
\begin{equation*}
T=\frac{q}{\gamma-R \log (1-x)} \tag{2}
\end{equation*}
$$

This is then the most simple form of the meltingpoint-line.
On introducing the temperature of fusion of pure tin T_{v}, x becomes 0 , and we obtain :

$$
T_{0}={ }_{\gamma}^{q},
$$

so that we may also write:

$$
\begin{equation*}
T=\frac{T_{0}}{1-\frac{R T_{0}}{q} \log (1-x)}=\frac{T_{0}}{1-\theta \log \left(1-v^{\prime}\right)} \tag{3}
\end{equation*}
$$

if we abbreviate $\frac{R T_{0}}{q}$ to 0.
We notice at once, that on the development of the logatithmic function, the fomma, for very small values of x, pasises into

$$
T=\frac{T_{0}}{1+\frac{R T_{0}^{\prime}}{q} u^{\prime}},
$$

that is (1) saty into $\quad \gamma_{n} \quad \sigma_{0} \quad \mathrm{PT} T_{n}$.

 no longer be satistied with one or two toms in the development of

1 will mow show, that the approximative relation

$$
T=\frac{T}{1-\| \log (1-v)}
$$

give indend the enserved comre quatitatively. For $\frac{d T}{d x}$ we find:

Whist T^{\prime} itself, for $x=0$, passes into ' T_{n}, and for,$r=1$ into $T=0$, which abreaty arpees with the steadily declining eoture - it $1 T$
appeats from ${ }^{\text {a }}$, that this quatity, for,$t=0$, becomes :

$$
t_{t_{0}} \quad\binom{d T}{d x}_{0}=-T_{0} H=-\frac{R T_{0}{ }^{2}}{q}
$$

the limiting value of van't Horf, whilst for $r=1$ it passes into - x. It may now still be asked, whether there will be a proint of inllection or not. In the case, examined by vas Heteres, a point of intlection plainly oceured at about $n=0.8$, but it may also be possible, that the course was like the one in the following figure, without point of inflection. Let us therefore determine $d^{2} 9$
Fig. 2.

Evident! $d^{d^{2} T}=0$, when $2^{\prime \prime}=N^{2}$, that is 10 say, when

$$
\begin{aligned}
& 1 \quad \| \log (1-x)=2 \theta \\
& -\operatorname{lng}(1-x)=2-\frac{1}{0} .
\end{aligned}
$$

As $0=\frac{R T_{0}}{q}$ will be positive, we see, that the point of intlection can
only oceme if $1 /$ is simated between $\frac{1}{2}$ and x. For $0=1 / 2, x=0$; for $0=x$ we lime on the other hand $r=0.865$. A point of intlection

 point of inflection if $0<1 / 2$, that is to saty, if

$$
q>2 R T_{v}
$$

or in gramecals.

$$
q>4 T_{\mathrm{n}} .
$$

In our ease therefore, where $T_{n}=505$ - when of >2000 gram-cals.
This last conclusion will however be moditied, when we apply the necessary correction to the approximate formula (3). But the fact of the possible acentrence of " point "f indection may abrady be completely explained by the simple formula (3), and this by the course of the function log $(1-x)$.
II. We now proceed to write down a more stringent relation than (3).

Assuming an equation of condition of the vas DER Whass's kind, the value of μ_{1} (the molecular potential of the component μ_{1}) becomes as follows:

$$
\begin{align*}
& \mu_{1}=-k_{1} T(\log T-1)-R T(\log (V-b)-1)+\left(\left(e_{1}\right)_{0}-T\left(\eta_{1}\right)_{0}\right)+ \\
& +\frac{\Sigma \mu_{1} \cdot R T}{V-b} b_{1}-\frac{2}{V}\left(n_{1} u_{13}+n_{2} u_{12}+\ldots\right)+R T \log u_{1} . \quad . \quad . \tag{4}
\end{align*}
$$

For b has been written:

$$
b_{1}=n_{1} b_{1}+n_{2} b_{2}+\ldots
$$

whilst for a the quadratic relation

$$
a=n_{1}{ }^{2} \epsilon_{11}+2 n_{1} n_{2} a_{12}+\ldots
$$

has been taken.
Now, lof ($1^{-}-h$) ('an be supposed to be independent of 11 , whilst the expression

$$
\frac{\Sigma n_{1} \cdot R T^{\prime}}{V^{r}-b} b_{1}-\frac{2}{V^{r}}\left(n_{\left.1^{\prime \prime} n_{11}+n_{2}^{\prime \prime}{ }_{13}\right)=}^{R T} h^{\prime}-b_{1}-\frac{2}{V^{r}}\left((1-x) t_{11}+x^{\prime \prime} t_{13}\right)\right.
$$

 this, rather stad from a more general expression for the total potential 5 (in our case we have only to deal with two single components n_{1} and n_{2}), namely

$$
\begin{aligned}
& \quad \zeta=n_{1}\left(\mu_{1}\right)_{0}+n_{2}\left(n_{2}\right)_{0}+\frac{\mu_{1}^{2} \mu_{11}+2 n_{1} n_{2} u_{12}+n_{2}{ }^{3} \mu_{23}}{n_{1}+n_{3}}+ \\
& +R R^{\prime}\left(n_{1} \log \frac{n_{1}}{n_{2}+n_{2}}+n_{2} \log \frac{n_{2}}{n_{1}+n_{3}}\right) .
\end{aligned}
$$

We then find:

$$
\begin{aligned}
& \mu_{1}=\frac{v_{5}^{-}}{\partial n_{1}}=\left(\mu_{1}\right)_{0}-\frac{1}{\left(n_{1}+n_{2}\right)^{2}}\left(n_{3}^{2} n_{11}+\ddot{2} n_{1} n_{2} \mu_{11}+n_{3}{ }^{2} \mu_{22}\right)! \\
& \quad \because \quad n_{1}+n_{2}\left(n_{1} \mu_{11}+n_{5} \mu_{21}\right)+R^{\prime} l_{1, n_{1}-n_{1}}^{n_{1}+n_{2}}
\end{aligned}
$$

Will $n_{3}+n_{2}=1, n_{1}=1-\mu, \|_{2}=r$ wr whan:
 or after simplitication:

$$
u_{1}=\left|\left(u_{1}\right)_{0}+u_{11}\right|-x^{2}\left(u_{11}-2 u_{13}+u_{23}\right)+R T \log (1-x)
$$

In analogy will (t) we maty therefore write:

$$
u_{1}=e_{1}-c_{1} T+u_{1} x^{2}+k T \log (1-x)
$$

The temms with T lug T hate not been baken into comsideration, bectane they disappean on aroomm of the expablity ot the ynambities k_{1} and R_{i} in the lipuid atnd in the solid phase.

If, for the sate of a closer approximation, we take up some higher powers of x, we linally get:

ur

$$
\begin{equation*}
T=\frac{\eta_{0}+\left(\ell_{1} r^{2}+\beta_{1} \cdot r^{3}+\gamma_{1} \cdot r^{4}\right)}{\gamma-R \operatorname{lon}\left(1-l^{\prime}\right)} \tag{6}
\end{equation*}
$$

The heat of finsion of the oolid tin in the amalyam is now planty:

$$
\begin{equation*}
q=\psi_{v}+\left(e_{1} u^{2}+\beta_{1} u^{3}+\gamma_{2} u^{4}\right) \tag{7}
\end{equation*}
$$

$$
T_{0}=\frac{y_{1}}{\gamma}
$$

so we may agatin write:

$$
T-T_{0} \frac{1+\frac{\varepsilon_{1}, r^{2}+\beta_{1} r^{3}+\gamma_{1} r^{4}}{\%_{0}}}{1-\frac{R T_{0}}{\%_{0}} \log (1-\alpha)}
$$

or with $\frac{\boldsymbol{\alpha}_{2}}{\%_{0}}=\boldsymbol{\mu}, \quad \frac{\beta_{1}}{\%_{0}}=\beta, \quad \frac{\gamma_{1}}{\%_{0}}=\gamma:$

$$
\begin{equation*}
T=T_{0} \frac{1+\left(\kappa_{r} r^{2}+\beta r^{2}+\gamma x^{4}\right)}{1-\theta \log (1-r)} \tag{8}
\end{equation*}
$$

and this is the more accurate formma, which has taken the place of the simple relation (3).
III. We will now show, that the above formula quantitatively yields the values, found by vas Heterex for ' T ', in a satisfactory manner.

As $-\binom{d T}{d, x}_{0}=T_{0} 0,0$ may be determined with great aceratey from the beximming course of the meltimpoint-line. From the values, found for $\quad T$ (on per 16 of the dissertation) for,$x=0$ atom $\%$ of merenry
 obtaned for - $\quad d^{T}$ is $=200$. From the determinations of It ExGock and Nexind belween $n=0$ and $n^{2}=0,1$ it also follows. that $-\frac{d T}{d x^{2}}=200$. For (\% way therefore take ($T_{\mathrm{n}}=505$):

$$
\theta=\frac{200}{505}=0.4
$$

I calculated the values of σ, β and γ as follows:

$$
a=0.325 ; \beta=-1.11: \gamma=1.3: \%
$$

Formula (8) thus becomes:

$$
T=T_{0} \frac{1+\left(0,325, r^{2}-1,11, r^{3}+1,33, r^{4}\right)}{1-0,4 \log (1-r)}
$$

and so we find the following values for T.
The agreement is as grod as can be expected: the difference between the calculated value of T and the observed value generally amounts to fractions of a degree, average $0^{\prime}, 8$; as regards to the absolute temperatures the deviation is only average $0,2 \%$. Only the two last values are too low (the last 3%), but then the influence of a small inaccuracy in the detemmation of the coefficients β and γ makes itself strongly felt. If we except these two last values, the calculated meltingpoint-line fully coincides with the observed line in the scale of the figure in the dissertation. And by means of a slight alteration in the value of β and γ we might perhaps cause the two last observations to agree. Let us not forget, that the formula (8) always remains an approximate one. In the last values of x the composition of the separated tin must also make its influence felt. For this is no longer pure im but contains certainly 1%, or perhaps even 6% of mercury

As regards the value of q (the heat of fusion of tin, when passing into the amalgame - when $x=0, q=q_{0}$, that is to say $=\frac{R T_{0}}{0}=\frac{1010}{0.4}=$ $=\mathbf{2 5 5 0}$ gram-cals. At 25° our formula is no longer avalable, an

r	J	\cdots	$1{ }^{10}$	$\cdots \log (1-x)$	Niluer	｜hいい曲．	$\begin{aligned} & T-\ddot{2}: 3 \\ & \text { raloul. } \end{aligned}$	$\begin{aligned} & Y-\geq 7 \% 8 \\ & \text { lin+141! } \end{aligned}$	1.
11，1101：	11，11） 1111	（1），（6）1（112	$11.11 \times 1010:+$	11． 110.418	1，Mre：	1，012\％	$\because 12,1$	$\because 11,4$	11,8
11．1711\％	（1，8r8．93	O，¢160．0．s		11，1－5，	1.1010 .1	1，17\％．\％	1！s， 1	19×16	11,3
11．2．\％	1，40，iti＂	（3）1ご＂		11.2 citios	1，1427\％	1，143：		103， 7 ？	3， 10 ？
1）， 2 （M：	11，05613	10， 2×2 20	（1，14173：	14，	1 （x）m	1，1保	17：3，8	17：3，0	$n, *$
11：がった。	い，1处		10，以ごご1	い，バー	1．111 1	1，196！	1－1．0，	1200	0，2
（1，：5M）	いとごい）	い，リッ゙リ		11，64\％${ }^{\text {a }}$		1，277\％	1：30，：	1：3， 1	$-1,1$
（1，－017\％	11：304\％	11，21：3	11．12－：3		1，01＊	1，：13\％	$110, \underline{2}$	11512	$(1,0$
11，13067	1）代以	112ごい	10．17！	1.111^{\prime}	1，1代ごっ	1，16161	1117，7	1117，	11,18
		ロ，3ばリ	11．20゙っ1	1，12．…	1，1バ；30	1，in＋11	1115，0	10：3， 4	11，6
11，4x1：3	0．价促	（1，：316	11，2に\％	1，1 1 is	1，0xtiti	1，位7\％	$100: 3,3$	112，\％	$(1,9)$
0，710＇t	0，002\％	10．3N：	いこどイ	1，2：903	1.16%	1，\％9\％7	（19），${ }^{\text {a }}$	（ 10,0	11,8
0，71，	1，．5119	0，3itis	（1）2゙ら以	1，2゙って）	1，10x 3	1， 012 H N	（n）， 2	$3 \times, 8$	0,6
0，7177	0， 0.0 .91	0，\％180	0,3126	1，3772	1，1：35	1,5009	$9-1,9$	$0.9,4$	$(1,5)$
0，75\％	$0,5 i t \ldots$	0，1299	0,0 住年	1， 00.03	1，1：983	1， $2+2$	95,1	93,0	1，1
0，796：3	0，6：8：1	0,5049	0，10こ！	1，5012	1，180\％	1，（6， 36	91.1	90，0	1，1
0，8189	0，670	1，5492	0,1497	1.7087	1，206\％	1，68：3）	88，7	88,1	0，3
$0,89 \div 1$	0，7958	0，7100	$0,633: 33$	$\underline{2,20} 66$	1，3128	1，890	7，	79,7	－2，2
0，9103	0，8093	0，80，68	0，8087	2，9623	1，1212	2,186	50，3	（i5），2	$-9,9$

aceorling to the abme table it only yields trustworthy values for＇T up to alout 90^{2} ．At $90^{\circ}, k=0,8$ ，and then，acording to（7），we have：

$$
y=y_{n} \mid 1+\left(c x^{2}+\beta x^{3}+\gamma x^{1}\right] .
$$

O° $y=y_{n}\left[1+11.32 .5 . r^{2}-1.111 r^{3}+1.333 . r^{4}\right]$.
Hat is to sily $\quad y=1.185 y_{n}=3020$ ，thamecoals．
whilst fos Hmarma（at 25＇）fombl ± 3000 gram eals，hy means of electromotive meatiorements ${ }^{2}$ ）．The eomeordance is atheolnte．

We，dinatly，wish to rematk，that ateording to the determanations
 of the temperathere of finsiont of tin on adding smath＇plamtities of
 assigned by Prasos，namely $14.25 \times 118.5=1690$ gram cals．，is mud for smatl．In a later commmaication I will show，that the heat of fosion of merems，wiven by Persos，is also many times too small．

Dece 1902．
${ }^{1}$ ）Dissertation pg． 49.
 sumface of comenct of turo slifioment mon-miscilhe liepuids, in which "dessolved atretmolyte hers" distrituted itswlf:" By Dr. J. I. vix Lask. (Commanicated by Prot. II, W. Biskitis Roozmaom.)
(Commmicated in the meeting of December $97,1902$.)

1. It has already heen demonstrated by Nersiop ${ }^{1}$? in 1892, that a potential-difference must oceme at the surface of contact of two liquids, which lie together in layers, such ats for instance water and phenol, on account of the megual distribution of the nentral molecule and the lons of a dissolved electrolyte. It is troe, that his expression for the electromotive fore relates to the case, that one of the two phases is a soliel solution, but it will be perecived at once, that the same formola also applies to our (ase ${ }^{2}$).

There is, however, at present mo prosped of obtaming direet measurements of this potential-difference ${ }^{3}$). But at Riesmateld ${ }^{4}$) hat lately been experimenting on the sulyect, althongh in another direstion, it mat be as well to give the exate theory of the phenomenon, which I worked ont about a year ago, when engaged in writing a book on electro-chemistry, which will be puhlished later.

Suppose we have a solution of $\mathrm{K}\left(1 \mathrm{in}\right.$ the solvents A_{1} and A_{2}.

If now equilibrimm has been established between the mom-dissocereted. electrically neatral portions of the dissolved K(ll in the two phases. there need not be equilibrimm between the fons in the fwo solvents. Indeed, equating the themodynamic potentials for equivalent quantities of the non-dissociated prortions in the two phaten fequiliturime of prertition), we get:

$$
\begin{equation*}
u_{K t \|_{1}}=\mu_{K t \|_{2}} \tag{1}
\end{equation*}
$$

But the two dissociation-equilibria give:

$$
\begin{equation*}
u_{K l_{1}}=u_{K_{1}}+u_{l_{1}} ; \quad u_{K_{1}}=u_{K_{2}}+u_{\gamma_{3}} \tag{2}
\end{equation*}
$$

Consequently it will suftice it

$$
\begin{equation*}
u_{K_{1}}+u_{r_{1}}=u_{K_{2}}+u_{r_{2}} \tag{3}
\end{equation*}
$$

[^89]and it womld be a shere aterdont if we also had:
$$
\mu_{K_{1}}=\mu_{K_{2}} \quad ; \quad \mu_{\mu_{1}}-\mu_{1 \%_{2}}
$$

There exists therefore ats a rule mer equitibrian of partition betwern the loms in the two solvents. For example there maty be in the second solvent relatively tow few K-lons, too many Cl-lons. Sime a system ont of equilibrimm tends 10 pass into at condition of ognilibrinn, K-lons from A_{1} will migrate $00 A_{3}$, and rematin there in the bomdary-layer, white the eorresponding liberated Cl-lons remain in the hom from A_{2} to A_{1}, whilst the corresponding liberated K-lons remain in A_{2}. Both add theniselves tor the ahove mentioned similar ions in the boumdary-layer). The consequence is the oceurence of an electrical doublelayer and therefore of a potential-difference. And it is this potential-differenee, which will restore the originally non-existing equilibrium between the loms.

All this may be put into a very simple mathematical form.
Let V_{1} be the electrical potential of A_{1}, V_{2} that of A_{3}, so that $L=V_{3}-V_{1}$ represents the potentialdifference at the boundary (in the case we are dealing with, L is therefore pusitivel, then the formula for the equilibrium of the K-lons will be:

$$
\frac{\mu_{K_{z}}-\mu_{K_{1}}}{\varepsilon} d e+\Delta d e=0
$$

which is at once obvious, when we consider the virtual passage from the left to the right over the boundary of such a quantity of K-Ions, that the quantity of electricity transported is de. As the quantities n relate to equiealemt-quantities, and ats these do not correspond with one electric unit, but with $\varepsilon(=96530)$ electric units, $\mu_{k_{3}}-\mu_{K_{1}}$ must be divided by ε.

For the equilibrium of the Cl-lons we find in the same manner:

$$
\frac{u_{1 \gamma_{2}}-u_{1} x_{1}}{\varepsilon}-\angle d e=0 .
$$

The sign at L is now negative, because on account of the negative charge the change in the electrical energy is - L did.

We therefore obtain from the two relations, after dividing by de:

$$
\begin{equation*}
L=-\frac{\mu_{\kappa_{2}}-\mu_{\kappa_{1}}}{\varepsilon}=\frac{\mu_{1 / l_{2}}-\mu_{/_{1}}}{\varepsilon} . \tag{4}
\end{equation*}
$$

That these fwo equations for Δ are not conflicting, is at once apparent. For the relation. resulting therefrom

$$
u_{K_{1}}-u_{K_{2}}=u_{1_{2}}-u_{U_{1}}
$$

leads at once to (3).

If we introduce:

$$
u=u^{\prime}+R T \log c,
$$

in which c is the conctutration of the Ions, we may also write:

$$
\left.\begin{array}{rl}
\Delta & =-\frac{1}{\varepsilon}\left[\left(\mu_{K_{2}^{\prime}}^{\prime}-\mu_{K_{1}}^{\prime}\right)+R T^{\prime} \log \frac{c_{K_{2}}}{c_{K_{1}}}\right] \\
\angle & =\frac{1}{\varepsilon}\left[\left(\mu_{\mu_{2}}^{\prime}-\mu_{u_{1}}^{\prime}\right)+R T^{\prime} \log \frac{c_{1},{l_{2}}_{2}}{c_{C_{1}}}\right] \tag{5}
\end{array}\right\} .
$$

II. Now everywhere $\mathrm{c}_{\mathrm{K}}=\mathrm{c}_{\mathrm{Cl}}$ (only in the bomdary-layer an execsis of positive or negative tons is present, owing to the formation of the doublelayer), therefore also

$$
\frac{c_{K_{2}}}{c_{K_{1}}}=\frac{c_{C l_{2}}}{c_{c_{l_{1}}}},
$$

and so we find ${ }^{1}$) by addition of the two equations (5):

$$
\begin{equation*}
\Delta=\frac{1}{2 \varepsilon}\left[\left(\mu_{\mu_{2}}^{\prime}-\mu_{\mu_{1}}^{\prime}\right)-\left(\mu_{K_{2}}^{\prime}-\mu_{K_{i}^{\prime}}^{\prime}\right)\right] \tag{6}
\end{equation*}
$$

From this last relation it follows at once, that in tritute solutions. where the quantitics μ^{\prime} are almost independent of the concentration. the pootential-difference L will be also independent of the concentration. Whether much or little KCl is distributed throngh the two solvents. we will always notice ahout the same potential-difference \triangle.

If we deduct the two equations from each other instead of adding. then we obtain (observing that $\frac{c_{K_{2}}}{c_{K_{1}}}=\frac{c_{C_{l_{2}}}}{c_{C C_{1}}}$):

$$
\begin{equation*}
R T \log \frac{c_{K_{2}}}{c_{K_{1}}}=-\frac{1}{2}\left[\left(\mu_{C_{2}}^{\prime}-\mu_{C_{1}}^{\prime}\right)+\left(\mu_{K_{2}}^{\prime}-\mu_{K_{1}}^{\prime}\right)\right] \tag{7}
\end{equation*}
$$

If now we put

$$
\begin{align*}
& u_{K_{3}}^{\prime}-\mu_{K_{1}^{\prime}}^{\prime}=R T \log K_{K} \\
& \mu_{C l_{2}}^{\prime}-u_{C l_{1}}^{\prime}=R T \log K_{C l} \tag{t}
\end{align*}
$$

in which K_{K} and $K_{r l}$ are quantities, which depend on the nature of the two solvents (and which in dilute solutions will only he funcfions of temperature) - they are the so-called purtition-coeficicionts of the positive and negative Ions - then (6) and (7) pass into

$$
\begin{equation*}
\frac{\Delta=\frac{R T}{2 \varepsilon} \log \frac{K_{C l}}{K_{K}}}{\left(\frac{c_{K_{1}}}{c_{K_{2}}}\right)^{2}=K_{K} \times K_{C l} .} \tag{ba}
\end{equation*}
$$

1) The formula (6) was given already, though with a somewhat diferent notation, by Lutier [Z. f. Ph. Ch. 19, 537 (1890)]. The first thermodynamic theory of the equilibrium of partition was given by me in a paper of 1895 (Z. f. Ph. Ch. 18. 264-267).

 lil'lu! Kin, then (io) prases into

 positive and nowate loms. Fion instane for the positive lons we shond have, when equilibrimm of patition oceus:

$$
u_{K_{2}^{\prime}}-u_{K_{1}^{\prime}}=0
$$

nr

$$
\mu_{\kappa_{2}}^{\prime}-u_{\kappa_{1}}^{\prime}+R T \ln _{1} \frac{c_{\kappa_{z}}}{c_{K_{1}}}=0
$$

so that we ohtain $\frac{c_{K_{1}}}{c_{K_{3}}}=K$. The same for the nesative Jons.
The relation, given by Nersat ${ }^{7}$)

$$
\kappa_{K} \times \kappa_{C l}=\frac{C_{1}}{r_{2}} \times \kappa_{K^{\prime} l}
$$

in which K_{KCl} is the enefticient of partition of the nemat kelmolecoules, and C_{1}^{\prime} and C_{2} are the dissocialioneonstants in the fwo phases, follows dierefly from the thermondyamical meaningry of these quatities. For if we write this relation in the form
it passes, taking into account equation (1) and the relations

$$
\begin{aligned}
& R T \log \mathrm{C}_{2}=\mu_{\mathrm{KCl}_{3}}^{\prime}-\mu_{\mathrm{K}_{3}^{\prime}}^{\prime}-\mu_{\mathrm{Cl}_{2}}^{\prime},
\end{aligned}
$$

immediately into the identity

Not the formula (5), but the formula (6) or (6 ort), lerived hy us from (5), desenves however the peterence, becanse the concentrations of the Ions have been eliminated therein, and an expression has been obtained. in which only the coefteients of partition \mathscr{K}_{K} and K_{c} occor.
III. If the dissolved electrolyte has now distributed itself so, that ${ }^{1}$) Z. f. Ph. Líl. 8, 13́s (1891).
the total concentration is c_{2} in A_{1} and c_{2} in A_{3}. We shall have:

$$
{ }^{c_{K_{1}}}=\ell_{1} c_{1} \quad ; \quad{ }^{c} K_{2}=\ell_{2} c_{2}
$$

in which the quantities c_{2} and c_{z} may be found by chemiosl analysis, and \boldsymbol{a}_{1} and \boldsymbol{a}_{3} by determinations of the conductivity. As soon ats L can be determined by experiment, $\frac{K_{\mathrm{ct}}}{K_{K}}$ may be calculated from the equation (6 ot), and $K_{k} \times K_{i}$ from (T_{1}), and we cinn therefore get to know separately the quantities K_{k} and Keq, consequently atso the quantities

$$
\mu_{K_{2}}^{\prime}-\mu^{\prime} \kappa_{1} \text { and } \mu^{\prime} C l_{2}-\mu^{\prime}\left(\eta_{2} .\right.
$$

From ($6, t$) it further follows, that Δ will be positire (as supposed in the figure), when

$$
K_{c l}>K_{K}
$$

Only when by aceident $K_{y /}=K_{K}$, \llcorner cam be 0 . In yeneral a potential difference will alurays ocew betwern two mom-miscibld solrents, when en electrolyte is partitioned between them. This potential-differenee is given by ($6 a$).

From the equation (7 (a) it follows, that the relation of the coneentrations of the Foms in the two solvents in the case of dilute solations will be practically independent of the total concentrations. This equation may also be deduced directly fiom (3). For this, being a result of (1) and (2), that is to say of the equilibrium of partition and the two equilibria of dissociation, may be written :

$$
\left(\mu_{K_{2}}^{\prime}-\mu_{K_{1}^{\prime}}^{\prime}\right)+\left(\mu_{C l_{2}}^{\prime}-\mu_{C_{1}}^{\prime}\right)=-R T\left[\log \frac{c_{K_{3}}}{c_{K_{1}}}+\log \frac{c_{C l_{2}}}{c_{C_{1}}}\right],
$$

and this after substitution passes at once into ($7 / \ell$). For

$$
\log \frac{c_{K_{2}}}{c_{K_{1}}}+\log \frac{c_{C l_{2}}}{c_{C C_{1}}}=2 \log \frac{c_{K_{2}}}{c_{K_{1}}}=-\log \left(\frac{c_{K_{1}}}{c_{K_{2}}}\right)^{2}
$$

The equations (6a) and (7a) moreover lead to an important (ronclusion.
As the quantities $K_{K^{-}}$and $K_{C l}$ are, in the ease of dilute solutions, specific quantities, we must therefore find ahout the some refues for these quantities in the case of other salts, when employing the same solvents A_{1} and A_{3}. For NaCl for instance we will hate:

$$
\Delta^{\prime}=\frac{R T}{2 \varepsilon} \log \frac{K_{c l}}{K_{\lambda a}} ; \quad\left(\frac{c_{\Delta c_{1}}}{c_{N c_{2}}}\right)^{2}=K_{N a} \times K_{\mathrm{Cl}}
$$

from which by experimental determination of L^{\prime} and the quantities ${ }^{c_{V t_{1}}}$ and $c_{\text {Nin }_{2}}$, the two quantities $K_{V a}$ and $K_{C l}$ may be determined. The value, found for $K_{\text {ri }}$ from KCl -solutions in A_{4} and A_{2}, must then be practically identiend with the value for $K_{i l}$, determined from solutions of NaCl in these solvents.

 ith the ertare of dihate sohtions. Fion instathere, in the same solvents A_{1} and A, wo mual find:

Aml the same for other eombinations.
The athene comsiderations maty be veratly extemeded to the ease of
 egnations the valencies of the lons will then also oceror, becamse He findamental relation (t) then passes into the more greneral one:

$$
L=-\stackrel{+}{+}+\frac{u_{3}-u_{1}}{+}=\frac{-u_{2}-u_{1}}{\bar{v} \varepsilon}
$$

IV. The question in how fate and in what manner the value of \angle, given in (6) or (6ia), is still dependent on the concentrations of the lons, cath only be answered, when we ealculate the values of μ° ete. with the aid of an eqnation of condition. If we aceppt the equation of ris mok Whas as ako applying to liguidphases, we ohtain for instance for the molecules n_{p} :
n_{1} stands here for the molecular mmber of the solvent. For 1 , and " we write:

$$
\begin{aligned}
& n=n_{1} l_{1}+n_{2} n_{2}+\ldots \\
& n=n_{1}^{2} n_{11}+2 n_{1} n_{2} n_{13}+2 n_{1} n_{3} n_{13}+\ldots .
\end{aligned}
$$

Let ns now callulate the value of

$$
\left(\mu_{C l_{2}}^{\prime}-\mu_{C l_{1}}^{\prime}\right)-\left(\mu_{K_{2}}^{\prime}-\mu_{K_{1}}^{\prime}\right)
$$

or, what amomes to the same, of

$$
\left(\mu_{K_{1}}^{\prime}-\mu_{C l_{1}}^{\prime}\right)-\left(\mu_{K_{2}^{\prime}}^{\prime}-\mu_{C l_{2}^{\prime}}^{\prime}\right) .
$$

If we indicate the solvent by the index 1 , the non-dissociated KCH , dissolved therein. by 2, the two lons by 3 and 4 , we obtain for $u_{K_{1}}^{\prime}-u_{C l_{1}}^{\prime}$ the expression

$$
\left.-\left(k_{3}-k_{4}\right) T(\log T-1)+\left[\left(\left(r_{3}\right)_{0}-\left(r_{3}\right)_{n}\right)-T\left(\left(\boldsymbol{r}_{3}\right)_{0}\right)-\left(\boldsymbol{v}_{4}\right)_{0}\right)\right]+
$$

$$
+h T \frac{\Sigma n_{1}}{V-b}\left(l_{2}-b_{4}\right)-\frac{2}{V}\left[n_{1}\left(a_{31}-l_{43}\right)+n_{2}\left(a_{32}-a_{42}\right)+n_{3}\left(a_{33}-a_{43}\right)+n_{1}\left(a_{34}-a_{14}\right] .\right.
$$

$$
\begin{aligned}
& u_{p}=-k_{p}, T(\log T-1)-\ln T\left(\log \frac{V-b}{n_{1}}-1\right)+\left[\left(r_{t}\right)_{0}-T\left(n_{p}\right)_{0}\right]+ \\
& +R^{\prime} T \frac{\sum n_{1}}{1-b} l_{p}-\frac{2}{V}\left(n_{2} n_{j_{1}}+n_{2} n_{p_{2}}+\ldots\right)+R^{\prime} T \log \frac{n_{p}}{n_{1}} .
\end{aligned}
$$

Remembering, that $n_{3}=n_{4}, \quad a_{34}=a_{43}$, the last term may be simplified to

$$
-\frac{2}{V}\left[u_{1}\left(u_{31}-u_{41}\right)+u_{2}\left(u_{32}-u_{42}\right)+u_{3}\left(u_{33}-u_{44}\right)\right] .
$$

For $\mu_{K_{2}}^{\prime}-\mu_{C_{2}}^{\prime}$ we find a similar expression. In this, however, the quantities k_{3}, k_{i}, the heat-rapacities of the same loms, at intinite volume) and $\left\langle e_{3}\right)_{0},\left(r_{4}\right)_{0},\left(\boldsymbol{\eta}_{3}\right)_{0},\left(\boldsymbol{\eta}_{1}\right)_{0}$ (the energy and entropy-constints of these Ions) will be exatly the same. ${ }_{33}, \alpha_{42},{ }_{33}$ and t_{14} will also remain unaltered, so that for the difference $\left(\mu_{\kappa_{1}}^{\prime}-\mu_{C_{1}}^{\prime}\right)-\left(\mu_{k_{z}^{\prime}}^{\prime}-\mu_{\left(\mu_{3}\right)}^{\prime}\right)$ we may write:

$$
\begin{aligned}
& \quad R T\left[\frac{\Sigma u_{1}}{V^{\prime}-b^{\prime}}\left(b_{3}-b_{4}\right)-\frac{\Sigma u_{1}^{\prime}}{V^{\prime}-b^{\prime}}\left(b_{3}^{\prime}-b_{1}^{\prime}\right)\right]-2\left[\left(\frac{n_{1}\left(u_{31}-a_{41}\right)}{V^{\prime}}-\frac{n_{1}^{\prime}\left(u_{31}^{\prime}-a_{41}^{\prime}\right)}{V^{\prime \prime}}\right)+\right. \\
& + \\
& \left.+\left(a_{33}-a_{42}\right)\left(\frac{n_{2}}{V^{T}}-\frac{n_{2}^{\prime}}{V^{\prime}}\right)+\left(a_{33}-a_{44}\right)\left(\frac{n_{3}}{V^{T}}-\frac{n_{3}^{\prime}}{V^{\prime}}\right)\right] .
\end{aligned}
$$

The quantities, relating to the second solvent, are indicated by aceents.

We may now go a step finther and acept ats a tirst approximation:

$$
b_{3}=b_{1}, l_{3}^{\prime}=l_{4}, c_{32}=-a_{41} .
$$

If we then also write

$$
\frac{V}{n_{1}}=v, \frac{V^{\prime}}{n_{1}^{\prime}}=v^{\prime}, n_{2}=n(1-c), \frac{n}{n_{1}}=c, \text { ett } \cdot .
$$

we finally ohtain for L :

As, in consequence of the equilibrium of partition, $\frac{\left(1-a a^{\prime} e^{\prime}\right.}{(1-a)^{c}}$ is constant, \triangle will have the form

$$
\Delta=\Delta_{v}+2(1-(t) ;
$$

or since, on acromit of the equilibrium of dissoctiation, $\frac{(\text { ece })^{2}}{(1-a) c}=$ constant, also the form

$$
\Delta=\Delta_{n}+\lambda^{\prime}\left(\boldsymbol{\alpha}_{c}\right)^{\prime \prime}
$$

Whether \triangle will be positive or negative, depends chiefly on Δ_{0}. If

$$
u_{31}-\frac{u_{41}}{r}<\frac{u_{31}^{\prime}-u_{3}^{\prime}}{u^{\prime}},
$$

Δ will be positive. We also see, that $\Delta-\Delta_{\mathrm{a}}$ will increase or decreate with the sectemel power of "c, that is to saty in the case of strongly dissociated electrolytes, where a is nearly 1 , almost with c^{2}.

Dec. 1902.

 der Gptik (Lepzais, 1900) - To make some estimate as to the order of masuitmde of a constant r, introduced by him, which is commeted in a simple manmer with one of the eonstants of Vont's theory, of which I have determined the value. Therefore 1 berg to be allowed to mention here my results and those of Drone, and to examine in how fir these results anree.

If $\mathfrak{x}, \underline{y}, 3$ are the eomponents of the electric polarisation in some medimm, Volgi assumes that every one of these components exists of a part $X, \quad 5$, Z, relating to the free ether, and a series of other puts $\mathfrak{F}_{h}, Y_{h}, 3_{h}$, indicating the state of the ponderable matter. He therefore assumes:

$$
\mathfrak{x}=\Lambda+\Sigma \mathfrak{x}_{h} \text {, etc. }
$$

A representation of the phenomena of selective athsorption, in which the inthenere of a magnetice fied with components A, l^{\prime}, C is also taken into atoount, is gathed when the sets of vector-components A, L. (' are subjected to the conditions:

The constant h_{h} appeats to be equal to $\boldsymbol{r}_{h}{ }^{2} / 4 \boldsymbol{x}^{2}$, if \boldsymbol{r}_{h} is the vibratory period of a free vibration of the absorbing medimm; I have derived the values of the comstants t_{h}, h_{h} and ε_{h} for the line H_{2}, from the results of my measurements in at paticular case (for a thame which eomtaned very mueh sodimm); the values I hate found are (evele p. 85 of m y thesis):

$$
\begin{aligned}
& 1_{h}=1 \cdot 10^{-20} ; \\
& c_{h}=0.2 \cdot 10^{-23} ; \\
& \varepsilon_{h}=7.6 \cdot 10^{-8} .
\end{aligned}
$$

The constants and ε_{h} depend on the density of the sodiumvapour in the flame, the comstant rad does not so fiar as we know.

The data which served for the ealdolation of these fonstants are the following: "fh was calculated fimm the width of the absorption-

[^90]band, which is proportional io it ; this with was abont 1 Angström Unit; ch was calentated from the magnitude of the Kwowneeffeet; for this margitude in the field which I used - of 9000 C. G. S. Units - 1 took ${ }^{1 / 30}$ part of the interval between the two sodimmlines; ε_{h} wats calculated from the value of the rotation of the plane of polarisation in the neighbourhood of the ahsorption-band; on the magnitude of this rotation ats a function of the wavelength, for different intensities of the magnetic field and different widths of the absorption-bands, I have made measurements of which the results: have been recorded in the tables given in my thesis. From these tables I shall quote one series here, giving the mmbers from which the abovementioned value of ε_{k} was deduced (ride p. 42 of my thesis, table 241):

$\boldsymbol{\delta}$	χ	$\boldsymbol{\delta}$	χ
15	88	50	11
20	51	π	10
25	31	60	9
30	23	65	8
35	18	70	6
40	14	75	7
45	12		

Here \boldsymbol{d} is proportional to the difference between the wavelength of a given kind of light and the wavelength which eorresponds with the middle of the line D_{2}; the eoefficient of proportion may be found from the face that the difference between the wavelengths of the two sodiumlines corresponds with a value $d=130 ; \%$ represents the rotation of that particular kind of light in my experiments, expressed in a unit of which the value is determined by the fact that a rotation of 180 ' corresponds with a value $\chi=105$. Thas we read from the series, given above, that for a value of d corresponding with $\frac{35}{130} \times 6 \mathrm{~A}$. U. the rotation of the plane of polarisation is $\frac{18}{105} \times 180^{\circ}$; from these corresponding numbers the value of ε_{h} is deduced in the way which I explained in my thesis.

Drcder. in his Lefurtuch der Optile which I mentioned ahove (p. 353), in his rersion of the theory of dispersion gives the equations of motion of an electron in the form:

$$
\begin{aligned}
& 441)
\end{aligned}
$$

 proment parathel on this anis of the external electrie fore acting on the eledton: r atm it atre positive comstants.

In working out the theory it appeans that Vomets constant θ_{h} is identical with the expression rit $4 . \pi$ of Jatome Now the value of it was ealenlated by brow himself (1 . 490 from the vihatory period of the sodimmlanes : lee thats the value of this censtant to le $7,6,10^{-23}$: from this value and that of Vongrs eonstant ath which I mentioned just now, we find:

$$
r=1650
$$

here we must bear in mind that this value applies to the partiondar sodiumflame to which my measurements relate; r must, as well as a_{h}, depend on the density of the sodimmsapone in the tlame.

Dred: tries in his book to fix limits, between which the valne of r must lie. He finds a lower limit by deducing from theory the proportion beween the quantity of light, wheh the ahsorhing serimmthane itself begins to emit mader the inthene of incolent radiation, and the quatuty of incident lieht whith is abourbed. This proportion he finds to be $0,126 / \%$. From the fact that reversal of a sodiumbine is possible, he conclades that this proportion mast be considerably smaller than 1 , and he therefore fixes the lower limit for the value of r by assuming:

$$
r>10 .
$$

A higher limit is found by Drtor from the consideration of the phenomenat of interference. He deduces theoretically the value of the coeflicient of damping γ of the fiee vibrations of the electron and tinds for this:

$$
\gamma=0,6 \cdot r \cdot 10^{-i}
$$

Now this coefficient must be small, as with great phase-differences interfermeephenomena wan still be ohserved. With sulimulight interferencephenomena have heen observed with a phase-difference eor-
 smaller than 1 , therefore in this case:

$$
r<100 .
$$

It is evident that this result is not at all ineompatible with the value of r which I salbulated above. In order to observe interferencephenomena with such irrat phaterdiferenoes it has heen necessay to use a source of light showing very narow sodimmlines; with
the width of the sodimmlines of which my measurements relate (which was about 1 Angstrom-(Thit) the greatest phase-diflerence with Which interferencephenomena (ran be observed is one corvesponding with 3000 wavelengths; the higher limit is therefore rased to 7000 , so that r mons in this case lie between 10 and 7000 , which it really does according to the calemations given above.
some further deduetions which can be made from the comparison of Volgt's equations with those given by Imme, have abready been given on pp. $90-95$ of $m!$ doctoral thesis, with reference to Lorestz's pitere in the Repert of the Cempris's Intromational dee Ihysigute, held in Paris in 1900 , and 1 will here only refer the reader to that part of my thesis.

Physiology. - "A new lewe concerming the velation betwsen stimulus. anel effect." V.By Dr. J. K. A. Werthem Silomosion. (Commmicated by Prof. ('. Wixklear.)

From the haw commecting excitation and effed,

$$
\begin{equation*}
E=A\left(1-\varepsilon^{-L^{\prime}} R \quad \prime\right) \tag{1}
\end{equation*}
$$

we maly obtain by differentiating

$$
\frac{d E}{d h^{2}}=A B \varepsilon^{\left.-b^{\prime} R-C\right)}
$$

or also

$$
\begin{equation*}
d I=\frac{d E}{A B} \varepsilon^{B(R-C)} \tag{ㄹ}
\end{equation*}
$$

Introducing differences instead of differentials, with this limitation that the differences shouk be very small, and baking aceording to Fecharr, ΔE, the differential sensation-threshold as a constant quantity, we obtain

$$
\begin{equation*}
\angle R=k_{1} \varepsilon^{L R} R^{2}-C_{1} . \tag{3}
\end{equation*}
$$

or, by putting the constiant $\varepsilon-B C k_{1}=k$

$$
\begin{equation*}
\angle R=k \varepsilon^{B R} . \tag{4}
\end{equation*}
$$

the latter formula contaning an expression for the absolute differential threshold-value. We might employ this formular for predhical impressions of peripheral stimuli, if the peripheral stimulus hat cansed excitation of only peripheral neurones with equal stimulation-comstatits B, and moreover if all these nemrones had been uniformly stimulated. Under a similar limitation we might also admit the validity of the formula for the relative differential threshold-value deduced from (4) by dividing both terms by l; we then obtain:

$$
\begin{gather*}
\angle l i \\
l i
\end{gather*}{ }^{\text {r }} 111 i
$$

 platt stimulus.

 the stetion of pressitue on the skins.
suppose the compressing olgeet to be in contate with a limited surfice of the skin at the moment the pressare commences. We maty dake it for sranted that all endorgaths sillathed within the limited skinsurfare in direct contate with the compressing object, undergo an equal and uniform pressime, and that in the case of this pressure being increased, its action will remain miform. To the neurones eonnected with the nerve terminations \quad, \quad, a, a, a, onir dednced law (5) may be therefore applied. As soon as the pressure increases the skin-simface will mblergo a change of shatpe and be compressed (see lig. 1). This implies that nerve-endings b, b, situated ontside of the origimally compressed surface, will ako enter into an excitatory state. If this deformation be a slight one, only the nearest end-organs b, b will be rompressed. liy increased pressme the more distanty sithated ones c°, c°, d, dete will also be stimmated. To all these end-orgaths, situated outside of the originally eompresed surfare, impulses are given, which are eombluted to the rentral nervous system. From atl the combined impresions finally results the sensation by which ome judgment is decided.

The neurones eommected with b, b c, c d, d ete. will likewise obey the kaw of stimulation and effer. The intensity of stimulus however is diflerent for all these nemrones, and alson diflerent from that for the newrones if, 1 , ${ }^{\text {a }}$. Therefore, whilst for the nemones ath, the expression

$$
a=\frac{d R_{i}}{R}=\kappa^{\varepsilon^{\varepsilon} / R R_{i}}
$$

might be emplored, we must use for the neura $b, b c, c$, l, d efe. the expression

$$
o_{1}=K^{\varepsilon^{B r_{1}}}, \quad o_{2}=r^{\frac{\varepsilon^{B}}{r_{1}}} \frac{o_{3}}{r_{3}}, \boldsymbol{K}^{\varepsilon^{B r_{2}}} \frac{r_{3}}{r_{3}} \text { etc. }
$$

As the stimuli r_{2}, r_{2}, r_{3} ete. are proportional to $l i$, we may suhstitute for these $m_{1} R, m_{2} R, m_{3} R$ ete.

The question arises next: how shall we psychically rombine these impressions in order to make use of them for the special purpose amed at by our experiment, i.e. to decide whether two stimuli are different from one another: summation or addition is ont of the question: this would be in contradiction with the experience that by fixing our attention on it definite sensation, other sensations are weakened. It is clear that we will conform our judgment to that part of the sensation that is best fit for our purpose. Starting from this fact we may continue to treat the question mathematically.

In the first place it onght to be taken into consideration, that by increment of a stimulus not at small number of new peripheral neurones are stimmated, but generally a great many. In the case of a pressme e.g. not only nerveendings lying sideways of the compressed smiface, lut also more profoundly sitnated end-organs will be acted upon by increased intensity of stimulas. For every individual neuron we shall have to put in another coefficient m. If

Fig. 2.
we construct therefore a great many anves o_{1}, o_{2}, o_{3} all these curves will only the different on aceount of the eomstant m being changed. We now suppose the limal judgment fixed cach time by a part of a farther situated cure. Thence it may be concluded, that the
emodoping rmote will represent the manner in whel a judement

$$
\begin{equation*}
r=0-K^{-\frac{t^{m} / i l}{m}} \tag{6}
\end{equation*}
$$

 futine this value into the equation $f=0$, we tiat the formata for the enveloping emve. We maty state:

$$
\begin{equation*}
\frac{d K}{d m}-\frac{R^{\circ}}{R^{\circ}} \varepsilon^{m B K} \cdot \frac{m B R-1}{m^{2}}=0 \tag{7}
\end{equation*}
$$

From which follows $m=\frac{1}{B R}$, which substituted into $\neq=0$, gives:

$$
\begin{equation*}
\boldsymbol{o}=K / B_{E} \tag{8}
\end{equation*}
$$

By this proces we have deduced from on formulat the law of Weiber.

From our deduction may he infered that the area, wheren the law of Wemser prevails, is a limited one. The validity of this law commences within the area of the enveloping carre, and a look on the figure 2, will make it eleat that the first pat of the whole sensation-curve is given ly the descending part of the curve $0=K^{-} \frac{\varepsilon^{B R}}{R}$. The horizontal pat then represents the area within the limits of which the law of Webrer prevails, whilst in the case of very great intensities of stimali the ascending part of the curve $o=K^{\frac{\varepsilon^{l i m} R}{m R}}$ will :qpeat.

There rematins still another conclnsion to be drawn from our deduefiom. This batter was fombled on the supposition that the incrementconstant $/$? was the same for all stimnlated nemrones. This, however, is highly improhable: in the most favomable cases we may only suppose that the B-coelficient of the homogenous neurones will possess appoximatively the same value, from which follows that We may admit the law of Werbr at best as an approximation.

Finally it may be mentioned here that apart from the abovedemomstated correction for obtathing an appoximation in the direetion of the law of Wharer-Feciner, pobahly still another means of correction exists in some of our sense-organs; l shall prove this in a later communcation.

Physics. - "Plecitpoints and compespomling pleits in the neightourhood of the sides of the 中-surfitee of vas der Whats." By Prof. D. J. Kortemeg.
(Gommunicaled in the Mecting of December 27,1902).
First Demeriptive Part.

1. As in my "Therorice générale des mis" ${ }^{1}$) I wish to precede in this paper the demonstrating part by a short simmary of the obtained results.

As we know a plaitpoint may oceur on the side $x=0$ of the ψ-surface of vas der Wais, ${ }^{1}$) which is represented by the equation:

$$
\begin{equation*}
\psi=-M R T \log \left(x-l_{x}\right)-\frac{d_{x}}{v}+1 / R T\{v \log d x+(1-x) \log (1-x)\} \tag{1}
\end{equation*}
$$

where:

$b_{x}=b_{1}(1-x)^{2}+2{ }_{1} b_{2}, v(1-c \cdot)+b_{2} x^{2}=b_{1}+2\left(\left(_{1} b_{2}-b_{1}\right) w+\left(b_{1}+b_{3}-2{ }_{1} b_{2}\right), w^{2}, \ldots\right.$
This occurs only in the case that the temperature ' T ' corresponds with the critical T_{k} of the principal component; but in that case it occurs always. This plaitpoint coincides with the critical point of the principal component for which $n=3 b_{1}$ and which in our figmes we shall always represent by the symbol K; the platitpoint itself will be represented by l^{\prime}.

If the temperature varies, the plaitpoint and the corresponding plait can in general behave in two quite different ways. It will namely either, as is indicated by the first four cases on fig. I of the plate, on which the (v, c) projections of the sides of the $\boldsymbol{\psi}$-surfice are represented, at increase of temperature leave the 0 -axis and move to the imer side, therefore entering the surfice, and disappear from the surface at decrease of temperature, or it will as in the last four cases of that figure, enter the surface at decrease and leave it at increase of temperature.

[^91]Amb this difioment behavinum of the phatpuiat will moressatrily be

 dotathet from ther-axis. In commortion with this they lum in the

 atso imdieated in the fixnme, where the rommonal comes are trated, the spimodal comes donted.

At decredse of temperature a figne miginates in the first foner lates ats is solmatheally wiven here in Fige. ar. At incoretese of temperature, on the contraty, in the liest four raves, the spinodal and rommodal rurves disappeat from the -urfare at the same time with the platpoint itself.

Besibles to this different hehaviom it appeared however desirable, to pay attention tolwo other ciremmstances. First (1) the direction of the tatrent in the platpoint, whether if prolonged towats the side of the lare volmmes, it inclines to the immor side of the fesurface, ats in catees 1, 2, 5 and ${ }^{6}$ of tire. 1, or whether it inclines to the meter side, ats in the romathing form cates. For on this it will depend which of the two
 we have to pay attention to the ghestion whether the plaitpoint, entering the 4 -surface, either at decrease or increase of temperature, will move towats the side of the larger volumes as in cases $1,3,5$ and \bar{r}, or whether it will move towats that of the smatler volumes as in the other cases. In connection with this question we may point out here that the line Kl' in fig 1 of the plate may everywhere be considered as a small chord of the platpoint corve of the r, ${ }^{\prime}$-diagram and accordingly indicates the initial direction of that corve, which it has when starting from point k.

The three different attematives, which we have distinguished in this wat, give rise to the eight catses represented in lig. J, and we may now raise the question on what it will depend which of these eight cases will occor at at erven prineigal component with a given

[^92]admixture; of course only in so fir as with sufferent approximation the conditions are satistied on which the derivation of the equation (I) of rax der Waids rests.
2. The answer to this question is given in the mraphical reprosentation of fig. 2. It appears, hamely, that the case which will oecer. is exclusively determined by the quantities $\frac{\frac{1}{2}_{2}}{a_{1}}=x$ and $\frac{1^{l_{2}}}{b_{1}}=\gamma$, whieh have alrealy played a prominent part in my above mentioned "Theorere sforembe dess plis."

In aecordance with this a x - and it γ-axis are assmmed in fig. 2 of the plate and the regions where the points are sithated whose x and γ-values wive rise to the appearance of each of these cases, are distinguished by different mmbers and eolours.

For instance the white region 1 indicates the r-and γ-values for which the plaitpoint enters the ψ-surface at rising temperture, moving from K to the side of the large volumes, while in the well-known way we can derive from its situation on the comodal curve on the right above the eritical point of contact R (for which the tangent to the comodal curve rums parallel with the e^{*}-axis) that the retrograde condensation will be eventnally of the second kind (i. e. with temporary formation of vapour) and also that the temporary vapour phase will have a larger amount of admixture than the permanent denser phase.

In the same way the blae field 5 indicates the γ - and the γ-values for which the plaitpoint enters the ψ-surface at decrease of temperatme, moving towards the side of the large volumes; whilst the retrograde condensation will be of the first kind and the temporary denser phase will show a smaller proportion of admixtme than the permanent vapour phase.
3. When examining this graphical representation we see at once that one of the eight regions which were it priori to be expected, region 8 , fails. From this follows that for normal substances the combination of retrograde condensation of the second kind and of a plaitpoint which enters the surface at decreasing temperature and moves towards the side of the small volumes, is not to be expected.

All the other seven regions, however, are represented in the graphical representation.
4. Further the point $x=1, \gamma=1$, is remarkable, where no less than six regions meet. This point represents really a very particular
case, mandy that in which the materobes of the atmixtmee, both
 roles of the primejal eomponem exarlly as it they were itlentieat with these latter moleconters.

If at the same time $"_{2}=a_{1}, h_{2}=h_{1}$, which is of comse not involsed in the athere suppositions, it is eaty to see that at dererase of temperature bethe the eritical tomperature the phat would suddenly appar atl over the whole beath of the w-surface.

Now it is true that arery deviation from these equalities $"_{2}=n_{1}$. $h_{x}=h_{1}$ will prevent such a way of apparance, but it is evident that then the hehaviour of platpoint and corresponding plait will depend on n_{z} and h_{z}, i.e. the first approximation for which the knowledge of x and γ is sufticient and which everywhere else sulfices to make this behaviour known to us up to at certain distance from the side of the 4 -surface, fails here.

And also atready in the neightembthot of the combination of the values $\%=1, \gamma=1$, this first approximation will be restricted, to the immediate neightowhood of the point k and of the exitical temperature T_{k} of the principal component. When we are not in that immediate neighbouthood the influence of ${ }_{2}$ and b_{2}, - of the former of these qumatities spectially, - will soon be felt. On the contrary for values of $\%$ or γ sulficiently differing from mity the romsiderations derived from the first approximation will probably be of force within pretty wide limits, at least in a qualitative sense.
5. Before proceeding to a discussion of the horder curves hetween the different regions, we will shortly point out that we camot attach an equally great importance to all the parts of the graphical representation. So all points lying left of the γ-axis relate to negative values of $1^{\prime \prime} \varepsilon_{2}$, i.e. to the case that the molecules of principal component and admixture shond repel each other, which is not likely to ocerir.

In the same way the negative values of γ, so of ${ }_{2} \gamma_{3}$, of the points below the x-axis, should be considered as having exclusively mathematical signification. If the relation, $l_{1} l_{2}=\frac{1}{2}\left(l_{1}+l_{2}\right)$, should still be applied also for very unequal values of the lis, then γ would even remain always larger than $\frac{1}{2}$ and so the part below the line $\gamma=\frac{1}{2}$ would lose its physical signification.
6. With regard to the border curves hetween the different parts, we have first to deal with the paratholic border curve separating the
regions containing blue blue, ereen, purple) from the others. It tonches the γ-ixis in the point $\%=0, \gamma=\frac{1}{2}$. Its equation is:

$$
(2 \gamma-3 x+1)^{2}-8(\gamma-x)=0
$$

or if we transfer the origin to the point $\gamma=1, x=1$ and therefore introduce the new variables: $x^{\prime}=x-1 ; \gamma^{\prime}=\gamma-1$, which brings about a simplification also for the other border curves, we get:

$$
\begin{equation*}
\left(2 y^{\prime}-3 x^{\prime}\right)^{2}-8\left(y^{\prime}-x^{\prime}\right)=0 . \tag{4}
\end{equation*}
$$

Then we have everywhere inside that parabola, so in the regions 5, 6, 7:

$$
\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)<0
$$

and outside it in the regions $1,2,3,4$:

$$
\left(2 \gamma^{\prime}-4 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)>0 .
$$

In eonsequence of this it depends on the sitnation inside or outside the parabola, whether on the corresponding 4 -surface the platpoint will enter the surface at decrestes of temperature or at incredse of temperature and whether the spinodal eurves tum their convex or their concave sides to the side $r=0$.

Fig. b. For points on the parabolic border corve the plaitpoint occuring in the point K at the critical temperature of the principal component, is to the considered as an homogeneous double plaitpoint at that moment. The projection on the r, r surface appears then as is indicated in fig. b.

How the transition to this condition takes place may be made clear by the subjoined tig. c, which represents the same projection for a temperature slightly below that of the critical temperature of the principal component for the case that the $\%$-and γ-values indicate a Fig. c. point, which is still situated in the green region 6 , but on the verge of the border curve of the yellow region 2.

Very near the platpoint I 'we find here ahrealy a second platpoint $P^{\prime \prime}$, which at further decrease of temperature soon coincides with P '.

If now the point in the green rexion approbles the border curve of the yellow region, the fwo points I comeide nearer and nearer to the critical
 temperature of the principal component and to the point K. On the border durve it takes plate in the point \mathbb{K} itself. Beyond the limit, in the yollow region, the platit of I^{\prime} does not develop any more and P^{\prime} takes the phace of l^{\prime}.
7. As recoud burder we gey in the graphical expresemation the straisht line:

$$
\begin{equation*}
2 \gamma^{\prime}-3 x^{\prime}=0 . \tag{5}
\end{equation*}
$$

It separates the regions combaining red $3,+$ and 7 , - for which $2 \gamma^{\prime}-3 x^{\prime}<0$, and where the tament in the phatpoint, contimed in the direetion of the large volumes, inclines fowath the side $r=0$ from the others, where it indines to the imer side of the tesurface.

As we saw before, this inclination determines the mature of the retrograde condensation. Son exclusively, however. For in the tirst four cases of tigure 2 the result of the same way of inclination is in this regard exactly the opposite of that in the last four cases; hence the parabolic border come ats here aloo as a separating curve; so that retograte condensation of the first kind (i.e. with temporary formation of the denser phase) ocems in the regions 3, 4, 5 and $\mathbf{6}$, in the two first with greater proportion of the admisture in the temporary phase, in the wo last the reverse, and on the contrary retrograde condensation of the second kind in the regions 1 and 2 (with a lareer propotion in the temporary less dense phase) and 7 (with a smaller proportion in that same phaze).
8. The third Imoter curve is a cubic enve with the equation:

$$
\begin{equation*}
\left(2 \gamma^{\prime}-3 \kappa^{\prime}\right)^{2}-4\left(+\gamma^{\prime}-3 \%^{\prime}\right)\left(2 \gamma^{\prime}-3 \%^{\prime}\right)+10 \gamma^{\prime}=0 . \tag{6}
\end{equation*}
$$

It consists of two branches, which possess both on one side the common asymptote:

$$
\begin{equation*}
2 \gamma^{\prime}-3 \varkappa^{\prime}-2=0 \tag{7}
\end{equation*}
$$

and which rom at the other side parabolically to intinity.
The right-side hranch, whose shape resembles more or less a parabola, touches the curve $\gamma^{\prime}=0$ in the point $\varkappa^{\prime}=0, \gamma^{\prime}=0(\kappa=1, \gamma=1)$.
between the two branches, so in the regions 2, 4 and 6:

$$
\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-4\left(4 \gamma^{\prime}-3 x^{\prime}\right)\left(2 \gamma^{\prime}-3 x^{\prime}\right)+16 \gamma^{\prime}<0 ;
$$

in all the other regions of course >0.
In the former case the tangent $K P$ to the plaitpoint-curve of the (v, x)-diagram is directed to the side of the small volumes, in the second to that of the large volumes.

If we, however, examine, whether e.g. at decrease of temperature the platpoint moves towards the large or towarts the small volumes, the parabolic border curse acts again as separating curve.

It appears then that the phatpoint moves towards the harge volumes at decrease of temperature in the regions $2,4,5$ and 7 , at increase of temperature in the others.
9. The following table gives the chameteristies for the different regions.
Kegion

2	"	>0;	"	>0;	"
3	"	>0;	"	<0;	"
4	"	>0;	"	<0;	\cdots
b	\bullet	<0;	"	>0;	"
6	"	<0;	"	<0;	"
7	"	<0;	"	<0;	"

where:

$$
\begin{equation*}
x^{\prime}=x-1=\frac{1^{a_{3}-a_{1}}}{a_{1}} ; \gamma^{\prime}=\gamma-1=\frac{b_{1}-b_{2}}{b_{1}} \tag{8}
\end{equation*}
$$

A similar tabular survey of the physical properties of the regions seems superfluous, as these properties may be immediately read from the illustrations of fig. 1 of the unfolding plate.
10. It seems not devoid of interest to know how the breadths of the regions change with regard to each other, when continually increasing values of γ^{\prime} are considered. An inquiry into this shows at once that the blue region $\check{5}$, measured along a line parallel to the x-axis, has a limiting value for the breadth of $\frac{2}{3}$. All the other regions mentioned, however, continue to increase indefinitely, and do this proportional with $\sqrt{ } \overline{\gamma^{\prime}}$ and in such a way that the yellow and the red region get gradually the same breadth and in the same way the green and the purple one, but that the breadth of the two first mentioned regions will amount to 0,732 of that of the two last mentioned.

If we also take the white region (reckoned e. g. from the γ-axis) into consideration then we find its breadth at first approximation to be proportional with γ^{\prime}, so that it exceeds in the long run the other mentioned; the orange region keeps of course an infinite breadth.

The limiting values of the ratios may therefore be represented as follows:

$$
\begin{equation*}
\frac{\text { rhite }}{\infty}=\frac{\text { yellow }}{0,732}=\frac{\text { qreen }}{1}=\frac{\text { blue }}{0}=\frac{\text { purple }}{1}=\frac{\text { red }}{0.732}=\frac{\text { orange }}{\infty} \ldots \tag{9}
\end{equation*}
$$

We may see that if we keep x constant and make γ to increase we always reach the white region, while reversively increase of $\%$ with constant γ leads tinally to the orange region. Strong attraction between the molecules of the admixture and those of the principal
 4, later volme of the molerolles of the mbixture promotes those uf calse 1 .
11. We maty emolacke thi domeriptive pat with mantioning some
 and which will be derised in the socond patt. Wo do not, however, give them as mew, ith they most asomially argee with smilar
 hypotheses are introlnmed on whidt the origimal equation of the H-surface used by no, rats. Xor doen the way in which they are derived, in which the method of the systematik development into series is fothowed. differ comsidematy fiom that of Vbasmaprem.

In these formmbe we have restrieted the mumber of motations as much as posible. They only hold at apmoximation in the neighbombood of point K^{-}and of the eritical temperature T_{k} of the principal component.

We shall list give expresions for the radii of curvature R^{\prime} gp, and R^{\prime} conn. of the projections on the (r, r - -sinfluce of the spmotal and comodal enves in the platpoint: from which appears that the radins of convature of the commodal come in the neighlemmood of the point K is at tirs approximation three times as great as that of the spinodal.

$$
\begin{align*}
R_{s p .}^{\prime} & =\frac{3}{2} b_{1}^{2}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)\right] \tag{10}\\
R_{\text {conn }}^{\prime} & =\frac{9}{2} b_{1}^{2}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)\right]=3 R_{s \gamma^{\prime}}^{\prime} \tag{11}
\end{align*}
$$

These radii of ervature are here considered as being positive when both enves hum their romex sides to the r-axis as in the cases $1-4$ of fige 1 and negative in the cases $5-7$.

We may shortly point out here that the corresponding radii of curvature on the f-surface itself, on aceount of the strong inclination of the tangential plane in the neighborhood of the r-axis, are quite different and month smaller, though the relation $1: 3$, of course
${ }^{1}$) W. H. Kerson. -Contributions to the knowledge of vas ner Wabs's '-surface. V. The dependence of the phatpoint constants on the composition in binary mixtures with small proportions of one of the components". Proc. Royad Acat. IV. p. 993-307. Leiden, Comm. plys. Lab. N". Tr)
${ }^{2}$) J. E. Verschaffelt. Contributions to the knowledge of vis der Wals, $\%$-surface. VII. The egruation of state ath the '-surface in the immediate neighbourhood of the critical state for binary mixlues with a small proportion of one of the componeats". Proc. Rugal Acad. V, p. 321-300, Luiden, Comm. Phys, Lab. N". 81.
contimes to exist. They even berome sob when the platpoint eomedes with the eritical point $ん$, so that both curves have then a cusp.
12. The knowledge of the radins of corvature h^{\prime} com. is of importance specially becanse it may be used in comnection with the formata:

Fig. d.

$$
\begin{equation*}
t_{1} \mu=\mu=\frac{1}{4 b_{1}}\left(\because \gamma^{\prime}-3 x^{\prime}\right) x_{p}, \cdots \quad \cdot \quad . \tag{12}
\end{equation*}
$$

through which we know the small angle which the tangent of the platpoint forms with the r-axis, to calculate in a very simple way the differences in density and volume between the phases of the platpoint l ' and the critical proint of contact R at first approximation ${ }^{1}$).

Aceording to tig. d we have, within the indiated limit of accoracy :

$$
\begin{align*}
& x_{i^{\prime}}-k_{R}=R Q=\frac{1}{2} \mu^{2} l_{\text {conn. }}^{\prime}=\frac{9}{64}\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}\left[\left(2 \gamma^{\prime}-3, x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)\right] r^{2}{ }_{D^{2}} . \tag{13}
\end{align*}
$$

13. We proced now to give the formulac relating to the plaitpoints phase at a temperature T, which does not differ much firom the eritical temperature T_{k} of the principal component.

They are:

$$
\begin{align*}
& { }^{{ }^{P}}=\frac{4}{\left(2 \gamma^{\prime}-3 \alpha^{\prime}\right)^{2}-8\left(\gamma^{\prime}-\alpha^{\prime}\right)} \cdot \frac{T-T_{k}}{T_{k}} . \tag{15}\\
& r_{p}-3 b_{1}=\frac{3}{8} h_{1}\left\{\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-4\left(4 \gamma^{\prime}-8 x^{\prime}\right)\left(2 \gamma^{\prime}-3 x^{\prime}\right)+16 \gamma^{\prime}\right\} x_{p} \text {. } \tag{16}\\
& \frac{I^{\prime} P^{-}-P_{k}}{\rho^{\prime} k}=\left\{\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-4 \gamma^{\prime}+2 x^{\prime}\right\},{ }_{P} \tag{17}
\end{align*}
$$

By means of (15) we may transform (13) and (14), so that they hecome:

$$
\begin{equation*}
r_{l^{\prime}}-r_{k}=\frac{9 b_{2}}{2}\left(2 \gamma^{\prime}-3 x^{\prime}\right) \frac{T-T_{k}}{T_{k}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{p}-u_{R}=\frac{9}{16}\left(2 \gamma^{\prime}-3 \varkappa^{\prime}\right)^{2} d_{P} \frac{T-T_{k}}{T_{k}} . \tag{19}
\end{equation*}
$$

[^93]lo which we add:
14. We shall comelude with stiving some formolate relating to coexisting phases, where the index ane refers lo the lignid-, the index tero to the gat phate. Where the index fails, we may abhtraty take the value for the whe or for the other coexisting phase; eithere beeatase it is indifferent at the degree of approximation used, or lecouse the formula will equally hold for cither state.
\[

$$
\begin{align*}
& r_{1}=3 h_{1}-3 k_{1} \downarrow-4 \frac{T-T_{k}}{T_{k}}+\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-8\left(\gamma^{\prime}-x^{\prime}\right)\right] . x . \tag{21}\\
& r_{2}=3 k_{1}+3 k_{1} \downarrow-4 \frac{T-T k}{T_{k}}+\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-8\left(\gamma^{\prime}-\kappa^{\prime}\right) \mid \cdot c .\right. \tag{22}\\
& \frac{\mu-P^{\prime} k}{\mu^{\prime} k}=4 \frac{T-T_{k}}{T_{k}^{\prime}}+2\left(2 \gamma^{\prime}-3 x^{\prime}\right) x \tag{23}\\
& c_{x}-x_{1}=\frac{1}{4 b_{2}}\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(r_{2}-v_{1}\right) \cdot x . \tag{24}
\end{align*}
$$
\]

$$
\begin{align*}
& \frac{1}{2}\left(r_{2}+r_{1}\right)-3 k_{1}=-\frac{5 t}{5} b_{1} \frac{T-T_{k}}{T k}+3 k_{1}\left\{\frac{7}{5}\left[-\gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)\right]+ \\
+ & \frac{1}{s}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-24\left(\gamma^{\prime}-x^{\prime}\right)\left(2 \gamma^{\prime}-3 x^{\prime}\right)+16\left(3 \gamma^{\prime}-2 x^{\prime}\right)\right] \tag{25}
\end{align*}
$$

in whieh formula (23) holds also for non-eoexisting phases.

SECOND DEMONSTRAT1NG PART.

Tramsoformuthon of the ψ-surfiece and preliminery development inte servis.
15. We bexin with a fatusformation of the 4 -surfare by introducing the following variables:

$$
c^{\prime}=\frac{c-3 b_{1}}{3 b_{1}} ; \quad t^{\prime}=\frac{T^{\prime}-T_{k}}{T_{k}} ; \quad \boldsymbol{\psi}^{\prime}=\frac{\boldsymbol{\psi}}{M R T_{k}^{\prime}}
$$

which means that we hemeforth measme the volume v^{\prime} from the eritical volume and with that volume as unit, the temperature in the same way with regard to the critical remperature $T_{k}={ }_{2}{ }_{20} b_{1}, M a_{1}$ and the free energy ψ^{\prime} with MRTE as unit.

If we moreover put:

$$
\begin{equation*}
\frac{{ }_{1} a_{2}-a_{1}}{a_{1}}=x^{\prime} ; \quad \frac{{ }_{1} b_{2}-b_{1}}{b_{1}}=\gamma^{\prime} ; \quad \frac{a_{3}-a_{1}}{a_{1}}=\lambda^{\prime} ; \quad \frac{b_{3}-b_{1}}{b_{1}}=\sigma^{\prime} ; \tag{27}
\end{equation*}
$$

we find easily from (1), (2) and (3) for the equation of the new surfice: ${ }^{1}$):
$\boldsymbol{\psi}^{\prime}=-\left(1+t^{\prime}\right) \log 3 u_{1}\left(b_{x^{\prime}}^{\prime}+v^{\prime}\right)-\frac{\pi_{x}^{\prime}}{1+v^{\prime}}+\left(1+t^{\prime}\right)\left\{x \log \cdot x+\dot{+}\left(1-x^{\prime}\right) \log (1-x)\right\}$,
where

$$
\begin{align*}
& u_{x^{\prime}}^{\prime}=\frac{9}{8}+\frac{9}{4} x^{\prime} x-\frac{9}{8}\left(2 x^{\prime}-\lambda^{\prime}\right) x^{2} \tag{29}\\
& b_{x}^{\prime}=\frac{2}{3}-\frac{2}{3} \gamma^{\prime} x+\frac{1}{3}\left(2 \gamma^{\prime}-d^{\prime}\right) x^{2} \tag{30}
\end{align*}
$$

further:

$$
\begin{equation*}
p=-\frac{\partial \psi^{\prime}}{\partial c}=-\frac{M R T_{k}^{\prime}}{3 b_{1}} \cdot \frac{\partial \psi^{\prime}}{\partial v^{\prime}}=-\frac{8}{3} P_{k}^{\prime} \frac{\partial \psi^{\prime}}{\partial v^{\prime}} . \tag{31}
\end{equation*}
$$

16. For investigations in the neighboubood of the sides it is desirable to develop the expression for ψ^{\prime} so far as possible ateording to the porers of x^{2}. We write therefore:

$$
\begin{equation*}
\psi^{\prime}=\left(1+t^{\prime}\right) \cdot v \log x+\chi_{0}+\chi_{1} \cdot x+\chi_{2} x^{3}+\ldots \tag{32}
\end{equation*}
$$

where in finite form ${ }^{2}$)

$$
\begin{align*}
& \%_{0}=-\left(1+t^{\prime}\right) \log b_{1}\left(2+3 v^{\prime}\right)-\frac{9}{8\left(1+r^{\prime}\right)} \cdot \cdot . \quad . \tag{33}\\
& \chi_{1}=\left(1+t^{\prime}\right)\left(\frac{2 \gamma^{\prime}}{2+3 v^{\prime}}-1\right)-\frac{9 x^{\prime}}{4\left(1+v^{\prime}\right)} \cdot . \quad \cdot \quad . \quad . \tag{3.4}\\
& \chi_{2}=\left(1+t^{\prime}\right)\left[\frac{2 \gamma^{\prime 2}}{\left(2+3 v^{\prime}\right)^{2}}-\frac{2 \gamma^{\prime}-{\theta^{\prime}}^{2}+3 v^{\prime}}{2+\frac{1}{2}}\right]+\frac{9\left(2 \varkappa^{\prime}-\lambda^{\prime}\right)}{8\left(1+v^{\prime}\right)} . \tag{35}
\end{align*}
$$

${ }^{1}$) If we wanted to consider a_{x} as function of the temperature, the simplest way of doing this would be by writing the second term of the second member: $\frac{a_{x}^{\prime}\left(1+\varepsilon_{1} t^{\prime}+\varepsilon_{2} t^{\prime 2}+\ldots\right)}{1+v^{\prime}}$. The formula $T_{k}=\frac{8 a_{1}}{27 b_{1}, 1 / R}$ would continue to hold ummodified for the critical temperature of the principal component. provided we take for ${ }^{\prime}{ }_{1}$ the value it has at that critical temperature. With Citarsus" hypothesis that a_{5} is inversely proportionate to η, we shonld get $\varepsilon_{1}=-1 ; \varepsilon_{2}=+1$. Also (29) continues to hold and the modifications in the developments into series and in the formulae derived from them would be easy to apply.
${ }^{8}$) In this form they may be used for investigations concernins the conditions at the side ol the ψ-surface at temperatures greatly differing from the critical temperature of the principal component, as are made by Keesom: Contributions to the knowledge of the ψ surface of van der Waals. VI. The increase of pressure at condensation of a substance with small admixtures. Proc. Royal Acad. IN, p. 659668 ; Leiden, Comm. phys. Lab. $\mathrm{N}^{0} .79$.
or after development into series will repere to the powers of r^{\prime} :

$$
\begin{align*}
& +\frac{!}{64}(1+94) r^{n 4}-\frac{63}{164} r^{23}+\cdots \tag{36}\\
& x_{1}=(1+\prime)\left(\gamma^{\prime}-1\right)-{ }_{4}^{!} \times-{ }_{4}^{3}\left\lfloor\left(-\gamma-3 x^{\prime}\right),-\gamma^{\prime} t^{\prime}+\right. \\
& +\frac{9}{4}\left[\left(\gamma^{\prime}-x^{\prime}\right)+\gamma^{\prime} t^{\prime}\right] r^{\prime 3}-\frac{9}{8}\left(3 \gamma^{\prime}-2 x^{\prime}\right) r^{\prime 2}+\ldots . \tag{37}\\
& \%_{2}=\frac{1}{2}\left(1+t^{\prime}\right)\left[\left(1-\gamma^{\prime}\right)^{2}+\boldsymbol{f}^{\prime}\right]+{ }_{8}^{9}\left(2 x^{\prime}-x^{\prime}\right)-{ }_{8}^{3}\left(4 \gamma^{\prime 2}-4 \gamma^{\prime}+y^{\prime} d^{\prime}+6 x^{\prime}-3 x^{\prime}\right) x^{\prime}+\ldots \tag{38}
\end{align*}
$$

for which lata expression we write:

$$
\begin{equation*}
\%_{2}=\sigma_{n}+\sigma_{1} i+\sigma_{3} i^{\prime}+\ldots \tag{:39}
\end{equation*}
$$

Determinution of the platituent and chassinicatiom of the disierent possilhe erraes.
17. For caldubating the coordinates $r^{\prime \prime}$, and \boldsymbol{t}^{\prime}, of the plaitpoint we have the following relations: ${ }^{2}$)

$$
\begin{gather*}
m^{\prime 2} \psi^{\prime}+\frac{\partial^{2} \psi^{\prime}}{\partial r^{\prime}}+\frac{\partial r^{\prime} \partial r^{\prime}}{\partial r^{\prime}}=0 \quad . \quad . \quad . \tag{40}\\
m \frac{\partial^{2} \psi^{\prime}}{\partial r^{\prime} \partial r^{\prime}}+\frac{\partial^{2} \psi^{\prime}}{\partial r^{\prime 2}}=0 \quad . \quad . \quad . \quad . \quad . \tag{41}\\
m^{3} \frac{\partial^{3} \psi^{\prime}}{\partial r^{\prime 2}}+:^{3} m^{2} \frac{\partial^{3} \psi^{\prime}}{\partial r^{\prime}}+2 r^{\prime 2}+\therefore \frac{\partial^{3} \psi^{\prime}}{\partial r^{\prime 2}} \frac{r^{\prime}}{\partial r^{\prime}}+\frac{\partial^{3} \psi^{\prime}}{\partial r^{\prime 3}}=0 \quad . \tag{42}
\end{gather*}
$$

Where in represems *) the fagent of the amgle formed by the ($\left.e^{\prime}, x\right)^{2}$ projection of the common bathent of spinodal and comodal enve in the platituint with the 0^{\prime}-axis.

If by means of (32), (36) and (37) we introdnce in these equations evervohere the values of the differential quotients at first approximation, in which, as appeas, m, r_{p}, and $\varepsilon^{\prime}{ }_{p}$, may be treated as suall quantities of the same order, we find:

$$
\begin{equation*}
\frac{m}{r_{p}}-{ }_{4}^{3}\left(2 \gamma^{\prime}-3 x^{\prime}\right)=0 \tag{43}
\end{equation*}
$$

[^94]\[

$$
\begin{array}{r}
-\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right) m+\frac{9}{4} t^{\prime}+\frac{9}{2}\left(\gamma^{\prime}-x^{\prime}\right) x_{p}=0 \quad . \quad . \\
-\frac{m^{3}}{x^{2}}+\frac{27}{2}\left(\gamma^{\prime}-x^{\prime}\right) m-\frac{27}{4} t^{\prime}+\frac{27}{8} v_{p^{\prime}}^{\prime}-\frac{27}{4}\left(3 \gamma^{\prime}-2 x^{\prime}\right) c_{p}=0
\end{array}
$$
\]

from which it is easy to deduce:

$$
\begin{gather*}
m=\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right) x_{P}, \quad . \quad . \quad . \tag{46}\\
x_{P}=\frac{4}{\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)} t^{\prime}, . . \tag{47}\\
\varepsilon_{P}^{\prime}=\frac{1}{8}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-4\left(4 \gamma^{\prime}-3 x^{\prime}\right)\left(2 \gamma^{\prime}-3 x^{\prime}\right)+16 \gamma^{\prime}\right] x_{p^{\prime}}, \cdot \tag{48}
\end{gather*}
$$

The formmae (12), (15) and (16) of the first descriptive part of this paper may be derived from these formulae by means of the reverse transformation into the original t-surface with the aid of the formulae (26). Applying equation (31) we may also derive formula (17). In the course of this we get first at formula (23), which is given at the end of the descriptive part as serving also for the calculation for coexisting phases. The last statement might be objected to, because for those phases not ϑ^{\prime} but $v^{\prime 2}$ is a quantity of the same order as x and t^{\prime}; but this objection loses its force when we observe that in $\frac{\partial \psi^{\prime}}{\partial v^{\prime}}$ no term occurs with $v^{\prime 2}$ alone.
18. From these formulac (46), (47) and (48) follows now immediately the classification of the plaitpoints according to the eight eases and all the particularities of the corresponding graphical representation, as described in § 2-9. It is only necessatry to say a few words about the construction of the coble border corve.

$$
\begin{equation*}
\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-4\left(4 \gamma^{\prime}-3 x^{\prime}\right)\left(2 \gamma^{\prime}-3 x^{\prime}\right)+16 \gamma^{\prime}=0 . \tag{49}
\end{equation*}
$$

A closer examination of this equation shows, namely, that the curve prossesses a double point, i.e. The point at infinity of the statight line $2 \gamma^{\prime}-3 x^{\prime}=0$. A simple parameter representation is therefore possible and it is really obtained by patting

$$
\begin{equation*}
\because \gamma^{\prime}-3 x^{\prime}=s \tag{50}
\end{equation*}
$$

from which follows:

$$
\begin{equation*}
s^{3}-4 s\left(s+2 \gamma^{\prime}\right)+16 \gamma^{\prime}=0 \tag{5l}
\end{equation*}
$$

hence:

$$
\gamma^{\prime}=\frac{s^{2}(s-4)}{8(s-2)} \quad ; \quad x^{\prime}=\frac{s^{3}-8 s^{2}+8 s}{12(s-2)}
$$

The proints of the lefteside hrabrh ate then given hy the values of: Inelween $+x$ athe 2 , these of the righoside hranch the the whers.
 asymphote:

$$
\begin{equation*}
\ddot{z} y^{\prime}-3 x=\ddot{x} \tag{53}
\end{equation*}
$$

19. Nor do we meet with athy dillienties in the radentation of the breadth-relations of the regions for very latye values of γ° menfioned in \$ 10.
for the coubic cource we may put:

$$
\begin{equation*}
3 \varkappa^{\prime}=9 \gamma^{\prime}+h \vee \gamma^{\prime} \tag{5.4}
\end{equation*}
$$

Homogh which its equation patses into:

$$
\begin{equation*}
\left(-k^{3}+8 k\right) V \gamma^{\prime}+16-4 k^{2}=0 \tag{55}
\end{equation*}
$$

from which appears that for very large values of γ^{\prime} we find $-212,0$ and +212 for k. We get Hacrefore for the lefiside batuch of the robne fare approximately:

$$
\begin{equation*}
\varkappa^{\prime}=\frac{\ddot{2}}{3} \gamma^{\prime}-\stackrel{\ddot{3}}{3} V^{\prime} \cdot V \gamma \tag{56}
\end{equation*}
$$

and for that on the right-side:

$$
\begin{equation*}
x^{\prime}=\frac{2}{3} \gamma+\frac{2}{3} v^{\prime}-v^{\prime} \gamma \tag{57}
\end{equation*}
$$

while of course the middle hranch with asiomphote corresponds with $k=0$. For this branch we have:

$$
\begin{equation*}
x^{\prime}=\frac{2}{3} \gamma^{\prime}-\frac{2}{3} \tag{58}
\end{equation*}
$$

In a similar way we find for the parabolic border curve:

$$
\begin{equation*}
\varkappa^{\prime}=\frac{2}{3} \gamma^{\prime} \pm \frac{2}{3} V \cdot V \cdot \gamma^{\prime} . \tag{59}
\end{equation*}
$$

Taking this into consideration we may equate the breadth of the yellow region at intinity to $\frac{2}{9}(3-\sqrt{9}) V \cdot 2 \cdot \gamma^{\prime}$, that of the green One to $\frac{2}{9} \sqrt{6} \cdot \sqrt{ } \gamma^{\prime}$, that of the bue one to $\frac{\frac{2}{3}}{3}$, that of the purple One again to $\frac{2}{9} \sqrt[V]{ } / \zeta^{\prime} \gamma^{\prime}$ and that of the red one to $\frac{2}{9}(3-V / 3) / 2 . V^{\prime}$ from which the relatioms of equation (9) easily follow, while $13-1=0.732$.

The spinodal curve.
20. The equation of the spinodal curve is found by elimination of m from (40) and (41). We must, however, take into account, when writing these two equations, that v^{\prime} along the spinodal curve must be considered to be of the order V, x, so that the terms with $v^{\prime 2}$ must also be taken into consideration.

We get then:

$$
\begin{equation*}
\frac{m}{x_{s p} .}-\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right)=0 . \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right) m+\frac{9}{4} t^{\prime}+\frac{27}{16} v_{2 y^{\prime 2}}^{2}+\frac{9}{2}\left(\gamma^{\prime}-x^{\prime}\right) x_{s p .}=0 . \tag{61}
\end{equation*}
$$

from which follows for the equation of the spinodal curve:

$$
\begin{equation*}
v_{s p .}^{\prime \prime 2}-\frac{1}{3}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right)\right] x_{s p .}+\frac{4}{3} t^{\prime}=0 \tag{62}
\end{equation*}
$$

This is, however, its equation on the ψ^{\prime}-surface. In order to know it on the original $\boldsymbol{\psi}$-surface, we must transform it with the aid of (26) into
$\left(v_{s p .}-3 b_{1}\right)^{2}-3 b_{1}{ }^{2}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{2}-8\left(\gamma^{\prime}-x^{\prime}\right) \mid w_{s p .}+12 b_{1}{ }^{2} t^{\prime}=0 . ~ .(63)\right.$
For that of the circle:

$$
\left(v-3 b_{1}\right)^{2}+(x-l i-d)^{2}=R^{2}, \quad(d \text { small })
$$

we may write with the same approximation:

$$
\left(v-3 b_{1}\right)^{2}-2 R x+2 R \delta=0 .
$$

from which we may immediately derive the expression (10) for the radius of curvature of the (r, x) projection of the spmodal curve.

The two first comondal relations. Effuation of the comnodal carve.
21. We shall now take $P_{1}\left(r_{1}, r_{1}^{\prime}\right)$ and $P_{2}^{\prime}\left(r_{2}, r_{2}^{\prime}\right)$, for which $v_{3}^{\prime}>v_{1}^{\prime}$, as denoting two corresponding comodes.

We put then:
$\varepsilon_{1}^{\prime}=v^{\prime \prime}-\eta ; \quad v_{1}^{\prime}=v^{\prime \prime}+\eta ; \quad x_{1}=x^{\prime \prime}-\boldsymbol{s}_{\eta} ; \quad x_{2}=v^{\prime \prime}+\xi_{l} ;$
hence:
$r^{\prime \prime}=\frac{1}{2}\left(v_{1}^{\prime}+v_{2}^{\prime}\right) ; \quad \eta=\frac{1}{2}\left(v_{2}^{\prime}-v_{1}^{\prime}\right) ; \quad x^{\prime \prime}=\frac{1}{2}\left(x_{1}+w_{2}\right) ; \quad \xi=\frac{w_{2}-x_{1}}{v_{2}^{\prime}-v_{1}^{\prime}} ;(6 \dot{5})$
where therefore $\left(x^{\prime \prime}, v^{\prime \prime}\right)$ indicates a point halfway between the two comodes and $\stackrel{\xi}{ }$ denotes the tangent of the angle which the projection on the $\left(r^{\prime}, x^{\prime}\right)$-surface of the join of the romodes forms with the v^{\prime}-axis.

It is then asy to athicipate, and it in combimed hy the caldala-
 ate of the same orter with rath mhere and with t^{\prime}; on the contrary not y but 3^{2} is of this sime order:
22. Thking this into comsideration the first comodal relation:

$$
\begin{equation*}
\frac{\partial \mathbf{w}_{2}}{\partial r_{2}}=\frac{\partial \boldsymbol{w}^{\prime}}{\partial c^{\prime}} . \tag{ibi}
\end{equation*}
$$

yields at tirst approximation:
$\operatorname{lon}\left(x^{\prime \prime}+5_{j}\right)-\frac{: 3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(x^{\prime \prime}+y_{i}\right)=\log \left(x^{\prime \prime}-y_{6}\right)-\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(c^{\prime \prime}-v_{i}\right)$.
or also, subtranting on either side leg $a^{\prime \prime}$:

$$
\begin{equation*}
\operatorname{lin}\left(1+\frac{\ddot{\Xi} \eta}{r^{\prime \prime}}\right)-\frac{3}{2}\left(2 \gamma^{\prime}-3 \%^{\prime}\right) y=\log \left(1-\frac{\tilde{\xi} \eta}{c^{\prime \prime}}\right) \tag{68}
\end{equation*}
$$

or, as $\frac{E_{i}}{\prime \prime}$ is a small quantity of the order of z^{\prime}, we get after development inta, series and division by y_{y} :

$$
\begin{equation*}
\xi=\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right) \cdot c^{\prime \prime} \tag{69}
\end{equation*}
$$

in which we shorty point out that this formula passes into formula $(\mathbf{6})$ in the phatpoint, and further that it leads immediately fo formula (24) of the desoriphive part.

In the same way the secoud ${ }^{2}$) comodal relation:

$$
\begin{equation*}
\frac{\partial \mathbf{u}^{\prime}}{\partial r_{2}^{\prime}}=\frac{\partial \mathbf{w}^{\prime}}{\partial r_{1}^{\prime}} . \tag{79}
\end{equation*}
$$

yields at approximation:

$$
\begin{align*}
& -\frac{3}{8}-\frac{3}{2} t^{\prime}+\frac{9}{4} t^{\prime}\left(c^{\prime \prime}+1_{i}\right)+\frac{9}{16}\left(x^{\prime \prime}+1_{i}\right)^{2}-\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(x^{\prime \prime}+5 y_{i}\right)+ \\
& +\frac{9}{2}\left(\gamma^{\prime}-\varkappa^{\prime}\right)\left(c^{\prime \prime}+\eta_{i}\right) c^{\prime \prime}=-\frac{3}{8}-\frac{3}{2} t^{\prime}+\frac{9}{4} t^{\prime}\left(x^{\prime \prime}-\eta_{j}\right)+\frac{9}{16}\left(x^{\prime \prime}-v_{i}\right)^{3}- \\
& -\frac{3}{4}\left(2 \gamma^{\prime}-3 \varkappa^{\prime}\right)\left(x^{\prime \prime}-\xi^{\prime} \gamma^{\prime}\right)+\frac{9}{2}\left(\gamma^{\prime}-x^{\prime}\right)\left(c^{\prime \prime}-\gamma_{i}^{\prime \prime}\right) x^{\prime \prime}, . \tag{71}
\end{align*}
$$

$o r$, after reduction and division by \boldsymbol{r}_{j} :
${ }^{1}$) We must here have recourse to the terms of the orter $t^{\prime}=\frac{y^{3}}{}{ }^{3}$, as all those of lower order cancel each other. For the sake of clearness we have kept $\left(t^{\prime \prime}+\boldsymbol{y}\right)$ and also $\left(r^{\prime \prime}-\mathbf{y}_{6}\right)$ tonether, thongh it is evident, that we may write e.g. for $\left(r^{\prime \prime}+\boldsymbol{y}\right)^{3}$ at once \boldsymbol{y}^{3} on account of the difference in order of $r^{\prime \prime}$ and \boldsymbol{y}.

$$
\begin{equation*}
\left.\frac{9}{2} t^{\prime}+\frac{9}{8} y^{2}-\frac{3}{2}\left(2 y^{\prime}-i x^{\prime}\right) \xi-1+y^{\prime}-x^{\prime}\right) x^{\prime \prime}=0, \ldots \tag{枳}
\end{equation*}
$$

from which follows in comection with (69):

$$
\begin{equation*}
\left.\eta^{2}-\mid\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-8\left(\gamma^{\prime}-x^{\prime}\right)\right] \cdot x^{\prime \prime}+4 t^{\prime}=0 \tag{73}
\end{equation*}
$$

23. This formula yields at once the ratlins of eurvature of the (r, r)-projection of the comotal curve. We need only observe that according to definition:

$$
\begin{equation*}
r_{\text {conn. }}^{\prime}=r^{\prime \prime} \pm \eta ; \quad x_{r o m n}=r^{\prime \prime} \pm \xi_{\eta} ; \tag{7.4}
\end{equation*}
$$

so at first approximation :

$$
\begin{equation*}
\eta= \pm v_{c o m n,}^{\prime}= \pm \frac{r_{c o m n .}-3 b_{1}}{3 b_{1}} ; \quad a^{\prime \prime}=x_{c o m n} . \tag{75}
\end{equation*}
$$

Substitution of these last relations in (73) now yields immediately the equation of the comoral conve and in exactly the same way ats for the spinodal curve we find from it the value of the radius of curvature $R_{\text {conn }}$ given in formula (11). A further explatation of the way in which the knowledge of this value leads to the formulae (13) and and (14) need not be given here, nor need we explain the derivation of the formulae (18) and (19), (21) and (22).

But the derivation of formula (20) will detain us for a moment: we require, namely, for it a more accurate expression for p than that given in formula (23). If we therefore develop (31) as far as needful for the purpose, we find ${ }^{1}$):
$p=-\frac{8}{3} p_{k}\left(-\frac{3}{8}-\frac{3}{2} t^{\prime}+\frac{9}{4} t^{\prime} x^{\prime}-\frac{3}{4}\left(2 y^{\prime}-3 x^{\prime}\right), x+\frac{9}{2}\left(y^{\prime}-x^{\prime}\right) x^{\prime}, r\right),(76)$ or:

$$
\begin{equation*}
\frac{p-p_{k}}{p_{k}}=4 t^{\prime}-6 t^{\prime} x^{\prime}+2\left(2 \gamma^{\prime}-3 x^{\prime}\right) x^{\prime}-12\left(\gamma^{\prime}-x^{\prime}\right) x^{\prime}, \cdots \tag{77}
\end{equation*}
$$

thence:

$$
\frac{p_{p}-P_{R}}{p_{k}}=-6 t^{\prime}\left(v_{P}^{\prime}-v_{R}^{\prime}\right)+\underline{2}\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(w_{p}-r_{R}^{\prime}\right)-12\left(\gamma^{\prime}-x^{\prime}\right)\left(r_{P}^{\prime}-r_{R}^{\prime}\right) r_{P}^{\prime}(78)
$$

for, with regard to the last term, the difference of x_{P} and x_{R} is slight compared to that between r_{P}^{\prime} and r_{R}^{\prime}.

[^95]It is mow raty to fimel:

$$
\begin{equation*}
r_{p^{\prime}}-{ }_{k}=\frac{1}{2} m\left(r_{p}^{\prime}-r_{R^{\prime}}^{\prime}\right)={ }_{8}^{3}\left(r^{\prime}-i x^{\prime}\right) \cdot r_{p^{\prime}}\left(r_{p}^{\prime}-r_{k}^{\prime}\right), \tag{5!3}
\end{equation*}
$$

vither hy paying attention to the faet that we hase in digy. d, § 12 (see the first desorptive part), if applied to the (r^{\prime}, er) - liatram, wilh a suftioient decree of approximation:

$$
R Q=P Q \cdot t \cdot R Q=I Q \cdot t \frac{1}{2} u=\frac{1}{2} \cdot P Q \cdot \tan =\frac{1}{2} \cdot 1 Q \cdot m
$$

or by application of the formulate (18) and (14), observingr that $r_{P}-r_{R}=3 b_{2}\left(c_{p}^{\prime}-r_{i}^{\prime}\right)$.

This yiclds hy substitution in (78):
or finally shbthming for t^{\prime} its value from ($\mathbf{4 7}$):

from which we immediately derive formola (20), applying (18).

The third commolal relation.

24. We have now obtained the principal formulac. For the sake of completeness, however, we shall treat here atso the third conmodal relation, the more so as this leads to a new determination of the formulae (47) and (48), which puts the former to the test.

This thire relation reads:

$$
\begin{equation*}
\psi^{\prime}{ }_{3}^{\prime}-r_{3} \frac{\partial \psi_{3}^{\prime}}{\partial{r_{2}}_{2}^{\prime}}-r_{3}^{\prime} \frac{\partial \psi^{\prime}}{\partial r_{2}^{\prime}}=\boldsymbol{\psi}_{1}^{\prime}-x_{1} \frac{\partial \psi_{1}^{\prime}}{\partial r_{1}}-r_{1}^{\prime} \frac{\partial \psi_{1}^{\prime}}{\partial r_{1}^{\prime}} . \tag{82}
\end{equation*}
$$

We first transform $\psi^{\prime}-c^{\prime} \frac{\partial \psi^{\prime}}{\partial r^{\prime}}-r^{\prime} \frac{\partial \psi^{\prime}}{\partial e^{\prime}}$, with the aid of (32). It proves to be necessury to keep all terms up to the order ti or 3 . So we find:

$$
\begin{equation*}
\boldsymbol{r}^{\prime}-\frac{\partial \psi^{\prime}}{\partial r^{\prime}}-r^{\prime} \frac{\partial \psi^{\prime}}{\partial r^{\prime}}=-\left(1+r^{\prime}\right) r+\%_{n}-r^{\prime \prime} \%_{n}-r^{\prime}, r^{\prime} \partial \%_{1}-\left(\%_{2}+r^{\prime} \frac{\partial \%_{2}}{\partial r^{\prime}}\right) \cdot r^{3} \ldots \tag{8:3}
\end{equation*}
$$

From this follows:

$$
\begin{aligned}
& +\frac{9}{4} t^{\prime} \eta^{3}-\frac{27}{64}\left(v^{1}+4 r^{\prime \prime \prime} v^{3}\right)+\frac{63}{40} v^{5}+\frac{3}{4}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)+2 \gamma^{\prime} t^{\prime}\right]\left(\eta+r^{\prime \prime}\right)\left(e^{\prime \prime}+{ }^{\prime \prime} \eta\right)-
\end{aligned}
$$

If we equate this to the corresponding expression for

$$
\boldsymbol{\psi}_{1}^{\prime}-v_{1}^{\prime} \frac{\partial \psi_{1}^{\prime}}{\partial c_{1}}-v_{1}^{\prime} \frac{\partial \psi_{1}^{\prime}}{\partial v_{1}^{\prime}},
$$

which is obtained by changing \boldsymbol{y} into - \boldsymbol{y}, we get, dividing by \boldsymbol{y} :

$$
\begin{align*}
& -2 \xi-2 t^{\prime}-\frac{9}{2} t^{\prime} v^{\prime \prime}+\frac{9}{2} t^{\prime} \gamma^{2}-\frac{27}{8} v^{\prime \prime} v^{2}+\frac{63}{20} v^{1}+\frac{3}{2}\left(2 \gamma^{\prime}-3 x^{\prime}\right) v^{\prime \prime}+3 \gamma^{\prime} t^{\prime}, v^{\prime \prime}+ \\
& +\frac{3}{2}\left(2 \gamma^{\prime}-3 x^{\prime}\right) v^{\prime \prime} \xi-9\left(\gamma^{\prime}-x^{\prime}\right) \xi v^{2}-18\left(\gamma^{\prime}-x^{\prime}\right) v^{\prime \prime} \cdot v^{\prime \prime}+ \\
& +\frac{27}{4}\left(3 \gamma^{\prime}-2 x^{\prime}\right) v^{2}, r^{\prime \prime}-4 \sigma_{0} x^{\prime \prime} \xi-4 \sigma_{2} y^{\prime \prime 3}=0 . \quad \quad(8 \tag{85}
\end{align*}
$$

At first approximation this yields:

$$
\xi=\frac{3}{4}\left(2 \gamma^{\prime}-3 x^{\prime}\right) x^{\prime \prime}
$$

This relation is, however, identical with the relation (69) which is derived from the first comodal relation. So we cannot draw any further conclusion from equation (85) without bringing it into connection with the first comodal relation; but for this it is required to introduce a further approximation for the latter.

Second apmorimatiom of the first comodal relation.
25. From the first comodal relation in connection with the equation

$$
\begin{equation*}
\frac{\partial \psi^{\prime}}{\partial c}=1+t^{\prime}+\left(1+t^{\prime}\right) \log x+\chi_{1}+2 \chi_{3} x+\ldots \quad . \tag{86}
\end{equation*}
$$

the following relation may easily be derived, if we take into account the terms up to the order $t^{\prime 3}$ or η^{*} :
$\left(1+t^{\prime}\right) \log \frac{1+\frac{\xi \eta}{x v^{\prime \prime}}}{1-\frac{\xi \eta}{v^{\prime \prime}}-\frac{3}{2}\left(2 \gamma^{\prime}-3 x^{\prime}\right) \eta-3 \gamma^{\prime} \eta t^{\prime}+9\left(\gamma^{\prime}-x^{\prime}\right) x^{\prime \prime} \eta-\frac{9}{4}\left(3 \gamma^{\prime}-9 x^{\prime}\right) \eta^{3}+}$
$+4 \sigma_{0} \xi \eta+4 \sigma_{2} \eta x^{\prime \prime}=0$
Within the same order of approximation we have however:

$$
\log \frac{1+\frac{\xi}{\boldsymbol{\xi}_{\eta}^{\prime \prime}}}{1-\frac{x^{\prime \prime}}{x^{\prime \prime}}}=\frac{2 \boldsymbol{\xi}^{\eta} \eta}{x^{\prime \prime}}+\frac{2 \xi^{s} \eta^{8}}{3 \cdot x^{\prime \prime s}}
$$

In the second term of the second member of this equation, however. we may safely make use of the first approximation furnished by equation (69). Taking this into account (87) passes after multipheation with $x^{\prime \prime}$ and division by $\boldsymbol{\eta}$ into:

26. By addition of (50) and (58) we find: ')

When we add 10 this relation (52), which is dedneed from the second commotal relation, atter having multiplied it with r", we can divide by g^{2} and we get:

$$
\begin{equation*}
\stackrel{9}{\underline{2}} t^{\prime}-\frac{9}{4} r^{\prime \prime}+\frac{63}{23} r^{2}-9\left(\gamma^{\prime}-x^{\prime}\right) \xi+\frac{9}{32}\left|\left(2 \gamma^{\prime}-3 \%^{\prime}\right)^{3}+16\left(3, \gamma^{\prime}-2 x^{\prime}\right)\right| x x^{\prime \prime}=0 \tag{00}
\end{equation*}
$$

Making use of (69) we may solve the quantity $r^{\prime \prime}$ from this ergation : $r^{\prime \prime}=2 \ell^{\prime}+\frac{7}{i} \eta^{2}+\frac{1}{8}-\left[\left(2 \gamma^{\prime}-3 \varkappa^{\prime}\right)^{3}-24\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(\gamma^{\prime}-\varkappa^{\prime}\right)+10\left(3 \gamma^{\prime}-2 \kappa^{\prime}\right) \mid+r^{\prime \prime}, \quad(91\right.$, or timally with the aid of (73):

$$
\begin{align*}
& r^{\prime \prime}=-\frac{18}{5} t^{\prime}+\left\{\frac{7}{5}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-8\left(\gamma^{\prime}-\varkappa^{\prime}\right)\right]+\right. \\
& +\frac{1}{8}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-24\left(2 \gamma^{\prime}-3 \varkappa^{\prime}\right)\left(\gamma^{\prime}-x^{\prime}\right)+16\left(3 \gamma^{\prime}-2 x^{\prime}\right)\right], r^{\prime \prime} \tag{92}
\end{align*}
$$

from which equation (25) follows immediate!y with the aid of (65) and (26).

In this way we have found the startho-point of the chre in the (r, r^{\prime})-diagran deseribed by the point halfway between the points which represent coexisting phases. The tangent in that starling point also is now known.

1) Remarkable is the disappearance of the terms derived from $\%, x^{2}$, which makes also i^{\prime} and z^{\prime}, i. e. ${ }^{\prime} a_{2}$ and $\frac{h_{2}}{n_{2}}$ disappear from the result. We have tested the truth of this in different ways.

A new determination of the plaitpoint, independent of the preceding one.
27. It is now easy to ohtain such a determination with the aid of (73) and (91). For in the plaitpoint we have:

$$
\eta=0 \quad ; \quad w^{\prime \prime}=x_{P} \quad ; \quad r^{\prime \prime}=r_{P}^{\prime} .
$$

From (73) follows immediately (47); from (91):
$v_{P}^{\prime}=2 t^{\prime}+\frac{1}{8}\left[\left(2 \gamma^{\prime}-3 x^{\prime}\right)^{3}-24\left(2 \gamma^{\prime}-3 x^{\prime}\right)\left(\gamma^{\prime}-x^{\prime}\right)+16\left(3 \gamma^{\prime}-2 x^{\prime}\right)\right] w_{P}^{\prime \cdot} ;$.
from which in connection with (47) we find again (48).

Physics. - "Some remarkable phenomena, concoming the electric circuit in elictrolytes". By Mr. A. H. Sirhs. (Communicated by Prof. H. A. Lorentz).

On etching of metal-alloys by means of the electric current, as communicated in the proceedings of the meeting of September 27 , 1902, I met with a great difficulty. In some cases the hydrogen developed at the kathode was rery troublesome, namely when, instead of escaping immediately it divided itself in small bubbles through the liquid and stuck to the object to be etched used as anode. This obstacle was overcome by surrounding the kathode with fine brass-ganze, so that the gasbubbles were compelled to escape directly in this case. The gauze was hung up apart, consequently there was no contact, whatever, with one of the electrodes. The etching being finished, copper proved to have been precipitated on the wires of the gauze, which deposit was almost conform to the shape of the electrodes.

This was still more visible at a second etching-experiment with the same copper-alloy: a small cup was placed moder the anode, which partly hung in it. Again on the gauze a copper-deposit was perceptible, which showed at the lower side a distinetly designed horizontal margin, nearly as high as the brim of the cup.

It was to be expected, that copper should precipitate on the gauze, placed between the electrodes, as the whole apparatus can be considered as two voltameters, comected in series'). But, why is by this electrolysis not the whole side of the gamze, facing the anode, coppered, as is the case with the kathode by any ordinary electrolysis:

To answer this question the experiments were altered somewhat.

[^96]Instead of water atedulated wish sulphombearid a satmated solmion of eopprer-sulphate was used ats electrolyto: the electrondes were formed in future by fwo equally latge lotch hronze soins. The back fort of these coins and the hattery-wime, to which they were soldered, were vamished, as fire as they were immersed in the electrolyte, in order to be sure, that, during the electrolysis, the facingsides only served as probeplates. The gattze tube was left away and a sereen of phatimm $(4 \times+\mathbf{c} . \mathrm{m}$.$) , hang \quad$ up isolated, placed just amidst the electrodes, who were $\&$ e. m. from eath other. If a copperdeposit might appear on the platinnm, this conld be ascribed to electrolytie ations only. Very soon after the circuit was closed (intensity $\pm 0.3 \mathrm{amp}$; volage of the battery $=4$ volts) there came on the piece of phatmom facing the anode a shaply bounded copperdeposit, which, hy rontinuation of the experiment, changed of thickness exclusively and not of size. The experiment was continued for 2 days; still the results remained the same.

Now I resolved to remow the platinm sereen hetween the electrodes, to do the experiment ower arain and repeat this several times. The deposits obtamed in all these cases were not exactly of the same size. The smallest deposit diam. Is mM) was obtained by hanging the sereen berween the electrodes (diam. 19 mM .), from which we can conclude to a small gradual contraction to the middle.

If two electrodes of different shape were used, then, by removing the platimm screen from the anode to the kathode, the copperdeposit passed from the slape of one electrode into that of the other. This was very clearly visible by using a nut as anode and a square piece of sheet-copper as kathorde. The hexagonal copperdeposit gradually took a square shape.

Superticially one would be inclined to suppose, that the only thing, that hats happened is the locally making of sections of the envelope of the two electrodes by means of the sereen, but considering, that, if electricity passes from one electrode to the other, the stream-lines divide through the whole flud - the curent-density is only larger within the above-mentioned envelope - it will be obvions, that there must have been another canse, which made some stream-lines prefer to take the way round the screen to the shorter one thrombit. Considering, that the resistance of the platinnm can be neglerted in resated th that of the longer way through the thad, the explanation of the deviation of these stream-lines can only be found in the polarisation, cansed by the sereen of platinum.

To prowe the supposal, that stream-lines are going out from the electrodes in all directions, the following experiment may serve: The
anode was hung in a platinum cup, which must replare the platinum diaphaym and was therefore partly filled with the electrolyte. Directly the cirenit was closed, the inside of the cup was evenly coppered, as high as the surface of the liquid, white at the outside an intense gas-development took place, which was soon impossible to be observed well, as on account of the polarisation the currentintensity was considerahly decreasing. In some cases from $0,9 \mathrm{amp}$. to $0,02 \mathrm{amp}$. If on the reverse the kathode was hung in the cup, the development of gas took place at the whole inside. Half of the outside of the cup facing the anode was partly and unevenly covered with a copper-deposit.

When making the experiment with a sheet of platinum $(5 \times 5 \mathrm{~cm}$.$) ,$ dividing the glass in two equal parts, the results were just the same. Here also the platinum was entirely covered with precipitated copper. At a distance of the electrodes of about $10 \mathrm{~m} . \mathrm{m}$., the copperdeposit was pretty evenly spread over the platimum. At a smaller distance of the electrodes ($4 \mathrm{~m} . \mathrm{m}$.) there came between the electrodes on the platinum a distinct circular deposit, while the copper precipitated on the remainder of the screen was very faint. A same deposit perfectly corresponds with the sections of the stream-lines we should expect.

The same results were obtained, when using two diaphragms dividing the cup into three parts. At the first experiment two diaphragms were used, completely shutting off the fluid and connected with a copper-wire. The side of the first diaphragm, facing the anode. counting from the anode to the kathode, was entirely coppered; the side of the other one, facing the kathode, was covered with gas-bubbles.

At a second experiment only the comecting wire was taken away. The sides of hoth diaphragms, facing the positive electrode, were entirely covered with a copper-deposit. On the other sides gas was developing.

At a third experiment two platimm screens $(4 \times 4 \mathrm{~cm}$.) were used, thus not shatting off the fluid completely, hut comnected, however, with a copper-wire. The same circular copper-deposit came on the first screen, facing the anode, but, when breaking the connection the same side of the second sercen was, on the contrary, entirely covered with copper.

The latter phenomenon can be explained in this manner: The copper-ions, leaving the anode, yielded their charge to the first screen. over which it is entirely distributed and which, over the whole side. facing the kathode, serves in its furn as anode towards the second screen, which is coppered over the whole surface. If the second
sereen was harger than the first, then, the side of the former, facing the anote, was coppered for a part atom at large at the hatter.

Then, the experiment was repated with a somen, dividime the basin into two equal parts, hot having a small hole in the middle. Just as a part of the stream-lines in some of the former experiments went romed the sereen, so here a very great combaction of the streanlines towards the hole may be expected. some of them will deviate from their straight way preferring the way through the hole, to the way through the sereen. This is contirmed hey a cirealar part of the sereen remaining uncovered.

The following data are the results of a serjes of experiments, taken with holes of different size.

Diameter of the hole. Diameler of the uneovered part.	
1 mm.	$7 \mathrm{mm}$.
2	10
4	$\prime \prime$
5	$\prime \prime$
8	$\prime \prime$

distance between electrodes 3 cm ., diameter of electrodes 19 mm .
If the smaller screen is taken, so that stream-lines can also go round it as well, then the uncovered part is considerably smaller. The diameter of it was 3 mm . at a 1 mm . diameter of the hole.

It is worth motice, that, while the electro-motive force remained the same, the current-intensity increased on increasing the diameter of the aperture. If for instance at the experiment with the smallest hole (diam. 1 mm .) the intensity after the begiming of the polarisation was 0,1 amp., it amounts under the same circumstances to $0,3 \mathrm{amp}$., when using the sereen with the higrest hole.

It is curons, that at the first experiment a copper-deposit was seen on the case of bass gamze surrounding the kathode, though properly it is nothing the a screen with a great number of small holes. According to what is said hefore, it might have been expected, that all the strem-lines would pass from ti:e anode through the holes of the case to the kathode and therefore not form any deposit on the graze. In comection with this, some more experiments were taken with different sorts of brass gauze, but already by using the next size - stitches of $2 \mathrm{~mm}^{2}$ and $0,3 \mathrm{~mm}$. wires - no traces of copper were precipitated.

If the way through the flnid was made considerably longer. then, in some cases, the current still seemed to prefer this round-
about way to the undontedly shorter one through the sereen. This was done in the following way: Again the anode was home in a platimum cup, over the brim of which hang a bent glass-tube, filled with the copper-sulphate solution, thus forming the comection between the electrolyte at the immer- and outer side of the cup. Even if a capillary tube was used, a deviation was observed in the copper-deposit, namely: a part of the cup near the lower end of the tube was not coppered, this, however, only when the tube was hung over that place on the brim of the cup between the electrodes. A 3 mm . tube, however, caused a deviation of the deposit, even, if the tube was hung over the brim of the cup on the prolongation of the centre-line of the electrodes.

Of course, there must be some relation between the coppering of the inner surface of the cup in these cases and the circular deposit on the screen. It must be possible, therefore, to pass gradually from one deposit into the other. Instead of the cup a cylinder of platinum, having a diameter of 4 cm ., was used, which at the bottom was melted in a basin with paraffine and projected from the fluid. The anode was hung in it again. The circuit being closed, the inside of the cylinder was of course coppered again as far as it was immersed in the electrolyte (50 mm .). Then a vertical cleft of 1 mm . wide and 1 mm . high was made in the cylinder on the extension-line of the centres of electrodes. A part of the immer wall round the cleft remained again uncovered. When gradually giving the cleft a height of 20 mm ., the uncovered part took the form of an ellipse, till at a height of 25 mm . a strip of 8 mm . wideness was not covered with copper, along the whole height, i. e. 50 mm ., of the electrolyte. When still enlarging the cleft, the deposit gradually receded more from the margins and after unfolding the eylinder into a plane it finally took the already known circular form again.

To make the explanation, given of the deviation of the stream-lines on accome of the polarisation of the platimm, more acceptible, the experiments were made with different electromotive forces by inserting resistance. By means of a resistance box, comected parallel with the vollameter, the terminal voltage of the latter could be increased. The current-intensity could be read on a milli-amperemeter, joined in circuit with the voltameter. As long as the potential difference was less than the electro-motive force of the polarisation, nothing was precipitated. After more resistance had been inserted in the resistance box, a current began to pass through the voltameter, but without forming a deposit on the sheet of platinum, althongh the experiment was carried on some hours. For that reason this current

 at depmsit camo pradually on the serem, smatler and more unesen than in the undinaty ratso, hout alse takimg the normat size and thickness an formory, when eromg on inserting more resistance.

Difforent salts were used as elogrolyore, in none however, a deposit Was so easily formed at- in copricsulphate. The phenomenon, when usimg this salt, was so chear, that onee a deviation in the shape of the deposit wats observed, becatuse the wire which wats connected to the anode, was not sufficiently insulated. In saturated solutions of zinco, aluminium-, nickel-, coball-, ferrous- and ferricsulphate deposits were formed, one clearer than the other even if in all these cases the constant current-intensity was secured by inserting resistance.

Chlorides were also used atsectrolytes. In chlorides of zinc and cadmium exalelly the same circular deposit was formed, but in those metals, which ean form more than one chloride (e.s. iron), a secondary phenomenon always appeared. When a solution of euprice-chloride was olectobysed, copper precipitated on the kathode; when, however, a platinum screen was put between the electrodes, again a circular deposit of a white substance was formed on Hoe sorent quickly gefling green in the air and being hygroscopic then; probably it might have been cuprous chloride, afterwards becoming coupric chloride again. When using a solution of $\mathrm{Hg} C^{\prime} \mathrm{l}_{2}$ as electrolyte a white deposit of Hg ('l came on the platinum. A solution of A (${ }^{\prime} l_{\text {s }}$ give conformable results; a brown red deposit was formed. Using $\mathrm{H}_{2} \mathrm{Pt} \mathrm{Cl}_{n}$ and a screen of gold-leaf. a yellow brown one wat formed on the latter. When a solution of ferric chloride was used no deposit was ever formed. The explanation may be found perhaps in the solubility of ferrous chloride which is preeipitated on the platimum as copper before.

Though in many of the former cases an explanation could be found in the potarisation, yet, however, there is one thing, that camnot be explained, i. e. the curious sharp margins of the deposit. It seems as if the stream-lines keep their oriminal direction within a certain fubular surfare also in the presence of the platimum soreen, white this sereen has a strong influence on the lines outside of it, which change their direction and wo romed the sereen. Perhaps the explanation may be found by calculating the course of the circuit, hut I am not able to do it.

In the making of all these experiments I have become indebted
to professor Arossters and profestor Schroeder vis der Kode for their assistance of various kinds and to these I tender my best thanks. Also to Professor II. A. Loreatz, professor at the Leyden Lhisersity, for his help and information.

Mineralogical Latoratory. Polyt. Schowl.

Delfi, Jan. 1903.

Rovinkldme akademe vas wetenscharten
 TE AMSTERDAM.

of Saturday February 28, 1903.

Abstract

CONTENTS.

J. 1. Krama: "Critical phenomena of partially miscible liquids-ethate and methylateohol"

 sulphurie esters",]r. 482.
Jax 1e: Vans: "On the spheres of Mosat belonging to ordinary aml tangential pencils of 'fuadratic surfaces", p. 48t.
 of state". (Commmicated by Prof. J. D. van bre W bus), p. 487.
J. W. Mohf presents the dissertation of Dr. J. C. Sthores: "Die Stelar-Theorie", p. firi.
 of very uniform and constant low temperatures in the cryotat". β. 302 , with of paten).

The following papers were reald:

 Prof. H. Kinmerancia Owses).

Giommmicated in the Mectins of september $2 \overline{2}, 1902)$.
 investigation of the phenomemat of combensation for mixtures of hiquid which do not mix in atl popertions ${ }^{1}$). Shorty afterwards Prof. was
 he disenssed oun results ${ }^{2}$) and agath in the second volume of his

\Rightarrow Kon. Ak. van Wret. Ansterdam 20th Mareh 1899.
3) Dic Comtinuitat etc. II, 1900, p. 184-192.

 with previons experiments.

 were as lollow:

Fig 1.
 aleohn there are wo temperatwes A and $/$; (F゙iz. 1) between whoh thee phases - two lignids and vapone - are posible and the

 and aleohol respertively and Als the threephase come For ellytalcohol 1 and l ate comphatively far abot: for the higher terms of the series these points graduatly approadt each other and with amylateobol mo separation into two liguids eond be olsemed; in ghis cate the critical come wat atombmons come joining the two critical promts C_{i}^{\prime} and C^{\prime} in the manal manmere

For mixtures of methylatcohol and chame we fomed atomeln $C_{1} A$
and a threephase curve embing al A. as with thr higher atcohols, but mot at limit $/$ b below which the liguids mix in all proportioms.
 thegins at ('s. the critical point of methytateohot, therefore remained Hncertatin.

Prof. Sas der Wisms's remaths eomeerned firstly the explathation of the trehavione of the tist prong, of mistures and seeondly of the different behaviour of methyaleohol amb the pedietion of the phemomena ontside the limits of our researetres. 'The experiments eommunicated in this paper hate reference to the latter problem.

Fiast of all Prof. Vas der Whas shows how the fwo hamelies
 them in the region of the metastable and mitable comblitions, a region which I shatl call the "heoretical" rexion. In our paper we had prointed ont that the phenomena were completely explained by the formation of a new subsidiary pait with platpoint emerging out of the main plat on the ψ-surfare and the subsequent whodrawal and disappeatance of the matin patpoint ${ }^{2}$). Having regatd on vas pra Whas's ortimal investigation and to Kontramers treatise ${ }^{2}$) on the properties of the p-surface, the simplest interprotation appears to be to assume that at some temperature higher than Th a closed platit begins to develop on the spinodal emve, increasing in extent ats the temperature falls, mat one of its patpoints (hat of the first kind ") at A pierees the commodal come of the math plat, thus giving rise to the formation of the subsidiaty phat and the daree-phatse triangle. On further fatl of temperature the inmer platpoint exehanges partners. so as to form at closed platit with that hathel of the math plat on
 main plail begins 10 emolose this closed platit. We may moreover assume the batier for eontrate on further cooling and nhtmately shank to mothing ${ }^{+}$). Tramsfermer the above ehames to the p-t-diagram we obtain the figure dedued from oums ly Prof. vas der Wins.

1)]. с. p. $358-359$
${ }^{2}$) Arch. Neerl. $24 p$. 990 - Bis in paticulat 1 , 316 ele.
2) Comp. Kohtemeg p. 197.
3) Whether this actually takes plate secms at least doubtinl. The formation of the phat on cooling is hatly open to dond. seeme that at high temperatures the ψ-arface camot show any athormatities in the exgion moter consideration: but this condition does mot lowl at low lemperateres and the contaction of a dosed plait on cooding is in condradiction with the rale chumbiated hy l'rof. vas Dek Wiats regarding the indmence of temperature on the extension of plats.
 had exatped own motice ').
 ligure is in contralielion with the latw provionsly deduced by him ${ }^{3}$)

 (hatakeristice eynation, hat apaty fomm that it only vefers to the critieal peint of the homogromeons mixtmes and it most he looked "pon as a prosibility that the come of the critical points - the platpoints -- stomla hats both at maximum and a minimum. Prof. Vas der Wana replies for this ${ }^{2}$) that near a maximam or minimmon the fwo conves in question are so close to eath other that no such diflerence between then call be atmitted. This armment does tot satisfy me. The two comes tonch each ohther at points where at maximum or minimm rofornopressume exists and the two phases have the same eomposition, but promts of that kind do not exist in the case moler comsideration. It is trote that at maximum or minimm oceurs on the patit when the comodal comve intersects the spinotal corve, but the chatacter of these points is entirely diflerent from that of the proints referved to. The threephatse pressure for mixtures of ethane and the alcohol is between the vapoupressures of the components and there is thas no oceasion for assmming the existence of another maximmm or minimmm. That bemer the case, there is no reason for at close resemblance between the two corves nor amy

${ }^{1}$. Note added to translation.

The above was written by me in the conviction which I then hed that l'rof. van der Whalses views of the formation of the new plait - allhough arrived at in a different way - still agreed essentially with my own: indeed I do not even now sce, how clse the phenomena could be intepreted. From the paper rontributed ly him in the October-mecting of this society (eritical phenomena of partatly miscible liquids. Koh. Ak. yan Wed. Amst. USth Oct. 1902) it appears that such wats not the case and that I ought to have been more careful inaceepting the theoretical curve drawn hy him as corresponding to the changes on the \$-surface as umberstoon by myself. Doubt never arose in my mind on this point at all and I mever considered the question. Still I ought to lave noticed that the theoretical curve has no vertical tangent at its extreme points, but ends in cusps, corresponding to the circmastance that the curvature of the comodal curve is the same in both phaitpoints of the closed plat. This is the only respect in which I think my paper requires emendation althoush some of my arguments would have been presented in a diferent maner had I realised how completely his views differed from minc.
${ }^{2}$) Arch. Neerl. It p. 23.
${ }^{3}$) Contimuitat ll p. 1881.17.
gromad why the "homogenenus" "ritical come shond have a loop ats well as the platpointerne

I am strengthened in this opinion by the fited, that even in the
 in the phat and it follows, that theoredeally eren those mixtures Which ohey ras der Whasis equation may have a critical empe with a loop in it.

I do not mean to mantain that the homoteneons curve in ont catse does mot possess a looge or to deny the probabihty of Prot.
 the alcohols plats a part in produring the atmomatity. What I want to point ont is that it hat not been proved that with nomad mixtures the atmormadity eamot ocour, athomgh it is very probable that this abmommatity and in general the fommation of two liquid layers
white theoredieally possible for momal mixtures with sperbal values of the constants - in reality ocemes with assoriating substances only ${ }^{-1}$).

The critical curve in the p,t-diagram having been completed in the Way described one feels inclined to sity with Prof. Vas dar Wism that the case is one of a moditied cross-plat and not of at true liquidplat. Acoording to vix der Lese's experiments *) the liquid-phat for mistures of phenol and water has its phatpeoints thmed in the direction of the positive rolume-axis and above atertatin temperature is entirely independent of the erossplatit. Prof. van mar Whans seems inclined to look upon those properties as chatateristic of the liguid-phat and to withhold this mame from that part of the plat which in our ease is turned towatrds the er-axis. It will appear presently that this view camot very well be sustained an that at any rate this ground for drawing the distinction in question disappears. Still the peruliarity remains ${ }^{3}$) that the critical curve is a contimous curve, at least when no acoomt is baken of the objection mod above aquinst joining the corves bevond b. Even then howerer it will be observed that on the 4 -surface two independent phats exist completely or partly inside each other and thus when the p^{2}-steffifer itself is considered the conthast between our cate and one in which a true liguid phat would exist disappeats. Moreover the abomormality is ascribed to the same catuse - assoredation as the formation of the liguid plait; if both are due to the same canse, one feels even less intelined to maintain a distinction in the nomentlature.

[^97]

 will he imporsibh lo esty whioh kind of platit one is Nealing with and to whirh sort of plait a griven platipoint helomes. Wre shatl
 crosephat will its platproint eradnally chateres into atait with its
 willadel the natme lignid-plate.

Led us mow comsider the case of mothytateohod and rellathe

 instead of downwarls as with the higher leotmse ' ${ }^{1}$ 'There atre some serions objections th this theory.
 disippeats: fiom the pratical pate of the surfine ath I, as in the formere fase ath! the pate heyoml rath therefore obly represent at theoretieal phatpwint whieh remains hidden, Inecathe at highere tem-
 fore be detted thenghout, and it catmot be interpeted ats in pat reat. In this rease ats in the other the shape of the ernve was dedmed hy kerpine in view the homoremems rextical peint and at -riking insame is afformed of how this come does bot rive us athy chere ats the shape of the real eritieal ernese
lat the second phate I think the bending mpards of the critical compe asemmed in this case is "pen to dombt. At somerblat high temperatures there is probably mothomatity on the surface and
 enre develops one of whose phatpoints pieveres the main phat at I and moves from there fowats \boldsymbol{C}_{1}. As in the other mixtures the theerephase pressure is lower than the vapour pressure of ehame: it follows that the subsidiaty platpoint is farmed towatels the eraxis and represents a maximum pressure on the elosed platit. This being \therefore the simplest suppesition to make is lhat the other platipoint of

[^98]this closed platil is one of minimmon presure: sartine fom this point the pressure on this platit passes thromg at maximmm and at minimmm sucessively and reateres its highes salue in the real phatpoint. In other words the theoretical pate of the bent critical extere in the fretdiagram should lie below the pratedical part, as with the othere alcohols. This supposition seems so moth simpler thath the opposite one that I feel promped to state the followime rule: when

 and water ${ }^{1}$)) the corbere berels "purares.s.

In his book on the "(ontimnity" the aththor disernses the prot bable behaviour of the mixtures at higher temperatures. Apart from at possible platipoint on the side of the smatll vohtmes on the ligutedplait, there is no practical phatpoint left above f. Poot. Vas ber
 point of methylakehol, that the platit will chose itaelf here, prathatly contrate amal whimately disatperat either at tho limiting liguid-volume or hy its platipoint moethg with a posible liguid platpoint.

This expectation has mot been reatised by mex experiments and most in itself tre looked mpon ats improbahte. 'The fommation of the liguidphat is aseribed to the atsereciation of medryateohol. Abowe a certain temperature this abmormality hats disappeated and in any case at the erition proint it is for mosi substances very small. Considering the preat differeme between the ratieal temperatures of the wo
 rammot hat lower the critical point. even if the mutazl attrateron of the components were eompatatively great. As a matler of fate methylateohol seems to hatse some atsociation left at the eritical
 attatetion appeat even smaller athe thas incorases the probability of a bowering of the critical temperature by the addition of ethane. It follows that the coss-phat has to appeat on the ofestrate in the thenal mamer with fall of fomperature with its phatpoint thomed fowads the athane side.

In view of the fied that at how demperatmes theme is a lignid-

1) Kewan and hobson l. c. p. Bind.
2) Continuital II, p. 189 verr.
a) Ramsar © Shelds, Zeitschr. Physik. (Uhemie 15, p. 115. Nohody seems to have observen ats far at 1 know that the comparatively high value of the critioal trmperature of methytateobol may be explained bey asocetation, as also the destation from Kopp's law for the boiling points of series of organic suthstances.

3) Arch. Néerl. 24 p. $338-330$.

 moty into a liguidplatit in the mean time the main platit goes on developinge on the appotath of the eribical point of chathe : as explathed at small subsidiary plait is formed which appeats at 1 on the prate
 on the theoretaed patt, of the satme matme ats with the highere aleohosts, the resthl being that at low temperathes the erossoplatit is rat
 omena are eomeemed this is entirely immateriat.
is fiat as the experiments could be camied (i. e. up to 25\% atmospheres the eritical come comtimed to rise towatals the left, se that there is no indieation of the existene of a ditlerent phatpeoint. The rapidit! with which the mixing-presure increates is froly remarkable.

If we compare the figures for methytakol and for the higher terms, a certain rememblane will be motied, expectally if we donot assume the contration of the elosed phat to nothing in the batter cease. The atsorebation tenes to preatuee the same moditieation in the usual diagrath in both eases, but the aceling canses appear to bre
 of the aleohol, possibly a smaller mumat athatetion of the intuenere sheqested by leof. vis der Winse of the small moleculat volume of the ateohol may eontribute to this resalt. Fior blis substane dhe platpoint remains omtside the erosisplat at low temperathers. With the others it suefecels in disappearinge inside. Wherher inside this phat athe chatres take place similar to thome acemorime with methylateohol whe the patieal pat of the surface we camot tell. bat in athy case I have assumed myself that with efhytakohed a mew patipoint come does mol appear down to -is: eflydakeohol and ehame remain miseihle in all proportions.
 comtras with mixtures phomol and water for which the lignid platia abowe a certain temperatare far below the cribial resion separates completely from the coross-plait and thas hats a platipuint on the side of the positive f-axis. In view of the probable disappearame of the asonciation at high temperatares it is possible that in the hatter cease

[^99]

 He whathed the satme compenmal by digestane at mixture of sodinn

 a similate (eompermul.
 (1) ohtatin at similat eomponand with metatsulphobenzoic akid: the

 Were alos ohtathed will methy amd proppl aleohol. Benzoie aceid, however, did tot give at similar compound and it is, therefore, attributed to the suiphonie ated yromp.
 with hemzenesulphonte ated and Nithath did mot ohtain it with methylalphonice acial.
(iftrmer looked upon these compomats ats salts of at derivative of
$$
0 \quad 0
$$

 ats domble compomats of sathe of sulphomeatmeylie ated with mentral sutphatie esters.
 theore: I had abredy repeated the experiments with suphonate tie

 The phenomenta observed daring this reseateh induced me to request
 eomposition in a different manner, namely by briming bepher in molecular proportions the harimu salts of the acid esters of metat sulphobenzoie acel with the harimen salts of the alkytsulphure acids. If in this proportion they yied it compound this ourht then to hatwe the same empirical composition at the las named compoumt.

In. ATtEM How oberved that on evaporating a solntion comtaning in molecolat proportions the barimm salt of the ellyb ester of metat

 salts made its appeamere in the form of lasere methes of tender needle-shaped corstats whils from the motherligmor harimm ethyl sulphate was obtained. If an exoens of hariman elhylsulphe is taken for instance, 5 grams of the same to 1 ertan of the salt of hatimm ester the double eomporme sepatates immediately and from the motherligum harimm ethysuphate is whataed. The domble eompomed cambot be recrostallised from water: its atheots solntion presents the same phenomenar ats one contabinge in motecolar poportions the two salts: on evaporation, the salt of batime ester crostallises fins, then the dominte compenmel and finatly the hatimn eftysulphate.
 was freed from motherliguor hy strong pressure and athatyed. The
 and ateed with the formmat:

 of metasulphobenzoic acid and afterwatats, although less radily,

 m: Voms

1. In l'an I withe "Prowedings of the sedion of sodences"

 amived at malytically.

Given $/$ ' be point of intersedion of there matably perpendientar

$$
\begin{aligned}
& +2 \mu_{28}=+n_{44}=0 .
\end{aligned}
$$

There there tament planes form with every fourth tatgent phate

 sented by

$$
\left(r-r_{1}\right)^{3}+\left(!-l_{1}\right)^{2}+\left(z-z_{1}\right)^{2}=0 .
$$

 Therefore we have:
 Where S^{2} is represented by an ellipsoid.

$$
\begin{aligned}
& +\left|\begin{array}{llll}
u_{11} & 0 & u_{13} & u_{14} \\
u_{13} & 1 & u_{23} & u_{23} \\
u_{13} & 0 & u_{33} & u_{31} \\
u_{14} & -n_{1} & u_{31} & u_{11}
\end{array}\right|+\left|\begin{array}{cccc}
1 & \pi_{13} & u_{23} & u_{11} \\
0 & z_{23} & u_{33} & u_{31} \\
0 & u_{23} & u_{33} & u_{31} \\
-k_{1} & u_{21} & u_{31} & u_{11}
\end{array}\right|=0 .
\end{aligned}
$$

 Aik, it ensules fiom this relation that the locens of the point P ' is indicated hy the following equation (where the indices of the eoordimates are left oun)

$$
A_{44}\left(\cdot v^{2}+y^{2}+z^{2}\right)-2\left(A_{1}, w+1_{21}!^{\prime \prime}+-1_{3,}\right)+\left(1_{11}+1_{23}+1_{33}\right)=0 .
$$

so the loces of the points of intersedion of thipiels of mathally perpendicular batrent planes of tis is a sphere (Moxat).

The tangential cone to , with vertex I^{\prime} posessing thee mutnally perpendicular tament planes, the dangent planes form acoording to a well-known property an infinte mumber of triplets of mathally perpendicular phanes.

For $A_{4}=0$ we find s^{2} to be a patholode and the sphere of Moxak derentates into a plame.

The obtained equation cath be replaced by

$$
\left(x-1_{11} 1_{11}\right)^{2}:\left(11-1_{21} 1_{11}\right)^{2}:\left(=\begin{array}{l}
.1_{21} \\
1_{11}
\end{array}\right)^{2}=\frac{1}{1_{11}} \sum_{3}\left(1_{11} \quad . I_{11} \cdot 1_{11}\right) .
$$

The radins of the spleve is indicated ber the equare root omb of

Comsequently the phere of Monek will be redued to a pointsphere when S^{3} is a cone $(L=0$) we into an equilateral hyperboboid if namely the eqnation
${ }^{1}$) This ensues inter alia from

$$
\begin{aligned}
& \begin{array}{lllllllll}
u_{12} & u_{23} & u_{23} & u_{21} & \ddots & 0 & 1 & 0 & 0 \\
u_{13} & u_{23} & \mu_{33} & u_{31} & & 0 & 1 & 1 & 11
\end{array}=\begin{array}{llll}
1 & \|_{23} & u_{23} & 1 \\
0 & u_{23} & "_{33} & 11
\end{array}
\end{aligned}
$$

(See a. o. Baltzer, Determinauten, Jith edition, 1. 63).
in sulli-hichl.

?. When in Hur arquation

 $11{ }^{\circ}$: 1 provil.

$$
\therefore+\pi \cdot r_{1} x \cdot y_{1}!+\frac{1}{2}
$$

hy (\%. How rabice erplation is

$$
l_{11} \dot{c}_{4} \lambda^{3}+l_{1} r_{2} \lambda^{2}+I_{2} 1_{2} \lambda+l_{3} r_{3}=0 .
$$

The penwor of a proint with respeed the the -phere is then egrat to

$$
\begin{gathered}
I_{41} \prime_{4}^{\prime} \lambda^{3}+l_{1} l_{1} \lambda^{3}+l_{2} \prime_{3} \lambda+l_{2} I_{3}^{\prime} \\
l_{n} \lambda^{3}-l_{2} \lambda^{2}+l_{2} \lambda+l_{2}
\end{gathered}
$$

This expressont beomes intlepentent of h. for the centre of the -phere roblinge the four sheres (k orthogemallys all the spheres

Ont this asthafonet sphere the point-spheres of the system ate of

 luiks') loplomines to the prencil.

Fivent the enser that the loens of the centres of the spheres is a Sene cuble. This is moreover eontimed by the observation that in

$$
r_{11}=1_{1}: A_{31} \quad \quad_{11}=I_{21}: A_{11} \quad \varepsilon_{n}=I_{31}: I_{11}
$$

Whe bumerators and the demomiltaters are reblie forms in 2.
The stater of the ratho beins represented by the quotient of two forms of onder six in 2 , the sytem contans six spheres with given miolins.
:3. The quadratie surfare indicatert by the equation in tamgential femalinates E.
${ }^{1}$) Their paranders are determined by

$$
\frac{\searrow}{3}\left[\left(w_{13}+l_{13} \lambda\right)\left(n_{23}+l_{22} \lambda\right)-\left(\left(1,12+l_{12} \lambda\right)^{2}\right]=0\right. \text {. }
$$

$$
\sum_{3} \|_{21} \Xi_{2}^{2}+2 \sum_{i 3}{ }_{12} \Xi y_{1}+2 \sum_{3}{ }_{11} \Xi-1{ }_{11}=1
$$

has for equation in peint coordinater

 is represented by

$$
\boldsymbol{u}_{11}\left(r^{2}+!^{2}+2^{2}\right)-\because\left(\boldsymbol{u}_{11} 1^{\prime \prime}+\boldsymbol{u}_{21},!+\boldsymbol{u}_{31} \equiv\right)+\left(\boldsymbol{u}_{11}+\boldsymbol{u}_{22}+\boldsymbol{u}_{3,3}\right)=\boldsymbol{u} .
$$

$$
"_{11}\left(c^{2}+y^{2}+z^{2}\right)-2\left(u_{1}, c+u_{21}, y+u_{31} z\right)+\left(n_{12}+n_{22}+u_{33}\right)=0 .
$$

or buy

So for a tamential pencil of qualtatie surtaten we time

$$
\left(n_{11}+b_{11} \lambda\right)\left(r^{2}+\mu^{2}+2^{2}\right)-2 \frac{\sum_{3}}{3}\left(n_{11}+l_{11} \lambda\right) \cdots+\sum_{3}^{2}\left(n_{11}+l_{11} \lambda\right)=1 .
$$

that is, the comesponding spheres of Monge form a pencil.
Tor this belong the point-ipheres indieated by

$$
\underset{:}{\Sigma}\left|\left(n_{11}+b_{11} \lambda\right)^{3}-\left(n_{11}+b_{11} \lambda\right)\left(n_{11}+\prime_{11} \lambda\right)\right|=",
$$

 pencil.

Physics. -"The" ravialuility with the" demsity "!t the qumutit! b "!

$\$ 1$. If we suppere the molecotes of at sats ${ }^{2}$, to be perfectly
 is not intinitely small, on the firm of the eqnation of state maty be
 which the gats is contamed, with form times the rolmme of the molecules. If we muderstand by distane sphere a phere dexeribed rom-

1) See inter alia Balzzer, 1.e. p. (ios.
y I say unly "gas" not "rats of liguint", for we mast not "mply the fommba for a lignid without inhouncing stild other appoximated terms Han these that will be discussed here.

We should the imelinest to dedhere fom this, that the influenve maty

 Which it segment which fwo distane spheres have in eommon, is

 ate covered by two distate pheres at the satme time. The corvere

 tion term, which is hased on a similat supposition. I will howerer
 $17 \operatorname{li}_{\infty}$
 form is compedly fombl in this way hats mot leen ansifered mos

 eommmancation in these Proceedines expressed the wish that his puldication of this result diflering from my lathers would give rise 10 a dixelnsion by wheh this dombetul point misht be elucidated, mo discossion has followed by which the ghestion has been sethed condusively. Sow I think I eath show that there is no reaton for introducing the comection in the way which yieds the value $\frac{1760}{32} \frac{15}{5}$ and at the same time I will give a reasoning, by which the term :3 liz $8 \mathrm{f}^{-6}$ is derived in a shoter way han that followed hy bon'mans.

The simplest way to show eleaty what supposition we must make in orter to wet the correction term $\frac{17}{32} \lim ^{2}$ is to stat from the
${ }^{1}$) Versk. Kon. Mhad. v. Wetensch. V. 1. 100. Oct. 1896.
${ }^{2}$) These Proceedings Vol. 1, 1, 273. Jan. 1899.
8) These Proceedings Vol. 1, p. 398. March 1899; and "Vorlesungen uiber Gastheorie" It, p. 151.
virial equation as my father has tome for the external pressure and for the pressure of the molectat athatetion in Chapter It of his
 forces eventating in collisions of two moleroles in these Proverenges Val. 1. p. IBs. OCd. 180s.

Först, however. I will point out, that the vibial eqmation need mot meossabily be applied for a delinite ytamber of mather, which is combaned in a delinte vohme and emelosed within a solid wall, ak is the nsatal method of applying it. We may as woll apply thal egnation for a pat of a homogeneons phase, sepabated by an
 is in the same phatse. We shatl not ablatys find the some molecolles
 instants t_{1} and t_{3} we shatl find the setme member ote all least with very eqreat approximation the same mmber of molecentes within it, and that the expression E'm. $^{\text {ther }}$, will alse have the sume value at the instants I_{1} and t_{2}. We may therefore put:

$$
\|_{\|}^{l} \pm m_{1,{ }^{\prime}}^{d_{1} \|^{\prime}}=0
$$

and akso the comesponding equations for the !f and for the z coordinate.

From this we may deduce:

$$
\begin{equation*}
\Sigma m x^{2}=-\geq\left[\left.{ }_{d m}^{d m, r^{\prime}}+\frac{d m!t}{d t}+z_{d t}^{d m z} \right\rvert\,\right. \tag{A}
\end{equation*}
$$

In the catie that we may neglect the volume of the molecoles with rematel to the volume in which they are contaned, and that We maty assume that the molerolat fores and in stath at wity that they yield on awerage zero for the fore exereised on a molecole within a homogeneons phate the righthand member of this equation hats only a value at the borter of the volume under consideration: if may therefore be redneed to a surface-integrad.

The lefthand member of this egnation is indeperalent of the diremostane whertace the patere moter consideration is enelosed within an imaginaly separating surface on within a molid wall, and in the latter cease it is also quite imbepentent of the properdies of this wall. So the rixhthat member eamot depent upon these ciredmstateres either. In the cane of a solid wall we maty 11 rite: ${ }^{\text {d/t }}=0$. So we get for the righthant member:

Procedings Hoyal Acid. Amsterdam. Vol. V.

$$
\begin{equation*}
-\int_{0} P^{\prime} \cdot+\cdots(n \cdot+\cdot) \cdot m=\pi J^{\prime} l \tag{B}
\end{equation*}
$$

 will.

 thomerh leme the symbol $/^{\prime \prime}$ dues mot ans lomerer represent at fireo which really acets ont the moternles.

 taken into ateoonnt. If we demote this virial ly / then we may write equation (. I) in the followine form:

$$
\Sigma_{m s^{2}}=-I-\int P^{\prime} \cdot\left(\omega s(n, r) d n=-I+: I^{\prime} V^{\circ}\right.
$$

 atramented in eonserperter of the ablareviation of the meath lemstla

 of the other: so the momentam hats leent transported with infinto velocit!.

But the wisy in which we have derived the quithtity I^{\prime} which maty be estimated to represent the preswle prevailing in the eraseons

independent of the shape of the ressed and the propertios of the walls in which the phase is emelosed, but on the oblere hathe it Warrants also that we mat limd the gramting I' loy raleotating the pressure which wombl be exeroised aqumst at plate wall if the moleconles did not allate one mother, or ly adding "a to the pres-

The way in which the viriat of the forese eventuating in muttal collisions of the molecoles late heen imbotured bij Prof. Sas der Whas is as follows. We assmme Hat in tirst appoximation $/$, represents atso the pressure exerefed on the distance spheres of the molectules. This would vield the value ${ }^{2} / \mathrm{l}_{\infty}$ for the virial. We must, howerer, bake only half this vatue, else atl the forees would have beed combed lwice.

The distance spheres, howerer, eamot be eomsidered as momoving solid walls. hut at moving and movathle walls and therefore it is pertajes not quite superthons to show expressly that they are indeed shlojected to a presate amomming in firat appoximation on average to l^{\prime}. I will give the proof of this proposition in o 2 of this communteation.
 sideration that the value of the ritial given alowe will he too great becathe some of the distance sheres partly coincide. The patis of the surface of a distance shere I fitling within a distance sphere 11 are protected from collisions with all other molecoles hom 11 . Therefore the pressure on such patts is assmed bo be zeros on the other prats the pressure on the distames sheres is supposed to be I. This comes to the satme at the assmotion that the aremge pressure duting a lime a (and every pressure which we eonsider, the pressure
 lime r) exereved ont int element do of at distance sphere would be smatler that l^{\prime}, becalnse of the fate that the element do is only duringe a pate of the time r exposed to the pressure I^{\prime}, during another pat of that time however, it wombl have been subjected form presture Secatme it was proterted beg the distance sphere of at motecoule Il from collisions with other molerolles.

I have two ohjections to the callenlations hased on these comsiderations.
In the first patee the assmontion is made bath at pat of at distame phere would never experieme any pressure, when it lies within the distance sphere of atother motedele. In fied the reverse is trme: in order that a shrite dement should pxperienee a preane at
moderonde mos collide amains it and then it lies in the dislance

 firom my secomd objection.

In the secome phate the find has been wordonked that not onty some pats of distance pheres lie within wher distane spheres but
 It is indifferent whenter this is an imarinary surfice or a solid
 wl the mokernles, and maty therefore with ats much (or as little) right be estimated to he proteded from pressure. Now let $1 / 2$ pat of the bordering surfite lie whinh the distance spheres. If we must assume that this paty of the sufface experiences a pressure zero, and that the free surface experiences at rertain pressure, that we will coll I_{1}, then the quantity I ', which represents - ats appeats form the way in which it has been introhtued - the awerage pressure, would be

$$
x-1
$$

 face of the distane spheres lies within obler distance spheres, and let $1 \delta_{1}$ represent that fraction, then the atremge pressure of a distance phere will amomon $\frac{0_{1}-1}{\lambda_{1}-1} \nu_{1}$. If λ_{1} were equal to λ, then the averate presure on the bordering surface and on the distance pheres wonld he the same, and we shonld not have to apply any corredion to the term ${ }^{\prime}$ s.

We find the correction term $\frac{17}{32} b_{\infty}^{2}$ if we make the following assmmption, hut only in that case : every suffee element, - no matter whether it is a part of a solid wall or of ath inarinaty separatiner surface, and whether the surface is plane or conved and no matter whether it lies within or withont the distance spheres of molectes -

[^100]if will always experience a presume l^{\prime}. Only the distane spheres make an exeeption to this mate, for pats of them, falling within other distance spheres experiene a pressure zero.

I can find no reason fin this exeeption and therefine I think the value $\frac{17}{32} h^{2} l^{2}$ ineorrect. The question whether in fate at comection must be applied depents on the fited whether λ_{1} is ergal to λ or not. This maty be investigated in the following mamer.

Let $I /$ in the figmer represent the renter of a molecule and let Whe direld dencribed with $I /$ ats center, represedat the section of the distance sphere (I) of that molecole with the paper. Now we are to
 element de, the center of which we call the point I^{\prime}. 'To this pur-
 2π and we also consider the langen plane in $/$ ' which we eall $/ K^{*}$.

Tho eases maty be distingutheded:
Ist the state within sphere If but ontside sphere I and at the left of the tangent phame (the section of the space in question whth the paper hat been hateded in the figure may combain the center of at molecule: if this is the case I ' lies within the distance phere of that molecule.
 :II! moberonle.

 the volmmer of the hateded statere and lye asommers that the chathere
 to $\mathrm{p}^{\prime \prime}$. If " demoter the total mamber of moteroles. then the ehatare

\$ 2. In order to introtue the intermal virial / / stated from the supposition that the distance pheres of the molernles experience a presime which is on areage equal to I '. As I never found a direct proof of this thesis I will give it here. The pressure I' namely may i. at be considered to represent the pressure exereised against a solid momoving wall, distegating the molecolar pressure. The distance spheres, howerer, are not to be regated as a solid, mmoring wall. In consequence of their motion the momber of collinions agatinst a surface element do of a distance shere is greater than that on an equal element of the wall: moreover the force in calh collision is proportional to the relative volocity of the molerules, which is greater Han the velocity of each molecole separately.

From these fwo ciremmstances we are apt to assmme that the average pressure on the distane spheres would be greater than I '.

On the other hamd the impulse of a molecule colliding with a velocity * motmally agatimst a solid, mmoving wall is 2 ms . If, however, the molecule collides with the velocity is centrally against another mmoving molecule with the same mass, then the firs molente will be stopped and the seeond will ohtain the veloetty st so the impulse is in this ease only mos.

In consequence of this circumstance we should be inclined to expect the pressure on a distance sphere to be smatler than I^{\prime}.

The following simple calculation will suftice to show that these inthences eancel each other and that the pressure exereised on the distance spheres is really equal to I, at least in the cane that we may neglet the volume of the molecoles with regat to the volume in which they are contamed.

Lef ns imagine two molecules I and If with the same mass. The same proposition might be proved withon ditionoly akso for mixtures, so for molecules with mequal mastes, hut I will contine myself here 10 molecoles with the same mass. The velocities of the molecules will bee demoted by is and x_{1} and the components of these velocities by $\quad \prime, r, u^{*}$ and π_{2}, r_{1}, w_{1}. The chane that moleconles oreme whose velocities have these components will be represented by $F^{\prime}\left(1, r, N_{0}\right)$ and $f\left(\left\|_{1}, r_{1},\right\|_{1}\right)$ and the relative velocity by x_{r}. Then we hate:

$$
v_{r}{ }^{2}=\left(11-n_{1}\right)^{2}+\left(r-r_{1}\right)^{2} \perp\left(n-n_{1}\right)^{2} .
$$

If we take the direction of sir ats the axis of a system of spheriabl coordinates, and if we call the lathate g the longitmere then at surface element of the distane phere of motecule 1 will be repre-
 of molecules of group II against strelt a surfare element is:

$$
F(u, v, w) F\left(u_{1} \cdot v_{1} \cdot u_{1}\right) d u d v d w d u_{1} d v_{1} d w_{1} x_{1}, r^{2} \sin y \cos y d y d q^{2}
$$

 will thometore lar arpal lor

if we imtoratas :

$$
\int \mathscr{r}\left(m_{1} \cdot r_{1} \cdot w_{1}\right) d l_{1}, l_{1} d_{r_{1}}-n
$$

$$
\int^{0} F(n, r \cdot, n) \cdot l_{n} d_{n} d_{n}-n
$$

 - hhoros:

 fore write thi exprextoll at follow:

```
l
```


$$
\begin{aligned}
& 1 \\
& : \|^{\prime \prime} .
\end{aligned}
$$

This is the same value as we timb for the pressme dxeresed ond a solid, ummoving wall.

In order to caleotate the mumber of collisions we here heme newtected the extension of the moleente and the muthat athention of the molerales. Therefore it is apparent that we camon have obnamed amythore else but a tios appoximation.
 (Commmatation of Prof. J. W. Moma).

Aecording to the idea of ras Tmaman, given aloont the fissmes of root and stem of the vascular plants, they must be divided into blaree gromps or ststems of tissues, namely, epidermis, cortex and centralcylinder. It is such a matmal thing to ceall the eppermis at separate tisne that already a long time before vas Thamem, it wats adomowleaped and is at present generally areepted.

It is a different thing about the theory that the central part of stem and root is taken up by a cylinter of tisure, the cential-evtinder (or "stele"), which may consist of elements differing ereatly, but Which must nevertheless be regated as a eonnected whole, forming a cerdain contrast with respeet to the cortex. This consideration which ratl be called the "Stelatheory" is aterepted by some, rejerted ly others. It is of the greates imporance for insibution and for the construction of deseriphoms of the immer struedure and it hats modonbtedy for both these reasons such at seat pratelical weight, that for this reatson only it desemes ont attention in a high degree. The serentife fommations for this theory are not in such at good condition and assmedly its non-aceeptance is owing to this. (of comse the important question is, whether this distinetion between eortex and centaberybuler has made its appeatamee abrealy at an cally period in the phylogeny of plants. With the present state of our knowledge this cau perhaps not be proved with cevtainty ; but to We able to answer this question in the atlirmatise fwo eonditions must be prot: $1^{\text {st }}$. The cental-evtimber most be indicated if not int all, still in the greater pard of stems and roots, 2 and it mat appeas aheady at an eaty perion in the development of these organs.

As for the root these comblitons are amply satistied, which gives geat smport to the theory of ris Thamem. But this is mot the case to such ant extent for the stem, partly perhaps in eombedion with the complications formed alreaty at an early period by the develop-

 lallonsime emmerliallely:

It hat now heorn shown by Mr. Somert that this wherefon to the

 in !

 thet yet here at is the cate in mos of the abowe-mentomed exeeptions,

 is a contribmtion to it eromblite embtimations.
lout in yet amother mamer hat Mr. Acomote embeavomed to test
 but which emathles no to dratw weighty comblusions with regated to
the value of the well kemwer 'Theory of the histogens of Itsustans.
In working out his theory vas Twanem proposely aroided ats much as possible fo make nse of the history of devehopment, amt as hats been proved justly. Yat it was quite matmat to think that there Wats a commedion between the strmetme of the fint-grown stem and root and that of the same orgats at at bery eaty perion of development. in embero or erowing point. For llasstan had emblished a doedrine
 theory and had gathed atmone of atherents. Dhe domght, experially on aceome of the artangement of the otherwise equivalent eods, to be ahle for distimguish there tissues in those meristems, catled dermatogen. preriblem and plerome. The last wan a eolimm of cells in the midalle pat of the stem and root. Of course it was quite mathat to think of an idendity of dermatogen and epidermis, periblem and cortex, plerome and contrat-oylinder, in such a manner that the latter had developed out of the former. If it were possible to point ont such a comespondence, this wombl be for the stetaretheory as well an for the 'Theory of the histogens of enteat importance, though not of equal
 meristem as ath indepentent whole this points to the fate that the differentiation of this tissme is old and then the shelatheory hats grated another support. But as I satid above, it is fully established in atother way and ean very woll do withont this support.

The Hassens-theory of the histogens is at diferent catse. Every ohe who studies the literature impartially, will have for own that has doctrine rests on a verey weak fommation, perhaps mot with respeed to the dermatogen, but very certan! as fiat as the plerome is concerned. It is frace, there are some roots and a very few stems in whase thin tops
 reylinder cau be distimgished as plerome. Bht in many roots and int
 ment up to the growing-point. It is really to be womered at that
 atherents: this is certan! parly owing to the conviedion, expressed by many and silenty shated by others, that plemome and cembabcylinder are one and the same.

Sed this hat never been arduraldy examined till it wats materaken be Mr. Sonocte. But it is clear, had a positive resth would be of the greatest importane for this theory For there is no sense in arecepting histogens withon lith-grown tisumes converponding to them. Moreover might be expected of a prositive result the possibility of finding an undoubted plerome when following the bomdary of

 ervert momber of colls.

 were in shory as follows:

 distingrished in the lop, which eombly quite matmally be compared to the plemome of llastas amd which comesponded exacoly to the later
 Wist foumb, thomgh the plewome did not appear here as a complex of cells reforet at the lop. In the stem of Hipmoms rwlymes, one of the few sems in which difierent investigators have distingrished a perome this was not only successfully found batk, but aks the series
 tedly to the growing-point. However the vells of the plerome proved th form not only the centabervinter but also the endodermis and two laters of cells of the cortex, so that the required eorrespon-
 remath result was whathed, as here a stards-abeath and a bundleShath were found, and it was not possible to make out which of the two must be regataled as endodermis. Sut in the root of fientor

 portant negative result wats whamed. Here it was perfecely evident that the series of eells of endodemis and pericycle camot be pursued up to the top. hat that they very soon stop shot and ate replated by shonter series of cells sot exatetly in their probongation and which in their burn sonn undergo the same fate. In other words in atl these cobses the expectation wats not only disappointed that in this way in difticult catses a plemome was to be foumd, hut it was adso irrefutahly established that it does not exist here.

After the above-mentioned explatations it need not be demonstrated that these results as a whole mast be reganded as fatal to the Theory
of the histogens. That in some selected roots there is some correspondence, makes no differenee. That in stemder tops buil up out of rehatively few, lenshawise series of eells a regular arangement of colls may appeat as was described above, is the most natmal thing in the wordd. To give a partientar explanation of this is moneressiary, and in mo case are these single indications suffecomt to extablish solely on them a theory of histogens as hat of llasstas. And yed this wond have to be tone if one wished to athere to this heors. for ath other fiteds plead strongly atatust it. /hipporis, almos the only plant showing a plerome in the stem, hats a structure altogether opposed to the theors. And the irregulat! buill tops form withour douht the overpowering majority.

It seems to me that by the innestigation of Mr. Nomotre the Histogen theory of Hassten is proved to be emoneoms. A conclasion of somewhat generat importance batn still be dednced from these investigations. Mang botanists think that to the relldivision in meristems a certain phylogenefic intportane must be given, somewhat comparable to that of the germinal hayers in \%oology. But here is forgotien that in zoology in the history of development fobls and awath fokds are spoken of, to a cerdain extent also histological differentiation is mentioned, hut litte or nothing of directions of rell-division or of armagements of otherwise entirely equivalent eelts. If the zoologisi altatus at leatiful results by the study of the histore of development. it in nowise ensmes from this that the sholy of the armatement of cells in meristems will be able to fimmish these Rather will the hotanis have to expect such explanations from the sthdy of the development of onter forms, and of imner differoniations as a result of differences in the nature of eells. Experience hats tanght miv that this expectation has a right to exist. But the Histogen-heory hat cerdanly contributed to nomish the abose mentioned wrong opinion. Now that this has been proved to be ineorece we mas expect that the historic and phylogenetie importance which hats often been aseribed to the divisions and artamements of mondiferentiated and perfectly equivalent meristemedls will be reduced to its right and rery shight proportion.

Gromingen, dan. 29, 190%.

 is shlicienty matiom and comstant for many experiments and meat

 dath. 'OO, deres not contaminate the gas, the bath maty be mantamed as louse ats we wish. The operations in the bath itself at well ats the adtition of the lignetied gats eat be watehed thomgh the observimer
 maty he comstrubted for moasuring apparaths of any dimensions. Before lone we shall deseribe a ervostat where the gate appataths and the hath are more independent.

I wats led to deseribe the form of the erventat, ats it ocems in

 whor meatarements, however, a measming appathes, onco immersed in the ergonat, hate heen used at the whoke rame of temperathere

 were sucessively admitted into the cryostat.

For at long time improvements have been made in this cryostat hy means of which we can altain at mod orvater buiformity and constaney in the temperature, white relaming the atore-mentioned advantages. A deseription of thene allerations hat now beeome necessaty in order to judge of the aternatey of the temperathere reating: in the remblts from vations measmements where we have ataled ourselses of these improwements. These measurements will be treated in the next rommmications. Among others I mention bere those beaming upon the isothermals of diatomice gases (Comms. 69 Mareh 01
and 78 , March ${ }^{\prime} 02$ and the comparison between the platinum resistance themometer and the hedrogen thermometer (${ }^{\circ} \mathrm{omm}$. 77 F'ehr. (02) In this description, as in Comm. 51 . Beph e 99 , it seems to me desinable to illastrate the use of the crostat by means of a spectial example. We will consider the comparison of the hadrogen thermometer with the resistance thermometer where alate atherme-elemem hatd been immersed in the bath.

Plate 1 shows the cryostat and some of the axiliary appatalus to soale, the eommeetions are represented sehematically. It hat hers drawn on a stmaller seate than phate I of ('omm. ol sept. ©os, (wheh should be comsulted together with the one now given) hut it will suftice to give a survey of the whole arongement and to show some of the alterations. White the details of the momoditied parts can be studied on phate 1 of ('omm. 51 , phate It of the present Communication shows the details of the puts enclosed by the dot-dash-line of plated, as fill as they are required for consideration of the new artarements. The comnection of the apparaths shown in Pl. I with the gats citernlation can be seen in Pl. IV Comm. 5 I. The comparison of the platimum thermomeler $/ f$ and the hydrogen thermometer Thand their connections to the other pieces of the appatatns are given in Comm. 75 Febr. ' 0 2 $\$ 3$. For the comparison of the thermo-element \odot I am ats yet obliged to refer to the very rough diagram of 1896 (Pl. I of ('omm. 27 Mai and June '96). The commmacation, however, of some results for which the temperatures have been determined by means of a thermo-element will soon call for at deseription of the recent considerable improvements in the use of the thermo-elements.

On plates 1 and $I \mid$ a corvection thermometer 5 , which is entirely impepentent of the eryostat, will be seen hesites the haree measuring appatatus mentioned above. It serves in our case fo indicate the mean temperature of the capillary of the hydrogen thermometer, or in gencral, the mean temperature of similar pieces of measuring appatatus occopsing the same pat of the cryontat. For this purpose two spirals of platimum whe are wound romad a glats rod, the one for that patt of the rod, where the temperathe vaties slow! \boldsymbol{F}_{2}, the other for that part where the temperature varies rapidy ξ_{1}. By means of the leads $\xi_{n a}$, eomected to the phates of contant $\zeta_{11}, \boldsymbol{\zeta}_{12}$ and ζ_{21} and emerging throngh the tube ξ_{11}, we can detemme the resistance of these spirals.
§ 2. Finst we shatl mention some smath changes in the eryostat of Comm. 51 which have no relation to the question of keeping the temperature constant and uniform.

The jet of liguefied gas let in all "(plater 1) is directed, by means

 [1. I ('omm. 末l. Tha conk amb lilter form paty of arover which as
 Ho cerowat and maty aho be replated by a syphom or a catpillaty with at enek masitle the erowitt. The spreatling of the jet ower the Wall maty be watcherl thenorth the windows I_{1}, and the beinght of the lignitl in the bath thownh the windows 1_{2}. The tilter forves principally to provent opatue dust from the leat (oxitle of copper ele.)

 cation, that the lignelied gats itsedf, while evapmathog under reduced pressure in the crowith, had deposited a substance, formerly dissolved in it but solid at the lower temperature thas rendering the bath opaque. Therefore difering from Comm. 51 , a glass beaker C_{i} (lls. I and II) With mumerons openings in the bottom Θ_{10}^{\prime} (PI. II) and conbaming some erlass wool was suspended by the regenerator spiral $/$, (11. I Comm. 51). This tilter may he lifted from the eryostat together with the piece s゙.

With the arramgement as deseribed in Comm, at all the gats, formed after the liguid leaves the cock, goes in the direction indicated by the arows on 1'I. I ('omm. 5l. With the arraturement as described here. however, the gats which is formed while the hath is heing litled follows in the main at difierent direction to that which afterwards evaporates from the bath. In fate diflering from Comm. 5 , a valve
 of the delivery pout D_{2} for gats, but allows lignid to flow through a very namow opening D_{111} along the gratter D_{13}. The first considerable gramtities flowing from the cock, serve to cool all the beakers and the whole crovat in the way indicated in Comm. 5 l (the arrows of plate I might be berrowed from plate I of Comm. J 1), unless the smpply becomes so great that the vialve D_{14} is opened and the gats also flows out throngh the opening $l_{i_{10}}$ in the ring R_{1}, plate II. The gats which later evaporates from the beaker $/ s_{n 1}$, finds the value D_{111} closed and escapes only throngh the opening R_{10}, along the way indicated by the arows on plate II, so that it serves only to screen the immerlate neighbowhood of the hath from external heat.

The difference in form between the rings l_{s} and l_{4} on plate II and those on plate 1 Comm. 51 is very slight. This follows from the wish to use the parts that served in the experiments, refered to in

Comm. 51, as much as possible in the arangement of the measuring :pparatus considered here. Formerly the bath could be excentrically mounted with reference to the tube r_{1} whereas this time a central mounting was desirable. The existing dimensions of parts of the apparatus have also had the result that in the experiments deseribed here the bath must be placed a little too high with regard to the observing glasses V_{y}, which might easily have been avoided if we had been perfectly free in our construction.

The glass ring R_{5}, not occurring in the arrangement of Comm, 51, serves still better to screen the bath from external heat. Like the other beakers and glass eylinders $B_{1}, B_{2}, B_{3}, B_{4}, B_{01}, B_{02}$, it is silvered inside and outside, leaving open, however, vertical strips nearly corresponding in witth with the resistance thermometer p.

The conical rim B_{01} lies loose on the beaker β_{01}. When the liquid boils up, it streams back to β_{01} along the wall of the fumel; if, however, B_{02} is filled to the brim and more liquid is poured in, this superfluous liquid flows over into the beaker B_{02}, which also is tilled before a measurement is made. If an intense cooling of the neighbourhood of the bath is required, the beakers B_{1}, B_{2}, B_{3} must also be filled. It shonld be remembered, however, that if this is done, the exaporation at low pressure, as long as liquid remains in the onter beakers, requires a powerful vacumpamp.

The bath itself only evaporates slowly. Instead of the double beakers $B_{01} B_{02}$ we might take a vacumm glass in order to diminish the eraporation as has sometimes been done (comp. §3). But it is not always eaty to obtain varemm olasses of the required dimensions and internally finished with the ateroracy necessary for the proper working of the stiming apparatus. Moreover one will not be inclined to immerse delicate measuring apparatus in the bath lefore one is sufticiently certain that the vacum glass will not burst as such of greater dimensions sometimes do.
\$3. To make clear the purpose of the arrangements to be described in the next sections, it seems to me that the following particularisations will be useful. First of all the temperature gradient in the bath. Even when the liquid boils regularly we find that in the lower liters, as a result of the hydrostatic pressme, the temperature execeds that of the upper layers. If, as often happens with greatly diminished pressures when boiling is not produced attifially, only evaporation at the surface oceurs instead of boiling, the temperature in the npper layers of the bath may fall considerably helow that of the lower. If then the liguid suddenly hoils up, which always happens whenever
 diatribution of the temperature in the hats athel hetace in the temperathor of athy meandring appatathe phaced in it. In meashrestents

Of the various meforl- af preventimes this suddon efmilition, the simpleat is the erencration of -math habhles of gate by meaths of the heat of a short mosisathe (hoiling thread). If, however. there are
 :and if comedpenty ath explovise mixtme with air might be lomed, this methont is mot withont datmere

To bine about mbllition at coment of gat is often ked thongh the liguid, which. bowerer, has the disadrantage of contaminating the evaporated ras. To atomad this dillanty I hase led throngh the bath a courent of the gats itself. This meats wats applied for instance to atod the retadation in boiling in the vamom vesel mentioned at the end of § 2. and alka in order 10 camse a strongs stiming in the bath by means of the curcent of gatbubbles. Path this means also presents many dificulties, mostly arising from condensation phenomena in the delivery tube. or higher temperature of the gasbubbles: I therefore, prefersed, the aramgement as described in \& 4 .

If the cryostat is used as it was intended to be in Comm. 51, the requirements for very arourate measurements would not be fultilled, even thourh a miform lemperature thronghout the hath was attamed. There still remains at stematic regular rise of the temperature, bectuse the gats used is never perfectly phe and the more permatment part exaporates first. In cosses where measuring apparatus require longer to adopt the temperature of the bath that the time in which the temperature changes the amount permitted by the aceuraley of the observation, we cambot reach more atomate results withent additional means.
\$4. We now phas on the the deriphon of the amangements which form the sulyer of this commmateation. The unitorm temperature in the hath is ohtaned hy stiming. The stiming apparatus is plated consentrically to the bath, thats leaving room in the most protitable way for the measuring appatas. Fiom this space the stirring apparatus (as in Comm. 27 May and Jume ' 60 Pl. IlI) is separated by a protecting colinter Fo (eomp. He digure to the left of plate 1). The mper ring \% is provided with small valses \%os covering openings of the sathe form. If the stiming apparaths moves in the eylindrical satee hetween $\tilde{\xi}^{\circ}$ and b_{02} the valves shut up
during the upward movement and open dhring the downward movement．The upwat movement is hrowh atwon by means of the thin wires $\%$ ，the downward movement lye weight of the stirring apparatus itself which for this purpose is weighted with the heary ring \％oz by means of the rods $\%$ ．As yet a more rapid motion of the stirring apparatus than this method affords has not been required：if wanted a construction with small rods instead of threads would be necessary．The valves are hinged on bent pins $\%$ ．The complete section of the stirrer to the right of plate II shows the valves shat，the section of $\chi_{n 1}$ at the top shows them open．When the stirring apparatus is moved up and down and the bubles of vapour escape the movements of the valves resemble those of the fins of fishes．

It is very important that the up and down motion of the ring should be perfectly perpendicular and that the protecting cylinder ξ_{1} and the beaker B_{02} should have a perfectly vertical position for， to make the valves work properly，only a narrow space can be left between the stirrer and the colindrical walls．The celinder ξ_{0} is enclosed between two rings provided with grooves $\tilde{\xi}_{1}$ and ξ_{3} ，of which the upper is comected with the ring 氡 by means of glass tubes． Throngh the operation of the spring ${\underset{B}{31}}$ and the arch ${\underset{s}{s}}^{0}$ ，this ring is pressed against the ring ζ_{0} on to which the beaker B_{02} with a ground upper rim is fastenci by means of cords．To this ring ξ_{0} the hooks 今气․，are also fistened，against which the upper rim of the beaker B_{01} is also pressed by means of cords．In this way a cylindrical space is reserved for the pumping motion of the stirrer．

In order to admit the measuring apparatus it was advisable to leave free the whole space offered by tuke F_{1} ，which is equal to that in the bath available for a measuring apparatus．To this end the threads $\%_{1}$ ，formed of very thin silk cords enclosed in steel wire are led through 3 openings E_{51} in the cover E of the bath and then over a pulley axis $\%$ with three grooves to a comecting piece χ_{3} ，which is moved by a single thread passing over the pullers $\%_{4}$ and $\%_{5}$ ．The cord must be moved from outside the case and the case must remain perfectly air－tight．This is obtained by passing the cord through in india rubther tube $\%_{n 1}$ ，which at $\%_{n 0}$ tits hermetically on to the cover of the crgostat and in which the thread $\%_{n_{2}}$ is also hermetically fixed．A thin steel wire is wound spirally round the india rubber tube．In this way the walls of the tute offer sufficient resistance to the atmospheric pressure toprevent them from collapsing when low pressure exists in the cryostat，while at the same time
 A regalar up and down motion of tho stiming appatatus is secored by the wheel $\%$.
 the pressure, at which the liguid in thre hath exaponates, to the indications of a resistame hormometore phated conerontricatly in the bath. A sedritive thermometer fimme ath intorent patt of the eryostat under consideration when is in for laved fire very romstan fompe-

 inner diameter comtrols the groatest cross section of the meataring apparatus which can bo immersed in the hath, and therefore, as in our rase, it must correspond to that of the tube f_{1}. The eon-
 (Comm. 77 F゚ohn. (12) with a view to a comparison between it and the hydrogen thermometer refered to above. The leads pass throngh the openings R_{30}. R_{40} of the ehonite rings R_{3} and R_{4}, and then through the stopper into the tutse T_{12}. On the plates I and Il they are indicated ly the same letters as on the plate of Comm. 77.

When the hath has reached the reguired temperature the galvanometer in the Wharatoxe's bridge, which serves to measure the resistance of p, is adjusted to zero by introducing suitahle resistances. As soon as the deviations of the satvanometer make it necessary, a sign is given to the assistant, ehaged with the regulation of the pressure in the ervostat, who then ratises or diminishes the pressure, wherehy the temperatme in the bath rises or falls. The ereat volome of the corontal is here very madel in deeking oncillations in pressme. The arranemonts reguired for the regulation of pressure are slown in plate 1. the sepatate pieces of apparatus to scale and the commections sehema-
 the oil mamometer X_{0}, which is comected to the cryostat by X_{1} and X_{2} (comp. pl. II Comm. 51) and the rock X_{20}, the cock X_{91} heiner opren. If we shat the cock $X_{n 1}$ the motion of the oil enables us to very atemrately watch the variations of the pressure in the ryoustat by means of the diflerence between the pressure in it and of the quantity of gats temporarily shat off in the reservoir X_{82}. If through some caluse or other the variations of pressure increase considerably, of if we want to stop the regulation, or to proced to another pressure, the oil is prevented from rumning over by on opening the cook X_{51}. The pressure in the eryostat is varied by more or less opening the tine oncks $)_{4}$ and $)_{13}$ of the regndation
tube J_{42}. Two cases are to be distimguished here. With pperations at ordinary pressure it will he sufficient to adjust the eryostat at a pressure a litale higher than that of the atmosphere and to either comnect the cock Y_{42} with a qaiholder (\&az or fo discommect them, as the occasion demands. As soon ats the pressure passes a certain limit settled for the cryostat, the gits escapes from the eryostat through the large safety apratatus. For operations at reduced pressure, the cryostat, after the pressure has been sufficiently lowered by means of the exhanstpump, of the circulation Ech. 1 , is disconnected from the latter and comnected by means of the cock $Y_{\text {s }}$ to the exhanstpump $L_{\text {doth }} 2$., and is then reduced to a lower pressure. Obviously we can sometimes avail ourselves for this latter operation of the same exhaustpump as used with E.th. I. The evaporation will proceed more gratually when a comection is made to a reservoir at reduced pressume Vac., plate. If a reservoir of large volume is used we can even work without an exhaustpump, which may he valuable when it is necessaty 10 avoid vibration for the measurements. Thus with the bath of nitrogen under diminished pressure the auxiliary compressor of Comm. 54 Jan. '00 plate VII was connected near E.ch. I to the gaslead and the vessel of $5 \mathrm{~m}^{3}$ mentioned above (comp. Comm. 14 Der. $94 \$ 10$) served as vacum reservoir, after being exhansted through Y_{36} and Y_{37} by means of a Burchhardt vacummpump, comected to the gatslead at Einh 2. This vacummpump will be described later.

In a few words we shall indicate the method which we usually follow in order to get a wellifled bath at diminished-pressure. First the double beaker $\beta_{n 1}, \quad \beta_{n 2}$, or several beakers B_{1}, B_{2}, B_{π} are filled at ordinary pressure, then we begin to slowly exhanst through Y_{34}; all other cocks being shat by means of the pmomp, generally used for the circulation birh. 1; while boiling is prevented by rapid!y moving the stiming apparatus described in \$ 4 . When the required pressure is reached the cryostat is to be eommeded to the qreat reservoir liter. at the same pressure. If this cammot be dome we hardly ever succeed in admitting through the cock $h_{\text {s }}$ the yet required quantity of liguid slowly enough to keep the pressure in the cryostal free from undesirably large fluctuations or even to awoid with the help of J_{36} momentarily retmong of it to nearly its ordinary value. Therefore, if a change of temperatme for some time is allowed, it is in that case better to shut Y_{84} before more liquid is added and to comect the cryostat through $Y_{s j}$ to the gasholder. As long as the beaker B_{n}, is not full the gas leaving the cryostat is allowed to pass through Y_{86} into the gasholder. If the beaker β_{02} is full, which is shown by

Plate $I I I$ strows a comple of ervaphical mpresentations of the varittions of the temperature of the hath. The ordinates show the deflere fions on the sate of the gatsanometer in cemtimeters. The abseisisate represent the time in minntes; fig. 1 relates to a measurement in methane at ordinary presisure: at deflection on the soate of 1 com . corresponds to ahmit 0.009 dey. (the open spate in the figure indicotes a magnetio disumbance). V"irg. 2 refers to oxyren at at diminished pressure; here a deflection on the scate of 1 e.m. corresponds to 0.005 dear. They were bormwed from the measurements of Mrinask mentioned athowe.

The temperature of the measurement is determined by the help of graphical representations, extendiny over the whole time of measmement, from which the portions reproduced on plate lll hate heen taken. For this determination the realings of the gatvanometer are noted down about twice every minute By means of the phamimeter we derive from the graphical representation ohtaned, the mean ordinate, whichs mean is considered as the temperature of the bath during the whole measurement.

K0NINKLIJKE AKADENIE VAN WETENSCIIAPPEA TE AMSTERDAV,

PROCEEDINGS OF THE MEETING
of Saturday March 28, 1903.

(Translated from: Verslag vau de gewone vergadering der Wis- en Natuurkundige Afdeeling van Zaterdag 28 Mart 1903, DI. XI).

NT円NTS。

J. J. vax Laar: "The meltingpoint-line of Tin-Amalgams" (Communicated by Prof. II. W. Bakilis Roozfboom), p. 511,
A. W. Nievwexifis: "Influence of changed conditions of life on the physical and psychical development of the population of Central Borneo", p. 525.
P. H. Schoute: "Relations between diagonals of parallelotopes", p. 540.
E. Confes and Tir. Strengers: "On the atomic weight of Antinony (Commanicated by Prof. W. H. Jicirs), p. 543, (with one plate).
E. Couen and C. A. Lobry de Brurs: "The conductive power of hydrazine and of substances dissolved therein" (Communicated by Prof. C. A. Lobry de Brutn), p. 551.
A. II. J. Belzer: "The velocity of transformation of tribroomphenol bromine into tetrabromophenol" (Commonicated by Prof. C. A. Lobry de. Breve), p. 556.
J. H. Boxnema: "Some new Under-Cambrian Erratic Blocks from the Dutch Diluvium (Communicated, by Prof. J. W. Moll), p. 564.
J. J. van Lame: "On the course of the values of b for hydrogen, in connection with a recent formula of Prof. vin dfer Waids." (Communicated by Prof. J. D. vin der Wials), p. 573.
W. H. Julus: "Peculiarities and changes of Fracimorfr-lines interpted as consequences of anomalous dispersion of sunlight in the corona", p. 589.
P. 'Tesch: "On the refractive index of roch-glasses" (Communicated by Prof. J. L. C. Scifroeder ran der Kolk), p. 602 , (with one plate).
G. B. Hogenrsito: "On an "Eisenrose" of the St. Gotthard". (Communicated by Prof. J. L. C. Sciliofder van der Kolk), p. 605.
II. A. Lorextz: "Contributions to the theory of electrons, I. p. 608.
H. Kimerlingit Onses: "Methods and apparatus used in the eryogenic Laboratory". III (continued) IV, V. p. 628.
H. Kamerlingif Oxxes and H. H. Ferachs Hadmix: "Isotherms of diatomic gases and their binary mixtures. V. An accurate volumenometer and mixing apparatus", p. 636, (with 2 plates)

The following papers were read:
Chemistry. -- "The meltingpoint-line of Tim-Amalytms." By Dr. J. J. vax Lair. (Commmicated by Prof. H. W. Bakheis Roozeboom). ($2^{\text {nd }}$ Commmication).
(Communicated in the meeting of January 31, 1903).

1. In a previons communication (Proc. Dec. 1902) I showed, that when the molecular potential of tin in a lignid tin-amalgam is expressed by the formula

$$
t_{1}=j(T)+r T \ln (1-a)+\left(e_{1} w^{2}+\vec{r}_{1} x^{2}+\ldots\right)
$$

 wherved hy vis dhamas (compare his binsoptationt, at least up till about 大O (

In a conteremee I hat sime wilh pmot. Vis men Wiass, he called
 may be taken as at fitly monl appoximation ${ }^{2}$). 'This expression is:

$$
\frac{t_{1} r^{2}}{\left.1+r_{r}\right)^{3}}
$$

After he had time shown (p. 193), that the correctionterm is really of the order ${ }^{=}$- this I ako showed in my previous communcation, but in a diflerent manner - and had observed, that (in the case investigated by him) the value of \boldsymbol{r}_{1} does not remath constant, but decreases when ir increases (1 . 198), he afterwards arrived at the said approximate expression (1 . 21:3, 214), in agreement with an empirical relation of Thomsen.

Though Prof. vis ber Wines has brietly given the deduction of his formula, it may be nseful to state once more how this expression can the arrived att. The matter is of great importance, because the stome quantity $u_{3}-\left(t_{1}\right)_{i=0}$ constantly oceurs in a great number of formulae, such as those for the lowering of the freezing-point, elevation of the hoiling-point, alteration in vapour pressures, ete. If therefore this quantity is once for all atcerately known, we may get a better insight into a treat mumber of prohlems relating to binary mixtures.
2. As the total thermodynamic potential is represented by

$$
\begin{aligned}
& \quad=-\Sigma\left(n_{1} k_{1}\right) T\left(l o l_{1} T-1\right)+\left[\Sigma\left(n_{1}\left(l_{1}\right)_{0}\right)-T \Sigma\left(n_{1}\left(v_{1}\right)_{0}\right)\right]- \\
& -\left[\int p^{2} l V^{\prime}-l^{r}\right]+R T \Sigma\left(n_{1} \log _{1} n_{1}\right) .
\end{aligned}
$$

we obtain for the moleculter potential of the component n_{1} :
With

$$
r \frac{\sum n_{1} \cdot R T}{V-b}-\frac{a}{V^{2}}
$$

[^101]we find:
$$
\int l^{d} d V=\Sigma n_{1} \cdot R T \log (V-b)+\frac{a}{V}
$$
and therefore
$$
\frac{\partial}{\partial n_{1}} \int^{0} m l V=\mu T \operatorname{lon}\left(V^{*}-\ell\right)+\frac{\Sigma u_{1} \cdot \mu T \partial(V-b)}{V-b} \frac{u}{\partial u_{1}}-\frac{\partial V}{V^{2}} \frac{\partial}{\partial u_{1}}+\frac{1}{\Gamma} \frac{\partial a}{\partial u_{2}}
$$

Deducting from this:

$$
P^{\prime} \frac{\partial V}{\partial n_{1}}=\left[\frac{\Sigma n_{1} \cdot R T}{V-b}-\frac{a}{V^{2}}\right] \frac{\partial V}{\partial n_{1}}
$$

we get :

$$
\frac{\partial}{\partial n_{1}} \int p d V-p \frac{\partial V}{\partial n_{1}}=R T \log (V-b)-\frac{\Sigma n_{1} \cdot R T}{V-b} b_{1}+\frac{2}{V}\left(n_{1} u_{1}+u_{2} u_{18}\right)
$$

Substituting $a=n_{1}{ }^{2} a_{1}+2 n_{1} n_{2} t_{12}+n_{3}{ }^{2} u_{2}$ for u, and the linear relation $b=n_{1} b_{1}+n_{3} b_{2}$ for b in the case of turo components, the expression for u_{1} becomes:

$$
\begin{align*}
& \mu_{1}=-k_{1} T(\log T-1)-R T(\log (V-b)-1)+\left[\left(e_{1}\right)_{0}-T\left(n_{1}\right)_{0}\right]+ \\
+ & \frac{\Sigma n_{1} \cdot R T}{V-b} b_{1}-\frac{2}{V}\left(n_{1} a_{1}+n_{2} a_{12}\right)+R T \log n_{1}, \ldots \ldots \tag{1}
\end{align*}
$$

in agreement with what I wrote down in my first communication. If now we write $n_{1}=1-x, n_{3}=x$, this then becomes:

$$
\begin{aligned}
& u_{1}=-k_{1} T(\log T-1)-R T(\log (V-b)-1)+\left\lfloor\left(e_{2}\right)_{0}-T\left(\eta_{1}\right)_{0}\right\rfloor+ \\
+ & \frac{R T b_{1}}{V-b}-\frac{2}{V}\left[(1-c) c_{1}+d a_{12}\right]+R T \log (1-c)
\end{aligned}
$$

For the determination of the complete function of x, which occurs here outside $R T \log (1-x)$, we will now determine the value of

$$
\frac{R T b_{1}}{V-b}-\frac{2}{V}\left[(1-x) a_{1}+w a_{12}\right]
$$

The term with $\log (V-b)$ is supposed to be but very little dependent on x in regard to these two. If in the equation of condition we put $p=0$, which is certainly permissible in the case of liquid phases, then $\frac{R T}{V-b}$ may be replaced by $\frac{\prime \prime}{V^{2}}$, and the abore expression becomes:

$$
\frac{\left((1-v)^{2} a_{1}+2 v(1-v) a_{13}+v^{2} a_{2}\right) b_{1}}{V^{2}}-\frac{2\left((1-v) a_{1}+v^{\prime} a_{12}\right)}{V^{T}} .
$$

If now we replace V by b, which will hold for liquids att low temperatures in approximation, we ohtain:

$$
\left((1-x)^{2} u_{1}+2 x(1-x) n_{17}+v^{2} u_{1}\right) u_{1}-2\left((1-x) n_{1}+x u_{1}\right)\left((1-x) b_{1}+x^{2} l_{2}\right),
$$

(1):

$$
\frac{-u_{1}\left(\left(1-v^{2}\right)^{2} b_{1}+2 \cdot r\left(1-r^{2}\right) b_{2}\right)-2{ }_{13} u_{12}^{2} b_{2}+n_{2} w^{2} b_{1}}{b_{1}}
$$

which we may alon write at

$$
-\frac{a_{1}}{b_{1}}+\frac{u_{1} b_{2}^{2}-2 a_{12} b_{1} b_{2}+u_{2} l_{1}^{9}}{b_{1} b^{3}} x^{2} .
$$

We therefore tinally aml approximately ohtain:

$$
\begin{aligned}
&\left.\mu_{1}=-k_{1} T\left(l_{0} T-1\right)-R T\left(l_{0}\right)\left(V_{8}-h_{1}\right)-1\right)+\left[\left(r_{2}\right)_{0}-T\left(r_{3}\right)_{0}\right]- \\
&-\frac{\mu_{1}}{l_{1}}+\frac{A r^{2}}{h_{1} l_{1}^{2}}+l_{1} T \ln (1-r),
\end{aligned}
$$

when we catl

$$
u_{1} b_{2}^{2}-2 u_{12} b_{1} n_{2}+u_{2} b_{1}^{2}=1 .
$$

The comesponding expression for \boldsymbol{r}_{2} evidently becomes:

$$
\begin{aligned}
& u_{2}=-k_{2} T\left(l_{n, 1} T-1\right)-R T\left(\log _{9}\left(V_{2}-h_{2}\right)-1\right)+\left[\left(e_{2}\right)_{0}-T^{\prime}\left(\boldsymbol{r}_{2}\right)_{0}\right]- \\
& -\frac{u_{3}}{b_{2}}+\frac{A}{b_{2}} \frac{(1-x)^{z}}{l_{1}^{2}}+R T \log , \cdots
\end{aligned}
$$

As (omitting f^{\prime}) it follows from the equation of condition, that

$$
V-l=\frac{R T V^{2}}{u}=\frac{R T \|^{2}}{u}
$$

and that, therefore, $\log \left(V_{1}-b_{1}\right)=\operatorname{loy} \frac{l l_{1}{ }^{2}}{a_{1}}+\log T$, we may write in grencral:

$$
\begin{align*}
& \mu_{2}=e_{1}-c_{2} T-\left(k_{1}+R\right) T \log T+\iota_{1} \frac{v^{2}}{\left(1+w^{2}\right)^{2}}+R T \log (1-x) \\
& u_{3}=e_{2}-c_{3} T-\left(k_{2}+R\right) T \log T+\iota_{2} \frac{(1-x)^{2}}{\left(1+r^{2}\right)^{2}}+R T \log x \tag{2}
\end{align*}
$$

In this equation then

$$
\begin{aligned}
& r_{1}=\left(e_{1}\right)_{0}-\frac{u_{1}}{b_{1}} ; \quad e_{3}=\left(e_{2}\right)_{0}-\frac{u_{2}}{b_{1}} \\
& c_{1}=\left(v_{i_{1}}\right)_{0}-\left(k_{1}+R\right)+R \log \frac{R l_{1}{ }^{2}}{u_{1}} ; \quad c_{2}=\left(v_{d_{2}}\right)_{0}-\left(k_{2}+R\right)+R \log \frac{R b_{3}{ }^{2}}{a_{2}} .
\end{aligned}
$$

whilst

$$
{l_{1}{ }^{3}}^{-1}=\boldsymbol{u}_{1} \quad \text { and } \quad \frac{A}{b_{2} b_{1}{ }^{3}}=\|_{3}
$$

and also

$$
\frac{-b_{1}+b_{3}}{b_{1}}=r
$$

Remarl: The quantity $\boldsymbol{u}_{1}=\frac{\partial \zeta}{\partial n_{1}}$ may also be obfained by the operation $\mu_{1}=\zeta-a{ }^{\partial \zeta}$. For the tem - $\int p^{2} d V+p V$, occomring in ζ, may be written $-\int p$ d $V^{*}=-r T \log (V-\ell)-\frac{\ell}{V^{*}}$. The required function of $\cdot r$ may therefore also be found by calculating (V=b,

$$
-\left(\begin{array}{lll}
a & d \\
b & -d_{x} x & \left.\left(\frac{d}{b}\right)\right) .
\end{array}\right.
$$

for which we then find exactly in the same way as above:

$$
-\frac{u_{1}}{b_{1}}+\frac{a_{1} l_{2}^{2}+a_{2} b_{1}^{3}-2 a_{12} l_{1} b_{3}}{b_{1} l^{2}}, r^{2} .
$$

The two methods of calculation are, of course, identical. The last has the advantage, that we see at once that the differentialcoefficient of the correctionterm of,, , i. e. $\frac{2 L t}{l^{3}}$, is nothing but,$\frac{\partial^{2}}{\partial r^{2}}\left(\frac{a}{b}\right)$, so that we have:

$$
\frac{1}{u} \frac{\partial \boldsymbol{\mu}_{1}^{\prime}}{\partial a}=-\frac{1}{1-t^{\prime}} \frac{\partial \mu_{2}^{\prime}}{\partial r^{\prime}}=-\frac{\partial^{2} \zeta_{1}^{\prime}}{\partial t^{2}}=\frac{\partial^{3}}{\partial x^{2}}\left(\frac{u}{b}\right)=\frac{2 \Lambda}{b^{3}},
$$

when $\boldsymbol{\zeta}^{\prime}$, $\boldsymbol{n}_{2}^{\prime}$ and $\boldsymbol{u}_{2}^{\prime}$ represent the quantities $\boldsymbol{\xi}$, \boldsymbol{r}_{1} and \boldsymbol{n}_{2} with omission of the terms containing lof $(1-c)$ and $\log r$. As regards the quantity $u_{3}=\frac{\partial_{5}}{\partial r^{\prime}}$, we must remember, that this is also obtained from the relation $\boldsymbol{u}_{2}=\boldsymbol{\zeta}+\left(1-x^{2}\right) \frac{\partial \zeta}{\partial x^{2}}$.
3. It is now the question, whether the expression

$$
u_{1} \frac{u^{2}}{\left(1+m_{1}\right)^{2}}
$$

represents the melting-points of the tin-amalgams as well as, or better than my semi-empirical expression

$$
\boldsymbol{\alpha}_{1} x^{2}+\beta_{1} x^{3}+\gamma_{1} w^{4}
$$

Let us first observe, that vin der Wials always found \boldsymbol{c}_{1} nefotior in the case of electrolytes and other aqueons solutions (l. e. p. 195). Now it is evident, that if we may write $a_{12}=V \overline{a_{1} a_{2}}$, the coefficient a_{1} becomes $\frac{\left(b_{2} \sqrt{ } \bar{a}_{1}-b_{1} \sqrt{ } \bar{a}_{2}\right)^{2}}{b_{1}{ }^{3}}$, and ought therefore to be always found

$\% \quad \%$

From whervations, where the valnes of , are less than 0,1, the value of $/ 1$ wats found to be exately $0,390^{2}$). If we now further areept for the values of the eroelticients a and of:

$$
\imath=0.0453 ; \quad r=-0 . \overline{4} 4
$$

which are ealenlated from other ohservations with higher values of er, we whain $\left(T_{0}=273,15+231,63=504,8\right)$ the survey on the next page.

We notice, that in this table the agreement is an excellent one; the arerage deviation is abont 0,9 , whilst in the case of the empirical formmla with b^{2} and $z^{2} x^{3}$ (see previous commmication), if the last value is not combed, it amounted to 0.85^{2}. Vis der W inds's expression for the comectionterm, therefore, represents at least equally well the course of the meltingroint-line over the portion, olserved from 212° (1) 65°. But what is still more important, is the fact, that whilst my former empirical formula does not very acemately represent the two last ohservations (the differenee in the last even amomed to 10°), vis Der Whals's expression not only satisfactorily represents these, but also the four observations at still lower temperatures (compare P. 22 of vin Hetfres's Dissertation). In this observations the values of x and t were determined ly analysis of the liguid phase, which is in equilinium with the solid phase at a given temperature.
${ }^{\text {1) }}$ In the previous communication 0.100 was accepted, but $\frac{200}{505}=0,396$ is somewhat more accurate.

x	x^{2}	$\begin{array}{\|c\|} \text { Denom. } \\ 1-\text { g/mg }(1-x) \mid \end{array}$	α, x^{2}	$1(1+r x)^{2}$	Numerat． $1+\frac{\mu x^{2}}{(1+\pi, c)^{2}}$	calculated	id． found	\triangle
0.1005	0.01010°	1．0＇20	， 0.00045^{9}	0.8507	1.000%	211.6	211.6	0
0.1716	0．029 ${ }^{4}$	107 尔	0．0．133：${ }^{\circ}$	0.7621	1.0018	197.5	198.6	-1.1
0：2338	$0.0 .516^{6}$	1.1654	0．002 47^{60}	0.6839	1.0036	185.2	183．7	$+1.5$
0.2969	0.0881^{5}	1.4397	，0．003993	0.60×9	1.006 Hi	172.8	173.0	-9.2
0.3850	0.1487	1.1930	0.00673°	0.5108	1.0132	153.6	155.2	＋0．4
0.5001	0．2501	1.275	0．0513：3	0.398	1.02816	134.3	1：33．4	＋0．9
0.5973	0．3508	1.3602	0.01616	0.3111	1．0．19	$117: 3$	115.2	＋2．1
0.6467	$0.41{ }^{\text {c }}$	14119	0.01896	0.2719	1.0697	109.3	107.4	$+1.9$
0.6754	0． 4562	1.450	002067	0.2502	1.0826	105.0	103．4	＋1．6
0.6813	0.46 隹	1．4020	0．02103，	0．2458	1.0850	104.0	102．4	＋1．6
$0.710{ }^{\prime}$	0.50 年	1．49，	$0^{0} 022 \times 4$	0．2w 0	1．1016	99.9	99．0	＋9．9
0.7150	0.5119	1．4988	0．02： 3 ！	0.2914	1．10你	$99 \pm$	95.8	＋0．4
0.7 亿77	0.5991	1．313\％	0.02533	0.1995	1.1270	93.0	95.1	-0.4
0.7547	0.5090	1.2505	0.02580	0.1949	1.132 i	$9 \% .1$	920	＋0．1
0.7903	0.63341	$1.63)^{1}$	＇0．62873	0.1687	1.1703	89.3	90.0	-0.7
0.8189	0.6706	1.6767	0.03 J 洼	0.1552	1．1937	86.8	88.4	-1.6
0.8921	0.7958	1.8817	0.03605	0.11 m	1.3121	78.9	79.7	－0．8
0.9483	0.8993	2.1731	0.01071	0． $8889{ }^{\circ}$	1．4579	65.5	60.2	＋13

x	x^{2}	Denom．	$x \cdot r^{2}$	$1(1+r x)^{2}$	Numerat．	$\left\lvert\, \begin{gathered} T-273.15 \\ \text { calculated } \end{gathered}\right.$	$\begin{array}{\|l\|l} \text { idl. } \\ \text { found } & \triangle \end{array}$
0.9879	0.9759	2.7482	0．02021	0.0723	1．611\％	24.9	$25.0-2.1$
0.9903	0．9807	2.8357	10．04仿	0.0711°	1．fizer	15.7	15.0 ± 0.7
0.994	0．9882	3．0396	0.04477	0.069991	1.603	-0.1	0．0－0．1
0.9904	［0．9928	3.22×2	004497	0.0690 t	1.6516	-14.9	$-18.8+3.9$

The agreement is even mexpectedly great，when we consider，that the meltingoint－line runs here almost rertical，and a quite insigni－ ficant change in e^{a} causes a difference of several degrees in＇T．
4. Iol us examine the formula
more clomely. With small value of ar it pasese into

$$
T=T_{0} \frac{1-10,04533, r^{2}}{1+0.396\left(x+1 / r^{2}\right)}=T_{0}\left|1-0,396 x+0,0044 x^{2}\right| .
$$

 point-line in this cose rum wer a lairly large region from 232° to 120°) as ath almost struight line. To ensure this, it is generally necessary, that $\theta^{z}-\frac{1}{2} \theta+a$ is very small or 0 .

As, for equilibrimm between the solid tin and the tin in the amalgam, $\mu=\mu_{1} \quad(r$

$$
-\mu+\mu_{1}-\mu_{0}
$$

we also have:

$$
\frac{\partial}{\partial T}\left(-\mu+\mu_{1}\right)+\frac{\partial}{\partial x^{r}}\left(-\mu+\mu_{1}\right) \frac{d \cdot r}{d T}=0 .
$$

Now areording to a well-known theorem $\frac{\partial}{\partial T}\left(-\mu+\mu_{1}\right)=-\frac{?}{T}$. The molecular potential \boldsymbol{n} for the solid phase is moreover not dependent on .r. Therefore:

$$
-\frac{q}{T}+\frac{\partial \boldsymbol{\mu}_{1}}{\partial x} \frac{d x}{d T}=0,
$$

and consequently

$$
\frac{d T}{d x}=\frac{T}{q} \frac{\partial \mu_{1}}{\partial x} .
$$

We therefore see, that supposing the solid phase (as in this case) contains no mercury, $\frac{d T}{d, r}$ cannot become 0 , unless $\frac{\partial \mu_{1}}{\partial r_{r}}=0$. But then the liquid phase will be unstable, and we find ourselves on the -pinodal line, oo that the liguid amalgam would fong ago have broken up into two phases of different composition.

Now, $\frac{\partial \boldsymbol{\mu}_{1}}{\partial x}$ and therefore also $\frac{d T}{d x}$ may become zero in the case of twe values for x; there are therefore in this case always two horizontal tangents. A limiting case of this is of course a point of inflection with only one horizontal tangent.

As

$$
\frac{d^{2} T}{d v^{2}}=\frac{T}{q} \frac{\partial^{y} \boldsymbol{\mu}_{1}}{\partial x^{2}}+\frac{\partial \boldsymbol{\mu}_{1}}{\partial x} \frac{d}{d x}\left(\frac{T}{\eta}\right)
$$

this limiting case will evidently occur when

$$
\frac{\partial \boldsymbol{\mu}_{1}}{\partial x_{1}} \text { and } \frac{\partial^{2} \boldsymbol{\mu}_{1}}{\partial x^{2}}
$$

are 0 at the same time. Now

$$
\frac{\partial \boldsymbol{u}_{1}}{\partial x^{r}}=-\frac{R T}{1-x}+\frac{2 A}{b_{1}^{3}} \frac{x}{\left(1+r^{2}\right)^{3}} ; \frac{\partial^{2} \boldsymbol{u}_{1}}{\partial x_{2}^{2}}=-\frac{R T}{(1-x)^{3}}+\frac{2 \Lambda}{b_{1}^{3}} \frac{1-2 r_{x} x^{3}}{\left(1+r_{2}\right)^{4}} .
$$

so that for this point of inflection we shall have the relations

$$
\begin{aligned}
& x(1-x) \\
& \left(1+r_{n}\right)^{3}
\end{aligned}=\begin{aligned}
& R T \\
& 2 \varkappa_{1}
\end{aligned} \quad ; \quad \begin{gathered}
(1-x)^{2}\left(1-2 r^{2}\right) \\
(1+r, r)^{4}
\end{gathered}=\begin{aligned}
& R T \\
& 2 \ell_{1}
\end{aligned}
$$

On dividing, we find:

$$
\therefore(1+x x)=(1-x)(1-2 x)
$$

Ol^{\prime}

$$
x-2(1+x) x+1=0 .
$$

When r is either negative or positive, we find firom this:

$$
\begin{equation*}
x_{c}=\frac{1+r-\sqrt{1+r+r^{2}}}{r}, \tag{c}
\end{equation*}
$$

when x_{c} indicates the value of x at the point of inflection. x_{c} may rum from $1 / 2$ (if $r=0$) to 1 (if $r=-1$), when r is meqative. If, however, r is positive, r_{c} rums from $\frac{1}{2}$ (if $r=0$) to 0 (if $r=\infty$). The positive sign for $\overline{1+r+r^{2}}$ would give in both eases impossible values for x_{c}.

We now further obtain :

$$
\frac{x_{c}\left(1-x_{c}\right)}{\left(1+x_{x_{c}}\right)^{3}}=\frac{R T}{2 \varepsilon q_{0}}=\frac{R T_{0}}{q_{0}} \cdot \frac{1}{2 \ell} \cdot \frac{T}{T_{0}}=\frac{0}{2 \ell} \cdot \frac{T}{T_{0}}
$$

that is to say, when for $\frac{T}{T_{0}}$ is substituted its value from (8/us):

$$
\frac{r_{c}\left(1-r_{c}\right)}{\left(1+r_{c}\right)^{3}}<2_{2} \cdot \frac{1+\frac{\epsilon_{n}^{2}{ }_{c}^{2}}{\left(1+r^{2} r_{c}\right)^{2}}}{1-0 \log \left(1-r_{c}\right)} .
$$

where the lower sign indicates conditions, where $\frac{\partial \mu_{1}}{\partial r^{\prime}}<0$, and which are consequently stable. From this then follows:

$$
2 \boldsymbol{a} \frac{w_{c}\left(1-x_{c}\right)}{1+x_{c}}\left(1-0 \log \left(1-w_{c}\right)\right)<0\left[\left(1+r^{w_{c}}\right)^{2}+\boldsymbol{\alpha} \cdot r_{c}^{2}\right] .
$$

Now, from the equation, from which (u) was deduced, we find:

$$
1 \cdots, \quad, \quad \cdots \quad \begin{array}{lll}
1 & ! \\
\vdots & \cdots
\end{array}
$$

-1) Hail alsa
\because

cornerguently.
 one of lwo phates on the moltingopint-line.

From the expresion for it art abe abe it follows immediately,
 beeome 0, still les pasitive. The aecumenere of amstuble conditions on the meltinguint-line may, therefore, only be expected in the case
 value, given by (h).

The relations (1) and ($/ 1$), when mited, wive therefore the condition for stable phases along the entive meltingpoint-line.

In onn example $r=\ldots 0 . \bar{t}$, and (18) gives $r^{\prime}=0.863$. The equation (1) furbler erives with $0=0.396:$

$$
\begin{aligned}
& 27 \times 0.396 \times(0.135)^{2} \\
& "<11.86:(\overline{1.135})=12 \cdot 1.1: 37(1-1.396 \ln , 10.137)-3 \times 11.396 \times 0.86:\left.3\right|^{\circ}
\end{aligned}
$$ that is to sity

Sow, in our case ${ }^{2}$ was $0,045 \%$, so that everywhere we find ourselses in the stable region as may in fact be seen from the shape of the observed meltingopint-line). If a had been 0,059, we should have had a point of inflection with horizontal tangent ; and had a been 0.059, we should have noticed the oceurence of a horizontal tangent in two places of the meltingpoint-line. This last ease is, of course, not realisahle, ats the liquid amalgam would break up into two heterogenous lifuid phases of elifferent composition. ${ }^{2}$)

[^102]Another question is, at what values of x and T does $\frac{\partial \mu_{1}}{\partial r}$ first become 0 , or where does the plait commence, independent of the faed whether we find ourselves on the meltingpoint-line or not. which had just been investigated.

We have only to combine the relations $\frac{\partial \mu_{1}}{\partial r_{r}}=0$ and $\frac{\partial^{3} \mu_{1}}{\partial r^{2}}=0$

$$
\frac{d T}{d e^{e}}=T \frac{\left(r_{2}-r_{1}\right) \frac{\partial^{2} \boldsymbol{\zeta}_{1}}{\partial r_{1}^{2}}}{u_{21}}
$$

$\frac{d T}{d x^{*}}$ always becomes 0 in one place only in consequence of $x_{2}-x_{1}$ becoming 0 , whilst on account of $\frac{d^{2} \zeta_{1}}{\partial \cdot r^{2}}$ becoming $0, \frac{d T}{d d^{2}}$ always becomes 0 in two places, or in the limiting case in two coinciding places in a point of inflection with a horizontal tangent. De Viseer thinks he has found such a point of inflection with mixtures of stearic and palmitic acids. ${ }^{1}$) It is, of course, not impossible, that we are dealing here accidentally with a case, in which the quantity x possesses the value indicated by (b). That the line of the end-solidifyingpoints also shows in the immediate neighbourhood a similar point of inflection, points to the fact, that the conditions $\frac{\partial^{2} \zeta}{\partial r^{2}}=0, \frac{\partial^{3} \zeta}{\partial e^{3}}=0$ are fulfilled on both lines at about the same time, which renders it more accidental still, because 2 would then possess the ralue reguired for this also in the solid phase. It shouk be pointed out, that as a rule the conditions $\frac{\partial^{2} \leq}{\partial r^{2}}=0, \frac{\partial^{3}}{\partial r}=0$ for both phases by no means include $x_{1}=x_{2}$. For this requires $\frac{\partial_{s_{1}}}{\partial_{r_{1}}}=\frac{\partial_{s_{3}}}{\partial_{t_{2}}}$. It is thereore a new accident, that both points of inflection appear to coincide. But for this a reason may be given here. From the erfuation, from which (u) is found, namely $r^{2}-\underline{a}(1+r) x+1=0$, it follows that with $r=0, x=1$. De Visseri now found both points of inflection to be at x about ${ }^{1} /(=0.525)$, so that the quantity r, both in the solid and liquid phase, is about $0\left(b_{1}=b_{2}\right)$. And in that case the values of x at both points of inflection mist agree, namely both at $x=1 / 2$.

The case, studied by de Visser, may therefore be an accidental coincidence of the two points of inflection. But then, on account of $\frac{\partial^{2} \boldsymbol{\zeta}_{1}}{\partial d_{1}{ }^{3}}=0$ and $\frac{\partial^{2} \boldsymbol{\zeta}_{3}}{\partial_{r_{2}}{ }^{3}}=0$, both the liquid and solid phases must have broken up into two layers, although of identical composition. The smallest delay in solidification wonld however immediately have carried the system within the plait, and then both phases would have broken up into two layers of a somewhat differing composition. It is however more probable, that both lines nearly show a point of inflection with a horizontal tangent, and that they uppiouch resiy near, but not touch each other.

[^103]th find the values of r and T 'at the "eritical" point. We find as ahove:
$$
r_{r}=1+r-V 1+r+r^{2}
$$

The femperature $\%_{r}$ of this mitieal paint is foum from $\frac{d \mu_{1}}{O_{r}}=0$, Hom is to say from

$$
\frac{r_{1}\left(1-r_{c}\right)}{\left(1+r_{c}\right)^{3}}=\frac{11}{2 e} \frac{T_{c}}{T_{n}}
$$

We conseguently liml:

$$
T_{r}=T_{a} \frac{\underline{2} r r_{c}\left(1-r_{c}\right)}{\theta} \frac{\left.1+r_{a} r_{c}\right)^{2}}{},
$$

or, as $1+r_{r}=: 3 \frac{1-r_{c}}{2-r_{c}}:$

$$
\begin{equation*}
T_{c}=\frac{1}{27} T_{0} \cdot \frac{2 a_{8} x_{c}\left(2-x_{c}\right)^{3}}{0} \frac{\left(1-x_{c}\right)^{2}}{} \tag{3b}
\end{equation*}
$$

At this, or at lower temperatures, $\frac{\partial \ell_{1}}{\partial r}$ heing then positive, we find murelves therefore in the plait.

Ln the case of tin and merenty we find for x_{c} the valne 0,863 (see aloove), if $r=-0,74$. For T_{c} we find:

$$
T_{c}=\frac{504,8}{27} \times \frac{0,0906}{0.396} \times 67.60=289^{2} .2
$$

The "critical" point is therefore situated at $16^{\circ} \mathrm{C}$., that is to say fully s^{-3} lower than the point of the medtagooint-line, helonging to $u=0,863$ (13,7 atom-perent tin), namely $83^{\circ}, 2($.

There are of course cases, where that distance is smaller, and where eonsequently a mifling superooling abread! carries ws within the region of the plait, which then - in the absence of the solid phase - catuses a separation into two layers.

I may observe, that the vatue x_{c} does not correspond as a rule with a point of inflection 'with obligue tangent; on the meltingpointline, when the critical point is not situated on the meltingpoint-line. For $\frac{\partial \mu_{1}}{\partial x}=0, \frac{\partial^{2} \mu_{1}}{\partial x^{2}}=0$ do not lead to $\frac{d^{2} T}{d x^{2}}=0$, when these differen-tial-coeffients do not become 0 cm the meltingpoint-line.
5. The value of η, the heat of fusions of tin in the liquid amalgam, is evidently:

$$
q=q_{0}\left(1+\frac{\boldsymbol{\epsilon} \cdot x^{2}}{\left(1+r_{0} c\right)^{2}}\right)
$$

When the value of , θ^{\prime} is small, and assming, hat merenty dissolved in tin is mometomic, we find for $\%_{0}$ by calcolation 2550 gramerals. Person found experimentally 1690 gram-eals. Should this figure be confirmed, it would prove, that the associationfactor of merery is about 1.5.

Now, it follows from the above formula, that at 25°, where of is about 1, 'f ought to be

$$
=2550 \times 1,6114=4110 \text { glam-cals.. }
$$

whilst ris Heterex, by electromotive measurements, found ahout 3000 gram-cals. From this it would follow, that the value, used for $\%_{0}$, is about 1.4 times too large, which would be a confirmation of the fact, that the meremy in the amalgam is not present as single atoms.

In order to obtain certainty as regards the molecuiar condition of the tin in the amalgam, it would be necessary to know the melting-point-line of the mercury, and to determine the lowering of the melting-point in addition to the heat of fusion in the presence of very small quantities of tin. There are indeed indications, that the tin is also not present as single atoms. Lndeed, the quantity $r=-b_{1}+b_{2}$, which was found by us to be $-0,74$, gives for $\frac{b_{2}}{b_{1}}$ the value 0.26 , from which it would follow, that the molecular volume of tin $\left(h_{1}\right)$ would be about four tmmes larger than that of mereury (h_{2}). Now, the atomic volume of Hg is 14,7 , that of $\mathrm{Sn}=16,1$, so if these troo components were monatomic, $\frac{l_{2}}{l_{1}}$ motht to be approximately $=1$, Whilst in reality that relation is ${ }^{1} / 4$; this points to the probability, that in the case of tin several (may be six) atoms are mited to one molecule.

It certainly would be highty desirable if this question were fully investigated. For in all our calculations the values of d are only then valid, when both mereury and tin are assumed to be monatomic. This is also the case with all similar calculations, relating to other amalgams.

May I be allowed to point out, that the molecular condition of meremy may be determined from the lowering of the melting-point of tim, if this contains a little dissolved mercury - whilst the molecular condition of tin may be ascertaned from the lowering of the meltingpoint of mercury in the presence of a little tin. For in the case of chlute solutions something is learned only about the condition of the dissolved substance, but never anything as regards that of the solvent. In the limiting formula

$$
T_{n}-T=\begin{array}{r}
I T_{n} \\
\eta_{0}
\end{array}
$$

Where T_{0} and $\%$ relate to tin as volvent for example, evervthing on the right hand side will remain moldamerel, althomg tin simbld not be monatomice, but say \quad-itomice For as. the eoneentration of the disoblved mereury, would then berombe n-times preater. but \% would
 1 mol. $=\pi$-atoms. On the other hand, it the merent were m-atomic, the value of el alone womld ehange: of would then become m-limes smaller, and we shall, therefore, observe a m-times smaller loweringr of the meltingepant than that, valenlated on the hasis of mono-atomicity.

In this way we might attain to the knowledre of the molecular condition at the ends of the curve, ef heing 0 (for meremry), and 1 (for tin). But in orter to form further conclusions with other values of x, the whole of the meltingpoint-line wond have to he aceurately examined, and this may in many cases become an exceedingly complicated matter.
6. There is, howerer, another way to get to know something about the molecular condition of the solid tin, and that is the composition of the solid phate, which is in equilibrium with the liquid one. If we equate the molecular potentials of mercury in the two phases, we obtain:
$r_{3}-c_{2} T+R T \log x+\frac{\mu_{2}(1-x)^{2}}{(1+r x)^{2}}=e_{2}^{\prime}-c_{2}^{\prime} T+R T \log x^{\prime}+\frac{\boldsymbol{e}_{2}^{\prime}\left(1-x^{\prime}\right)^{2}}{\left(1+r^{\prime} x^{\prime}\right)^{2}}$.
This further grives:

$$
\left(e_{2}-e_{2}^{\prime}\right)-\left(c_{1}-c_{1}^{\prime}\right) T=R T \log \frac{u^{\prime}}{x}+\left[\frac{e_{2}^{\prime}\left(1-e^{\prime}\right)^{2}}{\left(1+r^{\prime} x^{\prime}\right)^{3}}-\frac{e_{2}(1-x)^{2}}{(1+r x)^{2}}\right],
$$

or with $e_{3}-e^{\prime}=q_{0}^{\prime}$, and with introduction of the meltingpoint ' $T^{\prime \prime}$ of pure mercury:

$$
q_{0}^{\prime}\left(1-\frac{T}{T_{0}^{\prime}}\right)=R T \log \frac{x^{\prime}}{x}+\mathrm{id}
$$

therefore

$$
q_{0}^{\prime}=\frac{R T T_{0}^{\prime}}{T-T_{0}^{\prime}}\left[\log \frac{x^{\prime}}{x^{\prime}}+\left\{\frac{\varepsilon_{2}(1-x)^{2}}{R T(1+r, r)^{3}}-\frac{\varepsilon_{2}^{\prime}\left(1-x^{\prime}\right)^{3}}{R T\left(1+r^{\prime} x^{\prime}\right)^{3}}\right\}\right] .
$$

Now in the liquid condition

This quantity is therefore $0,1144 \times \frac{504,8}{298,2} \times \frac{50}{13}=0,745$.

Putting $a_{3}^{\prime}=\alpha_{2}$ and $r^{\prime}=r$ as at first approximation, the value of the correction becomes:

$$
0.745\left\{\left(\frac{0,012}{1-0,74 \times 0,988}\right)^{2}-\left(\frac{0,99}{1-0,74 \times 0,01}\right)^{2}\right\}
$$

and, as at 25° the composition of the liquid phase wat found $x=0,988$, and that of the solid phase $x^{\prime}=0,01$ (perhap) 0,06), the said value becomes:

$$
0,745 \times(0,0020-0,9950)=-0.74 .
$$

A change of a^{\prime} from 0,01 to 0,06 can only canse a sligh alteration. The value of the clinef term $\log \frac{i^{\prime}}{x^{\prime}}$ is:

$$
\operatorname{low}^{10} \frac{0,988}{0,01} \times 2,3026=4,59 .
$$

so that we obtain (at 23°):

$$
q_{0}^{\prime}=\frac{2 \times 298,2 \times 234.5}{63.7} \times 3,85=8450 \text { gram-cals. }
$$

whereas Penson found $q^{\prime}=2,82 \times 200,3=565$ gr. cals. We therefore find a value 15 times too great. And a small error in the correction term 0,7t camot upset this result. If, however, the in in the solid amalgam is taken as hexatomic, x^{\prime} becomes six times greater and q^{\prime} 。 comes down to about 4400 gram-cals. If, moreover, h^{\prime} is originally taken not as 0,01 , but as 0,06 , so that with a hexa-atomicity a^{\prime} now becomes 0,32 , the value i^{\prime} obegins indeed to get more close to the value, obtained experimentally:

The above, therefore, contains indications enough of the polyatomicity of both mercury and tin. To arrive at a decision, however, accurate experiments will have to be made in the direction indicated, together with fresh determinations of the two heats of fusion.

Ethnology. - "Influence of chunged conditions. of life on the physical and psychical derelopment of the population of C'entral Borneo." By Dr. A. IW. Nieuwexhlis.
(Communicated in the meeting of February 28, 1903).
There is great diversity of opinion among competent authorities about the influence exerted by external circumstances of life on the development of a person and on that of the peculiarities of a tribe.

If this difference of opinion already gives evidence of the difficulty, of determining this influence for the individual, the difficulty is greatly.
increased, ats soon ats we fry form, between fwo groups of men,
 coremostances of life. Examinher the highly conthred nathons whish live in very complicated fomditions of life, the diflienties lrecome almost insuperable.

We are not a lithe hampered in this investigation by the fare that among eivilized mations mothal intereomse and mixtme have a disturbing inthemer on the eventhal effere of special remblitions of existence.

In Europe some data are fiminhed by the lsaelifes, which have preserved themselves as such for cenfuries in different countries under the circomstances prevailing there and which have absorbed few foreign elements. But here, too, the influencing conditions of life are very compliated. athe the Ismelites of the different countries have mixed with each other.

Chiefly becanse the relations in the societies of tribes, which have not reached so high a degree of civilization, are simpler and the conditions of life for all their members do not differ so mueh as elsewhere, it is likely that amongst them eventual changes in those conditions of life will stand out more prominenty and that much becomes elear to the investigator, which was difficult to point out under more complicate relationships.

It is moreover noteworthy, that among them the influences of nature, of the suroundings in which they live, have a much greater effed than in higher ceivilized societies, which have leamed toshed themselves better against this direct dependence.

We also meet with tribes where the great distmong factor of frequent mutnal intereouse and mixture is excluted in examining the modifications which two tribes have suffered hy different extemat canses. A still simpler case presents itself where two large groups of the same race have lived for a long time under different external circumstances and have mixed little, if at all.

Before it has heen proved that the people forming these tribes, are in their original qualities the same as Eurojeans, we must not directly apply what has been observed in them, to European society. For the right understanding of the pre-historic course of the development of mankind, however, we may refer to the tribes, which have reached as yet but a lower degree of culture; in my opinion we are equally justified in drawing ertain conclusions as to the corresponding intluences on hither coltured nations from many things. which we have observed in the social matters of the former.

During my second joumey throngh Borneo I had the privilege of
living amomp fwo groups of the same dibe which have existat for a century amblonger mater very diferent diremmatimes. They were the bahatus on the [pper-Malakiam, with whom I lived for fwo reats, ant the Kenjats on the Upper-Kajath, with whom I spent some mombth.
 middle eoomse of all the rivers, which fall into the seat on the North eotas, beximing with the river batang-Redjam, and an far an the Eatst coast, including the river Madakam. They are catled collere tively the Pari-tribes, and they all comsiter the rexion rontatning the sommen of the river Kajan at heir original eomblry. Mumal fuarrels, the result of too dense a population, were the eathese, hat for conturies agan amd again tribes moved away formbhomang rivers, as e.g. it happened no more than en youss atw with the tribe ()ema Fime, which setted on the 'J'awanes, a tributary on the left of the Malsalsam.

The Bahatuthibes on the L'pere-Mahakam aton oriminate from this mative combtry, wheh they call Apo Kajan, but they have lived in their sew home abrady for mome than a hambed yeats. This was comonsly confirmed on my amial in Apo Kajan with my Bahanescort. Their chieftain Kwing hamy then received for the diest time a full areomb of the history of his ancestors, which wats abrealy forgoten in his own tribe.

How litte imteromese the inhathitants of the LPrer-Mahakam have with those of the L'pres-Kajan mat be dexted from the late that among all the fommer bahats only one man hat ever been in Apo Kajan, and that, when in the (ompany of 60 bahathe and 20 pendoMalays I set out on the expedition thither in Augus doto mone of us knew the wat. The joumer lated a month, and we hat to traverse mimhabitaded lamb. The way was indicated by sticks pat up in a spectal way in the river-months by some konjas who travelled in boats in fromt of us, the sticks demoting which rivers we hat to take.

We may therefore assmme as rertatin that we hatre fo deal with tribes of the same origin, to whel moreower their lanswate, dress, morals and chatoms point, which distinguish them eloaly from other

 intloenere on them. (On the Lppre-Mahakam, mamely, the bahams live at at height of from 200 to 200 metren, the Apo kijan is 600
 very comsidemathe apecially in bomeo, may bo derived from the

Gace that in dava the region of mos veneration done mot bexin lower that at a height of dono metres, wherats in burno it begins at a heright of a thousand motres. This is ramed by the following circomatanes.
 is bat slighty aftected by the inthenee of the trathe-wimbs, which e. \& . in dava make the difference between the wet- and the drymonsons so great. Hene it may happen that more aan falls from December to March than from May to October, hat partieularly in the highlands reall! dry times ate mbnown, and we may fint low water in the rivers in the rainy period. The regula distribution of moisture themgh the whole year is sreally furthered by the eiremmstance that the whole intand is covered with one lave primitise forest, which italf retains lave ghamtities of water, and harboms: mouldering rocks which to the same. The ammal rainfall amombing from 3000 to $5000 \mathrm{~m} . \mathrm{m}$. at diflerent places, the climate is very homid all throngh the year, and the sky is always more or less overeasi, so that a clombless sky is a greal rarity in the higher regions. foon atter smbet a low hanging entain of clouds is formed in the valleys. This does not rise matil seven belock in the moming or later and envelops the summis of the momatans till pretty late in the evening. In consequence of this the maximm temperathre at a height of 250 metres is $30^{\circ}(\therefore$ in the shade on the Upper-Malakam; at six oolock in the morning however it wats never lower than 20° C. Noteworthy is also that strong winds of long duration do not oceur there, only some blasts of short duration, which are generally preceded by heary showers.

The climate of Apo Kajan and of the Mahakam differs Dmt little in most of its pecoliarities, such as homidity, and a clondy sky, but the latter is at soom deal colder on account of the greater height, and what is particulatly striking is the contimually prevailing wind. This aceomts for the fact that though in two months 1 never found a lower temperature than $17^{\circ} \mathrm{O}$. at six o'dock a. m, and though it hailed but once, the climate is yet much rongher. The red cheeks, -pectally of the women and chidtren prove this, and also the face, that the different kinds of rice repuire a month longer to ripen in Apo Kagan than on the Mahakam. Yet the method of growing rice is the same, and consists in cotting down and dreing the wood, after which it is burned and the rice sowed in holes, which are made hy pushing pointed sticks into the soil, which is covered with ashes.

The geological formation is the same in Apo Kigan as on the Upper-Madakam: we fiml in buth a strongly denuted upland, where
everyhere old shate layes eome to the surface Only here and there yotmger formations, specially fieestone, cover the oblder.

If we now rake into consideration that only in the las 30 yeats either the bahatus on the Lpper-Mahakam or the kenjas on the Upper-Kiajan have come into such close erontat with higher civilized nations that if intuced some of their men to undertake commereial enterprises for the purehasing of salt and linen, I think that 1 am justified in asserting that the two gromps of mibes moder consideration betong to the same rate, that they have lived for upwads of a handred vears in countries with at different climate, that they have hat hot little mutnal intercouse and have mot mixel: that they have not changed their life at coltivators of the soil and have developed without external influences.

What effect this difference of elimate ean have on the pepmlation, maty be derived from the face, that in my opinion the thinness of the population in Borneo depents in the dirs plate on the influences of the climate and math more on the costoms of the people than on the infections discases, such at wolera, smatlpox, which are introdnced from the foast. As both Lpper-Kajan and lpperMahakam are so difficult to reach that infections diseases but very seddom extend to them, we have, when trying to determine what the result of those changed conditions of life is for the bahans, only to deal with those factor's which are sometimes comprised under the name of inffuences of the climate.

What is maderstood be inthenees of the elimate in the highlands of borne became elear to me for the firs time in the sultatate of Sambas on the West coast of the istand, where I wats strund by the difference in the spreal of mataria among the population of the matshe coast regions and that of the hightiunds. In order to get a fuller Jnowledge of this difference, I made an ingniry into the trates of madaria infection on about 3000 children, both in the mashy allavial phain and in the hightands. Theme dhildren had not been offered to me on purpose for this investigation, but for an inguiry into the results of the vacomation among the Malay and Dajak population.

Amoner the population of the alluvial platins 1 fomm amome 2103 chidden only 6 with at elnomic had splenic lumor, or 2, sper 1000 .

Among 420 children of the uplands it occured in 40) children, or 959.5 per 1000 .

The remaming 396 dhblren originated from regions, which in their formation were the tramsition between the alluvial plans and the uplands. Fanns. Denxiome Amere fols.

 Weres whe Whame mill was med to be felt.

It is imposihle to erive the mondidity and the mortality camed hy Hee mataria-infertion among the pophlation of the "phands in fiphres.

 of the mataria, herathee there are ato some Malays who dive in the "plands and among those, who have chiedy sedted in the lower platins, diseases of the digestive orgats ate moth more frequent that amomer the hills.

In order to apmeriate fally the inthence of the matatia-infection on the existence of the inhabitants of the higher regions, we must dwell for at moment on the phenomenon, which prof. Koon says that he ohserved in Xew-Guinea, mamely, that the native, who went thongh the mataria-process intepentently i. e. withont any aid exeept his comstitution, berame immone atomst it. Mathy are the refotations ahluced agatimat this statement by phyicians, who praterised in Newfininea. They all pointed out how frequenty ako adult Papoeas suffered from malaria.

Jutring by my experiences among the bajaks, the troth lies between the two. I athe have been strmek by the fate that not womy havd enlatged milts as sympoms of the malatiatinfeetion are met with among alult bataks ats among ehildren muter the aqe of ten, which certainly points to a less stomg intluenee of this mfection. Moreoser there is a great diflerence between the action of chinine on Dajaks and on Enoopans, who are not immone. Thourh we must make allowates for other factors than immmotr, yet it is remarkable, that we ohtamed much preater reants with at most 1 gram shlphas
 among European soldiers, seized by malauia in Lombok.

Anmong the fommer it was posible to core sol only the aloute cases of madaria, hat ako eases which had contimed from 4 th 6 months and had mot been treated hefore, by administerime I mram sulphas chinini per day and pre dase dhing o days, whereas in the first four months after the war in Lombok in a mixed ravion of 1 bot men more than doo Emopeams had to be removed, most of them by fate
being mataria patients, whon I meself had beated with fiom 2 on 3 grams per day and per dose aud who had lithe chatre of being cored in Lombok itself.

Among at the least 2000 bajak matamia patients. whom I freated specially in Central-Bomeo and of whom hardly ant died, l observed another telling difference between the reaction of their boxy ataninst the malariatinferetion and that of the Earopeans.

Whereas under mafaromathe eimemstances many of the latter perished mader babisl and strong symptoms, sometmes so quickly, that (hinine wats of no aval, such arote eases with stomg ieterns, meonsconsiness and collapse were never found among the bataks. I satw, however, many eases where the diseate had reathed an atramed stage after protracted illness.

That this difference wats mot due to the inferion strenght of the infection in lborneo, was proved by my Emopean and native fellow-tavellers, most of whom sulfered hatly fiom malariat to them
 day, and one of them I hated to wive a strong hyportermie ingection of 3,25 gram ehinine within 36 homs.

From all this we may assume that the Dajaks beome partially immone if in youth they are sulyected to repeated attateks of mataria. Set even then whatever weakens the constitution mat give rise fo attacks of malaria, so that diseates of the respratory orgats of of the digestive organs, wounds, diseases of infection and sperially everyhing that is comprised moder the mame of catchane cold, erod complicated with malaria.

As the monntamons regions on the Lpper-Mahakam ate among those where mataria is of very frequent ocenremee, it is cleat, that the Bahan-poputation suffer greatly from it and that the indivithal experiences its enfeebling inthence from eaty foulh till deadh.
being nsed for yeats in my prateree among them to lime that the great majority of catses were hose of malaria, I was greaty struck by the change after mux arival among the Kenja popatation of Apo Katjan. I must ald that my repubation ats al phsictian procured me immediately after my arival al great momber of patients, Hongh only few had ever seen a Enropean on the cobat before

It fiest struck me, that so many lixdoppe old people called in my help, which had seatedy ever acourted in lower reqions, whereas the malatia-cises retioed to the bategromud and dating my stay contined themselves to a few arote catses. I fommel then. that the change in the siek-rate of the popmation was ehiefly due to the prevalence of hronehitis with emphysema and heardediseate, homehitis

 embated, hatemed mill in the whildrem. This ateres with the well-
 derorames in violenmo.

 and stre mot to be eompaned in this resper with strong mataria-

 fation and their thatatere in the ditherene of the orewrence of matariat ats at comserquene of the ditmence in height of the combtry of the bablans and that of the kempas.

Moreorey I must bake into areomm that syphitis is fomed in a less violent beree amomer the Kenjat than amoner the Bahans. Amoner somme liahan fribes it wats an miversat, that I thonght the fite that only bortary forms were found cond be explaned by assmang exchsively horeditary Hamsmission. Amoner the Komias, however, syphilis wats alsa met with maly in that form, but the eases were \therefore \& isolated that we combl not prssithy ascribe them to hereditary in-
 on the ereneral comdition of the Kimjas than on that of the bathans. That this catemic form of sphilis is so madh less common and that its symphoms ares so much less damerorots amoner the Kénjas than among the Bahans is due to a ereat extent to their stronged constitution.

If we now bake into eonsideration, that amoner all these tribes every family, even that of the chiefs is denendent for its daily food and shatename on the combinmal lathour of all its members. which is not the cate in more highly divilized societies, we feel, how erveat the inthence mast be which the more or less frepuent oceurrence of these diseases mast have on the prosperity of the wibe.

A striking example of the better comblions of existene oflered byy Apo Kitjan which is of equal extent to the Epper-Makakam, compated with the lower river-hatins. is furmished ly the fact that for centuries many tribes have been leasing this combry for other parts of the world and that nevertheless the peprotation thore is at present much elenser than in wher Dajak rearions.

Instead of 300 to 800 inhathitante as on the [Tper-Mahakam, the vilhages combt there $1500-2500$ inhabitants, though they eremanly do not lie father apat. Moreover the general appearane of the Kénjas makes a much better impression because of their stronger build and the less freguent ocrorrence of deforming diseases among the scantily dressed figmes, which is enhanced ly the absemee of the calchectic persons so mumerous ehswhere.

The difference between the Bahans and the Kenjas is even more marked in their psechical qualitios than in their physical individuality. The enfechling moments which on the Mahakam affere them int at so much larger degree seem to have had atrong degencrating effect on the pswe of the bahaths.

This is proved by their history: in the begiming of the 19 the eentury they made themselves known mot only by head hunting hot also by rats undertaken on a larger seale till far into the river-hatsin of the Kapoewas, the Barito and the Mahakam, in which regioms no mibe could resist them; at present smaller foras rarely orear, larger expeditions are quite out of the question and in a tight with other tribes the womding or death of one man may put his tribe to flight.

The greatest difficulties which contronted the Enropean stranger in his intereourse with the Bahans, arose in his continual storgete with their timidity, fear and suspicion even after a long interomse and in the fact that his movements were continnally hampered by the peculiar religions and other eonviotions of these tribes. The strong contrast in these respects between them and the konjas is therefore very striking.

After my arrival in Apo kajan I wits at once struck hy the fited, that the 150 men, who had come unter their principal chieftain to assist me by bringing boats and improving rods, were moth freer and noisier in their behaviom dhan my bahan eseort, that the ehieftans gave their commands with much spater energy and that they were also better obeved. During my stay in their villages has impression wat greatly strenghenet by the want of shyness on the pate of the women and chidren. Remankable was the eontrast between the behaviour of the yomm Kenjas and the Bahatus when I, as I usually did, distributed small presents, such as beads, fingerrings, needles and pieces of coth amomg them. Among the bathats I could quietly keep in my chair, and though oceasionatly a lithe hand may have been stretehed out too quickly towards the coveted ohject, yet all the lithe ones wated patiently for their turn and never became boisterous. When I dishibuted things among the bahans, the proceedings were quite different: I had to begin with taking a

 in fowing-twats ant the Mathakam in the ervat heat to which they

 ':urlicrs.

 that they all has triad to imatime matmads amd similat insentions,
 is fimmished hy the explathation of the motion of the stan, the eath

 atoly beliewo that the cath is romad and moves sme that it is mon
 moderstored all leati my oxplanation.
 extensive kemberter of their sumomblings shown ly the kengas.

In the conase of our topergathical simver of the Matakam and

 but that omly few amonge them knew any hing aloul rivers and monn-
 momutains. Which, thomgh they stowe at whme distatere on the ferritory
 them, and that in ordere to fimb out its name we had to apply to tribes living neater the mombatin. It was, of donsse, quite out of the question to a sail om*etves of their hepp in deferminimes the difierem plates from such a mommath top.

I wat therefore greaty struck, when among the Kempas a arembed

 pointed out all the mombtams ats fate the thotizon with the themes.
 indieated the roats leatling to the differem atjoning eomblries as accurately as at Eimopean combl have done.

Sot oinly we, but also the bahaths who aterompanied me, were astonished at the knowledge of the history of times long pate, which the Kemjas disphayed. It is a wellknown fact that tribes, who catmot write and who possess a low degree of eisilization, lose puicloy the memory of past events, and the knowledge of the bahath about their anesesfors was therefore very inacomate (ereat wats therefore the astonishment of Kwing hrag, when the Kajas fokd him the tratitions of his own ancestors dhong the time of their stay in Apo Kajan.

This greater development of their piyde keeps pate with phenomena, which evidence a stronger persomality as reqats the surromblines. They are bater. which appeat cleary fom their Wiay of conducting watiare. The tribes in borne we notorions
 dighting, which is justly looked umon at being mother comning and cowardly ham beawe as it consists in the laying of ambmes and the sudden athatk of superior foreses but a lew intivithats. An open fight is rate among the bahans, and ats hat heen sat bofore, if two tribes are confionted. the death of wommling of one matn sulfiees to part his pately to flight. Entite differemt is the warfare among the Konjas: handionhand lights ate frempent, in which chiedy the sword is used, and in which many are killed belore the bathe is deceded. Thongh leadhnmbing oxems ako among them, yet it reedes more into the background, and when it wecurs more persomat

 denly coll off the heat of one of the ypertators, and took it with him in his llight. This waserdamly weatheroms, but it refolion combate to do such a thing in a large satlery with at wat many looketson.
 the Malays, who live at theit experese by deredt, theft and grave-

 "rimer.

 stramak, who tried to lise upon them in at smitar way, were all murderad.
 natlity impresses as fatomathly. Amomer the Bathaths we corbld mot extaldish for feats tha famkess of interomse between them and
 months. Only incodentally and by indired means ronld I arel to know amomer the bahathe what they themght of at plan athe what they intebuled to do. When atone with one of them I oreasionally mereoded in erething him to express his thomghts ferely, beratse he had see reaten to be aftaid of his fellow wibes-men, hat they never gute relimguished the io bear and distrust.

In our intereonse with the kemat the last trace of snspicion had somin vanishet, and never shall I forget the impression mate by their political meetimes on us Emopeans, wed to the uncertain, hesitather and insinere behavion of the bahans, even when disernsing aftains of erveat importance In the meeting of the kenjas all the chiefs present freely expressed their opromions with peenliat ceremomies on shbjects ats e. 2 . Whether it was advisable to athere to the ragial of Srawak of (0) the Dutch-lndian government, and the advantages and disallabtages were openly discossed.

If on atecome of these peentiar quatities the hehavion of the Kompas is mosiser, foaser, hraver and less sensitive than that of the Bathas, it is interesting to sere what inthence this has had on their society. Among the bathans on the Mahakan we find a number of perfectly motomeeted tribes, in which every individnal considers himself quite independent of all the others, and perfectly free to look upon his own interes as of chict importance, which renter the chief powerless to exert any inflnence owe their subjects for more general interests and emerpoises. Everybody entertans the greatest fear for unexpected sudden attaldis from far or neat, and while in the day-time the men always go to their riec-fields stongly amed, in the evening they dare not exen the maler their homses withont a maked sword. Of comse women and ehildren wre still more aftaid.

Amoner the Kimata, on the contrary, we find at somewhat bosely constrocted, but fet commeted whole of all the tribes mader the
acknowledged suprematey of the fibe of the Oemo Tow and is chiel Boei Djakong. The country is so sate, that the poppatation goes to the fields only armed with a light spear ats smport, and that women marmed and mateompanied dared to come and visit me from moighboming settlements at many hours' distance through the primitive forest or in boats.

In this better regulated society the higher moral qualities of the Kënjas also stood ont to advantage. If among the bahans the want of interest in the publie welfare was strongly felt, among the kenjats this was different. In the chatater of the Kenija chiefs a sense of responsibility and disinterestedness came to the front afeompanied with more moral eomage and influence on their subjects. When guestions arose as to wages, the payment of which always consisted in goods chosen by the paty conemed, the bathan chiofs abwats retired for fear of quarels with their people. Among the Knjats the chiefs catculated, how much was due to a ach of their people, took it home and distributed it there.

When it had been resolved in the political meetings, that representatives of several tribes should go with me to the Mathakam, handreds of Kenjas prepared to go. Bad omens for the journer, however, catused more than 400 to draw hack, and though the principal chiefs might have done so too, they only sent batek their followers and went on themselves, because they felt the ereat importance of carrying on the negotiations.

Among the bahans no chicf would easily have gone to book after the general interests, and certainly not wainst bad omens.

Also the conduct of their inferiors during the jonmey was phite different. Eiyhty Kenjas suceeded in deriving the reynimed fatwable omens from the flight of birds, the cries of does and the appeatane of certain smakes, and aceompanied us. Though from diflerent villages, they formed one company, having thein victuals in fommon, and when the bahans and ouselves had not enongh they shared their stock with us, which was then soon exhansted. They had, howerer, full confidence in my assurane that I would buy them fresh provisions on the Mahakam.

The different groups in a bahan eseom never volmatarly shate their rice with each other, and when I and my Matays were in Wiant of rice on the journey, we could only fer some from them at very high prices. At last an yomm man had the asimane to ark me three times that exorbitant price for his rice, thomgh as a physician I had saved his life, and had weated all of them without asking any reward.

 fopment. With whom the inthence of nathere on their primeipal
 and disaters is stongly tilt, hese peoples contemplate their sumonmling

 are 1001 of a vere elevated hathere.

They think that their lives ate ruled by we chice god, whom they call Tamei 'Timex, our high father, amd who pmishes atready on gath all ermen with adremsty, disater, disease and death. For the exerollon of his will he maken hee of a leost of evil spirits, who people all mathre atomad.

All ealamities and diacases. therofore evon death on the bathefied or at at contimement, are to the se triles the manifestations of anger of their Chici ged with requal to the suffere who hats incorved this anger by

When the attempts. to entated themselves atratist the manifestations of the ander of their wod by oherving these laws and usiges sempulously, proved fromber. Hey tried to reath their am by extenting the preseribed latws to the mimutes detaits, so that they have detinite precepts as to the eomse to be followed not only in atl emergeneies of every day life, but also in agriculture , the chase and fisherge
 in certain catere lali, phatange or batoe .

If the oberevation of the pemali is to shied them from the evil pirits, they enjoy the assistane of a whole maltitule of sood pirits, intinectly themgh the mediation of the priests and priesteses or directly
 and does and also bor certan eronts. These omens ate very momeroms, and the strictly followed, esperially by the bahatus.
ds however these permali and omens have risen imependent of the tree requirements of the existence of these tribes, they hate comstanty a disturbing influence. 'To give an example: Dhe bahatus, When growing rice, do not regulate their work aceording do dry on wot weather, ore to the eondition of their fiedels, but all theremilios of a dribe have 10 conform to what the ehaefatin does, and he sees that
 thal proceedings are doly performed. When the prediminary rite for the sowing have commenced, no ont is any longer allowed to burn dead wood on his field; if the chief is weeding, every one mont cease his sowing, elf.

In the same way they hexin all impordant enterpmises, wath ats travelling, the buiding of a house, efe not aceording to the demames of the moment, but aceording to whether a bird thes wh whe right or to the left, and whether a doe is head or not.

Of course, stronger rates do not so meekly submif to the gatling restrants of these pemali and omens, the more dimid natures. I hath ath opportmity of ohserving this ats a chatateristice difference between Bahatis and Kenjats. It is trone that both have the same religion and that their pemati and omens are essemtially the same, but the pemati are more developed among the bathaths and so more intodetails, than among the Kenjats. Among the former all the adnles in a tribe are obliged 10) observe the pemati closely: among the Kemjat the priests are sereatly: chatged with this, so that the mats of the people have more liberty.

Among the Bahams e.g. nobody eats the flesh of the stag ; among the Kenjas the priests only do not take it.

The Kenjas have not introduced the ahove-mentioned rery injurions precepts for the growth of rice with the same restrictions. It is true that also among them the chief canses the necessatry ceremonies to be performed, bat still, every one is free afterwards to do in his fiedd, what will prove necessary, and this is of the greates importance for the suceess of the harvest.

The Bahans cling much move sarmpulousty to the existing pemati and omens than the Kenjats. In phite of my having lived for years among the bahaths, I was forced, to observe their precepts ats somphlonsly as they themselves did. Only in case of moent neersmity I dared sed out on a jommey or receive a patient during the time prohithed by their laws, and I was therefore ats much shat ont from the ouler word as they were. Onee they mate the inhathitants of the ib own village on their return from :un eight monthes expedition rematin in the forest,
 them or lranging them provisions.

 the principat locaters of the pemati. Sis this meathe it was permissibla for hime for recerive as in his lowere.
later on we proweded to atmhor village where the home of the primepal chieftan was alow lati. For our reepplon he divided his hemse, which wan very lomer inte two pats by means of at grate,
 peorived us.

 areater extemt.

I have aldeady mentioned that the Kenja ehiefs ventmed for aceompany me to the Mathatam in spite of the bat omens of the be binds.

In cate of imminent dather, e. if. if an enemy is forght to be hidene in the neighborhood, the Kenjat disperamb mmens.

So we see among the bahath the more sompulons observance of a more developed syem of religions natres kepp pate with the deterioration of many of their physical and perehical qualities. In thene the bithat is inferion to the Kenja, which cam originally not have been the coase, but which is owing to the chathe of atrorle of the bahans more than a homdred rears ingo hecanse thromy this chamge they were exposed to the more injurions inthences of their new suroundings, the principal of which is a sreater prevalence of malaria.
 dir!n!mils "! putrallolotnpes" with a view to show hy a simple example how it is prosihle that investigations of more-dimensional figures lead to new hoorems on fipmes of on threedimensional space. This example relates, as the title inticates, to those figntes which contimue in the pate with more than three dimensions the well-known series of line-serment, pazallelogram, paratlelepperton . . . and can therefore be eatled by the natme of patallelotopes. Here diagonal always denotes a line commecting - arows the inner pat of the enclosed spare - two opposite vertiees fïnt our attention maty he drawn to the fate that the momber of diagomats of the parallelotope is doubled

F゙is. 1.
every time a new dimension is adeded, whilst the momber of constants determining the figure, fhomoth at list latere than the manber of
 the following litle bable, where mater eath other the corverponding values of the numbere of the elimensions, the number of of the eliat gonals and the momber of of the determining constatats ate indicated, Whilst the meaning of h is explained further ond

```
|| 2, 3 4 5 5
1/2 4 8 16:3264 128 256, 512! .... 2n-1
```


From this is evident in the second place that when constructing patallelogram and patallelepipedon all diagonals sam be wed as determining lines, but that this is not possible for the patablelotope I_{s} with five and for the following parallelotopes $P_{0}, I_{;}^{\prime} \ldots$ with still more dimensions; and firom this ensues in ther third phece, what becomes the principal thing here, that hetween the 16 diamonals of I_{s}^{\prime} at least one relation must exist and that this momber of relations for $P_{6}, P_{r} \ldots$ masi increase conseculively to $32-21$ or $11,64-24$ or $36, \ldots$ If in the formth plate we wish to trate those plations and try to do so under the condition that the length of all the edges must figure amongst the determining data, then we fiml that the sum of the septares of all the diagomals - always equal for the sum of the sequares of all the edges - is known at the same time and that the other relations, between the diagonals only, always perent themselves in the form of homogeneons equations, the mamber /h of whish is indicated above. 'This inclowes that atready for the patalledompe $P_{\text {a }}$ we come atross a relation helween the diagomats. Thin simple relation rath be expresed ats follows: If we divide (Fig. 2) the eight vertices of one of the eisht patalleleppedat formine the hommetry of

 indicated by 11 . No äplation

$$
11.11^{2}=11.1_{2}^{2}+11.1_{3}^{2}-11.11_{1}^{2}=11 B_{1}^{2}+11 B_{2}^{2}+11 B_{3}^{2}+11 B_{1}^{2}
$$

Fris. 3.
the two quadruple is the same. If we now suppose in the fifth plate that this paint (1) lies with the paratletepipethen in the same threedimentomal gate, our space I may say, we timaty find the following theorem becoming 10 our odd geometry:
"If we commend (Fin. 3) an arthitary point () of space with the wo thadrupies of mon-atjavent vertices of a parallefeppedon, we whin two quadruples of linc-segments for which the sim of the squares has the same value."

This simple theorem which up till now I never came terns in
 formula for the median lime in at triangle. With the help of this formula we find that, disperading quantities mol depending on the

 in wide nt that for the two sum named in the theorem, distreardinge

Finally this olservation: it is not our purpose for emphatze even in the slightest degree the above-mentioned theorem, up till now tereidentally remained momoticed. Neither hatre we in view to point ont that for each parallelotope I_{n} the diagomals and the sides fimmish equal stmes of squares and that all prossible relations between diagonals mulually can be represented in the above mentioned form. Whilst refermg for this to a paper, to appear shorly in the "Arehives Teyder", we repeat here, that this short commmatation was given to satisfy the wish to show also to non-professional mathematicians by means of a simple example how the study of polydimensional weometry may lead i.at to the diseovery of new theorems of plane or solid geometry.

Chemistry. - "On the atomic weright of Antimomy." By Prof. Ersat Conmand Mr. Th. Straggers. (Communicated by Prof. W. H. Julits .
(Communicated in the mectine of February 28 , 1903.)

1. In comnection with a physico-chemical study on the nature of so-called epplosice antimomy conducted by one of us (C .) conjoint! with Ir. W. E. Rasgar, the question of the exat atomic weight of antimony became a rery important one.

Notwithstanding a number of investigators ${ }^{1}$) hase attempted to determine this atomic weight, it is not as yet known with sufficient certainty.
('ranke ${ }^{\circ}$) sums up his (riticism on the determinations made up to the present with these words: ". . . . This result, therefore, should be atopted matil new deteminations of a more eonclusive nature, have been made."

[^104] determination of the atomio weight by ath eleotrisal methoul.

 rod of prore athimon! (Wrapped in limen) stapented in the lignial comstimted the positive cleatrale, whilst the merative dedrode consisted of a weighed platimmon wire.

During the electoblysis the electrolyte was kept in contimat motion hy means of at stirrer so ats 10 explude local changes in the comechtration of the lignat.

Under these eiremmstanes explosive antimony is deposited on the negative eloctrode ${ }^{2}$). Porprar finsed the subatane formed in a tube made of hame glats in an atmosphere of nitrogen; in this way the athtimony trichloride present in the motallic mass wats expelled. As soon ats all the chloride had volatilized the antimony recrolus was washed first with solution of tattarie ated. Hen with water, dried at 120 and weighed. Additionat experiments had proved that the grass tube did not suffer any alteration in weight on heating and meltine the metal contained therein.

The silver electrode in the contometer was wrapped in a piece of linen. After the electrolysis wats completed, the silver which had deposited in the phatimum dishes employed was boiled and washed with water mitil this no longer gave a reaction with hydrochloric acid and it was then dried at 120^{2}.

Poprers results ohtamed in the electrolysis of solutions containing respectively 7 and 22 per cent of $\mathrm{Sb}_{\mathrm{C}} \mathrm{C}_{3}$ are given in the subjoined table. We have howerer, recalculated the data at Popper still uses the atomic weight 107.66 for silver whereas more atocurate investigat tions have shown this to he 107.9\%.

In a second series of experiments in which a few more improvements had heen made as regands the insulation of the silver conlometer. Porprs found lor $\%$ per eent solutions as equivalent weight the value $40.3: 3$, therefore ats atomie weight the value 120.99 .

As he could not discover any sources of error in his process and still believed in the accoraty of the results obtaned by Cooke, who, by purely chemical means, had found the atomic weight of antimony to be 119.9 be eondudes his paper with the words: "Sollte nicht die Entdeckung des Elements "(iemmanium" dureh Winhier den
${ }^{1}$) Compare 1.
${ }^{2}$) Such was the case with solutions containing 22 per cent of $\mathrm{Sb} \mathrm{Cl}_{3}$. In solutions conlaining 7 per cent. Popper obtained crystalline non-explosive antimony. I will fully refer to this particularity later on in my paper with Dr. Resger. (Conex.)

Weg andenten, anf welchem die Lösung des vorliegenden Rätsels an suchen sei :"'
3. We have not only repeated the researeh of Popper but also extended the same by using hydrochlorice acid solutions of SbCl ${ }_{3}$, whose concentration viried between 2.3 and 83.3 pereents of SbCl_{3} by weight.

It was necessary to pay particular attention to the praty of the materials employed. The antimony trichloride was obtained from MERCK; 20 grams were dissolved in solution of pure tartaric acid and then digested on the waterbath for some hours with excess of clear sodium sulphide. The liquid rematined perfectly clear ${ }^{2}$).

Some kilos of this antimony choride were precipitated with sodium carbonate free from foreign metals, the precipitated $\mathrm{Sh}_{2} \mathrm{O}_{3}$ was washed, dried and reduced to metal by fusion with pure potassium cyanide in a I'vRot's fimate. The crucibles used were previously tested to see whether they would yield any foreign metal to potassium cyanide but we could not prove the presence of any impurity in the melt.

[^105]

 by adding small lmmps of sulima hydroxide prepared from metallic sodimm (the lye was free from foreign metals) and digested on the Waterbath with a clear sohution of eodimm sulphide but gave no precipitate.

The sohntions were prepared by weighing the phre antimony trichloride rongh! and disoolsing the same in pure hydrochlorice acid of 1.12 sper. at 15°. The exate compusition of the solutions was determinet by electrolysis of the liguid in presence of sodinm sulphide achording to Nmmosx's directions ${ }^{2}$)。
4. In each experiment two silver eonhometers were put into the cirenit: one in front and one behind the series of antimony solntions Which took part in the electrolysis. The coulometers consisted of 200 ce. platimm dishes with rourh imner surfaces. We will not omit to point out that such dishes are particulary suited for coulomotrice determinations as it is possible to precipitate in them a large amome of silver with little chane of any trabes beimg detached on washing the precipitates ${ }^{*}$. The amomen of silver deposited in our experiments varied from 25 $\mathbf{1 6} 50$ grams whilst when using the smoth

As electrolyte we used a 10 or 15 per cent nentral solution of silver nitrate: no difference was motied with these solutions. The positive silver plates were cast of silver which we received from Dr. Hortsma, Comptroller-general at the local Govermment Mint. On analysis, we could not trace foreign metals in 100 grams of this silver. The plates were $6.5 \mathrm{c} . \mathrm{m}$. in diameter and 4 mm . thick. They were smromeded by a covering of filter paper (Sombacher and Schtha). Each silver phate wats suspended by a thick platimum wire. The conlometer dishes after being filled with the silver solution were covered with a glats plate with a hole in the centre through which a platinnm wire wats introdnced.
${ }^{2}$) Analytical Electrolysis of Metals, Halle 1897. S. 145.
Here, we provisionally took the attomic weight of antimong to be 190; as will be seen from what follows, the meprtainty of the atomic weight is of no consequence here.
7) Compare Kihle. Wied. Ami 67, N.F. 1 (1899); Ricmards, Colliss and Hemrod, Proce American Acad. of Aits and sciences XXXV, 123 (1899). Romanas and Hembiod, Zeiteche, f. physikalische Clitenie 41, 30Z (1902).

Great care was bextowed on the insulation of all the appatatus. The conducting wires were strongly insulated and were, ats firr ats possible, in contact with air only. Each platinum dish was placed on a copper phate which stood on a glass phate; the latter was carried by porcelain insulators which ated at feet.

For a rough orientation a technical ammeter was included in the circuit; the current was taken from 1 to 3 storage cells.
5. The antimony solutions which were subjected to electrolysis were contained in spacious beakers (1 litre) (B in fig. 1) in which constant stirring could take place by means of Wirt's centrifugal stirers. A Henrag hot-air motor kept all the stirrers in motion. The rods of antimony which served ats positive electrodes were surrounded by a piece of linen which was fixed to the rod with platimum wire, or by glass tubes closed at the lower end containing a large number of not too small perforations ($O,(), O \ldots$) (3 or $4 \mathrm{~m} . \mathrm{m}$.). The object of surounding the rods was to prevent any loose particles of antimony from getting into the lifuid.

As negative electrodes we used platinum wires (I) about 10 (cm . in length and $0.3-0.4 \mathrm{~mm}$. thick; they were provided at the upper end with the capillar glass pieces (C), on which a number was engraved.

Both antimony rods and platinum wires were attached to copper binding screws which moved along glass standards (S) (\mathbf{S}^{\prime}. In order to prevent contamination of the liquids ly contact with copper, a piece of platinum wire (P t) was placed between the binding screws and the rods of antimony or platinum suspended thereby.
6. The experiments were now conducted as follows: After the platimum wires had been weighed they were put in their places; the silver coulometers were cometted up and the coment closed. At the commencement the strength of the current may only amomi to a few hondredths of an ampere; if this is exceeded, evolution of hydrogen instead of separation of antimony takes place. When the precipitate on the platinm wires had reached a certain quantity, when in other words, the surface had become enlarged the strength of the current was increased and gradually raised to about 0.3 ampere.

At the end of the electrolyses the rods were rinsed with at 12 per cent solution of tartarie acid ${ }^{2}$), then washed with water, alcohol and ether and dried orer sulphuric aced in a desiccator.

[^106] the following metherl was andopted')

 Chied over $\mathrm{H}_{2} \mathrm{SO}$, and $\mathrm{P}_{2} \mathrm{O}_{3}$) and then weighed. The athtimony rond was bow weighed and by way of control the the and rod were again weighet twether.

The air from the thine was mow expelled by means of a contmal stream of catom cloxide which had been dried over sulphurice acid and phosphorice anlogdrite. The tuhe (erplosion-tuher) was then closed with a properly litting india-rubber cork and put into a metal cooling ressel made of romposition tube in the manner representerl in lig. 2. This lube was commerted with the water tap.

If now the explasion fube is shaken for a moment the explosive antimony explodes. The thbe is then strongly heated with a triple burner on the spot contaning the rod ; the Sh Cl , evolved condenses on the cold wall of the thbe to a clear white mass. The heating is continued until the antimony is perferply fused and this is then allowed to cool slowly. The thbe is then opened, the $\mathrm{Sl}_{\mathrm{C}} \mathrm{Cl}_{3}$ is remored by rinsing with a misture of aloohol and ether (3:1) the tube is then rimsed with ether and dried by heating in a emrent of dry air as deseribed abose.

The tube with the antimony regulns is now weighed.
A previous experiment had proved that the explosion tube suffers no alteration in weight by the heating and subsequent treatment. It was found for instance that an explosion tube weighed 29.6614 gram before the experiment and 29.6650 gram after the experiment the contents having been removed by means of nitric and tartaric aucids.

By way of ilhustration one of the experiments is reproduced in detail whilst the results of the other measurements are mited in a talbe.

$$
\begin{aligned}
& \text { Electrolysis of a } 15.6 \text { proc. } \mathrm{Sb}_{3} \mathrm{Cl}_{3} \text { solution. } \\
& \text { Silver coulometer } \mathrm{N}^{\prime \prime} .1 . \\
& \text { weight of platinum dish + silver } 73.1920 \text { grams } \\
& \prime \prime \quad 36.7310 \quad " \\
& \hline \text { weight of silver } 36.4610 \text { grams }
\end{aligned}
$$

[^107]Silver conlometer $\mathrm{N}^{\mathrm{n}} .2$.
weight of platimum dish + silver 71.4530 grams

"	"	"	34.9902	"
			36.4628	

weight of explosiontube + regulns + patimum wire 55.0281 grams
$" \quad$ weight of reguhs + platimm wire 13.9501
weight of phatinum wire 0.2696
From this result the equivalent weight of the antimony is calconated ats follows:

$$
\frac{107.93}{36.4628} \times 13.6805=\mathbf{4 0 . 4 9}
$$

The results so obtained are collected in the following table, (p, 550).
From this table we see that the atomic weight obtaned increases with the concentration of the sh (' l_{3} solutions and raries between 120.87 and 121.89 within the concentrations 2.3 and 83.3 per cent.

From this it is quite plain that we cannot arrive at the determination of the atomie weight of antimony by the electrolysis of solutions of antmony trichloride and that the values found hy Popper, to which in the calculation of the atomic weisht is attached the same value as
 dependent on the concentration of the solutions employed.

It further appears from the ahove that manown electrolytic or chemical changes phay a part here which require further investigation and which may be expected to add to ow know ledge of the formation and composition of the aemarkatble explosive antimony.

We hope, shortly, to investigate there changes.

	Wrizht of tho antimans ragulus it 2r．thms．	Wi＂ight al （＇unloutur $\mathrm{N}^{\prime \prime} .1 .$	hor in H10． \＃r．tims． N". .	Ranivalunt wright 111 the Aッtinums．	Alomai： wrizht of this Antimony：
$\because: 3$	11．$\times 2.17$		i． 201 （！		
$\because: 3$	1\％．819：	：39．180：	S 611014	61） 29	1 N．．．
2.1	18．7！日il	：11． 27611	－11．．2040	11.06	$12(1.7 \times 1)$
$\therefore 11$	110．9175	尔． $201!$		20：	
： 11	1．4．0．20x	39.0505	20．0836	16）．39	，
： 3.3	18． 210%	E0．3701	20．3810	19.41	
$\therefore .3$	12．tivori	33.7202	33.720 .3	60.38	121．20
$\therefore .3$	15．00\％\％	． 00.0810	40.079%	60.41	
1i．＇	131619	3） 043%	33.9680	40.44	
14．4	Ix．exsi	50.3791	511.3890	10．4is	121.11
14.4	12．8年0	33.722%	33， 32913	10． 17	
15．6	9.80 .99	2－．3413	2－1．3407	10．48	
15．6	13．680\％	36， 46.10	3i． 4108	6 6 6	121.47
15．4i	1：3．fixe：3	（3）， 610		60．64	
18．is	13．8．9\％＇	：31．2088	36.9099	10． 513	
$1 \times \mathrm{x}$	13．8ils	36．90：31	34．9064	41）． 213	1．1．
こ！	14．ti213	： 3 ． 164	S2．Smis	40.54	（6）
こ ！	15．Min？	動，11810	（1） 079%	10．is	
$\therefore 7$	13．71以\％	36.4610	36.46	10．5x	
－3．7	14．701＇t	39.680%	36．08316	（11．59）	
N3．：3	13．4．3\％	36.9088	：3i．209\％	40． 13.3	
＊3．3	1．1．9鲑	－	36．60\％）	iti．il	：21．49
＊3．3	13．80：	：4．9\％31	317．9364i	10.16	

[^108]
 de Brexs. (Commmicated by Prof. C. A. Lobse de Brets).
(Commmicated in the meeting of Febmaty $2 心 .190: 3$).
The investigation of the conductive power of non-atueons solutions has of late years been known to have an increasing siquifieance and particulaty so on aceomt of the important result that the laws and rules applying to aupeous solutions do not appear to apply in the case of other solvents. Apart from methyl and ethyl atcohol (the constitution of which does not differ much from the type water) sulphurdioxide, ammonia $\left(\mathrm{NH}_{3}\right)$, formic acid, hydrocyanic acid, pyridine, some nitriles, hydrogen peroxide and others have been studied as such ${ }^{1}$).

The physical properties of free hydrazine ${ }^{2}$) $\mathrm{N}_{2} \mathrm{IH}_{4}$ although still incompletely known, might lead us 10 suppese that this lignid would manifest a strong ionising power. In the first place, like water, the lower alcohols and acids, it possesses an abmormally high boiling point. This is obvious if this point (about 113° at $760 \mathrm{~m} . \mathrm{m}$.) is compared with of ammonia (-34°), difference of 147°, and if one considers that the difference between the boiling points of CH_{3} and $\mathrm{C}_{2} \mathrm{H}_{6}$ is decidedly less $\left(80^{\circ}\right)$; this fact as well as the high critical temperature of (at least) 380° point to an association of the $\mathrm{N}_{2} \mathrm{H}_{4}$ molecules. The solubility of several alkali salts in hydrazine has also been shown to be very considerable although less than in water. Another existing observation proints to the fact that hydrazine may, like ammonic take the place of water of crystallisation ${ }^{3}$). And fimally, the dielectric constant of hydrazine, which Prof. P. Drede (Giessen) had the kindiess to determine at our request, has turned out to be rather high, namely, 53 at 22°. It is now a known fact that there exists a certain although sometimes remote parallelism between the dissociating power of a liguid on the one hand and the association of its molecules, the solvent power and the dielectric constant on the other hand. As according to the experiments of Fraxkin and Krass and of Cabr liquefied ammonia is an ionising solven, this might also be expected in the case of hydrazine. From the experiments') presently to the deseribed it will he seen that such is the case.

[^109]
 than that of Xlly. We hate namely:

hydroveanic abol	4\%	: Wetomitrile	40
hydrogen peroxide	9%	nitrobenzene	36.5
water	-2	methy lateotion	32.5
formice atid	5	atmmonia	22
nitromedhame	36.5	prordim	20

hỵdrazine
万: 3
The peroliad properties of hydrazine (its very hytorosonpic nature and liahility 10 widation hy atmospherie oxyren) demand great preantions in its preparation. It took place, acoording to the method already dereribed ${ }^{1}$), by treatment of the aneabled hydrate with hatimm oxide aml distillation in ath atmosphere of hydrogen.

The heating with batim wide and subsegnent distillation were thater repeated and the hase was tinally collected in six different frations in pipette-shaped tubes in the mamer previonsly deseribed. Huring the last distillation the hase had been only in contact with pmilied. dry hyodrogen.

Apart from the properties of hydrame mentioned, the high cost of the material was a fikfor which in our experiments had to be taken info atcomm, A special appatatus (see illustation) was, therefore eomstrueted which atmitted of working with a small quantity of the base

(ahout 5.5 (e.e.) and through which pure, dry nitrogen ${ }^{2}$) could be passed, whilst through the exit tube for the gats the weighed portions of the different salts could be introduced.

On atrount of the somewhat limited quantity of the base at disposal we could not, as is customary in the determination of the combluctive power of solutions, start with the largest roncentration and successively dilute this by adding the solvent, but the reverse was to be done.

[^110]Weighed quantitics of a salt were, therefore, sucesessively dissolved; on accoment of the mavoidable errors in weighing it was difficult to experiment with very dilute solutions of accurately known composition, but by evaporating a measured quantity of a very dilute aqueous solution in a pipette which was then rinsed with the hydrazine we have reathed for KCl a concentration of $V= \pm 900$.

In view of the above we wish to remark generally that our results camot lay claim to very great accuater, although they quite suffice even from a quantitative point of view, to prove that free hydrazine has a strong ionising power comparable with that of water.

We have worked with solutions of $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{KCl}, \mathrm{KBr}$, and KJ and made a few experiments with a solution of Na and $\mathrm{H}_{3} \mathrm{~N}$ in $\mathrm{N}_{2} \mathrm{HI}_{4}$.

In the first experiment the six different fractions of the hydrazine had not been kept separate; as we had previonsly foum ${ }^{1}$) that the meltingpoints of the second and fourth fractions were the same we thought we might conchude that at least the middle fractions were similar. It then appeared, however, that the conductive power of the bases taken from difierent tubes often showed appreciable differences.

For this reason a second preparation was made and the hydrazine of each fraction (each time collected in several tubes) was examined separately as to its conductive power. From the following figures it appears that the conductive power gradually decreases and is smallest for the last fraction.

fraction $11^{0} .2$	$*$ at $25^{\circ}=18.1 .10^{-5}$
3	$12.8 \prime \prime$
4	$11.2^{\prime \prime}$
5	$10.0^{\prime \prime}$
6	$6.5{ }^{\prime \prime}$

We do not know what impority (in any case very small) is the cause of this; possibly we are deating here with a minute quantity of ammonia which is present in largest amoun in the first fratetions

The smallest conductive power observed by us in any fraction prepared previously was 4.10^{-5}.

Our experiments have been mostly conducted with fraction $\mathrm{N}^{0} .6$ of the above-mentioned quantity.
dried in the air may occlude such an appreciable amount of oxygen that this must make its influence felt when working with readily oxidisable licpuits. Such appeared to be the case when filling our apparatus with hydrogen when a spontaneous deposit of visible drops of water was formed.
${ }^{2}$) Prepared from air and phosphorus.
$\left.{ }^{1}\right)$ l. c. p. 177 .

P＇otassimmehloride．

$$
1=25 \quad \quad \begin{array}{r}
x=6,2.10^{-5}
\end{array}
$$

1	$\underline{\square}$	V	＊	A ${ }^{1}$
5．349	0，020	14．7	$7.0 .10^{-3}$	102.9
＂	0，015，7	2－4	4.9	103.7
＂	ロッパ゙）	89.7	セ．2	109.3
$1 \pm 5 \cdot$		± 900	$1.2 .10^{-4}$	$\left.\pm \begin{array}{ll}107 & 2\end{array}\right]$

Potasiumbromide．

$$
t=25 \quad \underset{\kappa_{0} \mathrm{H}}{ }=6,5.10^{-5}
$$

（i）	\because	V	＊	\wedge
－ 300	（1）， $1 \times 1 \%$	10.3	$10.05 .10^{-3}$	103.8
＂	0，10329	19.3	5.640	109.2
＂	0，01\％	99.9	3.75	112.7
－	0,01105	80． 7	1.965 ＂	118.9

${ }^{1}$ ）Ase could not be determined，so that the degree of dissociation of the salts is not known．The A＇s，howerer，agree in magnitude with those of the aqueous solutions of the same salts．
${ }^{2}$ ）This value，obtained in the mamer described on p .2 .53 ，is as a matter of fact uncertain．It proves that a very minute quantity of a dissolved substance may increase the conductive power considerably．

Potassiumiodide.

	$t=25^{\circ}$		$\underset{\substack{x \\ x_{1} H_{1}}}{=} 5,6.10^{-5}$	
G	$\stackrel{\square}{9}$	V	*	\wedge
5.60	0,072	12.9	$8.19 .10^{-3}$	105.6
-	0.0993	18.8	5.79	10x.8
${ }^{0}$	0,0280	33.2	3.40	112.8
,	0,0129	72	1.64	118

$\mathrm{G}=$ weight of hydrazine in grams.
$\mathrm{g}=$ weight of the salt in grams.
$\%=$ specifie conductive power
$\mathrm{A}=$ aefpivalent conduclive power.
$V=$ number of Liters, in which is dissolved one mol. of the substance.

* for the water used $=0,28.10^{-5}$

Without committing a grave error the sp.gr. of hydrazine at 95° may be taken as 1.00 .

It is ahready known that sodimm dissolves in hydrazine with evolution of hydrogen ${ }^{1}$). Pure hydrame ($\because=9,1.10^{-5}$) was introduced into the apparatus and two particles of sodimm (weighing about 10 milligrams) were added.

The metal slowly dissolved with evolution of bydrogen and atter solution was complete the sperific conductive power appeared to have increased to 131.10^{-3}.

It seemed very peculiar that a powerful evolution of gas still went on after the sodimm had dissolved, showing a decomposition of the hydrazine with formation of ammonia. This decomposition ceased as soon as the liguid was poured out of the apparatus; apparently it only takes place by contact with the platimum black present on the electrodes and is, therefore, quite comparable to the spontancous decomposition of an alkaline sohntion of hydrogen peroxide exposed to the same influence.

Finally a few experiments were made with a solution of ammonia in hydrazine. The solubility of that gas at the ordinary temperature did not seem to be large; alonil 4.3 per cent of $\mathrm{N} \mathrm{H}_{s}$ is present in the saturated solution. After a few bubbles of ammonia had been absorbed in the hydrazine (with $x=5.2 .10^{-5}$) the conductive power appeared to be but slighly increased $\left(\%=6.9 .10^{-5}\right)$; this wats atso still the case after the liguid had been saturated with ammonial (abont

[^111]
 is but very shighty incerated.

As rexats mivtures of hydratze amd water it may be observed that on addition of water the comblutive power at tirst decoases reaching a minimmen with a mixtme of 50 mols. of $H_{2}(1)$ (0) 100 mols. $\mathrm{N}_{2} \mathrm{I}_{\text {, }}$
 agran. This minimmm, therefore does not correspond with the composition $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$ O, or the so-called hydrate.

L'trecht-Imsterthem, Jambary I903.

Chemistry. - "The whecit! ut transformation "f" wilnomelphenolImennene inte tetralmomephemel." By Mr. A. H. J. IBEazer ${ }^{1}$). ($4^{\text {th }}$ Communtation on intramolecular rearrangement, presented by Prot. (A. Lobry de Bruys).
(Commmicated in the meeting of Felruary 2 s, 19\%3).
BExEDRT ${ }^{2}$) found in 1879 that tribromophenol brought into contact with hromine water is capable of exchanging a fourth hydrogen atom for bromine with formation of a tetabomo-terivative. The stuly of this substance led him to the conclusion that one Br-atom ocrupies a peculiar position in the molectule; it is, in fact, the cause of a certain number of reactions in which that Br-atom is readily displaced. As moreover the new substance seemed to have lost the chatacter of a phenol ats shown by its insohbibity in alkalis, Bexamet gave it the formula $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3}$. (OBr and the name of tribromophenolhomine. liznemit also noticed that. when melted moter sulphurie acid, it passes into the already known isomerie tetrabromophenol, a true phenol which no longer contains a loosely bound Bratom.

In his first publication Bexemikt looked upon this transformation into tetrabromophenol not as an intramolecular displacement of atoms but as a proces taking place between two mols of tribomophenolbromine; in a later commmatation however he does so, without shating any reasoms.

When a few years aro, doh. Theme ${ }^{3}$) found that Benemits's

1) Proce 31 May, 28 Jume and 2s Oct. 1 She
*) Amaken 199. 12T, Monatshette 1. 3th.
\Rightarrow Ber. 33. 673 (1900).
tribromophenolbromine by means of leadacelate passed into 2.6 dibromoquinone, with substitution of 2 Br by 0 , he looked upon it as a dibromoquinone in which one 0 is replaced by 2 Br [therefore as a tetrabromoketodihydrobenzene]; he is of opinion that its format tion from tribromophenol can only be explained by assuming that the latter can react in the tantomeric form of a p-quinoid ketone as follows:

In a paper which appeared a year ago, Kastae ${ }^{1}$) has come to the same conclusion as These, as the result of investigations conducted conjointly with Loesenhart, Rosa Spelser and Gidbert. Kistle has also established the fact that it is only sulphuric acid which, even at the ordinary temperature, is capable of causing the transformation into tetrabromophenol; a dozen other reagents gave a negative result. In order to explain this specific action of sulphme acid, Kastle assumes the intermediate formation of an additive prodnct of this acid with tribromophenolbromine; this at first would lose HBr_{1} which would then again react at once with reformation of sulphurie acid and cause the migration of Br into the benzene nucleus. This interpretation of the transformation requires the appearance of two nonisolated and therefore hypothetical intermediate products and of three successive reactions.

Mr. Belzer has now studied the velocity of transformation of tribromophenolbromine. The circumstance that the first substance readily parts with an atom of bromine would lead to expect that its quantitative estimation would be possible in the presence of tetrabromophenol. It now appeared that the elimination of free iodine from hydriodic acid, also observed by Kastre, takes place quantitatively; tribromophenolbromine may therefore he estimated in the presence of tetrabromophenol by titration.

At the commencement of the investigation the behaviour of the solid substance towards sulphuric acid was ascertamed. If the crystals are covered with the ordinary 96 per cent acid it is moticed that they lose their yellow colour and become opaque and white; of solution in the acid taking place nothing can he perceived even by the aid of the microscope. No formation of striae can be observed: the whole phenomenon seems to be enacted within the solid substance commencing on the surface where the substance is in contact with

[^112]

 ateronnt of the latere fier surface more rapid! transformed that the latere crostats. The condtmathon of the researeh will show that the transfomation is momomolownate and must, therefore, be taken as at real displatement of atoms (prothps of two displatements one of which bakes phace with very great velocity). It is a remankable fact that there shombl take plare inside the molecole of a solid substance a displacement of atoms, an internal change of equilarimm leaving the molecole intact, by mere eontact with sulphore acid, withont there being any quertion of solution.

Althongh we combl not expect to get reaction-comstants for a heterogemons mixture of at sold subatance and sulphorio acid, this should be duly the cate when we worked in a solvent. Here however a difficolty oremred which at first threatened to put at stop to the finther proseration of the researeh. A solvent wats wanted which had no atton either on tribromophenothromine or sulphume acid. Acetice acial seareel! disobled the first substance and ehloroform appeatred to disoblve only traces of 96 per cent suphurice acid. It Was linally decided to choose the latter solvent and to thoronghly shake the obhtion with shlphurie aeid ${ }^{2}$). The experiment proved that on applying the formmat of the first order, constant reationrooblicients made their "ppeatance A first result wats thms obtaned; the transformation does not proceed bimolecularly.

Mr. Bematr has now studied the intluence of the eoneentration of the sulphorice aded and the remperature.

In most of the experiments, 3 grams of the substance were dissolved in 150 (6 of pure chomoform ${ }^{2}$), the solntion strongly shaken with the acid and after definite times 25 (ec. were titrated. [tse has been made of:
7. $\mathrm{H}_{2} \mathrm{SO}$, with alpout $36^{\circ} \% \mathrm{SO}_{3}$, h. $\left.\mathrm{H}_{2} \mathrm{SO}\right)_{4}$ with about $1^{\circ} / \mathrm{SO}_{3}$ c. equal volumes of l and d. l. 96 per cent $\mathrm{H}_{3} \mathrm{SO}_{4}$.

In the following bables the results ohtaned are not given in the form of reatem-romstants. lom to make the matter more plain, the
l) A uniform emulsion is very soon obtained.
\Rightarrow The chloroform was agitated a few times with water, dried over calciumchloride, shaken with stront sulphuric acid and redistilled ; it was preserved in the dark.
times (T) are mentioned at which the transformation has proceeded halfway.
A. Influence of the Coneentration of Sulphurie Acid.

$$
1=25^{\circ} .0,5 \text { ere, sulphmic acid. }
$$

	acid a	b	c	a
T.	5 min .49 sec.	2 hours 57 m.	13 h .40 .5 m.	very slowly

$$
t=25^{\circ} .1 \text { ce. sulphuric acid. }
$$

	acida	b	c	d
T.	too rapid	25 m .4 作 s.	2 h .38 .5 m.	7 h .45 m.

B. Influence of the Quantity of Sulpharic Acid.

$$
t=25^{\circ}, \text { acid } \mathrm{a}
$$

	1 cc.	0.6 cc.	0.5 cc.	0.3 cc.
T.	too rapid	too rapid	5 m .49 s.	3 hl .8 m.

$$
t=25 . \text { acid b. }
$$

2 cc.	$\left.1.5 \mathrm{cc} .^{1}\right)$	1.25 cc.	1 cc.	0.5 cc.	0.25 cc, ,	
T.	too rapid	too rapid	25 m .44 s.	55 m .90 s.	2 h .57 m.	

1. Intuence of the Temperature.

Acid a.

Acid 1).

[^113]| | Anid 1 . 1 w. | Aviel 1 1 is |
| :---: | :---: | :---: |
| T. at $1=30$ | is 119. 10 - | $1 \mathrm{~h} . \mathrm{sisfo}$ |
| ¢, | | 7 h .45 m. |
| $1: \%$ | 1 | |

firom the reants ohtatined it appeats in the lime place that the transormaton is a monomolerular one and, baking into comsideration the eiremmstanes maler which it takes phater, must be eonsidered as in intramoleonlar rearangenment of atoms.

To this eonclusion the following observations may be adhed.
A. The influme of the concentration of the acid, the other cirentistances being the same, is reve great. The comme of the figmes leads to the idea that the attive atrent, the calalyser is not ${H_{2}}_{2} \mathrm{SO}$, but sO_{2}. Experiments were therefore made to ascertain how chloroform behaves towards the fom acids employed. Whilst from ordinary $\mathbf{9 6} \%$ ateid (1) but very minute traces were dissolved, this amount was perceptibly larger with acid c and still larger with acid /, whikt acid " appeared to yield very much SO_{3} to the chloroform ${ }^{2}$).

The idea that $s O_{3}$ is the catalysing substance is consequently contirmed. The rapid decrease of the concentration of the acid is also in arreement with this idea; this velocity is therefore as it Were a measure of the concentration of the sos still present in a sulphuric acid of given concentration.
/3. It is now also very plain that the quantity of the acid must have a great influence. As shown by its behaviour to acid a, chloroform may dissolse considerable quantities of SO_{3}. On shaking with sulphuric acid of a lesser concentration, the amount of SO_{3} which passes into the chloroform will consequently depend on the quantity of the acid. The equilibrium for the SO , which distributes itself between the chloroform and the sulphorice acid changes, as is known, with the relative quantities of the two liguids and with the temperature.

As a consequence of the view taken here, it must be assumed that ordinary 96% sulphuric acid still contains a minute quantity, of free SO_{s}-molecules. This view is admissible ${ }^{2}$) since it is known
${ }^{1}$ The ratio in which different acids yield SO_{3} to chloroform will be further determined.
${ }^{2}$) Kinetsch, in his well-known research on sulphuric acid, has shown that an acid of $97-98 \%$ absorbs SO_{3} much more readily than acids of smaller or larger concentration. From the results chtained up to the present it does not appear that, in the tramsformation of tribromophenolbromine, the 98% acid c behaves in a particular manner; an ex'ension of the research will elncidate this question.
that 100% sulphnmic acid contains a litfle SO_{3} and conseguently fice $\mathrm{H}_{2} \mathrm{O}$.
('. The remperature-coefficient for sulphatice acid "t is particulaty large and increases rapidly with the temperature; for aced 1 , it is decidedly smaller and very small for the 96% acid. It will be readily understood that in the ease of the ated "the dissociation of $\left.\mathrm{H}_{2} \mathrm{SO}\right)_{4}$ into SO_{3} and $\mathrm{H}_{2}()$ and the distribution of SO , between chloroform and sulphurie acid ture modified in a large degree when a change of temperature takes place.

The rearangement of atoms may now be represented by the following schemes which respectively correspond with Beazotht's formula (I) and Thele's formula (II):

Against the acceptance of Thele's formule (II) it may be pointed out that in the displacement a Br_{r} atom must first remove an II atom; this then proceeds to the () atom with migration of the double bonds, a rather intricate process pratically consisting of three succeeding. displacements. As it has been proved that the reaction is one of the first order, two of those displacements must take place with immeasurable velocity. Against Bexpdikt's formula (I) may be remarked that, according to experience, the meta-position is hardly ever selected in the migration of atom or of groups from the side chain into the muclens.

The hypothesis proposed by Kistles, which assumes the intermediate formation and decomposition of non-isolated products, is not at all supported by the observations commmicated here.

The investigation as to the transformation of tribromophenolbromine will be completed and also extended to other analogous compounds.
 Dutch Dilurimm". By J. II. Bonsem. (Communicated by Prof. J. W. Mots).

1. In the Geological-Mineralogic Institute at droningen is found a piece of sandstone which a few years ago 1 found at odoorn, in the province of Drente. With muriatic acid applied to it, there is no effervescence; consequently it does not contain any calcimmcarbonate. The grams of sand are small, but with a magnifying glass they may he well distinguished. They are peculiary hustrous.

The colour of this erratic-block is chiefly dark-orey. I_{n}-ome
plaves it is bownish. Mareover there are lisherpery worm-shaped
 This erratio-block is mos peohahly a piece of Undered'ambrian samdstome, in whith is formel one of those problematioal things that are sometimes called worm-passagres. As they ate not stratyht and do mot ron paratled to each wher, they are different from those deseribed as Soldhas limearis Hatl. They show mome resemblame with thome thbes that were despribed by Tonf, ${ }^{2}$) as Soolithns emans of Hadeberga and Andrarm. According to Ilotst ${ }^{2}$), however, there we various kinds of these worm-passages differing from soolithns linearis Hall, whilst they also orom in different layers. This geologist makes mention of them as being found both in many places in the neighbomhood of simmishamn and near kalmar.

The Odoorn erratic-block bears no resemblance to the Hardebergat sundstone, in which seolithus errans 'Tormat is found. Mobzrg ${ }^{3}$) writes that this sumdione shows a grevish-green colour, and that the wormpassages are dark-coloured. Nor does it resemble the Andrarum (Forsemollar) sindstone. According to 'luhbrarg ${ }^{4}$) the latter is a white, quartziferous simtstone with yellow worm-passages.

The erratic-block also differs from the "Kraksten", which Honst mentions, as heing fomm near Kalmar, and which is ereenish grey. From the kinds of sandstone with worm-passages which according to Holst are met with in the neighbourhool of Simbishamm, differs that which oceurs to the West of Raskarm in being whitish; and that which is found close by Ljunglekorna is different hecause its worm-passages possess a dark colour. The sandstone which, according to this geologist, oceurs to the North-W est of Raskarmm, may resemble, in colour, the Oboon erratie-hlock: he says that its colour is sometimes a dirty-grey one. Unfortmately he does not tell his readers what is the colour of the worm-passages.

Consequently we camnot with certainty conclude whether this kind of sandstone still exists at firm rock, or not.

Nor have I been able to find anyhing whatever concerning the presence of suchlike erratic-blocks in the (ierman and the D) atch dilusium.

[^114]11. Some years agro 1 made an exemsion in the suromblings of Mumerwoude in company with Mr. Bothe, at the time a teacher at Mumerwoude, now a teacher at a secondary school at Nimedren. To the West of this village, sitmated in the north-eastern part of the province of Frisia, we found in the sand that lay by the side of a freshly-dug canal two slab-shaped pieces of sandstone that fit each other exactly and must have formed one whole. The dimensions of the bigger piece are about 20,10 and 4,5 centimetres. The other piece also possesses the two tirst-mentioned dimensions, but the third is :3 centimetres.

These pieces drew my attention as contaning many more or les complete stone-kernels and off-prints of pramidal Hyolithus-shells. The pointed ends of all these lie in the same direction, which must certainly be attributed to the influence of streaming water.

These erratic-blocks consist of hard, grey, very fine-grained sandstone. With muriatic acid applied to them there is no effervescence. Here and there they show small, yellow-brown spots. Some of the stone-kernels and that which lies close around them show the same colour.

The stone-kernels are straight and slowly increase in breadth. The dorsal side is flat or somewhat concave : at the mouth it is more or less convex. This side is not lengthened towards the front, so that we have here a specimen of the subgenus Orthotheca. With the exception of the dorsal side the surface of the stone-kemels is regularly vaulted. Consequently the transverse section is about circleshaped, with only one segment ent off. Towards the pointed end they become more or less triangular. In one stone-kernel, which is not exposed to view in its full length, the visible part points to a length of about 35 millimetres and to a breadth, at the mouth, of 7 millimetres.

It appears from these properties that these stone-kernels originate from the Hyolithus (Orthotheca)-species, which has been described and pictured by Holm ${ }^{1}$) as Hyolithus (Orthotheca) de Geeri.

Hown tells us already that sandstone with Hyolithus de Geeri is Under-Cambrian. I have, however, not been able to find in his work, on what grounds this assertion is founded. Most problably he came to this conclusion because the nature of the stone points to it. At the time sandstone with Hyolithus de Geeri was not ret known as firm rock. Even now I have not been able to find in the books at my disposal, that sandstone with Hyolithus de Geeri should be known

[^115]

 the Marmorwonde cratio-bloces formery formed part.

It appeats from Monsza: dereription of the some of the erratioborelis with llohmia Lambremi, that this stone in some respects resemble the material of which the Momerwonde ermatie-bores consist. Boht atre very fine-gratined and rombain no calcinm-arbonate. There does not sem to he moth diflerence in colone either, at least as far as some patts of the swedishermatioblocks are concerned: Mobza tolls wis that the samdstone described by him is chietly of a brith liwhterey colons, thongls sometimes showing small hrown soots of ferrihybroxide. My erratic blocks, however, contain no pieces of phosphorite, which those firm the neirhbowhood of lake Tunbyholm do.
besides the ertatedic-blocks spoken of just now, others of sandstone with Hyolithns de (ieeri-remains were also found, as Holm tells us, in the provine of schomen, near simbisham and Köpinge.

The same athor makes mention of suchlike stones having been Grathered near Rädersdorf not fitr from berlin, and near Bützow in Mecklemburg. It follows from the deseriptions he gives of these piecer, that petrographically they bear no resemblance to those found at Murmerwoude. The latter are least different fiom the erratio-block fomd hy Prof. de Gzar at Rädersdorf. My pieces, however, contain no particles of glimmer.

No more have corresponding erratic-hlocks of llyolithus-sandstone been found in any part of the Setherlands. The first of this kind of stone were made mention of hy fis ('aкғR ${ }^{2}$). They originate from Steenbergen in the northern part of Drente; they are thee stones

[^116]resembling each other. From the description van Culker gives of the stonekernels occurring in them, How already drew the conclusion that they originate from Hyolithus de Geeri. These erratic-blocks consist, however, of dark asch-grey samdstone, so that they differ in colour from the Murmerwoude ones.

Afterward two more pieces of Hyolithus-sandstone were mentioned by me ${ }^{2}$). (he was found at Kloosterholt (Heiligerlee), the other at Roden, in the North of the province of Drente. The former is a small piece of fine-graned sand-stone, yellow-grey on the inside and brownish on the outside, in which are found some fragments of stone-kernels of Hyolithus-shells. A few of these fragments are entirely dark-brown, others have a light-grey surface. One of the stonekernels shows the transerse section characteristic of Hyolithus de Geeri. The Roden erratic-hlock is rather a large slab of sandstone, containing especially offeprints of pyramidal Hyolithos-shells. This one is reddish on the inside and light-grey on the ontside.

Where the sandstone-layers of which the Mumerwoude ematicblocks in former times formed part, were originally found as firm rock, camot be said with certainty, as appears from what was written above. Most probahly it was near the western coast of the southern part of Sweden.
III. That the knowledge of our sendimentary erratics still leaves so much to be desired, must certainly be partly attributed to the fact that so few of them have been gathered up to this time. Nongeologists, too, by their researches, may deserve well of this branch of knowledge, as was proved once more by Prof. Dr. J. C. Kaptern, filling a chair at the Groningen University.

This well-known Astronomer, who in summer lives at Vries, in the northern part of Drente, last summer searched the surroundings of this village for sedimentary erratic-blocks. To his researches we owe a piece that is certainly the most interesting of the erratics described here.

Jusi outside this village, by the road leading to Donderen, was found a small, slath-shaped erratic-block three centimetres thick, the largest dimension of which is 14 centimetres. It consists of sandstone coloured yellow-grey by fermihyroxide. At the surface it is brownish. With muriatic acid there is no effervescence. The grans of sand

[^117]are lig the greater pat very shatl they are mot easily distis-

 in paratlel phanes, in consegthence of which an indistinet layer-like comstandion beromes visible ont the vertioal sides. (bn one of the horizontal sides there are still parts of a lew thin layers. In the stone are a great many smatl cathes, which were formerly evidenty tilled with organic remains.

On both of the horizontal sides we timd remains of 'Pribolites. On ghe of them the mos important are an ofteprint of a mid-shell about os millimetres long, and at stome-kernel 10 millimetres long, part of the shell of which, formed into irom-hydroxide, is still present. On the other horizontal side is fombl the front part of an offeprint of a much latere mid-shell, which once had a length of about 15 millimetres.

Ubdoubtedly these remains, which in many respects resemble each other, have come from the same kind of Tribolites. The two first mentioned are remains of younger indivithals; the other belonged to a more or less fill-wrown specimen.

With the younger individnals the glabella was convex, its lenglh suppased its hreadth a little, it- breadh diminishing towards the front. On the fromt side the grabella is somewhat rommed. On the plastercoast I made of the off-print of the small mid-shell, it is clearly visible that the glabella possessed at least 2 side-furows on either side. The stone-kemel shows that the neek-ring was broadened in the middle. The cheeks were valted, which is very clear in the stone-kernel
 in front and being contimued on either side on the cheeks, where it hroalens and hecomes less deep. Before this furmo is a vaulted part, which does not turn down. The front-edge of this part is on about the same level with the back-edge, whilst its height is equal to that of the glabeila. In the off-print of the litale mid-shell the glabella is $\boldsymbol{t}^{1} / 2$ millimetres in length, and the part in front of it nearly 3 millimetres in breadth.

It is apparent from the off-print of the mid-shell of the more or less full-grown amimal, which mid-shell is only partly exposed to view, that the glabella and that part of the mid-shell which is in front of it, which does not turn down here either, are less vaulted, and that the furrow separating the two, is less deep. Here are no side-furows to be distinguished on the glabella.

With the assistance of the scientific works I dispose of, I found that these rematns are most like those of Arionellus primatus Bröggra, of " which up to this time only mid-shells have been pietured and
described. The first piefures were wiven by Kabrup ${ }^{1}$, after remains of the "gren skifer" from Tomten (Tommen:) in Norway. He informed us already that they eame from an Arionellns-species. Later on they were deacribed by Bröggri ${ }^{2}$), who by them was induced to assume the new species Arionellis Primaerns. Under this head he also ranged the mid-shell that had been piedured by Kjertup in fig. 6. Afterward LsNisssox ${ }^{3}$) pietured and deseribed remains of this Tribolite. He moreover tells us that the mid-shell pietured by Kabrtaf as dig. if rather seems to belong to a new species called Ellipsocephalus Nordenskioldi, instituted by him in the same essay. Ilis material had been got from the "grivacke-skiffern" of Forsemöla near Andrarmm. He dated with certanty to mage moder the head Arionellus Primatevs: a small mid-shell 5 millimetres long, which had heen found in a sandstone-like variety of the stome mentioned above. This wat not the case with mid-shells from the ordinary stone, which are about 15 millimetres long. He gives as his reasons for not daring to range these latter among Arionellus Primaevis Brögger: first that they are much flatter, secondly that the furows are much shallower, thindly that the glabella has no side-furows, fourthly that the whalla towards the front considerably diminishes in breadth. Why, notwithstanding all this, he at first ranged them moder this head, though he had never heard of transition-forms, he explains by saying that Barrande had found exactly the same difference between the old and the young specimens of the Bohemian species Arionelhs Ceticephatns Barr., of which transition-forms ate known.

The very same points of difference ocem in the Tribobites-remains of the erratic-block found at Iries. Here, however, the qlabella of the older specimen does not diminish in breadth more considerably than that of the younger individuals.

As I wished to be as certain as possible in my determination, I wrote to Prof. Mobera, director of the Geological Institute at Land, to ask whether there was any material for comparison at my disposal there. Remains of this species of Tribohites seem to he very rare at Forsemolla, however, so that my repues could not be complied with. I received ats a present, however, a mid-shell of the Ellipsocephatus Nordenskiöldi, which seem to orewr more frequently there, Prot.

[^118]
 I'simatevos.

 rematins mader this head. The mid-shell I reoceised from lamd comfirmed my 口pinion. I infommed Prof. Mobsam of this and sent hima

 opinom amb comsilered hem at hatwing come from Aronellas Primaterns. At the same time he was en kind ats form me ablastere "ats of the hen of the mids-atells of this speroes of Trikobites, found in the collerdion at Lamb. Now I monld atereptan that in Aromellus Primateras the part of the eephaton in fromt of the eglabella does not turn down. Which is not peciatly mentioned by brögapar and IANMRAGOS.

Ahat in the mid-shell of which Mombar sent me a plater-cats, the brealth of the grathella diminishes hot litale towade the fromt, though its lenuth is aloont it millimetres.

I think, then, that we now may with certanty conclude, that in the Vries erratic-block we time remains of Aronellus Primaevos Brögiek. As this Trilohite ocems omly in layers that contain remains of Inolmia (Olenellns) Kjerulti Lasks, and as these we taken to be the yomages of the E'nder-Cambrian ones, the age of the layer of which this erratio-block in former times formed part, may he easily determined.

Besides ocemring at Tomten in Norway and at Forsemölla near Andramm in Schonen, which places 1 mentioned alseady, Arionellus Primateras is probably foum in wo more places in firm rock, viz. at Kiviks Eeperod to the North and at Cislofs Hammar to the south of simrisham in schonen. The former place was first made mention of by Nathosst ${ }^{2}$, who thld that he hat fonnd there an off-print of an Arionellns: That in (ibiofs Hammar semains of an Arionellus oreur, was tirst eommmatiated to us hy livarasos, in his description of the Arionellus-remains of Forsemolla. Aceording to this writer, many of the mid-shells fomm there by vos sommalesee much resembled the larger shells of Forsemölla, which he dared not with certanty call Arionellus Primaevus.

[^119]As for two kinds oceuring in the same place, Horst ${ }^{2}$) mentions that the "gravackeskiffer" may ako contain a species of Arionelhns (Arionellus Primaerus Brögom : 5).

From commmications matle by Thadbergs 2) amd Hexvici ${ }^{3}$) the conclusion might be drawn that Arionelhs Primaevas bröga ocenting at Kiviks Esperöd and Gislofs Hammar, had been sudficiently indicated. I think, however, that this shoutd not be done. The list of fossils which these two anthors have draws up with regat to the "gravackeskiffer" of the fwo places mentioned just now and of Andrarm, must refer, in my opinion, to these places taken collectively and not to each separately. I am confirmed in this opinion by the fact that remains of Lommia Kjerulfi Lims (or of a kindred species) are not mentioned hy Mobsiag as being found at Kiviks Esperod, whereas they are mentioned by them.

The origin of this erratic-hlock must most probably be looked for in the eastern part of schonen or in the Baltic sea-region bordering on it. That petrographically it differs from the ordinary "grivackeskiffer", does not clash with this opinion, several writers informing us that the latter often changes into sandstone. The thin layers on the lower side indicate that something of the kind has been the case here.

It is not likely to have come from Norway, for never was a sedimentary erratic-block found in these parts, of which this may he said.

As was mentioned above, I bake this erratic-block to be the most interesting one of the pieces that are described in this paper. I do this because it is the first piece coming from layers with Holmia Kjerulfi Lim's that has ever heen made mention of. Nowhere in literature did I find anything abont an erratic-block of that age
IV. Shortly before the smmer-holidays of last year I fomm, when visiting the loam-pit close by Hemeltm, a slath-shaped piece of finegrained sandstone three centimetres thick, whilst its largest dimension is a little more than 20 centimetres. It is layered and contains calcium-carbonate, so that with moriatic acid it gives effervesence of dioxide-erbonate.

Owing to the large number of Glanconite-grains it contains, the
${ }^{1}$) Holst. Beskrifning till kartbladet Simrishamn, p. 17.
²) Tullberg, Skånes Graptoliter. 1. Allmän öfversigt öfver de siluriska bildingarne i Skäne och jemförelse med üfriga kända samtidiga aflagriņar. Sreriges geologiska Undersökning. 1882. Ser. C No. 50. p. 26.
${ }^{3}$) Hexilig, Geologischer Führer durch Schonen. 1900. p. 26.
b) Moberg, Sveriges älsta künda Trilobiter.
 This is the cate will sombe latyors coperobally. Some particles of a lishtombured kind of wimmel ate fomm in it.

 af wie of them is homent.

When visitmer dhe Natumat History-Mnsemn all Hambury last sum-

 thought he remembered shel pieces fo have been fomm in the surromblings of Hamburg. Owing to want of exposingroons, however, they lay patcked up among other pieces, in consequence of which they could mot be shown me. He drew my attention to the fact that in this kimd of ematic-hloeks sometimes orom small conical valses af hom-shedled brathonodes. These valves were shown to me in a bown-colonard ematic-hock.

A shorl time atter I fomme on the heach at Borqholm in Oeland not ouly an erratic-hbock with Hyolithns-rests entirely corresponding with my Hemelum piece, but also a bown piece of sandstone with a valve of a smatl hom-shelled Brachoopode.

I searched my books for anything on the subject of this kind of erratios on stone, hut at linst without any result.

As Prof: Mobent at Land in the stmmer of 1901, when I had requested him to be so kind as to give me some information concerning delame, had moted down on my map of this island that on its coast. to the North of Färjestaden, oceme erratic-hlocks with Itscincha Holsti (hen mknown to me), and the valves of Brachopotes I had found were, like those of Discina, homy and flat-conical, but much smaller, I supposed that Prof. Mobskg could give me some information about this stone. For this reason 1 intended to write to him conterning this subject, and, was going to do so, when aceidemtally I diseovered in the essay of Hown ${ }^{1}$) on the swedish Hyolithidae and Comularidac, that by Mobseri ${ }^{2}$) a greenish kind of sandsone, rich in Glatomites. With Discinella Holsti Mobsers and Hyolithes, occurring ats erratio-blockis in Oeland, had been described.

Having stadied Mobrats essay, I find that the stone of which my --- -
${ }^{1}$) Holm. Svemges Kambrisk-Siluriska Hyolithidae och Conulariidae. Sveriges Geologiska Ludersökning. Ser. C: No. 112.
") Moberg. Om en nyuptäck! fauna i block of kambrisk sandsten, insammlade of dr. N. O. Holst. Geologiska Füreningens i Stockholm Fürhandlingar 1902. No. 142. Bu. 1f. Hatl 2. p. 10:3,
erratic-blocks with Hyolithus-remains consist, hats been dereribed hy this author as type a. The piece of brown sandstone with the valse of a small brachiopode 1 fomm at Borghom, helomge to his typed. The fossil occuring in it bas been determined by me as a vautited valve of Discinella Holsti Mobert. The ermatic-hloek that was shown me by Gotrschn probably belongs to the same type; the organic remains occuring in it are likely to have come from the same species of Brachiopodes.

The Hyolithus-remains in the Hemelum erratic-block have been very imperfectly preserved, which, according to Hown, ${ }^{1}$) is usually the case with this stone. A longitudinal section possesses a length of 10 millimetres and at the month a breadth of 4 millimetres, so the dimensions of this shell remind of the one pietmed and described by Moberg ${ }^{2}$) under the name of Hyolithus Insularis nov. spec., whereas Holm afterward called it Hyolithus Confusus nov. spee.

The relative age of this kind of erratic-blocks does not seem to the with certainty known yet, as up to this time no corresponding stone has been met with as firm rock, and the organic remains found in them have not yet been discovered in company with such as might contribute to the solution of this question. Mobrag, however, thimks he may conclude from the general chatacter of the fossils occorring in them, from their petrographical mature and from the way in which they are spread, that they come from Under-Cambrian layers.

Holst ${ }^{3}$) draws the same conclusion, after tracing the mamer in which they are spread. I think I may infer from his essay, that in his opinion they come from the youngest Under-ambrian layers. In accordance with this is the presence of Discinella-remains, this genns of Brachiopodes occuring, aceording to Moberta, in NorthAmerica, in layers containing Olenellus.

As was said just now, a corresponding kind of stone was not yet met with as firm rock. Most probably it formerly occurred westward of Oeland; it may be found there even now at the bottom of the sea, because this kind of erratic-blocks is fond in large numbers only on the western coast of this island, between Hallory and Mörbylanga, and on the little isles and cliffs in the neighbourhood. Less momerous they are in the other parts of the eastern and western coasts of the Kalmarsumel.

[^120]

 almose dombless, howerer, that they are mentioned by (iotischa: ${ }^{\text {b }}$)
 aroorliner to him, resomble tha swedist "fravatieskifer", most the taken into eonsibleration then. The deareption of the bater entirely comreoponds with that of lype " ly Mobsaci. The small, romad, horny-hattons Brachioporterevalves will a diameter ol 2 millimetres. mentioned by fortsone, whieh may eome fiom Diseinella Holsti Mobsab, atob canse an to conchodre that we have the same kind of stone here. fotrande does not inform us of Hyoliths-remains ocemring in suchlike erraticobocks. No erraties contaning them had perhaps heen foum at the time. It follows from what he orally commmaicated to me, that now they have most probably heen fomm.

The same athloor says that acoording fo lasxamson a kind of stone entively corresponding with the one described hy him, has been met with ly Hemaz new Terekoy (wich Hemmen calls Torekov), on the coats of N . W.-schonen, as tirm rock. Julging from the descriphon Humes ${ }^{\text {a }}$ erives of it, it much resembles, petrographically, type of of the Diseinella Holsti-sumdotone. Hemmar does not say, however, that tossils are fonnd in it. Perhaps we have here the same cate as with the Ghameonitic sandstone from the neighhomhood of simrishamm, of which Howst ${ }^{3}$) writes that a corre--ponding kind freduenty occurs in the "sandstone-region" of the Kalmarsund. Here, too, the resemblate seems to be petrographic at best, for Moberg, in his essay, speaks about this sandstone no more than about that of Tomenos.

Most prohably the thin-layered, greenish stone which resembles the "tratuwacken-schiefer" of the Olenellus Kjerulfi-region, and which petrographioally keeps the medimm between the Olenellusstone of Hardeberga in Schonen and the equally old "grön skiffer" of Bornholm, with some-kemels of at Brachanme poobably belongines to Acrothele, and with hyolithus-remains bearing the greatest resemblance to Hyolithis Lenticularis Holm, is stolnay ${ }^{3}$) writes, - is also Discinella Holsti-wandstone.

[^121]Finally I must mention that, on the occasion of a later visit to the loam-pit near Hemelum, I fomed two more erratic-hlocks, which must probably also be combed among pieces of Discinella Molstisandstone. Neither contains any fossils. One corresponds petrowraphically with what was described; the other is for the greater part white, but possesses green lixers. If I am not mistaken, I sometimes saw suchlike stones on the beach of borghohm.

Physics. - "On the contrse of the culues of b for luydrotene in comnection with " recent formulat of Prof. Vis der W.ass." By Dr. J. J. Vix Ladr. Commmacated by Prof. J. D. vis der Wills).

1. Making use of the theory of cyclic motions, Prof. Van der Wails has given a new deduction of the equation of state of a simple substance, in which the size of the molecule appeared to be variable, and to be a function of the colume ${ }^{1}$).

For a bi-atomic gats the following formula has been found:

$$
\begin{equation*}
\frac{b-b_{0}}{v-b}=1-\left(\frac{b-b_{0}}{b_{0}-b_{0}}\right)^{2} \tag{1}
\end{equation*}
$$

Here b_{0} denotes the smallest value of b, corresponding to the case that the two atoms of a molecule touch each other; by represents the greatest value i.e. the value for very great (intinitely great) volume. The above equation may be casily derived from the so called "equation of state of the molecule":

$$
\begin{equation*}
\left[P+\frac{u}{r^{2}}+a\left(b-b_{n}\right)\right]\left(b-b_{n}\right)=R T \tag{c}
\end{equation*}
$$

when we take $v=\infty$, in which case b assumes the value Of $_{f}$ and $p+\frac{"}{c^{2}}$ mary be neglected with respect to $a\left(l_{1}-b_{0}\right)$. So we get:

$$
\pi\left(b_{g}-b_{0}\right)^{3}=R T
$$

If we substitute this value into equation (ot), pating regare to

$$
\begin{aligned}
& \prime \cdot+\begin{array}{c}
" \\
r_{2}
\end{array} \begin{array}{c}
R T \\
c-\bar{b}
\end{array}, ~
\end{aligned}
$$

we get the equation

$$
\left(\frac{1}{r-b}+\frac{b-b_{0}}{\left(b_{g}-b_{0}\right)^{2}}\right)\left(b-b_{0}\right)=1
$$

which yiekds immediately equation (1).

[^122]The quantity " in the equation of sate (1) deprents on the forees,
 shpored to he proportionai to the limene deviation from the pesition of equilibrimer-r.
 in this cate is the combination of two smilat equations- will contian besides $R T^{\prime}$ still at fator f, whore value will vary from 1 to?
 motion of the atoms For $\left(O_{2}\right.$ a value of neaty 2 is fomd for f. As, however, this quantity for a certain shbtane is, strictly speaking, variable (see the piaper in the "Liverededie a Bossom". quoted athove) and ats the atecorate egnation is therelore very eomplicate, I have chosen a hiratomic gats, namely hydrogen, in order to test the new equation of bis der Wians. In this cave $f=1$ and the relation between 1 and r is represented by the simple equation (1). I hope later for test the equations for oxyenen and nitrogen, in order to examine whether the results found for hydrogen also hold for these gitses.
II. An meomme knowledge of " is required for the exact calcohation of b. This is still at ereat difticulty. Alscolute certanty as to this value camnot be obtained as eet, hot still it appears to me that the value $"=300 \times 10^{-6}{ }^{1}$) has a high degree of probability. Assuming another value for u, I fomm namely that the valnes calculated for 1 decrease much too rapidly, - much more rapidy than agrees with formula (1 ; this is principally the case in the begimming, i. e. for latge values of τ. Only the values of l, callentated for $t=300 \times 10^{-6}$ varied in such a way, that their comse was represented by equation (1) with nearly perfect accuracy. Schaswoк ${ }^{2}$) also calculated from his last experiments $10^{6} 1=300\left(10^{6} h_{g}=910\right)$. I therefore thought myself justified in assuming 300 for 10^{6} a. In the following table we find the values for 1 at 0° Centigrade, calculated from the equation

$$
\left(p+\frac{u}{c^{3}}\right)(c-l)=(1+u)(1--l)(1+c t)
$$

For $(1+11)(1-3)$ we put 0,9994 . All values have been multiplied by 10^{6}; the same will he the ease with all values of l which we give in what follows.

At θ° C. we have:

$$
r-l=\frac{0.9994}{p+\frac{l}{r^{2}}}
$$

[^123]$0^{\circ}\left({ }^{\prime}\right.$

1	$\left.{ }^{1}\right)$	\because	$\begin{aligned} & a \\ & r: 2 \end{aligned}$	$r-1$	founul．	$\begin{aligned} & b \\ & \text { calculaterl } \\ & \text { from (i) } \end{aligned}$	\pm
100	10690	114．3	$\because .62$	973！	9.1	907	＋11
	735：3	St 07	$\therefore .85$	（120）	12N	901	＋ 2
201	26：0	32． 3	9．2゙	行行	！1：3	Sint	$+17$
（2）	4 tios	2． 01	$13.6{ }^{3}$	3791	（\％） 1	N：11	$+111$
（301）	10：30	169	$18.4{ }^{7}$	313 s	892	SN6	$+i$
3：0）	3.00	12.67	$23.6{ }^{4}$	－675	885	880	＋
400	33207	11． $2 \times$	99．1＊	csay	878	87.5	＋ 3
行0	2933	8.60	$3{ }^{3}$	－ 013	87%	870	十
：（1）	2713	$7 . .36$	40.8	1s隹	N（ti）	N（i）	± 1
2， 20	¢3：3	（i． 很 6	化． x	16\％	ズふ	N60	－
（ifl）	$\underline{6305}$	万．69\％	ごフ	13.31	8	Nos	± 11
（i．）${ }^{\text {a }}$	2－20）	5． 103	Ss	1／10	819	8．010	-1
760	$\because 14$	A．（ $62 \underline{4}$ ）	169	1307	8 Si3	又行	－－
750	20.23	4．21．）	71.2	1217	人3：	又价	－＇
S60	1971	3.885	77.9	11：30	N：30	8：3	－$:$
5，0）	1897	3.594	ぶ3．	1071	※゙26	※0：	－1
900	18：303	3.364	89－	11310	N3	$x-2$	－ 3
950	177\％	3．1行	95.3	98	818	※21	－\because
1009	172以	9．96i7	101.1	908	ぶに	817	－！
1100	16：37	2. （ix）	111.9	（2）	815	Nars	＋ 3
1200	15.37^{3}	2 109	1297	7.97	N（1）	Nu1	± 11
1：300	1491	2．－293	1：35．0	dill	79	71.3	＋
1400	1432	$\underline{-0.31}$	146．3	6 6	7， 6	785	$+1$
1.50	1：380	1.90%		（i0） 3	77%	717	± 11
1600	1：3：3	1．781	168．	Stis	769	770	-1
1700	12911^{5}	1 （ix）	1785	Tin	76	76	-1
$18(4)$	1上゙か	1 ．－xis	189．5	5×12	7\％）	7．1）	± 11
1900	1以゙った	1.501	199.9	47%	741	74	± 11
9000	1196	1.127	290.2	行昰	719	73	-1
$\because 160$	11 Hz	1．3il	2091.4	431	7：3i	736	± 0
2900	11.11	1302	20：4，4	111	730	7：30	± 11
2300	1118	1．200	$\cdots 30.0$	30：3	7－2\％	プィ	$+1$
$\underline{290}$	10477^{5}	1.30 .5	－39．0	35	720	719	$+1$
¢200	1078	1．162	2゙が2	36	711	714	＋－
9600	10.95	1.103	237.1		711	710	$+1$
2700	10\％	1.0×0		3：30	706	70.5	$+1$
2000	109 解	10.00		30\％	701	710	$+1$

${ }^{1}$ ）Ep to 1000 atmospleeres the vatues of i hate been borrowed from the results
 39
［＇roceedings hoyal dead．Amsterdan．Vol．V．

 the values of b. To this cimemstane alow it may be aboribed that the values of h are in the beermaner mon reliables. So the vallue
 (10 ten mits at the momos. So it might aloo hate been 10 otish or
 Ther values of l " "caleubated" hatre been determined with the aid of explation (1) in the atarmplion

$$
\underline{l_{1}=917}: \quad \underline{l_{0}=46: 3}
$$

1, maty be determined in the following way: If we substiture into (1)

$$
\begin{aligned}
& l_{11}-b_{11} \\
& b_{9}-b_{n}
\end{aligned}=\cdots
$$

$$
\frac{r^{r}}{1-r} \frac{h_{g}-b}{r-h}=1-r^{2}
$$

and therefore:

$$
\frac{b_{1}-b}{r-b}=\frac{1-r}{r}\left(1-r^{2}\right) .
$$

For an asommed value of b, this equation enables ns to determine the corresponding value of ef from 1 and b at e.f. 500 , 1000,1600 , 2200,2800 atm. The value of boy then be eateulated from

$$
l_{n}=1,-\left(1-r^{3}\right)\left(c-l_{1}\right) .
$$

Which follows immediately from (1) so 1 found withe ly $=917$ at $1000,1600,2200,2800$ attm. respectively the values $1_{0}=455,463$, 462 , 465 . If we pht $\quad \prime=400$ instead of $\quad \prime=300$, then we find with $b_{0}=1000$:ll $\quad \mu=2800$ allat. in the same way $b_{0}=463$. With
 mean salues of the results of the first method (that of the electrical contacts) and those of the secomi methon. From 1100 atm. upwards the values of r have been determine by the tirst methos.

$a=500, b_{1 \prime}=1100$ we find at 2800 atm. agath $b_{11}=464$. So wo maty atsmme with perfed certan! b to differ very little firm 463 .

With this value of b in the firs plate bo was again calcutated. From (1) follows:

$$
\frac{\left(l_{1}-b_{n}\right)^{2}}{\left(b_{0}-b_{0}\right)^{2}}=1-\frac{b_{1}}{r-b}=\frac{\left(1--l_{1}\right)-\left(l_{1}-b_{0}\right)}{r}
$$

Bi

$$
b_{y}-b_{0}=\left(b-b_{0}\right) / \sqrt{(c-b)-\left(b-b_{0}\right)}
$$

In this way 1 found at $p=500,600,700,800,900,1000,1200$, $1400,1600,1800,2000$ atm. respectively $h_{9}=918,917,914,912$, $912,913,919,917,917,917$ 917. Fiom these values I concluted that $b_{g}=917$.

After that the values of 1 (calenbated) were determined as follows. We derive firom equation (1):

$$
\frac{b-b_{n}}{\left(c-b_{0}\right)-\left(l_{1}-b_{n}\right)}=1-\frac{\left(b_{1}-b_{n}\right)^{2}}{\left(b_{n}-b_{0}\right)^{2}} .
$$

If we put $h-h_{n}=y$, then we qet for $h_{9}-h_{0}=4$ ăt:

$$
\frac{y}{\left(r-b_{n}\right)-y}=1-\frac{y^{2}}{454^{2}} .
$$

from which follows:

$$
y=45 \cdot 4 \quad \frac{\left(c-b_{0}\right)-2 y}{\left(c-b_{0}\right)-!}
$$

We know the values of !/ alrealy in approximation fromb (found). Thene values. substituted into the serond member of the above equation, yied the ateromate value of $!/$, and so abo of l.
III. Leet bs begin with assmming that the values of b_{0} and b_{1} are independent of the temperature, which follows from the stpposition of l'rof. Wis der Whas, that the quantity e, which depents on the forees between the afoms, is proportional to the absolute temperature. Then we maty calculate the critical quantities in the following way. Equation (1) in comection with the following equation:

$$
c_{k}=\frac{3 l_{k_{2}}}{1+2\left(\beta_{1}+\beta_{2}\right)} \text { or } k_{k}-l_{k}=\frac{\cdot 2}{3} r_{k}\left(1-\beta_{1}-\beta_{2}\right) .
$$

where

$$
\left.\begin{array}{l}
\therefore 3 \\
\because 1+(1-, \mu)\left(\begin{array}{cc}
1 & \vdots \\
1 & 1 \\
1 & 1
\end{array}\right)^{\prime} \\
\left(1+(1-,)^{2}\right. \\
1
\end{array}\right)^{2}
$$

 -roond memtrer:

$$
\frac{\ddot{\left(1+i+3 r^{2}\right)}}{(1+r)\left(2-r+r^{2}\right)^{2}}
$$

Therefore we wrot also:
 "Reds the valum 1 the value 0.709.

Therefore

$$
\begin{aligned}
& b_{1}-b_{0} \\
& b_{9}-b_{0}
\end{aligned} \quad 1^{11.71!1-11.812 .}
$$

from which we maty easily derive:

$$
b_{k}=0.92-2 l_{n}=84 \%
$$

Now we liate:

$$
\begin{aligned}
& \therefore \quad r_{1}-h_{k}=1-3_{1}-3_{2}=\frac{2\left(1+3 r^{2}\right)}{\left(1+r^{2}\right)\left(2-1+r^{2}\right)^{2}}=0.9163,
\end{aligned}
$$

from whicll we find:

$$
r_{k}=2.57 h_{k} ; \quad \beta_{1}+\beta_{2}=0.0837
$$

The eritical volume is therefores:

$$
\mu_{k}=2.57 b_{k}\left(=2.37 b_{n}=4.69 b_{0}\right)=2172
$$

 the size of liquid volumes this fite compernsates the wath of experiments below the witicial temperatume

$$
\therefore 591
$$

$$
\beta_{1}=\frac{1}{1+\frac{1+r}{(1-w)^{2}}}-\frac{(1-r)^{2}}{2-r^{2}}
$$

follows:
Wer $\quad \underline{\beta_{1}=0.0472 ; ~} \quad \underline{\beta_{2}=0,03305}$
We find for $R T_{k}:{ }^{1}$,

$$
R T_{k}=\begin{array}{cc}
8<\left(1-\beta_{1}-\beta_{2}\right)^{2}\left(1+2\left(\beta_{1}+\beta_{2}\right)\right) \\
27 & 1-\beta_{1}
\end{array}
$$

or

$$
R T_{k}=\frac{8}{27} \frac{a}{b_{k}} \times \frac{0,8396 \times 1,1674}{0.9528}=1.029 \times \frac{8}{27} \frac{1}{b_{k}}=0.305 \frac{a}{b_{k}}
$$

With $11=300, l_{k}=84.5$ we find therefore:

$$
R T_{k}=0.999+\frac{T_{k}}{273}=0.108
$$

which gives:

Dewir found $T_{k}=30^{\circ}$ à $32^{\circ} \%$
The critical pressure is represented by ${ }^{3}$)

$$
l^{\prime} k=\frac{1}{27} \frac{a\left(1-\beta_{1}-4_{1} \beta_{2}\right)\left(1+2\left(\beta_{1}+\beta_{2}\right)\right)^{2}}{1-\beta_{1}} .
$$

(1) ${ }^{\prime}$

$$
m_{k}=\frac{1}{27 \mu_{k}^{\prime 2}} \times \frac{0.8008 \times 1.363}{0.9528}=1.154 \times \frac{1}{27} \frac{1}{\mu_{k_{2}^{2}}}-0.0427 \frac{\prime}{\mu_{k}^{2}}
$$

Introducing into this expresion the values of a and lys. we ind:

$$
p_{k}=18.0 \mathrm{~atm} .
$$

We find for the so called (ritioal coefticient X : ${ }^{a}$

$$
X=\left(\frac{P^{\prime}}{R T}\right)_{k}=\frac{3}{8} \times \frac{1-\beta_{1}-4_{3}}{\left(1-\beta_{1}-\beta_{2}\right)^{2}}
$$

or

$$
X=\frac{3}{8} \times \frac{0.8068}{0.8896}=\frac{3}{8} \times 0.961=0.360
$$

Finally the duantity $)$ may be calentated from ",

1) Id, II, p. 583 .3.
2) Proc. Royal Inst. 16 (2), N". 94 (1901), p. 477.
3) v. D. Wials, l. c. II, P. J×3.
t) Wied. Ann., 56, 1. 13:3 (1495). See also Velsomaffelt, These Proceedings, Fehr., 1899 , p. 327.
${ }^{5}$) v. D. WALL, I. c. II, P. 58 亿.
$\left.{ }^{i}\right)$ Id. 1II, p. 648 .

 result for ite agres with the experiments. At the same time the value of the eritieal cenefterent. l will then agree, for the values of T_{k} and
 with the veritication of 5 , we will wat till we hato insestigated the behavione of th higher temperathere, which will be vone in the next ehapter.

 riments wh AMabat ${ }^{2}$) at that temperathere
r - Whas here been maldulated from
 Waty as is imdicated above for o

$$
\underline{l_{01}=917}: \quad l_{0}=: 886
$$

 verdicaltom was only poscible wh to 1000 atm., as, alats, wo finther experiments were ataibable We come th the rematkathe reants, that the value of ho hats comsiderably decoratsed thomeh the limitiner value of It hat remathed mothated. It reems hath at higher temperatme the atoms in the molecole may atpmoth one another clorer that at fower temperature.

${ }^{\prime}$	r	$0^{\prime \prime}$	$\frac{11}{r^{2}}$	$r-1$	1 fouml	$\begin{gathered} \langle \\ \text { !calculated, } \\ \text { from (1) } \end{gathered}$	\triangle
150	0840	96.94	3.309	8902	914	902 1	＋12
got	7567	5786	5．${ }^{4}$	（6） 61	927	817	$+30$
200	1200	38．4年	$7{ }^{\circ}$	Testi	911	x）2	＋22
300	52xti	27.9 t	10.74	438．5	901	887	＋14
3.0	1636i	$\underline{21.44}$	$13.9{ }^{6}$	：3744	892	8×1	＋11
400	1197	17.20	17.4	3265	882	876	＋i
450	376	14．18	21.16	28.2	874	871	＋ 3
500	3462	11.99	2－． 0^{2}	2596	Sliti	Stif	士 0
520	3214	10．3：3	29.04	23．3	Kill	Stil	± 0
600	3006	9.036	33.200	2159	854	$\times 5$	－ 2
650	28：31	8.015	37.0	10x：3	818	8.1	-3
700	9600	7.182	41.8	1×37	8：3	841	-3
750	9551	6．508	46.1	1719	$8: 30$	人倁	-2
800	2436	5.934	50.6	1602	834	836	－ 2
850	233t	5.457	5.5 .0	1506	830	$8: 31$	-1
900	294	50336	59.6	1420）	824	827	－3
：950	（2174）	4.726	（6）．5）	135．）	$\left.(899){ }^{1}\right)$	82	－
1000	9093	4.381	（ix． 5	1275	818	818	士 0

From equation（at）follows that for great volumes：

$$
a\left(l_{y}-l_{0}\right)^{u}=R T^{\prime}
$$

Now we find：

$$
\begin{aligned}
0^{\circ} \mid u_{1}-h_{0} & =454 \mid\left(h_{4}-h_{0}\right)^{2} & =20,61 \times 10^{4} \\
1000 \quad, \quad & =531 \quad & =28,20 \quad .
\end{aligned}
$$

$\left(b_{0}-b_{0}\right)^{2}$ has therefore increased in the ratio $1: 1,368$ ．But T has increased in the ratio 1：1， $36 t$ ，from which would follow that e is independent of T＇．

In order to investigate whether this also applies to still higher temperatures，I have also performed the calculation for $200^{2}, 25$ ．
$\ell-h$ may then be calculated from：

$$
r-h=\frac{0,999+(1+200.25 \times 0.0036627)}{p+\frac{\prime \prime}{r^{2}}}=\frac{1,7324}{} \quad 1+\frac{\prime \prime}{r^{2}} .
$$

${ }^{1}$ ）The value gisen for r at $p=900 \mathrm{~atm}$ ．appeats to the erronisus；probably it must be 2164．
 $2(1) 1$ ．

l	r	\therefore	$\begin{aligned} & \prime \\ & r= \end{aligned}$	r $\quad 1$	｜i．1．｜l｜l｜	－atoulati．．｜	1
$1: 11$	$12: 361$	151 F	1 ハハ	11：30．1	！以！	N：1i	
$\because(1)$	1120	S．$\%$	$\therefore: 3$	N－1．	！1t？	N＊：	$+1: 3$
ごい1	Fick		\therefore（1）．	＋8゙ロ！	※い！	Sx：	$+\therefore$
$\therefore 200$	（2ご吅	促洌	7 mi	－Hi＂，	nix	$\times 7!1$	-1
： 2,11	Amin	\therefore 吅		が心号	－\％	$\times-3$	-1
（14）	：417	\cdots	11 （i．）	保以	स17	Mix	-1
1：81	inter	21.111	11\％	：1：	Will	xix	－-
$\therefore 1 \mathrm{Mr}$	1－111	17．7－3	113．3\％	03.51	－ッ！	S－s	$+1$
$\therefore \times 11$	： 5 ！ 11	1－1i	$1!1 \times$	31゙い	$x 1$	\times－	－
tikl	3107	1：3．11i	$\because \cdots \mathrm{OH}$	ごい	Ni．	人心	－：
1i， 11	：30：3	11 ：	？ 31	－ッ\％	xil	人信	-3
$7(0)$	$\therefore=11$	$10: 31$	$\because 111$	－2：17	S3\％	※゙心	$-: 3$
－0，	30号	（1）ごい	$\therefore 211 \mathrm{i}$	$\because 21$	031	心：3	－\＃
NiM	－＋＋101	$\times 210$	3－137	반：	N゙フ	N－	-1
ベい	ごい	7 tis＇t		1：1！	Not	$\cdots 3$	± 11
！ 1 （4）	－3\％	－110	促	1ベが	$\times 1!$	$\times 1!$	± 11

小empmenm from 1 with the aid of：

$$
\underline{l_{14}=510}: \underline{l_{n}}=306 i
$$

 again stomely deromaded．It is armarkable fate that the deremse

A－ $11 l_{1,1} h_{1}:$ We liate nem：

$$
\begin{aligned}
& 11^{=} \quad b_{1,3}-b_{11}=4.24 \quad\left(b_{1,}-b_{1,1}\right)^{*}-211.61 \\
& 2600^{\circ} \text {.. }=1064 \text {.. }=36.45
\end{aligned}
$$

smaller, mamely bas, the ration of the values of $\left(h_{4}-h_{0}\right)^{2}$ wouk alder have been fomme equal to $1,7: 3$. Whe maty therefore safely ansmme that $\left(t_{y,}-h\right)^{2}$ is found to be arecmately freperfermal to the temperat ture within so lare an interval of temperature as that between of and zoor, in eomsequente of which the quantity of mas be grite indepmelent of the temperatme.

It is not astonishing hat u is independent of the remperathere ; the contraty would bather seem to be rematkable being intuced to make this eontraty supposition fio the better aterement of the
 immediately pointed out its astomishing chatracter.

We shall just draw attention to the following eonsequence of the

If we put:

$$
b_{11}-b_{0}=1 \gamma T
$$

then equation (1) may be written ats follows:

$$
\frac{l_{1}-b_{g}+V \gamma T}{r-l_{r}}=1-\frac{\left(b-b_{y}+V \gamma T\right)^{2}}{\gamma T}=2 \frac{b_{g}-b}{1 \gamma T}-\frac{\left(b_{g}-b_{1}\right)^{2}}{\gamma T} .
$$

With small value of $b_{g}-b$ and great value of r, we get approximately:

$$
V_{\because} v^{T}=2^{l_{g}-l} V_{r} T
$$

therefore

$$
b_{1}-b_{1}=\begin{aligned}
& \gamma T \\
& 2_{r}
\end{aligned}
$$

r being in this case apmoximately apmal to $\frac{R T}{f}$, we get:

$$
b_{y}-r=\frac{\gamma}{\because R_{i}} \cdot r
$$

OH°

$$
l_{1}=b_{q}-\gamma^{\prime} \rho^{\prime} .
$$

i.e. the value of b depends only on $/ 1$ and no mone on re or T, the value of by heing neally comstant. The values of b, calcolated for the stome presstres, have therefore the same differenter whether the temperature he 0° or 200°. For we hate:

$$
b_{1}-b_{4}=\gamma^{\prime}\left(\mu_{2}-\rho_{1}\right)
$$

We fomat this fate atfirmed in the atrove tables ${ }^{2}$. Fon the pmoprese
$\left.{ }^{1}\right)$ I. c. 1iI, p. (ific.
") I pointer this out already before in a paper in the Arohires Tomber Insur L"inllance des corrections, etc." (2) Vit, Bane partic, p. 2(3-27.) 1 tested there the b-values for ledrogen to an empirical formula of Kameplisan Oxaes.

We see that the diflerenters are the same. All the values of h at 200° are s mits less than the corresponding valnes at 0° and at 100°, becallse the value of $\mathrm{hog}_{\mathrm{g}}$ al 200 is 7 mits less. But the course is always just the same. And ats at at given value of p we always tind inrordsimg values of r at increasing temperature, so the value of b_{0} must of course alwats decreate.

From the alrove follows also, that we mat determine by immediately, e.e. adding 52 mits to the valnes of 1 fomed at 500 atm., or 32 units to that at 400 atm., ete.

On the preceding reasoning we may base the following short ("alculationt.

At $\mu_{3}-\mu_{2}=100$ the intial value of $h_{2}-b_{3}$ amoments to cirea 10 a 11: we have therefore:

$$
\gamma^{\prime}=\frac{\gamma}{2 R}=\frac{10.5 \times 10^{-6}}{100^{-6}}=0,105 \times 10^{-6} .
$$

Therefore

$$
b_{9}-b_{0}=V \quad V T=10^{-3} V 0.21 R T=10^{-3} V 0.21 \times 0.9994(1+a t)
$$ $11{ }^{\circ}$

$$
l_{4,}-l_{11}=10{ }^{6} \downarrow 21 \times 10^{\prime}(1+a t) .
$$

So we have at 0 10 $10^{n}\left(1_{0}-1_{0}\right)=458$ (found 454).

At 200° we tind $10^{*} b_{0}=121 \times 10^{\prime} \times 1,-32 \pm=603$ found 604.
V. A slight eorvection must of eourse be applied to the cateulatfions of $s: 3$ in consequence of the valubility of $b_{n}-b_{0}$ with the temperature. For the assmption that bof rematins constant pleads also the circomstance, that aceording to an obervation of I Bermedot the experiment yieds the value 2,93 it 2,98 for the ratio between the temperature at which a gats in extreme ravefation follows the law of Boyse, and the critical temperature: for which ratio the supposition that $b_{\text {f }}$ is comstant over this large temperature interval ${ }^{2}$) leads to the value 2,9 . If we assume this same supposition, we shatl lind b_{a} to be equal to einea 920 also for the critical isothermal. But b_{0} will be foumd to be considerably higher that at 0°. Wesaw above that the difference amomats to 77 units for $99{ }^{\circ}$ difference in temperature. We shall therefore find b_{0} at $-242^{\circ} \mathrm{C}$. from the equation :

$$
b_{0}=463+\frac{242}{99} \times 77=463+188=651
$$

If therefore we put $b_{g}=920$ and $b_{n}=650$, then in the first phace $b_{\text {g }}$ is no longer equal to $2 b_{0}$, but to:

$$
b_{g}=1,415 b_{0^{\circ}}
$$

The variability of 6 is therefore much smaller that at 0°, and in consequence of this the quantities β_{1} and β_{3} will also be foum to be much smaller, and the reritical quantities will approade still more closely to the normal values.

The quantity $n=\frac{b_{0}}{b_{y}-b_{0}}$ is here $\frac{1}{0,415}=2,41$, and the value of $x=\left(\frac{h_{1}-b_{0}}{b_{g}-b_{0}}\right)^{2}$ of equation b ceases aterordingly to be 0,709 , but beromes 0,852 . In consequence of this we tind:

$$
\frac{b_{k}-b_{0}}{b_{n}-b_{0}}=V 0.859=0.923
$$

from which follows:

$$
\underline{b_{1}=0,977} \underline{b_{4}=899}
$$

For $\%$ and for $\beta_{1}+\beta_{2}$ we tind (eomp) $\$ 3$):

$$
c_{k}=2,87 b_{k} \quad ; \quad \beta_{1}+\beta_{3}=0,0298
$$

So we find:

$$
k_{k}=2.87 b_{r_{k}}\left(=2.80 b_{m_{1}}=3.97 b_{0}\right)=9579
$$

a volume which is reached at $\theta^{\circ} \mathrm{C}$. at a pressure of \pm boso atm. The values of β_{2} and β_{2} taken separately are:

$$
\beta_{1}=\frac{\left(1-r^{2}\right)^{2}}{2-x+x^{2}}=\underline{0,0117} \quad ; \quad \beta_{3}=\underline{0,0111}
$$

1) Zie van der Waals,]. c. III, p. 6ī.

 ratimall demsil!! in:

$$
d_{1}-\frac{1}{24.71}-\underline{01,43: 4 x .}
$$

$$
\stackrel{I_{1}+1_{z}}{\mu_{k}}-\underline{2}=\left(1-\begin{array}{c}
T \\
\sigma_{k}
\end{array}\right) \mathfrak{y}
$$

DE: un: fomme the density of the liguid phate at the melting point
 the vapumr:

Which yidels fine dr:

$$
A_{1:}={ }_{2.081}^{11.46 s}=\underline{0.03348}
$$

We now proceed to the calkulation of the wher writal yuantites Ti. If: S and I.

We lime for T_{K} :

With " $=300, l_{k}=$ sht we fimb therefore

$$
11.3149+\frac{7}{27}=0.30 .1011
$$

-1

$$
T_{k}=22^{-2}, 2
$$

This value is somewhat bow low: the experiment has vielded $T_{k}= \pm 31^{\circ}$.

Whe lind for the comical premene:

1) I. (c. M. 477 . Inewar fink the melting point to be 15° a 17° : the ertitical temperature (o) be :30) a 33° absolute temperature. [The densily of the liquid fhase at the beilingwint $(2)^{\circ}$ a $\left.21^{\circ}\right)$ has been estimater) to be $\pm 0,07$, hut then the rapour density may no more ine negtected.]

With the values found for ${ }^{\prime}$ and h_{k} we get:

$$
m_{k}=14.4 \mathrm{~atm}
$$

Dewar found \pm lt alm.
The critical coefficient I becomes:

$$
X=\frac{3}{8} \times \frac{0,9439}{0,9549}=\frac{3}{8} \times 0,989=\underline{0,371}
$$

so nearly the normal value 0,375 .
For $I=\left(\frac{T}{T} d p\right)^{r} d T^{\prime}$ we find now mother value than before. In the general expression ${ }^{1}$)
the factor of $\frac{d b}{d e}$ is now no longer zero. Fror ats $\frac{d l^{\prime}}{d /}=a\left(b, b_{n}\right)$, we have:

$$
T \frac{\partial}{\partial T}\left(\frac{d I_{6}^{\prime} b}{d l^{\prime}}\right)=-T^{\prime}{ }^{\prime} \frac{d l_{n}}{d T^{\prime}}
$$

as we found a to be indepentent of T, b_{n} on the other hand for depend upon T. We tind therefore for the fitcor of $\frac{\mathrm{dl}}{\mathrm{dr}}$:

$$
{ }^{*}\left(\begin{array}{ll}
b & b_{n}+T^{\prime} \prime b_{n} \\
, T_{1}
\end{array}\right) .
$$

We have found above: $b_{g}-b_{n}=V \gamma T$, so $l_{n}=b_{g}-V \gamma T$, and ats by has been found to be neady independent of T, we get

$$
\frac{T_{0}}{d b_{0}}=-\frac{1}{2} V \gamma T=-\frac{1}{2}\left(b_{g}-b_{0}\right)
$$

The factor of $\frac{d /}{d r}$ becomes therefore :

$$
\because\left(b_{1}-l_{n}-\frac{1}{2}\left(l_{!}-l_{n}\right)\right),
$$

and with

$$
\boldsymbol{t}=\frac{R T}{\left(l_{g}-l_{0}\right)^{2}}=\frac{\left(l+\begin{array}{c}
\prime \prime \\
c^{2}
\end{array}\right)\left(r-l_{l}\right)}{\left(l_{n}^{\prime}-l_{n}\right)^{2}}-=\left(l+\frac{\prime}{c^{2}}\right)\binom{r-l_{\prime}^{\prime}}{l-l_{n}^{\prime}} \frac{1}{l_{1}-l_{n}^{\prime}}
$$

- as according to (I) we have $\frac{1}{\left(b_{g}-b_{0}\right)^{2}}=\frac{1}{\left(1,-b_{0}\right)^{2}}\left(1-\frac{l_{1}-l_{n}}{r-l}\right)-$ we get :

[^124]\[

\left($$
\begin{array}{lll}
1 & 1 & n \\
1 & p_{2}
\end{array}
$$\right)\left($$
\begin{array}{ccc}
1-1 & \cdots
\end{array}
$$\right)\left($$
\begin{array}{ccc}
1 & 11_{1}-l_{0} \\
1 & -1, & \cdots
\end{array}
$$\right)
\]

$$
\begin{aligned}
& =1: 1.0: 3: 5 \mid 1+0.1117 ; 8.717 \times 0.1570 \text { ? }
\end{aligned}
$$

(11

$$
y^{\prime}=4.1+11 \cdot 1.0: 308=\underline{4.267}
$$

Itw: fimmal mamely (l.e.) :

$$
\begin{aligned}
& T=20^{\circ} \vdots 21^{\circ} \quad r^{\prime}=1 \mathrm{~atm} . \\
& T_{k}=30^{\circ} \mathrm{a} 32^{\circ} \quad P_{k}=15 \mathrm{~atm}^{2} .
\end{aligned}
$$

Tho fwo ditat viold hy means of the interaid lormonda

$$
" l^{\prime} \lim _{i} \frac{I_{k}}{\mu}=j\left(\frac{T_{k}}{T}-1\right)
$$

for f the value:

 mast further mote that 200° dilfers eompratively very math from T_{k}

 greall.
 extrapolation, by meats of which we hate eatedaterl the value of

 (Only $)^{\circ}$ is poobiably loo low.

We hate reasom to expere it priori that the new equationt, demived bye Vas mer Whass fon the viaiability of h wilh the volame, does
not represent the experimental data with perfect areurace For the comection, introduced hefore for the partial coincidence of the distane spheres hats not been taken into areomm in the deduction of this
 mercory vapour, argon ete. would acoording to the new theory of vas Der Wadle remain imsariable: whereas hais guantity which aceoding to the former considerations would for very large volumes be equal to four times the molecular volume for smaller volumes would certainly have a smaller value, and it would approath to about wiee the molecular volume - at least if the shape of the molerules does not exeroise ant influence on this calculation.

Physics. - "Peculiaritios ant changes of Fromulufion limes interpurted (1.) connsequencess of anomatons dispersiom of samlighte in the corome" by Prof. W. H. Jetats.
(Communicated in the meeting of Febrnary $2 \times$, 1903).
Especially by Jewrll's investigations on the coincidence of solar and metallic lines ${ }^{1}$) attention has been drawn to several variable peculiarities of Framhofer lines. Here we do not mean the inregrlarities occurring in the spectrm of spots or of faculae, which relate to disturbances in comparatively small parts of the sun, but abnormalities shown by the average smbight, as observed when the shit is illuminated by a long strip of an imperfectly focused solar image. In that case, according to Doppler's minciple we may, of course, expect displacements of the lines in consequence of the Sun's rotation, of the rotation of the Earth, and of the change in the distance between Sun and Earth caused by the excentricity of the Earth's orbit. But even when all these influences have been allowed for, some irregularities still remain.

Indeed, Jempid has observed that some Framhofer lines do, others do not, exactly coincide with the emission lines in the are spectrum of elements, and that the displacements are unequal both for lines of different elements and for the varions lines of one and the same element. Moreover, the shifting of certain lines on one set of photographie plates was sometimes found different from that on a set of

[^125]

 at long :

 the phemomenten to sume orixin wher than solar, might he stpplied, if prasible. A. 110 such explanation was fortheomingr. the seretrat

On one ant the same plate 12 expmanen hath been suceensely
 of ot mam. in diameter wats en atjusted that the inatere of at epot
 (1) alomat whe eightla of the suni: diameter:
 siderable chames. Then canme the disturdatere which enhminated in the eighth sectrom and, in the following fonm: decreased rapidly.

 bex Has: the "intermediate" -pectrom, it hat heren obtanterl a few moments after the almomal we : S°. t shows omere more the normal solat spectomm, ats it wats phobopiaphed at another time on amother patre. Sor. L. 2 and 3 show atark hand therombont the
 foremed all heres.

The most prominest featmere of the abmonemal spertrom atre:
1". The hand the to the epot apperate mumb fatinter than in the

 N11
2^{0}. With several lemunhofer lines the intensity or the width is greatly diminished. This is most conspicuous with the broad, diuk calcium bands II and K and with the hydrogen line Ho, these being almost totally absent in the abnormal spectrom.
3^{0}. Other lines, on the contrary, apear uncommonly strengthened.
4^{0}. Many lines are more or less displaced.
The same peculiarities are noticed, hough generally in a smaller degree, in the intermediate spectrum, so that the latter, in fact, forms a link between the abnormal and the normal spectrom.

This marellously complicated disturbance was not confined to light coming from a comparatively small part of the solar disk, for instance from the immediate suroundings of a spot; on the contrary, it extended almost equally over the whole widh of the spectrom and was therefore nealy the same for all the light which came from a very great area of the Sun.

The moments of the 12 exposures and the exact date had not been recorded, but there was sufficient evidence that the whole process of the disturbance lasted only a very short time.

Hale calls the phenomenon: "a remarkable distmbance of the reversing layer". But is it not almost impossible to imagine a rather thin layer in the solar atmosphere undergoing suddenly and simultancously over a great part of the sme such a thorough change, as to make its absorbing and matiating power in some parts of the spectrum for a while nearly umrecognizable :

It oceured to me, therefore, that the origin of the phenomenon should be looked for somewhere on the path of the light between the Sun and the Earth. If on this path there be media, causings anomalous dispersion, the beam must show an altered composition.

As 1 formerly indicated ${ }^{1}$), the properties of the chromospheric light may be derived from the supposition, that this light has been scattered out of the photospheric light by anomalous dispersion. According to this hypothesis the spectrum of the chromosphere informs us, which are the kinds of light, that may follow rather strongly curved paths in the solar atmosphere. So the idea suggested itself, that the same waves might play a striking part in Hale's abnormal spectum.

In order to insestigate the question as impartially as possible, I marked (before consulting Hine's table or a table of chromosphere

[^126]＇TMUN：

Wいいlengit	Intersit！					Ilrmarhe．
	theremen ばいいいいいい		1） 11.1011			
	\％	！	－	i i \vdots 3 3	C Ce Fe	Nont mentionerl in Ilase： list，but distinctly weothened ｜in the abourmal spectrom on the reproduction．
	？		－	3 3	Ee，It	
	？	1.1	－	S	11	
3n9：， 20	7	12	－	3	fic	
：3019 ： 31	\therefore	i	－	\because	＇${ }^{\prime}$ ？	
390：3．09	10	12	－	$\because-3$	I＇e	
390\％lisi	12	20	－	\because	C＇r，Si	
3906 71	1＇	－	＇	2	Fe	
$3!113313$	$!$	7	－	4	Ti	
：311年： 5	7	s	\therefore		$7 i$	－＇These intensities are very
3916 St	3	－	4＊	3	1	probably estimated too high when compared with the
$35+0.41$	11	10.	11）	3	F^{\prime}	numbers inthe second column．
31293 0.5	12	10＊	12＂	：3	$r^{\prime \prime}$	Cf．the Sute un p，isis．
$\Lambda 3033.82$				10	$c a$	
3994．16	15）	1．\％＊	$12 *$	\therefore	Al	
39 ¢8． 91	$1: 3$	1．5	－	3	Fe	
39.20 .10	F	－	2	3	re	
397：3．02	17	1.5	－		Fe，－te．	
3958：35	－	8	－	＇	Ti	
396167	20	20	－	6	．ll	
11.3008 .63	（700）	7	7	10	Ca	
$H_{8} 3970.18$	7	8	－	10	II	
3977.89	6	8	－	2	Fe	
3986.90	6	8	－			
3998.78	＇	4	4	＇t	T	
4012.81	5	4	\％	：-m	Ti，ete．	
4033 ．2．	7	12	3	$3-1$	$\mathrm{Mn}_{n} \mathrm{He}$	
4034.64	fi	10	－	$3-1$	$1 \mathrm{VH}_{\prime \prime}, \mathrm{FC}$	
40 55． 98	311	311	S	7	$t e$	
4063.74	20	20	－	$1:-7$	10	
4071.91	1%	15，	15：	f	re	
$4077 . \mathrm{Ns}$	s	10	7	111	Sr	
4 410200	in	7	－	10	I／	

lines) on the reprocluetions of the spectra in the Astrophysical Jomnal a momber of lines, which struck me as bemg weakened in the abmormal spectum. By mems of (xborge Higes' photographic athas of the nomal solar spectram the wave-lengths of the selected lines were easily read; they are to be found in the first coltum of Table I.

The second. third, and fouth columns show the intensities of these lines in the normal, the intermediate, and the abormal specfrom as given by Habe for the nomal spectrom from Rowlan's tahles, for the other two from estimations by Mr. Adsis). Hale remarks that the intensities of the lines were estimated independently for the two distmbed spectra ${ }^{1}$). The lifth colmm indicates the intensities of corresponding chromosphere lines as found by Lockyer in

TABLE: II.
lines whose intensity is sreater in the aboumal than in the nomal spectrum.

Wimelongth	Intemsity.					
	normal	inter- meliate (ITMs,1:)		('lire)1136)sphere 		Remarks.
302180	$\therefore 1$	-	20		2/r, $1 / n$	
3027.77	-	-	- \%		$?$	
3930. 50	8	1i)	- ${ }^{\text {c }}$	$3-4$	r^{\prime}	
39:37.39	- 1	-	10		\because	
39760	-	7	12		\%	
39.00.50	2	-	13		1	
3962.29	3	-	11		He	
3973.77	6	-	1.$)$	2 ?	.W, /1r, Fe, Ca	
3981.92	4	$1: 3$	30	(6*	Ti, Fe	* In Iftmphaters table
3362.97	3	'	10		$1 ; i r$	-f chrommephere limes (1901 atliper) this line dues not
3996.80	-	-	9			wecur.
4013.90	81	12	15		Ti, P	
4014.67	- 1	!	2)		He	
- 6023.38	-	-	10		?	
4033.77	2	3	15		I/n	
4060.79	3	${ }^{6}$	20	4	Fe	
404\%.09	5	30	1.5		16	

${ }^{1}$) In selecting the lines that appeared weakened in the abnormal spectrum I did of course compare the three spectra muluakly. That is why in my table some lines octur, whose intensities, as estimated by Mr. Adms, are not comparatively low in the abnormal spectrum.
 sixth column shows the aboothing substances.

In a similar way Tahle If has been compozed; bere we lind the lines, which on the reprodnction appeared to the strenothened in the abnormal spectrom.

The result is verystrikmer Weakencd linescorrespond toどhromospherelines, almost without execption; mostofthestrengthencdlines, ontheother hand, arenot to befonnd inthe spertrumot the ehromosphere.

Lookitar fives the strengh of the chromosphere lines on at seate such that 10 indicates the strongest and I the faintest lines. If we take into areombt that in his list the greater pat of the lines bear the numbers 1 and 2 , fur bable shows us, that by merely observing the abmormal solat spectrom we have been able to pick out strong chromosphere lines. This camot be chance. U'monbedly both phenomena - the weakening of Framhofer lines in the abnormal spectrum and the origin of the ehromosphere spectrum - are to be explained in close relation with each other.

The strengthening of lines in the abnomal spectrom does not, on the contraty, seem to be so directly connected with the composition of the chromosphere spectrum.

If our view be correct that the chromospheric light has been separated hy strong ray-curving from the "white" light emitted by deeper layers, those special radiations must, as a rule, show reduced intensity in the spectrom of the Sun's disk ${ }^{2}$). Framhofer lines cor-
${ }^{1}$) Lockyer, Ghbeholm-Battex and Pedler. -Tolal Eclipse of the Sun, January 22, 1898. - Ohservations at Yiziadrug," Phil. Trans., A, vol. 197, p. 151-227, 1901.
*) It might be thought that the rays forming the chromosphere light, need to be absent only from the spectrum of the edge but not from that of the central portions of the Sun's disk. By a simple consideration, following from a look at Fig. 4 of my paper, read in Febr. 1900 (Proc. Roy. Acad. Amst. II, p. 580) we see, however, that the chromosphere light visible to us may very well, for a part, have its origin even in points of the Sun which lie opposite to the Earth's direction. The chromusphere light, reaching the Earth, may proceed from any point of Schmot's "critical sphere". For the greater part it is likely to come from the back half of the Sun. But then the half, facing us, furnishes the chromospheric light which travels to other regions of the universe, and this light, of course, is wanting in the spectrum of the disk. (There is some reason for supposing that, on an average, more chromospheric light is sent forth in directions making great angles with the Sun's equatur, than to the equatorial regions, including the Earth's orbit.)
responding to chromosphere lines will therefore have a more or less darkened background in the ordinay solar spectrom. The rate of darkening at varions distances from the centre of an absorption line is, of course, comected with the shape of the dispersion curve near that line; whereas the average shading depends 1 "t on the quantity of matter causing anomalons dispersion and 2ady on the slopes and the directions of the density gradients in the gives through which the light is transmitted, viz. on the Sun's "activity" ").

We distinguish, therefore, a twofold origin of the dark lines in the solar spectrum : real absorption of those wases, exactly corresponding to the periods of the media, and dispersion of the strongly deviated neighbouring light ${ }^{2}$).

The dispersion will be especially evident where extraordinary differences in the density of the medimm occur ; in this way the widening of most of the Framhofer lines in the spectrat of spots may be accounted fors.

Dispersed light has not, of course, vamished; the absence of certain rays in the spectrum of a spot is comterbalanced by the increased intensity of the same radiations in the light coming from the neighbouring faculac. Thus the distribution of the density in the solar gases may locally be such, that a limited part of the disk seems to emit a considerable amount of rays with abmormally high or abnormally low refractive indices. In the spectrom of such parts not only will the Framhofer lines show narower and fainter than usually, but here we may even meet with lines contrasting brightly with their surroundings. These bright lines will not coincide with the corresponding absorption lines; their arerage wave-length will in general be greater or smaller than that of the absorbed light, for, according to the accidental distribution of the densily, we shall find eilher the rays with high or those with low refirative indices most prominent in the beam.

The above considerations suggest an explanation of Hale's abnormal spectrum.

In fact, the lines showing especially faint in this spectrum were exactly those, causing strong anomalons dispersion - winess the

[^127]chromosphere speetrom. Winh //, k, /1: and somm ibon lines it is

 normal spertrom we athitmeal not to atronphion, but to dispersion. Moreoser, the dark hamd due wo the sut has meaty disappeared. This means that wases which in momal rimemstanees are wanting in the spot spectrom on ateromb of then stomer dispersion, at the time of the distmbane ham bern whered atsan into the beam remehing the instrmment.

How all this maty happen will beotome evident as soon as we shatl he able to estahlish a plansibte canse, by which, within an angulat spate great emonds to inclade a comsiderable part of the solar disk, the strongly dispersed risy might be githered araill.

It is not necessaty 10 introdne a new hypotiesis for the purpose.
 explain the properties of the chomosphere and the prominemees, finmishes us onve more with the required datas.

Indeed, if (areording to sommots theory) the sim is an mbimited mats of gats, sufteres of diseonthaty mast exist smilat to those. whose gencrat feature has been determined by Eunes ${ }^{2}$ for a shaply outhed radiating and rotaling sum. These surfates mast extend mato the remotest pats of the gateons borly - at comednsion in exeellent hamony with the visible strodure of the eorenas. For along the surfaces of dixeontimuty wates and whirls ate formed; the eore-lines
 of revolution, and in these cores the tensity is a minimum. This may aceount for the streaky appeatance, shown more or less disbinctly in all good photographes and drawings of the coronat.

This praticulat appatate may have athother catuse, though; for what follows, however, this is immaterial. We only assmme that the density of the coronal matter varies in such a wiy, ats to correspond to the striped structure visible at the time of a total ectipse of the Sun.

A coronal streamer which, at a given moment, runs exactly in the direction of the Earth may be very roughly compared, then, to a bundle of glass tubes though which we are looking lengthwise. Such a structure will gather and conduct rays of varions directions, entering it at one end. This takes place also if the parts with the greater and those with the smaller optical density do not alternate abrupty, like glass and ait, but gradually.

[^128]

Fig. 1.

In Fig. 1 the optical density of the matter may be represented by the compactness of the streaking. A ray for which the medium hats a large positive refractionconstant would for instance follow the path A.f', cmrsing round the denser parts of the structure ; a may $B B^{\prime}$, for which the medim possesses a large negative refractionconstant, would move in a similar way through the more rarefied regions. On the other hand, the light C $C^{\prime \prime}$ for which the constant exactly equals zero is not influenced by the fluctuations of the density ; and if for some kind of light the refractionconstant is very nearly zero, the ray would have to travel a long way almost parallel to the structure before its colving would be perceptible.
Now the corona sometimes shows exceedingly long, pointed streamers. We only have to suppose that the Earth was exactly inthedirectionofsuch astreamer at the moment the abonormal spectrum was photographed; then all the irregularities observed in this spectrom become clear. Light, moder normal circunstances atsent from the solar spectrom through strong dispersion, has been collected hy the coronal streamer ; hence the weakening of the Framhofer lines, especially also of those in the spectrum of the spot. As the almormalities were cansed ly a peculiar distribution of matter in the vast regions of the corona, lying between the source of light and the Earth (and not by disturbances in a relatively thin "reversing layer") they could appear in the same way over a great part of the sum's disk. The rarity of the phenomenon is the result of the slight chance we have to take a photograph at the very moment on which an memmonly long coronal streamer is projected exactly on the part of Sm's disk illominating the slit; the short duration tinally is a consequence of the difference between the amgular velocity of the corona and that of the Earth in its orbit.

As we have mentioned before, no chromosphere lines correspond, in general, to those lines showing extraordimarily stromy in the abnormal spectrom. How are we to accombt for the strenghening of these lines?

 that many limes which ate stomer in the abommal spedmon, show a mueh smaller intensity in the intermediate spedtum (aken only a few moments later): whilst he reverse happens as well, viz. Hat lines are strong in the intermediate and very weak in the abormal speromm. This hadly lits in with the absomphon hypothesis. some lines showing this peraliatry are given in table 111 .

TABDE: III.

$\begin{aligned} & \text { W:avor } \\ & \text { lengre } \end{aligned}$	Internsity.				Ehernont:	Ramarks.
			abrammat			
3305. 6 ,	$1 \because$	2)	-	\because	('r, Si	
3005.81	21	-	20		Si	
3021.71	$!$	14	-		Ti.Lal, /2r. M"	
2020. 57	\therefore	-	24		\%r, $1 / n$	
89,90. 33	-	10	-		\vdots	
:30,0.0.51	\because	-	1:3		γ	
347ロ. 30	2	12	-		Ni	
(97* (b)	\cdots	-	12		\div	
4005.86	3	25	$\bar{\square}$		\div	
8057.39	4	-	1.5	$1-2$	(o, Ie	
9057.6is	7	10	-		\%	

In the chromosphere spertrm correponding lines seem to be wanting. (At \% 390. 666 and 2.4057 .39 the fant chnomosphere line may possibly belong to another element than the abmormally strengthened alsorption line).

To arrive at a more satisfactory explanation of the strengtheningphenomenon we suppose that these alsorpotion lines do indeed canse anomatons dispersion of neighboming waves, but in a very slight
degree. Then, the reftactive indies of the neighbourg waves differing hatdy from unity, the direction of those rays will only be perepptibly changed after they have travelled a very long way throngh the corona and almost parallel to its structme-limes. Whereats the strongly refiacted rays, entering the coronal streamer in varions directions, were obliged to follow the structure-lines, curving about them, and so in a sense were concentated on the Eath, it may happen with the extremely slighty enved rays we aro now bonsidering, that they have been bent for mstance only once over the whole length of the streamer and continue their way in a direction not meeting the observing station. The divergence of a heam consisting of these rays will have increased, the intensity diminished. Thus, the resultant spreading of neighbouing light canses the absorption line to appear somewhat widened and therefore strengthened. But obvionsly it must be possible too, that, after a short time, under the influence of another part of the corona, circumstances turn out even favouable for that slightly curved light to reach the observer. In that case the absorption lime is weak again. (Similar alternations, of course, also ocem with the more strongly refiacted rays, and that in quicker succession, but this does not alter the fact of their aremate intensity appearing increased as long as the structure lines of the coronal streamer are furned towards the spectroscope. Hor a detailed discussion of this case see the Note at the end of this paterer).

In both abnormal spectra a number of absorption lines are more or less displaced. Perhaps this is partly due to motion in the line of sight; but after the foregoing it will not be necessary to explain in detail, that also anomalous dispersion can acoont for this phenomenon. Dissymmetric form of the dispersion-curve as well as a peculiar distribution of the density of the coronal matter may unequally affect the intensity of the light on both sides of the absorption line, and thas bring about a seeming displacement of the line.

> Certain peculierities of lines in the normal soldor spectrom.

If we have been right in comeeting the meommonly great abormalities in Hale's spectrum with a very particnar position of the Earth with respect to the corona, it is to be expected that similar irregularities, though to a smaller degree, will ever be found, as the sunlight always reaches us through the corona.

According to Jwwhl's above mentioned investiga ions this supposition proves to be well founded. Many solar lines have varying intensities and positions, so that lewers deems them unfit for standards for
very aredate doterminations of wavelonghs. dad these are for the ervater pat the most prominent lines of the epectrom, eapeciatly the shaded bure ${ }^{1}$.

Jewebe omphasizes the later Hat all distimelly shaded lines in the sular spertrm show to a weator of less degree the following typical feallure ${ }^{2}$)

Withan a hroad, shated, moderately dark batekromod a much danker central athomption line ematasis rather shaply (Fig. 2).

Fig. 2

Fig. 3.

Lesides, the alhompion rave often shows dippings close to the central line, as in Fig. 3 , sometimes symmetrical, sometimes dissymmetrical. Jewbid atilims that his is not an optical delusion, due to contrast, but a real phenomenon. He assmmes, therefore, that the broad absorption hamd is produced in the lower portions of the solar atmosphere and under a wreat rage of pressure ; that in higher levels radiation prevals agatin, protheing a rather wide emission line ; and that finally in the hinges parts, where the pressure is very much less, the sharp absorption line is produced. The position of this central absorption lime with respect to the emission line is nsually masmmetrical, which is conspicuous in the catse of $/ /$ and K. The central line itself also varies somewhat in width upon different plates and its maximum of intensity is not always in the middle of the line. The displacement of this rentral line in $/ /$ and K varies in magnitude, but, so fire as hats been oberved, always toward the red with respect to the emission line and the corresponding metallice line (in the are).

Jewnar concludes that the absorbing caleimm vapour descends all wer the solar surface with a velocity sometimes amomting to about 75 miles per minute.

Upon the same plates showing strong dissymmetry in H and K, the shated lines of other elements ($F e$, I/, JIt, Si) have been examined. The strongest itom lines and one almminimm line showed displacements of the same chameter as that observed in the case of

1) Astroph. Journ. MI, p. $236,1900$.
2) Jewell, "Certain peculiarities in the appearauce of lines in the solar spectrum and their interpretation". Astroph. Journ. 1II. p. 99, 1896.
H and K, but to a much smaller degree and sometimes toward the violet, sometimes toward the red. Certain shaded lines of Mty and Si, on the contrary, showed no evidence of a displatement, nor did the iron lines without considerable shading, the faint calciam line at 2. 3949,056 and many other lines.

If we admit no other explanation of line-shifting and -widening besides those, based on Doppram's principle and on the effect of pressure and temperature, we arrive at very strange conclusions relative to the condition of the elements in the solar atmosphere. Not less surprising is, as noticed by Jewell ${ }^{1}$), the small amount of the absorption in the shaded parts of the lines, when we consider the enormons depth of the solar atmosphere and the high pressure which must exist in the absorbing layers, for them to produce a broad absorptionband.

By making rarious suppositions concerning the condition of the gases in the solar atmosphere, Jewbla succeeds in finding an interpretation of most of these astonishing facts. But it must the granted that his explanations include a greater number of arbitrary and mutually independent lypotheses than is the ease with our explanations, founded as they are on selective ray-eurving and readily dednced from that principle for each separate phenomenon, without introducing new suppositions.

Only the dark central lines of the Framhofer lines are to be ascribed, in our theory, to real absorption. Their shaded hackground of varying intensity we consider as an effect of amomalous dispersion of the not absorbed neighbouring waves. This selective scattering will be strongest in those places where the density-gradients are relatively steep, viz. in whirls in the deeper regions of the gaseous body. But some of the widely dispersed rays may be gathered by the corona owing to its "tubular" structure and be conducted along its greater or smaller streamers.

This will especially apply to the most strongly refrated waves, whose position in the spectrum is very close to the real absorption lines; thas psendo emission lines are produced in about the middle of the psendo absorption bands. ")

1, Astroph. Journ. III, p. 106.
${ }^{2}$) A most remarkable fact is that the shading of K, H, the iron-line $\lambda 3720.086$ and of some other strong shaded lines is sometimes partially kroken up into a series of faint nebulous lines, symmetrically situated about the central line. In each case the distance apart of the component lines increased as the distance from the center increased (Jewell, Astroplysical Joumal 8, p. 51-53).

It might have been predicted hy our theory that we should meet with this phenomenon now and then.

 photorapheal at dithernt times．Will alland all kinds of intermediate でにくい。

It would be alesitather for the moments when the photographs
 temling lowiard the Eath．At all events the atotal phatse of the sum－ spot pervor，with which the shape of the corona seems to be con－ neefed．Shomb be taken imo eomsideration：and perhaps the simmb－ timeons whervation of the photopherice retientation，discovered by
 nal streamers，and thas contributs formo knowledge of their intane （on the framblofer sertiom．

Mineralogy．－＂（ln the refinction inder ef rock－eflessos，＂by P．Tesch ： （Commmaicated by Prof．J．1．．C．Sohroeder Mas der Kolk）．

Of the group of the igneons rocks，the origin of which ont of thaid red－hot condition we aceept，the voleanie rocks constitute that subdivision，which inchules the rocks，that as lavas have broken through the surface of the earth．

The quick cooling at the amosphere renders it possible that in these rocks part of the magma congeals amomphonsly，so that next to the minerals a rockglass appears，which constitutes either an infe－ rion part or a prevailing one of the rocks．So in general this glass

Let ins consider a beam of light of an exactly defined wavelength belonging to the shated background of an absorption line．This beam leaves the deeper layers of the sum with in certain diveryence．As it passes alone a＂tube＂of the corona， its disergence will altemately diminish and increase，and on reaching the Earth it shows in the spectrom an intensity，depending on the divergence（or perhaps convergence with which it has left the last traces of the corona．For a beam of light whose wavelength is only slightly nearer to that of the absorption line，the medium will have a considerably greater refraction constant，so that the rays of this heam，on their way through the corona，may make part of a bend more than the former ones．The beam may therefore arrive with a quite different degrae of divergence and，consequently，of intensity．Thms，proceeding towards the absorption line from cither side，we easily see that we must meet with a periodically changing intensity．Rays，corresponding to the middle of one of the so formed fringes，will have made one full bend more or less than the rays，belonging to the middle of the next fringe．

If this interpretation be correct，the width and the number of fringes visible must prove to be variable．As far as I know，the olservations made on this point are not numerons．May the proposed views serve to further the investigation of this interesting phenomenon．
consists of silica and metal－oxides．We may suppose that the silica， which is most likely to be the principal part，will also have a pre－ valent influence on the physical chatacters of such matmal glass．

A determination of the specifice gravity of the glass is made more difficult by the presence of many gas－bubbles．If this obstacle did not exist，the specific weight would be a hetter expedient for a quick temporary orientation thim the determination of the refractive index，for which more instruments are necessary．With respect to the specific gravity it could be stated，that with these rocks where the value of the index the use of bromoform as liquid of compurison neces－ sitated and whose exponent proved to he greater than that of hromo－ form（ 1,593 ），the specific grawity of the glass wits still higher than that of bromoform（ 2,88 ）．The small arrfiee，not to be isolated grains，still sank in this liquid．Now 1 have tried to find out in how far the refractive index is dependent on the SiO_{2} pereentage．For that purpose 16 rocks have been examined，forming a series of the most acid to the mos hasic magmas，which oceur in nature．

The result has been comprised in the following table：

Name	Origin	SiO_{2}	Index
Granite	Magurka，Hungary	72,65	1，500
Gramite	Brocken，Har\％Mountains	71,19	1， 20
Granite	Auserersue	719 ， 6	1 \％\％ 10
Granite	Korinitsch，Homgary	67，31	1，510
Quartzilorite	Alamello，Tyrol	（66， 28	1，510
Syenite	Matuensclie（irumb，Inesiden	（i） 26	1，\％e9
Elacolite－syenite	Ditro，	59，84	1，525
Diorite	Homrited」，Humatry	59,57	1，525
Syenite	Ditro，	217，36	1， 3 \％ 3
Augite－syenite	Monzoni，Tymul	23， 3.0	1，noul
Chirysolitenorite	Ratlan Valley，Harz Mountains	23， 3,61	1，－5， 0
IViorite	Ausergue	S0， 6	1，750
Quartziourite	Dumkuhten Valley，Hatrz	佫，\times^{9}	1，5\％
Basalt	Dyrafjord，Ictand	$45^{2} 010$	1，500
Gablro	Radau Vialley，Harz	环吅	1，420
Harzburgite	Harzhurg，Harz	12，24	1，630

From this we see that a elanibkation exelnsively ateording to decreasing sios percentate, comedres with an increasing valne of the refrative index.

Apparently the metal oxitles present hate only little indlatence on that value, att leat has inthence falls within the limits of the ermos of observation.

A chasolite-norite amb an anmite syente with abont the same Sios perentage have alan the same index, whereas the oxides, especially Mge are sure to be there in quite atother relation, for in the chasolite-morite the mincrals contaming Mer come strongly (o) the forecromal.

As regatofs the coloner of the ghass it will be almost wholly depentent on the irom-perentage.

With the examined ghasses the eolom chamged from light green to dark hown. Just as wiht isomorphons mineral series, ats e. the enstatite-hyperstenemries, the dark colour most likely points to a greater iron percentage than the light one.

The typieal amorphous ghassfature ean be easily distinguished at the splinters moter the mieroseope.

The fosion of the mok-powder took plate in a sistlame in which compressed oxygen was hown. As an underlayer a erpel of ehalk or bone-anh wats used. But care has to be taken that the metted magmat of the erupel remains isolated, becanse there is a chathe that oxides of alcalie earths will be aboorbed by the ropel and in comsequence the composition of the magma does not answer any more to that of the rock. This can be obained by directing the point of the flame towats the middle; the uppertayer then fuses quickly to a little hall, which remains isolated by the underdaying roek-powder of the capel. To control the regratarity found in the independence of the refrative index of the Si O_{2} percentage, wo mixtures of the following composition were made:

I.		II.
SiO_{2}	60%	60%
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	10	20
$\mathrm{Al}_{2} \mathrm{O}_{3}$	10	5
CaO	10	5
MgO	5	10
$\mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$	5	-

Of both the mixtures the fused glass had the index 1.520 ; here we see again the prevalent influence of SiO_{2}.

At last some slags and melted minerals were investigated.

Composition.	Index.	
SiO_{2}	45,5	1,600
CaO	19,8	
FeO	5,3	
SiO_{2}	27,4	1,750
FeO	41,7	
CuBi	0,2	
Pb	1,5	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0,8	
ZnO	21,8	
MnO		

In this slag the ZnO plays the part of the Mg(). When ZnO) is replaced by Mgo, the index remains the same.

Finally the index of the following minerals was determined:

Quartz	SiO	100%	1,475
Chrysolite	$"$	$40-45$	1,610
Orthoclase	$"$	65	1,485

The last mineral, the pure K.Alsilicate conserpently does not fit into the composed series. After mixing with some grains $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ($5-10$. $/ 0$. and fusing ancw the index was raised to 1,510 .

The method described above can be of practical use for a quick determination of the SiO_{z} pereentage of slags from the refrative index with an aceuracy of $\pm 2 \%$.

A word of thanks for the aid and adrice to the Professoms Dr. J. L. (. Schroeder vas der Kolk and S . J. Vermaes Jr. may fund a place here.

Mineralogy. -- "On an "Eisem"ose" "f the St. Gothutel.". By G. B. Hogexraid. (Communicated by Prof. J. L. C. Schroeder van der Kolk).

Some time ago 1 tried to get a Hematite-streak with a so-called "Eisenrose." I did not succeed however, for to my astonishment the streak was not red but black. Several explanations came to my mind:
1^{1}. that the mineral was somewhat friable, which was the cause that the streak could not consist of the very finest particles. But in rubbing the back colour remained; only the outlines showed a raddish-brown tint. The same was stated with about 25 other pieces of the same finding-place. So that the explanation proved to be not the right one.

 now hold eromel willow:
 distinct matretiom, stomery hath hematite eromeral! shows.

I then comanted stame literatume, fore whether athy thather heen writen lefore on the steak, the magnelian and the chembeal eome pesilion of "EBisemmene".
lown sily

 inere creatals of amblarial.
D.ast eaths this aremping Hematite, thomgh be meithereseaks of the
 magnetiom.
 (irothe I fonme in Nimber l:3 on p. B01 a report by A. Citmman from strërba's accomb on "Pseudomorphose von Magnetit mach Eisenglimmer bon Ogliatra in Sadinien", written in d:e Atti della Reale Aecademia Dei Lincei 188t. Volume II, 2". Semestre, p. 331. The report in question follows here:
"Die Hanptmasse der stufe besteht ans einem grobkönigen Mineral, desen mmegelmässigen Individnen von mehreren Centmetern Durchmesser fest mit einander verwathen erscheinen. Jedes Korn zerfält nach emer Richtung älnsecst leicht in dümste Lamellen. Häte 6, Pulver schwarz, slark magnetisch, schwer selomelzhar, in Salzänce leicht läslich. Diese Eigenschatien kommen dem Magnetit zu. Dits (remenge emsheint gatmz fivedh, unverändert und usprünglicher Entstehng. Dits es sich hier nicht mm nach $\{111\}$ baitterig abgesonderten Magnetit handeh, folgt ans dem Mangel jeder spur ron spatharkeit nach einer anderen Richtung ansser jener cinen. Dic Lamellastructur als Dtockwirkmg anfzufasen verbietet die Richtungeanderung der Lamellen in jedem einzelnen Korn. Nach des Verfassers Ansicht bleibt mur die Annahme einer Psendomorphose von Magneti nach Eisenglimmer."
so this appearance as regards streak and magnetism corresponds with the specimen examined by me. Throngh the absence of a chemical analysis it camot be decided in how fir the supposition is right, that he hat to do here with a petulomorphosis firom Magnetite to Eisenglimmer.

[^129] fomel on pare 719 in an arde by (i. von lisu the following statement ${ }^{1}$):
"Psendomorphische Missen von Magnedeisen nath Eisenglan\%. F"athe und Strich sehwat\%, schimmernd att dem botheh, magnetisch. Dats EA\% ist aber weder dicha, noed körnig (wie es somst dem Magedeisen \%ukommat, sondern schuphig. Man erkemot sumat in einzelnen Irasen gint denfleh die hexamonalen Fommen des uspringlichen Eisenglan-
 montich is demmarch jene ganze colosisale shohehtemmasse bei Vallonie ursprïnglich Eisenglanz gewesen".
so to this can be applied what haw heen remadked on strötere article.

Die Eisen-Rosen vom Pomonefor when seho stark anf die MagnetNarlel. Das Strich-Pulver is dunkel-röhlichbomm, bemahe echwa\%.

Die Wirkmog auf die Magnet-Niaded is bei den schmeizerisehen
 schwar\% his stahloran in ihrer löahmo. bemerkenswerth sehemt es mir, dass die Eisen-Rosen ohne atuliegente Rutil-Krosalle immer
 heller wird, je mehr Ratil auf den End-flächen dex EisenglanzTateln, ich möchte sitgen, allogeschieden worden ist

Die Mineralien, welele die Eisen-Rosen vom Pomometor begleiten.
 von Tombatkh:umen (ilimmer und eime schmutaiz grimbich-gelbe Rindenformige substanz die vielleidht den ('hloriten beigezahat werden dart.

Mein Fremel, Hr bergrath stockar heselhat, hat die Einen-Rose fom Pomoneto analysid mod wird hoffentlich näthstens dats Resultat sciner L'ntersuchmen veroffentichen."

However I combl mot find this promised analysis anywhere in literature, so that 1 decided to do it myself (I). For a grood control the same amalysis wats matle hy Mesists B. If. Vis deri Lanome (II) and (8. W. Mabfée (III). The results of one inceatigations were as follows:
${ }^{1)}$ (ieognostisch-mineralugische Fragmente aus Italiën, chapter VIII: Die Insel Elha, Zaischr. D. (5. C. 1870.

Procedines hoyal Acad. Amsterdam. Vol. V.

Reckoned for:

	Mematite	Magnctite
Fe	70	72,41
0	30	27,59

So that my fomelnsion is that we hate mot to do with Magnetite but with Hematile.

The results of my researehes are in consegnence the following:
1se. That 1 have had to do with Hematite with very obvions magnetism and a batek streak, which in robhing along the outlines shows a brown tint (which generally every back streak does) and not with a pendomorphosis from Magnetite to Hematite.

2 mb That where in literature of this onerurence of Hematite hats
 the hatek streak have heen observed more han onee.

3rd. That it is desinathe fo convince omeself of the chemical composition with every "Eisemose", which shows hese chatacteristics.

Physics. - "Comtributions to the theor"y of electrons." 1. By Prof. H. A. Lorkistz.

Simplification of the fiandamental equations: by the introluction of newe units.

§ 1. If all quantities are expressed in electromagnetic mits, as I have dome in former papers, the relations hetween the volume-density o of the charge of an electron, the velocity v of its points, the

1) 1 here by have to mention that first the figure for the oxygen was delermined hy reduction in a hydrogen-rurrent umd weighing of the water absorbed by CaCl_{2}; that after that the figure for the iron was determined by dissolving the reduced mineral in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and making a titration ot this solution bafter reduction in a $\mathrm{H}_{2} \mathrm{~S}$-enrent and atter removing the $\mathrm{H}_{2} \mathrm{~S}$ by boiling in a CO_{2} atmospherel with a KMnO_{4}-solution, of which $1 \mathrm{cl} \mathrm{M}^{\text {s }}$ corresponded with $8,9 \mathrm{~m} . \mathrm{G}$. Fe.

The presence of Ti was shown as follows: the mineral was melled together with KHSO_{4}, the fused mass dissolved in cold water. This solution togelher with $\mathrm{H}_{2} \mathrm{O}_{2}$ gave the well-known orange colour of TiO_{5}. Moreover after adding a little HNO_{5}, the Ti after haring been boiled precipitated as white TO_{2}. The accompanying mineral, which in microscopic examination proved to be adularia, was removed as much as possible,
dielectrie displacement s in the acther，the enrent and the magnetio forre b are as follows ${ }^{2}$ ）：

$$
\begin{aligned}
& \operatorname{din} \mathrm{o}=0 . \\
& \frac{\partial o}{\partial t}+\operatorname{tio}(\rho v)=0 . \\
& 1=\dot{0}+o v, \\
& \text { dic反 }=0 \text { 。 } \\
& \text { rot } \mathfrak{G}=+\pi \mathrm{x}=4 \pi(0)+0 \mathrm{o}) \text {. } \\
& 4 \boldsymbol{x} c^{2} \operatorname{rot} \mathrm{~b}=-\mathrm{i} \text {, }
\end{aligned}
$$

where c is the relocity of light in the aether．To these equations we must add the formona

$$
f=4 x r^{2} 0+[0 . b]
$$

for the electric foree，i．c．the force，reckoned per unit chare，which the ather exerts on at chatred element of volume．

The equations take a somewhat more rewular form it we express o，$B, 1$ and f in electrostatic mits（preserving the electromagnetie unit for（1）and a fimber simplification is ohamed，if，instead of the mits for charge and magnetic pole that are usually taken as the basis of the electrostatie and electromatnetic sysmems，we choose new ones， $\sqrt{4 . x}$ times smaller ${ }^{2}$ ）．Introlucing hoth modifiations，we have to replate $0, s, 1$ by $\frac{0}{4 x}, \frac{1}{4 x}, \frac{1}{4 x}, f$ by tx．f，hecause this letter must now represent the force ating on the new mit of charge， and likewise by by 4．b ．

This leads to the equations：

$$
\begin{align*}
& \operatorname{div} \mathrm{D}=\rho, \tag{I}\\
& \frac{\partial o}{\partial t}+\operatorname{din}(\rho v)=0 . \tag{II}\\
& 1=\dot{0}+o v \tag{III}\\
& \text { dir! })=0 \text {. } \tag{IV}\\
& \operatorname{rot} \mathfrak{b}=\frac{1}{c} \mathfrak{l}=\frac{1}{a}(0+\rho \mathfrak{v}) \text {, } \tag{V}
\end{align*}
$$

1）See my Versuch einor Theorie der electischen ond optischen Erscheimengen in becegten hörpern．I shall again suppose that all quantities are continuous functions of the coordinates，so that eg．the density o will be regrarded as passing gradually to the value 0 ，which it hats outside in electron．With the exception of the letters，the notations are the same as in the just mentioned treatise．The seatar prothet of two vectors a and bwill be demoted be（ n ．b），He vector prothet by ［a．b］．The axes of comdinates are supposed to remain at rest，relatively to the aether．
${ }^{3}$ This chamge has been wamly adrocated by Heameme．The mits 1 shat

$$
\begin{aligned}
& m b=-\frac{1}{{ }^{\prime}} \mathrm{i} . . . \quad . \quad . \quad . \quad(1 ゚ 1) \\
& i=0.1^{1}|0.11| . \quad . \quad . \quad \text { (VII) }
\end{aligned}
$$

$$
11, \quad \begin{align*}
& 1 \\
& 2
\end{align*}
$$

the magnetio pherty per mat-volume by

$$
\begin{equation*}
W_{m}=\frac{1}{2} r^{2} \ldots \tag{IX}
\end{equation*}
$$

and Posctive's flax of energy by

$$
\Xi=10.11 \cdot \ldots \quad \cdot \quad \cdot \quad . \quad . \quad(X)
$$

We shall further write $/{ }^{\prime}$ for the total relectrie and T for the total mametie encrey of a spoten.

The equations (I) and (V) suffere for the determination of the materife fore b, as soon ats the emrent 1 is given in every point. I_{n} is then known by (XX) and I fothows bentegration. In this sense, every motion of electridity may be satid to be accompanied by a delinite amomat of mannetic enerw.

Sordare potemtial and enetor-pulemtial.

§ 2. The equations of $\$ 1$ apply to every sratem in which ehatged matter moven thoogh the ather, whether the eharge be contimed to certain extremely smatl pats of space (electrons) on otherwise distributed. Voreorers, the motions may be of any kind ; the electrons may have a pure framstatory motion, or a rotation at the same time, and we maty even suppose their form to change in the comse of time. For the validity of the formulae it is however requited that eatel element of volume whose points move with the charged mather should preserve its chatere, thomgh its form and dimensions may change This is expressed by the equation (II) and it is on this gromad that the electrie carent 1 , as detined by (III), (the resultant of the displatementemrent is and the convection-enrrent os may abwis be sad to be soldemodally distributed, so that

$$
\lim 1=10 .
$$

If now the motion of the charget matler is ariven, the electromannetic lied in the adher, within and without that matter, has
to be determined by means of (I)—(V) a problem that may be reduced to equations of the form

$$
\begin{equation*}
\Delta \mathbf{q}^{\bullet}-\frac{1 d^{2} v^{\prime}}{c^{2}} \partial t^{2}=-u \tag{1}
\end{equation*}
$$

in which e is a known, and ψ an mbnown funtion of $, r, y, z=\%$
Leet σ be my closed sufface and n the normal to it, drawn ontwards.

Then, if the equation (1) hokds in the whole spate , s, enclosed by σ, we shall have for the value of ψ in a point l of this space, at the time t.

$$
\begin{equation*}
\psi=\frac{1}{4 . \pi} \int_{r}^{c} \frac{1}{r}|a| d S+\frac{1}{4 . \pi} \int^{\bullet}\left\{\frac{1}{r}\left[\frac{\partial \psi}{\partial n}\right]-|\psi| \frac{\partial}{\partial n}\left(\frac{1}{r}\right)\right\} d \sigma . \tag{2}
\end{equation*}
$$

Here the first integral extends ove the space S and the second over the boundary smface $\sigma ; r$ is the distance to I, and the square brackets serve to indieate the values of the enclosed quantities for the time $t-\frac{r}{r}$.

Let us now conceive the surfare o to recede on all sides to infinte distance and let the circomstanes the such that the starface-integral in (2) has the limit 0. Then, ultimately:

$$
\begin{equation*}
\psi=\frac{1}{4 \pi} \int \frac{1}{r}[\pi] d S, \tag{3}
\end{equation*}
$$

where the integration must be exiended over intinite space.
$\$ 3$. Equations of the form (1) may be deduced from the formmae (I)-(VI) in many different ways: they may a.g. be established for each of the components of s and ${ }^{1}$. ${ }^{1}$) 'The solution is however obtaned in a simpler form "), if one introtuces four anxiliary quantities, a scalar potential f and the three components a_{s}, a_{y}, $a=$ of a vertorpotential a. These quantities satisfy the equatrons

$$
\Delta \varphi-\frac{1}{t^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}=-\rho
$$

$$
\angle a_{x}-\frac{1}{r^{2}} \frac{\partial^{2} \mathfrak{a}_{x}}{\partial t^{2}}=-{ }_{c}^{1} o v_{r}, \quad \angle \mathfrak{a}_{y}-\frac{1}{c^{3}} \frac{\partial^{2} \mathfrak{u}_{y}}{\partial t^{2}}=-\frac{1}{c} o v_{y,} \text { etc.. }
$$

so that, with the restrictions that are required if (3) is to be true, we may write

$$
y=\frac{1}{4 \cdot x} \int_{r}^{1}|0| d x
$$

[^130] displacement sand the manebetir fore b) by maths of the relations ')
\[

$$
\begin{gather*}
0=-\frac{1}{n}-\operatorname{mon} \boldsymbol{m} \text {. } \tag{4}\\
n=\text { mo. } \tag{5}
\end{gather*}
$$
\]

It is to be rematied that the fwo potentiats atre not mothatly independent; they are eommerted by the equation

$$
\begin{equation*}
\operatorname{din} x=-\frac{1}{i} i \tag{ii}
\end{equation*}
$$

amel thent of teast actiom.
\$ 4. The physicists who have endeavoured, by means of certan hypotheses on the mecamism of electomadnetic phemomena, to deduce the fundamental equations from the prineiples of dynamies, have encountered eonsiderathle diftionties, and it is hest, pertaps, fo leave this comse athe to adopt the eqmations (I)-(V'II) - or others, equivalent to them - as the simplest expression we may find for the laws of electromagnetism. Nevertheless, even if we prefer this point of view, it deserves notice that the fundamental equations may be transformed in subh a way that we arrive at theorems of the same mathematical form as the general principles of dynamics. This hat been done especially by Abranam in his important paper "Primeipien der]syamik des Elektrons" ${ }^{2}$). The considerations in this and the two next paragraphs agree with those of Abramin, though presented in a form differing from his.

We shall consider a system of electrons moving in the intinitely extended ather, and we shall fix our attention on the diflerem states of this ststem, the aether inchoded, that snceed each other in the course of time in any electromagnetic phenomenon. Firom every one of these states we shatl pass to another, differing intinitely little from it. and which we shatl call the raridel slate. The variation or "virtual change" will consist in infintely small displatements of of
${ }^{2}$) I shall write gried ? (argatient of "") for the vector whose components $\operatorname{are} \frac{\partial \boldsymbol{\varphi}}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \boldsymbol{\varphi}}{\partial z}$.
2) Drude's Annalen. 10, 1. 10\%, 1903.
the points of the electrons, acompanted by infinitesimal changes in the dielectric displarement.

We shall write do for the difference, in at fixed point of the acther, between the dielectric displacement befoce and after the virtual change, the sign of varation of having a similar meaning when it precedes other simbols representing the value of some quantity in a definite point. If it is aftixed to a letter representing a quantity belonging to the srstem as a whole, such as the total electric energy $\quad($, it will simply serve to indicate the difference between these values in the original or real and the varied states.

The variations to be considered are not wholly arbitrary. We shall limit our choice by supposing in the first place that earch element of volume of an electron preserves its charge during the displacements q; this is expressed by the relation

$$
\begin{equation*}
d 0+\operatorname{dir}(0 \text { i })=0 \tag{7}
\end{equation*}
$$

which may be compared to (II).
In the second place we shall suppose the variations of o not to violate the condition (I).

In virtue of these restrictions the vector

$$
00+0 q
$$

will present a solenoidal distribution. Indeed, we see from (I) that

$$
\operatorname{dic} d t=\delta o
$$

and here we may, according to (7), replace the right-hand member $b y-d i e(0, i)$.

Let us now conceive a and of to be chosen for every instant t, so that they vary continnously with the time. Then, in order completely to detine the succession of varied states, or what we may call the "varied motion" of the system, we shall suppose the varied positions of the points of each electron to be reached at the same instants at which these points occups the corresponding original positions in the real motion; we assume likewise that, in ever! point of space, the varied dielectric displacement exists at the same moments as the orisimal one in the succession of real states.

By this the varied motion of electricity is entirely determined; indeed, since we know the velocity of matter and the rate at which a changes, we are able to state what has become of the convectioncurrent, the displacement-mment, and also of the lotal corrent 1 . The first thing we have to do will be to express of in a and δ o. Of course we maty be sure beforehand that the distribution of both the new I and the variation dI will he solenodad. This mast necessarily be the case, becatise we know 1 st . that, in the states that succeed one another in the varied motion, each volume-element of
 timatly fintilled.

 detinite prom of ath ceroton. We shall hatve

As to (fo_{s}), it is easily shown to have the vallue

$$
\left(d v_{x}\right)=\frac{d^{\prime}}{d^{\prime}}
$$

if we moderatand by d/at the wate at which of changes for at detinite
 (hathge in a fixed point of space, we get

These equations, combined will ($\overline{\text { r }}$, leat us to
or, if we ald to the second member the tirst member of (II), multiphed by as, after some firther transormation,

$$
\begin{aligned}
& \left.=\frac{\partial}{\partial t}\left(\boldsymbol{d} \boldsymbol{v}_{x}+\boldsymbol{o} \boldsymbol{q}_{x}\right)+\frac{\partial}{\partial!}\left[\boldsymbol{o}\left(\boldsymbol{q}_{x} \mathfrak{v}_{y}-\mathfrak{q}_{y} \mathfrak{v}_{x}\right)\right]-\frac{\partial}{\partial z} \operatorname{lo}\left(\boldsymbol{q}_{z} \mathfrak{v}_{x}-\mathfrak{q}_{x} \mathfrak{v}_{z}\right)\right] .
\end{aligned}
$$

Here we may rematk that the fwo last terms taken together represent the first component of the "rotation" of the vector whose eomponents ate

$$
\rho\left(\mathfrak{q}_{y} \mathfrak{b}_{z}-\mathfrak{q}_{z} \mathfrak{v}_{y}\right), \boldsymbol{\rho}\left(\mathfrak{q}_{z} \mathfrak{v}_{x}-\mathfrak{q}_{x} \mathfrak{v}_{z}\right), \boldsymbol{\rho}\left(\mathfrak{a}_{x} \mathfrak{v}_{y}-\mathfrak{a}_{y} \mathfrak{b}_{x}\right) .
$$

and that this vector is precisely the rector-product, multiphed by o, of a and v. After having calcolated dly and of , in the same way as d_{x}, we may combine the results in the formula

$$
\begin{equation*}
n=m_{m}^{0}(d 0+(0)+\operatorname{mos}\{0|a \cdot v|\} \tag{8}
\end{equation*}
$$

What hats aldeaty been satal about the solemoidal distribution of δ_{i} is eontirmed by this equation. The two vecoms represented on the right hath side both have this propery, the first by what we know of the reefor $a^{a}+9$, and the serond on ateome of the mathematfical form in which it appeats.
$\$ 6$. We may next proceed to determine the variation of of the magnetic energ. In doing so we shatl sation fom the asomption that the varied motion of electricity involses a definite magnetio energy ${ }^{2}$), to be detemmed ats stated at the end of 31 .

The formula

$$
\left.T=\begin{gathered}
1 \\
-\cdot .0
\end{gathered} \right\rvert\, h^{2} d s
$$

leads immediately to

Where the integration covers all pace. The same will be the case with the other vohme-intergals apparing in the following thansormations. If an integration is performed, or if the process of integration by parts is applied, one obtains integrals over the infinite surface which we maty conceive as the bomdary of the fietd of integration. These surface-integrals however will be supposed to vanish.

We bexin by writing rot a instead of r, as may be done in virthe of (a) ; and we shall next interrate by parts, kepping in mind that, on afeomet of (1).

$$
r o t d)=\frac{1}{r} d
$$

The result is

$$
\begin{equation*}
\boldsymbol{d} T^{\prime}=\int(\operatorname{mot} \mathfrak{a} \cdot d \mathfrak{b}) d s=\int(\mathfrak{a} \cdot \operatorname{mot} d \mathfrak{b}) d s=\frac{1}{c_{e}} \int(\mathfrak{a} \cdot \boldsymbol{d}) d s \tag{9}
\end{equation*}
$$

or, if we substitute for of its value (8),

$$
\left.\sigma T=\frac{1}{c}\left(\ddot{\left(a \cdot \frac{\partial}{\partial t}\{d v+o q\}\right) d S+{ }_{c}^{1}(\ddot{(a \cdot m}\{o \mid q \cdot v\}}\right\}\right) d S \cdot(10)
$$

Using (4), we may put for the tins term

1) This assumption only means to deline the value of ' T ' we shall assign to the wholly fictitions varich state.

$$
\begin{align*}
& \text { Now, it :甲peats from (9) lima } \tag{1:3}
\end{align*}
$$

is the change the magnetio chergy of the system would undergo, if we arae to the corrent the change do or We Whall write d't for thes variation of the carsm, ath $\boldsymbol{s}^{\prime} b$, $d^{\prime} T$ for the corresponding
 lhat would exist if the changes represented by a and do were accomplished in mit of time.

On the ohler hamd, $f(0, d o)$ is is the variation of the electric energy l° and the last integral in (11) is 0 , becanse the vector $80+0.7$ is solenomially distributed. Thuts, the first term in (10) becomes

$$
\frac{d \delta^{\prime} T}{d t}+\delta L^{\prime}+\int(0.04) d s
$$

For the last term in that equation we find, integrating by parts,

$$
\frac{1}{c} \int\left(\operatorname { m o t } \cdot \left\{0|q \cdot v|\left) d x-\frac{1}{c} \int o(i) \cdot|q \cdot v|\right) d s=\frac{1}{c} \int(q(q \cdot|u \cdot b|) d s\right.\right.
$$

so that finally

$$
\boldsymbol{d} T^{\prime}=\frac{d \boldsymbol{d}^{\prime} T}{d t}+\boldsymbol{d} C^{\prime}+\int_{0} \rho\left(\hat{y} \cdot\left\{0+\frac{1}{i}[v \cdot \mathfrak{b}]\right\}\right) d S .
$$

Now, the equation (VII) shows that the last term is precisely the work done, during the displatements of, lise electric forces exerted by the acther on the electrons.

Writing d/: for this work, we have

$$
\begin{equation*}
\delta E=\delta\left(T-L^{\prime}\right)-\frac{d d^{\prime} T}{d t} \cdots \tag{13}
\end{equation*}
$$

an equation closely corregonding to n' Amabratis principle in common dynamics.
\$7. The motion of the electrons themselves may be determined by ordinaty methods; it will be governed by the electric forces whose work has been denoted by ofe, together with forces of any other kind that may come into play. We shall contine ourselves to those cases in which these latter forces depend on a potential energy ℓ_{2}; then the tolal virtual work of all forces acting on the
dectrons will be ole do.. de. Moreover we shatl ascribe to the electrons a certain kinctic encrgy T_{1}, which they have hy virne of their mass in the ordinary semse of the word. should there be no such "frue" mass, we hate on! to put $T_{1}=0$.

One of the forms that maty be given to the variational equation of motion for a system of material particles is

$$
d_{i} I=\frac{d d^{\prime} T_{1}}{d / t}-\boldsymbol{d}^{\prime} T_{1}
$$

d l_{1} being the change of I_{1}, if we pass from the real motion to some varied motion in which the varied positions are reached at the same moments ats the original positions in the reat motion, of the virtual work of the forces, and $\boldsymbol{d}^{\prime} T_{1}$ the increment that would be atequired by the kinetio energy ' T_{1}, if rariations, equal to the virtual changes of the coordinates, were imparted to the corresponding velocities (the coordimates themselves being kept constant). For our system of electrons

$$
\boldsymbol{d} A=\boldsymbol{d} E-\boldsymbol{d} L_{1}^{+}
$$

hence, if we use for αE the formula (13),

$$
\boldsymbol{\delta}\left\{\left(T+T_{1}\right)-\left(U+V_{1}\right)\right\}-\frac{d d^{\prime}\left(T+T_{1}\right)}{d t}=0 .
$$

We shall finally multiply this by dt and integrate from t_{1} to t_{2}. In ease both the displacements f and the variations of vanish at the limits, we find

$$
d \int_{t_{1}}^{t_{2}}\left\{\left(T+T_{1}\right)-\left(l^{+}+I_{1}\right)_{1} d t=0{ }^{\prime}\right.
$$

This is amalogons to the principle of least atetion.
§ 8. In what precedes there has been question of the variations of the energies T 'and U, taken for the system of electrons together with the surounding ather, which extends to infinte distance. Similar though somewhat less simple results are obtained, if one understands by T ' and I the magnetic and the electric energies, in so fat only as they belong to the space within an immovable elosed surface σ. In what follows it is to be moderstood that this surface may have, relatively to the system of electrons, any prosition we like; for simplicity's sake however we thatl suppose that it curs none of them, so that, in every point of σ, the density $\boldsymbol{o}=\mathbf{0}$. As to the virmal variations, determined by q and δ, they need not at all be confined to the part of the system within the surface. We shatl denote by n the normal to the surface, drawn towards the

The lan imental of (11) heromes

 The Emanformation of the lat pate of (10) remaming ats it was, ats We hatre - 1 plpared $a=0$ in all points of the - sllfate we dinally tind

$$
\begin{aligned}
& =\left[a \cdot\left|\frac{\left.\partial d^{\prime} i\right)}{\partial t}\right|\right]_{n} \cdots \cdot\left[0 . d^{\prime} 川\right]_{a} .
\end{aligned}
$$

We wet therefore, instead of $\langle 1: 3\rangle$.
\$. 9. The followintr are some examples of the applieations that may be mate of the formatate ($1 ; 3$) and (16).
is. Let the virtnal chaneres in the position of the electrons and in the dielectrie dispiacement be propertional to the rates of change in the real motion, i. e. Jet
\& heing a constant infinitely small fiator. From these assumptions if follows at once that

$$
d^{\prime} 1=81 . \quad s^{\prime}(b=\& b .
$$

Now the magnetio energy may be eonsidered ats a fommeneons quadratie finction of the eomponents of the exmest : it will therefore change in ratio of 1 to $1+2 \varepsilon$, if the courent becomes $(1+8)^{\prime}$. 'Thns: $\boldsymbol{\sigma}^{\prime} T=2 \in T$.

We may alse infer from ont assumptions that the perition of the electrons and the valnes of o wre in the varied motion at the time 1, What they are in the real motion at the time $t+\varepsilon$, so that the only difference between the fwo motions is that the one is in whance of the other by an interval ε.

In this way it is seen that

$$
d T=\varepsilon \frac{d T}{d t}, \quad d I^{2}=\varepsilon_{d t}^{d t} \quad d\left\{=\varepsilon \frac{\partial h}{\partial t} \quad \frac{\partial d^{\prime}(t)}{\partial t}-\boldsymbol{d} \quad \boldsymbol{d}=0 .\right.
$$

Substituting these values in the equation (16), we wed after division by ε and multiplication hy dt, denoting bye th the work done by the electrice fores in the real motion, durins the dime att,

$$
\begin{equation*}
d E=-1\left(T+()-1+\int(0.1) \mid n d \sigma .\right. \tag{17}
\end{equation*}
$$

This is the equation of energy. The has term represents the flow of energy through the sumface.

1/. Applying (17) to a single elecelon, whose motion is at translation with variable relocity along a simight line, one may cateratate the force with which it is acted on by the aether, and which, under certain simplifying assmptions, is found to be proportional to the arceleration and directed oppositely to it. The quotient of this force, divided by the acederation, may appopriately be called the plectore matuetic mases of the electron.
c. There will likewise be a fore propertional and opposeal to the aceeleration, if the latter is perpendiculat to the ditection of motion. In this ease however, of which the mifiom motion of an electron in a circle fimnishes the simplest example, we must recor to the equation ($\mathbf{1 6}$), in ortere to dermane the fores. The surfere omat be supposed to lie at intinite distame and the vidnal dipplacement must be taken in the direction of the areeleration. The ratto of the force and the aceelemation may again be cadled the etretronmefnetic mossos, though, except for small velocities, its vatue is mot egrad to that of the corresponding ratio in the catre $/ \%$.

In both cases the remult agrees with what hat beral foumd hy Abraifims.

 Which we -hombl hate tor do, if the surfare of were shlyeeted to the

 The latter parg will therefore vamish if the state is stationary and may to loft wht we teoms if, for pertodice states, we wish moly to know the mean salne of the rewhting foree taken for at full periond. I need ber here work ant the formulate, having formerly deduced ble

$$
\begin{align*}
& \text { X. } \left.\quad \frac{1}{2}\left(0_{0} z^{2}-0_{y}{ }^{2}-E_{z} z^{2}\right)+\frac{1}{\underline{2}}\left({ }^{3} y^{2}-1 y^{2}-b z^{2}\right) \text {. cte. }\right) \tag{18}\\
& x_{y}=r_{x}=\mathrm{v}_{x} \mathrm{v}_{3}+\mathrm{r}_{x} \mathrm{r}_{3} \text {. ete. }
\end{align*}
$$

and the jus mentioned volume-integral is

$$
-\frac{1}{r^{2}} \int \Xi_{h d} d
$$

E_{6} being the flux of enery in the direction $/$, for which we seek the resilting force.

Thas, the reathing fore in the direction of a is diven by

$$
\begin{equation*}
\mathbf{\Xi}=\int_{0}^{0} N_{n} d \sigma-\frac{1}{u^{2}} \frac{d}{d t} \int_{0} \Xi_{r} \| \tag{19}
\end{equation*}
$$

\$ 11. Simila results wombl be chbtaneal if we chowe for the virtual Vatiation. insteal of at translation, an intintely smatl rolation about ath axis paswing through the orisint of eomedinates: the equation (16) would then erve for determine the resulting comple, ariane from all the forees exerted ly the axhere un the elecerons within the

in n a shorter way，if we start from what we know abeaty about the forces．

Indeed，in virtue of the formula（ 19 ）and the fwo eorresponding to it，the components of the fore ateting on an element of volume d S may be represented as follows：

$$
\begin{align*}
& Z d S=\left(\frac{\partial Z_{x}}{\partial r r}+\frac{\partial Z_{!}}{\partial!!}+\frac{\partial Z z}{\partial z}\right) d S-\frac{1}{r^{3}} E=d \leq \tag{20}
\end{align*}
$$

and these formulate give immerlately for the components of the couple

$$
\begin{equation*}
\int(y Z-z) d S=\int\left(!Z_{n}-z Y_{n}\right) d \pi-\frac{1}{1} \int\left(!\dot{心}_{z}-z \dot{心}_{n}\right) d \mathscr{L} . \tag{21}
\end{equation*}
$$

\＄12．Another consequence of the equations（20），anatogons to the well known virial－theorem in ordinary kinetic theory，will perhaph be thought of some interest．In order to find it，we have only to add the three equations，multiphied hy，r, y, z ，and to integrate the result over the space \mathscr{S} ，within the surface σ ．Transforming such terms as $\int \frac{\partial X_{x}}{\partial e^{\prime}} d S$ by means of partial integration，we find

$$
\begin{align*}
& \int\left(\mathbf{X} x+\mathbf{Y}_{y}+Z_{z}\right) d S=\int\left(X_{n} n^{\prime}+Y_{n}{ }_{n}+Z_{n} z\right) d(\sigma- \\
& -\int\left(X_{x}+Y_{y}+Z_{z}\right) d S-\frac{1}{r^{2}} \frac{d}{d t} \int\left(\Xi_{x, v}+\Xi_{y!}+E_{z} z\right) d 心 . \tag{22}
\end{align*}
$$

For stationary states the last term will vanish，so that，if we substitute in the term preceding it the values（18），

$$
\int\left(X_{2}+Y^{n} y+Z z\right) d S=\int\left(X_{n} n+Y_{n} y+Z_{n} z\right) d \sigma+T+1
$$

Paticular coses uf ponderomotiers actiom．
\＄13．In a large variety of cases，in which the system of electrons is confined to a space of finite dimensions，the electric and mannetio intensities in the suromoting fied beeome so feehle at great distanes that the sudface－integrals in 19 ）and（21）aprotely the limit 1 ，if the surface of moves to intinte distance．Moreover．the volmme－ imbegrals will vanish it the state is statomary，We then rome for

 aterion on the where.

 artion during a liall perionl.

These theoredne ate bedind wheneser the phemomemat one of the

 Inemat in B atre leos complieated, so that we emeonmer wo ditticolly in tetermining the fore ore the eomple ading on this part, the ate tom on . 1 will be fombl all the satme fime.

We maty aply this in the first place to well-known experiments on cheotromateretic rotations.

Led the eonsider a eylimbical marnet, fonched in fwo points of its surface by the emts of a comblutting wire If . let this wire he the exat of an electromotive foree, producing a comrent that flows through if and throngh pat of the maget The ponderomotive forces atefing on the wire are known with certanty and may easily be dedneed from the formala (V 1 l) : they produce a conple, tending to tarn the wire aloon the axis of the manet. Withon entermento any speratations concerning the motion of the electrons in its interior, we may infer that the magne will be acted on ly an equal conple in the opposite direction.
(If comere this reasoming mas be justified by showing that the -utfore-imesrat in (2) is really 0, if it is maen for at surface at intate distance. This is readily seen to be the catse, if we keep in mind that, at great distances, the magnetic fore prodnced by the *yem varien inverely as the third power of the distance, and that the intensity of the electric field, if it exist at ath, will certanly contain no terms diminishing more slowly than the spate of the distance.

5 14. I shall choose ats at secoud example some experiments, hately
 Maxemos theory that has been admitted by many physeists and is manoidable in the theory of electrons, viz. that a ponderable dielectries, which is the seal of at valable dielectrie displacement, and therefore of a displacementernrent, when plated in at materie

ficld, will be acted on by a similar force as a body carrying a con-duction-current. In Whitenem's appazatus two erlindric metallic plates, having the same vertical axis $P^{\prime}($, formed a condenser, in which a rapidly alternating electric field was matintaned; at the same time alternating currents were passed throngh the horizontal windings of a circular coil, surrounding the condenser; the axis of the coil, which is at the same time the axis of its mannetic fiedd, coincided with $P Q$. A sensitive torsion-balance was suspended by a wire passing along the axis of the instrument; the ends of the beam carried each a piece of some solid dielectric, so that these two equal pieces hung, diametrically opposite each other, in the air-space between the condenser-plates. The two fields, the electic and the magnetic, had exactly the same period, being produced by the same alternate curent-machine; besides, the armugements were such that there was a phase-difference of a quarter period between the two fields. Thns, at the instants at which the magnetic force had its maximum values, the rate of change of the electric field and consequently the intensity of the displacement-current was likewise at its maximum. Under these circmonstances a sensible couple acting on the dielectrie was expected, but no deviation of the beam, attributable to such a couple, could with certainty be observed.

We may remark in the first place that in Whitehead's formula for the expected effect, the specific inductive capacity K appears in the numerator. If this were right, a couple wond act on the aether between the plates itself. According to the theory of electrons, as here presented, ponderomotive force acts only on the electrons contained in ponderable bodies, but in no case on the aether. The theory therefore regards every ponderomotive action as due to the clifference between the properties of the body acted upon and the aether; it can lead to a formula containing in the numerator $K-1$, but never to one, containing, instead of this factor, the coefticient K itself.

In the second place Whitehesd has overlooked a circumstance by which the effect he sought for must have been, at least for the greater part, compensated. The compensation may be shown to be complete if the properties of the dielectrice used differ from those of the aether to so small extent, that quantities which are in this respect of the second order of magnitude, i. e. of the order $(K-1)^{2}$, may be neglected.

If this may be done, the ponderomotive action on a ponderable dielectric, placed between the condenser-plates, may be considered not to be altered by the presence in the field of a second or third piece of the same dielectric. Now, the two bodies suspended at the ends of Whitehead's torsion-balance may be taken to have been parts of a

Proceedings Royal Acad. Amsterdam. Yol. V.
complete dielectride ringe, hombed be a surface of revolution with the axis Pe?. Moreover it will he sati- thassme that the aetion on the two bodies which it was somght to wherese, did not depend on their relative paritions with remped to the wires teading to the comblenserplates, and remained thereliore the same, in whatever position the torsion-thatane wat turned. If this was the case, the adtion on a borly that is the $n^{\text {th }}$ patet of the ring (being cut ont of it by two planes passing through the axis) must have been the $n^{\text {th }}$ part of the comple, adting on the complete ring. Comsequently, it will suffice to show that the effect is 0 , if the experiment is made with a complete dielectrice ting.
§ 15. For simplicity's sake we shall suppose the condenser-plates to be mited by a wire $\mathbb{I V}^{\circ}$ and their atternating electrice charges to he produced by a periodic electromotive force in this wire. As to the corrents in the coil, they may be regarded as the to electromotive forces of the same prowiol, acting in the windings themselves; inded, the action on the dielectrics can only depend on the magnetic fied and not on the way in which it is produced. For this same reason it is allowable to aserite to the windings so small a resistance that they do not carry any appreciable charges.

Then no other but electromagnetic forces will act on the windings of the coil ant these camot give rise to any couple abont the axis $P^{\prime}($, becanse such forces are perpendicnlar to the elements of the windings. By the theorem of $\$ 13$ the couple acting on the torsionbalance must therefore have been equal and opposite to the moment of rotation, acting on the comdenser-plates and the wire $\mathrm{IF}^{\text {r }}$. It remains to show that this last moment has been 0 .

I shall denote by I the efectromotive forces acting in the comnecting wire II^{r}, hy II those existing in the windings of the coil, and I shall distinguish hy the suflixes 1 and 2 the states arising from these two canses. Let us indicate by A_{1} the charges of the plates and the currents in these and the wire \mathbb{H}^{5}, in so far as they are due to I, and let $A_{\text {, }}$, have the same meaning with respect to II ; also, let F_{1} and F_{3} be the electromagnetic fieds excited by the two causes. In each of these fields there will be an electric force o (acting on charges that are in rest), as well as a magnetic force b; in virtue of the first, the field will exert a ponderomotive force on the charges of the plates and in virtue of the second on the currents, one of these actions heing determined by the first, and the other by the last term in the general equation (VII). If we denote ly the symbol (F, A) the couple acting on the plates and the wire, in so far as it is due
to a field I and a state A of these bodies, the fwo actions we shatl have to consider may be represented by

$$
\left(F_{3}^{\prime}, A_{2}\right) \text { and }\left(F_{2}^{\prime}, I_{1}\right) .
$$

The first of these is readily seen to be 0 . Indeed, the magnetic field, produced by the forces II, though modified by the presence of the dielectic ring, is symmetrical around the axis $P^{\prime}(2$. Therefore, if the periphery of the condenser-plates is nowhere interrupted, the state A_{3} will consist in circular corrents in these plates, withont any electric charge. It is impossible that the field F_{1}^{*} should, by its action on these currents, give rise to a couple, since, whatever be the nature of this field, each element of the stream-tubes will only be acted on by a force perpendicular to its length.

In reality the case was somewhat different, each condenser-plate being cut by a vertical slit. There must have been equal and opposite charges at the edges of each slit and the tield F_{1} must have acted on these charges, in virtue of the electric force existing in it. These forces may however be supposed to have ammulled each other, becanse the distance between the charges on the two edges was very small.
§ 16. The action $\left(F_{2}, A_{1}\right)$ is therefore the ony one that remains to be considered. Now, in the state A_{1}, the plates of the condenser were the seat of charges, whose amount was modified by the influence of the dielectric ring, and whose alternations were accompanied by currents in the wire $\|^{r}$ and in part of the plates themselves. In so far as they are curments of conduction, i. e. in so far as they consist in a motion of electrons, these currents are evidently unclosed. We may decompose the whole system of them into infinitely thin strean-tubes, the tubes being all thronged together in the connecting wire, and widening out in the plates, at whose surfaces each stream-tube ends in two elements of surface.

Let S be one of the stream-tubes, f the end of it on the onter, and H that on the imner plate, e the charge in $(x,-p$ that in H.

$$
\begin{equation*}
i=\frac{d e}{d t} . \tag{23}
\end{equation*}
$$

the current in the tube in the direction from H towitrds G, and let us consider the action $\left(F_{3}, A_{1}\right)$ only in so fire as it depends on this current i and on the charges e and $-e$.

In the first place there will be an electromagnetic force on the tube S, owing to the current i. The couple arising from it depends on the course of the magnetic lines of force in the field F_{2}; it is most easily found by remarking that its work during a complete

 ding to the form of the wire $1 \mathrm{l}^{\circ}$, but hat at atl events for its home
 number of thene liness laken prositive if the midalle one of them passes
 motation and for the comple the direction corresponding to the upwat direction. Then, for at linll revolation in the positive direction, the work of the comple will be $-\frac{1}{i}$ is, whence we tind for the couple itself

$$
\begin{equation*}
-\underset{2 x}{1} i N . \tag{24}
\end{equation*}
$$

If this were all. We should indeed come to ath eflect such as was expected by Whmamad. We must however keep in mind that there can never be a variable magnetic field without electric forces. Such forees, represented in direction and intensity by the rector b, will exist in the tield F_{2}, the lines of electric force being circles around the axis P ?

We must therefore add to (24) the couple arising from the action of the dield on the charges e and - e; its moment may again be found by eonsidering the work done in a complete revolution in the positive direction.

The force on the charge e being $e d$, its work is equal to the product of e by the line-integral of 0 along the circle described by fr. Similarly, the work of the force acting on the charge - e in H is the prothet of - e by the line-integral of o along the circle described hy h, or, what amounts to the same thing, the product of t e by the line-interial for this circle, if it is taken in the negative direction. Now, if we follow the circle G in the positive and the circle H in the negative direction, we shall have grone along the whole contour of the surface described by the stream-tube S, in a direction corresponding to the positive direction of the magnetic force. Hence, by a well known theorem, of which the fundamental equation (VI) is the expression, the sum of the two line-integrals by which e must be multiplied, will be

$$
-\frac{e}{e} \frac{d N}{d t}
$$

and the couple to be added to (24) will be given by

$$
-\frac{1}{2 . \pi e} e \frac{d N}{d t}
$$

Taking into account (23), we find for the total couple

$$
-\frac{1}{2 \boldsymbol{x}^{c}}\left(i N+e \frac{d \lambda}{d t}\right)=-\frac{1}{2 \boldsymbol{x}_{c}} \frac{d\left(e_{N} N\right)}{d t}
$$

Since this is the rate of change of a periodie quantity, the mean value will be 0 , as above asserted.

The above somewhat complicated reasoning has been used in order to aroid the difficulties arising in a closer examination of the phenomena going on in the ponderable dielectrics. The result may however be verified by making suitable assmmptions concerning these phenomena. It will suffice for our purpose to replace one of the dielectric bodies by a single pair of electrons A and B, the first of which is immovable, whereas the second may be displaced over an infinitely small distance, in a radial direction, by the electric forces of the field F_{1}. We shall denote by - e and $+e$ the charges of A and B, by r the distance of A to the axis, by s the infinitely small distance $A B$, and we shall write \mathfrak{G} : for the vertical component of the magnetic force in the field F_{2} and D for the value of the delectric displacement in this field at a distance, from the axis. We shall take the positive directions as follows: for s outwards, for \mathfrak{h}_{z} upwards, and for D along the circular line of electric force m a direction corresponding to the positive direction of \mathfrak{b}_{z}, i. e. in the direction of a positive rotation about the axis.

Now, owing to the velocity $\frac{d s}{d t}$ of the electron B, there will be, according to the formula (VII), a force

$$
-\frac{e}{c} \mathfrak{b} z \frac{d s}{d t}
$$

acting on this electron along a circle about the axis, and producing a moment

$$
-\frac{p}{e} \mathfrak{\mathfrak { V } _ { z }} \frac{d s}{d t}
$$

This is the couple of which Whrthbis has sought to prove the existence. It is however ammulled by the moment arising from the action of the field F_{2} in virtue of its electric force D. For the particle A this moment is

$$
-\operatorname{er} \mathrm{D}
$$

and for the particle B it is obtained if we replace $-e$ by $+e$,
makine al dhe same time the value of r (l) at the distance $\mathrm{f}+\mathrm{s}$ fom Hye avis.

$$
{ }_{(1),}^{1)}(2 l)
$$

and for this we may write

$$
-\quad{ }^{\prime} \quad \frac{d \mathfrak{f})=}{(d y}
$$

since, ly the eynation (V)

$$
d_{r}(2 \cdot 1)=-1 \quad d f=
$$

Fore the sim of $\left(24^{\prime}\right)$ and $\left(24^{\prime \prime}\right)$ we may write

$$
-_{i} \quad \mu \frac{d\left(s \mathfrak{b}_{z}\right)}{d t}
$$

whenere it is immediately seen that its mean value is 0 for a finll periox.
 1/1. Beths of very zuiform ant constant temperature in the (rygustat (contimued). A cryostut of modified form for appreratuss af smmell dimensions. II. A permanent buth of liquid mitregten at ordinary and at recalaced pressure. J. Arrangement of " Borchhardt-Weiss racuum-pump for use in the circulations for low temperatures. Communication $\mathrm{N}^{0} .83$ (contimued) from the Laboratory at Leiden. By Prof. H. Kamerdingit ()wxis. (Read February 28, 1903).

1II. § 6. A cryestat of modified form for apparatus of small dimmsimis. If the cross sections of the apparatus that is to be immersed into the bath are small, vactum glasses may be profitably used in the comstruetion of the cerostat. For, vacuum glasses of compatatively small diameter com then areommodate the stirrer and the temperature indiaztor in addition to the measuring apparatus. Plate IV shows a eryostat of the kind, viz. the one used in the determinations by Hyndmis and myself on the critical state of oxygen.

Ohwiously the arrangement could be much simpler, as it was not necessary to watch the liquefied gas streaning from the jet or to use the generated cold vapour for the cooling and as no particles of dust from the leads had to be feared, a filter was not réfuired. (Comp. Comm. 51 , sept. '99 § $2 . Y_{1}$ p. 12). The principles for obtaining a uniform con-
stant temperature, laid down in the previous commmoneation have all been applied in this arrangement, a vigorous stirning with the ring shaped valved-stirrer, the aljustment at the desired temperature to the indication of a sensitive indicator by regulating the pressure at which the liquid boils while reading a differential oil-manometer made for the propose, and lastly the determination of the temperature of observation as corresponding with the mean obtained sraphically of the readings of the thermometer (as in $\oint 5$).

Plate V shows in detail the differences in the construction between this form and the former plates I and II (and also Plate I Comm. 51), the parts unaltered remaining are indicated by the same letters as before, and the modified parts by letters with accents, while entirely different parts have new letters.

The height of the vacuumglass B_{n}^{\prime}, is so chosen that the liquefied gas cannot be blown out; and the glass itself has been silvered, leaving open two opposing windows Γ_{2}. Through these the phenomena in the experimental tube may be watched, and from the position of an aluminium wire fastened to a cork float the depth of liquefied gas may be derived. If the insulating power of the vacuumglass is not perfect, condensation of moisture on its outer wall may be avoided by placing it into a beaker filled with alcohol, which if necessary is renewed when cooled. Thus the same principle is followed which was employed when necessary in the case of the cryostat (Comm. 51) when the windows had to be kept clear and where hot dry air was drawn through the outer spaces of the observing glasses $\left(V_{2}\right.$, see Pl. I of this Comm. and for the details pl. Comm. 51).

The vacuum glass and the auxiliary apparatus are supported by a copper cover $\boldsymbol{N}^{\prime}{ }_{00}$, with its rim timned to protect it from the action of the india-rubber ring ${V^{\prime}}_{1}^{\prime}$, and which, like the cryostat of $\$ 1$, has been coated with polished nickel-paper. To this cover are fastened the exit tube of the gas T_{12} and the safety tube Y_{52}, the connection X_{2}^{\prime} with the oil manometer (for details see plate I) and a copper tube V_{01}^{\prime}, into which the india rubber stopper is placed holding the apparatus to be immersed in the bath (in our case the piezometer for the critical phenomena K_{r}, and the correction thermometer ζ_{01} with its leads ζ_{00} (comp. § 1) while the thermo-element Θ may be considered as forming an inherent part of the cryostat). There is also a tube through which the capillary a_{1} admitting the liquefied gas is led and where it is supported by a piece of cork $a^{\prime}{ }_{13}$. It is closed by means of an india-rubber tube a_{19}^{\prime} drawn over the tube and a thin cap soldered on to a_{1}.

Between the cover and the rim of the vacum glass a wooden

 tulne.

The thee therads $\%$ on which the stimer hangs are led direetly through the thee india-rwhor tuber \% comected hermetically to tubes ondered onto the coover and fitting hermetically onto the threads at $\%$ se, to the hats dise $\%$ and rent $\%$ which is comented by a smatl chatin $\%$ pasing wer a palley $\%$,o the motor by means of a seelwire. The arm of the motor may he adjusted to different thens- while velocity of potation can be regulated ly means of a rhemotat.

The momang of the apparatus is very simple. The stopper with the meatming apparatus is placed into the fulve $N^{\prime}{ }_{\text {o }}$ of the cover, (1) which ath the auxiliay apparatns has been comected, then the vachum trates is slid into the india-rubler ring which is also comected to the cover and is fistened there ly means of tightening bands. In order to secure an airtight fit the india-rubber on the metal and on the glase has been coated beforehand with a solution of indiarubber in benzine.

With a view to the deseription given in III the operations for the adjustments at given temperature require amplification only in a few points. In the case considered here, the evaporated gas was led back through the exit tube to the gasholder or to the large exhausted reservoir of the ethylene circulation in the ervogenic laboratory (Comm. 1t, Dee. 9t) whence the ethylene was further condensed into the condenser immersed in methyl chloride. As deseribed in Comm. It the circulations of the cryogenic laboratory have been so arranged that they may be used at any time. Besides the reservoirs that have to be exhausted, a permanent part of the circulation consists in branched tubes with coelse as shown on plates I and IV. The cryostat had only to be comected to the circulation in order to be earily hrought to the required presoure. In the case comsidered here the experiments were not made in the eryogenic laboratory but in an other room and the length of the lead $a^{\prime}{ }_{31}$ was 10 m . Although the lignid ethylene had to be conducted over such a distance, yet
the adjustment of the bath to the required temperature (say at - 120°) was obtained within one hom atter the pmops in the eryogenie: laboratory had been set working.

Instead of a resistance thermometer, to regulate the femperature, We used the thermoelement Θ, the protected junction being phaced at the side of the piezometer (comp. comm. 27 dune 96); it is visible through the window J^{-1} (in plate I ${ }^{\prime}$). The electro-motive power of the thermoelement is compared by means of the zero method with that of a themoelectric control element or a Westos-element.

For the same difference of temperature the deflections on the seale of the sensitive grabsumeter were almost as large as in the measurements made with the resistance themometer (comp. §5). An example of the determination of the temperature is not necessary in addition to Plate III.
IV. A permanent bath of liquid mitrogen at ordinary or reduced persume. In Comm. 14 (Der. 94) a short description was given of the temperature steps obtained by means of circulations of methylehloride, ethylene and oxygen. In comnertion with that deseription I mentioned my intention of adding more circulations to those already existing and said that I hoped to replace more and more parts of the existing circulations by greater and to insert such techmical apparatus as should be found adrisable so that the existing apparatus could be used in the new circulations with pure or costly gases. An example of this is the circulation of nitrogen added to the existing temperature cascade, of which a description is now required by the completion of some of the measurements rendered possible by it. For measurements at temperature between - $195^{\circ} \mathrm{C}$. and - $210^{\circ} \mathrm{C}$. a nitrogen is much to be preferred to an oxygen-circulation as the tension at which the oxygen boils at -195° is so small that aceurate regulation at constant temperature becomes rery difticult. As the preparation of pure nitrogen in such large quantities as a circulation requires presents many difficulties, the compressor and the vacum pump must be suitable and efficient. 'These conditions are fulfilled by the mercury and the anxiliary compressors which are generally used for the compression of pure gas and which in the originally temperature cascade served for the oxygen circulation. However when the Brotherhoodcompressor (comp. Comm. 14 Dec. '9t and 51 Sept. '99) could be used for the oxygen circulation in the cascade they could be used for the nitrogen circulation.

The nitrogen is prepared from sodium nitrite. Besides being passed through ferrous sulphate and sulphuric acid it is led over hot cop-
per and then again homeh forrous suphate and medium hydroxide, herathse ohterwise tranes of nitric oxide might lne left and this horeks
 wides of mitmogn whell it mixes with the atis). In order for remove
 "yerens an seaty ato persible equivatent to the NO erontained thereen athd hate then passed it throngh sodimm hathoxide. The gras is colleoted and provisomally kept in gatranised iron vessels holding $1 \mathrm{M}^{2}$. from these it is driven ont later by water heated by a steam jet and after patsing throngh sodiam hydroxite and sulphurie aded it is forced into a small gathobler thating on oil amd bolding $500 \mathrm{~L}_{\mathrm{g}}$. by means of the anxiliay eompresso it lubrieated with glycerine (see l'l. Il and for detals (omm. 5t sept. '99) and the mercury compressan $H!f^{\prime}$ (see Pl. II and for details ('omm, 54) the gas is fored wer into a metal eylinder of 18 liters capacity after passing through the drying mhes D_{1}, D_{2} filled with canstic sodat in the form of sticks.

Plate II shows the scheme of the entire circulation with the (ryostat (r, into which the lifuid nitrogen is admitted at a and where it evaporates under ordimary or reduced pressure at the desired temperature. The whole armarement has been used in the comparison of the platimm resistance thermometer with the hydrogen thermometer, which has been mentioned in III. The apparatus themselves are drawn diagrammatically hat in their true proportions, while the connedions are entirely schematic. A eletailed representation of the cryostat with the auxiliary apparatus appertaining to it for uniform and constant temperatures will be found on plate I where the same letters have been used. On the other hand plate VI mar be consitered as a supplement to plate I. Nothing is wanting for a complete representation of the circulation exeept the grasholder and the vacum vessel of 5 M^{3}. (comp. § 5 for its use) which are too large to be represented on the same drawing as the parts given. There is an insignificant difference in the compling of the leads between plate I and phate VI, for on plate VI lirh. I'indicates the comection of the compression side of a Burchmardt-Welss vacummpump Bu Vac., described below into which the exhaust E.ch. 2 terminates, to an exhanstpump which may also he 1 (' of the circulation). Moreover next to the lead from Y_{2} to $Y_{\text {s }}$ we have drawn what must be substituted for it in comparison with the arragement on plate IV.
R.N is the erlinder where the nitrogen has been compressed by means of f^{\prime} 'and $H_{!} /$(' through the drying tuhes D_{1} and D_{3}, while G:は indicaten the soo liter gats holder floating on oil. The nitrogen may
be admitted at the required pressure into the condensation spiral C'S from the cylinder $R X^{\prime}$ through a final drying tube D_{s} containing phosphoric anhydride, as well as directly from the compressors. The spiral is placed in a vacumglass B with a protecting eylinder A. Liquid oxygen is admitted into B through ox.liy from the oxygen circulation of the eryogenic laboratory, viz. from the condensation spiral which is cooled in the ethythene boiling flask ('omm. 14, Dee. 94). The oxygen escapes throngh Ox.rop, a wide safety tube S being comected in the ordinary way, and is compressed into the spiral by a Brotherhood-compressor which is lubricated with glycerine and arranged as described in Comm. 51. It may be remarked that, with a view to the possibility of an explosion of a glycerine mist mixed with oxygen, the pressure in this operation is not raised above 80 atmospheres. (Comp. the explosion described in the Zeitsch. f. Kohlensäure Industrie 1903).

The nitrogen condenser itself has been drawn in detail on plate VII. In so far as the parts correspond - either with plate V for the cover, or with plate 1 of Comm. 51 for the regulation cock described there - the same letters have been used, but as some of the parts differ a little the letters have an additional accent. As in the case of the small cryostat plate V, the cover is coated internally with nickel-paper, while the upper turns of $C S$ are protected again by a ring of paste board and nickel-paper. The condensation spiral consists in the condenser proper $C S_{2}$ and the regenerator $C S_{1}$; here the same principle has been applied which has been followed in the cryogenic laboratory from the first (Comp. Comm. 14 Dec. ' 94); the vapour of the oxygen is forced by the cylinder $P^{\prime \prime}{ }_{2}$ which is closed at the bottom with the stopper $B_{30}^{\prime \prime}$ to pass along the regenerator spiral. As in the ethylene boilingflask (see comm. 14 Dec. '94) the level of the liquid oxygen in the glass tube W° is indicated by a cork float $\left(l_{1}\right.$ with a steel capillary $d r_{2}$ to which a thin reed d_{3} is fastened; the steel capillary passes through a glass tube $B_{3_{1}}^{\prime}$.

Liquid nitrogen flows out throngh the fine regulatingeock $h h_{3}$ of the same kind as that through which the liquid gas is admitted into the cryostat. For the description of this cock compare Comm. 51 and 54.

It may be added that Gaz' shows the comection with the anxiliary apparatus described in Comm. 54 for operations where $H_{y} C$ is used, which connection make it possible for the gas to stream back to the gasholder Gaz.
V. Arrangement of a Burckhardt-Weiss racuumpomp to be used with a circulution for low temperuture. The well-known excellent
 I think by Otsomski, for removing the large volumes of gas which rise fiom a bath of ligmedied gats at a reduced pressure. We shath now speak of some modifications and anxiliary apparatus by means of which the perfeet praty of a gats is secored in a high vacumm. A pomp armaged in this way may also be introduced into circolafions of costly gates. In onm haboratory it hats been worked very satisfactorily for mang years. A diagrammatio figne of the entire Boberhandr-pump has heen wiven on plate VI Bu. Fofe, the pump revimber with its slide valve box, the begiming of the suction- and the delisery mbes with the anxiliay apparatus belonging to them are shown on plate VIII, where fig. I gives the sisle elevation, lig. 2 the top elevation and lige 3 the section. The well-known working of the piston and the valve, the sureessive communication of the valve ports 5 and 5^{\prime}, each individually by means of the slide hole 2 with the suction valve port 1 or with the delivery valve port 4 and logether by means of the ringshaped opening is may be seen without further comment from the section. The pump displaces $360 \mathrm{M}^{3}$ an hom, hence, when exhansting at a pressure of 2 c.m., about $10 \mathrm{M}^{3}$ gas, measmed normally can cirenlate. At Leiden it is nsed ahmost exclusively with an additional vacumpmomp exhansting at the compression side. It exhamsts then till $2 \mathrm{~m} . \mathrm{M}$.

As a lubricant and for the airtight fittings to be deseribed in the following pages, only bone-oil is used which after having been tested at the exhatuspmp, has proved to have no pereppible vapour pressure.

For the technical work ordinary ring packings are quite sufficient, I have, however, replaced them by folded packings as described in Comm. 5t Jan. 'OO for the compressor and the anxiliary compressor. The leather ring of the packing is supported there as in Plate IV b_{14} by the india rubber ring b_{42} (for an exhausting packing comp. E_{12} Pl. VII fig. 3 (Comm. 54). The packing cylinders have been made long enongh to contain two folded packings (one for exhausting and one for compression) and a bronze tightening piece, but as a rule they only hold the packing for exhaust.

New additions are the vessels O_{1} and O_{2} see also plate II filled with oil (or with glycerine for those gases which camot be used with oil); they serve to protect the packing cases of the eylinder and the slide valve box entirely from the atmosphere and also to cool the piston rod. The covers $\|_{10}$ and ()$_{20}$ protect the lubricant against dust or moisture.

For the oil holders $S_{1} \mathscr{S}_{2}$ we have chosen the construction explained in detail in fig $7 . \mathbb{S}_{12}$ is an ordinary oilpot for visible eylinder lubri-
cation in vacuo. The cover S_{12} has been tightly serewed on the hollow rod S_{1290} and presses the glass S_{121} hermetically on to the packings. By means of the winged mut \mathscr{S}_{133} the point is adjusted so that the oil drops regularly through the openings S_{1} gat into the space S_{124} which commmicates with S_{128} through S_{125} and which may be watched through the glass windows in S_{124}. For our purpose the oil holder S_{12} is placed on a stont tube S_{13} onto which by means of india rubber rings and tightening bands the glass eylinder S_{11} is fixed on a copper bottom, soldered to S_{13}. The glass cerlinder is filled with oil and covered with a lid S_{15}. By means of S_{122} new oil can be admitted from the reserve vessel into the lubrication vessel. In this way the air is sufficiently prevented from entering the lubrication apparatus.

Lastly, between the exhaust tube a and the compression tube ρ^{\prime} a safety valve has been placed, which prevents the pressure on the compression side from rising above a certain height (usually ${ }^{1 /}$ atmosphere). Hence it is possible to let the pump work on and to open and shot the cocks as the work requires. The noise of the safety valve gives warning that the cocks have not been properly used. In any case no difficulty is to be feared if the possible output of the pump might diminish in any way in relation to the intake. Fig. 4 shows a diagram of this connection, some of the parts being drawn to proportion ; fig. 6 shows a section of the safety valve ease itself,

The side tube ρ_{2} is commected by a joint K with the tube v_{1} which opens into the space below the safety valve. The space above the safety valve communicates with the exhanst tuhe through the side tube z_{1}. The broad valve z_{3} is coated at the bottom with an india rubber sheet which presses against the narrow rim v_{4}. The spring v_{3} is stretched with the key v_{7} while the plate r_{8} with the mut v_{61} and packing is tightly screwed on to the rim v_{10}. The packing cylinder v_{11}, like the packing just mentioned is kept under oil; a cover v_{12} above it protects it from dust.

The connection K between the tubes ρ_{1} atid e_{1} could not be brought about with flanges or with screw joints without causing tension in the tubes. Therefore it was made in the following manner as shown by fig. 5 . A widened piece k_{1} is soldered on p_{1}, v_{1} fitting into this piece. The india rubber comnection k_{2} is kept in oil ; for this purpose a rim k_{3} was used which was soldered on to p_{1} and a rim k_{4} which was soldered on to z_{1}. Over these rims a wide piece of tubing l_{3} is drawn which is fastened to k_{3} and k_{3} by means of india rubber rings $k_{6} k_{7}$ and tightening bands, and forms together with these an oilreservoir.
 athere mentioned commertions. Whe compression fabe and the exhates
 explanation of ligs. $1,2,3)$ by the cocks $r_{1}, r_{3}, r_{2}, r_{4}$ and may be

 or in preparing, momminge tosting, drying and exhansting the pump, reguites mo finther explatation. As atmatter at combe, the promp is not introndmed into at ciroulation matess if has worked for a longr time with the exhanst-and compression sides flosed and no change has been foumd in the varomm.

I further remark that the primeiple of an oilcomection ats illustrated by lig. © may be protitahly applied when wide tubes have to be connected, which have nether thanges nor mots and joints or in cases where it is mot advisable to make these contrivances. The methot then to be followed is ilhostrated by fig. 8 where $K_{1}^{\prime \prime}, \mathscr{K}_{3}$, and $K^{\prime \prime}$, are loose piecess slid on the tuhes b_{1} and b_{2}. Which we want to conneet A grood fit is ohtained by means of the india rubber rings $K^{\prime \prime}{ }_{21}$, $K_{22}^{\prime \prime}, K_{3}^{\prime \prime}, K_{i}^{\prime \prime}, K_{8}^{\prime}$, under brass tightening bands. $K_{91}^{\prime \prime}$ and $K_{2}^{\prime \prime}$ serve to admit and to run ont the oil. In this way one always sueceeds in making within athort time an airtight fit. For the connection of the primp tuhes to the conduit at f_{1} and f_{2} (comp fig, 1) this method has been used in a manmer which will be clear from the tigure.

Physics. Commmicationt n°. St firm the Physicall lahoratory at Leiden "Isotherms of diutomic , feses amel their linary mietures. V. An accerate columenometer and mixinal "pparatus." (By H. Kimerdingh Onaes and H. H. F. Hyndmas).
§19. A compression tube uf lereter dimensions. In § 6 of Comm. no. 69 Mard '01 we have explaned that the apparatus deseribed in \$5 3 and t hardly gatse the acouray required in the determinations of density, if the total fuantity of compressed gats was smaller than 5 ce. Since, however, at most 600 ec. of gas under normal conditions is asalable in this apparatus it is not suitable for densities of more than 120 times the normal.

On Pl. I it compression tube is shown which has about three liters calpacity and hence which is suitable for measmrements up to densities of some 500 times the normal and with at least the same accuracy as the ahove. The drawing is, as msmal, schematic in
the connections but the individual parts are drawn to seale, it can be compared with Pl . I of Comm. $\mathbf{1 4}^{\circ}$. 69. For those parts which correspond the same letters are retained, where an alteration has been made the letters are accented, while new parts are characterised by new letters. A detailed description is hence unnecessary, but it may be noted that the screw head π_{4} is changed, that a closed nut serewed on at e_{121} has been added by which the pressure can be suddenly released if necessary, and that a cock c_{15} has been introduced, to enable the level glass to be shut off if required.

The compression tube $A^{\prime}{ }_{2}$ is designed for use in the first place with piezometers of the kind described in \$ 2 but of larger dimensions. The use of this tube A_{1}^{\prime} is then the same as the originad A_{1} (comp). $\$ \$ 3$ and 4) and it may be introduced directly in place of this into the system shown on Pl. I of Comm. n^{0}. 69.

In the second place this compression tube serves to hold glass tubes with a stem $b_{4}-b_{5}$ (cf. Pl. Il fig. 2 Comm. n". 69) onto which other apparatus can be serewed in place of the simple nut and capillary shown there. In Pl. I fig. 2 is shown a three way cock with two steel capillaries ℓ_{1}^{\prime} and $\ell_{1}^{\prime \prime}$ which is employed as follows.

One of the capillaries ℓ_{1}^{\prime} is comected directly with the small measuing piezometer of the type of f^{\prime} fig. 2 Pl. II Comm. N ${ }^{0} .69$ the other $!_{1}^{\prime \prime}$ with a volumenometer, so that when l_{110} is shut and k_{138} and k_{120} are open a known quantity of gas can be brought into the compression cylinder from the volumenometer. (On the other hand when k_{110} is open and ${h_{130}}$ shut this gas can be compressed into the piezometer where the iemperature and pressure are measured as before. The large glass tube with stem and the piezometerreservoir, form in this way a piezometer of variable volume (constant quantity) and the difference with the former methorl consists in the measurement of the normal volume in a volumenometer instead of in the piezometer itself. The volume of the large glass tube in this method is not reguired to any high acouracy and the small n tube at the bottom may be omitted (y_{1} Comm. n ${ }^{\circ} .50 \mathrm{Pl}$. I fig. 4 June '99 and b_{2} Comm. n°. 69 Pl . II March '01). The aceuracy is now really that obtainable with the volumenometer (cf. § 20) in so far as the determination of the normal volume is concerned. The spaces $k_{001}, k_{130}, k_{130}$ of the small three way steel cock must be also accurately calibrated. Care is taken also that the pins really shot properly into the sockets which makes the whole absolutely trustworthy up to at 100 At .

Although we wish to confine ourselves to the method of variable volume (constant mass) a second measurement with the volumeno-
moter is required, in the same matmer as would be neeensary if we employed the melhod of comstant volmone Fione we have atremby mentioned in $\$$ I that this compresomon apparatus is suitable for this
 presoure abd athowing the rompressed gats to expand thronghthe "apillaries !/ ${ }^{\prime \prime}$ athe !/! inlo the whmmenometer and reading as before This secomb volumberice measmement, with its becessaty corrections, grives the determination of the normal volume atfer the measturements at high pressure athe compares with the seeond momal volume determination of the migimal methorl.
\$20. An "rempater rolummometers. The volumenometer mentioned abose in $\$ 19$ wats designed to give isothermal measmements of an 1 accuratey of 10000 "ן to 60 Ats pressure. Hence the same acentacy Wats desired ats with the shandard piezometers of Comm. $n^{\circ} 50$ Jume 'g9, while at the same time the determination of the deviations from Boyders law at ordmary pressures was kept in view. The most amalogous appatatus is that employed hy Ledec; that of Withowski, who hats used a form more closely analogons with ours, does not appear to have been designed for high accuraty

The measuring ressel E_{b} (I'l. Il lig. 1 and more in detail fig. 2) where the gat is shat off by mereury entering throngh $E_{b_{\mathrm{m}}}$ consists principally of à buths $E_{i b_{1}}$ such of $2 \overline{50}$ ece and a smaller hulb $E_{b_{2}}$ of 25 ce. capacity. These ate separated hy short really cerlindrical portions $l_{i b} \ldots . l_{i=s}$, on each of which there is a mark, near to which the mereury menisens is brought for the measurements.

At the lower end of the measming vessel is a contrivance after the scheme of Comm. $n^{\prime \prime}$. 27 , for catching any dust or stray gas which may perchance come from the rubher tube at $C t_{1}$ Pl. II fig. 2. At the upper end the vessel terminates in a capillary tube $E_{b o g}$ which is divided almost immediately into two $E_{b_{91}}$ and $E b_{92}$. One of them is terminated near the appatatis by a cock b_{s}. The other ends in a glass or steel capillary terminated also by a cock. (On Pl. II fig. 2 e. g. the volumenometer is connected to the mixing apparatus I by a capillary tube soldered on to it after it has been mounted in E_{a} by the cock r_{8}. At $E_{b 93}$ (Pl. II fig. L) e.g. r_{9}, the steel capillary $y_{2}^{\prime \prime}$ proceeding from the three way cock mentioned in $\$ 19$ may be comected. The small bulb $E_{b_{2}}$ is calibrated by meremp at the same time ats the larere and serves to determine the small volumes above $E_{b_{3},}$.

To keep the temperature of the gas constant and uniform the measuring ressel is firmly fixed to the bottom of the copper case $E_{a_{0}}$,
through which water at constant temperature flows from the thermostat described in Comm. n ${ }^{0} .70$ III May 01 (see $E_{a_{2}}^{\prime}$ on Pl. II. fig. 1). Uniformity of temperature is also assisted by the movement of the stirrer on to which the thermometer $T h$ is fixed.

The ring $L_{a_{0}}$ together with the bottom plate is soldered to the case $E_{u_{0}}$ and is large enough for the measuring vessel to be put through it. The closing plate E_{c} is made fast to the measuring vessel and is so arranged, that it can easily be made watertight and that it can bear the weight of the whole mass of mercury when the tube is full without any danger to the glass as long at least as it is not displaced from its vertical position. The closing plate with flange and packing is pressed against the ring $E_{n_{3}}$ at the bottom of E_{a} by the serew $L_{c_{1}}$. The different parts will be seen by an inspection of Pl. II fig. 1. $E_{c 3}$ the ring and packing, made large enough to be brought over the measuring vessel, $E_{c_{4}}$ and $E_{c_{5}}$ round copper plates provided with a thread and cut out at $E_{c_{4}}$ and $E_{C_{5}}$ enough to pass over the tube $E_{b_{0}}$, so that they can be put on from the side and made fast together by the screws $E_{c_{3}}$; together they form the closing plate which is screwed into $E_{c_{2}} ; E_{f_{1}}$ and $E_{f_{2}}$ the halves from a round vulcanite plate which rest on the ring $E_{c_{3}}$ with bottom $E_{c_{4}}$ and support the chlargement $E_{b_{01}}$. $E_{f_{2}}$ and $E_{f_{3}}$ the two haves of a rubber plate which are united by rubber solution and pressed into the ring $E_{a_{2}}$ to make the whole watertight.

When the closing plate has been made fast perpendicularly to the measuring glass and has been serewed against the lower rim of E_{a}, the two parts of the conical top E_{n} are brought together into place and the measuring glass centered and held fast by the cork E_{k}. The whole waterbath is then brought into as vertical a position as possible.

There are windows in the ease E_{a} which enable the tube to be lighted and read. These are formed by thin pieces of plate glass held between stout brass frames $E_{h_{1}}$ and $E_{h_{2}}$ one of which is soldered to the wall of E_{n}. The screws $E_{h_{3}}$ enable the plate to be equally pressed against the rubber packing $E_{h_{5}}$ and the glass. It is quite necessary to have the case completely tight, which was here obtained, to prevent the felt in which E_{a} is packed from becoming wet, and hence from an irregular loss of temperature.

In spite of the verticality of the entire case the glasses require to be tested with a contact spirit level, in order that the necessiny correction to the cathetometer reading may be made.

To determine the rolume of an enclosed quantity of gat the position of the meniscus is not read with reference to the marks on the glass
tubes, hot on finer lines etehed on to small slass plates $E_{2,}-E_{2 ;}$, provided with commections E_{20} and serews $E_{2,}$ to fix them to the eylindrials portions of the measuring vesel, By a proper arrangement of these the menisous and the lines can be sharply seen over the whole length of the calse.

The measming vesel is calthated by temporarily bowing on, at the lower end, a small glase rock with a line point (ef. Comm. No. 70. IV. May 'OL). The mercury is introduced through this in the carefinly exhansted apparaths and the menisei are then read in the maner descrithed ahove for the measurements and with the same precautions as to lighting and temperature. The merenry drawn off at the cock is weighed. As before the readings are made on the glass plates but in order that the calibation shall not be lost it these have to be removed, they are also compared with the lines on the eylindrical tuhes. This would he necessary if the tube had to be removed cleaned and triet atter the method of Comm. λ° 。27, but nstally it is sufticient to suck up the varions liguids and to dry by repeated evachation admision of dry air through r_{0} and r_{1} of Pl, II tig. 2.

The measuring vessel can be completely shat off from the mercury reseroir, see Pl. II fig. 2 or the manometer by the clamp Cl_{1}. All these comections are catefully cleaned good thickwalled black rubber tubes, which are strengthened by wapping them spirally in strong tape. The mercury menisens (ef Comm. No. 67 Dec. ' 00 for what is here implied) remains quite clean after a series of measurements, if only dry gas is admitted to the volumenometer (this is only true when the gats has no action on the fat of the cocks and joints). The small changes in the position of the meniscus to bring it to the required position are made by manipulating the clamp Cl_{3} and the remonir. During the measurements this clamp is always closed.

The pressure of the gas in the volumenometer is given by the height of the mercury in the manometer tube when Cl_{1} is quite open. This is itself comected to a barometer and a resevoir at constant temperature by airtight connections in the mamer of Comm. N°. 60 June ' 00 and the same precantions are taken to ensure accuracy in the temperature determinations of these two mercury columns. The volumenometer menisous and etched lines, manometer, barometer and standardseale (ef Comm. $\mathrm{N}^{0}, ~ 60$) are so placed that they can be reat without ahtering the telescopes of the cathetometer.

The menisei of the barometer and manometer are read as described before, that of the volumenometer by the help of a brass plate with a 2 mm . slit in it, which is brought with a glow lamp to the same level as a meniseus and gives grood definition.

In order that the required accuracy may be obtained it is necessary that the pressure shall not fall below $0,5 \mathrm{Atm}$.

To determine the theoretical normal volume measurements are made at two or if possible at three positions with the same quantity of gas. Whenever the third virial coefficient C (cf Comm. $\mathrm{N}^{0} .71$ June '01 and $\left.N^{0}, 74\right)^{1}$) does not come into account at the pressures considered and to the accuracy required, the same value of the coefficient B must be foumd by a combination of any two of the three measurements. This gives directly the deviations from the law of Boyse and hence the theoretical normal volume.
§ 21. The mixiny appraratus. On Pl. II fig. 2 the volumenometer described in $\$ 20$ is shown comnected with other apparatus for the preparation of accurate mixtures of gases and for the investigation of their compressibility.

The drawings do not require much explanation. The mixing vessel F and the reservoir G have about 2 liters capacity. G is provided with it three way cock and is particularly useful when a number of mixtures are required with a small proportion of one component which can be contained therein.

The comecting tubes between r_{s}, r_{s}, r_{g} and from E to r_{6} are narrow so that the uncertainty of their temperature may have no influence on the accuracy of the measurements, the other tubes are large enough to allow free comection between the various parts and the pump, and to help rapid exhaustion.

When a mixture of given composition is required, and the mercury stands above the closed clamps $C l_{1}, C l_{2}, C l_{3}, C l_{4}$, the whole apparatus is pumped out through r_{1} and is filled through r_{4}, while r_{s} is shat, from say the gas apparatus comected to r_{2}, after being washed out with this gas.
Then r_{3} is shat and r_{7} so turned that the gas is shut up in G while F is brought into comection with the pump through r_{4}. The cocks r_{s}, r_{s} and r_{6} are then opened and E and F and the comections pumped out again. By raising Kir and opening Clo widely and $C l_{1}$ (to prevent air entering from $I /$) only partially the mercury is caused to enter E and to fill first $E t_{03}$ without enclosing any gas, then $L_{b}^{\prime} \quad u p$ to the required position, when $C l_{1}$ is shut. The space between $r_{5}, r_{2}, r_{3}, r_{1}$ is repeatedly washed out by a small quantity of gias from G through the cock r_{4}, from here also gas is

[^131]brought into E ' and the whole pumped to a grood vatumm. 'The required quantity of gats ean then be brought into E Hirough $r_{\text {s }}$ fand
 by r_{s} and r_{0} are then abomattely measimed athd when r_{a} is opened nearly the whole of this catn be brought over into f. The remaning

 secomd wats is then hronght directly into the volumenometer from r_{s} and the volume meatured in the same manner.

When this is finished r_{a} is again opened and the second component in E mixed with the tirst in P where it stands for some time. The armixture of the total quantity is eompleted by drawing the combined qases several times backwards and forwards between the two vesisels. The mixture is then preserved in P and as much as may be necessary is driven into E_{b} or through r, into other apparatus for measurements on the compressibility.

K0yInkliJie akadeyie van wetexsoliaprey

te AMSTERDAM.

PROCEEDINGSOF THE MEETIN(;
of Friday April 24, 1903.

(Tramsated from: Verslag van de gewone vegeatering der Wis- en Naturkundige Afdeeling van Trijlatg ó' April 1903, Dl. NI).

CONTENTS.

Abstract

C. A. Lobry de Breta and C. L. Jexales: "Dissuciation in and crystallisation from a sulid solution", p. 643. E. II. Büchaer: "The transformation of diphenyliodonium iodide and chloride and its velucity". (Communicated by l'rof. C. A. Lobisy he Brexa), p. 646. J. J. Blanesma: "Nitration of symmetrical dinitroanisol". (Communicated by Prof. C. A. Lobry de Breyn), p, 650. J. H. Bonnfas: "Two new mid-cambrian erratic-blucks from the Dutch diluvium". (Comnumicated by Prof. J. W. Moll), p. 652. J. C. Kluyen: "An analytical expression for the greatest common divisor of two integers", p. 658. W. II. Jelnes: "On maxima and minima of intensity sometmes observed within the shading of strongly widened spectral Imes", p. 662. II. A. Lorentz: "On the emission and absorption by metals of rays of heat of great wavelengths". p. 666. G. vas Iterson Jr.: "The decomposition of celluluse by aërobic micro-organisms". (Communicated by Prof. M. W. Betmerinck), I. 685, (with one plate).

The following papers were read:
Chemistry. - "Disserciation in. and mpstallisation firom a solud solution". By Prof. C. A. Lobry de Brevs and Mr. C. L. Jexgens. (Communicated in the meeting of March 28, 1903).

It is no longer necessity to be reminded of the antogy between liquid and solid solutions but it is still a matter of importance to trace and investigate new instances of the similarity of the two solutions. For this reason attention may be called to the following phenomena and observations.

The new phenomena relate to the interesting intramolecular rearrangement discovered hy (hamons and Saber ${ }^{1}$) in which solid of

1) Ber. 3́. 2040 (1901).

Proceeding: Royal Acad. Amsterdam. Vol. V.

and where emsergently an oxgen atom of the nitrogronp migates
 Gonincos amb suber have invertigated this reaction more clowely, principally with solutions in difterent lignids: as rewards the tratheformation taking place in the ortid condition, in which we happen (1) the partionlarly interested, they merely say: ydass dic Kirystalle: nawh mud nath ihre lichtuelle Fiarte verlieren, undurdsichtig, grinnlich und sothliesalich weis werden".

 ficaut for the knowledge of the properties of solid solutions. This will berome prident when we think of the reneral and very interesting property of the organic nitrosoderivatives 10 suffer polymerisationand become colombess when in a solid comdition; in solution, however, they are umimolectar and colomed (generatly blue or green). This belaviour is guite comparable to that of nitric peroxide. In a certain number of eases the depolymerisation hats been trated by erroseopic means, ats it often takes place very slowty: the lowering of the freazing puim then grablatly becomes greater white the colour beomes more and more intense. In this way it hat been ascertained that int the colourless solid nitroso-compound two molecules have become mited showing that an intense coloar must beatributed to the single molecoles. The same happens with NO_{2} (the nitroso-compound of oxgen which hate an intense colome, whilst its polymerisation product $\mathrm{N}, \mathrm{O}_{\mathrm{O}}$ is colourles.

After these remarks it is not difticult to see in what manner the tramsformation of solid o-nitrohenzaldelyde into solid o-nitrosobenzois arid must be conceived. The displacement commences as som as the cerstal is exposed to sumbight ; atter abont 15 minutes a faint ereen tinge is pereeptible which gradually deepens; the nitrosobenzoic acid, which is formed from and in the solvent, first remains in solid solution aud, to judge from the green colour, in the unimolecular comblition. On comtimuing the exposure to sumbight the colon beromes more intense, until finally the saturation point is reached; the outer

[^132]layers of the erystal then hecome dail and a lightev green, the nitrosobenzoic acid, which erystallises out. is now however white and consequenty bimolecnlair ${ }^{2}$); finally the suface of the (rystal becomes quite white and opatue. The proces then apparently comes to a standstill becanse the smight camot any longer penetrate the interior of the crystal or only in an insufferent degree. In this case the interior of a sufficiently big erostal still contains a green thathsparent nuclens.

The titration of five different specimens has given the following result :

After $2^{2} / 3$	day about 3	$\%$	of nitrosobenzoic acid.			
$"$	$6{ }^{1} / 2$	$"$	$"$	5	$"$	$"$
$"$	10	$"$	$"$	11	$"$	$"$
$"$	15	$"$	$"$	15	$"$	$"$
$"$	34	$"$	$"$	24	$"$	$"$

The surfaces of the last erystals had tumed quite white.
Conclusions as to the velocity of tramsformation cammot of course he drawn from these figures, as on the one hand the source of light varied too much in intensity, whilst on the other hand the crystals were of a different thickness.

It was considered of importance to try and determine the maximum solubility of o-nitrosobenzoic acid in o-nitrobenzaldehyde. From the surface of those green crystals, which commenced to deposit the white acid, the latter was therefore as fiar as possible removed by mechanical means. By titration 2.6% of nitrosobenzoie acid was then found; if now we may assume that the concentration of the acid inside the crystal is not smaller than that at the surface the saturated solid solution contains about 2.6 mols. of acid per 100 mok .

Another conclusion may still be drawn from the above, namely that o-nitrosobenzaldehyde is capable of forming mixed erystals with 2.6 mols. of o-nitrosobenzoic acid; whether these two substances are ismorphous is not known as the system of crystallisation of nitrosobenzoic acid has not heen determined. Very probably they are not isomorphons as otherwise the power to form mixed erystals would ocenr over a hager interval or even for all proportions.

[^133]

 will be firther insertigated.

 by lowi. ('. A. lamain me briva).
(Commanimated in the mecting of March 2̈r 190:3).
It is alhat 10 vears ago that Vaton Mbexer and Hartass ${ }^{1}$) ammoneed the imporant diseovery of at new class of iodine derivat
 having ahout the same hasic power ats the ordinary alkalis and capable of forming salts. The simplest representative of this interestinge
 the satto, stely as the ehtoride or the nitate, when dissolved in water. appleared to possess a comblutive power corre-ponding with that of the allkali salts ${ }^{2}$).

The hehaviour of the halogen salts of the hase, when heated, is pecolian: Victor Meyer and Marmans noticed that on finsing these salts at 175° a decomposition sets in , which spontaneously leats to acomplete consersion into halogen-henzene $\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)_{2}=\mathrm{J}=\mathrm{J}=2 \mathrm{C}, \mathrm{H}_{8} \mathrm{~J}$ with strong evolution of heat.

This transformation now deserved a closer study. It may be considered at a depolymerisation but is distinguished however from many other similar reactions, not only by the great difference in chatacter between the decomposing substance and the products of deomposition but also her the fat that the trathsormation is mot reversible. At all events, up to the present no proces is known which leats straight from iodobenzene to diphenyliodonimmiodide. In this latter reepeet the athove mentioned reation is distingnished from the transformation with which it has been compared namely Hat which tetramethyammonimm jodide sulfers on heating ; the latter substance is realily prepared firom its products of decomposition at the ordinary \quad emprotare.

[^134]It was to be expected that the decomprosition of the diphenyliodonimmsalt would take place at temperatures considerably below the meltingpoint, and this is actually the case.

1. Beforetand, however, it wat deemed desirable to study the behaviour of the iodide towards light as in the study of the velocity of transformation account had to be taken of a possibly existing sensitiveness to light ${ }^{1}$).

I have found that in the case of the iodide the transformation is cansed by exposure to light ${ }^{2}$); whilst it remains quite intatet when kept in the dark for $2^{1 / 2}$ months. It wats to be expected that the source of the light would affect the transformation. The following results were ohtained:

Electric Are-Light : after 1 homr titre: $26.6^{* \prime}$ "J, comverted about $14.5^{\prime \prime}{ }_{\text {. }}$

$"$	$"$	$"$	$11 / 2$	$"$	$"$	24.9	$"$	$"$	$"$
Sunlight :	$"$	4	$"$	$"$	30.0	$"$	$"$	$"$	$" 3.5$

The decomposition of the iodide is therefore most ripidly etfected by the are-light.
2. If now the solid iodide was exposed to temperatures considerably below its meltingoint a more or less slow consersion seemed to take plate. Whereas 1% at most wat decomposed at 90^{3} after 3 houss, about $36^{\circ} \%$ had disappeared at 100° after 13 homs, whilst after heating at 123° for $3^{\frac{1}{2}}$ homs only $5^{\prime \prime}$ "Wat left modecomposed. This shows that the deeomposition of the solid substance already takes plate even at temperatures ronsiderahly betow the meltingroint. This also applies to the solid chloride which however is more stable than the iodide.

Neveral series of experiments were now made with the solid iodide

[^135] nitatere on : fillure oecasion.
 the veloedy of bamsfarmation of the iodide in solntions. Its great

 solubility of the iondede was howerer sill fow small, namely only about $1^{1}{ }_{3}^{\circ} \circ$.

The more soluhbe diphentiodonimmerdonde was Welter suited for the propase: the solnbility in water, alshongh mot latere, prowed sulfieient at the temperature at which the operation towk place (98-99').

The results ohtamed in tifieen velocity determintaions were at dirst very matiofatory amb pointed to the existence of many interfering inthenes. 'The eochicionts whathed on applying the formatae for mimolecular and bimolecolar readions were andhing hut eonstant athe often pointed to a very inconda comse. In one experiment coeflebents were obtaned whith were many times greater than those gro in amother apparenty quite analogons rase. Sometimes the coenti"ients diminished eqnally, sometimes the reatelion after proveroling for a while, sudenly ceased. After many similar nerative results it at latst appeatred that the conversom of diphenglodomimm-chloride into (hboro- and iodobenzene is inthenced on an extramdinaty degree by the presence of very small quantities of impurities. Very small पnamaties of ated retad the reation to a rematkable extent or bring it 10 a standstill: the presence of bates of iodine eathes at requlat fall in the readion coetticient; a lible of the fiee base diphenyl-iontonimm-hydroxide areeterates. on the other hand, the decomposition in at stomge derpere The hatorenbenzenes formed during the readion appeared however w be inert.

On now wing a very pure prepataion fore from arodity and of a pure white colour and applying the liommatar feations of the seromb order, condicients were ohtathed which comblat be considered ats constants. (see bahle p. bits).
 not eonstant fell to about half the valne obtained in experiment I
 about 4 or 5 times ${ }^{1}$).

[^136]

If, by means of the vas thory formalal ${ }^{2}$), we calculate the order of the readion fiom the commmateated experiments and abo from a few which are not yet commmaicaled, we find $n=2.1,1.9$ and 2.1 . From this, and atso from the fate that in experiment l the K_{2} 's are constants, it follows that the transformation
somewhat gellow, but gave on analysis the thenretical number for chorine. By this addition the titre naturally inereased and came to $26.10: \underline{2} / 2$ hours bater the solntion did not appear to have changel (foum thas). The somewhat coloured chloride was foum to have a faint achidradion and to give blue colom with starch solution ater some time.
${ }^{1}$) K_{1} is calculated accorling to the formula for reathons of the first, K_{2} acemange to that for reactions of the secomd order.
$\left.{ }^{2}\right)$ Vorlesungen, 1. 193.

$$
\left(C_{0}, H_{2}, J_{2}^{\prime}\right)=1_{0}^{\prime}, H_{8}(1)+\left(O_{4} H_{5} .\right)
$$

is a himolecular one.

 dissociated moleroles but berweon the bons. This ideat would agree
 of ammonimm isheyabate in angeons or atcolohtie solntion into wea, a reation which also appeared to he a homolecolar one. Wibaza and Hambs were emabled to support their biow ly showing that
 on the reation invertigated by them ats looth diminish the dissoriation of ammonimm isocyanate. In our case at simila belatviom of chlorine and iodonimm atoms does not present itself. Hydrodhlorice aceid has certainly a retarding infleme but his is too latre to be explatined by a dimimution of the ionisation. Then aram, iodonimn hydroxide has at strong aceelerating power. We must, therefore, think here of it special catalyzing intluence of hydrogen- and hydroxyl ions: apparently the first atts here ats at retading caldalyzer, an influence of which up to the present but few instances are known. Then, if
 in a regular manner whilst the chlorine ion is still present in atout the same comeentration.

The most probable view of the mechanism of the transformation of the iodonium haloids is therefore that the reation takes phace between two molecnles.

A trate of iodine retards the thansformation in an increasing degree. This investigation will be eontimed later ons.
Grogenie. chem. Laboratory, University of Amsterdim.

Chemistry. - "Vilralime "f s"gmmotrical demitmenisol." By Dr. J. J.
 (Gommmicated in the meeting of March $2 x, 190: 3$).

In a previons communication ${ }^{\circ}$) it hat heen stated that pentamitrophenol is readily formed by the action of nitrie adod on symmetrical dinitrophemol whist sommetrical dinitroanisol is attacked with ditherolty by nitrice adod. It seemed, however, bot imposibible blat symmetrical dinitromisol might still be further nitrated and this indeed appeared

1) J. (:h. Soc. 67. 746 (1×4\%).
${ }^{2}$ Proc. Royal Acad. 25 Jan. 1902.
to be the case. If symmetrical dinitromisol is treated for fwo home on the waterbath with a mixhme of $1 \mathrm{NO}_{\mathrm{a}}$ (densily 1.44 and shlphric atid, trinitroanisol is formed m.p. 104°. The nitrogroup introntured into this substance is mobile and casily replaced by OH, () ('H H_{3}, NHz. NHCH ete. If the $\mathrm{NO} \mathrm{O}_{2}$ group is replaced by OH dintrogratarol is formed m.p. 121°. By treatment with alcoholic methytamine, methyl-amido-dinitroanisol is formed m.p. 168^{3}, which is converted by nitric acid of 1.52 sp.gre into oxymethytinitrophenyl-methylnitramine m.p. 118 already oblamed by Grmacx and Lafithre ${ }^{2}$) hy nitration of dimethytorthomisidine. This goes to prove that the nitrogroup in regard to the $0 \mathrm{CH}_{3}$-gronp has been introduced into the ortho plate and that, therefore, the constitution of trintromisol is represented by $\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{3}\right.\right.$. 1. 2. 3. 5.

If trinitroanisol is treated with a sohntion of NaOCH_{3} in methyl aleohol the NO_{2} group 2 is replaced by OCII and the dimethylether of dinitropyrocatechine is formed, m.p. 101°. Treatment with alcoholic ammonia yields dinitroanisidine $\mathrm{O}_{6} \mathrm{H}_{2}\left(\mathrm{OCH}_{3}\right) \mathrm{NH}_{2}\left(\mathrm{NO}_{2}\right)_{2}$ 1. 2. 3. 5, m. p. 17t; with aniline and aethelamine are formed compounds melting respectively at 155° and 123°.

If trinitroanisol is nitrated with a mixture of nitric acid of 1,52 sp. gr. and sulphurice acid a tetranitromisol is formed m.p. 154. On treatment with 2 mols. of $\mathrm{Na} \mathrm{OCH}_{3}$, this substance is converted into erystals which melt at 165° and assume a purple-bown color when exposed to light.

Analysis show that two NO_{2} groups are replaced by OCH O_{3}. Lomava Jucksox ${ }^{2}$) by treating symmetrical tribromotimitrobenzene with 3 mols. of NaOCH has prepared a compond with the same properties as the above mentioned; he however considered that he laud obtained the dimethylether of dinitroresorcinol. The latter substance melts; however, according to Freyss ${ }^{3}$) and Meldoda ${ }^{4}$) at 154°, whilst Meertm Trawogt ${ }^{5}$) and I have found 157°. It is therefore very probable that Loring Jachson has been dealing with the trimethylether of dinitrophoroghcinol as, on treating symmetrical tribromodinitrobenzene with $\mathrm{Na} \mathrm{OC}_{2} \mathrm{H}_{5}$, all three Br-atoms maty be replaced by $\left.\mathrm{OC}_{2} \mathrm{H}_{5}{ }^{6}\right)$.

That the compound obtained from tetrantroanisol and NaOCH3 is really identical with that from symmetrical tribromodinitrobenzene
${ }^{1}$) Compt. Rend. 112. 727.
$\left.{ }^{2}\right)$ Amer. Chem. Jonm. 13. 1so.
a) Centr. Blatt. 1901. J. 7339
${ }^{4}$) Proc. Chlem. Soc. 17. 131.
э) Ree. 21. 2ss.
$\left.{ }^{6}\right)$ Amer. Chem. Journ. 21. 519.
 - Hhb:

 thation of the telathitamainol is:

$$
\text { C, H OCH, }\left(\mathrm{NO}_{2}\right), 1.2 .3 . \quad i \quad 1
$$

 Wift six mols. of methytame, the there heomine atoms are readily mplated ly NHCHs and we whatn fine mangered neodles m.p. 220° (will decomposition). When this symmelrical ($\mathrm{C}_{6} \mathrm{H}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NHICH}_{3}\right)_{3}$
 a tine white cratalline powder is whathed which, when diswolved in

Geology. - "Turo New Mie-Cimblutum Eiratic-Blocks from the
 muncated by Prof. J. W. Mobl.).

1. When I had been appointed atsisiant at the Ceologital- Mineralogie Institute at (immingen, I wat charged with the bask of determining the forsils that are found in the collection of Gioningen sedimentary erratio-blocks. If we smered in this with a lossil, we can as a rule more of less arourately, for the erratic-block in which it occurs, tix the age of the layer of which it formerly formed part ; at the same time it may be fomel out whether shellike stone is still known as firm rock, - and whether the same kinds of ertatie-blocks have been met with in any other plates.

With many pieces I suceeded, hut with a not ineonsiterable number I fated, owing to vations datuses. To the latfer division belonged i. a. two small pieces of lime-stone, the latgest dimensions
of which are abouf 4 erombetres. They orginally made part of one erratie-block, which was found when the ramparts near one of the former Groningen gates (boteringepoort) were dug off. One of the pieces still shows a part of the orginal surface possessing distinet glacierscratehes.

From the pieces preserved it may be anoluded that this erratiobock consisted of green-grey, tather compact, matly lime-stone, in which with a magnifying glass many little grey grains and here and there little dark-green lustrous Glanconte-grains may be distinguished. I observed one simgle Pyrite-erystal. At the surface it bad, to a depth of about 1 centimetre, become more or less yellow, moder the influence of corrosion.

The part preserved also shows that through this erratie-block ram a layer that was rich in Tribobites-remains. For the greater part the transserse sections of them are visible. In one piece, however, some remains are party or entirely exposed to view. A mid-shell is the most important of them.

This mid-shell, aross which rum varions flaws, and which eonsequently is not likely to have entirely retained its origimal shape, is lengthwise rather strongly vantred and has a length of 12 millimetres, its breadth amomnting to about 14 millimetres. It is almost everywhere the same, the lines that commet the begiming and the termination of the factal suture, ruming atmost parallel to the longitudinal axis. The front-edge is regulamy comved. The oceipital-furow is shallow, especially on the shabella. The length of the rather broad ghabella is about $3 / 4$ of that of the mid-shell. It is tongue-shaped and bounded by shatlow dorsal farows. The later fiss man nearly paratled to each other and then 1 men to the rentre, where they meet. Lateral furrows ate not to be distinguished on the ghabella. That part of the mid-shell which lies in front of the glabela, slants down mathe quickly. The parts on cither side slath down more slowly.

As to the sculpture, along the fromedoe of the mid-shell. patatlel to it, run tine stripes. The shell moreover shows all ower, very near each other, fine pricked points. The colow of the shell is partly bark, partly yellow-grey (cream-coloured).

In spite of repeated efforts I had never before sureceded in discovering what species of Tribohites this midshell came from. This summer, however, I was more fortmate. ()n my journey to Oeland it chanced that near the hospital at borghome a pit was being duge and that, while doing this, people had penctated as far as the layer
 from the pit, was still present. It consisted of greenish marl-slate,

 shombl comsist of manl-siate only, which opinion was afterward made

In the said lime-romeretions I fonme, hesides some remains of

 of the latter -preves of Tribobites.

Here was comblamed the opinion of Liswarsose ${ }^{9}$) that the absence of stripes on the fromtendige of the mid-shells, and that of the pricked
 Bomphom, hy which this sperios was satid aperially 60 ditler from Hoe Stora Fro-species, mast be attributed bo the ciremmstance that his botghohm material came from mall-shate, and that of stora Frö from limestone. The stripes and the pricked points are rematkably distimet in the mid-shetls I wathered from the lime-roneretions at bonqholm. Consequenty there is no reason any mone for not ranging the Ellipaocephatus-remains of storat riou umder the head: Ellipsocephatus Polytomms Liswinsos, the difference in size only nof suffeing (1) mantan the contray

One of the lime-oneretions contained a layer that was peculiany rich in mid-shells of Ellipsocephatus Polyomus. While breaking this concretion to pieces, I was immerliately reminded of my Groningen erratic-block: and now that 1 have compared the latter with the pieces I brought from Borgholm, I know that they are exactly alike. In both the stone is the same, exept that the Groningen piece has a yellow tint, which must be attributed to the influente of corrosion. The mid-shells of Eillipsocephahs Polytomus, ocrurving in hoth, also resemble each other, in colom ats well ats in their mumerous flaws.

Consequenty it may with perfeet certainy be declared that the erratie-block mentionce above has the same age as the layer with Paraboxides Gelambiens Sjögren (the oldest of the Mid-C'ambrian), and that a conreaponding kind of stone is still found at borghom in Gelamel. It is probably also met with at stora frö in the same island. I cannot say so for eortain, howerer, ats I did not go there and so don not possess any limestone from that place, which might the used for comprarison.

[^137]This is the first fime that mention is made of such an erraticbock from the Dutch diluvimm. Many of the kind, with remains of Ellipsocephalus Polytomus or of other fossils, weenring in (Oeland in the layer with Paradoxides Oelandiens, have adready been found in the German diluvium. The tirst of them was mentioned by Dums ${ }^{1}$) and comes from Rixdorf near Berlin. A few years after, Remelé ${ }^{3}$) described two such erratic-blocks from the neighbouhood of Eherswalde. Later on, Romerr ${ }^{3}$) made mention of two erratic-hlocks of the same age. One of them eomes from Rostock and bears muth resemblance, according to the description, to the Groningen piece. This cannot with so much certainty he said of the second block, which was found at Bromberg and does not seem to be greenish. In Sleswick-Holstin, too, corresponding erratic-blocks seem to have heen found, as Stordwis ${ }^{4}$) writes about "griumliche Kallgeschiche der Oclandicus-Zone".

This erratic-block also contirms my supposition formerly ${ }^{5}$) mentioned, that in the Hombsrug oceur more sedimentary erratic-hlocks with a Wesi-Baltic character, tham was formerly generally supposed.
II. For some time already I have had in my collection several picces of an erratic-block consisting of limestone that has been tinted dark-grey, even almost black, by bitumen. It was found in the loampit near Hemelum. Its calcium-carbonate having for the greater part erystallized, this limestone approaches antraconite. Some nests of little pyrite-crystals and a small phosphorite-nodule are found in the stone.

For a long time the only fossil that was exposed to sight was (with the exception of a few unimportant remains, prohably of a Paradoxides) what I supposed to be the internal cast of the inside of a piece of Trilobite-shell. Its largest dimension amomes to 9 millimetres. This internal cast is almost oval, and strongly vaulted. The top-part finishes in a bow. On the convex side of this bow it is steeper than on the concave one. In front, on the least steep part, is a frame in relief, soon turning romd the most elevated point and then continuing on the steepest part, where it becomes tinier and tinier. Towards either side springs from this trame a net-work of

[^138]

 ッlovalons.

It being quite imposible fore me to lime what sperees of Tribobites
 the lived. The nathere of the stone mate it likely to be ('ambrian.
 remalins.

Whon, however, a few weeks ago, my friend dr: (itröwn, from
 Ditmmarks erologiske Undopögelse II Rateke No. 13.) took a view of my conlection of erratic-hooks, he recognized in the satid off-print Hat of a risht cheek of (onocoryphe Exsulans Lims. ${ }^{2}$) Herewith the ato of this ermatic-block wats atreaty exactly determined, for the oremrence of these Tribobites-remains is chatacteristio of the lower part of the layers with Patadoxides Tessini bongr.

This division romsists, in sthonen, in lbmblohm and (according to
 in Oeland, of limestone, which after this Tribobite is at present mostly called Exsulamslimestone, whilst it eased to be called Coro-natus-limestone.
(ikisw un, s opinion was billiantly ronfirmed, when, on his breaking the stone further to pieces, remains of the Tritobites Conocoryphe Impressa Limss, ${ }^{2}$) Liostamens denleatus Ang. ${ }^{2}$) and Solemoplena Parva Lims. ${ }^{\dagger}$) were exposed to view by him. Moreover a remnant of Aerotelat Socialis v. Scehach was fomm, which, however, also oceurs in older and in younger layers, which is not the ease with the Trilobites mentioned just now.

The only remnant that has been well preserved, is a mid-shell of (omocoryphe Impressa lims. It is for the greater part exposed to view. Only on the sides it is still covered by the stone; so the facial sutures are imsisible. It must have belonged to a young individual, its length being only G millimetres. It is slight! vaulted, the grabella a little more than the other part. In front it is hounded by a flat border along the edge, whieh border is broadest in the middle.

[^139]The oceipital furrow is shallow, especially on the glabella. The neekring broadens fowads the centre and beas a lithe tuberele there. The breath of the glabella is at the back equal to its length, which is half the breadth of the mid-silell. The glatella becomes grathally narrower towads the front: in front it is romaded. On either side there are three very indistinct hateral furrows. The dorsal furvows are little developed. In fromt of the grabellat the eheeks rim almost imperceptibly into each other. On either side an oblong elevation is visible on the firm cheek, just behind the place where the dorsal furrow thrns down towards the centre. It is scarcely to be observed that starting from this elevation a line-shaped one rums in the direction of the corners of the cephaton, as Liscarssos tells us. This must certainly be attributed to the ciremmstance, that this mid-shell belonged to a young individual. The seale prossesses mo other sempture than comenters. very fine impressed prints, phated very close to each other.

From the properties mentioned above one may easily convince oneself that the mid-shell described comes from Conocoryphe impressa Lints, and that consequenty this erratic-block is a piece of Exsulanslimestone.

The other Trilobites-remains; all of them pieces of mid-shells, are too incomplete to be described in such a mamer, that the species of Trilobites which they come from might be recognized from the deseription. Moreover, such a description would be more or less superfluous, as the age of this erratic-block has already been sufficiently indicated. So I think I'd better leave it and refer to the authority of Dr. Grönwad with regad to the remains of the other Trilohites mentioned. As he was so kind as to send me some midshells of these Trilobites for comparison, I conld convince myself of the correctness of his determinations.

As was mentioned above, Exsulans-lime is found as firm rock in Bornholm, in Schonen, and southward of Mörbylinga in Oeland. Mörbylanga does not seem to have been mentioned yet in literature in this comnection; but Prof. Moberg told me of it. In Schonen, Exsulans-lime is without any doubt met with as firm rock near Andrarum, Gislof and Kwiks Esperäd. Most prohably it is also found as such, according to Laxnarson, near Faggelsång in the neightomhood of Lund.

Grönwala tells me that my erratic-block does not, petrographically, correspond with the Bornhoh Exsulans-lime, more with that in South-East Schonen. I camot decide whether it also resembles that which is found at Mörlyghag in Ocland.

In the Dutch diluvium an erratic-block of this kind was never
before fomm. They alan seem to be very bare in the German diluviam.
 hy 太thaili ${ }^{1}$) only.

 real variathes ar and ! which for positive and interar valnes of these variables become equal to the ereates eommon divisor of at and $\%$

I very simple solution of this problem is ohtaned ats follows. I enote by $[11]$ the interger part of the number a and consider the arithmetieal diseontimmos fimetion

$$
P^{\prime}(\prime \prime)=n-|n|-\frac{1}{3} .
$$

Forr atly integer n we have

$$
I^{\prime}(\prime \prime \prime)=I^{\prime}(\prime \prime) . \quad I^{\prime}(\prime+\prime \prime) \ldots-\quad 1 \quad I^{\prime}(\prime \ldots-1)-+\begin{aligned}
& 1 \\
& 2
\end{aligned} .
$$

We will likie

$$
I^{\prime}(\prime \prime)=r^{\prime}\left(\prime-(1)=\dot{i}_{2}^{1}\right.
$$

amd consequenty

$$
[n]=|n-0|=n-1
$$

Integer values of u excepted the wellknown relation

$$
I^{\prime}(\prime \prime)=-2 \sum_{n=1}^{n=x} \frac{\sin 2 x u u}{2 x u}
$$

holds and from it we deduce the identical equation

$$
\sum_{u=0}^{=x-1} P\left(u+\frac{u}{u}\right)=\sum_{u=0}^{\sum=x-1} P^{\prime}\left(u+\frac{u_{i} \beta}{u}\right)=P(u u)
$$

where athe are rehative prime integers. That the identity is still valid for integer values of n maty be easily verified.
by the equation

$$
\begin{equation*}
z=2 \sum_{y=1}^{u=1} P\left(\frac{!!!}{r}\right) . \tag{I}
\end{equation*}
$$

a discontimous function of the vallables , atul! is delined. We maty regatel it at atist solution of the proposed problem. For if

1) Stollex. loc. cit. p. $\$ 1$.
x and y hecome integers, say $x=\| /$), $y=\beta / /$, where $\quad($ and B are prime to eath other, we hate

In a somewhat different form this result is fomm in a paper by Sters ${ }^{1}$). A whole set of functions of the regumed kind may be detured in quite the same way. We only have to notice that the function

$$
f_{s}^{\prime}(\prime \prime)=\sum_{n=1}^{n=\infty} \frac{\cos ^{2 x} n^{\prime \prime}}{u^{s}}, \quad(v>1)
$$

satisfies the fumdamental relation
where again a and β are prime to cath other.
Hence if we put
we wet for $x=u D, y=\beta D$
that is

$$
z=I
$$

In the functional relation (II) the term $F_{s}\left(\frac{14!}{x^{\prime}}\right)$ is mot casily evaluated: hence the series $F_{s}(11)$ maty be mitably replated by the batter of the bwo series

$$
\begin{aligned}
& g_{2} k-1(u)=2(-1)^{k} \sum_{n=1}^{n=\infty} \frac{\sin 2 x n u}{(2 x n)^{2 k-1}} . \\
& !2 k(n)=2(-1)^{k-1} \sum_{n=1}^{n=\infty} \frac{\cos 2 x n u}{(2 x u)^{2 k}} .
\end{aligned}
$$

Indeed, if we denote the bernoullian polynomial of order m

$$
\frac{u^{m+1}}{(m+1)!}-\frac{1}{2} \cdot{ }_{m}^{u^{m}}+\frac{B_{1}}{2!} \cdot u^{m-1}(m-1)!-\frac{B_{2}}{4^{\prime}} \cdot \frac{u^{m-3}}{(m-3)!}+\ldots .
$$

by $f_{m}(11)$ the series $g_{n}(1 t)$ is identical with $f_{m}{ }_{m}(11)$ for all values of "between zero and unity. Therefore, whatever maty he ", the series If f_{n} (u) may be regated as a polynomial of the $m^{\text {th }}$ degree in

[^140]Proceedings Royal Acad. Amsterdam. Vol. V.

 of (1)!
 and the function $=$ hat herome conthanms overywhere. The stme howerer is mot bre for the patial deriatives of = with respert to

 thene disatratader maty be eliminated. The prowess of intergaton is apt to level finite diseominatios, morenver symmetry maty he intor dued hy it. And indeed is suitable expression of z in the form of at delinite integral can be wiven.

We consider the function z defned by

$$
\begin{equation*}
\frac{B_{k}}{2 k!!} z^{2 k}=w^{k} y^{k} \int_{1}^{1}!m_{k}(\cdot w)!k_{k}(!\prime \prime) d \prime \tag{V}
\end{equation*}
$$

Now = depents symmetrically on x and y and is contmuous thenghomt. The function hats contimmons derivatives; we may differentbate z at mmber of $k:-1$ times with resped to r and also $k-1$ times with respect to ! , either sebatrately or suhsequently, before the derivatives lose their contimity, so that hy making k larger ant larger the behaviour of a tends more and more to that of an amalytical fimetion of two real variables.

We now aratin substitute in ($V=\pi=\pi D, y=\beta /$) and as the
 moder the supposition $k>1$) we may multiply termwise and integrate the partial products.
bint after intergation a monvimishing amount is furnished only hy those partial products
sinextheth"
in which we have

$$
h=!, \quad, \quad l=!a ;
$$

hence we find
and as before

$$
\approx=J
$$

 even, instead of $g_{m}\left(m^{\prime}\right) f_{m}$ (\quad / I_{1}) the result would have been similar, only symmetry would have been lost.

We may remark that the z in equation (V) is still an algehratical function. For remembering that

$$
\begin{aligned}
\frac{d}{d u}!_{k}(\prime \prime) & =g_{k-1}(\prime \prime) \\
!_{1}(\prime \prime) & =l^{\prime}(\prime \prime)
\end{aligned}
$$

we dednce by repeated patial integration

$$
\begin{aligned}
& \frac{B_{k}}{a k!} z^{2 k}=\sum_{\nu=0}^{=\sum_{0}^{-2}}(-1)^{v} n^{k+\nu} y^{k-1-\nu} y_{k} \cdot\left(\cdot(), l_{k+}+1(y)+\right.
\end{aligned}
$$

of fimally

$$
\begin{aligned}
& +(-1)^{u^{\prime}:^{2 k}}!_{!}^{!}!2 k+1(!)+
\end{aligned}
$$

From this equation we infer that the product $z^{2 k}$ dy is a mational integral function of x and y of degree $4 k+2$, and gencrally peaking the equation represents an algebraical surface S^{\prime} of that degree. But it should be noticed that this surface is in reality is composed of am infinite mumber of partial surfaces, having contact more or less close along a system of plane curves ('. And in fact the larger the integer k be chosen the closer will be the contad of the partial surfices. Equation (VI) contatins the equations of all the partial surfaces, but each of them has a disting equation the coefticients of which are made up from the integers

$$
[x],[y] \text { and }\left[\frac{n y}{c}\right] \quad, \quad(u=1,2,3, \ldots\lfloor\cdot x])
$$

Hence we pass from one partial surface to an adjacent one in all places, where one at least of these interers incorases by mity.

 1i
 .7
 firom | |1 | O.
 wresould lake $h=1$ and we hate from (i) atol (V'I)

A comparimon with ($\mathbb{I V}^{\text {a }}$) maken it evident that lior integer valuen uf x^{2} and !/ the quantity z still becomes equal to the greated eommon

 the corven \boldsymbol{C}^{\prime} :
 red within the sharliu!! "f stronel!! weitemed spmedrat lims.". ") by Prof. WV. II. Jobits.

While examinimg a series of photoraphs of the solare spectom,
 (1) Which the shating of // and $\{$ was boken \quad be inte at stem of faint, mednoms lines, stmmetrically aromged ahont the eentral abrongtion lines ${ }^{3}$. The distanes apate of the eomponent lines of
 (T) some wher photographe of the solar spectrom, taken by Rowsand and by himself. he only fommel feeble indications of these series; but

[^141]in the shading of some of the strongest lines of inon and a few wher elements a similar strueture was observed, the eomponent lines being fam, nebulons, and ase bogethere

The plate which showed the structure of // and $i=$ most painly, displayed an additional pecoliarity, as on it the gencral shating of those limes was mosmally weak.

In Ilabe's abmomal spectrom ${ }^{1}$), which was phataterized by the wheme weakness of the shaded batkground of many aboption lises, maxima and mimima of intensity were also distingmishable moter a mieromeope thomgh they did not appear so chear nom so regulayly arratged as in the ease deseribed by dewtai.

If we suppese the princigal cause of the shading of the Fiambofer lines not to be the absomption, but rather the anomatons dispersion of the waves, which in the speetrom are sthated on either side the
 before mentiomed, as well as for the fated, that in rery rate casces obly it shows distinctly.

Let us eomsider a narow heam of light of ath exactly defined wavelength, belonging to the shaded batkeronnd of a framboter line. This beam has emerged from the deeper layers of the Sun will a redain divergence; we stppose it to proced in the approximate direction of the structure lines of the corema (. e. 1, 597). Lee its waselength be somewhat greater that that of the athomption line: for this kind of light, the methom will then possess at positive mfatedon constant, and the sepatate bats of the beam will dore about the denser parts of the "fubular" strmeture. If we had smposed the wave-length to be a little less than that of the absorphion line, the retiaction comstamt would have been nexutive and the rays would have comed about the bare parts of the coromal struedmes In either case the disergence of om monochromatio beam with altermately diminish and increase, and this partiondar kind of light will wark the Larth with an intensity, determined by the degree of divergence (eonvergence pertaps) with which the beam left the ultimate bratees of the eoromat.

With respeet to a beam of other light, the wave-lensth of which
 with have a comsiderably greater refatemem eomstant, wo that the rays of this pationlate beam may have made a bend, of paty of a hend, more bhan bowe, helonging to the former beam, on their way throwgh

1) (i. F. Ham, Astophysical fommal, XVI, p. 2:3, 1902.

the romona. This hean may, arorolingly, arive with a quite diflerent, saty a meater, divergemer and consequently diphly a smatler intensity in the epectrom, thats the neighburing beann, tirst comsidered.

Appobathing still nearer to the aharphom-line we shatl come ators Waves that reach the Earlh in heams whose diverqence is smather again, showing inereased intensity, ete. It is plath that in this waty periontioal alternations of light and dark on either side the central aborption line mast atise. The waves, domesponding to the middle of one of these finges, will have achieved exally one whole bend i.e. the distane between two eonserntive points of inflexion of the piath more, or less, than thone corresponding to the midelle of the aljacent fringes.

From the familiar type of the dispersion eurve it follows directy, that, in moving away from the absorption line, to equal differences in refiation constant increasing differences in wavelengh will answer. The distance befween the fringes will aceordingly increase from the rentre to either side, as hat in fact been observed.

Onr explanation requires bexides, that this system of faint lines should the visible only when sumbigt reaches us exactly along a poronal streamer of suflicient length. In my last paper (l.e.) I showed that, in case this condition is fultilled, the average shating of the Framboler lines must be abmomally weak. It is therefore not tobe wondered at, that on the plate, pandy dieplaying the peculian structure of $/ /$ and k, the shading really was unnsually faint. But the formation of a well detined line-system demands a further condition to be faltilled, viz. that the contiguration of that part of the (rotating) corona we are just looking through, offers all but the same aspect ats long at the photographice phate is exposed. This, of course, requiting very special circomstances, we see why even in cases, in which the shating of the liramhofer lines is weak, the fringes may be missing all the same.

In a few cases has a like strueture been observed with some strongly widened emission lines of the are-spectrom. Katsan came atross this phenomenon in a line of the lead-spectrum ${ }^{2}$); Rowiand too seems to have observed it once; and after many vain endeavons J:wedi. suceeded in obtaining a photograph of the are spectrum of calcinm, in which at $/ /$ and K the series appeared rather distinctly. This phate was obtained by using an extremely powerful direct curvent and exposing for three or four seconds only. Under these conditions
${ }^{1}$) H. Kaveer, Hamhthed der spectroscopie, II, p. $3 \Xi 3$.
the heated ealeium vapour formed a much more extended atmosphere around the poles than with a weaker current.
K.rser ${ }^{2}$) asserts, though, that it has hitherto remained unknown, what are the exart conditions upon which the phenomenon depends.

La connection with the preceding considerations, I hold it possible that in those experiments the metallic vapour has, during the (short) exposures, formed a kind of flame of tubular strueture, which happened to be in the exact direction of the spectroscope. This view seems reasonable if we bear in mind the well-known "blowing" which is of frequent oceurence in a powerful are loaded with much vapour. The radiations, proceeting from the core of the are, which caused the wide emission band, underwent anomalous dispersion in the enveloping vapour and fraversel the flame-shaped streamer, following simuous paths.

A simple experiment convineed me that the peculiar light-distribution ohserved in all strongly widened Fraunhofer lines ${ }^{2}$), may be strikingly imitated in the absorption-spectrum of sodium vapour. The only thing necessary was to fore the absorbing vapour into a more or le is tubular structure, such as we presumed it to exist in the coronal.

A slighty converging beam of electric light was thrown on to the stit of a grating-spectroseope. At a distance of rather more that 100 ('.m. from the slit, and about 1,5 e.m. below the axis of the beam was the opening of a specially constructed bunsen-humer, from which a sodimm-flame emerged. This opening was slit-shaped (30) (..m. long, (0,2 c.m. wide) and adjusted in a position exactly parallel with the axis of the incident beam. The pressure of the gats wat somewhat variable, and a good regulator untortunately not at hand. In order to supply the long flame with sodium, the consiruction of the burner included a kind of narmw gutter on either side, into which had been poured a solution of a sodium-salt. This ascended into the flame by strips of ashestos paper. When viewing this flame lengthwise, it was as if one were looking throngh a compressed tube, the sides of which romsisted of sodimm-vapour. The density of the vapour diminished gradually towards the centre as well as towath the outside.

The sodimm-lines were observed in the spectrom of the third order. Ln spite of the great length of the flame the real absorption lines were narrow: they stood out from a pretty dark softly shaded background, the width of which amounted to several Axgström units. The distribution of the light entirely corresponded to Jeweme's
${ }^{1}$) 1. c. p. 354.
${ }^{2}$) Jewell, Astroph. Journ. III, p. 101; Hale, Astioph. Journ. III, p. 156-161.

 ly a diaphatom, the bright hamd, at well as the shadinge herame masymmetrieal with repeet to the ahsorption line. Neither borptak's principle, bor the inthence of pressure on wavelengila coth here have phayed ath appreciable pard.

I monewer observed fringe-like maximatal minima in the shadings, hut they fowed imerghar and an mascady, that I condel mot think of meatsming their distamers. Nor rath there be athe question of photographing this peenliandy before means hate been devised

Lmpreted as our present experiment most be, it still serves to beat out the assertion, hat mumerons peendiatios of the solar spertiom may be explaned from anomalons dispersion.

§ 1. Havis and Robsas have recenty shown by their measurements of the retlecting power of metals ${ }^{2}$) that the hehavion of these
 ateombed fors, if one applies to the propatation of electrie vibrations the equations that hold for showly varying anments, and which cont bain wo wher physical eonstant of the metal but its condmetivity. It loblows from this result that a theory which can grive an adequate idea of the medtanisu of a coment of condurtion will ako swthe for the explanation of the absorption of the mas that have been used hy these experimenters. A theory of this kind has been developed by Ravek: *)
 numbre of free cecerons moving to and fios in mush the same way as the molernles of at gats or at the ions in an electrolytio solntion,

[^142]the velocity of agitation increasing with the femperature. It is to be assmmed that, in this "heat-motion", every eleotron haweh atong a stratight line, motil it strikes agamst a partiele of the metal; the path will therefore be an inegular zigag-line and, so bong as there is no banse thiving the electrons in a definte directions, an element of surfice will be taversed by equal mombers of electrons, travelling to opposite sides. Things will be different if the metal is exposed to atn electrie fore The motion of the elecerens will still be an irregular aritation; set, motions in a delinite diredion will predominate, and this will show itself in oum observations ats : "elective "moment."

Now we may infer from the relation between absorption and emission that is requited by Khemmors's law, that the medhanism by which the emission of at hody is produced is the same ats that to which it owes its abombing power. It is therefore matmal to expert that, if we conline onmelves to the case of great wate-lengthe, we shatl be athle to explatin the emission of at metal by means of the heat-motion of its free electrons, withont recmong to the hypothesis of "vibratos" of some kind, producing waves of definite periods.

In the following pages this idea has been woved out. After having calculated the emissive power we shall find that its ratio to the absorthing power does not depend on the value of those puantities by which one metal differs from another. Aecording to the law of Kinchuors, the result may be considered as representing the ratio between the emiswion amd the absopption for an arbitraty dhosen boty, or ats the emissive power of a perfectly bate substathere: it will be foumd to contain a certain comstant quantity, whose phasicat meaning will appear from the theory
§2. 'The ratio of which I have just spoken is intimately comected with another impordant physeal quantity, viz. the density of the energy of radiation in a pate enclosed by perfectly hatek walls, which are kept at a miform abolute temperature T '. If the electromagnetio motions of which the aether in streh a pate is the seate are deeomposed into rats thathing in all dircelions, and cath of which hats a definite wavelength, the enorgy per mit volmene, in so far ats it belongs to bats with wavelenght befween λ and $\lambda+$ d \quad, maty the represented by

$$
F^{\prime}(2, T) d \lambda .
$$

F being at fundion which many physicists have bied to determine. Bobt\%man and Wias have shown by hemodynamical reasoning that the above expression may be written

$$
\begin{gather*}
66 \% 8 \\
\lambda^{3} f(2 \%) / \lambda . \tag{1}
\end{gather*}
$$

 hat formal fior (1) the form

Here e is the veloeity of light in athere and $/ 1$ and k are univerral constants.

In the theory of Panch every ponderable hory is stpposed to contain a great many electromagnetic vibators, or', as Plasen ratls them, "resonators", each of which has its own period of free vibmfion, and wheh exehange energy with the aether ats well as with the molecoles or atoms of pomderable matter. The conditions of -tatistical equilitrimm befween the resonators and the aether may be lhoroughly investigated by means of the equations of the electromatmetie tieda. As to the pattion of energy between the vilnations of the remolators and the molecolat motions in the body, Planck has not endeavomed to grive an itlea of the processes by which it takes platee. He hats nsed other modes of reasoming, of which I shall only mention one. Which is to he fonnd in his later papers on the subject and Which consists in the determination of that distribution of energy that is 10 he considered as the most probahle. I shatl not here disenss the way in which the notion of prohability is introdneed in Planth's theory and which is not the only one that may be chosen. It will su'fice th mention an assmmption that is made about the quantities of energy that may be gained or lost by the resonators. These quantities are supposed to be made \quad op of a certain number of finite portions, whose amount is fixed for every resonator; acoording to Psasick, the energy that is stored up in a resonator cannot increase or diminish by gradual changes, but only by whole "units of energy", as we may call the portions we have just spoken of: Besides, Plavek has found it necessary to ascribe to these mits a magnitude depending on the firequency t of the free vibrations of the resonator, the magnitude being represented by $\frac{h n}{2 \pi}$.

As to the constant k, it has a very simple physical meaning; $\frac{3}{2} k T$ is the mean kinetic energy of the molecule of a gats at the temperature T.

[^143]It appears from the above remarks that the hypothesis regarding the finite "mits of energy", which has led to the introdnetion of the constant h, is an essential part of the theory ; also that the question as to the mechanism by which the heat of a body produces electromagnetic vibrations in the aether is still left open. Nevertheless, the results of Phases are most remarkable. His formula represents very exactly the energy of the radiations for all values of the wave-lengths, whereas the following considerations are from the ontse confined to long waves. We may at best expect to deduce from them the form which the function in (1) takes for this extreme case.
y 3. Since, if we fros to Kinchmoff's law, the ratio between the emission and the absorption must be regated as indepentent of the dimensions and the position of the boty considered, we may simplify the problem by an appropriate choice of circumstances. I whall therefore consider a plate with parallel plane surfaces and I shall suppose its thickness Δ to be so smatl that the absorption may be reckoned proportional to it and that the energy emitted ly the posterior layers may be supposed to pats through the plate without any sensible absorption. I shall also confine myself to the absorption of perpendiculary incident rays and to the emission in directions making infinitely small angles with the normal.

Let σ be the conductivity of the metal, i. e. the comstant ratio between the electric current and the electric fore, these latter quantities being expressed in the modified electrostatic units I have lately introduced. ${ }^{1}$) Then the absorbing power of the plate, the cocficiont by which we must multiply the energy of nommal incident rays, in order to get the absorbed energy, is given by:

$$
\begin{equation*}
A={ }^{\sigma} L \tag{泣}
\end{equation*}
$$

Here we shall substitute for of the value furnished by Dreme's theory. Let the metal contain different kinds of free electrons, which we may distinguish as the $1^{\text {st }}$, the $2^{2 n}$, the $3^{\text {rd }}$ kind, ete., and let us suppose that all electrons of one and the same kind have equal charges, equal velocities of heat-motion, ot', as we may say, "molecolar" velocities, and travel over paths of equal mean length between two successive encounters with particles of the metal.

We shall write e_{1}, e_{2}, \ldots for the charges of the different kinds of electrons, u_{1}, u_{2}, \ldots for the mean molecular velocities, l_{1}, l_{2}, \ldots
${ }^{1}$) Lonextz, Procedings Acad. of Science, Amsterdam, Vol. 11, p, hos, 1sw,
${ }^{2}$) See § 12 below. In electromagnetic units the formula becomes

 dall finally -mppore at batbe has done, that for wery kial of

In thene motations Dermés value is ${ }^{4}$

$$
\begin{equation*}
\bar{\sigma}=\frac{1}{t_{\text {el }} j\left(n_{1}^{2} N_{1} I_{1} n_{1}+u_{2}^{2} N_{2} l_{2} u_{2}+\ldots\right)} \tag{4}
\end{equation*}
$$

-a that (: 3) berommes

$$
\begin{equation*}
A=\frac{1}{f_{\text {er }} T}\left(u_{1}{ }^{2} \lambda_{1} l_{1} u_{1}+e_{2}^{2} \lambda_{2} l_{2} u_{2}+\ldots\right) \angle \tag{.i}
\end{equation*}
$$

It is to be remation that the formula (t) has heen obtamed in the supposition that the electrie fore remaths constant, or at least that it heogs its direction amd maghitude dmong an interval of time in Which ath cerefon hat modergone a latere mumber of eollisions against
 fasotable to the view that even the perion of vibation of the tats is rey lave in comparison with the time between two suceeding impates. Part of the following calculations are based on this assmontion.
\$ 4. We have now to examine the emission by the plate. It follows from the findamental equations of the heory of electrons, that every chmofs, whether in direction or in magnitude, of the velority wf ant electron protues an electromagnetie distuthane travelling outwate in the smommbing ather. Hence, it will be at the instants of the coblisions that the ededrons berome centres of radiation. We -hall calcolate the amount of enerey, badiated in this way, in so fat as it is emitled aross a definite pate of the fiont smefare of the plate: this pat of the emission is due to the electrons combaned in a volume e, of the metal.

Led (1) be a point within the area 6 . ()/' the normal in this point, drawn towats the side of the aether, and P a point on this line, at at distance f firm (), which is very latere in comparison with the dimensions of (1). In this point I we place an element of suffere \boldsymbol{o}^{\prime}, perpentientar (on ()/': on prohlem will be to aalenlate the energy radiaterl ateros this element. I choose () ats origin of coordinates and ()P as the axis of \therefore The components of the velocity of ath electron will be demoted by $\left\|_{x},\right\|_{y}, w_{z}$

[^144]Now, if an electron with chatere e, is in (1) at the time t, and has
 point \quad ', at the time $+i \frac{r}{r}$, a dielectrie dinplatement. Whone components are ${ }^{1}$)

$$
\begin{equation*}
-\frac{e}{4 \cdot x^{2} r} d t n_{x} \cdot \frac{e}{\left.4 \cdot \pi e^{2}\right)^{2}} \frac{d n_{y}}{d t} \cdot 0 \tag{6}
\end{equation*}
$$

On aceomet of the ereat length of (1)', these expressions maty also be applied to ath clectron sithated, mot in () but in athe wher point of the part of the plate corresponting to the area ob. The whole dielectrie displacement in P^{\prime} it the direction of if (it is only has component that will be considered in the next patagraphs) at the time $t+\frac{r}{r}$ will therefore be

$$
\begin{equation*}
\mathrm{D}_{x}=-\frac{1}{4 \boldsymbol{x}^{2} r} \text { ปe } \frac{d \|_{x}}{d t}, \tag{i}
\end{equation*}
$$

if the sum is extended ion atl electrons present in the volume $10<$ at the time t.

There will also be a magnetie foree of the same mumerical value.
 in the direction from the plate towatals I '. The amount of this flow per unit of time is given by

$$
\begin{equation*}
00_{x}^{2} \cdot \omega^{\prime} \tag{8}
\end{equation*}
$$

$\$ 5$. It will be neersaty for our purpose to derompose the whole emission into bats of different wave-lengthe and to examine the patt of (8) comesponting to the mys that have their wate-lenghte whin certain limits. This may be done hy means of Fothatses series.

Let us consider a remy lom! time, cextemting from $t=010 t=i$.
 chame in a rep imegnar way ; it may however in every case be expmated in the series
whose eoefficients are given by

$$
\begin{equation*}
a_{m}=\frac{2}{v} \int_{i}^{i} \sin \frac{m \pi t}{i} v, d t . \tag{10}
\end{equation*}
$$

[^145] will aton be stationaty and $D_{s}{ }^{2}$ maty be mphated by its meat value
$$
\overline{v_{x}}=\frac{1}{i_{0}} \int_{0}^{0} i_{x}^{8} d t
$$
duriner the lime it. Sulstituting the value (9 , we wit intergats of
 the produet of two sines. The integrats of the second kind will disatpear, amd
$$
\int_{i}^{2} \sin ^{2} \frac{m \cdot \pi t}{i t} d t=\frac{1}{2}
$$
(-) that
\[

$$
\begin{equation*}
i_{x}{ }^{3}=\frac{1}{2} \sum_{m=1}^{2} u_{m}^{3} \tag{11}
\end{equation*}
$$

\]

Is to the frembery of the terms in (9), it is given by

$$
\begin{equation*}
n=\frac{m \boldsymbol{\tau}}{i} \tag{12}
\end{equation*}
$$

it will therefore increate hy equal diferenes $\frac{x}{i t}$, if we give to m its sheressive values.

By choosing for \boldsymbol{y} a value stfliciently large, we may make this step $\frac{\boldsymbol{r}}{\boldsymbol{i t}}$ as small as we like, so that ultmately, even belween fwo values of the frequeney n and $n+d n$, which are in a physical sense intintely near eath other, there will be a certain number of values of (12) and of corresponding terms in the series (11). The number of these terms will be $\frac{\boldsymbol{v}}{\boldsymbol{x}}$ d $/ n$, hence, if we suppose a_{m}, or

$$
\begin{equation*}
a_{m}=\frac{2}{7} \int_{0}^{\dot{\tilde{y}}} \sin n t \cdot \theta_{x} d t \tag{1:5}
\end{equation*}
$$

to bave the stme value for each term of this group, the corresponding patt of (11) will be

$$
\frac{\mathfrak{i}}{2 \cdot x} a_{m}^{2} d n
$$

Substituting this for $x_{x}{ }^{2}$ in (8), we get for the radiation across ω^{\prime}, due to the rays with frequencies between n and $n+$ dhe,

$$
\begin{equation*}
\frac{c i t}{2 . T} \omega^{\prime} n_{\mu m}{ }^{8} / l_{n} . \tag{14}
\end{equation*}
$$

§ 6. We have now to calculate the cocflicient t_{m} by means of (13). After having substimted in the imtergal the value (7), we may still take for its limits 0 and is, provited we reckon the time from an instant, preceding by the interval $\frac{1}{4}$ the moment from which it has been rerkoned till now. Thus:

$$
u_{n n}=-\frac{1}{2 \pi c^{2} \theta_{r}} \geq\left[e \int_{i}^{\dot{z}} \sin n t \cdot \frac{d n_{1}}{d t} d t\right],
$$

or, after integration by parts, since sinnt vanishes at the limits,

$$
\begin{equation*}
u_{m}=\frac{n}{2 \boldsymbol{x} c^{2} v_{r}}>\left[e \int_{n}^{\hat{j}} \cos n t \cdot u_{x} d t\right] . \tag{15}
\end{equation*}
$$

The sum in these expressions relates to all the electrons in the part $\omega \Delta$ of the plate and it is ly reason of the immense momber of these particles that a definite value may be assigned to $a^{2}{ }_{m}$.

We shall begin by determining $u^{2}{ }_{m}$ and the amount of the radiation in the supposition that there are only free electrons of one kind (\$3). We shall write $y=N \omega L$ for their number, e for the charge of each of them, and we shall further simplify the problem bypposing that the molecular velocity n, the same for all the electrons, is not altered by the collisions and that all the pathis hetween two suceessive impacts have exactly the same length /. Then, the time

$$
\boldsymbol{r}=\frac{l}{n}
$$

will also have a delinite length.
$\$ 7$. Let $t_{1}, t_{2}, t_{3}, \ldots$ be a series of instants, between 0 and 8 , at intervals r from each other. Then it is clear that, if we fix our attention on the positions of a single electron at these instants, we shall have one point on each of the sides of the zigzag-line described by this particle.

Now we may in the first place determine the integral in (15) for the lapse of time during which an electron travels over the side of the zigzag-line on which it is found at the time t_{k}. As the length r of this interval is much shorter than the period $\frac{2 \pi}{n}$ of the factor $\cos n t$, we may write for the integral

$$
\begin{equation*}
\cos n t_{k} \cdot \boldsymbol{\tau} u_{c^{*}} \tag{16}
\end{equation*}
$$

It is clear that we shall obtain the sum in (15), for the q electrons,
 imblicaleal in llo formula

 then to atde together atl tho rendls whathed in this waty for the illstimt: I_{1}, I_{2}, "KC.

 very ditherent divectuns. Wo may represent all theoe velocities by
 will lie on a sphore with radin= ", athl if we let fill from eath of these points a perpembentar $/ 1 /$ /' on the diameter of this sphere that is patalley to () X, the distances of the projections from $(\mathbb{}$ will give the value of $\|_{x}$. The sum of all these values maty therefore the represented by

$$
\Sigma u_{x}=\eta \xi
$$

if \equiv is the provitive or negative distance at which the eentre of grate of the points D^{\prime}, comsidered as equal to eatels other, is situated from the rentre f:

Of contse, on atcount of the large mumber of the points, this Flistance will be very much smaller than the radins u, and, if we repeat the comstration of the diagrant of velocities for eately of the instants $t_{1}, t_{2} \ldots$. the small value that is fomed for Ewill be positive in one cave and negative in amother. It is to be remarked in this reopere that there is no romnexion at atl between the valnes of E. Which we thatl find for two sureecting instants in the sertes $t_{1}, t_{2} \ldots$ lndeed. hetween ath two stheh instants, every electron will have mblergone a collision, and it mayy sately he asimmed that, whatever he the direction of motion of an electron before the impact, all directions will be equally probable atter the impate ${ }^{1}$).

Now, in order to detemine $"^{2}$, we hate to take the squate of the stum denoted he $\underset{k}{ }$ in the formula (17). This sprate consists of terms of two kints, some having the form

$$
\begin{equation*}
\cos ^{2} u t_{k}\left[\Sigma u_{k}\right]_{l_{k}}^{=}=\eta^{2} \cos ^{2} u t_{k} \Xi_{k} \tag{18}
\end{equation*}
$$

[^146]and others the form
\[

$$
\begin{equation*}
2 \cos n t_{k} \cos n t_{k^{\prime}}\left[\Sigma u_{x}\right]_{t_{k}}\left[\Sigma u_{x}\right]_{t_{k}^{\prime}}=2 q^{2} \cos n t_{k} \cos n t_{k^{\prime}} \ddot{s}_{k} \check{\xi}_{l \cdot} \cdot \cdot \tag{19}
\end{equation*}
$$

\]

As has already been said, the time $\boldsymbol{\theta}$ contains a very large number of periods $\frac{2 x}{n}$. A certain value of cos nt, once occuring in the series $\cos n t_{1}, \cos n t_{3}, \cos n t_{3}, \ldots$ may therefore be supposed to repeat itself many times. Also, one and the same value of the product \cos n $t_{k} \cos n t_{k^{\prime}}$ may be sad to oceme for many different values of k and k. Such a product will therefore have to be multiplied by very different expressions of the form $\xi_{k} \stackrel{\xi}{k}_{k^{\prime}}$, and, since the different values of ${ }_{\mathrm{g}}$ are mutually independent, the number of eases in which ξ_{k} and $\xi_{k^{\prime}}$ have opposite signs will be equal to that in which they have the same sign. It appears in this way that the terms (19) will cancel each other in the sum. It is only the terms of the form (18) that remain, and we shall have

$$
\begin{equation*}
a_{m}^{2}=\frac{u^{2} \mathrm{e}^{2} \boldsymbol{x}^{2} y^{2}}{4 \boldsymbol{x}^{2} c^{4} \boldsymbol{\vartheta}^{2} r^{2}} \sum_{k}\left[\cos ^{2} n t_{k} \cdot \xi_{l}^{3}\right] \text {. } \tag{20}
\end{equation*}
$$

§ 9. Here we may begin by taking together those terms in which $\cos n t_{k}$ has one and the same value. Let the number of these be Q. Then, we have to repeat Q times the construction of the diagram of velocities, and it may be asked in how many of these Q cases ξ will lie between given limits ξ and $\xi+d \xi$, or, what amounts to the same thing, what is the probability for filling between these limits.

This question may be reduced to a simpler problem. A series of planes, perpendicular to 0,1 and at equal distances from one mother, will divide the spherical surface into equal parts. Therefore, instead of distributing the points D on the surface in an irregular, arbitrarily chosen manner, we may as well immediately distribute the points D^{\prime} at random over the diancter, without giving any preference to one part of the line over another. The probability in question is thus found to be ${ }^{1}$)

$$
\begin{equation*}
P d \xi=\frac{1}{u} / / \frac{\overline{3 q}}{2 \boldsymbol{x}} e^{-\frac{3 q}{2 u^{2} \xi^{2}}} d \xi \tag{21}
\end{equation*}
$$

Hence, among the Q terms in the sum, occurring in (20), for which the factor cos ${ }^{2}$ uth has equal values, there will be QPels terms, which may be said to have the same E.5. Together, they will contribute to the sum the amount

[^147]Proceedings Royal Acad. Amsterdam. Vol. V.

$$
\begin{equation*}
\xi^{2}=\int_{1}^{\prime \prime} \sum^{2}, 1 \equiv \tag{2,2}
\end{equation*}
$$

$$
\begin{equation*}
s^{-} \geq y_{1}\left|\operatorname{mox}_{x}\right| \tag{1:3}
\end{equation*}
$$

datin, sinter the instants t_{1}, t_{2}, \ldots are miformly distributed at distances that are very smath patso of the period $\frac{\ddot{2}-x}{n}$, the summ will rembin the simme, if in every terme we write $\frac{1}{2}$ insteal of cos ${ }^{2}$ men 'The mamber of terms beins $\frac{\boldsymbol{i}}{\boldsymbol{\tau}}$, we find for $(2: 3)$

$$
i_{i} \Xi^{3}
$$

and for (20)

We have by (21) and (22)

$$
\Xi^{2}=\frac{11^{3}}{3 i}
$$

hence, replating a by $\frac{l}{\prime}$, we find

$$
u_{n}^{2}=\frac{n^{2} \mathrm{e}^{2} \eta l u}{24 . \tau^{2} c^{4} ⿹ r^{2}}=\frac{u^{2} \mathrm{e}^{2} \backslash u L}{2+x^{2} c^{4} v r^{2}} \omega
$$

and for the cmission (1t), in so fare as it is due to the one kind of electrons that has heen considered

$$
\frac{n^{*} \mathrm{e}^{2} \backslash l u L}{4 \times \boldsymbol{x}^{3} r^{3}, r^{2}} \omega \omega^{\prime} d \mu
$$

This vatue mus atill be multiplied hy 2 becanse we may apply (1) He seromb of the components (6) the same reasoning as to the firs component, and the total radiation from the plate may obvionsly he comsidered as the sum of all the values corresponding to the
different kinds of electrons. The final result is therefore ${ }^{1}$)

$$
\begin{equation*}
\frac{n^{2}}{24 \tau^{3} e^{3} r^{2}}\left(\mathrm{e}_{1}^{2} N_{1} l_{1} u_{1}+\mathrm{e}_{2}{ }^{2} N_{2} l_{2} u_{2}+\ldots\right) \Delta \omega \omega^{\prime} / n_{0} \tag{24}
\end{equation*}
$$

$\$ 10$. If now we divide (24) by (5), all dmantities N^{r}, r, 11 and l, by which one metal differs from another, disappear. 'This is what might be expected according to Krimemorf's law and the result

$$
\frac{c n^{2} T}{6 \pi^{3} c^{2} r^{2}} \omega \omega^{\prime} d n
$$

may be taken to express the emission by a perfectly black body under the circumstances we have supposed. It represents the amount of energy which, in the case of such a body, is tramsmitted per unit of time across an element ω^{\prime}, in the rays whose frepuency lies between n and $n+$ th and whose directions deviate indinitely little from the normal to the element, being contained within a solid angle $\frac{\omega}{r^{2}}$. Multiplying by $\frac{4 \boldsymbol{x})^{2}}{\left(\omega \omega^{\prime}\right.}$, we are led to the following expression for the density of energy of which I have spoken in § 2 :

$$
\begin{equation*}
\frac{2 e n^{2} T}{3 \boldsymbol{\tau}^{2} c^{3}} d n \tag{25}
\end{equation*}
$$

Taking for the group of rays those whose wave-lengths are included between λ and $\lambda+\frac{7 \lambda}{}$, we get for the corresponding energy per unit volume

$$
\begin{equation*}
\frac{10}{3} \frac{\pi c T}{\lambda^{4}} d \lambda . \tag{26}
\end{equation*}
$$

${ }^{1}$) It is easy to free ourselves from the hypothesis that for all electrons of one kind there is a single length of path l and a single molecular velocity u. Inteed, the motion of an electron along one of the small straight lines l, which it describes between the instants 0 and $\mathcal{\vartheta}$, will furnish for the sum in (15) a quantity

$$
\text { ecos ut. } u_{x} \boldsymbol{\tau}
$$

if u is the velocity for the particular line l we wish to consider, and τ the time required for the motion along it.

Now, among all these rectilinear motions between two successive encomnters, of one kind of electrons, we may select those for which u and l have certain definite values and we may begin by calculating the coeflicient α_{n} and the emission, in so far as they depend on the part of (15) which corresponds to these particular motions; in doing so, we may use the method shown in ss 7 - 9. The total emission may be regarded as the sum of all the partial values (with dilterent l 's and different u 's) thus obtained, and alter all the expression (24) will still hold, provided we understand by $l_{1}, l_{2} \ldots$ cettain mear lengths 0 ." path and by $\mu_{1}, \mu_{2} \ldots$ certain mean molecular velocities. We need not however enter into these details, because the conductivity and the coefficient of absorption have not been calculated with a corresponding degree of accuracy.

\$11. The rexalt of the premeding callentations not maly conforms:
 liontarasi atmel Wits. lomeed, hee expression (26) follows from (1), if we pul

$$
f(2 \%)=\frac{16}{3} . \pi \text {. } 2 \%
$$

Our lat takk will he to evaluate the constant of lypplying the formalat (2i) to expromental determinations of the radiation of black bodies, and to compate the result with what has been inferred abont the satme comstant from shlor chases of phenoment. Combining the meaturements of Lamark and Pranasiman ${ }^{1}$), who have gone far into the infia-red, with the ab-olute amonnt of the radiation as determined by Kublibac: ${ }^{2}$), 1 find

$$
\because=1.6 \cdot 10-16 \frac{6,1}{d r a t e r}
$$

On the other hand, we get, starting from vis der Winds evaluation of the mass of an atom of hydrogen,

$$
\because=1.2 .10^{-16}
$$

A comparioon of my formula with that of Phase is also interesting. For very lare values of the product $\quad 2$ ' ${ }^{\prime}$, the denominator in (2) beeomes $\frac{c h}{k \lambda T}$, and the expression itself $\frac{8 . \pi k T}{\lambda^{1}}$ dh. This agrees with (26), if $u=\frac{3}{2} / i$.

Now the mean kinetio energy of a molecule of a gat would be :
${ }_{i}$. k Th acording to Praso and has been represented in what precetes by at'. There appeas therefore to be a fill agreement between the two theories in the case of long waves, certainly a remakable comelnsion, at the fundamental assumptions are widely different.

> IIn the absorption Ing a then metallic plate.
9. 12. Take the origin of coordinates in the front surface, the axis of $=$ towiurls the metal, and let there be free aether on both sides.

Writing es for the electric force, J for the comrent of conduction,
${ }^{\text {1) }}$ Lumer and Pringenem, Verhandl. d. deulschen phys. Gesellsch., 1900, p. 163.

5 for the magnetic fore and putting the magnetic permeability $=1$, we have for the metal

$$
\operatorname{rot} \mathfrak{S}=\frac{1}{i} \mathfrak{J}, \quad \operatorname{rot} \mathbb{C}=-\frac{1}{c} \dot{\mathfrak{y}}, \quad \mathfrak{J}=\sigma \mathfrak{c}
$$

It is found by these equations that in electromagnetic waves travelling in the direction of the positive 2 , \mathfrak{E} and 5 can have the directions of $O X$ and $O \Gamma$, and values equal to the real parts of the complex quantities

$$
\begin{equation*}
\xi_{x}=a e^{i n t-y(1+i) z}, \quad \varsigma_{y}=\pi a e^{i n t-\%(1+i) z} \cdot . \tag{27}
\end{equation*}
$$

" being the amplitude of the electric force, and the constants and $\%$ being given by

$$
a=\frac{1}{c} / \frac{1}{2} n \sigma, \quad \%=(1-i) \quad \frac{\bar{\sigma}}{2} .
$$

Similarly, waves travelling in the opposite direction may be represented by

$$
\begin{equation*}
⿷_{x}=a e^{i n t+\alpha(1+i) z}, \quad \mathfrak{פ}_{y}=-\% a e^{i n t+\alpha(1+i) z} \tag{28}
\end{equation*}
$$

For the aether the corresponding formulate are somewhat simpler; in the first case

$$
\begin{equation*}
\mathfrak{F}_{x}=a e^{i n t-i \frac{n}{c} z}, \quad \mathfrak{J}_{y}=a e^{i n t-i \frac{n}{c} z} \tag{29}
\end{equation*}
$$

and in the second

$$
\begin{equation*}
\mathfrak{F}_{x}=a e^{i n t+i \frac{n}{c} z}, \quad \mathfrak{J}_{y}=-a e^{i n t+i \frac{n}{c} z} \tag{30}
\end{equation*}
$$

Now, if rays fall perpendicularly on the front surface of the plate, we may unite all the systems of waves arising from the repeated reflexions into the following parts: $1^{\text {st }}$. a reflected system in the aether, $2^{\text {nd }}$. transmitted waves in the aether behind the plate, 3 rd waves in the plate, travelling towards the back surface and $4^{\text {th }}$. rays in the metal, going in the opposite direction. Representing the incident rays and the motions mentioned under these four heads by the equations (29), (30), (29), (27), (28), with the values $a_{1}, a_{2}, a_{3}, u_{4}, u_{5}$ of the amplitude, we have, in virtue of the conditions at the fwo surfaces (continuity of \mathfrak{F}_{x} and \mathfrak{S}_{y})

$$
\begin{gathered}
a_{1}+a_{2}=a_{4}+a_{5} \\
a_{1}-a_{2}=x\left(a_{4}-a_{5}\right) . \\
a_{4} e^{s}+a_{5} e^{+s}=a_{3} e^{-i \frac{n}{4} \Delta .} \\
x_{u_{4}} e^{s}-x_{u_{5}{ }^{*}}{ }^{+s}-u_{3}{ }^{-i \frac{n}{e} \Delta} .
\end{gathered}
$$

In the ere formulare. L is the thickness of the plate, and

$$
\begin{equation*}
\because(1+i) \angle=* \tag{31}
\end{equation*}
$$

The mhation, in so fill as it is neecssary to onr purpose, is

$$
\begin{aligned}
& n_{3}=\frac{\left(x^{2}-1\right)\left(x^{2}-1+2\right)}{(x \cdot 1)^{2}+5-(\%-1)^{2},} "_{1} \\
& \left.n=\frac{4 \%}{(\%+1)^{2}+5-(\%} 1\right)^{2}, \quad, \quad i \frac{n}{r} \Lambda_{1} a_{1}
\end{aligned}
$$

In these expressions L and ramequenty sat now to be supposed intinitely smath. Replating ofs and ots hy 1 —s and $1+s$ one linds

$$
\begin{gathered}
a_{3}=-\frac{1}{2}\left(\%-\frac{1}{\%}\right):{u_{1}}^{2} \\
a_{8}=\left[1-\frac{1}{2}\left(\%+\frac{1}{\%}\right)\right]^{i \frac{n}{c} \Delta} n_{1}
\end{gathered}
$$

The firs of these equations shows that the amplitude of the bays reflected by the thin plate is intinitely small, so that we may neglect their enersy as a quantity of the second order.

As to the thansmitted rays, the amount of energy propagated in them will be equal to the prodnet of the incident energy by the square of the modulus of the complex expression

$$
\left[1-\frac{1}{2}\left(x+\frac{1}{x}\right) s\right]
$$

This stuare is

$$
1 \cdots{ }_{i}^{\sigma} L
$$

whence we deduce for the coeflicient of absorption

$$
A=\frac{\sigma}{c} \Delta
$$

On the probublility with which one may expect thet the centre of sprevity of a lioge momber of points distributed at random In " limited straight line will lie within given limits.
§ 13. Divide the line into a large number p of equal parts, and call these, begiming at the end A of the line, the $1^{\text {st }}$, the $2^{\text {ad }}$, the 3 ral part, etc. Denote by if the number of points and let I be very much lareer than p.

We shall imagine the points to be placed on the line one after another, in such a way that, whatever be the position of the points already distributed, a new point may as well fall on one part of
the line as on the other. The result will be a certan distribution of the whole number, entirely determined by chance. Let us conceive this operation to be very often repeated, say ? times, and let us calculate in how many of these Q eases, a desired distribution of the points over the f^{\prime} parts will oceur. Dividing by Q we shall have the probability of the distribution.

The probability that there will be $a, h, \ldots m$ points on the $1 s$, $2^{\text {nd }}, \ldots p^{\text {th }}$ part of the line $(11+1+\ldots+m=q)$, is given by

$$
r^{\prime}=\left(\frac{1}{p}\right)^{q} \frac{q!}{a!b!\ldots m!}
$$

In the case of a very large value $\frac{q}{p}$, this probability becomes extremely small, as soon as one of the numbers $a, b, \ldots m$ is fiar below $\frac{q}{p}$. Neglecting these small probabilities, we shall contine ourselves to those cases, in which each of the numbers a,b,....m is very large. Then, by the well known formula of stiriing,

$$
a!=\sqrt[V]{z_{a} \boldsymbol{x}}\left(\frac{a}{p}\right)^{n}, \text { etc. }
$$

and, if we put

$$
\frac{a}{q}=a^{\prime}, \frac{b}{q}=b^{\prime}, \ldots \frac{m}{q}=m^{\prime},
$$

we shall find

$$
\begin{gather*}
\log I^{\prime}=-\frac{1}{2}(p-1) \log (2 \boldsymbol{x} q)-q \log p- \\
-\left[\left(u^{\prime} \eta+\frac{1}{2}\right) \log u^{\prime}+\cdots+\left(m^{\prime} q+\frac{1}{2}\right) \log m \cdot m^{\prime}\right] . \tag{32}
\end{gather*}
$$

It is to be remarked that the numbers $1, b, \ldots$ can only increase or diminish by whole units. The numbers $a^{\prime}, l i$. . . m^{\prime} 'an change by steps equal to $\frac{1}{\eta}$: this may be mate so small that they may be considered as continnously rariable.
§ 14. We shall in the first plate determine the values of $\prime^{\prime}, l^{\prime}, \ldots m^{\prime}$ for which the probability P becomes a maximm. We have
$d \log P=-\left[\left(q+\frac{1}{2 a^{\prime}}+q \log a^{\prime}\right) d a^{\prime}+\ldots+\left(\eta+\frac{1}{2 m^{\prime}}+q \log m^{\prime}\right) d m^{\prime}\right]$. with the condition

$$
d e^{\prime}+\ldots+d m^{\prime}=0
$$

which is a consequence of

$$
\begin{equation*}
a^{\prime}+\ldots+m^{\prime}=1 \tag{33}
\end{equation*}
$$

The maximum will therefore be reached if

$$
a^{\prime}=l^{\prime}=\ldots=m^{\prime}=\frac{1}{p},
$$

\therefore that the miform distribution will be the most probatale.
We shatl next eonsider the probability fore a distribution diflering a biale from the most poobable ane lee us puit

$$
\begin{equation*}
n^{\prime}-\frac{1}{p^{\prime}}+\quad, \quad \quad^{\prime}=\frac{1}{p}+\vec{\beta} \quad . \quad . \quad m^{\prime}=\frac{1}{p^{\prime}}+u \quad . \tag{33.4}
\end{equation*}
$$

and lee the sughoe the mambers μ, μ, to be so small in compariaron wilh $\frac{1}{f}$, that in the expansion of the ghantities in (32) in asemding powers of \quad, \quad B.... μ, we may neglert all powers surpassing the second. We have for instance
$\left(a^{\prime} \eta+\frac{1}{2}\right) \log a^{\prime}=-\left(\frac{\eta}{p}+\frac{1}{2}\right) \log p+\left(q+\frac{1}{2} p-q \log p\right) u+\frac{1}{2} p\left(q-\frac{1}{2} p\right) r^{2}$, where, in the last term, we may omit the term $\frac{1}{2} p$, becanse it is much smatler than $\%$. If we put

$$
-\frac{1}{2}(p-1) \log (2 \cdot x q)+\frac{1}{2} p \log p=\log I_{m}^{2}
$$

and keep in mind that, in virtue of (33),

$$
\begin{equation*}
a-\beta+\ldots+n=0 \tag{35}
\end{equation*}
$$

the equation (32) hecomes

$$
\begin{gathered}
\log I^{\prime}=\log P_{m}-\frac{1}{2} p \eta\left(\iota^{2}+\beta^{2}+\ldots+r^{2}\right), \\
P=P_{m} \mathrm{e}^{-\frac{1}{2} \eta \eta\left(x^{2}+\xi^{2}+\ldots+\mu^{2}\right)} .
\end{gathered}
$$

It is seen from this that I_{m} is the maximmm of the probability, with which we shall have to do, if $a=\beta=\ldots=\mu=0$. The equation shows also that, conformly to what has been said above, the probability will only be comparable to P_{m} so long as $\boldsymbol{c}, \beta \ldots \ldots$ are fir helow $\frac{1}{p}$. Indeed, if one of these numbers had this last value, l_{m} would he multiplied by

$$
e^{-\frac{q}{2 \mu}}
$$

which, by our assumptions, is extremely small.
515 . Let 2 , he the length of the line, r the distance along the line, reckoned from the end A, and let us take $\frac{u}{p}$ for the value or
this coordinate for all points sitnated on the first pat of the line, $3^{"}$ for all points of the second part, and so on. Then, in the distribution that is chanacterized by $a^{\prime}, b^{\prime}, \ldots . m^{\prime}$, the coordinate of the centre of gravity of the q points will be

$$
\left[a^{\prime}+3 b^{\prime}+5 c^{\prime}+\cdots+\left.(2 p-1) m^{\prime}\right|_{p} ^{\prime \prime}\right.
$$

or, by

$$
u+\mid u+\beta \beta+\pi \gamma+\ldots+(2 p-1) u]_{p}{ }_{p}
$$

The positive or negative value of

$$
\begin{equation*}
\xi=[u+3 \beta+\tilde{b} \gamma+\ldots+(2 p-1) u] \frac{u}{p} . \tag{36}
\end{equation*}
$$

is thas seen to represent the distance between the middle point of the line and the centre of gavity. We have to calculate the probability for this distance lying between ξ^{5} and $\xi+c$

The problem is casily solved by means of a change of variables. Instead of the quantities $\boldsymbol{r}, \boldsymbol{\beta}, \ldots . \boldsymbol{r}$, which serve to define a mode of distribution, we shall introduce new ones $\boldsymbol{\mu}^{\prime}, \beta^{\prime}, \ldots . \mu^{\prime}$, the substitution being linear and orthogonal.

Let us take for the first of the new variables

$$
\begin{equation*}
a^{\prime}=\frac{1}{V_{p}} a+\frac{1}{\sqrt{p}} \beta+\ldots+\frac{1}{V_{p}} \mu \tag{37}
\end{equation*}
$$

and for the second

$$
\begin{equation*}
\beta^{\prime}=-\frac{p-1}{x} \quad \cdots-\frac{p-3}{x} \beta-\ldots+\frac{p-1}{x} n \tag{3S}
\end{equation*}
$$

where the numerators form an arithmetical progression, whereas x means the positive square root of the sum of the spuares of the mumerators. These expressions (37) and (38) may really be adopted, becanse the peculiar conditions for an orthogonal substitution are satisfied : in both expressions the sum of the squares of the coefticients is 1 , and we get 0 if we add together the coefficients of (37) after having multiplied them by the corresponding coefticients in (38). As to the coefficients in the expressions for $\gamma^{\prime}, \ldots \ell^{\prime}$, we may choose them as we like, provided the whole substitution remain orthogonal.

The reason for the above choice of a^{\prime} and $\beta^{3 \prime}$ will be clear' the condition (35) simplifies to

$$
\begin{equation*}
\varepsilon^{\prime}=0 . \tag{3!}
\end{equation*}
$$

and, in virtue of (35), the value (36) will be equal 10

$$
\begin{equation*}
\xi-\frac{\pi / \prime}{p} \beta^{\prime} \tag{40}
\end{equation*}
$$

in all cases with which we are concerned.

Soms, dhe moden af distribution for whirl the value ol g lies
屏 $+1 \rightarrow$ if

$$
\begin{equation*}
\text { " }{ }^{\prime}-\frac{\prime \prime}{\prime \prime \prime} \tag{11}
\end{equation*}
$$

Sime $i^{\prime}=0$. every mode of distribution may be defined by the
 boys small babiations.

We can therefore select, amomer all the modes of distribution, those for which \boldsymbol{a}^{\prime}. . a' lie befween \boldsymbol{r}^{\prime} and $\gamma^{\prime}+1 \gamma^{\prime}, \gamma^{\prime}$ and $\gamma^{\prime}+d \gamma^{\prime}$, ete. The mumber of these mat be represented by

$$
\begin{equation*}
h, l, r^{\prime} \ldots d u \tag{42}
\end{equation*}
$$

Where h is a coefticient whone valne need not be sperified. It suffices to know that it is imtependent of the valnes chosen for \boldsymbol{r}^{\prime}.... n^{\prime}. This is a consequence of the lincat form of the relations between lhese variables and a, b, ... In.

As the just mentioned modes of distribution, whose mumber is triven hy $\left(4^{2}\right)$, difler intinitely little from one another, the probability I' may he taken to be the same for each of them. Hence, the probability for the ordurence of one of these modes, no matter which, must be

$$
\begin{equation*}
\text { K } P^{\prime} d \beta^{\prime} \ldots d \iota^{\prime} \tag{43}
\end{equation*}
$$

From this we may pass to the probability for β lying between β^{\prime} and $j^{\prime}+\left(l^{\prime} z^{\prime}\right.$, whaterer he the values of $\gamma^{\prime} \ldots \eta^{\prime}$; we have only to integrate with respect to these last variables. Now using the fundamental propery of an orthogronal substitution

$$
a^{2}+i^{2}+\ldots+\mu^{2}=\iota^{\prime 2}+\beta^{2}+\ldots+\iota^{\prime 2}
$$

amd attending to (39), we wite for (43)

$$
h P_{n}^{\prime} r^{-\frac{1}{2} p_{q}\left(j^{\prime}+\ldots+y^{\prime \prime 2}\right)} d_{3} z^{\prime} \ldots \text { huc }^{\prime} .
$$

If we integrate this expression from $-x$ to $+x$, as may be done for obious reasons, denoting by k a coeflicient that does not depend On a', we find for the probability in question

$$
k_{e}{\underset{2}{1} l^{\prime \prime} y^{\prime \prime \prime}}_{d z^{\prime} .}
$$

On acromint of $\mathbf{4 0}$) and $(\mathbf{4})$ this is equal to

$$
\begin{equation*}
k^{\prime} e^{-\frac{\nu^{n} y}{2 m_{u} u^{2}}} d \xi \tag{44}
\end{equation*}
$$

K being a new constant.

It remains to introduce the value of $\%^{*}$. According to the definition of this quantity, it is $\frac{1}{3} p\left(p^{3}-1\right)$, instead of which we may take $\frac{1}{3} y^{3}$, berause p is a very large mmber. In this way (44) changes into

$$
\begin{equation*}
k^{\prime} e^{-\frac{3 q}{2^{-} u^{2}}} \frac{\xi^{2}}{} l \xi \tag{45}
\end{equation*}
$$

We may finally determine the coefficient k by remarking that (45), integrated from - ∞ to $+x$, must nevessarily give 1 . This requires that

$$
k^{\prime}=\frac{1}{u} \quad \frac{\overline{3 q}}{2 \boldsymbol{\tau}},
$$

so that our result hecomes

Microbiology. - "The decomposition of cellulowe bey ärobic micorsopqumisms." By G. bis Itrasos dr. (Commmicated by Prof. M. W. Belderixck).
(Communicated at the meeting March 28, 1903).
When we introduce into the soil or into natural waters substances consisting of cellulose, such as linen, cotton or paper, it will be seen, that the greater part compratively soon distppears, whilst the cellulose derived from the cominmally falling dead leaves and other parts of plants is also soon destroved moder natural eonditions either totally or partly. It is also a known fact that the layer of humus in the primeval forests hats a limited thickness, the decrease being just compensated by the increase caused by the falling of the leares. Investigation shows that the cellulose, ahthough chemically so stable, is decomposed by micro-organisms. The observations by Mitscherlici ${ }^{1}$), Popoff ${ }^{2}$), Vix Tieghem ${ }^{3}$), Tippeiner ${ }^{4}$), vax
${ }^{1}$) Ueber die Zusammensetzung der Waud der Pflanzenzelle, Monatsber. d. Berl. Ahad., 1850, p. 102.
${ }^{2}$) Ueber Sumpfgasgährung, Archiv. f. ges. Physiol., 1875, Bd. 10, S. 113.
3) Sur le bacillus amylobacter et son ròle dans la putréfaction des tissus régétaux, C. R. t. 88, 1879, p. 88. - Identité du bacillus amylobacter et du vibrion betyrique de M. Pasteur, G. R. t. 89,1879 , p. 5.
${ }^{\text {f }}$) Ueber Celluloseverdaung, Ber. d. d. ch. (t. Bul. 15, 1882, S. 999. - Ueber Cellulosegährungen, Ber. d. d. ch. G. Bd. 16, 1883, S. 1734. - Ueber die Sumpfgasgährung im Schlamme der Teiche, Sümpfe u. Kloaken, Ber. d. d. ch. G. Bd. $16,1883, \mathrm{~S} .1740$.

 this commanmation is will he shown that collulose maty also be
 that has sulstame may serve in somede of couthon for denitrifying haterova and maty, therefore be made todisappear with great rapidity

 solution then bakes place showly, there ean be no doubl about the tecomposition. The prothets derived from the cellnose phay an important role in the nutrition of other microbes particularly the -pirillae, so that an elegant acemmation experiment may be hased on the now of erellulose as a somere of earbom.

Althongly the destruction of eellulose by anaërobic or aẻrohic hateteria reguites a faimly alkaline medimm, if may, with sufficient aemation, ako be acted on in a fantly acid smrounding by various mondds and myectia of hicher fungi. This was first demonstrated in 1886 hy be Baky for the genns Praizu and the same was shown by later observers for other monkls, whilst the destruction abways appeared to be due to the action of an enyme. Here we will prove that the power possessed by moukls to attack cellulose is not confined to certain species only, as one might imagine from the existing literature, but that at ereat number of the species of this group share that property.

Finally, I wish to observe that I will ocemy myself exclusively with the destruction of pme cellnlose and not with that of lignified aml conky cell-walls, where in the first place higher fungi are at work, ats is shown by the researehes of R. Hamtig ${ }^{4}$).

1. The deromposition of cellulose by demitrifying bucherio.

Mbtsef, ${ }^{5}$) shates in 1871 that in the presence of cellulose bacteria

1) Bijdrage tot de kennis der cellulosegisting. Dissertation, Leonards, at Leiden, 1890, (this contains a very complete literary review).
${ }^{2}$) Ueber die Gährung der Cellulose mi! Bildung von Methan u. Kohlensäure, Zeitschr. f. Phys. Ch. Bd. 10, 1886, S. K01.
${ }^{3}$) Sur la fermentation de la cellulose, C. R. t. 121, 1895, p. 653. - Sur un ferment de la cellulose, G. R. 1. 125, 1897, p. 970 . - Sur la fermentation cellulosique, C. R. 1. 125, 1897, p. 1131. - Ueber dic Gährung der Gellulose, Centrbl. f. Bakt. Abt. II, Bd. S, 1902, S. 193.
) Die Zerselzungserscheinungen des Holzes, Berlin 1878.
${ }^{\text {a }}$ De la putréfaction produite par les bactéries en présence des nitrates alcalins C. R. t. A1, 1×76, p. 533. Nitritbildung durch Bacterien, Ber. d. d. cb. G. Bd. 8, 1875, S. 1914.
reduce nituates to nitrites; he has, therefore, proved denitritieation, in the largest sense of the word, as being possible with cellulose, but fiom his short notes we do not understand his modus operandi or the nature of the cellulose used in the experiments. Demernan ${ }^{-1}$ positively states in 1897 that he has not been able to observe denitrification with flax fibres and the attention of Omeliashi (l.e.) has ako not been attracted to this process when engaged in the study of the fermentations of cellulose. This investigator induces the methane or hydrogen fermentation by means of a nitrogenons food composed of ammonium sulphate or phosphate and sometimes he also adds asparagine, peptone, extrate of meat or of manure. Strange to say, he has not worked with nitrates; had he done so, he would have noticed that the nature of the process is completely modified, for instead of the methane or hydrogen fermentation denitrification sets in which is characterised by the production of free nitrogen and carbon dioxide.

In a previous research ${ }^{2}$) on accumulation experiments with denitrifying bacteria, I have shown that these aërobic organisms can oxidise many different organic substances out of contact with air with the aid of nitrates or nitrites, according to the formulae:

$$
\begin{aligned}
& 5 \mathrm{C}+4 \mathrm{KNO}_{3}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{KHCO}+2 \mathrm{~N}_{2}+\mathrm{CO}_{3} \\
& 3 \mathrm{C}+4 \mathrm{KNO}_{2}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{KHCO}+\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{~N}_{2} .
\end{aligned}
$$

Denitrification was noticed with lactates, tartrates, citrates, malates, acetates, glucose, starch, asparagine, gelatin, broth, methyl and ethyl alcohol and it was, therefore, thought worth while to try whether cellulose might also be used as a source of "arbon supply in the denitrificationprocess, which indeed proved to be the case.

Before describing my experiments in detail, I will tirst make some remarks as to the nature of the cellulose employed. As a rule Swedish filterpaper was taken. Although this paper gives a fitint blue colour with a dilute solution of iodine it was found to be very difficult to remove the impurity with boiling water; the so-called stareh-fiee paper from Schleicher and Schüd, which has been purified with hydrofloric acid, showed the same reaction. Sometimes linen tissues and cottonwool were used, from which the first also gives a blue coloration with dilute solutions of iodine, whilst the latter does not show this reaction. The little impurities, present in the cellulose employed, were however, of no moment in my experiments, as the effect on the cell walls was judged by the changes observed by a microscopical investigation.

[^148]
 2". af cellalome.

amil the mixtme is then inmentaten with a few (exe of mud (from a diteb).
The bottle is then quits filled up in the mamer deseribed in my former commmatertion (1.c.), los perent aneress of air, and the coltivation bakes phatee at sas.
ditere the lapese of athout is days the ateron is pereeptible, bat only atier 12 days a brisk fermemation sets in. The cellutose is carried (0) the lop hy the qemerated gasbmbbles and at quatity of liguid is fored out of the bottle by the slimy froth, while the paper-pulp is kept batk by the sopper. Sn the berimming of the process a strong formation of nitrite maly he observed, hat the mitrates and nitrites soon decrease and after the laper of about 15 dats, these componmels have disappeared. The liguid is now carefully decanted from the pulp, which may be done without appreciable loss of paper filnes, as these readily adeglomerate. The bottle is then refilled with the following tiquid:
$$
\text { Tapwater } \left.100 \text {, К } \mathrm{NO}_{3} 0,25, \mathrm{~K}_{2} \mathrm{HP}^{\prime}(), 0,0\right)_{1} .
$$

The process now stats much quicker than in the tirst cultivation, the nitrate disuppears in 4 or $\begin{gathered}\text { a days and by repeating the operation }\end{gathered}$ a few times more, cultures may be obfaned of an increasingly active denitrifying power, with which it is possible to completely reduce in one or two days 0.5 gran of KNO_{3} dissolved in 200 ce of water. This method of working is preferable to adding a fresh quantity of KNO K_{3} to the original culture, as it is then not possible to reduce on the whole more than abont $\% / 2^{2}$, of KNO_{3} (calculated in regard to the phantity of the liguid used, or 25% in regard to the cellulose) becanse the process then comes to a standstill by the alkaline potassimm cathonate formed from the nitrate.

If now a sterilised liguid is inoculated with the strongly denitrifyingr rongh conture and the cultivation allowed to take plate under the same ciremmstances as described above, the action commences much more rapidiy than in the firs preliminary experiment, whilst the same phenomena occors. Even after repeating the inoralation ten times, no change in the intensity of the process conld he ohserved.

Not only paper, but raw flax fibres, cottonwool and linen appeared

[^149]capable of indueing denitrification, the cottonwond, however, heing attacked with great difficulty. No denitritication could be observed with sawdust or turf, whilst Vin sexts (1. (e. pg. 10t) has also been unable to observe decomposition of wood-cellulose by real anacrobic: bacteria. This extraordinary difficult decomposition of wood-cellulose out of contact with the air, is, according to this investigator, perhaps the key to the explanation of the formation of humine substances, peat, browneoal and coal.

The distribution of the microbes, engaged in the denitrification of cellolose, in the mud from canals, seems to be a very reneral one, as each sample employed contained these germs. Although they are ako rery generally distributed in the earth, their number per ce. appears therein to be less, for, on using earth as infecting material, the action was delayed. Even in sea water, taken from the port of den Helder, were always microbes found, which in the presence of cellulose could induce denitrification ; in how far these forms are similar to the terrestrial ones has not yet been ascertaned, but I wish to call particular attention to the fact, that, at least near the shore, cellulose may disappear by denitrification.

The changes, which cellnlose undergoes during this process, are visible to some extent with the naked eve: the white fibres soon turn orange and the pulp acduires a viscous consistency. Microscopically, it appears, that already very soon after inoculation some of the fibres are inclosed in a bacterial mucus and after a prolonged culture this is the ease with nearly all the fibres. At first, the whole of the fibre is still very plainly visible within this mucus, but gradually, on account of the decomposition, it completely disintegrates into loose fibrillate and at last we only find a few particles of cellulose left, or the fibre disappears altogether (fig. 1). This destruction of the cellulose becomes very pronounced, when instead of paper-pulp strips of filterpaper are used. By repeatedly adding fresh nitrate we then finally obtain bacteria-membranes, which still have the exact shape of the strips of paper but in which we only meet isolated fibres disintegrated into fibrillae or even still more decomposed. As is already stated, the woody substance is not attacked by denitrifying bacteria, the few ammated, spiral and pitted ressels, which are contained as impurities in the filterpaper, are found mattered in this mones. Fig. 2 shows the form of two very strongly dissolved paperfibes (\boldsymbol{t}) and some non-attacked woorly elements (β, γ and d), which are still found in such preparations.

The gases, liberated during the denitrification of cellulose and of
which some litres were collected, consiat exclusively of fire nitrogen amil cathon dioside: "un wate of hadrogen, methane or nitmons axide ($\mathbf{N}_{2} 0$) was lomul.

Is regade the mioro-mpanisms which take part in this process. a miororeqpical examination of the sath hateromal maters, which eonsists of a dinely gramulated subsathe, shows the presence of very small rod-like bateria (tige. 1) and finther thore are fombl in the entomes

 That the hacteria, involved in the process, are no sore forming orqamisms, was atso shown by the fact, hat mo pastemised material of whatever wigin imul from a ditch of from the soil) can canse denitritieation in the presence of cellulose.

Many experiments have been made with the object of isolating the bateria taking part in the denitritication, lut always with a nerative resulf. By inoculation on meat-relatin and cultivating at 24², I several times ohtaned pure coltures of Bucillus stutecri Nfom. and Lemm., which bacterinm was ako found in lage numbers in those cases where other denitrifying bateria were present, so that denitritication with eellubere is a new acemmbation experiment for this

On using meat-agat or one of the following culture liguids:
 Tipwater 100, agrar 2, glucose 2, $\mathrm{KNO}_{3} 0,05, \mathrm{~K}_{3} \mathrm{HPO}_{4} 0,05$, and colltivating at 35°, other baderia besides B. stutzeri were found and these were neally always denitufying ones. Very often a mucons colony of a motionless, non-spore forming denitrifying hacterium berame comspienoms, while in wher caves a small, sighty denitrifying -pirillum may be isobated. No permatment denitrification with paper cond, however, be obtained with any of these forms or with any combination thereof, even the crude mixture as it is formed on the plates wats not eapable to do this. The fact, that these bacteria may catuse a temporary faint evolution of gas (which, at first, made me suspect. that the destruction of cellulose could be accomplished by ordinary denitrifying bacteria) must be attributed to the presence of smatl ifuatities of impurities in the cellulose. Still, I think we may take it for $\underline{\text { granted. that we are dealing here not with an amërohic }}$ hut with an aemphice baterinm, first of all, becanse all known denitrifyins bateriat are ä̈robic and only hehave anaërobically in the presence of saltpetre secondly because methylene-blue is not reduced, when arlied to a medium in which cellulose is denitrifying, whilst in
cultures of the know anambohe baterta this compound is always decolorised. We therefore come to the conchasion, that the baderimo. which eatuses the denitritication of eetholose, does not wrow on the nsed nutrient media, or else, growing there, loses immediately its denitrifying properties.

If now we compare the hydrogen and methane fermentations with the denitrifying process we find the following points of difference.

Ist. In the hatrogen on methane fermentation the liberated gaseons products are earbon dioxide and hivdrogen, or carbon dioxide and methane.
$2^{\text {nd }}$. To those fermemations chalk mast be added to neutralise the formed butyric and acetic acids, whilst in our case the sattpetre yields potassimm carbonate and no volatile acids ean be detected.

3ad. Those processes take place in a mediam wherein sulphates cam he reduced to $\mathrm{H}_{2} \mathrm{~S}$ and therefore methylene-blue is decolorised. in my experiments such a reduction of suphates is quite out of the question as long ats traces of nitrates and nitrites are still present.
$t^{\text {th }}$. The methane and hydrogen fermentation are fanted by comparatively large, well chataterised spore forming organisms, on denitrification by very small bacteria, forming no spores.

The velocity with which cellulose disappears during the denitrification is about the same ats in the methane or hydrogen fermentafion of this substance. In a rolume of 500 e.e., I suceeded in completely discolving 8 grams of cellulose all. but a few fibres, by means of 36 grams of KNO_{3}, in a month's time. The quantity of $K \times O_{3}$ theoretically required amomuts to only et grams, but in my experiments a portion of the nitate was lost in the expelled liquid and, therefore, more nitrate wat reguired. By means of the hydrogen fermentation, Omembiski suceeded in disoolving 41.6 grans of cellulose contained in a volume of 3 litres in $3^{2} / 2$ months, and about 12 grams in a volume of 1 litre in $\overline{5}$ months, which velocities agree with the values fomm by me for the denitritication.

Notwithstanding the posibility of denitrification of saltpetre under the influence of cellulose in the bresence of this substance nitritication of ammonimm salts and nitrites can proceed without interruption. This has already been shown by (Mmidnsist ${ }^{2}$), who enltivated the nitrite ferment on paper. We also observed nitritication of ammonimm salls and nitrites, when a very small quantity of cellulose cabon
${ }^{\text { }}$) Kleinere Mitteilunger über Nitrifikationsmikroben I, Gentrbl. f. Bakt. Abt. If, $\mathrm{Bd} .8,1902$, S. 785.

 nitriticatton and denitriticatton may bake phate forether in grarten -ril allul that the atertation decoddes, which of these proweses will be the fredominatht whe: the satme emblasion maty, theretore, now he

 nerons! in the satme partiele, hut that at localiathon mat latke patee, in this waty, that shong aberaton is mecessary in the partiches where
 dentrification promess.

As hats alreaty been previonsly observed fommation of nitrite bakes platee in the tirst stage of the dentritieation process in the presence of cellolose and at this sulbance by means prevents the uxidation of the nitrite to nitate these two processes, ocentring simmbfaneonsly, may cathe the steady disappeatance of cellulose.

We therefore see, that these same processes maty cathee the disalppratance of cellulose in soil and in waters, which phan! shows heir erveat importance in the "self-purification", ats atse in the biological puritication of sewate.

In order for demonstrate denatrification in the presence of cellulose in the mamme deveribed above, a very small quantity of this sub-- Fance about $0,05^{\circ}{ }^{\circ}$) only most be present for on wimg more -aty. 2" "the nature uf the proces is completely chatnged." This must the attributed to a strongr decomporition of the celtulose by aerrobic bateria. Which then takes place and which prodnces a latge quantity of sohalhe wramie matter, rendering the nitsitication impossible. This tiat phemomemon may be hest observed when use is mate of the followirg culture medium:

Tipwater 100, paper 2 , $\mathrm{NH}_{4}\left(10,1, \mathrm{~K}_{2} \mathrm{HP}(0,0,05\right.$, chalk 2.
Instead of $\mathrm{NH}_{4}(1)$ we may also add $\left.\mathrm{KNO}(0,1), \mathrm{KNO}\right)_{3}(0,1)$, peptone O,1) or an malimited quantity of $\mathrm{MgNH}_{8} \mathrm{P}^{2} \mathrm{O}_{4}$. The contivation takes place at $28-35^{\circ}$ in Erdexmatafr flaskis in a layer from $0,5-1 \mathrm{~cm}$. in thickness, thas, moder very aërohic conditions, so that on msing KNO. or KXO, no denitritication can be expected, at least not at the commencement.

If mud from a diteh is used as infecting material a decided growh is alteady noticed after 5 or 6 days, the cellulose furns to an orame colour and may even disintegrate to a thin paste after 3 or 4 weeks. Microscopically, we see, that we obtain besides the cellulose-dismolving bacteria a very rich accumulation of spirillate, which however do not themselves attack cellulose. I have often repeated these experiments and always with the same result: the cultures become extremely rich in spirillate and these consist of many varieties. As a rule different species were found in a same conlure, large spirillate with several windings in company with small, very mobile ones, but sometimes it also happened, that it looked under the microscope, ats if we were dealing with pure coltures of special spirillae. These different results being no doubt comected with the nature of the germs in the infecting materials employed. Often however, we meet hesides the spirillae, infusoria, monads, amoebare and small forms of bacteria, sometimes atso rod bateria and spore forming organisms, but the spitillae are ahwas in the majority.

If such coltures are transported into the same sterile medimm, the chief chatacter remains the same, but the growth takes plate more rapidly and ats a rule the momber of species of spirillate is much reduced, so that frequenty but a single one remains. Here it is perhaps the proper phate to state, that an areommation of spiriltae may ako be obtained in using a mutrient liquid componed as follows:

Tapwater 100 , calciom latate 2 , peptone $\left.0,05, \mathrm{~K}_{2} \mathrm{HP}^{\circ}\right)_{4} 0,05$,
which is infected with a small quantity of ditch-mud.
At temperatures firm $28-37^{\circ}$ excedingly rich spirilate cultures are formed in this liguid. It would, however, be too rash thence to conclude, that lactate is formed as a transient decomposition product of the cellulose.

The destraction of the cellutose is not only apparent from the strong growth of microbes, but also from a microscopical examination of the fibres. As in the case of the denituifation process, these are here also found to be enveloped with a bacterial mucus in which is always found a very small rod-bacterium, and occanionally a large micrococens, which itself does not attack cellulose, but much accelerates its dissolution by the small bacterium. 'The destruction is no doubt catused by the latter, for sometimes, we have obtaned cultures, which exchasively contained this species only.

That the decomposition is here an aerobic one, is shown by the fact, that it commences at the surface of the colture and also takes place equally well when we cultivate in a ver thin layer.

 diteh. Wre where on the whole the sembe phenomenta, only we the thet find then that varioty in serper of spirillate notieed with dited-waters. Is a male a short. Hick, gramblated spirillum with one lailf windin! is then conspionons and I have stoceeded in preparing pute eultures of this epeedes, ahreally ohserved previomsly ${ }^{2}$).

An experiment with seat water showed, that this also eatuses the
 -perese of spitillate wats obtathed at the same time. In this case the decomposition in the athä̈robie statimm may also be cathsed by ath athërobic -pre forming organism. which moleh resembles the bacteriat of the methathe and hydrosen fermentations hout still presents a different shape.

1 have tried to isolate the bacteria connected with the aërohic

 filis. l_{2}. mesertertions and seresal others mbnown fore but none of these -pecies of none combination thereof was capable of attackine collalome.

Onr reand that cedhulose may be attacked hy aërobic bacteria Widely acemring in mathre, is contimed in a particulaty convincing manner hy the following experment:
lat atan hox we plated 1 wo dise of swedish filterpaper hetween

 tapmater. If now we introluce upon the plate thos prepared a little
${ }^{1}$ Bitapmack. Leber oligonitrophile Microben. Centrbl. f. Bakl. Abt. II, 1901 Bd. 7 . s .574.
quantity of water contaning in suspenson hambs, samen soil ore still better, diteh-mod, and if we coltivate at $24-26$, the paper gets eovered atter 4 or 5 days with yellowish-hrown spots which, miconoppically, atre found to consist of haterva. The ere pots sperad with great rapidity, and it is highty interesting to obsope how in at shot time the white filterpaper is covered with the rusty collure. This is actompanied by a decided decomposition of the paper fibre, which is shown in the liset phate by the fiat that the paper beeomes quite soft and pulpy Gust on the spots exposed to the adion of the bown bateremm, losinge there alf coherence and sinking down aloner the edere of the phosphate. The phenomenon beeomes slill more pronombed, when instead of tilterpaper, limen ore cothon is used; after about 10 days, the affece fed spots of the originally strong material have loz all power of resistance and atter 15 dats large holes will be formed whent carefully pouring water on them.

Microsophically, it appeas that a powerful destrection of the tibre is taking place (tig. 3) due to the aretion of a brown, very mobile, little rod hacterimm (Bacillus fermanames tig. 4). The tibre is again enveloped by a mucus in which is fomme, in many cases, the same micrococens as mentioned above (fig. 5) and 6). (owing to the combined atetion of these two bacteria the fibre may dixappeat completely and leave behind a muchs contaning only micrococei ; we then obtain an image ats shown in tig. 7. In addition to amoehae and monads other small bacteria are found, hat there is no question of the presence of amaerobios, which oeror in the hyrdrogen or methane fermentations, the action being a purely aërobic one and takints place very well in filterpaper hoolh sides of which are exposed to the air.

On transferming the hrown sots fo previonsly serilised paper dises. between which MgNH, \mathbf{P}^{\prime}), hats been sprinkled and which have heen saturated with a sterile 0.0.5" "solution of $\mathrm{K}_{2} \mathrm{HPO}_{4}$, the phenomenom remans constant. On inoroulating them into the atove deseribed eelbulose pulp a enture is ohnamed resembling that which arises by the dreet action of ditch-mud ore eath, but no spimallae are fomed this time, for these bemg miowacophitons camot grow in the aërobie culture on the paper dises. On the other hand the coultaren
 on paper dises, showing that in both catses the destruction of the cellulose maty be cemsed by the stme mierohe. I atso moticed at few times that the dises were covered with colodeso pots ratused by a larger mumbsecreting rod, and as moreoter the paper pulpentheres often are only lithe colored, it must be assumed, that the aempobic

(On bsing seat water as inferether material, smilar bown spots were
 of $3^{\prime \prime}$. Nat'l they camsed no destomothon. Whish shows that we atre dealines here with as speritio sea hatberinus.

I hate made several experiments with varions entare materiats in order to isolate this very interesting cellulosedtestoging brown pigment haterimm, which I was prothoulaty anxions 10 atecomplish atier having whervet, that the armbe burteriadmixture ath grown on
 wer paper, which shows that on these media the sath bacterimm had kept alive. But I was agath msmereseful in isolathy a species which either akone or in combination wibh wher hateria was capable of "ansing the brown spots on paper. Thongh I stheceded in isolating from these spots a brown and a vellow hateriam, which as arule, were present in large mumbers, vet, ats in the case of the denitrition-
 cultures. The explanation of this ciremmstance has not vet been foumb.

The aërobic destrotion of pure cellulose and also the more dibiontt destruction of the lignified cell walls, ${ }^{2}$) on which we camot conter in this investigation, must, like the denitritication (which is only possible with nom lignitied cellulose and hakes place ont of contat with air) phay an important part in the disappeatance of vegetable substances in mature. The well known fate that wooden piles, when partly immered in water ate athacked exatly at the place of eontact lotween the water ant the air, the breaking of ropes, when suspended in water, exately at its sufface and also the aërobic decay of wood must be attributed mainly to the action of aemobic destroyers vas stats (1. e. 10:3) who was aequanted with these fiects, did not deny the posilatity of a decomposition by aemohice lateraa but thonght it very malikely "as no phenomenon ever pointed to stuch a fate."

That the abovedescribed yellowish-hrown pigment baterinm pays indeed an important part in the disappearane of the cetholose, is shown hy the following experiment.

On October 14, 1902 were bmied in the gatden of the bacteriolotrial latmatory at about 15 c a m. betow the surtace a linen cloth with a red colored border, and in wo other places fone sheets of filterpaper, all in a horizontal position. Left in the soil montomed during the recent winter and on exhmming them March 22 , I H_{ol}

[^150]not a trace cond be found of the filterpaper, whitst the linen coloth had become soft and pulpy, had lost all coherence and could only be remosed from the soil in pieces; the red border, howeser, hat refained its original sthucture. The origimally white tissue hat assumed the same yellowish-hrown colour so limilian to me from the eraltures on the paper dises, while on microseopieal insestigration the fibres appeaced to be much deromponed and disintegrated into fibrillae and besides monds and amoelate only small hate teria were observed. On putting some of the well-oleaned fibres on the paper dises prepared ats deseribed above, I obtamed after three days the rapidly spreating, yellowish-brown spots of the destructive, smath, rod-shaped pigment bicterimm. A rellulose-destroying mould,
 that the rellowish-brown pigment baterimm was here predominant, could not be doubred.

3. The decomposition of rellulose by moulds.

The fad that cellulose may be attaked by celtain fing hat been lirst stated by de Bars ${ }^{1}$) for Peziza sclerotimm, and the same wats found by Kisshavi ${ }^{2}$) and by Marshald. Ward ${ }^{3}$) for a kind of Botrgtios,
 herburom and Asperpillus glonems. This last investigator did not notice any decomposition by . Wucom stoloniftr, Pronicillium ,flancum and Pemidillum lutem. Konsstam ${ }^{5}$) prepared a cellulosedestroying enzyme firom : Iferulins lucrimmans the common wood fungus. Weat ") hats *hown, that Momilio sitophild, the "ontjom" mould from Java, is capabe of digesting cellulose and Koswa; ${ }^{\circ}$) has found that one of the

1) Ueber einige Sklerotien u. Sikfertienkrankheiten, Bot. Zeit. 18st, S. 3it.
\Rightarrow Zar Biologie der Butrytis cinerar, Diss. Dresten, 18ss.
${ }^{\text {a }}$ A lity disease, Amals of Botany, Vol. H, IN88/89, p. 346 .
५ Trockene n. nasse läule des Tabaks. Der ,Dachbrant', Zeitschr. ©. Planzenkr. BM. IIt, 1893, p. St. - Untersuch, öber den Würzelschimmel fler Reben, Centr,bl. f. Bakt., Abt. II, Bi, 3, 1897, s. sxi. - Bettage zur Kemntniss der Obsthalnis.

${ }^{6}$) The infuence of feeding on the secretion of enzymac by Monilia sitophila.

 Afd. 5, Zilting 7 Dec. 1901.

15! 18

Tapwater 100, N1I, NO, 0,05. Kll, P(), 0,0.5.

 homs to the oren air. If lhen wormhivate al 24 and take care to keep
 © days, hol it is only ather It days of there weeks, that we motice
 at the greal mumber of monlal peeges, which make their appearatace. Minty kinds which we seldom or never notice on matt-relatin are finuld in latree mumbers on these paper dises. These speroes certainly are ako catpable of growing on malt-relatin, but their germs, ats they ocour in mature, apparenty find thereon an mataorable soil. Another adrantage of the collivation on paper is that it is parterolanty favorable to the formation of peritheroa and pienidia, which do not readily develop on rich soils ${ }^{2}$.

From these culture experiments it appeas that a continums ram of spores firm cellulosedestroying moulds falls in the graten ats well ats in the rooms of the hateriologicat laboratory. For instance on Mareh 11, when the weather was dey whilst the eatll Wat moist, 152 cedluloredtedroyimg monds were collected on a plate of 275 (e.m. spuare, after this hat been exposed for 12 hours to the open aid, ath amoner these moulds ahout is species were recognised. As these trems must eontimatly drop on the soil, it might be expected that the latter would be remakkably rich in living moulds and it appeared from experiments. that this is really the case at the surface of the garden soil, but in at muth lese degree than might have been expected, while fower down in the soil the momber of monld seems to be still less. From this it follows that most of the spores, which fitl on the earth rapuilly die oll.

In order to prepate a prove coulture of the fingi isolated by the "paper-experiment" some material from the raw raltures was fathsferped to mathegelation, where it appeared that the monds were genctally muth comaminated with hateria, firon which howerer,

[^151]they could be feed by amother inowhation. These bateteria are saprophytes which do not attate eelhatose hat errow at the expense of the products gencrated by the action of the moulds on cellulose 'This result was not mexpeted for, as stated in the preceding parastaph. the cellnlosedestroying bateria live in a faintly alkahine mediam, Whitst in the eave of monlds the reation is acid, owing to the presence of KH. P ${ }^{2}$, In order to be perfectly dertatin of the pareness of the mondes, coutures from the spores were linally made on malt-gelatin.

The following species, which were deterted in these collores, have heen submited to atoser examination :

1. Somelavial lamiconla (O)D.
2. P?/jomemet com/luens T:T..

3. I'!promerluestel humicolla Otb.
4. (Whrotemmella hurvider OUD.
5. Tivelochadizon asperam H.an\%.
6. Stechylatry.s altermums: OXD.
7. Sympotrielerm hombaramm (Cordi) Rivah.

8. " !fixisolum (OLD.
9. Botryfics mulfaris Fre.

10. Épiceccem pmomotsoms. Ehraxis.

In the determination of there percien, of which ${ }^{*}$ w. 9^{1}) and t, are new, we have been kimlly assisted hy Prof. Dr: (. A. J. A. Ocbemass, whom we hate to express om thanks.

In order to form ath opinion on the destruction of redtalose ly the isolated speries, and ako to stuly their firtotitiadion, pure cultures were inoculated on paper dises, which after sterilisation. Were drenched with the abore-named solntion. Instead of merely phatime the epores on the paper, it wats fomm desirable to push then in it by means of a phatimam wire and then to rethee the spots there to pulp. The cultivation is made at 24 , catre being taken to keep the paper moist, for Which it was fomm allambagens not to mee water only hat the satd

 in arery charateristic mamer and often produce intensively oolored, hrown, black and ted pisments, which are ahsorbed by the pater

1) Nederl. Kruidkundig Archief, Jansari, 1903.

 Whish forms datk red perithectate, He aso of whels contain eight grey

 1he homms eoboring mathers. This hatter previes however, grew mote reatily on ath atkaline metimm, st that we profered in the case the sath dremeded paper dises, betwern which Mer NH, P'(), had been sprin-
 Hhis areomyeete is only then capable of forming peritheriat ont paper dises, when thene give mo hoger athy reation on athmonia or mathes. Fosides the athove-named peeves, a loxurious growhth was obtathed
 motcospmoraitemm, which there seccies exhibit great similarity both
 frimsertes atoo grew stromgly on the praper and fomed a purplemed pisment. This speries I met several times in the air and also in company with (hodospusimn hodnamm) on half decayed leaves of I'mplles: belsimifito

C'ulfures of these mondds were not only made on paper dises. but alon on rellutose in ERbametar Hasks. into which was introduced a thin baver of the following colture liguid:

Tapwater 100, paper-pulp ${ }^{2}$, $\mathrm{NH}_{4} \mathrm{NO}_{2} 0,05, \mathrm{~K}_{2} \mathrm{I}_{2} \mathrm{PO}_{4} 0,05$.
In this cave a repeated addition of NH, NO, proved very advantareons. On the pulp, the cellulose-destroyers grow still better thath (on the paper dises and in 3 or 4 days the eellulose is comverted ly the mpredimm into a eoherent mass. Afterwatds, the firtitication
 Was oheerved.

The destruction of the cellolose may be regarded ats certain when - fromer growth on the paper dises and on the paper pulp are being wherved. The impurities contained in the proper may also bathe at sight growth of moulds which do not attack cellulose, but these soon rease to develop. The decomposition may be seen very eleary by a microcopic examination of the euthres on tilterpaper: When these have stood at long time. It will then strike us how a large mumber of libres have suffered a process of disoolution; sometmes proses are formed perpendiontary to the direction of the tibre, sometimes the tibres hatve disintegrated into thbrillate. Fig. 9
of our illustration shows the image of the destruetion hy Mefogfom puecimiödes, in which the structure of the fibrillare and the satd pores are visible.

The degree of destruetion also may he asedtaned by dired weighing. A enlture with Mygogome puecmioüles was made on a double dise of filterpaper, two equally heasy filters seving ats comtrol. After a culture, lasting 40 days, the dises, from which the stromgly developed mycelimm was not removed, weighed 1.00 gram, whits the controlling dises weighed 1.16 gram, showing that about $14^{\%} \%$ of the eellulose had disappeared. A simitar experiment with Trichoclaclium stsprom grave a loss of 9%. These great boses only ban be explained by the oxdation of the products derived from the cellulose under the influence of the respiration process. The oxidation of eellutose also wats studied with filterpaper pulp, namely by weighing the amount of earbon dioxide, bibetated during a culture of Chuctomium liunzequm. In this experiment ant oxidation of about 4°." of the cellulose could be noticed after a 28 days culture, a quantity large enough to remove all dombt about the destruction of the cellulose.

No, growth or only a very small une, wats observed when enliovating the moulds on:

Tapwater 100, agar 2, $\left.\mathrm{NH}_{4} \mathrm{NO}_{3} 0,0 \mathrm{O}_{2}, \mathrm{KH}_{2} \mathrm{PO}_{4}\right)_{4,05}^{0}$,
but as soon as cellulose was atded atrong development set in. showing in a surprising manner, hat agar is a less umtrient food for these moulds than cellulose. The cellulose used in these experiments must be very finely divided and was prepared by treating cottonwood with concentrated hydrochloric acid, whech eanses the coton fibres to break up into very small fragments. A preparation, which appeared to be still more suitable was prepared as follows: Paper which has been converted into soda-cellulose by the attion of strong soda-lye, is readily soluble in sodium xanthomate to a light yellow liquid: the "viscose" of (ross and Berax "), which is purfied by precipitation with alcohol; on adding hydrochlorice aced to its aqueoms solution cellulose is precipitated in a very pure condition. I have to thank Mr. de Josen behafere, for a specimen of this preparation, whith he prepared in the chemical lathoratory of the Polytechnie sehool at Delft.

I found that, when cultivating on this agateellulose, the grow entirely depends on the plantity of the eellulose added: with moth cellulose a strong growth was observed.

[^152]de in the rame of the mondhe imwertigated hy the abovernatmed wherers, also the -porion

 me reduction tow phate. From thex las experiments, which were

 en\%ome sereved by the monld, diflers eonsiderathe, is shown by the

 ェри"

1. Cellalose maty be made to disontre hy the action of dentrifying,
 of ${ }^{\text {alif. }}$
2. Ahhomgh nitrification ammot take pace in the presence of a somewhat latere quantity of sohble orgamic mather, cellulose does mot allect his proves in case of sumbent aebraton.
B. The combined action of nitrification and dentribeation must pay
 instanee in the self protitation of waters and of the soil, as also in the

[^153]4. Cellulose may atso be attacked, when there is a full supply of air by widely distributed, äërobice, nou-sporeforming bacteria, amoner
 The destruction is particulaty sfrong in symbiosis with a rellow microcorers. Which inself is incer.

万. Extmotelatrily rich spirillate collures are formed in mutrient liquids in which cellolose is being attacked by aërohic bactoria after infection with difeh-mad or gaten soil. Probably the distribution of the spirillate in mature is manly governed hy eellulose.
6. The property of moulds to attack cellatose is a very common one. The dissolution is due to a sperife enzyme to which the name of "cellulatse" may be given.
7. One of the causes of the origin of hamus eolorimes matters is the formation of pigments from cellalose by bateria and monds.

This investigation has heen mate in the bacteriological lathoratory of the Polytechmic school moder the widame of Drof. limatrack.

Delfit, Miuch 1903.

EXPLANATHON OF THE FlGURES.

Fig. 1. Fibre of tilterpaper with denitrifyug bacteria, disimerated into tibrillae, enclosed in mucus. Enlargement 3 job.

Fig. 2. Debris of fifterpaper at the end of the denitrification process, most of Hte fibres are dissolved. \% the last dethis of cellaluse libres, β, γ and \ddagger nonattacked elements of "woodeellulose". Einl. 100).
Fig. 3. Fibre of filterpaper wilh aetrobic bacteria disintegrated into librillate, enclosed in mucts. Einl. 550 .

Fig. \{. l'acteriam from the precedint lignre more strongly enlarged; arows represent motion. Einl. 1500.

Pig. J. Fibre of tillerpaper attacked by ath aerobic: bacterium wills saprophytic micrococcus, commencing to disimtegrate intu fibrillace. Ent. 5.00.
Fig. 6. Two tibrillae of the preceding libre more strongly enlarged, with zaterobic destructive bacteria and $\hat{\beta}$ saprophetic micrococens. Bul. 1.500.

Fig. 7. End of the destruction in lig. 5 the fibrillac havine become invisible; micrococei only visible Eal. \%) O.

Fig. 8. Fibre attacked by aterobic bacteria, disintegrating into fibrillate and enclosed in a thin mucous layer as medium for a spriltae culture in which 3 species are recognisable. Enl. 2.0 .

Pity. 9. Destruction of a tibee of filterpaper by hycogone mectimindes, berides He librillary structure, cross pores have been formed in the librillate owing to the action of the cellulase. Lint. sion.

CONTENTS.

Absorprios (On the emission and) by metals of rays of heat of great wavelengeths, gifif. absorpthomband (Observations on the maguetie rotation of the plame of polarisation in the interior of an). 41.

- (The calculation $\frac{e}{m}$ from the magnetic rotation of the plane of pularisation for substances withont ant in the visilbe speetrum. 413.
accomulation experiments with denitriting bacteria. 118.
aceraldenyde + paraldehyde (Equilibria of phaves in the system:) with imb wilhout molecular transformation. 283.
acid (On the prussic) in the opening buds of Prumes. 31.
achs (On the so-called compounds of sulphomearboxylic) with sulphuric esters. 482. ÄROMC micro-organisms (The decomposition of cellulose by). (is5.
alberda vinekensteix (w.) and (\%. A. Lobry de Rbuyn: "Formaldelyde (methylene)- derivatives of sugars and g-gheosides." ifs.
Ahlors (The course of the meltiugpoint-line of solid) or amalgams. (I). 42 1. (II), 511. amalgams (The course of the meltingpoint-line of solid allogs or). (I). 42.4. (II).all. ampmoxus lanceolatus (On the structure of the light-percepting eells in the spinal ford, on the neurofibrillae in the equglioneetls and on the innervation of the striped muscles in). 350 .
Anatomy. J. W. van Winie: "A new method for demontrating cartilaginons mikroskeletons." 47.
anciles (On the connection of the planes of position of the) formed by two spaces $S_{i z}$ passing throngh a point and incident spacial systems.
antimony (On the atomic weight of). 513.
Arc (The influence of varation of the ron-ant current on the pitel of the singingry). 8 . 1 . Amoxstein (L.) and A. S. Yax Nimop. On the action of suphur on tolucue and xylene. 258.
Astronomy. E. F. van de Sande Bakiuyzex: "On the yearly perindicity of the rates of the standadelock of the Observatory it Leyden, Iohwii No. 17." (I). 68. (IL). 193.
- E. P. van de Sande Bakiuyzen: "Preliminary investigatiom of the rate of the standardclock of the Observatory at Leyden, Hohwii NN. 37 after it was moment in the niche of the great pier." 267.
- d. Weeder: "On interpolation hased on a supposed conlition of minimum." Si t. atmospheric pressurf. (Meastrements on the magnetic rotation of the plane of polarisation in liquelied gases under). $2 \cdot 13$.

Anomic whinut (Chthe) of Antimony. its.
sams (Intramolecular rearmugement of) in norybenzene and its derivatives. 51.

- (The intramolecular rearmagement of) in hatogenacedandiales and its velocity. (1). 17~. (11). 35.5!
avarce: of the mammalian heart (On the duration of the compenantory patuse after atimulation of the). 378 .
azoxymezene (Lutramolechlar reargugement of atons in) mal if derivatives. 51.
HUTERA (C cemmatation experiments with denitrifyines). 145.
Bacterjology. M. W. Beyebinck nud A. Pan 1)fabes: "()n a colourless bacterium, whose carbon fool comes from the atmonphere." 395.
macteriom (On a colourless), whose carbon fool comes from the atmosphere. 395.
 trial structure of the Hondsrug in Drenthe and the origin of that ridge." (1I). 101.
- presents a paper of Dr. W. Heasdfas: "Galvanic cetls and the phase rule." 182.
- A representation in space of the regrons in which the solid phases, which occur, are the components, when not formins compounds. 279.
- Fiquilibria of phases in the system: acetaldehyde + paraldehyde with and without molecular trausformation. 253.
- 'limamalgams. 373.
- presents it paper of 10r. A. Smis and 1. K. Wolfr: "The velocity of trausformation of carbon monoxide." +17 .
- presents a paper of Mr. J. J. vas lask: "The conrse of the meltinspoint-line of soid alloys or amalgams." (L). 424. (Il). 5ll.
- presents a paper of Mr. J. J. vas Masa': "On the potential dilference, which vecurs at the surface of contact of two different non-miscible liduits, in which a dissolved electrolyte has distributed itself." 431.
 - (if. fr. yas desaside). See Sandf Bakhuyzen (H. (i, van de).

Bath of very uniform and constant low temperature in the cryostat. 502. 628.

- (A permanent) of liquid nitrogen at ordinary and at rednced pressure. 833.
f. F. K m s (E. H. M.). On the behaviour of disthene and of sillimate at high temperature. 2 tu.
BELZER (A. N. J.). The velocity of transformation of tribroomphenol bromine into tetrabromophenol. 55b.
BEMMELEN(J. M. FA.N) presents a paper of Mrs, L. Arossters and A. S. Van Sitrol: "On the action of sulphur on toluene and xylene." 288.
BENZIMNE transformation. 377.
Beyekixck (m. w.) presents a poper of Mr. G. Vas Itersos Jr: "Accumulation experiments with denitrifying bacteria." $1+8$.
- presents a paper of Mr. (i. Van Itabson Jr: "The decomposition of cellalose by゙ aërobic micro-organisms." 685.
- and A. vis Dflden. On a colouriess bacteriam, whose carbon food comes from the atmosphere. 39x.

BLANKSMA (J. J.). The intramolecular rearragement in lalogenacetanilides and its velocity. (I). 178. (II). 359.

- Nitration of symmetrical dinitroanisol. bõo.

BOEKE (J.). On the structure of the light-percepting cells in the spinal cord, on the neurofibrillae in the ganglioncells and on the imervation of the striped muscles in Amphioxus lanceolatus, 3 s. 0 .
moilingpornt-clrve: (The) of the system: hydrazine f water. 171.
BロN゙NEMA (J. n.). Cambrim erratic-blocks at Ifemelum in the Sonth-IVest of lixisia. 1\&0.

- Some new under-cambrian erratic-blocks from the Dutch diluvium. 56l.'
- Two new mid-cambrian erratic-blocks from the Dutch diluvium. fis̃.
borneo (Intluence of changed conditions of life on the physical imd prychical development of the population of Central-). 32\%.
Botany. F. Verschafielt: "On the prussic acid in the openine hods of Prums". 31. - J. C. Scuoute: "Die Stelitr-Theorie". 497.
bruidi (c. A. jobri de). See lobri de Bruijy (C. A.).
B C̈CHNER (E. H.). The transformation of diphenyliodonium iodide and chloride and its velocity. 616.
bubs (On the prussic acid in the opening) of Prunus. 31.
calculation $\frac{e}{m}$ (The) from the magnetic rotation of the plane of polarisation for substances without an absorptionband in the visible spectrum. 413.
CARBON rood (On a colourless bacterium, whose) comes from the atmosphere. 39s.
cabbon moxoxide (The velocity of tramsformation of). 11%.
CARDINAAL (J.). On the geometrical representation of the motion of variahle systems. 386.
cartilianous Mikroskeletons (A new method for demonstrating). 47.
CELLS (On the structure of the light perceptingr) in the spinal cord, on the newofibrillae in the gangioncells and on the innervation of the striper moscles in Amphioxus lanceolatus. 350 .
cellulose (The decomposition of) by aierobie micro-organisms. 685.
Chemistry. H. M. Kxipscueek; "Intramolecular rearanqement of atoms in azoybenzene and its derivatives". sl.
- C. A. Lobry de Bruyn and J, W. Dro: "The boilingpointeme of the system: hydrazine + water". 171.
- C. A. Lobry de Bruyn and W. Alberta van Fkenstein: "Formalilelyde (methylene)-deriratives of sugars and gheosides". 175.
- J. J. Blaxksma: "The intramolecular rearangement in halogenapetailides and its relocity". (I). 178. (II). 359.
- W. Reinders: "Galvanic cells and the phase rule". 182.
- 1F. W. Baknuis Roozeroom: "A representation in space of the regions in which the solid phases which oceur, are the components, when not forming compounds". 279.

 xylene". 285.
- II. W. Bakitus Rongemoom: "Tinamabrams". 373.
- J. I'otter van laos: "Bemzidine tranformation". ":77.
- 1. smits and T. K. Winfep: "The velocity of tranafinenation of earbon monoxide". 417.
- J. J. vis Latk: "hhe rourse of the mettinerophinteline of solid alloys or anatanms". (I). 42t. (II), 5lle.
- J. J. vas Laar: "On the potential-dillerence, which owents at the surface of contact of two different non-miseible liquids, in which a dissolved edectrolyte has distributed itself'. 431.
- A. P. N. Fanchimont: "On the so-called rompounds of salts of sulphonearboxylic acids with sulphuric esters". 4E:.
- E. Cohen and Th. Stringiars: "On the atomic weight of antimony". 513.
- F.. ('ones and C. A. Lobry be Bmots: "The conductive power of hydrazine amb of substances dissolved therein". 5.51.
- A. H. J. Belzer: "The velocity of tramstormation of tribroomphenol bromine into tetrabromophenol". 536.
- C. A. Lobry de Bruy and C. 1. Jesoits: "Disociation in and erystallisation from a solid solution". 6t3.
- E. H. lincmeer: "The tramsformation of diphenyliohlonium iodide and chloride and its velocity". 646 .
- J. J. Blanksma: "Nitration of symmetrical dinitroanisol". 650.
culomde (The transformation of diphenyliondonium iodide and) and its velocity. 616. Colles (e.) and Th. strexgers. On the atomit weight of Intionony. Jtio.
- and C. A. Lobry de Batis. The conductive power of hydrivine and of substances dissolved therein. 55l.
commos mivison (An analytical expression for the greatest) of two integers. 658.
comprasatory patse (On the duration of the) after stimalation of the anricle of the manmalian heart. 3is.
componests (A representation in space of the rearions in which the solid phases which occur, are the), when not forming compounds, 2i9.
compounds $\left(\mathrm{O}_{4}\right.$ the so-called) of salts of sulphoucarboxylic acids with sulphuric esters. 482. conditios of minimam (On interpolation based on a supposedi). 3fit.
conductive powfr (The) of hydrazine and of substances dissolved therein. 53l.
constaxts (The value of some magnetooptic). f:3S.
corosa (Peculiarities and changes of Fruuxhofer-lines inferpreted ats anomalous dispersion of sunlight in the). $55!$.
chitical state. (The equation of state amd the w-surface in the immediate neighbourhood of the) for himary mixtures with a small proportion of one of the components. $3 \% 1.336$.
cryogenic Laboratory (Methods and apparatus used in the). III. Bath of very uniform and constant low temperatures in the eryostat. 502. 62S. A cryostat of modified form for apparatus of small dimensions. 628. IV. A permanent bath of liquid nitrogen at ordinary and at reduced pressure. 631. V. Armogement of a Burckiabdt-Welss vacumpump for use in the circulations for low temperatures. 633.
cryostat (hath of very uniform and constant low temperatures in the). 502. 6\%8.
- (1) of moditied form for aparatus of small dimensions. 628.
crestallisation (Dissociation in and) from a solid solntion. 6.43.
currest (The influence of variation of the constant) on the piteh of the singing are. 311 .
delden (a. vas) and M. W. Beyerinck. On a colourless bacterium, whose carbon food comes from the atmosphere. 398.
dragonals of parallelotopes (Relations between). 540 .
Dirfraction of Röntgen-rays. 247.
Dhiuvium (Some new under cambrian eratic-blocks from the Dutch). 561.
- (lwo new mid-cambrian erratic-blocks from the Duteh). (i,s2.
dinitroanisol (Nitration of symmetrical). 650.
mispersion of sunlight (Peculiarities and changes of Fraunhorer-lines interpreted as anomalous) in the corona. $5 \$ 9$.
dissoctation in and crystallisation from a solid solution. 643.
disthene (On the behaviour of and of sillimanite at ligh temperature. 240 .
bito (r. W.) and C. A. Lobry de Bruys. The boilingpoint-curve of the system: hydrazine + water. 171 .
dUboIs (aUG.). The geological structure of the LIondsrug in Drenthe and the origin of that ridge. (I). 93. (II). 101.
EFPECT (A new law concerning the relation between stimulus and). 392.441.
eisenrose (On an) of the St. Gotthard. C65.
biectric circut (some remarkable phenomena, concerning the) in electrolytes. 465. electaic currest (On the advantage of metal-etching by means of the). 219.
electrolyte (On the potential-dillerence, which oceurs at the surface of contact of two different non-miscible liquids, in which a dissolved) hats distributed itself. 431. ELECTROLTES (Some remarkable phenomena, concerning the electric circuit int). 465. elegthomagnetic phenoment (The fundamental equations for) in ponderable bodies, deduced from the theory of electrons. 254.
electro-mechanics (Statistical). (I). 22. (II). 114.
electrons (Contributions to the theory of. (I). 60 s.
- (The fundamental equations for electromagnetic phenomena in ponderable bodies, deduced from the theory of \% , 254.
Emission (On the) and absorption by metals of says of heat of erreat wavelengths, 666.
entropy (The primeiple ol) in physiology. (II). ot.
equation of state (The) and the ψ-surface in the immediate neighbourhood of the critical state for binary mixtures with a small proportion of one of the components. 321. 336.
- (The variability with the density of the quantity b of the). 487 .

Fedathos（lieduction of warevation）contatuin more than one measured quantity．2：36．
－（The fundamental）for cleviromasertio phenomena in ponderable berlies，deduced from the theory of electrens． 2 ats．
 molecular transformation． 283.

－（Snane new under－cambrian）from the Dutch diluvium，56l．
－（Tino new mid cambrian）from the Dutch diluvian．65\％．
धロルハтツ． 217.
 dithane and Methylalcohol（Critical phenomena of partiatly miseible biquide）． 43.
Etbology．A．W．Niectexuuls：＂dultuence of changed conditions of life on the physical and psychical development of the population of Central－Borneo．＂ 52.0. romaldemyde（Methylene－）derivatives of sugars and wheosides． 175.
InANCHIMOST（A．B．S．）．On the so－called compounds of salts of sulphoncarlooxylic acids with sulphuric esters． 482.
hatwhoreb－hines（leculiarities and choures of）interpreted as anomalous dispersion of sunlight in the coronal．5 59.
gabranic ceble and the phase rule． 182.
dianghoxcelas（On the strncture of the light percepting cells in the spinal cord，on the neurotibrillae in the）and on the inservation of the striped muscles in 1 m － phioxus lanceolatus． 350 ．．
Gases（Isotherms of diatemic）and their binary mixtures．V．An aceurate volumeno－ meter and mixing apparatus． 636.
－（Measurements on the magnetic rotation of the plane of pularisation in liquelied） under atmospheric pressure． 243.
Geology．Vicg．Dubuis：＂The ereological structure of the llomerur in Drenthe and the origin of that ridge＂．（I）．93．（II）． 101.
－J．H．Bonsems：＂Cambrian erratic－blocks at Hemelum in the south－West of Frisia＂， 140.
－J．II．Boxsema：＂Eome new under－cambrian erratic－blocks from the Dutch dilu－ vium＂． 561.
－J．II．Bosnema：＂T＇wo new nid－cambrian erratic－blocks from the Dutch dilu－ viutri＂， 6.52.
Geomernical representation（On the）of the motion of variable systems． 386.
alucosides（Formaldehyde（methylene）－derivatives of sugars and）． 175.
－Insestigations of in connection with the internal mutation of plants．295．
If A（iA（Hi．）and C．H．WiNo．Dittraction of Rontgen－rays 247.
II ALLu（J．J．）．The value of some magneto－optic constants． 438.
habuevactanhmes The intramolecular rearramement in；and its veiocity．（1）． 178. （II）． 3 วัย
uramt（On the duration of the compensatory patise after stimulation of the auricle of the mammalian）． 375.
hemelom（Cambrian erratic－blocks at）in the South－West of Erisia． 140.
hogenkatd (G. b3). On ant "Eisenrose" of the St. Gothard. 605.
hondseng in Drenthe (The geolugical structure of the) and the origit of that ridge. (1). 93. (11). 101.
modrazine (The conductive power of) and of substances dissolved therein. 551.
-+ water (The boilingpoint-curve of the system:). 171.
mydhogen (The course of the values of b lor), in connection with a recent formula of I'rof. van der Wails. 573.
HYNDMAN (if. h. Fr.) and H. Kamerdiagil Onnes. Isotherms of datumic grases and their binary mixtures. V. An accurate volumenomer and mixing appatus. 636. mypornesis (An) on the nature of solar prominences. 162.
innex (On the refractive) of rock-ghasses. 602.
membation (On the structure of the light-percepting cells in the spinal cord, on the neurofibrillae in the gragglioncells and on the) of the striped museles in Amphoxus lanceolatus. 350 .
integens (An analytical expression for the greatest conimon divisor of two), 658.
nreasiry (On maxima and minima of) sometimes observed within the shading of strongly widened spectral lines. G62.
fnterpolition (On) based on a suppased condition of minimum. 364 .
intramolecular rearrangement of atoms in azoxybenzene and its derivatives. al.

- rearrangement (The) in hatogenacetanilides and its velocity. (I). 17S. (II). 3ू้り. Iodide: (The transformation of diphenyliodonium) and chloride and its velocity. 646 . isotnerms of diatomic gases and their mixtures. V. An accurate volumenometer and mixing apparatus. 636.
ITERSON JR. (G. vaN). Accumulation experiments with denitrifying bacteria. 148.
- The decomposition of cellulose by aërobic micro-organisms. 685.
julius (w. in.). An hypothesis on the nature of solar prominences. 162.
- presents a paper of Prof. E. Cohen and Tin. Strengers: "On the atomie weight of antimony". 543.
- Peculiarities and changes of Fracnorer-lines interpreted as anomalous dispersion of sunlight in the corona, 559.
- On maxima and minima of intensity sometimes observed within the shading of strongly widened spectral lines. 662.
jungius (c. L.) and C. A. Lobry de Bruyn. Dissociation in and erystallisation from a solid solution. $\mathfrak{i}+3$.
kamerlingif oxyes (h.) presents a paper of W. H. Keesom: "leduction of observation equations containing more than one measured quantity". 236.
- presents a paper of Dr. L. H. Siertsems: "Measurements on the magnetic rotation of the plane of polarisation in liquetied gases under atmospheric pressure. Il. Measurements with methylchloride". 24.3.
- presents a paper of Dr. J. E. Verschartelx: "Contributions to the knowledge of tan der wails ψ-surface. VII. The equation of state and the ψ-surface in the immediate neighbourhood of the critical state for binary mixtures with a smali proportion of one of the components". 321. 336.
 catrulation " from the mashetic robation of the plane of polarination, for sube stamers withont an aborptionhand in the visible spectram". Ils.
- presents a paper of forof. J. I'. Késes: "Criticul phenomena of partially mise cible liguids-lithume and Methylalcohol". ti3.
Muthods and upparatas used in the Cryonenie laboratory. Ill. Bath of very unform and constant low temperatures in the cryostat. 502. 1228. A cryostat of modilied form tor apparatus of small dimensions. 62S. IV. A permanent bath of lignid nitrogen at ordinary and at reduced pressure. 63 i . V. Arrangement of a HURCKAABDT-WEASs vacummpunp for use in the circulations for low temperatures, 633.
- and 11. II. Fr. Hindsan. Isutherms of diatomic sases and their binary mixtures. V. An arcurate volumenometer and mixing apparatus. (i36.
KEis S_{M} (W, H.). lieduction of observation equations contaning more than one measured quantity. 236.
KLUYVER (J.C.). An analyical expression for the greatest common divisor of two interers. 655.
KNIPSCHEER (II. M.). Intramolecular rearangement of atoms in exoxylenzene and its derivatives. 51.

KORTEWEG (b. J.). I'aitpoints and corresponding plaits in the neighbourhood of the sides of the ψ-surface of vas der Wams. $\$ 45$.
KUENES (J. ro). Critical phenomena of partially miseible liquids-lithane and Methylalcohol. 57%.
LAAR (J. J. VAN). The course of the melting-point-line of solid alloys or anal-

- On the potential-difference, which occurs at the surlice of contact of two different non-miscible liguids, in which a dissolved electrolyte has distributed itself. 431.
- On the course of the values of b for lydrogen, in connection will a recent formula of Prof. van der Wials. 573.
hangelais (J. W.). The principle of entropy in physiology. (11). 57.
LiW (A new) concermins the relation between stimulus aud eflect. 392.41 .
LIFE (lufluence of changed conditions of) on the physical and psychical development of the propulation of Central-Borneo. 525.
luquids (Critical phenomena in partally miscible;, 307.
- (Critical phenomena of partially miscible)-Ethane and Methylalcohol. 473.
- (On the potential-difference, which occurs at the surface of contact of two diflerent non-miscible), in which a dissolved electrolyte has distributed itself. 431.
bobry de bituy (c. A.) presents a paper of Dr. H. M. Knipschera: "Iutramolecular rearransement of atoms in azoxybenzene and its derivatives." 5l.
- presents a paper of Dr. d. J. Hissksma: "The intramolecular rearragement in halogenacetanilides and its velocity:" (I). 178. (II). 359.
- presents a paper of Dr. 'Th. Weevers: "Investigations of gheosides in connection with the internal mutation of plants." 295.

LOBRYDEBRUYN (C. A.) presents a paper of Dr. J. Potter van Loos: "Benzidine transformation." 377.

- presents a paper of Mr. A. H. J. Belzer: "The relocity of fransformation of tribroomphenol bromine into tetrabromophenol." 556 .
- presents a paper of Mr. E. H. Büchner: "The transformation of diphenyliodonium iodide and chloride and its relocity". 646 .
- presente a paper of Dr. J. J. Blanksas: "Nitration of symmetrical dinitroanisol". 650.
- and W. Alberda van Fienstern. Formaldehyde (methylene)-derivatives of sugars and glucosides. 175.
- and E. Cohes. The conductive power of hydrazine and of substances dissolved therein. 551.
- and J. W. Diro. The boilingpoint-curve of the system: hydrazine + water. 171.
- and C. L. Jungus. Dissociation in and crystallisation from a solid solution. 643.

Loon (j. potter van). See Potter van Loon (J.).
LORENTZ (H. A.). The fundamental equations for electromagnetic phenomena in ponderable bodies, deduced from the theory of electrons. 254.

- presents a paper of Mr. A. II. Sirks: "Some remarkable phenomena, concerning the electric circuit in electrolytes". 465.
- Contributions to tle theory of electrons. (I). 603.
- On the emission and absorption by metals of rays of heat of great wavelengths. 666.
magneto-optic Constants (The value of some). 438.
martin (K.) presents a puper of Prof. Eug. Dubors: "Geological structure of the Hondsrug in Drenthe and the origin of that ridge." (I). 93.
Mathematics. P. H. Schoute: "On the connection of the planes of position of the angles formed by two spaces $S n$ passing through a point and incident spacial systems." 53.
- S. I. van Oss: "Five rotations in S_{4} in equilibrium." 362.
- J. Cardinaal: "On the geometrical representation of the motion of rariable systems." 386.
- Jan de Vries: "On the spheres of Monge belonging to ordinary and tantrential pencils of quadratic surfaces." 481 .
- P. H. Schoote: "Relations between diagonals of parallelotopes." 510 .
- J. C. Kluyver: "An analytical expression for the greatest common divisor of two integers." 658.
measurements on the magnetic rotation of the plane of polarisation in liquefied gases under atmospheric pressure. I. Measurements with methylchloride. 243.
melting-point-line (The course of the) of solid alloys or amalgams. ([). 424. (II). 511.
metal-etching (On the advantage of) by means of the electric current. 219.
metals (On the emission and absorption by) of rays of heai of great wave-lengths. 666. METHOD (A new) for demonstrating cartilaginous mikroskeletons. 47.
 and constunt low temperatures in the eryostat. 502. 628. A cryostat of modified form for apparatus of small dimensions. 628. 15. A permanent bath of lizuid
 Welss vacuumpump for lise in the circulations for low temperatures. 633.
 Meturichlohine (Mensurements with). 2.43.
methmane-derivatives. See foumabbunbe (methylene)-derivatives.
Microbiology. (i. vas lifron Ia.: "Accmmulation experments with denitrifying bare teria', Its.
- (i vin Iterson J_{h} : "The decomposition of cellulose by nerolvic micro-organisms." 655.
mhroskeletons (I new method for (lemonstrating cartilaginous). \&T.
Mineralogy. E. 11. M. Befkman: "Un the behatiour of disthene and of sillimanite at high temperature." 240.
- 1. Tescu: "On the relractive index of rockglasses." 602.
- G. 13. Hogenraad: "On an "Eisenrose" of the St. Gotthard." 695.
miting apparatcs (An accurate volumenometer and). 636.
mittres (The equation of state and the \downarrow-surface in the immediate neighbourhood of the critical state for limary) with a small proportion of one of the components. 321. 336.
- (Isotherms of diatomic crases and their binary). 636.
molectlar trasformation (Some observations on the course of the). 303.
MoLi. (s. W. presents a paper of Mr. J. H. bossema: "('ambrian erratic-blocks at Hemelum in the south-West of Frisia." 140.
- presents the dissertation of Dr. J. C. Schoure: "Die Slelär-Theorie." 497.
- presents a paper of Mr. J. H. Bonnfya: "Some new under-cambrian erraticblocks from the Dutch diluvium". 361.
- presents a paper of Mr. J. H. Bonsems: "Two new mid-cambrian erratic-blocks from the Dutch diluvium." 652.
MosGE On the spheres of belonging to ordinary and tangential pencils of quadratic surfaces. $\$ 8 t$.
motion of rariable systems (On the geometrical representation of the). 386 .
mescles in Amphioxus lanceolatus (On the structure of the light-percepting cells in the spinal cord, on the neurofibrillae in the ganclioncells and on the innervation of the striped) in Amphioxus lanceolatus. 350.
mefation of plants ([nvestigations of glucosides in connection with the internal). 295.
Netroribrillae (On the structure of the lightpercepting cells in the spinal cord, on the) in the ganglioncells and on the innervation of the striped muscles in Amphioxus lanceolatus. 350 .
Niemop (A. s. vas) and L. Ibonstein. On the action of sulphur on Foluene and Xylene. 2SS.
NIECIEENHEIS (A. π.). Influence of changed conditions of life on the physical and psychical development of the population of Central-Borneo. 525.

NITRATION of symmetrical dinitroanisol. 650.
Nitrogen (A bath of liquid) at ordinary and at reduced pressure. 631.
obserfitory at leyden (On the yearly periodicity of the rates of the standardelock of the), Mohwü n^{0}. 17. (1). 68. (II). 193.

- (Preliminary investigation of the rate of the standardelock of the) Hohwüno. 17, after it was mounted in the niche of the great pier. 267.
OSS (s. L. VAN). Vive rotations in S_{3} in equilibrium. 362.
paraldehyde (Equilibria of phases in the system: acetaldehyde f) with and without molecular transformation. 2S3.
parallelotopes (Relations between diagronals of). 540 .
Pekelearing (c. a.) presents a paper of Prof. K. F. Wenckebach: "On the duration of the compensatory pause after stimulation of the auricle of the mammalian heart". 378.
pencils (On the spheres of Monge belonging to ordinary and tangential) of quadratic surfaces. 484.
PERIODICITY (On the yearly) of the rates of the standardclock of the Observatory at Leyden, Hohwü No 17. (I). 6S. (II). 193.
PHase rule (Galvanic cells and the). 182.
pIfases (A representation in space of the regions in which the solid) which oceur, are the components, when not forming compounds. 279.
- (Equilibria of) in the system: acetaldehyde + paraldehyde with and without molecular transformation. 283.
phenomena (Critical) in partially miscible liquids. 307.
- (Critical) of partially miscible liquids-Ethame aud Methylalcohol. 473 .
-- (Some remarkable), concerning the electric circuit in electrolytes. 465 .
Physics. J. D. Fin der Walis: "Thernary Systems". (IV). 1. (V). 121.
- J. D. van der Waals Jr.: "Statistical electromechanics". (1). 22. (IJ). 114.
- P. Zeeman: "Observations on the magnetic rotation of the plane of polarisation in the interior of an absorption band". 41.
- W. H. Julius: "Au hypothesis on the nature of solar prominence". 162.
- A. H. Sirks: "On the advantage of metnl-etching by means of the electric current". 219.
- J. D. Van der Waals: "On the conditions for the occurrence of a minimum critical temperature for a ternary system". 225.
- W. H. Keesom: "Reduction of observation equations containing more than one measured quantity". 236.
- L. H. Siertsema: "Measurements on the magnetic rotation of the plane of polarisation in liquefied gases under atmospheric pressure. II. Measurements with Methylehloride". 243.
- H. Haga and C. H. Hind: "Dillraction of Röntgen-jays" (2nd communication). 247.
- H. A. Lorentz: "The fundamental equations for electromagnetic phenomena in ponderable bodies, deduced from the theory of electrons". 254.

Physics. 1. D. vas pert Winio: "Some observations on the course of the molecular transfurmation". 303.

- d. vas der Wabla: "('ritical phenomema in partially miscible liquids". $\mathbf{3 0 7}$.
- J. K. A. Werthrise salongoson: "The influence of variation of the conatant current on the pitch of the singing are". 311 .
- J. F. Venscharfelt : "Contributions to the knowledge of vas dpramals \downarrow-surface. Vil. The equation of state and the \downarrow-surface in the immediate neighbourhood of the critical state for binary mixturea with a small proportion of one of the components." 321. 336.
- L. H. Siertsfan : "The calculation $\frac{e}{m}$ from the marnetic rotation of the plane of polarisation, for substances without an absorptionband in the visible spectrum". 113.
- J. J. Hallo: "The value of some magneto-optic constants". 435.
- D. J. homtewea: "Plaitpoints and correspondiner plaits in the neighbourhood of the sides of the \downarrow-surface of vas dir walas". $\$ 15$.
- A. H. Sirks: "Some remarkable phenomena, concerning the electric circuit in electrolytes". 465.
- J. P. Keenen: "Critical phenomena of partially miscible liquids-Ethane and Methylatcohol". 473.
- J. 1). vas ner Wasls $J_{\text {r. }}$: "The variability with the density of the quantity b of the equation of state". 48%.
- H. Kimerlingh Onsfs: "Methods and apparatus used in the Cryogenic Laboratory: 1II. Baths of very uniform and constant low temperatures in the cryostat. 502. 628. A cryostat of modified form for apparatus of small dimensions. 628. II. A permanent bath of liquid nitrogen at ordinary and at reduced pressure. 631. V. Arrangement of a Burckhardt-Weiss vacuumpump for use in the circulations for low temperatures. 633.
- J. J. vas lasir: "On the course of the values of b for hydrogen, in connection with a recent formula of Prof. vax ner Waals". 573.
- W. H. Julics : "Peculiarities and changes of Fraunhofer-lines interpreted as consequences of anomalous dispersion of sunlight in the corona." 559.
- H. A. Lorestz: "Contributions to the theory of electrons." (I). 605.
- H. Kamerlingh Onxes and 1I. H. Fbancis Hyndman: "Isotherms of diatomic gases and their binury mixtures. Y. An accurate volumenometer and mixing apparatus." 636.
- W. H. Julits: "On maxima and minima of intensity sometimes observed within the shading of strongly wideued spectral lines." 662.
- H. A. Lorextz : "On the emission and absorption by metals of rays of heat of great ware-lengths." 666.
Physiology. J. W. Livgelas: "The primeiple of entropy in physiology". If). 57.

Physiology. J. Loeke: "On the structure of the light-percepting cells in the spinal cord, on the newrolibrillae in the ganglioncells and on the innersation of the striped muscles in Imphioxus lanceolatus." 350.

- K. f. Wexckebacit : "On the duration of the compensatory pause after stimulation of the auricle of the mamalian beat." 378 .
- J. K. A. Wertheim salomonson: " λ new law concerniug the relation between stimulus and cllect." 392, +41.
Physiology of plants. Tur. Weevers: "Investigations of glucosides in connection with the internal mutation of plants." 295 .
place (T.) presents a paper of Dr. J. W. Langlaan: "The principle of entropy in physiology." (II). 57.
- presents a paper of Dr. J. Boeke: "On the structure of the light-perceptine cells in the spinal cord, on the nemrofibrillae in the ganglioncells and on the imervation of the striped muscles in Amphioxus limecolatus." :300.
plampormes and corresponding plaits in the neighbourhood of the sides of the ψ surface of van del ${ }^{\text {Wable. } 45 .}$
flane of polabisation (Observations on the magnetic rotation of the) in the interior of ath absorptionband. 41.
- (Measurements on the magnetic rotation of the) in lifuetied gases under atmospheric pressure. 243.
- (The calculation $\frac{e}{m}$ from the magnetic rotation of the) for sulstances without an alsorptionband in the visible spectrum, H3.
phanes of position (On the comection of the) of the angles formed by two spaces S_{n} passing through a point and incident spacial systems. 5%.
plants (Investigations of glucosides in connection with the internal mutalion of). 295. ponderable bodies (The fundanental equations for electromagnetic phenomena in), deduced from the theory of electrons. 25.1.
porulation of Central-Borneo (Influence of changed conditions of life on the physical and psychical development of the). 525 .
rotentlal-bifference (On the), which occurs at the surface of contact of two diflerent s:on-miscible liçuids, in which a dissolved electrolyte has distributed isself. 431.
pottervan loon (J.). Benzidine transformation. 377.
principle (The) of entropy in physiology. (II). 57.
pracxes (On the prussic acid in the opening buds of). 31 .
quantiry (Reduction of observation equations containing more than one measured). 236.
- 6 (The variability with the density of the) of the equation of state. 457.
rays of hest (On the emission and absorption by metals ol') of great wave-lengths, 66f. reinders (w.), Galranic cells and the phase rule. 182.
pock-glasses (O_{11} the refractive index of $)$. 6i)2.
rörtgen-kays (Dilliaction of). 247.
roozeboom (h. W. bakituis). See Bathulis Roozeboom (ll. W.).
 of an alsenptiontanad. +1.
 under atmospheric pressure. 2t3.
 without an absurptionband in the visible spectram. $\$ 13$. notatons (Five) in s_{1} in equilibrinn. 302.

 of the standardelock of the Observatory at Levden, Hohwit n°. 17. (I). 68. (It). 1113.
- I'reliminary investigation of the rate of the stambardelock of the Ohservatory at leyden, $1 l$ ohwii n°. 17 after it was monnted in the niche of the great pier. 267 .
 "On interpolation based on a supposed condition of minimum". 364.
schovte (J. c). Die Stelinr-Theorie. 497.
SCUOUTE (P. B.). On the commection of the plancs of position of the angles formed by two spaces S_{a} passing through a point and incident spacial systems. 53.
- presents a paper of Dr. S. L. vas Oss: "Five rotations in S_{s} in equilibrium." 362.
- Relations between diagonals of parallelotopes. 350 .

SCHRO\}DER V゙AN DEK KOLK (J. L. C.) presents apaper of Mr. A. H. Sibks: "On the advantage of metal-etching ly means of the electric current." 219.

- presents a paper of Mr. E. H. M. Beekmax: "On the behaviour of disthene and of sillimanite at high temperature". 2.40 .
- presents a paper of Mr. P. Tasch: "On the refractive index of rock-"flasses". 602.
- presents a paper of Mr. G. H. Hogexadid: "On an nEisenrose" of the St. Gotthard." 605.
smabisg (On maxima and minima of inteusity sometimes observed within the) of strougly widened spectral lines. 662.
siERTSEMA (L. H.). Measurements on the marnetic rotation of the plane of polarisation in liquefied gases under atmospheric pressure. II. Measurements with Methylchloride. 243.
- The calculatiou $\frac{\text { e }}{}$ from the magnetic rotation of the :lane of polarisation for substances without an absorptionband in the visible spectrum. 413.
silicyous spicules (On the shape of some) of sponges. lut.
shelmanies (O_{n} the behaviour of disthene and of) at high temperature. 250 .

- some remarkable phenomena, concerning the electric circuit in electrolytes. $46 \overline{5}$.

SMITs A.) and L. K. Wollf. The velocity of transformation of carbon monoxide. 417 . solab prominences (in hypothesis on the nature of). 162.
solutios (Dissociation in and crystallisation from a solid). 643.
space (A represeutation in) of the regions in which the solid phases which occur, are the components, when not forming compounds. 279.
spaces S_{n} (On the comnection of the planes of position of the augles formed by two) passing through a point and incident spacial systems. 53.
spbctral lanes (On maxima and minima of intensily sometimes observed within the shading of strongly widened). 662.
srecrnum (The calculation $\frac{e}{m}$ from the magnetic rotation of the plane of polarisation for substances without an absorptionband in the visible). 413.
spieres of Monge (On the) belonging to ordinary and tamential pencils of quadratic surfaces. 454 .
sponges (On the shape of some siliceous spicules olf). 101.
standabdelock (On the yearly periodicity of the rates of the) of the Observatory at Leyden, Hohwï no. 17. (L). 68. (II). 193. ,

- (Preliminary iuvestigation of the rate of the) of the Oiservatory at Levalen, Hohwü no. 17, after it was mounted in the niche of the great pier. 267.
stanistical electro-mechanics. (I). 22. (IL). 11t.
sthläk-theorle (Die). 497.
stimulus and Effect (A new law concerning the relation between). 392, 441.
stbengers (the) and E. Cohen. On the atomic weight of antimony. als.
structure (The geological) of the Hondsrur in Drenthe and the origin of that ridge. (I). 93. (1 I). 101.
sugars and Glucosides (Formaldehyde (methylene)-derivatives of). 175.
sulpher (On the action of) on toluene and xylene. 288.
ψ-surbace (Contributions to the knowledge of van der Waals'). VII. The equation of state and the ψ-surface in the immediate neighbourhood of the critical state for binary mixtures with a small proportion of one of the components. 321.336 .
- (Plaitpoints and corresponding phaits in the neighbourhood of the sides of the) of van der walals. 445.
surface or contact (On the potential-dillerence, which occurs at the) of twodiflerent non-miscible liquids, in which a dissolved electrolyte has distributed itself. 431.
surfaces (On the spheres of Monge belonging to ordinary and tamgential pencils of quadratic). 484.
systen (On the conditions for the ocurrence of a minimum critical temperature for a teraary). 225.
- Acetaldehyde + Paraldelyde (Liquilibria of phases in the) with and without molecular transformation. 283.
- Hydrazine + Water (The boilingpoint-curve of the). 171.
systems (On the comnection of the planes of position of the angles formed by two spaces $S^{\prime \prime}$ passing through a point and incident spaciad). ö 3 .
- (On the geometrical representation of the motion of variable). 386 .
- (Ternary). (IV). 1. (V). 121.
temperature (Bath of very miform and constant low) in the cryostat. 302.628.
- (On the conditions for the occurrence of a minimum critical) for a ternary system. 220.
temperatures (Arrangement of a Burckhardt-Weiss vachumpump for use in the circulations for low). 633.
 perature for ab. 285.

TE:R м mb:

- of electrons (lite findamental equations for electromagnetic phenomem in fronderable bodies, dedaced from the). 254.
FINAMAAAME. シ73.
- (The meltingpoint-line of). 511.

Toltzese and Xylene (On the action of sulphar 0nt). 288.

vacuempumb (A Burckiambt. Wieiss) for use in the circulations for low temperatures. 1333.
vanys of l (The course of the for hydrogen, in connection with a recent formula of l'rof. Vis dek Wials. 573.
vamman (The influence of) of the constant current on the pitch of the singing are. 311.
vebocity of transformation (The) of carbon monoxide $\$ 17$.

- of transformation (The) of tribroomphenol bromine into tetrabromophenol. 556.

YERSCHAFEELT (E.). On the prussic acid in the opening buds of l'runus. 31.
VEESCHAFYELT (J. E.). Contributions to the knowledge of van mer wabls ψ-surface. V'IL. The equation of state and the ψ-surface in the immediate neighbourhood of the critical state for binary mixtures with a small proportion of one the components. 32L. 336.
Vollmenometer (An accurate) and mixiug apparatus. 636.
VosmaEr (G. c. J.). On the shape of some siliceous spicules of sponges. IUt.
vhies. (HUGo de) prezents.a paper of Prof. Li. Verschartelt: "On the prussic acid in the opening buds of Prunus." 31.
Yanes (Jas ded. On the spheres of Jonge belonging to ordinary and tangential pencils or quadratic surfaces. 484.
watis (Van der) d-surface (Contributions to the knowledge of). VII. The equation of state and the \downarrow-surface in the immediate neighhourhood of the critical state for binary mixtures with a small proportion of ote of the components. 321.336.

- (laitpoints and corresponding plats in the neighbourhood of the sides of the廿-surface of). +45.
WAALS (3, D. FANDER). Ternary systems. (IV). 1. (V). 121.
- presents a paper of Dr. J. D. Van der Wisls JR.: "Statistical electro•mecha-

- On the conditions for the occurrence of a minimum critical temperature for a ternary system. 2:25.
- Some observations on the course of the molecular transformation. 303.
- Critical phenomena in partially miscible liquids. 30 \%.
 "The varibbility with the density of the quantity b of the equation of state." $4 S \%$.
- presents a paper of Mr. J. J. van LaAa: "On the course of the values of l, for lydrogen, in connection with a recent formula of Prof. ran der Waals". 673. WAALS JR. (J. D. VAN DER). Statistical electromechanics. (I). 22. (II). 114.
- The rariability with the density of the quantity h of the equation of state. 48%. Water (The boilingpoint-curve of the system: Hydrazine +). 171.
WEEDER (J.). On interpolation based on a supposed condition of minimum. B6t.
WEEVERS (TH.). Investigations of gheosides in commection with the internal mutation of plants. 295.
Wexckebacil (к. f.). On the duration of the compensatory pause after stimulation of the arricle of the mammalian heart. 378.
WERTHEIM SAFOMONSON (J. K. A.). The influence of variation of the constant current on the pitch of the singing arc. 311.
- A new law concerning the relation between stimulns and effect. :392. 441.

WIND (c. H.) and IT. Haga. Dilliaction of Röntgen-rays. 247.
winkler (c) presents a paper of Prot. J. K. A. Wertufim Salomosson: "A new law concerning the relation between stimulus and elfect". 392. 4t1.
WOLFF (L. K.) and A. Smits. The velocity of transformation of carbon monoxide. 417. W YHE (J. W. VA N). A new method for demonstrating cartilaginous mikroskeletons. ti. witafe. (On the action of sulphur on toluene and). 288.
Z.EEMAN (p.). Olservations on the magnetic rotation of the plane of polarisation in the interior of an absorption band. 41.

- presents a paper of Prof. L. K. A. Wertiram Shbomoxson: "The intluence of variation of the constant curent on the pitch of the singing are". 311 .
- presents a paper of Dr. J. J. Hallo: "The value of some magneto-optic constants". 435.
Zoology. G. C. J. Vosmafr: "()n the shape of" some siliceots spicules of sponges". lut.
-

Q	Akademie van Wetenschappen,
57	Amsterdam. Afdeeling voor
A.48	de Wis- en Natuurkundige
V. 5	Wetenschappen
Physical \&	Proceedings of the Section
Applied Sci of Sciences	
Serials	

please do not remove
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: 1) Lonestz. Proceedings. Vol. III, 1. 436.
[^1]: ${ }^{1}$) Pharmakognosie des Planzerreichs: Se Aufl. 1891 p .766.

[^2]:
 ${ }^{3}$ ）For a comparison of the adrantages of the theories of Lonexty ambl of hand
 p．39，1899．cf．also Plavek，Sitzater．Ak．Bealin，p．亻⿱八刀口，1！02，

[^3]: ${ }^{1}$) Ber. 13. 525 (1880).
 ${ }^{2}$) Ber. 33. 3192 (1900).
 ${ }^{\text {3 }}$) Ber. 33. 1939 (1900).
 $\left.{ }^{4}\right)$ Ann. 317. 313 (1901).

[^4]: ${ }^{5}$) Ber. 17, 464 (1881).
 ${ }^{6}$) Ber. 18, 2552 (1885).
 ${ }^{1}$) Ber. 18, 1405 (1885).
 ${ }^{2}$) Journ. f. pr. chem. 171. 567 (1901).

[^5]: 1) Smail male specimens of Rana esculenta proved to he the most statable for the experiment.
[^6]: ${ }^{1}$) Bull. Acad. royale de Belgique 3me Série, T. 16, 1888, pağ. 590.

[^7]: ${ }^{1}$) M. Foccacle. La psychophysique, 1901.

[^8]: ${ }^{1}$) In these experiments the solution of acid in the burette contained 80 grams of oxalic acid per liter solution.

[^9]: 1) F. Knser, Onderzoekingen omtrent den gang van het hoofduurwerk der sterrenwacht te Leeiden, de pendule Houwè N". 17. Versl. en Meded. K. Akud. Amsterdem D. $17111,1865$.
 F. Kisebh, Lutersuchungen öber den Gang der Hauptuhr der Sternwarte in Leiden, Hoнwё N". 17. Astr. , Vuchr. N". 1502.
[^10]: 1）See also ．Verslag van ten staat der sterrenwacht te Leiden 1s！s－1906 pages $10-13$ ．

[^11]: 1) The mean was taken of the readings at $12^{h}, 20^{h}$, 4^{n}, $1^{2 h}$, giving half weight to the extreme values.
 ${ }^{2}$) A constant correction was taken for each weekly harograph sheed detived from one or two readings of the mercurial barometer daily.
[^12]: 1) See also the particulars given in connection with the investigation of the period $186 \div-1874$.
[^13]: ${ }^{1}$) In lirst approximation it was assumed that e.g. the mean for the year from 'AN May to '79 April gave the value of " for '78 Nov. 1. Ahterwarls these vanues were in some cases slightly alteren.

[^14]: 1) These terms are to be taken cam grano salis. No biological formation will ever be absolutely mathematical; thus it may be that the axis of a flexuous or undulating spiculum is not exactly lying in a plane, without, however, being in any way comparable to a screw helix.

 ${ }^{3}$) $\sigma \pi z i \check{c} x$ (lat. spira), everything which is twisted.
[^15]: 1) For details I refer to a paper on Placospongia from Dr. Varninotr and myself, to appear within a short time (Siboga-Expeditie. Monogr. V1. Porifera).
[^16]: ${ }^{1}$) Schroeder van der Kolk, Bijdrage tot de kennis der verspreiding onzer kristallijne zwervelingen. Dissertatie pag. 50.
 ${ }^{2}$) Stelsloff, Sedimentaigeschiehe von Neubrandenburg. Archiv des Vereins der Freunde der Naturgeschichte in Mecklenburg. Jahrg. as pag. 16世.
 ${ }^{3}$) Roemer, Lethaea erraticia pag. 23.
 ${ }^{5}$) Tonell, Bidrag till Sparagmitetagens geognosi och paleontologi. Lunds Univ. irsskrift. Tom. IV. pag. 35.
 ${ }^{\text {a }}$) Tonele, Petrif. Suec. format. cambric. pag. 12.
 ${ }^{6}$) Tonell, Bidag till Sparagmitetagens geogn. och paleontol. pag. we.
 ${ }^{\text {7) }}$ Van Cippelle, Bijdrage tot de kemis van Frieslands bodem. II pag. 19.
 ") Vix Cippelee, Les Escarpements du "Gaasterdand", pag. w36.
 ${ }^{9}$) Vas Ciakza, Ueber das Vorkommen cambriselier und mersilurischer Geschiebe bei Groningen. Zeilschr. d. dentselı. geol. (iesellsch. Bil XLIII pag. 793.
 ${ }^{10}$) Vix Ciaber, Ueber cine Sammlang von Geschiehen von Kloosterholt, pag. 935. Bonnema, De sedim. zwerfblokkeu van Kloosterholt, pag. 449.

[^17]: 1) Lixxatissox, Om Faman i Kalken mell Conocoryphe exsmlans (otoronatus kalken"). Sveriges geologiska undersüking. Series C. No ${ }^{0} 0$ pag. 6. Scene lfig 1-4.
[^18]: 1) Roemer, Zeitschr. dey deutsch. teol. Gesellschaft. Bd 4. Jahrs. 1850 pas. 511.
[^19]: ${ }^{1}$) Studien über Meereshacteriön I, Bergens Museums Aarhog 1901 N", 10.

[^20]: ${ }^{1}$) Studien über Denitrification. Arch. f. Hygiene. 1897, Bl. 30, S. 974.
 ${ }^{2}$) Zur Frage über die Zerselzung von Sapetersauren Salzen durch Bakterien. Centrbl. f. Bakt. Abt. II, 1897, Bd. 3, S. 504.
 ${ }^{3}$) Ueber denitrifizierende Mikro-organismen. Landw. Versuchs-Stal. 1898, Bd. 50 , S. 65.

[^21]: ${ }^{1}$) Lemmaxy u. Necmany. Bakteriologie. München 1896, S. 237.
 *) De lia présence dans la paille d’un ferment aérobie, reducteur des nitrates. G.R. 1892, T. 114, p. 681.

[^22]: 1) Bexerinck. L'auxanographie ou la méthode de l'hydrodiflusion dans la gélatine appliquée aux recherches microbiologiqnes. Arch. Neerl. 1889, T. 23 p. 3137.
 2) Evgelmaxs, Zur Biologie der Schizomyceten. Botanish he Zeitung 1sR2, Bd. 40, S. 320).
 ${ }^{3}$) Beljernark, Ueber Amungsfiguren beweglicher Bakteriën. Centrill. f. Bukt. $1893, \mathrm{Bd} .14, \mathrm{~S} .827$.
[^23]: 1) Claessen. Ueber einen indigoblanen Farbstof erzengenden Bacilhus aus: Wascer. Centrbl. f. Bakt. 18.00, Bl. 7, S. 13.

 Voges. Ueber cinige im Wasser vorkommende Pigmentbacteriën, Gentrbl. f. Bakt, 1893, 13d. 14, S. 301.

[^24]: ${ }^{1}$) 1. c. p. 585.
 ${ }^{2}$) A. Schmidt, Die Strahlenbrechung auf der Some. Ein geometrischey Beitrag zur Sonnenphysik. Stuttgart 1891.
 ${ }^{3}$) A. Schadt, Erklärung der Somnenprotuberanzen als. Wirkungender Re raction in einer hochverdümten Atmosphäre der Sone. Srivs XXIIIS.97-109, Mai 1895.

[^25]: 1) J. Féxy S. J., Protuberanzen, beobachtet in den Jahren 18ss, 1889 und 1890 am Haynald-Observatorium, p. 5. (Kalocsa, 1902).
 ${ }^{2}$) W. H. Julus. On the Origin of Double Lines in the Spectrum of the Chromosphere, Due to Anomalous Dispersion of the Light from the Photosphere. Proc. Roy. Acad. Amst. Vol. III, p. 19:?
[^26]: ${ }^{1}$) Fényi, l. c. p. 114.

[^27]: 1) Proc. of April 19, 1902, p. 838.
[^28]: ${ }^{1}$) Ostwald, Lehrb. d. allgem. Ghem. Bd. II, T, II, 266.

[^29]: ${ }^{1}$) Z. f. phys. Ch. 7, 477.
 ${ }^{2}$) , , , 28, 1 .
 ${ }^{3}$) 1. c.

[^30]: 1) In fig. 6 to read K instead of F ard F instead of l^{\prime}.
[^31]: ${ }^{1}$) Byl. l. c.

[^32]: 1) About the errors of the barometer at Utrecht see: J. D. vas der Plats, „Over den barometer van het K. Nederl. Meteor. Inst." (Meteor. Jaarboek voor 1888). At Leyden the barometer-readings were reduced to those of the standard-barometer of Fuess.
 ${ }^{2}$) See also: Annalen der Sternwarte in Leiden. Tol. VI pp. CXIV-CiSVI.
 ${ }^{3}$) By taking the means of the readings at $10^{\prime}, 20^{\prime}, 2^{1}, 10^{\prime}$ and giving half weight to both the extreme values I obtained the daily means from midnight to midnight.
[^33]: ${ }^{1}$ ）The remark made at the end of 57 ，p． 23 （90）does not make sufficient allowance for the fact that，as long as no physical explanation has been given for the＂supplementary term＂，a variability of this term might be deemed no more probable than the variability in the course of time of a term varying as the square of the temperature．
 ${ }^{2}$ ）On page 2 ＇f（91）I forgot to remark that the same was done in Fig．3，which represents the period $1575-1898$ ．

[^34]: ${ }^{1}$) The reduction amounted to 0.4 Mm . in maximo.

[^35]: ${ }^{1}$) See: Verslag van den staat der sterrenwacht te Leiden 1876-77 pag. 12.

[^36]: ${ }^{1}$ ）As many observations are wanting the corresponding values lrad to be assumed．

[^37]: ${ }^{1}$) See also the ra'ues of c for the 9 nd period on p. 20 (87).

[^38]: ${ }^{1}$) In alloys containing lead (bab)its, type-metal, ete.) the sulpluric-acid on account of the indissolubleness of the sulphate of lead was replaced by nitric-acid.

[^39]: ${ }^{1}$) For on aeconnt of the comoding inlluence of acils on iron and sted a rery smatl quantily of sulphuric-acid can be experimented with.

[^40]: ${ }^{1}$) Kohlnacsen, Lehrbuch der praktischen Physik, p. 16 conviders the equations:

 $$
 u=j(A, B,(, r, s, t \ldots)
 $$

 "where $r, s \ldots$. , and often u are instrumental readings" and yet he determines (see p. 11) A, B, C so that the sum of the spuares of errors in u is as small as possible.

[^41]: ${ }^{1}$ See ,Tabellen zur Mikroskopischen Bestimmung der mineratien nach ihrem Brechungsindex" by Dr. J. L. C. S'aroeder tal der Kolk.

[^42]: 1) To be had at Immaxy's in Berlin.
[^43]: ${ }^{1}$) Proceedings Royal Acad. of Sciences. May 1900.

[^44]: 1) Comp, Commumication N", 1f, These Proceedings. Dee. 1891.
[^45]: ${ }^{1}$) Comm. Leilen Sunh 1 p. Sa; Arch. Néerl. (2) a p. 315.

[^46]: $\left.{ }^{1}\right)$ Arch．Néerl．（2） 6 p． 825 （1901）．

[^47]: ${ }^{1}$) Vogel's Tasclienbuch, 1901, pg. 128.

[^48]: ${ }^{1}$) H. H.as and G. H. Wixu. These reports \bar{t} pate
 265) and 299. 1!01. 1. Somserfelb, I'lysik. Zeil-chrilt 1, pe. 10.i, 19mo aud 2. pg. 58, 1900; Zeitschrift. f. Math. und Ihysik. 46, pg. 11, 1901.

[^49]: 1) C. H. Wisd. Il. cc.
[^50]: ${ }^{1}$) The dielectric displacement, the curvent and the magnetic fores are here represented in small lype, because we wish to keep in reserve larere lype for corresponding quantities which we shatl have to introduce later on.

[^51]: ${ }^{1}$ ）R．Schumax，Leber ten Gang der Pendeluhr F．Dexcker XII．（Ber．Siehs． Gesellsch．（l．Wiss．18ss）．

 2）Jahresbericht des Direktors des Königlichen Geodätischen Instituts fïr die Zeit von April 1901 bis April 1902，ps．35．

[^52]: ${ }^{1}$) It demonstrates, for instance, in a simple manner that on compressing vapour mixtures with a sufficient amount of A, the component B first deposits in the solid state in increasing (fuantity, but then again completely disappears at a certain pressure to make room for a liquid phase.

 This phenomenon has recently been observed by Kuexax (Phil. Mag. July 1902) with solid CO_{2} mixed with $\mathrm{C}_{2} \mathrm{H}_{6}$.

 It must always show itself with the component which in the liquidmixtures is the least volatile: in this case B . When however, the liquid-surface has a maximum pressure as in the instance cited by Kuexen, the phenomenon will be noticed with both components. If the surface has a minimmon pressure it can only occur with one of the two.

[^53]: 1) Ladenberg gave -120°.
[^54]: 1) A little meta-aldeliyde is also formed but the quantity remaining in solution is so very trifling that its influence on the system considered may be utterly neglected. It must still be ascertained what place meta-aldehyde occupies in regard to the two forms at high temperatures.
[^55]: ${ }^{1}$) Proc. Kon. Akad. Wetensch. 1898. First section VI, 3.

[^56]: ${ }^{1}$) Ber. D. Ghem. Ges. Band 8. P. 758.

[^57]: ${ }^{1}$) Ber. D. Lihem. Ges. Band 32. P. W331.
 ${ }^{2}$) Goldschmidt \& Hepp. Ber. D. Chem. Ges. Band 5. P. 1504,

[^58]: $\left.{ }^{1}\right)$ Zeitschr. f. Chemic 1866. P. 489.
 ${ }^{2}$) Ber. D. Chem. Ges. Band 32. P. 2532.

[^59]: ${ }^{1}$) Refore inversion a sulution of salicine does not reduce even with boiling; neither does saligenine formed by means of inversion at the same time as glucose.
 ${ }^{2}$) See Theorin Öfversigt af Kongl Vetenskaps. Akademiens Förlandlingen 1884.

[^60]: 1) The quantity of salicine is at the same instant lower in branches with catkins than in those without; the salicine diminishes more quickly.
 ${ }^{2}$) These procentic values are calculated for dry weight.
 2) These were branches of $6-10 \mathrm{~m} . \mathrm{N}$. diameter, the young shwots coming from sleeping buds.
[^61]: ${ }^{1}$) According to an investigation of Prof. H. Behrens which will shortly appear, communicated to me by Miss Grutterink.
 ${ }^{2}$) The black colour of the dying leaves is caused by the influence of a "tyrosinase" on catechol.
 ${ }^{3}$) Catechol was also obtained out of Salix Helix L., S. babylonica L., S vitellina L, Populus alba L., P. monilifera Ait, sometimes only very little.

[^62]: ${ }^{1)}$ I here mean the quantity in the bark of thicker leafless branches where no difference between night and day is observed.
 ${ }^{2}$) Also the facts observed at the change of night and day can be exceliently explained in this way.

[^63]: 1) After inversion and neutralisation the liquid was treated with leadacetate.
 ${ }^{2}$) Messinger and Vortmay, Zeilschrift f. Anal. Chem. 38 bl. 292.
 Ber. d. deutschen chem. Gesellschaft. Berlin. B31. 22. 2313.
[^64]: ${ }^{1)}$ Talleur, Comptes Rendus A. Sc. Tome 132 1. 1235.

[^65]: ${ }^{1}$) An experiment in order to investigate whether for propane the limit lies between ethyl- and propylalcohol was already in preparation for a long time in the laboratory of Amsterdan. But other labour which could not be delayed prevented each time those who would undertake the investigation.

[^66]: ${ }^{1}$) Proc. Royal. Acad., 28 Dec. 1901, p. 293 ; Comm., n ${ }^{0} .75$.

[^67]: ${ }^{1}$) Comm., no 65 .

[^68]: ${ }^{1}$) Thesis for the doctorate, Leiden 1899, p. 6; Journ. of Phys. Chem., 5, 425, 1901.
 ${ }^{\text {g }}$) From a mathematical point of view we may imagine the p, x, x diagram to be continued outside the limits $x=0$ and $x=1$. It is also obvious that x, if differing little from 1 , means the same as x infinitely small and that $x>1$ means the same as $x<0$.

[^69]: ${ }^{1}$) Figs. 1-13 represent diagrammaticatly p, r, f curves for infinitely small values of x and $T-T_{k}$, such as they appear in reality for tinite values of x and $T-T_{k}$. They are moreover theoretically exteuded into the imaginary region $x<0$. All lines lying within the region of negative x are dotted; the isothermal $x=0$ is represented by a dot-dash line. The line $x=x_{T k}$ (erroneously marked x_{T} in tigs. $1-12$) would be the critical isotherm of the homogeneous mixture.
 2) Comp. Kamerlisgh Onses and Reinganese, loc. cit., p. 35.
 ${ }^{3)}$ Ibidem.
 り) Comp. Keesow, Comm. n". 79, p. 8.

[^70]: $\left.{ }^{1}\right)$ Wien. Ber. 98, 1159, 1889.

[^71]: 1) We obtain the same formulae if we replace in equation (26) $x_{T k}$ by its value (17), put $T=T_{x r}$ and $x_{T r}=x$, solve $T_{x r}$ and substitute it in (39) and (40).
[^72]: $\left.{ }^{1}\right) p_{r_{p l}}<p_{k}$ for $x>0$; comp. preceding note.
 ${ }^{2}$) Arch. Néerl., (2), 2, 79, 1898.

[^73]: ") The simplest way of proving that the case ' $:=\infty$ in Korteweg's formula (4) does not influence the present deduction, is by noting that the area over which the development is applied is infinitely small in comparison with $x T_{p, 2}$.
 ${ }^{2}$) Proceedings Sept. 1900 , p. 29\%.
 ${ }^{3}$) See Korteweg 1. c. equation 3 x .

[^74]: !) Procedting: of the Royal Acatemy of Amsterdam. Mecting of April 19, 1902.

[^75]: ${ }^{1}$) Zeitschr. f. Wiss. Zoologie. Bd. 63, 1898. p. 430 g,
 $\left.{ }^{1}\right)$ Anat. Anzeiger. Bd. 14. Pag. 470. Zoül. Anzeiger. Bd. 21. p. 181.

[^76]: ${ }^{1}$) Mém. couronn. de l'Acad. roy. de Belgique T. LVI 1898.
 $\left.{ }^{2}\right)$ Wiener med. Wochenschrilt 1900 .
 ${ }^{3}$) Lehrb. der vergl. Histologie der Tiere 1902.

[^77]: 1) Arch. f. Mikrosk. Anatomie, Bd. 55. 1900. P. 513.
 $\left.{ }^{2}\right)$ Le Nérraxe. Vol. III. Fasc. 1, 1901. P. 85.
[^78]: ${ }^{1}$) Rivista di Patulogia nervosa e mentale. Vol. V fasc. 10. 1900.

[^79]: J. J. Branksm: "The intramolecular rearrangement of atoms in halogen acetanilides and its velocity". II. (Communicated by Prof. C. A. Lomex de lBriya), p. 359.
 S. L. van Oss: "Five rotations in S_{4} in equilibrium". (Commmicated by Prof. P. H. Schoute), p. 362.
 J. Weeder: "On interpolation based on a supposed condition of minimum." (Communicated by Prof. H. G. van de Sande Bakilyzex), p. 364.

[^80]: ${ }^{1}$) Proc. Royal Acad. Amsterdam. June 99, 1902.

[^81]: ${ }^{1}$) If we calculate number of mols. of alcoliol or acetic acid to a given number of mols. of water we see that this difference in velocily of reaction is still greater.

[^82]: paye fot ant ins.

[^83]: ${ }^{1}$) Nature, Vol. 66, pac. $264,1892$.

[^84]: 1895.

[^85]: ${ }^{1}$) If accepting that the composition of the bacterial cells corresponts with that of albuminous substances, then, instead of $44 \% \mathrm{C} ., 52$ to $55 \% \mathrm{C}$. should be brought into account, and in this proportion the volume of the air should be augmented.

[^86]: 1) Fitzgerald. Proc. Poy. Soc. 63 p. 31.
 ${ }^{2}$) Hallo. Diss. Amsterdam 1002. p. 7.
[^87]: 1) Vorgt. Wied. Ann. 67 p. 351.
 2) Volgt. Wied. Ann. 167 p. 349.
 3) Volgt. Wied, Ann. $67 \mathrm{p}, 351$.
[^88]: ${ }^{1}$) Becquerel. C. R. 125 p. 679.
 ${ }^{2}$) Sientsem. Comm. Lab. Leilen. Suppl. N'. 1, p. 86; Arch. Néeel. (2) 2 p. 376.
 ${ }^{3}$) Perredu, Ann. de Ch. et de Ph. (7) 7 p. 289.

[^89]: ${ }^{1}$) Zeitschr. für Physik. Chemie 9, 137 (1892).
 2) Compare Ruesexfeld, Wied. Ami. (1) 8, 617 (1!02).
 ${ }^{3}$) Hid., J. e.

 1) Nebust und Ríesexfeld, L.e. p. 1900 - 60N; Riesexfeld, 609-615: 616-624; id. Luaug. Diss., Cü̈ttingen 1901; Hrrtorr, Wied. Am. (4) 9, -243-2ィ5 (1902).
[^90]: 1) Amsterdam, 1902.
[^91]: $\left.{ }^{1}\right)$ Archives Neérlandaises, T. 24 (1891) p. $295-368$: La théorie générale des plis et la surface ψ de van der $W_{\text {alis }}$ dans le cas de symétric. See there p. $300-368$.
 2) We take here the equation of the ψ-surface as it has been originally derived by van der Wails, so without the empiric corrections which seem to be required to make the results agree quantitatively better with the experimental data. So is, for instance, u_{x} considered to be independent of the temperature, and all the results and formulae mentioned are founded on this supposition. It would not have been difficult to take such empiric corrections into account, as has really been done by Verschafelle and Keesom in their papers, to which we shall presently refer; but then the results were of course not so casity surveyed. Therefore I have preferred to leave them out of account, at least for the present.

[^92]: 1) See on these two kinds of retrograde condensation inter aliat, the paprer of vax one Wambs: "statigue des lluides (Melanges)" in Tome I of the "hapports presentes au congres internalional de physique, reuni a Paris en lyu0", page but-buy.
[^93]: 1) A simitar method is given by Keerom at the ronclasion of the hefore-mentioned paper of Verschaffelt.
[^94]: Aht. H1, (1ss! $)$ p. 1171.
 \Rightarrow See 1. c. p. 1163 .

[^95]: 1) It might appear as if ${ }_{16}^{9} 6^{2^{\prime 3}}$ ought also to be inserted in the following expression, but it is easy to see that this term leads to a small quantity of higher order than those that will occur in the final result.
[^96]: ${ }^{1}$) The anode and the side of the gauze facing it, are the electrodes of one, the other side of it and the kathode, those of the other voltameter.

[^97]: 1) Contimutiat If p . 17 F . I doubl the possibility of dealucing at mation bedwerat a_{12} on the one side and ${ }_{11}$ and a_{22} on the other.
 ${ }^{2}$) Keitschr. Plysik. (Chemie, 33, p. 620, 630 .
 ${ }^{3}$) Continuität II p. 188.
[^98]:

[^99]: ${ }^{1)}$ Continuität etc. II. p. 191.

[^100]: 1) The virial of the forces excercised by the wall must properly not be integrated over the wall itself, but over the surface which contains the centers of the moleculcs colliding against the wall, i.e. over a surface parallel to the wall and lying at a distance σ from it.
[^101]: 1) Zeitschrift lïr J_{1}. Clı. 8, pg. 1心 (1891). Also compare different passages in the second part of his "Contincitat' on p. 43-45; 145; 152.

 Fiecently, Pruf. Yas ber W.als has returned to this question in his = Ternury Systems" (Proc. March to Jaly lboz). He gives there a more general and accurate expression. wherein occur the critical temperature and pressure of the mixture (Compare in particular $15, \mathrm{p}, 9 \mathrm{O}-96$).

[^102]: 1) It is perhaps not devoid of importance to observe, that when the solid phase forms a solid solution of the two components, the presence in the meltingpointline of a point of inflection with a horizontal tangent points as before to mastable conditions. For in the general relation
[^103]: ${ }^{1}$) Rec. Trav. Chim. (2) T. ロ, N. Q and 4 (1898).

[^104]: 1) Behzeliss, Pogqexd. Amalen 8, 1 (1826); Kessler, ibid. 95, 215 (185.5);
 100, 363 (18.57); Domas, Immales de chimie et de physippue (3), 55, 175 (1859):
 Coore, Prec. Amer. Acad. 5, $13(1877)$: Kessiler, Ber. deutsche chem. Gesellschaft, 12, 1014 (1579): simemer, Uder das Atomgewicht des Antimons, Berlin 1880 .
 Arts, May 1880 ; B. B. 13, !oj (18s0); I'fetref, LinB. Inm. 209, 161 (1881): Porrer, ihid. 233, 153 (1886); Bontatit\%, B. 13. 16, 19货 (188:3); G. Cl. Friend and Einest F^{\prime}. Sumeif, Jommal Americ. Chemical soc. 23, 502 (1901).
 ${ }^{2}$) The constants of matare, smithomian Miscellaneons (iollections Pant V. Washington 1897.
[^105]: ${ }^{1}$) As commercial antimony generally contains lead whose atomic weight exceeds that of antimony it was absolutely necessary to prevent the possibility of any lead being present in the materials employed.

[^106]: ${ }^{1)}$ By it special experiment we had consinced ourselves that this did not cause any perceptible diminution in weight.

[^107]: ${ }^{1}$) Further particulars about this methon will be found in the paper of Cohex and Dr. Ringer.

[^108]: 1）This result is deridedly ino low as a foace of antimony qut lost during the washing．

[^109]: Waldex and Cemtehszwer, Z. phys. Ch. 39. 51t, 257 e. by J. Trasebe, Chem. Zt. 26. 1071. (1902).
 ${ }^{2}$) Lobry de Brax, Recueil des Travaux Cihmiques des l’ays-Bas. 15. 174.
 3) Ibid. 179.
 4) Some preliminary determinations were already mone in 1896 , 1. c. 179 .

[^110]: 1) 2. c. p. 175.
 \therefore We take the opportunity to call attention to the fact that platinised electrodes
[^111]: ${ }^{1}$) l. c. p. 183. Dr. J. W. Drto has found that an atom of hydrogen is replaced here; the $\mathrm{Na}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ formed is a substance which on being exposed to the air causes a violent spontancons explosion,

[^112]: ${ }^{1}$) Amer. Cih. J. 27. 31. (1902).

[^113]: 1) Transformation alinost completed after 20 minutes.
 ${ }^{2}$) Not yet decomposed to the extent of $15 \mathrm{~N} / 0$ after 21 hours.
[^114]: ${ }^{1}$) Torell, Petrilicata suecana formationis cambricae. Lunds Unir. Arsikrin. 1869. Tom. VI. p. 12.
 \Rightarrow Holst. Beskrifniny lill karthadd simrishamn-swerges getugiska lodersökning. 1892. Ser. Aa. N゙․ 109, p. 13.

 Holst. Bidrag till kainnedomen om lagerföljden inom den kambriska stmdstenen. Sieriges geologiska Undersükning, 1893. Ser. C. N0. 130, p. 6, 13, 14.
 ${ }^{3}$) Moberg. Geologisk viguisare inom Fogelsingstrakten. 1890. p. 30.
 4) Tullberg. Om Agnostus-arlerna i de kambriska aflagringarne vid Andrarum. Sveriges geologiska Cudersökning. 1880. Ser. C. No. 12, p. 3.

[^115]: 1) Holm. Sveriges Kambrisk-Siluriska Hyolithidae och Conularidae. Sveriges geologiski L'ndersöknung. Ser. C. No. 112. p. 54.
[^116]: ${ }^{1)}$ Moberg. Sveriges älsta kianda Trilobiter. Geol. Fören. in Stockholm förhandlingar 1899. Bd. 21. Hält 4. p. 324.
 2) Vax Galerr. Ueber ein Vorkommen von Kantengeschieben und von Hyoli-thus- und Scolithus-Sandstein in Holland. Zeitschr. d. Deutsch. geol. (iesellschait. Jahrg. 1890. p. 581.

[^117]: ${ }^{1}$) Bonnema. De sedimentaire zwerfblokken van Kloosterholt (Heiligerlee). Versl. v. d. Koninkl. Akad. v. Wetenschappen 1898. p. 450.

 Van Calker, Ueber eine Sammiung von Geschieben von kloosterholt. Zeitschr. d. Deutsch. geol. Gesellsch. Jahrg. 1898. p. 234.

[^118]: ${ }^{1)}$ Kjerulf "Sparagmitfjeldet". Universitetsprogram Kristiania. 1s72. p. S1. Fig. 7-9.
 ${ }^{2}$) Brögger, Om Paradoxidesskifrene ved Krekling. Nyt Magazin for Naturvidenskab. $1878 . \mathrm{Bd}$. थ4. p. 58.
 ${ }^{3}$) Lincarssox, De undre Paradoxideslagren vid Andrarum. Sveriges geologiska Undersökning 1882. Ser. C. N". 54. 1. 21. Taf. IV. fig. 3, 4.

[^119]: 1) Nathorst. Om de kambriska och siluriska lagren vid hiviks Esperüd etc. Geol. Föreningens i stockholm Förlandingar. Bd. 3. 1s7\%. p. ©6t.
[^120]: 1) Hola loc cit. 1. 74.
 2) Moberg. Om en nyupptaickt fauna i block of kamlrisk sandsten etc. p. 117.
 ${ }^{3}$) Holst. Bidrag till känuedomen om lagerföljeter inom den kambriska sand stenen, 1. 9.
[^121]: ${ }^{1}$) Gottsche. Die Sedimentär-Gieschiebe der Provinz Schleswig-Holstein. 1883. p. S.
 2) Hesmel. Beskrifuing till kartbladet .Bista!". (No. 60). Siemaes geologiska Undersükning. 1877 p. 10.
 ${ }^{3}$) Holst. Beskrifning till kartbladet Simrishamn. p. 15.

 1) Stolez. Die cambrischen und silurichen (icochathe shleswig-Holsteins. Archiv für Inthroppogie und Geobugie schleswir-Holstems und der benadharten Gehiete. 1895. Bd. 1. Hefl. 1. p. 130.
[^122]: ${ }^{1}$) These Proceedings of the meetings of February, March and April 1901. See also "Livre jubilaire dedié à J. Bossema" of the Areh. Néerlo, p. 47. (The first communication and part of the second discuss principally the specific heat for very large volume).

[^123]: ${ }^{1}$) All values of r, b, etc. have been expressed in the usual practical units.
 8) These Proceedings, June 1901, p. 124.

[^124]: ${ }^{1}$) v. d. Wals, l. c. III, p. 6 f4.

[^125]: ${ }^{1}$) L. E. Jewell, "The coincidence of solar and metallic lines. I study of the appearance of lines in the spectra of the electric are and the Sun." Astroph. Journ. III p. 89-113, 1896. The same: "Spectroscopic notes. Absolute wave-lengths, spectroscopic determinations of motions in the line of sight, and other retated subjects." Astroph. Journ. XI p. 23t-940, 1900.

[^126]: ${ }^{1}$) Proc. Roy. Acad. Amst. II, p. $975-588$; III, p. 19.9-203; IV, p, 162-171; Physikalische Zeitschuitt 1, p. 139-136.

[^127]: ${ }^{1}$) The possible influence of the general or regular ray-curving (after Scinmbr's principle) on the feature of the spectral lines has, in the present paper, been left out of consideration. If we were able to observe or to calculate the radii of the "critical spheres" for radiations undergoing anomalous refraction, it would be possible to estimate that influence; but as yet sufficient data are wanting.
 ${ }^{2}$) Proc. Roy, Acad. Amst. II, p. 580.

[^128]: ${ }^{1}$) Froc, Roy. Acad. Amst. IN, 1, 16 .
 ${ }^{2}$) R. Empra, Beilrage zur Somentheoric, Ann. d. Phys. [4], 7, p. 174-197.

[^129]: ${ }^{1}$) A System of Mineralogy p. 216.

[^130]: 1) Lonextz, La théorie électromagnétique de Maxwell et son application aux

 2) See Levi Civita, Nuovo Cimento, (作, vol. 6, $11.93,1897$; Wiechert, Arch. néerl., (2), T. 5, p. 549, 1900.
[^131]: ${ }^{1}$) Livre jubilaire dédié à J. Bosscina; Arclives Néerlandaises, Ser. II. T. VI. p. 874-888. 1901.

[^132]: ${ }^{1}$) We have ascertained that an elevation of temperature does not cause the displacement.

[^133]: ${ }^{1}$) It has not been possible to ascertain, by the ordinary means at disposal, not cven by the highest possible enlargement, that the o-nitrosobenzoic acid formed is crystalline. This camot be a matter of surprise if we consider that the separation of the acid proceeds very rapidly and that the diftusion in solid solution is particularly slow. Still we may speak here of crystallisation as the separated substance, in contrist to amorphous compounds, exhihits definite physical conslants (fixed melting point, solubility etc.).

[^134]: 1) Ber: 27. $50-1594$. (1894).
 \therefore Sturns. Z. fh. Ch. 28. 52: The salts are, therefore, not dissuciated hydrolytically.
[^135]: 1) The quantitative estimation of ioronium haloid and halogen-benzene in the presence of each other is simply done by titration with $\mathrm{AgNO}_{\mathrm{s}}$; the first when introduced into water yields one of the halogen atoms as ion whilst iodo- or chlorobenzene does not react with AgNO_{3}.

 $11.15^{0} 0$ (l, calculated $11.20 / 0$.
 ${ }^{2}$) V. Meyer states that it turns yellow on exposure to light.
[^136]: 1) The following expriment also may show low sensitive the transformation is (o) very tribing quantities of foreign sulbsames. Fo a solnhon of the chborite
 2.3.71, was ahded 34.3 milligr. of a well erystallised chlorite which was coloured
[^137]:

 ") Huemer: Lethaca ematica. pay. :\%

 b) Linaaresox. Loc. cit. pag. 364.

[^138]: ${ }^{1}$) Dases, Zeitschr. d. deutsch. geol. Gesellschatt. Bid. 31. 1879. pay. 795.
 ${ }^{2}$) Remelé, Zeitschr. d. deutsch. geol. Gesellschaft. Bd. 33, 1881. pag. 181, 700.
 ${ }^{3}$) Roemer, Lethaea erratica, pag. 26.
 ${ }^{\text {b }}$) Stolley, Die Cambrischen und Silurischen Geschiebe Schleswig-Holsteins und der benachbarten Gebiete, 1895. Bd. I, Helt 1, pay. 10.
 ${ }^{5}$) Boxema. "Ciambrian erratic-bloes at Hemelum in the sonth-west of Frisia." These Proc. 1902, p. 142.

[^139]: 1) Lixwhison. Om. Faunan i Kalken med Conocoryble exsulans (Goronatushalken'. Sveriges geologiska Ludersökning. 1879. Ser. Ci. No. 3as. par. 15. tafl. II, fig. $\because 1, \cdots$.
 ${ }^{3}$) Laspmasen. loe cit. paty 20. tall. II. lig. 29, 30 .
 ") Lixrmaseon. lec. (it, par. 11. tafl. 1. fig. 12-15.
 2) Linxalsson. loc. cit. pag. 14. tafl. I. fig. 16-19, 20?
[^140]: 1) "Kur Theorie der Function $E(x)$." Journal f. Math., 10:2, p. !
[^141]: ${ }^{1}$) $2(11)$ denutes the number of integers less than n and prime to n .
 \Rightarrow Pat of the contents of this communication has already been shorty mentioned in at foot-noth which was added to the English translation of a former paper I'rom: Lay: Acal. Amst. N, p. tiol) but dill not oceur in the Dutch original of the same.
 i) L. F. Jewert, Istrophysical Juurnal, III. p. 108, 1896, and V'III, p. 51-53, 1808.

[^142]:

 ${ }^{2}$ Drude, Doude's Mrim., Bol. 1, p. Stiti, 1900.

[^143]: ${ }^{1)}$ Plavek, Drude ${ }^{\text {s }}$ Anu.. Bd. 1, p. 69, 190% : Bd. 4, p.p. 553 and 564, 1901.

[^144]: ${ }^{1}$) Dimue. I. c., p. 57̈c. This formula does not change ly the introluction of our new units.

[^145]: 1) The prool' of this will be fomm in one of the nex prats of my "Contrilmtions to the theory of electrons."
[^146]: ${ }^{1}$ This is easily shown, as has been done by Maxwele in his first paper on the kinetic theory of gases, if both the electuons and the particles of the metal are supposed to be perfectly clastic spheres.

[^147]: $\left.{ }^{1}\right)$ See $\$ \S 13-15$.

[^148]: 1) Recherches sur la réduction des nitrates, Ann. agron. t. $23,1897$.
 ${ }^{2}$) Van Iterson, Accumulation experiments with denitrifying bacteria. Proc. Acad. of Science, Amsterdam July 1902.
[^149]: 1) From the Downs at Loosdumen.
[^150]: I) The ereal stabitity of wouldembluse towats microbic dife is directly upposed to the randy derompitioni of wowl paper under chemical inlluences.

[^151]: Ascobulecis, C. R. 1. 1:36, 1903, p. sy 5 .

[^152]: 1) Cross and Bexas, C'ellelusé, 1890, p. W\% Londun, Lonyman Green and Co.
[^153]: ${ }^{1}$) This name alreaty nsed ly Kumstam (l.c.) is preferable lo the name cyterse

 alexin vecunin! in normal serun.

